®

Check for
updates

Equivalence Class Definition
for Automated Testing of Satellite
On-Board Image Processing

Ulrike Witteck!®) | Denis Griebach!®), and Paula Herber?(®)

! Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Adlershof, Berlin, Germany
{ulrike.witteck,denis.griessbach}@dlr.de
2 Embedded Systems Group, University of Miinster, Miinster, Germany
paula.herber@uni-muenster.de

Abstract. On-board image processing technologies in the satellite
domain are subject to strict requirements with respect to reliability and
accuracy in hard real-time. Due to the large input domain of such pro-
cessing technologies it is impracticable or even impossible to execute all
possible test cases.

As a solution we define a novel test approach that efficiently and sys-
tematically captures the input domain of satellite on-board image pro-
cessing applications. We first partition each input parameter into equiv-
alence classes. Based on these equivalence classes we define multidimen-
sional coverage criteria to assess the coverage of a given test suite on the
whole input domain. Finally, our test generation algorithm automatically
inserts missing but relevant test cases into the given test suite such that
our multidimensional coverage criteria are satisfied.

As a result we get a reasonably small test suite that covers the com-
plete input domain. We demonstrate the effectiveness of our approach
with experimental results from the ESA medium-class mission PLATO.

Keywords: Image processing + Software testing - Equivalence class
partitioning - Satellite systems

1 Introduction

On-board image processing applications in the satellite domain are subject to
strict requirements with respect to reliability and mathematical accuracy in hard
real-time. The large input domain of such applications makes manual testing
error-prone and time-consuming. To overcome that problem, we need a test
approach that automatically and systematically generates test cases for such
image processing applications. The major problem of the automated generation
of test cases is the large amount of input parameters and their possible combi-
nations. This leads to a high number of test cases which makes the systematic
and efficient coverage of the complete input domain expensive.

© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 3-25, 2020.
https://doi.org/10.1007/978-3-030-52991-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-52991-8_1

4 U. Witteck et al.

Automated test approaches for different domains, for example, for automotive
and railway applications, are presented in [2,7]. The authors investigate applica-
tions with huge input domains and complex functional behavior. However, their
focus is on event-driven, reactive real-time systems and the approaches are not
tailored to the domain of on-board image processing applications.

In this paper we present an extended version of our test approach given in
[14]. This approach systematically selects test cases from the huge input domain
given in image processing applications. Our objective is to achieve a high cover-
age of the input domain using a reasonably small test suite. To achieve that goal
we adopt the equivalence class partition testing method. This method partitions
a given domain into disjoint sub-domains called equivalence classes [13]. Only
some test values are used as representatives from each class. That reduces the
number of required test cases [1], but still systematically covers the respective
domain. We use that method to partition each input parameter of the on-board
image processing application into equivalence classes. Furthermore, we define
multidimensional coverage criteria that combines individual coverage criteria for
each input parameter. Finally, we specify a test generation algorithm that uses
our multidimensional coverage criteria to automatically assess given test suites
with respect to their coverage on the whole input domain. Moreover, the algo-
rithm removes redundant test cases and inserts missing but relevant test cases.
As a result we get a reasonably small test suite that covers the complete input
domain of satellite on-board image processing applications.

To investigate the efficiency of our test approach using equivalence class
definitions, we use the Fine Guidance System (FGS) algorithm of the Euro-
pean Space Agency (ESA) mission PLAnetary Transits and Oscillation of stars
(PLATO) as a case study [14]. The FGS algorithm is a satellite on-board image
processing algorithm to calculate the high-precision attitude of the spacecraft
by comparing tracked star positions with known star positions from a star cata-
log. Recent studies have shown that some of the input parameters as presented
in [14] can be partitioned more beneficial. In this paper we therefore present
redefined equivalence classes for two input parameters: object position and sub-
pixel position on the image plane. Moreover, we use an improved test criterion
to investigate the effectiveness of our test approach. The experimental results
show the effectiveness of our partitioning approach in terms of an increased error
detection capability.

This paper is structured as follows: In Sect. 2, we briefly introduce equivalence
class partition testing and give an overview of the ESA PLATO mission including
the FGS algorithm. In Sect. 3, we outline related work about equivalence class
testing for real-time systems. In Sect.4, we present our redefined equivalence
classes as well as the automated test generation algorithm for satellite on-board
image processing applications. In Sect. 5, we present our experimental results and
compare them with the results presented in [14]. We conclude with a summary
in Sect. 6.

Equivalence Class Definition for Automated Testing of Satellite 5

2 Preliminaries

We introduce the general concept of equivalence class partition testing and give
an overview of the PLATO mission and its mission-critical FGS algorithm to
understand the remainder of this paper.

2.1 Equivalence Class Partition Testing

To make testing more efficient and less time consuming, it is preferable to exam-
ine as many test cases as necessary to satisfy specified test criteria. However,
the selection of the necessary test cases from a huge input domain is a major
problem when testing an application [11].

Equivalence class partition testing offers a possible solution to this prob-
lem. It is a commonly used approach in practice. The technique partitions a
given input domain or output domain into disjoint sub-domains, the equivalence
classes. The method partitions the domain in such a way, that all elements in an
equivalence class are expected to provoke the same system behavior according
to a specification. Equivalence classes represent subsets of parameter values that
completely cover the input or output domain. For the purpose of software test-
ing, it is therefore sufficient to test some representative values of each equivalence
class. The selection of test cases from equivalence classes can be made accord-
ing to various criteria: using border values, testing special values or randomly
selecting test cases [1,7,11].

The increased partitioning effort is a drawback of using equivalence class
partition testing compared to random testing. In many cases, several definitions
of the domain partitioning are applicable. This is mainly because the tester
assumes that test cases of the same equivalence class have the same system
behavior. However, the approach removes redundant test cases but retains the
completeness of the tests. Hence, the approach reduces the test effort compared
to exhaustive testing [1].

2.2 Context: PLATO Mission

PLATO is an ESA mission in the long-term space scientific program “Cosmic
Vision” [5]. The German Aerospace Center (DLR) manages the international
consortium for developing the payload and scientific operation of the project [3].

The main goal of the PLATO mission is the detection and characterization
of Earth-like exoplanets orbiting in the habitable zone of solar-type stars. It
achieves its scientific objectives by long uninterrupted ultra-high precision pho-
tometric monitoring of large samples of bright stars. This requires a large Field
of View (FoV) as well as a low noise level. To achieve a high pupil size and
the required FOV the instrument contains 26 telescopes for star observation. 24
normal cameras monitor stars fainter than magnitude 8 at a cycle of 25s. Two
fast cameras observe stars brighter than magnitude 8 at a cycle of 2.5s. The
size of a fast camera FoV is 38.7° x 38.7°. The cameras are equipped with four
Charge Coupled Devices (CCD) in the focal plane, each with 4510 x 4510 pixels.

6 U. Witteck et al.

Each fast camera comes with a data processing unit running the FGS algo-
rithm. It calculates attitude data with an accuracy of milliarcseconds from the
image data. This data is supplied to the spacecraft attitude and orbit control
system. The FGS is regarded as being a mission-critical component which implies
an extensive test procedure.

Many spacecraft missions use a FGS to obtain accurate measurements of
the spacecraft orientation. We use the PLATO FGS algorithm as a case study
to investigate the efficiency of our test approach. The attitude calculation of a
telescope is based on measured star positions on the CCD compared to their
reference directions in a star catalog. Figurel gives an overview of the FGS
algorithm [6].

The autonomous attitude tracking is initialized with an initial attitude given
by the space craft. For each pre-selected guide star, an initial sub-window posi-
tion is calculated by means of the camera model, which transforms from sky
coordinates to pixel coordinates and vice versa [6]. Guide stars are predefined
stars in a star catalog that satisfy given criteria. For example, the star magni-
tude is within a certain range, the star has very low contamination, etc. The
FGS algorithm calculates centroids after reading 6 x 6 pixel sub-window every
2.5s from the full CCD image.

Quaternion,
Covariance,
Status

C Centroid \\ (Attitude
} (

Read Calculate Calculate Add LoS
UEST
[cep -'[Window Centroid [Vector Q Q Aberration

Initial N Star
Attitude Window

%

Camera Stellar Star
Model Aberration Catalogue

Fig. 1. Overview of the FGS algorithm [6].

A linear center of mass calculation estimates the initial centroid position.
To get a more precise solution, the algorithm separately estimates each centroid
using a Gaussian Point Spread Function (PSF) observation model. The PSF
describes the distribution of the star light over the CCD pixels. Equation 1 shows
the Gaussian PSF observation model h(i, j) of a single pixel [6].

it1 j+1

I, _(u=ug)? _ (w—ve)?
[[e n e &

2mo?

i J

Equivalence Class Definition for Automated Testing of Satellite 7

The FGS algorithm uses the measured pixel intensities to determine the cen-
troid position (ue,v.)T, intensity I,,, image background D and PSF width o.
A non-linear least square fitting method iteratively refines the parameters of
the PSF model. The FGS algorithm calculates the correction by means of the
QR~decomposition [6]. In the next step, the pixel coordinates of the calculated
centroid position are transformed into star direction vectors in the camera bore-
sight reference frame. The x- and y-axis of the detector and the optical axis of
the camera describe the boresight reference frame.

Finally, the FGS algorithm calculates an attitude, including covariance, from
at least two star directions in the boresight reference frame and the corresponding
reference vectors from a star catalog [14].

3 Related Work

Equivalence class partition testing “is probably the most widely described, and
one of the most widely practiced, software testing techniques” [8] Various studies
investigated equivalence class partition testing strategies for different domains,
for example, railway, automotive, avionics, etc. [7]. We present some previously
published work on equivalence class partition testing for real-time systems.

In the automotive domain, DaimlerChrysler Research developed a test app-
roach, called Time Partition Testing (TPT), to test the continuous behavior of
control systems. Bringmann and Kramer [2] explained the principle of the TPT
approach using an exterior headlight controller as an example. In most cases,
automotive embedded control systems are based on complex functional behavior
and large input domains. To increase the test efficiency the TPT approach sys-
tematically selects test cases revealing redundant or missing test scenarios. Using
a graphical state machine notation, the TPT approach partitions a test scenario
into stream-processing components. Each component defines the behavior of out-
put variables depending on the behavior of input variables up to a certain point
in time, specified by a temporal predicate. Test cases define variations in the
state machine to test various functional aspects of the system under test.

The study shows that state machines are suitable to partition the temporal
behavior of input and output variables in order to model, compare and select
test cases. The modeled test cases test the complex functional requirements of
control systems. A huge input domain and complex functional behavior are also
characteristics of the system class we investigate in this paper. However, the
behavior of systems from this class is not dependent on the arrival time of input
values. Hence, the TPT approach is not applicable to the system class that we
consider [14].

In [7], the authors presented a model-based black-box equivalence class par-
tition testing strategy used in the railway domain. The approach automatically
generates finite and complete test suites for safety-critical reactive systems in
relation to fault models. Huang and Peleska investigated the approach using the
Ceiling Speed Monitor of the European Train Control System as an example
for systems with potentially infinite input domain but finite output domain and

8 U. Witteck et al.

internal variables. Their approach models the reactive behavior of such systems
by means of deterministic state transition systems. Moreover, the approach par-
titions the state space into a finite number of equivalence classes such that all
states in a class provide the same output traces for the same non-empty input
trace. Based on these classes, they generates a complete test suite in the follow-
ing sense: First, at least one test in the suite fails if an application that violates a
given specification is tested. Second, each test in the suite passes for all applica-
tions that satisfy the specification. Huang and Peleska investigated models whose
behavior can be represented by state transition systems. However, we have no
state transition system description of our considered satellite application. Hence,
we present an approach that does not need such a description [14].

4 Equivalence Class Partitioning for Automated Test
Generation

Satellite on-board image processing applications require various input parame-
ters such as position of an object in the image, its brightness, sub-pixel posi-
tion, its shape to distinguish different objects, etc. This leads to a huge input
domain which makes testing expensive. Especially manual tests are error-prone
and time-consuming. Thus, a test approach is needed that automatically and
systematically generates test cases for such applications. However, a major chal-
lenge for automated test generation is the very large number of possible input
parameter combinations. This potential enormous amount of test cases makes it
hard to efficiently capture the complete input domain.

Equivalence Class
Definitions

Requirements

Position p
7 Magnitude m ~
Pixel position e T~
Model g ‘ sfiing ‘ Error not detected
A d |,/ Framework
Test Test
Input . . Error detecte
Parameters l Generation Cases SUT rror detected
—~ Multidimensional

~* Coverage Criteria —
f(Cp, Cy, C, Co)

Fig. 2. Overview of the partitioning approach [14].

To overcome that problem, we define a partitioning approach that systemat-
ically selects test cases from the huge input domain of satellite on-board image
processing applications. Moreover, our test approach assesses and enhances a
given test suite. To evaluate the efficiency of our test approach, we investi-
gate a case study, namely the PLATO FGS algorithm as described in Sect. 2.2.

Equivalence Class Definition for Automated Testing of Satellite 9

Since satellite on-board image processing algorithms are subject to extremely
strict requirements with respect to reliability and mathematical accuracy, such
algorithms require extensive testing.

Figure 2 depicts an overview of our proposed partitioning approach. Our key
idea is to define equivalence classes on input parameters that are typically used
by satellite on-board image processing applications, namely position, magnitude,
sub-pixel position, and distribution model. In this paper we present updated
equivalence class definitions to partition the individual parameters. Recent stud-
ies have shown that some of the equivalence class definitions presented in [14]
can be redefined more effectively. In a second step, we define multidimensional
coverage criteria based on a combination of the individual criteria for each input
parameter. After that, we define a test generation algorithm that automatically
selects test cases that completely cover the whole input domain according to our
multidimensional coverage criteria.

Our test objective is to automatically detect errors in the on-board image
processing application code. To achieve this, our test generation algorithm selects
a test case for each equivalence class combination from a given test suite as rep-
resentatives. This reduces the number of redundant test cases. Furthermore, our
algorithm generates new test cases for missing but relevant input combinations
to reach a complete coverage of the input domain. The result is a reasonably
small test suite that covers the whole input domain of the image processing appli-
cation with respect to our multidimensional coverage criteria. The selected test
cases serve as input for our automated testing framework. Moreover, we insert
requirements for the automated evaluation of the image processing application
results. If the test cases do not meet the requirements, an error is detected [14].

The following sections describe the mentioned steps of the partitioning app-
roach in more detail, applying our new equivalence class definitions. We use the
PLATO FGS algorithm as a case study.

4.1 Assumptions and Limitations

In the following, we consider systems whose input are objects in an image. In
the case study, the observed objects are stars with magnitudes between 5.5 to
7.0, uniformly distributed in the image [6].

We consider four parameters that affect the mathematical accuracy of the
FGS algorithm: the guide star position, its magnitude, sub-pixel position, and
PSF shape. The evaluation of the test is based on the precision of the centroid
position calculated by the FGS centroid algorithm as described in Sect. 2.2. The
input of the centroid calculation is a single star image. Hence, we define a test
star as a test case for the automated test generation.

4.2 Input Parameter Partitioning

The star signal is spread over all pixels in the sub-image. Hence, each pixel
includes information about the star. However, 90% of the energy is within 2 x 2

10 U. Witteck et al.

pixel around the centroid. Moreover, each pixel contains noise, which in com-
bination with the signal determines its Signal-to-Noise Ratio (SNR). The cen-
troid calculation needs at least 5 linear independent equations to estimate the 5
unknown parameters of the pixel observation (cf. Eq. (1)).

The FGS input star parameters named in Sect.4.1 affect the mathematical
precision and accuracy of the centroid estimation. Hence, we define the input
domain as a set of input parameters I. The set includes the position on the Focal
Plane Assembly (FPA) P, the magnitude M, the sub-pixel position £ and the
PSF shape G. The tester specifies start values to calculate the borders of the
equivalence classes. This makes our approach more flexible and parameters can
also be excluded from the analysis [14].

In this section we describe how the quality of the centroid calculation depends
on these parameters and present our partitioning concepts for each input param-
eter in I.

Position on the FPA. Among others, the distribution of the star signal
depends on the star position on the FPA. Due to optical aberrations of the
telescope, the PSF shape of the star is wider in the FPA corner than close to the
center. If the other input parameters contain reasonably good, constant values
then a small PSF leads to a low number of pixels with a high SNR. In case of
a wide PSF, more pixel contain a signal but the SNR is low. Both cases can be
sufficient for an accurate parameter estimation [14].

In [14], our idea is to partition the FPA into equally sized, circular areas.
Recent studies have shown, that the PSF changes not only with the distance to
the FPA center but also with the polar angle. In the study each class of parameter
‘P contains two stars per class of parameter £. The stars have a constant medium
magnitude as well as worst-case non-Gaussian PSF. Figure 3 depicts the residual
noise of stars per circular FPA area. The figure shows that the residual noise
is lower if the star is positioned near the FPA corner or near the FPA border.
Moreover, the figure illustrates that the equivalence class borders have been
well chosen since the residual noise of the stars is changed between neighboring
classes.

Figure 4 shows that the residual noise also depends on the polar angle of the
stars. The figure depicts the residual noise of stars per polar angle area. Figure 4
shows that the residual noise is different for each class. However, we consider
only stars in the image area of the CCDs. That means, for some polar angle
areas particular circular areas can not be covered by a star. Therefore, these
polar angle areas contain fewer stars than others. Moreover, the stars in these
polar angle areas are located near the FPA center. Hence, the residual noise for
that area is low. However, the polar angle area between 90° and 135° contains
less stars but the residual noise is high. This indicates, that this area is not
suitable to select guide stars for the PLATO mission from there.

Bases on the study, we update our equivalence class definition of the input
parameter P and additionally partition the polar angle in equally sized circular
sectors.

Equivalence Class Definition for Automated Testing of Satellite

0.005

0.004

]

X

Rcﬁdual[p
(=)
=
(=)
W

O
o
=
S
2

0.001

Fig. 3.

1000

Residual noise per radius of circular FPA areas.

2000
Radius [px]

3000

4000

0.005 |

0.004 [

]

X

Rcﬁdual[p
(=)
=
(=)
W

(¢}

0.001

0.002

Fig. 4. Residual noise per polar angle of circular FPA areas.

100

200
Theta [Deg]

300

11

The updated equivalence class definition is illustrated in Fig.5. The rectan-
gles represent the image area of the fast cameras CCDs and each circular ring
sector corresponds to one equivalence class. The tester specifies the initial radius
ro and the angle of the circular vectors 6.

12 U. Witteck et al.

I
4000 |- \ .
2000 | .
bo
£l "
B 0
>
—2000 |- H
—4000 |- \ :
| I | |
—4000 ~2000 0 2000 4000
x [pixel]

Fig. 5. FPA equivalence class example.

We partition parameter P into equivalence classes P, ;). Each class P, 4.)
corresponds to a circular ring sector of the FPA with inner radius r;_; and outer
radius 7; as well as right polar angle 6;_; and left polar angle 0;.

P = P(Toﬁo) U P(To,el) U...u P(To,em) U...u P(ngm) (2)

where n is the number of radius border and m is the number of polar angle
border.

Let S denote the set of available stars. A star s € S lies in an equivalence
class P, g,) if following condition holds:

ri—1 < p(s) < ry, with p(s) = v/zs2 + ys2 (3)

and .
;-1 < t(s) <0, with t(s) = arctan —> (4)
Ys
where (z,ys) is the position of star s on the FPA, p(s) is the distance of star s
to the FPA center and ¢(s) is the polar angle of star s.

Sub-pixel Position. In addition to the position on the FPA, the sub-pixel
position of the star also affects the SNR. in a pixel. If the centroid is positioned

Equivalence Class Definition for Automated Testing of Satellite 13

in the center of the pixel, most star flux is accumulated in a few pixels with
a high SNR. In contrast, more pixels have a sufficient SNR if the centroid is
on the pixel border or corner. In this case, the star information is distributed
more evenly over several pixels. The other pixels have a low SNR. But due to
movement, the centroid may move to neighbor pixels. This leads to variations
in the pixel illumination and the apparent centroid position [14].

In [14], we divide input parameter £ into 9 sub-areas, whereas each area
corresponds to one equivalence class. In this paper, we join the corner areas,
the vertical border areas, the horizontal border areas, and the center area of the
pixel to one equivalence class each. The 4, equally sized equivalence classes are
shown in Fig.7. Areas with the same pattern belong to the same equivalence
class.

Figure6 depicts the mean value and standard deviation of the residuals for
stars in the respective pixel area. The stars are located in the same class of
parameter P as well as have a constant medium magnitude and a worst-case
non-Gaussian PSF. The figure shows that the residual noise is higher for stars
positioned in a pixel corner than in the pixel center. The residual noise of stars in
the horizontal border classes or vertical border classes is lower than the residual
noise in the corner classes but higher compared to the center class. It is therefore
beneficial to join the equivalence classes of input parameter £ defined in [14].

0.003 F I 1

& 0.0025 f .

Residual

0.002 [

(¢

0.0015 1

0.001

Corner Class Horizontal Class Vertical Class Center Class

Fig. 6. Residual noise per pixel class.

The tester specifies the ratio r of the central area of the pixel to the pixel
area, for example, 1/2, 3/5, etc. If a is the pixel size, then the length of the edge
of the central area results from Eq. (5).

b=ayr ()

14 U. Witteck et al.

YUR

YyLL

TLL LUR

Fig. 7. Example borders of pixel equivalence classes.

With that, we obtain the lower left corner [and the upper right corner u of the
central pixel area, with

a ba b a ba b
= - =+ = 6
5 T35 7T3) (6)
Based on these corners, we partition parameter £ into equivalence classes F;
with i = 0...3. The equivalence class F; is the i-th pixel sub-area. A star s lies

in an equivalence class if it satisfies the corresponding condition.

E=FyUFE U..UE, (7)
Ey: (0 <eg(s)<a V xy <ez(s)<a)A (0 <ey(s) <y V yu <eyls) <a)
Ei:(0 <eg(s) <z V ap<ezp(s) <azu) Ny <ey(s) < yu
Ey:xp<ey(s) <zy N (0 <ey(s) <y V ui <ey(s) <yu)
Es:ap <ey(s) <zy Ny <ey(s)<yy

(8)
ex(s) and ey(s) return the x-coordinate and y-coordinate of s in the pixel
respectively.

Magnitude. The measured star flux (photo-electrons per second) depends on
the magnitude. The accumulated number of photo-electrons per pixel denotes the

Equivalence Class Definition for Automated Testing of Satellite 15

44%10°%5 65x10%5 8Tx10% LIx10% 13x10% 15x106 17x10% numberof
photons

| | | | | | >
\ \ \ \ \ \

7.0 6.6 6.3 6.0 5.8 5.7 5.5 magnitude

Fig. 8. Example partitioning of magnitude range [14].

illumination of a pixel. Equation (9) shows the relation between the magnitude
m and the corresponding flux F, in e” /s.

F,, = FyTQA 10704 (9)

with magnitude m, reference flux Fj of a star with m = 0, transmission efficiency
T of the optical system, quantum efficiency) of the detector, and effective
light-collecting area A. As the equation shows, the star flux is non-linear to
the magnitude of the star. A low magnitude corresponds to a high number of
photo-electrons, that leads to a higher SNR per pixel.

A useful partitioning of magnitude values into equivalence classes is not obvi-
ous. Our idea is to partition the star flux range into Ixs € N equidistant parts
that represent the equivalence classes. We define Eq. (10) to obtain the upper

limit of a sub-range.
Fs5—Fro

Im
Fyp; is the flux of magnitude m; and j = 1...Ir¢ represents the j-th equivalence
class of parameter M. F5 5 and F7 o correspond to the numbers of photons for
magnitude 5.5 and 7.0. First, we calculate the flux values F5 5 and F7 o by using
Eq. (9). Then, we partition the flux range into equidistant sub-ranges. We use
Eq. (11) to recalculate the magnitude m; from the calculated flux limit F},, of
the flux sub-range j.

m=—2.5 log ((11)

_-m
FyTQA
From a formal point of view, we partition the parameter M into equivalence
classes M;.

M :M7_0U...UM1_7. U...UM;s5 (12)

with I; € R and 5.5 < [; < 7.0. Each equivalence class Mlj is a magnitude
sub-range with upper limit /;. Each available star s lies in equivalence M, if it
satisfies the condition in Eq. (13).

lj,1 < m(s) < lj (13)

where m(s) denotes the observed magnitude of star s and I; with j = 1...1p¢ is
the upper limit of the j-th magnitude sub-range. The tester specifies the num-
ber of equivalence classes Iy € N of the parameter M. Figure8 illustrates an
example partitioning of the magnitude range [14].

16 U. Witteck et al.

PSF Shape. The accuracy of the centroid calculation also depends on the PSF
shape. In the best case scenario, the shape is a symmetric Gaussian-PSF. Then,
the observation model (cf. Eq. (1)) perfectly fits the star. Therefore, the accuracy
of the centroid calculation is high. In reality, the PSF shape is non-Gaussian. In
that case, the observation model is less accurate and movements lead to stronger
variations in the expected centroid positions [14].

#115

1280 .

1024

1024

768 768

512 512
512 768 1024 1280 512 768 1024 1280 512 768 1024 1280

Fig. 9. Examples of different low quality stars [14].

We partition the input parameter G in two equivalence classes G and Gy¢g
since two PSF shapes are distinctive. If a star has a Gaussian-PSF shape it is in
class G¢ otherwise it is in class G ng-

Figure9 shows some example stars with non-Gaussian-PSF shape that are
less suitable as guide stars. These stars lead to inaccurate estimation results.
What the three stars have in common is that their intensity is concentrated
on a pixel edge. For all stars, the magnitude and FPA position are sufficiently
good. However, a small variation due to movement leads to big changes of the
illumination. Since the Gaussian-PSF observation model does not fit the PSF
shape perfectly, the centroid estimation is less accurate.

4.3 Multidimensional Coverage Criteria

This section presents our definition of multidimensional coverage criteria on the
input domain I = {P, M, E,G} [14]. While individual parameter values might
provide a good centroid estimation, a combination of parameters may change
the quality of the results. To measure the coverage of a test suite with respect to
input parameter combinations we define multidimensional coverage criteria on
the input domain. If the measured coverage of a test suite is not complete, our
automated test generation algorithm automatically inserts test cases for missing
combinations.

The individual coverage of an input parameter denotes the ratio of equiva-
lence classes that are covered by at least one test case from a given test suite to
the number of equivalence classes of this input parameter. Equations (14)—(17)
show this definition for the input parameters P, M, £ and G.

Equivalence Class Definition for Automated Testing of Satellite 17

_ # covered elements of P

14
Crp = # covered elements of M (15)
M|
Ce = # covered elements of £ (16)
€]
Co = # covered e|lgements of G (17)

The Cartesian product of the equivalence classes of the input parameters P,
M, € and G is the coverage domain for our multidimensional coverage criteria.
Hence, an input combination is a tuple of equivalence classes (P;, M;, Ey, Gi),
where P, € P, M; € M, Ej, € £ and G, € G [14]. Furthermore, a test case is a
star represented by a tuple of parameter values ((p,t),m, e, g) € (P, M;, E, Gi).
The following example test cases clarify these definitions.

Example 1
((196947 3225), 65, (03,02), G) S (P(2687,360) X MG.G X E2 X GG)

The test star position is in the FPA area with outer radius 2687 and outer polar
angle 225°. The star belongs to equivalence class Mg ¢ because its magnitude
value is between 6.3 and 6.6. The star center is located in the lower-middle
pixel sub-area. That corresponds to the horizontal pixel areas and therefore to
equivalence class Fy. The star is part of equivalence class G¢, because it has a
Gaussian-PSF shape.

Example 2
((2551.9,357.3),6.5,(0.9,0.8), G) € (Pra6s7,360) X Me.6 x Eo x Gg)

The test star is similar to the star in the first example, but it is positioned nearby
the upper right pixel border and therefore belongs to equivalence class Ej.

Our multidimensional coverage criterion is fully satisfied if the test cases in
a test suite cover all possible input combinations at least once. The number
of required covered input combinations for a complete coverage is |P x M x
& x G|. In the remaining sections, we denote a test suite that completely covers
the input domain with respect to our multidimensional coverage criteria as a
complete test suite. The multidimensional coverage C results from the ratio of
input combinations covered by at least one test case to the total number of input
combinations.

covered input combinations

©= [P x M x & x G|

(18)

18 U. Witteck et al.

Our test approach calculates the individual and multidimensional coverage of a
given test suite using Algorithm 1. The input parameters P, M, £, and G contain
Ip, Iz, Ig, Ig equivalence classes respectively [14].

For each test case in the given test suite, the algorithm computes the
input parameter index ip, iy, i, ig of the corresponding equivalence class from
P, M, € and G. The algorithm adds the indices to the sets C'p, Cry, Cg and
Cg respectively. Moreover, it inserts the tuple (ip, iy, g, iG) into the set C that
contains all covered input combinations. As the algorithm uses the union opera-
tor to add the tuples to the set, each tuple is included in the set only once. The
algorithm applies Eqgs. (14)—(18) to compute the individual and multidimensional
coverage.

Input: Test suite T'S
Output: Multidimensional coverage Cov of T'S

1 Cp=Cpm=Cc=Cg=0C =0
2 foreach tc with ((p, t), m, e, g) € TS do
3 ip = getPosECId(p, t);

4 Cp «— Cp Uip;

5 im = getMagECId(m);

6 Cm — Ca Uipg;

7 ig = getPixECId(e);

8 Ce «— CeUig;

9 ic = getModECId(g);

10 Cg «— Cg Uig;

11 CHCU(iP,iM,iE,Z’G);
12 end

13 Covg = |Cp|/Ip;

14 CO’UM = |CM|/IM;

15 Covg Z‘Cg‘/[g;

=
(=]

Covg = |Cgl|/1g;
Cov =|C|/(Ip -Ipm-Ic-1g)

[
~

Algorithm 1. Coverage calculation [14].

Our partitioning approach uses individual and multidimensional coverage
criteria to assess the quality of test suites with respect to their coverage on the
input space of a satellite on-board image processing application [14].

4.4 Automated Test Generation

We present a test generation algorithm to automatically and systematically gen-
erate a test suite that completely covers the input domain according to our
multidimensional coverage criteria. The complete test generation algorithm uses
Algorithm 1 to assess a given test suite and systematically generates missing test
cases based on this result.

Equivalence Class Definition for Automated Testing of Satellite 19

Algorithm 2 generates set W that contains all input combinations not cov-
ered by the given test suite. For each input combination in W, the algorithm
uses the procedure generateTC to generate a test case by randomly selecting
values from the equivalence classes of the missing combinations. The algorithm
adds the newly generated test case to the test suite. In this way, it efficiently
inserts missing but relevant test cases into the test suite. This increases the mul-
tidimensional coverage and therefore the error detection capability of the given
test suite. As a result we get a complete but reasonably small test suite.

If the set of covered input combinations C' is empty, then the set of uncovered
input combinations W is equal to the universe of possible input combinations U.
Therefore, Algorithm 2 can be used to generate a new test suite that completely
satisfies the multidimensional coverage criteria. From this test suite our auto-
mated testing framework only selects one test case per input combination. This
efficiently reduces the number of redundant test cases for the test execution [14].

Input: Input combination universe U, covered input combination set C, test
suite T'S
Output: Complete test suite T'S

Cov = computeMultidimCoverage(TS);
if Cov < 1 then
W —U\C,
foreach w € W do
tc = generateTC(w);
TS «— TS Ut

end

o N O AW N =

end

Algorithm 2. Generate complete test suite [14].

Windows system Grmon
_ _ _, Automated Test Generation (upload of the > © Leon3
I > . on-board £
| Algorithm it g
software) =]
| C++ m
| Read HDF5-File «RX— .
; USB- o
C++; hdf5-lib a 4 £ FTX>
Input _! ! LTx> B Spacewire }<~TX—> £ FGS
PAIAMCLETS | Test result t Converter é «RX— Ct+
| Input HDF5-Files n
| parameters |
' Starcatal i £
| arcatalog | | piatoSim Terminal %
C++; =
wxWidgets Linux-VM ~ Debug —— GR-XC6S
information

Fig. 10. Test setup [14].

20 U. Witteck et al.

5 Evaluation

We evaluate the applicability and error detection capability of our proposed test
approach for satellite on-board image processing applications. For this purpose,
we use the FGS algorithm of the ESA PLATO mission as case study and run
the algorithms with various test suites.

5.1 Implementation

We have implemented the proposed partitioning and test generation algorithm
in C++ based on the model-view-controller pattern. We allow the tester to spec-
ify input parameters with or without graphical user interface (GUI). Figure 10
shows the block diagram of our test setup. As the figure depicts, our test envi-
ronment runs on a Windows system. Our automated test generation algorithm
reads the star data of the test suite inserted by the tester. For missing test cases,
our test generation algorithm returns a star catalog to simulate the star data.
The catalog is a text file that includes right ascension, declination, and mag-
nitude of stars that should be simulated. We manually insert the catalog into
the PLATO simulator PlatoSim [9]. PlatoSim writes the simulated star data to
HDFS5 files [12]. Each file contains an image sequence of several time steps of a
star in a hierarchical file format. Since PlatoSim is not developed for Windows
systems, the simulator runs in a Linux virtual machine.

Figure 10 depicts, that we connect the Windows system via a SpaceWire
USB brick to a GR-XC6S FPGA development board [10] running at 50 MHz.
SpaceWire is a data-handling network for spacecraft defined in [4]. For that, our
test environment uses the C SpaceWire USB API Library for the SpaceWire USB
brick. A prototype of the FGS algorithm, written in C4++, runs on the evaluation
board. We load the software with the Leon debug monitor GRMON onto this
board. Via a UART interface we receive debug information in a terminal. For
example, stack size, hardware information, etc.

Our objective is to evaluate our approach for the development and test of
the FGS algorithm implementation. Moreover, our goal is to test execution time
and mathematical accuracy of the FGS algorithm under realistic conditions.
For example, a calculation on the development board is slower than the same
calculation on a Windows system. Therefore, we run the application under test
on the target hardware and keep the test system in the software development
cycle [14].

5.2 Experimental Results

In this section, we present the experimental results for generating a test suite
using our redefined equivalence class definitions for testing the PLATO FGS
algorithm.

Since the equivalence class borders used for the recent studies were been well
chosen, as shown in Fig. 3, Fig. 4 and Fig. 6, we specify following start parameters
for the experiment:

Equivalence Class Definition for Automated Testing of Satellite 21

Initial radius o of FPA partitioning: 1900 pixel
— Initial polar angle 6y of FPA partitioning: 45°
Number of magnitude sub-ranges: 6

— Ratio r of central sub-area to pixel area: 0.25

These start parameters lead to 48 equivalence classes of input parameter P,
6 equivalence classes of parameter M and 4 equivalence classes of parameter £.
Input parameter G consists of two equivalence classes (Gg and Gn¢g). In the
following we only consider equivalence classes of input parameter P that cover
the image area of the CCDs. Therefore we use 36 classes of parameter P. Thus,
our automated testing framework needs 1728 test cases to completely cover the
whole input domain of the FGS algorithm. That is twice the number of test cases
used in [14]. The reason is that we refine the partitioning of input parameter P.

To evaluate our approach, we investigate the error detection capability of a
randomly generated test suite as well as a test suite generated by our algorithm.
The randomly generated test suite contains 902 evenly distributed stars. The
second test suite was generated by our automated test generation application
using Algorithm 2 presented in Sect.4.4. The test suite contains one test case
for each input combination. Therefore it is complete with respect to our multi-
dimensional coverage criteria and we call it complete test suite. Table 1 shows
the coverage of the test suites for each input parameter as well as the achieved
multidimensional coverage.

Table 1 shows that the utilization of the equivalence class partitioning method
reduces the random test suite by hundreds of redundant test cases. Since there
are no unnecessary executions of redundant test cases, the method increases the
efficiency of the test process. The random test suite achieves a high individual

Table 1. Coverage values of the test suites.

Random | Complete
Test stars 902 1728
Covered input combinations 256 1728
Cp (%] 100.0 100.0
Cam (%) 16.7 100.0
Ce %) 100.0 100.0
Cg %) 100.0 100.0
Multidimensional coverage [%] | 14.8 100.0

Table 2. Output for a sample test case.

ig|ip |im | ig | Starld | deviation, [px] | deviationy [px] | result
1 {33/1 |4 1017 112734.8 1097.8 Error detected
0 (112 |0 892 1.3 x 107° 4.4 x107° Error detected

22 U. Witteck et al.

coverage of three input parameters. However, due to the low individual coverage
of input parameter M, the multidimensional coverage of the test suite is low.
Furthermore, Table 1 exhibits that the complete test suite covers the whole input
domain of the FGS algorithm.

To assess the partitioning approach, we have automatically inserted some
errors into the PLATO FGS algorithm code. These injected errors belong to
three classes: missing assignment, wrong assignment and wrong condition. For
each test execution, we have injected a single error at a different position in the
code. Our objective is to check if the complete test suite achieves a higher error
detection capability than the random test suite.

In each experiment, our test application sent 1000 packets, with one exposure
each, per selected test star to the evaluation board running the FGS algorithm,
and evaluated the calculated centroids. After that, our test application calcu-
lated the residual between the resulting centroid positions and a given position
calculated by PlatoSim for each exposure. In this paper, we use another test
criterion than in [14]: if the standard deviation of the residuals is greater than
a reference value, the test detects the error. Table2 shows the output for two
test cases that detect a wrong assignment error. The high deviation between the
standard deviation of the residuals and the reference values reveals an error in
the centroid calculation.

During the experiments, we have injected three missing assignment errors,
three wrong assignment errors, and three wrong condition errors. Table 3 sum-
marizes the experimental results for both test suites.

Table 3 shows that both test suites do not reveal all injected errors with
respect to the given test criterion. All test cases in the random test suite, as
well as all test cases in the complete test suite, detects all missing assignment
errors. In addition, both test suites detect two wrong assignment errors. But the
percentage of test cases that detect this error is different. In the first case, 31% of
the test cases in the complete test suite and 16% of the test cases in the random
test suite detect the wrong assignment error. In the second case, 31% of the test
cases in the complete test suite and 19% of the test cases in the random test suite
detect the error. This means, some test cases are more capable to find errors than
others. The percentage of error detecting test cases in the complete test suite is
about 1.8 times higher than the percentage of error detecting test cases in the
random test suite. Hence, the error detection capability of the complete test suite

Table 3. Test suites evaluation results.

Random | Complete

Test cases 256 1728
Detected errors 5 5
Undetected errors 4 4

Error detection capability [%] | 55.6 55.6

Equivalence Class Definition for Automated Testing of Satellite 23

is higher. For randomly generated test cases it is not sure that it contains the
necessary test cases to detect a special error. Furthermore, our test criterion only
considers the centroid position not the other output parameters of the centroid
calculation. These should also be taken into account in later experiments.

However, not all injected errors are suitable to investigate the error detection
capability of a test suite because they lead to erroneous results for each input
data. Thus, it is necessary to insert hard-to-find errors that only affects special
input combinations. Otherwise one test cases is sufficient to detect an error.

Compared to the results presented in [14] the error detection capability of
the complete test suite is increased. But also the random generated test suites
reaches a higher error detection capability than presented in [14]. The reason for
this is the improved test criterion.

Our partitioning approach reduces the number of relevant test cases. There-
fore, applying the approach increases the test efficiency. The results show that
the error detection capability of the test suite that completely satisfies our mul-
tidimensional coverage criteria is higher than the capability of the random test
suite. The complete test suite includes more test cases that detect special errors
than the random test suite. Furthermore, the experiment shows that the new test
criteria leads to a higher error detection capability for both test suites compared
to the results presented in [14].

6 Conclusion

Due to the large number of input parameters of satellite on-board image pro-
cessing applications and their combinations an enormous amount of test cases
is possible. Hence, it is infeasible to capture the complete input domain and
execute test cases exhaustively. We have developed a test approach for this spe-
cific domain that automatically and systematically generates test suites that
completely covers the input domain. Qur approach is based on the well-known
equivalence class partition testing method.

In this paper, we have redefined some of the equivalence class definitions
presented in [14]. To assess test suites with respect to its coverage of the input
domain, we have also presented individual coverage criteria for each input param-
eter as well as multidimensional coverage criteria to measure the number of
covered input parameter combinations. Finally, we have specified an automated
test generation algorithm that systematically generates missing test cases with
respect to our multidimensional coverage criteria. As a result, our approach
is able to fully automatically generate test suites that are reasonably small but
complete with respect to our multidimensional coverage criteria. The tester spec-
ifies the size of our equivalence classes. This makes our approach adjustable to
available test times and also to other image processing applications. Moreover,
it allows to exclude an input parameter from the analysis by having only one
class.

We have investigated the effectiveness of our proposed test approach on the
FGS algorithm as mission critical component for the PLATO mission. In the

24 U. Witteck et al.

experiments, our automated test generation algorithm generates a test suite that
is complete with respect to our multidimensional coverage criteria. To demon-
strate the effectiveness of our test approach with redefined equivalence class
borders, we have compared the error detection capability of a randomly gener-
ated test suite and the generated complete test suite as well as with the complete
test suite given in [14]. The use of our equivalence classes of the input parameters
reduces the number of redundant test cases in the randomly generated test suite
by 71.6%.

During the experiments, we have successively injected 9 errors in the FGS
algorithm code to investigate the error detection capability of both test suites.
In this paper, we have specified an improved test criterion: a test case detects an
error if the standard deviation of the residual between the calculated centroid
position and a given position is bigger than a reference value. We have observed
that the changed test criterion leads to different test results compared to the
results presented in [14]. In general, the error detection capability of the complete
test suite as well as of the random test suite has increased. Both test suites
detects all missing assignment errors and two wrong assignment errors. However,
percentage of error detecting test cases in the complete test suite is about 1.8
times higher than for the random test suite. Thus, the error detection capability
of the complete test suite is higher than the error detection capability of the
random test suite. But both test suites do not detect all injected errors because
the test criterion considers only the centroid position and not the other output
parameters of the centroid calculation.

The error detection capability of both test suites is nearly the same, because
not all injected errors are suitable to show the error detection capability of a test
suite. The injected errors lead to erroneous results for each input data. Therefore,
it is necessary to inject hard-to-find errors into the code that only affects specific
input combinations.

However, the experiments showed that a systematic test using our proposed
partitioning approach increases the error detection capability of a given test
suite. This makes the partitioning approach efficient and effective. In addition,
it facilitates automated generation, execution, and evaluation of test cases.

So far, we have injected errors in the application code. But in space, many
missions suffer from cosmic radiation that flips bits in binary code or cause hot
pixels in input images. We plan to investigate the efficiency of our approach by
injecting errors in input data or in the binary code of the application in future
work. Finally, we have evaluated our approach with a single application. Later
on, we plan to investigate the flexibility of our approach for other applications,
for example, blob feature extraction in the robotics domain [14].

References

1. Bhat, A., Quadri, S.: Equivalence class partitioning and boundary value analysis-
a review. In: International Conference on on Computing for Sustainable Global
Development (INDIACom), pp. 1557-1562. IEEE (2015)

10.
11.

12.

13.

14.

Equivalence Class Definition for Automated Testing of Satellite 25

Bringmann, E., Kramer, A.: Systematic testing of the continuous behavior of auto-
motive systems. In: International Workshop on Software Engineering for Automo-
tive Systems, pp. 13-20. ACM (2006)

DLR: Grines Licht fiir europaisches Weltraumteleskop PLATO (2017). http://
www.dlr.de/dlr/desktopdefault.aspx /tabid-10081/151 _read-22858 /# /gallery/
27241

ECSS Executive Secretariat: Space engineering, spaceWire - links, nodes, routers
and networks (2008)

ESA: ESA’s ‘Cosmic Vision’ (2012). http://www.esa.int/Our_Activities/Space-
Science/ESA _s_Cosmic_Vision

GrieBbach, D.: Fine guidance system performance report. Technical report
PLATO-DLR-PL-RP-0003, Deutsches Zentrum fiir Luft- und Raumfahrt (DLR)
(2019)

Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int. J.
Softw. Tools Technol. Transf. 18(3), 265-283 (2014). https://doi.org/10.1007/
$10009-014-0356-8

Kaner, C.: Teaching domain testing: a status report. In: Conference on Software
Engineering Education and Training, pp. 112-117. IEEE (2004)

Marcos-Arenal, P., et al.: The PLATO simulator: modelling of high-precision high-
cadence space-based imaging. Astron. Astrophys. 566, A92 (2014)

Pender electronic desiGN GmbH: Gr-xc6s-product_sheet (2011)

Liggesmeyer, P.: Software-Qualitit: Testen, Analysieren und Verifizieren von Soft-
ware, 2nd edn. Spektrum Akademischer Verlag, Heidelberg (2009)

The HDF Group: HDF5, 05 April 2018. https://portal.hdfgroup.org/display/
HDF5/HDF5

Varshney, S., Mehrotra, M.: Automated software test data generation for data flow
dependencies using genetic algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng.
4(2), A72-479 (2014)

Witteck, U., Grielbach, D., Herber, P.: Test input partitioning for automated
testing of satellite on-board image processing algorithms. In: Proceedings of the
14th International Conference on Software Technologies - Volume 1: ICSOFT, pp.
15-26. SciTePress, INSTICC (2019). https://doi.org/10.5220/0007807400150026

http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.esa.int/Our_Activities/Space_Science/ESA_s_Cosmic_Vision
http://www.esa.int/Our_Activities/Space_Science/ESA_s_Cosmic_Vision
https://doi.org/10.1007/s10009-014-0356-8
https://doi.org/10.1007/s10009-014-0356-8
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
https://doi.org/10.5220/0007807400150026

	Equivalence Class Definitionpg for Automated Testing of Satellite On-Board Image Processing
	1 Introduction
	2 Preliminaries
	2.1 Equivalence Class Partition Testing
	2.2 Context: PLATO Mission

	3 Related Work
	4 Equivalence Class Partitioning for Automated Test Generation
	4.1 Assumptions and Limitations
	4.2 Input Parameter Partitioning
	4.3 Multidimensional Coverage Criteria
	4.4 Automated Test Generation

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Results

	6 Conclusion
	References

