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The Stability of Non-linear Power
Systems
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Abstract The power system is one of the most complicated man-made non-linear
systems which plays an important role for human being since it was first made in
the 19th century. In the past decade, the integration of renewable power sources such
as wind energy and solar energy has increased rapidly due to their sustainability.
However, these energy sources are weather dependent which cannot be controlled or
even predicted precisely. A challenge brought by this transition to renewable power
generation is the uncertain fluctuations that negatively affects the stability of the
power system, which leads to the important problem: how to improve by control
the stability of the system such that it remains stable when subjected to considerable
fluctuations in the energy supply? Hence, research is needed into the stability metrics
of the non-linear power systemand control strategies for the stability improvement. In
this chapter, we describe the linear and non-linear stability analysis of power systems
and summarize the corresponding control strategies for stability improvement.
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14.1 Introduction

In order to decrease the CO2 emissions from the traditional fossil fuel power plants,
there are more and more wind farms and Photo Voltaic (PV) farms established on
the generation side and rooftop solar PV panels installed at houses of consumers on
the distribution side almost all over the world in the past decade. The rapid increase
of the weather dependent power energy, which is also called variable renewable
energy, brings several challenges to the power system. It is well known that these
renewable power generation depends on the weather which cannot be controlled or
even accurately predicted. In this case, unlike the traditional power system where the
uncertainties usually come from the consumer side only, the uncertainties now come
from both the generation and the load side and thus will be harder to manage. These
fluctuations do not only deteriorate the quality of power supply, but also decrease
the power system stability [28].

Since power systems rely on the synchronous machines (e.g., rotor-generators
driven by steam or gas turbines) for power generation, a requirement for normal sys-
tem operation is that all the synchronous machines remain in synchronization. The
ability of a power system to maintain the synchronization when subjected to severe
transient disturbance such as short-circuit of transmission lines, loss of generation, is
called transient stability [1, 10, 18, 22, 51], which we will also refer to as synchro-
nization stability in this chapter. The synchronous state is actually an equilibrium
point of the system, which has been widely studied in the field of complex net-
work [25, 41, 47]. Synchronization stability has been studied mainly by linearizing
about a stable equilibrium [2, 12, 32, 34, 39]. The framework developed by Pecora
et al. has greatly facilitated these computations. However, as fluctuations induced by
changing weather can have enormous impact, a linearization approach will often not
be sufficient. From the perspective of non-linear systems, this stability measures the
ability that the state stays in the basin of attraction after disturbances. This stability
is influenced by the nonlinearity of the power system. The basin of attraction (also
called the stability region) of a nonlinear system is defined as the set of the initial
states of the trajectories which converge to the equilibrium as the time goes to infin-
ity [19, 37]. For a nonlinear system with a small basin of attraction, the trajectory
usually has a small escape time from the region when subjected to disturbances. Sta-
bility margin is another definition corresponding to the non-linear stability, which
measures the distance from a stable state to the state of losing synchronization
[10, 17, 51]. The larger the stability margin, the more stable is the power system
against disturbances.

For a power system, the non-linear stability depends on the severity of the dis-
turbance. Renewable energy such as wind power and solar power is often strongly
affected by the weather and consequently causes power fluctuations and frequency
fluctuations of a large-scale power system. These continuous fluctuations of the fre-
quency may further lead the system to lose the synchronization. In order to further
increase the integration of the renewable energy, the problem of increasing the syn-
chronization stability to avoid losing frequency synchronization caused by various
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disturbances is receiving more and more attention. It is obvious that the decrease of
the strength of the disturbance can effectively increase the stability. The strategies on
how to suppress these disturbances is not the focus of the chapter. We pay attention
to the possible strategies for improving the stability by changing the power system
itself, which consists of synchronous power generators, power transmission lines and
loads.

Control of power systems can enhance the system stability. The control objectives
for control of a power system include to deliver electric power to customers of
the network operator, to maintain the stability of the power system, preferably in
the domain of attraction of the current steady state, and to minimize the cost of
the operation of the power system. In practice, the power transmission in the first
control objective depends on the location of the power generation and loads, the
network topology and the transmission line capacity. The latter two control objectives
are separated for frequency control into primary, secondary and tertiary frequency
control, respectively, see [22, 53]. The primary control which also called droop
control keeps the synchronization of the frequency at a value which may deviate
from the nominal value. The secondary control the synchronized frequency to the
nominal frequency and the tertiary control determine the set point stabilized by the
primary and secondary control. The secondary control and the tertiary control jointly
determine the set point of the power system. In addition, the secondary control affects
the dynamics.

The control objective of maintaining the state of the system within a domain of
attraction of a steady state motivates research to explore ways to characterize the
stability region, the boundary of the domain of attraction and the stability margin
[11, 58]. For a power system with control, the stability depends on factors such as

(i) the topology of the network, which can be changed by adding new lines and
nodes to the network or configuring the capacity of the lines,

(ii) the inertia of the synchronous machines, which may be changed by placing or
removing virtual inertia to the nodes in the network,

(iii) the damping coefficients of the synchronousmachine, which includes the droop
control gain parameter that can be configured in droop control [22],

(iv) and power generation and load, which can be controlled by changing the
mechanical power generation or switching on or off the power consumption.

To accomplish the control objective of keeping the system stability, these four
factors can be changed based on characteristics of the stability region. The first
step for the stability improvement is to find a metric for the stability, which can
point to those factors that are best changed. The need for improving the stability of a
power systemsmotivates research into the mathematics of stability analysis of power
systems.

In this chapter, we focus on the improvement of the stability of power systems.
We give a survey on the recent development of the stability analysis and summarize
the potential stability metrics for the stability and corresponding strategies for the
stability improvement. The chapter is organized as follows. Section 14.2 introduces
the model of the power systems. Section 14.3 discusses the necessary condition for
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the existence of synchronization state. The linear stability and non-linear stability
of the synchronization state are described in Sects. 14.4 and 14.5 respectively. We
conclude the chapter in Sect. 14.6.

14.2 The Model of Power Systems

There are three main components in power systems, namely power generators, trans-
mission network, and loads. We consider the power system described by a graph
G = (V,E)with nodesV and edges E ⊆ V × Vwhere a node represents a bus and
edge (i, j) represents the direct transmission line connection between node i and
node j . Each bus is locally connected to either energy sources, or energy loads, or
to both. We denote the number of nodes in the network by n.

We focus on the power system with lossless transmission lines, of which the
dynamics can be equivalently described by the following swing equations [4, 9, 31],

δ̇i = ωi , i ∈ V, (14.1a)

Mi ω̇i = Pi − Diωi −
∑

j∈V
Bi j sin (δi − δ j ), i ∈ V, (14.1b)

where δi is the phase angle at node i , ωi is the frequency deviation from the nominal
frequency, e.g., 50 or 60Hz, Mi > 0 is the moment inertia of the machine, Pi is
the power supplied by synchronous machines or by renewable energy sources if
Pi > 0, and is power load if Pi < 0, Di > 0 is the damping coefficient including
droop control gain parameter, Bi j = B̂i j Vi Vj which can be viewed as the weight of
the edges in the graph G. Since the control of the voltage and of the frequency can
be decoupled when the transmission lines are lossless [45], we do not model the
dynamics of the voltages and assume the voltage of each bus is a constant which can
be derived from power flow calculation [33, 42].

Throughout the discussion of this chapter, we assume the network is undirected
and connected. The Laplacian matrix of the network is in the form

Ln =

⎛

⎜⎜⎜⎝

∑n
j=1 B1 j −B12 . . . −B1n

−B21
∑n

j=1 B2 j . . . −B2n

...
...

. . .
...

−Bn1 −Bn2 . . .
∑n

j=1 Bnj

⎞

⎟⎟⎟⎠ (14.2)

Because the lineweight Bi j for all (i, j) ∈ E are positive, Ln is non-negative definite.
The eigenvalues of Ln ∈ R

n×n are denoted by 0 < σ2 ≤ · · · ≤ σn . Herein, the second
smallest eigenvalue σ2 measures the connectivity of the network [50].
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It has been demonstrated in [43, 44] that frequency droop controlled Micro-Grids
which have some sort of energy storage and lossless transmission lines can also be
modeled by second-order swing equations (14.1). Some othermodels are also applied
for the synchronization stability analysis of power networks, see [36] for details of
the comparison of these models.

By selecting one node as infinite bus with constant phase and the other one as a
synchronous generator in a two-node network, the following Single Machine Infinite
Bus (SMIB) model can be obtained,

δ̇ = ω, (14.3a)

Mω̇ = P − Dω − B sin δ, (14.3b)

which can be directly derived from (14.1). Here P and B are the transmitted power
and the line capacity respectively, the voltages are also assumed constant, δ is the
angle difference between the synchronousmachine and the infinite bus, which should
be kept in a small range in order to stay in the synchronization state. This requires
ω = 0 and P = B sin δ at the synchronized state. The diagram of this SMIB model
is shown in Fig. 14.1.

Themodeling of fluctuations affecting a power system are discussed next, because
such fluctuations strongly motivate current research in stability analysis and control
of power systems.

In practice, continuous fluctuations act 24 h a day, though their intensity varies
during the day and depend on the weather and on human behavior. The energy loads
fluctuate all the time due to consumers switching on electricity devices. The power
generation of the synchronous generators are operated to balance these fluctuations
and keep the stability of the power system.

Weather dependent power sources as wind turbines, wind parks, and the sun via
photo-voltaic panels, generate power with large fluctuations. The wind power pro-
duced varies with the intensities of the wind force, the solar power produced varies
with the sun intensities received on earth and with the cloud covers between the sun
and the PV panel. The strength of these fluctuations are much stronger than those
in the traditional power system, which bring great challenges to the operation of the
power systems. Modeling of the fluctuations and procedures of system identification
may help to obtain realistic models for control of power systems to suppress the fluc-
tuations. Effective suppression of the fluctuations are important for the synchronous
stability of the power systems.

Fig. 14.1 The SMIB model
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Abrupt changes in the transmission networkmay occur, which could cause serious
blackouts. These events have happened more frequently in the past decade than
before. Examples of such abrupt changes are the breakage of power lines, for example
due to freezing rain on the lines, break downof part of a power plantwith synchronous
machines, or instability of the power network due to a network node experiencing a
relatively large power disturbance. For such abrupt changes there are special control
procedures, like islanding of the power network, control of each power network
island, and later return to the normal state by joining the power network islands.
These procedures are not further discussed in this chapter. The focus of this chapter
is on analysis of power system stability and on control for the improvement of power
system stability.

14.3 The Synchronous State

The stability of a nonlinear system usually refers to the ability of the system to stay
in the basin of attraction of a synchronous state. In this section, the focus is on the
existence of the synchronous state of the power system.

The equilibrium point of the system (14.1) is referred to as the synchronous state
defined as follows.

Definition 14.1 Assuming that power generation and loads are constant, the syn-
chronous state of the system satisfies for all i ∈ V

ωi = ωsyn, (14.4a)

ω̇i = 0, (14.4b)

δi = ωsynt + δ∗
i , (14.4c)

δ̇i = ωsyn, (14.4d)

where ωsyn ∈ R is the synchronized frequency deviation, δ∗
i is the phase angle of

node i at the steady state. In the synchronous state, all the phase distances |δi − δ j | =
|δ∗

i − δ∗
j | are constant.

The terminology phase locking and phase cohesiveness are also used to describe
this synchronization state of frequency [15]. In particular, the phase locking statewith
|δ∗

i − δ∗
j | = 0 for i, j = 1, . . . , n, is called phase synchronized state. In practice, the

synchronous state does not exist for the power system due to the continuously fluc-
tuating power loads. However, it is practical to assume the power loads are constant
on small time-scales which lead to a synchronous state.

By summing all the equations for i = 1, . . . , n, the explicit formula of the syn-
chronized frequency ωsyn can be obtained as follows

ωsyn =
∑n

i=1 Pi∑n
i=1 Di

, (14.5)
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where
∑n

i=1 Pi is referred to as the power imbalance. It can be obtained that if
the power imbalance is zero, the synchronized frequency deviation is zero. The
restoration of the frequency deviation to zero is the task of secondary frequency
control, see [16, 20, 53, 54, 56].

14.3.1 Existence of the Synchronous State

For the SMIB model, the equilibrium point satisfies

ω = 0, sin δ∗ = P

B
. (14.6)

at which the phase angle difference between the machine and infinite bus is δ∗. It is
obvious that if B < P , this equilibrium point does not exist and the system converges
to a non-synchronous limit cycle which can be characterized by

ωns ≈ P

D
+ DB

P
cos

( P

D
t
)

(14.7)

when |P|/D2 � 1 and P2/D2 � B, see [31]. For this SMIB model, the critical
line capacity is Kc = P , which is the power that has to be transmitted to the load.
This critical line capacity is also called critical coupling [14], which is defined as
the smallest line capacity for the existence of an equilibrium point. If B > Kc, it
is obvious that in a period of sin function there are two equilibrium points which
satisfy (14.6), However, it is far more complex to obtain an explicit formula of the
critical capacity for the power system (14.1) than for the SMIB model. It is obvious
that the existence of the synchronous state depends on the power injection (load),
the topology of the network and the line capacities. Hence, the critical line capacity
depends on the power injection (load) and the network topology.

Due to the importance of the synchronization in complex network, the Kuramoto
model is widely studied for the condition of the synchronization. The first-order
non-uniform Kuramoto model is as follows

δ̇i = ωi − K
n∑

j=1

ai j sin (δi − δ j ), i = 1, . . . , n. (14.8)

where ai j = 1 if node i and j is connected, otherwise ai j = 0. Note that the model
(14.1) is also referred to as non-uniform second-order Kuramoto model. The corre-
sponding Laplacian matrix is denoted by La . Here ωi has a different meaning from
the one in the power system (14.1), which denotes a force to the oscillator i . In
literature, the critical line capacity Kc has been widely applied to the study of the
impact of the parameter of the system on the existence of the synchronous state. If
the critical coupling strength K > Kc, it satisfies θ̇i = ωs for all the nodes in the
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network where ωs = ∑n
i ωi/n, which can be obtained by summing all the equation

in (14.8). For completed network with ai j = 1 for i, j = 1, . . . , n, the upper bound
and lower bound of Kc can be obtained explicitly [15]. For a general network, the
lower bound of Kc can be obtained from the necessary condition or the sufficient
condition for the existence of the synchronous state of (14.8), see [15]. The critical
coupling strength depends on the distribution of ωi and the network topology, the
synchronization can improved via decreasing Kc by changing the topology and the
distribution of the frequency ωi . In order to connect these conditions to the power
systems, Dörfler and Bullo [14] have proven the equivalence of the synchronization
of the power network (14.1) and theKuramoto network (14.8).With this equivalence,
the existence condition of the synchronous state for the power system (14.1) can be
deduced from those of the Kuramoto model (14.8).

Remark 14.1 With the lower bound of Kc as a stability metric, an optimization
framework can be formed with the controllable factors, i.e., the network topology
and the power generation and loads, as decision variables. Because the inertia and
the damping coefficient have no influence on the synchronous state when ωsyn = 0,
this metric cannot be applied for the improvement of the stability by controlling the
virtual inertia and damping coefficients.

The stability of the synchronous state can be determined by the Lyapunovmethod,
which will be further described in Sect. 14.4. In principle there may be more than
one stable synchronous state [13, 27, 29, 38, 40, 55] due to cycles in the network.

For a cyclic power network with alternating nodes of loads and generators as
shown in Fig. 14.2. There are even number of nodes in the network and the power
injection Pi = −2P for even nodes and Pi = 2P for odd nodes. This alternating
distributionof power leads to

∑n
i=1 Pi = 0.Themodel of this network canbededuced

from (14.1) as

δ̇i = ωi , (14.9a)

ω̇i = Pi − Dωi − B[sin (δi − δi+1) + sin (δi − δi−1)]. (14.9b)

Fig. 14.2 A cyclic network
with alternating consumer
and generator nodes. Circle
nodes are generators and
square nodes are consumers.
There may be stable
equilibria with the power
transported around the cycle
clockwise with m < 0 and
counterclockwise with
m > 0
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Denote the phase differences between neighbors by θ1 = δ1 − δn (mod 2π) and
θi+1 = δi+1 − δi (mod 2π). The equilibria of this ring network are given by θi = θ1
for odd i , and θi = θ2 for even i , where

θ1 = arcsin

[
P

B cos 2mπ
n

]
+ 2πm

n
(14.10a)

θ2 = − arcsin

[
P

B cos 2mπ
n

]
+ 2πm

n
, (14.10b)

and m is an integer such that

|m| ≤ � n

2π
arccos

(√
P

B

)
	.

The total number of stable equilibria is given by

Ns = 1 + 2� n

2π
arccos

(√
P

B

)
	. (14.11)

where �x	 denotes the floor value of x , that is, the largest integer value which is
smaller than or equal to x . When P = 0, Ns reaches the upper bound derived in [13].

Remark 14.2 It can be seen from formula (14.11) that the number of the stable
synchronous state increase linearly as the size n of the cycle increases. For the syn-
chronous state with m 
= 0, power loop occurs in the cycle. For practical purposes
the case m = 0 is desirable for transport of electricity, as in this case direct trans-
port of power from the generator to the consumer is realized. Direct transport from
generator to consumer minimizes energy losses that always accompany the transport
of electrical power. Possible ways to avoid the clockwise-counterclockwise power
loops is to control the power generation or loads, such that the phase angles are in
the security range (14.19) which will be described in Sect. 14.4.

Besides these stable synchronous states, there may be more than 2n synchronous
states for the power network, which depends on the distribution of the power gener-
ation and loads and the topology, see [3, 8, 26, 30] for details. Because the unsta-
ble equilibrium points are on the potential energy boundary, it is important to find
these equilibrium points for analyzing the nonlinear stability, detail will be further
described in Sect. 14.5.
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14.3.2 Braess’ Paradox in Power Grids

A surprising finding in the synchronization of power grids is that adding more con-
nections does not always improve the synchronization in the grid, but could also
destroy an existing stable synchronized state.

A similar phenomenon was reported in the 1968 by Braess [5] in the context of
traffic flow. It turned out that adding a new road to an existing traffic plan may some-
times lead to increased congestion of the traffic flow, in contrast to the expectation.

To illustrate how adding a new connection to a power grid can destroy the syn-
chronization, we consider a configuration of a network consisting of 2 clusters of 4
nodes, which are coupled at the top and bottom nodes of each cluster; see Fig. 14.3.
The same configuration was also considered in [52]. We assume each line to have the
same capacity Bi j = K for all (i, j) ∈ E. The flow between nodes i and j is given
by Fi j = K sin(δi − δ j ). For clarity, the consumer nodes with consumption P are
depicted green and the generation nodes, with generation P , are blue. A straight-
forward study of this simple network, shows that an equilibrium configuration can
be obtained when all blue nodes except the upper left one have phase −π/2 and all
green nodes except the bottom right one have phase π/2. The upper left on lower
right nodes both have phase 0. By taking the capacity of each line K to be equal to
P , this configuration allows each line between a generator and a consumer to carry
P units of power. Additionally, power P is transferred from the top right to the top
left node as wel as from the bottom right to the bottom left node. We remark that
this configuration is critical in the sense that a small increase in power generation or
demand cannot be accommodated by the network.

When a connection between the upper left and lower right nodes is added, an
overflow occurs, that is, the power flowing from the upper left node to the consumer
nodes below is larger than the critical capacity Kc and therefore synchronization
is lost. It has recently been shown that Braess’ paradox can be prevented by using
secondary control [48]. It turns out that all nodes need to be controlled, that is, both
the generator and the consumer nodes, in order to prevent the Braess’ paradox from
happening. This demonstrates that the network topology is extremely important in
order to guarantee reliable operation of the power grid, and that not only generator

(a) (b)

Fig. 14.3 A schematic of a simple network operating at critical capacity K = Kc = P . The system
synchronizes in a, but adding a new connection shown in red between two generators induces an
overload and destroys the synchronization of the system
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nodes, but also consumer nodes should receive sufficient attention when introducing
additional renewable power generators and consumers in the network.

Besides the work done on Braess’ paradox in the group of Marc Timme [48, 52],
a linear stability analysis has been carried out by Coletta and Jacquod [12] for simple
linear chain networks. Thework corroborates the results of Refs. [48, 52], by proving
that for one-dimensional chain networks power can flow from consumer to generator
and thereby surmounting the line capacity. This effect is equivalent to the Braess’
paradox in a two-dimensional situation. Moreover, it was shown numerically that
Braess’ paradox can actually occur in real power grids, such as the UK power grid
and the European Grid.

So far these calculations have all been carried out for purely capacitive networks,
that is, without dissipative losses. As distributed generation of power is surging,
dissipative effects will probably be more prevalent, which requires a more elaborate
analysis including dissipative effects.

Remark 14.3 In the investigation of the Braess’ Paradox in power grids, the exis-
tence condition of the synchronous state plays an important role such as in the finding
and curing of it [48, 52]. Beside the critical line capacity Kc, the linear stability which
will be discussed in Sect. 14.4 is also used as a stability metric in the study of the
impact of the network topology[12, 52]. Possible ways to avoid the Braess’ Para-
dox is to avoid the decrease of these metrics when adding new lines to the network.
Control of power generation and loads is another way to curing this paradox.

14.4 Stability of the Linearized System

A non-linear system is linearly stable at an equilibrium state if the linearized system
at that equilibrium state, determined by the Jacobian, is exponentially stable. The
linear stability considers the local convergence speed at the neighborhood of the
stable equilibrium point. This linear stability can be qualified by the real part of
the eigenvalues. In this section, we introduce the linearization of the system and
the dependence of the eigenvalues on the parameters of the power system. How to
increase the linear stability by changing the parameters of the system will also be
described.

Assume that there exists a synchronous state for the power system, which is
denoted by (δ∗, 0). After linearization at the synchronous state, we derive

δ̇ = ω, (14.12a)

Mω̇ = −Lcδ − Dω. (14.12b)

where δ = col(δi ) ∈ R
n , ω = col(ωi ) ∈ R

n , M = diag(Mi ) ∈ R
n×n , Lc =(

Bi j cos (δi − δ j )
) ∈ R

n×n , D = diag(Di ) ∈ R
n×n . Here, col(·) denotes a column

vector and diag(·) denotes a diagonal matrix.
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In a power system, the small signal stability is the ability of the power system
to maintain the synchronization when subjected to small disturbances. The behavior
of the power system is best such that, after a small disturbance acting on the power
system, the state of the system returns to the synchronous state. Preferably this return
should be quickly. The small signal stability analysis is based on the linearization
to provide valuable information about the characteristics of the system and help
configure the corresponding parameters.

After linearizing the SMIB model (14.3) at an equilibrium point, we obtain

δ̇ = ω, (14.13a)

Mω̇ = −Dω − Bδ, (14.13b)

where B = B cos δ∗
i . The eigenvalues of the linear system can be calculated as

λ = −D ±
√
D2 − 4B

2
(14.14)

from which it can be obtained that when B = B cos δ∗
0 > 0, all the eigenvalues have

negative real part. Thus the system is stable at the equilibrium δ0 according to the
second Lyapunov method for determining the stability of a nonlinear system. How-
ever, with B = B cos δ∗

1 < 0, there is one eigenvalue which has positive real part.
This means that the system is unstable at the equilibrium point δ∗

1 . Hence, a security
condition can be obtained for the stability of the equilibrium point as cos δ∗ > 0,
which can be further expressed as −π

2 < δ∗ < π
2 . For the SMIB model, it is obvious

that there is only one stable equilibrium point in the security range of phase angle.
The linear stability analysis of the system (14.1) is much more complex than the

SMIB mode because of the high dimension. The system (14.12) has 2n equations,
and there are 2n eigenvalues which depend on M, Lc, D. In practice, both M and
D are positive definite for power systems. Lc involves the topology of the network
and the line capacities. It has been proven in [57] that with positive definite M and
D the sign of the real part of the eigenvalues depends on the eigenvalues of Lc. This
is explained as follows.

The system (14.12) can be written in the compact form

(
δ̇

ω̇

)
=

(
0 I

−Lm β

)(
δ

ω

)
(14.15)

where Lm = M−1Lc,β = diag(Di/Mi ) ∈ R
n .We assume that all the components of

β are identical, i.e., βi = β. Let Q ∈ R
n×n be the matrix formed by the eigenvectors

of Lm such that
Q−1Lm Q = �

where � is a diagonal matrix with the diagonal component being the eigenvalues
0 = λ1 < λ2 ≤ λ2 · · · ≤ λn of Lm as its columns. Here all the eigenvalues of Lm are
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real even though Lm is not symmetric [34]. Let X1 = Q−1δ and X2 = Q−1ω. These
formulas transform (14.15) to

(
Ẋ1

Ẋ2

)
=

(
0 I

−� β

)(
X1

X2

)
(14.16)

which consists of n decoupled sub-systems as follows

(
Ẋ1i

Ẋ2i

)
=

(
0 1

−λi β

) (
X1i

X2i

)
, i = 1, . . . , n. (14.17)

Because the eigenvalue λ1 = 0, we do not consider the subsystem i = 1which in fact
does not influence the synchronization due to the phase rotation. For the subsystems
i = 2, · · · , n, the eigenvalues of (14.12) can be calculated as follows

αi± = −β

2
± 1

2

√
β2 − 4λi , (14.18)

which has a similar form as the eigenvalues of the SMIB model in (14.14). It can
be easily observed that with β > 0, the sign of the real part of αi is determined
by λi , and the synchronous state is Lyapunov stable if and only if λi is positive for
i = 2, . . . , n. Because M is a diagonal positive definitematrixwhich does not impact
the non-negative definite of Lm , the number of eigenvalues of Lm with a positive
real part equals the number of eigenvalues of Lc with a positive real part. Thus,
the synchronous state (δ∗, 0) is Lyapunov stable if and only if Lc is non-negative
definite.

By Lyapunov stability theory, a synchronous state is unstable if there is an eigen-
value λi with strictly positive real part for the linearized system at this state. The
unstable synchronous state is called of type j if the number of eigenvalues λi with
strictly positive real-part is j . In other words, the dimension of the unstable manifold
of the type j equilibrium point is j . It can be observed from (14.18) that if λi < 0,
αi+ has a positive real part, then it will lead to an unstable manifold and that the
number of the eigenvalues of the power network with positive real part equals that of
the negative eigenvalues of Lm . Because the number of the eigenvalues of Lm with
positive real part equals to that of Lc, the synchronous state (δ∗, 0) is of type j if
Lc has j negative eigenvalues. This statement can be applied to the determination of
type j equilibrium point of the power system with special topology, such as acyclic
network and cyclic network, which will be further discussed in Sect. 14.5.

From the above discussions it is clear that the eigenvalues of the Laplacian matrix
Lc play an important role in the stability analysis of power systems. It is well known
that if the weights Bi j cos (δ∗

i − δ∗
j ) for (i, j) ∈ E are positive, all the non-zero eigen-

values of Lc are positive. For the unstable synchronous state, there exist lines with
negative weight. The characteristic of the eigenvalues of the Laplacian matrix of
weighted network with negative weight has been investigated in [6], in which more
details on the determination of the number of negative eigenvalues can be found.
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Statement 14.1 For general configuration of Mi > 0 and Di > 0 in the power
system (14.1), it also holds that the synchronous state is stable if and only if all
the non-zero eigenvalues of Lc are positive. Since Lc is the Laplacian matrix of the
networkwithweight Bi j cos (δ∗

i − δ∗
j ) for all the edge (i, j) ∈ E, it can be derived that

if all theweights are positive, Lc is non-negative definite.With Bi j cos (δ∗
i − δ∗

j ) > 0,
the security condition for stability can be obtained

|δ∗
i − δ∗

j | <
π

2
, ∀(i, j) ∈ E, (14.19)

which is a well-known sufficient condition for the Lapunov stability of the syn-
chronous state. �

For details of the proof of the above statement, we refer to [46, 57].

Statement 14.2 The synchronous state in this security range is unique and stable
for the lossless power network. However, this is not true for lossy power networks,
see [46] for details. �


The linear stability of the system is qualified by the absolute value of Re(αi+)

for i = 2, . . . , n. Figure 14.4 illustrates how Re(αi+) depends on β and αi . For each
subsystem described by (14.17), there is a minimum for Re(αi+) with respect to
β. This minimum value Re(αi+) = −√

λi is obtained when setting β = 2
√

λi in
(14.18). If λi increases then the minimal value decreases, hence Re(αi+) is limited
by the second smallest eigenvalue λ2 of Lm . Thus, the optimal configuration of β

can be obtained as

βopt = 2
√

λ2. (14.20)

From λi > λ2 for i = 3, . . . , n, it can be derived that if β = βopt, the real-part of
all the eigenvalues of (14.12) are all identical, i.e.,

Re(αi+) = βopt

2
, i = 2, . . . , n.

Fig. 14.4 The real part of
αi+ with respect to β and λi
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If β is smaller than βopt, the real part Re(αi+) can be increased by increasing the
damping coefficient as Di = βMi due to the independence of Lm on Di , and the
optimal configuration is Di = 2

√
λ2/Mi .

Statement 14.3 Since Lm = M−1Lc, then the eigenvalue λ2 of Lm increases if the
eigenvalues of Lc increase. Due to the fact that Lc is determined by the synchronous
state, the topology and the capacity of transmission lines, the linear stability of the
power system can be improved by controlling the power injection, well-designed
topology and replacement of the transmission lines with low capacity by those with
high capacity. Once these parameters are determined, the damping coefficient Di can
be determined by Di = 2

√
λ2Mi . �


Algorithms for maxmizing the second smallest eigenvalues by determining the
state have been investigated in [21] which can be referred to for details.

Statement 14.4 The optimal configuration β = βopt is formulated with the assump-
tion that all the components ofβ are identical. It has been shown that for non-identical
βi this setting is optimal along any given direction in the βi -space for many power
systems [34, 35]. Hence, this configuration and increasing the second smallest eigen-
value is appropriate for enhancing the stability. For details of the analysis, we refer
to [34, 35]. �


The impact of the Braess’ paradox on the linear stability has been investigated
in [12], in which it is shown that adding a line to the network may decrease the
linear stability of a power network. The linear stability of cyclic power network has
been studied in [55]. An analytic formula of the eigenvalues of the linearized system
is obtained, which demonstrated that the linear stability decreases as the size of the
network increases. Simulations with various networks showed that the linear stability
decreases as the heterogeneity of the power injection increases. In other words, the
linear stability can be increased by reducing the heterogeneity of the power injection
(loads).

14.5 The Nonlinear Stability

In this section, we introduce the synchronization stability of power systems. The sta-
bility region of power systems has been analyzed by Chiang et al. [11] and Zaborszky
et al. [58]. However, because of the large-scale and complexity of the power network,
the basin of attraction, related to transient stability, has a high computational com-
plexity for numerical approximation. In this section, we introduce the energy barrier
which is a conservative estimate of the stability margin of the power system.

Inspired by the direct method to estimate whether the power system is stable after
a disturbance [10, 23, 24, 51], we explain how we can use the energy barrier method
to determine the transient stability in the case of the SMIB model.
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Fig. 14.5 The potential
energy landscape of the
SMIB system

The potential energy of this system is

V(δ) = −B cos δ − Pδ.

Figure 14.5b plots the potential energy difference V(δ) − V(δ0) where δ0 =
arcsin P/B is the phase angle difference at the steady state. In the figure, the position
and the speed of the ball displayed are δ and ω respectively. The potential energy
possesses three extreme points in the range (−3π/2, 3π/2), which include two unsta-
ble equilibria and one stable equilibrium. It can be observed that the trajectory will
converge to the minimum of V(δ) if its kinetic energy is smaller than the potential
energy 
V1 and 
V2. If obtaining enough energy from a disturbance to overcome
the potential energy, the trajectory will escape from the valley and thus the system
desynchronizes. Hence, the energy barrier 
V1 and 
V2 which are the potential
energy differences between the two unstable equilibria and the stable equilibrium,
can be used to measure the synchronization stability, which have the following for-
mula [10]


V1 = P(−π + 2 arcsin
P

B
) + 2

√
B2 − P2, (14.21a)


V2 = P(π + 2 arcsin
P

B
) + 2

√
B2 − P2. (14.21b)

From the above equations it is immediately clear that 
V1 decreases while 
V2

increases as the transmitted power P increases. As shown in Fig. 14.5b, it is much
easier for the trajectory to overcome 
V1 to escape from the valley than 
V2. So

V1 provides a conservative approximation of the basin of attraction and can be
used to measure the transient stability.

For the power network (14.1), the calculation of the energy barrier is far more
complex. The potential energy V (δ) is defined as

V (δ) = −B
∑

(i, j)∈E
cos(δi − δ j ) −

N∑

i=1

Piδi . (14.22)
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The primary idea behind estimating the region of attraction of a stable equilibrium
by the direct method, is that this region is bounded by a manifold M of the type-1
equilibria that reside on the potential energy boundary surface (PEBS) of the stable
equilibrium. The PEBS can be viewed as the stability boundary of the associated
gradient system [10, 51]

dδi

dt
= −∂V (δ)

∂δi
. (14.23)

The closest equilibrium is defined as the one with the lowest potential energy on
the PEBS. By calculating the closest equilibrium with potential energy Vmin and
equating this to the total energy, it is guaranteed that points within the region bounded
by the manifold M = {(δ, ω)|E(δ, ω) = Vmin}, will always converge to the stable
equilibrium point contained in M. Various algorithms for the calculation of the
closest equilibrium points are proposed, see [23, 24].

The idea of estimating the region of stability by type-1 equilibria is probably
best illustrated by considering a simple example of a three-node network depicted
in Fig. 14.6a. The 6 unstable equilibria are local minima on the potential energy
boundary surface (PEBS) plotted by the black dash-dotted line. These minima are
all type-1. The equilibrium 1 and 4, 2 and 5, 3 and 6 are caused by θ1, θ2 and θ3
exceeding π/2 respectively. Because equilibrium point 1 has the smallest energy, it
is the closest equilibrium point on the PEBS.

A small perturbation in the direction to saddle point 1, depicted by the red dashed
curve leads to desynchronization,whereas a larger perturbation in adifferent direction
(blue solid curve) eventually decays toward the stable equilibriumpoint and hence the
system stays synchronized. This shows the conservativity of the direct method and
the challenges in calculating the region of stability, as it depends on both the direction
and size of the perturbation. One approach to this problem is to determine the so-
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Fig. 14.6 a The 3-node power grid. b The potential energy of the three nodes power grid as a
function of δi where P1/K = 0.125, P2/K = −0.125, and P3/K = 0
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called controlling unstable equilibrium point, which was developed. The method is
not considered in this paper and we focus on the energy barrier, see [7, 11, 49]

It is obvious that if the potential energy of the type-1 equilibrium point is larger,
the system can stand more serious disturbances. Hence the potential energy of all the
type-1 equilibrium points can be used to measure the transient stability. However,
to calculate the energy barrier, it is necessary to find all the type-1 equilibria which
is actually a NP hard problem for a general network with many cycles. This idea
is applied to a cyclic power network to investigate the impact of the cycles on the
transient stability by the authors [55].

We focus on the stable equilibrium point with power flows in all the lines being P
and the phase angle differences being arcsin P/B, which is the same as in the SMIB
model.

For this cyclic network, similar as in the SMIB model, the energy barrier can be
calculated as


V c
I = P

(
−π + 2 arcsin

P

B

)
+ 2B

√
1 − P2

B2
+ 
UI , (14.24a)


UI = 2B

n

(
π

2
− arcsin

P

B

)2
√
1 − P2

B2
+ O

(
n−2

)
. (14.24b)

This energy is a conservative approximation of the minimum energy from the
disturbance that destroys the stability. When the system loses synchronization, there
must be a line inwhich the phase angle difference is larger thanπ/2.When comparing
this energywith that of the SMIBmodel in (14.21b), it can be found that
V c

I is larger
than 
V1. The minimum energy that leads to phase angle differences in branch lines
exceeding π/2, are the same as 
V1 when the power transmission is P . Thus, the
lines in a cycle are stronger than a branch line when they transfer the same amount of
power. This explains in a micro-perceptive why dead-ends in a network undermine
the stability.

Statement 14.5 With this finding, The stability of a nonlinear power system can be
improved by either forming small cycles in the power network or by control so that
the power-line branches transfer less power than the power lines in the cycles. �


From the comparison, it can also be deduced that the phase angle differences of
the lines in cycles can be larger than those of lines which are not in cycles. In other
words, with the same line capacity, the lines in cycles can transmit more power than
those that are not in cycles.

Remark 14.4 However, this energy barrier focus on the potential energy landscape,
in which the impact of the inertia and damping coefficients on the stability are
not considered. This makes the energy barrier very conservative for the estimation
of stability margin. In addition, for the large scale power networks with complex
topology, finding all the type-1 equilibriumpoints is a challenging numerical problem
due to the exponentially increase of the number of equilibrium points with the size
of the network.
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14.6 Conclusion

In this chapter, stability metrics and corresponding strategies to improve the stabil-
ity of non-linear power systems have been introduced. The controllable factors that
impact the stability include the inertia of synchronous machines, the damping coef-
ficients, the topology of the network which involves the line capacity and the power
generation and loads.

From the existence condition of the synchronous state, stability metric Kc can be
extracted for the synchronization stability improvement by changing the topology
of the network, the power generation and loads. Because this metric focuses on
the synchronous state, the impact of the inertia of the synchronous machines and the
damping coefficients are not reflected by this metric. Due to the equivalence between
the power system and the Kuramoto model, the result obtained from the study of the
existence of the Kuramoto model can be applied to the power system.

If a synchronous state exists for a power network, its local stability can be deter-
mined by the small signal stability based on the Lyapunov method. The stability of
the linearized system is measured by the absolute value of the real part of the eigen-
values. With the optimal configuration method of βi = βopt, the linear stability can
be enhanced by changing all the four factors. Note that it is demonstrated in [35] that
the point with this setting in the β-space is not a true local optimum for the linear
stability. The method to find the optimum of the linear stability still needs further
investigation. In addition, the linear stability formalism can only explore the local
landscape of the stability region.

The energy barrier for the stability margin estimation is inspired by the direct
method for the estimation of the system after a disturbance. It has been found that
forming small cycles can increasing the stability margin. However, similar as the
basin stability, this energy barrier is hard to be applied as a stability metric that can
be used to form an optimization framework. In addition, the energy barrier focuses on
the potential energy of the power network, it only reflects the impact of the topology
and the power generation and loads on the stability.

The stability of the power network can be improved via various strategies. How-
ever, it is obvious that the optimal solution from these metrics are non-identical due
to that none of them can includes all the influential factors of the stability. How these
solution related to the stability region and what are the relationship between these
solutions still need further study.
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