)

Check for
updates

What We Know About Software Architecture
Styles in Continuous Delivery and DevOps?

Maya Daneva®™® and Robin Bolscher

University of Twente, 7522NH Enschede, The Netherlands
m. daneva@utwente.nl, r.bolscher@student. utwente. nl

Abstract. This paper takes a software architect’s perspective to DevOps/CD
and attempts to provide a consolidated view on the architecture styles for which
empirical publications indicate to be suitable in the context of DevOps and CD.
Following techniques from the evidence-based software engineering paradigm,
we set out to answer a number of research questions pertaining to (1) the
architecture characteristics important in DevOps/CD projects according to
published literature, (2) the architectural styles found to work well in this
context, (3) the application domains in which architecture characteristics and
styles were evaluated, and (4) the empirical method being used by researchers
on this topic. We applied a research protocol grounded on well-established
systematic literature review guidelines, and evaluated sources published
between 2009 and 2019. Our results indicate that (a) 17 software architecture
characteristics are beneficial for CD and DevOps adoption, (b) micro-services
are a dominant architectural style in this context, and (c) large-scale organiza-
tional contexts are the most studied, and (d) qualitative approaches (case study
based) are the most applied research method.

Keywords: Software architecture - Continuous delivery + Continuous
integration + DevOps - Deployability - Micro-services * Systematic literature
review

1 Introduction

Today, many businesses in the IT industry are embarking on DevOps and Continuous
Delivery (CD). This interest in DevOps/CD is traceable to organizations’ motivation to
increase their abilities to deliver software fast and predictably well. The growing
adoption of the DevOps and CD concepts is however not free of problems. For
example, a 2017 systematic mapping study of literature [14] on CD challenges reports
40 problems discussed in scientific publications. The present article follows up on one
of these problems, namely the use of unsuitable architecture in CD (and in DevOps)
contexts. We felt intrigued to know what so far has been published on the qualities of
suitable architectures for DevOps/CD. Our motivation to consolidate the published
knowledge on this topic is based on the observation that although DevOps and CD
have been employed massively for more than 5 years and much guidance has been
published on how to implement these concepts well, little has been done so far to
elaborate on the linkage between DevOps/CD and architecture. Yet, as Bass states [15],

© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 26-39, 2020.
https://doi.org/10.1007/978-3-030-52991-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-52991-8_2

What We Know About Software Architecture Styles 27

the DevOps practices have implications for the software architects in the DevOps-
adopting organizations.

This research aims at consolidating the published experiences regarding the
architecture styles’ fit and misfit to DevOps and CD context. If such a consolidated
view of the published knowledge exists, researchers would know those areas that have
enjoyed much research efforts and those that are under-researched. Moreover, if a map
of the published empirical evidence is provided to software architecture practitioners,
they could possibly be able to consider it when making architecture design decisions in
DevOps and CD contexts.

Using the techniques of the evidence-based software engineering paradigm, we
designed a systematic review protocol in order to identify and evaluate the empirical
evidence published on this topic. Our research took two stages: in stage I, we
investigated the software architecture challenges experienced in DevOps/CD-adopting
organizations. In stage 2, we focus on the architecture styles that support the
DevOps/CD implementation. The results of stage I have been reported at the ICSOF
2019 conference [16]. The results of stage 2 are now reported in the present paper.
Although the two research stages are complementary and grounded on the same review
protocol [16] and, in turn, analyze the same pool of selected literature sources, in
contrast to the ICSOFT 2019 conference paper [16], this paper treats different research
questions and therefore reports new findings.

The paper is structured as follows. Section 2 provides definitions of the terms used
in our research. Section 3 presents the purpose of this work. Section 4 presents our
research questions and the research method used. Section 5 presents the results of our
SLR. Section 6 discusses the results. Section 7 is on the possible risks of passing bias
into our study. Section 8 is on related work. Section 9 summarizes our findings and
discusses some implications for research and practice.

2 Definitions of Terms

For clarity, before elaborating on the scope and the research questions of this SLR, we
present the definitions of the concepts that we use [16]. Software architecture of a
system is the set of structures needed to reason about the system, which comprise
software elements, relations among them, and properties of both [17]. Continuous
Delivery (CD) is a software engineering discipline in which the software is kept in such
a state that in principle, it could be released to its users at any time [17]. The discipline
is achieved through optimization, automatization and utilization of the build, deploy,
test and release process. Furthermore, DevOps is a set of practices intended to reduce
the time between committing a change to a system and the change being placed into
‘normal’ production, while ensuring high quality [15]. For the purpose of this work, we
borrow Wood’s definition of ‘production’ [4]: this is “any environment which is being
used to perform valuable work” in an organization. As one could see from the defi-
nitions, CD and DevOps have overlapping goals. Both concepts serve companies to
take full (end-to-end) advantage of Agile and Lean [14]. Since the two concepts are so
similar, the effect they have on software architecture is expected to be very similar as
well. This is why these two concepts are both included in our SLR.

28 M. Daneva and R. Bolscher

3 Purpose

The purpose of this SLR is to identify and analyze the relationship between
DevOps/CD and software architecture by using published empirical evidence regarding
the architecture styles that support the implementation of CD and DevOps. For this
purpose, we followed three areas of interest:

(1) characteristics of architecture that are important in DevOps/CD context,

(2) application areas in which these characteristics were identified or evaluated,

(3) empirical research method that was used by the authors of the published studies
on this topic.

The first area concerns the non-functional requirements that, if met, render a
software architecture beneficial for systems implemented by using DevOps/CD prac-
tices. The second area of interest concerns the contexts in which these non-functional
requirements are deemed important according to published literature. We assume that
not every application domain has been subjected to active research and, in turn, our
knowledge of the non-functional requirements that a software architecture meets to
support the implementation of DevOps/CD, may be fragmented or skewed. This
assumption is justified by the observation that in many empirical studies on other
software engineering phenomena, some application domains are more researched than
others. Finally, the third area of interest concerns the research-methodological foun-
dation of the published research studies, which would allow us to evaluate the realism
of the published findings and their generalizability [18]. The results in each of these
three areas are analyzed, focusing on how frequently our findings appeared in the
selected set of papers and how they are framed in each paper. We tried to identify any
inconsistencies in the results so that we can provide further knowledge gaps and lines
for future research.

4 Research Questions and Method

Based on the purpose of our literature study, we set out to answer three Research
Questions (RQs):

RQ1: What software architecture characteristics have been deemed important for
enabling DevOps and CD, according to published literature?

RQ2: What applications areas have been reported in published literature con-
cerning the important architectural characteristics found in the answer to RQ1?
RQ3: What research methods have been used in the published empirical papers
used to answer RQI and RQ2?

To answer these RQs, we planned and executed a SLR, adopting the guidelines of
Kitchenham et al. [19]. These were complemented with the guideline of Kuhrmann
et al. [20]. We adapted these guidelines to this specific research as elaborated in our
review protocol (Fig. 1).

What We Know About Software Architecture Styles 29

Inclusion and Quality

Purpose of the
SLR exclusion criteria assessment

{—»! Areas of interest [—»{ Search strategy |— {—>»| Dataextraction [—#| Datasynthesis |—» Reporting

Identification
Research Digital library, realst
questions ey words Quality checklist and recording !
Y f key attribute; synthesis

Fig. 1. Our research protocol.

For the purpose of our collection of possibly relevant articles, we explored the
Scopus digital library by focusing on following string:

(“software architecture” AND (“continuous delivery” OR “continuous deploy-
ment” OR “devops” OR “dev-ops” OR “dev ops”)).

The search was carried out on May 14, 2019. It was applied to the Title, Abstract
and Keyword sections of the Scopus digital library. Performing the search resulted in
39 papers from Scopus over a time span of 9 years (2009-2019). Our study selection
process followed the inclusion and exclusion criteria listed below.

Inclusion Criteria

1. The paper treats DevOps/CD aspects as its core topic and discusses software
architecture in this context;

2. The takes a practical point of view on the problems and/or solutions discussed (e.g.
it is a case study or expert/practitioner experiences and opinions).

Exclusion Criteria

The paper presents no link to DevOps, CD or similar practices;

The paper is published before Jan 1, 2015;

The paper is purely theoretical;

The paper is a duplicate of a paper that was already found in Scopus;

The paper is not written in English.

The paper summarizes a workshop, a conference or another scientific event.

s PN

We would like to note that our process of the articles’ selection was iterative and
happened in multiple phases. The first application of the above list of criteria to titles
and abstracts of the 39 papers resulted in a set of 23 papers that we deemed to fall in
scope of this SLR. This reduction (from 39 to 23) was due to many duplicates. In the
second iteration, we have read the 23 papers in detail and re-applied the
inclusion/exclusion criteria. This ended up with 13 papers which we used in the data
extraction and data synthesis stages of this SLR. The papers formed the following list
of references: [1-13].

Once the paper selection was over, we focused on data extraction. This included
carefully reading the whole text of each paper and keeping notes on the following
pieces of information: countries of the affiliations of the authors, type of affiliation
(industry or academic institution), explicit mentioning of software architecture char-
acteristics, contextual settings in which the DevOps/CD concepts were implemented,
application domain, explicit mention of research methodological sources and research

30 M. Daneva and R. Bolscher

method used, treatment of validity questions while using a research method. The
precise data have been coded, analyzed and compared by two authors. For the data
synthesis, we followed the Pawson’s realistic synthesis practices [21]. The authors
worked independently from each other so that they the senior researcher does not
expose the junior researcher involved in this study to possible bias due to the fact that
the senior researcher knew some of the authors of the selected papers. The two authors
consolidated their results and found no discrepancies in their analysis of the papers.

5 Demographics, Themes and Trends

This section reports our findings. Before presenting our answers to our three RQs, we
first report some demographic information on the papers in our analyzed set.

First, in our set of 13, we have six papers authored by individuals working in
companies [1-4, 12, 13], three papers authored by collaborators from companies and
universities [6, 7, 9] working in industry-university projects, and four papers authored
by academic researchers [5, 8, 10, 11]. This distribution is unsurprising as we delib-
erately chose the presence of industrial experience as an inclusion criteria in our list
(see Sect. 4 on the previous page).

Second, the affiliations of the authors of the selected papers are in seven different
countries: Ireland, USA, United Kingdom, Germany, Austria, Switzerland, Sweden,
Columbia, and Italy. This distribution suggests a diversity across geographic zones.

5.1 Software Architecture Characteristics and the Context in Which
They Were Deemed Important (RQ1)

Our analysis of the 13 included papers resulted in a list of 17 software architecture
characteristics that were important to the implementation of DevOps/CD according to
the experiences of the authors in these papers [16]. These are listed in the second
column of Table 1. In the third column, we present the references to those papers
addressing each characteristic. The number of references clearly indicates those soft-
ware architecture characteristics which have been treated most frequently in relation to
CD/DevOps in scientific literature. These are: deployability (CH2), testability (CH11),
automation (CH3), loosely coupled (CH6), modifiability (CH1).

The characteristics in Table 1 have been described in more detail as part of stage I
of our research, which has already been presented in the ICSOFT 2019 conference
[16]. Here we relate these characteristics to the context in which the authors of the 13
selected papers experienced them as important. For this purpose, we looked at the type
of industrial projects in which the reported experience happened and observations on
the characteristics of software architecture were collected. We found that half of the
papers reported the context of very large organizations, for example, Deutsche Bank [3]
— a leading German bank, Fujitsu [6] — a global IT consultancy, Ericsson [9] — a large
telecommunication company, plus a large Swedish automotive company [11], and
some large software process consultancy firms [1, 4].

What We Know About Software Architecture Styles 31

We also looked at the architectural styles that matched these contexts. Eight out of
our 13 selected papers indicated that the architectural style fitting DevOps/CD
implementation is the one of micro-services. Micro-services are a set of small services
that can be developed, tested, deployed, scaled, operated and upgraded independently,
allowing organizations to gain agility, reduce complexity and scale their applications in
the cloud in a more efficient way. Besides that, micro-services are very popular, they
are being used and promoted by industry leaders such as Amazon, Netflix and LinkedIn
[7]. Shahin et al. describe micro-services as the first architectural style to be preferred
for CD practice, by designing fine-grained applications as a set of small services [5].
Three papers [9-11] state explicitly some specific benefits of employing the micro-
services architecture concept. Micro-services are said to be helpful in increasing
modularity and isolating changes and as a consequence increasing deployment fre-
quency [13]. The experience report by Berger et al. [11], where the authors imple-
mented CD practices in a team developing software for self-driving cars, reported how
a loosely coupled micro-service architecture helped them move towards CD. Chen
et al. argue that micro-service architectures feature many of the CD/DevOps enabling
characteristics (CH2, CH7, CHS8) and are (in combination with DevOps) the “key to
success” of large-scale platforms [12].

Three other papers [5, 6, 8] explicitly state some downsides of the micro-services
architecture. E.g. tracing errors and finding root causes of production issues traveling
through multiple system components [8], resulting in increasingly complex monitoring
(IS10) and logging (IS9) [5]. Plus, at the inception stage of a project a micro-services
architecture might be less productive due to the required effort for creating the separate
services and the necessary changes in the organizational structure, eventually as the
project matures the efficiency of the micro-services architecture surpasses that of the
monolithic architecture though [6].

Other authors [7, 8, 10] treat the suitability of the concept of micro-services in a
particular context. Pahl et al. [10] state that the idea of micro-services has been dis-
cussed as a suitable candidate for flexible service-based system composition in the
cloud in the context of deployment and management automation.

Furthermore, Schermann et al. [8] look at micro-services from a continuous
experimentation perspective which is based on CD. These authors state that “contin-
uous experimentation is especially enabled by architectures that foster independently
deployable services, such as micro-services-based architectures”.

Micro-services emerged as a lightweight subset of the Service-Oriented Architec-
ture (SOA), it avoids the problems of monolithic applications by taking advantage of
some of the SOA benefits [7]. Pahl et al. [10] note that loose coupling, modularity,
layering, and composability are guiding principles of service-oriented architectures.

The last architectural style is vertical layering. It is mentioned by Shahin et al. [5]
and refers to removing team dependencies by splitting software components into
vertical layers (instead of horizontal layers, e.g. presentation, business and persistence).
It can be argued if this is an architectural style on its own, as it is also a characteristic of
micro-services and SOAs in general.

32 M. Daneva and R. Bolscher

Table 1. Software architecture characteristics supporting CD/DevOps [16].

ID Software architecture characteristics | Reference
CHI1 | Agility/Modifiability [1, 2, 12]
CH2 | Deployability [2, 5, 12, 13]
CH3 | Automation [11-13]
CH4 | Traceability [11, 13]
CHS5 | Stateless components [11]

CH6 | Loosely coupled [1, 10, 11]
CH7 | Production versioning [12]

CHS8 | Rollback [12]

CHY9 | Availability [12]
CH10 | Performance [12]

CHI11 | Testability [2, 5]
CHI12 | Security 2]

CH13 | Loggability [2, 5]
CH14 | Monitorability [2]

CHI15 | Modularity [5, 10]
CH16 | Virtualization [10]
CHI17 | Less reusability [5]

5.2 Application Domains (RQ2)

The experiences in our set of selected papers reported observations from a variety of
domains, namely: banking, automotive, telecommunication, bookmaking, software and
IT consulting. The example of a case study from a leading German bank [3] is rep-
resentative for a major trend happening in the banking sector, namely the embarking on
the concept ‘Banking-as-a-Service’ (BaaS). Transitioning to BaaS helps big banks re-
invent themselves as assemblers of financial management solutions, tailored to meet
specific customer needs. To succeed in this transition, banks increasingly more
“componentize” their business architecture and underlying solution architectures of the
systems they operate. The software architecture style they consider important to their
future is micro-services [28] as it allows financial institutions to layer their technology
offerings like building blocks rather than monolithic “systemware”.

Furthermore, the experience described by Berger et al. [11], reflects a recent trend
in the automotive sector adopting micro-services architectures. For example, car
makers including Ford, Mercedes-Benz, and VW are actively adapting microservices/
container architecture principles in developing Internet-of-Things enabled apps for
their vehicles. Traditionally, in this sector, most automotive software architectures can
be considered component based; in many cases, these components are however so
tightly interconnected that the architectures should be considered monolithic. Com-
panies realized that these monolithic architectures are will become a burden in the
future and many embark to micro-service architecture to secure flexibility in the future.

What We Know About Software Architecture Styles 33

Next, the experience reported by Chen [2] is about more than 20 CD projects
observed PaddyPower, an Irish a multi-billion euro betting and gaming company,
operating Ireland’s largest telephone betting service. The author derived lessons
learned on the roadblocks to CD and emphasized the role of micro-services in coun-
tering the effects of these roadblocks.

The report of Stahl and Bosch [9] focuses on the context of large network operators,
many of which are transitioning to DevOps/CD (e.g. Ericsson, Swisscom). These
authors report on their proposal for a continuous integration and delivery architecture
framework and its large-scale empirical evaluation at Ericsson.

Finally, a number of papers address the specific context of software process
improvement consultancy and IT firms (e.g. Endava [4], Fujitsu [6], Amazon Web
Services [7]). For example, Woods (Endava [4]) puts forward the use of a number of
architecture artefacts that one can re-thing for use in DevOps/CD contexts: release
models, configuration management models, administrative models and support models.
The approach that employs such models can be considered an architecture approach in
itself.

5.3 Research Methods Being Used (RQ3)

Regarding the application of research methods in the publications that formed our set
for analysis in this SLR, we found that only four out of the 13 papers explicitly stated
the methodological origins of their selected method (see Table 2 below).

Table 2. Use of research methods in the 13 selected papers.

Ref. | Explicitness of Research method Experience
research process report paper
[1] Implicit Case study Yes
[2] Implicit Case study Yes
[3] Implicit Case study n/a
[4] Implicit Case study Yes
[5] Explicit Interview-based study n/a
[6] Implicit Case study n/a
[7] Explicit Case study n/a
[8] Explicit Mixed method: survey + interviews n/a
9] Explicit Mixed method: n/a
SLR + interviews + group workshops
[10] | Implicit Case study n/a
[11] Implicit Case study n/a
[12] Implicit Case study Yes
[13] | Implicit Case study n/a

These four articles [5, 7-9] leveraged the qualitative interview techniques for the
purpose of their investigation. In two papers, the qualitative interviews formed a part of
a mixed-method process, e.g. Stahl and Bosch [9] complemented the interviews with

34 M. Daneva and R. Bolscher

group workshops, while Schermann et al. [8] used a survey together with interview.
The remaining nine papers in the set of 13 only tacitly assumed the use of a case study.
In fact, the authors provided rich details about the context of their organizations; there
are descriptions either of project cases (e.g. [12]) or of case organizations (e.g. [2—4]).
Moreover, we found four papers in the category of “experience reports”; this type of
papers report on the application of a concept, method, or framework in one or several
interesting industrial contexts, including the lessons-learned.

Regarding the ways in which the papers approach validity threats, we observe that
threats have been explicitly discussed only by those authors that explicitly documented
their research process.

6 Reflection on the Results

This section provides our reflection on our findings. First, we found 17 software
architecture characteristics and as we could see from the findings regarding RQ2, these
characteristics were deemed important in the context of large organizations transi-
tioning to CD/DevOps. One can assume that these organizations maintain a large
number of systems (some of which legacy systems) that are monolithic in nature. In an
application landscape of monolithic systems it is then unsurprising that modifiability
and agility are the most desired architecture characteristics. It is also not surprising that
our SLR indicated the micro-services architecture style as the style considered the most
suitable for this context.

Second, we found that the experiences published cover a broad range of application
domains and companies operating in diverse business sectors. Also, from a broad range
of countries located in Asia, America and Europe. This in itself has a positive impli-
cation: it allows us to think that the observations shared by the authors of the 13 papers
are generalizable across application domains, business sectors and geographic zones.

Third, the finding that the case study approach was the one being used by most
authors (see Table 2) matches the intuitive assumption that case studies are best in
studied situations where the phenomenon of interest can be analyzed only in its real-
world context (and can not be re-created in academic lab settings). However, many of
the authors only implicitly mentioned the research method employed, which is at odds
with the good practices and guidelines for reporting empirical software engineering
research. This observation could be partly explained by the fact that many of the papers
were published in practitioners’ venues, such as the IEEE Software magazine, or on the
practitioners’ tracks of international scientific conferences. In both types of venues
much more importance is placed on lessons learned and utility of the lessons learned
for organizations than on the elaborate descriptions of the research method used.

7 Reflection on Bias in This SLR

In carrying out a SLR, it is also important to reflect on the criticality of researchers’
own pre-knowledge and actions in reducing bias. As Archer et al. [22] state, knowledge
in a scientific field is generated, developed, and interpreted by humans and relies on the

What We Know About Software Architecture Styles 35

methods employed for this purpose. We reflect on four types of bias that are critical for
SLRs: sampling bias, selection bias, and within-study bias, as described by Felson [23],
plus expectancy bias as described by Cooper [24].

Sampling bias (including retrieval bias and publication bias) is concerned with the
failure to capture all relevant studies’ findings on the aspects of interest [23]. Retrieval
bias refers to the risk that the key words in our search string might not be chosen well
enough, which in turn means that a number of highly relevant papers would not be hit
while executing the search string. We countered this risk by implementing the
guidelines of Kuhrman et al. [20] in regard to this issue. In fact, we experimented with
a variety of search strings and compared their results in Scopus. Next, publication bias
is concerned with to the tendency of conferences and journals to publish empirical
research results that challenge or change existing knowledge, while studies that confirm
previous results are less frequently published [25]. This issue is apparent in new and
emerging areas of the software engineering discipline, where published research
commonly seeks to be original through proposing new definitions or developing new
approaches (e.g. CD and DevOps), hardly ever replicating previous studies. To counter
this challenge, some methodologists (e.g. Tranfield et al. [26]), recommend researchers
consider both published and unpublished studies. However, in our protocol, we decided
to use peer-reviewed literature only, which means grey literature was not included.
Moreover, in our report on stage 1 of our research [16], we noted that we compared our
already reported findings (in [16]) against themes discussed in practitioners’ online
venues and we found no discussion theme that contradicts our findings.

Second, selection bias is concerned with the inaccurate design or application of the
inclusion/exclusion criteria. To counter this bias, we followed the guidelines of
Kuhrman et al. [20] in regard to the design of our criteria. We note also that this bias
can be caused in situations in which a researcher is the author of a paper on the topic of
the SLR. However, in case of this review, none of the authors has a publication on the
topic of software architecture and CD/DevOps.

Third, within-study bias is concerned with the risk of variability in the data
extraction procedures used by both researchers. We think however that this risk is
minimal because the data extraction was simple and based on a form in which all the
information was recorded in a systematic way.

Finally, expectancy bias is concerned with the synthesis of the information of the
13 primary study in this SLR. One reason for the occurrence of this bias is that
researchers may have differing perspectives that influence the interpretation of study
findings. During study synthesis, researchers may also be biased in seeking information
that conforms to their expectations and may overlook or disregard perplexing infor-
mation [24]. We countered this bias by having both researchers analyze all 13 papers in
our set. This was possible because the number of papers was small. Each researcher
reviewed each paper individually. After this, the researchers compared their analytical
results. No disagreements happened in this process.

36 M. Daneva and R. Bolscher

8 Related Systematic Literature Reviews

There are five literature studies that are related to our work. First, the 2014 study of
Erich et al. [29] treats the question of how DevOps influences the performance of
information system development and information system operation. This study looked
at the evidence indicating specific benefits of DevOps. Unlike the SLR of Erich et al.
[29], our research focused solely on the relationship between software architecture and
DevOps.

The second SLR (2016) is on the practices of DevOps [33]. The authors of this SLR
look into DevOps definitions and practices, while comparing DevOps with other
software development method. This work explicitly states the practice of designing
architecture as one belonging to DevOps.

The third review is the systematic mapping study of Rodrigues et al. [14] on the
phenomenon of CD. These authors found that “CD demands a software architecture in
which the product and its underlying infrastructure continuously evolve and adapt to
changing requirements” (p. 15, [14]). This means that the underlying architecture
should be flexible so that it can accommodate rapid feedback. This, in tur, points to
architecture style that is modular and loosely coupled. Our findings agree with the
findings of these authors. Our results however complement the findings in [14] by
adding a list of architecture characteristics which are not among those mentioned in this
mapping study [14].

The fourth study is the 2019 SLR of Céspedes et al. on the effects of DevOps on
software product quality [31]. This SLR revealed a strong effect of the adoption of
DevOps practices on reliability and maintainability of software products. The practices
associated with DevOps, such as the minimum viable product, deployment automation,
test automation, cloud computing and team cooperation, show a relationship with the
improvement in software product quality. Our list of characteristics (Table 2) partly
overlaps with those in this study [31]. In fact, modifiability (CH1 in Table 1) is a
dimension of maintainability of a software architecture [32].

The fifth review is the mapping study of Di Francesco et al. [30] on the phe-
nomenon of architecting with micro-services. As part of these authors’ analysis, the
study yielded a list of architecture quality attributes that were treated in studies on
micro-service architecture. Performance, maintainability, and functional suitability
were found as the most studied attributes. Although these attributes were the focus of
researchers working on micro-services, our SLR did not find them as the most fre-
quently mentioned architecture characteristics from DevOps/CD perspective (see
Table 1). This difference could be explained with the fact that many researchers
investigated the architecting-with-micro-cervices practice in contexts in which large
organizations transition from monolithic to micro-services architecture without nec-
essarily employing DevOps and CD.

What We Know About Software Architecture Styles 37

9 Summary and Implications

Using 13 publications on software architecture in DevOps/CD, this SLR indicates that:

(1) there are 17 software architecture characteristics which are beneficial for CD and
DevOps adoption according, according to published literature;

(2) micro-services are recommended architectural style in this context, and

(3) large-scale organizational contexts are the most studied, and

(4) qualitative approaches (case study based) are the most applied research method.

Our review has some implications for researchers. As we found that most knowl-
edge comes from large organizational settings in which there are many systems with
monolithic architecture, it may be interesting for researchers to focus on greenfield
projects in DevOps/CD. What are the architecture styles that DevOps/CD teams adopt
in case of developing new systems that did not exist before? This seems a worthwhile
topic for exploratory research in the future.

Another question related to the context of start-ups. While DevOps seems a logical
choice for many startups in the IT and software marketplace, practitioners warn (e.g. in
[27]) that the micro-service architecture may not always be the best choice in the
startup context. Understanding how startup companies embracing DevOps choose their
architecture styles is an industry-relevant line for research in the future.

Finally, research on the topic of interest in this SLR so far has been qualitative in
nature taking into account the real-world contexts in which architecture characteristics
were deemed most beneficial for DevOps/CD. However, only four of our 13 analyzed
papers were explicit on the research method used. This poses a threat to the validity of
the reported lessons learned by practitioners and possible candidates for good practices.
From research and knowledge generation perspective, these lessons learned and can-
didate good practices could serve as lists of hypotheses that researchers could test in
other settings in order to generate empirical evidence to draw more specific conclu-
sions. Only then, we could make some well-substantiated claims about the software
architecture characteristics beneficial for the implementation of DevOps/CD.

Our SLR has some practical implications. First, it brings good news to large
organizations regarding the fit of the micro-service architecture style to DevOps/CD.
Our included papers presented working examples of a broad range of industry sectors
and countries, which allows us to conclude the viability of the micro-service archi-
tecture as an option to consider.

Second, software architects who may be interested in developing some architecture
guidelines in their organizations using DevOps/CD might consider our list of charac-
teristics as one possible starting point along with other considerations, such as current
IT project portfolio and proportion of green-field projects in it.

References

1. Sturtevant, D.: Modular architectures make you agile in the long run. IEEE Softw. 35(1),
104-108 (2017)

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

M. Daneva and R. Bolscher

Chen, L.P.: Towards architecting for continuous delivery. In: Bass, L., Lago, P., Kruchten,
P. (eds.) 12th Working IEEE/IFIP Conference on Software Architecture, pp. 131-134 (2015)

. Erder, M., Pureur, P.: Continuous Architecture: Sustainable Architecture in an Agile and

Cloud-Centric World, pp. 1-303. Morgan Kaufmann, Burlington (2015)

. Woods, E.: Operational: The forgotten architectural view. IEEE Softw. 33(3), 20-23 (2016)
. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment and

architecting process: Practitioners’ perspectives (2016)

. Elberzhager, F., Arif, T., Naab, M., Sii3, 1., Koban, S.: From agile development to DevOps:

Going towards faster releases at high quality — experiences from an industrial context. In:
Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp. 33-44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49421-0_3

. Villamizar, M., et al.: Evaluating the monolithic and the microservice architecture pattern to

deploy web applications in the cloud. In: 10th Computing Colombian Conference (10CCC)
(2015)

. Schermann, G., et al.: We’re doing it live: a multi-method empirical study on continuous

experimentation. Inf. Softw. Technol. 99(7), 41-57 (2018)

. Stdhl, D., Bosch, J.: Cinders: The continuous integration and delivery architecture

framework. Inf. Softw. Technol. 83(3), 76-93 (2017)

Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. ACM
Trans. Internet Technol. 18(2), 1-23 (2018)

Berger, C., et al.: Containerized development and microservices for self-driving vehicles:
Experiences & best practices. In: 2017 IEEE International Conference on Software
Architecture Workshops, pp. 7-12 (2017)

Chen, H.M., et al.: Architectural support for DevOps in a neo-metropolis BDaaS platform.
In: 2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop, pp. 25-30
(2015)

Bass, L.: The software architect and DevOps. IEEE Softw. 35(1), 8-10 (2017)

Rodriguez, P., et al.: Continuous deployment of software intensive products and services: a
systematic mapping study. J. Syst. Softw. 123, 263-291 (2017)

Bass, L., Weber, 1., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-Wesley,
Boston (2015)

Bolscher, R., Daneva, M.: Designing software architecture to support continuous delivery
and DevOps: a systematic literature review. In: ICSOFT 2019, pp. 27-39 (2019)

Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Pearson Education, London (2010)

Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories. Sci.
Comput. Program. 101, 136-152 (2015)

Kitchenham, B.: Guidelines for performing systematic literature reviews in software
engineering. Keele University, UK (2007)

Kuhrmann, M., Méndez Fernandez, D., Daneva, M.: On the pragmatic design of literature
studies in software engineering: An experience-based guideline. Emp. Softw. Eng. 22(6),
2852-2891 (2017)

Pawson, R.: The Promise of a Realist Synthesis, Working Paper No.4, ESRC Evidence
Network, Centre for Evidence Based Policy and Practice (2001). http://www.
evidencenetwork.org/Documents/wp4.pdf

Archer, M., Bhaskar, R., Collier, A., Lawson, T., Norrie, A.: Critical Realism: Essential
Readings. Routledge, London (1998)

Felson, D.T.: Bias in meta-analytic research. J. Clin. Epidemiol. 45(8), 885-892 (1992)
Cooper, D.H.M.: Research Synthesis and Meta-Analysis: A Step-by-Step Approach. Sage
Publications Inc., Los Angeles (2010)

https://doi.org/10.1007/978-3-319-49421-0_3
http://www.evidencenetwork.org/Documents/wp4.pdf
http://www.evidencenetwork.org/Documents/wp4.pdf

25.

26.

217.

28.

29.

30.

31.

32.

33.

What We Know About Software Architecture Styles 39

Littell, J.H., Corcoran, J., Pillai, V.: Systematic Reviews and Meta-Analysis. Oxford
University Press, Oxford (2008)

Tranfield, D., Denyer, D., Smart, P.: Towards a methodology for developing evidence-
informed management knowledge by means of systematic review. Br. J. Manag. 14(3), 207—
222 (2003)

https://adevait.com/software/why-most-startups-dont-need-microservices-yet

Bucchiarone, A., et al.: From monolithic to microservices: an experience report from the
banking domain. IEEE Softw. 35(3), 50-55 (2018)

Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between information
system development and operations. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Mannisto, T., Miinch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 277-
280. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_21

Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: a systematic
mapping study. J. Syst. Softw. 150, 77-97 (2019)

Céspedes, D., Angeleri, P., Melendez, K., Davila, A.: Software product quality in DevOps
contexts: A systematic literature review. In: Mejia, J., Mufioz, M., Rocha, A., Calvo-
Manzano, J.A. (eds.) CIMPS 2019. AISC, vol. 1071, pp. 51-64. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-33547-2_5

Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability analysis
(ALMA). J. Syst. Softw. 69(1-2), 129-147 (2004)

Jabbari, R., Bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: a systematic mapping
study on definitions and practices. In: XP Workshops 2016, p. 12 (2016)

https://adevait.com/software/why-most-startups-dont-need-microservices-yet
https://doi.org/10.1007/978-3-319-13835-0_21
https://doi.org/10.1007/978-3-030-33547-2_5

	What We Know About Software Architecture Styles in Continuous Delivery and DevOps?
	Abstract
	1 Introduction
	2 Definitions of Terms
	3 Purpose
	4 Research Questions and Method
	5 Demographics, Themes and Trends
	5.1 Software Architecture Characteristics and the Context in Which They Were Deemed Important (RQ1)
	5.2 Application Domains (RQ2)
	5.3 Research Methods Being Used (RQ3)

	6 Reflection on the Results
	7 Reflection on Bias in This SLR
	8 Related Systematic Literature Reviews
	9 Summary and Implications
	References

