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Abstract Weconsider a discrete-time optimal consumption and investment problem
of an investor who is interested in maximizing his utility from consumption and
terminal wealth subject to a random inflation in the consumption basket price over
time. We consider two cases: (i) when the investor observes the basket price and
(ii) when he receives only noisy signals on the basket price. We derive the optimal
policies and show that a modified Mutual Fund Theorem consisting of three funds
holds in both cases, as it does in the continuous-time setting. The compositions of
the funds in the two cases are the same but, in general, the investor’s allocations of
his wealth into these funds differ.

1 Introduction

We study a discrete-time optimal investment and consumption decision problem of
an investor when the consumption basket and real (inflation adjusted) asset prices
are partially observed. Traditionally, the investment literature has assumed that the
basket price, a measure of inflation, is fully observed. In reality, the basket price is
difficult to assess, as it requires collecting the prices of all the consumption goods in
the basket and their weights. Moreover, these prices may not be unique as discussed
in Borenstein and Rose (1994). In other words, inflation is not fully observed and,
as a consequence, the real asset prices are also incompletely observed.

As a benchmark case, we first consider fully observed inflation. In this case, the
real asset market is complete, and the optimal policy can be obtained by solving
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the dynamic programming equation for the problem. The real optimal consumption
process is the discrete-time equivalent of the optimal policy in the classical case con-
sidered in the continuous-time formulations of Karatzas et al. (1986),Merton (1971),
and Sethi (1997). However, since the consumption basket price is also stochastic,
its presence affects the optimal portfolio selection. Whereas the optimal portfolio
in the classical case can be stated in terms of the risk-free fund and growth optimal
risky fund, a result known as a Mutual Fund Theorem, and we show that the opti-
mal portfolio with uncertain inflation can be characterized as a combination of three
funds: the risk-free fund, the growth optimal fund (of the classical case), and a fund
that arises from the correlation between the inflation uncertainty and the market risk.
Every investor uses the first two funds, but the composition of the third fund may be
different for different investors. However, if two investors have perfectly correlated
consumption baskets, then they both will use the same third fund. Furthermore, in
general, the amount invested in each of the three funds depends on their respective
wealth, consumption basket prices, and utility functions. Henceforth, we will use
the terms nominal consumption and consumption interchangeably. When we mean
real consumption, it will be specified as such. The same convention will apply to the
terms asset prices, wealth, savings, etc.

Following the analysis of the benchmark case, we study the situation when the
investor receives noisy signals on inflation.Given the signal observations, the investor
obtains the conditional probability distribution of the current basket price and, in
turn, the conditional distribution of the current real asset prices. In general, the new
risk due to the partial observability of the basket price affects the optimal policy.
Interestingly enough, the characterization of the optimal portfolio in the partially
observed case is the same as in the fully observed case. Thus, in both cases, the
optimal portfolio is a linear combination of the risk-free fund, growth optimal fund,
and the fund that arises from the correlation between the inflation uncertainty and the
market risk. As before, the composition of the last fund for an investor depends on
the nature of his consumption basket, and his allocation in the three funds depends
on his wealth, utility function, and consumption basket price filter, which represents
his best estimate given the observations.

There have been several studies on consumption measurement. Klenow (2003)
discusses how theU.S. governmentmeasures consumption growth and how it consid-
ers the fact that the consumption basket changes over time. Inflationmeasurement and
the problems with that are considered in Alchian and Klein (1973), Bradley (2001),
and Shapiro and Wilcox (1997). Many of the social costs of inflation are caused by
its unpredictability. The unpredictability is studied, e.g., by Ungar and Zilberhard
(1993). The results of these studies are consistent with the present paper in the sense
that our investor, due to noisy signals measurements, does not completely observe
the consumption goods prices and, therefore, updates his belief about inflation from
different consumption basket price signals.

The connection between inflation and asset prices is studied by Basak and Yan
(2010), Campbell and Vuolteenaho (2004), and Cohen et al. (2005). According to
them, the stock market suffers from money illusion, i.e., it incorrectly discounts real
cash flows with nominal discount rates. Thus, when the inflation is high, the equity
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premium is also high and vice versa. In this paper, we do not consider money illusion.
Optimal portfolio selection under inflation is studied, e.g., Brennan and Xia (2002),
Chen and Moore (1985), Manaster (1979), Munk et al. (2004), and Solnik (1978).
Brennan and Xia (2002) consider a more complicated inflation process but assume
perfectly observed inflation. In our paper, we emphasize the fact that inflation signals
are noisy and, therefore, the current consumption basket price is not completely
observed. Portfolio selection with learning is also considered in Xia (2001) and
Brennan (1998). In these papers, the investor learns about the stock returns, i.e., about
the parameters of the price processes. As explained earlier, in the present paper the
investor does not observe the consumption basket price directly, but infers it from
the observed inflation signal. Thus, without the perfect information, the current real
asset prices are also incompletely observed. In this way, our model differs from the
above papers and also answers a different economic question: What is the effect of
the noisy observations of inflation on the optimal portfolio selection?

Muchmore related to our paper is that of Bensoussan et al. (2009) that presents the
continuous-time counterpart of our model. Also the results presented here are con-
sistent with their continuous-time counterparts. However, the mathematical analysis
of the discrete-time formulation, presented here for the first time, is different. More
importantly, our discrete-time formulation paves the road for future researchers to
perform related empirical studies since the data in practice can only be collected in
discrete time.

The rest of the paper is organized as follows. Section2 formulates the discrete-
time model under considerations along with the underlying information sets and
stochastic processes. The optimal policy under the fully observed inflation is derived
in Sect. 3. Section4 formulates the model in the partially observed case. Section5
concludes the paper.

2 Discrete-Time Model

Let us consider a discrete-time model with the length of period h. Then the time
period can be represented by

t ∈ {0, h, 2h, . . . , Nh = T },

where N is the number of periods. We introduce notation:

δ f (t) = f (t + h) − f (t).
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2.1 Evolution of Prices of Stocks

Let us consider a probability space (�,A, P). Let αi (t) and σi j (t) denote determin-
istic and bounded expected returns and volatility functions of time, respectively. Let
δw j (t) = w j (t + h) − w j (t) denote independent Gaussian variables with 0 mean
and variance h. LetGt be the σ -algebra generated by δw(s), s = 0, . . . , t , wherew(s)
is ann-dimensionalGaussian randomvector, i.e.,w(s) = (w1(s), . . . , wn(s))

T. Then
the evolution of the stock price of security i , i = 1, 2, . . . , n, can be described by

Yi (t + h) = Yi (t) exp

⎡
⎣

(
αi (t) − 1

2
σi i (t)

)
h +

n∑
j=1

σi j (t) · δw j (t)

⎤
⎦ . (1)

Let us introduce the following process

θ(t) = σ−1(t) (α(t) − r1) , (2)

known as the market price risk, where 1 denotes the unit column vector, and we
assume that the market is complete so that the matrix σ(t) = (

σi j (t)
)
is invertible.

The dynamics of the nominal value of the risk-free asset is given by

Y0 (t + h) = Y0(t)e
rh . (3)

Let us define the process Q(t) by

Q (t + h) = Q(t) exp

[
−θ(t) · δw(t) − 1

2
h |θ(t)|2

]
; Q (0) = 1. (4)

The processes Q(t) and Q(t)Yi (t)e−r t are (P,Gt ) martingales.

2.2 Risk-Neutral Probability

Define on (�,A) a probability P̂ as follows

d P̂

d P

∣∣∣∣∣
Gt

= Q(t).

Now let us set
δw̃(t) = δw(t) + hθ(t).

Then on (�,A, P̂), the δw̃(t) forms a sequence of independent Gaussian random
variables with mean 0 and variance h.
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We can also write (1) as

Yi (t + h) = Yi (t) exp

⎡
⎣

(
r − 1

2
σi i (t)

)
h +

n∑
j=1

σi j (t) · δw̃ j (t)

⎤
⎦ , (5)

and Yi (t)e−r t is a
(
P̂,Gt

)
martingale.

2.3 Evolution of Basket Price

We consider anotherWiener processwI (t), which is one-dimensional and correlated
with w(t). Then we have

E [δwi (t)δwI (t)] = ρi h,

for all i ∈ {1, . . . , n}, and redefine Gt as the σ -algebra generated by δw(s) and
δwI (s), s = 0, . . . , t . Let ρ∗ = (ρ1, ρ2, . . . , ρn) with ∗ denoting the transpose oper-
ation.

The dynamics of the basket price process B(t) is given by

B (t + h) = B(t) exp

[(
I − 1

2
ζ 2

)
h + ζ · δwI (t)

]
; B (0) = B0, (6)

where I > 0 represents the expected periodic inflation and ζ > 0denotes the inflation
volatility. The initial basket price B0 is knownwhen there is full observation, whereas
it can be a random variable independent of Gt in the case of partial information.

Let us define the log basket price L(t) = log B(t), so that

L (t + h) = L(t) +
(
I − 1

2
ζ 2

)
h + ζ · δwI (t); L(0) = L0 = log B0. (7)

2.4 Self-financing Wealth Process

In the discrete-time setting, the nominal wealth at time t is defined by

X (t) = C(t)h + 	0(t)e
rt + 	(t)Y (t), (8)

where 	0(t) and 	(t) denote the amount of riskless and risky assets owned by the
investor, and C(t) is the consumption process.

The self-financing condition implies
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X (t + h) = 	0(t)e
rt erh + 	(t)Y (t + h)

and, therefore, we have

δ
(
X (t)e−r t

) = 	(t) · δ
[
Y (t)e−r t

] − C(t)h · e−r t , (9)

where, by (5),

δ
[
Yi (t)e

−r t
] = Yi (t)e

−r t

⎡
⎣exp

⎛
⎝−1

2
σi i (t)h +

n∑
j=1

σi j (t) · δw̃ j (t)

⎞
⎠ − 1

⎤
⎦ .

Set

δμi (t) = −1

2
σi i (t)h +

n∑
j=1

σi j (t) · δw̃ j (t); μi (0) = 0. (10)

Then
δ
[
Yi (t)e

−r t
] = Yi (t)e

−r t
[
exp (δμi (t)) − 1

]
. (11)

Let us define π = (π1, π2, . . . , πn) with

πi (t) = 	i (t)Yi (t)

X (t)
, (12)

representing the proportion of the wealth invested in security i . Then the evolution
of wealth is given by

δ
[
X (t)e−r t

] = X (t)e−r t
n∑

i=1

πi (t)
[
exp (δμi (t)) − 1

] − C(t)h · e−r t . (13)

3 Fully Observed Inflation Case

We consider a problem starting at t , with X (t) = x , L(t) = L , and dynamics

δ
[
X (s)e−rs

] = X (s)e−rs
n∑

i=1

πi (s)
[
exp (δμi (s)) − 1

] − C(s)h · e−rs, (14)

δL(s) =
(
I − ζ 2

2

)
h + ζ δwI (s). (15)



Optimal Investment–Consumption Decisions … 65

With U1 (·) and U2 (·) denoting the utility of real consumption and real wealth,
respectively, and U ′

i (0) = ∞, U ′
i (∞) = 0, i = 1, 2, the performance is given by

J (π (·) ,C (·) ; x, L , t) = E

[
T−h∑
s=t

h ·U1
(
C(s)e−L(s)

) · e−β(s−t)

+ U2
(
X (t)e−L(t)

)
e−β(T−t)|L(t) = L , X (t) = x

]
.

(16)

Here the wealth process X (t) follows (13) and β as the utility discount rate. We
define the value function as

V (x, L , t) = sup
C(·),π(·)

J (C(·), π(·); x, L , t) . (17)

3.1 Dynamic Programming

Now we have the following dynamic programming problem:

V (x, L , t) = max
π,C

h ·U1
(
Ce−L

)

+ e−βh E [V (X (t + h) , L (t + h) , t + h)], (18)

where V (x, L , T ) = U2
(
x · e−L

)
. From (13) and (7), we have

X (t + h) = x · erh
[
1 +

n∑
i=1

πi · (exp (δμi (t)) − 1)

]
− C · h · erh

= x · erh
[
1 −

n∑
i=1

πi +
∑

πi exp

(
αi (t) − r − 1

2
σi i (t)

)
h

· exp
⎛
⎝

n∑
j=1

σi jδw j (t)

⎞
⎠

⎤
⎦ − C · h · erh

and

L (t + h) = L +
(
I − ζ 2

2

)
h + ζ δwI (t).

We define

δw̃I = δwI − ρ∗δw√
1 − |ρ|2 .
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Then δw̃I and δw are independent and the variance of δw̃I is h. Hence,

L (t + h) = L +
(
I − ζ 2

2

)
h + ζ

√
1 − |ρ|2δw̃I + ζρ∗δw

and

E [V (X (t + h) , L (t + h) , t + h)]

= (2n)− n+1
2

∫
· · ·

∫
V

⎛
⎝xerh

⎛
⎝1 −

n∑
i=1

πi

⎞
⎠ − C · h · erh

+ xerh
n∑

i=1

πi exp

(
αi (t) − r − 1

2
σi i (t)

)
h exp

⎛
⎝√

h
n∑
j=1

σi j ξ j

⎞
⎠, L +

(
I − ζ 2

2

)
h

+ ζ
√
h

n∑
j=1

ρ j ξ j + ζ
√
h
√
1 − |ρ|2ψ, t + h

⎞
⎠

· exp
⎛
⎝−1

2

⎛
⎝

n∑
j=1

ξ2j + ψ2

⎞
⎠

⎞
⎠ dξ1 · · · dξndψ.

So, (18) becomes

V (x, L , t) = max
π,C

hU1
(
Ce−L

) + e−βh
∫

· · ·
∫

(19)

V

(
xerh

(
1 −

n∑
i=1

πi

)
− C · h · erh

+ xerh
n∑

i=1

πi · exp
⎛
⎝

(
αi (t) − r − 1

2
σi i (t)

)
h + √

h
n∑
j=1

σi jξ j

⎞
⎠ ,

L +
(
I − ζ 2

2

)
h + ζ

√
h

⎛
⎝

n∑
j=1

ρ jξ j +
√
1 − |ρ|2ψ

⎞
⎠ , t + h

⎞
⎠

·
exp

(
− 1

2

(
n∑
j=1

ξ 2
j + ψ2

))

(2n)
n+1
2

dξ1 · · · dξndψ.
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3.2 Optimal Feedback Policy

Let (Ĉ(x, L , t), π̂(x, L , t)) be the optimal feedback consumption and investment
policy corresponding to (19). It is convenient to introduce the notation:

X̂h (x, t; ξ) = xerh
(
1 −

n∑
i=1

π̂i

)
− Ĉ · h · erh (20)

+ xerh
n∑

i=1

π̂i exp

((
αi (t) − r − 1

2
σi i (t)

)
h + √

h (σξ)i

)

and

L̂h (L , ξ, ψ) = L +
(
I − ζ 2

2

)
h + ζ

√
h ·

(
ρ∗ξ +

√
1 − |ρ|2ψ

)
.

The necessary conditions of optimality are

hU ′
1

(
Ĉe−L

)
e−L + e−βh

∫
· · ·

∫
∂V

∂x

(
X̂h (x, t; ξ) , L̂h (L , ξ, ψ) , t + h

)

· exp
(− 1

2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ
(−herh

) = 0 (21)

and
∫

· · ·
∫

∂V

∂x

(
X̂h (x, t, ξ) , L̂h (L , ξ, ψ) , t + h

) [−xerh

+ xerh exp

((
αi (t) − r − 1

2
σi i (t)

)
h + √

h (σξ)i

)]
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ = 0, i = 1, . . . , n. (22)

We divide (21) by h and (22) by xerh to get

U ′
1

(
Ĉe−L

)
e−L = e−(β−r)h

∫
· · ·

∫
∂V

∂x

(
X̂h (x, t, ξ) , L̂h (L , ξ, ψ) , t + h

)

· exp
(− 1

2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ (23)

and
∫

· · ·
∫

∂V

∂x

(
X̂h (x, t, ξ) , L̂h (L , ξ, ψ) , t + h

)

[
− 1 + exp

((
αi (t) − r − 1

2
σi i (t)

)
h + √

h (σξ)i

)]
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· exp
(− 1

2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ = 0, i = 1, . . . , n. (24)

But, by (19), we also get by differentiating with respect to x :

∂V

∂x
(x, L , t) = e−βh

∫
· · ·

∫
∂V

∂x

(
X̂h (x, t, ξ) , L̂h (L , ξ, ψ) , t + h

)

⎡
⎣erh

(
1 −

n∑
i=1

πi

)
+ erh

n∑
i=1

π̂i exp

⎛
⎝

(
αi (t) − r − 1

2
σi i (t)

)
h + √

h
n∑
j=1

σi jξ j

⎞
⎠

⎤
⎦

· exp
(− 1

2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ.

Multiplying (24) by π̂i erh and summing up, we get from the above equation

∂V

∂x
= e−(β−r)h

∫
· · ·

∫
∂V

∂x

(
X̂h (x, t, ξ) , L̂h (L , ξ, ψ) , t + h

)
(25)

·exp
(− 1

2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ.

Now comparing with (23), we have proven

U ′
1

(
Ĉe−L

)
e−L = ∂V

∂x
(x, L , t) , (26)

which yields the optimal feedback Ĉ(x, L , t). It corresponds with the solution (3.3)
obtained in the continuous-time model of Bensoussan et al. (2009).

To obtain π̂i , we must use relation (24), replacing X̂h(x, t, ξ) and L̂h(L , ξ, ψ) by
formulas in (20). For convenience, we first write the integrand of the system (24),
plug (20) into that integrand, and transform it by using the integration by substitution:

∂V

∂x

(
X̂h (x, t, ξ) , L̂h (L , ξ, ψ) , t + h

)

= ∂V

∂x

((
x − Ĉh

)
erh, L̂h (L , ξ, ψ) , t + h

)

+
∫ 1

0

∂2V

∂x2

((
x − Ĉh

)
erh + θxerh

n∑
k=1

π̂k

(
exp

((
αk(t) − r − 1

2
σkk(t)

)
h

+√
h (σξ)k

)
− 1

)
, L̂h (L , ξ, ψ) , t + h

)

xerh
n∑

k=1

π̂k

(
exp

((
αk(t) − r − 1

2
σkk(t)

)
h + √

h (σξ)k

)
− 1

)
dθ,
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and write the system (24) as in (27) which gives π̂i (x, L , t)with small h (see below).

0 =
∫

· · ·
∫

∂V

∂x

((
x − Ĉh

)
erh, L̂h (L , ξ, ψ) , t + h

) [
exp ((αi (t) (27)

− r − 1

2
σi i (t)

)
h + √

h (σξ)i

)
− 1

]
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ

+ xerh
∫

· · ·
∫ ∫ 1

0
dθ

∂2V

∂x2

((
x − Ĉh

)
erh + θxerh

∑
k

π̂k (exp ((

αk(t) − r − 1

2
σkk(t)

)
h + √

h (σξ)k

)
− 1

)
, L̂h (L , ξ, ψ) , t + h

)

·
n∑

k=1

π̂k

(
exp

((
αk(t) − r − 1

2
σkk(t)

)
h + √

h (σξ)k

)
− 1

)
(exp ((αi (t)

− r − 1

2
σi i (t)

)
h + √

h (σξ)i

)
− 1

)
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ,

∀ i = 1, . . . , n.

3.3 Approximation for Small h

The system (27) is highly non-linear.We can simplify it for small h to obtain the same
formulas as in the continuous time. We make the following three approximations by
(20) and exponential function with small h:

(
x − Ĉh

)
erh ∼ x,

L̂h (L , ξ, ψ) ∼ L + ζ
√
h

(
ρ∗ξ +

√
1 − |ρ|2ψ

)
,

exp

((
αi (t) − r − 1

2
σi i (t)

)
h + √

h (σξ)i

)
− 1 ∼ √

h (σξ)i

+
(

αi (t) − r − 1

2
σi i (t) + 1

2
(σξ)2i

)
h.

Then, by plugging the above approximations into (27), we obtain

0 =
∫

· · ·
∫

∂V

∂x

(
x, L + ζ

√
h

(
ρ∗ξ +

√
1 − |ρ|2ψ

)
, t + h

)(√
h (σξ)i

+
(

αi (t) − r − 1

2
σi i (t) + 1

2
(σξ)2i

)
h

)
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ



70 A. Bensoussan and S. P. Sethi

+ x
∫ 1

0
· · ·

∫ ∫ 1

0
dθ

∂2V

∂x2

(
x + θx

∑
k

π̂k

(√
h (σξ)k

·
(

αk(t) − r − 1

2
σkk(t)

)
h

)
, L̂h (L , ξ, ψ) , t + h

)

·
n∑

k=1

π̂k

((√
h (σξ)k + αk(t) − r − 1

2
σkk(t)

)
h

) ((√
h (σξ)i + αi (t)

− r − 1

2
σi i (t)

)
h

)
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ, i = 1, . . . , n.

Next we apply Taylor’s expansion to obtain

0 ∼ h · (αi (t) − r)
∂V

∂x
(x, L , t) + ∂2V

∂x∂L
(x, L , t) ζh

·
∫

· · ·
∫

(σξ)i

(
ρ∗ξ +

√
1 − |ρ|2ψ

)
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ

+ hx
∂2V

∂x2
(x, L , t)

∫
· · ·

∫ ∑
k

π̂k (σξ)k (σξ)i
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ.

Hence, finally after dividing by h, we have

(αi (t) − r)
∂V

∂x
(x, L , t) + ∂2V

∂x∂L
(x, L , t) ζ (σρ)i

+ x
∂2V

∂x2
(x, L , t)

(
σσ ∗π̂

)
i = 0. (28)

Recalling that
αi (t) − r = (σθ)i ,

we deduce

θ
∂V

∂x
(x, L , t) + ζρ

∂2V

∂x∂L
(x, L , t) + x

∂2V

∂x2
(x, L , t) σ ∗π̂ = 0. (29)

Thus, we have

π̂ (x, L , t) = −
(σ ∗(t))−1

[
θ ∂V

∂x (x, L , t) + ζρ ∂2V
∂x∂L (x, L , t)

]

x ∂2V
∂x2 (x, L , t)

, (30)
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which can be comparedwith the formula (3.4) obtained in the continuous-timemodel
of Bensoussan et al. (2009)

We can see that the first term on the right-hand side of (30) represents the risky
mutual fund of classical Mutual Fund Theorem that states that the investor can limit
his portfolio to investing simply in the risk-free fund and this risky mutual fund. The
presence of the second term on the right-hand side of (30) requires the investor to
consider a third fund due to the effect of uncertainty in inflation. Note that if the
inflation is uncorrelated with all the risky assets, then the second term is zero. The
inflation effect depends also on the inflation volatility ζ > 0 and on VLx , i.e., on
the sensitivity of the marginal value Vx with respect to the ln-basket price. If the
marginal value of nominal wealth rises (falls) in the basket price, then the higher the
correlation, the more (less) funds the investor allocates to the stock market.

Now we state the following extension of the classical Mutual Fund Theorem.

Theorem 1 With fully observed inflation, the optimal portfolio involves an alloca-
tion between the risk-free fund F1 and two risky funds that consist only of risky assets:
F2 (t) = (σ ∗(t))−1 θ(t) and F3(t) = (σ ∗(t))−1 ρ, where the vector Fk(t) represents
the kth portfolio’s weights of the risky assets at time t, k = 2, 3. Furthermore, the
optimal proportional allocations μk(t) of wealth in the fund Fk(t), k = 1, 2, 3, at
time t are given by

μ2(t) = −Vx (x, L , t)

x(t)Vxx (X, L , t)
,

μ3(t) = −ζVLx (x, L , t)

x(t)Vxx (X, L , t)
,

and

μ1(t) = 1 − μ2(t) − μ3(t).

According to Theorem 1, the optimal portfolio can consist of investments in three
funds, whereas the classical problem (without uncertain inflation) requires only two
funds. The first fund is the risk-free asset and the second one is the growth optimum
portfolio fund as in the classical problem. The third fund arises from the correlation
between the inflation uncertainty and the market risk.

Three-fund theorems are not new. They arise, e.g., in the continuous-time port-
folio models of Zhao (2007) and Brennan and Xia (2002). Zhao (2007) considers
an optimal asset allocation policy for an investor concerned with the performance
of his investment relative to a benchmark. In his case, one of the two risky funds
replicates the benchmark portfolio. In the three-fund theorem obtained by Brennan
and Xia (2002), one fund replicates real interest rate uncertainty, another one is the
classical growth optimal fund, and the last one replicates the fully observed inflation
uncertainty. They do not consider partially observed inflation as in the present paper.
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Before we take up the case of partially observed inflation in Sect. 4, next, let us
illustrate the special case of one period where we can obtain explicitly the optimal
consumption and portfolio policies.

3.4 One-Period Problem

Now, let us take T = h and N = 1. We call V (x, L , 0) = V (x, L), αi (0) = αi , and
σi (0) = σi j . Also, let U2 (x, L) = U2

(
xe−L

)
. Then, we get from (19)

V (x, L) = max
π,C

[
hU1

(
Ce−L

) + e−βh
∫

· · ·
∫

U2

(
xerh

(
1 −

n∑
i=1

πi

)
(31)

−C · h · erh + xerh
n∑

i=1

πi · exp
⎛
⎝

(
αi − r − 1

2
σi i

)
h + √

h
n∑
j=1

σi jξ j

⎞
⎠,

L +
(
x − ζ 2

2

)
h + ζ

√
h

(
ρ∗ξ +

√
1 − |ρ|2ψ

))
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ] .

We still have (26). Now (22) becomes

0 =
∫

· · ·
∫

∂U2

∂x

((
x − Ĉh

)
erh, L̂h (x, ξ, ψ)

) [
exp ((αi − r (32)

− 1

2
σi i

)
h + √

h (σξ)i

)
− 1

]
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ

+ xerh
∫

· · ·
∫ ∫ 1

0
dθ

∂2U2

∂x2

((
x − Ĉh

)
erh + θxerh

·
∑
k

π̂k

(
exp

((
αk(t) − r − 1

2
σkk(t)

)
h + √

h (σξ)k

)
− 1

)
,

L̂h (x, ξ, ψ)
) ∑

k

π̂k

(
exp

((
αk − r − 1

2
σkk

)
h + √

h (σξ)k

)
− 1

)

·
(
exp

((
αi − r − 1

2
σi i

)
h + √

h (σξ)i

)
− 1

)
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ.

We use the small h approximation to solve the system (32). It amounts to using
(30) with replacing
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∂V

∂x
(x, L , t) by U ′

2

(
xe−L

)
e−L ,

∂2V

∂x∂L
(x, L , t) by −U ′′

2

(
xe−L

) (
e−L

)2 −U ′
2

(
xe−L

)
e−L ,

and

∂2V

∂x2
(x, L , t) by U ′′

2

(
xe−L

) (
e−L

)2
.

Therefore, we get from (30),

π̂ (x, L) = − (σ ∗)−1 [(θ − ζρ)U ′
2

(
xe−L

) − ζρU ′′
2

(
xe−L

)
e−L ]

xU ′′
2

(
xe−L

)
e−L

. (33)

To obtain Ĉ(x, L), we use (26), which implies the calculation of ∂V
∂x (x, L). We use

(25) to obtain

∂V

∂x
(x, L) = e−(β−r)h

∫
· · ·

∫
∂U2

∂x

(
X̂h (x, ξ) , L̂h (L , ξ, ψ)

)
(34)

·exp
(− 1

2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ,

where

X̂h (x, ξ) =
(
x − Ĉh

)
erh

+ xerh
n∑

i=1

π̂i

(
exp

((
αi − r − 1

2
σi i

)
h + √

h (σξ)i

)
− 1

)

L̂h (x, ξ, ψ) = L + ζ
√
h

(
ρ∗ξ +

√
1 − |ρ|2ψ

)
+

(
I − ζ 2

2

)
h.

Using the small h approximation, we get

∂V

∂x
(x, L) ∼ ∂U2

∂x
(x, L) = U ′

2

(
xe−L

)
e−L ,

and thus we obtain Ĉ by solving

U ′
1

(
Ĉe−L

)
= U ′

2

(
xe−L

)
. (35)

So, if U1 = U2, we get Ĉ(x, L) = x . Note that the real consumption on the period
is hĈ(x, L), so we can consider it as negligible.
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4 Partially Observed Inflation Case

We now consider that L(t) is not observable, but we observe the signal

δZ(t) = L(t)h + m · δwZ (t); Z (0) = 0, (36)

where wZ (t) is independent from w(t) and wI (t). In this case, we extend (7), by

δL(t) =
(
I − ζ 2

2

)
h + ζ · δwI (t); L(0) = N (L0, S0). (37)

where L(0) is gaussian with mean L0 and standard deviation S0.
Let us define

G t = σ (δw(s), δZ(s), s = 0, . . . , t − h) .

We look for the Kalman filter

L̂(t) = E
[
L(t)|G t

] ; L̂ (0) = L0.

Consider the mean L̄(t) evolving as

δ L̄(t) =
(
I − ζ 2

2

)
h; L̄ (0) = L0.

On account of linearity, it is sufficient to consider

L̂(t) = L̄(t) +
t−h∑
s=0

K1(s) · δw(s) +
t−h∑
s=0

K2(s)
(
δZ(s) − L̄(s)h

)
, (38)

where K1(t) and K2(t) are deterministic functions.
Let L̂−(t) = E

[
L(t)|G t−h

]
. Then from (37), we get

L̂− (t + h) = L̂(t) +
(
I − ζ 2

2

)
h. (39)

Now by (38), we have

L̂−(t) = E
[
L̂(t)|Gt−h

]

= L̄(t) +
t−2h∑
s=0

K1(s) · δw(s)+
t−2h∑
s=0

K2(s)
(
δZ(s) − L̂(s)h

)

+ K2 (t − h)
(
L̂ (t − h) − L̄ (t − h)

)
h.
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Hence,

L̂− (t + h) = L̄ (t + h) +
t−h∑
s=0

K1(s) · δw(s) (40)

+
t−h∑
s=0

K2(s)
(
δZ(s) − L̄(s)h

) + K2(t)
(
L̂(t) − L̄(t)

)
h.

However, from (38) we get

L̂ (t + h) = L̄ (t + h) +
t−h∑
s=0

K1(s) · δw(s) +
t−h∑
s=0

K2(s)
(
δZ(s) − L̄(s)

)
h

+ K1(t) · δw(t) + K2(t)
(
δZ(t) − L̄(t)h

)
,

and from (40)

L̂ (t + h) = L̄− (t + h) + K1(t) · δw(t) + K2(t)
(
δZ(t) − L̂(t)h

)
.

Using (39), we deduce

L̂ (t + h) = L̂(t) +
(
I − ζ 2

2

)
h + K1 · δw(t) (41)

+ K2(t)
(
δZ(t) − L̂(t)h

)
.

Calling ε(t) = L(t) − L̂(t), we get

ε (t + h) = ε(t) + ζ · δwI (t) − K1(t) · δw(t)

− K2(t)
(
δZ(t) − L̂(t)h

)
,

ε (t + h) = ε(t) + ζ · δwI (t) − K1(t) · δw(t) (42)

− K2(t) (ε(t)h + m · δwZ (t)) .

Set S(t) = E[ε(t)2]. Then we get
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E
[
ε (t + h)2

] = S(t) (1 − hK2(t))
2 + m2 (K2(t))

2 h

+ ζ 2h + |K1(t)|2 h − 2ζK1(t)ρh

= S(t) + ζ 2
(
1 − |ρ|2) h + h |K1(t) − ζρ|2

+ (
h2S(t) + m2h

) (
K2(t) − S(t)

hS(t) + m2

)2

− hS2(t)

hS(t) + m2
.

In order to minimize the error, the best choices are

K1(t) = ζρ, K2(t) = S(t)

hS(t) + m2
, (43)

where S(t) is the solution of

S (t + h) = S(t) + ζ 2
(
1 − |ρ|2) h − hS2(t)

hS(t) + m2
; S (0) = S0. (44)

The Kalman filter is given by

L̂ (t + h) = L̂(t) +
(
I − ζ 2

2

)
h + ζρ · δw(t) (45)

+ S(t)

hS(t) + m2

(
δZ(t) − L̂(t)h

)
; L̂ (0) = L0.

It is standard to check that the conditional probability of L(t) given G t is gaussian
with mean L̂(t) and variance S(t) (deterministic).

4.1 Objective Function for Partially Observed Case

Consider again the cost function (16). This time the consumption process C(t) and
the portfolio π(t) are adapted to G t . Hence, the wealth process X (t) is observable.

Introducing the function

Ũ1

(
C, L̂, s

)
= 1√

2n

∫
U1

(
C exp

(
−

(
L̂ + y

√
S(s)

)))
e− 1

2 y
2
dy,

Ũ2

(
x, L̂, s

)
= 1√

2n

∫
U2

(
x exp

(
−

(
L̂ + y

√
S(s)

)))
e− 1

2 y
2
dy,

the cost function (16) can be written as
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J̃x,L̂,t (π (·) ,C (·)) = E

[
T−h∑
s=t

hŨ1

(
C(s), L̂(s), s

)
e−β(s−t) (46)

+Ũ2

(
X (t), L̂(t), T

)
e−β(T−t)|X (t) = x, L̂(t) = L̂

]
,

with evolution

δ L̂(s) =
(
I − ζ 2

2

)
h + ζρ · δw(s) (47)

+ S(s)

hS(s) + m2

(
δZ(s) − L̂(s)h

)
; L̂(t) = t,

δ
(
X (s)e−rs

) = X (s)e−rs
n∑

i=1

πi (s)
(
eδμh(s) − 1

)
(48)

−C(s)he−rh; X (t) = x .

The innovation

δw̃Z (t) = δZ(t) − L̂(t)h

m
(49)

is independent from G t and is gaussian with mean 0 and variance

E
[
(δw̃Z (t))2

]
= E

[(
ε(t)h

m
+ δwZ (t)

)2
]

= h2

m2
S(t) + h = h

(
m2 + hS(t)

)
m2

.

Hence,
S(t)

hS(t) + m2

(
δZ(t) − L̂(t)h

)
= S(t)m

hS(t) + m2
δw̃Z (t)

is gaussian with mean 0 and variance hS2(t)
m2+hS(t) .

Since

δw̃Z (t) = ε(t)h

m
+ δwZ (t),

we see that δw(t) and δw̃Z (t) are independent.
So, we can write

δ L̂(s) =
(
I − ζ 2

2

)
h + ζρ∗ · δw(s) + δw̃I , (50)
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where

δw̃I = S(t)m

hS(t) + m2
δw̃Z (t)

is gaussian independent of δw(t) and has a variance hS2(t)
m2+hS(t) .

4.2 Dynamic Programming

We write the analog of (19):

Ṽ
(
x, L̂, t

)
= max

π,C

[
hŨ1

(
C, L̂, t

)
+ e−βh

∫
· · ·

∫
Ṽ

(
xerh (1 (51)

−
n∑

i=1

πi

)
− C · h · erh + xerh

n∑
i=1

πi · exp
((

αi (t) − r − 1

2
σi i (t)

)
h

+√
h

n∑
j=1

σi jξ j

⎞
⎠ , L̂ +

(
I − ζ 2

2

)
h + ζρ∗ξ

√
h +

√
hS(t)√

m2 + hS(t)
ψ,

t + h)
exp

(− 1
2

(|ξ |2 + ψ2
))

(2n)
n+1
2

dξ1 · · · dξndψ

]
,

Ṽ
(
x, L̂, T

)
= Ũ2

(
x, L̂, T

)
.

The optimal feedback Ĉ(x, L̂, t) is the solution of

∂Ũ1

∂C

(
c, L̂, t

)
= ∂ Ṽ

∂x
(x, t) , (52)

and we will have for π̂ a system analogous to (27).
For small h, we have the result

π̂
(
x, L̂, t

)
= −

(σ ∗(t))−1
[
θ ∂ Ṽ

∂x

(
x, L̂, t

)
+ ζρ ∂2 Ṽ

∂x∂ L̂

(
x, L̂, t

)]

x ∂2 Ṽ
∂x2

(
x, L̂, t

) ,

which is similar to (30); the difference is that here we have L̂ and Ṽ instead of L and
V in (30).

Wecannowstate the following three-fund theorem in the case of partially observed
inflation.

Theorem 2 Under the partially observed inflation, Theorem 1 holds with a modified
proportional allocations of wealth between the funds:
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μ̃2(t) =
−Ṽx

(
X, L̂, t

)

X (t)Ṽxx

(
X, L̂, t

) ,

μ̃3(t) =
−ζ ṼLx

(
X, L̂, t

)

X (t)Ṽxx

(
X, L̂, t

) ,

and

μ̃1(t) = 1 − μ̃2(t) − μ̃3(t).

where μ̃k(t) is the proportional wealth invested in the kth fund at time t.

Theorems 1 and 2 imply that the components of the funds are arrived in the same
manner under the fully observed and partially observed inflation; only the relative
allocations of the wealth invested in these funds are different. Thus, in both cases the
optimal portfolio is a linear combination of the risk-free fund, the growth optimum
fund, and the fund that arises from the correlation between the inflation uncertainty
and themarket risk. The proportions of thewealth invested in these funds are different
because the investor’s belief on the consumption basket price is not the same under
different information sets, i.e., because L̂ is not the same as L . Thus, the noisy signals
affect the optimal solution through the value function derivatives.

5 Concluding Remarks

Wehave formulated a discrete-time version of the optimal portfolio and consumption
decision model under partially observed inflation, for the first time to our knowledge.
The investor observes noisy signals on the consumption basket price over time. Based
on these signals, he updates his estimates of the consumption basket and the real
asset prices in any given period, and then decides on his investment portfolios and
his consumption rate in that period. We show that a modified Mutual Fund Theorem
consisting of three funds holds. The funds are a risk-free fund, a growth optimum
fund, and a fund that arises from the correlation between the inflation uncertainty
and the market risk. In general, the wealth invested in these funds depends on the
investor’s utility function and on his beliefs about the consumption basket price.
However, the funds are robust over different information sets on the consumption
basket price. That is, the investor uses the same three funds regardless of the noise in
observing the consumption basket price. We show the results obtained are consistent
with those obtained in the continuous-time version of the problem. Moreover, since
in practice, the decisions are made in discrete time and therefore the data available on
potential empirical explorations of the problem require a discrete-time formulation;
this paper fills an important gap in the literature.
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