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Abstract. In the connected world, the complexity of software-based
systems increases. Many of those systems consist of different subsystems
which are connected with each other via a network. The decomposition
into those subsystems requires a detailed analysis and documentation of
their functional requirements. Documenting and managing such require-
ments in a consistent manner is a challenge for software engineers. The
requirements for each subsystem cannot be considered in isolation, but it
is necessary to state the relations between the functional requirements,
too. In previous work, we proposed a method that allows systematically
identifying and documenting functional requirements for distributed sys-
tems. The method is model-based and makes use of Jackson’s problem
frames approach which defines patterns for reoccurring software develop-
ment problems. We now extend his approach with patterns for problems
specifically for distributed systems which we call Distributed Frames.
Using a pattern description template, we provide different examples of
such frames. To exemplify the application of those patterns, we show
how they can be embedded into our requirements elicitation method.

Keywords: Requirements engineering * Distributed systems -
Model-based + Functinonal requirements - Requirements analysis

1 Introduction

In the connected world, software-based systems are often realized as distributed
systems. Tanenbaum defines a distributed system as a system whose components
are located on different connected computers [15]. Those components communi-
cate via messages to achieve a common goal.

The complexity of distributed systems confronts software engineers with new
problems during the entire software development process. Especially in one of
the earliest phases of software development, namely requirements engineering, it
is a challenge for engineers to capture all aspects of a distributed system under
development. Although the different components may be deployed independently
of each other in different environments, the functionalities of the components
highly depend on each other. Thus, it does not suffice to elicit and document
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requirements for each component independently. In addition, the connection
between the components is often remote and, hence, is not reliable.

For further analysis, e.g. with regard to privacy or security, it is of essential
importance to document the dependencies and interfaces between the subsystems
in a consistent and systematic manner. For example, an attacker may inject
malicious code on the client-side which will then affect stored data on the server-
side.

Our aim is to assist software engineers in performing a detailed and system-
atic elicitation and documentation of functional requirements for distributed
systems.

In previous work [18], we proposed a model-based method called RE4DIST
(Requirements Engineering for DISTributed Systems). The method is based
on Jackson’s problem frames notation which we extended to model functional
requirements for distributed systems. The extension allows making the con-
nection between the subsystems and the relations between the corresponding
requirements explicit. The method starts with the decomposition based on the
system’s context, and it ends up with a model of functional requirements to be
fulfilled by the subsystem.

In the present paper, we follow Jackson’s pattern-based approach and intro-
duce so-called Distributed Frames. Each distributed frame is a pattern that
describes a common problem class for a distributed system, i.e, specific types of
its functional requirements. An instance of a frame describes a concrete instance
of a functional requirement for a distributed system. The pattern-based approach
allows making knowledge about requirements reusable. Furthermore, by instan-
tiating the pattern, software engineers can document the elicited requirements
in a consistent manner. To specify a distributed frame, we propose a template-
based format. It describes the frame itself, textual patterns for the functional
requirement, and typical examples for the frame’s application context.

To exemplify the application of distributed frames, we extend our RE/DIST
method with regard to the frames. The extension allows the elicitation and
documentation of functional requirements by instantiating an appropriate frame.

The remainder of the paper is structured in the following way: In Sect. 2,
we introduce a notation for Michael Jackson’s problem frames and five basic
frames. In Sect. 3, we present the underlying requirements model in form of an
Ecore metamodel [14]. Section 4 contains the template for specifying distributed
frames and some examples. We describe the extension of our method in Sect. 5,
and using a small case study, we exemplify the application of the method in
Sect. 6. We discuss related work in Sect. 7 and conclude the paper in Sect. 8 with
a brief summary and an outlook on future research directions.

2 Problem Frames

We first introduce the notation for problem frames and problem diagrams, fol-
lowed by the introduction of some basic frames.
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2.1 Notation

To model functional requirements, we make use of the problem frames approach
as introduced by Michael Jackson [10]. We consider two types of diagrams, con-
text diagrams and problem diagrams, which both consist of domains, phenom-
ena, and interfaces.

Machine domains (&) represent the piece of software to be developed.

Problem domains represent entities of the real world. There are different types
of these domains: biddable domains with an unpredictable behavior, e.g. persons
(®), causal domains(#) with a predictable behavior, e.g. technical equipment,
and lexical domains (&) for data representation. A domain can take the role
of a connection domain (E3) which serves as a connection between two other
domains.

Interfaces between domains consist of phenomena. There are (i) symbolic
phenomena, representing some kind of information or a state, (ii) causal phe-
nomena, representing commands, actions and the like, and (iii) events. Each
phenomenon is controlled by exactly one domain and can be observed by other
domains. A phenomenon controlled by one domain and observed by another is
called a shared phenomenon between these two domains. Interfaces (solid lines)
contain sets of shared phenomena. Such a set contains phenomena controlled
by one domain, indicated by D/ ...}, where D stands for an abbreviation of the
controlling domain.

A context diagram describes where the problem, i.e. software to be developed,
is located and which domains it concerns. It does not contain any requirements.
We show an example of such a diagram in Fig. l1a. It contains four domains and
the corresponding interfaces. There are Software @, Equipment 8, Information
&, and Person ©.

A problem diagram is a projection of the context. It contains a functional
requirement (represented by the symbol &) describing a specific functionality
to be developed. A requirement is an optative statement that describes how the
environment should behave when the software is installed.

Some phenomena are referred to by a requirement (dashed line to the con-
trolling domain), and at least one phenomenon is constrained by a requirement
(dashed line with arrowhead and italics). The domains and their phenomena that
are referred to by a requirement are not influenced by the machine, whereas we
build the machine to influence the constrained domain’s phenomena in such a
way that the requirement is fulfilled.

In Fig. 1b, we show a small example describing a functional requirement for
updating some information which is a projection of the context given in Fig. la.
A Person © provides information to Software 8 to be updated. We make use of
a lexical domain Information & to represent a database. The functional require-
ment Update & refers to the phenomenon updatelnformation and constrains the
phenomenon information.
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SHupdatelnformation}
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PY{providelnformation} PHprovidelnformation) updatelnformation
Sl{showlInformation}

Person Person

Sl{requestinformation}
Ii{information}

Equipment

@ Sl{controlEquipment}
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(a) Context diagram [18] (b) Problem diagram [18]

Fig. 1. Examples.

Table 1. Basic problem frames.

Name Domain types referred to| Domain types constrained
Required behavior |- cs
Commanded Behavior|B © Cc®
Information display |C & c®
Simple workpiece B L&
Transformation LB LB

Legend: C - causal, L - lexical, B - biddable

The icons we use in our diagrams differ from Jackson’s notation. We adopted
icons from Google’s Material Design! to provide intuitive views for the dia-
grams [18].

2.2 Problem Frames

Jackson distinguishes between five problem frames which we will consider in the
following sections for further analysis concerning distributed systems. In Table 1,
we provide an overview for these frames.

Required Behavior. Some parts of the physical environment shall be con-
trolled. The task is to build a machine that imposes that control.

Commanded Behavior. An operator can issue commands to control some
part of the physical environment. The machine to be built shall receive the
commands and shall impose the control accordingly.

Information Display. The machine shall obtain some information from the
environment continuously and present it at the required place and in the
required form.

Simple Workpieces. The task is to build a machine that allows users to process
some information, e.g. to edit, delete, or copy it.

! Google Material - https://material.io (last access: March 15, 2019).
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Transformation. The machine to be built shall take some machine-readable
information as input and transform it into the required output.

In Sect. 4, we provide these frames for distributed systems.

3 Meta Model

To model functional requirements, we make use of Jackson’s problem frames
approach (cf. Sect.2) for which we introduce a metamodel in the following.
We extend that model with additional elements to capture specific aspects of
distributed systems. For instantiating and maintaining the model, we developed
a graphical editor. We decided to build that tool based on the FEclipse Modeling
Framework (EMF) [14]. EMF is open source and offers a wide range of products
for model-based development. For example, we use Eclipse Sirius? to provide a
graphical editor for the application of our method.

3.1 Model Elements

Domains. A domain can be a connection domain, which is indicated by an
appropriate attribute. We distinguish between Machine and Problem Domains
as proposed by Jackson. Besides, we introduce the domain type Distributed Sys-
tem. A problem domain can be a Causal Domain, Biddable Domain or Lexical
Domain. For expressing the relation between different machines, we introduce
the domain type Remote Machine. The domain acts as a placeholder for a subsys-
tem and therefore references exactly one machine domain. We show the relevant
part of the model in Fig. 2.

E Domain

-, connectionDomain
: Boolean = false

H DistributedSystem| [2.#] machines| B Machine
[0..1] distributedsystem

[1..1] machine

5 ProblemDomain

H LexicalDomain| (5 BiddableDomai] (& Causalbomain] & RemoteMaching

Fig. 2. Metamodel - domains.

Interfaces. In Fig. 3, we show the part of the model to describe interfaces. A
Domain Interface connects at least two domains and contains a set of Phenom-
ena. A phenomenon is controlled by exactly one domain. To describe the real-
ization of interfaces in more detail, we adapt the so-called attack vector from the

2 Eclipse Sirius - https://www.eclipse.org/sirius/ (last access: November 12, 2019).
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Common Vulnerability Scoring System (CVSS) [6]. An attack vector predefines
values to describe how an attacker accesses a vulnerable component. We intro-
duce an AccessVector to describe how domains interact with each other. The
vector distinguishes the following four values: Network describes remote con-
nections through different networks, e.g. connections via the internet, adjacent
stands for local network connections, local means access to domains not con-

nected to the internet, e.g. some user interfaces, and physical describes physical
connection to domains, e.g. sensors.

\ \
“H Phenomenon [1.1] controlledBy H Domain [2.7] connects £ Domainlnterface 2 AccessVector
[ _ connectionDomain | accessVector = NETWORK
— [0."] controls : Boolean = false = AccessVector = - ADJACENT
NETWORK - LOCAL
- PHYSICAL
[1.#] containsPhenomena

Fig. 3. Metamodel - interfaces.

Requirements. Figure 4 shows the part of the model to describe requirements.
A Requirement is a special kind of Statement. It can be distributed, which means
that it concerns more than one machine. Each statement has at least one State-
mentReference for at least one Phenomenon. A reference can either be a Con-
strainsReference or a RefersToReference. For each requirement, we also make
the machines explicit that are related to the specific requirement.

= =

[1.#] machines

[0.#] requirements

] H Statement StatementRef

— B crence [0.] referencedBy | £ Phenomenon
isDistributed J‘

= :Boolean = [1.#] references!

false

[1..*] statementreferences

Fig. 4. Metamodel - requirements.

Diagrams. Within the model, it is possible to define different views on specific
elements using diagrams (see Fig.2). As mentioned in Sect.2, Jackson distin-
guishes between context diagrams and problem diagrams. We introduce two
new types of context diagrams. A GlobalContextDiagram describes the overall
context of the distributed system. A SubContextDiagram is derived from it and
describes the context for a specific subsystem (Fig.5).
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W
)
& ProblemDiagram

£ GlobalContextDiagram [1..1] i & SubContextDiagram

[2..*] subcontextdiagram

Fig. 5. Metamodel - diagrams.

4 Distributed Frames

In Sect. 2, we introduced five basic problem frames. In the context of our previous
work, we now propose distributed frames which are a special kind of problem
frames applicable for distributed systems. In contrast to a problem frame, a
distributed frame does not only consider a single system but different subsystems.
Each frame describes a pattern that allows the characterization of reoccurring
problems in the context of functional requirements for distributed systems. We
first introduce a description format for distributed frames followed by several
examples of frames.

4.1 Description Format

We provide a template to specify distributed frames in a consistent way, for which
we give an overview in Table 2. The template consists of some basic information
and a frame description.

Table 2. Frame description format.

Basic Information
Name Short and descriptive name for the frame.
Description Short informal description about the frame and the context for which
it is applicable.
Known uses List of typical examples where the pattern can be applied.
Frame Description
Sender
Frame Diagram Diagram which contains the relevant domains and interfaces on the
sender side.
Textual pattern Textual pattern for the relevant part of the functional requirement on
the sender side.
Receiver
Frame Diagram Diagram which contains the relevant domains and interfaces on the
sender side.
Textual pattern Textual pattern for the relevant part of the functional requirement on
the receiver side.
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Basic Information. We provide a short informal description that summarizes
the distributed frame and briefly describes the context for which it is applicable.
The textual description of the functional requirement to be satisfied by the
distributed system is also part of that informal description. The requirement will
later be decomposed for the involved subsystems. Last, we list typical examples
of scenarios as known uses for the application of the frame.

Frame Desciption. We distinguish between the sender side and the receiver
side. Since our approach is applicable for any type of distributed system, we
do not use the notion of client/server side here. For each side, we provide a
frame diagram using the notation as described in Sect.2.1. A frame diagram
contains the domain types, connecting interfaces, and requirement references for
the frame. By instantiating the frame diagram in the concrete context, one can
create a problem diagram. Besides the frame diagram, we propose a textual pat-
tern that describes the functional requirement in natural language. (...) indicates
a variable in the textual pattern that needs to be filled.

4.2 Frame Specifications

In the following, we give specifications for distributed frames. Table 3 provides an
overview. It contains the name of the distributed frame (DF) and the constrained
and referred to domain types on the sender and receiver side.

4.3 Basic Frames

In Sect. 2.2, we described five basic frames that have been defined by Jackson
[10]. We specify those frames for distributed systems using our previously defined
format.

Table 3. Distributed frames overview.

Sender Receiver
Name Domain types Domain types/ Domain types/Domain types
referred to constrained referred to constrained
Basic Frames
Required behavior (DF) - RM RM cs
Commanded Behavior|B © RM RM cs
(DF)
Information display|C & RM RM cs
(DF)
Simple workpiece (DF) |B © RM A RM A LB
Transformation (DF) |L & RM RM LB
Additional Frames
Query (DF) BO RME, CONB|RM A, L B RM
Update (DF) BB RM &, CON E3 |RM RMA LE

Legend: C - causal, L - lexical, B - biddable, RM - remote machine
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for Required Behavior (DF).

Sender

Receiver

Q2

[ =

Submachine 1 Submachine 2

FR Sender

Controlled Domain

sSm2ic2 (=]

Submachine 2 ™.  _ FRRec.

SM1IC1 a

Submachine 1

A control command (Cl) can be sent to
(Submachine 2).

The (Controlled Domain) is controlled with
(C2) according to the command (C1) issued by

(Submachine 1).

Required Behavior (DF)

Description. A subsystem can control domains of its physical environment.
Another subsystem can issue commands to control those domains. The task is
to build a distributed system in which the machine of one subsystem can control
domains in the physical environment of another subsystem remotely.

Known Uses

— Smart home services are often deployed as a cloud application. Previously
defined commands are sent from the cloud service to the customer’s home to
control the equipment.

— Traffic light controllers can be connected to send control commands, e.g. to
prioritize a tram.

Frame Description. In Table4, we show the frame description for the frame
Required Behavior (DF). There is a frame diagram for each sender and receiver
side. The corresponding textual patterns are given below. In the frame diagrams
we use abbreviations for the phenomena annotated at the interfaces. Y stands
for symbolic phenomena, C for causal phenomena, and F stands for events (cf.
Sect. 2).

Commanded Behavior (DF)

Description. A subsystem can control domains of its physical environment.
Operators can issue commands via another subsystem to control those domains.
The task is to build a distributed system in which an operator can control
domains in the physical environment of another subsystem remotely.

Known Uses

— Smartphone applications can be used to control equipment, such as TVs or
smart home equipment.
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— Sound and light equipment for concerts can be configured remotely.
— Vehicles can be maintained remotely by the manufacturer.

Frame Desciption. In Table5, we show the frame description for the frame
Commanded Behavior (DF).

Table 5. Frame description for Commanded Behavior (DF).

Sender Receiver

Submachine 2

Controlled Domain
smilcl . Q@

- ~ sm2lc2 N C3
=
Submachin&lﬂ\ _ /ElFR Sender Submachisne 2 /C1FR Rec.
@ M1!C1
Operator Submachine 1

The (Operator) can cause the event (E1) to trig-| The (Controlled Domain) is controlled with
ger (C2) of (Submachine 2). (C2) according to the command (C1) issued by
(Submachine 1).

Information Display (DF)

Description. One subsystem continuously receives information from the phys-
ical environment. Another subsystem has some display in its environment. The
task is to exchange the received information between the subsystems and to
display them.

Known Uses

— A vehicle sends sensor data to the driver’s smartphone where the data is
displayed.
— Traffic monitors at train stations show the estimated arrival time of a train.

Frame Description. In Table6, we show the frame description for the frame
Information Display (DF).
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Table 6. Frame description for Information Display (DF).

Sender

Submachine 2

LN
Submachine 1~ “ FRSender

RWDIC1 \*/ a

Real World Domain

N E1

Receiver
Display
SMZ!El/ N1
Submachine 3 o FR Rec.

snvmcz‘. c

Submachine 1

The (Real World Domain) can send informa-
tion to (Submachine 2) with the command
(Cl1).

With the command (C2), (Submachine 1) can
show information (Y1) at the (Display).

Simple Workpieces (DF')

Description. A user can use a subsystem to manipulate some data which is
remotely accessible at another subsystem. The task is to transmit the commands
to the subsystem where the data is available and to manipulate the data accord-

ingly.

Known Uses

— Some technical equipment allows editing the configuration remotely.
— Using a web service, a user can edit his/her data.
— Collaboration tools allow data manipulation in the cloud.

Frame Description. In Table 7, we show the frame description for the frame

Simple Workpieces (DF).

Table 7. Frame description for Simple Workpieces (DF).

Sender

Receiver

Submachine 2

2 .

smilct
. ~

Submachinﬁll N ~ FRSender
IE

1\@/51

User

Workpieces

'|!K Y1

SM2IE2
-~ N

Submachine 2 .. ~ " FRRec.
smilc1

Cc1

Submachine 1

The (User) can cause the event (E1) to trigger
the event (E2) of (Submachine 2).

Information (Y1) of the (Workpieces) can be
edited by the (Submachine 1) via the command
(C1).
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Transformation (DF)

Description. Data of one subsystem shall be transformed. For transforming
the data, another subsystem shall be used. The task is to develop a system that
allows transmitting data from one system to another to transform it. Afterwards,
the transformed data shall be stored in the subsystem where it originates.

Known Uses

— There are several online converters that allow submitting data that can be
downloaded afterward, i.e. an image to PDF converter.
— There are online tools that allow to encrypt and decrypt data.

Frame Description. In Table 8, we show the frame description for the frame
Transformation (DF).

Table 8. Frame description for Transformation (DF).

Sender Receiver

Submachine 2

sMmi!c1

sm21c2 -

smilc1 2

Outputs Submachine 2 Submachine 1 FR Rec.

Some information (Y1) can be transmitted to
(Submachine 2) while triggering the command
(C3). The transformed information is stored at

(Submachine 1) can transform some informa-
tion with the command (C1) which is returned
afterwards.

(Outputs) ((Y2)).

4.4 Additional Frames

Besides the basic frames, we show the specifications of two additional frames,
namely Query and Update [3,16]. We adapt those frames for distributed systems
and provide their specifications in the following.

Query (DF)

Description. Users want to request data from a remotely accessible resource.
The requested information shall be displayed to them.



Known Uses

— Requesting a website.

— Smartphone applications that retrieve information from an external resource.
— Reading data from network-attached storages (NAS).
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Frame Description. In Table9, we show the frame description for the frame

Query (DF).
Table 9. Frame description for Query (DF).
Sender Receiver
Submachine 2
Model
=<8
SM21C3 . e MIY1
) :
SMl‘!Sg’ User Interface N \\ sMm2!ica \Yl

~uia
SM1IC5
Submachine 1

EO!E1

UIIE2 s

Enquiry Operator

»

FR Sender
E1l

g e

Submachine 2 ™ ~ ~ " FRRec.
M

M1 A~
sm2!c3

Submachine 1

To query some information, the (Enquiry
Operator) can cause the event (El) to trig-
ger the command (C4) for (Submachine 2).
(Submachine 2) provides the information via
(C3) which is then displayed at the (User
Interface).

(Submachine 1) can query some information
(Y1) from the (Model) with the command
(C2).

Update

(DF)

Description. Users want to manipulate data that is available at a remotely

accessible resource. In contrast to the frame Simple Workpiece (DF), there is
feedback for the users.

Known

Uses

— Websites where users can enter or edit some information to be stored.
— Uploading data to a NAS with a progress bar as feedback.

Frame Description. In Table 10, we show the frame description for the frame
Update (DF).

In the next section, we extend the RE4DIST method with our proposed

frames.
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Table 10. Frame description for Update (DF).
Sender Receiver
Submachine 2 Model
LEN
sm2!c3 N MIv3 .'\
) !
SM]"!S?" User Interface \ \\ sm2!ca Y\l
uiict w ~
FR Sender S -

Submachine 1

EO!E1

UIE2 '

E1

Update Operator

Submachine 2 s < ~ " FRRec.

sMiIc2™ AL < Q2
SM21C3 ‘

Submachine 1

To update some information, the (Update
Operator) can cause the event (El) to trig-
ger the command (C4) for (Submachine 2).
(Submachine 2) provides a feedback via (C3)
which is then displayed at the (User Interface).

(Submachine 1) can update some information
(Y1) at the (Model) with the command (C2).

5 Pattern-Based Requirements Documentation

Our method to elicit and document functional requirements for distributed sys-

tems (DS) consists of six steps. In Fig.

6, we provide an overview of the steps

and the corresponding input and output of each step. For each step, we present
examples of validation conditions (VC) to ensure that errors occurring during
the application of our method can be identified as early as possible. In addition,
we briefly describe the tool which supports the application of our method. In
Sect. 6, we provide a case study which exemplifies our method.

Input: Informal scenarioB
description
Output: Global context
diagram

Input: Informal scenario
description
Output: List of functional
requirements

Input: List of functional
requirements
Output: Annotated list of
functional requirements

1. Define Global
Context &
Subsystems

6. Create Problem
Diagrams

2. Elicit Functional
Requirements for DS

5. Select Frames

3. Identify

Distributed

Functional
Requirements

4. Decompose
Context

/

\

Input: Sub context diagrams;
Functional requirements; Selected
frames
Output: Set of problem diagrams

Input: Functional requirements;
Frame catalogue
Output: Frame specifications

Input: Context diagram,
Functional Requirements
Output: Sub context diagrams

Fig. 6. Method overview.
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5.1 Step 1: Define Global Context and Subsystems

The goal of the first step is to get an understanding of the global context in which
the distributed system will operate. We consider an informal scenario description
as the initial input. Based on this input, we identify problem domains in the
context of the distributed system.

We document the results in a context diagram as described in Sect. 2. There
is exactly one distributed system domain (represented by the symbol 8 ) in
the context diagram which covers all subsystems that shall be developed. Since
existing systems do not need to be developed, we describe them by means of
causal domains. Using interfaces, we describe the communication between the
distributed system and the environmental domains.

For the distributed system, we identify those subsystems that shall be devel-
oped. There are at least two subsystems. The subsystems do not necessarily
differ from each other. For example, in a peer-to-peer system, the subsystems
realized as peers can have the same functional requirements. We represent the
subsystems as machine domains with aggregations to the distributed system in
the context diagram.

Validation Conditions. Based on the description of the step, we define four
validation conditions (VC).

VC1. There is exactly one distributed system in the global context diagram.

V(2. A distributed system consists of at least two subsystems.

VC3. All subsystems have been identified and have been documented in the
context diagram.

VC4. All problem domains of the context have been identified, e.g. stakeholders
and technical equipment.

Tool Support. As mentioned in Sect. 3, we make use of an Ecore model for our
tool. To define the initial context and subsystems, we provide a graphical editor
based on Eclipse Sirius3. The editor assists software engineers in creating the
initial context diagram and ensures the semantic rules provided by the model.

Our tool supports the automatic validation of VC1 and VC2. The other two
conditions have to be validated manually, but we ask the user of the tool to
confirm the validation before proceeding to the next step.

5.2 Step 2: Elicit Functional Requirements for DS

Based on the informal scenario description and the global context diagram, we
identify the functional requirements that the distributed system shall satisfy. For
each functional requirement, we define a unique name and a proper description
of the expected functionality, and we document both textually.

3 Eclipse Sirius - https://www.eclipse.org/sirius/ (last access: March 12, 2019).
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Validation Conditions. For the second step of our method, we define two vali-
dation conditions.

V(5. Each functional requirement has a unique name and a valid description.
V(6. Each functional requirement has been identified and has been documented.

Tool Support. Our tool provides a table to list all functional requirements one
by one. To this table, one can add new requirements using a wizard, and all
requirements will be stored in the model to be reusable in further steps.

The first validation condition can partially be checked via the model, whereas
the second one has to be confirmed by the user of our tool before proceeding to
the next step.

5.3 Step 3: Identify Distributed Functional Requirements

Due to different environments in which the subsystems may be realized, e.g. a
mobile application in contrast to a server application, different teams will be
involved in developing a distributed system. A requirement can be distributed,
i.e. it requires the interaction between different subsystems to be satisfied.

In the present step, we mark distributed requirements to assign them to
the responsible development team. In addition, we document dependencies of
subsystems for satisfying requirements. For each requirement, we decide about
its type and assign a set of responsible subsystems. A requirement that concerns
at least two subsystems has to be considered as distributed, and in a distributed
system there is at least one requirement concerning several subsystems.

Validation Conditions. We define two validation conditions for the third step of
our method.

V(7. Only requirements concerning at least two subsystems have been classified
as distributed.
V(8. At least one requirement has been defined as distributed.

Tool Support. To specify the type of requirement, our tool presents the list
of requirements to the user where he/she can select the type. For distributed
requirements, we provide a dialog to select the related subsystems. Using refer-
ences to the corresponding machine domains, our tool documents the results in
the model and updates the list of requirements.

Both stated validation conditions can be validated automatically using our
tool.

5.4 Step 4: Decompose Context

In the first step of our method, we described the global context of the distributed
system. As mentioned earlier, different teams will be involved in developing a dis-
tributed system. In the present step, we break down the global context in smaller
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units, one for each subsystem. Again, we make use of context diagrams which
we call Sub-Context Diagram to document the results, one for each subsystem.

Such a sub-context diagram consists of the machine domain for the subsys-
tem and the relevant problem domains. To express the relation between the
subsystems, we introduce new elements to the context diagram, namely remote
machines (represented by the symbol & ) and remote interfaces (dotted line).
For each related subsystem with which communication exists, we add a remote
machine domain and the corresponding remote interface.

The interfaces between machine and problem domains are taken from the
global context definition, but the remote interfaces describing the communication
between subsystems do not exist there and hence, need to be added.

The set of sub-context diagrams helps developers in focusing on the con-
text of a concrete subsystem. However, we still document the relation to other
subsystems.

Validation Conditions. To validate the application of the fourth step, we define
the following five conditions:

VC9. There is one context diagram for each subsystem.

VC10. Each domain of the initial context diagram is contained in at least one
context diagram of a subsystem.

VC11. Interfaces between machine and remote machine have been marked as
remote.

VC12. Each context diagram contains all related subsystems represented by
means of remote machine domains.

VC13. Only problem domains directly connected to the subsystem or via a
connection domain are part of the context diagram.

Tool Support. Our tool automatically creates a sub-context diagram for each
subsystem. It automatically adds related machines based on the requirement
classifications taken from step three and the remote interfaces in-between. We
also provide a wizard to select relevant problem domains, phenomena, and inter-
faces from the initial context. A graphical editor allows adjusting the generated
diagrams. To ensure consistency between all steps, we make use of model refer-
ences to the results of the previous steps.

Except for the last one, our tool allows to automatically evaluate the val-
idation conditions. For the last step, it asks the user to confirm the manual
validation.

5.5 Step 5: Select Frames

In the fifth step, we select suitable frames to describe the functional requirements.
There are two types of frames: (i) problem frames (cf. Sect. 2.2 and [4]) and (ii)
distributed frames (see Sect.4). For non-distributed requirements, we consider
problem frames and for distributed requirements, we consider distributed frames.
Since the requirements have been documented in natural language, the selection
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requires manual effort. The specifications we provide for distributed frames help
engineers in selecting appropriate frames, e.g. by considering the described con-
text. A functional requirement is not necessarily restricted to a single frame. In
some cases, it could be necessary to combine frames.

In case no suitable frame or combination exists, a new frame has potentially
been identified. That frame has to be documented in the frame catalog using our
template. This way, knowledge can be captured for further development projects.

Validation Conditions. There are three validation conditions for the fifth step:

VC14. For each distributed requirement, at least one distributed frame has been
selected.

VC15. For each non-distributed requirement, at least one problem frame has
been selected.

VC16. New frames have been added to the catalogue.

Tool Support. Currently, our tool does not support any frame specification (see
Sect. 8). Therefore, the frame selection requires manual interaction based on the
catalogue of frames and identified requirements.

5.6 Step 6: Create Problem Diagrams

The final step of our method is the creation of problem diagrams for the func-
tional requirements we identified in the second step. For requirements not being
classified as distributed, we create problem diagrams as proposed by Michal
Jackson [10] based on the sub-context diagram for the responsible subsystem.
To specify an interface in more detail, it is possible to add connection domains,
e.g. a user interface.

To create problem diagrams, we instantiate the frame diagrams of the frames
we selected in the previous step. To specify the interfaces between domains in
more detail, we annotate its type according to the access vector as introduced
in Sect. 3.

For requirements being classified as distributed, we create one problem dia-
gram per involved subsystem. Those diagrams contain the relevant problem
domains taken from the sub-context diagram and remote machines for subsys-
tems related to the functional requirement. To connect machine and remote
machines, we again make use of remote interfaces. The textual requirement
description can be created by instantiating the corresponding textual pattern.

A distributed requirement is characterized by the communication between
machine and remote machine for its satisfaction. Therefore, the requirement
refers to or constrains at least one phenomenon of a remote machine. Refers to
means that the remote machine triggers an event of the machine to be considered,
and constrains means that the machine to be considered triggers an event of the
remote machine. The annotated phenomenon describes that event.
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Validation Conditions. For the final step of our method, we define four validation
conditions.

VC17. Each functional requirement is contained in at least one problem diagram.

VC18. For each distributed requirement, there is a problem diagram for each
involved subsystem.

VC19. A distributed requirement refers to or constrains at least one phe-
nomenon of a remote machine.

VC20. The problem diagram is an instance of the corresponding frame diagram.

Tool Support. Using our tool, users can generate problem diagrams for each
requirement and each subsystem, respectively. The initial structure of the dia-
grams can be generated automatically, i.e. requirement and machine. In addi-
tion, we provide a wizard that assists users of the tool in selecting relevant
problem domains and interfaces from the model, and in adding connection
domains. Again, we use references to existing model elements to ensure con-
sistency between all diagrams.

Our tool can evaluate all validation conditions automatically, except the last
one since the frame specifications are currently not part of the model.

5.7 Final Output

The final output of our method is a set of diagrams for each subsystem. The set
consists of a context diagram for the subsystem and problem diagrams which
describe the functional requirements to be satisfied by the subsystem. The set
allows independent development of each system while still preserving dependen-
cies to other subsystems. Since we document the results in one model, changes
will be propagated throughout all method steps and diagrams.

6 Example

In the following, we apply our method to a part of a smart grid case study. The
diagrams and tables we show in the following have been created with our tool.

6.1 Informal Scenario Description

For the present paper, we focus on a small part of the overall scenario that con-
cerns the customer’s home. The initial scenario description is as follows: The
communication hub is the central gateway, for which software shall be devel-
oped. Smart meters measure the customer’s power consumption. They trans-
mit the data in given intervals to the communication hub where the data is
stored. In addition, a customer can connect to the communication hub using
a mobile application on a smartphone or tablet. Customers can configure the
mobile application to connect to their communication hub and can then request
a list of stored meter data.
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Fig. 7. Case study - global context diagram & subsystems.

6.2 Step 1: Define Global Context and Subsystems

Our distributed system is called Open Meter 8, for which we present the global
context diagram in Fig. 7a. We identified the stakeholder Customer ©, who is
able to enter a Configuration B for the mobile application and who can request
previously stored meter data. We consider a Smart Meter 8 as existing technical
equipment. Measured data will be stored persistently in the database which we
call Meter Data B.

In Fig. 7b on the right hand-side, we also provide an overview of the different
subsystems that shall be developed. Our distributed system consists of two sub-
systems: The Communication Hub & will be realized as an embedded system for
the gateway at customers’ home. The Mobile App @ will be realized as software
for smartphones and tablets.

6.3 Step 2: Elicit Functional Requirements for DS
For our scenario, we consider three functional requirements:

Enter Configuration. Customers can configure the mobile application to con-
nect to the communication hub.

Request Meter Data. Customers can request a list of their meter data via
the mobile application.

Store Meter Data. In given intervals, smart meters send the measured data
to the communication hub, where it is stored persistently.

6.4 Step 3: Identify Distributed Functional Requirements
Next, we identify those requirements that concern more than one subsystem.

Enter Configuration. Customers enter the configuration locally in the mobile
application. There is no communication with other systems and therefore, the
requirement is not considered as distributed.
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Request Meter Data. To request the meter data, customers use their mobile
application to access the communication hub. The communication hub then
returns the stored data. Both subsystems are involved in that process, and
therefore we consider the requirement as distributed.

Store Meter Data. Smart meters connect to a communication hub. There is
no interaction with other subsystems.

6.5 Step 4: Decompose Context

Our scenario contains two subsystems, Communication Hub and Mobile Appli-
cation. Hence, it is necessary to define one sub-context diagram for each.

Communication Hub. Figure 8a shows the context diagram for the Commu-
nication Hub 8. The domain Meter Data B represents the database where the
communication hub stores the measured data persistently, and a Smart Meter
©& sends the measured data. Since the Mobile App is also part of the dis-
tributed system, it is represented as a remote machine. The interface between
both subsystems is unreliable and therefore marked as a remote interface.

Mobile Application. For the Mobile App Q, we develop the context diagram in
Fig. 8b. It consists of the Customer © who uses the application, a Configuration
&, and the Communication Hub &, which is again connected to the machine
with a remote connection. There are phenomena to enter the configuration and
to request meter data.

Communication Hub

Smart Meter Meter Data
: E CHl{provideMeterDataCH}

i MAl{requestMeterDataMA}
SMi{sendMeterData} Hi{storeMeterDataCH} H

MD!{meterData}

Mobile App
Communication Hub
H Confl{configuration} Cl{requestMeterData,
CHl{provideMeterDataCH} MAl{storeMAConfig} enterConfiguration}

i MAl{requestMeterDataMA} MAl{provideMeterDataMA}

2 O

Mobile App Configuration Customer
(a) Sub-context diagram for Communi- (b) Sub-context diagram for Mobile Applica-
cation Hub [18] tion [18]

Fig. 8. Case study - sub-context diagrams.
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6.6 Step 5: Select Frames
For the three requirements of our scenario, we select the following frames:

Enter Configuration. The requirement is non-distributed one. Since the cus-
tomer (biddable domain) can enter the configuration (lexical domain), we
select the problem frame Simple Workpieces [10].

Request Meter Data. The requirement is also not distributed. A smart meter
(causal domain) stores the meter data (lexical domain). We choose the prob-
lem frame Model Building [10].

Store Meter Data. Store meter data is a distributed requirement. Therefore,
we select a distributed frame. The requirement fits to the frame Query (PF),
since a customer (biddable domain) can request data from a remote resource
(lexical domain).

In the next step, we create the diagrams according to the corresponding frame
diagram.

6.7 Step 6: Create Problem Diagrams

There are three functional requirements in our scenario for which we present the
corresponding problem diagrams in the following.

Enter Configuration. Since the requirement Enter Configuration is not a dis-
tributed requirement, there is only one problem diagram. It is an instance of the
problem frame Simple Workpiece and consists of the Customer ©, the Mobile
App Q, and the Configuration B. In addition, we decided to make the User
Interface B9 of the mobile application explicit.

The interface between customer and user interface is physical (P). The inter-
faces between user interface and mobile application, and between mobile appli-
cation and configuration are both local (L).

The requirement Enter Configuration & constrains the phenomenon of the
Configuration |8 and refers to the phenomenon of the Customer ©. We show the
problem diagram in Fig. 9.

Store Meter Data. We show the problem diagram for the requirement Store
Meter Data 8 in Fig. 10. It is an instance of problem frame Model Building and
consists of the SmartMeter &, the Communication Hub 2, and the Meter Data
&

Since a smart meter uses the local network to communicate with the commu-
nication hub, the interface is classified as adjacent (A). Between communication
hub and meter data, there is a local interface.

The requirement constrains the phenomenon of the Meter Data B and refers
to the phenomenon of the Smart Meter €.
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Request Meter Data. We identified the requirement Request Meter Data 12 as
distributed, because it concerns both subsystems. Therefore, we create problem
diagrams for the Communication Hub & and for the Mobile App Q. They are
an instance of the problem frame Query (DF).

Mobile Application. In Fig. 11a, we show the problem diagram for the require-
ment Request Meter Data & with regard to the Mobile App Q. It contains the
machine, the Customer © who initiates the request, the User Interface E3,
and the remotely connected Communication Hub &.

Between customer and user interface, we again consider a physical interface
(P), and between user interface and mobile app, there is a local interface (L).
Since mobile application and communication hub can communicate via the
internet, the interface is annotated with network (N).

The requirement refers to the phenomenon enterConfiguration of the Cus-
tomer © and to the phenomenon provideMeterDataCH of the remote
machine. It constrains the phenomenon getMeterData representing the event
to retrieve the data from the database, and the phenomenon fProvideMeter-
DataCH of the User Interface B3 representing the feedback for the customer.
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Fig. 11. Problem diagram for Request Meter Data - Query (DF).

Communication Hub. We show the problem diagram for the Communication
Hub Q in Fig. 11b. It consists of the machine, the Meter Data B, and the
remotely connected Mobile App &.

The types of interfaces are the same as in the previous diagrams.

The requirement refers to the phenomenon of the Meter Data B and to
the phenomenon requestMeterDataMA of the Mobile App &. In addition,
the requirement constrains the phenomenon provideMeterDataMA, since the
Communication Hub & initiates the event to provide the meter data to the
customer.

The created diagrams which have been documented in the model can now be
used for further analysis, e.g. with regard to security (cf. Sect. 8).

7 Related Work

In the following, we present related work that follows similar approaches or that
may complement our work.

Haley argues that the problem frames notation does not allow to specify a
limited to many relation between interfaces [7]. Therefore, the author suggests
using cardinalities on interfaces. Cardinalities would extend our notation to be
more precise in specifying the relations between the different subsystems, e.g. to
state the number of concurrent instances.

The same author introduces so-called projection domains to document rela-
tions between different units of distributed architectures [8]. The approach nei-
ther provides detailed documentation of the context for each subsystem nor a
method to systematically identify overlapping requirements.

Gol Mohammadi et al. propose a framework to combine goal-oriented require-
ments engineering with problem frames [11]. The proposed framework allows
extending problem and context modeling approaches with soft-goals, e.g. for
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security. Using the framework in our method is a promising way to improve the
context definition.

To decompose the requirements of a distributed system, Penzenstadler defines
a catalog of criteria [12]. There are criteria for context, functionalities, and design
of software. The presented catalog may help to further describe the subsystems
we identified with our method. Therefore, it may complement our work.

Beckers and Faflbender describe a pattern-based approach for capturing qual-
ity requirements like performance [1] in distributed systems. Since we focus on
functional requirements, the proposed pattern and our method can complement
each other.

There are many design patterns that have been identified in the context of
distributed systems (e.g., [2,5,9]). Some of those patterns capture aspects like
security, as well. Currently, our method only addresses requirements engineering.
By mapping distributed frames to appropriate design patterns, we can assist the
design phase during software development.

Finally, Ramachandran and Mahmood discuss the state of the art in require-
ments engineering for distributed computing [13]. The authors put a special focus
on cloud computing which became very popular in the last years. Currently, we
do not focus on any specific type of distributed system. Their work may solve as
an input to further analyze distributed frames in the context of cloud computing.

8 Conclusion

Summary. In this paper, we presented a pattern-based approach to character-
ize functional requirements for distributed systems. Following Jackson’s problem
frames approach, we introduced the so-called Distributed Frames. We first intro-
duced a common template format to specify them. Next, we presented several
examples of such frames using our template.

In addition, we provided an extension of our RE4DIST method that takes
our distributed frames into account. The extension allows a pattern-based docu-
mentation of functional requirements, and functional requirements can systemat-
ically be described by instantiating a suitable frame. Our proposed Ecore model
ensures consistency and traceability between the different steps of the method.

Finally, we exemplified the extended method and the application of our pat-
terns based on a small case study.

Future Work. We plan to extend our tool which we developed in previous work
[18]. We will embed the pattern catalog into the tool to support the selection
and instantiation of appropriate frames. A frame instance can then be stored in
the Ecore model which we presented in Sect. 3.

Currently, our distributed frames are only a small set of relevant patterns
for requirements. We will go on with identifying additional frames, and we plan
to make the catalog publicly available so that others can contribute, as well.
Furthermore, we plan to develop a pattern system. In this system, each dis-
tributed frame can be further refined, for example, to capture specific aspects
for Peer-to-Peer systems.
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Due to unreliable connections between the different subsystems and contin-
uous exchange of information, security and privacy are of special importance
for distributed systems. With our method, we allow making those connections
explicit. In previous work, we mapped security incidents to functional require-
ments [17]. We will extend the mapping with regard to distributed frames, and
we will investigate in more detail how relevant threats can be identified auto-
matically.
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