
Chapter 6
Nonlocal Gravity

6.1 Motivations

As we have noted several times along this review, the main problem of various
gravity models is the development of a consistent quantum description. Indeed, the
Einstein gravity is non-renormalizable, and introduction of higher-derivative additive
terms implies in arising of ghosts. We have argued in the previous chapter that
the Horava–Lifshitz gravity seems to be a good solution since it is power-counting
renormalizable, and ghosts ate absent since the action involves only second time
derivatives. However, the HL gravity, first, is very complicated, second, breaks the
Lorentz symmetry strongly, third, displays a problem of extra degrees of freedom
whose solving, as we noted, requires special efforts. At the same time, the concept
of nonlocality developed originally within phenomenological context in order to
describe finite-size effects (see f.e. [107]), began to attract the interest. Besides of
this, the nonlocality enjoys also a stringy motivation since the factors like e� emerge
naturally within the string context [108]. The key idea of nonlocal field theories looks
like follows. Let us consider for example the free scalar field whose Lagrangian is

L = 1

2
φ f (�/�2)φ, (6.1)

where f (z) is a some non-polynomial function (with � is the characteristic nonlo-
cality scale) which we choose to satisfy the following requirements.

First, at small arguments this function should behave as f (z) = a + z, in order
to provide the correct � + m2 IR asymptotic behavior. Second, this function must
decay rapidly at |z| → ∞ (in principle, we can consider only Euclidean space, so,
z is essentially positive), so that integrals like

∫ ∞
0 f (z)zndz are finite for any finite

non-negative n, to guarantee finiteness of the theory (in principle in some case this
requirement is weakened, if the theory is required to be not finite but only renormal-
izable). Third, the f (z) is required to be so-called entire function, i.e. it cannot be
presented in the form of a product of primitive multipliers like (z − a1)(z − a2) . . .,
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so, its propagator has no different poles (as we noted in the Chap.2, namely presence
of such a set of poles implies in existence of ghost modes). The simplest example of
such a function is the exponential, f (z) = e−z .

Another motivations for nonlocality are the loop quantum gravity dealing with
finite-size objects, and the noncommutativity, where theMoyal product is essentially
nonlocal by construction. At the same time, it is interesting to note that although the
so-called coherent states approach [109] has been motivated by quantummechanics,
by its essence it represents itself as a natural manner to implement nonlocality, so
that all propagators carry the factor e−θk2 , with θ is the noncommutativity parameter.
Within the gravity context, use of the nonlocal methodology appears to be especially
promising since it is expected that the nonlocality, being implemented in a proper
manner, can allow to achieve renormalizability without paying the price of arising
the ghosts. The first step in this study has been done in the seminal paper [110].

6.2 Some Results in Non-gravitational Nonlocal Theories

Before embarking to studies of gravity, let us first discuss the most interesting results
in non-gravitational nonlocal theories, especially within the context of quantum cor-
rections.

As we already noted, effectively the nonlocal methodology has been applied to
perturbative studies for the first time within the coherent states approach [109] which
includes Gaussian propagator guaranteeing convergence of quantum corrections.
Further, various other studies have been performed. An important role was played by
the paper [111] where the effective potential in a nonlocal theory has been calculated
for the first time. In that paper, the following theory has been introduced:

L = −1

2
φ(exp(�/�2)� + m2)φ − V (φ). (6.2)

Here, � is a characteristic nonlocality scale. For this theory, one can calculate the
one-loop effective potential given by the following integral:

V (1) = 1

2

∫
d4kE
(2π)4

ln

(

exp

(

− k2E
�2

)

k2E + m2 + V ′′
)

. (6.3)

It is clear that at k2 � �2, the theory is reduced to usual one. The exponential
factors guarantee finiteness. It is easy to see that there is no ghosts in the theory
since there is no different denominators � + m2

i in the propagator of the theory.
However, the integral (6.3) can be calculated only approximately for various limits,
and it is easy to see that it diverges as � → ∞ (in [111], a some procedure to isolate
this divergence has been adopted). Further, this study has been generalized for the
superfield theories representing themselves as various nonlocal extensions of Wess-
Zumino model and super-QED, in [112]. It is clear that when, in these theories, one
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consider the limit of an infinite nonlocality scale � → ∞, the theory returns to the
local limit andbecomes to be divergent, i.e. the nonlocality acts as a kind of the higher-
derivative regularization, so, the quantum contributions are singular in this limit
growing as �2 if the local counterpart of the theory involves quadratic divergences,
or as ln�2, if it involves the logarithmic ones. From a formal viewpoint, the existence
of this singularity can be exemplified by the fact that the typical integral in nonlocal
(Euclidean) theory grows quadratically with � scale since

∫
d4k

(2π)4
1
k2 e

−k2/�2 ∝ �2.
Effectively, the problem of the singularity of the result at � → ∞ is nothing more
that the problem of large quantum corrections arising also in higher-derivative and
noncommutative field theories.

At the same time, the problems of unitarity and causality in nonlocal theories
require special attention since the nonlocality is commonly associated with an instant
propagation of a signal. These problems were discussed in details in various papers.
So, it has been claimed in [113] that the problems of unitarity and causality can be
solved at least for certain forms of nonlocal functions. Further this result was cor-
roborated and discussed in more details in [114]. However, the complete discussion
of unitarity and causality in nonlocal field theories is still to be done. Otherwise, the
nonlocal theories must be treated only as effective ones.

So, to begin with studies of gravity, we can formulate some preliminary conclu-
sions: (i) there is amechanism allowing to avoidUV divergences: (ii) this mechanism
is Lorentz covariant and ghost free: (iii) the unitarity and causality still are to be stud-
ied.

6.3 Classical Solutions in Nonlocal Gravity Models

So, let us introduce examples of nonlocal gravity models. The paradigmatic form has
been proposed in [115], where the Lagrangian L = 1

G

√|g|F(R) was studied, with

F(R) = R − R

6

(
e−�/M2 − 1

�

)

R. (6.4)

Here the d’Alembertian operator � is covariant: � = gμν∇μ∇ν . This is the nonlocal
extension of R2-gravity.

First of all, it is easy to show that this theory is ghost-free. Indeed, we can expand

F(R) = R +
∞∑

n=0

cn
M2n+2

R�n R, (6.5)

with cn = − 1
6

(−1)n+1

(n+1)! . We can rewrite this Lagrangian with auxiliary field � and
scalar ψ (we can eliminate first �, and then ψ, through their equations of motion):
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L = 1

G

√|g|
(

�R + ψ

∞∑

n=1

cn
M2n+2

�nψ −
[
ψ(� − 1) − c0

M2
ψ2

]
)

. (6.6)

Then we do conformal transformations gmn → �gmn , with � 	 1 + φ, to absorb �

in curvature term. As a result, we arrive at the Lagrangian

L = 1

G

√|g|
(

R + ψ

∞∑

n=0

cn
M2n+2

�nψ − ψφ + 3

2
φ�φ

)

. (6.7)

with the equations of motion are

ψ = 3�φ; φ = 2
∞∑

n=0

cn
M2n+2

�nψ. (6.8)

From here we have equation of motion for φ:

(

1 − 6
∞∑

n=1

cn
�n+1

M2n+2

)

φ =
[

1 + e�/M2 − 1

�/M2

]

φ = 0, (6.9)

The l.h.s. is evidently entire, so we have no ghosts.
We conclude that the nonlocality in gravity sector can be transferred to matter

sector! This is valid for various models. In a certain sense, this fact is analogous
to the observation made in the Sect. 2.3 where it was argued that the f (R) gravity,
representing itself as an example of higher-derivative theory, can be mapped to a
some scalar-tensor gravity with no higher derivatives in the gravity sector.

The Lagrangian (6.4) can be rewritten as [116]:

L = √|g|
( 1

G
R + λ

2
RF(�)R − � + LM

)
. (6.10)

The function F(�) is assumed to be analytic, as it is motivated by string theory,
and, moreover, in the analytic case the theory does not display problems in IR limit.
The Gaussian case, which is especially convenient from the viewpoint of the UV
finiteness, is the perfect example. The equations of motion, for M2

P = G−1, take the
form

[M
2
P

2
+ 2λF(�)R]Gμ

ν = T μ
ν + �δμ

ν + λK μ
ν − λ

2
(K α

α + K1) −

− λ

2
RF(�)Rδμ

ν + 2λ(gμα∇α∇ν − δμ
ν �)F(�)R, (6.11)

K μ
ν = gμρ

∞∑

n=1

fn

n−1∑

l=0

∂ρ�l R ∂μ�n−l−1R;
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K1 =
∞∑

n=1

fn

n−1∑

l=0

�l R �n−l R; F(�) =
∞∑

n=0

fn�n.

It is important to note that in two last lines �l acts only to the adjacent R.
Now, the natural problem is finding some solutions of these equations. In [116],

the following ansatz has been proposed, with r1, r2 are some real numbers:

�R − r1R − r2 = 0 (6.12)

which implies (here f0 is zeroth order in expansion of F(�) in series)

F(�)R = F(r1)R + r2
r1

(F(r1) − f0). (6.13)

This allows to reduce the order of equations to at maximum second. It is clear that
constant curvaturemakes the equation trivial, just this situation occurs forGödel-type
solutions.

One canfind nontrivial cosmological solutions for this theory. In particular, bounc-
ing solutions, for r1 > 0, are possible:

a(t) = a0 cosh

(√
r1
2
t

)

. (6.14)

Let us give more details for cosmology. Indeed, if we substitute the FRW metric
(1.6) to (6.11), and suggest that, as usual in cosmology, ρ = ρ0(

a0
a )4, we have from

(6.12), with r1 
= 0:

d3H

dt3
+ 7H Ḧ + 4Ḣ 2 − 12H 2 Ḣ = −2r1H

2 − r1 Ḣ − r2
6

, (6.15)

whose solution is H =
√

r1
2 tanh(

√
r1
2 t) which just implies hyperbolic dependence

of a(t) (6.14). It is well known that namely such a scenario (decreasing of scale
factor changing then to increasing) is called bouncing scenario. We also introduce
h1 = Ḧ/M3.

The density can be found as well: if we use G = M−2
P , and redefine F(�) →

F(�/M2), with M is the characteristic nonlocality scale, we find

ρ0 = 3(M2
Pr1 − 2λ f0r2)(r2 − 12h1M4)

12r21 − 4r2
. (6.16)

Let us discuss possible implications of the Eq. (6.15). The cosmological constant

turns out to be equal to � = − r2M2
P

4r1
, and there are three scenarios for evolution of

the Universe:
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1. � < 0, r1 > 0, r2 > 0—cyclic Universe (in particular one can have cyclic
inflation).

2. � > 0, r1 < 0, r2 > 0—first contraction, then very rapid inflation (super-
inflation) a(t) ∝ exp(kt2).

3. � > 0, r1 > 0, r2 < 0—constant curvature R = 4 �

M2
P
, i.e. de Sitter solution.

So we find that accelerating solutions are possible within all these scenarios.
Again, we note that in the constant scalar curvature case, we have drastic reducing
of equations.

Moreover, it has been shown in [117] that forL = √|g|√R − 2�F(�)
√
R − 2�,

with F(�) being an arbitrary analytic function, there are hyper-exponentially accel-
erating cosmological solutions a(t) ∝ ekt

2
.

The next step in study of nonlocal theories consists in introducing non-analytic
functions of the d’Alembertian operator. The simplest case is F(�) = 1

� . Actually it
means that we must consider terms like R�−1R. It is clear that the gravity extension
with such a term is non-renormalizable since the propagator behaves as only 1

k2 , sowe
gain nothing in comparison with the usual Einstein-Hlbert gravity [118]. However,
theories with negative degrees of the d’Alembertian operator can display new tree-
level effects, especially within the cosmological context where an important class
of nonlocal gravity models has been introduced in [119]. The action of this class of
theories is

S =
∫

d4x
√|g|

( 1

2G

(
R + R f (�−1R) − 2�

)
+ Lm

)
. (6.17)

We note that the presence of the factor �−1 actually implies in “retarded” solutions
behaving similarly to the potential of a moving charge in electrodynamics. Further,
this action has been considered in [120], and below, we review the discussion given
in that paper.

It is convenient to rewrite the action (6.17) with use of two extra scalar fields ξ
and η:

S =
∫

d4x
√|g|

[ 1

2G
[R(1 + f (η) − ξ) + ξ�η − 2�] + Lm

]
. (6.18)

Varying this action with respect to ξ and expressing η = �−1R, we return to (6.17).
This corroborates the already mentioned idea that the modified gravity is in many
cases equivalent to a some scalar-tensor gravity.

Then, one varies (6.18) with respect to the metric and η respectively:

�ξ + fη(η)R = 0;
1

2
gμν[R(1 + f (η) − ξ) − ∂αξ∂αη − 2�] − Rμν(1 + f (η) − ξ) +

+ 1

2
(∂μξ∂νη + ∂μη∂νξ) − (gμν� − ∇μ∇ν)( f (η) − ξ) = −GTμν . (6.19)
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We consider the FRW cosmological metric (1.6) with k = 0. As usual, the Hubble
parameter is H = ȧ

a . The evolution equation for matter is usual:

ρ̇ = −3H(ρ + p). (6.20)

For scale factor and scalars, we have

2Ḣ(1 + f (η) − ξ) + ξ̇η̇ +
(
d2

dt2
− H

d

dt

)

( f (η) − ξ) + G(ρ + p) = 0;
η̈ + 3H η̇ = −6(Ḣ + 2H 2);
ξ̈ + 3H ξ̇ = −6(Ḣ + 2H 2) fη(η). (6.21)

We start with the de Sitter space corresponding to H = H0 = const , with the scalar
curvature is R = 12H 2

0 . The equation of state is p = ωρ, as usual, so, we have the
following solutions for the scalar η and the density:

η(t) = −4H0(t − t0) − η0e
−H0(t−t0);

ρ(t) = ρ0e
3(1+ω)H0t . (6.22)

Then we introduce the new variable � = f (η) − ξ, and its equation of evolution is

�̈ + 5H0�̇ + 6H 2
0 (1 + �) − 2� + G(ω − 1)ρ = 0. (6.23)

For η we have

η̇2 fηη + (η̈ + 3H0η̇ − 12H 2
0 ) fη = �̈ + 3H0�̇. (6.24)

This equation is a necessary condition for existence of the de Sitter solution.
Let us consider the particular case η0 = 0 in (6.22). So, (6.24) reduces to

16H 2
0 fηη − 24H 2

0 fη = �̈ + 3H0�̇. (6.25)

So, knowing �, one can find f (η). It remains to solve (6.23). Some characteristic
cases are:

• ρ0 = 0: � = C1e−3H0t + C2e−2H0t − 1 + �

3H 2
0
;

• w = 0: � = C1e−3H0t + C2e−2H0t − 1 + �

3H 2
0

− Gρ0
H0

e−3H0t t .

• w = −1/3: � = C1e−3H0t + C2e−2H0t − 1 + �

3H 2
0

+ 4Gρ0
3H0

e−2H0t t .

As for the function f (η), in all cases it will be proportional to eη/β , with β > 0 (or,
at most, linear combination of such functions with various values of β). Effectively
we demonstrated arising of the exponential potential widely used in cosmology.

An important particular case is η0 = 0. It follows from (6.22) that we have for
β 
= 4/3:
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ξ = − 3 f0β

3β − 4
e−H0(t−t0)/β + c0

3H0
e−3H0(t−t0) − ξ0;

η = −4H0(t − t0); ω = 4

3β
− 1, � = 3H 2

0 (1 + ξ0);

ρ0 = 6(β − 2)H 2
0 f0

βG
, (6.26)

so we can have exotic matter for 0 < β < 2. And at β = 2 we have vacuum. If
β = 4/3, we have ω = 0, and ρ < 0 (ghost-like dust).

However, we note that the nonlocal modifications of gravity are used mostly in
cosmology. One of a few discussions of other metrics within the nonlocal gravity has
been presented in [121] where not only cosmological but also (anti) de Sitter-like
solutions were discussed for theories involving, besides of.already mentioned term
RF(�)R, also the terms RμνF1(�)Rμν and RμναβF2(�)Rμναβ , with F, F1, F2 are
some functions of the covariant d’Alembertian operator.

Let us say a few words about other non-analytic nonlocal extensions of gravity. In
[122], the additive term μ2R�−2R was introduced and shown to be consistent with
cosmological observations. However, this theory turns out to be problematic from
the causality viewpoint [123]. Also, in [124], the first-order correction in μ2 to the
Schwarzschild solution in a theory with this term has been obtained explicitly.

To close the discussion, it is important to note that the nonlocal gravity can arise
as an effective theory as a result of integration over some matter fields. Namely
in this manner, the term R�−1R contributes to the trace anomaly, at least in two
dimensions, in [16]. Therefore, the presence of nonlocal terms can be apparently
treated as a consequence of some hidden couplings with matter.

6.4 Conclusions

We discussed various nonlocal extensions of gravity. The key property of nonlocal
theories is the possibility to achieve UV finiteness for an appropriate choice for non-
local form factor(s). However, apparently explicit quantum calculations in nonlocal
gravity models would be extremely complicated from the technical viewpoint, there-
fore, up to now, all studies of such theories are completely classical ones. Moreover,
most papers on nonlocal gravity models are devoted to cosmological aspects of these
theories, and the results demonstrated along this chapter allow to conclude that non-
local extensions of gravity can be treated as acceptable solutions for the dark energy
problem. At the same time, nonlocal theories, including gravitational ones, display
certain difficulties. The main problem is that one of unitarity and causality which
still requires special attention.

To conclude this chapter, let us emphasize the main directions for studies of
nonlocal gravity models. First, clearly, it will be very important to check consistency
of different known GR solutions, especially, various black holes (including f.e. non-
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singular and rotating ones). Second, various nonlocal form factors, not only Gaussian
ones, are to be introduced, and their impact must be tested within the gravity context.
Third, study of quantum effects in nonlocal gravity models is of special importance
since namely at the perturbative level the main advantages of these theories such as
the expected UV finiteness are crucial. It is natural to hope that these studies will be
performed in next years.
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