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1 Introduction

The taccalonolides are a unique class of microtubule stabilizers that are produced by
several Tacca species (Fig. 1). What we now know as the taccalonolides were first
identified in the early 1960s by Dr. Paul Scheuer as the “bitter principle” of the
tubers of Tacca leontopetaloides, a starchy food source. Scheuer and his colleagues
purified a compound they named taccalin in 1963 as an intensely bitter, light yellow
powder with a proposed tetracyclic structure [1]. While the actual structure of the
taccalonolides was later found to be much larger than originally proposed, it laid the
groundwork for the future study of this class of compounds. In 1987, Chen et al. [2]
elucidated the structures of taccalonolides A (1) and B (2) isolated from the rhi-
zomes of Tacca plantaginea. Taccalonolide A (1), the most abundant taccalonolide,
demonstrated cytotoxic activity against P-388 leukemia in cell culture as well as
antimalarial activity against Plasmodium berghei.

Over the following decades, two dozen additional taccalonolides were purified
from Tacca species. Taccalonolides C–M (3–13) and W–Y (23–25) were first
isolated from Tacca plantaginea [3–7], taccalonolides O–Q (15–17) from Tacca
subflabellata [8], taccalonolides R–V (18–22) from Tacca paxiana [9], and
taccalonolides Z (26) and AA (27) from Tacca integrifolia and Tacca chantrieri,
respectively (Table 1) [10]. The discovery of the microtubule-stabilizing effects of
the taccalonolides has sustained interest in these compounds as potential anticancer
agents and will be the primary focus of this contribution. The taccalonolides and
extracts from the leaves and tubers of Tacca leontopetaloides have also demon-
strated antitrypanosomal activity [11] and the ability to control against snails [12]
leading to a patent for their use as anthelmintic and molluscicidal agents [13].

Fig. 1 Tacca chantrieri
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Table 1 The structures and sources of taccalonolides
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Table 1 (continued)

Structure Name Source Ref.
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Table 1 (continued)

Structure Name Source Ref.
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Table 1 (continued)

Structure Name Source Ref.
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2 Taccalonolides as Microtubule Stabilizers

The initial bioassays performed with purified taccalonolides were crude measures of
cancer cell toxicity in vitro or antiparasitic and nematocidal activities that were not
attributable to a specific mechanism of action. However, in 2003, the taccalonolides
A (1) and E (5) (for structures see Table 1) were isolated as the bioactive com-
ponents from Tacca chantrieri extracts that led to paclitaxel-like microtubule
bundling and mitotic arrest with the formation of multiple spindle asters in cellular
assays (Fig. 2) [14]. The antiproliferative potency of the taccalonolides A (1) and E
(5) was found to be in the low micromolar range against human ovarian cancer
(SK-OV-3, 1A9) cervical cancer (HeLa), and melanoma (MDA-MB-435 [15]) cell

Table 2 The structures of bioactive retro-dihydrochalcones isolated from Tacca sp.
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lines, approximately 1000 times less potent than paclitaxel. However, the
taccalonolides retained potency in the NCI/ADR-RES paclitaxel-resistant model
that expresses high levels of the P-glycoprotein drug efflux pump, a major mech-
anism of taxane resistance in the clinic. The taccalonolides also retained potency in
the 1A9 ovarian cancer cell line that contains mutations in paclitaxel (PTX 10 and
PTX 22) binding sites in the human M40 b-tubulin isotype [16, 17].

The ability to circumvent these taxane resistance mechanisms was the first
indication that their mechanism of action could be distinct from this other
plant-derived class of microtubule stabilizers. Although the taccalonolides caused
cellular microtubule bundling, mitotic arrest with multipolar spindles, and subse-
quent apoptosis similar to paclitaxel, the taccalonolides were also distinct in that
they promoted the formation of spindle poles greater in number than paclitaxel,
further suggesting the possibility of a distinct mechanism of action. Together, these
findings first demonstrated that the taccalonolides were a structurally novel class of

Fig. 2 The effect of taccalonolide-enriched Tacca fractions on microtubule structures in HeLa
cervical cancer cells expressing GFP-tagged tubulin. The taccalonolides promote bundling of
interphase microtubules (top panels) as well as the formation of multiple asters in mitotic cells that
are markedly distinct from the microtubule spindle in normal mitotic cells (bottom panels)

190 S. S. Yee et al.



microtubule stabilizers produced from a plant source with micromolar potency that
were able to circumvent mechanisms of drug resistance to the taxanes potentially
through a distinct mechanism.

The cellular microtubule-stabilizing activity of taccalonolides A (1) and E (5)
was confirmed by Buey et al. [18] who demonstrated that 5 µM taccalonolide A (1)
and 10 µM taccalonolide E (5) induced microtubule bundling, multipolar spindles,
and multiple micronuclei in A549 adenocarcinomic human alveolar basal epithelial
cells. However, these cellular microtubule effects could not be recapitulated in
biochemical tubulin binding or polymerization assays. Furthermore, taccalonolides
A (1) and E (5) did not promote tubulin assembly at concentrations as high as
66 µM with 60 µM GTP–tubulin when analyzed by either centrifugation or electron
microscopy, and there was no evidence of taccalonolide binding to cross-linked or
native microtubules. The taccalonolides only weakly displaced the paclitaxel-site
probe Flutax-2, and the effect was not concentration dependent or observed in
preincubation experiments leading to the conclusion that any observed Flutax-2
displacement was artifactual. Taccalonolide A (1) was also unable to promote
microtubule polymerization even in non-denatured cytosolic extracts [19], further
suggesting that the cellular microtubule-stabilizing activity of this taccalonolide was
not the result of direct binding to microtubules or interactions with other soluble
cellular factors that regulate microtubule polymer mass.

In spite of the inability to detect a direct interaction with microtubules and in
being less potent than other classes of microtubule stabilizers, there was a continued
interest in the taccalonolides due to their potential inability to interact with tubulin
in biochemical preparations and their efficacy against taxane-resistant cancer cells.
These studies were expanded by the evaluation of taccalonolides A (1), B (2), E (5),
and N (14) as compared to other classes of microtubule-targeted drugs in cell lines
representing clinical mechanisms of taxane resistance, including overexpression of
P-glycoprotein, MRP7, and bIII-tubulin [20]. All four taccalonolides retained
in vitro efficacy in taxane-resistant human ovarian cancer cell lines expressing
P-glycoprotein, human embryonic kidney cell lines overexpressing MRP7, and
HeLa cervical cancer cell lines expressing bIII-tubulin. Taccalonolides A (1) and E
(5) were also found to be effective in vivo in a P-glycoprotein-expressing
multidrug-resistant syngeneic murine mammary adenocarcinoma model Mam17/
ADR that is resistant to both paclitaxel and doxorubicin [20].

Surprisingly, although the taccalonolides were on average over 100-fold less
potent than the taxanes in vitro, they demonstrated in vivo efficacy at concentrations
comparable to or even lower than those used for paclitaxel. Further studies also
demonstrated in vivo efficacy of taccalonolides A (1), E (5), N (14), and B (2) in the
mammary 16/c syngeneic tumor model at total doses of 20–90 mg/kg, which were
comparable to a total dose of 74 mg/kg paclitaxel [10]. These data not only con-
firmed that the taccalonolides were a novel class of microtubule stabilizers that can
circumvent clinically relevant forms of drug resistance, but also demonstrated
in vivo antitumor efficacy in paclitaxel-sensitive and -resistant tumor models at
doses much lower than expected from studies based on their in vitro potency.

Taccalonolide Microtubule Stabilizers 191



The lack of biochemical tubulin-polymerizing activity of the taccalonolides
prompted additional cellular studies to elucidate the mechanism of cellular
microtubule stabilization and how these effects were distinct from those of the
taxanes. One intriguing finding was that gross bundling of interphase microtubules
occurred at concentrations of taccalonolide A (1) that were equal to or less than
those that promoted antiproliferative effects, whereas the concentration of paclitaxel
required to observe cellular microtubule bundling was over 30-fold greater than its
antiproliferative IC50 value, further suggesting a mechanistic difference between
these two microtubule stabilizers [19]. This was particularly significant as it coin-
cided with reports suggesting that the interphase effects of microtubule-targeting
agents contribute to their antitumor efficacy in the clinic [21, 22]. It was also found
that the cellular effects of the taccalonolides were highly persistent, providing
long-term antiproliferative and cytotoxic efficacy even after only short periods of
drug exposure and subsequent removal from the culture medium. This cellular
persistence was not observed for other classes of microtubule stabilizers, including
paclitaxel, further highlighting mechanistic differences between the taccalonolides
and the taxanes. A high degree of cellular persistence has been associated with
potent in vivo efficacy of the clinically approved microtubule destabilizer eribulin
[23], providing a rationale for the unexpected in vivo potency of the taccalonolides.

3 Identification of Epoxidized Taccalonolides

Although early experiments demonstrated that taccalonolides A and E enriched
preparations had microtubule stabilizing activity that was distinct from that of the
taxanes, there were two issues that confounded a full understanding of their
mechanism of action. One is the aforementioned lack of interaction with purified
tubulin and the second was the inconsistent potency of different preparations of
taccalonolides A (1) and E (5).

The original characterization of the microtubule-stabilizing effects of
taccalonolide A (1) in 2004 demonstrated low micromolar potency, but follow-up
studies by our same group in 2008 using a newly purified batch of taccalonolide A
(1) were approximately 10-fold more potent. This inconsistency in the potency of
our taccalonolide A (1) batches from preparation to preparation led to a rigorous
evaluation of the chemical and biological properties of each of our HPLC fractions,
including those before and after the prominent taccalonolide peak. To our surprise,
we found that the microtubule-stabilizing potency did not comigrate perfectly with
fractions that contained the highest taccalonolide A (1) levels. A careful chemical
interrogation of the most potent HPLC fractions identified a sample containing
compounds with the taccalonolide backbone possessing an unanticipated epoxide at
positions C-22 and C-23 as opposed to the double bond in taccalonolide A (1).
While this was a trace product that was not in sufficient quantity to purify fully from
the natural product, the identification of the presence of this product led to its
efficient semisynthesis from abundant 22,23-alkene taccalonolides (Scheme 1).
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Remarkably, the 22,23-epoxidation epoxidation of taccalonolides A (1) and B
(2) to generate taccalonolides AF (28) and AJ (29), respectively, resulted in
taccalonolide microtubule stabilizers with low nanomolar potency in cells.
Additionally, these potent taccalonolides were able to effectively bind and poly-
merize tubulin in biochemical preparations, a property that was never observed for
the non-22,23-epoxidized taccalonolides [24]. With this knowledge in hand, our
group has revisited the activity of taccalonolides A (1) and B (2), in particular, and
found that the microtubule-stabilizing activity of these compounds can be dimin-
ished by additional rounds of purification with highly purified material being
completely devoid of any antiproliferative, cytotoxic, or cellular microtubule-
stabilizing effects (unpublished observations).

Together, these data demonstrate that the previously reported micromolar
potency biological activities of 22,23-alkene taccalonolides, including A (1), E (5),
B (2), and N (14) among others, are likely a result of small amounts of material that
was oxidized to generate a 22,23-epoxide. These formerly undetected trace amounts
of nanomolar potency epoxidized taccalonolide were sufficient to promote cellular

Scheme 1 Synthesis of taccalonolides AF (28) and AJ (29) via epoxidation of taccalonolides A
(1) and B (2), respectively
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efficacy in the micromolar range that was attributed to the more abundant
22,23-alkene taccalonolides. In contrast, the low quantities of epoxidized
taccalonolides in these preparations were insufficient to promote biochemical
tubulin polymerization, which requires near equimolar concentrations to tubulin,
providing a rationale for why cellular but not biochemical microtubule polymer-
ization could be observed in the early evaluations of taccalonolides A (1) and E (5).
To provide further evidence for this rationale, Peng et al. demonstrated that the
semisynthetic introduction of a 22,23-epoxide to ten additional purified
taccalonolides was sufficient to improve their antiproliferative potency, some into
the sub-nanomolar range. Furthermore, there has been minimal to no batch-to-batch
variation in potency among preparations of the 22,23-epoxidized taccalonolides AF
(28) and AJ (29) isolated from different plant sources by different laboratory
groups, providing confidence that these are indeed the bioactive component of
Tacca species that have been investigated for decades. Importantly, the potent
taccalonolides, AF (28) and AJ (29), retain many of the same biological properties
that were previously ascribed to taccalonolides A (1) and B (2), including the ability
to circumvent clinically relevant drug resistance mechanisms, a high degree of
cellular persistence, and in vivo antitumor efficacy [25, 26].

4 Identification of a Direct Interaction Between
the Taccalonolides and Tubulin

Equipped with an understanding of the role of the 22,23-epoxide in the
microtubule-stabilizing activity of the taccalonolides and semisynthetic strategies to
convert the naturally abundant 22,23-alkene into the potent 22,23-epoxy-
taccalonolides, there was a renewed approach in understanding the molecular inter-
actions between the taccalonolides and tubulin/microtubules. Unlike the
22,23-alkene taccalonolides A (1) and E (5), the 22,23-epoxy-taccalonolides were
indeed sufficient to polymerize purified tubulin in a similar manner to other
microtubule-stabilizing agents. However, there was a significant lag time associated
with taccalonolide-induced tubulin polymerization in contrast to the almost imme-
diate polymerization induced by the taxanes (Fig. 3) [26].

Additionally, the microtubules formed in the presence of taccalonolide AJ (29)
were highly resistant to cold-induced depolymerization as determined both tur-
bidometrically and by electron microscopy [26]. This was markedly distinct from
microtubules induced by other stabilizers, including paclitaxel and laulimalide (also
named fijianolide B), which were subject to cold-induced depolymerization.
Together, these results suggested that the taccalonolides promoted a distinct
mechanism of microtubule polymerization from other classes of microtubule
stabilizers.

To address whether the taccalonolides bind to the same site as paclitaxel and
laulimalide on microtubules, synergism and displacement studies were employed.
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Synergistic effects were observed between taccalonolide AF (28) and either
paclitaxel or laulimalide [26], further indicating that the taccalonolides bind to a site
pharmacologically distinct from the two major stabilizer-binding sites on tubulin.
Displacement studies using equimolar concentrations of taccalonolide AJ (29) with
either laulimalide or paclitaxel with purified tubulin demonstrated some competi-
tion between taccalonolide AJ (29) and paclitaxel [26]. However, it was notable that
prior addition of taccalonolide AJ (29) before paclitaxel was required to observe
decreased paclitaxel binding. This temporal effect on taxane displacement was the
first indication that the taccalonolides might be interacting in an irreversible manner
with tubulin. Indeed, after interaction with purified tubulin, the taccalonolides could
not be extracted from either the supernatant or the microtubule pellet [26].

Mass spectrometric analysis confirmed that the m/z 212–230 peptic fragment of
b-tubulin was lost after incubation with taccalonolide AJ (29) and replaced by a
peptide that was increased by the molecular weight of 29 [26]. Together, these results
demonstrated that the 22,23-epoxy-taccanolides covalently bound b-tubulin within
the b212–230 region, which includes the bHis229 residue that is the covalent binding
site of the cyclostreptin and zampanolide microtubule stabilizers. Additional
hydrogen–deuterium exchange mass spectrometry was employed to determine that
taccalonolide AJ-induced microtubule stabilization did not involve profound stabi-
lization of the M-loop of tubulin, which is associated with taxane and
zampanolide-induced microtubule stabilization, but instead promoted dramatic
inter-protofilament stability as a mechanism of microtubule stabilization [26].

These biochemical studies were confirmed by Wang et al., who reported the first
crystal structure of tubulin complexed with taccalonolide AJ (29) (Fig. 4),
demonstrating that the 22,23-epoxide of 29 binds covalently to the Asp226 residue
on b-tubulin [27]. Their data suggested that this covalent interaction promotes a
conformation shift in the M-loop of tubulin that favors the binding of GTP in the
E-site of tubulin. While the authors suggested in the supplemental data that the
previously assigned stereochemistry of the 22,23-epoxide may need to be revisited,
they did not ultimately promote this adjustment in configuration. However,

Fig. 3 Comparison of the biochemical tubulin polymerization activities of paclitaxel and
taccalonolide AJ. Left: paclitaxel (10 µM) promotes the immediate polymerization of purified
tubulin (20 µM) as compared to a vehicle control. Right: in contrast, taccalonolide AJ (10 µM)
dependent polymerization of purified tubulin (20 µM) is associated with a lag time of 8–10 min
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additional crystallographic data of taccalonolide AJ (29) in the absence of tubulin
and elucidation of the reaction mechanism (Scheme 2) confirmed that the stereo-
chemistry of the 22,23-epoxide originally described by Li et al. needed to be revised
[28, 29].

Based on these data, Sanchez-Murcia et al. undertook extensive in silico mod-
eling and molecular dynamics simulations to elucidate further the unique interaction
between the 22,23-epoxy-tacconolides and b-tubulin [30]. They proposed that the
nucleophilic attack on C-22 by the OD1/OD2 carboxylate of bAsp226 and opening
of the 22,23-epoxide is facilitated by the long-lived hydrogen bond interaction of
the carboxylate with the side-chain hydroxy of Thr223 and enhanced stabilization
mediated via water-bridged hydrogen bonds. The C-22 carbon was suggested to
undergo initial addition, indicating that the epoxide is non-protonated prior to
nucleophilic attack. They further emphasize that the 22,23-epoxide is essential for
covalent bond formation between the taccalonolide and tubulin. Their detailed
molecular analysis of the putative interactions provides an important framework for

Fig. 4 Taccalonolide AJ binding covalently to Asp226 on b-tubulin as determined by X-ray
crystallography of the T2R-TTL-taccalonolide AJ complex
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additional biochemical and molecular biological studies exploring their functional
importance.

The discrepancy between the lack of taccalonolide-induced M-loop stabilization
detected by hydrogen–deuterium exchange mass spectrometry and the observed con-
formational shift of the M-loop in the taccalonolide AJ-tubulin crystal structure [27]
was clarified byBalaguer et al. [25]. This elegant study compared the binding, allosteric
effects, and tubulin polymerization dynamics of the three known covalent microtubule
stabilizers: zampanolide, cyclostreptin, and the potent 22,23-epoxy-taccanolides.

The crystal structure of cyclostreptin bound to b-tubulin corrected previous
literature suggesting covalent interactions with bThr220 and bAsn228 and instead
confirmed that cyclostreptin and zampanolide both bind covalently to bHis229 [25].
Furthermore, they demonstrated that cyclostreptin-dependent tubulin polymeriza-
tion was associated with a similar lag period that had been observed with
taccalonolide AJ (29). In contrast, zampanolide rapidly induced tubulin polymer-
ization in a manner similar to taxane microtubule stabilizers. Superimposition of the
crystal structures of each of these compounds with tubulin demonstrated that
extensive M-loop interactions and helical stabilization were correlated with stabi-
lizers that promoted a strong initial rate of assembly [25]. In contrast, stabilizers
such as taccalonolide AJ (29) that only promote partial M-loop structuring without
inducing a helical confirmation were associated with a significant lag time prior to
the initiation of tubulin polymerization. Together, these data demonstrate that while
the taccalonolides do promote some structuring of the M-loop of b-tubulin, these
interactions are not as significant as those promoted by the taxanes, which result in
a delay in the initiation of microtubule stabilization by the taccalonolides.

5 Cellular Effects of Taccalonolide-Induced Microtubule
Stabilization

Given the distinct biochemical interaction of the taccalonolides with tubulin, studies
were undertaken to evaluate the effects of the 22,23-epoxy-tacconolides as com-
pared to taxanes on microtubule dynamics in biochemical preparations and in live
cells [31]. While paclitaxel and taccalonolide AJ (29) had similar overall effects on
the microtubule dynamics of purified tubulin that promoted overall stabilization,

Scheme 2 Reaction mechanism of the covalent binding of taccalonolide AJ to b-tubulin Asp226
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taccalonolide AJ (29) demonstrated a greater suppression of catastrophe frequency
likely as a result of its irreversible binding. In contrast, paclitaxel had a greater
effect on microtubule rescue frequency than taccalonolide AJ (29). Similar effects
were observed when microtubule dynamicity was evaluated in live cells with 29
having a greater impact on microtubule catastrophe and paclitaxel affecting rescue
frequency to a larger extent. These differences in cellular microtubule dynamics
were found to underlie the distinct microtubule aster morphology observed in cells
treated with the taccalonolides as compared to the taxanes [14, 32].

Real-time spindle formation was evaluated in live cells expressing GFP-tagged
tubulin upon treatment with the taccalonolides or paclitaxel compared to vehicle
controls. While cells entered mitosis at similar rates with similar effects on aster
formation, differences were noted in the consolidation of these asters by paclitaxel
but not the taccalonolides during extended mitotic arrest. This aster consolidation in
paclitaxel-treated cells led to the previously described phenotype of 2–3 asters per
cell in contrast to the taccalonolides that result in an average over five asters per cell
(Fig. 5). The finding that the taccalonolides suppress microtubule catastrophe and
inhibit aster consolidation to a greater extent than paclitaxel demonstrates that these
distinct effects on microtubule dynamicity between the test compounds can lead to
the formation of different cellular microtubule structures that could contribute
toward distinct biological readouts.

Rohena et al. [32] investigated the microtubule-associated mitotic effects initi-
ated by three structurally and functionally diverse microtubule-stabilizing agents:
taccalonolide AJ (29), laulilamide, and paclitaxel. Each microtubule stabilizer ini-
tiated distinct mitotic defects and differentially dysregulated the expression of key
mitotic kinases. Taccalonolide AJ (29) produced the most profound defects in
centrosome maturation, separation, and disjunction as observed by indirect
immunofluorescence of the centrosomal-associated proteins rootletin, Nek2, and
c-tubulin [32]. However, taccalonolide AJ-treated cells also contained the more
peripheral centrosomal protein pericentrin at every spindle aster, suggesting these
structures facilitated the maintenance and stability of the multiple, highly focused
asters observed in taccalonolide-treated cells as compared to the other two micro-
tubule stabilizers, which only contained two pericentrin foci [32]. Not surprisingly,
these defects in centrosomal structures were accompanied by mitotic signaling

Fig. 5 Distinct mitotic spindle structures in normal cells (left), paclitaxel-treated cells (middle),
and taccalonolide-treated cells (right)
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defects, including enhanced Eg5 phosphorylation by taccalonolide AJ-treated cells
as compared to those treated with the other stabilizers [32].

6 In Vivo Antitumor Efficacy of 22,23-Epoxy-tacconolides

The antitumor efficacy of the epoxy-taccalonolides AF (28) and AJ (29) was
evaluated initially in a MDA-MB-231 flank triple-negative breast cancer xenograft
murine model. Taccalonolide AF (28) exhibited antitumor efficacy at a total dose of
5 mg/kg that produced a greater degree of tumor regression than 40 mg/kg pacli-
taxel [26]. Additional antitumor studies with the potent 22,23-epoxidation products
of taccalonolides T (20) and AI (30) also demonstrated antitumor efficacy in a
MDA-MB-231 xenograft model [33]. However, taccalonolide AJ (29) did not
demonstrate antitumor effects even at the LD40 dose of 2 mg/kg [26]. These results
suggested that taccalonolides AF and AJ, with similar biochemical and cellular
microtubule-stabilizing activities, may have distinct pharmacokinetic properties.

Initial efforts to characterize differences in the chemical stability of taccalonolides
AF (28) and AJ (29) demonstrated that the C-15 acetoxy group of taccalonolide AF
(28) was hydrolyzed in aqueous solutions to generate AJ (29) [26]. In vivo phar-
macokinetic properties were evaluated for both taccalonolides AJ (29) and AF (29) in
the same strain of nude mice that were utilized for xenograft studies. AJ (29) was
demonstrated to have an elimination half-life of 8.1 min, when administered sys-
temically, while the half time of AF (28) was 44.1 min [34]. AJ (29) had excellent and
persistent antitumor efficacy when administered directly into the tumor, suggesting
that the lack of antitumor efficacy demonstrated with systemic administration of AJ
(29) was likely due to its short half-life in vivo [34].

Given the fact that the C-15 acetyl group on taccalonolide AF (28), which
demonstrated in vivo efficacy, was effectively hydrolyzed in aqueous solution to
generate taccalonolide AJ (29), which does not have a therapeutic window for
systemic administration in vivo, we hypothesized that semisynthesis of
taccalonolides with C-15 substitutions could provide increased stability of an active
antitumor drug to provide an increased therapeutic window. The in vitro biological
activities of 28 novel taccalonolides with mono substitutions at C-7 or C-15 or
disubstitutions at C-7 and C-25 ranged in antiproliferative potency from
2.4 nM to >20 lM [29]. However, no improved stability or therapeutic window
was observed with isovalerate, cyclopropyl, isobutyrate, or formate substituents at
C-7 or C-15. Additionally, substitutions at C-25 completely abrogated in vitro
activity, likely due to interference with the covalent binding of the 22,23-epoxide to
b226 of tubulin. The two most potent taccalonolides in vitro, isovalerate modifi-
cations at C-7 or C-15, were evaluated for in vivo antitumor efficacy by intratu-
moral injection in the drug-resistant human NCI/ADR-RES xenograft murine
model. Similarly to taccalonolide AJ (29), the isovalerate-modified taccalonolides
demonstrated potent in vivo efficacy when directly administered to the tumor and
notably caused long-term antineoplastic efficacy for over a month after the final
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dose was administered [29]. These results demonstrate that targeted delivery of the
taccalonolides provides for long-term efficacy in drug-resistant tumor models and
led to studies to identify a handle on the taccalonolides that could be used for tumor
targeting strategies.

7 Taccalonolide Conjugates Provide Evidence
of Specificity and a Handle for the Generation
of Targeted Agents

Data from previous semisynthetic efforts as well as an interrogation of the
taccalonolide AJ-tubulin crystal structure led to the identification of C-6 as a possible
handle amenable to functionalization. Indeed, modification of this site provided a
stable fluorescein-tagged taccalonolide that retained microtubule-stabilizing activity
and could be visualized colocalizing with microtubules (Fig. 6) [35].

These efforts were expanded to eventually generate a C-6-fluorescein
taccalonolide conjugate that retained in vitro potency in the low nanomolar range
and provided the stability to perform detailed imaging and cellular binding studies
[28]. Optimization of the taccalonolide–fluorescein probe included the addition of
pivaloyl-protected groups on fluorescein to quench fluorescence of the probe prior
to cellular import, which provided the ability to monitor uptake and binding in live
cells with no need to remove excess probe from the surrounding medium (Fig. 7).

Serendipitously, the C-6 fluorescein modification actually improved the bio-
chemical tubulin-polymerizing activity of the taccalonolides by making additional
contacts with tubulin [28]. However, the pivalate protective groups prevented a
direct interaction with tubulin in biochemical assays, demonstrating that the pivalate

Fig. 6 Fluorescein-tagged taccalonolide (green) colocalized with b-tubulin immunofluorescence
(orange) in fixed HCC1937 triple-negative breast cancer cells after 24 h treatment
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modification simultaneously prevented fluorescence and target engagement prior to
cellular hydrolysis. The taccalonolide–fluorescein probe was found to be superior to
commercially available taxane probes with regard to its microtubule staining
without the addition of carrier molecules or removing excess probe from the
medium [28]. It also provided microtubule staining under conditions that are not
amenable to visualization with reversible taxane-based probes, including chilled
conditions where microtubules are sensitive to depolymerization or in cells with
high expression of drug efflux transporters [28].

The fluorescent taccalonolide probe strikingly colocalized with b-tubulin by
immunofluorescence in human cancer cells, and the interaction was retained
throughout immunoblotting to demonstrate a specific interaction between tubulin
and the labeled taccalonolide [28]. A taccalonolide probe lacking the 22,23-epoxide
completely abrogated this colocalization and binding, providing the first direct
evidence of the exquisite specificity of the covalent interaction between the
22,23-epoxide of the taccalonolides and tubulin. This provided an unprecedented
opportunity to use mutational analysis of an ectopically expressed form of tubulin
to systematically evaluate the relative contribution of b-tubulin residues to
taccalonolide binding with a focus on those that would be predicted to facilitate this

Fig. 7 Flu-tacca-7 is a cell-permeable fluorescent taccalonolide containing pivalate protective
groups on the fluorophore that prevent fluorescence as well as target engagement prior to
intracellular esterase cleavage. Upon cellular entry and pivalate deprotection to generate
flu-tacca-8, the probe can directly bind tubulin and fluorescently label intracellular microtubules.
The quenching provided by the pivalate groups permits live cellular imaging without the need to
remove excess probe from the medium, providing a no-wash, irreversible fluorogenic labeling
system for cellular microtubules
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interaction based on the crystallographic and modeling data [27, 30]. Consistent
with these data, bAsp226 was critical for the covalent interaction between the
taccalonolides and tubulin [28]. Additionally, bLys19 and bLeu219 were also
critical for taccalonolide binding, bHis229 and bThr223A had a moderate effect on
binding, and bArg278 did not influence binding [28]. These data provide critical
insight into the taccalonolide pharmacophore that will be highly valuable in
strategies to optimize target binding and, potentially, to facilitate the synthesis of
new classes of taccalonolide-like small molecules. Overall, this study provided
insight into the target specificity and detailed drug–target interactions of the
taccalonolides and strategies to further develop targeted taccalonolides.

8 Other Bioactive Compounds Isolated from Tacca
Species

In addition to the taccalonolides, other bioactive compounds have been isolated
from Tacca species. Most intriguingly, a microtubule destabilizer, taccabulin A (31)
(Table 2), was isolated from the roots and rhizomes of Tacca species [36], which
was the first study reporting the isolation of both a microtubule stabilizer and
microtubule destabilizer from the same natural product source. Taccabulin A (31)
effectively displaced colchicine binding to tubulin, suggesting that it binds within
the colchicine pharmacophore, and demonstrated synergistic effects when com-
bined with the taccalonolides [36]. Similar to the taccalonolides and other colchi-
cine site-binding agents, taccabulin A (31) retained efficacy in drug-resistant
models, including those that express elevated levels of the P-glycoprotein drug
efflux pump or the b-III isotype of tubulin [36]. Six additional retro-chalcones,
taccabulins B–E (32–35) and evelynins A (36) and B (37), were also isolated from
Tacca extracts. Evelynin A (36) and B (37), as well as taccabulin D (34) demon-
strated some cytotoxic activity toward cancer cells in vitro but with no evidence of
microtubule stabilizing or destabilizing activities [37, 38]. Other classes of com-
pounds isolated from Tacca species include withanolides, glucosides, steroidal
glycosides, diarylheptanoids, and diarylheptanoid glycosides [39–49].

9 Conclusion

In the 60 years since the taccalonolides were first identified as the bitter principle of
Tacca tubers, they have continually provided interesting and often unanticipated
discoveries. These include the finding in 1987 that the structure of the taccalono-
lides was more complicated than initially proposed, the elucidation of their
mechanism of action as microtubule stabilizers in 2003, and the critical nature of
the 22,23-epoxide for direct tubulin binding in 2013. This last finding is somewhat
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of a cautionary tale in natural products research that describes how a potent minor
constituent, in this case 22,23-epoxy-tacconolides, could be responsible for the
activity originally ascribed to more naturally abundant compounds. We now know
that taccalonolides without a 22,23-epoxide lack the ability to bind and polymerize
tubulin and have no detectable antiproliferative activity against cancer cell lines in
culture. In contrast, potent 22,23-epoxy-taccanolides, including AJ (29) and AF
(28), have the ability to covalently and irreversibly bind the Asp226 residue of
b-tubulin to promote a distinct profile of microtubule stability as compared to other
classes of clinically approved microtubule stabilizers. Most notably, some of these
taccalonolides have demonstrated in vivo antitumor efficacy in drug-resistant breast
and ovarian cancer models that persists for extended periods after drug treatment
due to their covalent binding. Continued efforts to improve the therapeutic window
for systemic administration and/or promote localized drug delivery based on the
recent identification of a drug handle on the taccalonolide backbone may provide
for their development as novel anticancer agents for the treatment of drug-resistant
disease.
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