
Chapter 4
Vector-Tensor Gravities and Problem of
Lorentz Symmetry Breaking in Gravity

4.1 Introduction and Motivations

The interest to vector-tensor gravity models strongly increased in recent years. One
of the main motivations to studying these models arises from the idea of the Lorentz
symmetry breaking. Indeed, as it is well known, in the flat space the explicit Lorentz
symmetry breaking is implemented through introduction of a constant vector (tensor)
generating a space-time anisotropy (see f.e. [73, 74]). As we already noted in the
previous chapter, this methodology allowed to define, for example, the Carroll–
Field–Jackiw term (3.7) as well as many other terms discussed in [73]. However,
in the curved space the explicit Lorentz symmetry breaking faces serious problems.
First of all, the definition of the constant vector (tensor) itself in this case becomes
highly controversial: for example, while in the flat space the constant vector kμ

is defined to satisfy the condition ∂νkμ = 0, this condition cannot be applied in a
curved space since it breaks the general covariance. A possible “covariant extension”
of this condition like ∇νkμ = 0 would imply in extra restrictions for the space-time
geometry (and, moreover, nobody could guarantee these restrictions to be satisfied
for a general choice of the vector kμ). In principle, one can also deal with derivative
expansions of corresponding effective actions, where various orders of derivatives
of “constant” tensors can be obtained (see f.e. [75]), however, it is clear that in this
case the definition of a constant vector (or tensor) simply loses its sense, and such
a vector becomes an extra field. Moreover, in many cases such possible new terms
are not gauge invariant which means that together with the Lorentz symmetry, the
general covariance for such terms is broken as well (the problem of breaking the
general covariance in modified gravity is discussed in details in [76]; in principle,
it should be noted that breaking of general covariance occurs for the term uμuνRμν

proposed in [77] as a possible example of a CPT-even Lorentz-breaking term for
gravity, as well as for the one-derivative linearized term discussed in [47]).

Therefore, the most appropriate method for implementing the Lorentz symmetry
breaking into a curved space-time turns out to be based on the spontaneous symmetry
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breaking. Its essence is as follows. One considers the action of the metric tensor
coupled to the vector field (again, similarly to the previous chapter, this vector field
is treated as an ingredient of gravity model itself but not a matter, thus, we have
the vector-tensor gravity) so that the purely metric sector is presented by the usual
Einstein–Hilbert action, and the dynamics of the vector field is described by the
Maxwell-like term, plus a potential whose minimum yields a vector implementing
the Lorentz symmetry breaking, and maybe also some extra terms responsible for
a vector-gravity coupling. The paradigmatic example is the bumblebee action [78]
(the name “bumblebee” itself was introduced in [79]), looking like

S =
∫

d4x
√|g|

(
1

16πG
(R + ξBμBν Rμν) − 1

4
Bμν B

μν − V (BμBμ ± b2)

)
. (4.1)

Here ξ is a dimensionless constant, Bμν = ∂μBν − ∂νBμ is the stress tensor for the
bumblebee field Bμ, and V is the potential possessing an infinite set of minima B0μ

satisfying the condition Bμ
0 B0μ = ±b2 (the difference of signs reflects that the vector

B0μ can be either time-like or space-like, while b2 > 0). So, actually choosing of one
of the vacua B0μ allows to introduce the privileged direction. The potential is usually
chosen to be quartic in the field Bμ by renormalizability reasons. Alternatively, one
can deal with Einstein-aether theory where, instead of this, the minima arise due to a
constraintmultiplied by a Lagrangemultiplierσ, so that one has V = σ(BμBμ ± b2),
but the kinetic term is not Maxwell-like being a more generic quadratic function of
covariant derivatives of the vector Bμ. In principle, one can consider the vector-tensor
gravity models without any potential [80], however, in this case the spontaneous
Lorentz symmetry breaking cannot occur. Such theories are consideredmostlywithin
the cosmological context (see f.e. [80]).

Within this chapter, we discuss some interesting classical results for the Einstein-
aether gravity and for the bumblebee gravity. At the end of the chapter, we also
will review some terms proposed in [73, 74] as possible extensions of the Einstein
gravity allowing to break the Lorentz symmetry explicitly. As for theHorava-Lifshitz
gravity, although it represents itself as an example of non-Lorentz-invariant gravity
model, it is described in terms of the essentially distinct methodology and will be
discussed in the next chapter.

4.2 Einstein-aether Gravity

So, let us implement the spontaneous Lorentz symmetry breaking in a curved space-
time. To justify importance of this approach, one can remind that namely the spon-
taneous breaking mechanism has been initially proposed to explain the origin of
the Lorentz symmetry breaking in the low-energy limit of the string theory [81].
Following this concept, one considers a vector field Bμ with a constant square, i.e.
BμBμ = ±b2, which is implemented via introducing the constraint with use of the
Lagrange multiplier σ, adding to the Lagrangian the potential V = σ(BμBμ ± b2).



4.2 Einstein-aether Gravity 39

Alternatively, as we already noted above, one can introduce the quartic potential. The
approach based on the Lagrange multiplier has been adopted within gravity studies
performed in the paper [82]. In this case, the above constraint is generalized to a
curved space-time as gμνuμuν − 1 = 0, where uμ is the aether vector field.

Our starting point is the action [82]

S = − 1

16πG

∫
d4x

√−g
[
R + λ(uμuμ − 1) + K αβ

μν ∇αu
μ∇βu

ν
]
, (4.2)

where

K αβ
μν = c1g

αβgμν + c2δ
α
μδβ

ν + c3δ
α
ν δβ

μ + c4u
αuβgμν . (4.3)

This action involves an above-mentioned constraint introduced with use of the
Lagrange multiplier λ. The c1, c2, c3, c4 are some dimensionless constants. It is
interesting to note that the term Rαβuαuβ proposed as the aether term in [77] arises
in this theory (together with some other terms) for the particular case c3 = −c2 when
the commutator of covariant derivatives yielding a curvature tensor emerges [83].

The corresponding equations of motion look like [83]:

gαβu
αuβ = 1; ∇α J

α
μ − c4u̇α∇μu

α = λuμ;
Tαβ = −1

2
gαβLu + ∇μ

(
Jα

(μuβ) − Jμ
(αuβ) − J(αβ)u

μ
)

+ (4.4)

+ c1[(∇μuα)(∇μuν) − (∇αumu)(∇βu
μ)] + c4u̇αu̇β + [uν∇μ J

μν − c4u̇
2]uαuβ .

Here u̇μ = uα∇αuμ, Jα
μ = K αβ

μν ∇βuν , andLu is u-dependent part of the Lagrangian.
We note again that the vector uμ has nothing to do with the usual matter, so, the
Einstein-aether theory is an example of a vector-tensor gravity.

So, now our task will consist in finding some solutions for these equations, or,
to be more precise, in checking the consistency of known GR solutions within the
Einstein-aether gravity.

As the simplest example we choose the spherically symmetric static metric, which
is consistent since the vector uμ is time-like, in order to satisfy the constraint. In our
case, it is convenient to choose this metric in the form slightly different from (3.20),
namely,

ds2 = N (r)dt2 − B(r)(dr2 + r2d�2). (4.5)

The consistency of this metric within the Einstein-aether gravity has been veri-
fied within perturbative methodology for various relations between the parameters
c1, c2, c3, f.e. c1 + c2 + c3 = 0, and c4 can be chosen to be zero without any prob-
lems since it can be removed through a simple change of variables (see details in
[83]) so that the N (r) and B(r) turn out to be represented as power series in x = 1/r
providing that they tend to 1 at infinity as it must be, with some lower coefficients
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in these power series, up to 1/r3 terms in large r limit have been explicitly found in
certain cases.

For example, treating the black holes solutions, one can show [83] that the metric

ds2 =
(
1 − 2M

r
+ 2βM2

r2

)
dt2 −

(
1 − 2γM

r

)
(dr2 + r2d�2). (4.6)

is consistent in this theory, with γ = 1 (the usual value characteristic for
Schwarzschild metric) and β expressed in terms of coefficients c1, c2, c3. Actually
this solution is the Schwarzschild metric modified by the additive term.

Similarly, much more solutions for the Einstein-aether gravity can be obtained,
in particular, the cosmological ones. In this context, the detailed study of various
cosmological aspects of this theory has been performed in [84] where the model
involving two scalar fields coupled to Einstein-aether gravity was considered, and it
has been explicitly demonstrated on the base of the numerical analysis of solutions
that the consistent potential for these fields is the exponential one, and the de Sitter-
like solutions can arise both in the past (inflationary Universe) and in the future (de
Sitter attractor). Earlier the idea of using the Einstein-aethermodel in order to explain
the cosmic acceleration has been claimed in [85]. All this allows to conclude that the
Einstein-aether gravity can be considered as an acceptable solution of the dark energy
problem. Besides of this, a detailed discussion of various aspects of Einstein-aether
gravity, including discussion of planewave solutions and observational constraints on
parameters of the theory, can be found in [86]. Also, we note that the Einstein-aether
gravity also displays some similarity to the Einstein–Maxwell theory, see [82].

However, it is clear that theEinstein-aethermodel is problematic from thequantum
viewpoint. Indeed, its action involves a constraint. As it is well known (see f.e.
[87]), a theory with constraints, being considered at the perturbative level, requires
special methodologies like 1/N expansion which clearly cannot be applied to the
Einstein-aether gravity since it involves only four fields uμ. Moreover, in principle
such a theory, when treated in an improper manner, can display various instabilities.
Therefore, the natural idea consists in introducing the spontaneous Lorentz symmetry
breaking not through constraints but through introducing some potential of the Bμ

field displaying a set of minima. This idea gave origin to the bumblebee gravity [78,
79] which we begin to discuss now.

4.3 Bumblebee Gravity

So, let us start with considering the bumblebee gravity. Our initial point will be the
action (4.1). The key features of this action, in comparison with the Einstein-aether
theory, are the following ones.

First, this action is characterized by a generic potential, instead of the constraint,
which makes it better for quantum studies since the usual perturbative methodology
can be applied. Second, the kinetic term is Maxwell-like which is essential to avoid
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arising of ghost modes [88]. Again, the ± sign reflect the fact that b2 > 0. We note
again that the vacua B0μ are given by the condition Bμ

0 B0μ = ±b2, and these vacua
are not required to be constants, in a curved space-time, which avoids the difficulties
connected with definition of the constant vectors in this case.

First effect to note here is that after Lorentz symmetry breaking, we will have
Nambu–Goldstone modes: if we introduce the vector bμ corresponding to one of the
vacua, i.e. bμbμ = ±b2, define Bμ = bμ + Aμ, and rewrite the action (4.1) in terms
of bμ and Aμ, the resulting form of the action will be given by the Maxwell term,
plus the axial gauge term proportional to (bμAμ)

2, plus new couplings of the vector
Aμ with the curvature, like AμAνRμν , plus the Carroll-like term bμbνRμν [77].

Let us discuss some exact solutions for this theory. First, we consider the static
spherically symmetric metric, following the lines of [79]. For the reasons of conve-
nience, we rewrite the metric (3.20) as:

ds2 = −e2φ(r)dt2 + e2ρ(r)dr2 + r2d�2. (4.7)

Then, we choose the vacuum vector to be purely radial, i.e. bμ = (0, b(r), 0, 0),
thus one has ∇μbν = 0 if b(r) = ξ−1/2b0eρ(r), ξ is a constant, and the variable φ(r)
becomes irrelevant within modified Einstein equations.

For this metric we find the only non-zero component of the Ricci tensor and the
corresponding scalar curvature to be

Rrr = 2ρ′

r
; R = 2[1 + 2(rρ′ − 1)e−2ρ]

r2
. (4.8)

It is convenient to introduce a new dynamical variable � = 1−e−2ρ

r2 . Its action will
look like:

S = 2

κ

∫
dtdrr2eρ+φ

[
(3 + b20)� +

(
1 + b20

2
r� ′

)]
, (4.9)

where b0 was defined above.
The equation of motion, after varying with respect to φ, is

(3 + b20)� +
(
1 + b20

2
r� ′

)
= 0. (4.10)

Its solution is �(r) = �0r L−3, with 3 − L = (3 + b20)/(1 + b20/2), and

grr = e2ρ = (1 − �0r
L−1)−1, (4.11)

so, this component is similar to grr of the Schwarzschildmetric, therefore our solution
is characterized by the event horizon. In principle, more results for this metric can be
obtained, f.e. the Hawking temperature [79]. The case when the bμ vacuum vector
possesses not only the radial component but also the temporal one has been also
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discussed in [79], as a result, the Schwarzschild-like solution will carry extra factor
e±2Kirα

, where α is a constant, the sign+ is for the temporal component, and the sign
− for the radial one, with the values of Ki are different for these two components.
Therefore, we conclude that the Lorentz symmetry breaking generates the black hole
solutions.

Another important example is the cosmological FRW metric. Here we review
its description within the bumblebee context presented in [89]. Explicitly, as a
first attempt, we suggest the vector Bμ to be directed along the time axis, Bμ =
(B(t), 0, 0, 0). Evidently, in this case the stress tensor for the bumblebee field van-
ishes, and the only nontrivial component of the equations of motion for the Bμ is

(
V ′ − 3

2κ2

ä

a

)
B = 0. (4.12)

Thus, the bumblebee field either vanishes or, at ξ = 0, stays at one of the minima
of the potential. In this case, it is possible to show numerically that one has the de
Sitter-like expansion of the Universe.

More generic solutions can be obtained for Bμν �= 0. However, in this case the
numerical analysis is necessary. Explicit studies carried out in [89] show that in
this case, de Sitter-like solutions arise for many values of parameters of the theory
confirming this a possibility to have a cosmic acceleration due to the bumblebee
field, therefore, one can conclude that the spontaneous Lorentz symmetry breaking
can explain the dark energy problem.

Finally, we consider also the Gödel solution (1.8). Within the bumblebee context
it has been considered in [90]. In this case, the energy-momentum tensor is suggested
to be a sum of that one for the relativistic fluid (we note that namely this form has
been employed in [3]):

T M
μν = ρvμvν + �gμν, (4.13)

and that one for the bumblebee:

T B
μν = BμαB

α
ν − 1

4
gμνBλρB

λρ − V gμν + 2V ′BμBν, (4.14)

where V ′ is a derivative of the potential with respect to its argument. Therefore, the
modified Einstein equation (in an appropriate system of units where κ = 1) looks
like

Gμν = T M
μν + T B

μν . (4.15)

The Einstein tensor Gμν and the matter energy-momentum tensor T M
μν (4.13) in the

bumblebee gravity are the same as in the usual Einstein gravity with the cosmological
term. Therefore, the Gödel metric continues to be solution in our theory if and only
if the energy-momentum tensor of the bumblebee field will vanish. To achieve this
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situation, we suggest that the field Bμ is one of the vacua which, for the quartic poten-
tial V = λ

2 (B
μBμ ± b2)2, will yield vanishing of the potential and its derivative. So,

it remains to find the vacuum for which the stress tensor Bμν = ∂μBν − ∂νBμ would
vanish as well (the part proportional to Christoffel symbols vanishes identically).
It is clear that the case of the constant Bμ is an excellent example. Some inter-
esting cases of such vacua, for the metric in the form (1.8), are: Bμ = (ab, 0, 0, 0),
Bμ = (0, ab, 0, 0), Bμ = (0, 0, 0, ab) (we note that theGödelmetric is characterized
by the constant parameter a).

It remains to check consistency of these solutions with the equation of motion for
the bumblebee field:

∇μB
μν = 2V ′(B2)Bν . (4.16)

These equations are satisfied immediately. Indeed, the l.h.s. is zero since Bμν = 0
for these solutions, and its covariant derivative is also zero, and the r.h.s. is zero
for the quartic potential, if Bμ is one of the vacua. Therefore, we conclude that the
Gödel solution is consistent in the bumblebee gravity. More detailed discussion on
this solution can be found in [90]. It is clear that a more generic Gödel-type solution
(2.26) can be analyzed along the same lines.

An interesting discussion of the bumblebee field is presented also in [91]. The
starting point is the generalized bumblebee Lagrangian

L = R − ζḡαγḡβδBαβBγδ − V (B2), (4.17)

where V is a some potential of the bumblebee field, ζ is a coupling constant, and
ḡαγ = gαγ + βBαBγ is the effective metric.

Then,we carry out background-quantum splitting for gravitational and bumblebee
fields by the formulas gαβ = ηαβ + hαβ and Bα = B̄α + Aα, where B̄α is one of
vacua, i.e. V (B̄2) = V ′(B̄2) = 0.

As a result, we arrive at the linearized equations of motion for the fluctuations
hαβ , Aα:

Gαβ | = V ′′(B̄2)B̄α B̄βB
2|,

η̄αδη̄βγ∂βFγδ[A] = 1

2ζ
V ′′(B̄2)B̄αB2|. (4.18)

where | symbol is for a part linear in fluctuations hαβ, Aα, f.e. B2| = 2B̄αAα −
B̄α B̄βhαβ , and η̄αδ = ηαδ + β B̄α B̄δ . The Fγδ[A] = ∂γ Aδ − ∂δAγ as usual.

We can introduce background-dependent densities

ρm = −V ′′(B̄2)B̄2B2|,

ρe = ±V ′′(B̄2)
√

|B̄2|
2ζ

B2| (4.19)
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and a 4-velocity uα = ± B̄α√
|B̄2|

, as a result the equations of motion become

Gαβ | = ρmuαuβ,

∂βFβα[A] = ρeuα, (4.20)

replaying thus the Einstein and Maxwell equations respectively. Effectively we
showed that our background field Bμ plays the role of the charged dust. We note
that in principle, the B̄α and Aα fields can be coupled to usual matter in various
manners being treated either as a usual photon or as a some extra particle.

To conclude, we see that the bumblebee gravity can be treated as a sound candi-
date, first, to implement the Lorentz symmetry breaking within the gravity context,
second, to display consistency with astronomical observations, due to validity of
most important general relativity solutions. Among other results one can mention
study of dispersion relations in a linearized bumblebee gravity where the constant
bumblebee field triggers deviations from the standard dispersion relations [92]. How-
ever, much more aspects of the bumblebee gravity, especially problem of validity
and consistency of many other solutions, are still to be studied. In this context, one
of the most important issues is the study of perturbative aspects of the bumblebee
gravity, and only first steps along this line are done now.

4.4 Conclusions

We discussed vector-tensor gravity models. Just as in the previous chapter, the addi-
tional field, in this case the vector one, is treated not as a matter field but as an ingre-
dient of the complete description of the gravity itself. The most important aspect of
these models consists in the fact that some of them, namely those ones involving
potential terms for the vector field, can be extremely useful within the context of the
spontaneous Lorentz symmetry breaking. The known examples of these theories are
the Einstein-aether gravity and the bumblebee gravity.

The Einstein-aether theory has been formulated earlier. Within it, the potential
term generating the spontaneous Lorentz symmetry breaking is implemented through
the constraint with the corresponding Lagrange multiplier field. From one side, this
action is rather simple, but from another side, the presence of the constraint generates
essential difficulties for the perturbative description. Therefore, the bumblebeemodel
is certainly much more promising. Moreover, the bumblebee approach displays an
advantage in comparison with the naive application of the QFT approach suggesting
to couple dynamical fields with the constant vectors (tensors) which, as we already
noted, cannot be consistently defined in a curved space-time.

The bumblebee approach allows to introduce many Lorentz-breaking vector-
tensor terms. The term BμBνRμν from (4.1) is effectively nothing more that the
gravitational aether term proposed in [77]. We note that treating of the Bμ as one of
the bumblebee vacua rather than the usual constant vector allows to avoid breaking
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of the general covariance. In a similar manner, other Lorentz-breaking gravitational
terms introduced in [74] can be treated. As a result, relaxing the condition for the
Lorentz-breaking vector to be constant, we have a theory consistent with the general
covariance requirement.

We note that the term BμBνRμν is the particular case of the term sμνRμν discussed
in [74]. Actually, in [74], two terms are presented, so, the possible Lorentz-breaking
extension of gravity is introduced through adding the term

δS =
∫

d4x
√|g|(sμνRμν + tμνλρRμνλρ), (4.21)

where sμν , tμνλρ are coefficients of explicit Lorentz symmetry breaking (in this
review,we consider only the zero torsion case).However, up to now themain attention
(see f.e. [92]) was paid to the sμν term while the tμνλρ = 0 condition was applied.

To close the discussion of the Lorentz symmetry breaking in gravity, let us say
some words about the weak (linearized) gravity. We have noted already that, for the
specific form of the Chern–Simons coefficient, the gravitational CS term (3.6) dis-
plays Lorentz symmetry breaking. In [47], another, one-derivative Lorentz-breaking
term in the linearized gravity has been studied. In principle, much more Lorentz-
breaking terms in the linearized gravity can be introduced. However, it is clear that
many studies of Lorentz symmetry breaking in gravity are still to be carried out, and
it is natural to expect that such studies will be performed in the next years.
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