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Preface

It is our great pleasure to present the proceedings of the 2019 International
Workshop on Computational Diffusion MRI (CDMRI’19) and the main results
of the Multi-dimensional Diffusion MRI (MUDI) Challenge. Both were held under
the auspices of the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), which took place in Shenzhen, China,
on October 17, 2019. CDMRI’19 and MUDI challenges were sponsored by
MICCAI, NVIDIA, Wellcome Trust, and MedIAN, and endorsed by the
International Society for Magnetic Resonance in Medicine (ISMRM).

This volume presents the latest developments in the highly active and rapidly
growing field of diffusion MRI. The reader will find numerous contributions cov-
ering a broad range of topics, from the mathematical foundations of the diffusion
process and signal generation, to new computational and machine learning methods
and estimation techniques for the in vivo recovery of microstructural and connec-
tivity features, as well as combined diffusion-relaxometry acquisitions’ techniques.
This edition includes invited chapters from high-profile researchers with the specific
focus on four advanced topics that are gaining momentum within the diffusion MRI
community: (i) diffusion MRI signal acquisition and processing strategies;
(ii) machine learning for diffusion MRI; (iii) diffusion MRI outside the brain and
clinical applications; and (iv) CDMRI’19 MUDI challenge results on combined
diffusion-relaxometry acquisitions. Additionally, the volume also includes contri-
butions in the field of tractography and connectivity mapping, which continue being
relevant and popular topics across all editions of CDMRI.

This volume offers the opportunity to share new perspectives on the most recent
research challenges for those currently working in the field, but also offering a
valuable starting point for anyone interested in learning computational techniques in
diffusion MRI. The book includes rigorous mathematical derivations, a large
number of rich, full-color visualizations, and clinically relevant results. As such, it
will be of interest to researchers and practitioners in the fields of computer science,
MRI physics, and applied mathematics.

Each contribution in this volume has been peer-reviewed by multiple members
of the international Program Committee. We would like to express our gratitude to

vii



all CDMRI’19 authors and reviewers for ensuring the quality of the presented work
and to all the teams who participated in MUDI challenge. We are grateful to the
MICCAI 2019 chairs for providing a platform to present and discuss the work
collected in this volume, to our sponsors and to ISMRM for the endorsement. We
also would like to thank the editors of the Springer book series Mathematics and
Visualization as well as Leonie Kunz and Martin Peters (Springer, Heidelberg) for
their support to publish this collection as part of their series.

Finally, we express our sincere congratulations to the winners of the prizes that
were awarded during CDMRI’19. The prizes were awarded following careful
evaluation by a panel of judges, made by the CDMRI’19 and MUDI organizers and
by the CDMRI’19 and MUDI keynote speakers.

• Prize for the best CDMRI paper: “Optimized response function estimation for
spherical deconvolution”, Tom Dela Haije et al. University of Copenhagen,
Denmark.

• Prize for the best CDMRI oral presentation: “A framework to construct a lon-
gitudinal DW-MRI infant atlas based on mixed effects modeling of dODF
coefficients”, Heejong Kim et al. New York University, USA.

• Prize for the best CDMRI poster presentation: “Diffusion anisotropy identifi-
cation by short diffusion-diffusion correlation spectroscopy”, Fangrong Zong
et al. Institute of Biophysics, Chinese Academy of Sciences, China.

• Prize for the best MUDI method: “Select and Retrieve for Direct Up-sampling
network (SARDU-net)”, Francesco Grussu et al. University College London
(UCL), UK.

• Prize for the best MUDI team presentation: “Joint RElaxation-Diffusion
Imaging Moments (REDIM) to probe neurite microstructure”, Lipeng Ning
et al. Harvard Medical School, USA.

Shenzhen, China Elisenda Bonet-Carne, Ph.D.
UCL, UK and BCNatal-FMRC, Spain

Jana Hutter, Ph.D.
KCL, UK

Marco Palombo, Ph.D.
UCL, UK

Marco Pizzolato, Ph.D.
EPFL, Switzerland

Farshid Sepehrband, Ph.D.
USC, USA

October 2019

Fan Zhang, Ph.D.
Harvard, USA
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Connectome 2.0: Cutting-Edge
Hardware Ushers in New Opportunities
for Computational Diffusion MRI

Anastasia Yendiki, Thomas Witzel, and Susie Y. Huang

Abstract The first phase of the Human Connectome Project pioneered advances in
MRI technology, including ultra-high gradients and accelerated sequences, that have
now found their way into commercially available scanners. These technologies have
led to a dramatic improvement in the spatial, angular, and diffusion resolution that is
feasible in vivo. However, they still fall short of the scale where the microstructural
properties of cells in the human brain can bemeasured accurately. Here we present an
overview of the Connectome 2.0 project, which aims to bridge this gap by building
the next-generation instrument for imagingmicrostructure and connectional anatomy
in the human brain.

1 Introduction

Less is known about the structure-function relationship in the human brain than in any
other organ system. Establishing the cellular composition and the connectional orga-
nization of the living human brain is essential for understanding and predicting the
functional signals that underlie cognition and behavior. A necessary foundation and
enormous challenge for human systems neuroscience is defining the connectome, the
complete set of structural connections of the nervous system, on multiple scales: the
macro-connections between gray-matter regions, meso-connections between neu-
rons and other cell types, and micro-connections between individual neurons.
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Today, there is no imaging modality that can span this enormous range of size
scales in the living human brain. While magnetic resonance imaging (MRI) allows
imaging a whole brain with ∼1 mm3 voxels, an electron microscope (EM) can
render the connections between individual neurons, axons and dendrites with voxels
of less than 100 nm3—a range spanning 16 orders of magnitude of volume. The ideal
technology for understanding the structural and functional organization of the living
human brain would integrate across these scales and would be sensitive to changes
across time (e.g., as a result of neural plasticity, development, and pathology) and
between individuals.

Towards this goal, the Connectome 2.0 project targets the development of the
next-generation human connectomics and microstructure MRI scanner, tailored for
inferring cellular size, morphology, and density at unprecedented spatial and dif-
fusion resolution throughout the whole brain, while providing greater sensitivity
and imaging speed for structural and functional imaging at multiple scales in liv-
ing human subjects. This transformative advance in imaging the micro-, meso-, and
macroscopic structure of the living human brain builds on the experience of engineer-
ing and testing the first human MRI scanner equipped with 300 mT/m gradients, the
highest gradient strength achieved for a human scanner to date, which was developed
as part of the Human Connectome Project (HCP) [1]. In the following, we describe
the planned hardware design of the Connectome 2.0 scanner, and the opportunities
that it will usher in for the analysis of microstructure and connectional anatomy in
the human brain.

2 Limitations of the Current State of the Art

Diffusion MRI (dMRI) holds the most promise among noninvasive methods for
imaging cellular structure of any depth and location in the human brain. Imaging
molecular self-diffusion with MRI can probe a multitude of microstructural param-
eters (e.g., cell size, shape, and packing density) whose cellular scale dimensions
(∼µm) are orders of magnitude smaller than the imaged voxel size (∼mm). How-
ever, robust methods for performing dMRI-based microstructural mapping in vivo
remained elusive for a long time due to the requirement for fast and strong diffusion-
encoding gradients, which limited such experiments to ex vivo and animal studies
on small-bore MRI systems. The HCP era marked the availability of ultra-high gra-
dient strengths on human MRI scanners, making such methods practical for the in
vivo human brain. Specifically, our original Connectome scanner, featuring a max-
imum gradient strength (Gmax) of 300 mT/m and maximum slew rate (SLRmax) of
200 T/m/s, enabled in vivo axon diameter mapping with a diffusion resolution limit
of 3–4 µm [2, 3].

However,within the technical limits of this initial prototype, resolutions approach-
ing the size ofmany smaller axons (∼1µmor even less) are not feasible. Furthermore,
the pulsed gradient spin echo (PGSE) experiment, which is most commonly used
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for dMRI, performs best in evaluating macroscopically anisotropic diffusion arising
from well-oriented structures, such as fiber bundles in white matter. The sensitivity
of PGSE to compartment size and morphology decreases with increasing hetero-
geneity of the tissue microenvironment and is thus highly limited in capturing the
structural diversity of cells in the brain. Alternative and complementary diffusion
encoding approaches have thus been proposed to access the micron to sub-micron
length scalewith sufficient sensitivity in the complexmicroenvironment of the human
brain. These approaches require not only higher Gmax but also higher slew rates to
expand the range of gradient waveforms that can be played out for in vivo human
microstructural imaging.

3 The Connectome 2.0

Equipped with the lessons on advanced gradient design learned from our initial HCP
experience, we are now in a position to redesign the gradient system of the Connec-
tome scanner in full and to enable ultra-fast slew rate as well as ultra-high gradient
strength. This advance represents a great technical challenge that is necessary for
implementing state-of-the-art diffusion encoding strategies robustly in vivo and gain-
ing sensitivity to the actual range of cellular sizes and morphologies in the human
brain. Specifically, the goals of the Connectome 2.0 project are to (1) nearly double
the currentGmax to 500 mT/m and triple the SLRmax to 600 T/m/s; (2) push the limits
of the RF receive coils and gradient characterization to enable maximum sensitivity
and real-time eddy current corrected dMRI acquisitions; (3) combine this hardware
with pulse-sequence advances to reach for the highest diffusion and spatial resolu-
tion ever achieved in vivo; and (4) calibrate the measurements obtained from this
next-generation instrument through systematic validation of diffusion microstruc-
tural metrics ex vivo.

The targeted gradient performance boost will be accomplished by taking advan-
tage of next-generation gradient amplifiers, with 33% increased power compared to
those usedon the originalConnectome scanner, aswell as a newly designedhead-only
gradient coil with improved efficiency and optimized peripheral nerve stimulation
(PNS) characteristics.

Increasing the diffusion resolution to approach the typical size of cells and axons
in the brain requires shortening the diffusion times with higher slew rates, while
making sure that high q-values can still be attained, thereby requiring high Gmax.
Currently, PNS is the limiting factor of the maximum usable slew rate for a given
gradient waveform with a given peak gradient strength. Therefore, maximizing PNS
thresholds is critical for the design of the new gradient. To this end, we have access to
novel simulation tools for accurate prediction of stimulation thresholds, combining
realistic whole-body human nerve models with electric field simulation in a realistic
multi-tissue human body model [4].
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Since the original design of the Connectome scanner over nine years ago, mag-
netic field cameras have become available commercially that will allow us tomonitor
and to correct for the eddy currents that arise due to interactions between the gradient
coil and magnet. Dynamic field monitoring and state-of-the-art image reconstruction
techniques that incorporate the monitored field data will be critical for enhancing
image quality and precision of the acquired diffusionmeasurements [5]. Importantly,
monitoring and correcting for eddy current artifacts on the hardware levelwould obvi-
ate the need for extensive post-processing, thus avoiding unnecessary degradation of
image resolution.

Quantitative dMRI requires long-term signal stability beyond that required of
typical clinical MRI systems. With the goal of achieving precision of diffusion mea-
surements similar to that of pre-clinical (animal) research MRI devices, the new
scanner will feature a high-stability RF transmit system and constant temperature
control of tissue specimens for ex vivo imaging, which will be key for our valida-
tion studies. A major design change associated with revamping the scanner to allow
for the increased slew rates is omission of the RF shield typically laminated to the
inside of the gradient coil and replacement of the body transmit coil with a new local
head-only transmit coil.

As part of the HCP, a custom 64-channel receive-array coil was developed for the
original Connectome scanner, enabling the highest-SNR, accelerated human brain
imaging at 3T to date [6]. Building on this experience, the Connectome 2.0 effort
involves the construction of a 72-channel, extended field-of-view coil for in vivo
imaging in the new system. The new coil will combine the sensitivity of the 64-
channel head-only coil and coverage of the 64-channel head-neck array [7] that
was also built for the original Connectome scanner to enable maximum sensitivity
imaging of the whole brain in vivo. An integrated, 16-channel, clip-on field camera
will allow monitoring the B0 and gradient fields simultaneously with the dMRI
acquisition.

A 64-channel array coil for imagingwhole ex vivo human brains in the new system
is also planned, following the design of a recently developed 48-channel array coil
for ex vivo imaging in the original Connectome scanner [8]. This design involves a
human brain-shaped coil geometry, allowing all coil elements to be adjacent to the
ex vivo brain for optimal sensitivity. Placing the entire setup in a sealed box with a
controlled-temperature air supply will ensure the temperature stability that is critical
for the accuracy and reproducibility of diffusion measurements during very long ex
vivo scans.

The aforementioned hardware advances will be combined with recent develop-
ments in dMRI pulse sequence design to enable sub-mm spatial resolution with
whole-brain coverage in vivo. Due to SNR limitations, even the highest-performing
systems used in the HCP have only been able to achieve 1.25–1.5 mm isotropic reso-
lution with parallel imaging and simultaneous multi-slice/multi-band techniques [1].
Since then, a simultaneous multi-slab method, combining a novel, “slice-dithered”
RF slab encoding scheme (gSlider-SMS) [9] with blipped-controlled aliasing has
been shown to enable SNR-efficient, whole-brain diffusion microstructural imaging
at 650 µm isotropic resolution. This approach can acquire data from 10–15 imaging
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slices across 2–3 thin slabs simultaneously.Wewill deploy this approach on the Con-
nectome 2.0 system to achieve sub-mm spatial resolution with a variety of diffusion
encoding schemes.

4 Opportunities for Computational Diffusion MRI

The unprecedented dMRI acquisitions enabled by the Connectome 2.0 project
open up exciting new opportunities for image reconstruction and analysis research.
Here we focus on two areas of interest, microstructural modeling and connectional
anatomy.

4.1 Microstructural Modeling

With the advent of higher gradient strengths for in vivo dMRI,we anticipate an expan-
sion in the range and depth of diffusion-encoding experiments that can be performed
for inferring cellular structure and connectivity within and between cortical regions.
The major benefits of Gmax = 500 mT/m and SLRmax = 600 T/m/s for dMRI are:
(1) decreasing the diffusion time Δ needed to achieve the same diffusion-encoding
gradient area, and (2) shortening TE, thereby reducing signal losses from T2 pro-
cesses. Figure 1 shows the minimum TE simulated for a standard PGSE experiment
as a function of b-value for different maximum gradient strengths. The minimum
TE is shown for a gradient strength of 80, 300, and 500 mT/m. The largest reduction
in TE and Δ occurs for high b-values. The SNR scales exponentially with TE and
should thus improve considerably for the next-generation Connectome scanner. The
effect of shortening the diffusion time is particularly advantageous for probing tissue
microstructure, as shorter diffusion times are expected to sharpen features in the spin
probability distribution function. The near-doubling of Gmax to 500 mT/m will also
act synergistically with shorter Δ to increase sensitivity to small compartment sizes.

We will take advantage of these new capabilities by using a suite of pulse
sequences with different types of diffusion encoding for inferring the size, shape, and
orientation distribution of neurons, glial cells, dendrites, and axons in the complex
micro-environment of the human brain. Below, we describe several key sequences
in this dMRI suite and the explicit benefits that the new gradient system will bring to
bear on these measurements. The overall goal is to achieve unprecedented diffusion
resolution for exquisite characterization of cortical, subcortical, and white-matter
microstructure.

The conventional PGSE sequence performs best in evaluating macroscopically
anisotropic diffusion arising from well-oriented structures, such as parallel fibers in
white-matter bundles, and has been used for quantifying axon diameter and density
through approaches such as AxCaliber [10]. However, the diffusion resolution of
PGSE, even with Gmax = 300 mT/m, is only ∼3 µm [11]. This is larger than the
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Fig. 1 Minimum TE obtained for PGSE as a function of b-value for different gradient strengths

actual diameter of most axons in the brain (∼1 µm or less) [12]. The proposed
gradient system, with near-doubling of Gmax to 500 mT/m and tripling of SLRmax to
600 T/m/s, will enable us to increase the resolution limit of axon diameter estimation
by PGSE by nearly two times through the synergistic effect of increased sensitivity
to small compartment sizes with shorter duration diffusion-encoding gradients and
increased SNR with shorter effective TE. These improvements will enable us to
estimate axon diameters approaching 1 µmwith better differentiation and less noise
in the estimates (Fig. 2). The increase in resolution is crucial tomaking the distinction
between large and small axonal fiber populations, such as axons projecting from
motor and prefrontal cortex, respectively, which fall exactly in the range of 1–2 µm
and are just barely discernible with the current generation gradient system.

In reality, the orientation of cells and axons varies across the brain, and even the
most homogeneous areas of white matter, e.g., corpus callosum, still show some dis-
persion at the voxel level. Oscillating gradient spin echo (OGSE) is an experimentally
viable alternative to PGSE, with higher sensitivity to cellular and axonal size in the
presence of orientation dispersion. Due to the inverse relationship of diffusion time
with gradient oscillation frequency, OGSE can achieve short effective diffusion times
(∼1 ms), whereas in PGSE the diffusion time is limited to>10 ms by the duration of
the 180 refocusing pulse. So far, OGSE has been largely limited to small-bore sys-
tems due to the fast slew rates needed to maximize the diffusion-encoding gradient
area. Figure 2 (bottom panel) shows that in the case of dispersed fibers, the maximum
sensitivity for small diameter axons is achieved for OGSE rather than PGSE. In this
scenario, OGSE is beneficial because it yields high sensitivity at modest b-value. The
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Fig. 2 Resolution limit of PGSE (blue) and OGSE (other colors) for the Connectome 2.0 (solid
lines) versus the first-generation scanner (dashed line) in (TOP) parallel cylinders and (BOTTOM)
dispersed cylinders mimicking axons (inset: optical images of axons in human temporal lobe)

lower b-value retains signal sensitivity in the cases of unknown fiber direction and/or
dispersion by avoiding excessive signal attenuation due to freely diffusingwater [13].
This is particularly advantageous for systems with high-performance gradients, as
the area under the diffusion-encoding gradient for OGSE increases with high slew
rate. Our redesigned gradient system with stronger Gmax and increased SLRmax will
enable OGSE to achieve higher sensitivity to small-diameter cells/axons compared
to the current system.

The cortex is challenging to imagewith dMRI, as it appears isotropic at themacro-
scopic scale, but is actually composed of highly anisotropic structures on the meso-
to microscopic scale. These structures (dendrites, axons, and other neural/glial pro-



10 A. Yendiki et al.

cesses) are oriented in a random fashion and intermixed with neuronal and glial cell
bodies in gray matter. Gaining sensitivity to these microscopically anisotropic, but
macroscopically isotropic, domains in gray matter requires two or more diffusion-
encoding periods through a double (or higher-order) pulsed field gradient (DPFG)
sequence. The DPFG and related sequences are well-established in materials sci-
ence but have not been practically implemented in humans due to limited gradient
strength and low SNR resulting from multiple diffusion-encoding periods on con-
ventional scanners. The availability of ultra-high Gmax would enable DPFG to be
performed in vivo with better SNR than ever before, allowing us to gain sensitivity
to microscopically oriented domains in gray matter, which we have begun to uncover
with diffusion orientation using PGSE [14] but remain incompletely characterized
with single pulsed field gradients. The relevant metrics derived from these exper-
iments could serve as a sensitive probe of laminar architecture by distinguishing
areas with different microscopic anisotropy (e.g., randomly arranged spheres repre-
sentative of cell bodies) or compartment shape anisotropy (e.g., randomly oriented
ellipsoids representative of neural/glial processes).

4.2 Connectional Anatomy

Refining the reconstructions of connectional anatomy that we can obtain from indi-
vidual, rather than group-averaged, dMRI data is crucial, as neuroimaging studies are
currently shifting fromgroup-level comparisons to subject-level prediction [15]. This
shift, which is attempting to harness the recent advances in machine learning, will
only be as successful as the data quality of individual scans allows. The data collected
on our current Connectome scanner has allowed us to reproduce detailed topogra-
phies of smaller axon bundles within the large pathways of the human brain, which
had been demonstrated previously in non-human primates with anatomical tracer
studies [16]. These topographies cannot be identified in the conventional human
dMRI scans that had been commonplace before the HCP era. The ability to do this in
pathways that have a topographic organization, such as the internal capsule or the cor-
pus callosum, is an advance with neuroscientific and clinical significance. Localizing
microstructural alterations to a specific “lane” within a large white-matter highway
provides a critical link between the alteration and the cortical or subcortical regions
that it is likely to affect, thus facilitating comparison and integration with functional
data.

However, even at the 1.5mm resolution of our MGH-USC HCP data, some of the
aforementioned topographies are difficult to resolve within a tightly packed pathway
like the internal capsule (see [16]). Furthermore, our recent validation studies in post
mortem human white-matter samples, which undergo both dMRI and polarization-
sensitive optical coherence tomography scans, suggest that reducing the dMRI voxel
size from 2mm to 1 mm affords a substantial improvement in the accuracy of the
estimated orientations [17]. Thus the improvements in spatial resolution and SNR
that we expect from the Connectome 2.0, owing to the combination of higher gra-
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dient strengths and accelerated acquisition methods discussed above, will be critical
for dMRI-based connectional anatomy to take the leap from mapping highways to
mapping lanes.

Furthermore, the advanced diffusion encoding schemes that are planned for the
Connectome 2.0 (see previous section) may provide more information on the geome-
try of axon bundles, beyond what is available in conventional PGSE data. Ultimately,
however, improvements in data acquisition alone will not be sufficient for improving
the accuracy of dMRI tractography. The current analytical paradigm relies on a data
reduction step, which consists in the reconstruction of peaks, sticks, or a continuous
distribution thereof. This step introduces ambiguity that would persist even if we
could achieve infinite SNR and infinitesimal angular resolution. When processing
the sort of dMRI data that had been commonplace until recently, there is a rationale
for such data reduction approaches. However, as the data that we can acquire are set
to improve drastically in the next few years, we must be mindful of whether such
analysis techniques are still the best way forward. We expect that the Connectome
2.0 will provide the impetus for rethinking this paradigm in fundamental ways.

5 Validation

Validation of microstructural metrics derived from dMRI will be an essential part
of the Connectome 2.0 effort, as these metrics represent indirect inferences on cel-
lular/axonal size and morphology. To this end, we will obtain gold-standard mea-
surements with micro-computed tomography (CT) and EM.Micro-CT, in particular,
serves as a crucial tool for bridging scales, as it combines the contrast of gold-
standard EM with cellular scale resolution that is within the range of the finest
diffusion length scales we can interrogate (∼500 nm–1µm), but with a much larger
field of view (∼cm) than EM.

6 Conclusion

The Connectome 2.0 project aims to develop the next-generation MRI scanner for
interrogating thewiring of the human brain across themacro-,meso-, andmicroscale.
The ability to collect suchmeasurements in vivo over the entire human brain promises
to be the next leap towards understanding how segregated and distributed function
is affected by structural changes in cortical, subcortical, and white-matter regions,
across behaviors thought to modify brain structure and connectivity in health and
disease.
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Alternative Diffusion Anisotropy Metric
from Reduced MRI Acquisitions

Santiago Aja-Fernández, Antonio Tristán-Vega, Rodrigo de Luis-García,
and Derek K. Jones

Abstract A novel diffusion anisotropy metric is presented. It is based on dissimilar-
ity between the acquired diffusion signal and its isotropic equivalent. Using the inner
product of signals, a closed form expression is obtained, which allows its computa-
tion using spherical harmonics from a reduced set of acquired data, compatible with
most popular diffusion MRI acquisition protocols. Results show that the proposed
metric (1) is able to discriminate among different microstructure scenarios; (2) shows
a robust behaviour in clinical studies.

1 Introduction

The term Diffusion Magnetic Resonance Imaging (DMRI) refers to a set of diverse
imaging techniques that, applied to brain studies, provide useful information about
the organization and connectivity of the white matter. The most relevant feature of
DMRI is its ability to measure orientational variance in the different tissues, i.e.
anisotropy. Nowadays, the most common way to estimate the anisotropy is via the
popular diffusion tensor (DT) approach [6]. DT-MRI brought to light one of the most
common problems in DMRI techniques: in order to carry out clinical studies, the
information given by the selected diffusion analysis method must be translated into
some scalar measures that describe different features of the diffusion within every
voxel. That way, metrics like the Fractional Anisotropy (FA) were defined with the
DT as a starting point [18]. Despite the strong limitations the underlying Gaussian
assumption imposes om the diffusion model, the FA is still widely used in clinical
studies involving DMRI.

However, the diffusion mechanisms cannot be accurately described by DT-MRI
because of the oversimplifiedGaussian fitting.Accordingly,more evolved techniques
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with more degrees-of-freedom naturally arose, such as High Angular Resolution
Diffusion Imaging (HARDI) [14, 17] or Diffusion Kurtosis Imaging [11]. The trend
over the last decade has consisted in acquiring a large number of diffusion-weighted
images distributed over several shells (i.e. with several gradient strengths) and with
moderate-to-high b-values to estimate more advanced diffusion descriptors, as the
Ensemble Average Diffusion Propagator (EAP) [13].

Regardless of the method selected to describe diffusion, practical applications
often use only a reduced set of scalar measures derived from it. Most of these mea-
sures are devoted to quantifying different aspects of anisotropy or diffusion direction-
ality, like the Kurtosis Fractional Anisotropy (KFA) [11], the Propagator Anisotropy
(PA) [13] or the Generalized Anisotropy (GA) [15]. These alternative anisotropy
measures have shown, under certain constraints, higher tissue contrast than the FA
in white matter [4].

Nonetheless, these measures have also some drawbacks. For example, both PA
and KFA require large amounts of data to be effectively estimated, which involves
long scanning times. This issue has slowed down a widespread clinical adoption of
such measures. Others, like the GA, have shown a great sensibility to changes in the
acquisition parameters, such as the number of gradients, the SNR, the b-value or the
resolution [1].

The present paper proposes a novel diffusion anisotropy metric based on the
distance from the actual diffusion signal to its isotropic equivalent. We achieve a
closed-formexpression that allows its estimation froma reduced amount of diffusion-
weighted signals, even from a single shell, compatible with acquisition protocols
commonly used for DTI andHARDI and therefore applicable to data acquired within
the clinical domain. The new metric is extensively tested against other anisotropy-
based indices to check its capability to detect different configurations and its per-
formance in the analysis of clinical data. The full implementation of the proposed
methods may be downloaded for Matlab from http://www.lpi.tel.uva.es/AMURA.

2 Theory

2.1 The Diffusion Signal

The EAP, P(R), is the three dimensional Probability Density Function (PDF) of the
water molecules inside a voxel moving an effective distanceR in an effective time τ .
It is related to the normalized magnitude image provided by the MRI scanner, E(q),
by the Fourier transform [8]:

P(R|τ ) = F {|E(q)|} (R). (1)

With the purpose of obtaining a closed-form analytical solution from a reduced
number of acquired images, a model of the diffusion behaviour must be adopted. The

http://www.lpi.tel.uva.es/AMURA
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most common techniques rely on the assumption of a Gaussian diffusion profile and
a steady state regime of the diffusion process that yields the well-known Diffusion
Tensor (DT) approach. Alternatively, a more general expression for E(q) can be
used [14]:

E(q) = exp
(−4π2τq2

0D(q)
) = exp (−b · D(q)) , (2)

where the positive function D(q) = D(q0, θ,φ) is the diffusivity signal, also known
as the Apparent Diffusion Coefficient (ADC), b = 4π2τ‖q‖2 is the b-value, τ is the
effective diffusion time and q0 = ‖q‖ and θ,φ are the angular coordinates in the
spherical system. According to [5], in the mammalian brain, this monoexponential
model is predominant for values of b up to 2000 s/mm2 and it can be extended to
higher values if appropriate multicompartment models of diffusion are used.

2.2 Inner Product and Propagator Anisotropy

Let S1(q) and S2(q) be two generic signals defined over a common signal space Q.
The inner product is defined as [10]:

〈S1(q), S2(q)〉 =
∫

R3
S1(q)S∗

2 (q)dq. (3)

We can accordingly define the norm of a signal as

||S(q)|| = 〈S(q), S(q)〉1/2 =
(∫

R3
|S(q)|2dq

)1/2

. (4)

The similarity of two signals is measured as the cosine of the angle:

cos (∠[S1(q), S2(q)]) = cos θS1,S2 = 〈S1(q), S2(q)〉
||S1(q)|| · ||S2(q)|| . (5)

This property is exploited in [13] to define the so-called Propagator Anisotropy (PA),
which can be seen as a quantification of how much the propagator diverges from an
isotropic one.

2.3 Diffusion Anisotropy

In order to use a limited amount of acquisitions to estimate the anisotropy, we assume
a prior model that assures that it can be estimated using data collected over one single
shell. To that end, we have to consider that the diffusion D(q) does not depend on
the radial component, i.e. D(q) = D(θ,φ), so that Eq. (2) becomes:
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E(q) = E(q0, θ,φ) = exp
(−4π2τq2

0 D(θ,φ)
)
. (6)

Note that, although D(q) no longer depends on q0, E(q) does. This assumption,
although restrictive, is used to define certain diffusion modalities in HARDI [9, 14],
where only one shell is usually acquired. This simplification was initially intended to
overcome the limitations of the DT by allowing the diffusion to be evaluated across
many orientations, as opposed to the single orientation described by the DT.

In what follows, we define a new anisotropy metric restricting the result in Eq. (3)
to the mono-exponential model in Eq. (6). The inner product of two ADCs now
becomes:

〈D1(q), D2(q)〉 =
∫

S
D1(q)D∗

2(q)dq, (7)

where S stands for the unit-sphere whose radius is defined by q. Since themagnitude-
reconstructed diffusion-weighted MR signal is always a real signal (and so is the
ADC), D∗

2(q) = D2(q). For estimating its anisotropy, the diffusion D(q) is projected
over the isotropic equivalent signal DAV, defined as:

DAV = 1

4π

∫

S
D(θ,φ)dS. (8)

Since isotropic diffusion, by definition, does not depend on the angles θ and φ, and
since we are also assuming that our signals do not depend on the radial component
either, DAV becomes a constant value. Therefore, the inner product reduces to:

〈D(q), DAV(q)〉 = DAV

∫

S
D(θ,φ)dS. (9)

At the same time, the norms can be written as

||D(q)||2 =
∫

S
D2(θ,φ)dS, ||DAV||2 = 4π D2

AV. (10)

The Diffusion Anisotropy (DiA) is defined as the sine of the angle:

DiA = sin (∠[D(θ,φ), DAV]) =
√√√√1 −

[∫
S D(θ,φ)dS

]2

4π · ∫
S D

2(θ,φ)dS
(11)

=
√√√√

∫
S D

2(θ,φ)dS − 1
4π

[∫
S D(θ,φ)dS

]2
∫
S D

2(θ,φ)dS
. (12)

Note that the dependence with DAV disappears. The DiA, as expressed in Eq. (12),
resembles the structure of the FA, which can be seen as the square root of the variance
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of the eigenvectors of the DT divided by their second–order moment. In order to
increase the dynamic range of the metric, we can use the transformation proposed in
[13] for the PA:

γ(t, ε) = t3ε

1 − 3t ε + 3t2ε
, (13)

where ε = 0.4. This way, the DiA can be alternatively defined as:

DiAγ = γ (sin (∠[D(θ,φ), DAV]) , ε) . (14)

2.4 Practical Implementation

The newly defined DiA relies on the calculation of the integral of the diffusion signal
over the surface of the unit sphere S. In practice, such an integral has to be estimated
from sampled data, for which we use a Spherical Harmonics (SH) decomposition,
where the zero-th coefficient is defined as C0,0 {H(θ,φ)} = 1√

4π

∫
S H(θ,φ)dS. It

follows:

DiA =
(

max

{

1 − 1√
4π

C2
0,0{D(θ,φ)}

C0,0{D2(θ,φ)} , 0
})1/2

. (15)

This implementation can be seen as a generalization of the Coefficient of Variation
of the Diffusion (CVD) defined in [1] as a robust alternative for the FA. Nonetheless,
the CVD requires that the samples of the ADC were to be uniformly distributed over
the sphere. This issue is circumvented in DiA by the use of SH.

3 Experiments and Results

For the following experiments, DiA andGAare implemented using SH expansions of
even orders up to 6 in all cases, with a Tikhonov regularization parameter λ = 0.006.
PA is calculated using theDIPY toolboxwith anisotropic basis and radial order 6 [13].
Two different real data sets are used for the experiments:

1. Human Connectome Project (HCP)1: we consider volume MGH1007 acquired
in a Siemens 3T Connectome scanner with 4 different shells at b = [1000, 3000,
5000, 10000] s/mm2, with [64, 64, 128, 256] gradient directions each, in-plane
resolution 1.5mm, and slice thickness was 1.5mm. The acquisition included 40
different baselines.

1https://ida.loni.usc.edu/login.jsp.

https://ida.loni.usc.edu/login.jsp
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2. Public Parkinson’s disease (PPD) database2: acquired in the Cyclotron Research
Centre, University of Liège. It consists of 53 subjects in a Parkinson’s disease (PD)
study: 27 PD patients and 26 age, sex, and education-matched control subjects.
Data were acquired on a Siemens 3T Magnetom scanner. Images were acquired
with a twice-refocused spin-echo sequence with EPI readout at two b-values (b=
[1000, 2500] s/mm2) along120encodinggradients thatwere uniformlydistributed
in space and 22 baseline images, were acquired. Acquisition parameters are TR
= 6800 ms, TE = 91 ms. More information can be found in [19].

3.1 Visual Results

First, a visual comparison of the metrics is done using 3 axial slices (42, 52, 65) from
the HCP volume. DiA and DiAγ are calculated using a single shell for two different
values, b= [1000, 3000] s/mm2. For the sake of comparison, we have also calculated
FA and GA at b = 1000 s/mm2 and PA using all the available information (4 shells).
Results are shown in Fig. 1. All the metrics show a similar look, highlighting those
anisotropic areas inside of the white matter. DiA, as expected, shows little contrast,
a fact that is corrected by DiAγ. However, it is not the visual aspect what we are
interested in, but the ability to discriminate differences inside the white matter.

To better understand the relation of the proposed metrics with the FA, in Fig. 2 we
have created the 2D histograms (using a 100 × 100 grid for the bins) for each pair of
metrics. The higher density of points is represented in red. Note that, although most
points are distributed along a straight line, FA and DiA are not measuring the same
features, since a dispersion of values can also be seen. For a better understanding
of this dispersion of values, the we also show the values of FA and DiAγ for those
voxels corresponding to the FA in the range [0.3–0.5]. Note that DiAγ, as expected,
shows a greater range of values that provides a wider range in certain regions.

3.2 Discrimination Analysis

In order to test the specificity of Dia to microstructure differences, a simulation is
carried out. For the sake of simplicity, two compartment models with and without
free-water compartment are considered. The intra-cellular compartment is modelled
by a Cylinder Cy(d, θ,φ, R) [2] and the extra-cellular is modelled by Zeppelin
Z p(d||, d⊥, θ,φ) [2] or ball BI (d) [7]. In those cases in which d = 3000 µm2/s, the
isotropic ball corresponds to the free water. Five different voxel configurations are
designed, with parameters tuned to yield the same FA = 0.6260 at b = 1000 s/mm2,
see Table 1.

2https://www.nitrc.org/frs/?group_id=835.

https://www.nitrc.org/frs/?group_id=835
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FA GA PA DiA-DiA
1000

DiA-
30001000

DiA
3000

Fig. 1 Visual comparison of the diffusion anisotropy metrics using axial slices 42, 52 and 65 of
of the MGH1007 volume from HCP. FA and GA are calculated using b = 1000 s/mm2, DiA and
DiAγ using b = [1000, 3000] s/mm2 and PA using 4 shells (1000, 3000, 5000 and 10000 s/mm2)
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Fig. 2 2D histogram of FA (with b = 1000 s/mm2) compared to DiA and DiAγ (for b = 3000
s/mm2). The values of FA and DiAγ for those voxels with FA∈ [0.3–0.5] are also shown

In order to simulate the signal, we consider the following sampling scheme:
24 gradient directions uniformly distributed in each shell, 1 baseline, 4 differ-
ent shells at b = [1001, 2019, 3000, 4000] s/mm2, Δ = 32.2 ms, δ = 27.7 ms and
|G| = [28.3, 40, 48.77, 56.30] mT/m. In order to statistically analyse the results, we
corrupt the data with Rician noise with SNR = 40 in the baseline and carry out 30
realizations with the same parameters.

We calculate the PA using all available shells. The GA, DiA, and DiAγ are com-
puted for each shell separately. In order to test the ability to discriminate the different
configurations, a multiple comparison test is carried out over each of the metrics.
Results can be found in Table 2.

In none of the cases was the FA able to discriminate between voxels, as expected,
due to the design of the experiment. Similarly, at b = 1000 s/mm2, GA, DiA and
DiAγ are also unable to discriminate between voxels. However, as the b-value is
increased, the ability of DiA and DiAγ to discriminate between voxels improves,
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Table 1 Multicompartment voxels used in the simulation. The distribution and parameters of the
models are set so that they have the same FA at b = 1000 s/mm2

Visual representation Parameters

V1 = 2
3Cy(800, 0, 0, 1) + 1

3 BI (1854)

V2 = 2
9Cy(1370, 0, 0, 1) + 6

9 Z p(1359, 500, 0, 0) +
1
9 BI (3000)

V3 = 5
6 Z p(2000, 500, 0, 0) + 1

6 BI (3000)

V4 = Z p(1589, 500,π/2, 0)

V5 = 2

9
Cy(2000, 0, 0, 1) + 2

9
Z p(1906, 500, 0, 0)

+ 2

9
Cy(2000,

π

4
, 0, 1) + 2

9
Z p(1906, 500,

π

4
, 0)

+ 1

9
BI (3000)

detecting most differences. PA shows also a robust behaviour, but note that it is
calculated using 4 shells at the same time, which implies that it uses much more
information than the other metrics (at the cost of requiring lengthy acquisitions).

All in all, we can say that DiA shows an ability to discriminate among different
multi-compartment configurations for very different microstructural paradigms.

3.3 Validation with Clinical Data

Next, we intend to test the clinical potential of the new metrics, for which we have
explored the PPD database. Parkinson disease is known to affect the substantia nigra
or the gray matter more than white matter. However, significant differences have
also been reported in several white matter regions such as the corpus callosum (CC),
the corticospinal tract, or the fornix [3]. Since the aim of this experiment is testing
the capability of the proposed metrics to probe the micro-structural properties of
the white matter, we have accordingly focused on commonly-studied white matter
tracts.

FA is calculated as a reference value using MRTRIX3 with the data at b = 1000
s/mm2. The FA maps of all the volumes are warped to a common template using the
standard TBSS pipeline [16]. The same transformation is applied to all the metrics
considered for the experiment (DiA, DiAγ, PA and GA). Two different analysis are
considered:

3www.mrtrix.org.

www.mrtrix.org
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Table 2 Multiple comparison test between 5 voxels with different microstructure (30 realizations).
The p-values represent the probability that the metrics measured on different voxels have identical
means. Values that does not show statistical significance above 99% (i.e. p > 0.01) are highlighted

V1–V2 V1–V3 V1–V4 V1–V5 V2–V3 V2–V4 V2–V5 V3–V4 V3–V5 V4–V5

FA 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.00
PA < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.90 < 0.01 < 0.01 < 0.01

GA
(1k)

0.96 1.00 0.82 0.60 0.95 0.99 0.97 0.80 0.57 0.99

GA
(2k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 < 0.01 < 0.01

GA
(3k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.09 < 0.01

GA
(4k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

DiA-γ
(1k)

0.72 0.97 0.91 0.95 0.24 0.14 0.20 0.99 1.00 1.00

DiA-γ
(2k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.71 < 0.01 < 0.01

DiA-γ
(3k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

DiA-γ
(4k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.99 < 0.01

DiA
(1k)

0.68 0.98 0.88 0.89 0.27 0.10 0.11 0.99 0.99 1.00

DiA
(2k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.80 < 0.01 < 0.01

DiA
(3k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

DiA
(4k)

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.99 < 0.01

1. A voxelwise cross-subject analysis using the FA skeleton with the randomise
tool from the FSL toolbox (which performs a nonparametric permutation infer-
enceover the data)with 500 realizations.Thosevoxelswith< 0.01are highlighted
in Fig. 3. In blue, those points where the considered metric decreases in the PD
with respect to the controls, in red where it increases.

2. A region of interest oriented analysis. 46 different white matter regions of inter-
est are identified on the subjects using the JHU WM atlas [12]. For the sake
of robustness, only the 21 regions larger than 2500 voxels are considered. The
average value of the different measures inside each ROI is calculated using the
fslstats tool from the FSL toolbox. Effect sizes were estimated using the
Cohen’s d. Results are depicted in Fig 4.
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FA                    GA                    PA                  DiA              DiA-

Fig. 3 Significant differences found by statistical test for the Parkinson database, using a voxelwise
analysis over the FA skeleton for the different considered metrics (sagittal view). In color, the dif-
ferences with statistical significance above 99% (< 0.01). In red, those points where the considered
metric decreases in the PD with respect to the controls

Fig. 4 Absolute value of effect sizes (Absolute Cohen’s d) for the Parkinson data base. Labels are
obtained from the JHU WM atlas. Only regions with more than 2500 voxels are considered

Since the aim of this experiment is testing the capability of the proposed measures
to probe the micro-structural properties of the white matter, we have accordingly
focused on theCC,where previous studies have reported relevant differences between
PD and healthy controls. If we focus on this area in a sagittal plane, see Fig. 3, we
can see that the FA only finds some isolated voxels with statistically significant
differences. PA finds some extra voxels, but it cannot show its true potential due to
the small b-values considered (higher b-values should result in more accurate EAP
estimates). GA at b = 2500 s/mm2 shows a behaviour very similar to the FA. On the
other hand, only DiA and DiAγ find differences in the Genu of the CC (GCC), at
the same time that they find more continuous values at the Splenium.

In the region-of-interest analysis, it is precisely in the same area (GCC, BCC
and SCC) that the different measures show the greatest values of Cohen’s d, see
Fig. 4. Once again, DiA and DiAγ show larger effect sizes in most of the ROIs, with
exception of the BCC, where all the metrics show low values. In addition, DiA shows
a value of d greater than 0.6 in the superior longitudinal fasciculus (SLF-R), where
the other measures show very low values. According to the analysis carried out in
[19] for the same database, some differences can be found precisely in that ROI. The
high value of DiAγ in the posterior corona radiata (PCR-R) is also reflected in that
study.
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4 Discussion and Conclusions

Two new diffusion anisotropy metrics have been presented, DiA and DiAγ, the latter
being a gamma correction to adapt the dynamic range of the former. These measures
are based on the projection of the diffusivity signal over its isotropic equivalent in
order to quantify how much the ADC differs from a sphere. This way, we obtain a
new approach to measure anisotropy from diffusion imaging.

The results we report point to a proper behavior of DiA for group analysis. In
particular, the preliminary results of DiA over clinical data sets seems encouraging.
DiA and DiAγ both showed a vast discrimination power, well above the FA in the
experiments with both synthetic and real data, and partially better than PA. When
tested over real data, DiA detects more patient-control differences in some areas of
the brain (like the GCC and SCC) than the other anisotropy measures. Of course,
since we do not have a gold-standard there is always the risk of false-positives, but
results are consistent with other finding in the PD literature. In addition, synthetic
experiments provide confidence in these results, since DiA shows the capability to
differentiate configurations that the FA do not have.
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Optimized Response Function
Estimation for Spherical Deconvolution

Tom Dela Haije and Aasa Feragen

Abstract Constrained spherical deconvolution (CSD) is the most widely used algo-
rithm to estimate fiber orientations for tractography in diffusion-weighted magnetic
resonance imaging. CSD models the diffusion-weighted signal as the convolution
of a fiber orientation distribution function and a “single fiber response function”,
representing the signal profile of a population of aligned fibers. The performance
of CSD relies crucially on the robust and accurate estimation of this response func-
tion, which is typically done by aligning and averaging a set of noisy, rotated single
fiber signals. We show that errors in the alignment step of this procedure lead to an
observable bias, and introduce an alternative algorithm based on rotational invariants
that entirely avoids the problematic alignment step. The corresponding estimator is
proven to be unbiased and consistent, which is verified experimentally.

1 Introduction

Constrained spherical deconvolution (CSD) [7] is the most widely used algorithm to
estimate fiber orientation distribution functions (fODFs) for the purpose of tractog-
raphy. CSD estimates fODFs by deconvolving the signal with a response function
representing the signal profile of a population of aligned fibers, which is typically
estimated from the data. As CSD is an ill-posed problem, its performance in real-
world scenarios relies crucially on the accurate and robust estimation of this response
function.
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Current response function estimation methods consist of two steps. In the first
step one selects from the diffusion-weighted data a set of so-called “single fiber vox-
els”, which are voxels where—according to some heuristic—the underlying tissue
is expected to consist mainly of aligned fibrous structures. For the purpose of our
discussion, we view the signal from these single fiber voxels simply as rotated, noisy
manifestations of a true underlying axially symmetric response function. These sin-
gle fiber voxels are used in the second step to estimate the actual response function,
where the unknown rotations and noise terms are factored out as much as possible.
A number of issues in the first step can be addressed using recursive calibration
methods as described by Tax et al. [6], where the estimated response function is used
to recursively prune the set of single fiber voxels. In this paper, we reconsider the
second step in the response function estimation procedure.

The second step of the response function estimation procedure assumes that a set of
single fiber voxels has been found in step one. First addressing the issue of unknown
rotations between signals from different voxels, state-of-the-art response function
estimation algorithms [6–8] all proceed by (robustly) estimating the orientation of
the maximum for each single fiber voxel. The true orientations of the maxima can
trivially be used to factor out the rotations in the acquired signals, and so, in direct
analogy, the estimated orientations of the maxima are used to approximately align
the noisy single fiber signals. Following this rotational alignment, the voxel-wise
data is averaged to obtain a response function estimate. Averaging is either done by
first estimating spherical harmonic (SH) expansion coefficients and averaging the
corresponding coefficients [6], or by first aggregating the rotationally aligned data
from all single fiber voxels and then estimating the SH coefficients [7, 8]. In either
case, we obtain an estimate of the underlying response function in the SH basis.

Contributions. This work addresses the problem that the estimation of the true
orientation of a signal from noisymeasurements is an entirely ill-posed problem even
in the ideal case of a known response function [1], leading to a significant bias in
the final response function estimate. The issue extends to recursive methods, where
a biased response function negatively impacts the single fiber voxel identification
process, which in turn affects all subsequent response function estimation steps. We
show that this bias is already evident under noise conditions that are typical for high
quality acquisitions, and can in practice be observed even in the absence of noise.
The bias thus cannot be removed by improving the data quality. Instead we propose
an alternative response function estimation procedure using rotational invariants,
inspired by recent work in mathematical biology [2]. Because this new method does
not require any explicit alignment, the resulting estimator for the response function
can be proven to be unbiased, while a simpler implementation gives it the added
benefit of being faster to compute.
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2 Methods

2.1 Invariant-based Response Function Estimation

Assume that we have already identified a set of n single fiber voxels in a given
data set, providing samples of the noisy and rotated functions f i = r ◦ (Ri )−1 + εi

corresponding to the desired response function r : S2 → R. Here Ri represents the
unknown rotation associated to f i , εi : S2 → R represents symmetric, independent,
and identically distributed noise, and the index i = 1, . . . , n specifies an element in
the set of single fiber voxels. If the Ri were known, we could simply use the aligned
average 1

n

∑n
i=1 f i ◦ Ri as an estimator for r :

E

(
1

n

n∑

i=1

f i ◦ Ri

)

= 1

n

n∑

i=1

E
(
r + εi ◦ Ri

) = r. (1)

However, Ri is not known, and estimation of r by means of estimates of Ri as done
in all currently available methods, has been proven to have limited potential in the
related case of image alignment [1]. We therefore propose using rotational invariants
of f i as estimators for the corresponding invariants of r , from which we can then
reconstruct r .

To this end, we approximate f i and r in a (truncated) SH basis, where we have for
any f ∈ L2

(
S2,C

)
that f ≈ ∑L

l=0

∑l
m=−l fl,mYl,m with Yl,m the spherical harmonic

of frequency l and order m and fl,m ∈ C. This expansion converges uniformly for
L → ∞, but the maximum order L is practically limited by the number of acquired
samples of each f i . For the unknown response function r we have that rl,m = 0 for
m �= 0 by axial symmetry, and thus rl,0 ∈ R because both r and Yl,0 are real-valued.
We then compute the rotationally invariant quantities

I kl ( f ) =
∑

m1,...,mk

fl,m1 · · · fl,mk

∫

S2
Yl,m1 · · · Yl,mk dμ (2)

=
∑

m1,...,mk

Al,m1···mk fl,m1 · · · fl,mk , (3)

with dμ the standard Lebesguemeasure on the sphere. (Rotational invariance follows
from the standard result that a rotation of a function f effectively rotates each degree
l part fl = ∑l

m=−l fl,mYl,m of its expansion independently, combined with the trivial
rotational invariance of the spherical integration of fl .)

The integrals Al,m1···mk are analytically computable; the first three are given by
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Al,m1 = √
4π δl δm1 , (4)

Al,m1m2 = δm1−m2 , (5)

Al,m1m2m3 =
√
(2l + 1)3

4π

(
l l l
0 0 0

)(
l l l
m1 m2 m3

)

, (6)

where the bracketed expressions are theWigner 3- j symbols. It follows immediately
that if we can determine the invariant I 10 (r) = √

4π r0,0, then the first coefficient r0,0
can be trivially reconstructed, while I 1l (r) = 0 for l > 0 and is thus uninformative.

For k = 2 we find I 2l (r) = (
rl,0

)2
, which gives us the absolute value of rl,0 but

leaves its sign as an unknown. Finally, we have that I 3l (r) = Al,000
(
rl,0

)3
, and since

Al,000 �= 0 we can directly recover the coefficients rl,0 from I 3l (r). Based on these
ideas, we remark that we can reconstruct the coefficients rl,0 of the response function
r from the invariants of f i as follows.

Proposition 1 The sample mean invariants 1
n

∑n
i=1 I

1
0

(
f i

)
and 1

n

∑n
i=1 I

3
l

(
f i

)

are consistent and unbiased estimators of the invariants I 10 (r) and I 3l (r) (for
l > 0). That is, E

(
1
n

∑n
i=1 I

1
0

(
f i

)) = I 10 (r), E
(
1
n

∑n
i=1 I

3
l

(
f i

)) = I 3l (r) (for l > 0),
plimn→∞

1
n

∑n
i=1 I

1
0

(
f i

) = I 10 (r), and plimn→∞
1
n

∑n
i=1 I

3
l

(
f i

) = I 3l (r) (for l > 0),
where plim denotes convergence in probability.

Proof Note first that the coefficients εl,m of the noise ε are obtained by projection
onto the (complex conjugate) spherical harmonic Y ∗

l,m , i.e., by multiplying with Y ∗
l,m

and integrating over the sphere. Switching the order of integration we then find that
the expectation E(ε) = 0 implies that E

(
εl,m

) = 0, so that fl = (r ◦ R−1 + ε)l =
(rl + εl ◦ R) ◦ R−1 = (

rl + ε′) ◦ R−1 for some noise term ε′ ∼ ε, i.e., that satisfies
the same properties as ε. Given that for each frequency l, the invariant I 3l is thus of
the form

I 3l ( f ) =
∫

S2
( fl)

3 dμ =
∫

S2
(rl + ε)3 dμ, (7)

we have for l > 0 that

E
(
I 3l ( f )

) = I 3l (r) + 3
∫

S2
E(ε) r2l dμ

︸ ︷︷ ︸
=0

+ 3
∫

S2
E

(
ε2

)
rl dμ

︸ ︷︷ ︸
=0

+
∫

S2
E

(
ε3

)
dμ

︸ ︷︷ ︸
=0

(8)

where E(ε) = E
(
ε3

) = 0 by symmetry, and
∫
S2 E

(
ε2

)
rl dμ = E

(
ε2

) ∫
S2 rl dμ = 0

as the last integral is 0 for l �= 0 by Eq. (4). Unbiasedness follows then by direct
computation, and consistency follows from the strong law of large numbers. The
arguments for I 10 are analogous. �

Based on the foregoing discussion, we can now define the following estimator for
the non-zero coefficients of r :
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r̂l,0 =
⎧
⎨

⎩

1
n
√
4π

∑n
i=1 I

1
0

(
f i

)
l = 0

3
√

1
nAl

000

∑n
i=1 I

3
l

(
f i

)
l > 0

. (9)

By Proposition 1 and continuity of the cube root, the resulting estimator r̂ =∑L
l=0 r̂l,0Yl,0 is a consistent and unbiased estimator for r .

2.2 Implementation

We implemented invariant-based response function estimation based on Eq. (9) in
DiPy [4] for the case of a given set of single fiber voxels, as well as for the case
where recursive pruning is desirable. The latter was done by adapting the recursive
scheme of Tax et al. [6] implemented in DiPy, where we replaced the alignment and
averaging step with our invariant-based response function estimation. We compare
the invariant-based response function estimation to the DiPy implementation of the
recursive response function estimation by Tax et al. [6], as well as to the MRtrix [9]
implementation of the recursive algorithm by Tournier et al. [8]. We henceforth refer
to these as the Tax and Tournier methods, respectively.

To separate the effects of errors in the single fiber population identification steps
from errors in the actual response function estimation, we first perform experiments
by terminating all three recursivemethods after their first iteration—effectively using
only the single fiber signals provided in the initialization. This is referred to as
“iteration 0” in the experiments below. Next, we compare the three methods with
recursion using their default settings. All signals are represented by L = 10 SH
expansions, and response functions are computed up to l = 8.

3 Experiments and Results

SignalAlignmentandAveraging.Weaim todocument a bias in existing approaches,
as well as illustrate consistency and unbiasedness of the invariant-based approach. To
this end we generate four synthetic data sets from a ground-truth (GT) response func-
tion, based on a single high-FA voxel sampled from a Human Connectome Project
(HCP) [3] subject, rounded to give the non-zero SH coefficients (3800,−1600, 700,
−300, 100). A noiseless data set is obtained by applying up to 2000 random rota-
tions to the GT response function and then sampling the result according to the
b = 3ms/µm2 shell in the HCP acquisition scheme. Noisy data sets are simi-
larly obtained by applying random rotations before sampling, followed by the
addition of normally distributed noise corresponding to the designated SNR with
σ = 3800/SNR. The data sets are re-generated 25 times to estimate precision.

As seen in Fig. 1, both the Tax and Tournier algorithms converge to incor-
rect SH coefficients for all considered noise levels. The observed errors can be
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Fig. 1 Convergence of different response function estimation methods on synthetic data sets with
different numbers of single fiber voxels. The error bars represent the standard deviation over 25
sampled data sets. Both standard methods, Tax and Tournier, have a clear and significant bias
at all noise levels

significant—in the SNR 10 case, which is not unreasonable for real data, the errors
are around 5 and 15% for the l = 6 and l = 8 coefficients respectively. The invariant
method on the other hand converges to the true SH coefficients, although convergence
is slower than in the other methods. We do not observe convergence for the l = 8
coefficients in the SNR cases 20 and 10, and even by aggregating all 25 data sets
and obtaining a data set with 50,000 single fiber voxels, we only observe additional
convergence for an SNR of 20, see Fig. 2. This observation is consistent with [5],
which suggests that the “sample size” needed to recover an underlying signal gener-
ally scales as SNR−3. Note that the Tax and Tournier methods do not improve
even with these large numbers of single fiber voxels. Finally, we note that the biases
observed in Fig. 1 exceed the standard deviation in the invariant-based estimates at
a typical number of 1000 samples in almost all cases.

Effect of Single Fiber Voxel Selection. As modern response function estimation
algorithms include a recursive selection procedure for single fiber voxels, we repeat
the experiment of Fig. 1 using recursive response function estimation. The recursive
Tax and recursive invariant-based algorithms both failed to estimate a response
function in the SNR 10 and 20 cases. This was caused by the (identical) single
fiber population selection procedures used in these methods, which in this example
discarded all single fiber voxels in the most noisy data sets after a few iterations. The
recursive Tournier method always retained a certain minimum number of single
fiber voxels, and so did still produce response function. The results are shown in
Fig. 3, and show comparable behavior as seen in Fig. 1. Comparing for example the
SNR 40 results for the invariant-based method between Figs. 1 and 3, we do note
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Fig. 2 Convergence of the SH coefficients in the response function estimation of a GT response
function based on on 50,000 noisy, randomly rotated observations of the GT

Fig. 3 Results for the recursive response function estimation algorithms on the data from Fig. 1.
Note how the bias at higher l persists, and that in this example the biased single fiber selection
criteria used in the recursive approach actually has a negative effect on the otherwise unbiased
invariant-based method
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Fig. 4 From left to right: A fat ground truth response function, as well as its reconstructions
estimated by the recursiveTournier algorithm [8] from2000 randomly rotated noisyGT response
functions

that the recursive selection procedure introduces a (smaller) secondary bias in the SH
coefficients. In the non-invariant-based methods this secondary bias is also present,
but is obscured by the larger bias introduced by the alignment errors.

Low Quality Data. The secondary bias observed in the previous experiment is
caused by selection pressures in recursive methods that emphasize “flat” response
functions. As response functions obtained from real data are indeed expected to be
flat, this bias is typically small and in fact appears to have a beneficial effect on
the precision of the response function estimation (only similar-looking signals are
selected in the recursive single fiber voxel identification procedure). However, this
apparent improvement in the precision actually conceals the valuable information
providedby theuncertainty in the estimate. In the presented artificial data experiments
there does not seem to be any justification for including the (apparently reliable)
l = 8 coefficient for example. At the same time the introduced bias is unpredictable,
although we found that in low SNR cases and for “fat” response functions the effect
of this bias is much more pronounced, as shown in Fig. 4: increased noise levels
lead to increasingly flat, but less correct, estimated response functions. This bias was
observed in all considered recursive methods.

Effect on fODF Peaks and Tractography in Real Data. Finally, we aim to show
that different response function estimation algorithms produce different fODFs and
peak angles on real data, and that they could therefore have a potentially significant
impact on e.g. tractography. Using the b = 3ms/µm2 shell of a single HCP [3]
subject, we compute the recursive invariant-based, Tax and Tournier response
functions. UsingMRtrix we then apply CSD, followed by a peak estimation method.
Figure 5 shows histograms over the voxel-wise peak angle differences as well as the
estimated fODFs for the three different algorithms in the centrum semiovale region.
Although the visual differences in the glyph plots are small, there are significant
differences in the peak angles, especially relative to the expected uncertainty in CSD
peak angles of 5 degrees. Because the uncertainty in the peak angle is caused in part
by the reported biases, Fig. 5 suggests that our method could improve the accuracy
in the peak estimation by 20–40%. Furthermore, errors in many commonly used
tractography methods accumulate over distance, so even small improvements in the
local orientation estimates could have a noticeable impact on longer tracts.
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Fig. 5 Top: Histograms over fODF peak angle differences. Bottom: Resulting fODFs visualized
in the centrum semiovale region

4 Discussion and Conclusion

We have shown that existing state-of-the-art response function estimation algorithms
have a significant bias that cannot be removed by adding more data. We have iden-
tified two sources of this bias: (1) errors in the rotational alignment step of these
methods due to incorrectly estimated maxima, and (2) biases in the single fiber voxel
identification procedure prominently visible in recursive methods. To the best of our
knowledge, these biases have not been reported or investigated in other works.

In this paper we have not considered the second source of bias, and we note that
the challenging problem of single fiber voxel identification remains an important
topic for future work. In response to the first source of bias, we have proposed
an alternative response function estimator based on rotational invariants, which is
unbiased and consistent assuming a population of single fiber voxels has been reliably
determined. The method is straightforward to implement and can be incorporated
into any recursive response function estimation algorithm. Finally, the invariant-
based method does not rely on computationally costly function maximization and
rotation steps, making it generally faster than available alternatives.
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Optimal Fiber Diffusion Model
Restoration

Clint Greene, Kate Revill, Cathrin Buetefisch, Ken Rose, and Scott Grafton

Abstract Assessing the effects of white matter (WM) lesions on structural con-
nectivity as measured by diffusion MRI (dMRI) is invaluable for understanding
structure-function relationships. These WM lesions have many etiologies that ulti-
mately lead to attenuation of the anisotropic signature in dMRI signals. Attenuation
can produce inaccurate reconstructions of the underlying model of the fiber popula-
tion. In this paper, we combinemethods from image inpainting and estimation theory
to develop a novel approach for restoring the fiber model in small to moderate sized
WM lesions. Our approach begins by taking healthy reconstructedWMfiber models
at the boundary of the lesion and filling in lesioned voxels with their optimal affine
estimate moving iteratively in a fast-marching method style until the fiber models in
the lesion are restored. We demonstrate with in-vivo simulations on diffusion tensors
(DTs) and fiber orientation distributions (FODs) that our approach offers superior
performance over multiple restoration approaches. We restore lesioned fiber mod-
els in three stroke patients suffering hemiparesis from damaged corticospinal tracts
(CST). We show that our method restores diffusivities, anisotropy and orientation
of lesioned DTs as well as the amplitudes and orientations of fiber populations in
lesioned FODs enhancing tractography and enabling more accurate characterization
of lesion connectivity and changes in tissue microstructure in patient populations.

1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) techniques have been
successfully used to non-invasively explore fiber bundle architectures in the brain.
These techniques are sensitive to the diffusion of water molecules enabling the char-
acterization of the orientation of bundles of myelinated axons when the water is
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restricted to diffusion along the long axis of the axons. However, due to pathological
injury processes such as gliosis, demyelination, and necrosis, the structural integrity
of the axons is compromised, and water is no longer restricted to diffusing along
the long axis. These macro and microstructural changes attenuate the anisotropic
signature in dMRI signals [1]. Consequently, it remains challenging to accurately
characterize the change in tissue microstructure and the connectivity within lesioned
white matter areas which are crucial for studying disconnection syndromes.

Clinical researchers typically measure changes in tissue microstructure by com-
paring the measurements in the lesion ROI with measurements in healthy tissue from
the left-right flipped ROI [2]. Using microstructure measurements from the contrale-
sional side as a model for the original properties is not the most accurate approach
because the brain is not symmetric and where it is symmetric, e.g. CST, the tissue
measurements are not identical and are less similar to restored tissue measurements.
With regards to mapping lesion connectivity, one strategy clinical researchers use
is to project the patient’s lesion into a normal database of streamlines to approxi-
mate the degree of disruption by the lesion to normative [3]. However, this strategy
produces a generic estimate of the patient’s lost connectivity, without any charac-
terization of patient specific disrupted connectivity. Other researchers simply track
through the lesioned area to map the lesion’s connectivity [4]. However, tracking
through lesioned areas is known to affect streamline reconstruction and structural
networks [5, 6].

Another strategy for characterizing lesion connectivity and changes inmicrostruc-
ture is to restore or inpaint the lesioned fiber diffusion model. This has the advantage
of more closely preserving the patient’s native connectivity structure. Prior work has
primarily focused on inpainting multiple sclerosis (MS) and tumor lesions in T1 and
T2 weighted images to improve registration accuracy to a template [7, 8]. Recently,
a method has been developed to restore fiber orientation distributions (FODs) in MS
lesions [9]. They combine diffusion based inpainting and FOD reconstruction in a
single step. But they only assessed their performance on an unrealistic simulated
lesion of 9 voxels, so it is unclear how it would perform in-vivo. Moreover, its only
capable of restoring FODs.

Although a method exists for restoring FODs, a solution that can restore multiple
fiber diffusion models, is needed for multiple reasons. The ability to restore diffusion
tensors would be beneficial since diffusion tensor imaging (DTI) remains the most
popular technique used by clinical researchers for characterizing changes in tissue
microstructure and connectivity in lesioned WM tissue. Furthermore, many clinical
diffusion datasets inwide use can be reconstructed inmyriadways and contain lesions
from the myriad etiologies ofWM injury such as white matter hyperintensities in the
RotterdamStudy and theHumanConnectomeProject (HCP)Lifespan study [10, 11].
Since there is a great need in clinical research to improve prediction outcomes, the
ability of researchers to restore the fiber diffusion models of their choice in a lesion
wouldmake such an approachmore accessible and have the potential to improve these
predictions through improved anatomical delineation of lesion disrupted connectivity
and measurement of changes in tissue microstructure.
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In this paper, we describe a novel approach that combinesmethods from diffusion-
based image inpainting and estimation theory for restoring fiber diffusion models
in WM lesions. Our approach begins by taking healthy WM fiber models at the
boundary of the lesion and filling in lesioned voxels with their optimal affine estimate
moving iteratively in a fast-marchingmethod style until the fiber models in the lesion
are restored. By leveraging estimation theory, we can minimize the mean squared
error (MSE) of fiber models within the lesion, restoring their original shapes and
orientations. We demonstrate with realistic in-vivo simulations on diffusion tensors
and fiber orientation distributions that our approach offers superior performance over
multiple inpainting approaches. Further we restore diffusion tensors and FODs in
lesions in three stroke patients suffering hemiparesis and demonstrate that the shape
and orientation of the fiber models and the ability to map the lesions connectivity are
recovered.

2 Methods

2.1 Diffusion Imaging Data

The S500 dataset containing 500 subjects was collected from the Washington
University-Minnesota Consortium Human Connectome Project [11]. Further anal-
ysis was restricted to 210 subjects without familial relation. The diffusion volumes
were collected with a spatial resolution 1.25 mm3, using three shells at b = 1000,
2000, and 3000 s/mm2 with 90 diffusion directions/shell.

Diffusion volumes were collected for three stroke patients with unilateral motor
impairment at Emory University using the HCP Lifespan protocol with a spatial
resolution of 1.5mm3, using two shells at b= 1500 and 3000 s/mm2 with 46 diffusion
directions per shell and 7 b0s.All datasetswere corrected for geometric, eddy current,
and motion distortions using the HCP Pipeline scripts.

The diffusion tensors were reconstructed from the diffusion weighted volumes
collected with b = 1000 s/mm2 with weighted least squares in Dipy for the HCP
dataset and b= 1500 s/mm2 for the stroke dataset [12]. Fiber orientation distributions
we reconstructed using constrained spherical deconvolution (CSD) in MRtrix with
b = 3000 s/mm2 and lmax = 8 for both datasets [12, 13]. The response function was
estimated using the recursive Tax algorithm [14].

2.2 Model Estimation

Suppose there is a lesioned fiber diffusion model L lying at the boundary of the
lesion and healthy WM tissue. If the model is a diffusion tensor then there are only 6
unique elements of L that need to be estimated i.e. Dxx , Dyy, Dzz, Dxy, Dxz, and Dyz
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because diffusion tensors are positive semi-definite matrices. Similarly, if a more
complex spherical deconvolution model is used then at each lesioned voxel the FOD
is represented by a real-valued spherical harmonic coefficient vector, F , containing
(lmax + 1) × (lmax + 2) / 2 elements that need to be estimated. Consider that L has N
observed healthy or restored neighboring models, H1, H2, . . . , HN ∈ W , the white
matter mask. Each unknown element, Yi e.g. Dxx or Fi , is treated as a random
variable. The collection of matching neighbor elements forms a random vector X =
[X1, X2, · · · , XN ]. Then each unknown element Yi can be estimated from the known
neighboring elements of Hi using an optimal affine estimator.

We seek an affine estimator Ŷ = a0 + ∑N
i=1 ai Xi such that the MSE e.g. ε2 =

E
[
(Y − Ŷ )2

]
is minimized. To minimize this expression, we differentiate it with

respect to ai . Differentiating E
[
(Y − a0 + ∑N

i=1 ai Xi )
2
]
with respect to a0 and

setting it to 0 we find that a0 = μY − ∑N
i=1 aiμXi from which it follows that Ŷ =

μY + ∑N
i=1 ai

(
X − μX i

)
. Letting Ỹ = Y − μY and X̃ = X − μX we can rewrite

our MSE criterion as E
[
(Ỹ − ∑N

i=1 ai X̃i )
2
]
.

By differentiating this with respect to the coefficients and setting the result to

0 produces: E
[
(Ỹ − ∑N

i=1 ai X̃i )X̃ j

]
= 0 j = 1, 2, · · · , N which can be rewrit-

ten as E
[
X̃ j Ỹ

]
= ∑N

i=1 E
[
ai X̃i X̃ j

]
. These sets of equations can be expressed in

matrix form as RXY = (RXX ) a where RXY is the cross-correlation vector and RXX

is the auto-correlation matrix and a is the coefficient vector. We obtain the optimal
coefficients: a = (RXX )−1 RXY .

From this solution it is possible to produce the optimal affine estimate of elements

of L: Li = a1L
H̃1
i + a2L

H̃2
i + · · · + aN L

H̃N
i + μYi , where H̃i = Hi − μXi (1).

By taking the affine combination of the neighboring healthy elements. SinceY and
X are approximately Gaussian, the optimal affine estimate excellently approximates
the optimal MMSE estimate of Y. However, to construct an optimal affine estimator
at each voxel a distribution of fiber diffusion models must exist at every voxel in the
patient.

2.3 Distribution of Fiber Models

A fiber model distribution at every voxel in the patient can be constructed through
spatial normalization. Custom fiber diffusion model templates are constructed using
DTI-TK for tensors and FOD Reorientation and ANTs for FODs [15–17]. After the
templates are constructed, we spatially normalize the patients reconstructed tensors
or FODs into its respective custom HCP template using cost-function masking. We
then combine the estimated deformation fields to the template for the patients and
the HCP subjects to warp a subset of tensor or FOD data from the HCP subjects that
corresponds to voxels in the patients lesion and healthy voxels at the boundary.
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2.4 Model Inpainting

We use a diffusion based inpainting algorithm where the lesion region is filled from
its border to the center inspired from [18]. At each iteration, rather than taking a
simple average of the known neighboring models, we estimate the unknown model
L by taking the affine combination of its healthy neighbors where the coefficients are
estimated from the optimal affine estimator in Eq. (1). Note that an optimal affine
estimator is constructed for each element of the fiber diffusion model for each voxel
in the lesion region.

while the lesion region is not empty:

for all L ∈ ∂Ω :

for all y ∈ L(y) :

y = a1L
H̃1
i + a2L

H̃2
i + · · · + aN L

H̃N
i + μYy

Ω = Ω/∂Ω

where H̃i = Hi − μXy ∈ Ω̄ ∩ W and y ∈ [L1, L2, · · · , LN ] ,L is the model
to inpaint, Ω is the lesion region, Ω̄ its complement (the voxels outside Ω), ∂Ω its
border (voxels of Ω having one of its 6 cube neighbors in Ω̄).

3 Results

3.1 Simulation In-Vivo

We demonstrate the efficacy of our approach by simulating a lesion within a healthy
HCP subject that is not part of the model distribution. The lesion was created by
adding Rician noise to a cuboidal region consisting of 1035 voxels (129cm3) until
the SNR = 3. The lesioned voxels are then inpainted with a baseline approach and
our optimal approach. For our baseline, we use the same diffusion based inpainting
algorithm as used in the optimal estimation where the inpainted model is estimated
by simply taking an average of its neighbors [18]. The results of inpainting the
tensors (top) and FODs (bottom) with both approaches is shown in Fig. 1 within the
transparent border.

Column C shows the ground truth reconstructed tensors (top) and FODs (bottom).
The baseline approach is shown in column B and our optimal approach is show in
column D. At first glance, the baseline approach appears to provide a reasonable
restoration of the tensors but upon closer inspection many tensors have different
anisotropy (shape) and orientation (color) relative to the ground truth tensors. For
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Fig. 1 In-vivo simulated model restoration: The lesion region is demarcated by the transparent
border.Riciannoise is added to theoriginal diffusion signal until SNR=3producing the tensors (top)
and FODs (bottom) in A. The baseline approach in B appears to provide reasonable approximation
of normal tensors but upon closer inspection the restored tensors differ in anisotropy and orientation,
while for FODs there are large deviations in magnitude and orientation from the ground truth The
ground truth reconstructions are in C. Tensors and FODs restored using our optimal approach are
in D. Notice that the tensors and FODs restored using our approach more closely match the ground
truth in terms of orientation and shape compared to the baseline

FODs restored using the baseline approach it is immediately clear that they differ
in both magnitude and orientation with respect to the ground truth. Our optimal
approach more accurately preserves the anisotropy and orientation of the ground
truth tensors and the magnitude and orientation of the ground truth FODs.

Themean angular error (MAE) is plotted for the primary fiber direction for tensors
on the left and on the right for FODs (solid) from the HCP template mean normal-
ized into the lesion area (green), restored using the baseline approach (orange), and
restored using our optimal approach (blue) with respect to the primary fiber direction
from the respective ground truth tensors and FODs for lesion sizes varying from 6
voxels to 1035 voxels in Fig. 2. For the smallest lesions, the difference in MAE is
negligible for all the approaches and the FODs MAE is less than the tensors MAE.
However, as lesion size increases the FODsMAE quickly outpaces the tensorsMAE.
In general, the template average has the largest MAEwhile our optimal approach has
the smallest as lesion size increase. The MAE for the baseline approach grows more
rapidly than our optimal approach for both tensors and FODs and for large lesions
the MAE is twice as large compared to our optimal approach. On the right in Fig. 2,
the MAE for the second fiber population is plotted as the dotted line and is typically
twice as large as the MAE for the primary FOD fiber population. The trends for the
angular error in the second fiber population mirror those seen in the primary FOD
fiber population. Our optimal approach achieves the smallest MAE.
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Fig. 2 Analysis of angular error: The MAE is plotted on the left for tensors and on the right for
FODs (solid) for the primary fiber direction for varying lesions sizes. The MAE for the smallest
lesion sizes is comparable across all approaches and the FODs MAE is smaller than the tensors
MAE. However, the FODs MAE quickly outpaces the tensors MAE at larger lesion sizes. The
template average (green) has the largest MAE while our optimal approach (blue) as the smallest
as lesion size increase. The MAE for the baseline approach (orange) grows more rapidly than our
optimal approach for both tensors and FODs. Typically, the baseline approach has a MAE twice as
large as of our optimal approach. On the right, the MAE for the second fiber population is plotted
as the dotted line. It is typically twice as large as the MAE for primary FOD fiber population. The
MAE trend in the secondary fiber populationmirrors those seen in the primary FODfiber population
for all restoration approaches. Our optimal approach minimizes the MAE the most compared to the
baseline and template approaches

On the top left of Fig. 3, the root mean squared error (RMSE) in fractional
anisotropy (FA) with respect to the ground truth is measured for varying lesion sizes.
The RMSE starts high and then slowly decreases until its constant with increasing
lesion size for the template mean (green). The RMSE of FA values extracted from
the flipped ROI in the contralesional area (red) with respect to the original FA values
also starts high and then grows slowly with increasing lesion size. For lesion sizes
< 200 voxels, the baseline and optimal approach have almost identical trends, but for
larger sizes the baseline error grows much faster than for our optimal approach. At
large lesion sizes the baseline approach again has an error almost double our optimal
approach. For axial diffusivity (AD) on the top right, the template mean and optimal
AD RMSEs both grow moderately with increasing lesion size while the RMSE for
the baseline and flipped case grow faster. On the bottom row in Fig. 3, the RMSEs
for mean diffusivity (MD) and radial diffusivity (RD) are plotted. The MD and RD
RMSE for the flipped case grows the fastest with increasing lesion size while the
template mean, the baseline, and optimal approachs RMSE grow slowly. Interest-
ingly, there is not much gain in terms of RMSE for MD and RD between the baseline
and our optimal approach. In general, our optimal approach has the smallest RMSE
and grows the slowest with increasing lesion size while the baseline outperforms the
template mean which outperforms the flipped-case for all tissue measures.
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Fig. 3 RMSE of tissue microstructure measurements: On the top left, RMSE FA for the baseline
(orange) and our optimal approach (blue) show nearly identical trends for lesion sizes< 200 voxels.
The baseline RMSE FA increases more rapidly compared to our optimal approach and is nearly
twice as large at larger lesion sizes. For the template mean (green) the RMSE gradually decreases
until becoming constant as the lesion size increases. The RMSE of FA values extracted from the
flipped ROI in the contralesional area (red) with respect to the original FA values grows slowly
with increasing lesion size. On the top right the RMSE for axial diffusivity (AD) is plotted. The
template mean and optimal AD RMSEs both grow moderately with increasing lesion size while
the RMSE for the baseline and flipped case grow faster. On the bottom row, the RMSEs for mean
diffusivity (MD) and radial diffusivity (RD) are plotted. The MD and RD RMSE for the flipped
case grows the fastest with increasing lesion size while the template mean, the baseline, and optimal
approachs RMSE grow slowly. For MD and RD there is not much gain with our optimal approach
over the baseline. In general, our optimal approach has the smallest RMSE and grows the slowest
with increasing lesion size for all tissue measures

3.2 Lesion Restoration

The restoration results using our optimal approach are plotted in Fig. 4 for three
patients. The lesion region for each patient that undergoes restoration is demarcated
in red on the coronal FA slice in column A. The lesioned tensors before and after
the restoration are seen in columns B and C in Fig. 4. In column B, the tensors
in the lesion area have lost their normal color (orientation) and shape (anisotropy).
Notice that the restored tensors in column C have both normal appearing shape
and color. The lesioned FODs before and after restoration are plotted in columns
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Fig. 4 Restoration results for three stroke patients: The lesion regions where models undergo
restoration is demarcated in red in column A. The average lesion size is 390 voxels. In column B
are the tensors before the restoration and afterwards in column C. The loss of anisotropy (shape)
and proper orientation (color) of healthy white matter tissue in the CST are visible in column B.
In column C, our approach restores the orientations and anisotropy of the tensors to a normal
appearance. Similarly, the FODs in the lesion area of column D have lost their normal orientation
and magnitude. After underoing restoration using our optimal approach the normal orientation and
magnitude of the FODs in the lesion area have been recovered in E. The restored tensors (C) and
FODs (E) demonstrate high spatial coherence with their surroundings

D and E. In column D, the lesioned FODs have lost their normal orientation and
magnitude. The orientation and magnitude of FODs in the lesion are recovered after
undergoing restoration using our optimal approach. Moreover, the restored tensors
and FODs demonstrate high spatial coherence with the surrounding healthy white
matter tensors and FODs.

The restoration of scalar tissue microstructure measures AD, MD, and RD are
plotted in Fig. 5 for patient 1 on the same coronal plane. In the top row are the
measures before the restoration and in the bottom row after the restoration. The
lesion area is demarcated in red. Notice that after restoration using our optimal
approach that the lesion area has been restored to a normal appearance for all the
scalar diffusivities.

To demonstrate the improved mapping of lesion connectivity after fiber model
restoration, we perform deterministic tractography before and after restoration on
FODs in MRtrix with default settings using the SD_STREAM algorithm from a
seed image consisting of two voxels below the lesion area with 1000 seeds per voxel
[14]. In Fig. 6, the tractography results before the restoration (top) and after the
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Fig. 5 Coronal view of tissue microstructure measures before (top) and after (bottom) restoration
for patient 1: From left to right axial diffusivity, mean diffusivity, and radial diffusivity. The lesion
area is demarcated in red. The lesion area has been restored to a normal appearance for all measures

restoration (middle) are displayed on top of the magnified portion of their lesion in
the sagittal FA slicewhich is denoted by the arrow (bottom). In all three patients, once
the tracking enters portions of the lesion area it prematurely terminates before the
restoration, preventing an accurate mapping of connectivity within the lesion. After
the FODs have been restored, tracking through the lesion area becomes feasible
enabling a more accurate mapping of the lesions connectivity.

4 Discussion

Using in-vivo simulations and stroke patient data, we demonstrated the ability of
our novel approach for accurately restoring both the orientation and magnitude of
FODs and the orientation, anisotropy, and tissue microstructure measures of diffu-
sion tensors in WM lesions. Our optimal affine estimator approach offers superior
performance over a diffusion based inpainting approach that takes the average of
neighboring tensors for inpainting a lesioned area as well as the trivial copy and
pasting of tensors or FODs from the normalized HCP tensor or FOD template.

Simple neighbor averaging performs well for very small lesions. However, as
the lesion sizes increases, it introduces increased blurring that compounds moving
inward. The increased blurring is reflected by the large increases in angular error and
error in scalar measures such as FA or AD as the lesion sizes increase. Our optimal
approach performs well at restoring tensors and FODs across all lesion sizes with
only modest increases in angular error and error in scalar measures as the lesion
size increases because as the algorithm moves inward, the fiber diffusion models are
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Fig. 6 Deterministic tractography results before (top) and after (middle) restoration: Before the
restoration, a portionof all three patients streamlines prematurely terminate once they enter the lesion
area, making it difficult to study the patients lesion connectivity. After the restoration, tractography
can be performed more accurately because the FODs have been restored, enhancing the tracking
and mapping of connectivity in the lesion areas. The results are plotted on top of magnified portion
of the lesion area in the sagittal FA slice (bottom)

inpainted with their optimal affine combination of their neighbors such that the MSE
is minimized. Consequently, blurring is reduced as the algorithm moves toward the
center of the lesion.

Although performance was only measured on simulated cuboidal lesions, our
method is applicable to lesions of any shape. Besides lesion size and location, the
quality of the restoration depends on the initial healthy fiber diffusionmodels that are
optimally combined to inpaint the first set of models in the lesion area. If the healthy
models are corrupted by noise or by proximity to the lesion, it will get propagated
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into all subsequent inpainted models. Consequently, we recommend overestimating
the lesion mask and carefully defining the white matter mask to ensure all models
used in the initial stages are in fact healthy. Moreover, despite only demonstrating the
restoration of lesioned diffusion tensors and FODs, orientation distribution functions
(ODFs) from QBI could also be restored using our approach by representing them
with an orthonormal spherical harmonic basis and using FOD reorientation to build
a distribution of ODFs.

Clinicians and researchers could find our approach beneficial for restoring fiber
diffusion models in lesioned areas in their clinical diffusion datasets because it not
only improves the accuracy of measuring changes in tissue microstructure relative to
measurements from the contralesional area but also improves the accuracy of trac-
tography results and the mapping of connectivity from the lesion for improved study
of structure-function relationships and outcome prediction. To apply our approach,
visit https://github.com/clintg6/OFDMR.
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Diffusion Anisotropy Identification by
Short Diffusion-Diffusion Correlation
Spectroscopy

Fangrong Zong, Yan Zhuo, Natasha Spindler, Huabing Liu,
and Petrik Galvosas

Abstract Water diffusion is generally anisotropic in porous media, giving the
opportunity to access the microstructure of a substance. Two-dimensional (2D)
Diffusion-Diffusion COrrelation SpectroscopY (DDCOSY), which is one kind of
multi-dimensional diffusometry (MUD) techniques, was introduced to reveal micro-
scopic anisotropy by tracing molecular displacements in orthogonal spatial direc-
tions. As DDCOSY is most applicable to substances with long transverse relaxation
times, a short version of DDCOSY (i.e. sDDCOSY) was proposed with two diffu-
sion gradient pairs applied simultaneously. With the increased interest in apply-
ing the MUD techniques in more complex media, it should be noted that the
non-zero off-diagonal diffusion coefficients may lead to ambiguous correlation
results inmacroscopically anisotropy systems. In thiswork, we investigate the behav-
ior of off-diagonal diffusion coefficients and suppress their influences on final cor-
relation maps by altering one pulsed-field-gradient (PFG) direction. Results from
Monte-Carlo simulations in a three-dimensional confining domain with a bundle of
capillaries orientated by a certain degree verified the correction. Further experiments
on different capillary networks demonstrate the ability of the proposed approach to
unveil sample microstructure. The proposed sDDCOSY approach allows for apply-
ing MUD techniques for both microscopic and macroscopic anisotropic systems,
with potentials to combine with imaging encodings.
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1 Introduction

Multi-dimensional diffusometry (MUD) techniques have been extensively used in
biological and medical sciences to investigate the molecular composition and mor-
phology of a substance under study [1–5]. By applying multiple diffusion-sensitive
gradient pairs at different angles/directions, the non-uniformity of molecular diffu-
sivity can be revealed with the aid of numerical analysis algorithms. For instance, the
angular double pulsed field gradient (d-PFG) measures the averaged axon diameter
in a nervous system [6] and has been applied to detect brain injury [7]. Among these
MUD techniques, a diffusion-diffusion correlation spectroscopy (DDCOSY) tech-
nique was proposed to map out the portion of spatially dependent diffusion from liv-
ingplant samples and tumor-bearingmousebrains, resolving local anisotropywithout
imaging encodings [8, 9]. The DDCOSY approach uses two diffusion encodings at
subsequent observation time windows which are most applicable to substances with
long transverse relaxation time and ignorable internal magnetic field effect. In tissues
with short transverse relaxation times (e.g. the T2 of the gray matter of the rat brain
is less than 90 ms at the magnetic field above 3 T), it may not be advisable to use the
conventional DDCOSY techniques to detect tissue microstructure.

A simplified approach to retain signal from short relaxation time components and
correlate the diffusions along different directions is to apply two independent PFGs
simultaneously, which was proposed in 2011 and named with sDDCOSY [10]. The
timing of the sDDCOSY pulse sequence is identical to the single PFG, with half
shortening the period of signal loss due to spin relaxation as compared to the con-
ventional DDCOSY pulse sequence. Therefore, a significant improvement of the
acquired signal intensity is gained by using the sDDCOSY pulse sequence, which
has been demonstrated in isotropic samples with only non-zero diagonal diffusion
coefficients (e.g. bulkwater and sands). However,when using the original sDDCOSY
sequence in samples with non-zero off-diagonal diffusion coefficients, the correla-
tion probability of diffusion coefficients along different directions that is obtained
by a common numerical analysis algorithm for two-dimensional NMR correlation
experiments (i.e. two-dimensional inverse Laplace transform (2D-ILT) [11]) may
not be properly mapped. In previous published work [12], a possible compensation
method was proposed, for which we provide an upgrade and more details here.

With the continuously increasing effort in applying MUD techniques in complex
porous media, such as combining MUD with imaging encodings (i.e. MUDI), it is
therefore essential to bring attention to the off-diagonal effects or any cross terms
that may occur in signal acquisition. In this contribution, we start by reviewing the
advantages and limitations of sDDCOSY with a MUD example by studying the
signal evolution of the sequence, followed by introducing a detailed acquisition and
analysis procedure to mitigate the problem. We further demonstrate our approach
with Monte-Carlo simulation and experimental data in a bundle of capillaries with
various orientation degrees.
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2 Theory

2.1 Short Diffusion-Diffusion Correlation Spectroscopy

The DDCOSY pulse sequence allows one to investigate sample microstructure both
qualitatively andquantitatively [1, 8, 9].However, the acquired signal intensitywould
attenuate due to spin relaxation during the diffusion observation time. For instance,
in the DDCOSY spin echo sequence, the factor from a transverse relaxation time (T2)
can be simplified as exp (−TE/T2), where TE is the echo time. If T2 of the sample
is one-order shorter than TE, there will be no signal acquired as exp (−TE/T2) ≈ 0.
To overcome this limitation, the common pulse sequence for DDCOSY was short-
ened where two gradients with different directions are applied instantaneously. An
example of the short DDCOSY (sDDCOSY) pulse sequence with spin echo acqui-
sition can be found in the previous work [12]. It correlates the diffusion coefficients
(or molecular displacements) at the same time but along different directions. Given
certain diffusion gradients applied along different directions, the signal acquisition
is identical to a single PFGmeasurement. In this case, time evolution of the obtained
signal would obey similar expression with the single PFG evolution but with two
independent diffusion gradients in a narrow gradient pulse approximation,

M(q1, q2) =
N∑

i=1

f (Di ) exp

(
−TE
T2

)
exp

[−�
(
qT
1 + qT

2

)
Di (q1 + q2)

]
, (1)

where, Di = [Dxx , Dxy, Dxz; Dyx , Dyy, Dyz; Dzx , Dzy, Dzz]i stands for the sym-
metric diffusion tensor with six independent elements. q = [qy, qy, qz]T with a
subscript of 1,2 indicates the two scattering wave vectors with the definition of
q = (2π)−1γ δGdiff (γ is the gyromagnetic ratio, 2π × 42.56 MHz/T for 1H, δ and
Gdiff are the duration and strength of the diffusion gradient respectively) [13], f (Di )

is the correlation probability of the i th diffusion tensor at two directions. N is the
number of different diffusion environments in the porous space.

To expand Eq. (1) and normalize the magnetization with no gradients applied, one
can cancel the effect from transversal relaxation time and write in the tensor form of

Mnorm(q1, q2) =
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f (Di ) exp
[−�(qT

1D
iq1 + qT

2D
iq2 + qT

1D
iq2 + qT

2D
iq1)

]
.

(2)
The first two terms in the right bracket contain the influences of diagonal diffusion
coefficients while the rest (i.e. the cross or mixing terms) show the additional decay
due to the off-diagonal diffusion coefficients.
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2.2 Cancellation of the Mixing Term

Given that the two gradients in the sDDCOSY are applied along y and z directions,
meaning q1 = [qy, 0, 0]T(qy ≥ 0) and q2 = [0, qz, 0]T(qz ≥ 0), further tensor
expansion of Eq. (2) would be

Mnorm(qy, qz) =
N∑

i=1

f (Di
yy, D

i
zz) exp

[
−�(q2y D

i
yy + q2z D

i
zz + qyqz D

i
yz + qyqz D

i
zy)

]
.

(3)
The first two terms in the right bracket contain the contributions of diagonal diffusion
coefficients (Dyy and Dzz) while the last two terms show the extra decay due to the
off-diagonal diffusion coefficients Dyz = Dzy . For isotropic substances, the diffusion
tensor of bulk samples contains non-zero diagonal and zero off-diagonal elements,
thus the mixing term is zero. In this case, Eq. (3) becomes

Mnorm(qy, qz) =
N∑

i=1

f (Di
yy, D

i
zz) exp

[−�(q2
y D

i
yy + q2

z D
i
zz)

]
, (4)

where, f (Di
yy, D

i
zz) is the diffusion correlation probability along y and z directions

in the i th diffusion tensor environments. Because qy and qz are two independent
variables, the acquired signal is a 2D matrix. Each elements in the matrix is obtained
from a summation of N diffusion components at a particular set of (qy , qz). Therefore,
one can thus use a well-known numerical processing toolbox, 2D-ILT [11, 14], to
obtain a D-D correlation map from the 2D signal through a constraint optimization
approach [15]:

f̂ = argmin
f �0

‖M − K1 f K2‖2 + ρ‖ f ‖2, (5)

where f̂ is an estimated 2D distribution function holding the joint correlation prob-
ability of Dyy and Dzz , and the ‖ · ‖ is the Frobenius norm of the matrix. K1 and K2

are the kernel functions constituted from the first two exponential factors in Eq. (3),
with K1 = exp(−Δq2

y Dyy) and K2 = exp(−Δq2
z Dzz). In this inversion step, Dyy

and Dzz are discretized to form a meshgrid and the singular value decomposition
method is used to slove this highly ill-posed problem. ρ is the smoothing parameter
to suppress the noise and control/improve the stability in the estimated distribution.
After processing the acquired signal decay by using Eq. (5), f̂ can be distributed in
a correlation map referred to as a D-D map.

However, for macroscopically anisotropic samples (i.e. Dyz may not equal to 0),
the mixing term in Eq. (3) will start contributing to the signal decay, thus it may
return the biased D-D map if directly processing the obtained signal by using 2D-
ILT (whichwill be visualized in Sect. 4.1). The obtained joint probability of diffusion
coefficients along two orthogonal directions will be contaminated by the coupling
from the off-diagonal diffusion coefficients.



Diffusion Anisotropy Identification by Short DDCOSY 53

Here, we propose to add an additional set of sDDCOSY data to erase out the con-
tamination from the off-diagonal diffusion coefficients. Firstly, (3) can be rewritten
as

Mnorm1(qy, qz) =
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(6)
Another sDDCOSY sequence but with alternating direction of the second pair (q2 =
[0, 0, −qz]T(qz ≥ 0)) is applied, thus we have
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By multiplying Eqs. (6) and (7), it would return

Mnorm3 = Mnorm1 × Mnorm2 =
[
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(8)
By taking the square root of Mnorm3, the processed data would follow same evolution
as given in Eq. (4). Moreover, the effect from the mixing term will vanish and only
the diagonal diffusion coefficient components contribute in the processed data, which
guarantees the 2D-ILT output to be the exact D-D correlation probability.

3 Numerical Simulation and Experimental Parameters

In order to verify the proposed approach in canceling the off-diagonal effect when
using sDDCOSY in macroscopic anisotropic system (previous studies have demon-
strated its application in isotropic samples [10]), the response of water diffusion
through fiber networks was modeled usingMonte-Carlo simulations [16]. The simu-
lation volumes were defined as cubes of side 2000 µm. The fibers were cylinders of
radius R = 10 µm and represented in the simulation by a randomly generated pivot
point and fixed directional vector with 30◦ off from the z−axis.

Particleswere allowed towalk randomly through the space as illustrated in Fig. 1a.
The number of particles was set to be NP = 5000. Each particle represented the spin-
carrying molecules with the diffusion step ofΔt = 5µs and the diffusion coefficient
of D0 = 2 × 10−9m2/s. Thus, the length (displacement) step was Δr ≈ 0.24 µm
which is much smaller than R and can be noted as a valid length resolution. The
starting position of each molecule was determined by uniformly sampling points
within the simulation volume to guarantee that water molecules spread the whole
space in the simulated volume. During the randomwalk simulation, the rule of elastic
collision was adopted when the molecule hits the fiber or the simulated volume
wall. The total time for one particle to perform the random walk simulation was set
T = 110 ms.
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Fig. 1 Illustration of a the
simulated model, with blue
dots representing water
molecules inside the
capillaries and b the
experimental sample used in
this study

At the end of the simulation, the elements of the laboratory-frame diffusion tensor
were calculated:

Di j = 〈rir j 〉
6T

= 1

6NpT

Np∑

n=1

(
r iNT ,n − r i0,n

) (
r j
NT ,n − r j

0,n

)
, (9)

where rNT ,n , and r0,n represent the initial and final positions of the nth particle,
respectively.

The phase of the magnetization is accumulated during the random walk as a con-
sequence of the employed radio-frequency pulses and diffusion gradients. According
to Sect. 2.2, the simulation is separated into two steps. In the first step, the gradient
strengths are set to be linearly incremented from 0 to 0.2 T/m by 16 steps along the
independent directions of [1, 0, 0] and [0, 0, 1] which produces the signal Mnorm1;
whereas in the second step, the gradient strengths are linearly incremented from 0 to
0.2 T/m along the directions of [1, 0, 0] and [0, 0, −1] which forms Mnorm2.

All experiments were performed on a Bruker Advance 400MHz NMR spectrom-
eter equippedwith amicro-imaging system. It provides amaximum gradient strength
Gmax = 1.45 T/m. All the experiments were carried out at 1H resonance frequency
of 399.14MHz at the temperature of 20 ◦C. The experiments were firstly performed
on water in 20 µm diameter aligned capillaries (z−axis) which are the experimental
alternatives to fibers/axons (as shown in Fig. 1b). The environment of water in cap-
illaries is macroscopic anisotropy when the observation time is larger than R2/6D0.
Therefore, in the sDDCOSY experiments, � = 100 ms was chosen for capillaries.
The gradient duration δ was set to be 2 ms. The gradients were applied using the
same strategies as described in Sect. 4.1. A Carr-Purcell-Meiboom-Gill (CPMG)
experiment [17, 18] with an echo time of 1 ms and number of 3000 echoes was
conducted to calculate T2 of the bundle of the capillary network.
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4 Results

4.1 Simulation Validation

The simulation results of the magnetization evolution in two separated steps are
shown in Fig. 2. The horizontal and vertical axes are the employed gradient strengths
along y− and z− axis. The intensities quantify the normalized magnetization as
defined in Eqs. (6) and (7). It should be noted that the horizontal gradient strengths
increase from left to right. As can be seen from Fig. 2a, signal decreases in both
directions due to molecular displacements. However, in Fig. 2b, signal increases
when Gz is between 0 and 0.75 T/m and Gy is from 0.05 T/m to 0.15 T/m with the
opposite direction. Moreover, the decay pattern follows non-orthogonal exponents
which means molecular displacements coupling along these two directions and is
ascribed to the mixing terms in Eq. 2. Consequently, it is unsuitable to use the 2D
ILT algorithm to directly process the datasets shown in Fig. 2.

Nevertheless, if one follows the strategy as stated in Sect. 2.2, the normalized
magnetization will be corrected and displayed in Fig. 3a. Strong orthogonality is
now present in the signal decay along any directions which meets the requirement of
the 2D ILT algorithm in the data processing procedure. The correlated diffusion map
is illustrated in Fig. 3b and the discretized size in the map is 100×100.The horizontal
and vertical axes are pre-defined series of possible values of diffusion coefficients
along y− and z−axis logarithmically distributed from 10−11 to ×10−8 m2/s. The
intensities quantify the joint probability function f̂ as defined in Eq. (5). The diagonal
line in the map is a reference representing the identical diffusion coefficients of the
two directions, thus the peak lying on this line indicates an identical probability of
water diffusion in any of the two directions. The peak off the diagonal line shows
that different diffusion coefficients dominate in two directions, implying a preferable
diffusing pathway in the sample. It can be read from Fig. 3b that the peak positions
along y− and z−axis were around 0.5 × 10−9 m2/s and 3.5 × 10−9 m2/s.

(a) (b)

Fig. 2 The simulated signal decay of a Mnorm1 and b Mnorm2. The horizontal and vertical axes
are the gradient strengths along y− and z− axis. The intensities are the normalized magnetization.
It should be noted that the horizontal gradient strengths increase from left to right
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(a) (b)

Fig. 3 The corrected signal decay (a) and correlation map (b) before and after 2D ILT

To validate the results, the diffusion tensor is calculated using Eq. 9 independently.
The tensor matrix is

D =
⎛

⎝
0.5377 0.0068 0.0111
0.0068 0.5418 0.0139
0.0111 0.0139 3.6833

⎞

⎠ × 10−9m2/s,

from which, one can see that the values of Dyy and Dzz are consistent with the peak
positions from the correlation map given in Fig. 3b.

4.2 Experimental Results

The T2 distribution of waters in the capillaries calculated from the CPMG dataset
is approximately 80 ms, which is comparable to the T2 value in the gray matter of
the rat brain [19]. In these scenarios, it is not advisable to use conventional d-PFG
sequence as signal may attenuate to a non-detectable level at the start of acquisition
and the sDDCOSY sequence may be a promising candidate to investigate sample
microstructure.

Figure 4 shows the experimental results of the capillaries with orientation angles
of 30◦ after applying the proposed strategy. It is observable from themaximal value of
the joint probability that themeasured signal-to-noise is much less than the simulated
dataset, but the correction still works reasonablywell on themeasured data. Diffusion
correlation maps of the experiments correspond very well with the simulation results
despite that a broader peak can be found in the experimental map. This is due to a
large smoothing parameter ρ (in Eq. 5) automatically selected in the experimental
data processing as a results of low signal-to-noise (SNR) ratio. Nevertheless, the
aligning degree of peaks on both maps seems to be identical, which may indicate the
orientation of the sample.
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(a) (b)

Fig. 4 The corrected signal decay (a) and diffusion correlation map (b) of measured water in the
capillaries with orientation angles of 30 degrees

(a) (b)

Fig. 5 The corrected signal decay (a) and diffusion correlationmap (b) of measured water in mixed
capillaries with radii of 20 and 10 µm

Further experiments were conducted by mixing capillaries with two different
diameters (20 and 10µm) in Fig. 1b.As expected, the uncorrected signal decay shows
strong off-diagonal effects which is similar to Fig. 2. The corrected 2D datasets and
its corresponding D-D map is shown in Fig. 5. The capillaries with the radius of
10 μm created much more restricted environments for water to diffuse, thus leading
to much slower decay around y-axis. Correspondingly, the D-D map shows two dis-
tinct diffusing environment along y-axis. Nevertheless, this result demonstrates the
capability of the modified sDDCOSY approach in a sample with different structural
compartments.
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5 Conclusions and Discussions

The sDDCOSY sequence is particularly suitable for substances with short transverse
relaxation times. For macroscopic anisotropic system, themixing term in sDDCOSY
signal leads to ambiguous diffusion-diffusion correlation maps. A two-step exper-
iment was proposed with one of the diffusion gradient pairs blipped to cancel the
effect from the mixing terms of diffusion coefficient along two directions. Based on
the results of Monte-Carlo simulations and experiments of the capillary network,
their correspondence provides a good demonstration of the proposed approach.

The advantage of the proposed method over single PFG is its capability to reveal
local anisotropy (or microscopic anisotropy) that is a common constraint in single
PFG measurements. Moreover, as compared to DDCOSY, the sDDCOSY is advan-
tageous in twomajor aspects. Firstly, there is much less influence from the relaxation
effect, which makes sDDCOSY more suitable in denser tissues and materials, and
at high fields. Secondly, sDDCOSY correlates the anisotropic diffusion at the same
interval without diffusion exchange effects. The downsides of the proposed sDD-
COSY is that it fails to resolve the correlation and exchange of diffusion along the
same directions since the two PFGs are applied at the same time and have to be on
orthogonal directions.

The combination of double PFG and imaging has shown great potential in investi-
gating brain pathology such as traumatic brain injury [7]. As sDDCOSY is one kind
of double PFG technique, it is believed that by combining the sDDCOSYand imaging
encoding sequence, more detailed microstructure information can be revealed within
a voxel. A MADCO scheme [20] can be used to accelerate the total acquisition time
of the diffusion-diffusion correlation imaging to be clinically feasible.

In summary, these findings have demonstrated that the sDDCOSY technique is
capable of investigating different diffusion environments in porous media, and can
be much useful in more broad scenarios (such as ultra-high field where the transverse
relaxation time is usually very short) to detect tissuemorphology andmicrostructure.
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Current Challenges and Future
Directions in Diffusion MRI: From
Model- to Data- Driven Analysis

Kurt G. Schilling , Baxter Rogers , Adam W. Anderson ,
and Bennett A. Landman

Abstract Diffusion weighted MRI is a prominent non-invasive modality to probe
in vivo tissue micro- and macro-structure and has been widely applied throughout
neuro- and body imaging. The promise of micro-scale analyses has been in the
creation of virtual biopsies that provide information in place of physical histology,
while tractography and its related methods offer maps of the neuronal wiring through
virtual dissection. While both approaches have had strong successes at the group
level, specificity and sensitivity at the individual dataset/single subject level have
been more elusive. Herein, we reflect on current challenges and potential future
directions in the context of a futurist piece. As such, we go beyond the reason-
ably well-established science to offer hypotheses/postulates/challenges to encourage
discussion and exploration. We postulate that there are transformative opportunities
available if we complement our perspective of diffusion MRI as a signal that is
explained by a tractable biophysical model with one in which data driven machine
learning can inform us about detection, localization, and assessment of both normal
and abnormal brain tissue in both local (voxels) and global connectivity. Towards this
end, this manuscript describes challenges associated with achieving virtual biopsy
(i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and
suggests opportunities to use data-driven techniques to improve modeling geometry,
to learn features of the signal that may prove useful as biomarkers, and to harmonize
signal, techniques, and datasets to improve tissue characterization.
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1 Introduction

Abroad overview of the current literature could be summarized as diffusionweighted
magnetic resonance imaging (MRI) offers the ability to probe a wide range of
microstructure, connectivity, vascularity, perfusion, and even function parameters.
Nearly all of our papers in the past decade have begun with a variant of “diffu-
sion weighted MRI is the only non-invasive modality to …” We note the enthu-
siasm in a few seminal papers. Le Bihan et al. succinctly states “diffusion is an
ubiquitous process that can be investigated to understand cell physiology and life.”
[1] Basser et al. noted, “These imaging parameters characterize diffusion isotropy,
diffusion anisotropy, macrostructural similarity, and fiber-tract organization. We call
them ‘quantitative’ because each parameter behaves like a quantitative histological
or physiological stain.” [2] Similarly, Mori et al. observed “it is now possible to
tract the 3D structure of axonal projections” [3]. Their works and others have trans-
formed our understanding of tissue properties in the brain, nervous system, and body
throughout the lifespan and in disease.

With over 43 thousand papers on PubMed referencing diffusion and MRI, one
might think that the diffusionMRI properties are deeply understood at a fundamental
level. While the sensitivity of metrics estimated from diffusion MRI shows broad
promise, the specificity has been low and difficult to translate into interpretable
biomarkers. One of the early successes (and to date the primary clinical use case) is
in detecting acute brain ischemia [4], where the water diffusion drops significantly at
a very early stage of ischemic events, providing clinicians the opportunity to provide
treatment in a timely manner. While the exact biophysical basis has not been fully
clarified, the substantial magnitude and low variance of the signal in the impacted
tissue enables clear detection of abnormal and affected tissue.

Meanwhile, diffusion MRI has had wide success in the research literature [5, 6].
The holy grail for diffusionMRI (or any quantitative imagingmethod for that matter)
is application as a quantitative in vivo “virtual biopsy” and “virtual fiber dissec-
tion.” Related to cancer, diffusion measurements have shown potential in managing
patients, with derived diffusionmeasures capable of approximating tumor cellularity,
detecting degree of malignancy, or predicting response to therapy [7, 8]. As a proxy
of histology, quantitative diffusion modeling has facilitated investigations of axon
and dendritic densities, axon diameter mapping, permeabilities, and cell shape esti-
mation [9], with applications for studying normal brain development, aging, and
understanding of a broad range of brain disorders. As a dissection technique, diffu-
sion measurements have been used to map the wiring of the brain in a process called
fiber tractography [10], permitting analysis of individual white matter pathways, or
of the connectivity as a whole—while also creating beautiful 3D displays that have
graced the covers of journals and textbooks. Finally, some novel applications include
quantification of blood microcirculation, mapping information flow in white matter,
or mapping functional and neuronal activation processes.
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Despite these successes, the original promise of non-invasive, quantitativemetrics
for virtual tissue biopsies and white matter virtual dissections has not been fully real-
ized [11, 12]. Indeed, the metrics are non-invasive. However, several limitations have
impeded the realization of diffusionMRI as a true virtual biopsy, including technical
limitations, model selection, experimental design, and assumptions or biases in the
parameter estimation process. Tractography has also been shown to be limited in its
ability to accurately map the anatomy of the brain, suffering from both false positive
and false negative results, and variability due to analysis rather than true biological
variations. [12, 13] Additionally, misinterpretation (e.g., “fractional anisotropy is a
marker of white matter integrity”) and overly literal of interpretation (“the number
of streamlines connecting two regions is a measure of connectivity”) have caused
confusion, and possibly over-enthusiasm, about the abilities of these techniques.

We recognize that there are major challenges in both microstructure and fiber
tractography modeling. A particular glaring open issue is that we do not yet have the
ability to accurately and consistently make single subject inferences – i.e., making
diagnosis, prognosis, and predictions – from a single diffusion dataset. It is quite
possible that to fully realize the potential of diffusion MRI necessitates a funda-
mentally sound theory (an understanding of what is biophysically relevant and the
relationship to the signal) and ability to estimate parameters from the signal. For this,
validation of the precision and specificity of these parameters is necessary and an
exact calibration of the scanning machines is required. However, we postulate that
there is transformative opportunity available if we complement our perspective of
diffusion MRI as a signal that is explained by a tractable biophysical model with
one in which data driven machine learning can inform our detection, localization,
and assessment of both normal and abnormal brain tissue in both local (voxels) and
global connectivity.

Towards this end, this manuscript describes challenges associated with achieving
virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber
tractography). We suggest opportunities to use data-driven techniques to improve
tissue modeling geometry, to learn features of the signal that may prove useful as
biomarkers, and to harmonize signal, techniques, and datasets to improve tissue
characterization. While we attempt to highlight/reference emerging innovation, this
manuscript intentionally goes beyond the reasonablywell-established science to offer
hypotheses/postulates/challenges to encourage discussion and exploration. The opin-
ions expressed herein are those of the authors and are proffered within the spirit of
an ongoing discussion.

2 Virtual Biopsy

Mapping tissue microstructure with MRI holds great promise as a noninvasive window into
tissue organization at the cellular level. Novikov et al. [14]
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Virtual biopsies are widely and enthusiastically discussed in the popular press as
new imaging modalities offer the potential for doctors to get the needed information
without removing (albeit small) tissues samples from their patients. The potential
benefits for medical care in terms of reduced risk, increased information availability,
and greater access are easy to tout. However, reflecting on the work of [2], it is
exceedingly difficult to generate diffusion MRI-based contrasts that can be consid-
ered equivalent to a standard of care histological stain. The set of challenges and
opportunities that we consider focus on a pathway toward quantitative adoption of
biomarkers from diffusion MRI as articulated by [2].

Voxel-wise Analysis

Consider a situation in which one has a limited sample size of patients, but choose s
consider their dataset not as a consisting of a few score individuals, but rather tens
of millions of virtual brain biopsies. This optimistic perspective is worth striving for
from image processing, machine learning, and informatics perspectives. However,
to reach this state, we need a deep understanding of acquired resolution, reconstruc-
tion statistics, realized versus idealized protocols (i.e., hardware performance), noise
structure (i.e., signal to noise ratio, and including spatially varying components), and
how these technical factors influence voxel-wise modeling.

The entire modeling sub-field of diffusion MRI research is devoted to modeling
tissue architectures and developing “contrasts” frommeasured signals that are reflec-
tive of relevant microstructural/micro-anatomical features as observed across milli-
metric volumes. As George Box famously wrote, “All models are wrong, but some
are useful.” This is never truer given the near infinite complexity for in vivo cellular
organization in human tissue aggregated over ~10 mm3 (a volume containing 0.5 to
> 5 million axons [15]). The simple mean diffusivity model, which is the diffusivity
averaged over orthogonal directions (the apparent diffusion coefficient), is clinically
relevant in ischemia and remains the most widely used metric of diffusion. Perhaps
surprisingly, the 3-D generalization of Gaussian diffusion, which approximates free
randomparticlemotion is the nextmostwidely used representation as it provides both
directional and anisotropy information that can be used to infer contrasts sensitive to
white matter changes while providing a framework for fiber tracking. More recently,
a plethora ofmodels have exploredmultiple diffusion environments, sub-voxel orien-
tation structure, and sensitivity to complex compartment geometry. Yet, all of these
pale in comparison to what would be seen on a nanometer/micrometer level char-
acterization of the environment (e.g., as seen on confocal or electron microscopy
[16–19]). Thus, we conclude clearly non-correct models (or not entirely accurate)
provide useful information.

The estimation of parameters themselves are limited by our understanding of
the theory. We posit that we are reaching a stage at which explicit modeling of
micro-/nano- architecture can be usefully complemented with machine learning
approaches to tissue characterization. Simply put from our empirical perspective,
non-idealities in hardware, dynamic aspects of anatomy, and spatial considerations
render the conventional inverse problem ill-posed and exceptionally complex. To
truly understand the relationship between the diffusion signal and any individual
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feature of the environment, the physical theory needs to be understood at across
three orders of magnitude of spatial scales (micrometer boundaries to millimeter
voxels) and eight orders of temporal scales (microsecond particle interactions to
minutes of acquisition).

Yet, we do not argue that we are at a theoretical impasse. We propose that rather
than following a pathway solely focused on model generation, estimation, and eval-
uation, we ask whether the data can help identify which parameters to estimate and
how to create estimators of model parameters that are robust to imaging/nuisance
effects.

First, data analytics and manifold learning techniques can identify areas of varia-
tion or drive estimation of parameters. Data driven clustering and manifold learning
can be used to derive representations that inspire theoretical models. In particular,
identifying trends that are robust to variations in protocol, scanner, and noise will be
essential to ensure broad applicability of resulting theory. Much work is yet to be
done as it relates to hypothesis generation and data visualization with these complex
data structures.

Second, we envision that machine learning will be able to improve our estimation
methods to be able to tell the relationship between a signal and a feature. For example,
consider the early statistical work on the statistics of diffusion tensor estimation
[20–22]. By modeling the non-Gaussian noise distribution and presence of outliers,
diffusion tensor estimation could be substantially more robust and less biased in the
context of low SNR and artifact laden imaging (e.g., nearly all in vivo studies).

In many situations, both a signal and a truth are known for a limited subset of data.
For example, consider: numerical simulations with geometrically determined spin
walkers, physical phantoms with mechanical construction, measurement of samples
with both MRI and histological imaging, or synthetic datasets derived from excep-
tionally highSNR/resolution studies. In these situations, supervisedmachine learning
can be used to determine non-linear mapping functions between observable signals
and the voxel-wise truth.

There has beenmuch recent progress in supervised data drivenmethods. Fick et al.
assessed the feasibility of estimating axondiameter using random forests trained from
co-registered diffusion and histology of the rodent spinal cord [23]. Interestingly, this
approach reduced the overestimation biases present in state-of-the-art modeling of
axon diameter. Nedjati-Gilani et al. learned random forest mapping between Monte
Carlo simulations and permeability and applied these models to multiple sclerosis
patients [24]. Again, the estimated models were consistent with expected pathology.

Finally, general purpose deep learning methods are emerging to link diffusion
weighted signals to histologically determined models of fiber geometry and orienta-
tion, e.g., by Nath et al. [25]. A particular advantage of deep models is that they can
leverage semi-supervised data (e.g., learning environments for which truth is known
for a portion of the data, but is unknown for another portion) and even conditions
where truthmight not be pairedwith observed/observable data (e.g., generative adver-
sarial models). New resources are being developed that will enable greater partic-
ipation in data driven model learning, e.g., with GPU-driven diffusion simulation
architectures [26] and realistic generative tissue models [27].
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Voxel-wise Biomarkers

The intent of model driven voxel-wise analyses (as well as the data-driven models
described above) is to identify parameters of interest that are associated with specific
biological characteristics of the tissue. For example, fractional anisotropy was devel-
oped as a representation of local orientation preference in a unitless context while
axon diameter metrics specifically seek to estimate the spatial characteristics of the
axon within a voxel. When these markers are sensitive/specific to disease states or
conditions of interest, a clear narrative can be explained to connect imaging to biology
and then to biomarker. Yet, we have seen existing putative biomarkers have largely
been shown to be sensitive to changes of interest, but not specific to differences in
pathology.

We have seen that data-driven approaches are beginning to complement direct
modeling of the relationship between the diffusion signal and microstructural
features. To date, these methods still attempt to estimate a characteristic of the tissue
that may not capture the complete picture of the microstructure. For example, for
a pathologist examining tissue biopsy under a microscope, a discrete value of a
volume-wise axon diameter, permeability, or g-ratio may not be clinically useful
(although they are certainly relevant in some way).

The core idea that we are advocating is that we can brute-force learn a biomarker
from a signal that may ormay not be interpretable from amicrostructural perspective,
but could offer clinical value. For example, it has been shown that measures of
tissue variance (i.e., heterogeneity), and auto-correlation of structural boundaries,
provide potentially meaningful clinical information – measures which are neither
intuitively observable, nor easily quantified, from standard histological slices. [28,
29]Wehypothesize that an important future area of exploration is supervised learning
on patient data with known conditions in order to learn a biomarker, or feature(s)
of the signal that drives useful variation in the actual measured features to best
identify differences in individual brains or across populations. This variation could
be driven at both local (i.e., a voxel-wise measure) or global (i.e., patterns of these
voxel-wise measures) scales, and the “biomarker” could be output as continuous
(regression) or binary (classification). Given a generalizable dataset (perhaps the
largest obstacle to AI-informed decision making) we envision the use of complex
multi-factorial biomarkers in some way, possibly complementing or in parallel with
recent advances in modeling [30, 31], resulting in a number which may be hard to
intuitively quantify, but is useful clinically.

Newadvances in regularizedmachine learning (including random forests and deep
learning) have proven remarkably adept at identifying robust and reliable models in
a massively underdetermined environment. We are particularly excited about oppor-
tunities to integrate anatomical context with local learning (e.g., atlas-based anatomy
with deep learning [32]) and integrate patient context (e.g., electronic health record
information [33]). These lines of research promise to allow quantitative integration
of imaging information within the broader patient context and reduce the distinction
between image-based biomarkers and traditional clinical risk factors/biomarkers.
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Voxel-wise Harmonization

As we transition toward data driven perspectives on diffusion MRI, we must be
cognizant of the lessons learned from the enthusiasm and concerns of Radiomics
[34]. High order features (e.g., textures, nonlinear functions of the data) offer
the potential to explore what the human eye cannot appreciate. Yet, ensuring
stability/generalizability of these features in diffusionMRI across patients, protocols,
and scanners is notoriously difficult.

In the context of diffusion MRI, substantial effort has been invested in harmo-
nization across scanners, studies, and patient populations. This problem can be
approached from a physics perspective to empirically measure [35] and correct for
system performance [36–40]. However, identifying and correcting systemic issues
is quite difficult and not amenable to modeling of supposedly isotropic regions (e.g.,
cerebrospinal fluid [41]).

Statistical modeling approaches have proven reasonably effective at harmoniza-
tion of scalar and vector values [42, 43]. Fortin et al. have translated mixed effects
regression from the genetics community [44] to applyCOMBAT to correct site effects
while avoiding corruption of main effects [42], which generalize to more complex
analysis environments [45]. Meanwhile, Mirzaalian et al. approach inter-scanner
harmonization from the perspective of signal normalization [46]. Their method uses
rotationally invariant features to normalize signal energy in the spherical harmonic
domain. Phantomwork is progressing on both isotropic [47], temperature-controlled
arrays [41], and biological mimics [48–50].

Again,modern regularizedmachine learning presents the opportunity to overcome
limitations of a priori models. The multi-year CDMRI MUSHAC 2017-2019 chal-
lenge presented data from2 scanners,with 2 different protocols each, and had entrants
compete to harmonize and/or enhance the data [51].Numerous groups have presented
dictionary-based and deep learning methods to solve this puzzle [52], including fully
convolutional networks or residual networks, most often learning directly from the
spherical harmonic representation of the diffusion signal over a sphere, or rotationally
invariant features of these functions, rather than learning directly from the diffusion
signal [51]. In general, algorithms were successful in harmonizing data across scan-
ners, and enhancing data in both spatial and angular domains, showing improvements
in normalized errors between scanners, and improvements over simple linear spatial
interpolations.

Signal and tissue modelling of DW-MRI has been aggressively pursued from
various classic mathematical perspectives. We are particularly excited about the
expansion of signal modeling into semi-supervised machine learning approaches.
The family of Siamese networks [53] from computer vision can be adapted to
a null space tuning approach [54]. The foundational/corpus idea is to use a core
network/model in a supervised manner and stabilize the estimation based on paired
unlabeled data (e.g., data for which ground truth is not known and the pairs can
be sets of scans that are expected to share similar results, i.e., scan-rescan or “trav-
eling” data). Incorporating paired unlabeled data in a semi-supervised fashion, the
core estimator can be augmented with enhanced reproducibility from different sites
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even when the true value is unknown for inter-site data [54]. The proposal of semi-
supervised deep learning approaches for DW-MRI has unlocked further potential
for a host of new methods for tissue and signal modelling of DW-MRI. As with all
data-driven methods, we must be cautious of risks associated with overfitting and
extrapolating beyond the bounds of the training data. Explainability, especially in
the context of outliers and abnormal situations will be critical for bridging the gap
between physics-based theory and empirical parameters.

3 Virtual Dissection

Three-dimensional tract reconstruction (tractography) … allows us to visualize trajectories
of specific white matter fiber bundles and has potential to perform quantitative evaluation
of properties of individual tracts. This provides exciting opportunities to assess the impact
of diseases on specific white matter tracts. Once the location of a tract is defined, its size
can be measured. Wakana et al. [55]

One of the most intriguing and elusive promises of diffusion weighted MRI has been
to trace individual axons (or fibers or fiber bundles) through the brain. The initially
presented formulation of tractography traced long range connectivity on a point-by-
point “shooting” basis using local definitions of orientation to construct extended line
segments known as streamlines. These streamlines exhibit a striking resemblance to
brain fibers visualized with freeze-thaw brain white matter dissections [56], showed
strong sensitivity for known white matter anatomy [57], and correlated well with
disease phenotypes. Yet, we now know that the relationship between computer traced
fibers and anatomy is quite a bit more complex and nuanced than digital represen-
tations of axon connections. Recently, new terms have emerged to distinguish the
process of reconstructing fibers (i.e., tractography) from the broader goal of char-
acterizing white matter structural connectivity. This new field is often presented as
tractometry in analogy with brain morphometry being the study of shape [58] (in
contrast to the more limited field of brain segmentation, which identifies specific
shapes). Tractometry is “a comprehensive assessment of tract-specific microstruc-
turalmeasures.” [59]Yet, aswith voxel-wisemethods, tractography/tractometry have
shown promising sensitivity, but specificity concerns remain [60–63]. We hypoth-
esize that a combination of data driven approaches and anatomical/expert context
will allow the field to transition from tractography towards subject specific virtual
dissection.

Anatomical Modeling

Traditionally, fiber tractography is used to segment specific pathways of interest or
to quantify whole brain structural connectivity. For the former, once a white matter
bundle of interest is extracted, its properties—geometrical, microstructural, and loca-
tional - can be quantified and compared across populations or across time. While the
general organization of major pathways of the brain had been described hundreds of
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years ago through gross dissection, histological staining, degeneration, and clinico-
pathologic correlations studies by the likes of ThomasWillis (1664), Nicolaus Steno
(1671), Johann Christian Reil (1809), Karl Burdach (1819), AugustusWaller (1854),
and Joseph Dejerine (1895) [64]—and further elucidated through the highly specific
investigations of histological tracer studies [65] - there is still tremendous hetero-
geneity in the nomenclature and presumed organization of many of these struc-
tures. For example, confusion due to synonymous names, cross-species differences
in bundles, sub-divisions or networks of pathways, may lead to tremendous differ-
ences in approaches taken to reproduce these pathways using tractography. Because
of this, explicitly modeling the spatial extent of specific white matter bundles using
tractography may quickly become problematic.

Towards this end, we suggest that this challenge of subject specific in vivo virtual
dissection can be overcome with existing tractography (or streamline generation)
algorithms, in combination with highly detailed definitions and descriptions of the
pathways. Several studies comparing tractography to neuroanatomical tracers [61,
66–69] have illustrated the high sensitivity of tractography. By highly constraining
the tractography process through anatomical limitations of known spatial structures,
we hypothesize that we can significantly increase specificity as well. With enough
constraints, derived through expert knowledge, on large enough datasets, auto-
mated single-subject tractography using “artificial intelligence-captured” constraints
may become a possibility. While some progress has been made in using machine-
learning/artificial intelligence to improve fiber orientation estimation [70], or to set
priors on spatial locations of bundles [71], learning and adapting the propagation of
streamlines individually [70] and throughout the bundles, may be a possible future
direction.

While there is considerable optimism in future ability to automatically extract fiber
pathways of the brain with high anatomical accuracy, challenges will certainly exist
in the context of non-healthy or atypical individuals (i.e., the presence of tumors). At
present, we do not have significant, validated, models of how pathways (or stream-
lines) should behave in the presence of affected tissue. We hypothesize that the same
“AI-driven” constraints and rules for where pathways start and where they end will
not apply in these scenarios. Thus, it remains to be seen how tractography can be
applied in this clinical context—Do we need priors on abnormal anatomy, or are
they the same as for normal anatomy? Do we actually require anatomical accuracy
of the spatial extent of pathways, or does the presence or absence of streamlines indi-
cate clinical utility, or can simple measures of tumors or lesions relative to typical
pathways aid in decision making?

Connectivity Biomarkers

As a tool for pathway delineation and connectivity estimation, tractography tech-
niques offer a number of potential biomarkers. Just as “tractometry” [72, 73] has
recently emerged as a way to describe the comprehensive assessment of tract-specific
measures of the brain, the term structural “connectome” can be used to describe
the wiring diagram of the brain. While these quantitative tools have proven useful
in studying health, development, and disease, they are open to criticism related to
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biases in the streamline process, possible over-interpretation of metrics (i.e., changes
in “whitematter integrity”), unintuitive interpretation ofmeasures, or the tremendous
dimensionality of the datasets and the search for significant differences (i.e., multiple
microstructural measures, for every vertex along a streamline, for all streamlines, for
all white matter bundles, in every subject).

To date, connectivity driven biomarkers have largely either focused on graph
theory/graph-based metrics [74] or on a priori characterization of specific path-
ways given the combinatoric issues associated with multiple comparison correc-
tion. Recently, relatively simple linear principal component analysis of tractometry
has shown that a few biologically interpretable components explain the majority
of the variation in diffusion measures [75]. Local connectome fingerprints appear
to indicate clear patterns of subject-specific features [76]. Following in the vein
of data driven voxel-wise analysis, deep methods are starting to be applied to
connectivity/tractometry, e.g., in epilepsy [77, 78].

It is perhaps controversial to suggest that biomarkers do not need to be inter-
pretable, but rather just useful. However, startingwith data-driven biomarkers that are
useful and seeking to understand how they can be interpreted (e.g., [75]) seems to be
a promising method to search the extremely large space of potential biomarkers from
the high dimensional tractometry/connectometry. As we seek to refine biomarkers,
we observe that limiting the number of hypotheses has proven successful with
existing techniques to mitigate the curse of dimensionality. Hence, we postulate
the inclusion of prior information, population distributions (especially those that
perform patient-specific adaptation), and statistical characterizations of second and
higher-order statistics will guide the data-driven approaches to learn both useful and
meaningful metrics.

Connectivity Harmonization

Just aswith virtual biopsies, uncertainties andvariations in pathway segmentation and
connectivity approaches are influenced by all stages of processing from acquisition
(SNR, angular resolution, diffusion weightings), reconstruction (diffusion tensor
versus high angular resolution diffusion imaging), and the tractography process itself
(deterministic versus probabilistic approaches) [79]. Just as crucial, we argue that
to yield consistent, meaningful results within and across studies, it is critical to not
only harmonize protocols, but harmonize the language we use to describe anatomy.

Currently, there are two fundamental challenges with harmonization of connec-
tivity analyses. First, there is no consensus for the geometry, trajectory, and
connectivity of even the most well studied pathways. Second, even if a consensus
on the nomenclature is reached within by the experts working on a given
study, it is technically challenging to integrate this information into the tractog-
raphy/tractometry/connectometry framework. While substantial progress is being
made in standardizing language in these contexts, the work is exceptionally difficult,
time consuming, and challenging to generalize.

Perhaps optimistically, we postulate that data-driven approaches offer a solution
to this problem. A large body of public diffusion datasets has now become available
through the Human Connectome Project [80], UK Biobank [81], Pediatric Imaging,
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Neurocognition, andGenetics (PING) study [82], etc. These resources offer an oppor-
tunity to aggregate consensus definitions in a federated/asynchronous manner so that
experts can explore each other’s work separated both in space and in time. As with
harmonization of virtual biopsies, supervised learning can identify programmatic
definitions of consensus definitions and be used to build tractometry “spaces” that
provide a common reference framework, as has been done with simple white matter
parcellations [83], skeletons [84], or bundle clusters [85]. Moreover, we have the
opportunity to use unsupervised machine learning techniques to identify common
anatomical patterns that transcend cohort, scanner, study, site, etc. and link these
patterns to explainable anatomical features. A grand, big-data challenge will be inte-
grating the diffusion virtual dissections with functional and structural metrics, which
are made available with hundreds of millions of potential streamlines.

4 Closing Thoughts

Microstructural imaging relies on a model that relates microscopic features of tissue
architecture to MR signals. Alexander et al. [9]

Advances in functional, vascular, and chemical exchange imaging provide exciting
complementary information, but do not directly probe the cellular compart-
mental/organization in a geometric sense. Advancements in diffusion MRI are at
the cusp of providing robust single subject inferences in terms of virtual biopsies
and white matter tract dissections. Across the key technical areas of these fields
(estimation, biomarker creation, and harmonization), we observe rapid innovation
and creativity with data driven techniques. We foresee a rapid growth of machine
learning studies in the diffusion MRI literature, which will ultimately aid efforts in
microstructural modeling and lead to new classes of biomarkers. Indeed, “diffusion
weighted MRI is the only non-invasive modality” to shed light on the intra-voxel
microarchitecture and extended structural connectivity of tissues. By further devel-
oping machine learning techniques, we may find that up to this point we have only
seen the ‘tip of the iceberg’ of information available in diffusion MRI data.
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Spatial Sparse Estimation of Fiber
Orientation Distribution Using Deep
Alternating Directions Method of
Multipliers Network

Ridho Akbar, Yuanjing Feng, Fan Zhang, Jianzhong He, Qingrun Zeng,
Lipeng Ning, Carl-Fredrik Westin, and Lauren J. O’Donnell

Abstract Sparse prior information is introduced to improve the accuracy of (FOD)
estimation. Spatial continuity is another important aspect of prior information, but
it is difficult to directly consider in sparse FODs estimation. First, we proposed a
model based on adaptive group-patch and l1-norm regularization. Second, in order to
solve the FOD estimation problem of complex spherical deconvolution optimization
using alternating directionsmethod ofmultipliers (ADMM), a deepADMMnetwork
is proposed to learn the optimal model parameters from training data. In order to
obtain the qualitative and quantitative evaluation of the proposed method and the
state-of-the-art constrained spherical deconvolution (CSD): first, ISBI 2013 phantom
with known ground truth will be used to evaluate the local accuracy of the fiber
configuration. Second, the global impact of FOD accuracy on real brain datasets was
assessed using standard tractography and automaticwhitematter analysis algorithms.
Compared with the comparison method, the proposed method has good consistency
in sparse fiber reconstruction and fiber continuity.

1 Introduction

To date, diffusion-weighted magnetic resonance imaging (DW-MRI) based on fiber
orientation distribution (FOD) has become the key to solving complex fiber configu-
rations, which facilities the understanding a human brain’s fiber connectivity. Exten-
sive research based on high angular resolution diffusion imaging (HARDI) using
multi-fiber models (e.g, spherical deconvolution (SD)) has been proposed to over-

R. Akbar · Y. Feng (B) · J. He · Q. Zeng
Institute of Information Processing and Automation, Zhejiang University of Technology,
Hangzhou, China
e-mail: fyjing@zjut.edu.cn

Y. Feng
Zhejiang Profincial United Key Laboratory of Embedded Systems, Hangzhou, China

F. Zhang · L. Ning · C.-F. Westin · L. J. O’Donnell
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

© Springer Nature Switzerland AG 2020
E. Bonet-Carne et al. (eds.), Computational Diffusion MRI,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-52893-5_7

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52893-5_7&domain=pdf
mailto:fyjing@zjut.edu.cn
https://doi.org/10.1007/978-3-030-52893-5_7


80 R. Akbar et al.

come single fiber estimation of diffusion tensor imaging (DTI) [1, 2]. Constrained
spherical deconvolution (CSD) applies non-negative regularization to reduce spuri-
ous fibers [1]. MSMT-CSD is an extended version of CSD that takes into account
multiple shells and multiple tissues [3]. Based on the assumption that FOD is a non-
negative function, both CSD and MSMT-CSD achieve good accuracy results in fiber
estimation [2, 3]. An efficient method for reconstructing sparse fiber is provided by
sparse regularization (i.e., l1-norm, l0-norm) [4–6].

In order to characterize the continuity of the fiber, the spatial consistency of the
neighbor information is introduced to smooth the sparse FOD, and the sparse regular-
ization helps to characterize the complex fiber crossing and accelerate the reconstruc-
tion time from the dictionary basis [7]. However, the use of spatial prior information
in this method does not explicitly exist in minimizing the objective function, which
may limit the ability to estimate the actual fiber and its fiber connectivity. Although
alternating directions method of multipliers (ADMM) can be used to effectively
minimize the objective function [8]. However, the limitation of the dictionary-based
model is that after obtaining the learning set, optimization must be performed in each
reconstruction of the new data. Lin et al. [9] shows the performance of deep learning
based model in estimating FOD by end-to-end learning of inputs and true labels.
This method possibly obtains the optimal FOD estimation but requires a lot of data
training. You must also consider the large number of actual fibers in the real brain.
However, determining the optimal parameters for precise spatial FOD reconstruction
is not trivial for ADMM.

The motivation of this study is to reveal the natural properties of continuous
fibers in complex fiber configurations by explicitly optimizing model-based FOD
estimation. First, we propose a spatial sparse FOD estimationmodel by incorporating
the and simultaneously based on and . The adaptive group-patches uses a combination
of Euclidean distance and cosine similarity measures of FODs between adjacent
voxels. The FOD sparsity is consistent with the l1-norm regularization [4]. In this
case, the use of many fiber fragments can result in a very complex cost function.
Second, In order to effectively solve these coordinating optimization problems, we
enroll the spatial sparse FOD estimation model to the deep alternating directions
method of multipliers network (deep ADMM network), efficiently model different
terms like data fidelity, regularizations, and all parameters of the network are directly
learned end-to-end using L-BFGS algorithm. Each layer contains nodes similar to
the subgroups in ADMM so the feedback of network can coordinate the parameters
in between the subproblems. The performance of the method will be evaluated using
two main criteria: first, the local accuracy of the fiber configuration will be evaluated
using ISBI 2013 phantom ground truth and state-of-the-art CSD. Second, the global
impact of FOD accuracy on real brain fiber connectivity is evaluated using standard
tractography algorithm [10] and an automatic white matter analysis algorithm [11].
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2 Methods

2.1 Deconvolution for Diffusion Estimation

Let Sc (g) be the diffusion signal of a voxel c given a magnetic field unit vector
g = {gk ∈ S

2|k = 1, 2, ..., K }where gk is the k-th direction of the diffusion-encoding
gradient on the unit sphere S2, and Sc (0) be the non-DWb0 signal of the voxel c. The
signal attenuation in voxel c is expressed as the convolution between the dictionary
basis and the fiber orientation distribution.

Sc (g) /Sc (0) = R (g, u) ⊗ fc (u|v) =
∫
S2
R (g, u) fc (u|v) du (1)

where Sc (g) /Sc (0) : R3 → [0, 1] is the normalized attenuation signal. R (g, u) is
an axisymmetric dictionary basis that represents the diffusion signal attenuation
that can be modeled using fixed tensor basis [4]. Our FOD can be calculated in a
straightforward manner using the following approximation:

fc (u|v) =
I∑

i=1

J∑
j=1

wc, j K
(
ui , v j

)
(2)

where wc = {wc, j | j = 1, 2, ..., J } is the unknown FOD coefficients. The unit vec-
tor v = {v j ∈ S

2| j = 1, 2, ..., J } is approximated by a uniform discrete point on
the hemisphere. The unit vector u = {ui ∈ S

2|i = 1, 2, ..., I } is approximated by
a uniform discrete point on the sphere. K (u, v) is a spherical double-lobe basis
function [12].

K (u, v) =
I∑

i=1

J∑
j=1

[
sin |v j · uT

i |
1 − ϕ cos2

(
2 sin |v j · uT

i |)
]τ

, (K (u, v) ∈ [0, 1]) (3)

where ϕ is a parameter to modulate the FOD (ϕ ∈ [0.1, 0.9]). τ is a constant asso-
ciated with controlling the radial distribution sharpening of the FOD lobes. The
spherical double-lobe basis uses a spherical Gaussian kernel to establish a spherical
distribution for the overcomplete basis

(
v · uT

)
. It recovers each wc to the recovered

FOD fc (u|v). The FOD coefficients can be estimated by minimizing the following
energy

E =
K∑

k=1

⎛
⎝Sc (gk) /Sc (0) −

J∑
j=1

I∑
i=1

wc, j
(
R (gk, ui ) K

(
ui |v j

))
⎞
⎠

2

(4)
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Given the above overview, we define the vector yc = (Sc (g) /Sc (0))T for the signal
attenuation associated with the magnetic gradient direction gk and the b-value bk in
the voxel c. The structural estimate in Eq. 4 can be expressed by the following linear
formula

yc = Rwc + εc (5)

where R ∈ R
K×J is a dictionary basis with R = R (g, v), wc = (

wc,1, ..., wc,J
)T

consists of an unknown FOD coefficients. εc is a noise term. Linear system Eq. 5 is
typically dominated by noise, and the direct application of least squares [13] results
in an estimated spurious fiber orientation distribution. Regularization is a necessary
condition to define a unique solution (i.e., non-negative and sparse constraints) that
have been proposed for robust estimation of FOD coefficients [1, 6, 14].

2.2 Sparse Spatial Model Based on Adaptive Group-Patches

The 3D-patches implementation uses a (3 × 3 × 3) voxel with 26-neighborhoods.
Let c̃ ∈ Nc be defined as the voxel neighbor of voxel c. The adjacent success elements
are determinedby linking the twovoxels up to all possible paths of the discretemeshes
in the plurality of possible connections c and c̃, and then bymeasuring features based
on the diffusion intensity.

σ1c,c̃ = 1 − |yc · yc̃|
‖yc‖ · ‖yc̃‖;σ2(c,c̃) = 1 −

√
(yc − yc̃)

2 (6)

where yc and yc̃ are the signal attenuation for c and c’s neighbors.
|yc ·yc̃ |

‖yc‖·‖yc̃‖ is theweight
of the Cosine similarity measurement.

√
(yc − yc̃)

2 is the weight of the Euclidean
distancemeasurement. σ1c,c̃ and σ2c,c̃ areNc × 1matrices, which are defined as dis-
similarity weights of Cosine similarity and Euclidean distance, respectively. σ1c,c̃
and σ2c,c̃. Dissimilarity weights of σ1c,c̃ and σ2c,c̃ are not directly used in the model.
The idea of a complementary filter is to pass σ1c,c̃ through a low pass filter, σ2c,c̃
through a high pass filter and combine them to achieve the actual weight of σc,c̃

[15]. The notation G in Fig. 1 is the gain factor of the complementary filter. If G
approximate 0, then σc,c̃ will approximate σ2c,c̃. In this experiment, we set G = 1
based on empirical research to obtain an accurate estimate of the spatial weight in
anisotropic region. If σ2c,c̃ approximate 0, σc,c̃ will converge to σ1c,c̃. The adverse
effect of noise could possibly cause the method to miss-estimating the actual fiber
orientations. To reduce such an adverse effect, the spatial prior information intro-
duced by spatial weight and coefficient-contrast regularization from the piecewise
smoothness of nerve bundles orientation as the results of spatial consistency. We
defined a spatial sparse model:
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Fig. 1 Block diagram of
second-order complementary
filter

min
wc

1

2
‖ Rwc − yc ‖22 +

∑
c̃∈Nc

σc,c̃‖ wc̃ − wc ‖22

+‖ P

⎛
⎝∑

c̃∈Nc

σc,c̃wc̃ − wc

⎞
⎠ ‖22 + λ ‖ wc ‖1, s.t wc ≥ 0

(7)

whereNc denotes the second-order spatial neighbour of voxel c. P ∈ R
J×J is identity

matrix. wc and wc̃ are FOD coefficients for c and c’s neighbors. The regularization
parameter σ determines the importance of spatial consistency to the data fitting term,
which is the adaptive parameter σ obtained from the neighbor information. The reg-
ularization parameter λ encourages sparse spatial FOD coefficients. Equation 7 has
four fidelity terms. The first term is to ensure consistency between the spread signal
and the reconstructed signal using the dictionary representation. The second term
ensures the consistency between the FOD coefficient of voxel c and its neighbor-
hood. The third term encodes the dissimilarity between the FOD coefficients at voxel
c and its neighborhood, expressed as a weighted sum of the similarity of the paired
FOD coefficients. The fourth term ensures the sparsity of the FOD coefficients.

2.3 Network Architecture

The deep ADMM network built on multiple specific layers uses the spatial sparse
model for FOD estimation, and the ADMMoptimizer enrolls as a network, as shown
in Fig. 2B. The deep ADMM network can learn the corresponding level of feature
representation and train the dictionary basis. The reconstructed layer (Eqs. 8 and 9)
were derived from Eq. 7 and reformulate an adaptive weight and mixture FOD. Its
last layer represents the actual FOD. The convolutional layer (Eq. 10) represents the
local spatial filtering operation of the estimated FOD. The nonlinear transformation
layer (Eq. 11) was developed using a piecewise linear function, allowing approach
to nonlinear data. The multiplier update layer (Eq. 12) performs an update learning
rate for each layer.

wc = argmin
wc

1

2
‖ Rwc − yc ‖22 (8)



84 R. Akbar et al.

Fig. 2 A The deep ADMM network algorithm. B FOD reconstruction structure of the proposed
method

W (n) : ŵc
(n) = FT

⎛
⎝PT P +

L∑
l=1

ρl FHT
l Hl F

T +
∑
c̃∈Nc

σc,c̃ (I ) +
(
PT P

)⎞
⎠

−1

⎡
⎣+Pwc +

L∑
l=1

ρl FHT
l

(
z(n−1)
l − β

(n−1)
l

)
+

∑
c̃∈Nc

σc,c̃wc̃ F +
∑
c̃∈Nc

σc,c̃wc̃

(
PT P

)
F

⎤
⎦
(9)

C (n) : c(n) = Dlŵc
(n) (10)

Z (n) : z(n) = Q

(
c(n)
l + β(n−1)

l ; λl

ρl

)
(11)

M (n) : β(n) = β(n−1)
l + ηl

(
c(n)
l − z(n)

l

)
(12)

where Q is a piecewise linear function for approach any function. The Q function
imposes a l1-norm with a parameter λ = λl , ∀l ∈ [1, 2, .., L]. I is represented as a
undersampled matrix. The parameter ηl is an update rate. ŵc, z, α are the optimal
values to update. α = αl is Lagrangian multipliers and ρ = ρl is penalty parameters.
βl = αl/ρl ,∀l ∈ [1, 2, .., L]. Dl is a filter matrix, ∀l ∈ [1, 2, .., L]. F is equal to
KKT with J × J matix, while K is a spherical double-lobe function.
Training: Given a training data pair, the loss function in network training can be
calculated as
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E (Θ) = 1

|Γ |
∑

ŵc,wc∈Γ

‖ ŵc − wc ‖22
‖ wc ‖22 (13)

where ŵc is the network output based on the network parameterΘ . Learnable param-
eters Θ = {{q(n)

l,i }Nc
i=1, D

(n)
l , H (n)

l , ρ(n)
l , η(n)

l }Ns
n=1 ∪ {HNs+1

l , ρNs+1
l }, (∀l ∈ L). The gra-

dient of the loss function E (Θ) according to the parameter Θ is calculated by using
backpropagation. Backpropagation is necessary to calculate the gradient of the loss
function E (Θ) according to the parameter Θ in the reverse order, as shown by the
dotted line in the Fig. 2A.

3 Experiments

The dictionary is based on the diffusion tensor model with main diffusivities
[1.7, 0.2, 0.2] × 10−3 mm2/s. v is a tessellation scheme, distributed evenly on
321 points on a hemisphere. When solving the coefficient wc, v = {v j ∈ S

2| j =
1, 2, ..., J } the down-sampling usually happens on unit sphere, and v is made to be
identical to the basis vector u. Furthermore, double-lobes function K constructed
fitting up-sampling vectors v its coefficient to obtain the final FOD. u is a symmetric
sphere with 642 vertices, which is an array of the 642 FOD values corresponding to
the vertices of the sphere. Equation 8 is solved using a non-negative least squares
method for each voxel in the selectedROI. The proposed 5 layers (L5) uses ISBI 2013
Phantom’s diffusion signal (SNRs 10, 20, 30) and corresponding ground truth fiber
for end-to-end training; 20% of the them is used for testing. We used L-BFGS1 to
train the network. The one with the best test score is chosen for FOD reconstruction.
Hl and Dl are generated by the discrete cosine transform. The learning parameter
ρl = 0.1, the regularization parameter λl = 0.1. For the CSD2 and MSMT-CSD3

algorithms, the SH order is equal to 8, and the FOD sphere uses 642 vertices.

3.1 ISBI 2013 Phantom

We demonstrate the proposed algorithm on the synthetic phantom dataset provided
by ISBI 20134 with a b-value of 3000 s/mm2 and SNRs of 10, 20, 30. We summarize
the fiber configuration assessment results of our method and CSD in Table 1 using
evaluation metrices as described in [7] over-estimated fiber ratio associated with
ground truth (FP), under-estimated fiber ratio associatedwith ground truth (FN), true-

1http://users.iems.northwestern.edu/~nocedal/lbfgsb.html.
2http://nipy.org/dipy/.
3http://www.mrtrix.org/.
4http://hardi.epfl.ch/static/events/2013-ISBI.

http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
http://nipy.org/dipy/
http://www.mrtrix.org/
http://hardi.epfl.ch/static/events/2013-ISBI
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Table 1 Quantitative evaluation on the ISBI 2013 fiber estimation challenge

METHOD SNR ∠ AAE ∠ MAE FP FN SR (%)

CSD/Proposed 10 12.88/4.34 7.97/3.61 1.09/0.11 0.07/0.10 53.94/90.68

CSD/Proposed 20 8.70/3.70 5.51/3.27 1.14/0.04 0.09/0.10 59.23/93.82

CSD/Proposed 30 7.73/3.58 4.40/3.22 1.11/0.03 0.09/0.10 62.24/94.86

Fig. 3 Qualitative evaluation on the ISBI 2013 fiber estimation challenge

estimated fiber ratio associated with ground truth (SR) in percentages. The mean and
median of the angular errors associated with true-estimated fiber (AAE) and (MAE)
in degrees.

Our method does a good job of recovering about 90% of the ground truth fiber,
producing a very small portion of the spurious fiber, but slightly less fiber than CSD.
Qualitative and quantitative evaluation shows that the resulting FODs are in-line with
the ground truth phantom. It can be seen from Fig. 3 that our FODs is more robust
to SNR changes than the comparison method.

3.2 Real Brain

We futher performed FOD reconstruction on human brain datasets, using the model
trained on ISBI 2013 phantom. Three HCP5 datasets (IDs: 100307, 100610, 101006)
were obtained at 1.25mm isotropic resolution, with diffusion weights of b = 1000,
2000 and 3000 mm2/s applied in 90 directions in each shell. In this scheme, 18 of
b = 0 mm2/s images were separated temporally, resulting in a total of 288 diffusion
signals. The real brain has no ground truth based on FOD, so we emphasize the
qualitative comparison of MSMT-CSD. In addition, we evaluated the effect of FOD
estimation accuracy on tractography and connectivity analysis of white matter fiber.
Tractography: whole brain tractography was performed using eudx deterministic
algorithm [10]. A total of 100,000 seed pointswere placed throughout the brainmask.
Streamline was done with a half-cone curvature 45◦ and a length of 40–200 mm.
An automatic white matter analysis: fiber clusters based on white matter analysis

5https://www.humanconnectome.org.

https://www.humanconnectome.org
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Fig. 4 The FOD visualization of the proposed method and MSMT-CSD on real brain subjects

Fig. 5 Qualitative comparison of fiber bundles obtained by the proposed method and MSMT-CSD
on real brain datasets

were used to assess fiber connectivity in white matter [11]. Figure 4 shows the FOD
visualization of the proposed method and MSMT-CSD on real brain subjects. Visual
assessments indicate that the proposed FOD strongly characterizes the spatial con-
nectivity of complex fiber configurations. Figure 5 shows fiber bundle visualization
obtained on real brain subjects based on the proposed method and MSMT-CSD. The
results show that the proposed method is consistent with the crossing of the internal
capsule and corpus callosum, revealing the continuity of the white matter fiber better
than the comparison method.



88 R. Akbar et al.

4 Summary and Discussion

We propose a method in which neighbor information of diffusion signals and FOD
coefficients is considered in a deep ADMMnetwork to characterize the natural prop-
erties of white matter fiber continuity. In this work, we focus on training and testing
our methods on simulated phantoms and applying the models trained in simulated
phantoms to real brain data. While the results demonstrate the potential of our FOD
estimation, we believe that additional high-quality data is required to further progress
this area of research. However, this is not the first time that a new method provides
better results than CSD andMSMT-CSD in the ISBI 2013 dataset [14]. It was shown
that none of the methods outperformed the others in all experimental conditions.
More evaluation is still needed, i.e., training by a larger datasets containing multiple
subjects, and it will be taken with care.
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Free-Water Correction in Diffusion MRI:
A Reliable and Robust Learning
Approach

Leon Weninger, Simon Koppers, Chuh-Hyoun Na, Kerstin Juetten,
and Dorit Merhof

Abstract In clinical settings, diffusion MRI can be used for extracting biomark-
ers such as fractional anisotropy or for revealing brain connectivity based on fiber
tractography. Both are impacted by the free-water partial volume effect that arises
at the border of cerebrospinal fluid or in presence of vasogenic edema. Hence, in
order to robustly track white matter fibers close to cerebrospinal fluid and in pres-
ence of edema, or to extract consistent biomarkers in these cases, the diffusion MRI
signal needs to be corrected for partial volume effects. We present a novel method
that reproducibly infers plausible free-water volumes across different diffusion MRI
acquisition schemes. Based on simulated data closely following the individual char-
acteristics of each measurement, a neural network is trained on synthetic groundtruth
data. According to our evaluation, this methodology produces more consistent and
more plausible results than previous approaches.

1 Introduction

In regions near cerebrospinal fluid (CSF) or in presence of vasogenic edema, the
signal obtained by diffusion-weighted MRI (DWI) stems from both, the free-water
(FW) as well as the parenchyma. Thus, in order to analyze the parenchyma in free-
water contaminated voxels, first the signal stemming fromFWand parenchymaneeds
to be disentangled.

Several algorithms that directly estimate the FW proportion have been published.
Free-water elimination DTI [8] uses a two compartment model, in which the diffu-
sivity of one compartment (the FW compartment) is fixed to a predefined isotropic
diffusion. The diffusion tensor properties of the other compartment are variable, as
well as the volume fraction of both compartments. With at least two different spher-
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ical shells, i.e. acquisitions with at least two different non-zero b-values, this model
can be fitted to the data. If only one shell is acquired, the same model can be fit using
spatial regularization [11]. An adaption of diffusion kurtosis imaging to include FW
elimination has also been presented recently [2]. A first deep-learning based FW
elimination technique was presented at MICCAI 2018. Molina-Romero et al. [10]
used completely synthetic diffusion data, on which they trained a neural network to
estimate the tissue compartment fraction. For the synthetic data generation, water is
modeled as a predefined isotropic gaussian diffusion, and the diffusion behavior of
tissue is modeled as a random uniform distribution. Based on these two descriptions
and a tissue volume fraction, synthetic diffusion weighted signals can be generated,
and the FW volume fraction predicted. This technique also works independent of the
number of b-value shells and is 55x faster than previous approaches. Further, recent
advanced diffusion models (e.g. multi-shell multi-tissue CSD [9], DIAMOND [12]),
mostly requiring multi-shell acquisitions, also include an isotropic FW compartment
in their models. The presented approaches either rely on multi-shell acquisitions,
which are often not available for clinical applications, or, according to our evalua-
tion, seem to produce inconsistent results with unrealistic free-water fractions.

We propose a novel approach, that determines the FW volume fraction using a
neural network (NN) trained on data directly generated from individual DWI data.
Relying on diffusion measurements from regions with known tissue microstructure,
such as the corpus callosum (CC), the brain’s ventricular system or cortical gray
matter, voxels with known tissue properties can be extracted. From these voxels,
a synthetic dataset with up to three random fiber compartments and a groundtruth
FW volume fraction can be composed. Hence, such a dataset should closely follow
the characteristics of FW contaminated voxels. A similar synthetic data generation
technique has been successfully used to predict fiber directions [13]. Finally, a NN
trained on this data can be used to correctly infer the FW volume fraction of the
whole brain. This paper makes the following contributions:

– Creation of synthetic yet plausible data of FW contaminated diffusion signals
– A fast and accurate method for determining FW compartments in DWI, that can
be applied to single shell diffusion data

– Thorough comparison with current methods
– An application to clinical data

2 Image Data

Data from the Human Connectome Project (HCP) [6] is used, which provides
high-resolution multi-shell DWI data. Three spherical shells (b = 1000, 2000 and
3000 s/mm2)with 90 gradient directions eachwere acquired in an isotropic resolution
of 1.25mm. From this database, the 100 unrelated subjects release was selected.

As a FW volume fraction groundtruth is not available for human brains, we also
rely on a synthetic dataset for evaluation. In this dataset, the same gradient scheme as
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used in the HCP data was employed. Single-fiber white matter diffusion is simulated
as a prolate diffusion tensor with a major eigenvalue of 1.7 × 10−3 mm2/s and two
perpendicular eigenvalues of 0.3 × 10−3 mm2/s. CSF is modeled as an isotropic dif-
fusion tensor with eigenvalues of 3 × 10−3 mm2/s, and GM as an isotropic diffusion
tensor with eigenvalues of 0.5 × 10−3 mm2/s. Using up to three randomly selected
and rotated WM fibers, a CSF and/or GM compartment, 1,000,000 voxels for which
the water compartment proportion is knownwere obtained. Finally, Rician noise was
added with an SNR of 20.

For DWI data of brain tumor patients, we rely on an in-house database. This
database includes DWI-acquisitions (b= 1000 s/mm2 single-shell, 64 gradient direc-
tions, isotropic voxel size of 2.4mm)next toT1- andT2-FLAIR images of 28patients.
The diffusion data was corrected for susceptibility induced- and eddy current dis-
tortions with the tools “topup” and “Eddy” from FSL [14]. The use of this data was
approved by a local ethics committee, and the patients gave written consent.

3 Methods

Data extraction and signal generation From a registered T1-image, typical CSF-
and gray matter (GM) voxels are extracted using an eroded Fast segmentation [16]
mask. Diffusion tensors are fitted for each b-value shell to these voxels. Using these
voxels, the mean diffusion of CSF and the mean diffusion of GM is obtained. These
values are then used for the generation of the synthetic training data.

However, a single diffusion tensor is not enough to model the diffusion signal of
white matter of the whole brain, as diffusion depends on microstructural parameters.
Corresponding to the generation of a single-fiber response function in CSD [15],
single-fiber white matter (WM) voxels are extracted from voxels within the corpus
callosumwith a fractional anisotropy (FA) greater than a predefined threshold (FA >

0.7). In contrast to CSD, we keep all extracted single-fiberWMvoxels, and fit prolate
diffusion tensors for each voxel and each shell (e.g. three diffusion tensors for a three-
shell acquisition such as the HCP diffusion sequence) independently. Thus, a variety
of diffusion tensors representing different white matter microstructures is obtained.

By superposition of up to three randomly sampled- and rotated single-fiber com-
partments as well as a GM and CSF compartment, synthetic diffusion weighted
signals can be constructed with:

S(b, g, fFW ) = fFW SFW (b) + (1 − fFW )Stissue(b, g), (1)

where b designates the b-value, g describes the direction of the diffusion sensitizing
gradients, and Stissue is modeled with up to three white matter fiber compartments
and a GM compartment:
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Stissue(b, g) = f1Sgm(b) +
4∑

n=2

fn Rn(Swm(b, g)) (2)

with random compartment fractions 0 ≤ fFW ≤ 1, 0 ≤ fn , f1 + f2 + f3 + f4 = 1
and Rn() a random rotation in SO(3).

Finally, the constructed signal is distorted with Rician noise with an SNR of 20.
Employing this model, an infinite amount of multi-tissue voxels with a known FW
fraction can be generated.

Using our methodology, the only assumptions made about diffusive properties are
that diffusion of single-fibers can be described with prolate tensors for a single b-
value, and that the diffusion for GM and CSF is isotropic. As the diffusion properties
are estimated independently for each shell, b-value dependent effects (e.g. kurtosis)
are thus included in the synthetic data.

Note that it is implicitly assumed that the extracted single-fiberWMvoxels contain
no FW. In [1, 5], a FW volume fraction of less than 2% is reported for such tissue,
i.e., this modeling error is less than 2%.

Neural network trainingA neural network is trained on the simulated raw diffusion
data to predict the FW volume fraction fFW . Different network architectures were
tested, and an optimum performance network was achieved with 4 fully connected
layers in combination with tanh activation functions. As input, the normalized signal
attenuation is used. The size of the input is thus dependent on the acquisition scheme.
As an example, 270 non-zero diffusion gradients were acquired in the HCP dataset,
compared to 64 in the clinical dataset. The initial layerwidth is automatically adjusted
to this data shape. It is halved for each subsequent layer, and the last layer finally
has only one output, which is regressed against the FW volume fraction with an
L2-loss. Thus, for the exemplary HCP data, the number of artificial neurons of the
fully connected layers in this half-hourglass shape is 270-135-67-33-1.

Training time depends on the number of acquisition shells and the number of
generated synthetic diffusion weighted signals. By default, we create 25,000 voxels,
split into 80% training and 20% test set, use a batch size of 256 and anAdamoptimizer
with a learning rate of 0.005. A larger training- and test set of up to 1,000,000 voxels
was evaluated, but the obtained accuracy did not improve. On a consumer-grade CPU
and an implementation in PyTorch, convergence is achieved after 100 epochs in less
than a minute for an HCP 3-shell acquisition.

Inference step The trained neural network can finally be used on the signal attenua-
tion of the whole brain to predict the volume fraction of FW in all voxels. Finally, the
predicted FW signal can be subtracted from the original signal. FW contaminated
voxels, i.e., voxels at the border between WM and CSF, or voxels including a vaso-
genic edema in glioblastoma cases, can thus be corrected. Consequently, biomarkers
(FA, MD) extracted from these voxels are better comparable to other areas in the
same brain or to other subjects.
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4 Experiments and Results

4.1 Evaluation on Healthy Subjects

Since FW contamination of healthy, normal-appearing WM without contact to CSF
is marginal, one quality hallmark of a FW correction is that biomarkers remain stable
in aforementioned regions. Only with such a property, FW correction algorithms can
be used for clinical decision making. In order to obtain normal-appearing WM non-
adjacent to CSF or GM, an eroded white matter mask was constructed. On this WM
skeleton, the FW proportions ( fFW ) as well as differences in FA before and after
correction were analyzed. Results obtained with our methodology as well as those
obtained with FWE-DTI [8], the probably most-used approach, and with the recent
neural network based FW correction approach (ANN-Syn) [10], are compared in
Table 1 for the 100 subjects in theHCPdatabase. The free-water fraction estimated by
multi-shell multi-tissue CSD (MSMT-CSD) is also given as a comparison. Different
version of MSMT-CSDwere initially analyzed, and a recent version of the algorithm
that includes the S0-signal in the fitting process [3] showed the best results and was
used for all experiments.

To further get an impression of b-value dependence, the experimentwas replicated
for extracted single-shell, two-shell and three-shell data. Implementationswere taken
from DIPY [4] (FWE-DTI), DMIPY [7] (MSMT-CSD) or from associated Github
repositories (ANN-Syn) for all experiments.

Literature states around 1–2% of mean free-water volume fraction in normal-
appearing white matter [1, 5]. In order to reliably extract clinically important
biomarkers such as FA, free-water correction approaches should not strongly exceed
this fraction. Note that FWE-DTI is not applicable to single-shell data, and that
diffusion kurtosis effects are not taken into account [8].

In Fig. 1, exemplary results of our method on the corpus callosum and lateral
ventricles of an HCP subject are shown. Biomarkers (FA, MD) of normal-appearing
white matter are not affected by our proposed correction. Meanwhile, the border
between CSF and white matter is much sharper—those voxels have been appropri-
ately corrected for the FW compartment.

Table 1 Mean FW volume fraction ( fFW ) and, where applicable, mean difference between FA
before and after FW correction (ΔFA) on WM skeleton. HCP 100 unrelated subjects. Single-shell:
b = 1000, Two-shell: b = 1000 and 2000, Three-shell b = 1000, 2000 and 3000 s/mm2

Single-shell Two-shell Three-shell

fFW ΔFA fFW ΔFA fFW ΔFA

FWE-DTI – – 0.255 0.111 0.309 0.096

ANN-Syn 0.083 0.052 0.196 0.089 0.289 0.097

MSMT-CSD – – 0.038 – 0.037 –

Proposed 0.011 0.005 0.011 0.003 0.019 0.004
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(a) FW-fraction (b) FA-map (c) After correction (d) Difference

Fig. 1 Corpus callosum and lateral ventricles—showcase for FW correction

4.2 Synthetic Data Analysis

For human brains, a FW volume fraction groundtruth is not available. We thus eval-
uate the proposed method on the synthetic dataset comprising artificial voxels with
multiple compartments.

In addition to previous FW correction approaches (FWE-DTI and ANN-Syn),
we also analyze the FW compartment predicted by multi-shell multi-tissue CSD.
In Table 2, the accuracy of these approaches is compared to our method, by using
the coefficient of determination (R2), the mean absolute error (MAE) and its stan-
dard deviation. In all approaches, the corresponding settings for tissue models were
selected exactly as for the simulated data. As no segmentation mask is available for
this synthetic data, in our model GM- and CSF diffusion properties are also matched
to the simulation model, while single-fiber WM is extracted from all voxels with an
FA>0.7.

4.3 Application to Brain Tumor Patients

In order to show the clinical relevance of our approach, we applied the presented
method on an in-house dataset containing MRI images of 28 brain tumor patients.

Table 2 Coefficient of determination (R2) and mean absolute error (MAE) ± mean standard
deviation of fFW for different water correction approaches on an artificial dataset with SNR=20

Single-Shell Two-Shell Three-Shell

R2 MAE R2 MAE R2 MAE

FWE-DTI / / 0.92 0.044±0.03 0.88 0.056±0.03

ANN-Syn 0.89 0.049±0.03 0.85 0.060±0.04 0.06 0.164±0.08

MSMT-CSD / / 0.80 0.074±0.03 0.78 0.077±0.03

Proposed 0.95 0.034±0.02 0.93 0.042±0.02 0.93 0.040±0.02
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Figures 2 and 3 show the same patient, highlighting the results of our method. The
area affected by edema can be identified as the hyperintense regions in the FLAIR
image (Fig. 2a). In parts of the brain affected by this edema, the predicted water
compartment is between 30% and 40% (Fig. 2b), in accordance with the FLAIR
acquisition. Consequently, after FW correction, these areas now appear brighter in
the FA-map (Fig. 3), i.e., our method determines the water fraction and exposes the
tissue-only signal, thus enabling an improved assessment of this tissue. Further, the
border between CSF and WM is much sharper after correction. Meanwhile, normal-
appearingwhitematter, e.g. deepwhitematter on the contralateral side, is not altered.
Compared to ANN-Syn, a recent method that is applicable to single-shell data, the
proposed method shows less noise in healthy white matter areas.

(a) T2-FLAIR image (b) Proposed method (c) ANN-Syn

Fig. 2 Comparison of the water fraction as estimated by our method compared to the estimation
of ANN-Syn, a recent method that is also applicable to single-shell acquisitions. Hyperintensities
in the FLAIR image indicate the presence of edema

(a) Original FA map (b) After correction (c) Difference

Fig. 3 Application showcase: Color-FA of a brain tumor patient DWI-acquisition before and after
correction
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5 Discussion

In healthy, normal-appearing WM, our methodology consistently predicts very low
FW volume fractions. Here, the estimations of other tested approaches tend to be
unreasonably high and fluctuate stronger.

FWE-DTI performs very well on the synthetic dataset, similar to MSMT-CSD.
However, it fails for high b-values on the HCP data. This can be explained by the
lack of including kurtosis effects, which are present in the real data for high b-values.

In contrast, ANN-Syn fails when including high b-values, both on the HCP data as
well as on the synthetic dataset. For the single-shell low b-value case, the results are
good. In effect, this method uses random uniform numbers to simulate diffusion data,
a pragmatic approach useful for simulation of low b-value diffusion data. However,
on the single-shell brain tumor dataset, the free-water estimation in healthy white
matter is still noisy.

From the evaluated approaches, our method is the only one that is able to perform
free-water correction consistently for different b-value settings. In contrast to FWE-
DTI and MSMT-CSD, it takes noise into account, and in contrast to ANN-Syn our
employed signal model is more realistic, especially for high b-values.

6 Conclusion

We present a novel, reliable and fast free-water partial volume correction method
that is applicable to single- and multi-shell DWI-acquisitions.

Relying on data extracted from the subject, our method is the first that produces
coherent and plausible results for different b-values. Subsequent steps, e.g. fiber
tracking or biomarker extraction may strongly benefit from this correction, as water-
contaminatedWM-voxels no longer need to be omitted. Especially in clinical settings
with relatively small resolution (e.g. 2.4 mm isotropic) such a correction can lead to
more robust results.

In patients with brain tumors, our method may allow for a realistic tissue-only
biomarker extraction of regions affected by vasogenic edema. Even for healthy sub-
jects, our method supports a more robust extraction of FA values, as voxels at the
border between CSF and WM are no longer biased due to free-water partial volume
effects.
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Convolutional Neural Networks for Fiber
Orientation Distribution Enhancement
to Improve Single-Shell Diffusion MRI
Tractography

Oeslle Lucena, Sjoerd B. Vos, Vejay Vakharia, John Duncan,
Sebastien Ourselin, and Rachel Sparks

Abstract DiffusionMRI (dMRI) tractography may help locate critical white matter
(WM) tracts that should be preserved during neurosurgery. A key step in this process
is estimating fiber orientation distribution (FOD), often done from a model such as
constrained spherical deconvolution (CSD). Multi-shell (MS) multi-tissue CSD (M-
CSD) provides a robustWMFODby estimating the relative contribution to the dMRI
signal from each tissue type (WM, grey matter, and cerebrospinal fluid), however,
single-shell (SS) single tissueCSD (S-CSD) cannot independently estimate the signal
contribution for each tissue type. S-CSD is therefore less accurate estimating FOD
in voxels where multiple tissues are present. Due to that inaccuracy, tractography
using S-CSD often generates more spurious WM streamlines compared to M-CSD.
In this work, we present a framework to regress the M-CSD model coefficients
from the S-CSD model coefficients using a convolutional neural network (CNN) in
order to improve tractography. We construct a training dataset comprising acquired
MS dMRI and paired synthetic SS dMRI, generated by selecting the outer shell
from the MS dMRI. We select a High Resolution Network (HighResNet) as our
choice of CNN to ensure subtle details of the CSD models are preserved during
regression. The HighResNet is trained to perform patch-based regression from the
S-CSD model coefficients and a co-registered T1-wieghted MR (T1) to the M-CSD
model coefficients. We evaluate the method on patients with epilepsy who appeared
structurally normal on T1. Four WM tracts related to language are extracted using
a ROI-based probabilistic tractography. For comparison, M-CSD is as a pseudo
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ground truth. The original S-CSD generated tracts with Dice of 0.53–0.64, and the
HighResNet regressed CSD models generated tracts with Dice of 0.73–0.77. We
demonstrate HighResNet can regressM-CSDmodel coefficients from S-CSDmodel
coefficients resulting in tracts more similar to the M-CSD generated tracts and with
fewer spurious streamlines than S-CSD generated tracts.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) tractography delineateswhitematter
(WM) fibers by measuring the water diffusion within tissue and then modeling the
direction of myelinated fibers from the dMRI signals [2, 11]. Accurate localization
of WM tracts can aid presurgical planning by identifying the location of impor-
tant eloquent structures, such as the motor sensory and language WM tracts [11].
Tractography is often preceded by a signal modeling of the dMRI to estimate the
fibers orientation distribution (FOD) at the voxel level. However, signal modeling
typically depends on the dMRI acquisition parameters such as signal-to-noise ratio,
signal magnitude (b-values), and minimum number of diffusion-weighting gradients
(b-vecs) [6, 19]. Usually, for more representative FOD models, more requirements
regarding the dMRI signal acquisition are needed [19]. Nonetheless, in a clinical
setting acquisition time is often limited, and the available commercial scanners may
not provide the most robust state-of-the-art dMRI acquisitions.

Among many signal modeling methods that have been presented in the literature,
constrained spherical deconvolution (CSD) uses spherical harmonics (SH) basis fol-
lowed by a constraint (since it is poorly conditioned [8]) to estimate the FOD. CSD
estimates the FOD SH components using a linear least-squares fitting where the
original dMRI signal is approximated by a convolution of the FOD with a signal
attenuation profile for a single fiber population, referred to as response function
[8, 22].

For single-shell (SS) dMRI,where data is acquired for a single b-value, the volume
contribution from isotropic tissues (grey matter (GM) and cerebrospinal fluid (CSF))
can not be taken into account when estimating the FOD. To compute an isotropic
compartment, it is required either acquisition of multiple b-values (mutiple shells)
or the addition of stronger constraints, such as a finite number of fibers or known
tissue diffusivities [7]. As a consequence, the single-shell single-tissue CSD (S-CSD)
model produces unreliable and noisy FOD estimates for voxels containing mixtures
of WM and CSF or GM, which is referred to as the partial volume effect (PVE)
[7, 13].

In contrast, for multi-shell (MS) dMRI, where data is acquired for multiple b-
values, the multi-shell multi-tissue CSD (M-CSD) is able to compute the relative
dMRI signal contribution per tissue type by assuming two isotropic compartments for
GM and CSF and an anisotropic compartment forWM [13].M-CSD provides amore
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precise and reliable FOD for voxels with PVE. Therefore, tractography performed on
S-CSD contains more spurious WM streamlines (i.e., fibers at WM/GM boundaries)
compared to M-CSD.

The overall aim of this work is to improve tractography for SS dMRI, which
is routinely acquired in the clinic. We present a deep learning approach, using a
convolutional neural network (CNN), to regress M-CSD model coefficients from S-
CSDmodel coefficients. This regression will enable a more precise estimation of the
WM FOD, by removing the dMRI signal contribution of non-WM tissue in voxels
with PVE, and consequently more accurate WM tract delineation.

1.1 Related Works

Previous works have addressed solutions to reduce PVE in S-CSD [9]. Image quality
transfer (IQT) for dMRI has been presented to transfer information from high-quality
to lower spatial resolution data [1, 3]. As SS dMRI is often acquired due to timing
constraints, [15] presented a data augmentation approach to estimate MS dMRI
from SS dMRI by predicting SH coefficients. However, to our knowledge, no works
have explicitly used machine learning to regress model coefficients for improving
tractography.

In [9], an iterative approach to estimate the multi-tissue contribution for SS dMRI
using pseudo multi-shell data in presented. The pseudo multi-shell data is generated
combining the SS dMRI and the b=0 s/mm2 to mimic a second shell. This initial
study provides qualitative validation showing visualizations of the output CSDmodel
coefficients.

In [1], IQT patch-based regression using a global linear regression models and
random forest approaches are applied to (a) infer high-resolution from a lower spatial
resolution dMRI signal and (b) dMRI parameter mapping between models. In (b), a
loworder diffusion tensormodel ismapped to higher ordermodels neurite orientation
dispersion and density imaging [24] and spherical meaning technique [14].

The patch-based regression of IQT is expanded to be performed using a CNN
with memory efficient backpropagation to infer high-resolution from a lower spatial
resolution dMRI signal [3]. In this work, we also use patch-based regression between
model parameters, however, we do not aim to improve the spatial resolution or map-
ping between parameters across different dMRI models. Rather, we aim to regress
the individual tissue contributions to amulti-tissuemodel from a single-tissuemodel.

In [15], a multi-layer perceptron (MLP) to infer SH coefficients across dMRI
shells is presented. One limitation of this approach is the MLP only use SH model
coefficients from the same order obtained from a different shell or combination of
shells with the restriction that all shells had the same number of acquired gradient
directions. Furthermore, the MLP is only evaluated on pure WM voxels. Therefore,
no improvements to multi-tissue modeling is evaluated in this study.
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1.2 Our Approach

In this work, we present a patch-based CNN to learn a regression from S-CSDmodel
coefficients to M-CSD model coefficients. The CNN framework we present can be
generalized to other dMRI parameter mapping applications.We investigate the effect
of using structural information obtained from T1-weighted MRI (T1) in the network
to distinguish between tissue types.We also evaluate our method by its ability to gen-
erate appropriately four WM language related tracts on patients with epilepsy who
appeared structurally normal on T1 performing a ROI-based probabilistic tractogra-
phy. To our knowledge, no works have explicitly used machine learning to regress
model coefficients for improving tractography generation.

2 Methods

2.1 Training Dataset Synthesis

All patients underwent a MRI protocol as part of the clinical procedures acquired
on a 3T GE MR750 that included a T1 sequence (MPRAGE) and a MS dMRI with
2 mm isotropic resolution with the gradient directions 11, 8, 32, and 64 at b = 0,
300, 700, and 2500 s/mm2, respectively and single b = 0 s/mm2 with reverse phase-
encoding. DMRI was corrected for signal drift, geometric distortions and eddy-
current induced distortions as in [17]. From the corrected MS dMRI, a paired SS
dMRI was constructed by selecting the 64 images at b = 2500 mm/s2 from the MS
dMRI similar to [21]. All dMRI were skull-stripped, then, CSD models with lmax

order of 4, comprising 15 coefficients, were fit using the M-CSD [13] for the MS
dMRI and the S-CSD [22] for the SS dMRI.

2.2 CNN Design

We implemented in PyTorch a High Resolution Network (HighResNet) [16] as
depicted in Fig. 1 to regress the M-CSD model coefficients from the S-CSD model
coefficients. HighResNet comprises of dilated convolutions and residual connec-
tions. Dilated convolutions can be used to produce accurate predictions and detailed
probabilistic maps alongside object boundaries [16]. HighResNet can more accu-
rately regress finer details compared to networks that use pooling operations such as
U-Net [20] and V-Net [18] architectures. A parametric rectified linear unit (PReLU)
activation function was used in place of a ReLU as it adaptively learns the parameters
of the rectifiers, and it has been shown to improve CNNs accuracy in other applica-
tions [12]. The network was trained with an RMSprop optimizer to minimize the L2
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Fig. 1 HighResNet architecture [16]

loss function of the form loss
(
y, ŷ

) = ‖y−ŷ‖22
2 where y is the ground truth M-CSD

and ŷ is the output inferred from the model. In the training stage, HighResNet was
initialized using He uniform function [12], and it was trained for 400 epochs, based
on experimentally chosen convergence, with a weight decay of 1E − 6. Training
started with a learning rate of 3E − 2, it was reduced by 1/2 for every 50 epochs.
The entire network is trained using patches sampled from the intracranial space,
where for each subject, we used its binary skull-stripped mask as a prior to provide
an intensity-based likelihood.

2.3 Training Setup

For each iteration in an epoch, a subject from the training set is randomly picked.
Then, we performed whitening where each image is normalized to have a zero mean
and unit standard deviation per channel. Subsequently, the subject data is augmented
by randomly rotating orthogonal planes with an angle in the interval of [−10◦, 10◦],
scaling by a factor between 0.9 and 1.1, and random axis flipping. As a next step,
40 patches of size 32 × 32 × 32 × c were sampled from the subject data, where c
is the number of channels that could either be 15 or 16 comprising of only S-CSD
or with an addition of the T1 image respectively. An epoch was finished when all
subject data from the train set were used to optimize the loss function.

3 Experimental Design and Validation

Our dataset comprised 37 volumetric MS MRI datasets (acquisition described in
Sect. 2.1) acquired from patients with epilepsy who appeared structurally normal
on a T1. We performed five-fold random bootstrapped validation, where for each
fold we split our data into 27 volumes for training, 5 volumes for validation, and
5 volumes for a hold-out test set. We trained our CNN model to regress M-CSD
coefficients from: (a) S-CSD as input only CNN (S-CSD) and (b) S-CSD and T1 as
input CNN (S-CSD, T1). At the evaluation stage, we compute Dice between WM
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tracts (Sect. 3.2), peak similarity for the output CSD models coefficients (Sect. 3.1),
and the mean absolute error (MAE) per CSD model coefficients for each tissue type
independently.

3.1 Peak Similarity Analysis

We conducted a peak similarity analysis per tissue type as followed. Firstly, we
masked the CSD models using WM, GM or CSF masks from the geodesic-
information flow (GIF) parcellation [5]. The peaks analysis are computed as follows:
for the set of CSD model coefficients, we used MRtrix [23] sh2peaks to extract the
two peaks with the largest amplitude. At the voxel level v, for M-CSD model coef-
ficients, the major fiber directions are denoted as G(v) = {g1, ..., gN } containing N
fiber directions. For the regressed CSD or S-CSD model coefficients, the major fiber
directions are denoted as P(v) = {p1, ..., pM } containing M fiber directions, where
N ,M ∈ {0, 1, 2}. An angular difference (AD) matrix �N×M is defined as follows:

AD(v)i, j = arccos

(
gi × p j

|gi ||p j |
)
, i ∈ N , j ∈ M (1)

We then select matching directions by finding the two minimum angular differ-
ences between gi and p j fiber directions in the AD(v) matrix. Once the matched
directions are found, amplitude error is computed using gi×p j

|gi ||p j | .

3.2 Tracts Generation

We reconstructed the following four WM tracts: arcuate fasciculus (AF), inferior
fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and unci-
nate fasciculus (UF) from the left side of the brain based on similar pipeline intro-
duced in [17]. Briefly, WM tracts were reconstructed probabilistically withMRTrix3
using iFOD2 [23]. 1000 streamlines were estimated with a FOD amplitude cutoff of
0.05 by placing 10M seeds randomly at the WM/GM interface; determined from a
GIF parcellation [5]. For each tract, a binary mask was generated by setting as fore-
ground all voxels containing at least one WM streamline [4]. Dice was computed to
measure tract overlap between the M-CSD and CNN (·) WM tract masks.
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4 Results and Discussion

Figure 2 displays in each row, from left to right, the first CSD model coefficient, the
corresponding MAE, a diffusion-encoded color (DEC) map calculated as in [10],
and the four language tracts generated from each CSD model. From top to bottom
in Fig. 2, the ground truth M-CSD, S-CSD, regressed approaches CNN(S-CSD) and
CNN(S-CSD, T1) results are shown. The CSDmodel outputs from the CNN are more
similar to the M-CSD than the S-CSD, and they generate tracts with fewer spurious
streamlines when compared to tracts generated using S-CSD. As expected, the S-
CSD has large differences with the M-CSD in gray matter and near intra-cortical
boundaries. While CNN(S-CSD) is more similar to the M-CSD compared to S-CSD,
there are still some errors in intra-cranial boundary regions. For CNN(S-CSD,T1),
there is a further improvement near to tissue boundaries which is likely due to the
addition of structural information to inform the regression. For CNN (·) the largest
error reduction was in the in GM and CSF regions, where the S-CSD cannot properly
capture differences between the tissue types (Table 1).

M-
CSD

S-
CSD

CNN 
(S-CSD,

T1)

N/A

CNN
(S-CSD)

Fig. 2 From left to right: 1 the first coefficient in the CSD model, 2 the MAE between M-CSD
model coefficients and the given model, 3 the DEC map, and 4–7 Left AF, IFOF, ILF, and UF for
one patient from the test set. MAE shows colors between 0 (black) and 1 (red)
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Table 1 MAE between M-CSD and CSD model coefficients for each tissue type. The minimum
MAE appears in bold. BG indicates pixels outside of the intracranial space

Input type MAE

WM GM CSF BG

S-CSD 0.69 ± 0.05 0.67 ± 0.06 0.53 ± 0.06 0.01± 0.00

CNN(S-CSD) 0.19± 0.02 0.19± 0.02 0.08± 0.02 0.02 ± 0.01

CNN(S-CSD, T1) 0.20 ± 0.02 0.20 ± 0.03 0.10 ± 0.04 0.07 ± 0.04

Table 2 Dice between tracts generated from M-CSD and the input model. Maximum dice values
per tract are in bold

Dice
Tract S-CSD CNN CNN

(S-CSD) (S-CSD, T1)

Left AF 0.64 ± 0.02 0.77± 0.01 0.77 ± 0.02

Left IFOF 0.61 ± 0.03 0.75 ± 0.01 0.76± 0.01
Left ILF 0.58 ± 0.03 0.74± 0.02 0.74± 0.02
Left UF 0.53 ± 0.04 0.73± 0.02 0.73± 0.02

As shown in Table 2, Dice between all WM tracts improved for the CNN (·)
compared to S-CSD. CNN(S-CSD, T1) was most similar to M-CSD for all WM
tracts considered. The top twomajor fiber directions had a closer agreement between
M-CSD and the CNN (·) than M-CSD and S-CSD (Fig. 3). Both CNN(S-CSD) and
CNN(S-CSD, T1) had similar performance across all peaks considered. However,
pronounced angular differences are still found in the GM and CSF. Nonetheless,
peaks in CSF and GM regions are mainly dominated by noise that might have be
amplified during the regression. This may be due to the per-channel normalization
used in this approach.

Figure 4 displays an example of glyph representation of the FOD for highlighted
regions in the brain. The voxel color is represented of tissue volume fraction, with red
corresponding to CSF, green corresponding to GM, and blue corresponding to WM.
Figure 4 demonstrates a reliable FOD for WM with less PVE resulting in higher
Dice for tracts (Table 2).

Lasty, the training dataset was acquired from patients with epilepsy who appeared
structurally normal on T1. However, white matter structures that appear normal on
T1 may still be accompanied by micro-structural changes. Such changes might have
affected WM FOD from the acquired dMRI and consequently our proposed method
results.
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Fig. 3 Box plots for the first (Peak 1) and second (Peak 2) largest FOD peaks showing angular and
amplitude differences per tissue type (WM, GM, and CSF) for the CNN(S-CSD) (blue), CNN(S-
CSD, T1) (yellow), and S-CSD (green). The first row display angular differences while the second
row displays amplitude differences for the Peak 1 and 2. Mann-Whitney-Wilcoxon test was carried
to assess statistical significance where � in the plots denotes p-value < 0.01

5 Conclusion

Wepresent the use of aHighResolutionNetwork to improve tractography by regress-
ing multi-shell multi-tissue constrained spherical deconvolution (M-CSD) model
coefficients from a single-shell single tissue (S-CSD)model coefficients.We demon-
strate our method provides a reliable fiber orientation distribution and can generate
white matter fiber tracts with fewer spurious streamlines than those generated from
the original S-CSD. In this work, we evaluate our approach on a single dataset with
the MS dMRI which from we synthetic generated SS dMRI using the outer shell. As
the regression occurs in the CSD model space, this method is generalizable across
acquisitions and datasets. Finally, a more extensive validation of our method on other
datasets, including different dMRI acquisitions, addition of noise, and varying num-
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Fig. 4 A glyph representation of the FOD for the regions indicated by the red and yellow circles
(magnified by 4×). Voxels are colored by estimated tissue contribution, where blue corresponds to
WM, green corresponds to GM, and red corresponds to CSF. Models are shown for a M-CSD, b
S-CSD, c CNN (S-CSD), and d CNN (S-CSD,T1)

ber of gradient directions which is necessary to prove the generalizability of this
method. A limitation of the presented approach is the high angular differences in
the FOD peaks for GM and CSF regions. In future work we will investigate other
normalization and loss functions to minimize these errors.
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q-Space Novelty Detection with
Variational Autoencoders

Aleksei Vasilev, Vladimir Golkov, Marc Meissner, Ilona Lipp,
Eleonora Sgarlata, Valentina Tomassini, Derek K. Jones, and Daniel Cremers

Abstract In machine learning, novelty detection is the task of identifying novel
unseen data. During training, only samples from the normal class are available. Test
samples are classified as normal or abnormal by assignment of a novelty score. The
usage of deep neural networks for novelty detection remains an open challenge. Here
we propose novelty detection methods based on training variational autoencoders
(VAEs) on normal data. We apply these methods to magnetic resonance imaging,
namely to the detection of diffusion-space (q-space) abnormalities in diffusion MRI
scans of multiple sclerosis patients. q-Space novelty detection can reduce scan time
duration and does not require any disease-specific prior knowledge, thus overcoming
the disadvantages of other diffusionMRI processingmethods. Themethods proposed
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herein outperform the state of the art on q-space data in terms of quality and inference
time. Our methods also outperform the state of the art on a standard novelty detection
benchmark, and hence are also promising for non-MRI novelty detection.

1 Introduction

The purpose of novelty detection is to score how dissimilar each test sample is from
a “normal” training set. Application domains include medical diagnostics, fraud
and failure detection, and computer vision. The quality of novelty detection results
depends on the algorithm and data distribution. Deep generative neural networks
can reveal internal structure of the data and learn a better data representation. In this
paper we design a set of novelty detectionmethods based on variational autoencoders
(VAEs). We apply them to directly detect abnormalities such as multiple sclerosis
lesions in diffusion magnetic resonance imaging (diffusion MRI).

1.1 Related Work on Novelty Detection with Generative
Models

During the last years, several newmethods for novelty detectionwere proposed. Vari-
ational autoencoders [9, 15], adversarial autoencoders [12], and generative adver-
sarial networks (GANs) [2] are used by these methods to learn the normal patterns
in the data. In [1], the reconstruction error of a VAE trained on the normal class only
is used to detect abnormalities in the test data. A novelty score metric based on the
adversarial autoencoder network is proposed in [11]. Another approach [20] uses a
framework consisting of an autoencoder and a network that estimates a Gaussian
mixture model of a normal class distribution in the latent space. In [16, 18], a GAN
is trained to learn the distribution of the normal data. During test time a search over
the latent space is performed to find the closest generated sample to the test sample.
Another line of work [19] tries to unify classification and novelty detection into a
single framework.

1.2 Diffusion MRI

Diffusion MRI is a magnetic resonance imaging (MRI) technique that uses the dif-
fusion of water molecules to generate contrast in MR images. Since this diffusion
is not free and affected by obstacles, it can reveal microstructural details about the
tissue.
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Classical diffusion MRI processing methods fit a handcrafted mathematical
or physical model/representation to the measurements, and interpret the estimated
model parameters. These approaches have several limitations: they require long scan
times, partially discard information, and interpretingmodel parameters requires prior
knowledge about how they are affected by disease.

Supervised and weakly-supervised deep learning in diffusion MRI can over-
come said issues by learning a direct mapping between q-space measurements and
diseases [3, 6]. In deep learning terminology, each diffusion-weighted 3D image
corresponding to a certain q-space coordinate is treated as a “channel” of the overall
multi-channel 3D volume. For voxel-wise supervised learning, for example to recon-
struct missing q-space measurements from existing ones, or to predict handcrafted-
model-based parameters more robustly and at a shorter scan time, or to directly
estimate tissue types and properties, a “voxels-to-voxels” convolutional network can
be used [3]. Global supervised learning (i.e. image-wise rather than voxel-wise pre-
diction) and voxel-wise weakly-supervised learning are also possible [6] (see [17] for
an overview). However, supervised andweakly-supervised disease detection requires
disease-specific labels.

The aforementioned methods are complemented by q-space novelty detection
methods, which do not require disease-related labels [4, 5] nor long scans [5]. In
this line of work, each voxel is treated as a separate d-dimensional feature vector,
where d is the number of measured diffusion directions. Voxels from scans of healthy
volunteers are used as a reference dataset, and the Euclidean distance in feature space
between the test datapoint and its nearest neighbor from the reference dataset is used
as a novelty score. A high novelty score thus indicates that the voxel is lesioned. This
novelty score coincides with multiple sclerosis lesions at AUC scores between 0.82
and 0.89 on various datasets, and we use this method as a baseline to compare our
methods with.

Novelty detection methods are crucial for diffusion MRI because they work with-
out handcrafted representations (whose usage and fitting cause information loss and
long scan durations [3, 5] that are inacceptable in clinical practice), and do not require
any labels for the lesion class, thus are applicable even when the influence of disease
on diffusion properties is not entirely studied (which is often the case due to complex
tissue microstructure).

1.3 Our Contributions

In this paper we show that the usage of a variational autoencoder can help to better
understand the normal patterns in the data and thus improve the quality of nov-
elty detection. We further explore the possibilities of applying novelty detection to
diffusion MRI processing. The main contributions of the paper are:

• We propose several new novelty detection methods in the VAE original and latent
feature spaces. These methods can be applied to different datasets. We evaluate
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them on the MNIST handwritten digits dataset and show that some of them out-
perform the state of the art. Our code will be made publicly available.

• Weadapt theVAEnetwork to q-space novelty detection.We show that this solution
can outperform the original q-space novelty detection algorithm in terms of quality
and speed.

2 VAE-Based Novelty Detection Methods

A variational autoencoder [9, 15] is a deep neural network that models a relationship
between a low-dimensional latent random variable z and a random variable x in the
original data space. A VAE consists of an encoder and a decoder. The encoder is
trained to approximate the posterior distribution qφ(z|x), where φ are the network
parameters, learned with backpropagation during training. The decoder performs the
inverse task: it approximates the posterior distribution pθ(x |z), where θ are learned
parameters.

We decided to use the VAE for q-space novelty detection for multiple reasons:

• A VAE provides an explicit map into latent space, where features and novelty
metrics are high-level.

• Diffusion-MRI voxels form a single unseparated “island” in feature space (with
transitions between tissue classes due to voxel mixtures) and the VAE regularizer
encourages appropriate treatment (non-separateness in latent space) of such data.

• The VAE regularizer encourages (similar) training samples to be close in latent
space, so that distance-based methods do not consider normal samples as novel.

In our case we train the VAE model to capture normal data only. Thereby, the
VAE learns distributions of the normal dataset in latent and original feature space.
Both of these distributions as well as their combination can be used to define novelty
score metrics, thus we split our methods into three main categories.

2.1 Novelty in the Latent Space

The trained VAE maps each sample x to a distribution z in some lower-dimensional
latent space. This representation can be used to define several novelty metrics.

Novelty as VAE regularizer The VAE loss function includes the following regular-
izer term: DKL

(
qφ(z|x) ‖ N (0, I )

)
. This term forces themodel tomap inputs closely

to the unit Gaussian distributionN (0, I ) in the latent space. Without this regularizer
the model could learn to give each input a representation in a different region of the
latent space. For the model trained on the normal class only, one could expect that
abnormal samples will have distributions in the latent space that diverge more from
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the unit Gaussian than normal samples. We thus can use this term as a novelty score
for test sample xtest:

NVAE-reg(xtest) = DKL
(
qφ(z|xtest) ‖ N (0, I )

)
. (1)

Distance-based approaches in latent space The latent space of a VAE trained on
the normal class can be considered an effective representation of the distribution of
normal data. Therefore, classical novelty detection approaches can be adapted to be
used in this space. The algorithm here is to map normal (reference) data as well as
test data into the learned latent space using the trained encoder. Then one can use
nearest-neighbour analysis to find the closest sample from the reference dataset to
each test sample xtest using some distance measure in the latent space. This distance
to the closest normal sample is used as a novelty score. A VAE maps each input
point to a distribution (rather than a point) in latent space. We propose two distance
measures:

Euclidean distance between means of the distributions The first approach uses only
information about the means of the approximated posterior in the latent space for
normal and test datapoints. The novelty score is computed as the distance between
the means of the latent-space distribution of the test datapoint and of the closest
latent-space distribution of a normal sample:

Nq̄−q̄y (xtest) = min
y∈Y

∥∥E[qφ(z|xtest)] − E[qφ(z|y)]
∥∥2
2 , (2)

where the minimum is taken over all normal samples y from the normal dataset Y .

Bhattacharyya distance between distributions The Bhattacharyya distance is a sym-
metric measure of dissimilarity of two probability distributions p and q. It is defined
as DB(p, q) = −ln(BC(p, q)), where BC(p, q) = ∫ √

p(z)q(z) dz is the Bhat-
tacharyya coefficient of distributions p and q. This approach utilizes information
about the full learned distributions, computing the amount of the overlap between
them. A novelty score is defined as the Bhattacharyya distance between the latent-
space distribution qφ(z|xtest) of the test sample and the most similar latent-space
distribution qφ(z|y) of a normal sample:

Nq−qy (xtest) = min
y∈Y DB(qφ(z|xtest), qφ(z|y)). (3)

Density-based approach in latent space Another approach to novelty detection is
to estimate the density of normal data in the latent space. Each normal datapoint is
represented as aGaussian distribution in theVAE latent space. Thus the distribution of
the whole normal dataset can be estimated as an average of these Gaussians: qY (z) =
1

|Y |
∑

y∈Y qφ(z|y). Then, the novelty score for the test sample can be computed from
the density estimate qY of the normal dataset, evaluated at the mean of the latent
distribution qφ(z|xtest) of the test sample (see also Fig. 1):
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Fig. 1 Some of the proposed novelty detection methods, illustrated for the simplified case of 1D
original space x and 1D latent space z of the VAE with only one normal sample y and one test
sample xtest . Green arrows measure distances between points (õ) or distributions (⇔). The score
Nx− p̄(q̄) quantifies whether the VAE reconstructs xtest badly; Nx−y and Np̄(q̄)−y measures how
dissimilar xtest (or its reconstruction p̄(q̄)) is from normal samples y; Nq−qy and Nq̄−q̄y measure
how dissimilar xtest is from y in latent space; NqY measures how likely xtest belongs to the modeled
distribution of normal data

NqY (xtest) = −qY (E[qφ(z|xtest)]). (4)

2.2 Novelty in the Original Feature Space

VAE reconstruction-based approaches Like a traditional autoencoder network, a
VAE is trained to reconstruct the input. If a VAE is trained on the normal class only,
one could expect that it learns how to reconstruct data from the normal class well,
but may not be particularly good at reconstructing unseen data, so the reconstruction
error for the unseen class should be higher. Thus, the reconstruction error can be used
as a novelty score. The encoder and decoder are both stochastic. For each of them,
we can either draw samples, or consider the mean. For the decoder it is also possible
to consider the entire distribution and compute the density value of the test sample.
For example, one can use means of both the encoder qφ(z|x) and the decoder pθ(x |z)
to deterministically reconstruct the input and compute the reconstruction error:

Nx− p̄(q̄)(xtest) = ∥∥xtest − E
[
pθ

(
x |E[q(z|xtest)]

)]∥∥2
2 . (5)

Distance-based approaches In addition to reconstruction-based approaches, it is
possible to apply distance- based approaches described in Sect. 2.1 to the distribu-
tions produced by the decoder of the VAE. It is also possible to apply the Euclidean-
distance-based approach to the reconstructed test sample and original (not recon-
structed) normal datapoints:
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Np̄(q̄)−y(xtest) = min
y∈Y

∥∥∥E
[
pθ

(
x |E[qφ(z|xtest) − y])]

∥∥∥
2

2
. (6)

Distance to the closest generated sample AVAE is a generative model. Trained on
a normal class only, one could expect that it will not be able to generate the datapoints
that do not belong to the normal class. Thus a novelty score can be computed as the
distance between a test sample and the closest sample that the VAE decoder is able
to produce from any latent vector z:

Nx− p̂(xtest) = min
z

‖xtest − E[pθ(x |z)]‖22 . (7)

This is an optimization problem over the latent space. It can be solved using a non-
linear optimization method such as L-BFGS [13]. The encoder of the VAE with xtest
as an input can be used to get an initial value for z for optimization.

If the bottleneck of the VAE is not narrow enough, the VAE may still be able to
reconstruct abnormal data. However, the values of z for abnormal datapoints might
be far from the unit Gaussian, since the VAE loss includes the term DKL

(
qφ(z|x) ‖

N (0, I )
)
, and is trained on the normal data only. Thus the optimization can also be

performed not over the whole latent space, but within some boundaries (we used
[−10, 10]dim z), defining a new novelty score Nx− p̂b . During the experiments, we
found that the best results are achieved with [−10, 10] boundaries for each of the
dimensions of the latent space.

2.3 Novelty as Full VAE Loss

If the VAE is trained on the “normal” class only, its loss function applied to a test
sample can be considered as a novelty metric itself. The VAE loss function value
from datapoint xi is a reverse of the lower bound of the marginal probability p(xi )
of this datapoint [9, 15]. Abnormal datapoints have a low probability according to a
model that was trained on the normal class and thus high loss value. Thus we propose
the following novelty metric:

N−ELBO(xtest) = −Eqφ(z|xtest)[log pθ(xtest|z)] + DKL
(
qφ(z|xtest) ‖ N (0, I )

)
. (8)

Like in the original VAE training algorithm [9], the Monte Carlo estimate of
Eqφ(z|xtest) should be computed. We also propose to use several samples from the
probabilistic decoder qφ(z|xtest) to define a novelty metric:

N− ̂ELBO(xtest) = min
z∼qφ(z|xtest)

[log pθ(xtest|z)] + DKL
(
qφ(z|xtest) ‖ N (0, I )

)
. (9)
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3 Experiments

As the “normal” data to train the model for diffusion MRI, we used 26 diffusion
MRI scans of healthy volunteers that were split into 20 training and (for hyper-
parameter tuning) 6 validation scans. Each scan has six b = 0 images and 40
uniformly distributed diffusion directions (bmax = 1200s/mm2, SE-EPI, voxel size
1.8mm × 1.8mm × 2.4mm,matrix 128 × 128, 57 slices, TE = 94.5ms, TR = 16 s,
distortion-corrected with elastix [10] and upsampled to 256 × 256 × 172). Using
machine learning nomenclature, we refer to these 46 volumes (six b = 0 and 40
diffusion-weighted volumes) as channels or voxel-wise features. Test data consisted
of threemultiple sclerosis patients’ scanswith the same scan parameters as for healthy
volunteers. Note that every voxel (rather than every scan) is a sample. Hence, the test
set containsmore than 5million samples (brain voxels) in total, 55 thousand of which
are lesion voxels. To validate the results of proposed methods, we used multiple scle-
rosis lesion labels created by human raters using additional structural T2-weighted
scans. We compared the performance of proposed novelty detection algorithms with
the distance-based q-space novelty detection algorithm [4, 5] (described in Sect. 1.2).

In order to avoid potential discrepancies in image intensity across scans, each
scan was divided by its mean intensity. In addition, to prevent some channels from
dominating over others, feature scaling was performed, i.e. each channel was divided
by the channel-wise mean taken across all scans. Each voxel was considered as a
separate data sample. We ignore information from neighboring voxels because the
goal is to discover unusual microstructure (using q-space channels) without any bias
from unusual macrostructure.

We used the area under the curve (AUC) of the receiver operating characteristic
(ROC) as the quality metric because it quantifies the sensitivity and specificity of
novelty detection across all possible decision thresholds, is robust to class imbalance,
and is the most common quality metric for novelty detection in literature. For each
of the novelty metrics described in Sect. 2, we performed a hyperparameter search
varying the dimensionality of the latent space, the depth of the architecture and the
number of hidden layers to find the model that achieves the highest AUC score. The
Adam optimizer [8] with learning rate 0.001, batch size of 32768 voxels and early
stoppingwas used during training. Three different models with the following number
of input/hidden/output features per layer were selected: 46 − 64 − 32 − 16 − 8 −
16 − 32 − 64 − 46; 46 − 128 − 64 − 32 − 16 − 32 − 64 − 128 − 46; 46 − 128 −
64 − 48 − 24 − 48 − 64 − 128 − 46. Here 46 is the number of input/output features
of the autoencoder. Results are shown in Table 1; these three models can be distin-
guished by the ‘dim z’ column (the dimensionality of the latent space). Moreover,
fixing dim z = 12 in all models without individual tuning yielded almost the same
performance (±0.005 AUC).

As the baseline to compare the proposed methods with, we used the distance-
based ND method [4, 5]. This method was already compared to the traditional ND
methods (such 1-class SVM and kernel PCA) on multiple sclerosis q-space data and
has shown the best results while performing much faster.
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Table 1 AUC scores of multiple sclerosis lesion segmentation and approximate inference time in
minutes per scan for different q-space novelty detection methods. Many of our methods outperform
(marked in bold; statistically highly significant due to millions of samples used, p-value in most
cases around 10−6) the baseline method Nx−y [5] and provide considerable time gain

Method dim z AUC scan 1 AUC scan 2 AUC scan 3 Time (min)

Baseline – 0.859 0.838 0.884 360

NVAE-reg 16 0.803 0.773 0.812 1

Nq̄−q̄y 16 0.893 0.831 0.890 120

Nq−qy 16 0.888 0.835 0.893 360

NqY 24 0.860 0.815 0.880 360

Nx− p̄(q̄) 24 0.857 0.841 0.882 2

Np̄(q̄)−y 16 0.893 0.852 0.897 360

Nx− p̂ 8 0.857 0.849 0.878 60

Nx− p̂b 8 0.859 0.849 0.879 60

N−ELBO 16 0.895 0.856 0.852 4

N− ̂ELBO 16 0.897 0.867 0.873 20

Lesion segmentation results are shown in Fig. 2. AUC improvement over the
baseline is highly significant due to millions of samples used. More specifically,
AUC improvement of 2% (achieved by the majority of the proposed methods) has
the p-value of about 0.0000005, which is statistically highly significant.

We also evaluated some of the proposed methods on the MNIST digits dataset
using a convolutionalVAEwith the architectureC16-P-C32-FC64-FC196-C32-U16-
C1, where numbers indicate channels, C is a 3 × 3 convolutional layer, P is 2 × 2
max-pooling, FC is a fully connected layer, U is a 2 × 2 upconvolutional layer. We
consider one of the MNIST handwritten digits as novel and train on the remaining
ones. Training data consist of 80% of the normal data. Test data consist of the
remaining 20% of the normal data as well as all of the novel data. With 10 possible
novelty classes/digits, this results in 10 different experiments. Results are shown in
Table 2.

4 Discussion and Conclusions

Most of the proposed methods show a good performance. More specifically, latent-
space distance-based methods (Nq−qy and Nq̄−q̄y ) outperform the method based on
Euclidean distance in the original data space [5] (Nx−y ; see also Fig. 2) despite the
fact that the model was not trained on abnormal data. This happens on one hand
due to the fact that the VAE has a regularizer that keeps the latent representation
of the normal data tightly clustered around the unit Gaussian, while abnormal data
that were not used during training can be mapped to a different region of the latent



122 A. Vasilev et al.

Fig. 2 Feasibility of q-space novelty detection for multiple sclerosis lesion segmentation. Top row:
manual lesion segmentation (left) and novelty-score maps using the baseline method Nx−y [5]
and two VAE latent space distance-based novelty detection methods Nq̄−q̄y and Nq−qy . Bottom
row: ROC for one scan measuring coincidence of novelty detection with human-marked labels
(proposed methods outperform the baseline); normalized histogram of the novelty score for lesion
and non-lesion voxels for the three methods above (many lesion voxels have considerably higher
novelty scores than healthy voxels). In other words, disease-related microstructural tissue changes
are detected in a data-driven way, without any prior knowledge about them

Table 2 AUC scores for selected novelty detection methods on the MNIST dataset for all novelty
classes. Our methods outperform the state of the art

Method dim z AUC scores for novelty digits:

0 1 2 3 4 5 6 7 8 9

An&Cho [1] 200 0.917 0.136 0.921 0.781 0.808 0.862 0.848 0.596 0.895 0.545

NVAE-reg 64 0.395 0.146 0.637 0.498 0.459 0.144 0.358 0.626 0.792 0.512

Nq̄−q̄y 64 0.922 0.528 0.965 0.877 0.870 0.876 0.872 0.803 0.772 0.637

Nq−qy 64 0.925 0.480 0.966 0.882 0.869 0.855 0.868 0.815 0.802 0.641

space (which is confirmed by the fact that the VAE regularizer itself also produces
meaningful novelty scores); and on the other hand due to the fact that the trained
VAE simply happens to map abnormal data to slightly different latent-space regions.

These results indicate that normal and abnormal data are better separated in latent
space than in input space. This can be expected on one hand because latent represen-
tations usually highlight high-level features (in this case tissue properties) as opposed
to unimportant low-level ones; and on the other hand because the aforementioned
effects of the regularizer apply particularly to the latent space.

Reconstruction-based methods also perform well, since the reconstruction of
abnormal data (of which the model has not seen any during training) can be very
imprecise, thus yielding a high novelty score for reconstruction-basedmethods.How-
ever, in order to be able to reconstruct the normal data (and assign a low novelty score
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to it), a VAE should have a sufficient number of latent dimensions to avoid substantial
information loss. High AUC scores of Nx− p̂b indicate that the VAE mostly generates
the kind of samples it was trained on, namely normal ones. However, to achieve
this ability, the bottleneck of the VAE (in contrast to reconstruction-based methods)
should be narrow enough, otherwise the model may also be able to generate some
“random” data that may be very close to the abnormal data in the original feature
space.

Finally, the VAE loss itself as the inverse of the lower bound of the likelihood of
the data sample is a good novelty metric: abnormal data (none of which were used
during training) have low likelihood according to the model and thus high novelty
score.

Note that the manual lesion labels are not perfect, and novelty detection is not
specific tomultiple sclerosis. It simplymarks voxels that are unlike the normal dataset
in some way. Thus it may also mark subtle disease-related microstructural changes
that went undetected by manual labeling, or image artifacts that are too rare/diverse
to be learned from the normal training dataset. However in practice high novelty
scores coincide well with labeled lesions, as can be expected. Some of the proposed
methods do not only outperform the baseline but also perform inference orders of
magnitude faster (see Table 1). In general, there is a trade-off between accuracy and
runtime of the proposed methods. Thus, a specific method should be selected based
on the task requirements.

Results on a standard benchmark for novelty detection (Table 2) show that our
methods can outperformRef. [1],which is state of the art to the best of our knowledge.
Thus, our novelty detectionmethods can be applied successfully to different datasets.

In this work, we presented a set of novelty detection algorithms that utilize the
ability of variational autoencoders to reveal the internal structure of the normal-class
data. We found that high novelty scores produced by our methods coincide with mul-
tiple sclerosis lesions in diffusionMRI data, andmany of ourmethods outperform the
baseline q-space novelty detection method. Additionally, we evaluated the methods
on the MNIST dataset, where we were able to surpass state-of-the-art results.
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Abstract DiffusionMRI (DW-MRI) allows for the detailed exploration of the brain
white matter microstructure, with applications in both research and the clinic. How-
ever, state-of-the-art methods for microstructure estimation suffer from known limi-
tations, such as the overestimation of the mean axon diameter, and the infeasibility of
fitting diameter distributions. In this study, we propose to eschew current modeling-
based approaches in favor of a novel, simulation-assistedmachine learning approach.
In particular, we train machine learning (ML) algorithms on a large dataset of simu-
lated diffusion MRI signals from white matter regions with different axon diameter
distributions and packing densities. We show, on synthetic data, that the trained
models provide an accurate and efficient estimation of microstructural parameters
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in-silico and from DW-MRI data with moderately high b-values (4000 s/mm2). Fur-
ther, we show, on in-vivo data, that the estimators trained from simulations can
provide parameter estimates which are close to the values expected from histology.

1 Introduction/Related Work

Diffusion-Weighted MRI (DW-MRI) provides a non-invasive, in-vivo technique for
investigating the micro-anatomy of brain tissue. As the DW-MRI signal depends
on the self-diffusion process of water molecules within the intra- and extra-axonal
spaces, it can be used to estimate the local, microstructural properties of cells via
inverse modeling. A number of microstructure parameters of the white matter fibres
such as the statistical distribution of axon diameters (mean and variance) and orien-
tations, as well as the volume fraction occupied by axons (i.e., fibre density) can be
inferred from DW-MRI signals through the inversion of complex, non-linear models
that require time consuming optimization algorithms. Some examples of state-of-
the-art models are AxCaliber [3] and ActiveAx [1], which are used to estimate the
axon diameter distribution, and CHARMED [2] and NODDI [15] to estimate the
fibre orientations and their volume fractions. To make the fitting more stable, pre-
vious models rely on different approximations that require different assumptions.
One common assumption is to model the signal from the white matter by a sum
of signals from two independent compartments: the intra- and extra-axonal spaces.
Other assumptions include modeling axons as perfect, impermeable cylinders. There
are some well-known issues with these model-based approaches, including difficulty
in separating signals into compartments, model oversimplification, degeneracy, and
instability during fitting [7, 14, 15].

In this study, we explored the feasibility of bypassing some of the limitations
of the current inverse models by developing an emerging approach that is based
on using DW-MRI simulations as a tool for performing forward modeling [9, 12].
In our approach, we first created a large and detailed dataset of numerical white
matter phantoms with varying geometric properties of interest, such as the mean and
standard deviation of axon diameters and the axon density. We then generated the
DW-MRI signals of these phantoms using a DW-MRI Monte-Carlo simulator [11].
We trained two different machine learning algorithms, i.e., random forest and multi-
layer perceptron, tomap the simulated signals with andwithout handcrafted features,
to the microstructural parameters. The learned models were then applied to both
synthetic and in-vivo brain data.
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2 Methods

2.1 Dataset Generation

Figure 1 shows the structure of our framework from the dataset generation to the
accuracy evaluation. In generating the dataset, we express the DW-MRI signal in
the brain white matter (WM) as the sum of the signals from the intra-axonal Sint
and extra-axonal Sext compartments, weighted by their relaxation-weighted volume
fractions icv f and ecv f = 1 − icv f , where icv f + ecv f = 1:

S = (icv f )Sint + (1 − icv f )Sext (1)

The intra-axonal space represents the axons which wemodel as straight and paral-
lel cylinders, and the extra-axonal space corresponds to the space outside the axons,
including the extra-axonal matrix, glial cells, and cerebrospinal fluid, etc. We further
assume that within a bundle, the axon diameters follow a Gamma distribution [13],
with different bundles having different means and standard deviations.

A large dataset of WM phantoms with different geometrical properties was gen-
erated by parameterising the intra-axonal space with the volume fraction icv f as
well as the mean μ and standard deviation σ of a Gamma distribution. These param-
eters were varied according to the realistic values reported in Table 1. A packing
algorithm that generates axon geometries matching these predefined parameters was
implemented similar to [6]. Then, simulated DW-MRI signals for each one of these
phantoms were generated using a DW-MRI Monte-Carlo simulator [11] with a spe-
cific acquisition protocol consisting of 2 shells with b-values equals to 1000 s/mm2

Fig. 1 Framework pipeline

Table 1 Table of values used to generate all the substrates for the mean radius (μ), the standard
deviation of the distribution (σ), and the ICVF. A total of 1824 combinations were produced

Parameters Values

μ {0.2, 0.3, 0.5, 0.66, 0.81, 0.97, 1.12, 1.28, 1.44, 1.59, 1.75, 1.91, 2.06, 2.22, 2.34,
2.53, 2.69, 2.84, 3}

σ { 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3 }

icv f {0.35, 0.4, 0.45, 0.5, 0.53, 0.57, 0.6, 0.63, 0.67, 0.7, 0.73, 0.75}
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In-silico phantom and distribution of
diameters

Angular dispersion dirs.

Fig. 2 From left to right, an example of a generated phantom, the resulting distribution of axons
after fitting, and the directions used to rotate the main fiber direction to simulate minor angular
dispersion

and 4000 s/mm2; δ = 7 ms and echo time (TE) = 80 ms, with an isotropic voxel
resolution of 2 mm. For each shell, the Δ time was varied as follows, Δ = 17.3,
30, 42, 55 ms. A total of 30 uniformly sampled directions in the sphere where used
per different Δ time for the shell with b-value = 1000 s/mm2 and 60 directions for
the b-value = 4000 s/mm2. In addition, to include some uncertainty related to the
main fiber orientation, 4 additional signals were generated for each phantom by rotat-
ing the original signal by 5 degrees in 4 directions around the mean fiber direction.
We chose this dispersion by computing the variance of the main fiber direction in
a region of interest in the CC from the in-vivo data. The resulting substrates were
removed if the packed distribution were not close enough to the desired distribution
of diameters, or couldn’t reach the desired ICVF. Figure 2 shows an example of a
generated distribution, as well as the directions used to rotate the phantom’s main
direction. In total, the final database consisted of 82,400 white matter phantoms and
their DW-MRI signals, which were obtained after generating different realizations
of each of the 1824 combinations of icv f , μ and σ (Table 1) after pruning.

The in-vivo data were acquired using a 3T Connectome scanner equipped with
300mT/m diffusion gradients and using the same imaging parameters employed to
generate the synthetic dataset. The same healthy volunteer subject was scanned 5
times to test the robustness of the method to multiple repetitions.

2.2 Machine Learning

To learn themapping fromsimulated signals tomicrostructural parameters,we imple-
mented three different approaches, relying on either handcrafted features or the raw
diffusion signal. To create the handcrafted features, the diffusion signal vector was
separated into 8 parts, each one corresponding to a different shell with a specific
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combination of the parameters of the imaging protocol used, i.e., Δ, δ and G. Then,
for each of these, a Principal Component Analysis was carried out and the first 3
components were selected, which explained more than 98% of the signal variance.
In addition, the fractional anisotropy (FA) and the mean diffusivity (MD) were com-
puted and concatenated to the feature vector. The total feature vector signal consisted
of 8 ∗ 3 + 2 = 26 normalized features.

First, we trained a random forest (RF) regressor using the handcrafted features
described above. A total of 100 estimator trees with a maximum depth of 17 were
used. The random forest parameters were optimized using the Bootstrap aggregation
method.

Second, a multi-layer perceptron (MLP) was trained using the same handcrafted
featureswith the following architecture: four dense hidden layerswith 129, 32, 16 and
3 units respectively. We used a rectified linear unit (Relu) as the activation function
for all layers, with dropout after the first and second layers with probability 0.01.
The third layer was regularized using L2-based kernel and bias regularization with
a coefficient of 0.01. We used the L2 loss between the predicted and ground truth
parameters as the cost function. Finally, Adam optimizer was employed to train the
network for 100 epochs with a batch size of 10. We refer to this method as MLP-feat
on the rest of the paper.

Third, we trained an MLP using the DW-MRI signal directly, with no feature
extraction. The architecture consists of 6 hidden layers with 400, 200, 100, 56, 16
and 3 neurons respectively. The fifth layer is regularized as in the MLP above. Other
trainingdetails are identical to those used in theMLPabove.We refer to thismethod as
MLP-raw to differentiate it from the previous one trained with handcrafted features.

In this study, 80% of the dataset was used for training and validation, while 20%
was held-out for testing; 10-fold cross-validation to mitigate overfitting was per-
formed. The three described approaches were tested on both, the held-out synthetic
data and five in-vivo DW-MRI images masked into the CC. As a baseline for the
in-vivo data, we compare these results with those of the AMICO [4] implementation
of ActiveAx [1], using the default regularization parameters and dictionary.

3 Results and Discussion

Figure 3 shows the microstructure parameters estimated by the three ML algorithms
from synthetic data. Our main finding is that they are able to accurately estimate both
the mean and standard deviation of the axon diameter distributions even for diame-
ters much smaller than those estimated in previous studies (i.e., 2 um), and using an
acquisition protocol employing b-values lower than the conventional ones used for
diameter estimation [1, 4]. To explain why the proposedML techniques can improve
the estimation of axons with smaller diameters, it is important to remember that the
model-based approaches determine the axon diameter entirely from an intra-axonal
model, as the signal from the extra-axonal space is difficult to relate analytically
to the underlying microstructure parameters. The limited diffusion contrast of the
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ML Regressor Parameter Estimates

Mean Diameter Standard Deviation ICVF

Fig. 3 Estimates of the trained regressors on the validation dataset. From top to bottom, results for
the RandomForest (top),MLP trainedwith hand crafted features (middle row), and theMLP trained
with the raw signal (bottom). From left to right, ground truth versus the estimated parameters on
the validation dataset for the mean diameter, the standard deviation, and the ICVF respectively

DW-MRI signal from the intra-axonal space along the direction perpendicular to the
fibers hampers the estimation of axonswith small diameters. In contrast, applyingML
techniques to the whole signal allows finding hidden non-trivial and nonlinear rela-
tionships between the microstructure parameters and the DW-MRI signal from both
the intra- and the extra-axonal spaces. As the properties of the diffusion process in the
extra-axonal space (i.e., mean displacement length, tortuosity, time-dependent diffu-
sion) are highly influenced by the microstructure features of the intra-axonal space,
the ML algorithms can exploit this additional information. Another important factor
is that, by defining a specific distribution of axon diameters in our forward model, the
ML algorithms could predict the full distribution using only the information from the
right-tail of the distribution, which is not affected by the contrast/resolution problem
mentioned before.

Table 2 shows the mean absolute error of the three parameters estimated on the
noise-free test dataset. From Fig. 3 and Table 2, we can see that the RF regressor has
the best accuracy for all three parameters, with ICVF the most difficult parameter to
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Table 2 Mean absolute error (MAE) on the cross validation dataset for the three trained classifiers:
RF, MLP trained with feature vectors, and MLP trained with the raw signal

Cross validation MAE

RF feat. MLP feat. MLP raw

0.028 0.070 0.134

CC estimated mean diameters
RF regressor MLP feat. MLP raw

Fig. 4 Joint histogram of the estimated mean diameters in the segmented mask of the CC across
5 scans for (from left to right) the RF regressor, MLP-feat and the MLP-raw. Each histogram was
computed using the combined estimates of the 5 in-vivo scans

estimate. Both MLP methods had good accuracy during training but lower accuracy
on the test dataset than the RF regressor (Fig. 4).

Figure 5 shows the estimated mean diameter (mD) maps for two arbitrarily
selected scans from the in-vivo data, in the same anatomical cross-section for the
three methods. For each ML regressor, the parameter estimates are quite consistent
over the five images used; that is, the values and the anatomical locations of small
or large mean diameters are similar across scans. In addition, we show the axon’s
diameter maps computed with AMICO-ActiveAx, which are notably higher than
those from the ML methods. Is important to notice however that the used protocol
is far from idoneous for the former method—which requires b-values as high as
b = 9,000 s/mm2 in ex-vivo conditions [5] to estimate mean axon diameters below
2 um—and thus, such over-estimation is expected.

Figure 4 depicts the histograms of the estimated mean diameters. There is a
noticeable variability between the parameter estimates of two different regressors.
This is important as this lack of consensus between regressors implies that at least one
must be biased and shows how three different estimators, with similar performance
and accuracy in in-silico data, can estimate remarkably different distributions in in-
vivo data. This is likely to be and effect of several compartments not included in
our training data: axonal tortuosity and diameter changes, or even T2 relaxation or
artifacts effects. Therefore, this study will benefit of including such effects during
the training. Or the use of more advanced machine learning models [10]. Notably
however, while all ML models predicted mean diameters with magnitudes close—
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In-vivo Random forest mD predictions

In-vivo MLP-feat mD predictions

In-vivo MLP-raw mD predictions

In-vivo AMICO-ActiveAx mD predictions

Fig. 5 Midsagittal plane of the estimationmaps for two subjects (showed fromposterior to anterior).
The colorbars where adjusted per model to highlight the regions with higher and lower values. In
one of the MLP-raw predictions it can be notice the presence of a notorious outlayer values in
regions voxels outside the CC
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but still higher—from the ones extracted from histology, the trend in mean diameter
on the genu, truncus and splenium of the CC predicted by the RF regressor (i.e.,
the optimal one in synthetic data) matches that from a previous study on electron-
microscopy for the distribution of axon diameters in cortical white matter [8].

4 Conclusions

The main focus of this work is the introduction of a emerging simulation-based tech-
nique for the microstructural parameter estimation; from the construction of a large
dataset of realistic numerical phantoms to training machine learning algorithms on
the corresponding simulated signals. A comprehensive dataset accounting for a wide
variety of parameters characterizing axon packing and size, as well as small angular
dispersion mimicking that which occurs in the CC was generated. We demonstrated
that machine learning models with and without handcrafted features can accurately
recover the mean and standard deviation of the axon diameter distribution on syn-
thetic data and fromDW-MRI data withmoderately high b-values (4000 s/mm2). The
proposed approach allowed us to estimate, for the first time, the number-weighted
distribution of axon diameters, which cannot be estimated with previous DW-MRI
modeling techniques. As this is the distribution conventionally reported in histo-
logical studies, this study may help to fill the gap between in-vivo DW-MRI and
postmortem histology. Furthermore, once trained, machine learning models require
a few seconds of computation time for estimating the microstructure parameters in
the whole-brain white matter. Finally, the in-vivo results show consistent trends and
values for all 5 subject scans with the sameMLmodel, however, there are qualitative
differences between the different models that should be explored in future studies.
Our findings show that values reported in the CC for all ML models are close to
those found in histology, with the RF regressor further replicating the expected spa-
tial trend in mean diameter [8]. It is important to mention, however, that in this work
a simplified model of the CC microstructure is employed by considering a 2 com-
partment model which assumes that axons are completely straight cylinders, without
micro-dispersion along the axons. Nevertheless, since it is straightforward to gen-
erate more realistic phantoms (e.g. axons with undulations and angular dispersion)
and simulate the corresponding DW-MRI signals using state-of-the-art MC simu-
lators, both limitations can be addressed in the future by generating more complex
axon configurations without significantly modifying the machine learning models
and related parameters. Future in-silico validations will be conducted to evaluate the
robustness of the method as a function of the signal-to-noise ratio and acquisition
protocol.
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Convolutional Neural Network on DTI
Data for Sub-cortical Brain Structure
Segmentation

G. R. Pinheiro, D. S. Carmo, C. Yasuda, R. A. Lotufo, and L. Rittner

Abstract Convolutional neural networks have become a powerful tool for MRI
brain analysis and are the state-of-the-art in the matter of brain structure segmenta-
tion. Despite the deep learning power and advantages, most of the work is still done
in classical methods, such as atlas based segmentation. The majority of those meth-
ods also uses only anatomical MRI sequences, e.g. T1- and T2-weighted images,
however, other sequences of MRI could lead to much more interesting results. In this
work, we are proposing the use of Convolutional Neural Networks, in a multitask
approach, which is a tendency to the deep learning community, in order to segment
a variety of brain structures. We used over 100 subjects with 32 directions diffusion
data and manual annotation, drawn on T1 images, of 8 different brain structures.
We have tested variations in the CNN architecture and input data configurations to
ensure the best performance. Our results show the results of a particular CNN to
segment sub-cortical structures such as Ventricle, Thalamus, Putamen, and Caudate
Nucleus.

1 Introduction

Convolutional Neural Networks (CNNs) are the state-of-the-art in the field of brain
structure segmentation. The current reported results, using anatomicalMagnetic Res-
onance Images (MRI), are above 0.9 DICE similarity coefficient [6], while before
the CNNs, in the same type of images, common values for DICE were around 0.8
[14].

Despite great advances in CNN-based brain structures segmentation, this task is
still broadly done with classical methods, such as atlas-based, in public and com-
mercial tools, for example in FreeSurfer [8]. Those tools have a good performance,
however results could be as low as 0.65 DICE for some structures, e.g., accumbens,
amygdala, and others, while taking many hours to process a single brain image.
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Another advantage of the CNNs over other methods is the computational cost.
Deep learning algorithms do require Graphic Cards, huge amounts of data, and so on
during the training step.However, the prediction (or segmentation) on a trainedmodel
has lower requirements. For instance, a CNN model can segment a volume within
seconds [2] even on a mobile system, such as tablets, while atlas-based segmentation
could take hours on a server [15]. This advantage could be very helpful in the clinical
environment as the image processing is done instantaneously after data acquisition.

In both approaches, classical and CNNs, themajority of themethods uses anatom-
ical images, mainly T1-weighted and T2-weighted MRI [3, 14, 16, 26]. However,
otherMRI sequences such as diffusion sequences, that carry other than tissue contrast
information, could lead to more interesting results.

Also, there are research and clinical applications that require only diffusion data,
e.g. stroke early detection [21, 22]. In those cases, being able to segment structures
exclusively on diffusion data could lead to shorter scan protocols by eliminating the
acquisition of T1- or T2-weighted images, for example.

In this work, we are investigating the ability of a CNN of segmenting sub-cortical
structure using only data derived from Diffusion MRI. We have chosen to use a U-
Net like architecture [18] as it is the state-of-the-art in brain structures segmentation
and can be customized to work with diffusion data.

This paper is organized as follows: the dataset and its properties are presented
in Sect. 2. The methodology, including registration, DTI processing, training, and
testing are presented in Sect. 3. The experimental setup and results are presented in
Sect. 4 and discussed in Sect. 5. Our conclusions are presented in Sect. 6.

2 Dataset

The dataset was originally composed of 134 folders among controls, epilepsy
patients, and postoperative epilepsy patients [25]. However, 13 of them were dis-
carded due to failed registration. From the rest, 103 were used for the validations
and training while 18 were used for the CNN models testing. Data acquisition was
approved by the ethics committee and all patients and healthy controls provided
written informed consent.

Each folder contained the T1 image, the structures segmentation (performed on
the T1 image), and the DiffusionWeighted Images (DWI) with 32 gradient directions
plus a B0 image. TheDWI acquisition parameters were: Philips ACHIEVA3T, 2mm
between slices, 1 × 1 × 2 mm voxel, DwiSE sequence, and b = 1000 s/mm2. The
DWI volumes were also corrected to eddy currents and subject motion.

All imageswere registered to theMNI-152 [9] spacewith 1 × 1 × 1mmvoxel size
using the FSL registration tool [12]. After registration, they were visually inspected
and 13 subjects were removed due to bad registration, caused mainly by artifacts and
severe atrophy.

Each data was associated to segmentation of 16 structures, 8 from each hemi-
sphere (Fig. 1): ventricle, caudate, putamen, thalamus, globus pallidus, hipocampus,
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Fig. 1 Manual segmentation of ventricle, caudate, putamen, thalamus, globus pallidus, hipocam-
pus, amygdala, and accumbens over T1-weighted image in the native space. Each color represents
a different label

amygdala, and accumbens. Each pair was assigned with a single label, as they are
symmetrical and indifferent to the CNN perspective. They were all manually seg-
mented by a specialist in the T1 native space.

3 Methodology

3.1 Registration

In order to to achieve the best results in the deep learning training, the ground-truth
and the diffusion datamust be very well positioned and scaled, since the ground-truth
is generated in the T1 space. Therefore, there is a need for translating the diffusion
images and themasks to a common space, aligning themanual structures annotations
to the diffusion data. This procedure was done with a few steps.

The first step in the registration is the brain extraction (BET) for diffusion and the
T1 images, also done in the FSL tool. After the BET step, all T1 images, and their
respective structures segmentations were registered to the standard space MNI-152
(1 × 1 × 1 mm). The last step was to register the diffusion data to their respective
T1 images that were previously registered to the standard space.
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These steps might introduce propagating errors, and the resulting alignment is not
perfect with the masks. However, they are necessary since the diffusion data has no
associated manual annotations.

3.2 DTI Processing

Once we had the diffusion and the ground truth in the same space, we could compute
the Diffusion Tensor Images (DTI), and then, the scalar maps derived from it. In
this work, we used the Fractional anisotropy (FA), Mean Diffusivity (MD), mode of
anisotropy (MO), and a non diffusion weighted volume (B0) [7].

After the computation of the scalar maps, each map was normalized (0–1) and
used as a channel, forming a 4-channel volume input for the CNN.

3.3 Patch Selection

In order to increase the amount of data and also to balance the amount of each
structure, we used patches (Fig. 2) in the training.

Fig. 2 Patch selection in the sagittal view: 64 × 64 voxels patches centered within the ventricle
(red), putamen (blue), and hipocampus (gray)
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To ensure that the same number of patches of each structure would be selected,
the center of the patches were placed within the volume of the structure mask the
same number of times for each structure. Furthermore, patches centered outside of
all masks were taken to ensure that the model would learn what is not the target
structures.

As an example, we could have a proportion of 3 patches centered in a non mask
region, 5 patches centered in the putamen, 5 patches centered in the hipocampus,
and so on. In this case we could call it as a 3/5 patch balance.

3.4 CNN Architecture

In this work, we built our CNN architecture based on the U-Net [18], which has been
showing state-of-the-art results in brain structures segmentation [1, 4, 20].

Most of the works apply some modifications to the original 2015 architecture in
order to achieve even better results. We also added a variety of improvements to the
CNN creating a custom U-Net (Fig. 3).

Batch normalization has been shown to improve convergence and in some cases
validation results [11], thus, we have added this feature to our U-Net. Leaky ReLU

Fig. 3 Custom CNN architecture based on the U-Net. Main modifications were: residual connec-
tions, Leaky ReLU activations and batch normalization [2]
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Table 1 Description of the applied data augmentations

Augmentation level Description

0 No augmentation

1 Random intensity variation, random affine transformation

2 Same as 1, with more aggressive parameters

activations are also used in opposition to original ReLu. This new activation function
uses a small negative slope for the negative values instead of only saturating in zero.
This kind of activation can mainly improve performance and convergence in relation
to the classic ReLU [24]. The last significant customization to the U-Net was the use
of residual connection blocks, which was originally used in ResNet [10]. The use of
residual or skip connections is useful, as, empirically speaking, they present a more
linear “path” for the data, in cases where a shortcut improves the results.

3.5 Training

The training was done over mini batches of patches, and prediction over multi-
channel 2D slices.

We also used data augmentation during the CNN training. The data augmentation
was applied at 3 different levels (Table 1). In more details, augmentation 1 always
applies a random intensity variation of −0.1 to +0.1, and the random affine performs
a rotation by −20 to 20◦ and image scale of −20 to 20%. Augmentation 2 follows
augmentation 1 but doubling every argument (0.2 intensity, and 40 rotation and scale).

Comparisons were performed between different optimizers and training param-
eters. After studying different parameters for patch extraction, we had access to 28
more volumes that were included for patch extraction.

The last consideration is that the training is performed in all structures included
in the dataset or in only the 4 bigger structures, for comparison. This configures a
multitask approachwhich has become a tendency in deep learning [19] as it improves
the overall results and reduces overfitting.

3.6 Testing

The performance of eachCNNmodelwas tested in a specific test group of 18 subjects
that was not used in the training phase to ensure the test is trustworthy.

The test was done in the complete MRI volumes as the U-Net is a Fully Convo-
lutional Neural Network (FCNN) and can handle many input sizes. As we used a
2D version of the U-Net, the test volumes predictions are generated by stacking the
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prediction of every slice and the DICE is computed over the resulting 3D predictions
and the volume’s masks.

It is important to notice that only the 4 biggest structures, Ventricle, caudate,
putamen and thalamus, are considered to the model testing results.

4 Experiments and Results

In the experiments reported here, DICE is calculated accounting all channels, unless
otherwise noted. Also note that they do not involve any post processing step, only
the direct output of the CNN, as the interest is to study the response of the CNN to
DTI data in this particular segmentation task.

Preliminary experiments with ADAM [13] and SGD as optimizers gave similar
results, and SGD was chosen. With those experiments, the following training hyper-
parameters were fixed: maximum of 500 epochs; 0.01 initial learning rate (LR); LR
is multiplied by a factor of 0.9 every 50 epochs; 50 epochs patience as a stop criteria.
Another preliminary experiment was finding the best range for minmax voxel inten-
sity normalization to use, [0, 1] or [−1, 1]. [0, 1]was chosen for the next experiments
due to around 2% better validation results, evaluated over validation patches. After
these experiments, network architecture, optimizer, and normalization parameters
were kept unchanged for the next experiments.

In the next experiment, using 75 subjects, we have changed the hyperparameters
related to training input data (Table 2): patch sizes of 32× 32 or 64× 64; different
patch balances, as described in Sect. 3.3; different augmentation levels. The best
combination is found to be 64× 64patcheswith 5/15 patch balance and augmentation
level 2.

With those parameters fixed, and nowwith 28more volumes (103 in total) generat-
ing patches for training, more tests were performed over different orientations (axial,
sagittal and coronal), and with the inclusion of T1 data on input channels (Table 3).
There is a notable performance improvement with the addition of more training data,
going from 0.82 to 0.89 in DICE values. Also, it is clear that the sagittal is the best

Table 2 Test DICE over different patches sizes, patch balance, and augmentation parameters

Patch size Patch balance Augmentation level DICE

32 5/10 2 0.6961

64 3/5 2 0.6614

64 5/10 2 0.8181

64 5/15 0 0.8142

64 5/15 1 0.8226

64 5/15 2 0.8237

64 5/15 3 0.8186
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Table 3 DICE coefficient for different volume orientations

Slice orientation Input DICE

Axial DTI 0.7779

Coronal DTI 0.8829

Sagittal DTI 0.8864

Sagittal T1 0.9650

Sagittal DTI and T1 0.9638

orientation for slice extraction following our methodology. We can also see that T1
exclusively, and DTI plus T1, presented the best DICE values, around 0.96.

Up to this point, training patches were centered on all 8 structures of the dataset,
and test only performed on the 4 bigger structures. Smaller structures were not
included in test evaluation due to early experiments showing no convergence to good
segmentations on them. As a last experiment, training patches were only centered
on the 4 bigger structures: putamen, ventricle, thalamus and caudate. The result
of this experiment is that including only the bigger structures for patch selection
resulted in around 2% worse performance, even though they are not included in
the test evaluation. This shows that learning information about the smaller struc-
tures, even when their predictions are not good, contributes to the model as a whole
(Fig. 4 and 5).

Another relevant result in the test data is the DICE value for each of the 4 tested
structures (Fig. 6). Using our best CNN model with only DTI, we can see that the
ventricle is the hardest structure and the thalamus is the easiest for the model to learn
in this dataset with our methodology. Although that may seem counter-intuitive as
the ventricle is the biggest segmented structure, it is caused by the complexity in the
ventricle shape. The used protocol for manual segmentation makes the ventricle a

(a) (b)

Fig. 4 Training loss curves for comparison of data augmentation levels: a No augmentation; b
Augmentation level 2. The different number of epochs is due to the patience stop criteria ending
the training earlier because of no validation improvement for 50 epochs
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Fig. 5 Visual comparison between 2D targets and predictions, using our best DTI only model

Fig. 6 DICE distribution per tested structure, over all test volumes, using the DTI only input model

disconnected volume of two sections, anterior (bigger portion) and posterior (smaller
portion) (Figs. 1, 2, and 5), making it harder to segment when compared to the
Thalamus that is mostly a round connected volume.
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5 Discussion

Results show some interesting points of analysis for segmentation with DTI data.
The improvements in training and in results are noticeable when using augmentation
(Fig. 4), with slightly overfitting reduction, as in most machine learning applications.

Regarding patch sizes, 64× 64 had better results than 32× 32. Empirically, we
believe that this is because a bigger patch size includes more of the relatively big
structures, especially because we are testing exclusively on them. Regarding patches
balance, the inclusion of more patches centered in random points of the structures
instead of random patches was positive to the results. Models with fewer patches
around structures tended to undersegment.

One interesting characteristic of this work is learning from a total of 8 structure
labels, but testing performance for only the four bigger structures (Fig. 5). It was
verified that performance is worsenedwhen training only in the four tested structures,
under the same hyperparameters.

When T1 data are involved in the training, the results are improved (Table 3). This
is expected due to it being the original source of the manual segmentation. Also, as
hypothesized before, pre-disclosed registering of DTI data introduces an error that is
being propagated to the final results. This leads to the conclusion that the registration
among the different MRI sequences is very critical to this application, limiting the
improvement of the algorithm.

Aswe are investigating the ability of CNNs on subcortical structures segmentation
task using diffusion images, it is hard to compare to other segmentation methods on
diffusion images since most of them are focused on white matter [5, 17] or on lesions
[23]. In fact, this is one of the first works that segment multiple sub-cortical structures
using deep learning on diffusion images only.

Finally, we can also see that the model has room for improvement if fed with more
data, as the sagittal results improved significantly after the addition of more subjects.

6 Conclusion

We evaluated the segmentation of brain sub-cortical structures using a modified
version of U-Net (CNN architecture). Diffusion data were registered to the same
space as T1 masks and used as input channels. The network behavior was studied
with different hyperparameters.

Although the obtained segmentation results using only DTI as input for the CNN
were inferior to the results using also T1 images, the proposed CNNwas able to learn
the features from the diffusion data even with no clear visual distinction between the
target structures and other tissues. Results were qualitatively and quantitatively good,
with a mean DICE coefficient of 0,8864. In applications where the acquisition and
processing times must be reduced, an approach as described in this paper is one of
the most suitable choices.
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There are also room for improvements since some poor results were due to regis-
tration problems. Themanual segmentation used as ground truth to train theCNNwas
obtained in T1 native space and there are many sensitive steps to register all data to
the same reference. Future work might investigate better registration methodologies
and usage of different DTI maps.
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A Framework to Construct a
Longitudinal DW-MRI Infant Atlas
Based on Mixed Effects Modeling of
dODF Coefficients

Heejong Kim, Martin Styner, Joseph Piven, and Guido Gerig

Abstract Building of atlases plays a crucial role in the analysis of brain images.
In scenarios where early growth, aging or disease trajectories are of key impor-
tance, longitudinal atlases become necessary as references, most often created from
cross-sectional data. New opportunities will be offered by creating longitudinal brain
atlases from longitudinal subject-specific image data, where explicit modeling of
subject’s variability in slope and intercept leads to a more robust estimation of aver-
age trajectories but also to estimates of confidence bounds. This work focuses on a
framework to build a continuous 4D atlas from longitudinal high angular resolution
diffusion images (HARDI) where, unlike atlases of derived scalar diffusion indices
such as FA, statistics on dODFs is preserved. Multi-scalar images obtained fromDW
images are used for geometric alignment, and linear mixed-effects modeling from
longitudinal diffusion orientation distribution functions (dODF) leads to estimation
of continuous dODF changes. The proposed method is applied to a longitudinal
dataset of HARDI images from healthy developing infants in the age range of 3 to 36
months. Verification of mixed-effects modeling is obtained by voxel-wise goodness
of fit calculations. To demonstrate the potential of our method, we display changes of
longitudinal atlas using dODF and derived generalized fractional anisotropy (GFA)
of dODF. We also investigate white matter maturation patterns in genu, body, and
splenium of the corpus callosum. The framework can be used to build an average
dODF atlas from HARDI data and to derive subject-specific and population-based
longitudinal change trajectories.
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1 Introduction

Statistical brain atlases have become important models to provide standards to mea-
sure structural variations in anatomy, to define a common coordinate system for
spatial correspondence between subjects, and as priors to segment brain structures.
As diffusion weighted (DW) imaging yields micro-structural information, several
studies have been proposed to construct DW atlases [2, 4, 8, 9, 12, 14, 15]. Atlas
building in DW imaging is challenging in that we need to consider diffusivity rep-
resented by multiple directional volumes rather than scalar images. Previous studies
used diffusion tensor modeling [15] and high order diffusion distribution for high
angular resolution diffusion imaging (HARDI) data [2, 4, 12, 14] to construct atlases
using DW images. In a longitudinal DW atlas based on subject-specific longitudinal
data, atlas building is more challenging as one faces temporal changes in addition
to structural variability of sets of directional volumes. There are recently published
works to build atlases with longitudinal HARDI images using fractional anisotropy
(FA) maps and patch fusion to provide an early brain development atlas of infants
[8] or considering multi-tissue time- and orientation-resolved group average atlases
[9]. These studies, however, focus on building a template which reflects temporal
differences of different age groups but not on building a fully continuous longitudinal
atlas.

In this article, we introduce a new framework to construct a continuous longitu-
dinal DW infant atlas based on linear mixed effects (LME) modeling of diffusion
orientation distribution function (dODF) coefficients. The framework starts with
building a multivariate HARDI template using FA and baseline images. We trans-
form HARDI series to the template space with a reorientation step [13]. Spherical
harmonics (SH) coefficients are used to represent dODFs and for LME modeling of
HARDI image time series. Considering repeated image data from longitudinal sub-
ject image series, we need to take into account the inherent correlation of repeated
data and possibly unbalanced image time points which favor the use of mixed effects
models. We applied our framework to a longitudinal dataset of HARDI images from
healthy developing infants with ages between 3 to 36 months. We show the resulting
longitudinal atlas with the time changes of dODF and its derived generalized frac-
tional anisotropy (GFA). The following sections discuss our framework, experiments,
and results.

2 Method

2.1 Multivariate Atlas Building

Weuseunbiased atlas building to create an anatomical averageof the givenpopulation
and time points. Construction of multivariate atlas is preferable in that the optimiza-
tion satisfies both shape and appearance. We employed the symmetric group-wise
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Fig. 1 Overview of longitudinal DW-MRI infant atlas building based on linear mixed effects
modeling of diffusion orientation distribution function (dODF) coefficients

normalization algorithm, which is a part of the open source toolkit Advanced Nor-
malization Tools [1]. Given N sets of the K multi-modality images, I = {I1, ..., IK },
multivariate template construction computes the set of diffeomorphic transforms,
{(φ1,φ

−1
1 ), ..., (φN ,φ−1

N )}, and the optimal multivariate template, J = {J1, ..., JK },
with the coordinate system ψ(x) minimizing the cost function:

∑N
n=1

[
D(ψ(x),φn

1(x, 1)) + ∑K
k=1�k(I

n
k , Jk(φ

−1
n (x, 1)))

]
(1)

where D is the diffeomorphic shapedistance,D(φ(x, 0),φ(x, 1)) = ∫ 1
0 ||v(x, t)||Ldt

which depends on the linear operator, L , v is the velocity field v(φ(x, t)) =
dφ(x, t)/dt,φ(x, 0) = x, and�k is the similaritymetric.We use baseline images and
FA maps to construct the multivariate atlas so that K = 2 in Eq. 1. The normalized
cross-correlation similarity metric has been suggested previously for multi-modality
registration problems [1].

2.2 Registration of HARDI Series to Atlas

Diffeomorphic transforms from the multivariate atlas building are used to transform
HARDI series to a common coordinate system. InHARDI,we need an additional step
which correctly reorients the diffusion profile for angular alignment in addition to
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transforming image series for structural alignment. This reorientation step is applied
at each voxel in each HARDI series using a DW spatial warping algorithm [13]
as follows: Weighted diffusion basis functions are (1) computed by decomposition;
(2) reoriented based on a local affine transformation; and (3) recomposed to the
reoriented HARDI signal. The main advantage of using this warping algorithm is
that it works directly on the signal so that we can make use of the reoriented HARDI
signal for further processing.

2.3 Longitudinal Atlas Building from dODFs

We calculate dODFs for each voxel fromHARDI data sets from all subjects and time
points. HARDI signals can be represented by functions on the unit sphere where we
can express the signal S(θ,φ) = ∑L

l=0

∑l
m=−l cl,mYl,m The basis functions Ym

l are
given by:

Ym
l (θ,φ)

√
(2l + 1)(l − m)!

4π(l + m)! Pm
l (cos θ)eimφ (2)

where Pm
l is the associated Legendre polynomial, l is the order, and m ∈ [−l, l]

is a phase factor. We calculated dODFs using a symmetric, real, orthonormal SH
basis based on an analytical Q-ball imaging reconstruction method [3]. With the
modified SH basis, we can write the set of equations as a linear system to solve for
the coefficients c j , where j represents the index of coefficients, j ∈ [1, (l2 + l +
2)/2 + m].

Continuous longitudinal modeling is obtained by applying LME modeling to the
sets of SH coefficients of ODFs measured at discrete time points. The LME model
is preferable over linear regression as it takes into account the variability between
subjects, the correlation of repeated data, and unbalanced data points. For each SH
coefficient value, we evaluated longitudinal trajectories. Subject-wise intercepts are
considered to have random effects and the group-wise slope is considered as the fixed
effect representing estimated trends. Themodel for SH coefficients for the population
of subjects and repeated measures over time can be formulated as follows,

c j ∼ Xβ + Zα + ε, (3)

where ∼ N (0, δ2 I ), X = [1, t], Z is a design matrix and ε is an error term. β is a
fixed effects vector and α is a random effects vector. In our work, t is MRI age and
subjects are random effects factors. The LME formulation Eq. 3, therefore, estimates
group-wise slopes and intercepts as an average of subject-wise slopes and intercepts
in the groups. From the estimated slopes of c j coefficients, we calculate the group-
wise dODF trend at each voxel which results in a continuous longitudinal dODF
atlas. The subject-wise dODF trends from the random effects represent individual
subject-specific variability.
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3 Experiments and Results

3.1 Subjects

Image data is selected from a population of 3- to 36-month-old children scanned
on 3-T Siemens TIM Trio scanners on four different sites as part of an ongoing
autism infant imaging study (ACE-IBIS). In this paper, thirty-three preprocessed
HARDI scans from healthy developing infants with scans at more than one time-
point are included to build atlas. The preprocessing pipeline includes quality control
and correction techniques which are DTIPrep1 and Q-space resampling for correc-
tion [5]. DWI datasetswere acquiredwith FoV= 209mm, 76 transversal slices, voxel
size = 2 × 2 × 2 mm3 voxel resolution, matrix size = 106 × 106, TR = 11100 ms,
TE= 103 ms, one baseline image with zero b-value and 64 directional DWI volumes
sampled on the half sphere with b-value at 2000 s/mm2, with a total scan time of
12.5min.

3.2 Multivariate Atlas Building and HARDI Series
Registration

We use multivariate atlas building to obtain an anatomical average of the given
population and time points. Fractional anisotropy (FA), the degree of anisotropy
derived from the eigenvalues of diffusion tensor, has been used in buildingDWatlases
for spatial alignment [2, 6, 7]. Despite the advantage of representing locations of
strong white matter tracts, FA maps do not fully represent boundaries of anatomical
and fluid structures. There are different diffusivity indices representing different
microstructure properties such as mean diffusivity (MD), radial diffusivity (RD),
and axial diffusivity (AD). The diffusivity indices, which are FA, MD, RD and AD
maps, are calculated measures from eigenvalues of the diffusion tensor. The DW
baseline image, which is a T2-weighted image, depicts structural properties not
explained by FA maps. To decide which scalar values to be used for the multivariate
atlas building, we compared a similarity between FA and the other scalar images
by calculating normalized cross-correlation coefficient for all image pairs. Baseline
and FA are the least correlated result in our infant dataset (Mean:0.62, std:0.05). The
correlation coefficient values from combination pairs of MD, RD, AD, and baseline
are higher than 0.95 in average meaning that they represent similar structures. Thus,
FA map and baseline were used to build multivariate atlas.

The atlas building approach includes two steps, building of subject-specific
atlases, and of a population atlas. The initial subject-wise atlas building step copes
with much lower within-subject variability as compared to across subject defor-
mations. We compared our resulting atlas to an alternative atlas building without

1https://github.com/NIRALUser/DTIPrep.

https://github.com/NIRALUser/DTIPrep
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Fig. 2 Multivariate atlas construction result of baseline of DW image (Left) and fractional
anisotropy (FA) (Middle). Visualization of dODFs calculated by averaging Spherical Harmonics
(SH) coefficients across all HARDI series registered and reoriented into the template space (Right)

subject-wise atlas construction step. For each subject, the variance of normalized
cross-correlation between the subject’s scans and template was calculated. 12 out
of 14 subjects showed lower variance in the atlas building with subject-wise step,
justifying our choice.

Results ofmultivariate atlas building are shown inFig. 2with the resulting baseline
atlas is in the first and FA atlas is in the middle column. The images in the third
column illustrate the dODF visualization from averaged spherical harmonics (SH)
coefficients of all infant HARDI images registered and reoriented to the template
space. At each voxel, the average dODF is calculated from averaged coefficients. The
knownwhitematter tracts in the central part of brain including corpus callosum (CC),
internal capsule (IC), external capsule (EC), and posterior optic radiation (POR) are
clearly noticeable. We obtained whole brain tractography of the average dODF in the
template space as additional visualization method (Fig. 3). We used the deterministic
tracking algorithm using Dipy2 package (version 0.16.0.0). We set a maximum 30◦
angle threshold and used generalized fractional anisotropy (GFA) from the dODF
model to classify white matter.

3.3 Longitudinal dODF Atlas

To calculate a longitudinal dODF atlas, we first estimate ODFs from transformed
HARDI images. The SH basis of order 6 (l = 6), which makes 28 SH coeffi-

2https://dipy.org/.

https://dipy.org/
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Fig. 3 Whole brain tractography from the average dODFs (Fig. 2) in the template space: Axial
(Left), coronal (Middle), sagittal (Right) view. We used generalized fractional anisotropy (GFA)
from the dODF model to classify white matter. Deterministic fiber tracking with 30◦ maximum
angle threshold is used to obtain the tractography image. Tractography color shows the directions:
red for left/right, blue for dorsal/ventral, and green for anterior/posterior

Fig. 4 Goodness of fit for the linear mixed effect (LME) result on the voxel-wise spherical har-
monics (SH) coefficients. R2 is calculated using the Frobenius norm for each voxel. Left: Sagittal
view, Middle: Coronal, Right: Axial view

cients ( j = 1, ..., 28), with λ = 0.006 has been selected following suggestions from
Descoteaux’s paper [3]. The order-6 terms consider up to 3 crossing directions in
the orientation estimation. We adopted an LME modeling to obtain a continuous
longitudinal dODF atlas. The model is applied to dODF coefficients for each voxel
to estimate the group trends. To assess the goodness of fit, we calculated the R2 on
the voxel-wise SH coefficients c using the Frobenius norm (Fig. 4). R2 will be near
zero if the difference between estimated values and data is small due to the absence
of longitudinal changes. For voxels located in regions having small diffusion signal
changes such as cerebrospinal fluid, we get near zero R2 values. Figure 4 shows the
clear boundary of existing white matter structures, for example, corpus callosum and
ventricle area, which can display the LMEmodel has fitted well in voxels with white
matter structures. We illustrate the estimated dODF and the generalized fractional
anisotropy (GFA) of the resulting continuous longitudinal dODF atlas at different
time points. We followed the GFA that Tuch proposed which can be interpreted as
FA value but being able to be calculated from dODF [11].We show the dODF and the
GFA (Fig. 5) changes in the age range from 6 to 24 months. Figure 5 illustrates how
the white matter structures change in the developing infant brains. The structure, for
example, cingulum which is a red circle in the Fig. 5, has a more clear directional
shape in dODF as development continues.
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Fig. 5 Visualization of the 4D atlas result of longitudinal continuous diffusion orientation distri-
bution functions (dODF) shown for cingulum (red circle), corpus callosum (blue arrow), posterior
optic radiation (orange arrow). Each column on the right shows estimated dODFs and calculated
generalized fractional anisotropy (GFA) at different time points

3.4 Evaluation Based on Longitudinal GFA Changes

In order to show the potential use of a longitudinal dODF atlas, we evaluate the GFA
values calculated from dODFs in the corpus callosum (CC). In Fig. 6, the colored
lines describe the population trends and the gray lines are the subject-wise trends.
We analyzed three parts of the CC, genu, body, and splenium. The positive slope
plots imply that the diffusivity of those area becomes more anisotropic as the brain
develops. In addition, the splenium of CC starts with higher GFAwhichmay indicate
that the maturation of the splenium begins earlier compared to the body and the genu.
This result is in line with the findings in a previous white matter tract-based study
on DTI atlas, reporting that in neonates, the splenium shows highest FA, followed
by genu and then the body of the CC [6]. However, the study showed that changes
in the first year were larger than the second year which could not be found with
our framework since we assumed linear changes in dODF coefficients. Figure 6 also
illustrates the subject-specific variability in theGFAchanges (gray lines).Developing
statistics for individual trends to express confidence bounds will be subject of future
work to develop methods such as age prediction will be our future work.
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Fig. 6 Generalized fractional anisotropy (GFA) calculated from the longitudinal diffusion orienta-
tion distribution functions (dODF) infant atlas for genu, body, and splenium of the corpus callosum

4 Discussion and Conclusion

We introduce a framework to build a continuous longitudinal HARDI brain atlas
based on statistics of dODF SH coefficients, applied to longitudinal data of healthy
developing infants. The framework is generic and can be applied to any longitu-
dinal study using DWI data, for example aging, disease progression or monitoring
of therapeutic outcome. New concepts presented here are the use of longitudinal
data for 4D atlas building which allowed the use of mixed effects modeling versus
conventional regression, and continuous temporal modeling of dODFs from HARDI
data, resulting in a 4D HARDI atlas where common scalar indices and variabilities
can be derived. Geometric variability across subjects and age is normalized by unbi-
ased atlas building, here using multi-modal image data to provide correspondences
at anatomical boundaries as well as within interior white matter. We model continu-
ous longitudinal dODFs by mixed effects modeling from longitudinal HARDI data,
where fixed effects represent average and random effects variability as a function
of age, a concept not shown before. Using the new framework, we will be able to
not only to build average dODF atlases and derived scalar indices such as GFA at
different time points, but also estimates of confidence intervals and thus variability
as a function of time. Feasibility is shown with visualization of dODFs and derived
GFA maps at multiple time points, demonstrating the ability to model maturation
trajectories. Here, we could compare dODF atlas building and comparison of GFA
with atlas-building directly from GFA maps, but the latter would only represent an
atlas for one derived indices versus the rich set of measures to be derived fromODFs,
and would lack the capability to apply fiber tractography from the atlas. The voxel-
wise goodness of fit serves as validation of longitudinal modeling. As a potential use
of the 4D atlas, we demonstrate GFA analysis of genu, body, and splenium of the
corpus callosum which replicates previous findings [6] based on DTI.

The presented work still has limitations. First, the unbalanced age points and the
relatively small sample size may not allow to fully explain development between 3-
to 36-month-old infants. This may lead to the result that the developmental effect
is smaller than the inter-subject variability. Second, we assumed a linear change in
time. The linear model may not be able to fully reflect non-linear age-dependent
changes.
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In future work, we will quantify the expected robustness of LMEmodeling versus
cross-sectional atlas building and thus compare our concept to previously proposed
atlas construction schemes. Future efforts will test improved geometric normaliza-
tion via longitudinal regression, explore alternative mixed effects models for dODF
coefficient modeling and further direct modeling method for diffusion MRI signals,
examine higher order or nonlinear temporal models, and include a statistical frame-
work for estimation of confidence bounds [10]. We will also extend the framework
for longitudinal tract-based analysis of HARDI image data following concepts based
on DTI [7].
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Investigation of Changes in Anomalous
Diffusion Parameters in a Mouse Model
of Brain Tumour

Qianqian Yang , Simon Puttick , Zara C. Bruce, Bryan W. Day,
and Viktor Vegh

Abstract In this paper,we investigate anomalous diffusionmodels in amousemodel
of glioblastoma, a grade IV brain tumour, and study how the anomalous diffusion
model parameters reflect the change in tumour tissue microstructure. Diffusion-
weighted MRI data with multiple b-values at 9.4T was acquired from mice bearing
U87brain tumour cells at four time points.Voxel-level fitting of theMRI datawas per-
formed on the classicalmono-exponentialmodel, and four anomalous diffusionmod-
els, namely, the stretched exponential model, the sub-diffusionmodel, the continuous
time randomwalk model and the fractional Bloch-Torrey equation. The performance
of the anomalous diffusion parameters for differentiating the three-concentric layers
of tumour tissue (i.e., core; intermediate zone; peripheral and hyper-vascularised
tumour layer) was evaluated with multinomial logistic regression and multi-class
classification analysis. We found that parameter α from the stretched exponential
model, parameter β from the sub-diffusion model and parameter β from the con-
tinuous time random walk model provide a clear delineation of the three layers of
tumour tissue. The analysis revealed that the combination of diffusion coefficient D
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and anomalous diffusion parameter (α and/or β) greatly improved the classification
power in terms of F1-scores compared with the current approach in clinics, in which
D is used alone. Hence, our mouse brain tumour study demonstrated that anomalous
diffusion model parameters are useful for differentiating different tumour layers and
normal brain tissue.

1 Introduction

InMRI an inherentmismatch exists between the scale atwhichwater diffusion occurs
and the scale at which measurements are taken. This mismatch makes the interpreta-
tion of changes in tissue microstructure challenging which is further complicated by
water diffusion in a hindered and restricted tissue micro-environment. In this paper,
we attempt to address this issue by studying the potential role of anomalous diffusion
models (a subset of non-Gaussian diffusion models) in linking tissue microstructure
differences with changes in anomalous diffusion model parameters. Our investiga-
tions are performed in the context of glioblastoma, a grade IV glioma in the brain, as
increasing evidence suggests that proper mapping of the tissue micro-environment in
this disease can lead to improved treatment planning [8], better surgical intervention
with positive outcomes [19] and the development of drugs targeting specific tissue
micro-environment features such as angiogenesis [27].

Studies in diffusion-weighted MRI (DWI) involve a parameter called the b-value
(units of s/mm2) which is a function of diffusion gradient amplitude and its duration,
and the amount of time water is allowed to diffuse in tissue. It is widely observed
that the DWI signal decay at high b-values (>1000 s/mm2) does not follow the
classical mono-exponential model which assumes diffusing spins are undergoing
Brownian motion in tissue [26], and hence a simple ADC value obtained from the
mono-exponential model may not be able to adequately capture tissue heterogeneity.
Due to the limitation of ADC, several research groups have developed a number of
more sophisticated diffusion models to extract structure tissue information beyond
what ADC can provide (eg. [7, 14–18, 20]). In this study, we focus on several
anomalous diffusion models developed using theory in fractional calculus. These
models incorporate a broad and continuous distribution of diffusion compartments,
and describe water molecule transport processes influenced by the multiple length
and time scales through a heterogeneous medium at sub-voxel resolution [5, 24].
Anomalous diffusion models considered in this study include

• stretched exponential model (also known as super-diffusion model) which allows
for deviation from mono-exponential decay by assuming diffusing spins are more
likely to take long jumps, ie. undergoing Lévy walks rather than Brownian motion
[3, 9, 10];

• sub-diffusionmodel which assumes the waiting times between jumps for diffusing
spins follow a long-tailed probability distribution (ie. long waiting times) [5, 9] ;
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• continuous time random walk model which incorporates assumptions for both
super- and sub-diffusions, i.e. diffusing spins are more likely to take long jumps
and have long waiting times between jumps [9, 12, 13]; and

• fractional Bloch-Torrey equation which generalises the Bloch-Torrey equation
through fractional order differential operators [20];

Each of these models yields a new set of parameters to describe the anomalous
diffusion in complex biological tissue, which provide useful information not only on
the diffusion coefficient (D) but also on the tissue structures (α and/or β) through
which water molecules diffuse. For example, researchers used anomalous diffusion
models to differentiate low- and high- grade pediatric brain tumours [13, 14, 25], to
characterise white matter tissue microstructure [28, 29], to study healthy fixed rat
brain tissue [12], and to characterise myocardial microstructure in cardiac tissue [5].

Previous studies [21, 22] reported that there are often three concentric lay-
ers observed in the glioma tumour mass (core/necrotic, intermediate layer and
peripheral/hyper-vascularised layer). The formation of such layered structure is
driven by the extent of hypoxia within the tumour region. The goal of this study
is to investigate the utility of anomalous diffusion model parameters in differentiat-
ing the three tumour layers in a mouse model of glioma.

2 Methods

2.1 Anomalous Diffusion Models in MRI

Based on the Bloch-Torrey equation for the magnetisation of water protons and in
conjunctionwith theStejskal-Tanner diffusionprotocol, the amplitude of the acquired
diffusion weighted signal follows a mono-exponential decay

S/S0 = exp(−bD), (1)

where S0 is the baseline signal intensity, D is the diffusion coefficient of water in
tissue (typically, 2 × 10−3 mm2/s for water at room temperature), b = (γGδ)2(� −
δ/3) is the degree of sensitisation to diffusion of the MRI pulse sequence, γ is the
gyromagnetic ratio (42.58MHz/T for protons) and the diffusion-weighting is applied
with a pair of unipolar gradient waveforms of duration δ, separation�, and amplitude
G. As a generalisation of thismono-exponential decay, a stretched exponentialmodel

S/S0 = exp (−(bD)α) , 0 < α ≤ 1, (2)

has been proposed in a few previous studies [2, 3, 10], which becomes (1) when
α = 1. The model parameter α is the so-called heterogeneity index and can be used
to infer microscopic tissue structure [3].
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Alternatively, the mono-exponential model can be generalised to a sub-diffusion
model [5, 9]

S/S0 = Eβ(−bD), 0 < β ≤ 1 (3)

where Eβ(z) = ∑∞
k=0

zk

�(1+βk) and �(·) are the Mittag-Leffler and Gamma functions,
respectively [23]. When β = 1, �(1 + k) = k!, and E1(z) by definition is the expo-
nential function.

A further generalisation of the stretched exponential model (2) and the sub-
diffusionmodel (3) gives the continuous-time randomwalk (CTRW)model (demon-
strated on healthy fixed rat ventricles [5], healthy fixed rat brain tissue [12] and
paediatric brain tumours [13])

S/S0 = Eβ(−(bD)α), 0 < α, β ≤ 1. (4)

Finally, using first principles and by adopting the fractional calculus in the deriva-
tion, a solution to the fractional Bloch-Torrey equation (FBTE) [20] is obtained,

S/S0 = exp

[

−Dμ2(α−1)(γGδ)2α
(

� − 2α − 1

2α + 1
δ

)]

, (5)

where μ2(α−1) is fractional order space constant needed to preserve units.

2.2 Mouse Preparation and Data Acquisition

All animal experiments were approved by the University of Queensland animal
ethics committee. To form intracranial tumours, 1 × 105 U87 cells were injected
into the right striatum of six-week old NOD/SCIDmice, +0.6mm anterior-posterior,
+1.2mm mediolateral from bregma and at a depth of 3mm from the dural surface
using a stereotactic device. MR images were acquired at 7, 14, 19 and 21 days
post injection. The MRI examination included T2-weighted and multiple b-value
DWI data acquisitions using a Bruker Biospin 9.4T large bore MRI animal scanner.
T2-weighted images were acquired using the fast spin echo MRI sequence with
TR/TE = 2500/33 ms, echo train length = 8, matrix size = 256 by 256, field of
view (FOV) = 2cm by 2cm, spatial resolution = 78.125 μm by 78.125 μm, slice
thickness = 0.7mm. The multiple b-value DWI data was acquired using an echo
planar imaging (EPI) sequencewith b-values= 0, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000 s/mm2. Three b = 0 images were acquired. At each nonzero b-value,
trace-weighted images were generated from the 30 direction Stejskal-Tanner DWI
data. The key data acquisition parameters were: TR/TE = 5000/30 ms, separation
between the Stejskal-Tanner gradient lobes � = 20 ms, diffusion gradient duration
δ = 3ms, matrix size= 108 by 96, field of view (FOV)= 2.16cm by 1.92cm, spatial
resolution = 0.2mm by 0.2mm, slice thickness = 0.2mm. The acquisition time was



Investigation of Changes in Anomalous Diffusion Parameters … 165

approximately 10min per mouse. Following the final MRI acquisition, mice were
euthanised and the brain drop fixed in 4% paraformaldehyde. Paraffin-embedded
brains were sectioned by microtome at room temperature using a section thickness
of 12 μm and hematoxylin and eosin (H&E) staining was performed. Slides were
scanned using an Aperio CS2 digital slide scanner and the images were processed
using ImageScope.

2.3 Image Analysis

Multi b-value diffusion images were fitted to the anomalous diffusion models (2)–
(5) on a voxel-by-voxel basis. Firstly, D was calculated using the mono-exponential
decay model (1) for the subset of acquired data up to b = 1000 s/mm2. Secondly, the
full range of b-values was used to fit the parameters using the trust-region-reflective
algorithm [4, 6] with prescribed tolerance of 10−6. Parameter bounds were taken
as 0 < α, β ≤ 1, with initial guesses α = 1 and β = 1, representative of the case of
diffusion governed by the mono-exponential model. Parameter fittings were imple-
mented inMATLAB. Evaluation of theMittag-Leffler function was performed using
Garrappa’s optimal parabolic contour algorithm,which is available inMATLABcen-
tral (file exchange number 48154). We found fitting results to be insensitive to the
choice of initial values.

Regions of interest (ROIs) were carefully selected, guided by the histological
sections (H&E), to represent each layer of tumour tissue (core, intermediate and
peripheral) and the contralateral normal-appearing tissue. The ROIs were placed on
the diffusion images first and then propagated to the correspondingmodel parameters
for statistical analysis: (D, α) for the stretched exponential model, (D, β) for the sub-
diffusion model, (D, α, β) for the CTRW model and (D, α, μ) for the FBTE model.

2.4 Statistical Analysis

For each anomalous diffusion model, mean values and standard deviations of model
parameters were calculated from the tumour and the normal-appearing ROIs. A two-
sided Wilcoxon rank sum test with significance set at p < 0.05 was performed for
comparing parameter values in each pair ofROIs, i.e., core-versus-intermediate, core-
versus-peripheral, core-versus-normal, intermediate-versus-peripheral, intermediate-
versus-normal, and peripheral-versus-normal.

Since anomalous diffusion models have at least two parameters, multinomial
logistic regression was used in two ways: (i) to determine the significance of each
model parameter and (ii) to evaluate the set of model parameters in differentiating
three tumour regions as well as normal brain tissue region. In statistics or machine
learning, this is called a multi-class classification problem. Quality of the overall
classification is assessed by precision, recall(also known as sensitivity) and F1-score
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in the macro-averaging sense. Precision-recall curves were also generated to assess
the performance of the set of parameters from each anomalous diffusion model. All
statistical analyses were carried out in MATLAB.

3 Results

Figure 1 presents the progression of gliomas in the right hemisphere of mouse brains
as observed in longitudinal T2-weighted MRI scans. These images show the level of
temporal and spatial heterogeneity in tumour development.

To capture additional information on tumour structure apart from water diffu-
sivity D, the anomalous diffusion models (2)–(5) were fitted to the acquired diffu-
sion data to yield a new set of parameters. Representative spatially resolved maps
of the diffusion coefficient (D), the anomalous diffusion parameters and the rela-
tive fitting errors for each model are shown in Fig. 2. The D map was computed
using the mono-exponential model with lower b values (≤ 1000 s/mm2) as out-
lined in the methods section, and it is not model dependent. This parameter was
also comparable to the ADC value, which is typically obtained with b = 0 and
b = 1000 s/mm2. The relative fitting error was calculated by norm(signal values −
fitted values)/norm(signal values). The relative error maps corresponding to each
model fit have a level of similarity between them, whilst the contrast of the spatially
resolved parameter maps varies with method.

Fig. 1 T2-weighted MRI scans at 7, 14, 19 and 21 days showing glioblastoma progression in three
different mice. Tumour cells were injected on day 0, and mouse 3 was euthanised after the day 19
imaging session. All other mice were euthanised after the day 21 imaging session
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Fig. 2 Representative parameter maps and errors from fitting anomalous diffusion models. A D
and α maps for stretched exponential model; B D and β maps for sub-diffusion model c α and β

maps for continuous time random walk model (CTRW); D D and μ maps for fractional Bloch-
Torrey equation (FBTE). Note D map is obtained from fitting the mono-exponential model for
b ≤ 1000 s/mm2 and remains the same for the anomalous diffusion models

Our key observations from these images are: (i) α from the stretched exponen-
tial model (Fig. 2A), β from the sub-diffusion model (Fig. 2B) and β from CTRW
(Fig. 2C) provide a clear delineation of the three layers of tumour tissue; (ii) Both αs
from theCTRW(Fig. 2C) and FBTE (Fig. 2D) show a darker core layer of the tumour,
but they cannot differentiate the intermediate and peripheral layers of tumour; (iii)
μ values from the FBTE (Fig. 2D) seem very similar across the whole brain region
and hence not very sensitive to brain and tumour tissue structure. Since μ is used to
preserve units, so its interpretation may not be meaningful.

These observations were further confirmed by the box plots analysis in Fig. 3.
Regions of interest (Fig. 3A) have been selected based onH&E section of the tumour-
bearing right hemisphere of mouse brain (Fig. 3B). In Fig. 3C–F, separation of
notches (><) implies the medians are significantly different across ROIs at the 95%
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Fig. 3 Behaviour of model parameters for representative specific regions of interest inside and
around the tumour. Shown are A selected regions of interest marked on the diffusion image; B
Histological section (H&E staining) of the right hemisphere of a mouse brain; C–F notched box
plots of parameters based on the stretched exponential, sub-diffusion, CTRW and FBTE models,
respectively. Note, if the notches (><) of the two box plots do not overlap, it indicates that the
medians of two regions are significantly different at the 95% confidence level
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Table 1 Statistics of the anomalous diffusion parameters in tumour and normal tissue ROIs

Stretched exp CTRW

D×10−3 mm2/s α α β

Core 1.00 ± 0.10 0.52 ± 0.04 0.75 ± 0.03 0.77 ± 0.05

Intermediate 0.76 ± 0.16 0.45 ± 0.03 0.81 ± 0.08 0.58 ± 0.12

Peripheral 0.95 ± 0.08 0.60 ± 0.02 0.80 ± 0.05 0.83 ± 0.04

Normal 0.83 ± 0.06 0.63 ± 0.03 0.88 ± 0.05 0.80 ± 0.04

Sub-diffusion FBTE

D×10−3 mm2/s β α μ (μm)

Core 1.00 ± 0.10 0.56 ± 0.07 0.55 ± 0.02 6.5 ± 0.11

Intermediate 0.76 ± 0.16 0.41 ± 0.06 0.58 ± 0.06 6.6 ± 0.15

Peripheral 0.95 ± 0.08 0.69 ± 0.03 0.63 ± 0.04 6.4 ± 0.18

Normal 0.83 ± 0.06 0.71 ± 0.03 0.68 ± 0.04 6.3 ± 0.30

Fig. 4 Precision-Recall
curves and F1-scores (shown
in brackets) for evaluating
the performance of model
parameters on differentiating
different tumour tissue layers
and normal tissue
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confidence level. This hypothesis was confirmed by the Wilcoxon rank sum test as
described in the methods section. A statistical summary of the parameter values for
each ROI is presented in Table 1.

Multivariate logistic regression analysis showed that all the anomalous diffusion
model parameterswere significantwith p < 0.01. Figure 4 shows the precision-recall
curves and F1-scores (in brackets) for each set of model parameters to differentiate
three tumour layers and normal tissue. The curves for anomalous diffusion models
behaved similarly, bowing towards the corner (1, 1), and well above the curve for
mono-exponential model. F1-scores for each anomalous model were very similar
(around 0.8), and again outperformed the mono-exponential model with F1-score
0.55. These metrics indicate that anomalous diffusion models preformed very well
in differentiating tumour layers and normal tissue.
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4 Discussion

We set out to investigate the role of anomalous diffusion models in the character-
isation of the tissue microenvironment in a mouse model of glioblastoma, a grade
IV brain cancer. We acquired 9.4T DWI mouse brain data with multiple b-values at
fixed diffusion time over four time points. Whilst several other anomalous diffusion
models have been described in the literature (e.g. [7, 14–18, 20]), only a subset of
them are applicable in the fixed diffusion time regime considered herein. Moreover,
different models behave differently based on the diffusion time set in the experiment.
With this in mind, we investigated the utility of four anomalous diffusion models in
characterising the tumour tissue layers through spatial variations in model param-
eters (see Figs. 2 and 3). After applying the stretched exponential, sub-diffusion,
continuous time random walk and fractional Bloch-Torrey equation models to the
data, we found the anomalous diffusion model parameters are very sensitive to tissue
changes in the presence of a tumour. In particular, α from the stretched exponen-
tial model (Fig. 2A), β from the sub-diffusion model (Fig. 2B) and β from CTRW
(Fig. 2C) provide a clear delineation of the three layers (core, intermediate layer and
peripheral/hyper-vascularised layer) of tumour tissue.

We found the three-parameter models (CTRW and FBTE) to marginally better
fit and classify the data than the two-parameter models (stretched exponential and
sub-diffusion models) in terms of relative fitting errors and F1-scores from the multi-
nomial logistic regression and multi-class classification analysis. However, both αs
of the CTRW and FBTE models were not able to differentiate regions within the
tissue micro-environment to the same extent as α and β from the stretched expo-
nential and sub-diffusion models. We may attribute this finding with a potential of
data over-fitting using the three-parameter models. For example, the AIC (Akaike
Information Criteria) for model selection involves a term representative of fitting
error which is penalised by an increase in models parameters [1]. Since our relative
fitting errors are somewhat similar across the different models (see Figs. 2 and 3),
we may argue that insufficient gain in fitting quality is achieved through an increase
in the degrees of freedom within the model. As such, a change in one parameter can
counteract a change in another parameter, which make the underlying effects on the
model parameters less distinguishable (comparing Fig. 3E, F with Fig. 3C, D).

In the box plots for α from the stretched exponential model (Fig. 3C) and β from
the sub-diffusion model (Fig. 3C), the notches on selected regions of interest inside
tumour do not overlap, which means the medians of any regions are significantly
different at the 95% confidence level. Hence, the anomalous diffusion parameters
from the stretched exponential model and the sub-diffusion model have the ability
to differentiate tissue types in tumour, whereas such detailed information on tumour
structure can not be observed in vivo usually [11]. In addition, the α and β values are
higher in the normal-appearing brain tissue and lower in the tumour tissue region.
This can be explained through fractional calculus theory; i.e. if α is closer to 1 then
the diffusion process is closer to Gaussian diffusion (free diffusion) and if less than
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1 then the diffusion process is more anomalous and indicating the diffusion medium
is more heterogeneous and complex (such as tumour tissue) [2, 20].

Moreover, multinomial logistic regression and multi-class classification analysis
revealed that the combination of D and anomalous diffusion parameter (α and/or β)
greatly improved the classification power in terms of F1-scores compared with the
current approach in clinics, in which the diffusion coefficient D is used alone.

With these results, our mouse brain glioma study demonstrates the ability of using
anomalous diffusion models to differentiate tumour layers and normal brain tissue.
Future work will be to apply such analysis to patient data.

Acknowledgments Qianqian Yang acknowledges the Australian Research Council for the Discov-
ery Early Career Researcher Award (DE150101842). Simon Puttick acknowledges the Cure Brain
Cancer Foundation Innovation Grant (R14/2173).

References

1. Akaike, H.: Akaike’s information criterion. In: Lovric, M. (ed.) International Encyclopedia of
Statistical Science. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-
2_110

2. Bennett, K., Hyde, J., Schmainda, K.: Water diffusion heterogeneity index in the human brain
is insensitive to the orientation of applied magnetic field gradients. Magn. Reson. Med. 56(2),
235–239 (2006). https://doi.org/10.1002/mrm.20960

3. Bennett, K., Schmainda, K., Bennett, R., Rowe, D., Lu, H., Hyde, J.: Characterization of
continuously distributed cortical water diffusion rates with a stretched-exponential model.
Magn. Reson. Med. 50(4), 727–734 (2003). https://doi.org/10.1002/mrm.10581

4. Branch, M., Coleman, T., Li, Y.: A subspace, interior, and conjugate gradient method for large-
scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999).
https://doi.org/10.1137/s1064827595289108

5. Bueno-Orovio, A., Teh, I., Schneider, J.E., Burrage, K., Grau, V.: Anomalous diffusion in
cardiac tissue as an index of myocardial microstructure. IEEE Trans. Med. Imaging 35(9),
2200–2207 (2016). https://doi.org/10.1109/TMI.2016.2548503

6. Coleman, T., Li, Y.: An interior trust region approach for nonlinear minimization subject to
bounds. SIAM J. Optim. 6, 418–445 (1996). https://doi.org/10.1137/0806023

7. Eliazar, I., Shlesinger, M.: Fractional motions. Phys. Rep. 527(2), 101–129 (2013). https://doi.
org/10.1016/j.physrep.2013.01.004

8. Fritz, L., Dirven, L., Reijneveld, J., Koekkoek, J., Stiggelbout, A., Pasman, H., Taphoorn, M.:
Advance care planning in glioblastoma patients. Cancers 8(11), 102 (2016). https://doi.org/10.
3390/cancers8110102

9. Hall, M.: Continuity, the Bloch-Torrey equation, and diffusion MRI (2016). arXiv:1608.02859
10. Hall, M., Barrick, T.: From diffusion-weighted mri to anomalous diffusion imaging. Magn.

Reson. Med. 59, 447–455 (2008). https://doi.org/10.1002/mrm.21453
11. Iima, M., Reynaud, O., Tsurugizawa, T., Ciobanu, L., Li, J., et al.: Characterization of glioma

microcirculation and tissue features using intravoxel incoherent motion magnetic resonance
imaging in a rat brain model. Invest. Radiol. 49(7), 485–490 (2014). https://doi.org/10.1097/
rli.0000000000000040

12. Ingo, C., Magin, R., Colon-Perez, L., Triplett, W., Mareci, T.: On random walks and entropy in
diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn. Reson. Med.
71(2), 617–627 (2014). https://doi.org/10.1002/mrm.25153

https://doi.org/10.1007/978-3-642-04898-2_110
https://doi.org/10.1007/978-3-642-04898-2_110
https://doi.org/10.1002/mrm.20960
https://doi.org/10.1002/mrm.10581
https://doi.org/10.1137/s1064827595289108
https://doi.org/10.1109/TMI.2016.2548503
https://doi.org/10.1137/0806023
https://doi.org/10.1016/j.physrep.2013.01.004
https://doi.org/10.1016/j.physrep.2013.01.004
https://doi.org/10.3390/cancers8110102
https://doi.org/10.3390/cancers8110102
http://arxiv.org/abs/1608.02859
https://doi.org/10.1002/mrm.21453
https://doi.org/10.1097/rli.0000000000000040
https://doi.org/10.1097/rli.0000000000000040
https://doi.org/10.1002/mrm.25153


172 Q. Yang et al.

13. Karaman, M., Sui, Y., Wang, H., Magin, R., Li, Y., Zhou, X.: Differentiating low- and high-
grade pediatric brain tumors using a continuous-time random-walk diffusion model at high
b-values. Magn. Reson. Med. 76(4), 1149–1157 (2016). https://doi.org/10.1002/mrm.26012

14. Karaman, M., Wang, H., Sui, Y., Engelhard, H., Li, Y., Zhou, X.: A fractional motion diffusion
model for grading pediatric brain tumors. NeuroImage: Clin. 12, 707–714 (2016). https://doi.
org/10.1016/j.nicl.2016.10.003

15. Lin, G.: An effective phase shift diffusion equation method for analysis of PFG normal and
fractional diffusions. J.Magn.Reson. 259, 232–240 (2015). https://doi.org/10.1016/j.jmr.2015.
08.014

16. Lin, G.: Analyzing signal attenuation in PFG anomalous diffusion via a non-Gaussian phase
distribution approximation approach by fractional derivatives. J. Chem. Phys. 145(19), 194202
(2016). https://doi.org/10.1063/1.4967403

17. Lin, G.: The exact PFG signal attenuation expression based on a fractional integral modified-
Bloch equation (2017). arXiv:1706.02026

18. Lin, G.: Fractional differential and fractional integral modified-Bloch equations for PFG
anomalous diffusion and their general solutions (2017). arXiv:1702.07116

19. Madsen,H.,Hellwinkel, J., Graner,M.: Clinical trials in glioblastoma—designs and challenges.
In: Lichtor, T. (ed.) Molecular Considerations and Evolving Surgical Management Issues in
the Treatment of Patients with a Brain Tumor, Chap. 13. IntechOpen (2015). https://doi.org/
10.5772/58973

20. Magin, R., Abdullah, O., Baleanu, D., Zhou, X.: Anomalous diffusion expressed through
fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190(2),
255–270 (2008). https://doi.org/10.1016/j.jmr.2007.11.007

21. Persano, L., Rampazzo, E., Della Puppa, A., Pistollato, F., Basso, G.: The three-layer concen-
tric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic
implications. Sci. World J. 11, 1829–1841 (2011). https://doi.org/10.1100/2011/736480

22. Pistollato, F., Abbadi, S., Rampazzo, E., Persano, L., Della Puppa, A., Frasson, C., Sarto, E.,
Scienza,R.,D’avella,D., Basso,G.: Intratumoral hypoxic gradient drives stemcells distribution
and mgmt expression in glioblastoma. Stem cells 28(5), 851–862 (2010). https://doi.org/10.
1002/stem.415

23. Podlubny, I.: Fractional Differential Equations. Academic Press (1998)
24. Reiter, D., Magin, R., Li, W., Trujillo, J., Velasco, M., Spencer, R.: Anomalous T2 relaxation

in normal and degraded cartilage. Magn. Reson. Med. 76(3), 953–962 (2016). https://doi.org/
10.1002/mrm.25913

25. Sui, Y., Wang, H., Liu, G., Damen, F.W., Wanamaker, C., Li, Y., Zhou, X.J.: Differentiation of
low-and high-grade pediatric brain tumors with high b-value diffusion-weighted mr imaging
and a fractional order calculus model. Radiology 277(2), 489–496 (2015). https://doi.org/10.
1148/radiol.2015142156

26. Torrey, H.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563–565 (1956). https://
doi.org/10.1103/physrev.104.563

27. Wang, Z., Dabrosin, C., Yin, X., Fuster, M., Arreola, A., et al.: Broad targeting of angiogenesis
for cancer prevention and therapy. Semin. Cancer Biol. 35, S224–S243 (2015). https://doi.org/
10.1016/j.semcancer.2015.01.001

28. Yu, Q., Reutens, D., O’Brien, K., Vegh, V.: Tissue microstructure features derived from anoma-
lous diffusion measurements in magnetic resonance imaging. Hum. Brain Mapp. 38(2), 1068–
1081 (2017). https://doi.org/10.1002/hbm.23441

29. Yu, Q., Reutens, D., Vegh, V.: Can anomalous diffusion models in magnetic resonance imaging
be used to characterise white matter tissue microstructure? NeuroImage 175, 122–137 (2018).
https://doi.org/10.1016/j.neuroimage.2018.03.052

https://doi.org/10.1002/mrm.26012
https://doi.org/10.1016/j.nicl.2016.10.003
https://doi.org/10.1016/j.nicl.2016.10.003
https://doi.org/10.1016/j.jmr.2015.08.014
https://doi.org/10.1016/j.jmr.2015.08.014
https://doi.org/10.1063/1.4967403
http://arxiv.org/abs/1706.02026
http://arxiv.org/abs/1702.07116
https://doi.org/10.5772/58973
https://doi.org/10.5772/58973
https://doi.org/10.1016/j.jmr.2007.11.007
https://doi.org/10.1100/2011/736480
https://doi.org/10.1002/stem.415
https://doi.org/10.1002/stem.415
https://doi.org/10.1002/mrm.25913
https://doi.org/10.1002/mrm.25913
https://doi.org/10.1148/radiol.2015142156
https://doi.org/10.1148/radiol.2015142156
https://doi.org/10.1103/physrev.104.563
https://doi.org/10.1103/physrev.104.563
https://doi.org/10.1016/j.semcancer.2015.01.001
https://doi.org/10.1016/j.semcancer.2015.01.001
https://doi.org/10.1002/hbm.23441
https://doi.org/10.1016/j.neuroimage.2018.03.052


A Network-Based Analysis of the
Preterm Adolescent Brain Using PCA
and Graph Theory

Hassna Irzan, Michael Hütel, Carla Semedo, Helen O’Reilly, Manisha Sahota,
Sebastien Ourselin, Neil Marlow, and Andrew Melbourne

Abstract The global increase in the rate of premature birth is of great concern since
it is associated with an increase in a wide spectrum of neurologic and cognitive
disorders. Neuroimaging analyses have been focused on white matter alterations in
preterm subjects and findings have linked neurodevelopment impairment to white
matter damage linked to premature birth. However, the trajectory of brain develop-
ment into childhood and adolescence is less well described. Neuroimaging studies of
extremely preterm born subjects in their adulthood are now available to investigate
the long-term structural alterations of disrupted neurodevelopment. In this paper, we
examine white matter pathways in the preterm adolescent brain by combining state-
of-the-art diffusion techniques with graph theory and principal component analysis
(PCA). Our results suggest that the pattern of connectivity is altered and differences
in connectivity patterns result in more vulnerable premature brain network.

1 Introduction

Neonatal care has transformed our ability to treat babies born at the lowest gesta-
tional ages, although increased survival has not been associated with as strong a
decrease in neonatal morbidity [7]. Emerging evidence suggests that the preterm
infant brain endures anatomical, microstructural and functional disruption, it is less
clear, however, how these alterations extend into adulthood. This is of great concern,
since the number of subjects with a wide spectrum of neurologic and cognitive dis-
orders is increasing. This has an associated burden for society, health care systems
and education. Neuroimaging studies have documented brain volume alteration [8]
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and impaired white matter (WM) connectivity and correlated this with low cognitive
performance following preterm birth [1]. Recent studies have analysed the struc-
tural integrity of WM in adult preterm brain; the findings revealed preservation of
the global connectivity at the expense of peripheral connectivity in infants [6] and
adults [2].

The primary aim of this study is to identify brain sub-networks in which term
and preterm are separable and to examine the properties of such sub-networks and
how critical they are to the overall functioning of the brain. The role of such sub-
networks can be estimated by examining the impact on the global efficiency when
inflicting damage to these sub-networks. We hypothesise that extremely premature
birth affects the structure of the adolescent preterm brain and that this structural alter-
ation negatively influences measures of brain communication efficiency and network
vulnerability to attack. Generally, the WM tract architecture has been characterised
by diffusion tensor imaging (DTI); more robust models are now available, which
overcome some of the inherent limitations of the diffusion tensor. For example fiber
tracking with constraints has improved the biological plausibility of reconstructed
WM bundles [5]. Comparing all the WM pathways without an a prior hypothesis
destroys the statistical power of the analysis because of multiple comparison. We
use PCA to reduce the redundancy of the data, which produces deterministic and
reproducible low-dimensional representations of the data in which variance is pre-
served. The resulting networks are amenable to graph theory analysis [9], which can
be used to summarise complex networks and aid interpretation. Specifically, we use
PCA to detect the network properties in which term and preterm are distinguishable.
We further examine the networks by investigating network vulnerability to attack.
The outline of the analysis is presented is Fig. 1.

2 Methods

We perform data preprocessing and estimate WM tracts in Sect. 2.1. We analyse
the effect of the confounding variables on the global efficiency of the networks in
Sect. 2.2 and identify the tracts with highest variance between term born and preterm
born subjects in Sect. 2.3. To investigate the role of the sub-networks derived from
PCA analysis we examine the vulnerability to attack of term and preterm brain in
Sect. 2.4.

2.1 Data

Data acquisition: T1-weighted (T1w) MRI acquisitions are acquired for a cohort of
adolescents born extremely preterm (<26 weeks gestation): 39/12 females/males,
term born: 20/12 females/males on a 3T Philips Achieva at TR = 6.93 ms, TE =
3.14 ms and 1 mm isotropic resolution. Diffusion weighted MRI (dWMRI) volumes
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Fig. 1 The presented analysis is organised in three main steps. Top: for each individual subject
a structural brain network is computed. We applied Constrained Spherical Deconvolution (CSD)
algorithm to estimate theFiberOrientationDistribution (FOD) in eachvoxel andperformedAnatom-
ically Constrained Tractography (ACT). From Geodesic Information Flow template we consider
121 unique regions as nodes of each connectome. The connection between each node region is
quantified after applying Spherical-Deconvolution Informed Filtering of Tracks (SIFT2). Middle:
Principal Component Analysis (PCA) is applied and discriminative sub-networks between preterm
and term subjects are identified. Bottom: network vulnerability analysis is conducted by causing
damage to the identified networks and quantifying the change in network global efficiency

are acquired at 2.5 × 2.5 × 3 mm resolution across b-values of (0, 300, 700, 2000)
s/mm2, n = 4, 8, 16, 32 directions and TE = 70 ms. On average preterm subjects
were born at 24.9±0.8 weeks of gestation and their average birth weight is 728.4 ±
126.3 g. The age at scan of all subjects is 19 years of age.
Data preprocessing: We apply N4ITK algorithm for bias field correction of T1-
weighted images. Subject motion in the dWMRI volumes is addressed by affinely
registering them to the mean-b0 volume.
Tractography and networks extraction: All analysis is performed in the original
anatomical space of each subject to minimise anatomical bias in the subsequent
analysis. Brain parcellations are obtained using Geodesic Information Flow (GIF)
[3]. Fibre orientation distribution (FOD) is derived by means of constrained spher-
ical deconvolution (CSD) [12]. We normalise the FODs intensity such that they
are comparable across subjects and perform anatomically constrained tractography
(ACT) [10] on multi-shell data [5]. We consider 121 regions-of-interest (ROIs) of
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a parcellation that include: neocortex, subcortical structures, cerebellum, pons and
brainstem. For each subject i , we define a network Gi , in which J nodes are the
individual ROIs and K edges are connections between each pair of ROIs equivalent
to streamline count weighted by the cross-sectional area of the fibre (SIFT2) [11].
We remove the effect of network strength on global efficiency by normalising each
network Gi by its total strength.

2.2 Statistical Analysis

Group, gender and brain size may present a confounding effect in the analysis. There
is correlation between brain efficiency and weeks of gestation [2]. In addition, as
illustrated in Fig. 2, there is difference in brain size between females and males
as well as between preterm and term born subjects [4]. As such, to establish the
influence of brain size, gender and group in the analysis, we test their statistical
influence in the network efficiency. The statistical model is E = β0X0 + β1X1 +
β2X2 + β3X3 + ε, where β0 is the intercept, X1, X2 are regressors encoding for
group and gender membership respectively, X3 the brain size values and E the
network global efficiency.

Fig. 2 Brain volume
distribution for preterm born
females, preterm born males,
term born females and term
born males
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2.3 Identification of Sub-networks Using PCA

We apply PCA to the set of edges of N subjects networks {Gi , i = 1 . . . N } to
obtain the first C eigenvectors E ∈ RK×C that approximate 90% of the variance in
all edges X ∈ RN×K . X is projected onto the C eigenvectors to obtain the reduced
dataXred = XE.We then investigate the capability of each eigenvector Ec to separate
term from preterm subjects. We test the statistical significance of this by running the
Kruskal-Wallis test because it has no assumptions about the distribution of the data.
To compensate for multiple comparisons, we test each individual null hypothesis at
a significance level of α/C (Bonferroni correction), with α = 0.05.

2.4 Network Vulnerability to Attack

We investigate how damaging some nodes or edges impacts the appropriate func-
tioning of a network, which we model as the capacity of information transfer. We
associate the network performance with its global efficiency EG . We define the effi-
ciency decay as Ed = EGd/EG with EG and EGd the global efficiency of the intact
and damaged network, respectively. The damage to network Gd is carried out by
setting the weights of the targeted connection wi j to wd

i j = wi j × (1 − τ/100) [13],
where τ is the inflicted damage ranging from a minimum of 0 (no damage) to a max-
imum of 100 (full damage). We test the brain network vulnerability by performing
targeted attacks to the sub-network that best separates preterm from term subjects.
We carry vulnerability analysis for each network Gi and evaluate the mean Ed (μEd )
value for each group. The main aim of these tests is not only to identify the most
critical structures or connections for the network performance, but to investigate if
the preterm born network is more or less vulnerable to attack and which brain regions
or network are more critically impacted.

3 Results

3.1 Statistical Analysis

With respect to the network global efficiency E , the statistical analysis indicated that
there was not significant statistical influence of gender (p = 0.253) and brain size
(p = 0.064). The group membership was statistically significant (p = 0.010).
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Fig. 3 A The three PCs with discriminatory power between term born (females and males) and
preterm born (females and males) subjects. The corresponding eigenvectors reveal the underlying
sub-networks: B sub-network from the lowest 25% values shows connections from the fronto-
parietal areas to the deep grey matter regions and C sub-network from the highest 25% values
displays a widespread connectivity

3.2 Identification of Sub-networks Using PCA

Forty principal components (PCs) explained 90% of the variation in the dataset. The
PCs with discriminatory power between term and preterm were 1st (p = 2.02e−6),
2nd (p = 5.82e−4) and 10th (p = 2.93e−5). All PCs are statistically significant after
Bonferroni correction. Figure 3A captures the separation between term and preterm
born subjects along these PCs. The discriminatory sub-network between the preterm
and term group is obtained as λ1v1 + λ2v2 + λ10v10. Where, the linear combina-
tion of the eigenvectors (v1, v2, v10) corresponding to the 1st, 2nd, and 10th PCs
is weighted by the mean contribution of the preterm subjects in each PC (λ1, λ2,
λ10). Figure 3B illustrates the top 25% negative values and Fig. 3C the top 25%
positive values. The highest weights are found in connections of bilateral middle and
superior frontal gyrus, bilateral precentral gyrus, bilateral thalamus and putamen,
bilateral caudate, right supplementary motor cortex. The connectivity strength in
the sub-network Fig. 3B is significantly reduced (p = 4.68e−5) in the preterm sub-
jects (μ = 2.14e−2 ± 5.9e−3) compared to term subjects (μ = 2.80e−2 ± 5.7e−3).
Preterm group (μ = 2.33e−2 ± 5.41e−3) have a comparable (p = 0.11) connectivity
strength in the sub-network in Fig. 3Cwith term born group (μ = 2.15e−2 ± 5.0e−3).

3.3 Network Vulnerability to Attack

The effect of targeted attack to the sub-networks in Fig. 3B, C is shown in Fig. 4A,
B respectively from null (0) to full (100) damage. Figure 4A shows that targeted
attack to the connections in sub-network in Fig. 3B results in a slight reduction of
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Fig. 4 The effect on the brain of progressively increasing the inflicted damage from a minimum
of no damage τ = 0 to a maximum of full damage τ = 100: A The effect on the brain network of
damaging sub-network in Fig. 3B and B sub-network in Fig. 3C

global efficiency for the full term groups more than the preterm groups; this is more
pronounced in the full term males. The decay of global efficiency when damaging
the sub-network in Fig. 3C shows higher vulnerability in the preterm groups (males
and females) with respect to the control group (about 12.8% less).

4 Discussion

This study investigates differences in structural connectivity between 19 year-old
adolescents born extremely preterm (born before 26 weeks completed gestation) and
their socio-economically matched term-born peers.

The main finding is that the connectivity in the preterm brain is altered leading to
a more vulnerable network. The strength is reduced in the network in Fig. 3B, while
it is preserved in the connections in Fig. 3C. Furthermore, the vulnerability analysis
suggests that the full term subjects are relatively more vulnerable in the sub-network
in between fronto-parietal and subcortical structures (Fig. 3B). In this respect, it is
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more plausible that this sub-network is preserved in preterm subjects. However, when
damaging the network in Fig. 3C, the preterm subjects showed higher vulnerability
regardless of gender. This supports the hypothesis of a widespread vulnerability to
attack in the preterm brain network suggesting an overall fragile network.

Brain connectivity is affected bybrain volume, however the functional relationship
between brain size and streamline count is not known [4]. In our cohort, there are
differences in average brain volume between groups (Fig. 2). Therefore, we analysed
the influence of gender, group and brain size on the brain global efficiency; the results
showed that only prematurity condition affects the global efficiency (p = 0.010).
Hence, we compared term born (females and males) and preterm born (females and
male) subjects in the analysis.

The interpretation of graph metrics makes assumptions about the network. For
example, the network global efficiency definition assumes that the signals propagate
in the network along the shortest paths between network elements. Although this
assumption is sensible for artificial networks, there is no tangible evidence that such
hypothesis holds for the human brain which may have different optimisation criteria.
Graph theory analysis of networks is also sensitive to the parcellation scheme; a
more detailed analysis could result from a higher resolution network. Here, the PCA
analysis is biased towards the average preterm network as there are more preterm
born subjects. To mitigate this effect we ran the same analysis with matched sample
size of term and preterm born subjects and observed the same results.

This work has shown differences in the connectivity of the adolescent brain net-
work after preterm birth; such abnormalities resulted in a network more vulnerable
to network damage. Future work will aim to detect the nature of such alterations
by analysing white matter microstructure at the voxel level and within individual
brain regions linked to the sub-networks we have identified (hubs and peripheral
regions). In addition, we aim to investigate the neuropsychological correlates of the
sub-networks that we have established.
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Diffusion MRI Fiber Tractography by
Flow Field Formation with Extended
Physarum Solver: A Pilot Study with 2D
Phantoms

Yoshitaka Masutani

Abstract Information of the brain white matter fiber bundle structures is obtained
by diffusion MRI (dMRI) analysis and is already indispensable for medical sci-
ence and clinical medicine. Since the fundamental technique for tractography was
presented about twenty years ago, various methodologies have been developed and
reported. However, this problem leaves room for technical improvement, especially
for application in clinical dMRI data of limited quality. In this study, a novel approach
based on the physarum solver was investigated. Through the experiments on syn-
thetic and real data sets, potentials and limitations of the approach were displayed
and discussed.

1 Introduction

The fiber tractography based on diffusion MRI (dMRI) data is widely used in both
clinical purpose and brain science research [1]. The detail information brought by
tractography including the connectivity within the brain white matter opened a new
horizon of the brain science. In addition, it is almost indispensable for navigation of
minimally invasive neurosurgery, in which the important fiber structures must not be
damaged.

Since the original FACT algorithm by Mori et al. [2] has been proposed, various
algorithms have been investigated based on various theories and approaches. One
of the important categorizations is deterministic or probabilistic. The term; deter-
ministic tractography is a kind of retronym, which was given when the probabilistic
approach [3] was newly proposed. Similarly, local approach is also defined for distin-
guishing the new approach of global tractography [4]. In those approaches, reliable
information of local fiber orientation(s) within a voxel, i.e. assuming cases of cross-
ing, kissing, and fanning fibers, is the key for tractography. In that sense, the family of
approaches by spherical deconvolution [5] is promising for the purpose when higher
angular resolution is available. In addition, recent updates include machine-learning

Y. Masutani (B)
Hiroshima City University, Hiroshima, Japan
e-mail: masutani@hiroshima-cu.ac.jp

© Springer Nature Switzerland AG 2020
E. Bonet-Carne et al. (eds.), Computational Diffusion MRI,
Mathematics and Visualization, https://doi.org/10.1007/978-3-030-52893-5_16

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52893-5_16&domain=pdf
mailto:masutani@hiroshima-cu.ac.jp
https://doi.org/10.1007/978-3-030-52893-5_16


184 Y. Masutani

approaches [6, 7] for empirical determination of local fiber orientation, which seem
to have potentials to cope with clinical data of limited quality.

In the current situations, the problems of fiber tractography leave rooms for tech-
nical improvement [1], and it is worth considering new approaches based on vari-
ous theories and methodologies. On that standpoint, a novel approach based on the
physarum solver [8] was investigated in this study. It is a computational simulation
of the amoeboid organism behavior to form an optimal network [9], and is applied
to maze-solving for the shortest route finding on graphs. This tractography approach
by using the physarum solver has certain similarity with the existing methodologies,
which are described later in the discussion section. When applying the physarum
solver, it is necessary to extend the theory in several aspects since tractography is
not a simple problem of optimal path finding. Therefore, a few extensions of the
physarum solver dedicated to dMRI fiber tractography are proposed in this study.

In this paper, the basics and the extension of the physarum solver are described
first. Then, feasibility studies by using 2D phantoms are performed and their results
are shown. Finally, potentials and limitations of the approach were discussed with
referring to the existing similar approaches.

2 Methods

2.1 Physarum Solver Basics

The physarum solver [8] is adapted to an undirected graph to find optimal path from
a node to a node. For an undirected graph consisting of nodes; Ni (i = 1, 2, ..., n),
and edges; Mi, j (i �= j) connecting nodes Ni and N j with a single source; N1 and a
single sink; N2 are given with total flux I0 from the source. By assuming Poiseuille
flow on the graph as network of pipes, we get the flux Qi j at an edge Mi, j as a pipe
is defined as;

Qi j = πa4i j
8κ

pi − p j

Li j
(1)

where ai j is the radius of the pipe, κ is the viscosity coefficient, pi and p j are the
pressures at the nodes Ni and N j respectively, and Li j is the length of the pipe. When
we define conductivity Di j at Mi, j as;

Di j = πa4i j
8κ

, (2)

The Eq. (1) is rewritten as below.

Qi j = Di j

Li j
(pi − p j ) (3)
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By the conservation law of the flow material, we obtain a linear equation for each
node; Ni below.

∑

j

Qi j =

⎧
⎪⎨

⎪⎩

I0 (i = 1)

−I0 (i = 2)

0 (i �= 1, 2)

(4)

When the conductivities are regarded as constant, we get a unique combination of
pressures as a set of solution and consequently flux values for all edges. In addition, by
simulating the network behavior of physarum, conductivity is dynamically changed
as;

d

dt
Di j = f (|Qi j |) − Di j (5)

where f (·) is a monotonically increasing and continuous function to update conduc-
tivity with satisfying f (0) = 0. For example, f (x) = x was used in this study. By
discretizing (5), we get the update equation;

Dt+1
i j = (1 − α)Dt

i j + α f (|Qt
i j |) (6)

where t is a time parameter for generation of update and α is an update rate. Also after
the conductivities are dynamically changed, pressure values are updated by solving
(4) iteratively. The linear equations contain only sparse non-zero components due to
that inter-node connections are limited to their neighbors. Therefore, the solution is
effectively obtained via the ICCG (Incomplete Cholesky factorization for Conjugate
Gradient) solver [8, 10]. After certain generations of updates, limited numbers of
edges have high flux values, which indicate the optimal path from the source to the
sink. Otherwise, flux converges to virtually zero. Thus, the network is adapted to
find the optimal path from the source to the sink. An example of maze-solving by
physarum solver is shown in Fig. 1.

2.2 Extending Physarum Solver for Diffusion MRI Fiber
Tractography

In this study, the physarum solver is applied to the pixel/voxel graphs of dMRI data
on a regular grid for fiber tractography. Due to two potential problems of tractogra-
phy become critical then, the physarum solver is extended for the purpose. One is
uncertainty of tracking termination point. That is, when an explicit seed point to start
tracking is defined, the corresponding target (or goal) point to terminate tracking
cannot be specified in advance. This is not a suitable situation for the solver in which
explicit source and sink nodes must be defined. The other is a problem regarding size
of seed/target ROI configuration. It is very hard to define the ROIs in just enough
sizes for the fiber tract expected to be extracted before tracking. Therefore, larger
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Fig. 1 Maze-Solving Example (Shortest-Path Finding) by Physarum Solver. a Undirected graph
network with a source node (green) and a sink node (blue). b Solution display after 250 generations
of update. Note that the optimal path is highlighted with red thick lines indicating high conductivity
and high flux including several parallel routes due to their identical path length

ROIs are often used initially and are iteratively adjusted until the expected tract is
obtained. In addition, it is neccesary to consider the shortest path not in the Euclid
distance but in the direction of high fiber tract probabilities. Also avoiding zig-zag
trajectories resulting from graph edge patterns, smoothing of the extracted path must
be considered.

To overcome these problems, the physarum solver is extended in this study. The
main components of the extension are three-fold; (1) addition of virtual nodes, (2)
modulation of edge length by local property deriving from anisotropic diffusion, and
(3) conversion of graph to flow field. The extensions are described be-low.

Virtual Nodes. First of all, multi-source and multi-sink nodes are allowed to be
defined for tractographywith certain size of seed and targetROIs. In addition, a virtual
source and a virtual sink are introduced, which are connected to multi-source nodes
and multi-sink nodes respectively. This yields selectivity of nodes among multi-
source/sink during network adaptation. The placement of these nodes are inspired
by the graph configuration for image segmentation by GraphCuts [11].

Edge Length Modulation by Anisotropic Diffusion. For emphasizing flux in ori-
entation of high diffusion probability, edge length is modulated based on diffusion
properties at the two nodes at the ends of the edge. In this study, diffusion tensor is
employed for the modulation. For the original edge length; Li j = (1,

√
2, or

√
3) as

inter-pixel/voxel distance, modulated edge length; L ′
i j is defined instead as;

L ′
i j = Li j · φ(Ti ,T j ) (7)

where Ti denotes diffusion tensor at the node Ni , φ(·) is a modulation function.
The function should be designed to shorten the length of edges directed to similar
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orientations of high diffusion probability. The function below was employed in this
study.

φ(Ti ,T j ) = max{(1 − |vi · mi j |)FAi , (1 − |v j · mi j |)FA j } (8)

where mi j denotes the normalized orientation vector of the edge Mi, j from Ni to
N j , vi represents the principal eigenvector of Di , and FAi is fractional anisotropy
(FA) value of Ti . By this modulation, high flux is yielded on edges in direction
of high diffusivity with considering diffusion anisotorpy. Natural extension of the
modulation can be realized by use of ODF (Orientation Distribution Function) [1]
instead of the diffusion tensor.

ConvertingGraph to FlowField. After certain updates of the graph by the extended
physarum solver described above, global flux from sources to sinks is formed, which
are consistent with local anisotropic diffusion.When fiber tracking is performed from
a node with in the sources, the path toward the sinks is obtained as a group of edges
in a zig-zag shape. To smooth the fiber trajectory, the graph with flux is converted to
a flow field. That is, flow vector; Fi at each node; Ni on the regular grid is given by
a flux-weighted average of outflow vector from the node as;

Fi =
∑

j

Wi jni j (9)

where Wi j is a weighting factor for the edge; Mi, j as shown below.

Wi j =
⎧
⎨

⎩R(Qi j )/
∑

j

R(Qi j )

⎫
⎬

⎭

β

(10)

R(·) is the ramp function to omit inflow and β (≥ 0) represents a factor to emphasize
directivity.When β is zero, flux quantity; Qi j is never considered, and larger β yields
higher directivity based on directional distribution of Qi j . Note that the flow vectors
obtained above only define directions of fiber tracking, and are not used to tracking
termination criteria. In this study, sum of outflow; � j R(Qi j ) was used in addition to
the standard criteria such as FA values and path length.

2.3 Tractography as Streamlines in Flow Field

After the vector field formation, fiber tracking is performed by a standard stream-line
method [12]. For each start point within the given seed area, tracking is iterated until
reaching to the target area, or is terminated when several conditions are satisfied. As
the tracking termination criteria, lower bound for FA, sum of out-flow, andmaximum
number of iteration are employed in this study.
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3 Results

3.1 Synthetic Data Experiments

For confirming the effect of virtual nodes, synthetic data set in 40×40 matrix size
with uniform isotropic diffusion tensors was used (Fig. 2a). Among the pixel graph
of fully-connected 8 neighbors, simple vertical flow field only in the center part
of the data is expected between multiple sources and sinks at the upper and lower
ends. Without virtual nodes, input and output flux was equally distributed among the
multi-source and sink, and non-negligible amount of flux was yielded (Fig. 2b, c),
and consequently diagonal streamlines were yielded (Fig. 2d). With virtual nodes
(Fig. 2e, f), selectivity avoiding flux from/to unnecessary nodes was observed and
most of streamlines were vertical (Fig. 2g, h). In addition, it is interesting that certain
concentration of flux was observed at the border with unnecessary nodes (Fig. 2f). In
Fig. 3, the effect of edge length modulation and the parameters is shownwith another
synthetic data set with a simple configuration of fully connected pixel graph with a
single source and a single (Fig. 3a). In addition, the anisotropic tensor field showing
radial directions of principal vectors centered at the upper left corner (Fig. 3b) was
used for edge length modulation. As shown in Fig. 3c, d without the modulation,
simple diagonal flow and streamline were observed.With the modulation, depending
on the parameters, the streamlines were bent along the radial flow of the tensor field.

Fig. 2 Effect of Virtual Nodes in Synthetic Data. a–d Without virtual nodes. e–h With virtual
nodes. a and e graph setting with multi-source (green) and multi-sink (blue). In e, a virtual source
(yellow) shown at the upper left corner is connected to all the source nodes, and identically a virtual
sink (magenta) at the bottom right is also for all the real sinks. b and f after 200 iterations. c and g
flow field. d and h streamlines



Diffusion MRI Fiber Tractography by Flow Field Formation … 189

Fig. 3 Effect of Edge Length Modulation by Diffusion Tensor Field and the Parameters. a Pixel-
graph configuration with single source and single sink. b Anisotropic tensor field with orientation
color-coding for edge length modulation. c Flow field formation result without the modulation. d
Streamline for d with a seed point at the source node. e–h streamline results with the modulation.
e β = 0.8 and 100 iterations. f β = 1.0 and 100 iterations. g β = 4.0 and 100 iterations. h β=1.0
and 400 iterations

As seen in higher directivities; β and more iteration of updates, the path shape
is quantized to small variations of orientation to show that there exists significant
dependency on those parameters.

3.2 FiberCup Data Experiment

Figure 4 shows the results for the FiberCup data [13, 14], which contains fiber-
crossing (e.g. yellow frame in Fig. 4a) where conventional algorithms fail to track.
A smooth fiber tracts were obtained beyond two crossing area (Fig. 4g). In the
graph, 1,000 nodes and 3,173 edges were yielded. With a standard laptop PC (Apple
Macbook Pro), the computation time was 25 s for the whole process including 100
iteration of conductivity updates, flow field formation and fiber tracking.

4 Discussion

In this study, the physarum solver was extended for the purpose of applying to dMRI
fiber tractography. The experimental results revealed basic characteristics of the
approach including its potentials. As shown in the result, one of the most important
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Fig. 4 Fiber Tractography by Extended Physarum Solver in FiberCup Data. a Original dMRI data
(b = 0 image). b diffusion tensor field with binary mask given by thresholding the b = 0 image.
c Tractography ROI setting for seed (green) and target (blue), also used for source and sink node
configuration in physarum solver. d Initial solution by physarum solver with of multi-source/sink
graph. e After 100 iterations. f Flow field converted from (e). g Streamlines from seed points given
in seed ROI. h Zoomed images of (b), (e), (f) and (g) within the frame shown in (a)

feature is that it can consider global structure of extracted fiber tract similarly to the
global approach [4], which is indispensable with solving the crossing fiber problem.
That is, global smooth stream from sources to sinks takes priority over the local fiber
orientation information with uncertainty, while considering the local consistency of
diffusion anisotropy to adjustable extent. This feature is commonly observed among
the existing tractography approaches of wide spectrum aimed at solving the problem.
Those approaches are categorized in three groups and are discussed in comparison
with the proposed method.

First of all, shortest-path approaches have been proposed and discussed in the
past decade [15–18], which shares similar concept with the physarum solver. The
former two approaches [15, 16] perform the shortest-path finding on the graph, and
therefore suffer from path direction quantization and yield zig-zag trajectories. In the
proposedmethod, however, streamlinewithin vector field converted from graph fixed
the problem and can yield smooth trajectories. The latter two approaches [17, 18]
from the same group use no graph structure and are combined with the probabilistic
approach. The most important problem of the shortest-path approaches is that it
basically requires two explicit endpoints of the path, which are hard to determine
in advance. On the other hand, the proposed method can avoid this issue by using
multiple source and sink and conversion to vector field.

The next category is family of the space-warping and geodesic approaches [19–
21]. O’Donnell et al. [19] defined tensor-warped space, which is almost equivalent to
the tensor-based edge lengthmodulation in this study. Tractography by fast-marching
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method of level set [20] is also similar to the space-warping by controlling the speed
function. The recent report of utilizing adjugate diffusion tensor [21] is on the basis
of a similar concept. The uniqueness of the proposed method in comparison with
them can be that these concept is performed on the graph structure.

In the sense of forming flow vector field, there found certain similarity with the
fluid mechanics approach by Hageman et al. [22]. However, fluid simulation can
be categorized in local approaches have little essense of the optimization to form
path as global shape. Thus, the proposed approach based on the extended physarum
solver has similarity and uniqueness in comparison with the existing approaches and
detailed comparison is planned.

An important limitation of the proposed approach is the cost for computation.
Even in the simple 2D datasets, thousands of nodes and edges are yielded for the
graph. When this approach is extended to 3D data, it is necessary to take a measure
to reduce graph size based on diffusion properties such as anisotropy and anatom-
ical information. Also, the dependency on the parameters such as iteration number
of graph updates and directivity emphasizing factor increases complexity and may
prevent from practical use of the approach. Further investigations including tuning
for optimal setting are also required as the future work.

5 Summary

In this paper, preliminary results of dMRI fiber tractography with the extended
physarum solver was presented. Through the experiments by using the 2D datasets of
synthetic and real phantoms, certain potentials for solving the crossing fiber problems
were shown with dependency to various parameters included in the methodologies
as a limitation. Further investigation and modification of the algorithm are planned
including 3D extension of the approach for tractography in clinical dMRI data, use
of ODF of the edge length modulation, and optimal parameter tuning.
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Abstract In magnetic resonance imaging (MRI), the image contrast is the result of
the subtle interaction between the physicochemical properties of the imaged living
tissue and the parameters used for image acquisition. By varying parameters such
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as the echo time (T E) and the inversion time (T I ), it is possible to collect images
that capture different expressions of this sophisticated interaction. Sensitization to
diffusion-summarized by the b-value-constitutes yet another explorable “dimension”
to modify the image contrast, which reflects the degree of dispersion of water in
various directions within the tissue microstructure. The full exploration of this mul-
tidimensional acquisition parameter space offers the promise of a more comprehen-
sive description of the living tissue but at the expense of lengthy MRI acquisitions,
often unfeasible in clinical practice. The harnessing ofmultidimensional information
passes through the use of intelligent sampling strategies for reducing the amount of
images to acquire, and the design of methods for exploiting the redundancy in such
information. This chapter reports the results of the MUDI challenge, comparing dif-
ferent strategies for predicting the acquired densely sampled multidimensional data
from sub-sampled versions of it.
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1 The Multi-contrast Nature of MRI Images

Theabundance of acquisition parameters available in magnetic resonance imaging
(MRI), and the focus on the b-value (b) and gradient directions (dir ) when per-
forming a typical diffusion acquisition—for example a pulsed gradient spin-echo
experiment [1]—may lead one to consider parameters such as the echo time (T E)
and the inversion time (T I ) merely as indispensable yet irrelevant for the outcome
of the acquisition. On the contrary, the choice of T E and T I is delicate as it attains
to what physicochemical environment of the living tissue one would like to be the
most dominant in the measured signal. Indeed, when the complexity of the tissue
is summarized at the scale of an MRI voxel, the contributions from the different
physicochemical environments add up in a distribution of longitudinal and trans-
verse relaxation times T1 and T2. Indicating with φ(T I, T E |T1, T2) the functional
form of the contribution to the overall measured signal intensity, S(T I, T E), then

S(T I, T E) ∝
∫ ∞

0

∫ ∞

0
P(T1, T2)φ(T I, T E |T1, T2)dT1 dT2 (1)

where P(T1, T2) is the joint distribution of the T1 and T2 expressed within the voxel.
From the equation it appears clear that the nature of the functional form φ determines
the contribution of a specific (T1, T2) population in the overall measured signal
S(T I, T E). For instance, focusing only on the dependency between T E and T2 for
the sake of simplification, in first approximation

φ(T I, T E |T1, T2) ∝ exp(−T E/T2) (2)

which indicates that for a specific echo time T E a population having higher T2 will
have more contribution to the overall signal compared to an equivalently abundant
population having a lower T2 value, the latter being effectively less represented. This
relaxation-weighted relative contribution is at the origin of an observability challenge
inMRI: for instance, in order to acquire a signal that contains the contribution ofwater
trapped within myelin sheaths in the nervous system, characterized by a short T2 [2],
it would be necessary to use a short echo time, according to Eq. 2, which can pose
technical challenges. Beyond observability, which attains to the technical issue of
collecting data using the required values of the acquisition parameters for observing a
particular population, the need for representing all the observable populations leads to
a sampling problem. A viable strategy consists in collecting data with many different
combinations of acquisition parameters, where a large coverage and dense sampling
of the multidimensional parameter space is desirable. Following the example above,
a naive implementation of such strategy would lead to a combinatorial explosion
of all the possible feasible pairs (T I, T E) according to a convenient discretization
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of the corresponding bi-dimensional parameter space. However, as the number of
dimensions increases a similar strategy is no longer a reasonable option for practical
purposes related to the lengthening of the time required for acquiring the MRI data,
and to the increasing capacity required for its storage. Additional dimensions come,
for instance, from the use of diffusion sensitization in the acquisition—summarized
here by the b-value and the gradient directions [1, 7]—leading to a parameter space
defined by the space of (T I, T E, b, dir).

The design of an efficient sampling/sub-sampling strategy entails the adoption of
two complementary approaches. The first one consists in developing acceleratedMRI
acquisitionmethods to reduce the overall acquisition time for a fixed sampling. These
methods exploit acceleration opportunities on the engineering and physics side. They
include a plurality of approaches like k-space sub-sampling, multi-band/multi-slice
acquisition, parallel imaging, and others. Examples of particular relevance for the
parameter space (T I, T E, b, dir) are those techniques combining different contrasts
in the same acquisition - thus effectively reducing the waiting time inserted into the
sequence to achieve specific contrasts. One method among these is ZEBRA [3],
which leverages ideas such as slice-shuffling [4] and multi-echo read-outs and adds
diffusion-preparation changes on a slice level in order to efficiently acquire infor-
mation related to the interplay of the diffusion process and the T1 and T ∗

2 relaxation.
Here, the usage of multiple gradient-echos leads to T ∗

2 weighting (the observed trans-
verse relaxation time affected by the presence of magnetic field inhomogeneities).
The second approach consists of designing a sampling strategy that allows the short-
ening of the acquisition time by reducing the required number of samples. Typically,
a sampling strategy is associated with a corresponding reconstruction method that
is capable of exploiting the information from the acquired samples. As different
sampling and reconstruction designs have different performance it is important to
rank them. This chapter reports the description of the MUltidimensional DIffusion
(MUDI) challenge, organized within theMICCAI 2019 conference, with the purpose
of evaluating the sampling and reconstruction designs on acquired in vivo data.

2 The Challenge

In order to evaluate the performance of a particular design, comprising of sampling
and reconstruction, it would be necessary to know a priori the underlying information
of interest. This is however impossible in the case of acquired experimental data. This
would indeed require knowing the biophysical properties of interest—the T1, T2, and
the diffusion properties of each population—whichwould only be known through the
use of the very reconstruction techniques to be ranked. Therefore, a viable paradigm
for quantifying the performance of the various methods consists in assessing the
power that each tested design has in predicting unseen data samples for which an
actual ground truth is available. Indeed, if a design is capable of predicting acquired
signal samples from only a subset of these then it fulfills a necessary condition for



Acquiring and Predicting Multidimensional Diffusion (MUDI) Data … 199

performing an efficient sampling and reconstruction. Following this criterion, designs
can be ranked based on the capability of retrieving missing samples from a specified
number of available ones.

2.1 Data

Five datasets were acquired from healthy human volunteers (3 f, 2 m, age = 19–
46 years), after informed consent was obtained (REC 12/LO/1247), on a clini-
cal 3T Philips Achieva scanner (Best, Netherlands) with a 32-channel adult head
coil. Each dataset includes 1344 volumes (Fig. 1) distributed over four b-shells,
b ∈ {500, 1000, 2000, 3000} s/mm2, with 106 uniformly spread directions [5], three
echo times T E ∈ {80, 105, 130} ms, and 28 inversion times T I ∈[20,7322] ms.
Single-shot PGSE EPI with the modifications proposed in ZEBRA [3] sequence was
employed. Other parameters include TR = 7.5 s, resolution = 2.5 mm isotropic,
FOV = 220× 230 × 140 mm, SENSE = 1.9, halfscan = 0.7, multiband factor 2,
total acquisition time 52 min (including preparation time).

Data was reconstructed and denoised in the complex domain [6]. Ad hoc affine
volume registration was performed: collinear magnitude diffusion-weighted images
(DWIs) acquired with different pairs (T I ,T E) were first co-registered together using
the highest T I and lowest T E volume as reference; the 106 reference volumes were
then registered together based on amutual informationmetric using Dipy [8], and the
registrations were then propagated across the corresponding collinear DWIs. Data
was collected with reversed phase-encode blips to allow for susceptibility-induced
distortion correction using FSL [9, 10].

2.2 Tasks

Three fully-sampled datasets (1344 samples) were given to participants as training
data, such that they could use them to propose a sub-sampling strategy based on 500
samples/volumes. In a second phase, participants were asked to provide the indexes

Fig. 1 The organization of the data. The lines report the variation of the parameters (with arbitrary
scale units) as a function of the volume number
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of the desired 500 volumes, where each volume had a different set (T I ,T E ,b,dir ).
Then, only those selected 500 volumes of the two unseen test subjects were provided
to each participant. Finally, participants were asked to submit their prediction of the
remaining 1344–500 volumes. Additionally, participants were asked to select X =
250, 100, and 50 volumes as subsets of the previously chosen 500 volumes subset,
and again predict the 1344–X remaining samples.

2.3 Evaluation

The capability of retrieving missing samples from each specified subset of available
samples—of the test subjects—was ranked using the mean squared error (MSE)
between the predicted volumes and the corresponding acquired ones that were
unknown to the participant. A comparative analysis of the MSE on the whole brain
(WB), white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) masks
was also performed in order to characterize the behavior of the various designs. Tis-
sue segmentation was performed using SPM12 [11] on the T1-weighted image. The
output included three probabilistic segmentation maps—WM, GM, and CSF—each
subsequently down-sampled to match the resolution of the MUDI data. Only voxels
with a probability over 0.9 were included. Although a ranking for each tissue type
could be performed, the overall ranking accounts for the MSE results over the whole
brain.

3 Proposed Methods

This report evaluates five submissions from different groups. Figure 2 reports charts
illustrating the characteristics of the submitted sub-sampling strategies with respect
to those of the fully-sampled datasets. A description of the designs follows.

1. S1. The best subset of 500 samples was identified using an autoencoder neural
network having a ‘concrete selector layer’ as first layer [12, 13]. A temperature
associated to such layer was minimized during training [14] for 800 epochs;
a linear decoder was employed to reconstruct the features (samples) from the
selected ones; the procedure was used recursively for the other tasks i.e. selecting
250, 100, and 50 samples from the subset of 500 while every time predicting all
1344 features. After the selection process, five networks were trained to predict
the full set of 1344 features based on leave-one-out cross-validation over the
five training subjects. Each network had two hidden layers of 800 and 1000
nodes respectively, and Leaky ReLu as activation function, using a MSE loss.
The average prediction from these networks was used for the test subjects.

2. S2. This is a multilayer, feedforward, fully-connected deep neural network that
analyzes MRI data on a voxel-by-voxel basis. Two separate and sequential sub-
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Fig. 2 The sub-sampling strategies adopted in the five different submissions for the different
number of samples used to make predictions. Each radar chart (except the last one on the right)
reports four polygons each corresponding to the 500 (polygon with largest area), 250, 100, and 50
(polygon with smallest area) samples cases. Polygons are overlapped using transparency, therefore
the most opaque region represents the intersection between the four cases. The charts report the
mean T I , b, and T E , the number of different directions “n_dir” and of T I s “n_TI” used in the
sub-sampling. The dashed, black line pentagon “gt” (ground truth) reports the values of the fully-
sampled dataset

networks, a selector and a predictor, work together to find the optimal subset
of 500 samples and predict the remaining ones; as for S1, the 250, 100, and 50
samples tasks are managed recursively and samples extracted from the previously
selected 500-measurement set. During training [14], the loss function was the
MSE between the predicted and ground truth signals. 20% of the training data’s
voxels were used for validation, with the remaining 80% used for the actual
learning via backpropagation.

3. S3. The submission is based on a representation of the diffusion and relaxation
signal. For the relaxation part a single compartment was considered, i.e. a single
pair (T1, T2). Diffusion was represented through an analytical distribution of dif-
fusivities leading to the inclusion of a Kurtosis term [15]. T1, T2, proton density,
inversion efficiency, diffusivity, and Kurtosis were estimated with a non-linear
method. The prediction was based on extrapolating the relevant signal from the
estimated parameters, the signal along different gradient directions being pre-
dicted with interpolation. Samples were selected by maximizing the number of
included T I s while eventually penalizing the number of directions considered.

4. S4. This submission is based on a signal representation similarly to S3. In this
case, however, the diffusion part has been represented using DTI [7]. In this case,
the inversion efficiency was set to 2. The samples selection was based on the
results of S2.

5. S5. This is a signal representation approach based onmodeling themoments of the
joint relaxation and diffusion probability distribution [16]. The 500 samples were
selected to include 20 volumes with b = 0 and different values of T I and T E ,
plus 480 volumes along 30 gradient directionswith b ∈ {1000, 3000} s/mm2. The
directional signal for a given set (T I ,T E ,b) was represented using the spherical
ridgelet functions [17]. No submissions to the 250, 100, and 50 samples cases
were provided.
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4 Preliminary Results

Figure 3 reports the MSE maps obtained by calculating the MSE values voxel-
by-voxel for the four prediction cases and for all of the submissions. The contrast
of the images is therefore informative of the local performance of each proposed
design, where a bright color indicates a larger error. It is therefore possible from
these images to deduce that the submissions have different regional performance
trends. Submissions 2 and 3, for instance, visually perform better in GM than in
WM, whereas the opposite is true for submission 4. Submission 5 instead, reveals a
substantially uniform performance across these two tissue types. A structured MSE
map is visible also for submission 1 although less noticeable.

The differences across the different participant groups are attributed to both the
proposed sub-sampling strategy and the reconstruction method. Regarding to the
sub-sampling, all groups favored exploiting the redundancy in the diffusion gradient
directions as illustrated in Fig. 2. Indeed, in the progressive reduction of the available
samples illustrated by the reduced area of the radar charts (from more to less trans-
parent due to the overlap), the “n_dir” entry corresponds to that displaying the largest
decrease compared to the original sampling (dashed black line). In submissions 2 to
4 the signal is sub-sampled such that the mean T I in the dataset is kept substantially
unaltered compared to the original sampling (this is marginally true for submission
1). However, submissions 1, 2, and 4 reduced of about one third the total number of
unique T I s in the sub-sampling - perhaps exploiting the redundancy of such a param-
eter space - whereas submission 3 included almost all available T I s. To compensate
for this, in submission 3 the mean b-value was much lower and slightly fewer gra-
dient directions were selected. All these submissions kept the mean T E unaltered
compared to the original sampling. Submission 5, on the other hand, reduced the
mean T E in the sampling as well as the number of directions. This was likely a
requirement due to the fitting procedure and signal representation they employed.

The MSE values increased with the reduced number of samples used for the
prediction, with submissions 1, 2, and 3 having overall the best three rankings. This
is illustrated in the images of Fig. 5 and better quantified in the summary results
reported in the bar plots of Fig. 4. These results are calculated for the two test
subjects and for the various regions of interest. From these, it is possible to observe
that submissions 3 and 4 suffered more the extreme reduction of available samples
from 250 to 100 compared to submissions 1 and 2 (submission 5 was only applied
to the 500 samples case). Indeed, the submissions based on machine learning report
a superior stability and an overall lower MSE in all the regions and sub-sampling
configurations. All methods revealed a performance loss, with different degrees, in
CSF and cerebellar regions. A summary of the results is reported in Table 1.
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Fig. 3 Voxel-wise MSE values for testsbj0002
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Fig. 4 MeanMSE per region of interest: white matter (WM), graymatter (GM), cerebrospinal fluid
(CSF), and for the whole brain (WB). Rows report results for the 500, 250, 100, and 50 samples
cases
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Fig. 5 Progression of the MSE as the number of samples available for prediction decreases. Lines
report the trend of the average MSE in the corresponding region (WM, GM, CSF, WB). Shadowed
areas are proportional to the standard deviation

Table 1 Mean,median, and 85th percentile of theMSE for each submission. For each sub-sampling
case (500, 250, 100, and 50) the first raw corresponds to testsbj0001 and the second to testsbj0002

S1 S2 S3 S4 S5

WM 500 0.94, 0.56, 1.26 1.79, 1.45, 2.48 4.10, 2.98, 6.22 4.23, 1.67,3 .85 5.74, 3.54, 7.38

0.81, 0.53, 1.14 1.52, 1.28, 2.02 3.52, 2.83, 5.24 2.27, 1.5, 3.06 4.23, 3.28, 6.12

250 1.12, 0.65, 1.46 3.15, 2.52, 4.72 4.2, 3.05, 6.36 4.46, 2.13, 5.24 –

0.91, 0.61, 1.25 2.59, 2.20, 3.74 3.58, 2.90, 5.33 2.92, 1.92, 4.32 –

100 1.15, 0.71, 1.53 3.44, 2.76, 5.15 4.56, 3.26, 6.88 6.32, 2.47, 5.93 –

1.01, 0.68, 1.40 2.83, 2.39, 4.16 3.83, 3.09, 5.71 3.75, 2.23, 4.87 –

50 1.3, 0.81, 1.74 2.81, 2.33, 4.04 4.55, 3.3, 6.88 6.16, 2.67, 6.41 –

1.12, 0.78, 1.52 2.30, 1.98, 3.08 4.05, 3.3, 5.99 3.48, 2.35, 4.94 –

GM 500 1.22, 0.79, 1.96 1.48, 1.21, 2.49 2.99, 2.38, 4.92 6.86, 2.49, 9.69 6.8, 4.35, 10.44

1.02, 0.64, 1.69 1.26, 0.97, 2.19 2.57, 2.09, 4.42 3.91, 1.91, 5.88 5.13, 3.78, 8.01

250 1.41, 0.92, 2.28 2.26, 1.83, 3.91 3.14, 2.48, 5.12 5.87, 2.91, 10.71 –

1.15, 0.74, 1.90 1.86, 1.50, 3.20 2.66, 2.16, 4.55 3.83, 2.18, 6.61 –

100 1.43, 0.97, 2.29 2.29, 1.83, 3.95 3.46, 2.63, 5.55 8.08, 3.14, 12.96 –

1.22, 0.80, 2.03 1.89, 1.49, 3.36 2.86, 2.28, 4.85 5.34, 2.37, 8.06 –

50 1.58, 1.07, 2.54 2.44, 2.05, 4.07 3.38, 2.67, 5.40 7.23, 3.62, 12.69 –

1.32, 0.87, 2.20 2.08, 1.74, 3.66 3.07, 2.5, 5.10 4.61, 2.63, 7.8 –

CSF 500 2.02, 1.17, 2.98 1.66, 1.28, 2.59 3.04, 2.38, 5.36 19.57, 7.93, 22.91 14.95, 8.17, 24.07

1.31, 0.64, 1.88 1.00, 0.68, 1.70 1.78, 1.23, 3.31 8.26, 2.97, 10.26 6.82, 3.78, 10.81

250 2.48, 1.46, 3.6 2.38, 1.88, 3.75 3.23, 2.52, 5.75 12.72, 8.4, 21.56 –

1.52, 0.80, 2.17 1.48, 1.04, 2.62 1.86, 1.28, 3.46 6.13, 3.19, 10.93 –

100 2.33, 1.42, 3.46 2.24, 1.77, 3.62 3.82, 2.84, 6.93 26.33, 13.57, 55.04 –

1.52, 0.81, 2.21 1.42, 0.90, 2.54 2.22, 1.49, 4.1 11.23, 4.65, 19.94 –

50 2.62, 1.63, 3.88 2.69, 2.05, 4.29 2.99, 2.44, 4.92 18.04, 10.34, 26.41 –

1.58, 0.87, 2.33 1.67, 1.18, 2.9 2.07, 1.56, 3.71 8.34, 4.19, 13.39 –

WB 500 1.15, 0.69, 1.81 1.54, 1.23, 2.40 3.15, 2.37, 5.14 8.07, 2.26, 10.94 7.53, 4.03, 11.06

0.89, 0.55, 1.44 1.24, 0.97, 1.96 2.58, 2.04, 4.37 4.05, 1.72, 5.81 4.88, 3.38, 7.43

250 1.39, 0.82, 2.17 2.44, 1.92, 4.01 3.28, 2.47, 5.36 6.48, 2.75, 11.75 –

1.02, 0.64, 1.64 1.94, 1.54, 3.24 2.66, 2.1, 4.48 3.88, 2.09, 6.62 –

100 1.37, 0.85, 2.15 2.52, 1.94, 4.17 3.66, 2.65, 6.00 10.82, 3.15, 17.76 –

1.09, 0.70, 1.74 2.01, 1.53, 3.49 2.91, 2.26, 4.86 5.86, 2.43, 9.03 –

50 1.55, 0.96, 2.44 2.47, 2.02, 3.92 3.45, 2.61, 5.48 8.73, 3.43, 14.01 –

1.18, 0.78, 1.88 1.98, 1.65, 3.19 3.04, 2.43, 5.00 4.89, 2.57, 7.91 –
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5 Discussion

Results indicate that submission 1, based on machine learning, shows the high-
est prediction accuracy and stability among those submitted, followed by the other
machine learning method submission 2. The challenge was deliberately designed
in order for participants to be free in the choice of the samples such that this can
best couple in synergy with the proposed reconstruction method. Because of this,
however, it is impossible to separate the influence of the sampling strategy from the
reconstruction method used. Nevertheless, it is possible that the proposed modeling-
based reconstruction methods, which are primarily designed to enable more explicit
descriptions of the physical phenomenon rather than signal reconstruction, might be
affected by the difficulty of balancingmodel complexity and prediction performance.
For instance, assuming one relaxation compartment (submissions 3 and 4) can over-
simplify the fit while including more variability (submission 5) can destabilize it.
Submissions 1 and 2, on the other hand, do not aim at an explicit representation of the
physical parameters and for this reason they can rely on more flexible mathematical
relationships to predict the signal. These reasons might contribute to an advantage
of machine learning methods for tasks such as signal prediction. Moreover, a sim-
ilar method can learn highly non-linear relationships between the reconstructions
obtained from the different sub-sampling tasks thus obtaining a higher stability as
the number of available samples (for the prediction) decreases: the proposed archi-
tectures in submissions 1 and 2 were flexible enough to interpret the 250, 100, and 50
samples predictions recursively.Among themodeling-based reconstructionmethods,
submissions 3 and 4 perform similarly when considering the whole brain. However,
while submission 3—modeling the diffusion kurtosis–seems more suitable for gray
matter, submission 4—based on DTI—outperforms it in white matter. Submission
5, although being the most comprehensive from a point of view of modeling as
it describes the distribution of the parameters space (T I, T E, b, dir) within each
voxel, has the highest MSE. This, however, could be mainly related to the chosen
sub-sampling strategy which stands apart from the others.

Interestingly, the regional dependency of the performance of each submission
suggests that some brain regions are more difficult to predict than others. While this
might seem obvious, less intuitive is to grasp the reason behind such a regional trend.
The cause of such regional performance differences is most likely connected with
the reconstruction method, i.e. to the chosen type of modeling, although different
brain regions might also require different sampling. With this regard, however, it is
surprising to note similar regional trends also with submissions 1 and 2 as they do
not involve an explicit modeling of the voxel’ signal. Nevertheless, these regional
performance differences underline the need for better descriptions of theMRI signal.
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6 Conclusion

The MUDI challenge aimed at prompting the community to propose methods for
exploiting the richness of information ofmultidimensionalMRI acquisitions while at
the same time suggesting sub-sampling strategies to allow for future clinical use. In
this challenge, the sub-sampling and prediction tasks proposed were decoupled from
the physical considerations connected to the MRI acquisition; indeed, every sample
was considered to have the same weight in terms of acquisition time. Nevertheless,
the results clearly point towards the direction to explore for future studies where the
goal is to achieve MUDI data analysis within clinically feasible times. The machine
learning methods indeed seem to provide greater prediction power and stability to
sub-sampling compared to the signal representations. Perhaps the future will see
the synergy between these two worlds where the former methods will provide the
data redundancy necessary for using the latter methods as powerful and physically-
informed tools for data analysis.
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