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Abstract The connection between mathematics and physics poses problems for
students, but even professional physicists do not always notice when mathematical
treatments fail to reflect physical processes. By way of example, I draw on the
foundations of thermodynamics, which is a highly mathematical but conceptually
challenging subject. The failure of mathematics to connect to physics concepts, in
particular energy conservation, raises a number of questions. First, how is it that
generations of professional physicists have been seduced by the elegance of math-
ematics into overlooking underlying difficulties with the physics? Secondly, what
can this tell us about the how of physics: how is it done, how do we justify a theory?
Thirdly, should PER encourage us to look more critically at the fundamental
foundations of physics, and if so, what does it reveal about the way we should be
teaching these subjects? Not all of these questions can be answered yet, but in this
chapter I illustrate some of the more profound mathematical difficulties in thermo-
dynamics and briefly discuss what approach to teaching thermodynamics might
fruitfully be taken.

11.1 Introduction

At the GIREP-ICPE-EPEC conference in Dublin, 2017, I presented an argument that
the foundations of thermodynamics were flawed and asked how this should affect the
approach to the teaching of thermodynamics. This chapter is on the same topic and
inevitably draws on many of the same arguments, so some overlap is unavoidable.
However, the arguments against the concept of thermodynamic entropy as a property
of a body are numerous and in this work I shall attempt to present the case against
entropy slightly differently.
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Just what is it about entropy that I disagree with? Simply that entropy is not a
property of a body and that Clausius erred in his derivation of the fundamental
inequality of irreversible thermodynamics, namely;

TdS > dQ (11.1)

I shall argue in this chapter that this expression is not consistent with energy
conservation as expressed in the First Law and that its use as the basis of the
commonly accepted form of the Second Law due to Clausius, which holds that the
entropy of the universe can never decrease, is incorrect. To begin, I go back to
foundations of thermodynamics to review the origin of the concept of entropy,
starting with Carnot and Clausius. Carnot idealised the operation of a heat engine
and paved the way for people like Clausius and Thompson (Kelvin) to incorporate
the equivalence of heat and work into a theory of thermodynamics that has passed
down the generations almost unchanged at its core.

Clausius reworked Carnot’s theory in 1850 (Clausius 1898) to take into account
the change in the theory of heat from a material substance, caloric, to idea that heat is
motion and developed the modern notion of reversibility from the idea of a reversible
cycle. It is perhaps not widely appreciated, however, that Clausius and Kelvin
differed fundamentally in their view of thermodynamics (Magie 1899). Indeed, the
very word, “thermodynamics” was coined by Kelvin to describe the idea of using
heat to produce work and vice versa, generating heat from work. Kelvin was
concerned with cyclic processes, without which a heat engine cannot operate. It
was implicit in everything he wrote and is central to his statement of the Second
Law: it is impossible to convert an amount of heat completely into work in a cyclic
process in the absence of other effects. Kelvin’s statement is simple and intuitive.
Work can be done during the expansion stage of a cycle but the piston has to be
returned to the starting position with the working fluid back at the starting state for
the engine to continue working. This also requires work, which is derived from a
portion of the heat taken in from the hot reservoir. Clausius’ view of thermodynam-
ics was much less intuitive.

Clausius phrased his statement of the Second Law as the impossibility of trans-
ferring heat from a cold to a hot body without some other effect also occurring at the
same time. Although not explicitly stated, this also relies on the existence of a cyclic
process and indeed the proof of the equivalence of Kelvin’s and Clausius’ different
forms of the law usually considers two cyclic processes in tandem, with one
operating as a refrigerator converting work into heat and the other as a heat engine
converting heat into work. Violation of one form of the law leads to violation of the
other (Zemansky 1968). The cyclic process is therefore central to the foundations of
thermodynamics and it was Carnot’s innovation to represent the ideal, reversible
heat engine as an ideal cycle comprising alternate isothermal and adiabatic pro-
cesses. Ironically, it was Kelvin who followed Carnot most closely in regarding the
cycle itself as reversible, but it was Clausius’ ideas that gained prominence and for
him the separate stages of the cycle were themselves reversible processes.
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The modern notion of a reversible process as quasi-static is derived directly from
Clausius, but curiously, the notion of a quasi-static process as reversible has never, to
my knowledge, been questioned. Quite possibly, this is because the Carnot cycle
comprises four stages which can be represented as occurring along contours in
thermodynamic phase space defined by either constant temperature or zero heat
flow and the differential form of work, PdV, is integrable between any two points
along such contours. Thus, mathematically at least, the work done by the gas
between two states, denoted by, say, A and B, on any such contour is,

B A
W:/ Pde—/ J\% (11.2)
A B

The key question is whether there is any physical process that corresponds to this
mathematical abstraction. If not, the separate stages of Carnot’s cycle are not in
themselves reversible and we should consider, in line with Carnot and later Kelvin,
the reversibility of the cycle. Moreover, entropy cannot be considered a property of
a body.

This last argument is quite subtle and not so easily comprehended, but it can be
understood with reference to cyclic processes. It was Clausius himself (1898) who
argued that within a cyclic process,

do
%TSO (11.3)

The equality applies to a reversible cycle, such as Carnot’s, and the inequality
applies to a cycle that contains an irreversible process. Although Clausius claimed
that this was susceptible to mathematical proof, there is scant evidence in the
literature that he actually did prove it, though it appears to hold in practice in as
much as there are no reported violations within the literature. The irreversible
process that Clausius considered and which demonstrates this theorem in practice
was the Joule expansion, in which a gas expands freely into a vacuum. There is no
work done, no heat flow, and therefore no change in internal energy during such a
process. In order to restore the initial state following such an expansion it is
necessary to compress the gas, which requires work. If there were no flow of heat
out of the gas its temperature would rise and the initial state could not be restored. No
matter whether it occurs during the compression or after, the internal energy of the
gas must be reduced and this inevitably requires a flow of heat out of the gas. If a
flow of heat out of a body is defined as negative, then the inequality in Eq. (11.3)
holds. If entropy is a property of a body, then it is clear that it has decreased as a
consequence of this net outflow of heat. If further, the entropy is considered to have a
unique value in a given thermodynamic state, then it must have increased during the
irreversible process and Eq. (11.1) in seen to hold. Moreover, as the body itself has
returned to its initial state with no change in entropy, the inflow of heat into the
environment represents a positive increase in entropy and Clausius’ view of the
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Second Law that the entropy of the universe can only increase or remain the same, is
seen to operate.

At the heart of this view is the relationship between Eqgs. (11.1) and (11.3) and the
notion that entropy is property of a body with a unique value in a thermodynamic
state. A body is defined here as simply any collection of atoms or molecules in
whatever state, solid liquid or gas. This phrasing makes the distinction between
entropy as a state function, which is essentially a mathematical notion, and entropy
as a property of a body, which is a physical idea. The connection between the two is
an area that has been neglected in the literature on entropy, but lies at the heart of the
present discussion. In relation to physics education research, the link between
mathematics and physics should be central to any physics education programme,
but T will argue here that the history of entropy shows that even professional
physicists can put mathematics first ahead of physics. In this chapter, the connection
between the law of increasing entropy, as expressed by Eq. (11.1) and the law of
conservation of energy will be examined with reference to particular examples. In
addition, the relationship between the mathematical idea of a state function and the
corresponding physical properties will also be examined and examples of students’
confusion over entropy will be presented.

11.2 Entropy and Energy Conservation

The preceding example on the free expansion illustrates the fundamental problem of
the notion of the entropy of a body. As there is no change in internal energy during
the free expansion, there is also no change in temperature. Even if it is argued that
during the expansion the state of the gas is not well defined, the quantity TS, which
has the units of energy, must be defined for the initial and final states. The change in
the Gibbs free energy is given by the difference, yet there is no change in U, no heat
flow and no work done. We can meaningfully ask about the physical meaning of the
Gibbs free energy in the light of this change.

This difficulty was built into the structure of thermodynamics by Clausius, as
summarised in the 1898 (Clausius 1898) collection of his nine Memoirs. It is evident
in all his early writings that Clausius was interested in what he referred to as,
“internal work”, which is the work associated with inter-particle forces when a gas
is either compressed or expands. In treating internal work, Clausius borrowed from
his earlier work on cyclic processes: “. .. as there is no essential difference between
interior and exterior work, we may assume with certainty that a theorem which is so
generally applicable to exterior work cannot be restricted to this alone”. In fact,
there were two theorems in Clausius’ view of thermodynamics, which Clausius
explained as the equivalence of heat and work, or Joule’s principle, and the equiv-
alence of transformations. The latter will be unfamiliar to the modern physicist, as it
is an obscure concept not taken up by Clausius’ contemporaries and which has
subsequently disappeared altogether from the thermodynamics lexicon. Clausius
regarded two transformations as being equivalent in some way: the conversion of
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heat into work, and vice versa, in a cyclic process and the conversion of “heat at one
temperature to heat at another temperature”. Mathematically, the theorem of the
equivalence of transformations is expressed by Eq. (11.3), though originally heat
was defined such that the integral is positive for an irreversible cycle. It was
sometime later that Clausius adopted the modern convention that negative heat
corresponds to a heat flowing out of a body.

In referring to exterior work, Clausius meant the work produced by a heat engine.
In an ideal reversible engine of the kind considered by Carnot, all the transforma-
tions are, to use Clausius’ terminology, compensated by equivalent transformations
and the equality in Eq. (11.3) applies. For example, the heat taken in from the hot
reservoir is converted to work, but in returning the piston to its starting state work is
converted to heat which is ejected to the cold reservoir. Both processes have the
same equivalence value, Q/T. In an irreversible cycle, at least one of the trans-
formations is uncompensated, leading to the inequality as previously discussed. In
comparing internal work to external work, Clausius believed that there must be a
similarly uncompensated transformation and actively sought an equivalent inequal-
ity. In consequence, he derived Eq. (11.1).

The essential difficulty with Clausius’ work is that he did not base it on conser-
vation of energy. The concept was not fully developed at the time and this can be
seen in his approach to irreversible, noncyclic processes. Equation (11.3) for cyclic
processes is fully compatible with energy conservation whereas Eq. (11.1) for
noncyclic processes is not. In a cyclic process, an irreversible stage can by offset
by some other process within the cycle in which heat is extracted to restore the
original state, but this cannot occur in a single, noncyclic process. Clausius overcame
this incompatibility in his Sixth Memoir by disregarding the work that is actually
done in a process, which of course is governed by energy conservation, and looking
instead at the work that might be done: “The law does not speak of the work which
the heat does, but of the work which it can do . ..”; “. . .similarly, in the first form of
the law, it is not of the resistances which the heat overcomes, but those of which it
can overcome that mention is made”. The emphasis is Clausius’ and by this
reasoning he introduced an inequality into the First Law of thermodynamics. In
the following pages the consequence of this inequality are explored for a classical
ideal gas subject to a change in the number of particles.

11.3 Extensivity, Entropy and Open Systems

Consider two systems at the same temperature and pressure. One contains N particles
of a classical ideal gas in a volume V and the other N + 8N in a volume V + dV.
Clearly, the difference in internal energy between the two systems is directly
proportional to 8N, so we have U, V and N all increasing by the same factor. Write,
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oN _oV _oU_ (11.4)

Then,
N+68N = (1+a)N (11.5)
If entropy is a homogeneous function of degree 1, then
S(1+aU,[1+a]V,[1+a]N) = (1 +a)S(U,V,N) (11.6)

In other words, the entropy increases in proportion to the increase in the size of
the system. This is standard and on the face of it presents no difficulties.

However, now consider what happens if we compress the second system isother-
mally through a volume change &V such that the work done is PSV. Energy
conservation requires an outflow of heat corresponding to the work done, P3V,
and the entropy of the systems decreases. However, we now have N + ON particles in
a volume V at temperature T and we would expect the entropy of this system to be
greater than the entropy of N particles at V and T. If the entropy of the second system
is now (1 + $)S(U,V.N), where < a, then

(1+a)S(U,V,N) > (1+p)S(U,V,N) > S(U,V,N) (11.7)

Equation (11.7) appears to be consistent with known thermodynamics, but in fact
there is a difficulty.

According to Landsberg [p128], the two systems considered above are closed,
simple systems for which the equation,

TdS = dU + PdV (11.8)

holds. As closed systems, Eq. (11.8) cannot be used to describe the transformation
from one to another at the same volume, otherwise we would have the simple result,

T&S:éU:%kT-aN (11.9)

This would lead to the difference in entropy being directly proportional to the
number of additional particles, which is demonstrably not the case. In order to see
this more clearly, consider the case when @ = 1. This corresponds to the famous
Gibbs paradox in which there are two identical systems each containing N particles
at temperature 7 and volume V separated by a partition. Removal of the partition
creates a single, larger system with 2N particles at temperature 7, and hence energy
2U, in a volume 2V. The entropy of this larger system is simply double that of each
single system. If we were now to compress this larger system isothermally into half
the volume, so that we had 2N particles in a volume V at temperature 7, the entropy
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would have decreased and self-evidently the entropy would be less than twice the
entropy of N particles in a volume V at temperature 7. In short, the change in entropy
cannot be given by the change in the number of particles and Eq. (11.9) is shown to
be invalid.

Landsberg (1961) attempts to put the change in entropy of an open system on a
firm mathematical footing and concludes on page 153 of his 1961 book that for a gas
which is, “homogeneous in all its states of interest, and which contains only one type
of molecule”, Eq. (11.8) can be extended to an equation of the form

ras —dv +pav +7(25)  av (11.10)
ON)yy

Then, one has, by the “laws of partial differentiation” [p153],

[0S
p=— (ﬁ%v (11.11)

Applying Egs. (11.10) and (11.11) to our two systems, we arrive at the
conclusion,

T8S = 8U — udN = GkT—y)-SN (11.12)

This is the desired result. We have shown that the entropy of N + dN particles in a
volume V at temperature 7 is greater than the entropy of N particles in a volume V at
temperature 7, but less than would be obtained if the entropy were simply propor-
tional to the number of particles. This, then, accords with the thermodynamics of the
simple systems we have so far developed.

11.4 Discussion and Conclusion

Having derived Eq. (11.12), it remains to show how this conflicts with energy
conservation. If we have two systems at the same volume and temperature with
the only difference between them being that one has 8N more particles than the other,
the difference in energy between the two systems is given by,

5U:%kT-5N (11.13)

Yet, Eq. (11.12) shows that there is some property of the body with the units of
energy (70S) that differs by an amount less than this. In other words, there is some
energy contained in the quantity —udN that offsets the increase in internal energy
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due to the increase in the number of particles. Thermodynamics gives us no clue as to
the physical meaning of y and the physics of the ideal classical gas in the form of
kinetic theory gives no insight. Whilst the internal energy can be equated with the
average energy of particles with a range of velocities given by the Maxwellian
distribution, there is no quantity analogous to the chemical potential.

The physical meaning of y and the validity of Eq. (11.11) can also be queried. It is
not clear to this author that Eq. (11.11) is correct for a classical ideal gas. This
equation is valid only if U and N are independent; that is, particle number N can be
changed whilst holding both U and V constant. In a classical ideal gas N can be
changed independently of V but not of U except at absolute zero, as shown by
Eq. (11.13), so the partial differential in Eq. (11.10) cannot be applied.

It should be acknowledged that entropy might not be extensive, which would
redefine the entropies of the different bodies we have discussed and alter the
relationship between them. However, it is not clear that it would solve the problem,
which fundamentally arises from the notion that a body in a particular state has a
particular entropy. This can be illustrated by the following argument. It is reasonable
to assume that entropy must in some way increase with the number of particles and
that the entropy of N + N particles in a volume V at temperature T is greater than the
entropy of N particles in a volume V at temperature 7. We would expect some
functional relationship between S and N which would permit partial differentiation,
but in a classical ideal gas N can be varied independently of only 7 and V or,
equivalently, P if V is allowed to vary with N. Expressing entropy as a function of
T would make it difficult in general to combine the First and Second laws, but
notwithstanding this difficulty let us suppose that we end up with something of
the form,

8S(N) = Eon (11.14)

NI=

Here, for complete generality ¢ can be positive or negative, though normally it is
the latter. We are left with the difficulty that 78S has the units of energy and the only
change in energy of a classical ideal gas on changing the number of particles is given
by Eq. (11.13). If the total change in entropy contains a term dU, the only value of y
that will satisfy energy conservation is zero, but if S does not explicitly depend on
U but on T, y must be equivalent to the average energy per particle in order to satisfy
energy conservation. This is not the end of the difficulty, however, because the
system can then undergo a Joule expansion to V + 8V in which there is no change in
internal energy, but the quantity 7S increases.

Whichever way we look at it, the concept of the entropy of a body would appear
to be incompatible with energy conservation. The Joule expansion highlights the
difficulty most clearly and illustrates the connection with Clausius’ flawed reason-
ing. In a Joule expansion, 73S is reckoned to increase by P8V by comparison with
the so-called equivalent process of a reversible isothermal expansion. The process is
only equivalent in as much as the initial and final states are the same. However, in the
isothermal expansion real work is done, but in the Joule expansion, no work is done
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and this is reflected in the fact that P = 0. This is not commonly appreciated, but
follows from Newton’s second law: if the molecules are expanding freely into a
vacuum and do not change momentum through collisions with the wall of a
container they are not themselves subject to a force and cannot exert a force. We
therefore have an immediate conflict with the First Law that is built into the structure
of thermodynamics via Clausius’ assertion that, “The law does not speak of the work
which the heat does, but of the work which it can do . ..”. The idea that heat can do
work is a direct consequence of the view of the time that heat was somehow
converted into work, but we now know that work is a consequence of repeated
collisions of particles on a piston. Heat flows into a gas to replace the energy lost
during work and in this sense there is no such thing as isothermal heat flow.
However, borrowing from the terminology of heat engines prevalent at the time of
Clausius, we can regard heat as capable of doing work P3V. If, following Clausius,
we use this work term to give the increase in entropy during an irreversible
expansion, we are adding a term in energy that does not in fact reflect the physical
processes and violates energy conservation.

This failure of the mathematics to reflect the physics has been overlooked by the
majority of physicists for well over 160 years and consideration of this alone shows
that the process of interpreting mathematical formalisms in terms of physics is not
straightforward. It is perhaps not surprising that students struggle. It is over 10 years
since Rebello, working with Dean Zollmann and others (Rebello et al. 2005), looked
at the transfer of mathematical knowledge from one domain to another, but little
progress seems to have made since then. Authors such as Karam (2014) and Redish
and Gupta (2010) stress that understanding mathematics in physics is not just about
understanding mathematical operations, but how those operations connect to and
describe physics concepts. I suggest that we have only just begun to understand
some of the complex interactions in not just learning physics, but in doing it and that
this process of examining critically the way physics is done should impact on our
understanding of the fundamentals.

Revisiting fundamental concepts and their connection to mathematical formal-
isms means keeping an open mind and rejecting a utilitarian approach. That is, just
because a mathematical approach appears to be useful does not mean it is correct and
it has been argued in this chapter that Clausius’ conception of entropy was flawed in
so far as it was based around the concept of transformations rather than conservation
of energy. Clearly, the difficulties engendered by this approach were not realised at
the time and the failure to reflect on the disconnection between the mathematics and
the physics has left its mark on thermodynamics today. That leads inevitably to the
question of what might usefully be taught in thermodynamics.

It is my own personal view that a fundamental revision of the foundations of the
subject is required. Carnot was concerned with the reversibility of the cycle itself,
which was also the view of Kelvin: the cycle can be performed in one direction to
convert heat into work or in the other to convert work into heat. This view of
thermodynamics has been overlooked in favour of Clausius, but the implication of
the work summarised here is that this view is actually correct. There is a powerful
argument, therefore, for returning to the origins of the subject and basing
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thermodynamics education not on entropy as a driving force or a determinant of
equilibrium, but on cyclic processes. What, though, of entropy itself? If entropy is
not a property of a body it must instead be associated with the flow of heat and the
inequality of Eq. (11.1) has no meaning. Extending the First law to include changes
in the number of particles and combining it with the Second Law would yield;

TdS = dU + PdV — ndN (11.15)

Here, i represents the average energy of the particles.

This equation looks remarkably like the outcome of combining Eqs. (11.10) and
(11.11), but is actually quite different. For the two systems considered in this
chapter, this would give 7dS = 0 because entropy in this formulation is not
associated with a property of a body but is solely the ratio of heat exchanged to
the temperature at which it is exchanged. Given the widely accepted current view of
entropy, this would appear to be a radical shift, but in fact it is consistent not only
with energy conservation but the foundations of thermodynamics.
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