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Abstract In this paper,we investigate anomalous diffusionmodels in amousemodel
of glioblastoma, a grade IV brain tumour, and study how the anomalous diffusion
model parameters reflect the change in tumour tissue microstructure. Diffusion-
weighted MRI data with multiple b-values at 9.4T was acquired from mice bearing
U87brain tumour cells at four time points.Voxel-level fitting of theMRI datawas per-
formed on the classicalmono-exponentialmodel, and four anomalous diffusionmod-
els, namely, the stretched exponential model, the sub-diffusionmodel, the continuous
time randomwalk model and the fractional Bloch-Torrey equation. The performance
of the anomalous diffusion parameters for differentiating the three-concentric layers
of tumour tissue (i.e., core; intermediate zone; peripheral and hyper-vascularised
tumour layer) was evaluated with multinomial logistic regression and multi-class
classification analysis. We found that parameter α from the stretched exponential
model, parameter β from the sub-diffusion model and parameter β from the con-
tinuous time random walk model provide a clear delineation of the three layers of
tumour tissue. The analysis revealed that the combination of diffusion coefficient D
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and anomalous diffusion parameter (α and/or β) greatly improved the classification
power in terms of F1-scores compared with the current approach in clinics, in which
D is used alone. Hence, our mouse brain tumour study demonstrated that anomalous
diffusion model parameters are useful for differentiating different tumour layers and
normal brain tissue.

1 Introduction

InMRI an inherentmismatch exists between the scale atwhichwater diffusion occurs
and the scale at which measurements are taken. This mismatch makes the interpreta-
tion of changes in tissue microstructure challenging which is further complicated by
water diffusion in a hindered and restricted tissue micro-environment. In this paper,
we attempt to address this issue by studying the potential role of anomalous diffusion
models (a subset of non-Gaussian diffusion models) in linking tissue microstructure
differences with changes in anomalous diffusion model parameters. Our investiga-
tions are performed in the context of glioblastoma, a grade IV glioma in the brain, as
increasing evidence suggests that proper mapping of the tissue micro-environment in
this disease can lead to improved treatment planning [8], better surgical intervention
with positive outcomes [19] and the development of drugs targeting specific tissue
micro-environment features such as angiogenesis [27].

Studies in diffusion-weighted MRI (DWI) involve a parameter called the b-value
(units of s/mm2) which is a function of diffusion gradient amplitude and its duration,
and the amount of time water is allowed to diffuse in tissue. It is widely observed
that the DWI signal decay at high b-values (>1000 s/mm2) does not follow the
classical mono-exponential model which assumes diffusing spins are undergoing
Brownian motion in tissue [26], and hence a simple ADC value obtained from the
mono-exponential model may not be able to adequately capture tissue heterogeneity.
Due to the limitation of ADC, several research groups have developed a number of
more sophisticated diffusion models to extract structure tissue information beyond
what ADC can provide (eg. [7, 14–18, 20]). In this study, we focus on several
anomalous diffusion models developed using theory in fractional calculus. These
models incorporate a broad and continuous distribution of diffusion compartments,
and describe water molecule transport processes influenced by the multiple length
and time scales through a heterogeneous medium at sub-voxel resolution [5, 24].
Anomalous diffusion models considered in this study include

• stretched exponential model (also known as super-diffusion model) which allows
for deviation from mono-exponential decay by assuming diffusing spins are more
likely to take long jumps, ie. undergoing Lévy walks rather than Brownian motion
[3, 9, 10];

• sub-diffusionmodel which assumes the waiting times between jumps for diffusing
spins follow a long-tailed probability distribution (ie. long waiting times) [5, 9] ;
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• continuous time random walk model which incorporates assumptions for both
super- and sub-diffusions, i.e. diffusing spins are more likely to take long jumps
and have long waiting times between jumps [9, 12, 13]; and

• fractional Bloch-Torrey equation which generalises the Bloch-Torrey equation
through fractional order differential operators [20];

Each of these models yields a new set of parameters to describe the anomalous
diffusion in complex biological tissue, which provide useful information not only on
the diffusion coefficient (D) but also on the tissue structures (α and/or β) through
which water molecules diffuse. For example, researchers used anomalous diffusion
models to differentiate low- and high- grade pediatric brain tumours [13, 14, 25], to
characterise white matter tissue microstructure [28, 29], to study healthy fixed rat
brain tissue [12], and to characterise myocardial microstructure in cardiac tissue [5].

Previous studies [21, 22] reported that there are often three concentric lay-
ers observed in the glioma tumour mass (core/necrotic, intermediate layer and
peripheral/hyper-vascularised layer). The formation of such layered structure is
driven by the extent of hypoxia within the tumour region. The goal of this study
is to investigate the utility of anomalous diffusion model parameters in differentiat-
ing the three tumour layers in a mouse model of glioma.

2 Methods

2.1 Anomalous Diffusion Models in MRI

Based on the Bloch-Torrey equation for the magnetisation of water protons and in
conjunctionwith theStejskal-Tanner diffusionprotocol, the amplitude of the acquired
diffusion weighted signal follows a mono-exponential decay

S/S0 = exp(−bD), (1)

where S0 is the baseline signal intensity, D is the diffusion coefficient of water in
tissue (typically, 2 × 10−3 mm2/s for water at room temperature), b = (γGδ)2(� −
δ/3) is the degree of sensitisation to diffusion of the MRI pulse sequence, γ is the
gyromagnetic ratio (42.58MHz/T for protons) and the diffusion-weighting is applied
with a pair of unipolar gradient waveforms of duration δ, separation�, and amplitude
G. As a generalisation of thismono-exponential decay, a stretched exponentialmodel

S/S0 = exp (−(bD)α) , 0 < α ≤ 1, (2)

has been proposed in a few previous studies [2, 3, 10], which becomes (1) when
α = 1. The model parameter α is the so-called heterogeneity index and can be used
to infer microscopic tissue structure [3].
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Alternatively, the mono-exponential model can be generalised to a sub-diffusion
model [5, 9]

S/S0 = Eβ(−bD), 0 < β ≤ 1 (3)

where Eβ(z) = ∑∞
k=0

zk

�(1+βk) and �(·) are the Mittag-Leffler and Gamma functions,
respectively [23]. When β = 1, �(1 + k) = k!, and E1(z) by definition is the expo-
nential function.

A further generalisation of the stretched exponential model (2) and the sub-
diffusionmodel (3) gives the continuous-time randomwalk (CTRW)model (demon-
strated on healthy fixed rat ventricles [5], healthy fixed rat brain tissue [12] and
paediatric brain tumours [13])

S/S0 = Eβ(−(bD)α), 0 < α, β ≤ 1. (4)

Finally, using first principles and by adopting the fractional calculus in the deriva-
tion, a solution to the fractional Bloch-Torrey equation (FBTE) [20] is obtained,

S/S0 = exp

[

−Dμ2(α−1)(γGδ)2α
(

� − 2α − 1

2α + 1
δ

)]

, (5)

where μ2(α−1) is fractional order space constant needed to preserve units.

2.2 Mouse Preparation and Data Acquisition

All animal experiments were approved by the University of Queensland animal
ethics committee. To form intracranial tumours, 1 × 105 U87 cells were injected
into the right striatum of six-week old NOD/SCIDmice, +0.6mm anterior-posterior,
+1.2mm mediolateral from bregma and at a depth of 3mm from the dural surface
using a stereotactic device. MR images were acquired at 7, 14, 19 and 21 days
post injection. The MRI examination included T2-weighted and multiple b-value
DWI data acquisitions using a Bruker Biospin 9.4T large bore MRI animal scanner.
T2-weighted images were acquired using the fast spin echo MRI sequence with
TR/TE = 2500/33 ms, echo train length = 8, matrix size = 256 by 256, field of
view (FOV) = 2cm by 2cm, spatial resolution = 78.125 μm by 78.125 μm, slice
thickness = 0.7mm. The multiple b-value DWI data was acquired using an echo
planar imaging (EPI) sequencewith b-values= 0, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000 s/mm2. Three b = 0 images were acquired. At each nonzero b-value,
trace-weighted images were generated from the 30 direction Stejskal-Tanner DWI
data. The key data acquisition parameters were: TR/TE = 5000/30 ms, separation
between the Stejskal-Tanner gradient lobes � = 20 ms, diffusion gradient duration
δ = 3ms, matrix size= 108 by 96, field of view (FOV)= 2.16cm by 1.92cm, spatial
resolution = 0.2mm by 0.2mm, slice thickness = 0.2mm. The acquisition time was
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approximately 10min per mouse. Following the final MRI acquisition, mice were
euthanised and the brain drop fixed in 4% paraformaldehyde. Paraffin-embedded
brains were sectioned by microtome at room temperature using a section thickness
of 12 μm and hematoxylin and eosin (H&E) staining was performed. Slides were
scanned using an Aperio CS2 digital slide scanner and the images were processed
using ImageScope.

2.3 Image Analysis

Multi b-value diffusion images were fitted to the anomalous diffusion models (2)–
(5) on a voxel-by-voxel basis. Firstly, D was calculated using the mono-exponential
decay model (1) for the subset of acquired data up to b = 1000 s/mm2. Secondly, the
full range of b-values was used to fit the parameters using the trust-region-reflective
algorithm [4, 6] with prescribed tolerance of 10−6. Parameter bounds were taken
as 0 < α, β ≤ 1, with initial guesses α = 1 and β = 1, representative of the case of
diffusion governed by the mono-exponential model. Parameter fittings were imple-
mented inMATLAB. Evaluation of theMittag-Leffler function was performed using
Garrappa’s optimal parabolic contour algorithm,which is available inMATLABcen-
tral (file exchange number 48154). We found fitting results to be insensitive to the
choice of initial values.

Regions of interest (ROIs) were carefully selected, guided by the histological
sections (H&E), to represent each layer of tumour tissue (core, intermediate and
peripheral) and the contralateral normal-appearing tissue. The ROIs were placed on
the diffusion images first and then propagated to the correspondingmodel parameters
for statistical analysis: (D, α) for the stretched exponential model, (D, β) for the sub-
diffusion model, (D, α, β) for the CTRW model and (D, α, μ) for the FBTE model.

2.4 Statistical Analysis

For each anomalous diffusion model, mean values and standard deviations of model
parameters were calculated from the tumour and the normal-appearing ROIs. A two-
sided Wilcoxon rank sum test with significance set at p < 0.05 was performed for
comparing parameter values in each pair ofROIs, i.e., core-versus-intermediate, core-
versus-peripheral, core-versus-normal, intermediate-versus-peripheral, intermediate-
versus-normal, and peripheral-versus-normal.

Since anomalous diffusion models have at least two parameters, multinomial
logistic regression was used in two ways: (i) to determine the significance of each
model parameter and (ii) to evaluate the set of model parameters in differentiating
three tumour regions as well as normal brain tissue region. In statistics or machine
learning, this is called a multi-class classification problem. Quality of the overall
classification is assessed by precision, recall(also known as sensitivity) and F1-score
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in the macro-averaging sense. Precision-recall curves were also generated to assess
the performance of the set of parameters from each anomalous diffusion model. All
statistical analyses were carried out in MATLAB.

3 Results

Figure 1 presents the progression of gliomas in the right hemisphere of mouse brains
as observed in longitudinal T2-weighted MRI scans. These images show the level of
temporal and spatial heterogeneity in tumour development.

To capture additional information on tumour structure apart from water diffu-
sivity D, the anomalous diffusion models (2)–(5) were fitted to the acquired diffu-
sion data to yield a new set of parameters. Representative spatially resolved maps
of the diffusion coefficient (D), the anomalous diffusion parameters and the rela-
tive fitting errors for each model are shown in Fig. 2. The D map was computed
using the mono-exponential model with lower b values (≤ 1000 s/mm2) as out-
lined in the methods section, and it is not model dependent. This parameter was
also comparable to the ADC value, which is typically obtained with b = 0 and
b = 1000 s/mm2. The relative fitting error was calculated by norm(signal values −
fitted values)/norm(signal values). The relative error maps corresponding to each
model fit have a level of similarity between them, whilst the contrast of the spatially
resolved parameter maps varies with method.

Fig. 1 T2-weighted MRI scans at 7, 14, 19 and 21 days showing glioblastoma progression in three
different mice. Tumour cells were injected on day 0, and mouse 3 was euthanised after the day 19
imaging session. All other mice were euthanised after the day 21 imaging session
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Fig. 2 Representative parameter maps and errors from fitting anomalous diffusion models. A D
and α maps for stretched exponential model; B D and β maps for sub-diffusion model c α and β

maps for continuous time random walk model (CTRW); D D and μ maps for fractional Bloch-
Torrey equation (FBTE). Note D map is obtained from fitting the mono-exponential model for
b ≤ 1000 s/mm2 and remains the same for the anomalous diffusion models

Our key observations from these images are: (i) α from the stretched exponen-
tial model (Fig. 2A), β from the sub-diffusion model (Fig. 2B) and β from CTRW
(Fig. 2C) provide a clear delineation of the three layers of tumour tissue; (ii) Both αs
from theCTRW(Fig. 2C) and FBTE (Fig. 2D) show a darker core layer of the tumour,
but they cannot differentiate the intermediate and peripheral layers of tumour; (iii)
μ values from the FBTE (Fig. 2D) seem very similar across the whole brain region
and hence not very sensitive to brain and tumour tissue structure. Since μ is used to
preserve units, so its interpretation may not be meaningful.

These observations were further confirmed by the box plots analysis in Fig. 3.
Regions of interest (Fig. 3A) have been selected based onH&E section of the tumour-
bearing right hemisphere of mouse brain (Fig. 3B). In Fig. 3C–F, separation of
notches (><) implies the medians are significantly different across ROIs at the 95%



168 Q. Yang et al.

Fig. 3 Behaviour of model parameters for representative specific regions of interest inside and
around the tumour. Shown are A selected regions of interest marked on the diffusion image; B
Histological section (H&E staining) of the right hemisphere of a mouse brain; C–F notched box
plots of parameters based on the stretched exponential, sub-diffusion, CTRW and FBTE models,
respectively. Note, if the notches (><) of the two box plots do not overlap, it indicates that the
medians of two regions are significantly different at the 95% confidence level
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Table 1 Statistics of the anomalous diffusion parameters in tumour and normal tissue ROIs

Stretched exp CTRW

D×10−3 mm2/s α α β

Core 1.00 ± 0.10 0.52 ± 0.04 0.75 ± 0.03 0.77 ± 0.05

Intermediate 0.76 ± 0.16 0.45 ± 0.03 0.81 ± 0.08 0.58 ± 0.12

Peripheral 0.95 ± 0.08 0.60 ± 0.02 0.80 ± 0.05 0.83 ± 0.04

Normal 0.83 ± 0.06 0.63 ± 0.03 0.88 ± 0.05 0.80 ± 0.04

Sub-diffusion FBTE

D×10−3 mm2/s β α μ (μm)

Core 1.00 ± 0.10 0.56 ± 0.07 0.55 ± 0.02 6.5 ± 0.11

Intermediate 0.76 ± 0.16 0.41 ± 0.06 0.58 ± 0.06 6.6 ± 0.15

Peripheral 0.95 ± 0.08 0.69 ± 0.03 0.63 ± 0.04 6.4 ± 0.18

Normal 0.83 ± 0.06 0.71 ± 0.03 0.68 ± 0.04 6.3 ± 0.30

Fig. 4 Precision-Recall
curves and F1-scores (shown
in brackets) for evaluating
the performance of model
parameters on differentiating
different tumour tissue layers
and normal tissue
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confidence level. This hypothesis was confirmed by the Wilcoxon rank sum test as
described in the methods section. A statistical summary of the parameter values for
each ROI is presented in Table 1.

Multivariate logistic regression analysis showed that all the anomalous diffusion
model parameterswere significantwith p < 0.01. Figure 4 shows the precision-recall
curves and F1-scores (in brackets) for each set of model parameters to differentiate
three tumour layers and normal tissue. The curves for anomalous diffusion models
behaved similarly, bowing towards the corner (1, 1), and well above the curve for
mono-exponential model. F1-scores for each anomalous model were very similar
(around 0.8), and again outperformed the mono-exponential model with F1-score
0.55. These metrics indicate that anomalous diffusion models preformed very well
in differentiating tumour layers and normal tissue.
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4 Discussion

We set out to investigate the role of anomalous diffusion models in the character-
isation of the tissue microenvironment in a mouse model of glioblastoma, a grade
IV brain cancer. We acquired 9.4T DWI mouse brain data with multiple b-values at
fixed diffusion time over four time points. Whilst several other anomalous diffusion
models have been described in the literature (e.g. [7, 14–18, 20]), only a subset of
them are applicable in the fixed diffusion time regime considered herein. Moreover,
different models behave differently based on the diffusion time set in the experiment.
With this in mind, we investigated the utility of four anomalous diffusion models in
characterising the tumour tissue layers through spatial variations in model param-
eters (see Figs. 2 and 3). After applying the stretched exponential, sub-diffusion,
continuous time random walk and fractional Bloch-Torrey equation models to the
data, we found the anomalous diffusion model parameters are very sensitive to tissue
changes in the presence of a tumour. In particular, α from the stretched exponen-
tial model (Fig. 2A), β from the sub-diffusion model (Fig. 2B) and β from CTRW
(Fig. 2C) provide a clear delineation of the three layers (core, intermediate layer and
peripheral/hyper-vascularised layer) of tumour tissue.

We found the three-parameter models (CTRW and FBTE) to marginally better
fit and classify the data than the two-parameter models (stretched exponential and
sub-diffusion models) in terms of relative fitting errors and F1-scores from the multi-
nomial logistic regression and multi-class classification analysis. However, both αs
of the CTRW and FBTE models were not able to differentiate regions within the
tissue micro-environment to the same extent as α and β from the stretched expo-
nential and sub-diffusion models. We may attribute this finding with a potential of
data over-fitting using the three-parameter models. For example, the AIC (Akaike
Information Criteria) for model selection involves a term representative of fitting
error which is penalised by an increase in models parameters [1]. Since our relative
fitting errors are somewhat similar across the different models (see Figs. 2 and 3),
we may argue that insufficient gain in fitting quality is achieved through an increase
in the degrees of freedom within the model. As such, a change in one parameter can
counteract a change in another parameter, which make the underlying effects on the
model parameters less distinguishable (comparing Fig. 3E, F with Fig. 3C, D).

In the box plots for α from the stretched exponential model (Fig. 3C) and β from
the sub-diffusion model (Fig. 3C), the notches on selected regions of interest inside
tumour do not overlap, which means the medians of any regions are significantly
different at the 95% confidence level. Hence, the anomalous diffusion parameters
from the stretched exponential model and the sub-diffusion model have the ability
to differentiate tissue types in tumour, whereas such detailed information on tumour
structure can not be observed in vivo usually [11]. In addition, the α and β values are
higher in the normal-appearing brain tissue and lower in the tumour tissue region.
This can be explained through fractional calculus theory; i.e. if α is closer to 1 then
the diffusion process is closer to Gaussian diffusion (free diffusion) and if less than
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1 then the diffusion process is more anomalous and indicating the diffusion medium
is more heterogeneous and complex (such as tumour tissue) [2, 20].

Moreover, multinomial logistic regression and multi-class classification analysis
revealed that the combination of D and anomalous diffusion parameter (α and/or β)
greatly improved the classification power in terms of F1-scores compared with the
current approach in clinics, in which the diffusion coefficient D is used alone.

With these results, our mouse brain glioma study demonstrates the ability of using
anomalous diffusion models to differentiate tumour layers and normal brain tissue.
Future work will be to apply such analysis to patient data.

Acknowledgments Qianqian Yang acknowledges the Australian Research Council for the Discov-
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