
Marten van Sinderen
Leszek A. Maciaszek (Eds.)

14th International Conference, ICSOFT 2019
Prague, Czech Republic, July 26–28, 2019
Revised Selected Papers

Software Technologies

Communications in Computer and Information Science 1250

Communications
in Computer and Information Science 1250

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Marten van Sinderen • Leszek A. Maciaszek (Eds.)

Software Technologies
14th International Conference, ICSOFT 2019
Prague, Czech Republic, July 26–28, 2019
Revised Selected Papers

123

Editors
Marten van Sinderen
Information Systems Group
University of Twente
Enschede, The Netherlands

Leszek A. Maciaszek
Institute of Business Informatics
Wrocław University of Economics
Wrocław, Poland

Macquarie University
Sydney, Australia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-52990-1 ISBN 978-3-030-52991-8 (eBook)
https://doi.org/10.1007/978-3-030-52991-8

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-52991-8

Preface

The present book includes extended and revised versions of a set of selected papers
from the 14th International Conference on Software Technologies (ICSOFT 2019),
held in Prague, Czech Republic, from July 26–28, 2019.

ICSOFT 2019 received 116 paper submissions from 41 countries, of which 21
contributions (18%) were accepted and presented as full papers. After the conference,
the authors of selected full papers were invited to submit a revised and extended
version of their papers having at least 30% new material. In the end, 10 revised and
extended papers have been included in this Springer book (i.e. 9% of the original 116
submissions).

The papers were selected by the event chairs and their selection was based on a
number of criteria that included the classifications and comments provided by the
Program Committee members, the session chairs’ assessment, and the verification
of the papers’ revisions and extensions by the program and conference chairs.

The purpose of the ICSOFT conference is to bring together researchers, engineers,
and practitioners interested in software technologies. The conference solicits papers and
other contributions in themes ranging from software engineering and development via
showcasing cutting-edge software systems and applications to addressing foundational
innovative technologies for systems and applications of the future. The papers were
presented in one of three conference areas: “Software Engineering and Systems
Development,” “Software Systems and Applications,” and “Foundational and Trigger
Technologies.”

We would like to thank all the authors for their contributions and the reviewers for
ensuring the quality of this publication.

July 2019 Marten van Sinderen
Leszek A. Maciaszek

Organization

Conference Chair

Leszek A. Maciaszek Wrocław University of Economics, Poland,
and Macquarie University, Australia

Program Chair

Marten van Sinderen University of Twente, The Netherlands

Program Committee

Jose Gonzalez University of Seville, Spain
Waleed Alsabhan KACST, UK
Peter Amthor Technische Universität Ilmenau, Germany
Soumyadip Bandyopadhyay BITS Pilani K K Birla Goa Campus and Hasso Plattner

Institute, India
Davide Basile University of Florence, Italy
Doina Bein California State University, Fullerton, USA
Wolfgang Bein University of Nevada, Las Vegas, USA
Fevzi Belli Izmir Institute of Technology, Turkey
Yann Ben Maissa INPT, Morocco
Jorge Bernardino Polytechnic of Coimbra - ISEC, Portugal
Mario Berón Universidad Nacional de San Luis, Argentina
Marcello Bersani Politecnico di Milano, Italy
Dominik Bork University of Vienna, Austria
Andrea Burattin University of Innsbruck, Austria
Nelio Cacho Federal University of Rio Grande do Norte, Brazil
Alejandro Calderón University of Cádiz, Spain
Gerardo Canfora University of Sannio, Italy
Cagatay Catal Wageningen University, The Netherlands
Ana Cavalli Telecom SudParis, France
Juan Chagüendo Benavides Universidad Carlos III de Madrid, Spain
Alexandru Cicortas West University Timisoara, Romania
Lidia López Cuesta Universitat Politècnica de Catalunya, Spain
Sergiu Dascalu University of Nevada, Reno, USA
Cléver Ricardo de Farias University of São Paulo, Brazil
Martina De Sanctis Gran Sasso Science Institute, Italy
Steven Demurjian University of Connecticut, USA
Chiara Di Francescomarino FBK-IRST, Italy
József Dombi University of Szeged, Hungary
Gencer Erdogan SINTEF, Norway

Morgan Ericsson Linnaeus University, Sweden
Anne Etien University of Lille, France
João Faria FEUP, University of Porto, Portugal
Luis Fernandez Sanz University of Alcala, Spain
Estrela Ferreira Cruz Instituto Politecnico de Viana do Castelo,

University of Minho, Portugal
Nicolas Ferry SINTEF, Norway
Mirco Franzago University of L’Aquila, Italy
Matthias Galster University of Canterbury, New Zealand
Mauro Gaspari University of Bologna, Italy
Hamza Gharsellaoui Arab Open University, Saudi Arabia
Aritra Ghosh Florida Atlantic University, USA
Paola Giannini University of Piemonte Orientale, Italy
John Gibson Mines-Telecom, Telecom SudParis, France
Ana-Belén Gil-González University of Salamanca, Spain
Gorkem Giray Independent Researcher, Turkey
Gregor Grambow Hochschule Aalen, Germany
Christiane Gresse von

Wangenheim
Federal University of Santa Catarina (UFSC), Brazil

Hatim Hafiddi INPT, Morocco
Slimane Hammoudi ESEO, ERIS, France
Ludovic Hamon Le Mans Université, France
Jean Hauck Universidade Federal de Santa Catarina, Brazil
Pedro Henriques University of Minho, Portugal
Jose Herrera Universidad del Cauca, Colombia
Mercedes Hidalgo-Herrero Universidad Complutense de Madrid, Spain
Jose R. Hilera University of Alcala, Spain
Andreas Holzinger Medical University Graz, Austria
Jang-Eui Hong Chungbuk National University, South Korea
Zbigniew Huzar Wrocław University of Science and Technology,

Poland
Ivan Ivanov SUNY Empire State College, USA
Judit Jasz University of Szeged, Hungary
Bo Jørgensen University of Southern Denmark, Denmark
Maria Jose Escalona University of Seville, Spain
Hermann Kaindl University of Seville, Spain, and TU Wien, Austria
Dimitris Karagiannis University of Vienna, Austria
Carlos Kavka University of Paris-Sud, France
Dean Kelley Minnesota State University, USA
Mieczyslaw Kokar Northeastern University, USA
Jitka Komarkova University of Pardubice, Czech Republic
Jun Kong North Dakota State University, USA
Winfried Kühnhauser Ilmenau University of Technology, Germany
Rob Kusters The Open University, The Netherlands
Wing Kwong Hofstra University, USA
Giuseppe Lami CNR, Italy

viii Organization

Sérgio Lopes University of Minho, Portugal
David Lorenz The Open University, Israel
Ivan Lukovic University of Novi Sad, Serbia
Stephane Maag Telecom SudPairs, France
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Eda Marchetti ISTI-CNR, Italy
Katsuhisa Maruyama Ritsumeikan University, Japan
Manuel Mazzara Innopolis University, Russia
Fuensanta

Medina-Dominguez
Carlos III Technical University of Madrid, Spain

Francesco Mercaldo CNR, Italy
Antoni Mesquida Calafat Universitat de les Illes Balears (UIB), Spain
Gergely Mezei Budapest University of Technology and Economics,

Hungary
Cristian Mihaescu University of Craiova, Romania
Mattia Monga Università degli Studi di Milano, Italy
Antao Moura Federal University of Campina Grande (UFCG), Brazil
Christian Muck University of Vienna, Austria
Antonio Muñoz University of Malaga, Spain
Takako Nakatani The Open University of Japan, Japan
Elena Navarro University of Castilla-La Mancha, Spain
Joan Navarro Universitat Ramon Llull - La Salle Campus, Spain
Paolo Nesi University of Florence, Italy
Rory O’Connor Dublin City University, Ireland
Flavio Oquendo European University of Brittany, IRISA-UBS, France
Claus Pahl Free University of Bozen-Bolzano, Italy
Luis Pedro University of Aveiro, Portugal
Jennifer Pérez Universidad Politécnica de Madrid (UPM), Spain
Dana Petcu West University of Timisoara, Romania
Dietmar Pfahl University of Tartu, Estonia
Giuseppe Polese Università degli Studi di Salerno, Italy
Stefano Quer Politecnico di Torino, Italy
Traian Rebedea University Politehnica of Bucharest, Romania
Werner Retschitzegger Johannes Kepler University, Austria
Ralf Reussner Karlsruhe Institute of Technology (KIT), Germany
Marcela Xavier Ribeiro Federal University of São Carlos, Brazil
Colette Rolland Université Paris 1 Panthéon-Sorbonne, France
António Miguel Rosado

da Cruz
Instituto Politécnico de Viana do Castelo, Portugal

Gustavo Rossi Lifia, Argentina
Matteo Rossi Politecnico di Milano, Italy
Stuart Rubin University of California, San Diego, USA
Gunter Saake Institute of Technical and Business Information

Systems, Germany
Davide Sangiorgi Università di Bologna, Italy
Nickolas Sapidis University of Western Macedonia, Greece

Organization ix

Santonu Sarkar BITS Pilani Goa, India
Elad Schiller Chalmers University of Technology, Sweden
Lionel Seinturier University of Lille, France
Istvan Siket Hungarian Academy of Science, Research Group

on Artificial Intelligence, Hungary
Harvey Siy University of Nebraska, Omaha, USA
Cosmin Spahiu University of Craiova, Romania
Anca-Juliana Stoica Uppsala University, Sweden
Hiroki Suguri Miyagi University, Japan
Selma Suloglu Rochester Institute of Technology, USA
Bedir Tekinerdogan Wageningen University, The Netherlands
Claudine Toffolon University of Maine, France
Joseph Trienekens The Open University, The Netherlands
Michael Vassilakopoulos University of Thessaly, Greece
Dessislava Vassileva Sofia University, Bulgaria
László Vidács University of Szeged, Hungary
Yan Wang Google, USA
Dietmar Winkler Vienna University of Technology, Austria
Andreas Winter Carl von Ossietzky University Oldenburg, Germany
Jinhui Yao Xerox Research, USA
Murat Yilmaz Dublin City University, Ireland
Jingyu Zhang Macquarie University, Australia
Zheying Zhang Tampere University, Finland

Additional Reviewers

Victoria Döller University of Vienna, Austria
Vimal Kunnummel University of Vienna, Austria
Wissam Mallouli Montimage, France
Damien Pollet Inria, France
Frederik Reiche KIT, Germany
Spyros Vosinakis University of the Aegean, Greece

Invited Speakers

Manfred Reichert Ulm University, Germany
Michael G. Hinchey Lero, University of Limerick, Ireland
Hans-Georg Fill University of Fribourg, Switzerland

x Organization

Contents

Software Engineering and Systems Development

Equivalence Class Definition for Automated Testing of Satellite
On-Board Image Processing . 3

Ulrike Witteck, Denis Grießbach, and Paula Herber

What We Know About Software Architecture Styles in Continuous
Delivery and DevOps?. 26

Maya Daneva and Robin Bolscher

Analysing the Performance of Mobile Cross-platform Development
Approaches Using UI Interaction Scenarios . 40

Stefan Huber, Lukas Demetz, and Michael Felderer

Quantitative Analysis of Mutant Equivalence . 58
Amani Ayad, Imen Marsit, Sara Tawfig, Ji Meng Loh,
Mohamed Nazih Omri, and Ali Mili

Distributed Frames: Pattern-Based Characterization of Functional
Requirements for Distributed Systems . 81

Roman Wirtz, Maritta Heisel, and Marvin Wagner

Efficient Diagnosis of Reconfigurable Systems with Incorrect Behavior
and Faulty Components: A Case Study on SGrids. 108

Yousra Hafidi, Laid Kahloul, and Mohamed Khalgui

Software Systems and Applications

GA-PPI-Net: A Genetic Algorithm for Community Detection
in Protein-Protein Interaction Networks . 133

Marwa Ben M’barek, Amel Borgi, Sana Ben Hmida, and Marta Rukoz

From Formal Test Objectives to TTCN-3 for Verifying ETCS Complex
Software Control Systems . 156

Rabea Ameur-Boulifa, Ana Cavalli, and Stephane Maag

Service Robots: A Unified Framework for Detecting, Opening
and Navigating Through Doors . 179

Tatsuya Harada, Antonio Tejero-de-Pablos, Stefano Quer,
and Francesco Savarese

Two-Stage Game Theoretic Approach for Energy Management
in Networked Microgrids . 205

Ilyes Naidji, Olfa Mosbahi, Mohamed Khalgui, and Abdelmalik Bachir

Author Index . 229

xii Contents

Software Engineering and Systems
Development

Equivalence Class Definition
for Automated Testing of Satellite

On-Board Image Processing

Ulrike Witteck1(B), Denis Grießbach1(B), and Paula Herber2(B)

1 Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Adlershof, Berlin, Germany

{ulrike.witteck,denis.griessbach}@dlr.de
2 Embedded Systems Group, University of Münster, Münster, Germany

paula.herber@uni-muenster.de

Abstract. On-board image processing technologies in the satellite
domain are subject to strict requirements with respect to reliability and
accuracy in hard real-time. Due to the large input domain of such pro-
cessing technologies it is impracticable or even impossible to execute all
possible test cases.

As a solution we define a novel test approach that efficiently and sys-
tematically captures the input domain of satellite on-board image pro-
cessing applications. We first partition each input parameter into equiv-
alence classes. Based on these equivalence classes we define multidimen-
sional coverage criteria to assess the coverage of a given test suite on the
whole input domain. Finally, our test generation algorithm automatically
inserts missing but relevant test cases into the given test suite such that
our multidimensional coverage criteria are satisfied.

As a result we get a reasonably small test suite that covers the com-
plete input domain. We demonstrate the effectiveness of our approach
with experimental results from the ESA medium-class mission PLATO.

Keywords: Image processing · Software testing · Equivalence class
partitioning · Satellite systems

1 Introduction

On-board image processing applications in the satellite domain are subject to
strict requirements with respect to reliability and mathematical accuracy in hard
real-time. The large input domain of such applications makes manual testing
error-prone and time-consuming. To overcome that problem, we need a test
approach that automatically and systematically generates test cases for such
image processing applications. The major problem of the automated generation
of test cases is the large amount of input parameters and their possible combi-
nations. This leads to a high number of test cases which makes the systematic
and efficient coverage of the complete input domain expensive.
c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 3–25, 2020.
https://doi.org/10.1007/978-3-030-52991-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-52991-8_1

4 U. Witteck et al.

Automated test approaches for different domains, for example, for automotive
and railway applications, are presented in [2,7]. The authors investigate applica-
tions with huge input domains and complex functional behavior. However, their
focus is on event-driven, reactive real-time systems and the approaches are not
tailored to the domain of on-board image processing applications.

In this paper we present an extended version of our test approach given in
[14]. This approach systematically selects test cases from the huge input domain
given in image processing applications. Our objective is to achieve a high cover-
age of the input domain using a reasonably small test suite. To achieve that goal
we adopt the equivalence class partition testing method. This method partitions
a given domain into disjoint sub-domains called equivalence classes [13]. Only
some test values are used as representatives from each class. That reduces the
number of required test cases [1], but still systematically covers the respective
domain. We use that method to partition each input parameter of the on-board
image processing application into equivalence classes. Furthermore, we define
multidimensional coverage criteria that combines individual coverage criteria for
each input parameter. Finally, we specify a test generation algorithm that uses
our multidimensional coverage criteria to automatically assess given test suites
with respect to their coverage on the whole input domain. Moreover, the algo-
rithm removes redundant test cases and inserts missing but relevant test cases.
As a result we get a reasonably small test suite that covers the complete input
domain of satellite on-board image processing applications.

To investigate the efficiency of our test approach using equivalence class
definitions, we use the Fine Guidance System (FGS) algorithm of the Euro-
pean Space Agency (ESA) mission PLAnetary Transits and Oscillation of stars
(PLATO) as a case study [14]. The FGS algorithm is a satellite on-board image
processing algorithm to calculate the high-precision attitude of the spacecraft
by comparing tracked star positions with known star positions from a star cata-
log. Recent studies have shown that some of the input parameters as presented
in [14] can be partitioned more beneficial. In this paper we therefore present
redefined equivalence classes for two input parameters: object position and sub-
pixel position on the image plane. Moreover, we use an improved test criterion
to investigate the effectiveness of our test approach. The experimental results
show the effectiveness of our partitioning approach in terms of an increased error
detection capability.

This paper is structured as follows: In Sect. 2, we briefly introduce equivalence
class partition testing and give an overview of the ESA PLATO mission including
the FGS algorithm. In Sect. 3, we outline related work about equivalence class
testing for real-time systems. In Sect. 4, we present our redefined equivalence
classes as well as the automated test generation algorithm for satellite on-board
image processing applications. In Sect. 5, we present our experimental results and
compare them with the results presented in [14]. We conclude with a summary
in Sect. 6.

Equivalence Class Definition for Automated Testing of Satellite 5

2 Preliminaries

We introduce the general concept of equivalence class partition testing and give
an overview of the PLATO mission and its mission-critical FGS algorithm to
understand the remainder of this paper.

2.1 Equivalence Class Partition Testing

To make testing more efficient and less time consuming, it is preferable to exam-
ine as many test cases as necessary to satisfy specified test criteria. However,
the selection of the necessary test cases from a huge input domain is a major
problem when testing an application [11].

Equivalence class partition testing offers a possible solution to this prob-
lem. It is a commonly used approach in practice. The technique partitions a
given input domain or output domain into disjoint sub-domains, the equivalence
classes. The method partitions the domain in such a way, that all elements in an
equivalence class are expected to provoke the same system behavior according
to a specification. Equivalence classes represent subsets of parameter values that
completely cover the input or output domain. For the purpose of software test-
ing, it is therefore sufficient to test some representative values of each equivalence
class. The selection of test cases from equivalence classes can be made accord-
ing to various criteria: using border values, testing special values or randomly
selecting test cases [1,7,11].

The increased partitioning effort is a drawback of using equivalence class
partition testing compared to random testing. In many cases, several definitions
of the domain partitioning are applicable. This is mainly because the tester
assumes that test cases of the same equivalence class have the same system
behavior. However, the approach removes redundant test cases but retains the
completeness of the tests. Hence, the approach reduces the test effort compared
to exhaustive testing [1].

2.2 Context: PLATO Mission

PLATO is an ESA mission in the long-term space scientific program “Cosmic
Vision” [5]. The German Aerospace Center (DLR) manages the international
consortium for developing the payload and scientific operation of the project [3].

The main goal of the PLATO mission is the detection and characterization
of Earth-like exoplanets orbiting in the habitable zone of solar-type stars. It
achieves its scientific objectives by long uninterrupted ultra-high precision pho-
tometric monitoring of large samples of bright stars. This requires a large Field
of View (FoV) as well as a low noise level. To achieve a high pupil size and
the required FOV the instrument contains 26 telescopes for star observation. 24
normal cameras monitor stars fainter than magnitude 8 at a cycle of 25 s. Two
fast cameras observe stars brighter than magnitude 8 at a cycle of 2.5 s. The
size of a fast camera FoV is 38.7◦ × 38.7◦. The cameras are equipped with four
Charge Coupled Devices (CCD) in the focal plane, each with 4510×4510 pixels.

6 U. Witteck et al.

Each fast camera comes with a data processing unit running the FGS algo-
rithm. It calculates attitude data with an accuracy of milliarcseconds from the
image data. This data is supplied to the spacecraft attitude and orbit control
system. The FGS is regarded as being a mission-critical component which implies
an extensive test procedure.

Many spacecraft missions use a FGS to obtain accurate measurements of
the spacecraft orientation. We use the PLATO FGS algorithm as a case study
to investigate the efficiency of our test approach. The attitude calculation of a
telescope is based on measured star positions on the CCD compared to their
reference directions in a star catalog. Figure 1 gives an overview of the FGS
algorithm [6].

The autonomous attitude tracking is initialized with an initial attitude given
by the space craft. For each pre-selected guide star, an initial sub-window posi-
tion is calculated by means of the camera model, which transforms from sky
coordinates to pixel coordinates and vice versa [6]. Guide stars are predefined
stars in a star catalog that satisfy given criteria. For example, the star magni-
tude is within a certain range, the star has very low contamination, etc. The
FGS algorithm calculates centroids after reading 6 × 6 pixel sub-window every
2.5 s from the full CCD image.

Fig. 1. Overview of the FGS algorithm [6].

A linear center of mass calculation estimates the initial centroid position.
To get a more precise solution, the algorithm separately estimates each centroid
using a Gaussian Point Spread Function (PSF) observation model. The PSF
describes the distribution of the star light over the CCD pixels. Equation 1 shows
the Gaussian PSF observation model h(i, j) of a single pixel [6].

h =
Im

2πσ2

i+1∫

i

e− (u−uc)2

2σ2 du

j+1∫

j

e− (v−vc)2

2σ2 dv + D + ξ (1)

Equivalence Class Definition for Automated Testing of Satellite 7

The FGS algorithm uses the measured pixel intensities to determine the cen-
troid position (uc, vc)T , intensity Im, image background D and PSF width σ.
A non-linear least square fitting method iteratively refines the parameters of
the PSF model. The FGS algorithm calculates the correction by means of the
QR-decomposition [6]. In the next step, the pixel coordinates of the calculated
centroid position are transformed into star direction vectors in the camera bore-
sight reference frame. The x- and y-axis of the detector and the optical axis of
the camera describe the boresight reference frame.

Finally, the FGS algorithm calculates an attitude, including covariance, from
at least two star directions in the boresight reference frame and the corresponding
reference vectors from a star catalog [14].

3 Related Work

Equivalence class partition testing “is probably the most widely described, and
one of the most widely practiced, software testing techniques” [8] Various studies
investigated equivalence class partition testing strategies for different domains,
for example, railway, automotive, avionics, etc. [7]. We present some previously
published work on equivalence class partition testing for real-time systems.

In the automotive domain, DaimlerChrysler Research developed a test app-
roach, called Time Partition Testing (TPT), to test the continuous behavior of
control systems. Bringmann and Krämer [2] explained the principle of the TPT
approach using an exterior headlight controller as an example. In most cases,
automotive embedded control systems are based on complex functional behavior
and large input domains. To increase the test efficiency the TPT approach sys-
tematically selects test cases revealing redundant or missing test scenarios. Using
a graphical state machine notation, the TPT approach partitions a test scenario
into stream-processing components. Each component defines the behavior of out-
put variables depending on the behavior of input variables up to a certain point
in time, specified by a temporal predicate. Test cases define variations in the
state machine to test various functional aspects of the system under test.

The study shows that state machines are suitable to partition the temporal
behavior of input and output variables in order to model, compare and select
test cases. The modeled test cases test the complex functional requirements of
control systems. A huge input domain and complex functional behavior are also
characteristics of the system class we investigate in this paper. However, the
behavior of systems from this class is not dependent on the arrival time of input
values. Hence, the TPT approach is not applicable to the system class that we
consider [14].

In [7], the authors presented a model-based black-box equivalence class par-
tition testing strategy used in the railway domain. The approach automatically
generates finite and complete test suites for safety-critical reactive systems in
relation to fault models. Huang and Peleska investigated the approach using the
Ceiling Speed Monitor of the European Train Control System as an example
for systems with potentially infinite input domain but finite output domain and

8 U. Witteck et al.

internal variables. Their approach models the reactive behavior of such systems
by means of deterministic state transition systems. Moreover, the approach par-
titions the state space into a finite number of equivalence classes such that all
states in a class provide the same output traces for the same non-empty input
trace. Based on these classes, they generates a complete test suite in the follow-
ing sense: First, at least one test in the suite fails if an application that violates a
given specification is tested. Second, each test in the suite passes for all applica-
tions that satisfy the specification. Huang and Peleska investigated models whose
behavior can be represented by state transition systems. However, we have no
state transition system description of our considered satellite application. Hence,
we present an approach that does not need such a description [14].

4 Equivalence Class Partitioning for Automated Test
Generation

Satellite on-board image processing applications require various input parame-
ters such as position of an object in the image, its brightness, sub-pixel posi-
tion, its shape to distinguish different objects, etc. This leads to a huge input
domain which makes testing expensive. Especially manual tests are error-prone
and time-consuming. Thus, a test approach is needed that automatically and
systematically generates test cases for such applications. However, a major chal-
lenge for automated test generation is the very large number of possible input
parameter combinations. This potential enormous amount of test cases makes it
hard to efficiently capture the complete input domain.

Fig. 2. Overview of the partitioning approach [14].

To overcome that problem, we define a partitioning approach that systemat-
ically selects test cases from the huge input domain of satellite on-board image
processing applications. Moreover, our test approach assesses and enhances a
given test suite. To evaluate the efficiency of our test approach, we investi-
gate a case study, namely the PLATO FGS algorithm as described in Sect. 2.2.

Equivalence Class Definition for Automated Testing of Satellite 9

Since satellite on-board image processing algorithms are subject to extremely
strict requirements with respect to reliability and mathematical accuracy, such
algorithms require extensive testing.

Figure 2 depicts an overview of our proposed partitioning approach. Our key
idea is to define equivalence classes on input parameters that are typically used
by satellite on-board image processing applications, namely position, magnitude,
sub-pixel position, and distribution model. In this paper we present updated
equivalence class definitions to partition the individual parameters. Recent stud-
ies have shown that some of the equivalence class definitions presented in [14]
can be redefined more effectively. In a second step, we define multidimensional
coverage criteria based on a combination of the individual criteria for each input
parameter. After that, we define a test generation algorithm that automatically
selects test cases that completely cover the whole input domain according to our
multidimensional coverage criteria.

Our test objective is to automatically detect errors in the on-board image
processing application code. To achieve this, our test generation algorithm selects
a test case for each equivalence class combination from a given test suite as rep-
resentatives. This reduces the number of redundant test cases. Furthermore, our
algorithm generates new test cases for missing but relevant input combinations
to reach a complete coverage of the input domain. The result is a reasonably
small test suite that covers the whole input domain of the image processing appli-
cation with respect to our multidimensional coverage criteria. The selected test
cases serve as input for our automated testing framework. Moreover, we insert
requirements for the automated evaluation of the image processing application
results. If the test cases do not meet the requirements, an error is detected [14].

The following sections describe the mentioned steps of the partitioning app-
roach in more detail, applying our new equivalence class definitions. We use the
PLATO FGS algorithm as a case study.

4.1 Assumptions and Limitations

In the following, we consider systems whose input are objects in an image. In
the case study, the observed objects are stars with magnitudes between 5.5 to
7.0, uniformly distributed in the image [6].

We consider four parameters that affect the mathematical accuracy of the
FGS algorithm: the guide star position, its magnitude, sub-pixel position, and
PSF shape. The evaluation of the test is based on the precision of the centroid
position calculated by the FGS centroid algorithm as described in Sect. 2.2. The
input of the centroid calculation is a single star image. Hence, we define a test
star as a test case for the automated test generation.

4.2 Input Parameter Partitioning

The star signal is spread over all pixels in the sub-image. Hence, each pixel
includes information about the star. However, 90% of the energy is within 2 × 2

10 U. Witteck et al.

pixel around the centroid. Moreover, each pixel contains noise, which in com-
bination with the signal determines its Signal-to-Noise Ratio (SNR). The cen-
troid calculation needs at least 5 linear independent equations to estimate the 5
unknown parameters of the pixel observation (cf. Eq. (1)).

The FGS input star parameters named in Sect. 4.1 affect the mathematical
precision and accuracy of the centroid estimation. Hence, we define the input
domain as a set of input parameters I. The set includes the position on the Focal
Plane Assembly (FPA) P, the magnitude M, the sub-pixel position E and the
PSF shape G. The tester specifies start values to calculate the borders of the
equivalence classes. This makes our approach more flexible and parameters can
also be excluded from the analysis [14].

In this section we describe how the quality of the centroid calculation depends
on these parameters and present our partitioning concepts for each input param-
eter in I.

Position on the FPA. Among others, the distribution of the star signal
depends on the star position on the FPA. Due to optical aberrations of the
telescope, the PSF shape of the star is wider in the FPA corner than close to the
center. If the other input parameters contain reasonably good, constant values
then a small PSF leads to a low number of pixels with a high SNR. In case of
a wide PSF, more pixel contain a signal but the SNR is low. Both cases can be
sufficient for an accurate parameter estimation [14].

In [14], our idea is to partition the FPA into equally sized, circular areas.
Recent studies have shown, that the PSF changes not only with the distance to
the FPA center but also with the polar angle. In the study each class of parameter
P contains two stars per class of parameter E . The stars have a constant medium
magnitude as well as worst-case non-Gaussian PSF. Figure 3 depicts the residual
noise of stars per circular FPA area. The figure shows that the residual noise
is lower if the star is positioned near the FPA corner or near the FPA border.
Moreover, the figure illustrates that the equivalence class borders have been
well chosen since the residual noise of the stars is changed between neighboring
classes.

Figure 4 shows that the residual noise also depends on the polar angle of the
stars. The figure depicts the residual noise of stars per polar angle area. Figure 4
shows that the residual noise is different for each class. However, we consider
only stars in the image area of the CCDs. That means, for some polar angle
areas particular circular areas can not be covered by a star. Therefore, these
polar angle areas contain fewer stars than others. Moreover, the stars in these
polar angle areas are located near the FPA center. Hence, the residual noise for
that area is low. However, the polar angle area between 90◦ and 135◦ contains
less stars but the residual noise is high. This indicates, that this area is not
suitable to select guide stars for the PLATO mission from there.

Bases on the study, we update our equivalence class definition of the input
parameter P and additionally partition the polar angle in equally sized circular
sectors.

Equivalence Class Definition for Automated Testing of Satellite 11

0 1000 2000 3000 4000
0

0.001

0.002

0.003

0.004

0.005

Radius [px]

σ R
es

id
ua

l [p
x]

Fig. 3. Residual noise per radius of circular FPA areas.

0 100 200 300
0

0.001

0.002

0.003

0.004

0.005

Theta [Deg]

σ R
es

id
ua

l [p
x]

Fig. 4. Residual noise per polar angle of circular FPA areas.

The updated equivalence class definition is illustrated in Fig. 5. The rectan-
gles represent the image area of the fast cameras CCDs and each circular ring
sector corresponds to one equivalence class. The tester specifies the initial radius
r0 and the angle of the circular vectors θ0.

12 U. Witteck et al.

−4000 −2000 0 2000 4000

−4000

−2000

0

2000

4000

r0
θ0

x [pixel]

y
[p
ix
el
]

Fig. 5. FPA equivalence class example.

We partition parameter P into equivalence classes P(ri,θj). Each class P(ri,θj)

corresponds to a circular ring sector of the FPA with inner radius ri−1 and outer
radius ri as well as right polar angle θj−1 and left polar angle θj .

P = P(r0,θ0) ∪ P(r0,θ1) ∪ ... ∪ P(r0,θm) ∪ ... ∪ P(rn,θm) (2)

where n is the number of radius border and m is the number of polar angle
border.

Let S denote the set of available stars. A star s ∈ S lies in an equivalence
class P(ri,θj) if following condition holds:

ri−1 ≤ p(s) < ri, with p(s) =
√

xs
2 + ys

2 (3)

and
θj−1 ≤ t(s) < θj , with t(s) = arctan

xs

ys
(4)

where (xs, ys) is the position of star s on the FPA, p(s) is the distance of star s
to the FPA center and t(s) is the polar angle of star s.

Sub-pixel Position. In addition to the position on the FPA, the sub-pixel
position of the star also affects the SNR in a pixel. If the centroid is positioned

Equivalence Class Definition for Automated Testing of Satellite 13

in the center of the pixel, most star flux is accumulated in a few pixels with
a high SNR. In contrast, more pixels have a sufficient SNR if the centroid is
on the pixel border or corner. In this case, the star information is distributed
more evenly over several pixels. The other pixels have a low SNR. But due to
movement, the centroid may move to neighbor pixels. This leads to variations
in the pixel illumination and the apparent centroid position [14].

In [14], we divide input parameter E into 9 sub-areas, whereas each area
corresponds to one equivalence class. In this paper, we join the corner areas,
the vertical border areas, the horizontal border areas, and the center area of the
pixel to one equivalence class each. The 4, equally sized equivalence classes are
shown in Fig. 7. Areas with the same pattern belong to the same equivalence
class.

Figure 6 depicts the mean value and standard deviation of the residuals for
stars in the respective pixel area. The stars are located in the same class of
parameter P as well as have a constant medium magnitude and a worst-case
non-Gaussian PSF. The figure shows that the residual noise is higher for stars
positioned in a pixel corner than in the pixel center. The residual noise of stars in
the horizontal border classes or vertical border classes is lower than the residual
noise in the corner classes but higher compared to the center class. It is therefore
beneficial to join the equivalence classes of input parameter E defined in [14].

Corner Class Horizontal Class Vertical Class Center Class
0.001

0.0015

0.002

0.0025

0.003

σ R
es

id
ua

l [p
x]

Fig. 6. Residual noise per pixel class.

The tester specifies the ratio r of the central area of the pixel to the pixel
area, for example, 1/2, 3/5, etc. If a is the pixel size, then the length of the edge
of the central area results from Eq. (5).

b = a
√

r (5)

14 U. Witteck et al.

Fig. 7. Example borders of pixel equivalence classes.

With that, we obtain the lower left corner l and the upper right corner u of the
central pixel area, with

l = (
a

2
− b

2
,
a

2
− b

2
) and u = (

a

2
+

b

2
,
a

2
+

b

2
) (6)

Based on these corners, we partition parameter E into equivalence classes Ei

with i = 0...3. The equivalence class Ei is the i-th pixel sub-area. A star s lies
in an equivalence class if it satisfies the corresponding condition.

E = E0 ∪ E1 ∪ ... ∪ E4 (7)

E0 : (0 ≤ ex(s) < xl ∨ xu ≤ ex(s) < a) ∧ (0 ≤ ey(s) < yl ∨ yu ≤ ey(s) < a)
E1 : (0 ≤ ex(s) < xl ∨ xl ≤ ex(s) < xu) ∧ yl ≤ ey(s) < yu

E2 : xl ≤ ex(s) < xu ∧ (0 ≤ ey(s) < yl ∨ yl ≤ ey(s) < yu)
E3 : xl ≤ ex(s) < xu ∧ yl ≤ ey(s) < yu

(8)
ex(s) and ey(s) return the x-coordinate and y-coordinate of s in the pixel
respectively.

Magnitude. The measured star flux (photo-electrons per second) depends on
the magnitude. The accumulated number of photo-electrons per pixel denotes the

Equivalence Class Definition for Automated Testing of Satellite 15

Fig. 8. Example partitioning of magnitude range [14].

illumination of a pixel. Equation (9) shows the relation between the magnitude
m and the corresponding flux Fm in e−/s.

Fm = F0TQA ∗ 10−0.4∗m (9)

with magnitude m, reference flux F0 of a star with m = 0, transmission efficiency
T of the optical system, quantum efficiency Q of the detector, and effective
light-collecting area A. As the equation shows, the star flux is non-linear to
the magnitude of the star. A low magnitude corresponds to a high number of
photo-electrons, that leads to a higher SNR per pixel.

A useful partitioning of magnitude values into equivalence classes is not obvi-
ous. Our idea is to partition the star flux range into IM ∈ N equidistant parts
that represent the equivalence classes. We define Eq. (10) to obtain the upper
limit of a sub-range.

Fmj
= F7.0 + j

F5.5 − F7.0

IM
(10)

Fmj
is the flux of magnitude mj and j = 1...IM represents the j-th equivalence

class of parameter M. F5.5 and F7.0 correspond to the numbers of photons for
magnitude 5.5 and 7.0. First, we calculate the flux values F5.5 and F7.0 by using
Eq. (9). Then, we partition the flux range into equidistant sub-ranges. We use
Eq. (11) to recalculate the magnitude mj from the calculated flux limit Fmj

of
the flux sub-range j.

m = −2.5 log

(
Fm

F0TQA

)
(11)

From a formal point of view, we partition the parameter M into equivalence
classes Ml.

M = M7.0 ∪ ... ∪ Mlj ∪ ... ∪ M5.5 (12)

with lj ∈ R and 5.5 ≤ lj ≤ 7.0. Each equivalence class Mlj is a magnitude
sub-range with upper limit lj . Each available star s lies in equivalence Mlj if it
satisfies the condition in Eq. (13).

lj−1 ≤ m(s) < lj (13)

where m(s) denotes the observed magnitude of star s and lj with j = 1...IM is
the upper limit of the j-th magnitude sub-range. The tester specifies the num-
ber of equivalence classes IM ∈ N of the parameter M. Figure 8 illustrates an
example partitioning of the magnitude range [14].

16 U. Witteck et al.

PSF Shape. The accuracy of the centroid calculation also depends on the PSF
shape. In the best case scenario, the shape is a symmetric Gaussian-PSF. Then,
the observation model (cf. Eq. (1)) perfectly fits the star. Therefore, the accuracy
of the centroid calculation is high. In reality, the PSF shape is non-Gaussian. In
that case, the observation model is less accurate and movements lead to stronger
variations in the expected centroid positions [14].

Fig. 9. Examples of different low quality stars [14].

We partition the input parameter G in two equivalence classes GG and GNG

since two PSF shapes are distinctive. If a star has a Gaussian-PSF shape it is in
class GG otherwise it is in class GNG.

Figure 9 shows some example stars with non-Gaussian-PSF shape that are
less suitable as guide stars. These stars lead to inaccurate estimation results.
What the three stars have in common is that their intensity is concentrated
on a pixel edge. For all stars, the magnitude and FPA position are sufficiently
good. However, a small variation due to movement leads to big changes of the
illumination. Since the Gaussian-PSF observation model does not fit the PSF
shape perfectly, the centroid estimation is less accurate.

4.3 Multidimensional Coverage Criteria

This section presents our definition of multidimensional coverage criteria on the
input domain I = {P,M, E ,G} [14]. While individual parameter values might
provide a good centroid estimation, a combination of parameters may change
the quality of the results. To measure the coverage of a test suite with respect to
input parameter combinations we define multidimensional coverage criteria on
the input domain. If the measured coverage of a test suite is not complete, our
automated test generation algorithm automatically inserts test cases for missing
combinations.

The individual coverage of an input parameter denotes the ratio of equiva-
lence classes that are covered by at least one test case from a given test suite to
the number of equivalence classes of this input parameter. Equations (14)–(17)
show this definition for the input parameters P,M, E and G.

Equivalence Class Definition for Automated Testing of Satellite 17

CP =
covered elements of P

|P| (14)

CM =
covered elements of M

|M| (15)

CE =
covered elements of E

|E| (16)

CG =
covered elements of G

|G| (17)

The Cartesian product of the equivalence classes of the input parameters P,
M, E and G is the coverage domain for our multidimensional coverage criteria.
Hence, an input combination is a tuple of equivalence classes (Pi,Mj , Ek, Gl),
where Pi ∈ P, Mj ∈ M, Ek ∈ E and Gl ∈ G [14]. Furthermore, a test case is a
star represented by a tuple of parameter values ((p, t),m, e, g) ∈ (Pi,Mj , Ek, Gl).
The following example test cases clarify these definitions.

Example 1
(
(1969.4, 322.5), 6.5, (0.3, 0.2), G

) ∈ (P(2687,360) × M6.6 × E2 × GG)

The test star position is in the FPA area with outer radius 2687 and outer polar
angle 225◦. The star belongs to equivalence class M6.6 because its magnitude
value is between 6.3 and 6.6. The star center is located in the lower-middle
pixel sub-area. That corresponds to the horizontal pixel areas and therefore to
equivalence class E2. The star is part of equivalence class GG, because it has a
Gaussian-PSF shape.

Example 2
(
(2551.9, 357.3), 6.5, (0.9, 0.8), G

) ∈ (P(2687,360) × M6.6 × E0 × GG)

The test star is similar to the star in the first example, but it is positioned nearby
the upper right pixel border and therefore belongs to equivalence class E0.

Our multidimensional coverage criterion is fully satisfied if the test cases in
a test suite cover all possible input combinations at least once. The number
of required covered input combinations for a complete coverage is |P × M ×
E × G|. In the remaining sections, we denote a test suite that completely covers
the input domain with respect to our multidimensional coverage criteria as a
complete test suite. The multidimensional coverage C results from the ratio of
input combinations covered by at least one test case to the total number of input
combinations.

C =
covered input combinations

|P × M × E × G| (18)

18 U. Witteck et al.

Our test approach calculates the individual and multidimensional coverage of a
given test suite using Algorithm1. The input parameters P, M, E , and G contain
IP , IM, IE , IG equivalence classes respectively [14].

For each test case in the given test suite, the algorithm computes the
input parameter index iP , iM , iE , iG of the corresponding equivalence class from
P, M, E and G. The algorithm adds the indices to the sets CP , CM, CE and
CG respectively. Moreover, it inserts the tuple (iP , iM , iE , iG) into the set C that
contains all covered input combinations. As the algorithm uses the union opera-
tor to add the tuples to the set, each tuple is included in the set only once. The
algorithm applies Eqs. (14)–(18) to compute the individual and multidimensional
coverage.

Input: Test suite TS
Output: Multidimensional coverage Cov of TS

1 CP = CM = CE = CG = C = ∅;
2 foreach tc with ((p, t), m, e, g) ∈ TS do
3 iP = getPosECId(p, t);
4 CP ← CP ∪ iP ;
5 iM = getMagECId(m);
6 CM ← CM ∪ iM ;
7 iE = getPixECId(e);
8 CE ← CE ∪ iE ;
9 iG = getModECId(g);

10 CG ← CG ∪ iG;
11 C ← C ∪ (iP , iM , iE , iG);

12 end
13 CovG = |CP |/IP ;
14 CovM = |CM|/IM;
15 CovE = |CE |/IE ;
16 CovG = |CG |/IG ;
17 Cov = |C|/(IP · IM · IE · IG)

Algorithm 1. Coverage calculation [14].

Our partitioning approach uses individual and multidimensional coverage
criteria to assess the quality of test suites with respect to their coverage on the
input space of a satellite on-board image processing application [14].

4.4 Automated Test Generation

We present a test generation algorithm to automatically and systematically gen-
erate a test suite that completely covers the input domain according to our
multidimensional coverage criteria. The complete test generation algorithm uses
Algorithm 1 to assess a given test suite and systematically generates missing test
cases based on this result.

Equivalence Class Definition for Automated Testing of Satellite 19

Algorithm 2 generates set W that contains all input combinations not cov-
ered by the given test suite. For each input combination in W , the algorithm
uses the procedure generateTC to generate a test case by randomly selecting
values from the equivalence classes of the missing combinations. The algorithm
adds the newly generated test case to the test suite. In this way, it efficiently
inserts missing but relevant test cases into the test suite. This increases the mul-
tidimensional coverage and therefore the error detection capability of the given
test suite. As a result we get a complete but reasonably small test suite.

If the set of covered input combinations C is empty, then the set of uncovered
input combinations W is equal to the universe of possible input combinations U .
Therefore, Algorithm 2 can be used to generate a new test suite that completely
satisfies the multidimensional coverage criteria. From this test suite our auto-
mated testing framework only selects one test case per input combination. This
efficiently reduces the number of redundant test cases for the test execution [14].

Input: Input combination universe U , covered input combination set C, test
suite TS

Output: Complete test suite TS

1 Cov = computeMultidimCoverage(TS);
2 if Cov < 1 then
3 W ← U \ C;
4 foreach w ∈ W do
5 tc = generateTC(w);
6 TS ← TS ∪ tc;

7 end

8 end

Algorithm 2. Generate complete test suite [14].

Fig. 10. Test setup [14].

20 U. Witteck et al.

5 Evaluation

We evaluate the applicability and error detection capability of our proposed test
approach for satellite on-board image processing applications. For this purpose,
we use the FGS algorithm of the ESA PLATO mission as case study and run
the algorithms with various test suites.

5.1 Implementation

We have implemented the proposed partitioning and test generation algorithm
in C++ based on the model-view-controller pattern. We allow the tester to spec-
ify input parameters with or without graphical user interface (GUI). Figure 10
shows the block diagram of our test setup. As the figure depicts, our test envi-
ronment runs on a Windows system. Our automated test generation algorithm
reads the star data of the test suite inserted by the tester. For missing test cases,
our test generation algorithm returns a star catalog to simulate the star data.
The catalog is a text file that includes right ascension, declination, and mag-
nitude of stars that should be simulated. We manually insert the catalog into
the PLATO simulator PlatoSim [9]. PlatoSim writes the simulated star data to
HDF5 files [12]. Each file contains an image sequence of several time steps of a
star in a hierarchical file format. Since PlatoSim is not developed for Windows
systems, the simulator runs in a Linux virtual machine.

Figure 10 depicts, that we connect the Windows system via a SpaceWire
USB brick to a GR-XC6S FPGA development board [10] running at 50 MHz.
SpaceWire is a data-handling network for spacecraft defined in [4]. For that, our
test environment uses the C SpaceWire USB API Library for the SpaceWire USB
brick. A prototype of the FGS algorithm, written in C++, runs on the evaluation
board. We load the software with the Leon debug monitor GRMON onto this
board. Via a UART interface we receive debug information in a terminal. For
example, stack size, hardware information, etc.

Our objective is to evaluate our approach for the development and test of
the FGS algorithm implementation. Moreover, our goal is to test execution time
and mathematical accuracy of the FGS algorithm under realistic conditions.
For example, a calculation on the development board is slower than the same
calculation on a Windows system. Therefore, we run the application under test
on the target hardware and keep the test system in the software development
cycle [14].

5.2 Experimental Results

In this section, we present the experimental results for generating a test suite
using our redefined equivalence class definitions for testing the PLATO FGS
algorithm.

Since the equivalence class borders used for the recent studies were been well
chosen, as shown in Fig. 3, Fig. 4 and Fig. 6, we specify following start parameters
for the experiment:

Equivalence Class Definition for Automated Testing of Satellite 21

– Initial radius r0 of FPA partitioning: 1900 pixel
– Initial polar angle θ0 of FPA partitioning: 45◦

– Number of magnitude sub-ranges: 6
– Ratio r of central sub-area to pixel area: 0.25

These start parameters lead to 48 equivalence classes of input parameter P,
6 equivalence classes of parameter M and 4 equivalence classes of parameter E .
Input parameter G consists of two equivalence classes (GG and GNG). In the
following we only consider equivalence classes of input parameter P that cover
the image area of the CCDs. Therefore we use 36 classes of parameter P. Thus,
our automated testing framework needs 1728 test cases to completely cover the
whole input domain of the FGS algorithm. That is twice the number of test cases
used in [14]. The reason is that we refine the partitioning of input parameter P.

To evaluate our approach, we investigate the error detection capability of a
randomly generated test suite as well as a test suite generated by our algorithm.
The randomly generated test suite contains 902 evenly distributed stars. The
second test suite was generated by our automated test generation application
using Algorithm 2 presented in Sect. 4.4. The test suite contains one test case
for each input combination. Therefore it is complete with respect to our multi-
dimensional coverage criteria and we call it complete test suite. Table 1 shows
the coverage of the test suites for each input parameter as well as the achieved
multidimensional coverage.

Table 1 shows that the utilization of the equivalence class partitioning method
reduces the random test suite by hundreds of redundant test cases. Since there
are no unnecessary executions of redundant test cases, the method increases the
efficiency of the test process. The random test suite achieves a high individual

Table 1. Coverage values of the test suites.

Random Complete

Test stars 902 1728

Covered input combinations 256 1728

CP [%] 100.0 100.0

CM [%] 16.7 100.0

CE [%] 100.0 100.0

CG [%] 100.0 100.0

Multidimensional coverage [%] 14.8 100.0

Table 2. Output for a sample test case.

iG iP iM iE StarId deviationx [px] deviationy [px] result

1 33 1 4 1017 112734.8 1097.8 Error detected

0 11 2 0 892 1.3 × 10−5 4.4 × 10−5 Error detected

22 U. Witteck et al.

coverage of three input parameters. However, due to the low individual coverage
of input parameter M, the multidimensional coverage of the test suite is low.
Furthermore, Table 1 exhibits that the complete test suite covers the whole input
domain of the FGS algorithm.

To assess the partitioning approach, we have automatically inserted some
errors into the PLATO FGS algorithm code. These injected errors belong to
three classes: missing assignment, wrong assignment and wrong condition. For
each test execution, we have injected a single error at a different position in the
code. Our objective is to check if the complete test suite achieves a higher error
detection capability than the random test suite.

In each experiment, our test application sent 1000 packets, with one exposure
each, per selected test star to the evaluation board running the FGS algorithm,
and evaluated the calculated centroids. After that, our test application calcu-
lated the residual between the resulting centroid positions and a given position
calculated by PlatoSim for each exposure. In this paper, we use another test
criterion than in [14]: if the standard deviation of the residuals is greater than
a reference value, the test detects the error. Table 2 shows the output for two
test cases that detect a wrong assignment error. The high deviation between the
standard deviation of the residuals and the reference values reveals an error in
the centroid calculation.

During the experiments, we have injected three missing assignment errors,
three wrong assignment errors, and three wrong condition errors. Table 3 sum-
marizes the experimental results for both test suites.

Table 3 shows that both test suites do not reveal all injected errors with
respect to the given test criterion. All test cases in the random test suite, as
well as all test cases in the complete test suite, detects all missing assignment
errors. In addition, both test suites detect two wrong assignment errors. But the
percentage of test cases that detect this error is different. In the first case, 31% of
the test cases in the complete test suite and 16% of the test cases in the random
test suite detect the wrong assignment error. In the second case, 31% of the test
cases in the complete test suite and 19% of the test cases in the random test suite
detect the error. This means, some test cases are more capable to find errors than
others. The percentage of error detecting test cases in the complete test suite is
about 1.8 times higher than the percentage of error detecting test cases in the
random test suite. Hence, the error detection capability of the complete test suite

Table 3. Test suites evaluation results.

Random Complete

Test cases 256 1728

Detected errors 5 5

Undetected errors 4 4

Error detection capability [%] 55.6 55.6

Equivalence Class Definition for Automated Testing of Satellite 23

is higher. For randomly generated test cases it is not sure that it contains the
necessary test cases to detect a special error. Furthermore, our test criterion only
considers the centroid position not the other output parameters of the centroid
calculation. These should also be taken into account in later experiments.

However, not all injected errors are suitable to investigate the error detection
capability of a test suite because they lead to erroneous results for each input
data. Thus, it is necessary to insert hard-to-find errors that only affects special
input combinations. Otherwise one test cases is sufficient to detect an error.

Compared to the results presented in [14] the error detection capability of
the complete test suite is increased. But also the random generated test suites
reaches a higher error detection capability than presented in [14]. The reason for
this is the improved test criterion.

Our partitioning approach reduces the number of relevant test cases. There-
fore, applying the approach increases the test efficiency. The results show that
the error detection capability of the test suite that completely satisfies our mul-
tidimensional coverage criteria is higher than the capability of the random test
suite. The complete test suite includes more test cases that detect special errors
than the random test suite. Furthermore, the experiment shows that the new test
criteria leads to a higher error detection capability for both test suites compared
to the results presented in [14].

6 Conclusion

Due to the large number of input parameters of satellite on-board image pro-
cessing applications and their combinations an enormous amount of test cases
is possible. Hence, it is infeasible to capture the complete input domain and
execute test cases exhaustively. We have developed a test approach for this spe-
cific domain that automatically and systematically generates test suites that
completely covers the input domain. Our approach is based on the well-known
equivalence class partition testing method.

In this paper, we have redefined some of the equivalence class definitions
presented in [14]. To assess test suites with respect to its coverage of the input
domain, we have also presented individual coverage criteria for each input param-
eter as well as multidimensional coverage criteria to measure the number of
covered input parameter combinations. Finally, we have specified an automated
test generation algorithm that systematically generates missing test cases with
respect to our multidimensional coverage criteria. As a result, our approach
is able to fully automatically generate test suites that are reasonably small but
complete with respect to our multidimensional coverage criteria. The tester spec-
ifies the size of our equivalence classes. This makes our approach adjustable to
available test times and also to other image processing applications. Moreover,
it allows to exclude an input parameter from the analysis by having only one
class.

We have investigated the effectiveness of our proposed test approach on the
FGS algorithm as mission critical component for the PLATO mission. In the

24 U. Witteck et al.

experiments, our automated test generation algorithm generates a test suite that
is complete with respect to our multidimensional coverage criteria. To demon-
strate the effectiveness of our test approach with redefined equivalence class
borders, we have compared the error detection capability of a randomly gener-
ated test suite and the generated complete test suite as well as with the complete
test suite given in [14]. The use of our equivalence classes of the input parameters
reduces the number of redundant test cases in the randomly generated test suite
by 71.6%.

During the experiments, we have successively injected 9 errors in the FGS
algorithm code to investigate the error detection capability of both test suites.
In this paper, we have specified an improved test criterion: a test case detects an
error if the standard deviation of the residual between the calculated centroid
position and a given position is bigger than a reference value. We have observed
that the changed test criterion leads to different test results compared to the
results presented in [14]. In general, the error detection capability of the complete
test suite as well as of the random test suite has increased. Both test suites
detects all missing assignment errors and two wrong assignment errors. However,
percentage of error detecting test cases in the complete test suite is about 1.8
times higher than for the random test suite. Thus, the error detection capability
of the complete test suite is higher than the error detection capability of the
random test suite. But both test suites do not detect all injected errors because
the test criterion considers only the centroid position and not the other output
parameters of the centroid calculation.

The error detection capability of both test suites is nearly the same, because
not all injected errors are suitable to show the error detection capability of a test
suite. The injected errors lead to erroneous results for each input data. Therefore,
it is necessary to inject hard-to-find errors into the code that only affects specific
input combinations.

However, the experiments showed that a systematic test using our proposed
partitioning approach increases the error detection capability of a given test
suite. This makes the partitioning approach efficient and effective. In addition,
it facilitates automated generation, execution, and evaluation of test cases.

So far, we have injected errors in the application code. But in space, many
missions suffer from cosmic radiation that flips bits in binary code or cause hot
pixels in input images. We plan to investigate the efficiency of our approach by
injecting errors in input data or in the binary code of the application in future
work. Finally, we have evaluated our approach with a single application. Later
on, we plan to investigate the flexibility of our approach for other applications,
for example, blob feature extraction in the robotics domain [14].

References

1. Bhat, A., Quadri, S.: Equivalence class partitioning and boundary value analysis-
a review. In: International Conference on on Computing for Sustainable Global
Development (INDIACom), pp. 1557–1562. IEEE (2015)

Equivalence Class Definition for Automated Testing of Satellite 25

2. Bringmann, E., Krämer, A.: Systematic testing of the continuous behavior of auto-
motive systems. In: International Workshop on Software Engineering for Automo-
tive Systems, pp. 13–20. ACM (2006)

3. DLR: Grünes Licht für europäisches Weltraumteleskop PLATO (2017). http://
www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151 read-22858/#/gallery/
27241

4. ECSS Executive Secretariat: Space engineering, spaceWire - links, nodes, routers
and networks (2008)

5. ESA: ESA’s ‘Cosmic Vision’ (2012). http://www.esa.int/Our Activities/Space
Science/ESA s Cosmic Vision

6. Grießbach, D.: Fine guidance system performance report. Technical report
PLATO-DLR-PL-RP-0003, Deutsches Zentrum für Luft- und Raumfahrt (DLR)
(2019)

7. Huang, W., Peleska, J.: Complete model-based equivalence class testing. Int. J.
Softw. Tools Technol. Transf. 18(3), 265–283 (2014). https://doi.org/10.1007/
s10009-014-0356-8

8. Kaner, C.: Teaching domain testing: a status report. In: Conference on Software
Engineering Education and Training, pp. 112–117. IEEE (2004)

9. Marcos-Arenal, P., et al.: The PLATO simulator: modelling of high-precision high-
cadence space-based imaging. Astron. Astrophys. 566, A92 (2014)

10. Pender electronic desiGN GmbH: Gr-xc6s-product sheet (2011)
11. Liggesmeyer, P.: Software-Qualität: Testen, Analysieren und Verifizieren von Soft-

ware, 2nd edn. Spektrum Akademischer Verlag, Heidelberg (2009)
12. The HDF Group: HDF5, 05 April 2018. https://portal.hdfgroup.org/display/

HDF5/HDF5
13. Varshney, S., Mehrotra, M.: Automated software test data generation for data flow

dependencies using genetic algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng.
4(2), 472–479 (2014)

14. Witteck, U., Grießbach, D., Herber, P.: Test input partitioning for automated
testing of satellite on-board image processing algorithms. In: Proceedings of the
14th International Conference on Software Technologies - Volume 1: ICSOFT, pp.
15–26. SciTePress, INSTICC (2019). https://doi.org/10.5220/0007807400150026

http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-22858/#/gallery/27241
http://www.esa.int/Our_Activities/Space_Science/ESA_s_Cosmic_Vision
http://www.esa.int/Our_Activities/Space_Science/ESA_s_Cosmic_Vision
https://doi.org/10.1007/s10009-014-0356-8
https://doi.org/10.1007/s10009-014-0356-8
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
https://doi.org/10.5220/0007807400150026

What We Know About Software Architecture
Styles in Continuous Delivery and DevOps?

Maya Daneva(&) and Robin Bolscher

University of Twente, 7522NH Enschede, The Netherlands
m.daneva@utwente.nl, r.bolscher@student.utwente. nl

Abstract. This paper takes a software architect’s perspective to DevOps/CD
and attempts to provide a consolidated view on the architecture styles for which
empirical publications indicate to be suitable in the context of DevOps and CD.
Following techniques from the evidence-based software engineering paradigm,
we set out to answer a number of research questions pertaining to (1) the
architecture characteristics important in DevOps/CD projects according to
published literature, (2) the architectural styles found to work well in this
context, (3) the application domains in which architecture characteristics and
styles were evaluated, and (4) the empirical method being used by researchers
on this topic. We applied a research protocol grounded on well-established
systematic literature review guidelines, and evaluated sources published
between 2009 and 2019. Our results indicate that (a) 17 software architecture
characteristics are beneficial for CD and DevOps adoption, (b) micro-services
are a dominant architectural style in this context, and (c) large-scale organiza-
tional contexts are the most studied, and (d) qualitative approaches (case study
based) are the most applied research method.

Keywords: Software architecture � Continuous delivery � Continuous
integration � DevOps � Deployability � Micro-services � Systematic literature
review

1 Introduction

Today, many businesses in the IT industry are embarking on DevOps and Continuous
Delivery (CD). This interest in DevOps/CD is traceable to organizations’ motivation to
increase their abilities to deliver software fast and predictably well. The growing
adoption of the DevOps and CD concepts is however not free of problems. For
example, a 2017 systematic mapping study of literature [14] on CD challenges reports
40 problems discussed in scientific publications. The present article follows up on one
of these problems, namely the use of unsuitable architecture in CD (and in DevOps)
contexts. We felt intrigued to know what so far has been published on the qualities of
suitable architectures for DevOps/CD. Our motivation to consolidate the published
knowledge on this topic is based on the observation that although DevOps and CD
have been employed massively for more than 5 years and much guidance has been
published on how to implement these concepts well, little has been done so far to
elaborate on the linkage between DevOps/CD and architecture. Yet, as Bass states [15],

© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 26–39, 2020.
https://doi.org/10.1007/978-3-030-52991-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-52991-8_2

the DevOps practices have implications for the software architects in the DevOps-
adopting organizations.

This research aims at consolidating the published experiences regarding the
architecture styles’ fit and misfit to DevOps and CD context. If such a consolidated
view of the published knowledge exists, researchers would know those areas that have
enjoyed much research efforts and those that are under-researched. Moreover, if a map
of the published empirical evidence is provided to software architecture practitioners,
they could possibly be able to consider it when making architecture design decisions in
DevOps and CD contexts.

Using the techniques of the evidence-based software engineering paradigm, we
designed a systematic review protocol in order to identify and evaluate the empirical
evidence published on this topic. Our research took two stages: in stage 1, we
investigated the software architecture challenges experienced in DevOps/CD-adopting
organizations. In stage 2, we focus on the architecture styles that support the
DevOps/CD implementation. The results of stage 1 have been reported at the ICSOF
2019 conference [16]. The results of stage 2 are now reported in the present paper.
Although the two research stages are complementary and grounded on the same review
protocol [16] and, in turn, analyze the same pool of selected literature sources, in
contrast to the ICSOFT 2019 conference paper [16], this paper treats different research
questions and therefore reports new findings.

The paper is structured as follows. Section 2 provides definitions of the terms used
in our research. Section 3 presents the purpose of this work. Section 4 presents our
research questions and the research method used. Section 5 presents the results of our
SLR. Section 6 discusses the results. Section 7 is on the possible risks of passing bias
into our study. Section 8 is on related work. Section 9 summarizes our findings and
discusses some implications for research and practice.

2 Definitions of Terms

For clarity, before elaborating on the scope and the research questions of this SLR, we
present the definitions of the concepts that we use [16]. Software architecture of a
system is the set of structures needed to reason about the system, which comprise
software elements, relations among them, and properties of both [17]. Continuous
Delivery (CD) is a software engineering discipline in which the software is kept in such
a state that in principle, it could be released to its users at any time [17]. The discipline
is achieved through optimization, automatization and utilization of the build, deploy,
test and release process. Furthermore, DevOps is a set of practices intended to reduce
the time between committing a change to a system and the change being placed into
‘normal’ production, while ensuring high quality [15]. For the purpose of this work, we
borrow Wood’s definition of ‘production’ [4]: this is “any environment which is being
used to perform valuable work” in an organization. As one could see from the defi-
nitions, CD and DevOps have overlapping goals. Both concepts serve companies to
take full (end-to-end) advantage of Agile and Lean [14]. Since the two concepts are so
similar, the effect they have on software architecture is expected to be very similar as
well. This is why these two concepts are both included in our SLR.

What We Know About Software Architecture Styles 27

3 Purpose

The purpose of this SLR is to identify and analyze the relationship between
DevOps/CD and software architecture by using published empirical evidence regarding
the architecture styles that support the implementation of CD and DevOps. For this
purpose, we followed three areas of interest:

(1) characteristics of architecture that are important in DevOps/CD context,
(2) application areas in which these characteristics were identified or evaluated,
(3) empirical research method that was used by the authors of the published studies

on this topic.

The first area concerns the non-functional requirements that, if met, render a
software architecture beneficial for systems implemented by using DevOps/CD prac-
tices. The second area of interest concerns the contexts in which these non-functional
requirements are deemed important according to published literature. We assume that
not every application domain has been subjected to active research and, in turn, our
knowledge of the non-functional requirements that a software architecture meets to
support the implementation of DevOps/CD, may be fragmented or skewed. This
assumption is justified by the observation that in many empirical studies on other
software engineering phenomena, some application domains are more researched than
others. Finally, the third area of interest concerns the research-methodological foun-
dation of the published research studies, which would allow us to evaluate the realism
of the published findings and their generalizability [18]. The results in each of these
three areas are analyzed, focusing on how frequently our findings appeared in the
selected set of papers and how they are framed in each paper. We tried to identify any
inconsistencies in the results so that we can provide further knowledge gaps and lines
for future research.

4 Research Questions and Method

Based on the purpose of our literature study, we set out to answer three Research
Questions (RQs):

RQ1: What software architecture characteristics have been deemed important for
enabling DevOps and CD, according to published literature?
RQ2: What applications areas have been reported in published literature con-
cerning the important architectural characteristics found in the answer to RQ1?
RQ3: What research methods have been used in the published empirical papers
used to answer RQ1 and RQ2?

To answer these RQs, we planned and executed a SLR, adopting the guidelines of
Kitchenham et al. [19]. These were complemented with the guideline of Kuhrmann
et al. [20]. We adapted these guidelines to this specific research as elaborated in our
review protocol (Fig. 1).

28 M. Daneva and R. Bolscher

For the purpose of our collection of possibly relevant articles, we explored the
Scopus digital library by focusing on following string:

(“software architecture” AND (“continuous delivery” OR “continuous deploy-
ment” OR “devops” OR “dev-ops” OR “dev ops”)).

The search was carried out on May 14, 2019. It was applied to the Title, Abstract
and Keyword sections of the Scopus digital library. Performing the search resulted in
39 papers from Scopus over a time span of 9 years (2009–2019). Our study selection
process followed the inclusion and exclusion criteria listed below.

Inclusion Criteria

1. The paper treats DevOps/CD aspects as its core topic and discusses software
architecture in this context;

2. The takes a practical point of view on the problems and/or solutions discussed (e.g.
it is a case study or expert/practitioner experiences and opinions).

Exclusion Criteria

1. The paper presents no link to DevOps, CD or similar practices;
2. The paper is published before Jan 1, 2015;
3. The paper is purely theoretical;
4. The paper is a duplicate of a paper that was already found in Scopus;
5. The paper is not written in English.
6. The paper summarizes a workshop, a conference or another scientific event.

We would like to note that our process of the articles’ selection was iterative and
happened in multiple phases. The first application of the above list of criteria to titles
and abstracts of the 39 papers resulted in a set of 23 papers that we deemed to fall in
scope of this SLR. This reduction (from 39 to 23) was due to many duplicates. In the
second iteration, we have read the 23 papers in detail and re-applied the
inclusion/exclusion criteria. This ended up with 13 papers which we used in the data
extraction and data synthesis stages of this SLR. The papers formed the following list
of references: [1–13].

Once the paper selection was over, we focused on data extraction. This included
carefully reading the whole text of each paper and keeping notes on the following
pieces of information: countries of the affiliations of the authors, type of affiliation
(industry or academic institution), explicit mentioning of software architecture char-
acteristics, contextual settings in which the DevOps/CD concepts were implemented,
application domain, explicit mention of research methodological sources and research

Purpose of the
SLR Areas of interest Search strategy Inclusion and

exclusion criteria
Quality

assessment Data extrac on Data synthesis Repor ng

Research
ques ons

Digital library,
key words Quality checklist

Iden fica on
and recording

of key a ributes

Realist
synthesis

Fig. 1. Our research protocol.

What We Know About Software Architecture Styles 29

method used, treatment of validity questions while using a research method. The
precise data have been coded, analyzed and compared by two authors. For the data
synthesis, we followed the Pawson’s realistic synthesis practices [21]. The authors
worked independently from each other so that they the senior researcher does not
expose the junior researcher involved in this study to possible bias due to the fact that
the senior researcher knew some of the authors of the selected papers. The two authors
consolidated their results and found no discrepancies in their analysis of the papers.

5 Demographics, Themes and Trends

This section reports our findings. Before presenting our answers to our three RQs, we
first report some demographic information on the papers in our analyzed set.

First, in our set of 13, we have six papers authored by individuals working in
companies [1–4, 12, 13], three papers authored by collaborators from companies and
universities [6, 7, 9] working in industry-university projects, and four papers authored
by academic researchers [5, 8, 10, 11]. This distribution is unsurprising as we delib-
erately chose the presence of industrial experience as an inclusion criteria in our list
(see Sect. 4 on the previous page).

Second, the affiliations of the authors of the selected papers are in seven different
countries: Ireland, USA, United Kingdom, Germany, Austria, Switzerland, Sweden,
Columbia, and Italy. This distribution suggests a diversity across geographic zones.

5.1 Software Architecture Characteristics and the Context in Which
They Were Deemed Important (RQ1)

Our analysis of the 13 included papers resulted in a list of 17 software architecture
characteristics that were important to the implementation of DevOps/CD according to
the experiences of the authors in these papers [16]. These are listed in the second
column of Table 1. In the third column, we present the references to those papers
addressing each characteristic. The number of references clearly indicates those soft-
ware architecture characteristics which have been treated most frequently in relation to
CD/DevOps in scientific literature. These are: deployability (CH2), testability (CH11),
automation (CH3), loosely coupled (CH6), modifiability (CH1).

The characteristics in Table 1 have been described in more detail as part of stage 1
of our research, which has already been presented in the ICSOFT 2019 conference
[16]. Here we relate these characteristics to the context in which the authors of the 13
selected papers experienced them as important. For this purpose, we looked at the type
of industrial projects in which the reported experience happened and observations on
the characteristics of software architecture were collected. We found that half of the
papers reported the context of very large organizations, for example, Deutsche Bank [3]
– a leading German bank, Fujitsu [6] – a global IT consultancy, Ericsson [9] – a large
telecommunication company, plus a large Swedish automotive company [11], and
some large software process consultancy firms [1, 4].

30 M. Daneva and R. Bolscher

We also looked at the architectural styles that matched these contexts. Eight out of
our 13 selected papers indicated that the architectural style fitting DevOps/CD
implementation is the one of micro-services. Micro-services are a set of small services
that can be developed, tested, deployed, scaled, operated and upgraded independently,
allowing organizations to gain agility, reduce complexity and scale their applications in
the cloud in a more efficient way. Besides that, micro-services are very popular, they
are being used and promoted by industry leaders such as Amazon, Netflix and LinkedIn
[7]. Shahin et al. describe micro-services as the first architectural style to be preferred
for CD practice, by designing fine-grained applications as a set of small services [5].
Three papers [9–11] state explicitly some specific benefits of employing the micro-
services architecture concept. Micro-services are said to be helpful in increasing
modularity and isolating changes and as a consequence increasing deployment fre-
quency [13]. The experience report by Berger et al. [11], where the authors imple-
mented CD practices in a team developing software for self-driving cars, reported how
a loosely coupled micro-service architecture helped them move towards CD. Chen
et al. argue that micro-service architectures feature many of the CD/DevOps enabling
characteristics (CH2, CH7, CH8) and are (in combination with DevOps) the “key to
success” of large-scale platforms [12].

Three other papers [5, 6, 8] explicitly state some downsides of the micro-services
architecture. E.g. tracing errors and finding root causes of production issues traveling
through multiple system components [8], resulting in increasingly complex monitoring
(IS10) and logging (IS9) [5]. Plus, at the inception stage of a project a micro-services
architecture might be less productive due to the required effort for creating the separate
services and the necessary changes in the organizational structure, eventually as the
project matures the efficiency of the micro-services architecture surpasses that of the
monolithic architecture though [6].

Other authors [7, 8, 10] treat the suitability of the concept of micro-services in a
particular context. Pahl et al. [10] state that the idea of micro-services has been dis-
cussed as a suitable candidate for flexible service-based system composition in the
cloud in the context of deployment and management automation.

Furthermore, Schermann et al. [8] look at micro-services from a continuous
experimentation perspective which is based on CD. These authors state that “contin-
uous experimentation is especially enabled by architectures that foster independently
deployable services, such as micro-services-based architectures”.

Micro-services emerged as a lightweight subset of the Service-Oriented Architec-
ture (SOA), it avoids the problems of monolithic applications by taking advantage of
some of the SOA benefits [7]. Pahl et al. [10] note that loose coupling, modularity,
layering, and composability are guiding principles of service-oriented architectures.

The last architectural style is vertical layering. It is mentioned by Shahin et al. [5]
and refers to removing team dependencies by splitting software components into
vertical layers (instead of horizontal layers, e.g. presentation, business and persistence).
It can be argued if this is an architectural style on its own, as it is also a characteristic of
micro-services and SOAs in general.

What We Know About Software Architecture Styles 31

5.2 Application Domains (RQ2)

The experiences in our set of selected papers reported observations from a variety of
domains, namely: banking, automotive, telecommunication, bookmaking, software and
IT consulting. The example of a case study from a leading German bank [3] is rep-
resentative for a major trend happening in the banking sector, namely the embarking on
the concept ‘Banking-as-a-Service’ (BaaS). Transitioning to BaaS helps big banks re-
invent themselves as assemblers of financial management solutions, tailored to meet
specific customer needs. To succeed in this transition, banks increasingly more
“componentize” their business architecture and underlying solution architectures of the
systems they operate. The software architecture style they consider important to their
future is micro-services [28] as it allows financial institutions to layer their technology
offerings like building blocks rather than monolithic “systemware”.

Furthermore, the experience described by Berger et al. [11], reflects a recent trend
in the automotive sector adopting micro-services architectures. For example, car
makers including Ford, Mercedes-Benz, and VW are actively adapting microservices/
container architecture principles in developing Internet-of-Things enabled apps for
their vehicles. Traditionally, in this sector, most automotive software architectures can
be considered component based; in many cases, these components are however so
tightly interconnected that the architectures should be considered monolithic. Com-
panies realized that these monolithic architectures are will become a burden in the
future and many embark to micro-service architecture to secure flexibility in the future.

Table 1. Software architecture characteristics supporting CD/DevOps [16].

ID Software architecture characteristics Reference

CH1 Agility/Modifiability [1, 2, 12]
CH2 Deployability [2, 5, 12, 13]
CH3 Automation [11–13]
CH4 Traceability [11, 13]
CH5 Stateless components [11]
CH6 Loosely coupled [1, 10, 11]
CH7 Production versioning [12]
CH8 Rollback [12]
CH9 Availability [12]
CH10 Performance [12]
CH11 Testability [2, 5]
CH12 Security [2]
CH13 Loggability [2, 5]
CH14 Monitorability [2]
CH15 Modularity [5, 10]
CH16 Virtualization [10]
CH17 Less reusability [5]

32 M. Daneva and R. Bolscher

Next, the experience reported by Chen [2] is about more than 20 CD projects
observed PaddyPower, an Irish a multi-billion euro betting and gaming company,
operating Ireland’s largest telephone betting service. The author derived lessons
learned on the roadblocks to CD and emphasized the role of micro-services in coun-
tering the effects of these roadblocks.

The report of Stahl and Bosch [9] focuses on the context of large network operators,
many of which are transitioning to DevOps/CD (e.g. Ericsson, Swisscom). These
authors report on their proposal for a continuous integration and delivery architecture
framework and its large-scale empirical evaluation at Ericsson.

Finally, a number of papers address the specific context of software process
improvement consultancy and IT firms (e.g. Endava [4], Fujitsu [6], Amazon Web
Services [7]). For example, Woods (Endava [4]) puts forward the use of a number of
architecture artefacts that one can re-thing for use in DevOps/CD contexts: release
models, configuration management models, administrative models and support models.
The approach that employs such models can be considered an architecture approach in
itself.

5.3 Research Methods Being Used (RQ3)

Regarding the application of research methods in the publications that formed our set
for analysis in this SLR, we found that only four out of the 13 papers explicitly stated
the methodological origins of their selected method (see Table 2 below).

These four articles [5, 7–9] leveraged the qualitative interview techniques for the
purpose of their investigation. In two papers, the qualitative interviews formed a part of
a mixed-method process, e.g. Stahl and Bosch [9] complemented the interviews with

Table 2. Use of research methods in the 13 selected papers.

Ref. Explicitness of
research process

Research method Experience
report paper

[1] Implicit Case study Yes
[2] Implicit Case study Yes
[3] Implicit Case study n/a
[4] Implicit Case study Yes
[5] Explicit Interview-based study n/a
[6] Implicit Case study n/a
[7] Explicit Case study n/a
[8] Explicit Mixed method: survey + interviews n/a
[9] Explicit Mixed method:

SLR + interviews + group workshops
n/a

[10] Implicit Case study n/a
[11] Implicit Case study n/a
[12] Implicit Case study Yes
[13] Implicit Case study n/a

What We Know About Software Architecture Styles 33

group workshops, while Schermann et al. [8] used a survey together with interview.
The remaining nine papers in the set of 13 only tacitly assumed the use of a case study.
In fact, the authors provided rich details about the context of their organizations; there
are descriptions either of project cases (e.g. [12]) or of case organizations (e.g. [2–4]).
Moreover, we found four papers in the category of “experience reports”; this type of
papers report on the application of a concept, method, or framework in one or several
interesting industrial contexts, including the lessons-learned.

Regarding the ways in which the papers approach validity threats, we observe that
threats have been explicitly discussed only by those authors that explicitly documented
their research process.

6 Reflection on the Results

This section provides our reflection on our findings. First, we found 17 software
architecture characteristics and as we could see from the findings regarding RQ2, these
characteristics were deemed important in the context of large organizations transi-
tioning to CD/DevOps. One can assume that these organizations maintain a large
number of systems (some of which legacy systems) that are monolithic in nature. In an
application landscape of monolithic systems it is then unsurprising that modifiability
and agility are the most desired architecture characteristics. It is also not surprising that
our SLR indicated the micro-services architecture style as the style considered the most
suitable for this context.

Second, we found that the experiences published cover a broad range of application
domains and companies operating in diverse business sectors. Also, from a broad range
of countries located in Asia, America and Europe. This in itself has a positive impli-
cation: it allows us to think that the observations shared by the authors of the 13 papers
are generalizable across application domains, business sectors and geographic zones.

Third, the finding that the case study approach was the one being used by most
authors (see Table 2) matches the intuitive assumption that case studies are best in
studied situations where the phenomenon of interest can be analyzed only in its real-
world context (and can not be re-created in academic lab settings). However, many of
the authors only implicitly mentioned the research method employed, which is at odds
with the good practices and guidelines for reporting empirical software engineering
research. This observation could be partly explained by the fact that many of the papers
were published in practitioners’ venues, such as the IEEE Software magazine, or on the
practitioners’ tracks of international scientific conferences. In both types of venues
much more importance is placed on lessons learned and utility of the lessons learned
for organizations than on the elaborate descriptions of the research method used.

7 Reflection on Bias in This SLR

In carrying out a SLR, it is also important to reflect on the criticality of researchers’
own pre-knowledge and actions in reducing bias. As Archer et al. [22] state, knowledge
in a scientific field is generated, developed, and interpreted by humans and relies on the

34 M. Daneva and R. Bolscher

methods employed for this purpose. We reflect on four types of bias that are critical for
SLRs: sampling bias, selection bias, and within-study bias, as described by Felson [23],
plus expectancy bias as described by Cooper [24].

Sampling bias (including retrieval bias and publication bias) is concerned with the
failure to capture all relevant studies’ findings on the aspects of interest [23]. Retrieval
bias refers to the risk that the key words in our search string might not be chosen well
enough, which in turn means that a number of highly relevant papers would not be hit
while executing the search string. We countered this risk by implementing the
guidelines of Kuhrman et al. [20] in regard to this issue. In fact, we experimented with
a variety of search strings and compared their results in Scopus. Next, publication bias
is concerned with to the tendency of conferences and journals to publish empirical
research results that challenge or change existing knowledge, while studies that confirm
previous results are less frequently published [25]. This issue is apparent in new and
emerging areas of the software engineering discipline, where published research
commonly seeks to be original through proposing new definitions or developing new
approaches (e.g. CD and DevOps), hardly ever replicating previous studies. To counter
this challenge, some methodologists (e.g. Tranfield et al. [26]), recommend researchers
consider both published and unpublished studies. However, in our protocol, we decided
to use peer-reviewed literature only, which means grey literature was not included.
Moreover, in our report on stage 1 of our research [16], we noted that we compared our
already reported findings (in [16]) against themes discussed in practitioners’ online
venues and we found no discussion theme that contradicts our findings.

Second, selection bias is concerned with the inaccurate design or application of the
inclusion/exclusion criteria. To counter this bias, we followed the guidelines of
Kuhrman et al. [20] in regard to the design of our criteria. We note also that this bias
can be caused in situations in which a researcher is the author of a paper on the topic of
the SLR. However, in case of this review, none of the authors has a publication on the
topic of software architecture and CD/DevOps.

Third, within-study bias is concerned with the risk of variability in the data
extraction procedures used by both researchers. We think however that this risk is
minimal because the data extraction was simple and based on a form in which all the
information was recorded in a systematic way.

Finally, expectancy bias is concerned with the synthesis of the information of the
13 primary study in this SLR. One reason for the occurrence of this bias is that
researchers may have differing perspectives that influence the interpretation of study
findings. During study synthesis, researchers may also be biased in seeking information
that conforms to their expectations and may overlook or disregard perplexing infor-
mation [24]. We countered this bias by having both researchers analyze all 13 papers in
our set. This was possible because the number of papers was small. Each researcher
reviewed each paper individually. After this, the researchers compared their analytical
results. No disagreements happened in this process.

What We Know About Software Architecture Styles 35

8 Related Systematic Literature Reviews

There are five literature studies that are related to our work. First, the 2014 study of
Erich et al. [29] treats the question of how DevOps influences the performance of
information system development and information system operation. This study looked
at the evidence indicating specific benefits of DevOps. Unlike the SLR of Erich et al.
[29], our research focused solely on the relationship between software architecture and
DevOps.

The second SLR (2016) is on the practices of DevOps [33]. The authors of this SLR
look into DevOps definitions and practices, while comparing DevOps with other
software development method. This work explicitly states the practice of designing
architecture as one belonging to DevOps.

The third review is the systematic mapping study of Rodrigues et al. [14] on the
phenomenon of CD. These authors found that “CD demands a software architecture in
which the product and its underlying infrastructure continuously evolve and adapt to
changing requirements” (p. 15, [14]). This means that the underlying architecture
should be flexible so that it can accommodate rapid feedback. This, in tur, points to
architecture style that is modular and loosely coupled. Our findings agree with the
findings of these authors. Our results however complement the findings in [14] by
adding a list of architecture characteristics which are not among those mentioned in this
mapping study [14].

The fourth study is the 2019 SLR of Céspedes et al. on the effects of DevOps on
software product quality [31]. This SLR revealed a strong effect of the adoption of
DevOps practices on reliability and maintainability of software products. The practices
associated with DevOps, such as the minimum viable product, deployment automation,
test automation, cloud computing and team cooperation, show a relationship with the
improvement in software product quality. Our list of characteristics (Table 2) partly
overlaps with those in this study [31]. In fact, modifiability (CH1 in Table 1) is a
dimension of maintainability of a software architecture [32].

The fifth review is the mapping study of Di Francesco et al. [30] on the phe-
nomenon of architecting with micro-services. As part of these authors’ analysis, the
study yielded a list of architecture quality attributes that were treated in studies on
micro-service architecture. Performance, maintainability, and functional suitability
were found as the most studied attributes. Although these attributes were the focus of
researchers working on micro-services, our SLR did not find them as the most fre-
quently mentioned architecture characteristics from DevOps/CD perspective (see
Table 1). This difference could be explained with the fact that many researchers
investigated the architecting-with-micro-cervices practice in contexts in which large
organizations transition from monolithic to micro-services architecture without nec-
essarily employing DevOps and CD.

36 M. Daneva and R. Bolscher

9 Summary and Implications

Using 13 publications on software architecture in DevOps/CD, this SLR indicates that:

(1) there are 17 software architecture characteristics which are beneficial for CD and
DevOps adoption according, according to published literature;

(2) micro-services are recommended architectural style in this context, and
(3) large-scale organizational contexts are the most studied, and
(4) qualitative approaches (case study based) are the most applied research method.

Our review has some implications for researchers. As we found that most knowl-
edge comes from large organizational settings in which there are many systems with
monolithic architecture, it may be interesting for researchers to focus on greenfield
projects in DevOps/CD. What are the architecture styles that DevOps/CD teams adopt
in case of developing new systems that did not exist before? This seems a worthwhile
topic for exploratory research in the future.

Another question related to the context of start-ups. While DevOps seems a logical
choice for many startups in the IT and software marketplace, practitioners warn (e.g. in
[27]) that the micro-service architecture may not always be the best choice in the
startup context. Understanding how startup companies embracing DevOps choose their
architecture styles is an industry-relevant line for research in the future.

Finally, research on the topic of interest in this SLR so far has been qualitative in
nature taking into account the real-world contexts in which architecture characteristics
were deemed most beneficial for DevOps/CD. However, only four of our 13 analyzed
papers were explicit on the research method used. This poses a threat to the validity of
the reported lessons learned by practitioners and possible candidates for good practices.
From research and knowledge generation perspective, these lessons learned and can-
didate good practices could serve as lists of hypotheses that researchers could test in
other settings in order to generate empirical evidence to draw more specific conclu-
sions. Only then, we could make some well-substantiated claims about the software
architecture characteristics beneficial for the implementation of DevOps/CD.

Our SLR has some practical implications. First, it brings good news to large
organizations regarding the fit of the micro-service architecture style to DevOps/CD.
Our included papers presented working examples of a broad range of industry sectors
and countries, which allows us to conclude the viability of the micro-service archi-
tecture as an option to consider.

Second, software architects who may be interested in developing some architecture
guidelines in their organizations using DevOps/CD might consider our list of charac-
teristics as one possible starting point along with other considerations, such as current
IT project portfolio and proportion of green-field projects in it.

References

1. Sturtevant, D.: Modular architectures make you agile in the long run. IEEE Softw. 35(1),
104–108 (2017)

What We Know About Software Architecture Styles 37

2. Chen, L.P.: Towards architecting for continuous delivery. In: Bass, L., Lago, P., Kruchten,
P. (eds.) 12th Working IEEE/IFIP Conference on Software Architecture, pp. 131–134 (2015)

3. Erder, M., Pureur, P.: Continuous Architecture: Sustainable Architecture in an Agile and
Cloud-Centric World, pp. 1–303. Morgan Kaufmann, Burlington (2015)

4. Woods, E.: Operational: The forgotten architectural view. IEEE Softw. 33(3), 20–23 (2016)
5. Shahin, M., Babar, M.A., Zhu, L.: The intersection of continuous deployment and

architecting process: Practitioners’ perspectives (2016)
6. Elberzhager, F., Arif, T., Naab, M., Süß, I., Koban, S.: From agile development to DevOps:

Going towards faster releases at high quality – experiences from an industrial context. In:
Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp. 33–44.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49421-0_3

7. Villamizar, M., et al.: Evaluating the monolithic and the microservice architecture pattern to
deploy web applications in the cloud. In: 10th Computing Colombian Conference (10CCC)
(2015)

8. Schermann, G., et al.: We’re doing it live: a multi-method empirical study on continuous
experimentation. Inf. Softw. Technol. 99(7), 41–57 (2018)

9. Ståhl, D., Bosch, J.: Cinders: The continuous integration and delivery architecture
framework. Inf. Softw. Technol. 83(3), 76–93 (2017)

10. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. ACM
Trans. Internet Technol. 18(2), 1–23 (2018)

11. Berger, C., et al.: Containerized development and microservices for self-driving vehicles:
Experiences & best practices. In: 2017 IEEE International Conference on Software
Architecture Workshops, pp. 7–12 (2017)

12. Chen, H.M., et al.: Architectural support for DevOps in a neo-metropolis BDaaS platform.
In: 2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop, pp. 25–30
(2015)

13. Bass, L.: The software architect and DevOps. IEEE Softw. 35(1), 8–10 (2017)
14. Rodríguez, P., et al.: Continuous deployment of software intensive products and services: a

systematic mapping study. J. Syst. Softw. 123, 263–291 (2017)
15. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-Wesley,

Boston (2015)
16. Bolscher, R., Daneva, M.: Designing software architecture to support continuous delivery

and DevOps: a systematic literature review. In: ICSOFT 2019, pp. 27–39 (2019)
17. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,

Test, and Deployment Automation. Pearson Education, London (2010)
18. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories. Sci.

Comput. Program. 101, 136–152 (2015)
19. Kitchenham, B.: Guidelines for performing systematic literature reviews in software

engineering. Keele University, UK (2007)
20. Kuhrmann, M., Méndez Fernández, D., Daneva, M.: On the pragmatic design of literature

studies in software engineering: An experience-based guideline. Emp. Softw. Eng. 22(6),
2852–2891 (2017)

21. Pawson, R.: The Promise of a Realist Synthesis, Working Paper No.4, ESRC Evidence
Network, Centre for Evidence Based Policy and Practice (2001). http://www.
evidencenetwork.org/Documents/wp4.pdf

22. Archer, M., Bhaskar, R., Collier, A., Lawson, T., Norrie, A.: Critical Realism: Essential
Readings. Routledge, London (1998)

23. Felson, D.T.: Bias in meta-analytic research. J. Clin. Epidemiol. 45(8), 885–892 (1992)
24. Cooper, D.H.M.: Research Synthesis and Meta-Analysis: A Step-by-Step Approach. Sage

Publications Inc., Los Angeles (2010)

38 M. Daneva and R. Bolscher

https://doi.org/10.1007/978-3-319-49421-0_3
http://www.evidencenetwork.org/Documents/wp4.pdf
http://www.evidencenetwork.org/Documents/wp4.pdf

25. Littell, J.H., Corcoran, J., Pillai, V.: Systematic Reviews and Meta-Analysis. Oxford
University Press, Oxford (2008)

26. Tranfield, D., Denyer, D., Smart, P.: Towards a methodology for developing evidence-
informed management knowledge by means of systematic review. Br. J. Manag. 14(3), 207–
222 (2003)

27. https://adevait.com/software/why-most-startups-dont-need-microservices-yet
28. Bucchiarone, A., et al.: From monolithic to microservices: an experience report from the

banking domain. IEEE Softw. 35(3), 50–55 (2018)
29. Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between information

system development and operations. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 277–
280. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_21

30. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: a systematic
mapping study. J. Syst. Softw. 150, 77–97 (2019)

31. Céspedes, D., Angeleri, P., Melendez, K., Dávila, A.: Software product quality in DevOps
contexts: A systematic literature review. In: Mejia, J., Muñoz, M., Rocha, Á., Calvo-
Manzano, J.A. (eds.) CIMPS 2019. AISC, vol. 1071, pp. 51–64. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-33547-2_5

32. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability analysis
(ALMA). J. Syst. Softw. 69(1–2), 129–147 (2004)

33. Jabbari, R., Bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: a systematic mapping
study on definitions and practices. In: XP Workshops 2016, p. 12 (2016)

What We Know About Software Architecture Styles 39

https://adevait.com/software/why-most-startups-dont-need-microservices-yet
https://doi.org/10.1007/978-3-319-13835-0_21
https://doi.org/10.1007/978-3-030-33547-2_5

Analysing the Performance of Mobile
Cross-platform Development Approaches

Using UI Interaction Scenarios

Stefan Huber1(B), Lukas Demetz1 , and Michael Felderer2

1 University of Applied Sciences Kufstein, Andreas Hofer-Straße 7,
6330 Kufstein, Austria

{stefan.huber,lukas.demetz}@fh-kufstein.ac.at
2 Department of Computer Science, University of Innsbruck,

Technikerstraße 21a, 6020 Innsbruck, Austria
michael.felderer@uibk.ac.at

Abstract. For developing mobile apps, developers can choose between
a native development approach, in which a unique code base needs to
be maintained for each supported mobile platform, and mobile cross-
platform development (MCPD) approaches. MCPD approaches allow
building and deploying mobile apps for several mobile platforms from one
single code base. As MCPD approaches build on top of different tech-
nologies, in this paper, we analyze the performance of MCPD approaches
based on UI interactions. We developed one app natively, and two using
MCPD approaches. Using automated tests, we measured CPU usage,
memory consumption and rendered frames of these apps when execut-
ing UI interaction scenarios consisting of three selected UI interactions
(i.e., opening/closing a navigation drawer, screen transition, and vir-
tual scrolling). The study confirms results of previous studies showing
that, compared to natively developed apps, apps developed using MCPD
approaches put a higher load on mobile devices regarding CPU usage,
main memory and GPU memory consumption.

Keywords: Android · Ionic/Capacitor · Mobile cross-platform
development · Performance analysis · React native

1 Introduction

Mobile apps are projected to generate revenues of nearly $ 953 billion worldwide
by the end of 2023 [17]. When developing mobile apps, developers can exploit,
on the one hand, a native development approach. This requires developers to
build and maintain a unique code base for each mobile platform they want
to support. As Google Android and Apple iOS dominate the market for mobile
apps [16], developers need to maintain at least two code bases when they want to
address the majority of mobile users. On the other hand, there exists a plethora
of mobile cross-platform development (MCPD) approaches. The advantage of
c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 40–57, 2020.
https://doi.org/10.1007/978-3-030-52991-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_3&domain=pdf
http://orcid.org/0000-0001-8317-5049
https://doi.org/10.1007/978-3-030-52991-8_3

Analysing the Performance of Mobile Cross-platform Development 41

these approaches is that mobile apps can be easily deployed for several mobile
platforms from one single code base.

To be able to deploy the same code base to multiple platforms, these
approaches use different techniques [12]. React Native, for instance, pursues an
interpretive approach, in which JavaScript is used to render native user inter-
face (UI) components [3]. Others, such as Ionic/Capacitor, render the app as a
website created using standard web technologies (e.g., HTML, CSS, JavaScript)
within a native WebView component.

The underlying techniques used by MCPD approaches impose different
requirements on mobile devices. As they render the user interface differently,
they put a higher load on mobile devices, especially when compared to a native
implementation [5,20]. Research so far focused mainly on programmatic per-
formance of compute-intensive apps developed using MCPD approaches, for
instance, run-time differences of sorting algorithms [1]. Typical UI interactions
(e.g., swipe gestures) were not considered in performance analyzes. Most mobile
apps are, however, interactive, that is, users interact heavily with the app via the
user interface [18]. Thus, as UI interactions are an important aspect of mobile
app usage, they should not be neglected in performance analyzes.

In a previous research [10], we investigated performance differences between
native implementations and apps developed using MCPD approaches when exe-
cuting one selected UI interaction. The results show substantial performance
differences regarding CPU usage and memory consumption. In this present
research, we continue this stream of research and test a series of UI interaction
scenarios consisting in total of three UI interactions. Thus, to further investigate
possible performance differences on mobile devices when performing UI interac-
tions, the aim of this paper is to answer the following research question, How do
mobile cross-platform development approaches differ with respect to performance
and load on mobile devices when performing typical UI interaction scenarios?

In doing so, we present a quantitative performance analysis of three typical
UI interactions: opening and closing of a navigation drawer, screen transitions
between two different screens, and continuous swiping through a virtual scrol-
lable list. The analysis is based on a native mobile app used as a baseline, and
two apps developed using React Native and using Ionic/Capacitor. All three apps
implement the same three UI interactions. The study confirms results of previous
studies showing that, compared to natively developed apps, apps developed using
MCPD approaches put a higher load on mobile devices regarding CPU usage,
main memory and GPU memory consumption. The results indicate that the load
on the mobile device (CPU consumption, main memory and GPU memory usage)
of the two apps developed using MCPD approaches is substantially higher com-
pared to the native app. We also show that the better the mobile device, the lower
is the additional load on resources. Our results confirm results of previous studies
and extend the body of knowledge by testing UI interactions. Mobile app devel-
opers can use these results as guidance for selecting MCPD approaches.

This paper begins by presenting research related to this study (Sect. 2).
We start by discussing different MCPD approaches (Sect. 2.1). We continue by

42 S. Huber et al.

highlighting related research regarding performance measurement (Sect. 2.2) and
resource usage (Sect. 2.3). Section 3 outlines the applied research method. We
begin by presenting the tested implementation (i.e., the mobile app) along with
implementation details for each MCPD approach, the test case, and the measure-
ment. We will then go on to present the results of this measurement in Sect. 4.
These results as well as limitation of this paper are discussed in Sect. 5. The last
section (Sect. 6) concludes this paper and provides possible avenues for future
research.

2 Background

This section presents literature related to this study. We start with defining
mobile cross platform development and provide a general overview of MCPD
approaches (Sect. 2.1). Afterwards, we present literature analyzing the perfor-
mance of such approaches. They fall under the two broad categories user-
perceived performance (Sect. 2.2) and resource usage (Sect. 2.3).

2.1 Mobile Cross-platform Development Approaches

Mobile cross-platform development approaches follow a write one run anywhere
approach [7]. In doing so, they help developers to create and maintain one code
base and to deploy this single code base to multiple mobile platforms, such as
Google Android and Apple iOS. To be useful, MCPD approaches should meet
several criteria, such as, multiple platform support, security, and access to built-
in features [5]. Literature presents a plethora of such approaches which can be
distinguished. The approaches make use of different technologies to allow the
write once run anywhere approach. Base on the technologies used, multiple tax-
onomies can be distinguished. For instance, [15] argues for a new taxonomy using
the six categories endemic apps, web apps, hybrid web apps, hybrid bridged
apps, system language apps, and foreign language apps. In contrast, [3] present
the five categories hybrid, interpreted, cross-compiled, model-driven, and pro-
gressive web apps. As this taxonomy is widely used, we shortly present these
categories in the following.
Hybrid Approaches use web technologies (e.g., HTML, CSS and JavaScript)
to implement the user interfaces and behavior. That is, a developer develops a
website, which is then displayed in a WebView component (i.e., a web browser)
embedded inside a native UI component [11]. Apache Cordova, formerly Adobe
PhoneGap, and Ionic Capacitor leverage this approach.
Interpreted Approaches build on top of JavaScript. In contrast to the hybrid
approach, developers do not build a website, but use JavaScript to render plat-
form native UI components [6,7]. Examples for this category are Facebook React
Native and Appcelerator Titanium.
Cross-compiled Approaches use a common programming language to
develop a mobile app. This source code is then compiled into native code that

Analysing the Performance of Mobile Cross-platform Development 43

can be executed on a mobile platform [4]. Microsoft Xamarin is a prominent
example for this type of MCPD approaches.
Model-driven Approaches use the idea of domain specific languages. For this,
such approaches provides generators that translate the app written in a domain
specific language into native code that can be executed on a mobile platform [8].
An example for this category is MD2.
Progressive Web Apps are web apps that are hosted on and served by a
web server. Progressive web apps provide more sophisticated functions (e.g.,
offline availability) than standard web apps. The web app itself is developed
using standard web technologies, such as HTML, CSS and JavaScript [3]. Web
frameworks such as Ionic or Onsen UI offer progressive web app capabilities.

2.2 User-Perceived Performance

Previous research already investigated the user-perceived performance of apps
developed using MCPD approaches and provides varying results. Andrade et al.
[2], for instance, conducted a real-world experiment, with 60 employees of a com-
pany in the Brazilian public sector. A native and a hybrid app were developed
and used by the employees for two weeks each. Only 13.33% of users noted a per-
formance difference between the two approaches. Xanthopoulos and Xinogalos
[21], for instance, rated different mobile cross-platform development approaches
based on the user-perceived performance as low, medium or high. The classifi-
cation was based on the authors experience and information published on the
web. Mercado et al. [13] selected 60 mobile apps and investigated the apps’ user
complaints in app markets. The apps were created either natively or with MCPD
approaches. Using natural language processing methods, the authors conclude
that user complain more frequently about performance issues of apps developed
using MCPD approaches than about native apps.

2.3 Resource Usage Measurements

Previous research on the usage of resources (e.g., CPU, memory) of MCPD
approaches show more consistent results. Ajayi et al. [1] analyzed performance
of algorithms, such as quicksort, implemented natively with Android and using
a hybrid approach. The results show that the native app uses less CPU and
memory resources than the hybrid app. Willocx et al. [19] measured several
performance properties of two MCPD implementations and compared them to
native implementations of iOS and Android devices. Besides metrics such as
launch time, pause and resume time, time between page transitions, memory
and CPU usage was measured. The authors repeated their measurements in
[20] with 10 different MCPD approaches including measurements for Windows
Phones. Overall, their findings show that the hybrid approaches are highest in
resource consumption independent of the mobile platforms. Non-hybrid based
approaches have a significant lower resource consumption, however, still higher
than native implementations. Dalmasso et al. [5] used the two MCPD approaches
Titanium and PhoneGap to create apps for Android. The authors measured

44 S. Huber et al.

memory, CPU and battery usage. Their findings indicate that the JavaScript
framework used inside the WebView component has a high impact on memory
and CPU consumption.

The results of user-perceived performance studies provide a good indication
that apps developed with MCPD approaches are inferior in terms of perfor-
mance in comparison to native apps. The studies on resource usage validate
these findings quantitatively. Although all measurements give good indications
on differences of the approaches, it is unclear under which concrete UI interac-
tions the results are created. Previous research mainly focused on performance
differences of rather computing intensive mobile apps developed using MCPD
approaches. Mobile apps rather focus on interacting with users through the UI
and not on complex computations [18]. Thus, when analyzing performance and
resource consumption of mobile apps, UI interactions should not be left out.
To close this research gap, we continue our previous research [10] in this study
and analyze the performance of mobile apps developed using MCPD approaches
when executing typical UI interactions. More concretely, we focus on the UI inter-
actions opening and closing of a navigation drawer, screen transitions between
two screens, and continuous swiping through a virtual scrollable list.

3 Research Method

For assessing the performance of typical UI interaction scenarios, three func-
tionally identical Android apps, based on different development approaches,
were realized. Repeatable test cases for each user interaction were created. This
allowed us to interact with the apps fully automated. During the operation,
CPU usage, main memory usage, GPU memory usage and frame rendering were
monitored and later analyzed.

3.1 Selection of Approaches

Besides the native development approach, we selected the two MCPD approaches
Ionic/Capacitor and React Native for performance analysis. These MCPD
approaches allow reusing web development skills for developing mobile apps.
Additionally, they enable transferring existing code bases (e.g., web applica-
tion developed in JavaScript) into mobile apps. Besides, both approaches are
supported by large developer communities (e.g., visible on GitHub and Stack
Exchange). Many successful apps found in app markets are developed with these
approaches. As a result, we selected these two approaches.

3.2 UI Interaction Scenarios

For the performance analysis, three distinct UI interaction scenarios were envi-
sioned, which are frequently found in mobile apps. These are opening and closing
a navigation drawer, screen transitioning and virtual scrolling. The UI interac-
tions are supported by all the development approaches and are testable using an

Analysing the Performance of Mobile Cross-platform Development 45

automated script. Additionally, the scenarios are not computing intensive mean-
ing that no complex computations need to be done. The focus is on interacting
with the user.

All UI interaction scenarios are part of a basic contact app. The app consists
of two screens. The main screen is a list of contact entries, which can be scrolled.
An additional screen provides a form for adding new contact entries. At startup
of the app 500 demo contact entries with name and phone number are generated.

Opening/Closing a Navigation Drawer. A navigation drawer is a common
UI component for displaying a dynamic menu. The drawer can be opened with
a left-to-right swipe from the edge of the display to the center.

In Fig. 1 the native implementation of the navigation drawer scenario is pre-
sented. The left side shows the initial state and by swiping from left-to-right
the resulting state on the right is produced. For the performance analysis, the
drawer is opened by a respective swipe. After a two second pause, the drawer is
closed with a touch event on the outside of the drawer.

Fig. 1. Navigation drawer opening/closing UI interaction (native implementation).

Screen Transitioning. Most apps have more than one screen, thus, transitions
between screens are basic UI interactions within apps.

46 S. Huber et al.

Figure 2 presents the native implementation of the screen transition scenario.
The left side shows the initial state and by clicking on the action on the top-
right corner a screen transition is started. The result of the transition is shown
on the right side, which shows a new screen with a form for entering new data.
By clicking the back button on the top-left corner, the initial state is loaded
again. For the performance analysis, a screen transition is initiated from the
initial screen to the form screen. After two seconds, the back button is clicked
to return to the initial screen.

Virtual Scrolling. Virtual scrollable lists are common UI components found in
mobile apps. Smartphones have only limited screen space available. Thus, only a
small part of data presented inside a list is visible for a user. All hidden entries do
not need to be processed and rendered before being visible. The scrolling feature
is simulated and new entries in the list are created at runtime while scrolling
down or up a list.

In Fig. 3 the native implementation of the virtual scrolling scenario is pre-
sented. The left side shows the initial state and by swiping from bottom-to-top
the resulting state on the right is produced. For the performance analysis, three
consecutive bottom-to-top swipes were executed. Between each swipe a pause of
two seconds was set.

Fig. 2. Screen transition UI interaction (native implementation).

Analysing the Performance of Mobile Cross-platform Development 47

3.3 Implementation Details

To answer our research question, we developed three instances of the contact app
described in Sect. 3.2. One instance was developed using native Google Android
development tools, two instances using MCPD approaches (React Native and
Ionic/Capacitor). All three apps were packaged and signed for release on Google
Android. Thus, any performance degradation caused by debugging build features
could be eliminated to minimize the creation of incorrect results. Table 1 provides
an overview of the three developed apps including version information. A more
detailed description on the implementations is provided in the following.

Table 1. Overview of apps.

Approach Version

Android native Compiled Android API Level 28, Minimum Android API Level 23

React native React Native 0.60.6

Ionic/Capacitor Ionic 4.9.1, Capacitor Android 1.2.1

Fig. 3. Virtual scrolling UI interaction (native implementation).

48 S. Huber et al.

Native Android. Offers all required UI components for realizing the envisioned
app within the core framework. Thus, no additional libraries were used. For real-
izing a navigation drawer, we used Android’s DrawerLayout. Each screen in the
app was realized as an Android Activity and navigation between the screens is
done with Intents. Virtual scrolling was implemented using the RecyclerView
component. This component is the default approach for realizing a virtual scrol-
lable list on Android. An Adapter component has to be implemented to provide
an app specific binding to a data source. The adapter design pattern allows for
dissolving any dependency between the data and the display logic. The demo
data was generated on app start up and stored in memory. It was provided to
the RecyclerView component through the adapter.

React Native: offers the AndroidDrawerLayout component for realizing a nav-
igation drawer. For navigating between different screens of an app, React Native
does not provide a default approach. Therefore, the external libraries react-
navigation and react-navigation-stack were used. React Native offers the FlatList
component. This UI component is an abstraction over the native implementa-
tions of virtual scrollable lists (e.g., RecyclerView on Android). Within the React
app, the demo data was generated at app start up and stored in memory. The
data was directly referenced by the FlatList for actual display.

Ionic/Capacitor: is a combination of the Ionic JavaScript web-framework and
the Capacitor WebView wrapper. No additional libraries were needed to imple-
ment the envisioned app. The Ionic library aims to provide reusable UI compo-
nents styled like Android or iOS native components. The navigation drawer was
realized with the ion-menu component. For navigation between different screens,
ion-router was used. Ionic offers the ion-virtual-scroll component, which is a
virtual scrollable list implementation for the web. The UI component emulates
virtual scrolling within a WebView or web browser. The demo data for the list
was generated at start up and stored in memory. The data was directly refer-
enced by ion-virtual-scroll for actual display. The app was packaged within a
Capacitor wrapper, which is the default approach for Ionic apps.

3.4 Test Cases

To execute the three UI interaction scenarios with each of the developed apps,
fully automated test cases were created. The exact same test case could be used
to produce measurement results for each app on different devices. This allows a
direct comparison of the results.

Each step of a test case execution is exactly timed. In the following, a detailed
step by step description of the general test case execution is given. Each of the
test cases can be executed repeatedly without any human intervention.

– Install the app on a connected Android device.
– Start the app by triggering an Android Intent on the connected device.

Analysing the Performance of Mobile Cross-platform Development 49

– Wait for 20 s. The different development approaches have different loading
times, therefore a certain waiting time is required. The apps were always
loaded before the 20 s of waiting time on the test device.

– Start vmstat with a total recording time of 30 s.
– Wait for 3 s.
– Start the execution of one of the UI interaction scenarios: navigation drawer

opening/closing, screen transitioning, or virtual scrolling
– Wait for 5 s.
– Start the generation of gfxinfo results on the device.
– Wait for 15 s.
– Close the app and uninstall it from the device.
– Wait for 25 s.
– Download the measurement results (vmstat and gfxinfo) from the device.

The test procedures were created using the AndroidViewClient [14] library.
This library enables the scripting of UI interactions with Python code. For all
device management tasks the Android Debugging Bride (adb) was used. Each
test case was executed 25 times per app and per device, which resulted in a total
of 225 executions. The full test procedure is made available publicly within a
git-repository1.

3.5 Measurement Tools and Metrics

As Android is Linux-based, it offers many of Linux’ command-line utilities.
vmstat [9] is a Linux tool for executing continuous performance measurements.
Amongst other measurements periodic recordings for CPU usage expressed in
percent and freely available main memory expressed in bytes were gathered.
The tool was started in parallel to the execution of the automated test cases as
described in Sect. 3.4. The recording interval was set to one second and vmstat
was running for 30 s, thus a time series of 30 measurements was produced for
each test case execution.

CPU usage is a value expressed in percent which shows the utilization of the
CPU and could be taken directly from the vmstat results. The main memory
usage is a deduced metric based on the vmstat results for the freely available main
memory expressed in bytes. The freely available memory is compared between
the idle state of the test device and the active phase throughout the execution
of the test cases. The memory increase from the idle state to the active state is
then deduced as a value in percent.

Additionally, Android offers gfxinfo, a tool which aggregates information
about frame rendering performance of an app. Amongst other measurements
the percentage of janky frames and the usage of GPU memory expressed in
megabytes were gathered. The percentage of janky frames gives an indication of
the fluidness of the UI of an app. A janky frame is a frame that could not be
rendered correctly and needs to be dropped in the rendering process.

1 https://www.github.com/stefanhuber/ICSOFT-2019.

https://github.com/stefanhuber/ICSOFT-2019

50 S. Huber et al.

3.6 Test Devices

The test cases were executed on three different mobile devices running Google
Android. The Android versions of the devices were updated to the maximum
supported version of the manufacturers. In Table 2, details of the device specifi-
cations are listed.

Table 2. Mobile device specifications.

Device CPU RAM Resolution Display size Android
Version

LG Nexus 5 Quad-core 2.3GHz 2GB 1080× 1920 4.95 in. 6.0.1

Samsung Galaxy S5 Quad-core 2.5GHz 2GB 1080× 1920 5.1 in. 6.0.1

LG Nexus 5X Hexa-core
4× 1.4GHz/2× 1.8GHz

2GB 1080× 1920 5.2 in 8.0

4 Results

This section is devoted to the results of this study. We present the results accord-
ing to the four measured metrics namely CPU usage (Sect. 4.1), main memory
usage (Sect. 4.2), janky frames (Sect. 4.3) and GPU memory usage (Sect. 4.4).
The results were produced by executing the UI interaction scenarios 25 times
per test device and implementation.

The results are presented in form of heat maps. The heat maps indicate
higher values with a darker background color and lower values with a lighter
background color. The whole spread of values inside each individual graphic is
shown with a color bar below each graphic. The values for the heat maps are
based on the statistical mean of the produced measurements, as described in
Sect. 3.5

Fig. 4. Average CPU usage (%) for 3 interaction scenarios on 3 test devices. (D1 =
Samsung Galaxy S5, D2 = LG Nexus 5, D3 = LG Nexus 5X).

Analysing the Performance of Mobile Cross-platform Development 51

4.1 CPU Usage

Figure 4 shows a comparison of average CPU usage in form of a heat map. It
can be seen that the native development approach (right most column) has the
lowest average CPU usage on all devices and for all scenarios. Apps developed
with MCPD approaches always come with a overhead compared to native devel-
opment.

Ionic/Capacitor (left most column of each heat map) requires between 7%
(Virtual scrolling on the Samsung Galaxy S5) and 59% (Virtual scrolling on
the LG Nexus 5) more CPU resources on average than a native implementation
(right most column of each heat map). React Native (middle column of each
heat map) requires between 16% (Screen transition on the LG Nexus 5X) and
81% (Virtual scrolling on the LG Nexus 5) more CPU resources on average.

React Native has for most scenarios a higher average load on CPU than
Ionic/Capacitor. Only virtual scrolling on the LG Nexus 5X has a slightly lower
average CPU load for the React Native implementation. For all other scenarios
React Native requires between 5% (Screen transition on the LG Nexus 5X) to
29% (Opening/closing navigation drawer on the LG Nexus 5) more average CPU
resources than the Ionic/Capacitor counterpart.

4.2 Main Memory Usage

Figure 5 shows a comparison of average memory increase from an idle state of
the test device to the execution of the interaction scenario in form of a heat map.

In general the Android Native implementation (right most column) has
clearly the lowest memory footprint. For all scenarios and test devices the mem-
ory increase lies between 1.8% and 8.2%. MCPD approaches have a substantial
higher demand for main memory compared to a native implementation.

Fig. 5. Average memory increase (%) for 3 interaction scenarios on 3 test devices.
(D1 = Samsung Galaxy S5, D2 = LG Nexus 5, D3 = LG Nexus 5X).

52 S. Huber et al.

The memory requirement for Ionic/Capacitor implementations (left most
column) rises between 41.2% and 51.6% compared to the idle state. For React
Native (middle column) implementation the memory requirement is between
38.9% and 56.1%. React Native requires less memory on the LG Nexus 5 than
Ionic/Capacitor for all tested scenarios. On the other two devices the contrary
is the case and Ionic/Capacitor requires less memory than React Native.

4.3 Janky Frames

Fig. 6. Average janky frames (%) for 3 interaction scenarios on 3 test devices. (D1 =
Samsung Galaxy S5, D2 = LG Nexus 5, D3 = LG Nexus 5X).

Figure 6 shows the average percentage of janky frames in the rendering process
for all scenarios and devices as a heat map.

Overall Ionic/Capacitor (left most column) has a high amount of janky
frames and often substantially more than the other two approaches. On all
devices and for all interactions the rate of janky frames lies between 15.9%
and 33.8% for the Ionic/Capacitor implementations.

React Native (middle column) has a substantial lower rate of jank than
Ionic/Capacitor. The rate of janky frames for React Native is between 1.1 times
(virtual scrolling on LG Nexus 5X) and 3.5 times (opening/closing navigation
drawer on LG Nexus 5) lower than for Ionic/Capacitor.

In 5 cases out of 9 React Native has a lower rate of janky frames than the
Android Native implementation (right most column). Additionally, the React
Native implementation has no values over 18% janky frames, however the
Android Native implementation has several (e.g., screen transition on Samsung
Galaxy S5).

Analysing the Performance of Mobile Cross-platform Development 53

4.4 GPU Memory Usage

Fig. 7. Average GPU memory usage (%) for 3 interaction scenarios on 3 test devices.
(D1 = Samsung Galaxy S5, D2 = LG Nexus 5, D3 = LG Nexus 5X).

Figure 7 shows a comparison of GPU memory usage of the test devices in form
of a heat map.

Clearly, the Ionic/Capacitor implementation (left most column) has the high-
est demand for GPU memory. React Native (middle column) and Android Native
(right most column) have an almost identical demand, although for React Native
the demand is marginally lower.

In general, Ionic/Capacitor requires between 3.8 times (screen transition on
LG Nexus 5X) and 5.5 times (virtual scrolling Samsung Galaxy S5) more GPU
memory than React Native or Android Native.

5 Discussion

In this study, a systematic examination of performance differences of typical
UI interaction scenarios based on different app implementations was performed.
As metrics CPU usage, main memory usage, janky frames and GPU memory
usage were selected. The results show the difference between Android Native
implementations and MCPD implementations and thus provide some guidance
to mobile app developers in selecting a suitable MCPD approach.

In terms of UI fluidness (indicated by the amount of janky frames) React
Native and Android Native are comparable. For instance, for screen transitions
the amount of janky frames is even lower for React Native than for Android
Native on all tested devices. This means, these two approaches provide a more
fluid user interaction and thus a higher user-perceived performance. This comes,
however, at the cost of a higher load on CPU and main memory for React Native.
Ionic/Capacitor has a similar high load on CPU and main memory compared

54 S. Huber et al.

to React Native although missing the benefit of a low janky frame rate and low
GPU memory usage. Thus, Ionic/Capacitor is more prone to a user-perceived
performance degradation.

The selection of a mobile development approach impacts the success of mobile
app projects. As prior research has shown, users perceive a difference between a
native implementation and an implementation based on MCPD approaches [2].
This difference is acceptable if high-end devices are considered [20]. This study
also confirms this observation. The more advanced or high-end test device D3
LG Nexus 5X device has a substantially lower CPU usage than the Samsung
Galaxy S5 device D1, a rather low-end mobile device. It should be noted that
especially the global market of Android smartphones is highly dispersed between
low-end and high-end devices.

The performance of a mobile app can be a competitive advantage in certain
contexts. The increased resource usage of MCPD approaches has negative effects
on the battery lifetime of smartphones [4]. Also, a lower user-perceived perfor-
mance can lead to user complaints [13]. Thus, for apps which have a necessity
for frequent user interactions, a native implementation should be considered.
Users might switch to competing apps in favor of lower battery drainage or an
increased user-perceived performance.

There is a development practice of mixing native development with MCPD
approaches. For instance, frequently used parts of an app can be implemented
natively to reduce resource consumption. Other parts of an app with lesser
importance (e.g., settings menu) can be implemented with MCPD approaches.
It should be noted, that additionally to the native code bases (e.g., one for
Android and one for iOS) a third cross-platform code base needs to be main-
tained. This however contradicts with a major advantage of MCPD approaches
to reduce maintenance and development costs. Therefore, this practice should
be used carefully.

A number of caveats need to be noted regarding the present study. First, we
only used an Android Native implementation to compare the performance results
of the two MCPD approaches. A native implementation for Apple iOS was not
tested. This is mainly because iOS is a more restricted operating system than
Android and we faced restrictions on the automatic execution of UI interactions
and low-level monitoring of CPU/memory usage. Our proposed approach is not
transferable to analyze MCPD approaches on iOS.

We only considered two MCPD approaches, hybrid and interpreted. How-
ever, there are three other types of approaches [3]. To have an in depth analy-
sis of MCPD approaches, all five categories of approaches should be included.
This study confirms results of previous studies [5,20], which showed that MCPD
approaches put a higher load on resources. The current body of literature is
expanded as a systematic examination of performance with respect to UI interac-
tion scenarios of different mobile development approaches was conducted. Addi-
tionally, the automated test of UI interaction scenarios show a novel approach
of performance testing.

Analysing the Performance of Mobile Cross-platform Development 55

To ensure construct validity, the exact same automated test cases were used
for examining the differences of each MCPD approach on different devices. Also,
the metrics CPU usage, memory consumption and janky frames are commonly
used for performance studies. To mitigate threats to internal validity, the test
procedure was set up such that each individual test case was started by com-
pletely reinstalling the app on a clean slate. After the execution of a test case,
the app was also completely removed from the test device. Furthermore, each
app is packaged for release to mitigate any performance degradation caused by
debugging build features. Regarding external validity and to increase the gener-
alizability of our results, three different test devices and three different UI inter-
action scenarios were examined. Additionally, the research method is repeatable
as automatic executions are used and the whole procedure is made available
publicly within a git-repository.

6 Conclusion

This study is a continuation of a previous study [10] in which a performance anal-
ysis of three implementations (two MCPD approaches and one native approach)
of three different UI interaction scenarios was conducted. We found that MCPD
approaches put a higher load on CPU and main memory. Ionic/Capacitor puts
also a higher load on GPU memory usage. These results are in line with results
of previous studies. Nevertheless, in this study, we pursued a different approach
to test the performance of mobile apps as we focus on interactions with the UI.
Previous studies focused mainly on rather computing intensive apps.

In terms of UI fluidness (indicated by the rate of janky frames) React Native
is comparable to Android Native. In our conclusion React Native can produce a
similar user-perceived performance than the Android Native baseline, although
at a higher load on CPU and main memory. Ionic/Capacitor has similar resource
usage as React Native although missing the low rate of janky frames.

The use of MCPD approaches for app development has substantial conse-
quences for CPU usage and memory consumption. Mobile app developers face
a difficult decision on the choice of the development approaches as performance
can be a competitive advantage. We conclude that a mixture of a native devel-
opment approach with a MCPD approach within the same app is plausible.
For frequently used parts of an app a native implementation can decrease the
resource usage and increase the battery lifetime.

As we only tested two MCPD approaches, future work should extend this
research by increasing the number of MCPD approaches for the performance
analysis of typical UI interactions. Also, an iOS native implementation and iOS
test devices should be included. This would provide a broader picture of the
performance of MCPD approaches.

56 S. Huber et al.

References

1. Ajayi, O.O., Omotayo, A.A., Orogun, A.O., Omomule, T.G., Orimoloye, S.M.:
Performance evaluation of native and hybrid android applications. Perform. Eval.
7(16), 1–9 (2018)

2. Andrade, P.R., Albuquerque, A.B., Frota, O.F., Silveira, R.V., da Silva, F.A.: Cross
platform app: A comparative study. Int. J. Comput. Sci. Inf. Technol. 7(1), 33–40
(2015). https://doi.org/10.5121/ijcsit.2015.7104

3. Biørn-Hansen, A., Grønli, T.M., Ghinea, G.: A survey and taxonomy of core con-
cepts and research challenges in cross-platform mobile development. ACM Comput.
Surv. (CSUR) 51(5), 108 (2018)

4. Ciman, M., Gaggi, O.: An empirical analysis of energy consumption of cross-
platform frameworks for mobile development. Pervasive Mob. Comput. 39, 214–230
(2017). https://doi.org/10.1016/j.pmcj.2016.10.004

5. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and eval-
uation of cross platform mobile application development tools. In: 2013 9th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC).
IEEE, Jul 2013. https://doi.org/10.1109/iwcmc.2013.6583580

6. Dhillon, S., Mahmoud, Q.H.: An evaluation framework for cross-platform mobile
application development tools. Softw. Pract. Exp. 45(10), 1331–1357 (2015).
https://doi.org/10.1002/spe.2286

7. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy ofcross-
platform mobile applications development approaches. Ain Shams Eng. J. 8(2),
163–190 (2017). https://doi.org/10.1016/j.asej.2015.08.004

8. Heitkötter, H., Majchrzak, T.A.: Cross-platform development of business apps with
MD2. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013.
LNCS, vol. 7939, pp. 405–411. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38827-9 29

9. Henry, W., Fabian, F.: Man page for vmstat. https://www.unix.com/man-page/
linux/8/vmstat/ (2009). Accessed 11 Feb 2019

10. Huber, S., Demetz, L.: Performance analysis of mobile cross-platform develop-
ment approaches based on typical ui interactions. In: Proceedings of the 14th
International Conference on Software Technologies (ICSOFT 2019), pp. 40–48.
SCITEPRESS - Science and Technology Publications, Lda, Prague, Czech Repub-
lic (2019). https://doi.org/10.5220/0007838000400048

11. Latif, M., Lakhrissi, Y., Nfaoui, E.H., Es-Sbai, N.: Cross platform approach for
mobile application development: A survey. In: 2016 International Conference on
Information Technology for Organizations Development (IT4OD), IEEE, Mar
2016. https://doi.org/10.1109/it4od.2016.7479278

12. Majchrzak, T.A., Biørn-Hansen, A., Grønli, T.M.: Comprehensive analysis of inno-
vative cross-platform app development frameworks. In: Proceedings of the 50th
Hawaii International Conference on System Sciences (2017). https://doi.org/10.
24251/HICSS.2017.745

13. Mercado, I.T., Munaiah, N., Meneely, A.: The impact of cross-platform develop-
ment approaches for mobile applications from the user’s perspective. In: Proceed-
ings of the International Workshop on App Market Analytics, pp. 43–49. ACM
(2016)

14. Milano, D.T.: AndroidViewClient. https://github.com/dtmilano/AndroidView
Client (2019). Accessed 04 Nov 2019

https://doi.org/10.5121/ijcsit.2015.7104
https://doi.org/10.1016/j.pmcj.2016.10.004
https://doi.org/10.1109/iwcmc.2013.6583580
https://doi.org/10.1002/spe.2286
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1007/978-3-642-38827-9_29
https://doi.org/10.1007/978-3-642-38827-9_29
https://www.unix.com/man-page/linux/8/vmstat/
https://www.unix.com/man-page/linux/8/vmstat/
https://doi.org/10.5220/0007838000400048
https://doi.org/10.1109/it4od.2016.7479278
https://doi.org/10.24251/HICSS.2017.745
https://doi.org/10.24251/HICSS.2017.745
https://github.com/dtmilano/AndroidViewClient
https://github.com/dtmilano/AndroidViewClient

Analysing the Performance of Mobile Cross-platform Development 57

15. Nunkesser, R.: Beyond web/native/hybrid: a new taxonomy for mobile app devel-
opment. In: MOBILESoft 2018: 5th IEEE/ACM International Conference on
Mobile Software Engineering and Systems, pp. 214–218. ACM, New York; Gothen-
burg, Sweden, May 2018. https://doi.org/10.1145/3197231.3197260

16. Statista: Global smartphone sales by operating system from 2009 to 2017 (in
millions). https://www.statista.com/statistics/263445/global-smartphone-sales-
by-operating-system-since-2009/ (2018). Accessed 11 Feb 2019

17. Statista: Worldwide mobile app revenues in 2014 to 2023 (in billion
U.S. dollars). https://www.statista.com/statistics/269025/worldwide-mobile-app-
revenue-forecast/ (2019). Accessed 12 Nov 2019

18. Vallerio, K.S., Zhong, L., Jha, N.K.: Energy-efficient graphical user interface design.
IEEE Trans. Mob. Comput. 5(7), 846–859 (2006)

19. Willocx, M., Vossaert, J., Naessens, V.: A quantitative assessment of performance
in mobile app development tools. In: 2015 IEEE International Conference on
Mobile Services, pp. 454–461. IEEE (2015)

20. Willocx, M., Vossaert, J., Naessens, V.: Comparing performance parameters of
mobile app development strategies. In: 2016 IEEE/ACM International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pp. 38–47. IEEE
(2016)

21. Xanthopoulos, S., Xinogalos, S.: A comparative analysis of cross-platform devel-
opment approaches for mobile applications. In: Proceedings of the 6th Balkan
Conference in Informatics on - BCI 2013. ACM Press (2013). https://doi.org/10.
1145/2490257.2490292

https://doi.org/10.1145/3197231.3197260
https://www.statista.com/statistics/263445/global-smartphone-sales-by-operating-system-since-2009/
https://www.statista.com/statistics/263445/global-smartphone-sales-by-operating-system-since-2009/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://doi.org/10.1145/2490257.2490292
https://doi.org/10.1145/2490257.2490292

Quantitative Analysis of Mutant Equivalence

Amani Ayad1, Imen Marsit2, Sara Tawfig3, Ji Meng Loh4, Mohamed Nazih Omri2,

and Ali Mili4(B)

1 SUNY, Farmingdale, NY, USA
ayada@farmingdale.edu

2 University of Sousse, Sousse, Tunisia
imen.marsit@gmail.com, mohamednazih.omri@fsm.rnu.tn

3 SUST, Khartoum, Sudan
stawfig2006@gmail.com

4 NJIT, Newark, NJ, USA
{loh,mili}@njit.edu

Abstract. Program mutation is the process of generating syntactic variations of
a base program and analyzing them by comparison with the base; this process is
meaningful only to the extent that the mutants are semantically distinct from the
base program, but that is not always the case. Two programs may be syntactically
distinct yet semantically equivalent. The problem of identifying and weeding out
equivalent mutants has eluded researchers for a long time. In this chapter we
argue that researchers ought to abandon the overly ambitious goal of determining
whether a program and its mutant are equivalent, and focus instead on the more
modest, but sufficient, goal of estimating the number of equivalent mutants that a
program is prone to generate.

Keywords: Mutation testing · Software metrics · Equivalent mutants ·
Redundant mutants · Mutation score

1 Mutation Equivalence: The Bane of Mutation Testing

Program mutation consists in taking a base program and applying a range of elementary
syntactic modifications thereto to generate variants thereof, called mutants. Mutants are
used for a variety of purposes, the most common of which is the generation and vali-
dation of test data suites: because mutations are deemed to be adequate representations
of faults [2,16,23], a test data suite can be assessed by its ability to distinguish mutants
from the base program. The trouble with this approach is that many mutants may be
semantically equivalent to the base program, despite being syntactically distinct. Hence
if a test data suite fails to distinguish a mutant from the base program (aka: to kill the
mutant), it may be because the mutant is semantically equivalent to the base program,
not because there is anything wrong with the suite.

As a result a great deal of research has been devoted to the problem of identi-
fying and weeding out equivalent mutants from a set of generated program mutants

This research is partially supported by NSF under grant DGE 1565478.

c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 58–80, 2020.
https://doi.org/10.1007/978-3-030-52991-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_4&domain=pdf
http://orcid.org/0000-0002-6578-5510
https://doi.org/10.1007/978-3-030-52991-8_4

Quantitative Analysis of Mutant Equivalence 59

[1,2,8,10–18,23–26,28,30,31]. Despite several decades of research, the problem of
equivalent mutants remains largely unsolved [27]. We argue that a major reason why
this problem has eluded researchers for so long is that its goal has been set too high, and
unnecessarily so. Determining whether two programs (a base program and a mutant, in
this case) are semanatically equivalent is known to be undecidable [7]. This theoretical
result notwithstanding, the task of determining whether two programs are semantically
equivalent is virtually insurmountable in practice. Researchers have resorted to two
approximate solutions in practice:

– Either inferring global program equivalence from local equivalence of affected
source code; this yields sufficient but unnecessary conditions of equivalence. Two
programs may well be semantically distinct at a local level yet still globally equiva-
lent, due to masking.

– Or inferring semantic equivalence from global functional or behavioral envelopes;
this yields necessary but insufficient conditions of equivalence. Two programs may
exhibit similarity in their functional or behavioral envelopes yet still be semantically
distinct.

Whereas the task of determining whether a program and a mutant are equivalent is
complex, costly, tedious, and error-prone, we have to remember that in practice this
task must be conducted not a for a single mutant, but for a larger set of mutants; hence
identifying and weeding out equivalent mutants in a set of size N is O(N) times an
already high cost. Also, once we have identified those mutants that are not equivalent
to the base program P , we must then worry about whether these mutants are equivalent
to each other; analyzing mutual equivalence among N mutants (which are known to be
distinct from P , but may be equivalent to each other) is O(N2) times the already high
cost of testing whether two programs are semantically equivalent.

Testing for equivalence of N mutants against a base program is not only costly; it
is also unnecessary. We argue that for most intents and purposes, it is not necessary to
identify individually all the mutants of P that are equivalent to P ; it suffices to estimate
their number. Fortunately, estimating their number can be done efficiently, by analyz-
ing the source code of P and the mutant generation policy that is applied to P , which
we define specifically by the set of mutation operators that are deployed on P . For a
given program P and mutant generation policy, we let the Ratio of Equivalent Mutants
(abbrev: REM) be the fraction of generated mutants that are equivalent to P . We argue
that this parameter can be estimated by analyzing P under the selected mutant genera-
tion policy, and we find that knowing the REM of a program enables us to answer many
important questions pertaining to the mutation behavior of P , including the degree to
which non-equivalent mutants of P are in turn equivalent to each other.

This paper extends and builds on the results of [6] by discussing the details of the
estimation of a program’s REM, and by discussing the validation of the assumptions and
results that we are obtaining by estimating and using the REM. In Sect. 2 we present the
motivation of a quantitative approach to the analysis of mutation equivalence and in
Sect. 3 we introduce a number of metrics that we believe, on the basis of analytical
arguments, to be statistically correlated to the REM of a program. In Sect. 4 we dis-
cuss the design of a Java (pseudo) compiler that we derived using compiler generation
technology to scan Java code and compute the metrics discussed in Sect. 3. In Sects. 5

60 A. Ayad et al.

and 6 we discuss means that we have developed to, respectively, estimate the REM of a
program, and use it to analyse the mutation attributes of the program. We conclude in
Sect. 7 by summarizing our findings, evaluating them, and exploring venues for further
research.

2 A Quantitative Approach

The issue of mutant equivalence has a bearing on many aspects of mutation testing; we
review these below.

– Equivalence between a Base Program and a Mutant. When we generate, say 100
mutants of some program P , and we want to check whether some test data T can
detect (kill) all the mutants, we ought to consider only those mutants that are not
equivalent to P ; indeed the mutants that are semantically equivalent to P cannot
be detected (killed) regardless of how adequate test data set T is. In this paper we
define a function we call REM (Ratio of Equivalent Mutants) to capture the ratio
of equivalent mutants that a program P is prone to generate, for a given mutant
generation policy.

– Mutant Redundancy: Equivalence between Mutants. Let us assume that out of the
100 mutants we have generated, we have determined that 80 are not equivalent to P ;
let us further assume that test data set T is able to detect (kill) all 80 mutants. What
this tells us about T depends to a large extent on how many of these 80 mutants are
equivalent to each other: If test T has killed 80 mutants, it is important to tell whether
it has killed 80 distinct mutants, or just killed the same mutant (albeit in different
syntactic forms) 80 times. Hence it is important to know how many equivalence
classes the set of 80 mutants has, modulo the relation of semantic equivalence. In this
paper we define a function we call NEC (Number of Equivalence Classes) to capture
the number of equivalence classes of the set of mutants modulo semantic equivalence
(excluding the equivalence class of P); and we show how we can estimate NEC.

– Mutation score. Imagine that we run the 100 mutants we have generated on test data
T , and we find that 60 mutants are detected (killed) and 40 are not; it is common to
take 0.6 (= 60/100) as the mutation score of T . We argue that this metric is flawed,
for two reasons: first, the mutation score ought to be based not on the total number
of generated mutants, but rather on those that are estimated to be non-equivalent to
P ((1− REM)× 100, in this case); second, the mutation score ought not count the
number of individual mutants detected (for the reasons cited above), but rather the
number of equivalence classes covered by the detected mutants. Indeed, whenever
one mutant is detected by test data T , all the mutants in the same class are also
detected; at an extreme case, if all 80 mutants form a single equivalence class, and
test data T detects one of them, it automatically detects all 80; to say in such a
situation that T detected 80 mutants is misleading; it is more meaningful to say that
T detected one equivalence class. Hence we argue that the mutation score should be
defined in terms of equivalence classes, not in terms of individual mutants; in this
paper, we introduce a metric to this effect, which we call EMS (Equivalence-based
Mutation Score).

Quantitative Analysis of Mutant Equivalence 61

As we shall see in this paper, NEC is defined in terms of REM, and EMS is defined in
terms of NEC; hence REM plays a pivotal in this study. To gain some insight into how
to estimate REM, we ask two related questions:

– What makes a program prone to generate equivalent mutants?
– Given a base program P and a mutant M , what may cause the mutant to be equiva-
lent to the base program?

To answer the first question, we make the following observation: A program that is
prone to generate equivalent mutants is a program that can continue performing the
same function despite the presence and sensitization of mutations in its source code.
Now, mutations are supposed to simulate faults in programs; if we replace “mutations”
by “faults” in the above statement we find that a program that is prone to generate
equivalent mutants is a program that can continue perfoming the same function despite
the presence and sensitization of faults in its source code. This is exactly the characteri-
zation of fault tolerant programs, and we know too well what attribute makes programs
fault tolerant: it is redundancy. Hence if we can quantify the redundancy of a program,
we can use the redundancy metrics to predict the REM of a program.

To answer the second question, we consider the following circumstances that may
cause a mutant to be equivalent to a base program (using the terminology of Laprie
et al. [4,19–21]).

– The mutation is not a fault, i.e. it never generates a state that is different from the
original program; this arises in trivial circumstances such as when the mutation
applies to dead code, but may also arise in more common cases, such as, e.g. chang-
ing < onto ≤ when the operands being compared are never equal (e.g. an array of
unique identifiers).

– The mutation is a fault, but it causes no error; i.e. it does cause the generation of a
different state, but the state it generates is correct (as correct as the state generated by
the base program). As an example, imagine that the mutation causes a list of items
to be visited in a different order from the original program, but the order is irrelevant
(example; if the program is performing a commutative associative operation on the
elements of the list. As another example, consider the situation of a sorting algorithm
where the mutation operator reverses all the comparison operators, likely causing
the mutant to sort the array in reverse order from the base program, but the array is
getting sorted merely to extract its median.

– The mutation is a fault, it does cause errors, but the errors do not cause failure.
In other words the mutation causes the generation of an erroneous state, but the
error is subsequently masked by downstream code. This arises routinely, as program
functions are typically very non-injective.

– The mutation is a fault, it does cause errors, the errors do cause failure, but the
failure falls within the tolerance of the equivalence oracle. If the equivalence oracle
does not test for comprehensive equality between the final state of P and the final
state of M , it is conceivable that M and P are considered equivalent while their final
states are distinct. This arises for example if the oracle that tests for equivalence does
not check for identity of all the variables, only important program variables, and the
mutation affects secondary auxiliary variables; this may also arise if the mutation
affects local/ limited scope program variables after their value has been referenced.

62 A. Ayad et al.

3 Redundancy Metrics

In this section, we review some metrics which, we feel, may be statistically related to
the REM of a program; these metrics reflect various forms of program redundancy, and
they are related with the circumstances we cite above for a mutant to be equivalent to a
base program. These metrics are defined by means of Shannon’s entropy function [29];
we use the notations H(X), H(X|Y) and H(X,Y) to denote, respectively, the entropy
of random variable X , the conditional entropy of X given Y , and the joint entropy of
random variables X and Y ; we assume that the reader is familiar with these concepts,
their interpretations, and their properties [9]. For each metric, we briefly present its
definition, its interpretation, how we calculate it, and why we believe that it is correlated
to (because it affects) the REM of a program; in Sect. 4 we discuss how we automate
the calculation of these metrics for Java code. For illustrative examples of how these
metrics are computed (by hand), see [5]

Because the REM is a ratio that ranges between 0 and 1, we resolve to define all
our metrics as values between 0 and 1, so as to facilitate the derivation of a regression
model. For the sake of simplicity, we compute all entropies under the assumption of
equal probability.

3.1 State Redundancy

What We Want to Represent: When we declare variables in a program, we do so for the
purpose of representing the states of the program; for a variety of reasons, it is very
common to find that the range of values that program variables may take is much larger
than the range of values that actual/ feasible program states may take. We want state
redundancy to reflect the gap between the entropy of the declared state and that of the
actual state of the program.

How We Define It: If we let S be the declared state of the program, and σ be the actual
state of the program, then the state redundancy of the program can be measured by the
difference between their respective entropies; to normalize it (so that it ranges between
0.0 and 1.0) we divide it by the entropy of the declared state. Recognizing that the
entropy of the actual state decreases (hence the redundancy increases) as the execution
of the program proceeds from the initial state to the final state, we define, in fact two
different measures of state redundancy, one for each state.

Definition 1 (Due to [6]). Given a program P whose declared state (defined by its
variable declarations) is S, we let σI and σF be its initial and final actual states, we
define its initial state redundancy and its final state redundancy as, respectively:

SRI =
H(S) − H(σI)

H(S)
,

SRF =
H(S) − H(σF)

H(S)
.

How We Calculate It: To compute H(S) we use a table (due to [6]) that maps each data
type to its width in bits,

Quantitative Analysis of Mutant Equivalence 63

Table 1. Entropy of declared state (due to [6]).

Data type Entropy (bits)

bool 1

char 1

int 32

float 64

Why We Feel It Is Correlated to the REM of a Program: State redundancy reflects the
amount of duplication of the information maintained by the program, or the amount of
extra bits of information that are part of the declared state; the more duplicated bits or
unused bits are lying around in the program state, the greater the likelihood that a muta-
tion affects bits that are not subsequently referenced in the execution of the program
(hence do not affect its outcome).

3.2 Non Injectvity

What We Want to Represent: A function f is said to be injective if and only if it maps
different inputs onto different outputs, i.e. x �= x′ ⇒ f(x) �= f(x′). A function is
non-injective if it violates this property; it is all the more non-injective that it maps a
larger set of distinct inputs onto a common output.

HowWe Define It: For the purposes of this metric, we view a program as mapping initial
states onto final states. One way to quantify non-injectivity is to use the conditional
entropy of the initial state given the final state: this entropy reflecte the uncertainty we
have about the initial state if we know the final state; this entropy increases as more
initial states are mapped to the same final state; to normalize it, we divide it by the
entropy of the initial state.

Definition 2 (Due to [6]). Given a program P on space S, the non-injectivity of P is
denoted by NI and defined by:

NI =
H(σI |σF)

H(σI)
,

where σI and σF are, respectively, the initial actual state and the final actual state of
P .

Because σF is a function of σI , the conditional entropy can be simplified [9], yielding
the following formula:

NI =
H(σI) − H(σF)

H(σI)
.

In [3], Androutsopoulos et al. introduce a similar metric, called squeeziness, which they
find to be correlated to the probability that an error arising at some location in a program
fails to propagate to the output.

64 A. Ayad et al.

How We Calculate It: We have already discussed how to compute the entropies of the
initial state and final state of a program.

Why We Feel It Is Correlated to the REM of a Program: One of the main sources of
mutant equivalence is the ability of programs to mask errors that have infected the
state, by mapping the erroneous state onto the same final state as the correct state. This
happens all the more frequently that the function of the program is more non-injective;
hence non-injectivity measures exactly the capability of the program to mask errors
caused by the sensitization of mutations.

3.3 Functional Redundancy

What We Want to Represent: Not all programs can be faithfully modeled as mappings
from initial states to final states, as we do in Sect. 3.2; sometimes a more faithful model
of a program may be a heterogeneous function from some input space X to some out-
put space Y . Programs exchange information with their environment through a wide
range of channels: they receive input information (X) through read statements, message
passing, passed by-value parameters, access to global variables, etc; and they send out-
put information (Y) through write statements, passed by-reference parameters, return
statements, access to global variables, etc. We want a metric that reflects non-injectivity
(hence the potential for masking errors) for this model of computation.

How We Define It: We let X be the random variable that represents all the input infor-
mation used by the program, and we let Y be the random variable that represents all the
output information that is delivered by P .

Definition 3 (Due to [6]). Given a program P that takes input X and returns output
Y , the functional redundancy of P is denoted by FR and defined by:

FR =
H(X|Y)
H(X)

.

Because Y is a function of X , we know [9] that the conditional entropy (H(X|Y))
can be written as (H(X) − H(Y)). Also, the entropy of Y is less than or equal to
the entropy of X , and both are non-negative, hence FR ranges between 0 and 1 (we
assume, of course, that H(X) �= 0).

How We Calculate It: The entropy of X is the sum of the entropies of all the input
channels and the entropy of Y is the sum of the entropies of all the output channels.

Why We Feel It Is Correlated to the REM of a Program: Functional redundancy,
like non-injectivity, reflects the program’s ability to mask errors caused by mutations;
whereas non-injectivity models the program as a homogeneous function on its state
space, functional redundancy models it as a heterogeneous mapping from an input space
to an output space.

All the metrics we have discussed so far pertain to the base program; we refer to
them as the program’s intrinsic metrics. The metric we present in the next section deals
not with the base program, but rather with the oracle that is used to rule on equivalence.

Quantitative Analysis of Mutant Equivalence 65

3.4 Non Determinacy

What We Want to Represent: Whether two programs (in particular, a program and a
mutant thereof) are equivalent or not may depend on how thoroughly we check their
behavior. For example, it is possible that out of three program variables, two represent
the intended function of the programs and the third is merely an auxiliary variable. In
such a case, the oracle of equivalence ought to check that the relevant variables have
the same value, but ignore the auxiliary variable.

From this discussion we infer that the equivalence between a base program P and
a mutant M may depend on what oracle is used to compare the output of P with the
output of M , and we are interested to define a metric that reflects the degree of non-
determinacy of the selected oracle.

We are given a program P on space S and a mutant M on the same space, and
we consider an oracle Ω() on S defined by an equivalence relation on S. We want the
non-determinacy of Ω() to reflect how much uncertainty we have about the output of
M for a given input if we know the output of P for the same input.

Definition 4 (Due to [6]). Given a program P and a mutant M on space S, and given
an oracleΩ() defined as an equivalence relation on S, we let SP and SM be the random
variables that represent the final states of P and M for a common input. The non-
determinacy of Ω() is denoted by ND and defined by:

ND =
H(SP |SM)

H(SP)
.

Given that Ω() defines an equivalence class over S, this metric reflects the amount of
uncertainty we have about an element of S if all we know is the equivalence of this
element by relation Ω().

How We Calculate It: The conditional entropy H(SP |SM) is really the entropy of the
equivalence classes of S modulo the equivalence relation defined by Ω(). It represents
the amount of uncertainty we have about an element of S if all we know is its equiv-
alence class; if Ω() is the identity relation then all equivalence classes are singletons
and ND = 0; else it is the base 2 logarithm of the size of equivalence classes. As an
example, we consider space S defined by three variables, say x, y, z of type integer,
and we show in the following table a number of possible oracles with their respective
non-determinacies. For all these oracles, H(SP) = 3 × 32 = 96; the only term that
changes is H(SP |SM) (Table 2).

Table 2. Non determinacy of sample oracles (due to [6]).

Ω() H(SP |SM) ND

(xP = xM) ∧ (yP = yM) ∧ (zP = zM) 0 0

(xP = xM) ∧ (yP = yM) 32 0.33

(xP = xM) 64 0.66

True 96 1.0

66 A. Ayad et al.

WhyWe Feel It Is Correlated to the REM of a Program:Of course, the weaker the oracle
that tests for equivalence, the more mutants will be found to be equivalent to the base
program.

3.5 A Posteriori Justification

In Sect. 2, we had asked two questions: First, what attribute makes a program prone to
generate equivalent mutants; second, under what circumstances can a mutant behave
in a way that is equivalent to a base program. The metrics we introduced in Sect. 3
answer the first question, since they capture different aspects of redundancy. In Table
3, we discuss why we feel that the selected metrics answer the second question, in the
sense that they reflect the likelihood of occurrence of each circumstance that we had
identified.

Table 3.Metrics vs circumstances of equivalence (due to [6]).

Metrics Circumstances of equivalence

SRI Mutation not a fault

SRF Mutation is a fault
Causes no error

FR, NI Mutation is a fault
Causes errors
Errors masked

ND Mutation is a fault
Causes errors
Errors propagate
Failure undetected

4 A Java Compiler

In order to automate the calculation of these redundancy metrics, and ensure that our
calculations are applied uniformly, we use compiler generation technology (ANTLR,
http://www.antlr.org/) to parse Java code and derive these metrics for individual meth-
ods in Java classes. For each method, we must estimate the following quantities:

– The entropy of the declared space, H(S).
– The entropy of the initial actual space, H(σI).
– The entropy of the final actual space, H(σF).
– The entropy of the input space, H(X).
– The entropy of the output space, H(Y).

The entropies of the declared space, the input space, and output space are fairly straight-
forward; they consist in identifying the relevant variables and adding their respective
entropies, depending on their data type, as per Table 1.

http://www.antlr.org/

Quantitative Analysis of Mutant Equivalence 67

4.1 Entropy of the Initial State

For the entropy of the initial actual space, we are bound to rely on input from the source
code, as we have no other means to probe the intent of the programmer (re: how they use
declared variables to represent the actual program state). To this effect, we introduce a
special purpose assert statement, which the engineer may use to specify the precondition
of the method whose REM we want to compute. We propose the following statement

preassert(<precondition>)

whose semantic definition is exactly the same as a normal assert statement, but this
statement is used specifically to analyze the entropy of the initial actual state. When the
method has an exception call at the beginning as a guard for the method call, then it
is straightforward to have a preassert() statement immediately after the exception
statement, with the negation of the condition that triggers the exception. The entropy of
the initial actual state is computed as:

H(σI) = H(S) − ΔH,

where ΔH is the reduction in entropy represented by the assertion of the
preassert() statement. This quantity is defined inductively according to the struc-
ture of the assertion, as shown summarily below:

– ΔH(A ∧ B) = ΔH(A) + ΔH(B).
– ΔH(A ∨ B) = max(ΔH(A),ΔH(B)).
– ΔH(X == Y), where X and Y are expressions of the same type, equals the
entropy of the common type. For example, if x and y are integer variables, then
ΔH(x + 1 == y − 1) is 32 bits.

– ΔH(X < Y) = ΔH(X <= Y) = ΔH(X > Y) = ΔH(X >= Y) = 1 bit.
So for example ΔH(x + 1 > 0) = 1 bit, since this equality reduces the range of
possible values of x by half, whose log2 is then reduced by 1.

This is not a perfect solution, but it is adequate for our purposes.

4.2 Entropy of the Final State

For the entropy of the final actual space, we have to keep track of dependencies that
the program creates between its variables. We do so using a Boolean matrix (called D,
for Dependency), which is initialised to the identity (T on the diagonal, F outside, to
mean that initially each variable depends only on itself); whenever we encounter an
assignment statement, of the form (x=E(y,z,u,w)), we replace the row of x in D with
the logical OR of the rows of all the variables that appear in expression E; if no variable
appears in expression E (x is assigned a constant value), then the row that corresponds
to x is filled with F ’s. At the end of the program we add (i.e. take the logical OR) of
all the rows of the matrix; this yields a vector that indicates which program variables
affect the value of the final state of the program. The sum of the entropies of the selected
variables is the entropy of the final actual state.

For illustration, we consider a program with, say, four integer variables, and we
assume that it has no preassert() statement, hence we get:

68 A. Ayad et al.

H(S) = 128 bits.
ΔH = 0, hence H(σI) = H(S) = 128 bits.

To compute the entropy of its final actual state, we scan its source code:

int x, y, z, w;
x=y+z;
w=2*x+5*z+9;
z=y*5;

Figure 1 shows the evolution of the dependency matrix as the execution of this pro-
gram proceeds. The Boolean vector V is obtained by adding (logically) all the rows of
matrixD; it shows that the final state depends on the initial values of only two variables,
namely y and z. Hence the entropy of the final actual state in this case is:

H(σF) = 2 × 32 = 64 bits.

If the assignment statements are within an if-statement, then we perform the same
operation as above, but we consider the variables that appear in the condition of the if-
statement as part of the right hand-side of every assignment statement. Figure 2 shows
the evolution of the dependency matrix for the following if-statement:

int x, y, z, w;
if (x>10)

{x=y+z;
w=2*x+5*z+9;
z=y*5;}

According to the final vector V , the entropy of the final actual state is:

H(σF) = 3 × 32 = 96 bits.

To analyze an if-then-else statement, we consider the two branches of the statement
(then-branch, else-branch), process them the same way as we advocate above for the if-
statement (i.e. consider that the variables that appear in the condition are part of the right
hand side of every assignment), then we adopt for the matrix of the whole statement the
branch matrix that yields the smallest entropy (hence the greatest redundancy). For
illustration, we consisder the following program:

int x, y, z, w;
if (x>10)

{x=y+z;
w=2*x+5*z+9;
z=y*5;}

else
{x=x+2;
y=2*y;
z=10;
w=y;}

Quantitative Analysis of Mutant Equivalence 69

Fig. 1. Evolution of the dependency matrix for assignments.

Figure 3 illustrates how we analyze this if-then-else statement; because the then-
branch is the same as the previous example, we skip the line-by-line analysis of this
branch, and focus on the else-branch instead. Note that for each assignment statement
we assume that x appears in the right hand side of the statement, since it directs the

70 A. Ayad et al.

Fig. 2. Evolution of the dependency matrix for conditionals.

execution of the whole branch. Also note that when we execute the statement z=10;
the whole row of z becomes F , to which we add the row of x.

The entropy of the final state of the then-branch is 96 bits and the entropy of the
else-branch is 64 bits; hence we adopt the matrix of the else-branch as the dependency
of the whole statement. Whence we find:

Quantitative Analysis of Mutant Equivalence 71

Fig. 3. Evolution of the dependency matrix for If-Then-Else.

72 A. Ayad et al.

H(σF) = 64 bits.

While statements are treated the same way as if-statements: the variables that appear
in the loop condition are treated as though they appear on the right hand side of every
assignment statement of the loop body, and the dependency matrix of the whole loop is
the matrix we obtain for the loop body under these conditions.

5 Estimating the REM

5.1 A Regression Model

In order to test our assumption that our redundancy metrics are statistically correlated
with the REM of a program, we have conducted an empirical experiment, whereby we
select a set of Java classes from the Apache Common Mathematics Library and run our
Java compiler to compute the redundancy metrics of each method of each class. On the
other hand, we apply a mutant generator to these classes using a uniform set of standard
mutation operators, then we execute the base program and the mutants on benchmark
test data sets, and record how many mutants are killed by the test. Simultaneously,
we keep track of coverage metrics, and exclude from consideration any method whose
line coverage falls below 90%. By keeping in our sample only those Java classes for
which line coverage is high (in fact the vast majority reach 100% line coverage) we
maximize the likelihood that mutants that are found to survive after undergoing the test
are equivalent to the base program. Under this assumption, we use the ratio of surviving
mutants of each method over the total number of mutants as an approximation of the
REM of the method. Our data sample includes about two hundred methods, but when
we exclude those whose size is below 20 LOC we end up with 66 methods; because we
treat individual methods rather than whole classes, this condition excludes many small
methods.

We peform a statistical regression using REM as the dependent variable and the
intrinsic redundancy metrics (i.e. those metrics that pertain to the program, not the
equivalence oracle) as the independent variables. We use a logistic model, i.e. a model
such that log(REM

1−REM) is a linear combination of the independent variables. The metric
that pertains to the equivalence oracle (ND) is not part of the regression analysis, but
is integrated in the equation in such a way that if ND = 0 we obtain the regression
formula involving the intrinsic metrics, and if ND = 1 (extreme case when the oracle
tests trivially for true , i.e. all the mutants are found to be equivalent) we want the REM
to be 1. The resulting formula is:

REM = ND + (1 − ND) × (−3.27 + 1.35 × SRF + 1.26 × FR).

With this equation in place, we can now have a tool that automatically computes the
redundancy metrics, then derives the REM using this formula.

5.2 Mutation Policies

The statistical model we have developed in the previous section was based on a fixed
mutant generation policy, which was used throughout the experimentation; hence this

Quantitative Analysis of Mutant Equivalence 73

model can only be used so long as we are using this mutant generation policy. To make
provisions for other mutant generation policies, we envision two possible venues:

– Either we select a number of standard mutant generation policies, which may bear
special significance due to their use, or their properties [2,16,23]. Then we build a
regression model for each selected policy; this may be a viable option, despite its
limited scope, if it werent for the fact that we are already considering to derive
a range of regression models even for a single policy, to take into account the
many dimensions of variability between software products (in terms of language,
paradigm, size, application domain, etc).

– Or we derive a regression model for each individual mutation operator, then find a
formula that enables us to compute the REM that corresponds to a given mutation
policy from the REM’s that correspond to its members. This matter is discussed in
[22], where it is conjectured that when a policy includes N operators, whose REM’s
areREM1,REM2, ...REMN , then the REM of the overall policy can be computed
as:

REM = 1 −
N∏

i=1

(1 − REMi).

This conjecture is based on limited empirical observation, and is currently under
investigation for possible confirmation.

6 Uses of the REM

Whereas we resolved to analyze the REM of a program primarily for the purpose of
estimating the number of equivalent mutants that the program is prone to produce, we
find that in fact the REM can inform us a great deal about many relevant aspects of
mutation testing; we review some of these in this section.

6.1 Mutant Equivalence

Given a set of M mutants of a base program P , and given a ratio of equivalent mutants
REM, the number of equivalent mutants is estimated to be M × REM . Hence we
cannot expect any test data set T to kill more than N = M × (1 − REM) mutants
(modulo the margin of error in the estimation of REM).

6.2 Mutant Redundancy

In [27], Papadakis et al. raise the problem of mutant redundancy as the issue where
many mutants may be equivalent among themselves, hence do not provide test coverage
commensurate with their number. If we have sixty mutants divided into twelve classes
where each class contains five equivalent mutants, then we have only twelve distinct
mutants; and if some test data set T kills these sixty mutants, it should really get credit
for twelve mutants (twelve casualties, so to speak), not sixty, since whenever it kills a

74 A. Ayad et al.

mutant from one equivalence class, it automatically kills all the mutants of the same
class. Of course, it is very difficult to determine, in a set of mutants, which mutants are
equivalent and which are not; but again, the REM enables us to draw some quantitative
data about the level of redundancy in a pool of mutants.

The REM of the base program is computed using a regression formula whose inde-
pendent variables are the redundancy metrics extracted from the source code of the pro-
gram. Since the mutants are generated from the base program by means of elementary
syntactic changes, it is reasonable to consider that the mutants have the same redun-
dancy metrics, therefore the same REM as the base program. If we interpret the REM as
the probability that any two mutants are semantically equivalent, then we can estimate
the number of equivalence classes by answering the following question: Given a set of
size N , and given that any two elements of this set have a probability REM to be in
the same equivalence class modulo some relation EQ, what is the expected number of
equivalence classes of this set modulo EQ?

We denote this number by NEC(N,REM), and we write it as follows:

NEC(N,REM) =
N∑

k=1

k × p(N,REM, k),

where p(N,REM, k) is the probability that a set of N elements where each pair has
probability REM to be equivalent has k equivalence classes. This probability satisfies
the following inductive conditions.

– Basis of Induction. We have two base conditions:
• One Equivalence Class. p(N,REM, 1) = REMN−1. This is the probability
that all N elements are equivalent.

• As Many Equivalence Classes as Elements, or: All Equivalence Classes are

Singletons. p(N,REM,N) = (1−REM)
N×(N−1)

2 . This is the probability that
no two elements are equivalent: every two elements are not equivalent; there are
N × (N − 1) pairs of distinct elements, but because equivalence is a symmetric
relation, we divide this number by 2 (Mi �= Mj is the same event as Mj �= Mi).

– Inductive Step. When we add one element to a set of N − 1 elements, two possibili-
ties may arise: either this adds one to the number of equivalence classes (if the new
element is equivalent to no current element of the set); or it maintains the number of
equivalence classes (if the new element is equivalent to one of the existing equiva-
lence classes). Since these two events are disjoint, the probability of the disjunction
is the sum of the probabilities of each event. Hence:

p(N,REM, k) = p(N − 1, REM, k) × (1 − (1 − REM)k

+ p(N − 1, REM, k − 1) × (1 − REM)k−1.

The following recursive program (Due to [6]) computes the number of equivalence
classes of a set of size N whose elements have probability REM of being equivalent.

Quantitative Analysis of Mutant Equivalence 75

#include <iostream>
#include "math.h"

using namespace std;

double p(int N, int k, double R);

int main ()
{

float R=0.158; int N=65;
float mean = 0.0; float ps=0.0;
for (int k=1; k<=N; k++)

{float prob=p(N,k,R); ps = ps+prob;
mean = mean + k*prob;}

cout<<"ps:"<<ps<<" mean:"<<mean<<endl;
}
double p(int N, int k, double R)

{if (k==1) {return pow(R,N-1);}
else
if (N==k) {return pow(1-R,(k*(k-1))/2);}
else {return p(N-1,k,R)*(1-pow(1-R,k))

+p(N-1,k-1,R)*pow(1-R,k-1);}}

Execution of this program with N = 65 and REM = 0.158 yields NEC(N,
REM) = 14.64, i.e. our 65 mutants represent only about 15 different mutants; the
remaining 50 are redundant.

6.3 Mutation Score, Revisited

The quantification of redundancy, discussed in the previous section, casts a shadow on
the traditional way of measuring the mutation score of a test data set T : usually, if we
execute a set of M mutants on some test data set T and we find that X mutants have
been killed (i.e. shown to be different from the base program P), we assign to T the
mutation score X/M . This metrics ignores the possibility that several of M mutants
may be equivalent, and several of the X killed mutants may be equivalent. We argue
that this metric can be improved and made more meaningful, in three ways:

– Because of the possibility that mutants may be equivalent to the base program P , the
baseline ought to be the number of non-equivalent mutants, i.e. N = (1−REM)×
M .

– Because of the possibility that those mutants that are not equivalent to P may
be equivalent amongst themselves, we ought to focus not on the number of these
mutants, bur rather on the number of equivalence classes modulo semantic equiva-
lence. This is defined in the previous section as NEC(N,REM).

– Because of the possibility that the X mutants killed by test data set T may be
equivalent amongst themselves, we ought to give credit to T not for the cardinal-
ity of X , but rather for the number of equivalence classes that X may overlap.
We refer to this number as COV (N,K,X) (COV stands for: coverage), where

76 A. Ayad et al.

K = NEC(N,REM) is the number of equivalence classes of the set of N mutants
modulo equivalence.

To computeCOV (N,K,X), we designate byC1, C2, ...CK theK equivalence classes,
we designate by fi, for (1 ≤ i ≤ K), the binary functions that take value 1 if and only
if equivalence class Ci overlaps with (i.e. has a non-empty intersection with) set X ,
and value 0 otherwise. Then COV (N,K,X) = E(

∑
i=1 Kfi). If we assume that all

classes are the same size and that elements of X are uniformly distributed over the set
of mutants, then this can be written as:

cov(N,K,X) = K × p(fi = 1) = K × (1 − p(fi = 0)),

for an arbitrary i. For the first class to be considered, p(f1 = 0) = K−1
K

X
, since each

element of X has a probability K−1
K of not being in class C1; for each subsequent

element, the numerator and denominator each drops by 1. Hence we have the following
formula:

COV (N,K,X) = K × (1 − K − 1
K

X

×
X−1∏

i=0

N − i
K−1

N − i
).

The following program (due to [6]) computes this function, for N = 65, K = 15 and
X = 50.

#include <iostream>
#include "math.h"
using namespace std;

double cov(int N, int K, int X);

int main ()
{

int N=65; int K=15; int X=50;
cout << "cov: " << cov(N,K,X) << endl;

}

double cov(int N, int K, int X)
{
float prod=1;
for (int i=0; i<K; i++)

{prod = prod *
(N-i/(float)(K-1))/(float)(N-i);}

return K*(1-prod*pow((K-1)/(float)K,X));
}

Execution of this program yields COV (65, 15, 50) = 12.55. We propose the fol-
lowing definition.

Definition 5 Given a base program P and M mutants of P , and given a test data set
T that has killed X mutants, the mutation score of T is the ratio of equivalence classes
covered by X over the total number of equivalence classes amongst the mutants that
are not equivalent to P .

Quantitative Analysis of Mutant Equivalence 77

We denote the mutation score by EMS(M,X). The following proposition gives an
explicit formula of the mutation score.

Proposition 1 Given a program P and M mutants of P , and given a test data set T
that has killed X mutants, the mutation score of T is given by the following formula:

EMS(M,X) =
COV (N,NEC(N,REM),X)

NEC(N,REM)
,

where REM is the ratio of equivalent mutants of P and N = M(1 − REM) is the
number of mutants that are not equivalent to P .

In the example above, for N = 65, REM = 0.158, and X = 50 we find

EMS(77, 50) =
12.55
15

= 0.84.

6.4 Empirical Validation

We are currently conducting an empirical validation of these results pertaining to the
use of the REM to analyze mutation testing. The focus of our validation is function
NEC(N,REM), as it plays a major role in our investigations. To this effect, we take
a number of programs from standard benchmarks, generate mutants thereof, run tests
to estimate their REM, use the formula of NEC(N,REM) to estimate the number of
equivalence classes among the N mutants that are not equivalent to the base program
P . Then we try to compute this number empirically by testing the N mutants for equiv-
alence with each other. Given that we estimate the program’s REM and we test for the
mutants’ mutual equivalence by using the limited test data that comes with each soft-
ware component, we realize that our calculations are prone to be imprecise: We rule
that two programs are equivalent if and only if they produce the same output for the
(small) test data set.

An alternative approach we are considering is to test the assumption on which the
formula ofNEC(N,REM) is based, namely the assumption that P has the same REM
as all the mutants generated from P . There are two ways to conduct this experiment:

– Given a base program P and N mutants M1, M2, M3, ... MN , we compute the
REM of P by testing it against each of the N mutants, then we compute the REM
of mutant Mi by permuting P and Mi, then testing Mi for equivalence to P and the
remaining mutants.

– Given a base program P and N mutants M1, M2, M3, ... MN , we compute the
REM of P by testing it against each of the N mutants, then we compute the REM
of mutant Mi by applying the mutant generator to Mi as if it were a base program,
then testing it for equivalence against its mutants using available mutation tools (e.g.
PiTest).

Though the first option gives more meaningful results (as the mutants are unchanged
from one REM estimate to the next), the second option is easier to automate. Our pre-
liminary experimentation shows that P and the mutants have very similar REM’s, which
is very encouraging.

78 A. Ayad et al.

7 Conclusion

7.1 Summary

In this paper, we argue that the determination of mutant equivalence and mutant redun-
dancy by inspection and analysis of individual mutants is very expensive and error-
prone, at the same time that it is in fact unnecessary, for most purposes. As a substitute,
we propose to analyze the amount of redundancy that a program has, in various forms,
and we find that this enables us to extract a number of mutation-related metrics at neg-
ligible cost. Central to this quantitative analysis is the concept of ratio of equivalent
mutants, which measures the probability that any two mutants, or a mutant and the base
program, are semantically equivalent. We discuss the generation of the REM of a pro-
gram, by means of a Java (pseudo-) compiler that estimates the program’s redundancy
metrics, then derives an estimate of the REM using a regression model.

7.2 Assessment and Threats to Validity

Our study highlights something of a paradox: On one hand, we find that our analysis of
the mutation attributes of a program depends critically on the precision with which we
estimate the REM; on the other hand, we find it difficult to estimate the REM with great
precision.

– The value of NEC(N,REM) is much more sensitive to REM than it is to N ;
for larger values of REM , NEC(N,REM) takes small values even for very large
values of N . For example, for REM = 0.15 and N = 3000 we find NEC = 38; in
other words, for an REM of 0.15 (not an uncommon value), we kill as many as 3000
mutants, only to find that we have actually killed a mere 38 distinct mutants. Hence
any error that arises in the estimation of REM is likely to greatly affect the pre-
cision of NEC(N,REM); this, in turn, affects the precision of COV (N,K,X),
and that of EMS(M,X). This puts a heavy onus on us to double check the way the
redundancy metrics are computed.

– The machinery we have put in place to compute the redundancy metrics is optimized
for programs that handle static state spaces, which proceed by successive updates of
program variables, thereby increasing program redundancy (by creating more and
more relationships between program variables). But much of today’s source code
does not fit this simple pattern: it involves dynamic allocation and deallocation of
memory, inter-object communication, data whose entropy is undefined or difficult to
quantify, etc.

7.3 Prospects

Our plan for future research is a direct consequence of the assessment given in the previ-
ous subsection: We envision to review the definition and the calculation of redundancy
metrics; then we envision to revisit the statistical models that we use to derive the REM
from the redundancy metrics.

Also, we envision to proceed with an empirical validation of the functions intro-
duced in this study, using thorough test data sets; finally, we envision to resolve the

Quantitative Analysis of Mutant Equivalence 79

questions raised in Sect. 5.2 about how to integrate the mutant generation policy into
our analysis.

Acknowledgements. This work is partially supported by a grant from NSF, number
DGE1565478.

References

1. Adamopoulos, K., Harman, M., Hierons, R.M.: How to overcome the equivalent mutant
problem and achieve tailored selective mutation using co-evolution. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3103, pp. 1338–1349. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24855-2 155

2. Andrews, J., Briand, L., Labiche, Y.: Is mutation an appropriate tool for testing experiments?
In: Proceedings, ICSE (2005)

3. Androutsopoulos, K., Clark, D., Dan, H., Hierons, R.M., Harman, M.: An analysis of the
relationship between conditional entropy and failed error propagation in software testing. In:
Proceedings, ICSE 2014 (2014)

4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

5. Ayad, A., Marsit, I., Loh, J., Omri, M.N., Mili, A.: Quanatitative metrics for mutation testing.
In: Proceedings, ICSOFT 2019, Prague, Czech Republic, July 2019

6. Ayad, A., Marsit, I., Mohamed Omri, N., Loh, J.M., Mili, A.: Using semantic metrics
to predict mutation equivalence. In: van Sinderen, M., Maciaszek, L.A. (eds.) ICSOFT
2018. CCIS, vol. 1077, pp. 3–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29157-0 1

7. Budd, T.A., Angluin, D.: Two notions of correctness and their relation to testing. Acta Infor-
matica 18(1), 31–45 (1982)

8. Carvalho, L., Guimares, M., Fernandes, L., Hajjaji, M.A., Gheyi, R., Thuem, T.: Equivalent
mutants in configurable systems: an empirical study. In: Proceedings, VAMOS 2018, Madrid,
Spain (2018)

9. Csiszar, I., Koerner, J.: Information Theory: Coding Theorems for Discrete Memoryless Sys-
tems. Cambridge University Press, Cambridge (2011)

10. Delamaro, M.E., Maldonado, J.C., Vincenzi, A.M.R.: Proteum /im 2.0: an integrated muta-
tion testing environment. In: Wong, W.E. (ed.) Mutation Testing for the New Century, vol.
24, pp. 91–101. Springer, Boston (2001). https://doi.org/10.1007/978-1-4757-5939-6 17

11. Gruen, B., Schuler, D., Zeller, A.: The impact of equivalent mutants. In: Proceedings,
MUTATION 2009, Denver, CO, USA (2009)

12. Hierons, R., Harman, M., Danicic, S.: Using program slicing to assist in the detection of
equivalent mutants. J. Softw. Test. Verif. Reliab. 9(4), 233–262 (1999)

13. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite effectiveness.
In: Procedings, 36th International Conference on Software Engineering. ACM Press (2014)

14. Just, R., Ernst, M., Fraser, G.: Using state infection conditions to detect equivalent mutants
and speed up mutation analysis. In: Dagstuhl Seminar 13021: Symbolic Methods in Testing,
Wadern, Germany (2013)

15. Just, R., Ernst, M., Fraser, G.: Efficient mutation analysis by propagating and partitioning
infected execution states. In: Proceedings, ISSTA 2014, San Jose, CA, USA (2014)

16. Just, R., Jalali, D., Inozemtseva, L., Ernst, M., Holmes, R., Fraser, G.: Are mutants a valid
substitute for real faults in software testing? In: Proceedings, FSE (2014)

https://doi.org/10.1007/978-3-540-24855-2_155
https://doi.org/10.1007/978-3-540-24855-2_155
https://doi.org/10.1007/978-3-030-29157-0_1
https://doi.org/10.1007/978-3-030-29157-0_1
https://doi.org/10.1007/978-1-4757-5939-6_17

80 A. Ayad et al.

17. Just, R., Ernst, M.D., Fraser, G.: Using state infection conditions to detect equivalent mutants
and sped up mutation analysis. In: Proceedings, Dagstuhl Seminar 13021: Symbolic Methods
in Testing (2013)

18. Kintis, M., Papadakis, M., Jia, Y., Malveris, N., Le Traon, Y., Harman, M.: Detecting trivial
mutant equivalences via compiler optimizations. IEEE Trans. Softw. Eng. 44(4), 308–333
(2018)

19. Laprie, J.C.: Dependability: Basic Concepts and Terminology: In English, French, Ger-
man, Italian and Japanese. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-7091-
9170-5

20. Laprie, J.C.: Dependability - its attributes, impairments and means. In: Randell, B., Laprie,
J.C., Kopetz, H., Littlewood, B. (eds.) Predictably Dependable Computing Systems, pp. 1–
19. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79789-7 1

21. Laprie, J.C.: Dependable computing: concepts, challenges, directions. In: Proceedings,
COMPSAC (2004)

22. Marsit, I., Omri, M.N., Loh, J.M., Mili, A.: Impact of mutation operators on mutant equiva-
lence. In: Proceedings, ICSOFT 2018, pp. 55–66 (2018)

23. Namin, A.S., Kakarla, S.: The use of mutation in testing experiments and its sensitivity to
external threats. In: Proceedings, ISSTA (2011)

24. Nica, S., Wotawa, F.: Using constraints for equivalent mutant detection. In: Andres, C.,
Llana, L. (eds.) Second Workshop on Formal methods in the Development of Software, pp.
1–8. EPTCS (2012). https://doi.org/10.420/EPTCS.86.1

25. Offut, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible paths. Softw.
Test. Verif. Reliab. 7(3), 165–192 (1997)

26. Papadakis, M., Delamaro, M., LeTraon, Y.: Mitigating the effects of equivalent mutants with
mutant clasification strategies. Sci. Comput. Program. 95(P3), 298–319 (2014)

27. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Mutation testing
advances: an analysis and survey. In: Advances in Computers (2019)

28. Schuler, D., Zeller, A.: Covering and uncovering equivalent mutants. In: Proceedings, Inter-
national Conference on Software Testing, Verification and Validation, pp. 45–54 (2010).
https://doi.org/10.1109/ICST.2010.30

29. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423),
623–656 (1948)

30. Wang, B., Xiong, Y., Shi, Y., Zhang, L., Hao, D.: Faster mutation analysis via equivalence
modulo states. In: Proceedings, ISSTA 2017, Santa Barbara, CA, USA (2017)

31. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn mutation operators using
human analysis of equivalence. In: Proceedings, ICSE (2014)

https://doi.org/10.1007/978-3-7091-9170-5
https://doi.org/10.1007/978-3-7091-9170-5
https://doi.org/10.1007/978-3-642-79789-7_1
https://doi.org/10.420/EPTCS.86.1
https://doi.org/10.1109/ICST.2010.30

Distributed Frames: Pattern-Based
Characterization of Functional

Requirements for Distributed Systems

Roman Wirtz(B), Maritta Heisel, and Marvin Wagner

University of Duisburg-Essen, Duisburg, Germany
roman.wirtz@uni-due.de

Abstract. In the connected world, the complexity of software-based
systems increases. Many of those systems consist of different subsystems
which are connected with each other via a network. The decomposition
into those subsystems requires a detailed analysis and documentation of
their functional requirements. Documenting and managing such require-
ments in a consistent manner is a challenge for software engineers. The
requirements for each subsystem cannot be considered in isolation, but it
is necessary to state the relations between the functional requirements,
too. In previous work, we proposed a method that allows systematically
identifying and documenting functional requirements for distributed sys-
tems. The method is model-based and makes use of Jackson’s problem
frames approach which defines patterns for reoccurring software develop-
ment problems. We now extend his approach with patterns for problems
specifically for distributed systems which we call Distributed Frames.
Using a pattern description template, we provide different examples of
such frames. To exemplify the application of those patterns, we show
how they can be embedded into our requirements elicitation method.

Keywords: Requirements engineering · Distributed systems ·
Model-based · Functinonal requirements · Requirements analysis

1 Introduction

In the connected world, software-based systems are often realized as distributed
systems. Tanenbaum defines a distributed system as a system whose components
are located on different connected computers [15]. Those components communi-
cate via messages to achieve a common goal.

The complexity of distributed systems confronts software engineers with new
problems during the entire software development process. Especially in one of
the earliest phases of software development, namely requirements engineering, it
is a challenge for engineers to capture all aspects of a distributed system under
development. Although the different components may be deployed independently
of each other in different environments, the functionalities of the components
highly depend on each other. Thus, it does not suffice to elicit and document
c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 81–107, 2020.
https://doi.org/10.1007/978-3-030-52991-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-52991-8_5

82 R. Wirtz et al.

requirements for each component independently. In addition, the connection
between the components is often remote and, hence, is not reliable.

For further analysis, e.g. with regard to privacy or security, it is of essential
importance to document the dependencies and interfaces between the subsystems
in a consistent and systematic manner. For example, an attacker may inject
malicious code on the client-side which will then affect stored data on the server-
side.

Our aim is to assist software engineers in performing a detailed and system-
atic elicitation and documentation of functional requirements for distributed
systems.

In previous work [18], we proposed a model-based method called RE4DIST
(Requirements Engineering for DISTributed Systems). The method is based
on Jackson’s problem frames notation which we extended to model functional
requirements for distributed systems. The extension allows making the con-
nection between the subsystems and the relations between the corresponding
requirements explicit. The method starts with the decomposition based on the
system’s context, and it ends up with a model of functional requirements to be
fulfilled by the subsystem.

In the present paper, we follow Jackson’s pattern-based approach and intro-
duce so-called Distributed Frames. Each distributed frame is a pattern that
describes a common problem class for a distributed system, i.e, specific types of
its functional requirements. An instance of a frame describes a concrete instance
of a functional requirement for a distributed system. The pattern-based approach
allows making knowledge about requirements reusable. Furthermore, by instan-
tiating the pattern, software engineers can document the elicited requirements
in a consistent manner. To specify a distributed frame, we propose a template-
based format. It describes the frame itself, textual patterns for the functional
requirement, and typical examples for the frame’s application context.

To exemplify the application of distributed frames, we extend our RE4DIST
method with regard to the frames. The extension allows the elicitation and
documentation of functional requirements by instantiating an appropriate frame.

The remainder of the paper is structured in the following way: In Sect. 2,
we introduce a notation for Michael Jackson’s problem frames and five basic
frames. In Sect. 3, we present the underlying requirements model in form of an
Ecore metamodel [14]. Section 4 contains the template for specifying distributed
frames and some examples. We describe the extension of our method in Sect. 5,
and using a small case study, we exemplify the application of the method in
Sect. 6. We discuss related work in Sect. 7 and conclude the paper in Sect. 8 with
a brief summary and an outlook on future research directions.

2 Problem Frames

We first introduce the notation for problem frames and problem diagrams, fol-
lowed by the introduction of some basic frames.

Distributed Frames 83

2.1 Notation

To model functional requirements, we make use of the problem frames approach
as introduced by Michael Jackson [10]. We consider two types of diagrams, con-
text diagrams and problem diagrams, which both consist of domains, phenom-
ena, and interfaces.

Machine domains () represent the piece of software to be developed.
Problem domains represent entities of the real world. There are different types

of these domains: biddable domains with an unpredictable behavior, e.g. persons
(), causal domains() with a predictable behavior, e.g. technical equipment,
and lexical domains () for data representation. A domain can take the role
of a connection domain () which serves as a connection between two other
domains.

Interfaces between domains consist of phenomena. There are (i) symbolic
phenomena, representing some kind of information or a state, (ii) causal phe-
nomena, representing commands, actions and the like, and (iii) events. Each
phenomenon is controlled by exactly one domain and can be observed by other
domains. A phenomenon controlled by one domain and observed by another is
called a shared phenomenon between these two domains. Interfaces (solid lines)
contain sets of shared phenomena. Such a set contains phenomena controlled
by one domain, indicated by D!{...}, where D stands for an abbreviation of the
controlling domain.

A context diagram describes where the problem, i.e. software to be developed,
is located and which domains it concerns. It does not contain any requirements.
We show an example of such a diagram in Fig. 1a. It contains four domains and
the corresponding interfaces. There are Software , Equipment , Information

, and Person .
A problem diagram is a projection of the context. It contains a functional

requirement (represented by the symbol) describing a specific functionality
to be developed. A requirement is an optative statement that describes how the
environment should behave when the software is installed.

Some phenomena are referred to by a requirement (dashed line to the con-
trolling domain), and at least one phenomenon is constrained by a requirement
(dashed line with arrowhead and italics). The domains and their phenomena that
are referred to by a requirement are not influenced by the machine, whereas we
build the machine to influence the constrained domain’s phenomena in such a
way that the requirement is fulfilled.

In Fig. 1b, we show a small example describing a functional requirement for
updating some information which is a projection of the context given in Fig. 1a.
A Person provides information to Software to be updated. We make use of
a lexical domain Information to represent a database. The functional require-
ment Update refers to the phenomenon updateInformation and constrains the
phenomenon information.

84 R. Wirtz et al.

Fig. 1. Examples.

Table 1. Basic problem frames.

Name Domain types referred to Domain types constrained
Required behavior – C
Commanded Behavior B C
Information display C C
Simple workpiece B L
Transformation L L

Legend: C - causal, L - lexical, B - biddable

The icons we use in our diagrams differ from Jackson’s notation. We adopted
icons from Google’s Material Design1 to provide intuitive views for the dia-
grams [18].

2.2 Problem Frames

Jackson distinguishes between five problem frames which we will consider in the
following sections for further analysis concerning distributed systems. In Table 1,
we provide an overview for these frames.

Required Behavior. Some parts of the physical environment shall be con-
trolled. The task is to build a machine that imposes that control.

Commanded Behavior. An operator can issue commands to control some
part of the physical environment. The machine to be built shall receive the
commands and shall impose the control accordingly.

Information Display. The machine shall obtain some information from the
environment continuously and present it at the required place and in the
required form.

Simple Workpieces. The task is to build a machine that allows users to process
some information, e.g. to edit, delete, or copy it.

1 Google Material - https://material.io (last access: March 15, 2019).

https://material.io

Distributed Frames 85

Transformation. The machine to be built shall take some machine-readable
information as input and transform it into the required output.

In Sect. 4, we provide these frames for distributed systems.

3 Meta Model

To model functional requirements, we make use of Jackson’s problem frames
approach (cf. Sect. 2) for which we introduce a metamodel in the following.
We extend that model with additional elements to capture specific aspects of
distributed systems. For instantiating and maintaining the model, we developed
a graphical editor. We decided to build that tool based on the Eclipse Modeling
Framework (EMF) [14]. EMF is open source and offers a wide range of products
for model-based development. For example, we use Eclipse Sirius2 to provide a
graphical editor for the application of our method.

3.1 Model Elements

Domains. A domain can be a connection domain, which is indicated by an
appropriate attribute. We distinguish between Machine and Problem Domains
as proposed by Jackson. Besides, we introduce the domain type Distributed Sys-
tem. A problem domain can be a Causal Domain, Biddable Domain or Lexical
Domain. For expressing the relation between different machines, we introduce
the domain type Remote Machine. The domain acts as a placeholder for a subsys-
tem and therefore references exactly one machine domain. We show the relevant
part of the model in Fig. 2.

Fig. 2. Metamodel - domains.

Interfaces. In Fig. 3, we show the part of the model to describe interfaces. A
Domain Interface connects at least two domains and contains a set of Phenom-
ena. A phenomenon is controlled by exactly one domain. To describe the real-
ization of interfaces in more detail, we adapt the so-called attack vector from the
2 Eclipse Sirius - https://www.eclipse.org/sirius/ (last access: November 12, 2019).

https://www.eclipse.org/sirius/

86 R. Wirtz et al.

Common Vulnerability Scoring System (CVSS) [6]. An attack vector predefines
values to describe how an attacker accesses a vulnerable component. We intro-
duce an AccessVector to describe how domains interact with each other. The
vector distinguishes the following four values: Network describes remote con-
nections through different networks, e.g. connections via the internet, adjacent
stands for local network connections, local means access to domains not con-
nected to the internet, e.g. some user interfaces, and physical describes physical
connection to domains, e.g. sensors.

Fig. 3. Metamodel - interfaces.

Requirements. Figure 4 shows the part of the model to describe requirements.
A Requirement is a special kind of Statement. It can be distributed, which means
that it concerns more than one machine. Each statement has at least one State-
mentReference for at least one Phenomenon. A reference can either be a Con-
strainsReference or a RefersToReference. For each requirement, we also make
the machines explicit that are related to the specific requirement.

Machine

Phenomenon
StatementRequirement

isDistributed
 : Boolean =
false

StatementRef
erence

ConstrainsReferenceRefersToReference

[1..*] references

[0..*] referencedBy

[1..*] statementreferences

[1..*] machines

[0..*] requirements

Fig. 4. Metamodel - requirements.

Diagrams. Within the model, it is possible to define different views on specific
elements using diagrams (see Fig. 2). As mentioned in Sect. 2, Jackson distin-
guishes between context diagrams and problem diagrams. We introduce two
new types of context diagrams. A GlobalContextDiagram describes the overall
context of the distributed system. A SubContextDiagram is derived from it and
describes the context for a specific subsystem (Fig. 5).

Distributed Frames 87

Diagram

ContextDiagram ProblemDiagram

SubContextDiagramGlobalContextDiagram

[2..*] subcontextdiagram

[1..1] globalcontextdiagram

Fig. 5. Metamodel - diagrams.

4 Distributed Frames

In Sect. 2, we introduced five basic problem frames. In the context of our previous
work, we now propose distributed frames which are a special kind of problem
frames applicable for distributed systems. In contrast to a problem frame, a
distributed frame does not only consider a single system but different subsystems.
Each frame describes a pattern that allows the characterization of reoccurring
problems in the context of functional requirements for distributed systems. We
first introduce a description format for distributed frames followed by several
examples of frames.

4.1 Description Format

We provide a template to specify distributed frames in a consistent way, for which
we give an overview in Table 2. The template consists of some basic information
and a frame description.

Table 2. Frame description format.

Basic Information
Name Short and descriptive name for the frame.
Description Short informal description about the frame and the context for which

it is applicable.
Known uses List of typical examples where the pattern can be applied.

Frame Description
Sender

Frame Diagram Diagram which contains the relevant domains and interfaces on the
sender side.

Textual pattern Textual pattern for the relevant part of the functional requirement on
the sender side.

Receiver
Frame Diagram Diagram which contains the relevant domains and interfaces on the

sender side.
Textual pattern Textual pattern for the relevant part of the functional requirement on

the receiver side.

88 R. Wirtz et al.

Basic Information. We provide a short informal description that summarizes
the distributed frame and briefly describes the context for which it is applicable.
The textual description of the functional requirement to be satisfied by the
distributed system is also part of that informal description. The requirement will
later be decomposed for the involved subsystems. Last, we list typical examples
of scenarios as known uses for the application of the frame.

Frame Desciption. We distinguish between the sender side and the receiver
side. Since our approach is applicable for any type of distributed system, we
do not use the notion of client/server side here. For each side, we provide a
frame diagram using the notation as described in Sect. 2.1. A frame diagram
contains the domain types, connecting interfaces, and requirement references for
the frame. By instantiating the frame diagram in the concrete context, one can
create a problem diagram. Besides the frame diagram, we propose a textual pat-
tern that describes the functional requirement in natural language. 〈...〉 indicates
a variable in the textual pattern that needs to be filled.

4.2 Frame Specifications

In the following, we give specifications for distributed frames. Table 3 provides an
overview. It contains the name of the distributed frame (DF) and the constrained
and referred to domain types on the sender and receiver side.

4.3 Basic Frames

In Sect. 2.2, we described five basic frames that have been defined by Jackson
[10]. We specify those frames for distributed systems using our previously defined
format.

Table 3. Distributed frames overview.

Sender Receiver
Name Domain types

referred to
Domain types
constrained

Domain types
referred to

Domain types
constrained

Basic Frames
Required behavior (DF) – RM RM C
Commanded Behavior
(DF)

B RM RM C

Information display
(DF)

C RM RM C

Simple workpiece (DF) B RM RM L
Transformation (DF) L RM RM L

Additional Frames
Query (DF) B RM , CON RM , L RM
Update (DF) B RM , CON RM RM , L

Legend: C - causal, L - lexical, B - biddable, RM - remote machine

Distributed Frames 89

Table 4. Frame description for Required Behavior (DF).

Sender Receiver

Submachine 1 Submachine 2 FR Sender

SM1!C1 C2
Submachine 2

Submachine 1

FR Rec.
SM1!C1

Controlled Domain

SM2!C2

C1

C3

A control command 〈C1〉 can be sent to
〈Submachine 2〉.

The 〈Controlled Domain〉 is controlled with
〈C2〉 according to the command 〈C1〉 issued by
〈Submachine 1〉.

Required Behavior (DF)

Description. A subsystem can control domains of its physical environment.
Another subsystem can issue commands to control those domains. The task is
to build a distributed system in which the machine of one subsystem can control
domains in the physical environment of another subsystem remotely.

Known Uses

– Smart home services are often deployed as a cloud application. Previously
defined commands are sent from the cloud service to the customer’s home to
control the equipment.

– Traffic light controllers can be connected to send control commands, e.g. to
prioritize a tram.

Frame Description. In Table 4, we show the frame description for the frame
Required Behavior (DF). There is a frame diagram for each sender and receiver
side. The corresponding textual patterns are given below. In the frame diagrams
we use abbreviations for the phenomena annotated at the interfaces. Y stands
for symbolic phenomena, C for causal phenomena, and E stands for events (cf.
Sect. 2).

Commanded Behavior (DF)

Description. A subsystem can control domains of its physical environment.
Operators can issue commands via another subsystem to control those domains.
The task is to build a distributed system in which an operator can control
domains in the physical environment of another subsystem remotely.

Known Uses

– Smartphone applications can be used to control equipment, such as TVs or
smart home equipment.

90 R. Wirtz et al.

– Sound and light equipment for concerts can be configured remotely.
– Vehicles can be maintained remotely by the manufacturer.

Frame Desciption. In Table 5, we show the frame description for the frame
Commanded Behavior (DF).

Table 5. Frame description for Commanded Behavior (DF).

Sender Receiver

Submachine 1

Operator

FR Sender
O!E1

Submachine 2

SM1!C1

E1

C2

Submachine 2

Submachine 1

FR Rec.
SM1!C1

Controlled Domain

SM2!C2

C1

C3

The 〈Operator〉 can cause the event 〈E1〉 to trig-
ger 〈C2〉 of 〈Submachine 2〉.

The 〈Controlled Domain〉 is controlled with
〈C2〉 according to the command 〈C1〉 issued by
〈Submachine 1〉.

Information Display (DF)
Description. One subsystem continuously receives information from the phys-
ical environment. Another subsystem has some display in its environment. The
task is to exchange the received information between the subsystems and to
display them.

Known Uses

– A vehicle sends sensor data to the driver’s smartphone where the data is
displayed.

– Traffic monitors at train stations show the estimated arrival time of a train.

Frame Description. In Table 6, we show the frame description for the frame
Information Display (DF).

Distributed Frames 91

Table 6. Frame description for Information Display (DF).

Sender Receiver

Submachine 1

Real World Domain

FR Sender
RWD!C1

Submachine 2

SM1!C2

C1

E1

Submachine 2

Submachine 1

FR Rec.
SM1!C2

Display

SM2!E1

C2

Y1

The 〈Real World Domain〉 can send informa-
tion to 〈Submachine 2〉 with the command
〈C1〉.

With the command 〈C2〉, 〈Submachine 1〉 can
show information 〈Y1〉 at the 〈Display〉.

Simple Workpieces (DF)

Description. A user can use a subsystem to manipulate some data which is
remotely accessible at another subsystem. The task is to transmit the commands
to the subsystem where the data is available and to manipulate the data accord-
ingly.

Known Uses

– Some technical equipment allows editing the configuration remotely.
– Using a web service, a user can edit his/her data.
– Collaboration tools allow data manipulation in the cloud.

Frame Description. In Table 7, we show the frame description for the frame
Simple Workpieces (DF).

Table 7. Frame description for Simple Workpieces (DF).

Sender Receiver

Submachine 1

User

FR Sender
U!E1

Submachine 2

SM1!C1

E1

E2

Submachine 2

Submachine 1

FR Rec.
SM1!C1

Workpieces

SM2!E2

C1

Y1

The 〈User〉 can cause the event 〈E1〉 to trigger
the event 〈E2〉 of 〈Submachine 2〉.

Information 〈Y1〉 of the 〈Workpieces〉 can be
edited by the 〈Submachine 1〉 via the command
〈C1〉.

92 R. Wirtz et al.

Transformation (DF)

Description. Data of one subsystem shall be transformed. For transforming
the data, another subsystem shall be used. The task is to develop a system that
allows transmitting data from one system to another to transform it. Afterwards,
the transformed data shall be stored in the subsystem where it originates.

Known Uses

– There are several online converters that allow submitting data that can be
downloaded afterward, i.e. an image to PDF converter.

– There are online tools that allow to encrypt and decrypt data.

Frame Description. In Table 8, we show the frame description for the frame
Transformation (DF).

Table 8. Frame description for Transformation (DF).

Sender Receiver

Submachine 1 Inputs FR Sender

I!Y1

Submachine 2

SM1!C1
SM2!C2

Y2

C1

Outputs

SM1!C4

C3

Y1

Submachine 1 FR Rec.Submachine 2

SM1!C1
SM2!C2

C1

C2

Some information 〈Y1〉 can be transmitted to
〈Submachine 2〉 while triggering the command
〈C3〉. The transformed information is stored at
〈Outputs〉 (〈Y2〉).

〈Submachine 1〉 can transform some informa-
tion with the command 〈C1〉 which is returned
afterwards.

4.4 Additional Frames

Besides the basic frames, we show the specifications of two additional frames,
namely Query and Update [3,16]. We adapt those frames for distributed systems
and provide their specifications in the following.

Query (DF)

Description. Users want to request data from a remotely accessible resource.
The requested information shall be displayed to them.

Distributed Frames 93

Known Uses

– Requesting a website.
– Smartphone applications that retrieve information from an external resource.
– Reading data from network-attached storages (NAS).

Frame Description. In Table 9, we show the frame description for the frame
Query (DF).

Table 9. Frame description for Query (DF).

Sender Receiver

User Interface

FR SenderSubmachine 1 EO!E1
UI!E2 E1

Y2

Enquiry Operator

Submachine 2

UI!C1
SM1!C5

SM2!C3
SM1!C2 C3

C4

FR Rec.Submachine 2
SM1!C2
SM2!C3

C2

C5

Submachine 1

Model

M!Y1
SM2!C4 Y1

To query some information, the 〈Enquiry
Operator〉 can cause the event 〈E1〉 to trig-
ger the command 〈C4〉 for 〈Submachine 2〉.
〈Submachine 2〉 provides the information via
〈C3〉 which is then displayed at the 〈User
Interface〉.

〈Submachine 1〉 can query some information
〈Y1〉 from the 〈Model〉 with the command
〈C2〉.

Update (DF)

Description. Users want to manipulate data that is available at a remotely
accessible resource. In contrast to the frame Simple Workpiece (DF), there is
feedback for the users.

Known Uses

– Websites where users can enter or edit some information to be stored.
– Uploading data to a NAS with a progress bar as feedback.

Frame Description. In Table 10, we show the frame description for the frame
Update (DF).

In the next section, we extend the RE4DIST method with our proposed
frames.

94 R. Wirtz et al.

Table 10. Frame description for Update (DF).

Sender Receiver

User Interface

FR SenderSubmachine 1 EO!E1
UI!E2 E1

Y2

Update Operator

Submachine 2

UI!C1
SM1!C5

SM2!C3
SM1!C2 C3

C4

FR Rec.Submachine 2
SM1!C2
SM2!C3

C2

C5

Submachine 1

Model

M!Y3
SM2!C4 Y1

To update some information, the 〈Update
Operator〉 can cause the event 〈E1〉 to trig-
ger the command 〈C4〉 for 〈Submachine 2〉.
〈Submachine 2〉 provides a feedback via 〈C3〉
which is then displayed at the 〈User Interface〉.

〈Submachine 1〉 can update some information
〈Y1〉 at the 〈Model〉 with the command 〈C2〉.

5 Pattern-Based Requirements Documentation

Our method to elicit and document functional requirements for distributed sys-
tems (DS) consists of six steps. In Fig. 6, we provide an overview of the steps
and the corresponding input and output of each step. For each step, we present
examples of validation conditions (VC) to ensure that errors occurring during
the application of our method can be identified as early as possible. In addition,
we briefly describe the tool which supports the application of our method. In
Sect. 6, we provide a case study which exemplifies our method.

1. Define Global
Context &

Subsystems

2. Elicit Func onal
Requirements for DS

3. Iden fy
Distributed
Func onal

Requirements

4. Decompose
Context5. Select Frames6. Create Problem

Diagrams

Input: Informal scenario
descrip on

Output: Global context
diagram

Input: Informal scenario
descrip on

Output: List of func onal
requirements

Input: List of func onal
requirements

Output: Annotated list of
func onal requirements

Input: Context diagram,
Func onal Requirements
Output: Sub context diagrams

Input: Func onal requirements;
Frame catalogue

Output: Frame specifica ons

Input: Sub context diagrams;
Func onal requirements; Selected

frames
Output: Set of problem diagrams

Fig. 6. Method overview.

Distributed Frames 95

5.1 Step 1: Define Global Context and Subsystems

The goal of the first step is to get an understanding of the global context in which
the distributed system will operate. We consider an informal scenario description
as the initial input. Based on this input, we identify problem domains in the
context of the distributed system.

We document the results in a context diagram as described in Sect. 2. There
is exactly one distributed system domain (represented by the symbol) in
the context diagram which covers all subsystems that shall be developed. Since
existing systems do not need to be developed, we describe them by means of
causal domains. Using interfaces, we describe the communication between the
distributed system and the environmental domains.

For the distributed system, we identify those subsystems that shall be devel-
oped. There are at least two subsystems. The subsystems do not necessarily
differ from each other. For example, in a peer-to-peer system, the subsystems
realized as peers can have the same functional requirements. We represent the
subsystems as machine domains with aggregations to the distributed system in
the context diagram.

Validation Conditions. Based on the description of the step, we define four
validation conditions (VC).

VC1. There is exactly one distributed system in the global context diagram.
VC2. A distributed system consists of at least two subsystems.
VC3. All subsystems have been identified and have been documented in the

context diagram.
VC4. All problem domains of the context have been identified, e.g. stakeholders

and technical equipment.

Tool Support. As mentioned in Sect. 3, we make use of an Ecore model for our
tool. To define the initial context and subsystems, we provide a graphical editor
based on Eclipse Sirius3. The editor assists software engineers in creating the
initial context diagram and ensures the semantic rules provided by the model.

Our tool supports the automatic validation of VC1 and VC2. The other two
conditions have to be validated manually, but we ask the user of the tool to
confirm the validation before proceeding to the next step.

5.2 Step 2: Elicit Functional Requirements for DS

Based on the informal scenario description and the global context diagram, we
identify the functional requirements that the distributed system shall satisfy. For
each functional requirement, we define a unique name and a proper description
of the expected functionality, and we document both textually.

3 Eclipse Sirius - https://www.eclipse.org/sirius/ (last access: March 12, 2019).

https://www.eclipse.org/sirius/

96 R. Wirtz et al.

Validation Conditions. For the second step of our method, we define two vali-
dation conditions.

VC5. Each functional requirement has a unique name and a valid description.
VC6. Each functional requirement has been identified and has been documented.

Tool Support. Our tool provides a table to list all functional requirements one
by one. To this table, one can add new requirements using a wizard, and all
requirements will be stored in the model to be reusable in further steps.

The first validation condition can partially be checked via the model, whereas
the second one has to be confirmed by the user of our tool before proceeding to
the next step.

5.3 Step 3: Identify Distributed Functional Requirements

Due to different environments in which the subsystems may be realized, e.g. a
mobile application in contrast to a server application, different teams will be
involved in developing a distributed system. A requirement can be distributed,
i.e. it requires the interaction between different subsystems to be satisfied.

In the present step, we mark distributed requirements to assign them to
the responsible development team. In addition, we document dependencies of
subsystems for satisfying requirements. For each requirement, we decide about
its type and assign a set of responsible subsystems. A requirement that concerns
at least two subsystems has to be considered as distributed, and in a distributed
system there is at least one requirement concerning several subsystems.

Validation Conditions. We define two validation conditions for the third step of
our method.

VC7. Only requirements concerning at least two subsystems have been classified
as distributed.

VC8. At least one requirement has been defined as distributed.

Tool Support. To specify the type of requirement, our tool presents the list
of requirements to the user where he/she can select the type. For distributed
requirements, we provide a dialog to select the related subsystems. Using refer-
ences to the corresponding machine domains, our tool documents the results in
the model and updates the list of requirements.

Both stated validation conditions can be validated automatically using our
tool.

5.4 Step 4: Decompose Context

In the first step of our method, we described the global context of the distributed
system. As mentioned earlier, different teams will be involved in developing a dis-
tributed system. In the present step, we break down the global context in smaller

Distributed Frames 97

units, one for each subsystem. Again, we make use of context diagrams which
we call Sub-Context Diagram to document the results, one for each subsystem.

Such a sub-context diagram consists of the machine domain for the subsys-
tem and the relevant problem domains. To express the relation between the
subsystems, we introduce new elements to the context diagram, namely remote
machines (represented by the symbol) and remote interfaces (dotted line).
For each related subsystem with which communication exists, we add a remote
machine domain and the corresponding remote interface.

The interfaces between machine and problem domains are taken from the
global context definition, but the remote interfaces describing the communication
between subsystems do not exist there and hence, need to be added.

The set of sub-context diagrams helps developers in focusing on the con-
text of a concrete subsystem. However, we still document the relation to other
subsystems.

Validation Conditions. To validate the application of the fourth step, we define
the following five conditions:

VC9. There is one context diagram for each subsystem.
VC10. Each domain of the initial context diagram is contained in at least one

context diagram of a subsystem.
VC11. Interfaces between machine and remote machine have been marked as
remote.

VC12. Each context diagram contains all related subsystems represented by
means of remote machine domains.

VC13. Only problem domains directly connected to the subsystem or via a
connection domain are part of the context diagram.

Tool Support. Our tool automatically creates a sub-context diagram for each
subsystem. It automatically adds related machines based on the requirement
classifications taken from step three and the remote interfaces in-between. We
also provide a wizard to select relevant problem domains, phenomena, and inter-
faces from the initial context. A graphical editor allows adjusting the generated
diagrams. To ensure consistency between all steps, we make use of model refer-
ences to the results of the previous steps.

Except for the last one, our tool allows to automatically evaluate the val-
idation conditions. For the last step, it asks the user to confirm the manual
validation.

5.5 Step 5: Select Frames

In the fifth step, we select suitable frames to describe the functional requirements.
There are two types of frames: (i) problem frames (cf. Sect. 2.2 and [4]) and (ii)
distributed frames (see Sect. 4). For non-distributed requirements, we consider
problem frames and for distributed requirements, we consider distributed frames.
Since the requirements have been documented in natural language, the selection

98 R. Wirtz et al.

requires manual effort. The specifications we provide for distributed frames help
engineers in selecting appropriate frames, e.g. by considering the described con-
text. A functional requirement is not necessarily restricted to a single frame. In
some cases, it could be necessary to combine frames.

In case no suitable frame or combination exists, a new frame has potentially
been identified. That frame has to be documented in the frame catalog using our
template. This way, knowledge can be captured for further development projects.

Validation Conditions. There are three validation conditions for the fifth step:

VC14. For each distributed requirement, at least one distributed frame has been
selected.

VC15. For each non-distributed requirement, at least one problem frame has
been selected.

VC16. New frames have been added to the catalogue.

Tool Support. Currently, our tool does not support any frame specification (see
Sect. 8). Therefore, the frame selection requires manual interaction based on the
catalogue of frames and identified requirements.

5.6 Step 6: Create Problem Diagrams

The final step of our method is the creation of problem diagrams for the func-
tional requirements we identified in the second step. For requirements not being
classified as distributed, we create problem diagrams as proposed by Michal
Jackson [10] based on the sub-context diagram for the responsible subsystem.
To specify an interface in more detail, it is possible to add connection domains,
e.g. a user interface.

To create problem diagrams, we instantiate the frame diagrams of the frames
we selected in the previous step. To specify the interfaces between domains in
more detail, we annotate its type according to the access vector as introduced
in Sect. 3.

For requirements being classified as distributed, we create one problem dia-
gram per involved subsystem. Those diagrams contain the relevant problem
domains taken from the sub-context diagram and remote machines for subsys-
tems related to the functional requirement. To connect machine and remote
machines, we again make use of remote interfaces. The textual requirement
description can be created by instantiating the corresponding textual pattern.

A distributed requirement is characterized by the communication between
machine and remote machine for its satisfaction. Therefore, the requirement
refers to or constrains at least one phenomenon of a remote machine. Refers to
means that the remote machine triggers an event of the machine to be considered,
and constrains means that the machine to be considered triggers an event of the
remote machine. The annotated phenomenon describes that event.

Distributed Frames 99

Validation Conditions. For the final step of our method, we define four validation
conditions.

VC17. Each functional requirement is contained in at least one problem diagram.
VC18. For each distributed requirement, there is a problem diagram for each

involved subsystem.
VC19. A distributed requirement refers to or constrains at least one phe-

nomenon of a remote machine.
VC20. The problem diagram is an instance of the corresponding frame diagram.

Tool Support. Using our tool, users can generate problem diagrams for each
requirement and each subsystem, respectively. The initial structure of the dia-
grams can be generated automatically, i.e. requirement and machine. In addi-
tion, we provide a wizard that assists users of the tool in selecting relevant
problem domains and interfaces from the model, and in adding connection
domains. Again, we use references to existing model elements to ensure con-
sistency between all diagrams.

Our tool can evaluate all validation conditions automatically, except the last
one since the frame specifications are currently not part of the model.

5.7 Final Output

The final output of our method is a set of diagrams for each subsystem. The set
consists of a context diagram for the subsystem and problem diagrams which
describe the functional requirements to be satisfied by the subsystem. The set
allows independent development of each system while still preserving dependen-
cies to other subsystems. Since we document the results in one model, changes
will be propagated throughout all method steps and diagrams.

6 Example

In the following, we apply our method to a part of a smart grid case study. The
diagrams and tables we show in the following have been created with our tool.

6.1 Informal Scenario Description

For the present paper, we focus on a small part of the overall scenario that con-
cerns the customer’s home. The initial scenario description is as follows: The
communication hub is the central gateway, for which software shall be devel-
oped. Smart meters measure the customer’s power consumption. They trans-
mit the data in given intervals to the communication hub where the data is
stored. In addition, a customer can connect to the communication hub using
a mobile application on a smartphone or tablet. Customers can configure the
mobile application to connect to their communication hub and can then request
a list of stored meter data.

100 R. Wirtz et al.

Fig. 7. Case study - global context diagram & subsystems.

6.2 Step 1: Define Global Context and Subsystems

Our distributed system is called Open Meter , for which we present the global
context diagram in Fig. 7a. We identified the stakeholder Customer , who is
able to enter a Configuration for the mobile application and who can request
previously stored meter data. We consider a Smart Meter as existing technical
equipment. Measured data will be stored persistently in the database which we
call Meter Data .

In Fig. 7b on the right hand-side, we also provide an overview of the different
subsystems that shall be developed. Our distributed system consists of two sub-
systems: The Communication Hub will be realized as an embedded system for
the gateway at customers’ home. The Mobile App will be realized as software
for smartphones and tablets.

6.3 Step 2: Elicit Functional Requirements for DS

For our scenario, we consider three functional requirements:

Enter Configuration. Customers can configure the mobile application to con-
nect to the communication hub.

Request Meter Data. Customers can request a list of their meter data via
the mobile application.

Store Meter Data. In given intervals, smart meters send the measured data
to the communication hub, where it is stored persistently.

6.4 Step 3: Identify Distributed Functional Requirements

Next, we identify those requirements that concern more than one subsystem.

Enter Configuration. Customers enter the configuration locally in the mobile
application. There is no communication with other systems and therefore, the
requirement is not considered as distributed.

Distributed Frames 101

Request Meter Data. To request the meter data, customers use their mobile
application to access the communication hub. The communication hub then
returns the stored data. Both subsystems are involved in that process, and
therefore we consider the requirement as distributed.

Store Meter Data. Smart meters connect to a communication hub. There is
no interaction with other subsystems.

6.5 Step 4: Decompose Context

Our scenario contains two subsystems, Communication Hub and Mobile Appli-
cation. Hence, it is necessary to define one sub-context diagram for each.

Communication Hub. Figure 8a shows the context diagram for the Commu-
nication Hub . The domain Meter Data represents the database where the
communication hub stores the measured data persistently, and a Smart Meter

sends the measured data. Since the Mobile App is also part of the dis-
tributed system, it is represented as a remote machine. The interface between
both subsystems is unreliable and therefore marked as a remote interface.

Mobile Application. For the Mobile App , we develop the context diagram in
Fig. 8b. It consists of the Customer who uses the application, a Configuration

, and the Communication Hub , which is again connected to the machine
with a remote connection. There are phenomena to enter the configuration and
to request meter data.

Fig. 8. Case study - sub-context diagrams.

102 R. Wirtz et al.

6.6 Step 5: Select Frames

For the three requirements of our scenario, we select the following frames:

Enter Configuration. The requirement is non-distributed one. Since the cus-
tomer (biddable domain) can enter the configuration (lexical domain), we
select the problem frame Simple Workpieces [10].

Request Meter Data. The requirement is also not distributed. A smart meter
(causal domain) stores the meter data (lexical domain). We choose the prob-
lem frame Model Building [10].

Store Meter Data. Store meter data is a distributed requirement. Therefore,
we select a distributed frame. The requirement fits to the frame Query (PF),
since a customer (biddable domain) can request data from a remote resource
(lexical domain).

In the next step, we create the diagrams according to the corresponding frame
diagram.

6.7 Step 6: Create Problem Diagrams

There are three functional requirements in our scenario for which we present the
corresponding problem diagrams in the following.

Enter Configuration. Since the requirement Enter Configuration is not a dis-
tributed requirement, there is only one problem diagram. It is an instance of the
problem frame Simple Workpiece and consists of the Customer , the Mobile
App , and the Configuration . In addition, we decided to make the User
Interface of the mobile application explicit.

The interface between customer and user interface is physical (P). The inter-
faces between user interface and mobile application, and between mobile appli-
cation and configuration are both local (L).

The requirement Enter Configuration constrains the phenomenon of the
Configuration and refers to the phenomenon of the Customer . We show the
problem diagram in Fig. 9.

Store Meter Data. We show the problem diagram for the requirement Store
Meter Data in Fig. 10. It is an instance of problem frame Model Building and
consists of the SmartMeter , the Communication Hub , and the Meter Data

.
Since a smart meter uses the local network to communicate with the commu-

nication hub, the interface is classified as adjacent (A). Between communication
hub and meter data, there is a local interface.

The requirement constrains the phenomenon of the Meter Data and refers
to the phenomenon of the Smart Meter .

Distributed Frames 103

Customer

Mobile App

Configuration

Enter Configuration

User Interface

(P)
C!{enterConfiguration}

(L)
UI!{fEnterConfiguration}

(L)
MA!{storeMAConfig} configuration

enterConfiguration

Fig. 9. Case study - problem diagram for Enter Configuration [18].

Store Meter DataCommunication Hub

Meter Data

Smart Meter

meterData

sendMeterData(A)
SM!{sendMeterData}

(L)
CH!{storeMeterDataCH}

Fig. 10. Case study - problem diagram for Store Meter Data [18].

Request Meter Data. We identified the requirement Request Meter Data as
distributed, because it concerns both subsystems. Therefore, we create problem
diagrams for the Communication Hub and for the Mobile App . They are
an instance of the problem frame Query (DF).

Mobile Application. In Fig. 11a, we show the problem diagram for the require-
ment Request Meter Data with regard to the Mobile App . It contains the
machine, the Customer who initiates the request, the User Interface ,
and the remotely connected Communication Hub .
Between customer and user interface, we again consider a physical interface
(P), and between user interface and mobile app, there is a local interface (L).
Since mobile application and communication hub can communicate via the
internet, the interface is annotated with network (N).
The requirement refers to the phenomenon enterConfiguration of the Cus-
tomer and to the phenomenon provideMeterDataCH of the remote
machine. It constrains the phenomenon getMeterData representing the event
to retrieve the data from the database, and the phenomenon fProvideMeter-
DataCH of the User Interface representing the feedback for the customer.

104 R. Wirtz et al.

Fig. 11. Problem diagram for Request Meter Data - Query (DF).

Communication Hub. We show the problem diagram for the Communication
Hub in Fig. 11b. It consists of the machine, the Meter Data , and the
remotely connected Mobile App .
The types of interfaces are the same as in the previous diagrams.
The requirement refers to the phenomenon of the Meter Data and to
the phenomenon requestMeterDataMA of the Mobile App . In addition,
the requirement constrains the phenomenon provideMeterDataMA, since the
Communication Hub initiates the event to provide the meter data to the
customer.

The created diagrams which have been documented in the model can now be
used for further analysis, e.g. with regard to security (cf. Sect. 8).

7 Related Work

In the following, we present related work that follows similar approaches or that
may complement our work.

Haley argues that the problem frames notation does not allow to specify a
limited to many relation between interfaces [7]. Therefore, the author suggests
using cardinalities on interfaces. Cardinalities would extend our notation to be
more precise in specifying the relations between the different subsystems, e.g. to
state the number of concurrent instances.

The same author introduces so-called projection domains to document rela-
tions between different units of distributed architectures [8]. The approach nei-
ther provides detailed documentation of the context for each subsystem nor a
method to systematically identify overlapping requirements.

Gol Mohammadi et al. propose a framework to combine goal-oriented require-
ments engineering with problem frames [11]. The proposed framework allows
extending problem and context modeling approaches with soft-goals, e.g. for

Distributed Frames 105

security. Using the framework in our method is a promising way to improve the
context definition.

To decompose the requirements of a distributed system, Penzenstadler defines
a catalog of criteria [12]. There are criteria for context, functionalities, and design
of software. The presented catalog may help to further describe the subsystems
we identified with our method. Therefore, it may complement our work.

Beckers and Faßbender describe a pattern-based approach for capturing qual-
ity requirements like performance [1] in distributed systems. Since we focus on
functional requirements, the proposed pattern and our method can complement
each other.

There are many design patterns that have been identified in the context of
distributed systems (e.g., [2,5,9]). Some of those patterns capture aspects like
security, as well. Currently, our method only addresses requirements engineering.
By mapping distributed frames to appropriate design patterns, we can assist the
design phase during software development.

Finally, Ramachandran and Mahmood discuss the state of the art in require-
ments engineering for distributed computing [13]. The authors put a special focus
on cloud computing which became very popular in the last years. Currently, we
do not focus on any specific type of distributed system. Their work may solve as
an input to further analyze distributed frames in the context of cloud computing.

8 Conclusion

Summary. In this paper, we presented a pattern-based approach to character-
ize functional requirements for distributed systems. Following Jackson’s problem
frames approach, we introduced the so-called Distributed Frames. We first intro-
duced a common template format to specify them. Next, we presented several
examples of such frames using our template.

In addition, we provided an extension of our RE4DIST method that takes
our distributed frames into account. The extension allows a pattern-based docu-
mentation of functional requirements, and functional requirements can systemat-
ically be described by instantiating a suitable frame. Our proposed Ecore model
ensures consistency and traceability between the different steps of the method.

Finally, we exemplified the extended method and the application of our pat-
terns based on a small case study.

Future Work. We plan to extend our tool which we developed in previous work
[18]. We will embed the pattern catalog into the tool to support the selection
and instantiation of appropriate frames. A frame instance can then be stored in
the Ecore model which we presented in Sect. 3.

Currently, our distributed frames are only a small set of relevant patterns
for requirements. We will go on with identifying additional frames, and we plan
to make the catalog publicly available so that others can contribute, as well.
Furthermore, we plan to develop a pattern system. In this system, each dis-
tributed frame can be further refined, for example, to capture specific aspects
for Peer-to-Peer systems.

106 R. Wirtz et al.

Due to unreliable connections between the different subsystems and contin-
uous exchange of information, security and privacy are of special importance
for distributed systems. With our method, we allow making those connections
explicit. In previous work, we mapped security incidents to functional require-
ments [17]. We will extend the mapping with regard to distributed frames, and
we will investigate in more detail how relevant threats can be identified auto-
matically.

References

1. Beckers, K., Faßbender, S.: Peer-to-peer driven software engineering considering
security, reliability, and performance. In: 7th International Conference on Avail-
ability, Reliability and Security, pp. 485–494, August 2012. https://doi.org/10.
1109/ARES.2012.26

2. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture, 4th edn. Wiley SEries in Software Design Patterns, Wiley (2007). http://
www.worldcat.org/oclc/314792015

3. Choppy, C., Heisel, M.: Une approache à base de patrons pour la spécification et le
développement de systèmes d’information. Approches Formelles dans l’Assistance
au Développement de Logiciels - AFADL (2004)

4. Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A systematic account
of problem frames. In: Hvatum, L.B., Schümmer, T. (eds.) Proceedings of the 12th
EuroPLoP, Irsee, Germany, 4–8 July 2007, pp. 749–768. UVK - Universitaetsverlag
Konstanz (2007). http://hillside.net/europlop/europlop2007/workshops/D3.pdf

5. Fernandez-Buglioni, E.: Security Patterns in Practice: Designing Secure Architec-
tures Using Software Patterns, 1st edn. Wiley Publishing, New York (2013)

6. FIRST.org: Common Vulnerability Scoring System v3.1: Specification Document
(2019)

7. Haley, C.B.: Using problem frames with distributed architectures: a case for car-
dinality on interfaces. In: Proceedings of the 2nd International Software Require-
ments to Architectures Workshop (STRAW 2003), May 2003. http://oro.open.ac.
uk/3394/

8. Haley, C.B., Laney, R.C., Nuseibeh, B.: Using problem frames and projections to
analyze requirements for distributed systems. In: Proceedings of the 10th Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ 2004), June 2004. http://oro.open.ac.uk/3393/

9. Hendrikx, K., Olivié, H.J., Duval, E.: Design patterns for distributed informa-
tion systems. In: Dyson, P., Devos, M. (eds.) Proceedings of the 4th Euro-
PLoP, Germany, 7–11 July 1999, pp. 47–56. UVK - Universitaetsverlag Kon-
stanz (1999). http://web.archive.org/web/20031011072203/. http://www.argo.be/
europlop/Papers/Final/Hendrickx.ps

10. Jackson, M.A.: Problem Frames - Analysing and Structuring Software Devel-
opment Problems. Pearson Education (2000). http://www.pearsoned.co.uk/
Bookshop/detail.asp?item=100000000004768

11. Mohammadi, N.G., Alebrahim, A., Weyer, T., Heisel, M., Pohl, K.: A framework
for combining problem frames and goal models to support context analysis during
requirements engineering. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 272–288. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40511-2 19

https://doi.org/10.1109/ARES.2012.26
https://doi.org/10.1109/ARES.2012.26
http://www.worldcat.org/oclc/314792015
http://www.worldcat.org/oclc/314792015
http://hillside.net/europlop/europlop2007/workshops/D3.pdf
http://oro.open.ac.uk/3394/
http://oro.open.ac.uk/3394/
http://oro.open.ac.uk/3393/
http://web.archive.org/web/20031011072203/
http://www.argo.be/europlop/Papers/Final/Hendrickx.ps
http://www.argo.be/europlop/Papers/Final/Hendrickx.ps
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=100000000004768
http://www.pearsoned.co.uk/Bookshop/detail.asp?item=100000000004768
https://doi.org/10.1007/978-3-642-40511-2_19

Distributed Frames 107

12. Penzenstadler, B.: DeSyRe: decomposition of systems and their requirements:
transition from system to subsystem using a criteria catalogue and systematic
requirements refinement. Ph.D. thesis, Technical University Munich (2010). http://
mediatum.ub.tum.de/node?id=999357

13. Ramachandran, M., Mahmood, Z. (eds.): Requirements Engineering for Service
and Cloud Computing. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-51310-2

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

15. Tanenbaum, A.S., Steen, M.V.: Distributed Systems: Principles and Paradigms,
2nd edn. Prentice-Hall Inc., Upper Saddle River (2006)

16. Wentzlaff, I., Specker, M.: Pattern-based development of user-friendly web appli-
cations. In: Proceedings of the 2nd International Workshop on Model-Driven Web
Engineering (MDWE 2006), Palo Alto, USA. ACM (2006)

17. Wirtz, R., Heisel, M.: A systematic method to describe and identify security
threats based on functional requirements. In: Zemmari, A., Mosbah, M., Cuppens-
Boulahia, N., Cuppens, F. (eds.) CRiSIS 2018. LNCS, vol. 11391, pp. 205–221.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12143-3 17

18. Wirtz, R., Heisel, M.: RE4DIST: model-based elicitation of functional requirements
for distributed systems. In: van Sinderen, M., Maciaszek, L.A. (eds.) Proceedings
of the 14th International Conference on Software Technologies, ICSOFT 2019,
Prague, Czech Republic, 26–28 July 2019, pp. 71–81. SciTePress (2019). https://
doi.org/10.5220/0007919200710081

http://mediatum.ub.tum.de/node?id=999357
http://mediatum.ub.tum.de/node?id=999357
https://doi.org/10.1007/978-3-319-51310-2
https://doi.org/10.1007/978-3-319-51310-2
https://doi.org/10.1007/978-3-030-12143-3_17
https://doi.org/10.5220/0007919200710081
https://doi.org/10.5220/0007919200710081

Efficient Diagnosis of Reconfigurable
Systems with Incorrect Behavior

and Faulty Components: A Case Study
on SGrids

Yousra Hafidi1,2,3,4(B) , Laid Kahloul2, and Mohamed Khalgui3,4

1 University of Tunis El Manar, Tunis, Tunisia
yousra hafidi@hotmail.com

2 LINFI Laboratory, Computer Science Department, Biskra University,
Biskra, Algeria

laid.k.b@gmail.com
3 LISI Laboratory, National Institute of Applied Sciences and Technology,

University of Carthage, 1080 Tunis, Tunisia
khalgui.mohamed@gmail.com

4 School of Electrical and Information Engineering, Jinan University,
Guangzhou, China

Abstract. This paper deals with the formal verification of reconfig-
urable discrete event systems. We use the formalism called reconfigurable
timed net condition/event systems (R-TNCESs) which is a Petri net pat-
tern that deals with reconfiguration properties. Systems can experience
malfunctioning due to hardware failures or software errors. Model-based
diagnosis algorithms are widely used in academia and industry to detect
faulty components and ensure systems safety. The application of these
methods on reconfigurable systems is impossible due to their special
behavior. In this paper, we propose accomplishing techniques of back-
ward reachability to make reconfigurable systems model-based diagnosis
possible using R-TNCESs. The flexibility among reconfigurable systems
allows them to challenge recent requirements of markets. However, such
properties and complicated behavior make their verification task being
complex and sometimes impossible. We deal with the previous prob-
lem by proposing a new methodology based on backward reachability of
RDECSs using (R-TNCESs) formalism including improvement methods.
The proposed methodology serves to reduce as much as possible redun-
dant computations and gives a package to be used in model-based diag-
nosis algorithms. A real case study on smart electrical grids is adopted in
order to demonstrate the paper’s contributions. Finally, a performance
evaluation is achieved using different factors and sizes to study benefits
and limits of the proposed methodology among large-scale systems.

Keywords: Reconfigurable systems · Modeling and verification · Petri
net · Backward reachability · Model-based diagnosis · Smart grids

c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 108–129, 2020.
https://doi.org/10.1007/978-3-030-52991-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_6&domain=pdf
http://orcid.org/0000-0002-3543-6731
http://orcid.org/0000-0001-6311-3588
https://doi.org/10.1007/978-3-030-52991-8_6

Efficient Diagnosis of Reconfigurable Systems 109

1 Introduction

Nowadays flexibility in manufacturing systems is challenging markets. For exam-
ple, a system with fault tolerance should be dynamic and respond without any
malfunction while hardware failures occur. Reconfigurable systems [1,2,15,28]
have flexible configurations that allow them to switch from a configuration to
another in order to respond for user requirements or to prevent from system
malfunction [20,27]. However, their special behavior and properties of reconfig-
uration make of them complex discrete event systems. In fact, any failure or
dysfunction of a critical system can result serious consequences. Reconfigurable
systems like reconfigurable discrete event control systems (RDECS) [18] are often
subjected to malfunctions that are due to hardware components breakdowns or
software dismisses. A safe system should never reach an undesirable state during
its working process [10].

Many research works ensure safety of systems using methods such as Model-
based Diagnosis [5,8,22]. Model-based diagnosis (MBD) is a verification method
that explains an observed system’s malfunction [9]. When an abnormal system’s
behavior is observed, MBD method backtracks system execution in the model,
and combines with predefined data to detect faulty components that cause this
behavior. Backward reachability is frequently used to construct the backward
state space that serves with model checking responding to system diagnosis
problems. Model-checking [4] is a verification technique that explores possible
system states in order to check if a system meets its specifications. If a required
property is proved false, model checking provides the counterexample that fal-
sified it. One of the main problems is how to check the largest possible state
spaces and treat them as quick as possible with current means of processors
and memories. Existing research works [4] have proven results for larger systems
state spaces by including some clever algorithms. Consequently, more problems
are covered.

Despite the advantage of system diagnosis method, there still a lack of
research works on diagnosis of reconfigurable systems. Their special behavior
as well as their reconfiguration properties [11,12,29] should be taken into con-
sideration. In addition, the diagnosis of these complex systems like RDECSs
needs optimization methods that improve the process and prevent unnecessary
redundant computations.

In order to deal with previous problems, we propose in this paper the follow-
ing contributions:
1. A backward reachability method for R-TNCESs formalism to facilitate recon-

figurable systems diagnosis: backward reachability is used rather than forward
reachability (for ordinary Petri nets, colored Petri nets ...etc. [7,25]) to solve
systems diagnosis. R-TNCESs reverse rules and accomplishing techniques are
proposed to run backward reachability of reconfigurable systems. Our moti-
vation about using R-TNCESs formalism resides in the way that unlike most
other formalisms, R-TNCESs are modular and support modeling of system
reconfigurations. In addition, the composition of interconnected modules com-
municating with signals, deals with interactions that actually happen between

110 Y. Hafidi et al.

sensors and actuators in reconfigurable discrete event control systems [14],
i.e., sensors send signals to activate actuators. By setting this method, the
application of classical algorithms of model-based diagnosis on reconfigurable
systems becomes possible using R-TNCESs.

2. A new methodology to cover a wider state space and resolve more prob-
lems. Diagnosis is a time and space consuming problem, and the proposed
methodology in this paper includes improvement methods that serve to pre-
vent redundancies during backward reachability analysis.

The purpose of this paper is to propose accomplishing methods to allow the
application of classical model based diagnosis algorithms on reconfigurable sys-
tems using R-TNCES formalism. Note that the problem of applying the classical
algorithms of model-based diagnosis is left outside the scope of this paper.

To the best of our knowledge, (1) no existing previous works have proposed
methods for reconfigurable systems backward reachability, (2) no existing rules
showing how to reverse a system modeled by R-TNCES formalism, and (3) no
research works deal with optimization of R-TNCESs backward state space to
improve model-based diagnosis abilities.

The paper’s contribution is applied to a real case study of smart grids [24,33]:
SGrid, which is an electrical distribution platform (from generators to con-
sumers). Obtained results show that after applying proposed methods, classical
algorithms of model based diagnosis becomes possible on R-TNCESs. In addi-
tion, the covered state space using new methodology is improved. A performance
evaluation is achieved for different sizes of problems.

The present paper is an extended version of our previous paper [13]. The
methodology is improved by new experiments and results on a well explained
case study about smart grids.

The remainder of the paper is organized as follows. Section 2 recalls the
most recent basic elements of R-TNCESs formalism, introduces backward reach-
ability method concepts, presents the proposed R-TNCES reverse method that
will be used as a basic element in backward reachability of R-TNCESs, and
finally reminds Mu method that will be used to improve computations. Section 3
explains the main motivations of this paper, proposes the new methodology of
backward reachability including Mu improvement method, presents the algo-
rithm and computes its complexity. Section 4 is the experimentation part which
contains some applications and results. Finally, Sect. 5 concludes this paper and
describes the future work.

2 Preliminaries

In this section we first introduce an extension from Petri nets formalism
[26] called reconfigurable discrete event/condition systems (R-TNCESs) [30].
R-TNCESs are used for formal modeling and verification of reconfigurable dis-
crete event control systems. However, their verification is often expensive and
needs some improvement methods. In this section, we present backward reacha-
bility analysis for R-TNCES and some basic elements proposed to improve the
verification task.

Efficient Diagnosis of Reconfigurable Systems 111

2.1 R-TNCESs Formalism

According to the definition reported in [14,31], reconfigurable timed net condi-
tion/event systems (R-TNCESs) are formally defined by a couple RTN = (B, R)
where B (respectively, R) is the behavior (respectively, the control) module of
a reconfigurable discrete event control system (RDECS). B is a union of multi-
TNCESs represented by

B = (P, T, F, W, CN, EN, DC, V, Z0)

where,

– P (respectively, T) is a superset of places (respectively, transitions),
– F ⊆ (P × T) ∪ (T × P)1 is a superset of flow arcs,
– W : (P × T) ∪ (T × P) −→ {0, 1} maps a weight to a flow arc, W (x, y) > 0

if (x, y) ∈ F , and W (x, y) = 0 otherwise, where x, y ∈ P ∪ T ,
– CN ⊆ (P × T) (respectively, EN ⊆ (T × T)) is a superset of condition

signals (respectively,event signals), (v) DC : F ∩ (P × T) → {[l1, h1] , . . . ,
[l|F∩(P×T)|, h|F∩(P×T)|]} is a superset of time constraints on input arcs of
transitions, where
∀i ∈ [1, | F ∩ (P × T) |] , li, hi ∈ N and li < hi,

– V : T −→ {∨, ∧} maps an event-processing mode (AND or OR) for every
transition,

– Z0 = (M0, D0), where M0 : P −→ {0, 1} is the initial marking, and D0 :
P −→ {0} is the initial clock position.

The graphical model of a TNCES is depicted in Fig. 1.

t0

t1

p0

p1

t2

Event input

Flow arc

Forced transition

Token

Spontaneous transition

Module boundary

Event output

Condition signal / Condition arc

Signal arc / Event arc

Place

Fig. 1. Modules graphical model [13].

R is a set of reconfiguration rules such that rule r is a structure represented by

r = (Cond, s, x)

1 Cartesian product of two sets: P × T = {(p, t)| p ∈ P, t ∈ T}.

112 Y. Hafidi et al.

where,

– Cond → {True, False} is the pre-condition of r, i.e., r is executable only if
Cond = True,

– s : TN(•r) → TN(r•) is the structure-modification instruction such that
TN(•r) (respectively, TN(r•)) represents the structure before (respectively,
after) applying the reconfiguration r,

– x : laststate(•r) → initialstate(r•) is the state processing function. In this
paper, we denote by rij the reconfiguration rule that transforms TNCESi to
TNCESj .

As reported in [14,31], structure-modification instructions are presented in
Table 1. A place is denoted by x, a transition by y, a control component module
by CC, and the AND instruction to represent complex modification instructions
is presented by “,”.

Table 1. Structure-modification instructions of R-TNCESs [13].

N° Instruction Symbol

1 Add condition signals Cr(cn(x, y))

2 Add event signals Cr(ev(y, y))

3 Add control component Cr(CC)

4 Delete condition signals De(cn(x, y))

5 Delete event signals De(ev(y, y))

6 Delete control component De(CC)

7 Add place x with its marking m(x) Cr(x, m(x))

8 Add transition y Cr(y)

9 Add flow arc fa(x, y) or flow arc fa(y, x) Cr(fa(x, y)) or Cr(fa(y, x))

10 Delete place x De(x)

11 Delete transition y De(y)

12 Delete flow arc fa(x, y) or flow arc fa(y, x) De(fa(x, y)) or De(fa(y, x))

13 Modify transition’s y event-processing mode to “AND” Mo(AND(y))

14 Modify transition’s y event-processing mode to “OR” Mo(OR(y))

R-TNCESs semantic is defined by both the reconfiguration between TNCESs
in behavior module B, and the firing of transitions in each TNCES. The former
has the priority to be applied first when its pre-conditions are fulfilled. The
latter depends on the rules of firing transitions in TNCESs and the chosen firing
mode. Two kinds of transitions are distinguished, i.e., spontaneous and forced
transitions. A transition t is called spontaneous if it is not forced by any other
transition (i.e., there are no event signals incoming to t), otherwise it is called
forced transition. Each type of transitions has its firing rules. The firing rules
are described in detail in [31]. However for the firing mode, we adopt the mode
in which only “one spontaneous transition is fired by step”.

We use the concept of control components (CCs) which was firstly introduced
in [17] in order to model RDECSs. This means that each configuration is a set

Efficient Diagnosis of Reconfigurable Systems 113

of CCs interconnected with each other to compose a TNCES. The concept of
CCs serves the modularity which enabels the readability and the re-usability of
models.

Note that in this paper, we use non marked TNCESs which are TNCESs
structures with no given initial marking and non marked R-TNCESs which are
R-TNCESs with configurations represented by non marked TNCESs. We use non
marked R-TNCESs to describe many possible systems in one model, i.e., each
R-TNCES with a possible initial marking represents a system. In addition, by
non marked R-TNCESs we are able to describe systems with missed information
on their behavior.

2.2 Backward Reachability Analysis (BRA)

Backward reachability analysis (BRA) theory has been already used for ordi-
nary Petri nets [3] and colored Petri nets [7]. BRA on ordinary Petri nets uses
methods such as the reverse of the net, where arcs directions are just reversed
(i.e., source becomes target and target becomes source). However, this method
is disadvantageous for other high level Petri nets like R-TNCESs. We propose a
method that helps to apply BRA on R-TNCESs and study its benefits comparing
with other existed theories.

Backward reachability analysis (BRA) can be started from an undesirable
state which leads the system to a critical behavior, and it highlights all possible
scenarios that cause it. Backward reachability analysis are widely used in model-
based diagnosis problems. Let (1) S be a system that works incorrectly, (2) MS

be an abstracted model of S, and (3) OBS = {o1, o2, ..., on} be a set of states
specifying the observed misbehavior. The model-based diagnosis method back-
tracks the system states according to its behavior extracted from Ms, and gives
sequences of initial states that are supposed to be reasons for this unpredictable
misbehavior starting from OBS (Fig. 2).

Fig. 2. Model based diagnosis and backward reachability [13].

114 Y. Hafidi et al.

This reasoning is beneficial when we have a non completed model of system
S, i.e., sometimes system’s behavior cannot be completely modeled 100%, thus,
some parts are missed such as the initial state from which a system starts its
process. In this case, model MS is built from hardware components data and their
interactions. Using Petri nets formalism, the missed behavior can be presented
as lack of information about initial marking (i.e., initial state) in the model.
Therefore, MS is given as a Petri net model without initial marking (i.e., non
marked Petri net). Suppose that we aim to explain a misbehavior of such system
using the forward method, then all sequences with each possible combination of
initial marking is generated. The problem is that in some cases, this reasoning
costs a lot of extra time due to a huge number of initial marking possibilities that
can even be infinite and not beneficial for the diagnosis process. Some diagnosis
works take as an input a system that is modeled using Petri nets like Ms. Then,
backward reachability analysis (BRA) is adopted to generate the system’s state
space starting from the undesirable state in OBS. The obtained state space
serves to understand possible causes of resulted observations. The main strength
point of this method is that it is able to have a model MS that represents all
possible systems with all combinations of inputs and parameters. Therefore, each
real system of these possible ones in MS is supposed to be diagnosed at the end
of the process. One of BRA advantages is that it focuses on critical scenarios
rather than all possible ones. Unfortunately, it is possible that the graph resulted
from BRA be larger or infinite comparing with the original one obtained using
the forward reachability analysis (FRA) [21] for a marked input system. For this
case, BRA approach is practical only if the subsequent graph is smaller than
the original one obtained by FRA approach. Therefore, generating backward
reachability graphs is infeasible in some cases like the above one. In the next
subsection, we define what is R-TNCES reverse that will be used to generate
R-TNCES backward reachability graphs.

2.3 R-TNCES Reverse

Ordinary Petri nets reversion method can be generalized to R-TNCESs by (1)
inverting arcs directions in the nets, and (2) adapting R-TNCESs semantics.
The result is a reversed R-TNCES which is possible to be backward analyzed.
Adapting R-TNCESs allows to add necessary procedures related to R-TNCESs
semantic in order to complete the reversion and to facilitate the analysis among
resulted structures. The reversion applied in ordinary Petri nets does not require
adaptations, i.e., a simple reversion of arcs directions is sufficient to perform
backward reachability. However in R-TNCESs, where the dynamic of this high
level Petri net is different and contains more constraints, the inversion of arcs
directions is not sufficient. We propose some complementary methods to R-
TNCESs reversion method to consider the adaptation of token’s evolution in
this special Petri net, e.g., cases of, condition/event arcs, reconfigurations,.. etc.

Efficient Diagnosis of Reconfigurable Systems 115

We consider that the reverse of a non marked R-TNCES RTN(BRTN , RRTN)
is an imaginary non marked R-TNCES given by

RTN−1(B−1
RTN , R−1

RTN)

where,

– B−1
RTN is a set of reversed non marked TNCESs generated from original non

marked TNCESs in BRTN by using arcs inversion generic algorithm and
reversed firing rules as in Table 2,

– R−1
RTN is a set of reversed reconfiguration rules that are generated from orig-

inal ones in RRTN using Tables 3 and 4.

2.4 Mu Improvement Method

As reported in [14], Mu function improves the generation of accessibility graphs
by reducing redundancies and unnecessary computations. Let RS(BRS , RRS)
be an R-TNCES, where (1) BRS = {C1, ..., Cn} is the behavior module con-
taining n > 1 configurations C1, .., Cn, and (2) RRTN is the control module
containing k > 1 reconfiguration rules: rij , 1 ≤ i, j ≤ n that transforms the
system from configuration Ci to configuration Cj . µ(AG(Ci), rij) is the func-
tion that takes the accessibility graph of a configuration AG(Ci) and transforms
it into another accessibility graph of another configuration AG(Cj) according
to the structure-modifications in the applied reconfiguration rule rij , i.e., rij .s
is a list containing one or more structure-modification instructions defined in
Table 1. Function Mu, generates new accessibility graphs of new configurations
from already generated ones. Rather than computing each graph from zero, Mu
helps to avoid repetitive computation and keep similar already computed parts
of the state space. Mu function uses a set of rewriting rules on an already
computed graph to transform it to a new graph. Table 5 presents some rewrit-
ing rules of Mu function. Other rewriting rules of all possible reconfiguration
scenarios are presented and explained in [14]. A set of rewriting rules for each
possible structure-modification instruction SMIm ∈ rij .s, i.e., SMIm denotes
the structure-modification instruction symbol number m. We denote by (1) a
and a′: accessibility graph edges, (2) y, y1, and y2: R-TNCESs transitions, (3)
y1 � y2 an event signal from y1 to y2, (4) enb(s, y) a boolean function that
returns 1 if the transition t is enabled in the state s or 0 otherwise, (5) src:
A → S the function that returns the state representing the source node of the
edge e and tg : A → S the function that returns the state representing the target
node of the edge e, and (6) SimulateFrom(s) the function that continues the
simulation from a non-complete graph (i.e., a set of states and a set of edges),
eventual enabled transitions are fired to compute the additional reachable states
on the new structure, starting from the state s.

116 Y. Hafidi et al.

Table 2. R-TNCESs reversed firing rules [13].

Table 3. Reconfiguration rules inversion [13].

r RTN RTN−1

cond c c−1

S S S−1

X TN(•r) → TN(r•) TN(r•) → TN(•r)

3 Methodology

This section presents: our motivation in this paper, new proposed backward
reachability methodology, algorithm and complexity.

3.1 Motivation

Model-based diagnosis (MBD) of systems [16] has attracted many interest since
it ensures systems safety [5–7,22]. Some of diagnosis abilities is explaining the
appearance of an observed system’s misbehavior, determining the faulty com-
ponents of the system, and defining what additional information need to be
gathered to identify faulty components [9]. Backward reachability analysis is very
important in model based diagnosis, i.e., it represents the principal function that
backtracks the system process. Unfortunately, BRA is a complex function that is
expensive in terms of computing time and memory. One of BRA high complex-
ity reasons is that it generates branches of all possible systems. BRA function is
important in complex systems diagnosis and it deserves to be improved.

Efficient Diagnosis of Reconfigurable Systems 117

Table 4. S−1: Reversed structure modification instructions [13].

N° RTN : S RTN−1: S−1

1 Cr(cn(x, y)) De(cn(x, y))

2 Cr(ev(y, y)) De(ev(y, y))

3 Cr(CC) De(CC)

4 De(cn(x, y)) Cr(cn(x, y))

5 De(ev(y, y)) Cr(ev(y, y))

6 De(CC) Cr(CC)

7 Cr(x, m(x)) De(x)

8 Cr(y) De(y)

9 Cr(fa(x, y))/ De(fa(x, y))/

Cr(fa(y, x)) De(fa(y, x))

10 De(x) Cr(x, 1) or Cr(x, 0)

11 De(y) Cr(y)

12 De(fa(x, y))/ Cr(fa(x, y))/

De(fa(y, x)) Cr(fa(y, x))

13 Mo(AND(y)) Mo(Or(y))

14 Mo(OR(y)) Mo(And(y))

Despite its long success in systems diagnosis, BRA has a number of problems
in use such as

1. Consideration of reconfigurable systems: the proposed algorithms in literature
lacks from the consideration of some complex systems like reconfigurable ones.
Contrarily to non-reconfigurable systems, reconfigurable ones have their own
special dynamic behavior that needs to be particularly considered when they
are backtracked.

2. Improvement of required time/memory: less research interests focus on opti-
mizing the backward reachability function. Such an expensive function needs
to include some optimization technique to improve required time and mem-
ory. This is beneficial because it makes backward reachability analysis easy
and possible for complex systems such as reconfigurable ones (Table 5).

Petri nets [23] and their extensions are ones of the most widely used formalisms
[19] that have been extensively exploited for modeling and analyzing concur-
rent, parallel and dynamic system. In this paper, we address the problem of
reconfigurable systems backward reachability using Petri nets extension called
R-TNCESs formalism [14,31,32].

118 Y. Hafidi et al.

Table 5. Mu rules [13].

m SMIm Rewriting rules on accessibility graphs Comments

(1) Cr(cn(x, y))
a) ∀a ∈ A, Label(a) = y ∧¬enb(src(a), y) ::= a) For each edge labeled

by y: if y is not enabled,
A ← A \ {a}. then delete it.

(2) Cr(ev(y1, y2))

a) ∀a ∈ A, Label(a) = y2 ::= A ← A \ {a}. a) Delete all edges
labeled by y2.

b) ∀a ∈ A, Label(a) = y1∧ enb(src(a), y1 � y2)::= b) For each edge
labeled by y1, check

A ← A \ {a} ∪ {a′} ∧ Label(a′) = y1 � y2∧ from its source state if
y1 � y2 is enabled, then

src(a′) = src(a) ∧tg(a′)= src(a)y1�y2−→ . delete the edge labeled
by y1and add a new
edge labeled
by y1 � y2.

(3) De(cn(x, y)) a) ∀s ∈ S, enb(s, y) ::= SimulateFrom(s).

a) In each state: if y
is enabled, then
continue simulation
from this state.

(4) De(ev(y1, y2))

a) ∀a ∈ A, Label(a) = (y1 � y2) ::= A ← A \ {a} a) Delete all edges
labeled by y1 � y2.
b) In each state if y1

b) ∀s ∈ S, enb(s, y1) ::= SimulateFrom(s). is enabled, then
continue the simulation
from this state.

c) ∀s ∈ S, enb(s, y2) ::= SimulateFrom(s). c) In each state if y2
is enabled, then
continue the simulation
from this state.

3.2 Backward Reachability with Mu Method

In this subsection, we propose a new methodology for an efficient verification of
reconfigurable systems. Foremost, we use a non marked R-TNCESs formalism
for modeling reconfigurable systems. Then, specify as R-TNCESs states the set
of system’s situation(s) to be checked. Systems situations may represent undesir-
able states such as failures, or desirable ones such as required results. Therefore,
situations are defined according to the problem and the type of the studied sys-
tem (i.e., a detailed example that explains that in Subsect. 4.1). The suggested
method in this paper uses the proposed backward reachability analysis method
to generate the backward accessibility graph of the initial configuration. Then, it
uses Mu method [14] to improve the computation of other backward accessibility
graphs.

The proposed methodology represents a combination between Mu method
and the suggested backward reachability analysis of R-TNCESs to generate back-
ward reachability graphs. Let us have a reconfigurable system with n configura-
tions such that n ∈ N and n > 1. The proposed method, as depicted in Fig. 3,
uses the proposed BRA for R-TNCESs to compute backward accessibility graph
graph1 of initial configuration conf1. After that, it employs Mu method to

Efficient Diagnosis of Reconfigurable Systems 119

Fig. 3. BRA with Mu (the proposed methodology) [13].

generate other graphs of the other configurations. Old methods as explained in
Fig. 4 should generate all graphs using BRA algorithm. Therefore, the difference
between the proposed and the old methods is that the suggested one gener-
ates only one graph. Other graphs are generated from the initial one, and then,
graph from another until the end of all system’s configurations. However, in old
methods, each graph is generated independently from others. In addition, Mu
method is used previously in [14] with forward reachability analysis methods to
generate forward reachability graphs. However, in this paper, Mu method is used
with the proposed backward reachability analysis method to generate backward
reachability graphs. This combination between both methods allows in one hand
to backward analyze systems under reconfigurability constraints, and in another
hand, to improve time and memory while generating all the graphs of such com-
plex systems.

Fig. 4. BRA without Mu (old methods) [13].

3.3 Algorithm and Complexity

Algorithm 1 describes the proposed method of R-TNCES backward reachabil-
ity analysis. The algorithm takes as inputs (1) RT a non marked R-TNCES
structure, (2) Configurations a set of TNCESs structures describing system’s
configurations, (3) Reconfigurations a set of Rules describing system’s trans-
formations, (4) Conf0 a non marked TNCES structure describing the initial
configuration of the system, and gives as output Graphs the set of accessibility
graphs of all the system.

120 Y. Hafidi et al.

Algorithm 1. GenerateGraphs.

Input: RT (Configurations : Set of TNCESs; Reconfigurations : Set of
Rules) : R − TNCES; Conf0 : TNCES;

Output: Graphs : Set of Accessibility Graphs;
1 Graph0 = BRA(Conf0);
2 AdaptingModel(RT , Conf0, Graph0);
3 Graphs = GetGraphsWithMu(RT , Conf0, Graph0);
4 Graphs ← Graph0 ∪ Graphs;

Algorithm 1 uses some additional functions (1) BRA function that takes the
initial configuration as input and returns its graph using the backward reach-
ability analysis method described in Subsect. 2.2. (2) AdaptingModel function
that adapts RT so that Mu function, which was proposed for forward analysis,
can be applied within the current backward analysis. (3) GetGraphsWithMu
function that computes other graphs using Mu. GetGraphsWithMu function
as described in Algorithm 2, takes the same inputs as in Algorithm 1, besides
the initial accessibility graph Graph0 that was already computed using BRA
method. The algorithm uses connections function to get the set of next reach-
able configurations from the graph of the current one. After that it recursively
computes each new graph from the previous one and stops when (1) no next con-
figurations are reachable, i.e., SetC = Nil, or (2) the graph is already computed,
i.e, Graphi ∈ Graphs.

Algorithm 2. GetGraphsWithMu.

Input: RT (Configurations : Set of TNCESs; reconfigurations : Set of
Rules) : R − TNCES; Conf0 : TNCES; Graph0 : Accessibility Graph;

Output: Graphs : Set of Accessibility Graphs;
Variables : SetC: Set of TNCESs;

1 SetC ← connections(Graph0);
2 if SetC �= Nil then
3 foreach Confi ∈ SetC do
4 Graphi = Mu(confi , conf0, Graph0);
5 if graphi �∈ Graphs then
6 Graphs ← graphi ∪ Graphs;
7 GetGraphsWithMu(RT , Confi, Graphi);

8 end

9 end

10 end

The time complexity of the entire algorithm: Algorithm 1 in systems with at
least 2 configurations is computed as follows

O(1 ∗ em + (| Configurations | −1) ∗ n)

where, (1) O(em) is complexity of the BRA function used only once for com-
puting the graph of the initial configuration, and (2) O(n) is complexity of Mu

Efficient Diagnosis of Reconfigurable Systems 121

function [14] used to compute other accessibility graphs, i.e., (| Configurations |
−1) times in the worst case when all configurations are reachable.

4 Experimentation

This section is composed of two subsections (1) a case study where paper’s
contributions are applied, and (2) performance evaluation where proposed and
related methodologies are compared using different factors.

4.1 Case Study: SGrid Smart Grid

SGrid is an electricity platform and a modern electricity delivery system from
generators to consumers, with self-healing and add-in-demand features. The
studied SGrid is composed of four main levels of interconnected components:
L1, L2, L3, and L4. Each level is composed of a set of electrical devices such
as consumers, generators, transformers and/or actuators. Level L1 is the high
voltage network that contains power generators such as nuclear power plants,
coal plants and hydro-electric plants. The power generated is transmitted to
level L2. Level L2 comprises a set of 8 transmission and sub-transmission ele-
ments that transfers electricity to different components of level L3. Level L3 is
the distribution level that includes a set of 11 distributors, such that each dis-
tributor supplies one or more consumers by electricity according to their need.
Finally, L4 is the consummation level which involves a set of 5 consumers like
citizens’ houses and small offices. In SGrid network, each element can have a
local generator of power from renewable energy such as solar farms, wind farms,
coat plants, nuclear plants, etc. Therefore, each component of the 4 levels can be
both consumer and small generator of electricity in the same time. SGrid is: (1)
a self-healing system that has the capacity to automatically recognize issues, cor-
rect the electricity interruption, and prevent from blackouts, (2) a flexible system
with add-in-demand feature that allows it to augment the number of generators
to increase electricity supply or new consumers to cover a larger area. SGrid deals
with this by reforming its structure, i.e., adding/removing new connections, new
elements. This usually happens in L3 (i.e., distribution level) which is the level
the most concerned by transformations. The working process is simple: the elec-
tricity goes from generators to consumers passing by devices of transmitters and
distributors. In the normal case, all consumers in L4 receive the necessary elec-
tricity that they need without blackouts thanks to SGrid self-adaptation. But
in some unexpected cases, they meet insufficiency and interruptions. The issue
is that in this case the abnormally is observed just in L4 devices. However, the
reason can be in the input generators. The challenge is how to find in less as
possible time the breakdown.

SGrid main working process is explained in Fig. 6

122 Y. Hafidi et al.

SGrid Modeling. In order to apply formal analysis techniques, it is neces-
sary to mathematically model the studied system SGrid. We model SGrid using
R-TNCES formalism already presented in Subsect. 2.1. SGrid is an R-TNCES
(Fig. 5)

S(BFT , RFT)

where,

Generation Transmission

Distribution 1

Distribution 2

Distribution 3

Consumption

L1: Generators L2: Transmitters

L3: Distributors (form 1)

L3: Distributors (form 2)

L3: Distributors (form 3)

L4: Consumers

Fig. 5. SGrid main process.

Solar farm 2

House 3

House 2

Hospital

House 1

Solar farm 1

Wind farm

Commercial
buildings

Factory
Nuclear plant
Power plant

Coal plant

Transformer
Electricity lines

Fig. 6. SGrid Infrastructure.

Efficient Diagnosis of Reconfigurable Systems 123

– BS = {c1, c2, c3}: is the behavior module that contains all possible con-
figurations, i.e., SGrid distribution forms are represented by R-TNCESs
configurations, where C1, C2, and C3 configurations respectively represent
Distribution1, Distribution2, and Distribution3 distribution modes. Each
configuration is presented by a set of interconnected modules (Mdli) which
are control components communicating with signals.

– RFT = {rc1−c2 , rc1−c3 , rc2−c1 , rc3−c1} is the control module that involves
all reconfiguration rules that transforms the system from a configuration to
another.

The initial configuration c1 of the studied system is represented by the TNCES
that is graphically shown in Fig. 7. Other configurations c2 and c3 can be
obtained by applying possible reconfiguration rules from RS .

Considered reconfiguration rules are described as follows,

– rc1−c2 = (Distributor1 breaks down; De(Mdl10), Cr(ev(t27/Mdl13, t42/
Mdl21)),
Cr(ev(t11/Mdl5, t27/Mdl13)); (p1, C1) → (p1, C2));

– rc1−c3 = (Distributor2 breaks down; De(Mdl11), Cr(ev(t27/Mdl13, t42/
Mdl21));
(p1, C1) → (p1, C2)).

Mdl2

Mdl1

P1

P2
t1

t2

t3

t4

Mdl3

P3

t5

t6

Mdl4

P4

t7

t8

Mdl12Mdl5

Mdl6

Mdl7

Mdl8

Mdl13

Mdl14

Mdl18

Mdl15

Mdl16

Mdl17

Mdl19

Mdl20

Mdl11

Mdl10

Mdl9

Mdl21

Mdl22

Mdl23

Mdl24

Mdl25

Fig. 7. Initial configuration of SGrid C1.

SGrid Verification. We define a set of goal states Sti that represent undesir-
able behavior specified from observation. The observation in SGrid is simple, we
notice that there is an abnormal behavior when for example the electricity cuts

124 Y. Hafidi et al.

or when energy is insufficient for one or more consumers. We represent this case
formally by an R-TNCES state, and we start backward reachability to obtain
possible origins of this issue. In our case, the set of goal states is {(Stgoal1 , C1),
(Stgoal2 , C2), (Stgoal3 , C3)} such that (1) (Stgoal1 , C1) represents a goal in con-
figuration C1, (2) (Stgoal2 , C2) represents a goal in configuration C2, and (3)
(Stgoal3 , C3) represents a goal in configuration C3.

We use R-TNCESs reverse method, and obtain,

S−1(B−1
S , R−1

S)

where,

– B−1
FT = {C−1

1 , C−1
2 , C−1

3 }, i.e., obtained using R-TNCESs reversed firing rules
(Table 2) in each configuration,

– R−1
S = {r−1

c1−c2 , r
−1
c1−c3}, i.e., obtained using Table 3

The set of considered S−1 reconfiguration rules are described as follows,

– r−1
c1−c2 = (Distributor1 works; Cr(Mdl10), De(ev(t27/Mdl13, t42/Mdl21)),
De(ev(t11/Mdl5, t27/Mdl13)); (p1, C2) → (p1, C1));

– r−1
c1−c3 = (Distributor1 works; Cr(Mdl11), De(ev(t27/Mdl13, t42/Mdl21));
(p1, C3) → (p1, C1)).

Now, we compute backward reachability graphs starting from undesirable states
Stgoal1 , Stgoal2 , and Stgoal3 . Obtained state space is a set of sub-graphs
{subG(C1), subG(C2), subG(C3)} from whole system accessibility graphs. Sub-
graphs: (1) subG(C1) contains branches leading to the undesirable state Stgoal1
in C1, (2) subG(C2) contains branches leading to the undesirable state Stgoal2
in C2, and (3) Sub-graph subG(C3) contains branches leading to the undesirable
state Stgoal3 in C3. In real, obtained branches show the chain of system com-
ponents that acted to give goal states. This helps in SGrid to identify the set
of components that are possibly acting incorrectly. The sub-graph subG(C1) is
depicted in Fig. 8.

Mdl2

Mdl1 Mdl12Mdl5

Mdl6

Mdl11

Mdl10

Mdl21

Fig. 8. Backward reachability graph of Stgoal1 : subG(C1).

After computing sub-graph subG(C1), we use Mu method (Subsect. 2.4) to
compute other subgraphs from the already computed one subG(C1). Sub-graphs
subG(C2) and subG(C3) are depicted in Figs. 9, 10.

Efficient Diagnosis of Reconfigurable Systems 125

Mdl2

Mdl1

Mdl13

Mdl5

Mdl6

Mdl12

Mdl11

Mdl21

Fig. 9. Backward reachability graph of Stgoal2 : subG(C2).

Mdl2

Mdl1

Mdl13

Mdl5

Mdl6

Mdl12

Mdl10

Mdl21

Fig. 10. Backward reachability graph of Stgoal3 : subG(C3).

The advantage of using backward reachability, is that it focuses on explaining
the appearance of an undesirable behavior i.e., other behavior of system is not
included in the verification. By using the proposed methodology, we were able to
successfully apply backward reachability analysis for the studied reconfigurable
system SGrid using R-TNCESs formalism.

4.2 Performance Evaluation

In this section, we first study results obtained for the same case study using
different methodologies. Then, we study the evaluation in large scale systems
using different factors. Finally, we summarize in a comparison table limits and
benefits of the proposed method and previous related ones.

Comparison with Related Works Methods. For the same system SGrid,
we apply our proposed methodology, and methodologies proposed in related
works, then, we compare obtained results.

We notice that the total number of computed states is almost the half in
current methodology compared to previous ones. Backward reachability helped
to identify only critical scenarios and their related states rather than all possible
system’s behavior. And Mu method helps to improve the generation of the
system’s states space without computations redundancies. This can serve the
verification of reconfigurable systems such as SGrid with complex behavior using
less time and memory.

126 Y. Hafidi et al.

Table 6. Number of states with the proposed methodology VS related methodologies.

Configuration Number of states

Related work 1 [31] Related work 2 [14] Current work

C1 25 25 8

C2 24 1 8

C3 24 5 8

Total 73 31 24

Number of Computed States VS Number of Undesirable States. In this
subsection, we apply proposed and related methodologies in a large scale system
using different number of undesirable states. The curve depicted in Fig. 11 shows
that the number of computed states using the proposed methodology is less than
the number of states generated using related methodology. In the best cases,
backward reachability generates less states starting from the undesirable states
to the source (possible initial marking), however, forward methods generate all
possible branches with all possible initial markings.

Fig. 11. Computed states VS undesirable states [13].

5 Conclusion

The paper’s work deals with the backward reachability of reconfigurable sys-
tems and its application on smart electrical grids verification. The proposed
method allows the applicability of backward reachability methods on reconfig-
urable systems modeled by R-TNCESs. The suggested methodology allows to

Efficient Diagnosis of Reconfigurable Systems 127

compute backward reachability graphs using improvement methods that reduce
repetitive computations.

The application of the proposed methodology in a real case study which is a
smart grid network has displayed how backward reachability analysis becomes
possible using R-TNCESs. The performance evaluation has shown that the pro-
posed methodology for RDECSs improved verification for large scale systems.

Perspectives of this research work includes: (1) considering the application of
model-based diagnosis (2) comparison with other different formalisms, (3) con-
sideration of probabilistic constraints in computing branches, and (4) including
the proposed improvement method in a tool in order to automatize it and profit
from its gain.

References

1. Aissa, Y.B., Bachir, A., Khalgui, M., Koubaa, A., Li, Z., Qu, T.: On feasibility of
multichannel reconfigurable wireless sensor networks under real-time and energy
constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019)

2. Aissa, Y.B., Mosbahi, O., Khalgui, M., Bachir, A.: New scheduling mechanism
in multi-channel reconfigurable WSN under QoS and energy constraints. In: 32nd
Annual European Simulation and Modelling Conference 2018, pp. 187–191 (2018)

3. Anglano, C., Portinale, L.: B-W analysis: a backward reachability analysis for
diagnostic problem solving suitable to parallel implementation. In: Valette, R. (ed.)
ICATPN 1994. LNCS, vol. 815, pp. 39–58. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58152-9 4

4. Baier, C., Katoen, J., Larsen, K.: Principles of Model Checking. MIT Press, Cam-
bridge (2008)

5. Bennoui, H., Chaoui, A., Barkaoui, K.: Distributed causal model-based diagnosis
based on interacting behavioral Petri nets, pp. 99–106 (2009)

6. Berghout, Y.M., Bennoui, H.: Distributed diagnosis based on distributed proba-
bility propagation nets. Int. J. Comput. Sci. Eng. 18(1), 72–79 (2019)

7. Bhandari, G.P., Gupta, R., Upadhyay, S.K.: Colored Petri nets based fault diag-
nosis in service oriented architecture. Int. J. Web Serv. Res. (IJWSR) 15(4), 1–28
(2018)

8. Cong, X., Fanti, M.P., Mangini, A.M., Li, Z.: Decentralized diagnosis by Petri nets
and integer linear programming. IEEE Trans. Syst. Man Cybern. Syst. (2017).
https://doi.org/10.1109/TSMC.2017.2726108

9. De Kleer, J., Kurien, J.: Fundamentals of model-based diagnosis. IFAC Proc. Vol.
36(5), 25–36 (2003)

10. Dubinin, V., Vyatkin, V., Hanisch, H.M.: Synthesis of safety controllers for dis-
tributed automation systems on the basis of reverse safe net condition/event sys-
tems. In: Proceedings of the Trustcom/BigDataSE/ISPA, vol. 3, pp. 287–292. IEEE
(2015)

11. Gharsellaoui, H., Gharbi, A., Khalgui, M., Ahmed, S.B.: Feasible automatic recon-
figurations of real-time OS tasks. In: Handbook of Research on Industrial Infor-
matics and Manufacturing Intelligence: Innovations and Solutions, pp. 390–414.
IGI Global (2012)

12. Ghribi, I., Abdallah, R.B., Khalgui, M., Li, Z., Alnowibet, K., Platzner, M.: R-
codesign: codesign methodology for real-time reconfigurable embedded systems
under energy constraints. IEEE Access 6, 14078–14092 (2018)

https://doi.org/10.1007/3-540-58152-9_4
https://doi.org/10.1007/3-540-58152-9_4
https://doi.org/10.1109/TSMC.2017.2726108

128 Y. Hafidi et al.

13. Hafidi, Y., Kahloul., L., Khalgui., M.: New methodology for backward analysis of
reconfigurable event control systems using R-TNCESs. In: Proceedings of the 14th
International Conference on Software Technologies - Volume 1: ICSOFT, pp. 129–
140. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007979901290140

14. Hafidi, Y., Kahloul, L., Khalgui, M., Li, Z., Alnowibet, K., Qu, T.: On methodol-
ogy for the verification of reconfigurable timed net condition/event systems. IEEE
Trans. Syst. Man Cybern. Syst. (99), 1–15 (2018)

15. Hafidi., Y., Kahloul., L., Khalgui., M., Ramdani., M.: On improved verification of
reconfigurable real-time systems. In: Proceedings of the 14th International Con-
ference on Evaluation of Novel Approaches to Software Engineering - Volume
1: ENASE, pp. 394–401. INSTICC, SciTePress (2019). https://doi.org/10.5220/
0007736603940401

16. Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-based Diagnosis.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

17. Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.M.: Reconfigurable multiagent embed-
ded control systems: from modeling to implementation. IEEE Trans. Comput.
60(4), 538–551 (2011)

18. Khalgui, M., Rebeuf, X., Simonot-Lion, F.: A behavior model for IEC 61499 func-
tion blocks. In: Proceedings of the 3rd Workshop on Modelling of Objects, Com-
ponents, and Agents, pp. 71–88 (2004)

19. Khawla, B., Molnár, B.: An FSM approach for hypergraph extraction based on
business process modeling. In: Demigha, O., Djamaa, B., Amamra, A. (eds.) CSA
2018. LNNS, vol. 50, pp. 158–168. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-98352-3 17

20. Lakhdhar, W., Mzid, R., Khalgui, M., Li, Z., Frey, G., Al-Ahmari, A.: Multiobjec-
tive optimization approach for a portable development of reconfigurable real-time
systems: from specification to implementation. IEEE Trans. Syst. Man Cybern.
Syst. (2018)

21. Leveson, N.G., Stolzy, J.L.: Analyzing safety and fault tolerance using Time Petri
nets. In: Ehrig, H., Floyd, C., Nivat, M., Thatcher, J. (eds.) TAPSOFT 1985.
LNCS, vol. 186, pp. 339–355. Springer, Heidelberg (1985). https://doi.org/10.1007/
3-540-15199-0 22

22. Liu, B., Ghazel, M., Toguyéni, A.: Model-based diagnosis of multi-track level cross-
ing plants. IEEE Trans. Intell. Transp. Syst. 17(2), 546–556 (2016)

23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

24. Naidji, I., Smida, M.B., Khalgui, M., Bachir, A.: Non cooperative game theoretic
approach for residential energy management in smart grid. In: The 32nd Annual
European Simulation and Modelling Conference, Ghent, Belgium, pp. 164–170
(2018)

25. Pózna, A.I., Gerzson, M., Leitold, A., Hangos, K.: Colored Petri net based diagnosis
of process systems (2016)

26. Qin, M., Li, Z., Zhou, M., Khalgui, M., Mosbahi, O.: Deadlock prevention for a
class of Petri nets with uncontrollable and unobservable transitions. IEEE Trans.
Syst. Man Cybern. Part Syst. Hum. 42(3), 727–738 (2012)

27. Ramdani, M., Kahloul, L., Khalgui, M.: Automatic properties classification app-
roach for guiding the verification of complex reconfigurable systems. In: Pro-
ceedings of the 13th International Conference on Software Technologies - Volume
1: ICSOFT, pp. 591–598. INSTICC, SciTePress (2018). https://doi.org/10.5220/
0006863005910598

https://doi.org/10.5220/0007979901290140
https://doi.org/10.5220/0007736603940401
https://doi.org/10.5220/0007736603940401
https://doi.org/10.1007/978-3-319-98352-3_17
https://doi.org/10.1007/978-3-319-98352-3_17
https://doi.org/10.1007/3-540-15199-0_22
https://doi.org/10.1007/3-540-15199-0_22
https://doi.org/10.5220/0006863005910598
https://doi.org/10.5220/0006863005910598

Efficient Diagnosis of Reconfigurable Systems 129

28. Ramdani., M., Kahloul., L., Khalgui., M., Hafidi., Y.: R-TNCES rebuilding: A
new method of CTL model update for reconfigurable systems. In: Proceedings
of the 14th International Conference on Evaluation of Novel Approaches to Soft-
ware Engineering - Volume 1: ENASE, pp. 159–168. INSTICC, SciTePress (2019).
https://doi.org/10.5220/0007736801590168

29. Wang, X., Khalgui, M., Li, Z.: Dynamic low power reconfigurations of real-time
embedded systems. In: PECCS, pp. 415–420 (2011)

30. Zhang, J., Frey, G., Al-Ahmari, A., Qu, T., Wu, N., Li, Z.: Analysis and control
of dynamic reconfiguration processes of manufacturing systems. IEEE Access 6,
28028–28040 (2017)

31. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst.
Man Cybern. Syst. 43(4), 757–772 (2013)

32. Zhang, S., Wu, N., Li, Z., Qu, T., Li, C.: Petri net-based approach to short-term
scheduling of crude oil operations with less tank requirement. Inf. Sci. 417, 247–261
(2017)

33. Ziouche, L., Meskina, S.B., Khalgui, M., Kahloul, L., Li, Z.: Smart grid rebuilding
based on cloud computing architecture. In: 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC), pp. 2259–2266. IEEE (2019)

https://doi.org/10.5220/0007736801590168

Software Systems and Applications

GA-PPI-Net: A Genetic Algorithm for
Community Detection in Protein-Protein

Interaction Networks

Marwa Ben M’barek1,2(B) , Amel Borgi1,3, Sana Ben Hmida2 , and Marta Rukoz2

1 LIPAH, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia
marwa.benmbarek@fst.utm.tn

2 LAMSADE CNRS UMR 7243, Paris Dauphine University, PSL Research University,
Place du Maréchal de Lattre de Tassigny, Paris, France

marwa.ben-mbarek@dauphine.eu, sana.mrabet@dauphine.psl.eu,
marta.rukoz@lamsade.dauphine.fr

3 Institut Supérieur d’Informatique, Université de Tunis El Manar, 1002 Tunis, Tunisia
Amel.Borgi@insat.rnu.tn

Abstract. Community detection has become an important research direction for
data mining in complex networks. It aims to identify topological structures and
discover patterns in complex networks, which presents an important problem of
great significance. In this paper, we are interested in the detection of communities
in the Protein-Protein or Gene-gene Interaction (PPI) networks. These networks
represent a set of proteins or genes that collaborate at the same cellular func-
tion. The goal is to identify such semantic and topological communities from
gene annotation sources such as Gene Ontology. We propose a Genetic Algo-
rithm (GA) based approach to detect communities having different sizes from PPI
networks. For this purpose, we introduce three specific components to the GA: a
fitness function based on a similarity measure and the interaction value between
proteins or genes, a solution for representing a community with dynamic size and
a specific mutation operator. In the computational tests carried out in this work,
the introduced algorithm achieved excellent results to detect existing or even new
communities from PPI networks.

Keywords: Community detection · Genetic algorithm Protein-Protein or
gene-gene interaction networks · Semantic Similarity · Gene Ontology

1 Introduction

Diverse kinds of networks such as the computer network, the biological network, the
power system network and the social media network have emerged and are changing
our daily life with the development of science and technology [7]. Network becomes
the engine of scientific research activities in the 21st century, and the active topic across
disciplines. Many real-world networks are rather complex, characterised by big data
volume, dynamics, interactivity and heterogeneity [7]. In recent years, one of the out-
standing property of networks, i.e., the community [12], has become a hot research
topic of modern network science. Community detection is one of the theoretical under-
pinnings of network science, social science, physical science, biological science, etc. It
c© Springer Nature Switzerland AG 2020

M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 133–155, 2020.
https://doi.org/10.1007/978-3-030-52991-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_7&domain=pdf
http://orcid.org/0000-0002-8307-3533
http://orcid.org/0000-0003-4202-613X
https://doi.org/10.1007/978-3-030-52991-8_7

134 M. Ben M’barek et al.

can yield useful insights into the structural organization of a network and can serve as
a basis for understanding the correspondence between structure and function (specific
to the domain of the network). Identifying the community allows us to obtain some
important information about the relationship and interaction among nodes.

In this paper, we are interested in detecting communities in biological networks.
Biological networks have been observed to be highly modular where a tightly connected
group of genes (nodes) are involved in similar biological functions. These groups are
referred to as communities, modules, or clusters. Communities detected from biologi-
cal networks are usually responsible for a common phenotype and are useful in provid-
ing insights pertaining to biological functionality. Community detection methods play
a crucial role in obtaining these functional modules [52]. Biological networks, such
as Protein–Protein interaction networks, gene regulatory networks, gene co-expression
networks, metabolic networks and signaling networks provide a mathematical represen-
tation of biological systems. In this work, we mainly focus on Protein-Protein or Gene-
Gene interaction networks known as PPI networks. Their nodes correspond to proteins
or genes and the edges correspond to pairwise interactions between genes or proteins.
These communities give us an idea about the perception of the network’s structure. The
ultimate goal in biology is to determine how genes or proteins encode function in the
cell.

This work is multidisciplinary as it brings the field of biology and computer science
in the broad sense. Thus, the goal is to find communities having a biological sense (that
participate in the same biological processes or that perform together specific biological
functions) from gene annotation sources. To achieve this task, we have combined three
levels of information:

1. Semantic level: information contained in biological ontologies such as Gene Ontol-
ogy GO [2] and information obtained by the use of a similarity measure such as GS2
[40], it assesses the semantic similarity between proteins or genes;

2. Functional level: information contained in public databases describing the interac-
tions of proteins or genes such as Search Tool for Recurring Instances of Neighbour-
ing Gene (STRING) database [24];

3. Networks level: information contained in pathway databases that present community
of proteins or genes such as KEGG database [19].

The performed tests in [16], revealed that genes or proteins in the same community
of the biological pathway database KEGG are semantically similar and are interacting.
From this affirmation, we have proposed to take into account the similarity between
proteins or genes that are annotated by terms of Gene Ontology (GO). In a previous
work, we have tested different similarity measures to determine the most suitable one
for this problem that is GS2 [5].

Community detection sheds light on the functionalities of complex networks. Thus
far, a large number of community detection methods have been proposed in the lit-
erature [7]. Meanwhile, various methods based on the evolutionary algorithms (EAs)
have been proposed. EAs are a class of artificial intelligent optimisation metaheuris-
tics inspired by biological evolution, such as reproduction, mutation, recombination,
and selection. These metaheuristics are notable for their good local learning and global
searching abilities and have been developed for successfully solving a wide range of
optimisation problems. The EAs based mining methods can automatically determine

GA-PPI-Net: A Genetic Algorithm for Community Detection 135

the clusters of the complex networks which makes it very convenient for practical
applications. The essence of the EAs based community detection methods is to first
model the network community detection task as different optimisation problems and
then design suitable metaheuristics to deal with them. EA based algorithms are found
to solve diverse kind of complex optimisation problems and are used to overcome some
drawbacks such as scaling up of network size. Indeed some of the community detection
algorithms are unsuitable for very large networks and require a priori knowledge about
the community structure, as the number and the size of communities which is not easy
or impossible to obtain in real-world networks [48]. The vast majority of optimization
methods proposed to detect communities in PPI networks use only graph topology and
do not use similarity measures between proteins or genes [36].

This paper presents a new community detection algorithm in PPI networks based on
Genetic Algorithm (GA). This work is an extension of a previous method [6]. There-
fore, we propose a GA based approach that allows to find communities of proteins
or genes. Alike the previous algorithm, the proposed method uses the similarity mea-
sures between proteins or genes and tries to find the best community by maximizing
the concept of community measure. This measure is based on semantic similarity and
interaction between proteins or genes. Moreover, we propose a new specific mutation
operator adapted to our problem. The algorithm outputs the final proteins/genes com-
munity by selectively exploring the search space. Experiments on real datasets show the
ability of the proposed approach to correctly detect communities having different sizes.

This paper is organized as follows. The next section provides the background of
literature survey to community’s detection methods. Section 3 defines the problem of
community detection in PPI networks. Section 4 describes the biological field and the
data used to formalize the problem. Section 5 depicts our proposed algorithm for com-
munity detection. In Sect. 6, experimental results on real data sets are presented and
analyzed. Finally, Sect. 7 draws the conclusion and the future works.

2 Network Community Detection Related Works

Network community detection has an important role in the networked data mining field.
Community detection helps to discover latent patterns in networked data and it affects
the ultimate knowledge presentation [7]. The task for network community detection is
to divide the whole network into small parts or groups which are also called commu-
nities. There is no uniform definition for community in the literature, but in academic
domain, a community (also called a cluster or a module) is a group of nodes that are
connected densely inside the group but connected sparely with the rest of the network.
Radicchi et al. [38] propose two definitions of community. These definitions are based
on the degree of a node (or valency)1. In the first definition, a community is a subgraph
in a strong sense: each node has more connections within the community than the rest
of the graph. In the second definition, a community is a subgraph in a weak sense: the
sum of all incident edges in a node is greater than the sum of the out edges.

The problem of community detection has been receiving a lot of attention, in recent
years, and many different approaches have been proposed. The literature survey is

1 The degree of a node is the number of edges incident to the node.

136 M. Ben M’barek et al.

divided into two categories: community detection based on analytical approaches and
those based on evolutionary approaches [32].

Analytical methods firstly split networks into subgroups according to their topo-
logical characteristics, then the modularity assessment is carried out. The modularity
is defined as the fraction of edges inside communities minus the expected value of
the fraction of edges, if edges fall at random without regard to the community struc-
ture. Values of modularity approaching 1 indicate strong community structure. A well
known algorithm in this category is the one presented by Girvan and Newman [12,27].
It is a divisive hierarchical clustering method based on an iterative removal of edges
from the network. The edge removal splits the network in communities. The removed
edges are chosen by using betweenness measures (that represents the number of short-
est paths between all vertex pairs that run along the edge). The idea underlying the edge
betweenness comes from the observation that if two communities are joined by a few
inter-community edges, then all the paths from vertices in one community to vertices in
the must pass through these edges. Paths determine the betweenness score to compute
for the edges. By counting all the paths passing through each edge, and removing the
edge scoring the maximum value, the connections inside the network are broken. This
process is repeated, thus dividing the network into smaller components until a stop cri-
terion is reached. The criterion adopted to stop the division is the modularity. Newman
in [26] presents an agglomerative hierarchical algorithm that optimizes the concept of
modularity. Thus the algorithm computes the modularity of all the clusters obtained by
applying the hierarchical approach, and returns as result the clusters having the highest
value of modularity [26].

Analytical algorithms do not reach the expected successful results in community
detection from complex networks. Therefore, various evolutionary based algorithms
have been proposed to provide different approaches to solve the community detection
problem [3]. Many community evaluation criteria have been proposed and quantities
of methods that combine either single objective or multiobjective EAs with community
detection have emerged. Most if not all of these methods share the common feature
that they model the community detection problem as an optimization problem to solve
them [7]. The single objective methods optimize a single property, while the multiobjec-
tive approaches simultaneously optimize competing objectives. The most popular sin-
gle evaluation criterion is the modularity proposed by Newman and Girvan [27]. Since
2002, several methods that divide networks into clusters according to the modularity
criterion have been developed [3]. The authors presented in [47] and [23] an approach
based on a GA to optimize the network modularity introduced by Newman and Girvan
[12]. However, some studies have indicated that the optimization of modularity has sev-
eral drawbacks [7]. First, it has the resolution limitation, i.e., maximising the modularity
can fail in finding communities smaller than a fixed scale, even if these communities
are well defined. The scale depends on the total size of the network and the intercon-
nection degree of the communities [11]. Second, maximizing the modularity is proved
to be NP-hard [7]. These drawbacks can constitute a weakness for all those methods
whose objective is to optimize the modularity. To avoid the resolution limitation of
modularity, many multi-resolution models have been developped [7]. Pizzuti [33] has
proposed an algorithm named GA-Net and has used a special assessment function called

GA-PPI-Net: A Genetic Algorithm for Community Detection 137

community score. This community score takes one parameter r which is hard to tune
because higher values of r help to detect communities and low values of this paramter
return no communities. A modification of the modularity has been proposed in [21]
with the concept of modularity density. The authors prove that modularity density has
a number of advantages with respect to modularity, such as detecting communities of
different sizes.

Single objective optimization identifies a single best solution that gives insights
on the graph organization. However, this solution could be biased toward a particular
structure inherent inside the criterion to optimize [7]. These methods have obtained
very good results on both artificial and real-world networks [32]. The intuitive notion
of community that the number of edges inside a community should be much higher than
the number of edges connecting to the remaining nodes of the graph, has two different
objectives: 1) maximizing the internal connection links and 2) minimizing the exter-
nal connection links [32]. Thus, on the basis of these objectives, many multi-objective
community models are established. The first proposal framework to uncover community
structure has been presented by Pizzuti [34,35]. In particular, the method introduce two
objectives: maximizes the community score proposed by [33] and minimizes the com-
munity fitness put forward by [20]. Then, the fast elitist non-dominated sorting genetic
algorithm (NSGA-II) proposed in [10] has been applied. A variation of this method has
been proposed by Agrawal [1]. The objectives to minimize are the modularity proposed
by Newman and Girvan [26] and the community score proposed by Pizzuti [33]. Sur-
veys on the selection of objective functions in multiobjective community detection can
be found in Shi et al. [43,44].

Multi-objective evolutionary approaches, like the single objective ones, are able to
discover community structures of quality comparable with, or even better than, those
obtained by analytical methods. Optimizing multiple objectives allows a simultane-
ous evaluation of community structure from different perspectives, then it is the user’s
responsibility to choose a solution [7]. The choice of the objectives to optimize should
take into account the suggestions given by Shi et al. [45], where a comparison of several
objective functions in a multi-objective framework has been performed [32].

The use of evolutionary methods for community detection presents a number of
advantages [32]:

– During the search process, the communities’ number is generated automatically.
– Domain-specific knowledge can be incorporated inside the method, such as biased

initialization, or specific variation operators instead of random, allowing a more
effective exploration of the state space of possible solutions.

– The efficient implementations of population-based models can be realized to deal
with large size networks.

Most evolutionary approaches to detect communities have been applied in social
networks and use only graphical topology and no semantic similarity between nodes.
[36]. In this paper we propose a new approach based on GA to detect semantic and
topological communities in biological networks. This new algorithm tries to find the
best community of proteins or genes by maximizing the concept of community measure.
This measure is based on the graph topology (interaction) and the semantic similarity
between nodes.

138 M. Ben M’barek et al.

3 Problem Definition

A PPI network is modelled as a graph G = (V,E) where V is a set of objects, called
nodes or vertices, and E is a set of links, called edges, that connect two elements of V.
Communities are groups of nodes (i.e. proteins or genes) that are more connected to
each other than to any node else in a network. Often these groups of nodes correspond
to a common process, purpose, or function. Therefore, it is reasonable to hypothesize
that determining communities on biological networks may shed new light on groupings
of genes with common biological function or features [50]. In this work, we explain a
community C as a group of genes or proteins that are semantically similar and interact
with each other. A set of genes C = G1, G2, ..., Gn is a community if it checks the
following propriety:

∀ Gi, Gj ∈ C, i �= j, Sim(Gi, Gj) ≥ ∇S or/and Interaction(Gi, Gj) ≥ ∇I (1)

where:

– Each gene G can be annotated with a set of GO (Gene Ontology) terms [8]. We use
TP to denote the set of GO terms that annotate a gene G. More formally, the set of
annotations of a gene G is:

A(G) = {TP/TP ∈ GO and TP annotates the Gene G} (2)

– Sim(Gi, Gj): the similarity value between two genes Gi and Gj . To calculate the
similarity between two genes, we need to use a measure allowing to compare sets
of terms that annotate these genes thus we can quantify the similarity between these
sets. In this work, we use the semantic similarity measure GS2 (GO-based similarity
of gene sets) [40]. This measure averages the similarity contributed by each gene
in C. Each gene is compared with the remaining set of genes by calculating how
closely that gene follows the functionality distribution of the remaining genes. The
functionality distribution is represented by the distribution of ancestor GO terms for
each gene [40].

– Interaction (Gi, Gj): the score of interaction between two genes extracted from
STRING Database [24]. This score explains the protein-protein or the gene-gene
associations known and predicted according to different criteria in a bibliographic
reference.

– ∇S and ∇I are two thresholds. They are defined for both the semantic and the inter-
action criteria respectively. Their values are fixed according to the recommendations
of our biological expert.

4 Used Data

To understand this work, we define some terms that are important for our discussion:

– A biological network is a multiple biological pathways interacting with each other,
example of biological networks: PPI networks [25].

GA-PPI-Net: A Genetic Algorithm for Community Detection 139

– Protein-Protein interaction (PPI) networks are commonly modeled via graphs,
whose nodes represent proteins and whose edges, that are undirected and possibly
weighted, connect pairs of interacting proteins. They are essential to almost every
process in a cell, so understanding PPIs is crucial for understanding cell physiology
in normal and disease states. It is also essential in drug development, since drugs can
affect PPIs. PPI networks are mathematical representations of the physical contacts
between proteins in the cell [28].

– A biological pathway is a series of actions among molecules in a cell that leads to
a certain product or a change in the cell [25]. There are many types of biological
pathways such as metabolic pathways or Gene-regulation pathways.

For more details of PPI network’s structure, we have combined three information’s
levels: semantic level, functional level and network level. We describe below the used
data recovered from different sources for these three levels.

4.1 Semantic Level: Gene Information

GO Vocabulary Structure
An ontology is a formal representation of a body of knowledge within a given domain.
Ontologies usually consist of a set of classes (or terms or concepts) with relations that
operate between them. The GO describes the knowledge of the biological and biomed-
ical domain with respect to three aspects [53]:

– Cellular Component (CC): the parts of a cell or its extracellular environment;
– Molecular Function (MF): the elemental activities of a gene product at the molecular

level, such as binding or catalysis;
– Biological Process (BP): operations or sets of molecular events with a defined begin-

ning and end, pertinent to the functioning of integrated living units: cells, tissues,
organs, and organisms.

The GO ontology is structured as a directed acyclic graph, where each GO term is
a node, and the relationships between the terms are edges between the nodes. GO is
loosely hierarchical, with ‘child’ terms being more specialized than their ‘parent’ terms,
but unlike a strict hierarchy, a term may have more than one parent term. Each GO
term within the ontology has a term name (which may be a word or string of words), a
unique alphanumeric identifier (which start by GO:), a definition with cited sources, and
a namespace indicating the domain to which it belongs. Terms may also have synonyms
(which are classed as being exactly equivalent to the term name, broader, narrower, or
related), references to equivalent concepts in other databases, and comments on term
meaning or usage. The three GO aspects (cellular component, biological process, and
molecular function) are disjoint, meaning that is not relations operate between terms
from the different ontologies. Hence GO is three ontologies. In this work, we focus on
the BP aspects. To obtain data of this aspect, we precisely focus on the relationship
“is-a” and “part of” in order to identify the inheritance relationship between GO terms.
From this source, we have extracted the unique identifier and the name of all the terms
related to the BP aspect.

140 M. Ben M’barek et al.

Gene Ontology Annotation GOA
A GO annotation represents a link between a gene product type and a molecular func-
tion, biological process, or cellular component type (a link, in other words, between the
gene product and what that product is capable of doing, what biological processes it
contributes to, and where in the cell it is capable of functioning in the natural life of an
organism) [17]. From this database, we get a set of GO annotation for each gene of BP
aspect. For example, the MEIKIN gene is annotated by the following GO terms’ sets:
“GO: 0007060”, “GO: 0010789”, “GO: 0016321”, “GO: 0045143”, “GO: 0051754”.

Semantic Similarity
The authors state, in [16], that genes of the same community are semantically similar
and interact with each other. From this assertion, we supposed that genes belonging to
the same community are similar and tried to find the best similarity measure between
genes. A gene can be annotated with various GO terms. To determine the similarity
between two genes, we need to use an approach allowing to compare sets of terms that
annotate these genes. Thus, we can quantify the similarity between these sets. Several
methods of determining semantic measures have been proposed in the last few decade.
There are three main approaches for measuring semantic similarity between the objects
of an ontology [39,49]. The first family’ approaches is node-based approaches: the
main data sources are the nodes and their properties. One concept commonly used in
these approaches is information content, which measures how specific and informative
a term is. The most popular node-based approaches are Resnik’s [39], Lin’s [22], Rel’s
[41] and Jiang and Conrath’s [18] methods. They were originally developed for the
WorldNet, and then applied to GO [30]. The second family of approaches is edge-based
approaches: they are based mainly on counting the number of edges in the graph path
between any two terms. The most common technique selects either the shortest path or
the average of all paths when more than one path exists (Wu and Palmer, 1994). Among
this family of approaches, there is the method of Rada [37] and the one of Wu and
Palmer [51]. The third family of approaches are hybrid ones:

1. Wang and al. [49] developed an hybrid measure in which each edge is given a
weight according to the type of relationship. For a given term c1 and its ancestor
ca , the authors define the semantic contribution of ca to c1, as the product of all
edge weights in the “best” path from ca to c1, where the “best” path is the one that
maximizes the product. Semantic similarity between two terms is then calculated by
summing the semantic contributions of all common ancestors to each of the terms
and dividing by the total semantic contribution of each term’s ancestors to that term.

2. Ruths and al. [40] proposed GS2 (GO-based similarity of gene sets), a novel GO-
based measure of genes set similarity. The measure quantifies the similarity of the
GO annotations among a set of genes by averaging the contribution of each all gene’s
GO terms and their ancestor terms with respect to the GO vocabulary graph.

In order to choose the adequate measure of similarity, we have performed several
tests [5]. The best results were obtained with the GS2 measure. In the remainder of our
work, we use the measure GS2 to characterize the similarity between genes.

GA-PPI-Net: A Genetic Algorithm for Community Detection 141

4.2 Functional Level: Interaction Between Genes

We use the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
database in order to study the interaction between genes. This database is a biologi-
cal database and web resource of known and predicted protein-protein or gene-gene
interactions. It contains information from several sources, including experimental data,
computational prediction methods and public text collections. It is freely accessible and
it is regularly updated [24,46]. From this database, we extract the couples of genes or
proteins that are interacting, the mode of interaction between these couple of genes and
the interaction value which defines the number of citations of this interaction in the lit-
erature. This value is scaled between zero and one. It indicates the estimated likelihood
that a given interaction is biologically meaningful, specific and reproducible, given the
supporting evidence [24].

4.3 Network Level: Biological Pathways Databases

Among the various biological pathways databases, we cite those that we have used.

Reactome: is a free online database of human biological pathways and processes. The
basic unit used to describe the data is the reaction [9].

Biocarta: catalogues community of several species. It makes it possible to visualize,
construct or identify the networks mapping the known genomic and proteomic relation-
ships. It offers a synthesis of these paths and represents them by graphs [29].

Ec number (Enzyme Commission Number): is a numerical classification scheme for
enzymes (proteins that act as biological catalysts), based on the chemical reactions they
catalyze. The chemical reaction catalyzed is the specific property that distinguishes one
enzyme from another. It specify enzyme-catalysed reactions [15].

BBID (Biological Biochemical Image Database): is a WWW accessible relational
database of archived image from different article that describe regulatory pathways.
Pathway information is annoted and can be queried [4].

KEGG (Kyoto Encyclopedia of Genes and Genomes): is a knowledge base for system-
atic analysis of gene functions, linking genomic information with higher order func-
tional information. The genomic information is stored in the GENES database, which
is a collection of gene catalogs for all the completely sequenced genomes and some
partial genomes with up-to-date annotation of gene functions [19].

The biological pathway database used to test the proposed approach is KEGG as
it was the one proposed by our biology expert. In this database, we focused on the
biological pathway which represent the communities name and the genes related to a
community. The other biological pathway databases are used to validate the experimen-
tal results as explained in Sect. 6.

142 M. Ben M’barek et al.

4.4 The Used Data’ Summary

Based on what has been illustrated from Sect. 4.1 to Sect. 4.3, the used data is summa-
rized as:

– A gene or protein is described by an ID, a name and a set of terms that
annotate it. For example, the UBC gene is presented as follows: ID: 728637,
NAME: UBC, Annoted terms: [GO:0000082, GO:0000086, GO:0000122, GO:
0000165, GO:0000186, GO:0000187, GO:0000209, GO:0000278, GO:0000423,
GO:0000715, GO:0000724, GO:0002223, GO:0002224, GO:0002474,
GO:0002479, GO:0002755, GO:0002756, GO:0005975, GO:0005978,
GO:0006006, GO:0006281, GO:0006283, GO:0006289, GO:0006297,
GO:0006302, GO:0006351, GO:0006367, GO:0006915, GO:0006977,
GO:0007166, GO:0007173, GO:0007 179, GO:0019985].

– Data related to the interaction between two genes. For example, the interaction
between the UBC gene and the PIK3R1 gene is: NameGene1: “UBC”, NameGene2:
“PIK3R1”, Interaction: “Binding”, Interaction Score: 0.57.

– The biological pathway is described by a community name and a set of genes. These
data are extracted from different pathway databases presented in subsection 4.3.

– The semantic similarity value computed by the GS2 method.

Figure 1 summarizes the sources of these extracted data. The first goal is to obtain
information about a gene. Therefore, we get a set of GO terms of BP aspect that identify
such gene from GO and GOA. Then, we acquire the interaction between couple of genes
from STRING database.

Fig. 1. A summary of used data [5].

GA-PPI-Net: A Genetic Algorithm for Community Detection 143

5 Proposed Approach

GAs have proved to be competitive alternative methods to traditional optimization and
search techniques and they have been applied to solve different classes of problems in
diverse research and application areas such as planning and scheduling, machine learn-
ing, neural nets evolution and pattern recognition [13] and [31]. Thus, they are also
suitable for solving the community detection problem. In this section, we describe the
genetic algorithm used in this work as well as the genetic representation and operators.
GA evolves a population of individuals that are candidate solutions to the problem. At
each generation, fittest solutions are selected for the reproduction step. In our approach,
an individual is a set of proteins or genes that form a community. In our approach, an
individual is a set of proteins or genes that form a community. To evaluate a solution,
we propose a fitness function based on a community measure. The performed tests in
[16] revealed that genes or proteins in the same community of the biological pathway
database KEGG are semantically similar and are interacting. Thus, the community mea-
sure uses the similarity value and the interaction score of every pair of genes making up
the solution. Moreover, we modify the steps of GA to satisfy the needs of our algorithm.
Thus, we propose a new specific mutation operator and insert some additional steps
during the population initialization. The detected communities have different sizes. The
algorithm works as follows:

Algorithm 1. GA-PPINet: General Algorithm.
Require: algorithm parameters, problem instance
Ensure: best solution to the optimisation problem

Begin
1: Initialize population
2: Evaluate the initial population
3: for i = 1 to max iteration do
4: Select parents for mating
5: for each pair of candidates in the set of parents do
6: generate an offspring through genetic operator - crossover and mutation - with respec-

tively a probability pc and pm
7: evaluate the fitness of the offspring
8: Replace the worst existing individual in the population by the obtained offspring
9: end for

10: end for
End

The steps of the proposed GA are presented in the following subsections.

5.1 Genetic Representation

A solution to our problem, corresponding to an individual in GA terms, is a community
of proteins or genes. It is represented by a vector T. In this representation, each individ-
ual S stores: the size n of the individual (the community) that is the number of proteins
or genes in the community, the average value of similarity denoted AVGSim (Eq. 3), the

144 M. Ben M’barek et al.

average interaction value denoted AVGInteraction (Eq. 4) of each two genes or proteins
and the list of the n components. Each component (gene or protein) is designed by its
name. Figure 2 illustrates the representation of an individual adopted in our algorithm.

Fig. 2. Example of individual representation designing a community [6].

The similarity average AVGSim and the interaction average AVGInteraction of a
community solution S are computed using respectively the Eqs. 3 and 4.

AV GSim(S) =
∑

i,j ∈ [1,n], i �=j

SIMGS2(Gi, Gj)/n (3)

AV GInteraction(S) =
∑

i,j ∈ [1,n], i �=j

InteractionV alue(Gi, Gj)/n (4)

Where:

– Gi and Gj are two different genes in the community S;
– n: the size of the community S;
– SIMGS2(Gi, Gj): the similarity value between two genes in S, it is calculated using

the semantic similarity measure GS2 [40];
– InteractionV alue(Gi, Gj): the value of an interaction between two genes in S

extracted from STRING Database [24].

5.2 Population Initialization

The initialization of the first population in GA (step 1 in the Algorithm 1) is an important
step which can affect the quality of the final solution as well as the running time of
the algorithm. In this work, we define the population as a two-dimensional array of
individuals initialized respecting the following steps. To initialize this population:

– Get randomly a set of communities from the KEGG pathway database and create
randomly the population with the recovered genes. The population is composed by
individuals having different sizes.

– Compute the similarity value using the GS2 measure and get the interaction score of
each two genes of this group from the created “interaction” table.

– Calculate the average similarity value and the average interaction score of each
group forming this population.

Figure 3 presents an example of an initial population with five individuals having
different sizes.

GA-PPI-Net: A Genetic Algorithm for Community Detection 145

Fig. 3. Example of an initial population with five individuals [6].

5.3 Fitness Function

The fitness function (also known as the evaluation function) evaluates the performance
of a given solution. It takes as input a candidate solution S to the problem and produces
as output how better “fit” the solution is fit with respect to the considered problem. The
choice of the fitness function is a critical step for obtaining good solutions. In the con-
text of community detection, the most popular function is modularity, originally intro-
duced by Girvan and Newman [12]. In this work, we don’t directly take into account the
modularity, nevertheless the topological propriety of a community is taken into account
through the interaction score between proteins or genes. Moreover, the fitness function
is enriched with semantic information. So, the used fitness function is based on topolog-
ical and semantic similarity measures. Indeed, we used a defined fitness function based
on the computation of the average similarity value and the average interaction score
of each two genes existing in the community S. We start from the assertion [16] that
genes in the same community S are semantically similar and interact with each other.
The fitness function is defined as follows [5]:

F (S) = W1 AV GSim(S) +W2 AV GInteraction(S) (5)

With:

– AVGSim and AVGInteraction defined in 3 and 4 respectively.
– W1 and W2 : weights∈ [0, 1].

5.4 Selection and Replacement

Selection is the stage of a GA in which individual are chosen from a population (step
4 in Algorithm 1) to be parents which mate and recombine to create offspring for the
next generation. It is very crucial to the convergence rate of the GA as good parents
drives individuals to fitter solutions. The problem is how to select these individuals.
In literature, there are many methods to select the best individuals such as roulette
wheel selection, tournament selection, rank selection, elitism, etc. [14]. The tournament
selection method is used for this work. In K-Way tournament selection, we select K
individuals from the population at random and select the best out of these to become
a parent. The same process is repeated for selecting the next parent. It is an extremely
popular selection method in GA due to its efficiency and simple implementation [14].
Once an offspring is generated, it is inserted into the population respecting the Steady
State GA replacement where the new offspring replace the worst solution in the current
population.

146 M. Ben M’barek et al.

5.5 Genetic Operators

After the generation of an initial population, a GA carries out the genetic operators to
generate offspring based on the initial population. Once a new generation is created, the
genetic process is performed iteratively until an optimal result is found or a maximum
number of generations is met. Crossover and mutation are two basic operators of GA.
The performance of GA depends essentially on them. These operators guide the algo-
rithm towards a solution to a given problem. Their goal is to both exploit the best solu-
tions and explore the search space. For this work, we used the multi-point crossover: it
is equivalent to performing two single-point crossovers with different crossover points.
Here, two crossover points are picked randomly from the parent where the crossover
points do not exceed the longest parent size. Then, the content in between the two
points is swapped between the two parents to get two new offsprings. This operator is
usually applied with a high probability (pc) [32]. Figure 4 presents a graphical illustra-
tion to better understand this kind of crossover. In this example, two crossover points
are chosen at random in position 1 and 4. Then two offsprings (ch1, ch2) are generated
by exchanging the values of the selected parents (P1, P2).

Fig. 4. Example of application of the two points crossover operator on two communities [6].

The mutation is an operator used to maintain and introduce genetic diversity insight
the population along the evolution. It alters some genes in the individual, promoting the
diversification of the population. However, the mutation must not be too destructive and
nullify the process of finding an optimal solution [32]. Thus, it is usually applied with a
low probability (pm). If the probability is very high, the GA gets reduced to a random
search [32].

For GA-PPINet, we propose a specific mutation operator called ‘Optimized Com-
munity Mutation (OCM)’ with two variants: OCM1 (Algorithm 2) and OCM2 (Algo-
rithm 3). These operators can better meet the objectives of our problem. They should
allow a better exploration of the search space than the random mutation. Their goal is to
maximize the chance of creating a better solution than the original one. These operators
can integrate a new gene in order to replace a gene having a poor quality or to enlarge
the size of the community.

To mutate a solution S, the two mutation operators alter only one gene at a time
and uses a score function, denoted GS, applied to each gene in S. This score (GS) is
equal to the sum of the average similarity and the average interaction score of a gene

GA-PPI-Net: A Genetic Algorithm for Community Detection 147

in a community. It helps us to detect the gene having the best score in a community as
well as the gene having the worst score. It is defined as follows:

AV GSim(G) =
n−1∑

i=1

SimGS2(G,Gi)/n − 1 (6)

AV GInteraction(G) =
n−1∑

i=1

InteractionV alue(G,Gi)/n − 1 (7)

GS(G) = AV GSim(G) +AV GInteraction(G) (8)

Where:

– G �= Gi;
– SimGS2(G,Gi): The similarity value of a gene G compared to the other genes in

the community;
– InteractionV alue(G,Gi): The interaction score of a gene G compared to the oth-

ers in the community;
– n: size of an individual (community).

The first mutation operator OCM1 is applied according to the following steps [6]:

Algorithm 2. OCM1 algorithm.
1: Select in a solution S a gene having the highest score GS that will be called “bestGene”;
2: Randomly search a gene G′ from the “interaction” table with which the “bestGene” interacts

and G′ /∈ S;
3: Get the gene having the lowest score GS in S, it will be called “worstGene”;
4: if GS(“worstGene”) ≤ θ (ie θ = 0.5) then
5: replace the “worstGene” by the gene G’ selected in the second step;
6: else
7: insert into the end position of the solution the gene G’ selected in the second step and

update the size.
8: end if

The second operator OCM2 is applied according to the Algorithm 3. The main
goal of OCM1 is to improve the solution quality by replacing the worst gene if it has
low interaction/similarity score, or enlarge the community otherwise. OCM2 differs
from OCM1 in steps 5 to 8 where the GS score of the new gene is considered for the
final decision of the mutation action to apply on S. To better understand the optimized
mutation procedure, a graphical illustration is given in Fig. 5.

6 Experimental Results

In this section, we study the effectiveness of our approach on real datasets (Pathways
selected from KEGG Pathway database). The GA-PPI-Net algorithm has been written
in python, using the inspyred2 Genetic Algorithms framework. We first carried out tests

2 https://pythonhosted.org/inspyred/.

https://pythonhosted.org/inspyred/

148 M. Ben M’barek et al.

Algorithm 3. OCM2 algorithm.
1: Select in a solution S a gene having the highest score GS that will be called “bestGene”;
2: Randomly search a gene G′ from the “interaction” table with which the “bestGene” interacts

and G′ /∈ S;
3: Get the gene having the lowest score GS in S, it will be called “worstGene”;
4: if GS(“worstGene”) ≤ GS(G′) and GS(“bestGene”) ≥ GS(G′)” then
5: replace the “worstGene” by the new gene G’;
6: else if the score of the GS(“bestGene”) < GS(G′) then
7: insert at the end position of the solution S the gene G′ and update the size.
8: end if

Fig. 5. OCM2 illustration.

to tune the GA parameters. Different parameters values were tested: generation number
set at 100, 300 and 500, size of the population set at 10, 20, 30, 70 and 100, crossover
rate set at 0.5, 0.6, ...1 and mutation rate set at 0,01, 0.1, 0.2, ..., 0.5. Based on these tests,
we choose the combination of the parameters values giving the best results (highest val-
ues of fitness function), namely: population size 30, generation number 100, crossover
rate 0.8, and mutation rate 0.01. Moreover, a weak value of mutation probability allows
to prevent the algorithm to be blocked in a local minimum. Concerning the size of indi-
vidual in the initial population, we fix it in the range of 5 to 40 [6]. The different values
of the fitness function’s weights are W1 = W2 = 0.5 [5].

For the evolutionary methods optimizing the network modularity (Sect. 2), a solu-
tion is a community structure of the PPI network. With GA-PPINet, a solution is a
potential community in the PPI network with optimized interaction/similarity score.
Two optimal solutions might have similar fitness but they are composed with different
sets of genes/proteins and have different sizes. In order to check the ability of GA-
PPINet to successfully detect communities in a PPI network, we use randomly selected
proteins or genes that are present in known communities from the reference pathway
database KEGG. More precisely, our approach has been tested with five datasets pro-
posed by our biological expert. In total, we have 595 genes by removing the redundant
genes, as described in Table 1. These datasets correspond to real and existing commu-
nities and are collected from the KEGG pathway database.

GA-PPI-Net: A Genetic Algorithm for Community Detection 149

Table 1. The used datasets.

Datasets Number of genes

Apoptosis3 88

B cell receptor signalling pathway4 75

Purine metabolism5 159

Rna degradation6 159

Oocyte meiosis7 114

Total 595
3https://www.genome.jp/dbget-bin/www bget?pathway:hsa04210
4https://www.genome.jp/dbget-bin/www bget?pathway:hsa04662
5https://www.genome.jp/dbget-bin/www bget?pathway:hsa00230
6https://www.genome.jp/dbget-bin/www bget?pathway:hsa03018
7https://www.genome.jp/dbget-bin/www bget?pathway:hsa04114

The evaluation consists in verifying how GA-PPINet is likely to find gene or pro-
teins communities existing in the KEGG pathway database. Actually, the tests showed
that our approach allowed to detect communities of genes or proteins existing in KEGG
database or even new communities having high interaction and high similarity between
its genes or proteins and that do not appear in KEGG.

We performed tests to find communities. We run our approach 20 times with pro-
teins or genes chosen randomly from the five proposed datasets showed in Table 1. And,
we retained each time the best community. Thus, we have 20 best communities with
sizes varying from 5 to 40. Details about the twenty obtained communities are sum-
marized in Table 2. The fitness value varies from 0.43 and 0.84, the AVGInteraction
value varies from 0.4 and 0.79 and the AVGSim value varies from 0.5 and 0.89. These
results are considered as satisfactory according to the two measures of interaction and
similarity. However, for all obtained solutions, the question that arises is how they will
be evaluated.

Table 2. Details about sizes and different measures for the best obtained communities over 20
runs.

N◦ Size AVGSim AVG Fitness N◦ Size AVGSim AVG Fitness

community interaction value community interaction value

1 13 0.64 0.49 0.56 11 8 0,74 0,69 0.72

2 8 0.81 0.77 0.79 12 7 0.56 0.48 0.52

3 15 0.62 0.67 0.65 13 11 0.50 0.40 0.45

4 23 0.52 0.44 0.48 14 6 0.70 0.50 0.60

5 13 0.59 0.53 0.56 15 12 0.51 0.38 0.45

6 10 0.61 0.43 0.51 16 25 0.58 0.48 0.53

7 7 0.86 0.73 0.80 17 23 0,53 0.42 0.47

8 6 0.89 0.79 0.84 18 7 0.65 0.52 0.59

9 28 0.65 0.64 0.65 19 6 0.77 0.65 0.71

10 9 0.66 0.54 0.60 20 24 0.74 0.56 0.65

https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04210
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04662
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa00230
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa03018
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04114

150 M. Ben M’barek et al.

To evaluate these communities, the biology expert proposed to check if they exist
in KEGG or other biological pathway databases. Each new community Rnew founded
by our algorithm is presented to the DAVID tools (Database for Annotation Visualiza-
tion and Integrated Discovery), which compares this community with others in different
databases and gives the percentage of Rnew’s genes that belong to the existing commu-
nities in those databases. DAVID bioinformatics resources consist of an integrated bio-
logical knowledge-base and analytic tools that aim at systematically extracting biolog-
ical meaning from large gene/protein lists. It is the most popular functional annotation
programs used by biologists [42]. It takes as input a list of genes and exploits the func-
tional annotations available on these genes in a public database such as, KEGG Path-
ways, Biocarta, Reactome, BBID and EC Number in order to find common functions
that are sufficiently specific to these genes. Comparing a community Rnew founded by
our approach to the datasets used to create the initial population, allows to evaluate the
ability of our method to rebuilt communities with the initial proteins or genes.

Table 3. Communities’ detection: experimental results compared to the datasets.

Pathway databases Percentage min Percentage max

Apoptosis 15% 88%

B cell receptor signalling pathway 20% 75%

Purine metabolism 23% 100%

Rna degradation – 34%

Oocyte meiosis 19% 78%

Table 3 demonstrates that the obtained communities correspond to some “parts” of
the real communities and in some cases to a complete network (percentage 100%).
Therefore, GA-PPINet is able to efficiently rebuilt communities with the initial used
proteins or genes. Figure 6 presents a community with 23 genes which 9 are from the
Purine dataset (i.e the percentage is 40%), 8 genes from Oocyte dataset (i.e the per-
centage 35%) and the others are from different KEGG pathways. Additional tests in a
further work, should be conducted to confirm these results.

We evaluate also the obtained communities by checking if they exist in other biolog-
ical pathway databases. The biological databases used to evaluate our results are Bio-
carta, Reactome, BBID and EC Number and KEGG pathway database. These databases
are used to compare the found communities by our approach with other communities.
The results of this evaluation are shown in Table 4.

The results presented in Table 4 show that the new communities obtained by our
approach correspond to some “parts” of real communities existing in other biological
pathway databases, and in some cases to a complete network (percentage 100%). These
results are considered very satisfactory by the biology expert. They constitute an initial
validation of our algorithm and show the relevance of the used fitness function and
the genetic operator. These tests should be supplemented on a larger scale with other
datasets and different communities.

GA-PPI-Net: A Genetic Algorithm for Community Detection 151

Fig. 6. An example of an obtained community with 23 genes.

Table 4. Evaluation of new communities.

Pathway databases Percentage min Percentage max

BBid 20% 60%

Biocarta 30% 100%

Ec number 30% 100%

Reactome pathway 25% 100%

KEGG pathway 33% 95%

Moreover, we compare the results obtained by our new algorithm GA-PPI-Net with
the proposed genetic in [6] and in [5] where the communities have a fixed predeter-
mined size. We name these approaches Ben M’barek et al. 2018 and Ben M’barek et al.
2019 respectively. A thorough comparison is not easy because the obtained communi-
ties for both propositions haven’t the same sizes and the same constitution. Hence, the
same datasets proposed by the biological expert (Table 1) and the same GA parameters
were used for both approaches. The three algorithms were executed 20 times. Table 5
illustrates the comparison’ results. We also used the DAVID tools to estimate the recov-
ery rate of the found communities with existing communities in different biological
databases.

From Table 5, we find that the new proposed approach the good performance to
detect communities having different sizes with respect to Ben M’barek et al. (2019)
approach and Ben M’barek et al. (2018) approach to detect communities having the
same sizes. Our new method achieves the highest percentage 100% in three pathway

152 M. Ben M’barek et al.

Table 5. Comparison of the proposed algorithm with Ben M’barek et al. (2018) and Ben M’barek
et al. (2019) approaches for identifying communities.

Pathway Ben M’barek et al. (2018) Ben M’barek et al. (2019) GA-PPINet

Database %Min %Max %Min %Max %Min %Max

BBid 20% 30% 25% 50% 20% 60%

Biocarta 20% 60% 20% 66% 30% 100%

Ec number 20% 70% 10% 100% 30% 100%

Reactome pathway 20% 70% 14% 100% 25% 100%

KEGG pathway 20% 90% 15% 100% 33% 95%

databases: Reactome pathway, Biocarta and Ec number. For example, on the Biocarta
database, the new proposed approach obtained the max percentage value 100% which
corresponds to a complete network. The worst percentage value is of 7% which corre-
sponds to some “parts” of the real communities. To conclude, the obtained results show
the capability of the proposed GA to effectively deal with community identification
in networks. Further extensions experiments will be carried out to detect communities
with larger size and identify new communities not yet known in the public biological
databases.

7 Conclusion

In this paper, we have proposed an approach based on GA to detect communities from
the PPI network. This approach is a generalization of a previous work. It introduces
the concept of community measure and searches for an optimal partitioning of the net-
work by maximizing these measures. Our contribution in this paper is twofold. First,
we apply GA to community detection in PPI networks. Second, we modify the previ-
ous proposed specific mutation operator adapted to the considered biological problem.
Dense communities existing in the network are obtained at the end of the evolution by
selectively exploring the search space, without the need to know in advance the commu-
nity size. The experimental results showed the ability of our approach to correctly detect
communities having different sizes and containing proteins/genes semantically similar
and interacting. Future research will aim at extending the proposed fitness function by
adding the modularity value and applying a multi-objective optimization to improve the
quality of the results.

Acknowledgements. We would like to show our gratitude to Dr. Walid BEDHIAFI (Labora-
toire de Génétique Immunologie et Pathologies Humaines, Université de Tunis El Manar) for
assistance to comprehend the biological fields and for the interpretation of the results.

References

1. Agrawal, R.: Bi-objective community detection (BOCD) in networks using genetic algo-
rithm. In: Aluru, S., et al. (eds.) IC3 2011. CCIS, vol. 168, pp. 5–15. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22606-9 5

https://doi.org/10.1007/978-3-642-22606-9_5

GA-PPI-Net: A Genetic Algorithm for Community Detection 153

2. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Gene Ontol. Con-
sortium. Nat. Genet. 25(1), 25–29 (2000). https://doi.org/10.1038/75556

3. Atay, Y., Koc, I., Babaoglu, I., Kodaz, H.: Community detection from biological and social
networks: a comparative analysis of metaheuristic algorithms. Appl. Soft Comput. 50, 194–
211 (2017). https://doi.org/10.1016/j.asoc.2016.11.025

4. Becker, K.G., White, S.L., Muller, J., Engel, J.: BBID: the biological biochemical image
database. Bioinformatics 16(8), 745–746 (2000). https://doi.org/10.1093/bioinformatics/16.
8.745

5. Ben M’barek, M., Borgi, A., Bedhiafi, W., Hmida, S.B.: Genetic algorithm for community
detection in biological networks. Procedia Computer Science 126, 195–204 (2018)

6. Ben M’barek, M., Borgi, A., Hmida, S.B., Rukoz, M.: Genetic algorithm to detect differ-
ent sizes’ communities from protein-protein interaction networks. In: Proceedings of the
14th International Conference on Software Technologies - Volume 1: ICSOFT, pp. 359–370.
INSTICC, SciTePress (2019). https://doi.org/10.5220/0007836703590370

7. Cai, Q., Ma, L., Gong, M., Tian, D.: A survey on network community detection based on
evolutionary computation. Int. J. Bio-Inspired Comput. 8(2), 84–98 (2016). https://doi.org/
10.1504/IJBIC.2016.076329

8. Camon, E., et al.: The Gene Ontology Annotation (GOA) Project: Implementation of GO in
SWISS-PROT, TrEMBL, and InterPro. Genome Res. 13(4), 662–672 (2003). https://doi.org/
10.1101/gr.461403

9. Croft, D., et al.: Reactome: a database of reactions, pathways and biological processes.
Nucleic Acids Res. 39(Database issue), D691–697 (2011). https://doi.org/10.1093/nar/
gkq1018

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. PNAS 104(1), 36–
41 (2007). https://doi.org/10.1073/pnas.0605965104

12. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.
Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn.
Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

14. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algo-
rithms. In: Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1991)

15. Green, M.L., Karp, P.D.: Genome annotation errors in pathway databases due to semantic
ambiguity in partial EC numbers. Nucleic Acids Res. 33(13), 4035–4039 (2005). https://doi.
org/10.1093/nar/gki711. https://academic.oup.com/nar/article/33/13/4035/1094428d

16. Guo, X., Liu, R., Shriver, C.D., Hu, H., Liebman, M.N.: Assessing semantic similarity mea-
sures for the characterization of human regulatory pathways. Bioinformatics 22(8), 967–973
(2006). https://doi.org/10.1093/bioinformatics/btl042

17. Hill, D.P., Smith, B., McAndrews-Hill, M.S., Blake, J.A.: Gene Ontology annotations: what
they mean and where they come from. BMC Bioinformatics 9(5), S2 (2008). https://doi.org/
10.1186/1471-2105-9-S5-S2

18. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxon-
omy. arXiv:cmp-lg/9709008, September 1997. arXiv: cmp-lg/9709008

19. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28(1), 27–30 (2000)

20. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical com-
munity structure in complex networks. New J. Phys. 11(3), 033015 (2009)

21. Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., Chen, L.: Quantitative function for community
detection. Phys. Rev. E 77(3), 036109 (2008)

https://doi.org/10.1038/75556
https://doi.org/10.1016/j.asoc.2016.11.025
https://doi.org/10.1093/bioinformatics/16.8.745
https://doi.org/10.1093/bioinformatics/16.8.745
https://doi.org/10.5220/0007836703590370
https://doi.org/10.1504/IJBIC.2016.076329
https://doi.org/10.1504/IJBIC.2016.076329
https://doi.org/10.1101/gr.461403
https://doi.org/10.1101/gr.461403
https://doi.org/10.1093/nar/gkq1018
https://doi.org/10.1093/nar/gkq1018
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1093/nar/gki711
https://doi.org/10.1093/nar/gki711
https://academic.oup.com/nar/article/33/13/4035/1094428
https://doi.org/10.1093/bioinformatics/btl042
https://doi.org/10.1186/1471-2105-9-S5-S2
https://doi.org/10.1186/1471-2105-9-S5-S2
http://arxiv.org/abs/cmp-lg/9709008
http://arxiv.org/abs/cmp-lg/9709008

154 M. Ben M’barek et al.

22. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th Inter-
national Conference on Machine Learning, pp. 296–304. Morgan Kaufmann (1998)

23. Liu, X., Li, D., Wang, S., Tao, Z.: Effective algorithm for detecting community structure
in complex networks based on GA and clustering. In: Shi, Y., van Albada, G.D., Dongarra,
J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 657–664. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72586-2 95

24. Mering, C.V., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B.: STRING: a database of
predicted functional associations between proteins. Nucl. Acids Res. 31(1), 258–261 (2003).
https://doi.org/10.1093/nar/gkg034

25. National Human Genome Research Institute (NHGRI): Biological Pathways Fact Sheet
(2015). https://www.genome.gov/27530687/Biological-Pathways-Fact-Sheet

26. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev.
E 69(6) (2004). https://doi.org/10.1103/PhysRevE.69.066133, arXiv: cond-mat/0309508

27. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in
networks. Phys. Rev. E 69(2) (2004). https://doi.org/10.1103/PhysRevE.69.026113,
arXiv: cond-mat/0308217

28. Nibbe, R.K., Chowdhury, S.A., Koyutürk, M., Ewing, R., Chance, M.R.: Protein-protein
interaction networks and subnetworks in the biology of disease. Wiley Interdiscip. Rev. Syst.
Biol. Med. 3(3), 357–367 (2011)

29. Nishimura, D.: BioCarta. Biotech Softw. Internet Rep. 2(3), 117–120 (2001). https://doi.org/
10.1089/152791601750294344

30. Pesquita, C., Faria, D., Falcão, A.O., Lord, P., Couto, F.M.: Semantic Similarity in Biomed-
ical Ontologies. PLoS Comput. Biol. 5(7) (2009). https://doi.org/10.1371/journal.pcbi.
1000443

31. Petrowski, A., Ben-Hamida, S.: Evolutionary Algorithms. Wiley, Hoboken, April 2017.
google-Books-ID: fvRRCgAAQBAJ

32. Pizzuti, C.: Evolutionary computation for community detection in networks: a review. IEEE
Trans. Evol. Comput. 22(3), 464–483 (2018). https://doi.org/10.1109/TEVC.2017.2737600

33. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks.
In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
87700-4 107

34. Pizzuti, C.: A multi-objective genetic algorithm for community detection in networks. In:
2009 21st IEEE International Conference on Tools with Artificial Intelligence, pp. 379–386.
IEEE (2009)

35. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks.
IEEE Trans. Evol. Comput. 16(3), 418–430 (2011)

36. Pizzuti, C., Rombo, S.E.: Algorithms and tools for protein-protein interaction networks clus-
tering, with a special focus on population-based stochastic methods. Bioinformatics 30(10),
1343–1352 (2014). https://doi.org/10.1093/bioinformatics/btu034

37. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on
semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989). https://doi.org/10.1109/
21.24528

38. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. PNAS 101(9), 2658–2663 (2004). https://doi.org/10.1073/pnas.
0400054101

39. Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its applica-
tion to problems of ambiguity in natural language. arXiv:1105.5444 [cs], May 2011. https://
doi.org/10.1613/jair.514, arXiv: 1105.5444

https://doi.org/10.1007/978-3-540-72586-2_95
https://doi.org/10.1093/nar/gkg034
https://www.genome.gov/27530687/Biological-Pathways-Fact-Sheet
https://doi.org/10.1103/PhysRevE.69.066133
http://arxiv.org/abs/cond-mat/0309508
https://doi.org/10.1103/PhysRevE.69.026113
http://arxiv.org/abs/cond-mat/0308217
https://doi.org/10.1089/152791601750294344
https://doi.org/10.1089/152791601750294344
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.1109/TEVC.2017.2737600
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1093/bioinformatics/btu034
https://doi.org/10.1109/21.24528
https://doi.org/10.1109/21.24528
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1073/pnas.0400054101
http://arxiv.org/abs/1105.5444
https://doi.org/10.1613/jair.514
https://doi.org/10.1613/jair.514
http://arxiv.org/abs/1105.5444

GA-PPI-Net: A Genetic Algorithm for Community Detection 155

40. Ruths, T., Ruths, D., Nakhleh, L.: GS2: an efficiently computable measure of GO-based
similarity of gene sets. Bioinformatics 25(9), 1178–1184 (2009). https://doi.org/10.1093/
bioinformatics/btp128

41. Schlicker, A., Domingues, F.S., Rahnenführer, J., Lengauer, T.: A new measure for functional
similarity of gene products based on Gene Ontology. BMC Bioinformatics 7, 302 (2006).
https://doi.org/10.1186/1471-2105-7-302

42. Sherman, B.T., Huang, D.W., Tan, Q., Guo, Y., Bour, S., Liu, D., Stephens, R., Baseler, M.W.,
Lane, H.C., Lempicki, R.A.: DAVID Knowledgebase: a gene-centered database integrating
heterogeneous gene annotation resources to facilitate high-throughput gene functional anal-
ysis. BMC Bioinformatics 8, 426 (2007). https://doi.org/10.1186/1471-2105-8-426

43. Shi, C., Yu, P.S., Cai, Y., Yan, Z., Wu, B.: On selection of objective functions in multi-
objective community detection. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, pp. 2301–2304. ACM (2011)

44. Shi, C., Yu, P.S., Yan, Z., Huang, Y., Wang, B.: Comparison and selection of objective func-
tions in multiobjective community detection. Comput. Intell. 30(3), 562–582 (2014)

45. Shi, C., Zhong, C., Yan, Z., Cai, Y., Wu, B.: A multi-objective approach for community
detection in complex network. In: IEEE Congress on Evolutionary Computation, pp. 1–8.
IEEE (2010)

46. Snel, B., Lehmann, G., Bork, P., Huynen, M.A.: STRING: a web-server to retrieve and dis-
play the repeatedly occurring neighbourhood of a gene. Nucl. Acids Res. 28(18), 3442–3444
(2000). https://doi.org/10.1093/nar/28.18.3442

47. Tasgin, M., Bingol, H.: Community Detection in Complex Networks using Genetic Algo-
rithm. arXiv:cond-mat/0604419, April 2006. arXiv: cond-mat/0604419

48. Tasgin, M., Herdagdelen, A., Bingol, H.: Community Detection in Complex Networks Using
Genetic Algorithms. arXiv:0711.0491 [physics], November 2007. arXiv: 0711.0491

49. Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S., Chen, C.F.: A new method to measure the
semantic similarity of GO terms. Bioinformatics 23(10), 1274–1281 (2007). https://doi.org/
10.1093/bioinformatics/btm087

50. Wilson, S.J., Wilkins, A.D., Lin, C.H., Lua, R.C., Lichtarge, O.: Discovery of functional and
disease pathways by community detection in protein-protein interaction networks. In: Pacific
Symposium on Biocomputing 2017, pp. 336–347. World Scientific (2017)

51. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32Nd
Annual Meeting on Association for Computational Linguistics, pp. 133–138. ACL 1994,
Association for Computational Linguistics, Stroudsburg, PA, USA (1994). https://doi.org/
10.3115/981732.981751

52. Xu, B., Lin, H., Yang, Z.: Ontology integration to identify protein complex in protein inter-
action networks. Proteome Sci. 9(1), S7 (2011). https://doi.org/10.1186/1477-5956-9-S1-
S7

53. Zhao, Y., Dong, J., Peng, T.: Ontology classification for semantic-web-based software engi-
neering. IEEE Trans. Serv. Comput. 2(4), 303–317 (2009). https://doi.org/10.1109/TSC.
2009.20

https://doi.org/10.1093/bioinformatics/btp128
https://doi.org/10.1093/bioinformatics/btp128
https://doi.org/10.1186/1471-2105-7-302
https://doi.org/10.1186/1471-2105-8-426
https://doi.org/10.1093/nar/28.18.3442
http://arxiv.org/abs/cond-mat/0604419
http://arxiv.org/abs/cond-mat/0604419
http://arxiv.org/abs/0711.0491
http://arxiv.org/abs/0711.0491
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.3115/981732.981751
https://doi.org/10.3115/981732.981751
https://doi.org/10.1186/1477-5956-9-S1-S7
https://doi.org/10.1186/1477-5956-9-S1-S7
https://doi.org/10.1109/TSC.2009.20
https://doi.org/10.1109/TSC.2009.20

From Formal Test Objectives to TTCN-3
for Verifying ETCS Complex Software

Control Systems

Rabea Ameur-Boulifa1 , Ana Cavalli2 , and Stephane Maag2(B)

1 LTCI, Télécom ParisTech, Institut Polytechnique de Paris, Palaiseau, France
rabea.ameur-boulifa@telecom-paristech.fr

2 Samovar, CNRS, Télécom SudParis, Institut Polytechnique de Paris,
Palaiseau, France

{ana.cavalli,stephane.maag}@telecom-sudparis.eu

Abstract. The design of a practical but accurate software methodol-
ogy to guarantee systems correctness and safety is still a big challenge.
Where test coverage is dissatisfying, formal analysis grants much higher
potential to discover errors or safety vulnerabilities during the design
phase of a system. However, formal verification methods often require
a strong technical background that limits their usage. In this paper, we
present a framework based on testing and verification to ensure the cor-
rectness and safety of complex distributed software systems. As a result
of the application of our methodology we obtain a more reliable system,
in terms of functionality, safety and robustness and a reduction of the
time necessary for verification. In order to show the applicability of our
solution we applied it on a real industrial case study, that is the Euro-
pean Train Control System (ETCS) [14]. We specify the system using
the SDL language [24], and we use a test generation tool to generate
abstract test cases in TTCN-3. Based on these standardized tests, we
verify using model-checking, some critical properties of the system, in
particular these regarding safety requirements. We analyse a real train
accident and we demonstrate how the accident could have been avoided
if the ETCS system was used.

Keywords: Formal verification · Safety · Model checking · Software
control systems

1 Introduction

The difficulty of the implementation and the time required for testing and veri-
fying complex software systems (e.g., embedded systems, control systems, etc.)
involve high challenges. In most cases, the deadline is not met, products being
launched several months late and without achieving the required performance
targets. Within that context, many efforts have been done in the processes of
software validation and in particular in the testing of these systems from the
c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 156–178, 2020.
https://doi.org/10.1007/978-3-030-52991-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_8&domain=pdf
http://orcid.org/0000-0002-2471-8012
http://orcid.org/0000-0003-2586-9071
http://orcid.org/0000-0002-0305-4712
https://doi.org/10.1007/978-3-030-52991-8_8

From Formal Test Objectives to TTCN-3 for Verifying ETCS 157

verification of formal specifications. However, very few works have been devoted
to the verification of models from the testing phases although languages and
formal transformation have been proposed.

In our paper, a framework based on formal methods that performs the meth-
ods and techniques necessary to automate the development and verification pro-
cesses, is proposed. The expected result consists in a more reliable system, in
terms of functionality, safety and robustness and a reduction of the time neces-
sary for verification. We aim at verifying software systems from the standardized
definition of their test objectives formally modeled.

We demonstrate the usefulness and efficiency of our framework in applying it
on a real industrial case study, the European Train Control System (ETCS) [14].
European railways have evolved over the past 150 years within national bound-
aries, resulting in a variety of train control systems. To increase interoperability,
the European Union has decided to standardize the European system of trains
control, producing the European Train Control System (ETCS). This standard
is mandatory within the European Union since 2015. Several research initiatives
are trying to develop frameworks to ensure interoperability between different
European train systems [3,8,11,31,37]. The requirements specification of ETCS
describes the behavior of the system as well as a number of functional require-
ments. The formal description of these requirements demands a formalism that
takes into account different behavioral scenarios under different conditions, and
functional requirements as these related to the position, speed and acceleration
of the train.

This paper is built upon a previous work of the authors. The automatic gener-
ation of efficient test cases from the TestGen-IF tool has already been defined in
[1]. This paper expands this work by proposing how to manage the limitations of
TestGen-IF without impacting the verification capabilities. For that purpose, we
herein formally specify the system using the SDL language [24], focusing on the
description of two main components of the standard, the On-Board Unit (OBU)
and the Radio Block Center (RBC). We use the PragmaStudio tool to generate
abstract test cases in TTCN-3. The advantage to use this tool regarding our pre-
vious work, is the reduction of the number of test cases as well as a standardized
way of defining test suites. Furthermore, these suites can be executed through
well defined testing architecture. Based on these standardized test objectives,
we verify using model-checking, some critical properties of the system, in partic-
ular these regarding safety requirements. Besides, one of the main motivations
of the work presented in this paper is to avoid train accidents. For instance, the
train accident that happened in Spain1 could be avoided by verifying different
scenarios that illustrate the weaknesses of the train system used in Spain at the
moment of the accident and we demonstrate how the accident could have been
avoided if the ETCS was used. In the test cases generation section, we consider
the scenario of the accident and the test objectives we have developed for this
scenario show how the accident could be avoided if the ETCS system was used.

1 El Pais Journal, 24th of July 2013, https://elpais.com/ccaa/2013/07/24/galicia/
1374693125 734192.html.

https://elpais.com/ccaa/2013/07/24/galicia/1374693125_734192.html
https://elpais.com/ccaa/2013/07/24/galicia/1374693125_734192.html

158 R. Ameur-Boulifa et al.

In summary, the main contributions of this paper are:

– the design of an integrated framework suitable for software developers. The
proposed framework is composed by a tool-chain for automating test genera-
tion, together with mechanisms to transform tests in properties to be verified
by formal verification;

– we provide a ETCS specification based on the SDL language and based on
standardized test objectives we generate the corresponding tests in TTCN-3
format;

– a transformation that converts the generated tests to MCL-formulas in such
a way that automatic and exhaustive verification of critical properties will be
possible on application;

– an example illustrating the approach and its practical use by applying our
framework on a complex real case study, showing how the ETCS system, can
contribute to avoid train accidents.

The paper is organized as follows. Section 2 presents the related works on
the verification and testing of complex systems and the relation between testing
and verification techniques. In Sect. 3, the motivations and contributions of this
work regarding the prevention of train accidents are presented. In Sect. 4, basic
concepts and definitions for the modelling of the system, and the description
of test objectives are described. Section 5 gives the language for the properties
specification and the rules for the transformation of test objectives into formal
properties to be verified on the formal model. In Sect. 6, the formal specification
of the ETCS system is provided as well as the results of the experimentation
performed on it. Finally, Sect. 7 gives the conclusion and perspectives of this
work.

2 Related Works

Verification and testing of complex systems (e.g., train or avionic software and
industrial control systems) have been studied for many years. Several models
and techniques have been proposed to either test the systems [4,19,33] or verify
their formal models [6,28]. In the following, we cite the works from which we get
inspired.

Many works have defined languages or approaches to model complex sys-
tems. In [38], a UML profile named R-UML has been proposed to model and
then verify flexible control systems. The model is enriched in order to consider
the management of resource sharing. Besides, a transformation model to state
machines is used for the verification process. Also, the authors of [5] proposed a
Pi-calculus-based approach through transformation of sequence diagrams for the
verification process. An interesting mapping is formally defined to analyse and
verify well-defined properties. Models transformation is of high importance and
has been well described in a very recent survey [26]. The transformation is also
performed in our approach in order to apply model-checking. However, although
these studies propose high semantics and transformation rules, the authors do

From Formal Test Objectives to TTCN-3 for Verifying ETCS 159

not propose experiments on real case studies and the properties to be checked
are not provided. Besides, in our approach, our transformation through models
and languages are easily applied in a sense that the procedures are tooled (based
on Fiacre [18] - see Sect. 6.4).

We also get inspired of the researches on testing and verification of complex
software control systems. [27] presents an interesting survey for modeling, test-
ing, and verifying embedded control systems. The authors note that model-based
development approaches are crucial in industrial contexts. They also raise the
challenging consolidation between testing and verification processes in software
systems. In this area, papers like [36] experimented an incremental methodol-
ogy of deductive verification assisted by test generation. Though the proposal
is very promising, it tackles the software code with no formal state machines.
Nevertheless, relevant combination between test and verification was introduced.
Time constraints in the validation processes are also very important. In [35], the
authors studied them and proposed an approach to represent and refine them
among various abstraction levels. Besides, they verified timing constraints on a
complex system. In our paper, such information has also been raised and we
noted the importance of such constraints in the model as well as into the verifi-
cation phase.

It was shown in the survey of Fraser et al. [17] that testing could be per-
formed from verification processes. Many efficient techniques and tools have been
developed in that purpose. Still in that way, the authors of [16] have recently
presented the use of model-checking for automated test cases generation applied
to a standardized complex aerospace system. However, all these works present
the use of verification for testing without raising the issue of the test objectives.
Although a recent interesting document about bridging the gap between testing
and verification approaches has been published by Microsoft Research [21], the
methods always propose to apply verification to testing. In our work, we present
a way for verifying a formal specification from standardized test objectives in
the context of the European Control Train Systems (ETCS). Such verification
purposes are not new as depicted in the well-known report published by the
CMU on TCS [37]. In [20], a dynamic model is proposed for model-checking of
the European TCS specifications. UML, LTL and a model-based methodology
is successfully applied and the author clearly focus that work as an entry point
for generating test cases. In a more recent work [25], the authors proposed a
novel testing platform based on virtual laboratory. Braking events have been
tested using faults injection. However, as mentioned, although these works are
very interesting, none of them started from standardized test objectives (even-
tually automatically generated) to the verification of the models. This is what
we tackle in our work we herein propose.

Besides, considering safe properties, in [40], the authors provide a definition
of a safety management and signaling system integration model according to
the CENELEC standards. They present an interesting approach based not only
on train safety properties but also these regarding passengers’ safety. They take
into account the safety requirements for the Communication-Based Train Control

160 R. Ameur-Boulifa et al.

(CBTC) system, to define a safety assurance and assessment method based on
safety verification and validation. This approach had been applied in many urban
rail transit lines of Beijing.

3 Motivation

As mentioned in the introduction, in the actual context, the train system across
Europe suffers from some deficiencies, which caused several severe accidents in
the recent period. Safety and security become crucial aspects that require special
consideration.

In this paper, we analyse the scenario of the train accident from Spain, San-
tiago de Compostela on Wednesday the 24th of July, 2013 and tested it for the
case in which the ETCS would have been used.

According to the reports, the train involved in the accident was using the
“Automatic Braking and Announcement of Signals” (ASFA) legacy system, a
widely deployed automatic warning system on the Spanish rail network. The
train derailed at high speed on a curve, as it was running at about twice the speed
limit of 80 km per hour on that portion. Even if the train driver mentioned going
at too high a speed, this does not necessarily mean that his guilt is completely
acknowledged. Security systems should have ensured that not one cause results
in a crash. We will present, in the following, the main principles of ASFA and
ERTMS systems, showing how the accident would not have been produced in
case the ERTMS system was used.

In both train systems, the train route is divided into cantons, sections
between signals, along the routes.

In the ERTMS System - The European Rail Traffic Management System,
which is the standard that comprises also the ETCS system, the beacons are
disposed in a such a way that every two beacons there is a minimum distance of
two meters.

The signaling system takes the information of the route and sends it to the
beacons. The train, going on the beacons, reads the information so that the on-
board computer manages it. The speed is regulated throughout the trajectory
and less control of the driver is required.

By comparison with the ERTMS System, the ASFA System, provides more
control to the driver. The ASFA system functions on the following principle:
there are 2 beacons for each signal at a distance of 300 m between each other.
The signaling system takes the information of the route and sends it to the two
beacons. The train, going on the beacons, reads the information and sends it to
the driver. The driver must act according to the information received (to reduce
speed, to stop . . .). The ASFA system provides no regulation of the speed during
the journey and it requires more attention from the driver.

The ASFA beacons provide information about two issues. If the train goes
faster than 200 km/h, the beacon stops the train. The other situation is if the
tracks are occupied, in which case, a red or yellow signal is activated and may
halt the train. But if the train goes under 200 km/h, the speed is left up to the

From Formal Test Objectives to TTCN-3 for Verifying ETCS 161

driver. In the situation of the accident there were some signals available to the
driver (a light signal telling that the train is going to run on the Santiago tracks,
a sign indicating that a tunnel is coming up) that should indicate at a point that
the speed should be reduced, but no automatic speed regulation was applied. In
the case of the ETCS system, the on-board equipment always co-operates with
the ETCS trackside equipment. The on-board computer calculates the maximum
allowed speed, monitors the real speed and controls the driver’s indicators.

Consequently, considering the circumstances of the accident, due to the on-
board control unit a train under ETCS security system would have had auto-
matically detected and reduced the high speed on that portion of track and the
accident could have been avoided. We illustrate this scenario in the experimental
section of the paper.

4 Basics

In this section, we introduce all formal languages, techniques and tools that are
used in our paper. Several concepts have been utilized in parallel to focus on
system verification purpose.

4.1 Formal Specification Language - EFSM

There exist several modelling languages, such as the symbolic state machines [34],
logic languages [13], etc. to specify complex systems when the number of
exchanged messages, data and parameters is important.

In our approach, we describe each process (the behaviour of each component
of our system) in terms of a machine modeled by an Extended Finite State
Machine (EFSM) [29].

Definition 1. An EFSM M is defined as : M = (I,O, S, x, T) with I, O, S, x
and T respectively a set of input symbols, a set of output symbols, a set of states,
a vector of variables and a set of transitions. Each transition t ∈ T is a 6-tuple
defined as : t=(st, qt, it, ot, Pt, At) where

– st is the current state,
– qt is the next state,
– it is an input symbol,
– ot is an output symbol,
– Pt (x) a predicate on the values of the variables,
– At (x) an action on the variables.

[12]

162 R. Ameur-Boulifa et al.

4.2 The SDL Language

The Specification and Description Language SDL standardized by ITU-T [24]
is widely used to specify complex communicating systems. This language has
evolved according to user needs. It provides new concepts needed by designers to
specify systems more and more complex. We have chosen SDL since it is based on
the semantic model of Extended Finite State Machine (EFSM) [30]. Its goal is to
specify the behavior of a system from the representation of its functional aspects.
The description of the functional aspects is provided at different abstraction
levels. The most abstract is the one describing the system, while the lowest is
the specification of abstract machines composed by signals, channels, tasks, etc.
Two kinds of properties may describe these functional aspects: the architectural
and behavioral properties. The first one denotes the architecture of the system,
that is the connection and organisation of the elements (blocks, processes, etc.).
The second one describes the behaviors of the entities after an interaction with
the environment. These reactions are described by tasks, transitions between
states, and are based on the EFSMs.

A verification on local variable values imposes a condition (predicate) on
moving to the next state. The actions associated with a transition include: ver-
ification on local variable (that can impose conditions, predicates, to move to
the next state), the execution of tasks (assignment or informal text), procedure
calls, dynamic creation of processes in order to include new mobile nodes into
a system for instance (SDL contains the concepts of “type” and “instance of
type”), arming and disarming timers, etc. SDL supports objects that permit to
define generic types that could be validated and used in different contexts.

SDL is a very interesting language for our purpose in terms of specification of
course but also to target the Labelled Transition Systems (LTS for short) used
in our previous work [1]. Indeed, many tools (such as PragmaStudio2) allow
first, to unfold SDL specification to LTS (for example for verification goals), and
secondly to translate SDL in the language IF [9] dedicated to model our test
objectives. We describe in the following these two formalisms.

4.3 Labelled Transition Systems

Labelled Transition Systems are strongly based on the definition and semantics of
Symbolic Transition Graph with Assignment [22]. The LTS extends the general
notion of Labelled Transition Systems by adding parameters and value-passing
features. Transitions are labelled by parameterised actions, to which are attached
a set of parameters and variables.

Definition 2. (LTS) A Labelled Transition System is a rooted directed graph
where each state s is associated with a finite set of free variables and each edge

is labelled by a triple s
([b], α,x:=e)−−−−−−−−→ s′. Where b is a boolean expression, e is a data

expression (which may includes variables), x ranges over data variables, x := e
is a multiple assignment and α ranges over a set of abstract action algebras.
2 http://pragmadev.com/product/index.html.

http://pragmadev.com/product/index.html

From Formal Test Objectives to TTCN-3 for Verifying ETCS 163

The set of abstract actions is a set of action algebras that can encode natu-
rally usual point-to-point message passing calculi using ?a(x1, . . . , xn) for inputs,
!a(v1, . . . , vn) for outputs. Figure 6 shows the graphical representation of the two
LTSs depicting the behaviour of the obu (On-Board Unit) and rbc components
(Radio Block Center).

The parallel composition of processes and their communication is defined
through parameterised Network (pNet) [2,23]. pNets are tree-like networks of
processes. They provide means to represent in a structured and hierarchical way
the behaviour of processes, represented as labelled transition systems (LTS with
value-passing messages). Composition of pNets is realized by synchronisation
vectors that relate the actions of (a subset of) the subnets, with a global action
that will be exported at the next level.

Figure 5 gives a graphical representation of pNets. The pNet shown in this
example is represented by a set of four boxes: obu, rbc, getSpeed and Releas-

eSpeed boxes inside the ETCS System box (hierarchy). Each box representing
parameterised process (which can be formed of other pNets or LTS and that have
parameters and local variables), is surrounded by labelled ports encoding a par-
ticular sort of the corresponding pNet. The ports are interconnected through
edges for communication and synchronisation. Edges are translated to synchro-
nisation vectors.

4.4 The IF Language

IF is a language based on the semantic temporized state machines, allowing
the description of existing concepts into specification formalisms [9]. A real-time
system described using IF language is composed of processes running in parallel
and interacting asynchronously through shared variables and message exchanges
via communication channels. The description of a system in IF consists in the
definition of data types, constants, shared variables, communication signals and
processes. The signals set is divided into inputs and outputs provided by the
environment of a current state machine or sent to its environment, respectively.
One of the main advantages of the IF language is the ease of use to formally
specify test objectives as described in the next section.

4.5 Test Objectives

In our work, we focus on the functional properties to be tested on a system
or implementation (namely implementation or system under test (SUT)). In
that context, a test objective describes a particular functionality of a SUT by
specifying the property to be checked in the system implementation. It is an
observable action of the system that once described in IF language [10] is used
for guiding the space exploration of the system’s states.

A test objective is described as a conjunction of conditions, including the
following optional conditions: instance of a process with an identifier, a state of
the system (a source state or a destination state), an action of the system (a
message sent, a message received, an internal action), a variable of the process

164 R. Ameur-Boulifa et al.

or a clock of the process, specifying a value and its state (active or inactive).
Table 1 shows the general structure of a test objective in the IF description.

Table 1. General structure of test objective [1].

TO = TO1 ∧ TO2

TO1 = P1 ∧ P2 ∧ · · · ∧ P5

P1 = process : instance = {proc}id

P2 = state : source = s1

P3 = state : destination = s′
1

P4 = input action : α1(parameters)

P5 = variable : (v1 = value)∗

TO2 = Q1 ∧ Q2 ∧ · · · ∧ Q5

Q1 = process : instance = {proc}id

Q2 = state : source = s2

Q3 = state : destination = s′
2

Q4 = output action : α2(parameters)

Q5 = variable : (v2 = value)∗

From a test objective described in IF and the SDL specification of the system,
we may generate a set of test cases within a commonly used notation, namely
TTCN-3 [15]. Basically, a test case is a sequence of input and output actions
with eventual pre-post conditions. It represents a trace of an LTS that satisfies
the test objective. We briefly describe the TTCN-3 notation in the next section.

4.6 Testing and Test Control Notation Version 3

The ETSI standard for Testing and Test Control Notation version 3 (TTCN-
33) [15,39] is a test specification language for black-box testing of complex dis-
tributed systems. The syntax looks similar to programming languages (e.g., C,
C++, JAVA) and therefore easy to understand and apply. It is a powerful lan-
guage for all types of reactive system test specification. TTCN-3 is referred as
an Abstract Test Suite (ATS) and is used for expressing the configuration and
behavior of abstract test system and test cases.

5 Framework - From Test Objectives to Verified
Properties

Our goal is to use formal methods both to increase the quality of such sys-
tems through enhancing the verification activity, and to prevent unnecessary
3 http://www.ttcn-3.org.

http://www.ttcn-3.org

From Formal Test Objectives to TTCN-3 for Verifying ETCS 165

tests. However, since we aim at a general approach for specifying properties, we
advocate to use the test objectives to generate formal specifications or proper-
ties that may be used for proving or disproving the correctness of the systems.
As described before (Sect. 4.5) test objectives express the desired or unexpected
behaviour of a system in terms of input and output actions. Their distinctive fea-
tures are typically the dealing with data parameters that are generally abstracted
away in formal models because verification problems are undecidable for infinite
systems. Furthermore, the crucial characteristic of our models is the parameter-
ized action.

Precisely, MCL (Model Checking Language) is a language for expressing
properties that addresses this crucial matter: representing and handling data,
and reasoning about their value.

5.1 Property Language

Basic MCL logic extends action in modal μ-calculus with data variables [32], so
it suits for describing the property of concurrent systems. Indeed, MCL language
provides high-level operators facilitating the construction of formulas. It allows
to handle in a natural way the data values present in the LTSs and to reason
about systems described in value-passing process algebras such as LOTOS.

The MCL formulas are logical formulas built over regular expressions using
boolean operators, modalities operators (the necessity operator denoted by []
and the possibility operator denoted by 〈 〉), maximal fixed point operator
(denoted by μ) and data-handling constructs inspired from functional program-
ming languages. From LTS’s point of view, a transition sequence starting at the
initial state and satisfying a regular formula ε can be expressed in MCL either
as an example for the 〈ε〉true formula, or as a counterexample for the [ε]false
formula. For specifying transition sequences, MCL uses regular formulas.

A regular formula is a logical formula built from action formulas, traditional
and extended regular expression operators, namely concatenation (.), choice (|),
and transitive- reflexive closure (*).

An action formula is a logical formula built from action predicates which
includes action patterns, and the “tau” constant operator. Action pattern can
either action for matching values denoted by {α !e1 . . .!en}, or action for extract-
ing and storing values denoted by {α ?x1 : T1 . . .?xn : Tn} where α is an action
name, ei is an expression, variable name or function name, xi is a variable name
and Ti is a basic data type. It is important to note that the usage of ! and ? sym-
bols in MCL specification has different meaning from the notation introduced
in LTS models. They enable to match a given value against an expression or to
extract and store it in a variable. MCL also uses other specific notations: the
“true” constant is used to match a value of any action formula and the wildcard
clause “any” matches a value of any type.

166 R. Ameur-Boulifa et al.

5.2 Encoding Test Objectives into MCL Formula

We define the transformation of IF test objectives into MCL specification by
associating to each test objective a MCL formula expressing a liveness property.
Consider TO a test objective:

TO= ′′process : instance={proc}id ′′

∧′′state :source=s ′′∧′′input action :α1(x1, .., xn)′′

∧′′output action:α2(x′
1, .., x

′
n)∧′′state :destination=s′ ′′

The encoding of test objective TO is the following MCL property pattern:

[true∗.{α1?x1 :T1 . . .?xn :Tn}] inev({α2 † x′
1 . . . † x′

n})
where {α1?x1 : T1 . . .?xn : Tn} and {α2 † x′

1 . . . † x′
n} are the input action and

the output action resp. Note that for dataless actions, brackets can be omitted.
And such that †x can be either !x or ?x : T depending on whether x′

i consists
of matching values with data xi (encoded !xi) or extracting and storing them
in typed variables (encoded ?xi : Ti). MCL uses the usual datatypes e.g., bool,
nat, string.

The predicate inevitability of an action α denoted inev(α) expresses that a
transition labelled with α is eventually reached from the current state. It can be
defined in MCL using fixed point operator by the following macro definition:

macro inev(α)=
μ X.(<true> true and [not (α)] X)
macro end

meaning that as long as there has been no α action, there is always an execution
leading to α. It is important to note that our translation does not care about
the conditions on the states which are involved in test objectives. For the formal
verification, the pointing of the states of a system is useless information. Because
the approach checks properties by means of an exhaustive search of all possible
states that the system could reach.

Concerning the variables that we have not considered in the given general
test objective. They are also translated but not in completely automatic manner.
The translation requires sometimes the intervention of the user. As mentioned
earlier, such as a programming language, MCL offers constructors to facilitate
the handling of data values. Thus, for encoding the variable conditions that
are not empty, we use such constructors, in particular the where constructor.
The action pattern ending with the optional clause “where b” means that the
pattern matches an action if and only if the guard (boolean expression) b is true.
The guard can be the equality check, i.e, like where vi = vali.

From Formal Test Objectives to TTCN-3 for Verifying ETCS 167

6 Experiments

6.1 ETCS System

Our work has been experimented on a formal model of the European Train
Control System (ETCS). The ETCS is a part of the European standard that
defines the European Railway Traffic Management System4.

The normative documents describe ETCS as a train control standard, based
on in-cab equipment, an On-Board Unit (OBU) able to supervise train move-
ments and to stop it according to the permitted speed at each line section, along
with calculation and supervision of the maximum train speed at all times [14].
The information is received from the ETCS equipment beside the track. For
that purpose, the OBU runs concurrently with a Radio Block Center (RBC).
Basically, this standard is proposed in order to improve the safety in European
railways. The trains running limits are stated by movement authorities.

The train control system ensures the reception of messages like safety dis-
tance, speed limitations and controls the driving according to these limitations.
Secondly, the safety is increased by the supervision of train driving. As illustrated
in the Fig. 1, data are used by the on-board ETCS equipment to supervise the
train drivers5. Therefore, the on-board equipment has to know both information
regarding the route as well as information regarding the train.

Fig. 1. The ETCS system [1].

This train data is introduced by the train driver before starting the journey.
Based on the track data and on the data entered by the driver, the on-board subsys-
tem calculates a dynamic speed profile, calculates a set of braking curves for train

4 http://www.ertms.net/.
5 https://medium.com/@POST UK/moving-block-signalling-b9b0b9f498c2.

http://www.ertms.net/
https://medium.com/@POST_UK/moving-block-signalling-b9b0b9f498c2

168 R. Ameur-Boulifa et al.

movement supervision and commands the brake application, if necessary6. A high
performance is given by an increasing speed and capacity due to a track-train trans-
mission system and the on-board equipment knowledge. The track-train trans-
mission system uses precise information about running limits and consequently,
supervises a train permanently to avoid that the speed limits exceed. The on-board
equipment knowledge about train running limits is used to inform drivers through
displays, allowing the railways to increase the running speeds without worrying
about shortening the time period for track side signal observation.

6.2 ETCS Formal Specification in SDL

We designed our SDL specification using the PragmaStudio tool through two
main blocks and processes. The architecture of our system is represented in the
Fig. 2. It consists of the communication of the two components (OBU and RBC)
through the channels carrying the different signals (packet messages).

Fig. 2. SDL architecture of the ETCS system.

In each SDL block, one process modeling the behavior of the components is
integrated, receiving and sending the signals using ports. These processes are
illustrated by the Fig. 3 and Fig. 4. Input/output messages, variables, param-
eters, guards, clocks and decisions are represented. A procedure call has also
6 https://ec.europa.eu/transport/modes/rail/ertms en.

https://ec.europa.eu/transport/modes/rail/ertms_en

From Formal Test Objectives to TTCN-3 for Verifying ETCS 169

been specified to represent the behavior of the ReleaseSpeed as noted in Fig. 5.
Besides, the procedure allowing to get the speed has been supposed belonging
to the environment of the SDL process.

Fig. 3. SDL process of the OBU.

Fig. 4. SDL process of the RBC.

170 R. Ameur-Boulifa et al.

From this formal specification, we are now able to generate several sequence
diagrams, to describe diverse use cases, flows and by simulation, to provide
TTCN-3 sequences as we depict in the following.

6.3 A Use Case Formal Specification

The Fig. 5 shows the semantic model of our use case, the signature of interfaces,
and the behaviour of its components and its methods. The overall architecture
of the system consists of:

– The obu component receiving the information about the current speed, the
current location and maximum authorized speed, and makes a decision to the
issue to brake or not,

– The rbc component that manages the exchange of data required for a safe
train travel,

– A behavioural specification of methods getSpeed and getReleaseSpeed

that returns respectively at any time the current speed of the train and the
maximum authorized speed under which the train must to respect.

ETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_SystemETCS_System

OBU(id)OBU(id)OBU(id)OBU(id))di(UBO)di(UBO)di(UBO)di(UBO)di(UBOOBU(id)OBU(id)OBU(id))di(UBO)di(UBO)di(UBO)di(UBOOBU(id)
RBCRBCRBCRBCCBR CBR CBR CBR CBRRBCRBCRBCCBR CBR CBR CBRRBC

ReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedReleaseSpeedGetSpeedGetSpeedGetSpeedGetSpeeddeepSteG deepSteG deepSteG deepSteG deepSteGGetSpeedGetSpeedGetSpeeddeepSteG deepSteG deepSteG deepSteGGetSpeed

!EBcmd(1)!EBcmd(1)!EBcmd(1)!EBcmd(1))1(dmcBE!)1(dmcBE!)1(dmcBE!)1(dmcBE!)1(dmcBE!!EBcmd(1)!EBcmd(1)!EBcmd(1))1(dmcBE!)1(dmcBE!)1(dmcBE!)1(dmcBE!!EBcmd(1)

!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l) ?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)

!MA(id,rs)!MA(id,rs)!MA(id,rs)!MA(id,rs))sr,di(AM!)sr,di(AM!)sr,di(AM!)sr,di(AM!)sr,di(AM!!MA(id,rs)!MA(id,rs)!MA(id,rs))sr,di(AM!)sr,di(AM!)sr,di(AM!)sr,di(AM!!MA(id,rs)?MA(id,rs)?MA(id,rs)?MA(id,rs)?MA(id,rs))sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM??MA(id,rs)?MA(id,rs)?MA(id,rs))sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM??MA(id,rs)

!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s))s(deepSE!)s(deepSE!)s(deepSE!)s(deepSE!)s(deepSE!!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s)

?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s)

!EBcmd(0)!EBcmd(0)!EBcmd(0)!EBcmd(0))0(dmcBE!)0(dmcBE!)0(dmcBE!)0(dmcBE!)0(dmcBE!!EBcmd(0)!EBcmd(0)!EBcmd(0))0(dmcBE!)0(dmcBE!)0(dmcBE!)0(dmcBE!!EBcmd(0)

!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)

?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)

?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)?call_compute(rs)

!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)!call_compute(rs)

?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)

?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?DLocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)?ELocation(l)

s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max) s:= any in (0..Max)
!ESpeed(s)!ESpeed(s)!ESpeed(s)!ESpeed(s))s(deepSE!)s(deepSE!)s(deepSE!)s(deepSE!)s(deepSE!!ESpeed(s)!ESpeed(s)!ESpeed(s))s(deepSE!)s(deepSE!)s(deepSE!)s(deepSE!!ESpeed(s) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’) rs:= any in (0..Max’)

!call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs) !call_compute(rs)

Fig. 5. pNet model for the ETCS system [1].

In this section we describe only the structure of the pNets, the communication
among them and the behaviour of the local methods. The local methods compute
regularly the new value of the speed. They are naturally encoded as an infinite
loop of actions that returns a random value in the range [0 . . . max value] such
that max value is the maximum value of speed attainable by each of them. The
internal behaviour of obu and rbc components are represented by the LTSs
given in Fig. 6.

From Formal Test Objectives to TTCN-3 for Verifying ETCS 171

The ETCS system as specified in the European standard uses a clock. Each
component owns a clock which is synchronized with clocks of the other compo-
nents. Particularly, the RBC component receives a location of a danger point for
a certain period of time. In our models, we abstract away this kind of detail and
represent the receiving of a location of danger point as an infinite loop.

The obu Component. The obu receives the current estimated location
(?ELocation(l)) of the train from the environment. This location is encapsulated
in a request sending to the rbc (!MARequest(id, l)). Thus, it receives in return a
release speed consisting of a limited speed under which the train must to respect
(?MA(id, rs)). The local method GetSpeed will fill the current speed with the
calculated value (?ESpeed(s)). If the current speed s of the train is less than or
equals to the limited speed, it can continue to operate. Otherwise, if the current
speed s exceeds the maximum authorized speed, an emergency brake is applied
(!EBcmd(1)). The brake is hold until the train totally stops. The obu sends a
Driver Machine Interface command to display speed information to the driver
(!DMIspeed(rs)).

The rbc Component. The rbc receives the Danger locations that are sent from
the environment (?DLocation(l)). Based on this information and the estimated
location report received from the obu, the rbc computes release speeds by
calling the method ReleaseSpeed (!call computation(rs)). The release speed is
then sent to obu via the (!MA(id, rs)) message.

s0s0s0s00s0s0s0s0ss0s0s00s0s0s0ss0

s1s1s1s1s11s1s1s1ss1s1s11s1s1s1ss1

s2s2s2s2s22s2s2s2ss2s2s22s2s2s2ss2

s3s3s3s3s33s3s3s3ss3s3s33s3s3s3ss3

s4s4s4s4s44s4s4s4ss4s4s44s4s4s4ss4

s8s8s8s8s88s8s8s8ss8s8s88s8s8s8ss8

s9s9s9s9s99s9s9s9ss9s9s99s9s9s9ss9

s5s5s5s5s55s5s5s5ss5s5s55s5s5s5ss5

?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)?Elocation(l)

!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)

?MA(id,rs)?MA(id,rs)?MA(id,rs)?MA(id,rs))sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM??MA(id,rs)?MA(id,rs)?MA(id,rs))sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM??MA(id,rs)

?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s))s(deepSE?)s(deepSE?)s(deepSE?)s(deepSE?)s(deepSE??ESpeed(s)?ESpeed(s)?ESpeed(s))s(deepSE?)s(deepSE?)s(deepSE?)s(deepSE??ESpeed(s)
[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)[s>rs] !EBcmd(1)

!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)!DMIcmd(rs)

[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)[s<=rs] !DMIcmd(rs)
[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)[s>0] ?ESpeed(s)

[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)[s=0] !EBcmd(0)

?ESpeed(s)?ESpeed(s)?ESpeed(s)?ESpeed(s))s(deepSE?)s(deepSE?)s(deepSE?)s(deepSE?)s(deepSE??ESpeed(s)?ESpeed(s)?ESpeed(s))s(deepSE?)s(deepSE?)s(deepSE?)s(deepSE??ESpeed(s)

OBUOBUOBUOBUUBO UBO UBO UBO UBOOBUOBUOBUUBO UBO UBO UBOOBU
id:natid:natid:natid:nattan:di tan:di tan:di tan:di tan:diid:natid:natid:nattan:di tan:di tan:di tan:diid:nat

s6s6s6s6s66s6s6s6ss6s6s66s6s6s6ss6

!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)!MARequest(id,l)

?MA(id,rs)?MA(id,rs)?MA(id,rs)?MA(id,rs))sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM??MA(id,rs)?MA(id,rs)?MA(id,rs))sr,di(AM?)sr,di(AM?)sr,di(AM?)sr,di(AM??MA(id,rs)

s7s7s7s7s77s7s7s7ss7s7s77s7s7s7ss7

?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)?Eloccation(l)

RBCRBCRBCRBCCBR CBR CBR CBR CBRRBCRBCRBCCBR CBR CBR CBRRBC

?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)

?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)?MARequest(id,l)

?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)?call_compute(s)
sr:=ssr:=ssr:=ssr:=ss=:rs s=:rs s=:rs s=:rs s=:rssr:=ssr:=ssr:=ss=:rs s=:rs s=:rs s=:rssr:=s

?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)?Dlocation(l)

!MA(id,sr)!MA(id,sr)!MA(id,sr)!MA(id,sr))rs,di(AM!)rs,di(AM!)rs,di(AM!)rs,di(AM!)rs,di(AM!!MA(id,sr)!MA(id,sr)!MA(id,sr))rs,di(AM!)rs,di(AM!)rs,di(AM!)rs,di(AM!!MA(id,sr)

s0’s0’s0’s0’s0’’0s ’0s ’0s ’0ss0’s0’s0’’0s ’0s ’0s ’0ss0’

s1’s1’s1’s1’s1’’1s ’1s ’1s ’1ss1’s1’s1’’1s ’1s ’1s ’1ss1’

s2’s2’s2’s2’s2’’2s ’2s ’2s ’2ss2’s2’s2’’2s ’2s ’2s ’2ss2’

s3’s3’s3’s3’s3’’3s ’3s ’3s ’3ss3’s3’s3’’3s ’3s ’3s ’3ss3’

Fig. 6. Model for ETCS system [1]

Test Objectives for Automatic Verification. A critical property of the ETCS that
is particularly crucial to be verified is the ability of the system of taking over
control if the driver appears to be going too fast. Among scenarios describing
this property we consider the following:

172 R. Ameur-Boulifa et al.

Example 1. Scenario in which the train is in the indication state (encoded
s5), running at 120 km/h while the release speed is 80 km/h, thus OBU has to
generate a brake command and to pass to the intervention state (encoded s8)
– by traversing the normal state (encoded s3)–. The associated test objective
is formulated in the IF description (where {OBU}0 is used to identify the first
instance of process OBU) as follows:

TO= ′′process : instance ={OBU }0′′∧′′variable rs=80′′

∧′′ state :source=s5
′′ ∧′′ variable s=120′′

∧′′ state :source = s8
′′ ∧′′ output action :EBCMD1′′

In our previous work [1], we used the TestGen-IF tool to generate efficient test
cases. However, as it has been noted, the system dealt with data variables over a
domain leading to a huge number of generated test cases. In this extended paper,
we used the SDL specification of our ETCS system as well as the PragmaStudio
tool to generate abstract test cases in TTCN-3. The technique covers the whole
SDL model according to the test objectives but does not give numerical data to
the variable. Instead, the variable are kept for future test cases concretization
and execution. Therefore, the number of the test cases was drastically reduced.
We illustrate in the Fig. 7 the TTCN-3 test cases obtained for our previous
mentioned TO and generated from our SDL specification.

Fig. 7. Our generated TTCN-3 test file.

From Formal Test Objectives to TTCN-3 for Verifying ETCS 173

6.4 Experimental Results

The source specification was written in the intermediate format Fiacre language
[7]. The Fiacre language provides syntax for data types and expressions, defi-
nition of LTSs, and a form of composition of processes by synchronization on
channels. Then we run a combination of CADP tools [18], the most important
ones are ceasar.open for generating transition systems from Fiacre programs,
ocis the interactive simulator, and Evaluator4, the model-checker that deals with
the MCL logic. All the tools provided by the CADP toolbox are command-line
tools, but also integrated into graphical user interface (GUI). Through the Xeuca
interface (see Fig. 8) CADP toolbox allows an easy access to the offered func-
tionalities.

From a finite model pNet of ETCS we have computed the LTS of the global
system. Choosing small values for the domain of parameters, i.e. [0..4] intervals
for all data, we obtain an LTS with 662 states and 3615 transitions.

Fig. 8. Graphical user-interface of CADP [1].

To formally verify the correct execution of the different scenarios, we gener-
ated several properties in MCL in precise and generic way; they express various
facets of the system. Some properties express global correctness of the applica-
tion, seen from the (external) ETCS point of view, and that reveals the feasibility
of several scenarios or the impossibility of some errors.

174 R. Ameur-Boulifa et al.

First, we started by verifying usual properties the system is deadlock-free. As
well, we verified a property expressing that each scenario is acyclic, i.e. specifying
the absence of unfair execution actions, which is characterized using the infinite
looping operator (denoted by @ operator):

[true∗] <true> @

Not surprisingly, this property does not hold for all scenarios. By using ocis
simulator (as depicted in Fig. 8), we visualize the cause, this is because the rbc

processor can stay in its state after receiving a ?DLocation(l). Indeed, since we
abstracted away the clock, the rbc process can be engaged in a circular receiving
loop of danger locations that are sent from the environment. However, under
the hypothesis that this action is performed over a time period, such a cycle is
executed at most a finite number of times. Thus, cycles of this form should not
be considered a problem, and the model is refined, for instance by allowing only
a finite number of actions.

Next, we proved a formula that checks the reachability of the emergency
brake command:

[true∗.‘‘EBCMD1’’] true
This property is evaluated to true meaning that the break command is reachable
over all computations paths.

Afterwards, we proved properties that we generated from test objectives. For
instance, consider the following test objective checking global correction of the
ETCS system:

TO= ′′process : instance={RBC}0 ′′

∧′′state :source=s′
0

′′∧′′input action :MAREQUEST(id)′′

∧′′output action :MA(id, sr)′′ ∧′′state :destination=s′
1

′′

It formalises the scenario in which the train is in the initial state (encoded
s′
0) issues a MAREQUEST, thus the RBC has to send MA and to pass to the idle

state (encoded s′
1).

Based on the property pattern, our framework derives from the test objective
the following MCL formula:

[true∗.({MAREQUEST ?id:nat})] inev({MA !id ?any})
Note how the identifier id of the OBU is extracted from a transition label by
the first action predicate {MAREQUEST ?id:nat} (by wildcard symbol ?) and is
used subsequently in the property. This property is evaluated to true meaning
that for each possible request of a train (id being the identifier of an OBU), the
return of the corresponding movement authority permission is reachable with
some returned value of speed (denoted any).

From the test objective given in the Example 1, our framework generates
also a MCL formula although in a less systematic way:

[true∗.{MA ?any ?v1:nat}.(not{ESPEED ?any})∗.{ESPEED ?v2:nat where v2>v1}]
inev(‘‘EBCMD 1’’)

From Formal Test Objectives to TTCN-3 for Verifying ETCS 175

This formula expresses a general property for verifying that OBU issues a brake
command at each state whenever speed is greater than releaseSpeed. Actually,
the test objective does not specify the input action but the value of the variables
s and rs (s = 120 and rs = 80), and the output action: EBCMD1. It is specified
that the speed of the train is greater than the release speed. By analysis of the
models of the train, we look for the actions that set the value of these variables,
we use them to express the assignment instead of the variables assignment. As it
can be noted, the variable s is set by the action ESPEED sets and the variable rs
is set by the action MA. Thereby, for these actions that are used in the formula, it
is explicitly expressed that the argument of the first is greater than the argument
of the second. Note that the values 80 and 120 of the variables are not set in
the formula to express this safety property in a general form. It is evaluated to
true: once an RBC delivers a release speed, upon the first speed exceeding this
limit the train always issues the brake command.

Behavioural model generated is also used to verify other properties, and
other scenarios. For instance, the scenario that caused the Spain train accident
(see footnote 1) can be expressed by a combination of properties: – property
specifying the capability of the ETCS system of taking over control if the driver
appears to be going too fast; – and a property specifying the inability of the
train to move without being controlled by the RBC.

The first property is the one that encodes the test objective given in
Example 1. However, for the second the purpose is to ensure that the train
(the OBU unit) can only evolve if it receives messages from RBC unit. This can
be expressed by the following MCL formula:

[(not {MA ?any ?any})∗.{DMICMD ?any}.(not {MA ?any ?any})∗.{MA ?any ?any}]
false

This property is evaluated to true, meaning that the displaying action of
the OBU (DMICMD ?any) cannot be performed before receiving the message (MA
?any ?any) from RBC. Note that in the formula the train’s progress is simulated
by the displaying action. Indeed as mentioned before, we produced behavioural
models where we abstract away some details, in particular the move action sim-
ulating the movement of the train. Because of this, we consider that any other
action that does not loop on the initial state (encoded s0) or on the stop state
(encoded s5) can simulate the movement.

7 Conclusion and Perspectives

In this paper we have presented a framework for the generation of logical prop-
erties from test objectives with the aim of verifying properties of complex dis-
tributed systems. A test objective provides a convenient description for generat-
ing test cases to be executed to achieve a particular software testing requirement.
The system has been described using the SDL language and we used the Prag-
madev test generation tool to generate the test cases, which are represented in
the standard notation TTCN3 facilitating the execution of the tests. We also

176 R. Ameur-Boulifa et al.

describe the translation of such test objectives to MCL properties. MCL prop-
erties enable the exhaustive verification of critical properties; the correctness of
applications has been proved by using the model checking technique. We have
analysed a real train accident and showed that could be avoided if the ETCS
safety rules were applied.

As a future work, we are planning to refine the behavioural model by taking
time into consideration. Preliminary modifications allow to encode implicitly the
notion of time and go beyond the issues raised by its abstraction. However, from
the test objectives point of view, it would be interesting to study what could
be the property pattern corresponding to the test objective involving the clock.
Moreover, we will consider the eventual changes of the model parameters due to
the clock phases over the time.

Finally, our framework could be extended to take into account other aspects
in order to offer the ability to analyse non-functional properties.

References

1. Ameur-Boulifa, R., Cavalli, A.R., Maag, S.: Verifying complex software control
systems from test objectives: application to the ETCS system. In: Proceedings
of the 14th International Conference on Software Technologies, ICSOFT 2019,
Prague, Czech Republic, 26–28 July 2019, pp. 397–406 (2019). https://doi.org/10.
5220/0007918203970406

2. Ameur-Boulifa, R., Henrio, L., Kulankhina, O., Madelaine, E., Savu, A.:
Behavioural semantics for asynchronous components. J. Log. Algebraic Methods
Program. 89, 1–40 (2017)

3. Andres, C., Cavalli, A., Yetvushenko, N.: On modeling and testing the european
train control system, technical report 09013 lor, telecom sudparis. Technical report,
March 2013

4. Abbaspour Asadollah, S., Inam, R., Hansson, H.: A survey on testing for cyber
physical system. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.) ICTSS 2015.
LNCS, vol. 9447, pp. 194–207. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25945-1 12

5. Belghiat, A., Chaoui, A.: A Pi-calculus-based approach for the verification of UML2
sequence diagrams. In: 2015 10th International Joint Conference on Software Tech-
nologies (ICSOFT), vol. 2, pp. 1–8. IEEE (2015)

6. Bérard, B., et al.: Systems and Software Verification: Model-checking Techni-
ques and Tools. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-
04558-9

7. Berthomieu, B., et al.: The syntax and semantics of FIACRE. In: Deliverable
number F.3.2.11 of project TOPCASED (2012)

8. Bougacha, R., Wakrime, A.A., Kallel, S., Ayed, R.B., Collart-Dutilleul, S.: A
model-based approach for the modeling and the verification of railway signaling
system. In: Proceedings of the 14th International Conference on Evaluation of
Novel Approaches to Software Engineering, pp. 367–376. SCITEPRESS-Science
and Technology Publications, Lda (2019)

9. Bozga, M., Graf, S., Mounier, L.: IF-2.0: a validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343–348. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 26

https://doi.org/10.5220/0007918203970406
https://doi.org/10.5220/0007918203970406
https://doi.org/10.1007/978-3-319-25945-1_12
https://doi.org/10.1007/978-3-319-25945-1_12
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/3-540-45657-0_26
https://doi.org/10.1007/3-540-45657-0_26

From Formal Test Objectives to TTCN-3 for Verifying ETCS 177

10. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 8

11. Bundell, G.A.: Aspects of the safety analysis of an on-board automatic train oper-
ation supervisor. In: 2009 IEEE International Conference on Systems, Man and
Cybernetics, pp. 3223–3230. IEEE (2009)

12. Cavalli, A.R., Grepet, C., Maag, S., Tortajada, V.: A validation model for the DSR
protocol. In: 24th International Conference on Distributed Computing Systems
Workshops (ICDCS 2004 Workshops), 23–24 March 2004, Hachioji, Tokyo, Japan,
pp. 768–773 (2004). https://doi.org/10.1109/ICDCSW.2004.1284120

13. Che, X., Lalanne, F., Maag, S.: A logic-based passive testing approach for the
validation of communicating protocols. In: ENASE 2012 - Proceedings of the 7th
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing, Wroclaw, Poland, 29–30 June 2012, pp. 53–64 (2012)

14. ERTMS Commission Group - European Commission: delivering an effective and
interoperable European Rail Traffic Management System (ERTMS) – the way
ahead. Technical report, SWD(2017), p. 375, November 2017. https://ec.europa.
eu/transport/sites/transport/files/swd20170375-ertms-the-way-ahead.pdf

15. ETSI-ES-201-873-1: Methods for testing and specification (MTS), the testing and
test control notation version 3, part 1: Ttcn-3 core language, v4.11.1. Technical
report, April 2019

16. Ferrante, O., Scholte, E., Rollini, S., North, R., Manica, L., Senni, V.: A method-
ology for formal requirements validation and automatic test generation and appli-
cation to aerospace systems. Technical report, SAE Technical Paper (2018)

17. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verification Reliab. 19(3), 215–261 (2009)

18. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 33

19. Garousi, V., Felderer, M., Karapıçak, Ç.M., Yılmaz, U.: Testing embedded soft-
ware: a survey of the literature. Inf. Softw. Technol. 104, 14–45 (2018)

20. Ghazel, M.: Formalizing a subset of ERTMS/ETCS specifications for verification
purposes. Transp. Res. Part C Emerg. Technol. 42, 60–75 (2014)

21. Godefroid, P.: Between testing and verification: Dynamic software model checking
(2016)

22. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–
389 (1995)

23. Henrio, L., Madelaine, E., Min, Z.: pNets: an expressive model for parameterised
networks of processes. In: 2015 23rd Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing, pp. 492–496. IEEE (2015)

24. ITU-T: Recommandation Z.100: CCITT Specification and Description Language
(SDL, 1999, updated 2019). Technical report, ITU-T, October 2019

25. Jesus Valdivia, L., Solas, G., Añorga, J., Arrizabalaga, S., Adin, I., Mendizabal,
J.: ETCS on-board unit safety testing: saboteurs, testing strategy and results.
Promet-Traffic Transp. 29(2), 213–223 (2017)

26. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and clas-
sification of model transformation tools. Softw. Syst. Model. 18(4), 2361–2397
(2018). https://doi.org/10.1007/s10270-018-0665-6

https://doi.org/10.1007/978-3-540-30080-9_8
https://doi.org/10.1109/ICDCSW.2004.1284120
https://ec.europa.eu/transport/sites/transport/files/swd20170375-ertms-the-way-ahead.pdf
https://ec.europa.eu/transport/sites/transport/files/swd20170375-ertms-the-way-ahead.pdf
https://doi.org/10.1007/978-3-642-19835-9_33
https://doi.org/10.1007/s10270-018-0665-6

178 R. Ameur-Boulifa et al.

27. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
Mag. 36(6), 45–64 (2016)

28. Karna, A.K., Chen, Y., Yu, H., Zhong, H., Zhao, J.: The role of model checking in
software engineering. Front. Comput. Sci. 12(4), 642–668 (2018). https://doi.org/
10.1007/s11704-016-6192-0

29. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. IEEE Trans. Comput. 84, 1090–1123 (1996)

30. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a Survey. Proc. IEEE 84, 1090–1123 (1996)

31. Liu, Y., Tang, T., Liu, J., Zhao, L., Xu, T.: Formal modeling and verification of
RBC handover of ETCS using differential dynamic logic. In: 2011 Tenth Interna-
tional Symposium on Autonomous Decentralized Systems, pp. 67–72. IEEE (2011)

32. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

33. Merouane, K., Grepet, C., Maag, S.: A methodology for interoperability testing
of a manet routing protocol. In: International Conference on Wireless and Mobile
Communications, p. 5, March 2007. https://doi.org/10.1109/ICWMC.2007.2

34. Mouttappa, P., Maag, S., Cavalli, A.: Using passive testing based on symbolic
execution and slicing techniques: application to the validation of communication
protocols. Comput. Netw. 57(15), 2992–3008 (2013)

35. Mubeen, S., Nolte, T., Sjödin, M., Lundbäck, J., Lundbäck, K.-L.: Supporting
timing analysis of vehicular embedded systems through the refinement of tim-
ing constraints. Softw. Syst. Model. 18(1), 39–69 (2017). https://doi.org/10.1007/
s10270-017-0579-8

36. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How test generation helps
software specification and deductive verification in Frama-C. In: Seidl, M., Till-
mann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 204–211. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09099-3 16

37. Platzer, A., Quesel, J.-D.: European train control system: a case study in for-
mal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol.
5885, pp. 246–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10373-5 13

38. Salem, M.O.B., Mosbahi, O., Khalgui, M., Frey, G.: R-UML: An UML profile
for verification of flexible control systems. In: Lorenz, P., Cardoso, J., Maciaszek,
L.A., van Sinderen, M. (eds.) ICSOFT 2015. CCIS, vol. 586, pp. 118–136. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30142-6 7

39. Willcock, C., Dei, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An Introduction
to TTCN-3, 2nd edn. Wiley Publishing, Hoboken (2011)

40. Yan, F., Gao, C., Tang, T., Zhou, Y.: A safety management and signaling sys-
tem integration method for communication-based train control system. Urban Rail
Transit 3(2), 90–99 (2017). https://doi.org/10.1007/s40864-017-0051-7

https://doi.org/10.1007/s11704-016-6192-0
https://doi.org/10.1007/s11704-016-6192-0
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1109/ICWMC.2007.2
https://doi.org/10.1007/s10270-017-0579-8
https://doi.org/10.1007/s10270-017-0579-8
https://doi.org/10.1007/978-3-319-09099-3_16
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-319-30142-6_7
https://doi.org/10.1007/s40864-017-0051-7

Service Robots: A Unified Framework
for Detecting, Opening and Navigating

Through Doors

Tatsuya Harada1, Antonio Tejero-de-Pablos1(B), Stefano Quer2 ,
and Francesco Savarese1,2

1 Machine Intelligence Lab., The University of Tokyo, Tokyo, Japan
antonio-t@mi.t.u-tokyo.ac.jp

2 Department of Control and Computer Engineering,
Politecnico di Torino, Turin, Italy

Abstract. For an autonomous robotic system, detecting, opening, and
navigating through doors remains a very challenging problem. It involves
several hard-to-solve sub-tasks such as recognizing the door frame and
the handle, discriminating between different type of doors and their sta-
tus, and opening and moving through the doorway. Previous works often
tackle single individual sub-problems, assuming that the robot is mov-
ing in a well-known static environments or it is already facing the door
handle. However, ignoring navigation issues, using specialized robots, or
restricting the analysis to specific types of doors or handles, reduce the
applicability of the proposed approach. In this paper, we present a uni-
fied framework for the door opening problem, by taking a navigation
scenario as a reference. We implement specific algorithms to solve each
sub-task and we describe the hierarchical automata which integrates the
control of the robot during the entire process. We build a publicly avail-
able data-set which consists in 780 images of doors and handles crawled
from Google Images. Using this data-set, we train a deep learning neu-
ral network, exploiting the Single Shot MultiBox Detector, to recognize
doors and handles. We implement error recovery mechanisms to add
robustness and reliability to our robot, and to guarantee a high success
rate in every task. We carry-out experiments on a realistic scenario, the
“Help Me Carry” task of the RoboCup 2018, using a standard service
robot, the Toyota Human Support Robot. Our experiments demonstrate
that our framework can successfully detect, open, and navigate through
doors in a reliable way, with low error rates, and without adapting the
environment to the robot.

Keywords: Service robotics · Door opening · State machines · Object
detection · Autonomous system

1 Introduction

Today the greatest challenge in robotics is to create robots which are able
to perform increasingly complex tasks autonomously and with little previous
c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 179–204, 2020.
https://doi.org/10.1007/978-3-030-52991-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_9&domain=pdf
http://orcid.org/0000-0001-6835-8277
https://doi.org/10.1007/978-3-030-52991-8_9

180 T. Harada et al.

knowledge about the environment around them. Former approaches concentrate
on static (unchanging) environments, with little or no interaction between the
robot and the environment. Latter frameworks have modeled non-static environ-
ments, and at a bare minimum, they must navigate in and interact with them
autonomously.

The first attempts of human-robot cooperation focused on robots capable of
guiding people in human coexisting environments [4,13,23]. Minerva [32] was
installed in the Smithsonian’s National Museum of American History during
two weeks in 1998. The evolutionary Mobot Museum Robot Series [31] were
permanently installed robots which have operated in public spaces for many
years. However, influenced by the aging population problem, service robotics
has focused on the design of robots to assist elderly people, or people with
mobility impairments, in their daily life at home [12]. Current approaches
emphasize the ability to autonomously navigate unknown environments (such
as houses or offices), to perform common tasks (such as picking up objects or
delivering articles), and to interact with humans [9]. For example, the Defense
Advanced Research Projects Agency (DARPA) Robotics Challenge (DRC) pro-
gram recently conducted a series of prize-based competition events to develop
and demonstrate technology for disaster response [11,17,19]. The DRC Finals
required robots to perform eight tasks: Drive, Egress, Door, Valve, Wall, Sur-
prise, Rubble, and Stairs. Door opening has drawn attention not only because
it is a very common task but also because of its complexity. In the “Door” task
of the DRC, the robot was supposed to open a door and to travel through a
91.4 cm (36 in.) doorway, without the human assistance. Very detailed specifi-
cations were used to simplify the task. The doorway had no physical threshold,
and the door could be opened inward (away from the robot). The handle was
a standard American with Disabilities Act-compliant lever, which released the
latch in either the up or the down direction. The task was considered complete
when all points of robot ground contact were past the door threshold.

In general, a robust unified pipeline including navigation and door opening,
which does not rely on prior knowledge of the environment or on the characteris-
tics of the door, requires the following tasks: Detection of the door, estimation of
the type and status of the door, understanding of the opening direction, recogni-
tion and grasping of the handle, and navigation through the door. Many existing
approaches tackle this pipeline only partially and they concentrate on indepen-
dent tasks, often neglecting navigation issues. Many other techniques suppose
that the robot initially faces the door. Unfortunately, the position of the robot
with respect to the door can greatly influence the success of the handle detection
process, meaning that the robot needs to know the position of the door within
the environment to proceed correctly. Thus, these strategies are not suitable for
realistic scenarios in which the robot is moving and interacting with a dynami-
cally changing environment. Moreover, while an off-the-shelf system is desirable,
most of the existing approaches use custom-made robots which imply very high
costs and completely hinder reproducibility.

Service Robots: A Unified Framework for Detecting 181

In this work, we present a unified framework to open doors while navigating
the environment. We assume the robot navigates an unmodified house, that
is, a house furnished with common furniture pieces and with non-automatic
doors. We consider robot navigation in a structured environment, admitting
semantic navigation. This allows studying the door opening problem from the
perspective of a realistic navigation problem. We suppose no prior knowledge of
the properties of the doors such that these attributes (i.e., door width, handle
position, and opening direction) are estimated at run-time. We also recognize
whether the door is closed or partially open, whether it has to be pushed or
pulled, and we perform appropriate actions to open it. We present a detailed
hierarchical automata model of our framework. Using this model, we decompose
the overall task into sub-tasks, and we perform proper error recovery during all
main phases. We solve the implied sub-problems adopting a unified approach,
providing detailed explanations of the resulting automata. To automatic detect
doors and handles, we leverage a deep learning approach based on the Single
Shot MultiBox Detector (SSD). In order to train such a detector, we build and
make available the “MIL-door” data-set1, including 780 different images of doors
and handles. After the door and the handle have been detected, depth images are
used to evaluate the location of the handle with a higher precision. This strategy
allows our robot to recognize doors and handles even while navigating through
unknown environments, that is, without previously knowing their existence.

While the majority of the proposed solutions use specific architectures, such
as the Personal Robot 2 (PR2) robotic platform [21] or other custom-made
robots [17], we implemented our framework into a standard general purpose
robot, namely, the Toyota Human Support Robot (HSR) [33], To evaluate it,
we chose a complex task among the RoboCup 2018 [26] challenges, namely the
“Help Me Carry” task. In this task, the user instructs the robot to fetch an
object in a specific location in a different room, and he awaits for the robot to
return. We force the robot to follow different paths on the outward journey and
on its way back (with different doors along the two paths) and we dynamically
change the environment status during its trip. After that, we focus on the sub-
task of grasping an handle, forcing our HSR platform to deal with a large variety
of doors and handles. We present extensive experimentation showing low failure
rate and a very efficient recovery procedure, able to rectify errors in the majority
of the cases. Overall, our analysis show the high reproducibility and the broad
applicability of our approach.

It has to be noticed that this work is an extended version of the confer-
ence paper [29]. While the conference paper focuses only on a few steps of the
entire work-flow, the current one describes the entire process with more details,
more accurate author’s considerations and hints on the work done. Abstract,
introduction, contributions, related works, and conclusions have been completely
rewritten and are now organized in a completely different way. The core sections
include new details and some extra descriptive pictures. An explicit section on

1 The data set is publicly available at https://www.mi.t.u-tokyo.ac.jp/projects/
mildoor.

https://www.mi.t.u-tokyo.ac.jp/projects/mildoor
https://www.mi.t.u-tokyo.ac.jp/projects/mildoor

182 T. Harada et al.

future works has also been added to indicate our current effort in the area.
References are now more complete and updated.

1.1 Contributions

The principle of the proposed framework is to provide a comprehensible solution
to the problem of door opening in a unified fashion. That is, while most related
works focus only in individual modules (e.g., door detection [7], door unlatch-
ing [25], we tackle the entire problem end to end: From the moment the robot
starts navigating the environment to the moment the robot traverses the door
and reaches its destination. The direct benefit of such a unified framework is its
high applicability to solve a real-world door-opening problem. Moreover, to the
best of our knowledge, current literature does not contain any method or eval-
uation for amalgamating all the required modules to solve the end-to-end door
opening problem. Building such a framework is challenging, given the complexity
of the system obtained when combining all modules. To successfully build the
proposed framework, we identified the following design requirements:

– Comprehensibility: The end-to-end door opening problem involves multiple
behaviors. A state-machine implementation should follow an understandable
relationship among the modules, and consider all possible cases in the task
pipeline.

– Robustness: The framework should be able to handle an error at any point
of the state machine execution.

– Reproducibility: Other researchers should be able to re-implement our frame-
work. For that, explicitly specifying the parameter values used and other
implementation details is essential, but not enough. Deploying the framework
on a standard platform is also preferable over a closed implementation.

In this research, in order to achieve comprehensibility, our implementation of the
framework follows a hierarchical structure of state machines. In order to achieve
robustness, we also define an error recovery module that can deal with errors at
any point of the door opening. The error recovery module behaves in a hierar-
chical fashion, to adapt to the state machine structure of our network. In order
to achieve reproducibility, we provide the necessary details as well as sharing
the datasets built for the training. In addition, we employed the Toyota HSR
standard robot platform to deploy our framework and conduct our experiments.

To sum up, our contributions are the following:

– We present a unified framework to open doors while our robot navigates
through an unmodified house. We suppose no prior knowledge of the prop-
erty of the doors or the handles, as these characteristics are estimated at
run-time. Our robot autonomously recognizes doors and handles, it performs
automatic door type detection, and it executes appropriate actions to open
and to traverse it.

– We describe our framework using a hierarchical automata model. The model
is adopted to decompose the overall task into sub-tasks and to perform proper

Service Robots: A Unified Framework for Detecting 183

error recovery during all main phases. A deep learning neural network is used
to detect doors and handles in the unknown environment.

– We implement our framework into a standard general purpose robot, the
Toyota Human Support Robot. We analyze our robot’s behavior during the
“Help Me Carry” task in a realistic scenario, and we check it with several
type of doors and handle. Overall, we prove the high reproducibility and the
broad applicability of our approach.

1.2 Roadmap

The remainder of the paper is organized as follow. Section 2 reports details on
related and recent works in the same area. Section 3 describes our hardware
and software platforms, and our semantic navigation framework. Section 3.4
overviews our solution from the point of view of an automata model. It also
presents the door opening problem, and it explains our solutions to solve all sub-
tasks, It finally introduces a realistic scenario, i.e., the “Help Me Carry” task,
which we take as a reference. before and after making contact with the door.
Section 5 describes the experiments we run to evaluate our framework. Finally,
Sect. 6 summarizes our conclusions, and it discusses future research lines.

2 Related Works

In the field of computer vision, many research groups have proposed solutions to
the problem of navigating an environment and interacting with it. Other works
have focused more on recognizing door frameworks and handles, and moving
through the doorways. The challenging task of door opening while navigating
the environment has also received a lot of attention.

Rhee et at. [25] develop an indoor service robot equipped with a manipulator,
with 6 degree of freedom and a multi-fingered hand, specifically adapted to
door opening. As appropriately managing sensors and motions is essential for a
service robot system, the authors propose active sensing methodologies in order
to overcome uncertainty problems in real environments.

Kim et al. [6] employ cheap three-axis force sensors to successfully open
a door using a home service robot called Hombot, which is equipped with an
anthropomorphous manipulator arm.

Petrovskaya et al. [24] present a unified, real-time, algorithm that simulta-
neously models the position of the robot within the environment, as well as the
objects to be manipulated. The approach is motivated by the fact that the state
of an object significantly impacts the navigation task, thus the authors’ goal is to
simultaneously model a dynamic environment and to localize the robot within it.

Aude et al. [2] propose a new algorithm to enable a robot to autonomously
find and cross doors within an unknown environment based on two main fea-
tures: The identification of long straight lines and the determination of the base-
board’s angle and position. They also restrict the robot’s knowledge about the

184 T. Harada et al.

environment to the door’s width and they detect door frames through image
manipulation based on Gaussian and Sobel Filters and Hough Transforms.

Ott et al. [22] focus on the task of opening a door with no previous knowledge
of the door size or on the door opening trajectory. The whole application is
divided into three sub-tasks: The localization of the door handle, the turning
and opening of the door handle, the movement through the door hinge until the
door is sufficiently wide open. The exact localization of the door handle with
respect to the mobile platform is done by using an on-board laser range scanner
and a vision system.

Andreopoulos et al. [1] try to solve the door opening problem using a robotics
wheelchair. They used a computer vision approach based on Viola-Jones for door
and handle recognition. However, they only study handle detection and grasping,
without proposing a method for door opening.

Jain et al. [10] roughly estimate the handle position using a laser scan. After
that, the robot haptically searches for the door handle over the surface of the
door. After the handle unlatching, the door is pushed to be opened. They do
not study the case of pulling door and they do not move the robot through the
door.

Rusu et al. [28] present a laser-based approach for door and handle identifi-
cation. The approach builds on a 3D perception pipeline to annotate doors and
their handles solely from sensed laser data, without any a priori model learning.
In particular, the authors segment the parts of interest using robust geometric
estimators and statistical methods applied on geometric and intensity distribu-
tion variations in the scan.

Klingbeil et al. [15] combine a visual algorithm with laser data to locate the
handle in the space. However, after handle unlatching, they do not tackle the
problem of door opening.

Similar considerations can be made for Chitta et al. [5], where a planning
algorithm is proposed for opening (pulling and pushing) doors, but the robot
needs to know in advance if the target door is a pulling or a pushing one.

Meeussen et al. [21] propose a framework that integrates autonomous naviga-
tion and door opening. For door detection, they use a point cloud representation,
while for handle recognition, they combine laser scans and a computer vision app-
roach. Although they analyzed the entire navigation and door opening problem,
their approach requires the knowledge of several details on the environment,
such as the door width and the door type.

Kim et al. [14] detect doors using a context-based object recognition. The
authors use the robotic context, such as the robot’s viewpoint and the average
height of doorknobs, to enhance the efficiency of object recognition. Robotic
context is applied in the pre-processing step of object recognition to speed up
the process and to reduce the false-positive rate by restricting the search space
in the captured image. This approach, albeit applying for the first time both
robotic context and shape-based object recognition to door detection, has a
limited applicability due to the necessity to known the environment.

Service Robots: A Unified Framework for Detecting 185

Gray et al. [8] present a framework that handles non-spring and spring-loaded
doors, in cluttered or confined work-spaces, planning the approach to the door,
pushing or pulling it open, and passing through. These task remain challenging
as spring-loaded doors require making and breaking contacts with the door and
preventing the door from closing while passing through. In order to plan a door-
opening procedure quickly and reliably, the author start the planning using a low-
dimensional, graph-based representation of the problem. However, the author do
not analyze the entire problem flow. Moreover, their opening strategy requires
to store additional information about the doors.

Shalaby et al. [30] build a navigation assisting tool for visually impaired peo-
ple. Their based this tool on an inexpensive digital camera, such as the one used
by tablets or mobile devices, able to gather information from the surrounding
environment. The author also present a technique for reliable and robust door
identification pairing visual information and door geometric description seen as
a 4-side polygons. They implement and test the algorithm using MATLAB and
its large image processing library. However, the approach requires a prior knowl-
edge of doors details (such as the height of the handle), limiting the method
applicability to only well-known scenarios.

Vertical edges have long been used by the robotics community as a first step
for door detection. Fernández et al. [7] concentrate on high-level features, like
doors and corridors, which are considered as key elements in urban buildings to
achieve a localization with a high semantic or symbolic processing capabilities.
The authors evaluate the position of the surrounding doors by fusing the infor-
mation from a monocular web-cam and a 2D laser rangefinder. By considering a
real-world environment, the authors demonstrate that their technique may per-
form the door detection task very reliably with a computational cost that allows
the procedure to be used with light on-board computers and end-user cameras.

Lee et al. [18] develop a motion planning algorithm to enable humanoids to
remove an object that is blocking its path. To remove an object in its path, a
humanoid must be able to reach it. Unfortunately, stretching the arms (which
are shorter than the body and the legs) is not sufficient to reach an object
located at some distance away or on the ground. Therefore, the authors ensured
reachability by a combination of motions that include kneeling and orienting the
pelvis. Indeed, they focus on the optimization of the posture of a humanoid that
is reaching toward a point, which depends on the initial posture, the location of
the point, and the desired manipulability of the humanoid’s arms.

The Defense Advanced Research Projects Agency (DARPA) Robotics Chal-
lenge (DRC) [17] was motivated by the 2011 nuclear disaster at Fukushima, in
Japan. This event illuminated society’s vulnerability to natural and man-made
disasters and the inability of existing robot technology to help avert or amelio-
rate the damage. Given this framework, Johnson et al. [11] discus the challenges
they faced in transitioning from simulation to hardware. They also illustrate the
lessons learned both during the training period and the competition, address-
ing the value of reliable hardware and solid software practices. Given the same
framework, Jeongsoo et al. [19] run experiments on robots performing tasks

186 T. Harada et al.

in a nuclear disaster situation. The authors concentrate on a humanoid robot
platform (i.e., the DRC-HUBO+) able to solve complex tasks under restricted
communication conditions, as the ones in a region filled with radiation. They pre-
sented a survey of their platform including the overall hardware configuration,
software architecture, various control methods for operating the robot, and the
vision system. They also provide details on the task-oriented vision algorithms
that were used to solve the given tasks.

Boston Dynamics [3] presented a solution based on the cooperation of two
SpotMini robots. However, given the robot structure (i.e., a four-legged robot),
it is hard to transfer the approach to common service robots. Moreover, their
approach is not public.

3 Configuration

3.1 Hardware Platform

As our development platform, we used the Toyota Human Support Robot (HSR).
The robot is aimed at helping elderly people and people with disabilities. Given
its design, HSR is optimal for operating in home settings without any modifica-
tion that facilitates its tasks (e.g., automatic doors). Toyota also provides some
primitives and some basic software routine for controlling the robot.

The HSR body is cylindrical with a set of wheels that makes the robot
movable in all directions. It is equipped with a folding arm capable of grab-
bing objects, manipulating handles and even grasping paper sheets from the
floor. Thanks to its microphone array and its speakers, HSR is able to receive
voice commands and communicate with the user. Several sensors allow the robot
interacting with the surrounding environment. The HSR head is equipped with
a stereo video camera and a depth camera. The robot base is equipped with
a collision detector. The Robot Operating System (ROS)2 is installed on the
robot, allowing communicating with the hardware layer. This way, writing low
level controlling algorithms is not necessary.

3.2 Software Architecture

Figure 1 shows our software architecture. We designed it to implement the robot’s
functionality, and it is the backbone of the entire system. It allows managing sev-
eral basic tasks, the human-robot interaction, and easily adding new function-
ality on-demand (e.g., replacing voice commands with visual QR-code inputs).
This improves system versatility, but it is not essential for the paper’s goal.

2 http://www.ros.org.

http://www.ros.org

Service Robots: A Unified Framework for Detecting 187

Speech

To

Text

Voice Commands

Other Inputs

Help Me Carry

Other Tasks SM

Task SM

State Machine Container

Text

To

Text Speech

Voice Results

Other Resuts

Fig. 1. Our robot software architecture consists of three layers: A speech to text layer
for command processing, a state machine container layer that activates state machines
according to the task, and a text to speech layer for result conveying.

We defined three different layers:

– A command processing layer (speech-to-text). We use the HSR’s microphone
array to capture the user command, and then we internally process it.

– A container (state machine container). State machines are deployed to solve
different tasks.

– A user-friendly communication layer (text-to-speech). This is used to convey
the operation results to the user.

The first layer processes the user’s voice command, and it forwards the result
to the second layer. To interpret the voice command, and generate a command,
we used the Google Cloud Speech-to-Text API3. This tool allows developers
to convert speech into text exploiting the power of neural networks and using
the Google Cloud suite. Depending on the given command, the second layer
activates the proper state machine to execute the task required by the user. The
third layer receives the results of the state machines, which are interpreted and
communicated to the user in a user-friendly fashion. The state machine container
is the element that provides flexibility to the entire architecture. It is possible, in
fact, to embed new state machines for executing tasks. We implement all state
machines using SMACH4.

3.3 Semantic Navigation Framework

For the path planning we rely on the ROS global and local path planners. These
modules receive the desired coordinates in the space, and they convert these coor-
dinates into commands to move the robot. Using the ROS navigation stack built-
in Hector-SLAM algorithm [16] we can create a map describing the environment
and the obstacles. This map allows the robot to receive coordinates and reach
specific locations by automatically choosing an optimal path free of obstacles.
However, semantic navigation requires a richer description of the environment
to convert human understandable locations (e.g., the kitchen table) into suitable
coordinates for the robot. As a consequence, additional information needs to be

3 https://cloud.google.com/speech-to-text.
4 SMACH is a ROS-independent Python library for building hierarchical state

machines.

https://cloud.google.com/speech-to-text

188 T. Harada et al.

added to the map to improve the knowledge about the environment. We propose
a framework for creating and managing semantic maps. This framework works
as an interface layer, converting the location sent by the user to a location under-
standable by the motion planning module. Using RVIZ5 we manually associate
coordinates in the path planner map to human understandable locations. The
association among coordinates and locations are stored as meta-data into an
xml, and a csv files.

We manage two different types of entities in the environment: Rooms and
locations. A room is a portion of the map identified by walls or boundaries. Loca-
tions are places inside rooms. Each room can contain multiple locations. A room
entity is identified by its name and it is represented by a list of corners, arranged
as a polygon, plus a room center. To manage polygons and coordinates we use the
python package matplotlib.path. A location, on the other hand, is represented by
a location name, its coordinates in the map and some attributes describing the
place (e.g., “isStorage” is a Boolean attribute stating if the location is a storage
area). The hierarchical relationship between rooms and locations are stored in
xml format while the room and location names with their respective coordinates
are stored in csv format.

Figure 2 reports an example of the files we use to store the semantic informa-
tion (left and middle) and a graphical representation of a possible environment
map (on the right). The hierarchical relationship between rooms and locations
are stored in xml format while the room and location names with their respec-
tive coordinates are stored in csv format. In the graphical representation of a
possible environment map, R1–R5 designate rooms and D1–D4 indicate doors.
R3 and R5 are not separated by a wall. The position of elements in the map is
retrieved with respect a fixed reference system as represented in the figure. The
origin of the Cartesian system is the robot initial position, from where the entire
process starts. Even though the location of the doors is indicated, the robot
keeps checking for the door while approaching it, to calibrate its position and

<?xml version="1.0" encoding="utf-8"?>

<rooms>

 <room name="R2">

 <location name="bed"

 isPlacement="False"/>

 <location name="wardrobe"

 isPlacement="True"/>

 </room>

</rooms>

Name Type X Y Th

R1, corner, 0, 0, 0

R1, corner, 0, 3, 0

R1, corner, 6, 3, 0

R1, corner, 6, 0, 0

R2, bed, 7.2, -0.75, -1,5708

Fig. 2. The file on the left (in xml format) is an example of the rooms-to-locations
relationship. The file in the middle (in csv format) is an example of the associations
between rooms and locations and coordinates in the map. The map on the right, is the
one for the navigation environment, with rooms (R), doors (D), and locations (Bed).

5 RVIZ is a tool for displaying sensor data using ROS.

Service Robots: A Unified Framework for Detecting 189

its state (open/closed, etc.). The semantic navigation framework is also used for
completing other tasks, such as localizing a person or an object.

To gain planning stage flexibility, we also developed a way-points based nav-
igation approach. In this way, to move the robot between two locations in the
map, we can force it to follow intermediate points not belonging to a specific or
optimal path. This is particularly useful to test motion features in specific parts
of the scenario, or to reach specific places during the trajectory (e.g., to force the
robot to pass through a specific door). The path between intermediate points
is computed by the ROS path planner. A dictionary data structure is used to
represent way-points paths: The keys are entity pairs (i.e., the source and the
destination in the map), and the values are the list of places reached along the
path. The way-points dictionary is stored as a json file. The way-points based
navigation is activated if the pair source-destination is present in the dictionary.
Figure 3 is an example of dictionary to reach each room in Fig. 2, starting from
room R1 and using doors as way-points.

(R1, R2)

(R1, R3)

(R1, R4)

(R1, R5)

D1

D1

D1

D1

D2

D3

D3 D4

KEY VALUE

Fig. 3. Dictionary representing paths based on way-points.

3.4 The “Help Me Carry” Context

As a realistic scenario for door opening, we based our study on the “Help Me
Carry” task included in Robocup 2018. To complete it, the robot has to memorize
locations, move following user commands, avoid obstacles, and open doors. The
task description is as follows. The user went shopping, and needs the robot’s
help for bringing inside all the bags. To complete the task the robot will:

1. Follow the owner to the bags.
2. Memorize the bags location.
3. Understand the owner’s command to bring the bags to a specific different

location.
4. Bring all bags to that desired specified location.

The automaton designed to perform the task is shown in Fig. 4. Blue circles
indicate operational states, green ones are initial states, and yellow ones represent
ending states. The red color represents error recovery states. Black and red
dashed arrows indicate transitions between states and transitions between a state
and the error recovery state, respectively. The red lines are bi-directional because
after the error handling the control may be given back to the calling state.

190 T. Harada et al.

Wait Cmd

Track
People

Save
Location

Pick Up
Bag

Drop Bag

Door
Opening

Ask To
Open The

Door

Move To

Error
Recovery

FOLLOW
_CM

D

STO
R

E
LO

C
ATIO

N

PICK UP

BRING BAG

TO

PICK UP

C
LO

S
E

D
 D

O
O

R
D

E
T

E
C

T
IO

N

D
O

O
R

 O
P

E
N

E
D

DOOR LOCKED

DO
O

R O
PENED

DROP BAG

MOVE TO BAGS

TASK_OK

Ask For
Human

Help

E
R

R
O

 N
O

T
R

E
C

O
V

E
R

E
D

Fig. 4. Automaton representing the “Help Me Carry” task. It shows the problem of
door opening in the context of a more complex task, which involves human interaction
and navigation. (Color figure online)

The text on the arrows represent the event causing the transition. Each state
is implemented as an automaton, hence the overall architecture is a hierarchical
state machine. For the sake of readability, we did not used the often used “double
border” notation to identify nested state machines. This structure is quite flexible
and it is easy to maintain.

As an example of behavior, the robot is activated in the state named “Wait
Cmd” (wait for command). In this state the robot simply waits for commands
coming from the user. If the command for following the user is received, the state
machine transit to the “Track People” state. Otherwise, if the command cannot
be correctly interpreted, the state machine transits to the “Error Recovery”
state. The general policy of the “Error Recovery” state is that, if the error is
rectified, the control is given back to the incoming state. If the error cannot be
rectified, the state returns the control to a higher level state machine or directly
interacts with the user asking for help.

4 Nesting Automata

Detecting, opening and navigating through doors is a complex problem that
involves many algorithms. In our approach, we decomposed the problem into
different stages. The flowchart in Fig. 5 (left-hand side) describes the algorithmic
approach we followed.

Each block involves different technologies and techniques. The top part rep-
resents the overall door/handle detection, and the door parameters estimation.

Service Robots: A Unified Framework for Detecting 191

Start

No

Pulling
Succeded ?

Yes

No

Pushing
Succeeded?

Yes

Door/Handle
Detection

Move
 Through

Handle
Grasping &
Unlatching

Pull Door
of 5 cm

Push Door
of 5 cm

Compute
Pushing

Trajectory

Compute
Pulling

Trajectory

Push Door

Closed
Door ?

Door
Parameters
Computation

End

Door Locked

No

Pull Door

Estimate
Door Width

Grasp
Handle

Unlatch
Handle

GRASP_OK

Try to Pull

Try to Push

Compute
Pushing

Traj

Door
Pulling

Door
Pushing

U
N

LA
T

C
H

IN
G

_O
K

PULL_OK P
U

LLIN
G

_N
O

K

PUSHIN
G_OK

Door
Locked

P
U

S
H

_N
O

K
 TRAJ_READY

TRAJ_READY

O
P

E
N

_O
K

Locate
Handle

LOCATE_OK

PUSHIN
G

_O
K

M
O

VI
N

G
_O

K

Error
Recovery

Move back
to door

LO
C

ATE_N
O

K

M
E

M
_O

K

G
R

A
S

P
_N

O
K

UNLATCHIN
G_NOK

PULLING_ERROR

TR
AJ_ER

R

PULL
IN

G
_E

RR

Compute
Pulling

Traj

PUSHING_ERR

TR
A

J_E
R

R

P
U

S
H

IN
G

_E
R

R

DOOR_OPEN_
NOK

Store
Location

ESTIMATION_NOK

ESTIMATION_OK

M
EM

_NO
K

Door
Opened

OPEN_OK

O
P

E
N

_N
O

K

Error Not
Recovered

Fig. 5. On the left, we report the operational flowchart for door opening. It includes
the entire flow from the moment if which the robot detects a door to the one in which
it crosses the door or it understands that the door is locked. On the right, we illustrate
our automaton for door opening. The names over the red dashed lines indicate the type
of transition between a state and the “Error Recovery” state. (Color figure online)

The door type (pulling or pushing) is checked in the central part, whereas
the opening phase is executed at the bottom part. In summary, the robot
autonomously recognizes the door, it localizes the handle for grasping, and it
decides the opening action (i.e., pulling or pushing). To open the door, the robot
needs to know two parameters, i.e., the opening direction (pushing or pulling),
and the door width. Following many other approaches, these characteristics could
be annotated in advance in the environment description. However, we want to
achieve a flexible and completely autonomous interaction with the door. There-
fore, our robot computes the door width and the opening direction at run-time.
The automaton implementing our door opening approach is shown on the right-
hand side of Fig. 5. Notice that this state machine is nested in the automaton
designed for the overall “Help Me Carry” task and previously described in Fig. 4.
The door opening state machine is launched when the robot detects a closed
door. In the first state the current location is memorized. The following states

192 T. Harada et al.

complete the entire process described in the flowchart. The automaton has 3
ending states:

– “Door Opened”: Reached when the door is open.
– “Door Locked”: Reached if the door is locked.
– “Error Not Recovered”: Reached if an error that prevents door opening

occurs.

If the “Door Locked” or the “Error Not Recovered” states are reached, the door
can not be opened. This situation is managed by the state machine working at
a higher hierarchical level (i.e., the one in Fig. 4). Our error recovery approach
plays an essential role to reach robustness and flexibility against unexpected
situations. First of all, the error is handled locally within the state in which
occurs. For the sake of usability, the robot should not rely on human help for
solving minor issues. Thus, in our framework, each state stores enough knowledge
of the situation to handle minor problems. Examples of minor errors are: A
wrong handle recognition in the 3D space, a grasping failure, a wrong location
spelling from the user, etc. If local error correction is not possible, the control
flow jumps to the previous (higher) hierarchical level, in which the error recovery
state tries more drastic error rectification procedures. Only after the system has
attempted all error recovery procedures, the robot will ask for help from the
human operator.

4.1 Door and Handle Detection

For the door and handle detection we use a deep learning approach. Several deep
neural networks have been proposed for object detection, and more specifically
for door and handle recognition. Among state-of-the-art networks, we decided to
exploit the Single Shot MultiBox Detector (SSD) neural network [20]. Authors
proved that this network outperforms other well know networks, like Yolo and
Faster R-CNN in terms of speed and accuracy. Moreover, since SSD performs
better on embedded systems, the network can work correctly at run-time, and
it guarantees a fast interaction with the environment. Compared to other single
shot methods, SSD provides a much better accuracy, even with a smaller input
image size. The input to SSD is a monocular color image, and the output is a
list of bounding boxes containing the detected objects in the image, namely, the
top left angle of each detected object plus its height and width (object detection
part). Each detected object has an associated label indicating which class the
object belongs to (object recognition part).

In our version of SSD, the object recognition part is based on the VGG16
model pre-trained on the ILSVRC CLS-LOC data-set [27]. Then, we trained the
object detection part, and fine-tuned the object recognition part, by constructing
our own data-set, the “MIL-door” data-set. The “MIL-door” data-set consists
of images of “doors” and “handles” crawled from Google Images. After filtering
the erroneous results, MIL-door contains 462 images of doors and 318 images
of handles, for a total of 780 images. The height and width of the images range

Service Robots: A Unified Framework for Detecting 193

from 400 to 1200 pixels. For each image, we manually annotated bounding boxes
delimiting the area corresponding to doors and handles. Annotations are not
inserted on top of the images, but stored in a separate text file. Figure 6 shows
three example images extracted from our annotated data-set.

When training our SSD network with the MIL-door data-set, we performed
data augmentation on the training data, namely, 90◦ rotations and horizontal
flips. This increases the size of our data-set eight times, for a total of 6240 images.
Considering that the object detection part of the original SSD was trained with
9963 images for 20 object classes, we believe our data size is reasonable for our
2 object class detection problem.

Fig. 6. Sample images from the “MIL-door” data-set.

As training parameters, we used the following configuration (please refer
to [20] for more details on the meaning of these parameters): Batch size 32,
maximum iterations 120, 000, learning rate 0.001 (the original learning rate is
decayed by 10 at iterations 80, 000, 100, 000 and 120, 000), weight decay 0.0005,
γ 0.1, momentum 0.9.

We used a low learning rate to assure convergence during training and we
selected it empirically. We evaluated our door and handle detection with our
MIL-door data-set using a 10-fold cross-validation setting. We consider that the
door (or handle) has been correctly detected if the intersection over union (IoU)
between the estimated bounding box and the annotation is greater than 85%.
The detection accuracy in this controlled setting is of 94.7% for doors, and 86.3%
for handles. However, during the evaluation in a real setting, the IoU recognition
accuracy was slightly lower than using the data-set images. This was mainly due
to three factors: The large diversity of doors that exist in the real world, the
small size of some handles, and sporadic image quality loss due to poor lighting
conditions.

Since there are cases in which the door is detected but the handle is not, we
designed an error recovery algorithm to add robustness. When a door is detected
but the handle is not, the robot moves slightly forward, backwards, and laterally
to change the perspective until the recognition succeeds. If the handle is not
detected after a certain number of trials (5 in our case), the error is passed to
the above error recovery state in the state machine hierarchy.

194 T. Harada et al.

4.2 Door Width Computation

The door width is an important parameter to correctly estimate the robot’s
trajectory. To compute it, we combine the door size in the image, taken from
the robot camera, and the door to robot distance computed using the depth
camera. Assuming that the object width on the image is widthimage, and the
detected distance is d, we can obtain the relative size in the real world using the
following formula:

widthreal [pixel] = widthimage · d. (1)

However, Eq. 1 measures the door size using the pixels as measurement unit.
To transform the computed value from pixel into centimeters, we empirically
calibrated our camera and we computed a conversion factor conversioncoeff .
The door width, expressed in length units (centimeters), is thus given by:

widthreal [cm] = d · conversioncoeff · widthimage. (2)

We measured the quality of our method by comparing our estimated widths
against ground truth values, on four different types of doors. These doors differ
in terms of color, surface material, and shape. We also varied the distance of the
robot from the door from 1 m to 3 m, measures that are somehow reasonable in
a home environment. We used the root mean square error to evaluate the error.
Our results show that we reached an average error of ± 6 cm. As observed in
our experiments, this value does not affect the door opening noticeably.

4.3 Opening Direction

To open the door, the robot should move backward from left to right if the
hinges are on the right, and vice-versa. Anyway recognizing the hinge position is
not robust enough, since hinges are often undefined or barely visible. However,
our handle and door detector provides the handle location with respect to the
door, and thus, inferring the opening direction is straightforward. The opening
direction is used to compute the opening trajectory for both pulling and pushing
doors (see Sects. 4.7 and 4.8, respectively).

4.4 Closed Door

The door detected in the door recognition phase may be already open. To check
this, we use the HSR’s RGB-D sensor, the Xtion PRO LIVE. First, we obtain
the depth image corresponding to the frame where the door has been located.
Then, we take two horizontal rows (e.g., one in the lower half and one in the
upper). Finally, we compute the Sobel derivative along the horizontal direction
of these lines, and we check if it contains values above a certain threshold t.
This allows our method to detect if there are edges where the depth suddenly
increases, which translates into the door being open.

We experimentally established that the door can be considered open if the
log10 of the derivatives exceed a threshold t = 3.5.

Service Robots: A Unified Framework for Detecting 195

4.5 Handle Grasping and Unlatching

Once the door opening direction has been established, and the distance from
the door d evaluated, the robot can approach the handle enough to get a more
precise measure of its location with the depth sensor. If some error occurs while
evaluating the handle position, we retrieve a new depth measurement from the
sensor to get the right location. The robot, with its grip open, gets in front of
the door, and when it reaches the handle location, the grip closes and the robot
grasps the handle. To unlatch the handle, we combine the robot hand rotation
with a downward movement. We rotate the hand 20◦, and we move it downwards
10 cm. We empirically found that HSR does not have a strong grip and a rotation
plus a downward movement can improve the pressure that the hand can apply
to the handle. This allows a robust unlatching even if the handle is not grasped
perfectly at its end, or the surface of the handle is slippery (e.g., metallic).

4.6 Door Type Checking

Before computing the opening trajectory the robot has to understand the door
type, i.e., whether the door is a pulling or a pushing door. To discriminate
between the two categories, after the grasping and the unlatching, the robot
tries to move backwards and forward to test the opening type. First, it attempts
to pull the door back 5 cm while monitoring the force acting on the wrist torque
sensor. The measure of 5 cm has been heuristically selected as a good compromise
among several requirements. If during this movement, the torque on the wrist
sensor grows continuously, the door cannot be pulled. In this case, the HSR
attempts to push the door by moving forward and it checks the force acting on
the wrist sensor as before. In case the torque force does not increase in one of
these two attempts, the robots start the opening phase (see Sects. 4.7 and 4.8).
On the other hand, if the door cannot be pulled or pushed, the robot assumes
that the door is locked. The “Error Recovery” state handles this case by calling
for human help.

We also considered other approaches for testing the door type. One of those
involves monitoring movement of the robot’s base while performing the test. This
approach did not succeed mainly because, to measure a significant movement of
the base, we have to move the robot more than 5 cm. This in turn can damage
both the robot and the door (e.g., by pulling a pushing door too hard). Another
approach implies the classification of the door type using a computer vision
approach. However, this solution depends largely on the size of the training data-
set, which should contain a wide variety of doors and annotations indicating their
type. Unfortunately, many available images are not annotated, and manually
create a large data-set is very time consuming.

Notice that all checks performed by our approach are done to assure robust-
ness and to minimize the number of errors. We emphasize the importance of
robustness in such a complicated scenario, since an error in door type recogni-
tion could lead to hard-to-manage situations or risks for the robot or the handle
and the door integrity.

196 T. Harada et al.

Fig. 7. A visual example of our door opening approach. The HSR first grasps the handle
and then it unlatches it. After that, HSR tries to move back for 5 cm to pull the door. If
the door cannot be pulled, the robot moves the handle back to its neutral position, and
the door is opened by moving backwards and drawing an angle with respect to the door
closing position. During the entire process the door-to-robot distance is maintained
constant.

4.7 Door Pulling

Figure 7 shows the entire flow for opening a pulling door, from the moment the
robot must grasp the handle to the one in which the door is open. Figure 8 shows
the corresponding code flow.

Handle Releasing

Trajectory Estimation

Trajectory Following

Handle Releasing

Move Back to Door

Handle Releasing

Face the Door

Arm Extending

Door Pushing

Arm to Neutral Pose

Fig. 8. Schematic code flow for opening a pulling door (left), and opening a pushing
door (right). The code flows are encoded as SMACH state machines, and they are fully
integrated in our software framework.

When the robot stands in front of the door, and before starting the door
pulling phase, the application stores the current robot position. These coordi-
nates will be used when the door is open, as the robot will move back to the
stored position to pass through the door. The first three images, from left to
right, are part of the door type understanding process described in Sect. 4.6. In
the latter phase, the robots moves backward 5 cm to check whether the door
is a pulling one. In the affirmative case, the robot moves the handle back to
its neutral position. A visual representation is given in the forth picture. This
action emulates typical human behavior, and it effectively reduces the load on

Service Robots: A Unified Framework for Detecting 197

the robot wrist that does not need to hold the handle down. At this point, the
robot computes the pulling trajectory as shown in the fifth image. The final
trajectory is an arc-shaped sequence of map coordinates that form an angle of
80◦ with respect to the door hinges. In this way, the door is opened wide enough
for the robot to pass through it.

Because the HSR’s arm has less than six degrees-of-freedom (DoF), we have
to move the base and the arm together, keeping the robot hand in a fixed posi-
tion. As a consequence, the door-to-robot distance remains constant. In this way,
we do not need to continuously check for collision between the robot and the
door. This situation is shown in Fig. 7(e). Once the robot completes the trajec-
tory, it releases the handle, and it moves back in front of the door to continue
the navigation toward the final goal. The robot position saved in the first state
is used as a target position to cross the door.

4.8 Door Pushing

Following the flowchart of Fig. 5, if the robot detects that the door cannot be
pulled, it checks whether it can be pushed, and, in this latter case, the pushing
process starts. The pushing door action flow is detailed on the left-hand side
image of Fig. 8. As in the pulling door case, our robot attempts to push the door
to check the opening type. After the handle releasing phase, the robot moves
in front of the door at a fixed distance of 50 cm. Once this position is reached,
the robot first extends its arm to reach the door, which is already open a few
centimeters after pushing it to check its type. As the robot is going to move
forward, reaching the door is not strictly necessary. At the same time, we also
monitor the wrist sensor to assure that no unexpected collision occurs. During
the pushing phase, the HSR moves forward, and when the phase finishes, the
robot is on the other side of the door. The last action executed by the robot
before restarting the normal navigation, is to retract its arm into its original
and safer position.

To succeed in the pushing action, the handle position is an important param-
eter. When unlatching the handle, the robot faces it, but during the pushing
action, some collisions may occur. Since HSR is a left-handed robot, the most
unfavorable scenario is when the handle is on the right side. A schematic top-
view of this situation is given in Fig. 9. Since HSR is a left-handed robot, the
most unfavorable scenario is when the handle is on the right side of the door.

While pushing the door, a collision check is performed in the robot base
to prevent HSR from hitting the door frame. If a potential collision situation
is detected, the robot is moved slightly to the left with respect to the han-
dle. If a collision is detected, the “Error Recovery” state stops the robot and
moves it back to the beginning of the pushing stage. These strategies were val-
idated empirically, and allowed for a safe and robust navigation through doors,
as described in the next section.

198 T. Harada et al.

Fig. 9. The figure shows two ways of pushing a door and passing through it, depending
on the handle position (left or right-hand side). Since HSR is a left-handed robot, the
most unfavorable scenario is when the handle is on the right side of the door. In this
case the HSR may suffer a collision. To avoid hitting the door frame, the sensor on
the robot base is activated. If HSR detects a possible collision, its position is slightly
shifted to the left.

5 Experimental Analysis

We evaluated our unified framework by means of two set of experiments. These
experiments were designed to verify two main aspects: 1) Our framework’s
robustness in a real navigation scenario, and 2) The quality of the entire door
opening process with different doors, handles, materials, etc.

First, we evaluated the door opening process in a realistic navigation scenario
by using a simplified version of the “Help Me Carry” task previously described.
In this task, the user instructs the robot to fetch an object in a specific location
in a different room, and he awaits for the robot to return. We also imposed way-
points during navigation, i.e., we force the robot to follow a different path on
the way back. To run this scenario, we arranged a house environment similar to
the one in Fig. 2. Initially, the HSR robot is in a location within room R1. The
robot is supposed to reach room R4 by passing through doors D1, D2, and D4.
Then, it should go back to the initial position by passing through doors D3 and
D1. The doors in this task have different characteristics. When moving from R1
to R2, door D1 is a pushing door with the handle on the left. Door D2 is open.
When moving from R5 to R4, and door D4 is a pulling door with its handle on
the left. On the way back, when moving from R4 to R2, door D3 is a pulling
door with its handle on the left. Finally, when the robot moves back from R2 to
R1, D1 is still open. The robot detected the doors during navigation, following
a route determined by the ROS path planner. Since the experiment does not
involve any obstacles, we did not employed the way-points navigation approach.
Notice that the door type and handle position affects the door opening process
in terms of the selected trajectories and the final success rate. In order to show
the robustness of our framework, the door and handle attributes are unknown
by the robot.

We commanded the robot to execute the task 50 times. In all cases, the
robot reached R4 without navigation errors, and it successfully detected and
discriminated between closed and opened doors. The accuracy of the door and

Service Robots: A Unified Framework for Detecting 199

the handle detection in the real scenario does not vary significantly with respect
to the detection accuracy reported for our MIL-door data-set. Whenever a han-
dle was not initially recognized, the error recovery procedure forced the robot to
move slightly forward, backwards, and laterally to change the perspective until
the recognition was successful. This procedure provided a recognition success
rate up to 95%. In the remaining 5%, the error persisted so the higher hierar-
chical automata level dealt with it. Moreover, even if initially the location of
the detected handle was not aligned perfectly, the location was refined when
approaching the handle and using depth images. Regarding the handle grasping,
every time the HSR could not hold the grip on a handle, the error recovery pro-
cedure reactivated the detection phase and the “door opening” phase restarted
from the beginning.

In light of these results, we designed a second experiment with an emphasis
on the handle grasping sub-task. In this experiment, the HSR had to deal with
a variety of doors and handles, which differ in terms of door type (pushing or
pulling), handle position (left or right), and material (slippery or non-slippery).
We commanded the robot to move from room R1 to room R2 while modifying
the configuration of D1. The robot starts in front of the door ready to grasp the
handle, and it stops after the door is open (passing through is not required). As
above, the robot does not know the door and handle attributes. We conducted
20 runs for each door and handle configuration. Notice that the door type influ-
ences the robot trajectory, whereas the handle material influences the quality
of the handle grasp and its holding process. Moreover, some metallic handles
may cause noise in the depth image due to reflections. We separate the door
opening results for slippery handles (metallic), and non-slippery handles (wood
or plastic-like material), and their location with respect to the door (i.e., left or
right). Similarly, we also consider spring loaded doors, that is, doors that close
by themselves after they are open. We do not evaluate opening pushing spring
loaded doors since, once the robot arm releases the handle after the unlatching,
the door closes again before the HSR has the chance to push it.

Table 1 summarizes the results for this second experiment. The handle local-
ization using depth images proved to be robust with different handle shapes and
materials. After the handle grasping, our approach recognized in 100% of the
cases the door type, i.e., whether the HSR had to pull or push the door. As the
HSR grip did not have enough strength to hold slippery handles (in particular,
those in spring loaded doors) the door opening did not always succeed. However,
when an error arose, the robot was able to retry the task by itself by following
the error recovery procedure previously described. The robot asked for human
help only in a total of 3 occasions. This results are very promising for a practical
application, as the recovery procedure is able to rectify errors in most cases.
However, for the sake of fairness, Table 1 considers runs as failed whenever an
error arose, even if the robot recovered from the error autonomously. Overall,
we reached a 98% of success rate for non-slippery handles, and 94% for slip-
pery metal-like handles. Notice that these results are influenced not only by the
robot’s grasping ability, but also by the handle detection under different types

200 T. Harada et al.

of light reflection on the handle surface. Regarding pulling spring loaded doors,
holding the handle when opening was quite challenging for the robot, specially
in the case of slippery handles. This is due to the limited strength of the HSR’s
grip. Moreover, handles on the right side of pushing doors are more challenging
due to the reasons explained in Sect. 4.8.

Table 1. Results of our door opening approach. The table presents the number of
successes out of 20 opening attempts, with 4 different handle types. T1: Slippery handle
on the door left side. T2: Slippery handle on the door right side. T3: Non-slippery handle
on the door left side. T4: Non-slippery handle on the door right side.

Action type Handle type

T1 T2 T3 T4

Pulling non-spring loaded door 16 18 18 19

Pulling spring loaded door 16 18 19 19

Pushing non-spring loaded door 20 18 20 17

5.1 Final Considerations

As seen in the evaluation, the door opening task takes advantage of the proposed
framework in multiple ways:

– The benefit of our unified structure: The proposed framework encompasses
the entire task of opening a door, from the start of the navigation to the goal
after the door is traversed. It provides a comprehensive view of the task and
the connection between subtasks, and the modules that implements them.

– The benefit of our door detection module: Our deep learning-based door
detection module trained with our MIL door dataset allows recognizing a
more variety of doors than rule-based methods. Moreover, it is possible to
fine-tune it for adaptation to other environments if necessary.

– The benefit of the error recovery module: Our error recovery procedure is
adapted to the layered structure of our state machine implementation. This
allows recovering from multiple errors in different parts of the framework,
making it possible to return to an upper layer if there is a problem in the
current subtask that cannot be overcome.

– The benefit of using a standard platform: To solve the door opening scenario,
we leverage the functionalities (e.g., sensors, navigation, etc.) of Toyota’s
HSR, so our proposed solution can be easily reproduced for researchers using
the same or a similar platform. There is also a community for HSR6 that
supports developers and provides useful software.

Most importantly, by evaluating the framework in an end-to-end manner, we
came across several errors and situations that cannot be observed when evaluat-
ing individual parts of the problem. For example, readjusting the door position
6 https://newsroom.toyota.co.jp/jp/detail/8709536.

https://newsroom.toyota.co.jp/jp/detail/8709536

Service Robots: A Unified Framework for Detecting 201

while approaching the door, collisions during door traversing, etc. Therefore,
this work is a valuable contribution to the community of software developers for
robots, in particular, those participating in robot competitions (e.g., Robocup),
who value practical application over theoretical discussion.

6 Conclusions

In this paper we present a unified robotic framework for approaching, opening,
and navigating through doors. The paper covers the analysis, design, and syn-
thesis of such a system and our experiments on a real scenario. To the best of our
knowledge, this is one of the first attempts to solve the door opening problem
in a navigation scenario.

Our unified framework integrates an automata model and its state machine
hierarchy. The state machine includes techniques for error recovery, enabling
a robust door opening framework. We propose a deep learning-based method
for door and handle detection. To appropriately train our neural network, we
create, and we made publicly available, a large door and handle image data-
set. To facilitate the reproducibility of our work, we implement our framework
on a standard platform, i.e., the Toyota Human Support Robot (HSR). Handle
grasping, door type checking, door unlatching and opening have been performed
with techniques optimized for our HSR framework, but they are extrapolable to
similar off-the-shelf platforms with moderate effort.

We evaluate our application in a challenging realistic scenario, named the
“Help Me Carry” task within the RoboCup 2018 challenge. To complete its
task, the robot was required to memorize locations, move around in an unknown
environment, follow user commands, avoid obstacles, and open doors. We tested
our platform against different types of doors, different types of handles, and both
door opening directions (inward and outward). The robot successfully identifies
the door state, distinguishing between totally open, widely open, slightly open
and closed doors. The robot is also able to judge if the doorway is suitable
for crossing and it is capable to drive itself across the door. Our results show
the robustness and flexibility of our approach and its high reproducibility on
standard service robotic platforms.

7 Future Works

Among the possible extensions of this work, we report the following.
Our current framework relies on all HSR features, such as the depth camera,

the base sensor, and the wrist torque sensor. Currently, a robot missing any
of these devices may not be able to perform its duty. We are working on some
specific steps of the overall framework to make the application even more flexible
in terms of hardware requirements.

As approaches that adapt well to changing environments are increasingly
important, we plan to improve the robustness and the flexibility of our applica-
tion against greater environment modifications, such as recognizing and opening

202 T. Harada et al.

a wider variety of doors and handles. Within this framework, we also have to
improve our robot’s ability to recognize and adapt its behavior to moving obsta-
cles. A recognition algorithm with the ability to identify removable obstacles
and determine the positions of grasping points is required to develop a fully
autonomous system. Crowded environments are also a potential target, as occa-
sional passersby cause small unmodeled effects which become more frequent in
highly crowded or cluttered environments.

Acknowledgments. We would like to thank Yusuke Kurose, Yujin Tang, Jen-Yen
Chang, James Borg, Takayoshi Takayanagi, Yingy Wen and Reza Motallebi for their
help implementing this research. This work was partially supported by JST CREST
Grant Number JPMJCR1403, Japan. The authors have been part of the HSR devel-
oper community (see footnote 6), and they made use of HSR hardware and software
platforms.

References

1. Andreopoulos, J.A., Tsotsos, J.K.: A framework for door localization and door
opening using a robotic wheelchair for people living with mobility impairments.
In: Robotics: Science and Systems, Workshop: Robot Manipulation: Sensing and
Adapting to the Real World (2007)

2. Aude, E.P.L., Lopes, E.P., Aguiar, C.S., Martins, M.F.: Door crossing and
state identification using robotic vision. In: 8th IFAC Symposium on Robot
Control IFAC Proceedings, vol. 39(15), 659–664 (2006). https://doi.org/10.
3182/20060906-3-IT-2910.00110, http://www.sciencedirect.com/science/article/
pii/S1474667016385895

3. Boston Dynamics: Robots: SPOT. https://www.bostondynamics.com/spot-mini
(2019). Accessed 10 Nov 2019

4. Burgard, W., et al.: The interactive museum tour-guide robot. In: Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, pp. 11–18.
AAAI 1998/IAAI 1998, American Association for Artificial Intelligence, Menlo
Park, CA, USA (1998) http://dl.acm.org/citation.cfm?id=295240.295249

5. Chitta, S., Cohen, B., Likhachev, M.: Planning for autonomous door opening with a
mobile manipulator. In: IEEE International Conference on Robotics and Automa-
tion, pp. 1799–1806, May 2010. https://doi.org/10.1109/ROBOT.2010.5509475

6. Kim, D., Kang, J.-H., Hwang, C.-S., Park, G.-T.: Mobile robot for door opening
in a house. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS
(LNAI), vol. 3215, pp. 596–602. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30134-9 80

7. Fernández-Caramés, C., Moreno, V., Curto, B., Rodŕıguez-Aragón, J.F., Serrano,
F.: A real-time door detection system for domestic robotic navigation. J. Intell.
Robot. Syst. 76(1), 119–136 (2014). https://doi.org/10.1007/s10846-013-9984-6

8. Gray, S., Chitta, S., Kumar, V., Likhachev, M.: A single planner for a composite
task of approaching, opening and navigating through non-spring and spring-loaded
doors. In: IEEE International Conference on Robotics and Automation, pp. 3839–
3846, May 2013

9. Hernandez, K., Bacca, B., Posso, B.: Multi-goal path planning autonomous system
for picking up and delivery tasks in mobile robotics. IEEE Latin Am. Trans. 15(2),
232–238 (2017)

https://doi.org/10.3182/20060906-3-IT-2910.00110
https://doi.org/10.3182/20060906-3-IT-2910.00110
http://www.sciencedirect.com/science/article/pii/S1474667016385895
http://www.sciencedirect.com/science/article/pii/S1474667016385895
https://www.bostondynamics.com/spot-mini
http://dl.acm.org/citation.cfm?id=295240.295249
https://doi.org/10.1109/ROBOT.2010.5509475
https://doi.org/10.1007/978-3-540-30134-9_80
https://doi.org/10.1007/978-3-540-30134-9_80
https://doi.org/10.1007/s10846-013-9984-6

Service Robots: A Unified Framework for Detecting 203

10. Jain, A., Kemp, C.C.: Behaviors for robust door opening and doorway traversal
with a force-sensing mobile manipulator. In: RSS Workshop on Robot Manipula-
tion: Intelligence in Human Environments (2008)

11. Johnson, M., et al.: Team IHMC’s lessons learned from the DARPA robotics chal-
lenge trials. J. Field Robot. 32(2), 192–208 (2015). https://doi.org/10.1002/rob.
21571. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21571

12. Khatib, O.: Mobile manipulation: the robotic assistant. Robot. Autonomous
Syst. 26(2), 175–183 (1999). https://doi.org/10.1016/S0921-8890(98)00067-0.
http://www.sciencedirect.com/science/article/pii/S0921889098000670, field and
Service Robotics

13. Kim, G., Chung, W., Kim, K.R., Kim, M., Han, S., Shinn, R.: The autonomous
tour-guide robot Jinny. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). vol. 4, pp. 3450–3455, January 2004. https://doi.
org/10.1109/IROS.2004.1389950

14. Kim, S., Cheong, H., Kim, D.H., Park, S.: Context-based object recognition for
door detection. In: 15th International Conference on Advanced Robotics (ICAR),
pp. 155–160, June 2011

15. Klingbeil, E., Saxena, A., Ng, A.Y.: Learning to open new doors. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2751–2757, Octo-
ber 2010. https://doi.org/10.1109/IROS.2010.5649847

16. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable
SLAM system with full 3D motion estimation. In: IEEE International Symposium
on Safety, Security, and Rescue Robotics, pp. 155–160, November 2011. https://
doi.org/10.1109/SSRR.2011.6106777

17. Krotkov, E., et al.: The DARPA robotics challenge finals: results and perspectives.
J. Field Robot. 34(2), 229–240 (2017). https://doi.org/10.1002/rob.21683

18. Lee, I., Oh, J.H.: Humanoid posture selection for reaching motion and a cooperative
balancing controller. J. Intell. Robot. Syst. 81(3), 301–316 (2016). https://doi.org/
10.1007/s10846-015-0225-z

19. Lim, J., et al.: Robot system of DRC-HUBO+ and control strategy of team KAIST
in DARPA robotics challenge finals. J. Field Robot. 34(4), 802–829 (2017). https://
doi.org/10.1002/rob.21673

20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

21. Meeussen, W., et al.: Autonomous door opening and plugging in with a personal
robot. In: IEEE International Conference on Robotics and Automation, pp. 729–
736. Anchorage, Alaska, USA (2010)

22. Ott, C., Bäuml, B., Borst, C., Hirzinger, G.: Autonomous opening of a door with
a mobile manipulator: a case study. In: 6th IFAC PSymposium on Intelligent
Autonomous Vehicles, vol. 40, no. 15, pp. 349–354 (2007). https://doi.org/10.
3182/20070903-3-FR-2921.00060, http://www.sciencedirect.com/science/article/
pii/S1474667016346857

23. Peterson, L., Austin, D., Kragic, D.: High-level control of a mobile manipulator
for door opening. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). vol. 3, pp. 2333–2338 (2000). https://doi.org/10.1109/IROS.
2000.895316

https://doi.org/10.1002/rob.21571
https://doi.org/10.1002/rob.21571
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21571
https://doi.org/10.1016/S0921-8890(98)00067-0
http://www.sciencedirect.com/science/article/pii/S0921889098000670
https://doi.org/10.1109/IROS.2004.1389950
https://doi.org/10.1109/IROS.2004.1389950
https://doi.org/10.1109/IROS.2010.5649847
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.1002/rob.21683
https://doi.org/10.1007/s10846-015-0225-z
https://doi.org/10.1007/s10846-015-0225-z
https://doi.org/10.1002/rob.21673
https://doi.org/10.1002/rob.21673
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.3182/20070903-3-FR-2921.00060
https://doi.org/10.3182/20070903-3-FR-2921.00060
http://www.sciencedirect.com/science/article/pii/S1474667016346857
http://www.sciencedirect.com/science/article/pii/S1474667016346857
https://doi.org/10.1109/IROS.2000.895316
https://doi.org/10.1109/IROS.2000.895316

204 T. Harada et al.

24. Petrovskaya, A., Ng, A.Y.: Probabilistic mobile manipulation in dynamic environ-
ments, with application to opening doors. In: Proceedings of the 20th International
Joint Conference on Artifical Intelligence, pp. 2178–2184. IJCAI 2007, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2007). http://dl.acm.org/
citation.cfm?id=1625275.1625627

25. Rhee, C., Chung, W., Kim, M., Shim, Y., Lee, H.: Door opening control using the
multi-fingered robotic hand for the indoor service robot. In: Proceedings IEEE
International Conference on Robotics and Automation, vol. 4, pp. 4011–4016.
IEEE, January 2004. https://doi.org/10.1109/ROBOT.2004.1308898

26. RoboCup 2018: http://www.robocup2018.com (2018). Accessed 10 Nov 2019
27. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.

Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
28. Rusu, R.B., Meeussen, W., Chitta, S., Beetz, M.: Laser-based perception for door

and handle identification. In: International Conference on Advanced Robotics, pp.
1–8, June 2009

29. Savarese, F., Tejero-de-Pablos, A., Quer, S., Harada, T.: Detecting, opening and
navigating through doors: a unified framework for human service robots. In: 14th
International Conference on Software Technologies (ICSOFT 2019), pp. 416–427,
January 2019. https://doi.org/10.5220/0007947604160427

30. Shalaby, M.M., Salem, M.A., Khamis, A., Melgani, F.: Geometric model for vision-
based door detection. In: 9th International Conference on Computer Engineering
Systems, pp. 41–46, December 2014. https://doi.org/10.1109/ICCES.2014.7030925

31. Sunspiral, V., Kunz, C., Nourbakhsh, I.: The History of the Mobot Museum Robot
Series: An Evolutionary Study. pp. 514–518, January 2001

32. Thrun, S., et al.: MINERVA: a second-generation museum tour-guide robot. IEEE
Int. Conf. Robot. Automat. 3, 1999–2005 (1999)

33. Toyota: Partner Robot. https://www.toyota-global.com/in-no-va-tion/partner ro-
bot/ro-bot/#link02 (2019). Accessed 10 Nov 2019

http://dl.acm.org/citation.cfm?id=1625275.1625627
http://dl.acm.org/citation.cfm?id=1625275.1625627
https://doi.org/10.1109/ROBOT.2004.1308898
http://www.robocup2018.com
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.5220/0007947604160427
https://doi.org/10.1109/ICCES.2014.7030925
https://www.toyota-global.com/in-no-va-tion/partner_ro-bot/ro-bot/#link02
https://www.toyota-global.com/in-no-va-tion/partner_ro-bot/ro-bot/#link02

Two-Stage Game Theoretic Approach
for Energy Management
in Networked Microgrids

Ilyes Naidji1,2(B) , Olfa Mosbahi2 , Mohamed Khalgui2 ,
and Abdelmalik Bachir3

1 University of Tunis El Manar, Tunis, Tunisia
ilyesnaidji@gmail.com

2 National Institute of Applied Sciences and Technology (INSAT),
University of Carthage, 1080 Tunis, Tunisia

3 LESIA Laboratory, University of Mohamed Khider, Biskra, Algeria

Abstract. The architecture of smart distribution systems is becoming
more and more complex after the appearance of networked microgrids.
Maintaining the power balance between demand and supply in a cost
effective way is turning into a very challenging task. Due to the intermit-
tent nature of renewable energy and distributed architecture of micro-
grids (MGs), the energy management in networked microgrids requires a
smart coordinated control. This paper presents an optimal energy man-
agement system (EMS) for networked microgrids in a smart distribu-
tion system. The problem is formulated with a two-stage game theoretic
approach. In the first stage, a non-cooperative demand response (DR)
game is designed between MGs and distribution system operator (DSO)
to find the optimal power consumption of MGs. In the second stage,
a coalition formation game among networked microgrids is designed to
self-organize into structured coalitions that maximize the profits from
energy exchange. We develop an algorithm based on merge and split
rules to form coalitions between MGs. Then, we design an energy trans-
fer algorithm for energy exchange between MGs within the same coalition
to minimize the power loss. The simulation results demonstrate a satis-
factory performance in terms of profit maximization that exceeds 21%
and in terms of loss reduction in distribution system that exceeds 51%,
thanks to the proposed cooperative scheme.

Keywords: Microgrid · Energy management · Demand response ·
Coalition game theory

1 Introduction

From the perspective of the smart grid, the improvement of the power system
performance is one of the main objectives behind the development of the tradi-
tional power grid [10,12,15,18]. After the appearance of microgrids that consists
c© Springer Nature Switzerland AG 2020
M. van Sinderen and L. A. Maciaszek (Eds.): ICSOFT 2019, CCIS 1250, pp. 205–228, 2020.
https://doi.org/10.1007/978-3-030-52991-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52991-8_10&domain=pdf
http://orcid.org/0000-0001-8747-0766
http://orcid.org/0000-0002-0971-2368
http://orcid.org/0000-0001-6311-3588
http://orcid.org/0000-0001-5160-9412
https://doi.org/10.1007/978-3-030-52991-8_10

206 I. Naidji et al.

of renewable energy sources, the operation and control of the power system is sig-
nificantly evolved. This evolution is due to the deregulation of the system caused
by the intermittent nature of renewable energy. These changes impose challenges
to smart grid development in both research and operational levels [11,19,25,31].
The smart power distribution networks are composed of multiple microgrids,
which include distributed energy resources (DERs) such as renewable energy
sources (e.g., photovoltaics panels, wind turbines...etc), end users, and the con-
trol components for the microgrid operation [7]. The microgrid should provide
stable and sufficient power supply for the end users either by cooperating with
the main power grid, i.e., “on-line” mode [24] or by autonomously supplying the
users disconnected from the main power grid, i.e., “off-line” mode [13].

Recently, with the increasing integration of DERs especially renewable energy
into the smart grid, manifold microgrids may emerge within the distribution sys-
tem, which generates the problem of networked MGs operation and control [20].
Due to the high complexity of the MGs energy management problem, some stud-
ies apply the bio-inspired metaheuristics such as simulated annealing [26] and
bacterial foraging [16]. Hierarchical control is also used as a solution for microgrid
EMS [27]. Robust optimization approaches are a popular choice to address the
uncertainty of renewable energy sources and load demand [8]. Linear program-
ming (LP) is another popular choice for microgrid EMS [23]. Unfortunately,
LP involves the assumption of linearity that cannot be the optimal choice of
multi-microgrid systems.

A double auction with hidden user information has been recently examined
to energy transactions in microgrids [6]. The authors in [21] propose a method
for microgrid EMS with stochastic load where the problem is decomposed into
two optimization levels. In [22], a model predictive control (MPC)-based power
dispatch is proposed for distribution systems considering the parking electric
vehicle (PEV) uncertainty. In [1], a multi-agent system (MAS) architecture is
proposed for forecasting-based control strategy with load priority for microgrids
in islanded mode. The MAS uses a master-slave model where the communication
and negotiation between agents are performed by the concept of tokens. However,
these studies only consider a single MG, and the interactions between MGs and
distribution system (DS) are not explicitly investigated.

The studies in [4,9,14,28–30] demonstrate that the interconnection of multi-
ple MGs can improve the system operation and control. The authors in [28] pro-
pose a coordinated EMS strategy of networked MGs. The coordinated operation
between MGs is formulated as a stochastic bi-level problem with the distribution
system operator in the first level and MGs in the second level. In [30], a volt-
age and frequency control algorithm is designed using multi-layer architecture
in Networked Microgrids. In [9], a priority-based energy scheduling operation
is designed for multiple MGs. A noncooperative energy competition game is
designed to solve the problem.

However, the interactions among the networked MGs is not considered and
only interactions between MGs and the DS is taken into account.

Two-Stage Game Theoretic Approach for Energy Management 207

In [4], a novel bidding behavior and an auction architecture are proposed
for networked MGs. The authors in [14] propose an online EMS for the DSO
to control the energy scheduling of networked MGs using regret minimization
and online ADMM. In [29], the optimal control problem of networked MGs
is modeled with decentralized partially observable Markov decision process. A
dynamic programming solution is proposed to minimize the MG operation cost.
In [5], a cooperative operation model is proposed for multiple MGs where the
whole network is considered as the grand coalition to achieve higher operation
economy.

However, in most of the above existing literature, the coordinated control
of networked MGs as well as their interaction have not been efficiently investi-
gated. Furthermore, the behavior of microgrids has not been explicitly modeled.
Specifically, these studies consider the interactions between MGs and DSO with-
out taking into account the cooperative behavior that can exists between MGs.
The limitation of the interaction to only the distribution system can reduce the
gain of MGs due to the unprofitable energy transfers between MGs and DSO.
In addition, the energy transfer between MGs and DSO increases the power loss
due to the long transferring distances.

In this respect, this paper addresses the coordinated control of networked
MGs by explicitly modeling the cooperative behavior of the networked MGs
and considering the different interactions between MGs and DSO. We solve
the MGs energy management problem in a distributed manner where the net-
work is autonomously self-organized into multiple sub-networks, i.e., coalitions
to achieve an efficient and economic energy sharing.

This research work is an extension of the work reported in [17]. The added
value here is to propose an efficient energy management for networked MGs in
two stage approach. In the first stage, a non cooperative demand response game is
designed between MGs and DSO. The DR game aims to find the optimal energy
consumption of microgrids by considering the real-time electricity prices and the
available power supply. A significant reduction in peak load is reached thanks
to the designed DR scheme. After that, the result of the first stage is used by
the second one in a coalition formation game. This game allows the microgrids
to self-organize into structured coalitions in order to maximize their profits.
We propose a coalition formation algorithm based on coalitional game theory
and merge and split rules. The algorithm aims to find the possible coalition
structures for microgrids that maximize the profit for each microgrid. Then, an
energy transfer algorithm is proposed to transfer energy between microgrids that
are in the same coalition. The energy transfer algorithm aims to minimize the
power loss resulting from transferring energy in long distances.

A significant gains are found with the proposed two-stage approach in terms
of energy saving, thanks to the demand response game and energy transfer
scheme that reduces the energy cost and power loss, respectively. Furthermore, a
notable gains are found in terms of profit maximization, thanks to the designed
cooperative energy exchange scheme between microgrids. The originality of this
paper is threefold:

208 I. Naidji et al.

– The management of the load demand is addressed with a demand response
scheme to modify the usage of energy for reducing the peak load and energy
cost.

– The formation of stable coalitions that allows the MGs to exchange energy
in order to maximize their benefits and minimize power loss.

– The control of complexity of the energy management problem in networked
microgrids.

This paper is organized as follows: Sect. 2 gives the system model, Sect. 3
formulates the problem of energy management of networked MGs with the pro-
posed two-stage approach; Sect. 4 gives the proposed methodology for solving
the energy management problem, Sect. 5 shows the simulation results and finally
Sect. 6 concludes this paper.

2 System Model

This section describes the networked MGs system architecture, the pricing
scheme that allows to apply the Coalition formation and the coalition forma-
tion preliminaries.

2.1 Networked Microgrids Architecture

Consider a smart distribution system consisting of N networked microgrids
with distributed energy resources (DER) units including conventional genera-
tors, renewable generators such as photovoltaics (PV) panels and wind turbines
(WT) and energy storage systems (ESS). We assume that each microgrid has
loads to serve. The distributed energy resources (DERs), including renewables
and energy storages are responsible for the power supply of the microgrid. We
assume also that each microgrid has an energy management system (EMS) that
is responsible for the optimization of the power consumption and the usage of
DERs.

Let Θj
i denotes the ith microgrid belonging to the jth group (i.e., coalition).

Let PD(Θj
i) be the total power demand of Θj

i and P i
S(Θj

i) its total power supply.
The energy status E(Θj

i) of Θj
i is given by the difference of its power supply and

its power demand, i.e.,

E(Θj
i) = PS(Θj

i) − PD(Θj
i) (1)

A positive value of the energy status denotes that Θj
i can sell E(Θj

i) amount of
energy while a negative value denotes that Θj

i needs to purchase E(Θj
i) amount

of energy from the distribution system.
Conventionally, the energy transfer is carried out between MGs and DS.

Consequently, this transfer results in more power loss due to the existence of
transformers and the transmission loss due to the I2R effect if the distribution
system operator is located within long distances to the microgrid. Furthermore,

Two-Stage Game Theoretic Approach for Energy Management 209

the energy transfer between MGs and DSO is unprofitable to MGs due to opera-
tor policy that imposes disadvantageous energy prices (e.g., the operator buy in
low prices and sell in high prices). Figure 1 shows the architecture of microgrid
that consists of DERs such as wind and photovoltaic generators, energy storage
systems and electrical loads such as smart homes.

An interesting alternative to achieve a cost effective energy management and
minimize the power loss is the cooperation between MGs by forming coalitions.
The MGs inside the same coalition can exchange energy with an appreciable
energy price and interact with the distribution system operator as a last resort
to minimize the power loss and reduce the energy cost. The networked MGs sys-
tem is described in Fig. 2. Each microgrid consists of distributed energy resources

Microgrid

Fig. 1. Microgrid architecture.

. . .

Voltage

transformer

Voltage

transformer

Voltage

transformer

Voltage

transformer

Voltage

transformer

Voltage

transformer

Distribution
System

Operator

Medium voltage power line

Communication line

Low voltage power line

DER

ESS

DER

ESS ESS

DER

DER DER DER

ESSESSESS

DER Distributed Energy Resources

Energy Storage System ESS

Fig. 2. Networked microgrids system.

210 I. Naidji et al.

(DERs) and energy storage systems (ESSs). Furthermore, each microgrid is con-
nected with the distribution system through a voltage transformer while each
microgrid is connected with the other MGs via a low voltage power line. Con-
sequently, the power transfer between MG and DS is performed through the
transformer which involves the power loss. With this architecture, a MG can
exchange power with another MG if there is a transmission line between them,
i.e., a low voltage power line. The minimization of the power exchange with
the distribution system operator brings more profit to the MGs since the power
exchange within MGs in a coalition is cheaper and more efficient.

2.2 Pricing Scheme for Coalition Formation

The pricing scheme is influential factor to perform cooperation between MGs.
Particularly, the coalition formation process should justify the preference of MGs
over the DSO in energy exchange. The design of inappropriate pricing scheme will
result in disadvantageous outcome. The designed pricing scheme must motivate
a MG to cooperate with the other MGs by exchanging the energy surplus. In
this respect, we have designed a motivating pricing scheme that ensures that
forming coalition between MGs is always prioritized than DSO. For instance,
let α = 0.2$/kwh denotes the price of selling energy to the DSO, β = 0.4$/kwh
denotes the price for purchasing energy from the DSO and γ = 0.25$/kwh is
the price of selling/purchasing between MGs. Such that, a MG always prefers
to exchange energy with the other MGs since it can save 0.05$/kwh in selling
and 0.2$/kwh in purchasing by exchanging energy to MGs instead of DSO. Such
that, the pricing scheme is designed as follows:

β � γ > α (2)

where (γ − α) ≤ σ is a predefined threshold.

2.3 Coalition Formation Preliminaries

An interesting framework for coalition formation is given in [3] using merge and
split rules. To run the coalition formation game, the following preliminaries are
required.

The coalitional game can be defined with the following pair (N, v) that con-
sists of a finite set of players N (microgrids in our case) and a characteristic
function or value v. A coalition Ξk

j is a set of players, i.e., microgrids that
exchange services in order to maximize their profit, i.e.,

Ξk
j = {Θj

1, ..., Θ
j

|Ξk
j |} (3)

where j is the coalition number and k is the collection that the coalition belongs.
The characteristic function v : 2N → R associates a payoff v(Ξk

j) for each
coalition Ξk

j . The members of the coalition Ξk
j can distribute this payoff among

themselves. Thus, the carachteristic function quantifies the payoff that can gain
a set of players in coalition.

Two-Stage Game Theoretic Approach for Energy Management 211

Let Ωk denotes a collection of coalitions k that are disjoint, i.e.,

Ωk = {Ξk
1 , ..., Ξk

|Ωk|} (4)

A preference operator 	 is an order defined for comparing two collections Ωk =
{Ξk

1 , ..., Ξk
|Ωk|} and Ωl = {Ξ l

1, ..., Ξ
l
|Ωl|}.

We assume that we have a subset A ⊆ N . This subset has two different
partitions as a choice that are Ωk and Ωl. Therefore, Ωk 	 Ωl denotes that Ωk is
prefered than Ωl in partitioning A.

Various criteria exist in the literature to compare between collections or par-
titions [2]. These criteria are referred to orders which can be divided in two
main categories that are coalition value orders and individual value orders. The
first category compare two collections using the value of coalitions that belong
to these collections. The second category compares collections using the players
utilities instead of coalition value. As example, the Pareto order is one of the
main individual value orders. The pareto order is used in our case which is given
as follows:

In a collection Ωk, each player, i.e., microgrid Θj
i ∈ Ξk

j has a utility function
Φ(Θj

i) which defines the payoff of the player in a coalition Ξk
j . Here in our case,

as more as the microgrid Θj
i exchanges energy in a coalition Ξk

j , the energy
profit increases thus, the utility function is at its best (max) when the energy
status of a microgrid E(Θj

i) in the coalition Ξk
j approaches to zero, i.e.,

Φ(Θj
i) =

{
max, if E(Θj

i) = 0,
1

E(Θj
i)

, otherwise
(5)

Ωk 	 Ωl, i.e., Ωk is preferred over Ωl by Pareto order, if

Φ(Θj
i) ≥ Φ(Θg

i) ∀i ∈ Ξk
j , Ξ l

g (6)

with at least one strict inequality, i.e., a collection is preferred by the players
over another collection, if at least one player is able to improve its utility without
decreasing the utility of the other players. Thus, the merge and split rules for
coalition formation can be defined as follows:

Merge Rule. Merge any set of coalitions {Ξk
1 }, ..., {Ξk

|Ωk|} if
|Ωk|⋃
j=1

Ξk
j 	

{Ξk
1 }, ..., {Ξk

|Ωk|}.

Split Rule. Split any coalition
|Ωk|⋃
j=1

Ξk
j if {Ξk

1 }, ..., {Ξk
|Ωk|} 	

|Ωk|⋃
j=1

Ξk
j

A distributed coalition formation game is given by specifying a value for each
coalition. The set of the formed coalitions form the coalition structure CS, i.e,

CS =
|Ωk|∑
j=1

Ξk
j (7)

212 I. Naidji et al.

The coalition structure payoff ρ(CS) is the sum of the coalition payoffs in it, i.e.,

ρ(CS) =
|Ωk|∑
j=1

v(Ξk
j) (8)

Running Example. Suppose we have a set of four microgrids. Each microgrid
has the following energy status from 1 to 4, respectively, E = {25,−15,−10, 5}.
As example, we take two different collections that partition the set of micro-
grids for comparison. The first collection Ω1 = {Ξ1

1 , Ξ1
2} partitions the set of

microgrids in two coalitions that are Ξ1
1 = {25,−15,−10}, Ξ2

1 = {5}. The sec-
ond collection Ω2 = {Ξ2

1 , Ξ2
2} partitions the set of microgrids in two coalitions,

Ξ2
1 = {25,−15}, Ξ2

2 = {−10, 5}. It is clear that Ω1	Ω2. This is because, the util-
ity function Φ for each player in Ω1 is {max,max,max, 1

5} which is greater than
Φ in Ω2 = { 1

10 ,max,− 1
5 ,max}, thus, the energy exchange between microgrids

in Ω1 is greater than Ω2, consequently, the profit in Ω1 is greater.

3 Problem Formulation

This section gives the formulation of the energy management problem in net-
worked MGs. Here the problem is formulated in two stage approach. In the
first stage, a non-cooperative demand response game between MGs and DSO
is designed to find the optimal power consumption for the MGs. In the second
stage, a coalition formation game is designed for MGs cooperation to optimally
exchange the power surplus among MGs instead of selling or purchasing power
from the DSO.

3.1 First Stage

Challenge. We emphasize here that the first stage mainly focuses on finding
the optimal energy consumption of MGs by limiting the interaction with the
DSO in a day-ahead manner. In particular, the first stage allows the micro-
grid to search for the quantity of energy to sell/purchase. After that, instead of
selling/purchasing this quantity of energy to/from the DSO, a coalition forma-
tion game is designed in the second stage to share the energy surplus/shortage
between MGs. Finally, if an amount of energy remains unbalanced, it can be
purchased/sold from/to the DSO as a last resort.

Formalization. We design a demand response game G which is a non-
cooperative game between N players. These players are the set of networked
MGs and the distribution system operator (DSO). Note that in the first stage,
each microgrid Θj

i does not belong to any coalition, i.e., j = 0. Each player of the
demand response game has its utility function Ui and selects an action ai from
its action space ai ∈ Ai. The action space of the microgrids consists of the quan-
tity of selling or purchasing energy while the action space of the DSO consists of

Two-Stage Game Theoretic Approach for Energy Management 213

the energy price interval. The vector of actions of all players a = (a1, a2, ..., aN)

is called action profile. Note that A =
N∪

i=1
Ai and U =

N∪
i=1

Ui. Thus the DR game

can be defined by the following 3-tuple:

G = (N,A,U) (9)

The utility function Ui : Ai → R of the player i in case of i is a microgrid is
defined as follows:

Ui(ai) = E(Θj
i) = PS(Θj

i) − PD(Θj
i) (10)

and in case of i is the distribution system operator

Ui(ai) = φSUP − δGEN (11)

where φSUP is the utility function of power supply and δGEN is the generation
cost function of the distribution system operator. If Ui > 0, the player earns
money, i.e., Ui is the profit. If Ui < 0, the player pays money, i.e., Ui is the cost.
As a result, three types of MGs will appear. First, balanced MGs that have a
generation capacity equal to load. Second, MGs with surplus of power that have
a generation capacity more than load. Finally, MGs with shortage that have
generation capacity less than load.

3.2 Second Stage

Challenge. Instead of sharing the power surplus with the DSO, MGs can coop-
erate with others by forming several coalitions to exchange their power sur-
plus. Unbalanced power of each MG is purchased or sold within coalition. After
performing the energy transfer within coalition, the rest of energy surplus or
shortage can be balanced by the DSO as a last resort.

Formalization. The characteristic function v of a coalition Ξk
j is defined by the

aggregated energy status in the coalition. The characteristic function v(Ξk
j) has

its best value when the difference between the total power demand and supply
is minimized, i.e.,

v(Ξk
j) = min |PS(Ξk

j) − PD(Ξk
j)| (12)

Thus, as less as the microgrid exchanges power with the distribution system
operator, the microgrid receives more utility. The objective is to maximize the
profits of the MGs by forming the best coalition structure

CS = arg max ρ(CS) (13)

The energy transfer (ET) among MGs in a coalition should have a minimum

power loss P
Ξk

j

L . The overall power loss P
Ξk

j

L of a coalition Ξk
j while transferring

power among MGs is given by

P
Ξk

j

L = −
∑

i,e∈Ξk
j

PL(i, e) (14)

214 I. Naidji et al.

where PL(i, e) is the power loss resulting from transferring energy over trans-
mission lines between Θj

i and Θj
e. Note that, the power loss is defined as a char-

acteristic function of a coalition Ξk
j instead of microgrid Θj

i , this is because loss
occurs during power transfer between MGs in the same coalition. Technically,
the power loss function is given by

PL(i, e) = I2 R =
[P (E)

Ψ

]2
. α . d(i, e) (15)

where P (E) is the power required for energy transfer, Ψ is the carrying volt-
age on the transmission line, α is the line resistance and d(i, e) is the distance
between Θj

i and Θj
e. The characteristic function of the coalition formation game

is designed to consider a tradeoff between power supply and loss. In the coalition
formation process, the aggregated energy status is the characteristic function and
in the energy transfer process, the power loss is the characteristic function.

Overall, the energy management problem of networked MGs can be formu-
lated with the following equations:

a = arg max (U(a)) (16)

CS = arg max ρ(CS) (17)

ET = arg min
∑

Ξk
j ∈CS

P
Ξk

j

L (18)

4 Methodology

This section gives the solution of the energy management problem formulated in
the previous section. The proposed methodology is globally illustrated in Fig. 3
and detailed in the next subsections.

The first stage starts with a demand response scheme designed between MGs
and DSO. The result of the DR game appears with two kinds of MGs that are
balanced or unbalanced MGs. Unbalanced MGs participate in the coalition for-
mation game to self-organize into structured coalitions in order to maximize their
profits from energy exchange. After that, MGs that are in the same coalitions,
execute the energy transfer with the objective to minimize the power loss.

Here, the energy management problem in networked MGs is entirely solved
where we address the optimal management of load demands at first in a non
cooperative way. After that, the management of power surplus is addressed in a
cooperative way to maximize the profits of microgrids and finally, the manage-
ment of energy transfer is solved with the objective to minimize the power loss
in each coalition.

Two-Stage Game Theoretic Approach for Energy Management 215

DSO

End
No

Yes

Coalition 1

Coalition r

End

if energy

status

0

Demand Response
Game

Coalition Formation
Game

Coalition 2

Energy Transfer

Fig. 3. Flowchart of the proposed two stage approach.

4.1 Stage I: Demand Response Game

Motivation. The power consumption has a significant impact on the energy
cost of a microgrid. For this reason, it is important to have an optimal power
consumption to reduce the energy cost and the peak consumed power. In this
respect, we propose a demand response game between MGs and DSO to find the
optimal power consumption for each microgrid where a non cooperative game is
designed to model the DR game.

Formalization. Solving the demand response game consists of finding the Nash
Equilibrium for each player in the non cooperative game. In non cooperative
games, the utility function of each player Ui depends on the selected action of
the player a∗

i and the action profile of the other players a∗
i , i.e.,

Ui(a) = Ui(a∗
i , a

∗
i) (19)

The vector a = (a∗
1, a

∗
2, ..., a

∗
n) is a Nash equilibrium for the energy management

game G = (N,A,U) if the following constraint is valid:

∀i ∈ N,∀ai ∈ Ai, Ui(a∗
i , a

∗
i) ≥ Ui(ai, a∗

i) (20)

216 I. Naidji et al.

Finding the Nash equilibrium of the DR game consists of solving the following
optimization problem:

max Ui(a), ∀i ∈ N,∀a ∈ A (21)

The result S of the demand response game is given in three sets of players that
are the balanced microgrids Λ = {λ1, ..., λ|Λ|}, microgrids with energy surplus
Π = {π, ..., π|Π|} and microgrids with energy shortage Ψ = {ψ, ..., ψ|Ψ |} as
follows:

S = {Λ,Π, Ψ} (22)

After solving the demand response game, the result S will be used in the next
stage in a cooperative game to form coalitions between microgrids in order to
exchange the power surplus and maximize the profit of MGs. In the next stage,
the set of balanced MGs {Λ} will not participate in the coalition formation game
while MGs with energy surplus {Π} and energy shortage {Ψ} participate in the
coalitional game. Let |Π| and |Ψ | denote the number of MGs with energy surplus
and energy shortage, respectively. If |Π| = 0, all of the MGs with energy shortage
purchase power from the distribution system, and if |Ψ | = 0, all of the MGs with
energy surplus sell power to the distribution system. Thus, in such case, the MGs
cannot cooperate. Specifically, the required condition of the coalitional game is
given by

|Π| . |Ψ |
= 0 (23)

Running Example. Consider a network with a set of six networked micro-
grids N = {Θ0

1, Θ
0
2, Θ

0
3, Θ

0
4, Θ

0
5, Θ

0
6, }. These microgrids have the following power

demand and supply capacity from 1 to 6, respectively,

Microgrid Θ0
1 Θ0

2 Θ0
3 Θ0

4 Θ0
5 Θ0

6

Power supply (PS) 12 15 13 13 25 30

Power demand (PD) −12 −18 −15 −15 −18 −20

Thus the energy status of the microgrids is E = {0,−3,−2,−2, 7, 10}. After
running the demand response game and finding the Nash equilibrium, the mic-
crogrids manage their loads and change their power demand, i.e., action as fol-
lows: a = PD = {−10,−15,−14,−14,−16,−19}, such that, the utility function
(which is equal to energy status) becomes U = E = {2, 0,−1,−1, 9, 11}. As a
result, Λ = {Θ0

2}, Π = {Θ0
1, Θ

0
5, Θ

0
6} and Ψ = {Θ0

3, Θ
0
4}.

We notice that the utility of each microgrid is improved compared with the
utility before the demand response game, thus, a notable gains are found, fur-
thermore, a significant reduction of the peak consumed power is reached which
exceeds 10%, thanks to the DR scheme that allows to find the optimal power
consumption.

Two-Stage Game Theoretic Approach for Energy Management 217

4.2 Stage II: Coalition Formation Game

Motivation. As some MGs might fail to generate/consume the predicted
amount of energy, they are required to exchange energy with other MGs at
more beneficial prices than the distribution system operator. For this reason,
a coalition formation game is designed to form the best coalition structure in
order to have an optimal energy management between networked microgrids.
The coalition formation game is executed in two consecutive steps: adaptive
coalition formation and then energy transfer. A merge and split based algorithm
can be developed for coalition formation in networked MGs. The network is self-
organized into coalitions that are formed with merge and split rules. After that,
the energy transfer process takes place in each coalition.

Formalization. The result of the first stage, i.e., S = {Λ,Π, Ψ} is used in the
coalition formation process. The coalition formation process aims to find the
best coalitions that maximize the profit from energy exchange, i.e.,

∀π ∈ Π,∀ψ ∈ Ψ, find Ξk
j (24)

where
Ξk

j = {π1, π2, ...}
⋃

{ψ1, ψ2, ...} (25)

to find the best collection Ωk

Ωk = arg max
|Ωk|∑
j=1

v(Ξk
j) (26)

Implementation. Algorithm 1 gives the proposed merge-and-split coalition for-
mation algorithm (MSCF). The algorithm can be executed by a trusted third
party that coordinates between coalitions and MGs. The algorithm assumes that
MGs report their energy status to this party.

The first collection Ωk is initialized with every singleton microgrid Θj
i ∈ N

as a coalition Ξk
j ∈ Ωk. Based on the distribution of MGs, the MSCF algorithm

starts with the initialized Ωk and checks the energy surplus/shortage that can
be shared with the other MGs to calculate v(Ξk

j). A visited matrix is used to
memorize all pairs of the visited coalitions for merge process. Initially, the visited
matrix is set to false for all coalitions, after that, the merge process starts. A
random pair of coalitions (Ξk

j , Ξk
l) is chosen from Ωk to check if Ξk

j

⋃
Ξk

l 	

{{Ξk
j }, {Ξk

l }}, then coalitions Ξk
j and Ξk

l decide to merge. Ξk
j

⋃
Ξk

l is saved in
Ξk

j , and Ξk
l is removed from Ωk, then Ξk

j enters in the next merge step. So, the
visited matrix is reinitialized again to false, i.e., ∀ Ξk

m ∈ Ωk,m
= j, visited
[Ξk

j][Ξk
m] = false. Ωk continues for merging by searching non-visited coalitions

after the test of all the combinations, if there is no merge, the merge process
ends.

The resulted Ωk is then passed to split process. Every coalition Ξk
j ∈ Ωk hav-

ing more than one member, i.e., microgrid, is subject to splitting. The algorithm

218 I. Naidji et al.

tries to split Ξk
j into two disjoint coalitions Ξk

l and Ξk
m where Ξk

l

⋃
Ξk

m = Ξk
j .

The splitting occurs only if one of the microgrids belonging the coalition can
improve its individual payoff, without hurting the payoff of the other microgrids.

Algorithm 1: Merge and Split Coalition Formation (MGCF).

1 Input: Θ0
1 , Θ0

2 , ..., Θ0
N (set of microgrids)

2 Output: CS{coalition structure}
3 for j ← 1 to N do

4 Ξk
j = Θj

j ;

5 end

6 initialization Ωk = {Ξk
1 , Ξk

2 , ..., Ξk
N}

7 repeat

8 finish ← True

9 forall the Ξk
j , Ξk

l ∈ Ωk, j �= l do

10 visited [Ξk
j][Ξ

k
l] ← False

11 end

12 {Merge process}
13 repeat

14 exit ← True

15 Randomly select Ξk
j , Ξk

l ∈ Ωk, j �= l for which visited [Ξk
j][Ξ

k
l]= False

16 visited[Ξk
j][Ξ

k
l]← True

17 if Ξk
j

⋃
Ξk

l � {{Ξk
j }, {Ξk

l }} then

18 Ξk
j ← Ξk

j

⋃
Ξk

l

19 Ξk
l ← ∅

20 forall the Ξk
m ∈ Ωk, m �= j do

21 visited[Ξk
j][Ξ

k
m]← False

22 end

23 end

24 forall the Ξk
j , Ξk

l ∈ Ωk, j �= l do

25 if not visited[Ξk
j][Ξ

k
l] then

26 exit ← False

27 end

28 end

29 until (exit = True) or (| Ωk |= 1);

30 {Split process}
31 forall the Ξk

j ∈ Ωk where | Ξk
j |> 1 do

32 forall the partitions {Ξk
l , Ξk

m} of Ξk
j , where Ξk

j = Ξk
l

⋃
Ξk

m, Ξk
l

⋂
Ξk

m = ∅ do

33 if {{Ξk
l }, {Ξk

m}} � Ξk
j then

34 Ξk
j ← Ξk

l

35 Ωk = Ωk

⋃
Ξk

m

36 finish ← False

37 Break

38 end

39 end

40 end

41 until finish = True;

42 CS = Ωk;

Running Example. In order to clarify the proposed algorithm, let us con-
sider a simple example with three MGs with the following energy status
E = {20,−5,−10}. Ωk is initialized with every microgrid as a coalition Ξk

j ,

Two-Stage Game Theoretic Approach for Energy Management 219

i.e., Ωk = {Ξk
1 , Ξk

2 , Ξk
3 }. Ξk

2 and Ξk
3 cannot form coalition because they can-

not improve their payoff since E is negative for both of them. Consider that
Ξk

1 communicates with Ξk
2 in order to merge. Based on the values of E,

{Ξk
1 , Ξk

2 } 	 {{Ξk
1 }, {Ξk

2 }} since { 1
15 ,max} 	 {{ 1

20}, {− 1
5}}, such that both of

Ξk
1 and Ξk

2 improve their payoff.
Now, there are two coalitions {Ξk

3 } and {Ξk
1 , Ξk

2 }. {Ξk
3 } communicates with

{Ξk
1 , Ξk

2 } in order to merge. {Ξk
1 , Ξk

2 , Ξk
3 } 	 {{Ξk

1 , Ξk
2 }, {Ξk

3 }} since
{ 1
5 ,max,max} 	 {{ 1

15 ,max}, {− 1
10}}, so the merge occurs. This is because,

Ξk
1 and Ξk

3 improve their payoff while Ξk
2 keeps its previous payoff. Now

{Ξk
1 , Ξk

2 , Ξk
3 } tries to split. Ξk

1 will not split to from a coalition with Ξk
2 or

even with Ξk
3 . Thus, there are no coalitions to be able to merge or split any

further. As a result, the final coalition structure CS = Ωk = {Ξk
1 , Ξk

2 , Ξk
3 }.

As we notice, the final coalition structure CS gives the maximum utility
to each microgrid by finding the optimal coalitions that maximize the energy
exchange in order to have the best profit. The proposed algorithm is repeated
periodically, i.e., each day, enabling the MGs to autonomously self-organize and
adapt the network topology depending on their energy needs.

MSCF Algorithm Complexity. The complexity of the proposed MSCF algo-
rithm is determined by the number of merge and split attempts. To find this
complexity, the complexity of a single iteration of the main loop should be ana-
lyzed.

Initially, every singleton microgrid Θj
i is considered as a coalition Ξk

j , there-
fore, there are N coalitions. In the worst case of merge process, each coalition
attempts to merge with all the other coalitions in Ωk. Thus, the first merge
process occurs after N(N−1)

2 attempts, the second after (N−1)(N−2)
2 attempts

and so on. In such case, the complexity is O(N3). However, the merge process
significantly requires less number of attempts since a merge of two coalitions
occurs, it does not need to search for other merge attempts. Splitting a coalition
Ξk

j in the worst case is O(2|Ξk
j |) involving to find all the possible partitions of

the considered coalition. The split rule is restricted to the coalitions with size
greater or equal to two, i.e., |Ξk

j | ≥ 2 in Ωk. In addition, it is not executed for all
MGs. So, the complexity of the split process depends on the size of the formed
coalitions and not on the total number of MGs. Furthermore, once a split occurs,
there is no need to search for another split. In the worst case, no split occurs
for a coalition Ξk

j which involve to check all the possible two partitions of the
coalition Ξk

j . To avoid this scenario, one of the two partitions of size |Ξk
j −1| and

1, respectively, should be feasible. If none of them is feasible, the split process
stops. As a result, in some cases the complexity of the split process is reduced
to O(|Ξk

j |). Therefore, the complexity of the proposed MSCF algorithm can be
reduced by limiting the size of the formed coalitions, thus allowing to control
the complexity of the proposed algorithm.

Energy Transfer. After the coalition formation process, the energy transfer
among coalitions members is executed. The energy transfer process is given in
Algorithm 2. This algorithm aims to find the optimal energy transfer between

220 I. Naidji et al.

Algorithm 2: Energy Transfer.

1 Input: Coalition Ξk
j , distance matrix dist

2 Output: Energy transfer matrix ET

3 Π = set of energy seller within Ξk
j ;

4 Ψ = set of energy buyer within Ξk
j in decreasing order;

5 foreach ψ ∈ Ψ do
6 π = argmin dist(ψ, π) ; %nearest MG seller %
7 if ψ is None then
8 ET (0, ψ) = ψ.energy;
9 break;

10 end
11 dif = min(π.energy, | ψ.energy |);
12 ψ.energy −= dif ;
13 π.energy −= dif ;
14 ET (π, ψ) = dif ;

15 end
16 foreach π ∈ Π do
17 if π.energy > 0 then
18 ET (π, 0) = π.energy;
19 end

20 end

microgrids in the same coalition by transferring energy between the closest micro-
grids in order to minimize the power loss. Initially, for each microgrid buyer, we
search for the nearest microgrid seller. After that, we subtract the given amount
of energy from the energy buyer and seller and the energy transfer matrix ET
is filled with the energy sellers in rows and with energy buyers in columns and
so on until we supply all the microgrids that have energy shortage. Finally, if
an amount of energy rests, it is saved in ET indexed with energy sellers in rows
and zero in columns. We notice that we save a significant amounts of energy
thanks to the energy transfer algorithm. Since energy transfer is carried within
very short distances instead of transferring energy from/to the distribution sys-
tem operator which is located far from microgrids. The gains in terms of energy
saving are given in the next section.

5 Simulation Results

This section shows the case study and gives the simulation results of the proposed
two-stage approach. In order to investigate the effectiveness of the proposed two
stage approach, a set of simulation experiments are performed.

5.1 Simulation Setup

The networked MGs system is modeled with a mesh structure which guarantees
a high level of service. We assume that the distribution network covers an area

Two-Stage Game Theoretic Approach for Energy Management 221

of 100 km2 and consists of N microgrids. We assume that MGs are randomly
located around the distribution system operator (DSO) which is located in the
center of the network. We have randomly scatter 16 MGs which is a reasonable
number of MGs in real smart grids (Fig. 4).

0 1 2 3 4 5 6 7 8 9 10
Distance (KM)

0

1

2

3

4

5

6

7

8

9

10

Di
sta

nc
e

(K
M

)

MG1
MG2
MG3
MG4
MG5
MG6
MG7
MG8
MG9
MG10
MG11
MG12
MG13
MG14
MG15
MG16
DSO

Fig. 4. Networked microgrids system.

5.2 Problematique

As some microgrids can fail to have balance between power demand and supply,
their unbalanced energy can be wasted or traded punitively with the distribution
system operator. The problem here is how to manage the networked microgrids
system in order to balance energy in a cost effective way, i.e., manage the energy
consumption and coordinate the energy supply. For this reason, we treat the
problem in different manner from the literature where we search for the optimal
energy consumption in the first stage, then in the second stage, we coordinate
the energy supply between microgrids by forming the best coalitions to exchange
energy and maximize the profits from energy exchange.

5.3 First Stage

Each player in the non cooperative game, i.e., microgrid gets the information
about time-differentiated electricity price from the distribution system operator
(DSO) to adjust its energy consumption. Table 1 gives the energy status of MGs
before applying the demand response game. After running the demand response
game, the MGs adjust their energy consumption by shifting their manageable

222 I. Naidji et al.

loads (applying load shedding or shifting) to minimize their energy cost, thus a
new energy consumption profile is resulted as follows:

We notice that a significant minimization in the peak consumed power is
occurred for each microgrid. For example Θ6

0 reduced the power consumption
from 134 MW/h to 120 MW/h which is more than 10%. This results in a reduc-
tion of the energy shortage and an increase of the energy surplus for unbalanced
microgrids (Table 2).

Table 1. Microgrids energy needs before demand response.

Microgrid Energy status (MW/h) Microgrid Energy status (MW/h)

Θ0
1 273 Θ0

9 −45

Θ0
2 30 Θ0

10 −129

Θ0
3 −123 Θ0

11 68

Θ0
4 230 Θ0

12 −105

Θ0
5 −110 Θ0

13 −46

Θ0
6 −134 Θ0

14 −3

Θ0
7 340 Θ0

15 −60

Θ0
8 −45 Θ0

16 −20

Table 2. Microgrids energy needs after demand response.

Microgrid Energy status (MW/h) Microgrid Energy status (MW/h)

Θ0
1 295 Θ0

9 −35

Θ0
2 40 Θ0

10 −119

Θ0
3 −103 Θ0

11 78

Θ0
4 240 Θ0

12 −90

Θ0
5 −89 Θ0

13 −40

Θ0
6 −120 Θ0

14 0

Θ0
7 201 Θ0

15 −55

Θ0
8 −35 Θ0

16 −17

5.4 Second Stage

Figure 5 shows the coalition structure of the proposed MSCF algorithm that
is applied in the case of 16 networked MGs. We compare the performance of
our Merge and Split Coalition Formation (MSCF) algorithm, with that of three
other algorithms: Grand Coalition Formation (GCF), Random Coalition Forma-
tion (RCF), and Same-Size Coalition Formation (SSCF). The GOF algorithm
consider that the grand coalition as an optimal solution for the coalitional game

Two-Stage Game Theoretic Approach for Energy Management 223

0 1 2 3 4 5 6 7 8 9 10

Distance (KM)

0

1

2

3

4

5

6

7

8

9

10
Di

sta
nc

e (
KM

)
MG1
MG2
MG3
MG4
MG5
MG6
MG7
MG8
MG9
MG10
MG11
MG12
MG13
MG14
MG15
MG16
DSO

C1

C2

C3

C4

Fig. 5. Coalition structure.

to perform the energy exchange between MGs. The RCF algorithm forms a
random size of coalitions, where the members of that coalitions are randomly
selected. The SSCF algorithm forms coalitions with the same size where the
members of that coalitions are also randomly selected. Table 3 gives the MGs
belonging each formed coalition. Since Θ0

14 is a balanced microgrid, it does not
participate in the coalition formation game.

Table 3. Stable coalitions.

Coalition Members Exchanged power with DSO

Ξk
1 {Θ1

1, Θ
1
2, Θ

1
3, Θ

1
5, Θ

1
6} 23

Ξk
2 {Θ2

7, Θ
2
8, Θ

1
10} 47

Ξk
3 {Θ3

9, Θ
3
11, Θ

3
13} 3

Ξk
4 {θ4

4, Θ
4
12, Θ

4
15, Θ

4
16} 78

In Fig. 6, we show the performance of the coalition structures (CS) payoff
with different size of the networked MGs. The payoff consists of the earned
money for exchanging power among MGs. The figure shows that the MSCF
gives the highest global payoff for MGs compared with the other algorithms.
This is because the less power exchange with the DSO, the more profit from
power exchange. The proposed MSCF algorithm creates a stable coalitions that
minimize the power exchange with the DSO. The significant difference between
the MSCF and the SSCF is in the decision making in coalition formation process.
The proposed MSCF algorithm forms coalitions based on merge-and-split rules.

224 I. Naidji et al.

0

50

100

150

200

250

300

Ex
ch

an
ge

d p
ow

er
wi

th
the

 D
S

(kw
)

4 MGs 8MGs 16 MGs 24 MGs
Number of microgrids

0

20

40

60

80

100

120

140

160

180
CS

 pa
yo

ff (
$)

MGCF
GCF
RCF
SSCF

Fig. 6. Coalition structure payoffs.

The decision making in SSCF and RCF is random which yields to a very high
standard deviation. As a result, the formed coalitions are unable to perform
energy exchange efficiently and the coalition members receive less payoff. In
addition, the proposed MSCF algorithm outperforms the GCF algorithm which
considers the grand coalition as an optimal solution. This is because, the grand
coalition will result in more power loss which is non optimal. On average, the
global CS payoff of MSCF exceeds the payoff of the RCF, GCF and SSCF about
18.24%, 21.33% and 17.15%, respectively.

Figure 7 shows the average power loss for individual microgrids with non
cooperative approach as in [9], i.e., the power is only exchanged between MG
and DSO, and with a cooperative approach, i.e., the power is exchanged between
MGs. In the cooperative approach, the GCF algorithm as in [5] and the proposed
MSCF algorithm are compared. In the non-cooperative approach, a high level
of power loss is observed due to the long distances between MGs and DS and
the existence of power transformers resulting in more power loss. A significant
decrease in power loss is observed with the cooperative approach in the case of
GCF algorithm where MGs inter-exchange power. The power transfer between
MGs, i.e., short distances which reduces the power loss caused by transporting
power which is the case of distribution system that transfers power to long dis-
tances. Unlike the traditional power exchange which is performed between MGs
and DS, the cooperative approach allows the MGs to inter exchange the power
locally taking the advantage of the cost of power while reducing the power loss
in long distances. However, with the proposed MSCF algorithm, the power loss
is less than the GCF algorithm. The proposed MSCF algorithm forms many
small size coalitions resulting in short distances of power transfer which reduce
the power loss compared with the GCF algorithm that forms the grand coalition
resulting in long distances of power transfer, so, more power loss. Figure 8 shows

Two-Stage Game Theoretic Approach for Energy Management 225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Microgrids

0

2

4

6

8

10

12

14

16

Av
era

ge
 Po

we
r P

os
s p

er
Mi

cro
gri

d (
kw

)

Non cooperative approach [28]
Grand Coalition Formation (GCF) [31]
Merge and Split Coalition Formation (MSCF)

Fig. 7. Power loss per microgrid.

the total power loss of MGs when the number of MGs is up to 100. The result
is obtained after executing a non-cooperative and cooperative energy exchange
(GCF and MSCF). The loss is significantly reduced with the cooperative app-
roach. Furthermore, the reduction rate is about to 72%.

In order to demonstrate the scalability of the MSCF algorithm, Fig. 9 is
presented. This figure shows the percentage of power loss reduction after running
the MSCF and GCF algorithms for different sized networked MG systems. As
more as the network size increases, the MSCF algorithm further reduces the
power loss (about 72%) and the reduction is significantly high compared with
the GCF algorithm (about 51%).

10 20 30 40 50 60 70 80 90 100
Number of microgrids

0

50

100

150

Tot
al p

ow
er l

oss
 (kw

)

Non cooperative approach [28]
Grand Coalition Formation (GCF) [31]
Merge and Split Coalition Formation (MSCF)

Fig. 8. Total power loss.

226 I. Naidji et al.

10 20 30 40 50 60 70 80 90 100
Number of microgrids

20

30

40

50

60

70

80

Po
we

r lo
ss

red
uct

ion
 pe

rce
nta

ge
%

Merge and Split Coalition Formation (MSCF)
Grand Coalition Formation (GCF) [31]

Fig. 9. Power loss reduction.

5.5 Discussion

The difference between the proposed two stage approach and the existing liter-
ature for MG EMS is that the existing studies do not regroup the load manage-
ment with the electricity supply problem resulting in biased solutions in some-
times. In addition, the cooperation between MGs is rarely explored. Therefore
our approach has twofold advantages. The first advantage is the load manage-
ment scheme that design the optimal energy consumption for reducing the peak
load and energy cost, thanks to the proposed demand response game. The sec-
ond advantage is the cooperation among networked MGs that offers a significant
profits to MGs in the same coalition benefiting from energy exchange and mini-
mizing the power loss of the distribution system.

6 Conclusion

An efficient energy management for networked MGs is proposed. The optimal
energy consumption of MGs is designed in first via a demand response game.
After that, the result of the demand response game is used in a coalition for-
mation game. A motivating pricing scheme is designed to encourage the MGs
for cooperation by forming several stable coalitions. This cooperation is benefi-
cial from the economic and technic point of view. We design a scalable merge
and split based coalition formation algorithm that performs better in over sized
systems where the power loss reduction is greater and the payoff is more. After
the coalition formation, the energy transfer is executed with the proposed algo-
rithm by searching the nearest MGs within a coalition to minimize the power
loss which occurs during energy transfer. The importance of the proposed MSCF
algorithm is demonstrated by the reduction of the energy burden from the dis-
tribution system and reduction of the technical loss while maximizing the profits
of the MGs from energy exchange. Furthermore, we control the complexity of
the proposed MSCF algorithm by limiting the size of the formed coalitions.

Two-Stage Game Theoretic Approach for Energy Management 227

References

1. Abidi, M.G., Smida, M.B., Khalgui, M., Li, Z., Wu, N.: Multi-agent oriented solu-
tion for forecasting-based control strategy with load priority of microgrids in an
island mode-case study: Tunisian petroleum platform. Electr. Power Syst. Res.
152, 411–423 (2017)

2. Apt, K., Witzel, A.: A generic approach to coalition formation. In: Proceedings of
the International Workshop on Computational Social Choice (COMSOC), Ams-
terdam, The Netherlands, December 2006

3. Apt, K., Witzel, A.: A generic approach to coalition formation. Int. Game Theory
Rev. 11(03), 347–367 (2009)

4. Cintuglu, M.H., Mohammed, O.A.: Behavior modeling and auction architecture
of networked microgrids for frequency support. IEEE Trans. Industr. Inf. 13(4),
1772–1782 (2017)

5. Du, Y., et al.: A cooperative game approach for coordinating multi-microgrid oper-
ation within distribution systems. Appl. Energy 222, 383–395 (2018)

6. Faqiry, M.N., Das, S.: Double auction with hidden user information: application
to energy transaction in microgrid. IEEE Trans. Syst. Man Cybern.: Syst., 1–14
(2018). https://doi.org/10.1109/TSMC.2018.2800006

7. Han, Y., Zhang, K., Li, H., Coelho, E.A.A., Guerrero, J.M.: MAS-based distributed
coordinated control and optimization in microgrid and microgrid clusters: a com-
prehensive overview. IEEE Trans. Power Electron. 33(8), 6488–6508 (2018)

8. Hu, W., Wang, P., Gooi, H.B.: Toward optimal energy management of micro-
grids via robust two-stage optimization. IEEE Trans. Smart Grid 9(2), 1161–1174
(2018). https://doi.org/10.1109/TSG.2016.2580575

9. Jadhav, A.M., Patne, N.R.: Priority-based energy scheduling in a smart distributed
network with multiple microgrids. IEEE Trans. Industr. Inf. 13(6), 3134–3143
(2017)

10. Karoui, O., Khalgui, M., Koubâa, A., Guerfala, E., Li, Z., Tovar, E.: Dual mode for
vehicular platoon safety: simulation and formal verification. Inf. Sci. 402, 216–232
(2017)

11. Khalgui, M., Carpanzano, E., Hanisch, H.M.: An optimised simulation of
component-based embedded systems in manufacturing industry. Int. J. Simul. Pro-
cess Model. 4(2), 148–162 (2008)

12. Khalgui, M., Mosbahi, O.: Intelligent distributed control systems. Inf. Softw. Tech-
nol. 52(12), 1259–1271 (2010)

13. Li, Y., Yang, Z., Li, G., Zhao, D., Tian, W.: Optimal scheduling of an isolated
microgrid with battery storage considering load and renewable generation uncer-
tainties. IEEE Trans. Industr. Electron. 66(2), 1565–1575 (2019). https://doi.org/
10.1109/TIE.2018.2840498

14. Ma, W.J., Wang, J., Gupta, V., Chen, C.: Distributed energy management for
networked microgrids using online ADMM with regret. IEEE Trans. Smart Grid
9(2), 847–856 (2018)

15. Meskina, S.B., Doggaz, N., Khalgui, M., Li, Z.: Multiagent framework for smart
grids recovery. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1284–1300 (2017)

16. Motevasel, M., Seifi, A.R.: Expert energy management of a micro-grid considering
wind energy uncertainty. Energy Convers. Manag. 83, 58–72 (2014)

17. Naidji, I., Mosbahi, O., Khalgui, M., Bachir, A.: Cooperative energy manage-
ment software for networked microgrids. In: Proceedings of the 14th International
Conference on Software Technologies: ICSOFT, vol. 1, pp. 428–438. INSTICC,
SciTePress (2019). https://doi.org/10.5220/0007965604280438

https://doi.org/10.1109/TSMC.2018.2800006
https://doi.org/10.1109/TSG.2016.2580575
https://doi.org/10.1109/TIE.2018.2840498
https://doi.org/10.1109/TIE.2018.2840498
https://doi.org/10.5220/0007965604280438

228 I. Naidji et al.

18. Naidji, I., Smida, M.B., Khalgui, M., Bachir., A.: Non cooperative game theoretic
approach for residential energy management in smart grid. In: Proceedings of the
the 32nd Annual European Simulation and Modelling Conference, pp. 164–170.
ETI, EUROSIS (2018)

19. Naidji, I., Smida, M.B., Khalgui, M., Bachir, A.: Multi agent system-based app-
roach for enhancing cyber-physical security in smart grids. In: Proceedings of the
the 33rd Annual European Simulation and Modelling Conference, pp. 177–182.
ETI, EUROSIS (2019)

20. Samet, H., Azhdari, E., Ghanbari, T.: Comprehensive study on different possible
operations of multiple grid connected microgrids. IEEE Trans. Smart Grid 9(2),
1434–1441 (2018)

21. Silani, A., Yazdanpanah, M.J.: Distributed optimal microgrid energy management
with considering stochastic load. IEEE Trans. Sustain. Energy, 1 (2018). https://
doi.org/10.1109/TSTE.2018.2846279

22. Su, W., Wang, J., Zhang, K., Huang, A.Q.: Model predictive control-based power
dispatch for distribution system considering plug-in electric vehicle uncertainty.
Electr. Power Syst. Res. 106, 29–35 (2014)

23. Sukumar, S., Mokhlis, H., Mekhilef, S., Naidu, K., Karimi, M.: Mix-mode energy
management strategy and battery sizing for economic operation of grid-tied micro-
grid. Energy 118, 1322–1333 (2017)

24. Tan, Z., Zhang, X., Xie, B., Wang, D., Liu, B., Yu, T.: Fast learning optimiser for
real-time optimal energy management of a grid-connected microgrid. IET Gener.
Transm. Distrib. 12(12), 2977–2987 (2018). https://doi.org/10.1049/iet-gtd.2017.
1983

25. Tuballa, M.L., Abundo, M.L.: A review of the development of smart grid technolo-
gies. Renew. Sustain. Energy Rev. 59, 710–725 (2016)

26. Velik, R., Nicolay, P.: Grid-price-dependent energy management in microgrids
using a modified simulated annealing triple-optimizer. Appl. Energy 130, 384–395
(2014)

27. Wang, C., Liu, Y., Li, X., Guo, L., Qiao, L., Lu, H.: Energy management system
for stand-alone diesel-wind-biomass microgrid with energy storage system. Energy
97, 90–104 (2016)

28. Wang, Z., Chen, B., Wang, J., Begovic, M.M., Chen, C.: Coordinated energy man-
agement of networked microgrids in distribution systems. IEEE Trans. Smart Grid
6(1), 45–53 (2015)

29. Wu, J., Guan, X.: Coordinated multi-microgrids optimal control algorithm for
smart distribution management system. IEEE Trans. Smart Grid 4(4), 2174–2181
(2013)

30. Zamora, R., Srivastava, A.K.: Multi-layer architecture for voltage and frequency
control in networked microgrids. IEEE Trans. Smart Grid 9(3), 2076–2085 (2018).
https://doi.org/10.1109/TSG.2016.2606460

31. Zhang, J., et al.: Modeling and verification of reconfigurable and energy-efficient
manufacturing systems. Discrete Dyn. Nat. Soc. 2015, 14 (2015)

https://doi.org/10.1109/TSTE.2018.2846279
https://doi.org/10.1109/TSTE.2018.2846279
https://doi.org/10.1049/iet-gtd.2017.1983
https://doi.org/10.1049/iet-gtd.2017.1983
https://doi.org/10.1109/TSG.2016.2606460

Author Index

Ameur-Boulifa, Rabea 156
Ayad, Amani 58

Bachir, Abdelmalik 205
Ben Hmida, Sana 133
Ben M’barek, Marwa 133
Bolscher, Robin 26
Borgi, Amel 133

Cavalli, Ana 156

Daneva, Maya 26
Demetz, Lukas 40

Felderer, Michael 40

Grießbach, Denis 3

Hafidi, Yousra 108
Harada, Tatsuya 179
Heisel, Maritta 81
Herber, Paula 3
Huber, Stefan 40

Kahloul, Laid 108
Khalgui, Mohamed 108, 205

Loh, Ji Meng 58

Maag, Stephane 156
Marsit, Imen 58
Mili, Ali 58
Mosbahi, Olfa 205

Naidji, Ilyes 205

Omri, Mohamed Nazih 58

Quer, Stefano 179

Rukoz, Marta 133

Savarese, Francesco 179

Tawfig, Sara 58
Tejero-de-Pablos, Antonio 179

Wagner, Marvin 81
Wirtz, Roman 81
Witteck, Ulrike 3

	Preface
	Organization
	Contents
	I Software Engineering and Systems Development
	Equivalence Class Definitionpg for Automated Testing of Satellite On-Board Image Processing
	1 Introduction
	2 Preliminaries
	2.1 Equivalence Class Partition Testing
	2.2 Context: PLATO Mission

	3 Related Work
	4 Equivalence Class Partitioning for Automated Test Generation
	4.1 Assumptions and Limitations
	4.2 Input Parameter Partitioning
	4.3 Multidimensional Coverage Criteria
	4.4 Automated Test Generation

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Results

	6 Conclusion
	References

	What We Know About Software Architecture Styles in Continuous Delivery and DevOps?
	Abstract
	1 Introduction
	2 Definitions of Terms
	3 Purpose
	4 Research Questions and Method
	5 Demographics, Themes and Trends
	5.1 Software Architecture Characteristics and the Context in Which They Were Deemed Important (RQ1)
	5.2 Application Domains (RQ2)
	5.3 Research Methods Being Used (RQ3)

	6 Reflection on the Results
	7 Reflection on Bias in This SLR
	8 Related Systematic Literature Reviews
	9 Summary and Implications
	References

	Analysing the Performance of Mobile Cross-platform Development Approaches Using UI Interaction Scenarios
	1 Introduction
	2 Background
	2.1 Mobile Cross-platform Development Approaches
	2.2 User-Perceived Performance
	2.3 Resource Usage Measurements

	3 Research Method
	3.1 Selection of Approaches
	3.2 UI Interaction Scenarios
	3.3 Implementation Details
	3.4 Test Cases
	3.5 Measurement Tools and Metrics
	3.6 Test Devices

	4 Results
	4.1 CPU Usage
	4.2 Main Memory Usage
	4.3 Janky Frames
	4.4 GPU Memory Usage

	5 Discussion
	6 Conclusion
	References

	Quantitative Analysis of Mutant Equivalence
	1 Mutation Equivalence: The Bane of Mutation Testing
	2 A Quantitative Approach
	3 Redundancy Metrics
	3.1 State Redundancy
	3.2 Non Injectvity
	3.3 Functional Redundancy
	3.4 Non Determinacy
	3.5 A Posteriori Justification

	4 A Java Compiler
	4.1 Entropy of the Initial State
	4.2 Entropy of the Final State

	5 Estimating the REM
	5.1 A Regression Model
	5.2 Mutation Policies

	6 Uses of the REM
	6.1 Mutant Equivalence
	6.2 Mutant Redundancy
	6.3 Mutation Score, Revisited
	6.4 Empirical Validation

	7 Conclusion
	7.1 Summary
	7.2 Assessment and Threats to Validity
	7.3 Prospects

	References

	Distributed Frames: Pattern-Based Characterization of Functional Requirements for Distributed Systems
	1 Introduction
	2 Problem Frames
	2.1 Notation
	2.2 Problem Frames

	3 Meta Model
	3.1 Model Elements

	4 Distributed Frames
	4.1 Description Format
	4.2 Frame Specifications
	4.3 Basic Frames
	4.4 Additional Frames

	5 Pattern-Based Requirements Documentation
	5.1 Step 1: Define Global Context and Subsystems
	5.2 Step 2: Elicit Functional Requirements for DS
	5.3 Step 3: Identify Distributed Functional Requirements
	5.4 Step 4: Decompose Context
	5.5 Step 5: Select Frames
	5.6 Step 6: Create Problem Diagrams
	5.7 Final Output

	6 Example
	6.1 Informal Scenario Description
	6.2 Step 1: Define Global Context and Subsystems
	6.3 Step 2: Elicit Functional Requirements for DS
	6.4 Step 3: Identify Distributed Functional Requirements
	6.5 Step 4: Decompose Context
	6.6 Step 5: Select Frames
	6.7 Step 6: Create Problem Diagrams

	7 Related Work
	8 Conclusion
	References

	Efficient Diagnosis of Reconfigurable Systems with Incorrect Behavior and Faulty Components: A Case Study on SGrids
	1 Introduction
	2 Preliminaries
	2.1 R-TNCESs Formalism
	2.2 Backward Reachability Analysis (BRA)
	2.3 R-TNCES Reverse
	2.4 Mu Improvement Method

	3 Methodology
	3.1 Motivation
	3.2 Backward Reachability with Mu Method
	3.3 Algorithm and Complexity

	4 Experimentation
	4.1 Case Study: SGrid Smart Grid
	4.2 Performance Evaluation

	5 Conclusion
	References

	I Software Systems and Applications
	GA-PPI-Net: A Genetic Algorithm for Community Detection in Protein-Protein Interaction Networks
	1 Introduction
	2 Network Community Detection Related Works
	3 Problem Definition
	4 Used Data
	4.1 Semantic Level: Gene Information
	4.2 Functional Level: Interaction Between Genes
	4.3 Network Level: Biological Pathways Databases
	4.4 The Used Data' Summary

	5 Proposed Approach
	5.1 Genetic Representation
	5.2 Population Initialization
	5.3 Fitness Function
	5.4 Selection and Replacement
	5.5 Genetic Operators

	6 Experimental Results
	7 Conclusion
	References

	From Formal Test Objectives to TTCN-3 for Verifying ETCS Complex Software Control Systems
	1 Introduction
	2 Related Works
	3 Motivation
	4 Basics
	4.1 Formal Specification Language - EFSM
	4.2 The SDL Language
	4.3 Labelled Transition Systems
	4.4 The IF Language
	4.5 Test Objectives
	4.6 Testing and Test Control Notation Version 3

	5 Framework - From Test Objectives to Verified Properties
	5.1 Property Language
	5.2 Encoding Test Objectives into MCL Formula

	6 Experiments
	6.1 ETCS System
	6.2 ETCS Formal Specification in SDL
	6.3 A Use Case Formal Specification
	6.4 Experimental Results

	7 Conclusion and Perspectives
	References

	Service Robots: A Unified Framework for Detecting, Opening and Navigating Through Doors
	1 Introduction
	1.1 Contributions
	1.2 Roadmap

	2 Related Works
	3 Configuration
	3.1 Hardware Platform
	3.2 Software Architecture
	3.3 Semantic Navigation Framework
	3.4 The ``Help Me Carry'' Context

	4 Nesting Automata
	4.1 Door and Handle Detection
	4.2 Door Width Computation
	4.3 Opening Direction
	4.4 Closed Door
	4.5 Handle Grasping and Unlatching
	4.6 Door Type Checking
	4.7 Door Pulling
	4.8 Door Pushing

	5 Experimental Analysis
	5.1 Final Considerations

	6 Conclusions
	7 Future Works
	References

	Two-Stage Game Theoretic Approach for Energy Management in Networked Microgrids
	1 Introduction
	2 System Model
	2.1 Networked Microgrids Architecture
	2.2 Pricing Scheme for Coalition Formation
	2.3 Coalition Formation Preliminaries

	3 Problem Formulation
	3.1 First Stage
	3.2 Second Stage

	4 Methodology
	4.1 Stage I: Demand Response Game
	4.2 Stage II: Coalition Formation Game

	5 Simulation Results
	5.1 Simulation Setup
	5.2 Problematique
	5.3 First Stage
	5.4 Second Stage
	5.5 Discussion

	6 Conclusion
	References

	Author Index

