
Chapter 2
Going Beyond the Standard Model

B. G. Sidharth

Abstract In this communication we had argued that we could account for the
shortcomings of the standard model by including noncommutative geometry
which could lead to a non-zero (electron) neutrino mass.

At that point in time it was widely accepted that the standard model of particle
physics is the most complete theory and yet there have been frantic efforts to go
beyond the standard model to overcome its shortcomings. Some of these are:

1. In the theory prevalent at that time, it was stated that it fails to deliver the mass to
the neutrino which thus remains a massless particle.

2. This apart, it did not include gravity, which is otherwise one of the four funda-
mental interactions.

3. We had to keep in mind the hierarchy problem viz., the wide range of masses for
the elementary particles or even for the quarks.

4. It appears that other as of yet undiscovered particles exist which could change the
picture, for example, in supersymmetry in which the particles have their super-
symmetric counterparts.

5. The standard model has no place for dark matter, which on the other hand has not
yet been definitely found. Nor is there place for dark energy.

6. Finally, the 18 odd arbitrary constants which creep into the theory need to be
explained.

There are however obvious shortcomings which could be addressed in a relatively
simple manner which could enable us to go beyond the standard model. Let us start
with the standard model Lagrangian
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which includes the Dirac Lagrangian amongst other things.
We pointed out that all these have been on the basis of the usual point spacetime

which is what may be called commutative. But in recent years several authors
including in particular the present author has worked with a noncommutative
spacetime which originates back to Snyder in the late forties itself. (This was an
attempt to overcome the divergences.)

We first observed that it was Dirac (1958) who pointed out two intriguing features
of his equation: (1) The Compton wavelength and (2) Zitterbewegung.

For the former, his intuition was that we can never make measurements at space
or time points. We need to observe over an interval to get a meaningful definition of
momentum for example. This interval was the Compton region (Sidharth and Das
2017). Next, his solution was rapidly oscillatory, what is called Zitterbewegung.
This oscillatory behaviour disappears on averaging over spacetime intervals over the
Compton region. Once this is done while meaningful physics appears, we are left
with not points but minimum intervals.

This leads to a noncommutative geometry. One model for this is that of Snyder
(1947). Applied at the Compton wavelength this leads to the so-called Snyder–
Sidharth dispersion relation, the geometry being given by Sidharth (2008)

xi, x j

� 	 ¼ βij:l
2 ð2:2Þ

As described in detail in Sidharth (2010), this leads to a modification in the Dirac
and also the Klein–Gordon equation. This is because Eq. (2.2) in particular leads to
the following energy momentum relation (cf. Sidharth 2008)
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E2 � p2 � m2 þ αl2p4 ¼ 0 ð2:3Þ

where α is a scalar constant, |α| � 10�3 (Sidharth et al. 2015, 2016). Though the
value of α is of no consequence for the present work, it may be mentioned that α
gives the Schwinger term. If we work with this energy momentum relation (2.3) and
follow the usual process, we get as in the usual Dirac theory

γμpμ � m

 �

ψ � γopo þ Γf gψ ¼ 0 ð2:4Þ

We now include the extra term in the energy momentum relation (2.3). It can be
easily shown that this leads to

p2o � ΓΓþ Γβ þ βΓf g þ β2αl2p4g� �
ψ ¼ 0 ð2:5Þ

Whence the modified Dirac equation

γopo þ Γþ γ5α2

 �

ψ ¼ 0 ð2:6Þ

The modified Dirac equation contains an extra term. The extra term gives a slight
mass for the neutrino which is roughly of the correct order viz., 10�8me,me being the
mass of the electron. The behaviour too is that of the neutrino (Sidharth 2010, 2017).

To sum up the introduction of the noncommutative geometry described in
Eq. (2.2) leads to a Dirac like Eq. (2.6) and a Lagrangian that leads to the electron
neutrino mass.

It must be pointed out that the modified Lagrangian differs from the usual
Lagrangian in that the γo matrix is now replaced by a new matrix

γo0 ¼ γo þ γo:γ5lp2

that includes the term giving rise to the neutrino mass. We could verify that the
modified Lagrangian gives back the modified Dirac equation (2.6). Further as has
been discussed in detail, the extra term arising out of the noncommutative geometry
is the direct result of the dark energy which thus also features in the modified
standard model Lagrangian. This apart, this argument has been shown to lead to a
mass spectrum for elementary particles that includes all the elementary particles,
giving the masses with about 5% or less error (Sidharth 2008).
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