
Chapter 5
(Non-)Uniqueness of Einstein–Palatini
Gravity

Bert Janssen, Alejandro Jiménez-Cano, José Alberto Orejuela, and
Pablo Sánchez-Moreno

Abstract We analyse the most general connection allowed by Einstein–Hilbert
theory in Palatini formalism. We also consider a matter lagrangian independent of
the affine connection. We show that any solution of the equation of the connection is
essentially Levi-Civita up to a term that contains an undetermined 1-form. Finally, it
is proved that these connections and Levi-Civita describe a completely equivalent
physics.

Talk given by A. J. C. and based on the publication (Bernal et al., Phys Lett B
768:280–287, 2017).

5.1 Introduction and Mathematical Notions

Since the publication of the Einstein’s theory of General Relativity in 1915, we
understand gravitation as a geometrical effect. Many extensions of this theory have
been formulated in order to solve various problems in theoretical physics, such as
dark matter or the first corrections to General Relativity that could come from the
quantum gravity regime.

In the geometrical framework introduced by Einstein, the spacetime is defined as
a differentiable manifold M. Omitting some mathematical details, a D-dimensional
manifold is essentially a topological space that looks, locally, as the Euclidean space
ℝD. For example, spheres, planes and hyperboloids are 2-dimensional manifolds.
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Additionally, we include a lorentzian metric tensor, gμν, which allows to measure
lengths, volumes and so on. Hence it is possible to talk about the module of a vector
that is not necessarily non-negative, due to the lorentzian signature. Those vectors
that are not trivial but have zero norm determine the lightlike paths and, then, light
cones that define the casual structure of the spacetime.

Another fundamental notion that can be defined, even in the absence of metric, is
parallelism. The motivation for this additional concept is the following. Consider the
Euclidean space ℝD and a couple of vectors in different points, p and q (Fig. 5.1). If
we want to compare them, we simply take, for example, the one in p and move it to
q keeping the vector parallel to itself and without changing the module. And, finally,
we subtract both vectors to see the difference.

However, if the manifold is general, the initial vectors live in different spaces (the
tangent spaces at p and q, respectively, TpM and TqM) and there is no natural way
to relate them (Fig. 5.2). In the Euclidean space, both tangent spaces can be identified
making the comparison trivial. In the general case, we need to introduce an addi-
tional structure that carries the information about parallelism, the affine structure,
whose fundamental object is the (affine) connection Γσ

μν. Once we have a connection,
given a curve between two points, we have a rule to relate vectors in them: the
parallel transport associated to the connection.

The connection permits the definition of a covariant derivative (“covariant”
means that once applied to a tensor, the result is also a tensor), and other intrinsic
geometrical properties of the spacetime, such as the curvature and the torsion,
respectively:

Fig. 5.1 Comparison of
vectors in Euclidean space
(natural notion of
parallelism)
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Rμνρ
λ � ∂μΓλ

νρ � ∂νΓλ
μρ þ Γλ

μσΓ
σ
νρ � Γλ

νσΓ
σ
μρ,

Tμν
λ � Γλ

μν � Γλ
νμ:

Consider a manifold with a metric structure gμν, then it can be proved that there is

only one connection, Γ gð Þλ
μν, compatible with the metric and torsionless, namely

∇λgμν ¼ 0, Tμν
λ ¼ 0:

This connection is called the Levi-Civita connection of gμν, and it is completely
determined by the metric:

Γ gð Þλ
μν ¼

1
2
gλσ ∂μgσν þ ∂νgμσ � ∂σgμν

� �
:

In fact, given a metric, the Levi-Civita affine structure is the simplest connection
we can deal with. The metric compatibility and the nullity of the torsion simplify
many geometrical identities. Moreover, we are not introducing extra degrees of
freedom in the theory, just the ones that come from the metric.

Before starting with the physics, let us introduce a few useful definitions. A curve
γ(α) is a differentiable function γ : I!M, where I is an interval of the real line. The

Fig. 5.2 An affine connection represents a notion of parallel in the manifold and allows to parallely
transport vectors along curves. The dashed line is, by definition, the parallel transport of Vμ( p) from
p to q along the xλ direction. This vector and Vμ(q) can be compared since both live in TqM
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image of a curve in the manifold is what we will call trajectory or path. So a
trajectory is a set of spacetime points joined in a continuous and differentiable
way, while the curve is the function that generates this set.

Let M be a spacetime equipped with a connection Γρ
μν . An autoparallel of this

affine structure is the image of a curve whose velocity is parallel to itself (with
respect to Γρ

μν). In other words, given a curve γ(α) with velocity v
μ(α), its image is an

autoparallel if the following equation holds:

vμ∇μv
ρ � dvρ

dα
þ Γρ

μνv
μvν ¼ f αð Þvρ:

for some function f(α). If we reparametrize the trajectory, by doing α ! β(α), we
change the velocity as well as the function f. This function can always be set to zero
(identically) with an appropriate choice of the parameter. Those are called affine
parameters for the trajectory.

Consider that the manifold also has a metric structure. The autoparallels of the
associated Levi-Civita connection are special because they can be derived from a
completely metric approach, i.e. without using the Levi-Civita parallelism. If the
velocity is timelike or spacelike, they correspond to trajectories that are critical
points of the length functional:

s γ½ � αð Þ ¼
Zα

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνvμvν
�� ��q

dα0:

The lightlike case should be treated separately, because the length functional
cannot be varied smoothly. However, they can be seen as critical points of other
functionals that, again, only involve the metric structure. For these reasons, in
general, we will call the autoparallels of Levi-Civita critical trajectories. The
associated affine parameters have a special meaning, because their changes are
proportional to the length between the considered points. In the timelike case, it is
essentially the proper time, so these parameters represent the rhythm of a proper
(i.e. freely falling) clock along them.

5.2 Einstein’s Equations and Variational Principles

General relativity is a geometric theory of the spacetime whose dynamics is
described by the Einstein’s equation:

Rμν gð Þ � 1
2
gμνR gð Þ ¼ �κT μν, ð5:1Þ
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where RμνðgÞ � Rμλν
λðgÞ is the Levi-Civita Ricci tensor, R(g) � gμνRμν(g) is the

Levi-Civita Ricci scalar, κ � 8πG (G is the Newton’s constant) and T μν is the
(Hilbert) energy-momentum tensor that contains the information about the matter
and energy content.

This equation can be obtained from a more fundamental object through a varia-
tional principle, the Einstein–Hilbert action:

S g,ψ½ � ¼ 1
2κ

Z
R gð Þ

ffiffiffiffiffiffi
gj j

p
dDxþ Smatter g,ψ½ �:

The energy-momentum tensor is then defined by

T μν � 2ffiffiffiffiffiffi
gj jp δSmatter

δgμν
:

Notice that we are assuming (from the start) a particular affine structure, the one
fixed by the metric. We are selecting the Levi-Civita connection by hand and this can
be considered natural because it is the simplest one. When we obtain from a
gravitational action the equations of motion admitting that the affine structure is
Levi-Civita, we are using the so-called metric formalism, because the metric deter-
mines everything related to the gravitational field.

Another approach, which is called Palatini or metric-affine formalism, consists in
considering the metric and the connection as independent fields. Now the connection
is general and the corresponding equations of motion should determine whether it is
Levi-Civita or not. The action in this formalism is

S g,Γ,ψ½ � ¼ 1
2κ

Z
gμνRμν Γð Þ

ffiffiffiffiffiffi
gj j

p
dDxþ Smatter g,ψ½ �:

It is worth remarking that we are assuming that the matter part of the action does
not depend on the affine connection Γ.

This formalism is interesting because we expect Levi-Civita connection to be
fixed by the corresponding equations of motion, in contrast with the metric formal-
ism in which it is selected artificially.

5.3 Palatini Solutions of the Einstein–Hilbert Action

If we vary the Einstein–Hilbert action in the metric-affine formalism, we obtain the
following equations of motion for the metric and the connection, respectively:
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0 ¼ 1
2

Rμν Γð Þ þ Rνμ Γð Þ� �� 1
2
gμνR Γð Þ þ κT μν, ð5:2Þ

0 ¼ ∇λg
μν �∇σg

σν δμλ þ
1
2
gμνgρτ∇λgρτ � 1

2
gρτ∇νgρτδ

μ
λ þ Tλσ

σgμν

� Tρσ
σgρνδμλ þ Tσλ

μgσν: ð5:3Þ

Equation (5.3) can be simplified if the dimension of the spacetime is D > 2.1 We
then obtain:

0 ¼ ∇λgμν � Tνλ
σgμσ þ 1

D� 1
Tλσ

σgνμ þ 1
D� 1

Tνσ
σgλμ: ð5:4Þ

Clearly, Levi-Civita is a solution, because in that case each term of the right hand
side vanishes. However, let us try for other solutions. Consider only those that are
torsionless, then, necessarily, ∇λgμν should be zero, so Levi-Civita is the only
possibility. The same happens for metric-compatible solutions. In fact, when Palatini
formalism is presented (in textbooks for example), one of these two conditions is
assumed. Consequently, we lose the information about the general solution and it
reduces to Levi-Civita.

The most general solution of Eq. (5.4) has the form:

Γσ
μν ¼ Γ gð Þσ

μν þ Aμδ
σ
ν ,

where Aμ is an arbitrary 1-form (Bernal et al. 2017). We will call it Palatini
connection from now on.

The associated covariant derivative of the metric (also called non-metricity
tensor) and torsion are

∇λgμν ¼ �2Aλgμν,

Tμν
σ ¼ Aμδ

σ
ν � Aνδ

σ
μ:

Here, we clearly notice what we stated before: switching off one of them implies
Aλ ¼ 0 and, then, Levi-Civita as the only possibility.

The Palatini Riemann tensor, Ricci tensor and Ricci scalar are given by

Rμνρ
λðΓÞ ¼ Rμνρ

λðgÞ þ F μνδ
λ
ρ,

Rμν Γð Þ ¼ Rμν gð Þ þ F μν,

1For the particular case D ¼ 2 see (Deser 1996).
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R Γð Þ ¼ Rμν gð Þ,

respectively, where F μν ¼ ∂μAν � ∂νAμ . As a consequence of these expressions,
the equation of motion of the metric (5.2) becomes the Einstein’s Eq. (5.1), see
(Dadhich and Pons 2012). We now present some properties of these solutions.

5.3.1 Projective Relation Between Solutions

Any two Palatini connections, for example

Γρ
μν ¼ Γ gð Þσ

μν þ Aμδ
σ
ν , Γ0ρ

μν ¼ Γ gð Þσ
μν þ A 0

μδ
σ
ν ,

are related by a transformation:

Γρ
μν ! Γ0ρ

μν ¼ Γρ
μν þ kμδ

σ
ν ,

for certain covector kμ. This transformation is a projective transformation which
means that preserves autoparallels. This can be proved easily. First, consider an
autoparallel trajectory for the connection Γ0ρ

μν,

dvρ

dβ
þ Γ0ρ

μνv
μvν ¼ 0:

Then, imposing the projective relation between both connections and defining
�kμv

μ � f(β) we get to the expression:

dvρ

dβ
þ Γρ

μνv
μvν ¼ f βð Þvρ:

And this is the equation of an autoparallel for the connection Γρ
μνwith a non-affine

parametrization. If we parametrize the path affinely (β ! α and vρ ! uρ) we obtain:

duρ

dα
þ Γρ

μνu
μuν ¼ 0:

Q.E.D.
Consequently, the whole set of Palatini connections shares the same

autoparallels, up to reparametrizations, which have no physical meaning. As a
matter of fact, since Levi-Civita is a particular Palatini connection (the case with
Aμ ¼ 0 ) we conclude: the autoparallels of any Palatini connection are critical
trajectories of the metric.
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5.3.2 Homothety Property

Let γ(τ) be a general curve in the spacetime and vμ its velocity, and a vectorWμ. If we
compare the change of the vector along γ(τ) under Palatini and Levi-Civita parallel
transport, we see that the difference between both transports is proportional to Wμ:

vμ∇μ � vμ∇ gð Þ
μ

� �
Wρ ¼ �Aμv

μWρ � λ τð ÞWρ:

The module is not conserved but the direction does. Due to this, we say the
Palatini parallel transport is homothetic with respect to the Levi-Civita transport. It
can be proved that the only connections with this property are the Palatini connec-
tions (Bernal et al. 2017). Any other connection would generate a perturbation in the
direction of Wμ.

5.4 Observability and Physical Implications

We introduced the Palatini formalism in order to see if the dynamics could fix Levi-
Civita as the fundamental connection of the theory, in contrast with the metric
formalism in which it is selected by hand. However, we have obtained a family of
connections that differ in a vector field, with Levi-Civita as a particular case. In this
section, we analyse the physical implications of this field. Indeed, we will see that it
is undetectable or, equivalently, that metric and Palatini formalism describe the same
physics.

The main point is that the gravitational dynamics is the same in both formalisms.
The equation of the matter is clearly the same, because the corresponding action does
not depend on the connection, so the difference between formalisms does not affect
this part of the total action. And, as we previously showed, Palatini connections
imply the reduction of the equation of the metric to the Einstein’s equation. The
resulting dynamics for the metric and the matter content is given by

Rμν gð Þ � 1
2
gμνR gð Þ ¼ �κT μν,

δSmatter

δψ
¼ 0,

in both formalisms.
Furthermore, in Einstein–Hilbert gravity the distinction between critical and

autoparallel trajectories disappears due to the projective symmetry. In fact, defining
the trajectory of a test particle is often presented as a basic problem of metric-affine
theories. Those of critical length and those with covariantly constant velocity are
candidates because both of them infinitesimally reduce to straight lines. The critical
paths are the simplest approach, but there are authors who defend the description
with autoparallels (Kleinert and Pelster 1999) and others who state that only the
conserved currents determine the test paths (Hehl and Obukhov 2007).
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In Einstein–Hilbert gravity, the conservation of the energy-momentum tensor
selects the critical paths. However, fortunately, the autoparallels set by the Palatini
dynamics coincide, as a consequence of the projective relation between Palatini
connections (a family that includes Levi-Civita). Indeed, we have seen that the field
Aμ can be eliminated by the freely falling observer with an appropriate choice of the
parameter.

All of these ideas point in the same direction: the field Aμ has no physical effects
(Bernal et al. 2017).

5.5 Equivalence in Other Theories

Finally, we add a few remarks about Palatini connections in other theories. One
example is Lovelock theory in Palatini formalism:

S g,Γ,ψ½ � ¼ SLov g,Γ½ � þ Smatter g,ψ½ �, SLov g,Γ½ � �
Z XK

n¼1

anLn g,Γ½ �
ffiffiffiffiffiffi
gj j

p
dDx,

where an are certain dimensionful parameters,ℕ 3 K� ceiling(D/2� 1) and the nth-
order Lovelock lagrangian is defined by

Ln½g,Γ� ¼ δ½μ1ν1
. . . δμ2n�ν2n

gρ1ν1 . . . gρnν2n�1Rμ1μ2ρ1
ν2ðΓÞ . . .Rμ2n�1μ2nρn

ν2nðΓÞ:

It was shown in Borunda et al. (2008) that Levi-Civita is a solution for the
equation of the connection in any of these theories. As far as we know, the general
solution remains unknown, but we have found that the action presents the projective
symmetry, Γσ

μν ! Γσ
μν þ Aμδ

σ
ν . The proof is the following. Under the projective

transformation, the Riemann tensor is modified:

Rμνρ
λ ! Rμνρ

λ þ F μνδ
λ
ρ:

Then, the lagrangian transforms:

Ln ! δμ1½ν1 . . . δ
μ2n
ν2n� ðRμ1μ2

ν1ν2 þ F μ1μ2g
ν1ν2Þ . . . ðRμ2n�1μ2n

ν2n�1ν2n þ F μ2n�1μ2ng
ν2n�1ν2nÞ

and the ν’s antisymmetrization cancels all the terms proportional to the metric, so

δprojLn ¼ 0, 8n ) δproj SLov g,Γ½ � þ Smatter g,ψ½ �f g ¼ 0:

Q.E.D.
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Consequently, since Levi-Civita (Γ gð Þσ
μν) is a solution, then Γ

gð Þσ
μν þ Aμδ

σ
ν is also a

solution. Indeed, the whole set of solutions can be separated into equivalence classes
of projectively related connections. So if a new solution Γsolσ

μν of a Lovelock theory

that has not the form Γ gð Þσ
μν þ Aμδ

σ
ν (for some Aμ) is found, then we could build a

family of new solutions just adding a termℬμδ
σ
ν whereℬμ is arbitrary. This property

also holds for any other lagrangians with projective invariance, such as f(R) gravity.
Other theories we have tested are those with quadratic torsion corrections to the

Einstein–Hilbert lagrangian. The torsion corrections we consider are only those with
even parity:

S g,Γ,ψ½ � ¼ 1
2κ

Z
gμνRμν Γð Þ

ffiffiffiffiffiffi
gj j

p
dDxþ Smatter g,ψ½ � þ 1

2κ

�
Z

b1T
1ð Þ
μνρT

1ð Þμνρ þ b2T
2ð Þ
μνρT

2ð Þμνρ þ b3T
3ð Þ
μνρT

3ð Þμνρ
h i ffiffiffiffiffiffi

gj j
p

dDx,

where bi are arbitrary dimensionless real constants and T ið Þ
μνρ are the irreducible

components of the torsion (see (McCrea 1992)). For these extensions, the equiva-
lence between metric and Palatini formalism holds.

5.6 Conclusions

To conclude we summarize our results. We have seen that Einstein–Hilbert gravity
in the Palatini formalism has some interesting features. If we couple this theory with
a matter action through the metric (and not the connection), the result is physically
indistinguishable from the dynamics obtained assuming Levi-Civita as the funda-
mental affine structure from the beginning (metric formalism).

The general solution of the equation of the connection is Levi-Civita plus the term
Aμδ

σ
ν where Aμ is an undetermined field. However, the equations of motion are the

same as in metric formalism. Therefore, we get to different mathematical descrip-
tions (related through the projective symmetry) that describe the same physics. In
other words, it is not necessary to set the connection to be Levi-Civita by hand. The
dynamics fixes the affine structure.

Another additional property of the Palatini connections is that they are the only
affine structures whose parallel transport is homothetic with respect to the Levi-
Civita transport. So the directions obtained in both cases are coincident.

We have also proved that an autoparallel of a given Palatini connection is a
trajectory with critical length (autoparallel of Levi-Civita). The undetermined field
Aμ for a free falling observer can be absorbed in a reparametrization of its worldline,
so it has no physical meaning since a particular choice of the parameter is
meaningless.
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We have found solutions of this kind in more general theories, for example, in
Lovelock gravity. In addition, if we admit matter that does not feel the connection,
the equivalence between formalisms can be extended from Einstein–Hilbert to any
theory with additional quadratic torsion terms in the action. Current work involves
the treatment with more general matter and with additional terms that introduce, for
example, dynamics for the torsion field.
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