
Chapter 3
Scalar-Tensor Gravities

3.1 General Review

In the previous chapter we demonstrated that modifications of the pure gravitational
sector allow for obtaining interesting results, in particular, for a consistent explanation
of the cosmic acceleration. At the same time, we noted that f (R) gravities are
dynamically equivalent to some gravity models whose action is given by the sum of
the usual Einstein term and a new term depending on the extra scalar field [15]. This
field, being related with the function of the curvature, evidently cannot be associated
with thematter, hence it is natural to suggest that the complete description of gravity is
given by composition of the dynamical metric tensor and this scalar field, so we have
the scalar-tensor gravity model. Another motivation for a scalar-tensor gravity arises
from quintessence models in cosmology which involve a very light scalar field called
the quintessence field and are known to explain accelerated expansion of theUniverse
as well as the cosmological constant which therefore implied active application of
the quintessence field within the inflationary context [36]. The advantage of the
quintessence in comparison with the cosmological constant consists in the fact that
the very tiny mass of the quintessence field (estimated to be about 10−33 eV [37]) is
much more reasonable from the theoretical viewpoint than the extremal smallness of
the cosmological constant giving the famous cosmological constant problem, since
even the massless scalar fields are physically consistent.

While the quintessence iswell discussed now (see f.e. [37] and references therein),
there are other interestingmanners to introduce new scalar fields in the gravity, more-
over, while the quintessence field is treated as a matter, the scalar fields introduced
within these approaches are interpreted as ingredients of the complete description
of the gravity rather than the matter. One of these manners is the Brans–Dicke grav-
ity where the gravitational constant whose negative dimension is responsible for a
non-renormalizability of the gravity is suggested to be not a fundamental constant
but a function of a some slowly varying fundamental scalar field. Another one is
the four-dimensional Chern–Simons modified gravity where the pseudoscalar field
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22 3 Scalar-Tensor Gravities

allows to implement the CPT (and in certain cases Lorentz) symmetry breaking in
the gravity context. And actually, one more model is intensively discussed in this
context, that is the galileons model. Namely these theories will be considered in this
chapter.

3.2 Chern–Simons Modified Gravity

3.2.1 The 4D Chern–Simons Modified Gravity Action

The three-dimensionalChern–Simons (CS) termhas beenoriginally introduced in the
paper [38]within the context of electrodynamics, as an example of a term conciliating
gauge invariance with a non-zero mass. It has been immediately generalized to the
non-Abelian case, so, the CS Lagrangian looks like

LA
CS = εμνλ

(
Aa

μ∂ν A
a
λ + 2

3
f abc Aa

μA
b
ν A

c
λ

)
, (3.1)

where Aμ = Aa
μT

a is the Lie-algebra valued gauge field, and f abc are the structure
constants. In the gravity case, the role of the gauge field is played by the connection,
and the three-dimensional gravitational CS term reads as [38, 39]:

SCS = 1

2κ2μ

∫
d3xεμνλ

(
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μa∂ν�
a
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3
� b

μa�
c

νb�
a

λc

)
. (3.2)

In principle, in non-Riemannian geometries we can use an independent connection
rather than the Levi–Civita one, however, this general situation is outside of the scope
of our review. Here, the εμνλ, which can take values 1, 0,−1, is the usual Levi–Civita
symbol, not the covariant one. Varying the CS term with respect to the metric, one
finds

δSCS = − 1

κ2μ

∫
d3xCμνδgμν, (3.3)

where

Cμν = − 1

2
√|g|ε

μαβ∇αR
ν
β + (μ ↔ ν) (3.4)

is the three-dimensional Cotton tensor. It is evidently symmetric and traceless. The
μ is a some constant of the mass dimension 1. So, the modified Einstein equations
look like
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Gμν + 1

μ
Cμν = 0. (3.5)

It is useful also to write the linearized form of the gravitational Chern–Simons action
obtained from (3.2) under the replacement gμν = ημν + κhμν :

S(0) = − 1

2μ

∫
d3xhμνεαμρ∂

ρ(�ηγν − ∂γ∂ν)h
γα. (3.6)

We see that this action is, first, explicitly gauge invariant under usual linearized gauge
transformations δhμν = ∂μξν + ∂νξμ, second, involves higher derivatives. However,
after obtaining the equations of motion for the full linearized action formed by the
sum of the terms (1.11) and (3.6), one finds that the physical degrees of freedom
satisfy the second-order equation [38], with their propagator behaves as (� + μ2)−1,
thus, in the 3D CSmodified gravity there is no problems with negative-energy states
discussed in the previous chapter. The similar situation occurs in the four-dimensional
case as well.

The generalization of this theory to the four-dimensional case turns out to be
straightforward, however, in this case, similarly to the electrodynamics, this gen-
eralization essentially involves the CPT (and in certain cases Lorentz) symmetry
breaking. From the formal viewpoint such a generalization for the linearized the-
ory is performed through replacement εμνλ → bρε

ρμνλ, with bρ is a constant vector,
which allows to convert the CS term to the Carroll-Field-Jackiw (CFJ) term which
in the Abelian case looks like

LCF J = ερμνλbρAμ∂ν Aλ. (3.7)

In principle, such a replacement of the three-dimensional Levi–Civita symbol by
the four-dimensional one contracted with a vector already allows to write down the
four-dimensional gravitational CS term:

LCS,grav =
∫

d4xερμνλbρ

(
� b

μa∂ν�
a

λb + 2

3
� b

μa�
c

νb�
a

λc

)
, (3.8)

with its linearized form is

S(0) = −1

2

∫
d4xhμνεαμρλb

λ∂ρ(�ηγν − ∂γ∂ν)h
γα. (3.9)

We note that this action is invariant under the same linearized gauge transformations
δhμν = ∂μξν + ∂νξμ. Now, it is very interesting to discuss some motivations for this
term.

First of all, already in 1984,much timebefore the interest toLorentz-CPTbreaking
strongly increased, the gravitational anomalies have been discussed in [40], where
the topological current K μ was introduced, with its explicit form is
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K ρ = 2ερμνλ
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c
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)
, (3.10)

with its divergence is

∂ρK
ρ = 1

2
εμναβRμνγδR

γδ
αβ ≡ ∗RR. (3.11)

We note that the 3D gravitational Chern–Simons term, up to overall multiplier, is
equal to the K 3 component, i.e. the component of this current directed along “extra”,
z axis.

It is clear that the integral from (3.11) over the space-time is a surface term. To
include it into the action in a consistent form, one should introduce a new field ϑ
called the CS coefficient. As a result, we can add to the usual Einstein–Hilbert action
the new term proportional to ϑ which we call the CS action SCS:

SCS = 1

2κ2

∫
d4x

(
−1

2
vμK

μ

)
= 1

2κ2
ICS;

SEH+CS = 1

2κ2

∫
d4x

(√−gR + 1

4
ϑ∗RR

)
. (3.12)

Here, vμ = ∂μϑ is a vector. We note that in principle this vector is rather a function
of space-time coordinates than the constant, hence, in general the gravitational CS
term breaks the CPT symmetry. However, the ϑ can be treated as an external, but
not dynamical, field, therefore one can choose vμ to be the constant vector. This
immediately implies the Lorentz symmetry breaking, therefore in this case the 4D
CS modified gravity whose action is given by the second equation in (3.12) turns out
to be the first example of the gravity model with the Lorentz symmetry breaking.

The equations of motion for the CS modified gravity can be easily obtained.
Varying the CS term ICS defined by the first equation in (3.12), we get

δ ICS =
∫

d4x
√−gCμνδgμν, (3.13)

with εαβγδ = εαβγδ√|g| is a Levi–Civita tensor (not a simple symbol!), and

Cμν = −1

2
[vσ(εσμαβ∇αR

ν
β + εσναβ∇αR

μ
β ) + vστ (∗Rτμσν + ∗Rτνσμ)], (3.14)

is the Cotton tensor, and vστ = ∇σvτ . One can check that the covariant divergence
of the Cotton tensor is proportional to the invariant ∗RR:

∇μC
μν = 1

8
vν ∗RR. (3.15)
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This divergence plays the crucial role when the modified Einstein equations are
considered. Their explicit form is

Gμν + Cμν = κ2T μν, (3.16)

so, due to theEq. (3.15),wefind that the conservation of the energy-momentum tensor
requires the vanishing of the divergence of the Cotton tensor, which, according to
(3.15), yields an additional consistency condition called the Pontryagin constraint:

∗RR = 0, (3.17)

which must be checked for any solution. However, since in many cases, including,
among others, the rotational symmetry, the curvature tensor has the structure R[ab][ab],
i.e. its only non-zero components are R0101, R0202, . . ., this consistency conditionwill
be automatically satisfied in these cases.

The further extension of the Chern–Simonsmodified gravity (CSMG)was carried
out through assuming the nontrivial dynamics for the ϑ CS coefficient. The key idea
is as follows [41]: we assume that the action of CSMG includes the kinetic term for
ϑ, looking like

S = 1

2κ2

∫
d4x

√|g|
(
R + 1

2
∇mϑ∇mϑ − V (ϑ) − 1

α
ϑ∗RR

)
, (3.18)

with now ∗RR ≡ 1
2ε

μναβRμνγδR
γδ

αβ , i.e. it is redefined with the Levi–Civita tensor

εμνλρ = εμνλρ√|g| , and instead of the Pontryagin constraint (3.17), one has the equation
of motion for ϑ:

∗RR = −α

(
�ϑ + ∂V

∂ϑ

)
. (3.19)

Ifwe have ametric consistentwithin the non-dynamicalCS frameworkwith a specific
ϑ, it is consistent in the dynamical case if the r.h.s. of this equation is zero. Then, the
ϑ field generates the additional contribution to the energy-momentum tensor T μν ,
and hence, to the r.h.s. of (3.16).

Now, we present, first, some classical solutions for the CS modified gravity, sec-
ond, the methodology allowing the gravitational CS term as a quantum correction.

3.2.2 Classical Solutions

So, our task will consist in solving the Eq. (3.16) with the additional condition (3.17).
As a first example, we consider a static spherically symmetric metric [39]:

ds2 = N 2(r)dt2 − A2(r)dr2 − r2d�2. (3.20)
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This is a very broad class of metrics including Schwarzschild, Reissner–Nordström
and many other metrics. As we already said, in this case the non-zero components of
the curvature tensor are R[ab][ab], so, the consistency condition (3.17) is automatically
satisfied. For this metric, one has only non-zero components of the Ricci tensor
Rr
r = A′

r A2 , Rθ
θ = 1

r2 (1 − 1
A ) + A′

r A2 . Then, we can consider the vacuum case T μν =
0, and choose the vector vμ = ∂μϑ to be purely timelike, vμ = ( 1

μ
, 0), with μ =

const , i.e. ϑ = t
μ
. In this case, the components C00 and C0i = Ci0 of the Cotton

tensor immediately vanish [39]. A bit more involved calculation (see details in [39])
allows to show that the Ci j components also vanish. As a result, we conclude that
the spherically symmetric static solutions of the usual Einstein equations solve the
modified Eq. (3.16) as well. It is clear that if one suggests the ϑ to be dynamical, the
Eq. (3.19) for ϑ will be satisfied if the potential is zero, and ϑ = t

μ
. We note that this

choice for ϑ is a particular case of the expression ϑ = kμxμ used within studies of
the Lorentz symmetry breaking in CSMG which we will discuss further.

Moreover, it has been shown in [41] that all, even non-static ones, spherically
symmetric metrics given by

ds2 = gμν(x
λ)dxμdxν + �2(xρ)d�2, (3.21)

where d�2 is the 2-sphere line element, so that the coordinates on the sphere are xi ,
and xμ are two remaining coordinates (one of them is necessarily timelike), solve
the modified Einstein equations (3.16) for

ϑ = F(xμ) + �(xμ)G(xi ), (3.22)

whereG(xi ) and F(xγ) are the arbitrary functions of sphere coordinates and remain-
ing coordinates respectively, and � is defined in (3.21). The class of spherically
symmetric metrics (3.21) involves not only the static ones (3.20) but also many
other metrics, including the FRW cosmological metric (the cosmological aspects of
CSMGwere also discussed in many papers, f.e. in [42]). Some types of metrics with
cylindrical symmetry were also shown in [41] to be consistent within the CSMG.

Now, let us discuss the consistency of the Gödel-type metric (2.26) in CSMG.We
consider the equations of motion (3.16) in the tetrad base, following [43].

In the non-dynamical case, with appropriate choice of units, the Eq. (3.16) imply

RAB + CAB = κ

(
TAB − 1

2
ηABT

)
+ �ηAB; (3.23)

CAB = −1

2
[εCADE (∇DR

B
E )∂Cϑ + ∗REAFB∇E∇Fϑ] + (A ↔ B).

The divergence of modified Einstein equations is

∇AC
AB = 1

8
∗RR∂Bϑ. (3.24)
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In tetrad base, the components of Ricci tensor for Gödel-type metric are constant,
which is an essential advantage of this base. Actually, one has

R00 = 2ω2, R11 = R22 = 2ω2 − m2, R = 2(ω2 − m2). (3.25)

Following the methodology described in [44], we consider three cases of H and D
consistent with the conditions of space-time homogeneity of the metric (2.27):

(i) hyperbolic, H = 2ω
m2 [coshmr − 1], D = 1

m sinhmr ;
(ii) trigonometric, H = 2ω

μ2 [1 − cosμr ], D = 1
m sin μr ; μ2 = −m2;

(iii) linear, H = ωr2, D = r .

Repeating the argumentation from [44], one immediately sees that for 0 < m2 < 4ω2,
there is a noncausal region with r > rc, where sinh2

mrc
2 = ( 4ω

2

m2 − 1).
So, at m2 ≥ 4ω2 there is no problems with causality.

Now let us choose the matter. We have three most important its examples [43,
44]:

(i) Fluid, TAB = (ρ + p)uAuB + pηAB , uA = (1, 0, 0, 0), T00 = ρ, T11,22,33 = p.
(ii) Scalar, ψ = s(z − z0), T00,33 = s2

2 , T11,22 = − s2

2 .
(iii) Electromagnetism, F03 = −F30 = e sin[2�(z − z0)], F12 = −F21 = −

E cos(2�(z − z0)), T00,11,22 = e2

2 , T33 = − e2

2 .

The matter can be presented by composition of these three types. Then, the non-
zero components of the Cotton tensor in this base look like

C00 = 2
∂ϑ

∂z
ω(4ω2 − m2); C11 = C22 = 1

2
C00;

C01 = −1

2

∂2ϑ

∂z∂t

H

D
(4ω2 − m2);

C02 = −1

2

∂2ϑ

∂z∂r
(4ω2 − m2);

C03 = −1

2

∂ϑ

∂t
ω(4ω2 − m2);

C13 = −1

2

∂2ϑ

∂t2
H

D
(4ω2 − m2);

C23 = 1

2

∂2ϑ

∂r∂t
(4ω2 − m2). (3.26)

It is clear that the Cotton tensor is traceless, CA
A = 0. To cancel the off-diagonal

components ofCAB we choose ϑ(z) = b(z − z0)whichmatches the suggestion done
above that the vector vM = ∂Mϑ is constant, which will be further used to study the
Lorentz symmetry breaking. We introduce also k = bω, and require 4ω2 
= m2.

The system of the modified Einstein equations (for 00, 11=22, 33 components
respectively) looks like:
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2ω2 + 2 bω(4ω2 − m2) = 1

2
e2 + 1

2
ρ − � + 3

2
p, (3.27)

2ω2 − m2 + bω(4ω2 − m2) = 1

2
e2 − 1

2
p + � + 1

2
ρ,

0 = −1

2
e2 − 1

2
p + s2 + � + 1

2
ρ.

We note, that, just as in the Einstein case [44], this system is a purely algebraic one.
Let us solve these equations. After some manipulations we arrive at equations for
m2 and ω2, with k = bω (we note that at b = 0, the usual GR solution is replayed
since in this case, ϑ = 0!):

(2 + 8 k)ω2 − 2 km2 = ρ + s2 + p, (3.28)

(2 + 4 k) ω2 − (1 + k)m2 = −s2 + e2. (3.29)

One of the interesting new results having no GR analogue is the vacuum noncausal
solutionm2 = ω2, b = − 1

3ω ,� = 0. Some other interesting conclusions of the above
system are that, unlike the general relativity, the hyperbolic causal solutions are
possible in CS modified gravity, and that trigonometric and linear solutions can arise
only for a non-zero electromagnetic field [43].

If one suggests that the CS coefficient is dynamical, more new solutions having
analogues neither in GR nor for the case of the non-dynamical CS coefficient are
possible, see details in [43], with again the Einstein equations will be reduced to the
algebraic equations involving some extra additive terms in comparison with (3.27).
In particular, one can have a vacuum solution, where only cosmological constant is
non-zero while density, pressure and all fields are zero.

At the same time, it is necessary to emphasize that not any solution consistent in
the GR will be consistent also in CS modified gravity. The paradigmatic example is
the Kerr metric which fails to solve new equations of motion [39, 45]. It has been
shown then in [46] that, to satisfy themodifiedEinstein equations in the dynamicalCS
modified gravity, the Kerr metric should be alsomodified, by adding theϑ-dependent
terms, with the equations ofmotion are afterwards solved order by order inϑ. Clearly,
studies of consistency of various metrics possessing no rotational symmetry within
the CS modified gravity represent an open problem.

To close the discussion of the classical solutions, it is necessary to discuss the
propagation of the planewaves. Similarly to theSect. 2.2,we introduce the transverse-
traceless components hTT

i j which are the only physical variables in the theory (so,
there are only two independent components, that is, if the plane wave propagates f.e.
along x3, we have only h11 = −h22 = T and h12 = h21 = S).

In this case, for the time-like vector vμ = (μ−1, 0, 0, 0) the quadratic Lagrangian
takes the form:

L2 = −1

4
hTT
i j �hTT

i j + 1

4μ
εi jkhT T

il �∂kh
l
j + · · · , (3.30)

where dots are for physically irrelevant (non-propagating) degrees of freedom.
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The corresponding linear equation of motion is

− 1

2
�hi jT T + 1

2μ
εilk�∂kh

j
l,T T = 0. (3.31)

As a result, one immediately concludes that the dispersion relation is the usual one,
k20 = k2, and both polarizations propagate with the speed of light.

The natural question is—what is difference of these polarizations? Amore careful
analysis [39] shows that, for plane waves proportional to eiωt−ikz , one finds that there
are two basic (circular) polarizations T = i S and T = −i S, with their intensities
proportional to (1 + k

μ
)−2 and (1 − k

μ
)−2 respectively. This difference of intensities

can be treated as a consequence of parity breaking.
It should be noted that if we consider, instead of the CS term, the one-derivative

additive term hμνε
λαμρθλ∂ρhν

α, with θλ being a space-like vector, we will have two
polarizations with physically consistent dispersion relations E = ±θ + √

p2 + θ2,
so, in this case the velocities differ from speed of light [47]. However, this term is not
gauge invariant, which, within the gravity context, means that it breaks the general
covariance.

3.2.3 Perturbative Generation

The special interest is attracted to the gravitationalCS termwithin the context of study
of the Lorentz symmetry breaking. The main reason consists in the fact that, besides
of the CPT symmetry breaking, for a special choice of the CS coefficient ϑ = bμxμ,
where bμ is a constant vector (as we already noted in the previous subsection, this
choice is consistent with the Gödel-type solutions), the CS term displays Lorentz
symmetry breaking, taking the form (3.8), or, for the weak field, the linearized form
(3.9). Therefore the natural idea consists in a generation of this term as a perturbative
correction, similarly to the generation of the CFJ term in the extended QED, see
f.e. [48]. This similarity is supported by a natural analogy between the gravitational
anomalies [40] and the Adler–Bell–Jackiw (ABJ) anomaly [49].Moreover, it follows
from [50] that this anomaly is deeply related with the ambiguity of results, therefore,
it is natural to expect the ambiguity of the gravitational CS term as well.

So, one can start with the action of spinors coupled to gravity, where the Lorentz-
breaking vector bμ is introduced:

S =
∫

d4xeψ̄(i∂/ − m − b/γ5 + ω/)ψ, (3.32)

here, b/ = bμeaμγa , and ωμ = 1
4ωμbcσ

bc is a (Riemannian) connection. We note that
the CS term dominates in the limit m → 0 while the one-derivative term discussed
in [47] vanishes in this limit. The corresponding one-loop effective action is given
by the following trace of the logarithm:
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�(1) = iTr ln(i∂/ − m − b/γ5 + ω/). (3.33)

Just the same approach was used in [48] for the Lorentz-breaking extension of QED.
In the weak gravity case, we can use the approximation eμa � ημa + 1

2hμa . This trace
of the logarithm, however, can be calculated both in the weak field case and in the
full-fledged gravity case, with use of the Feynman diagrams or of the proper-time
method.

It is interesting that, similarly to the CFJ term, the 4D gravitational CS term is
ambiguous, i.e. the results for it depend on the calculation scheme. So, within all
these approaches, the linearized gravitational CS term

SCS = C
∫

d4xhμνε
μρκλbκ∂λ

(
�hρ

ν − ∂ν∂σhρσ

)
, (3.34)

or its full-fledged analogue (3.8) multiplied by 2C , was shown to arise, with the
constant C depends on the method of computation. So, in [51], where the calcula-
tions were carried out in the weak gravity case with use of the Feynman diagrams
constructed for the action (3.32), it was found that C = 1

192π2 . Further, in [52], this
scheme has been realized for the finite temperature case where the zero component
of the internal momentum is supposed to be discrete, k0 = (2n + 1)πT , so that the
result is

SCS =
∫

d4x hμν

[
1

192π2
ερμκλbκ∂λ

(
�hρ

ν − ∂ν∂σhρσ

)
(3.35)

+ T 2

12
b0ε

ρμκλuκ∂λ

(
∂0∂

ν

� − uν

) (
∂0∂

σ

� − uσ

)
hρσ

]
,

i.e. it looks like a sum of the zero-temperature result (3.34) and the additive term
proportional to T 2.

In [53], where the proper time method has been used for the full-fledged grav-
ity, the result was found in the form (3.8), with C = 1

128π2 . Finally, in [54] it has
been argued that due to the arbitrariness in defining of conserved currents within the
functional integral approach, the constant C is actually completely ambiguous. The
similar situation occurs in QED [55]. However, the ambiguity of results is known to
be highly controversial, and in gravity it is even more controversial than in electro-
dynamics. For example, in [56] it was claimed that, if one suggests that the bμ is the
vacuum expectation value (v.e.v.) of a some dynamical field, the correct result for the
4D gravitational CS term is zero, as is also required by the gauge invariance of the
Lagrangian (and not only the action). Nevertheless, the question whether the require-
ments of [56] are indeed so necessary is still open, as the presence of ambiguities in
generic Lorentz-breaking theories is a strongly polemical problem.

However, there are also other interesting scalar-tensor gravity models which we
will consider now.



3.3 Brans–Dicke Gravity 31

3.3 Brans–Dicke Gravity

The Brans–Dicke (BD) gravity is one of the most known and studied scalar-tensor
gravity models. Originally, it has been introduced in [57], basing on the idea that the
physical space itself possesses geometrical features beyond those ones generated by
matter (this is one of the forms of the so-called Mach principle), so, the action of the
BD gravity was proposed in the form

S =
∫

d4x
√|g|

(
φR + ω

φ
∂aφ∂aφ + 16πLmat

)
. (3.36)

In this theory, the new scalar field φ (which does not contribute to the matter
Lagrangian) plays the role of the effective gravitational constant; indeed, if one
chooses φ = 1

2κ2 , the theory reduces to the Einstein gravity with the usual matter.
One advantage of the theory consists in the fact that the coupling constantω is dimen-
sionless, hence the negative-dimension constants jeopardizing the renormalizability
of the gravity are ruled out. Also, in this case the gravitational constant has a dynamic
origin being related with an asymptotic value of the φ.

For this theory, one can derive equations of motion:

− 2ω

φ
�φ + ω

φ2
∂μφ∂μφ + R = 0; (3.37)

Rμν − 1

2
gμνR =

(
8π

φ

)
Tμν − ω

φ2

(
∂μφ∂νφ − 1

2
gμν∂ρφ∂ρφ

)

+ 1

φ

[∇ν(∂μφ) − gμν�φ
]
,

where Tμν is the energy-momentum tensor of the usual matter (not including φ).
Contracting this equation with gμν , we find

R = −
(
8π

φ

)
T − ω

φ2
∂ρφ∂ρφ + 3

φ
�φ, (3.38)

which we can combine with the Eq. (3.37), obtaining

�φ =
(

8π

3 − 2ω

)
T . (3.39)

Equations (3.38), (3.39) are analogues of the Einstein equations and can be solved.
As a first example, we consider the static spherically symmetric metric (3.20)

which we now rewrite as

ds2 = e2α(r)dt2 − e2β(r)(dr2 + r2d�2) (3.40)
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In the vacuum case, Tμν = 0, this metric will be a consistent solution of equations
of motion [57]. Explicitly, one finds

eα(r) = eα0

[
1 − 2B

r

1 + 2B
r

]1/λ

;

eβ(r) = eβ0(1 + 2B

r
)2

[
1 − 2B

r

1 + 2B
r

](λ−C−1)/λ

; (3.41)

φ(r) = φ0e
α0C

[
1 − 2B

r

1 + 2B
r

]C/λ

.

The cosmological solutions also were found in [57] where they were shown, in the
vacuum case, to look like

φ = φ0t
r , a = a0t

q;
r = 2

4 − 3ω
, q = 2 − 2ω

4 − 3ω
, (3.42)

so, accelerating solutions (q > 1) are possible for ω > 2. Further, various papers,
continuing this study, discussed cosmic acceleration in BD gravity in details, see f.e.
[58].

Now, let us discuss the Gödel-type solutions (2.26) in the BD gravity. It has been
shown in [59] that the nontrivial solution, i.e. that one with a non-constant scalar φ
(otherwise the BD gravity reduces trivially to the Einstein gravity) is possible only
if the action (3.36) includes the cosmological constant as well, so, one has

S =
∫

d4x
√|g|

(
φ(R − 2�) + ω

φ
∂aφ∂aφ + 16πLmat ). (3.43)

The modified Einstein equations, in the tetrad base, look like

GA
B − δA

B� =
(
8π

φ

)
T A

B − ω

φ2

(
∂Aφ∂Bφ − 1

2
δA
B∂Cφ∂Cφ

)
+

+ φ−1
(∇B∂Aφ − δA

B�φ
)
, (3.44)

and choosing again the matter in the form of a composition of the fluid and electro-
magnetic field (see Sect. 3.2.2), with the angular velocity parametrizing the Gödel-
type metric (2.26) and defined within the conditions (2.27) is now denoted as �

instead of ω, we find that the case φ = φ(z) yields

4�2 − m2 =
(
8π

φ

)
(ρ + E2

0), m2 + 2� = −φ′′

φ
. (3.45)
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The typical cases are:

(i) 4�2 − m2 = 0 (causal solution!), ρ + E2
0 = 0. In this case φ is a trigonometric

function.
(ii) ρ = const , φ = const—trivial case reducing to GR.

For φ = φ(t), one arrives at φ = const , and this case is also trivial. In principle,
more involved situations can be studied as well. As for the black hole solutions in
BD gravity, we strongly recommend the classical paper [60]. In principle, many
other solutions for the BD gravity have been studied, including global monopoles,
wormholes etc., but the limited volume of these notes does not allow for their detailed
discussion.

3.4 Galileons

One of the most important examples of the scalar-tensor gravity models is the
galileons theory proposed originally in [61]. Its key idea is as follows: let us consider
the most general scalar-tensor action involves no more than second derivatives of the
metric tensor and no more than the first ones of the scalar field. Effectively, it was a
suggestion of the Lovelock-like construction not only in the gravitational sector but
also in the scalar one. So, we suggest the action to look like

S =
∫

d4x
√−gL(gμν, ∂λgμν, ∂λ∂ρgμν;φ, ∂μφ). (3.46)

As a result, the equations of motion involve various tensors constructed on the base
of the Riemann curvature and its covariant derivatives, and various derivatives of the
scalar field. In principle we can have the gravity equations of motion with Lovelock-
like l.h.s. and non-canonical scalar-dependent r.h.s., and strongly nonlinear equations
of motion for the scalar. We note that there is no ghost problem here since there is no
higher derivatives. In principle, even on the flat background, one can have a theory
of a scalar field with highly nonlinear equation of motion, the so-called K -theory
(see [62] and references therein).

However, the model (3.46) was forgotten for a long time and revitalized only in
2008, in the paper [63] where the concept of galileons was formulated. Its key idea
consists in invariance of the theory with respect to the combination of dilatations and
conformal transformations so that the new scalar π varies as π → π + c + bμxμ,
where c and bμ are constants. These transformations look similarly to the Galilean
ones, therefore the π was called the galileon. So, again, the key idea is that we have
derivative couplings but no higher derivatives in the kinetic term.

There are five terms with the symmetry above. Let us introduce notations �μν =
∂μ∂νπ, [A] = Aμ

μ for trace (so,
1
2 [�]∂π · ∂π = 1

2�π∂μπ∂μπ), [�] = �π, etc.), and
use a dot for the usual scalar product like A · B ≡ AμBμ. So, we can write our five
terms as:



34 3 Scalar-Tensor Gravities

L1 = π,

L2 = −1

2
∂π · ∂π;

L3 = −1

2
[�]∂π · ∂π;

L4 = −1

4

(
[�]2∂π · ∂π − 2[�]∂π · � · ∂π − [�2]∂π · ∂π + 2∂π · �2 · ∂π

)
;

L5 = −1

5

(
[�]3∂π · ∂π − 3[�]2∂π · � · ∂π − 3[�][�2]∂π · ∂π +

+ 6[�]∂π · �2 · ∂π + 2[�]3∂π · ∂π + 3[�2]∂π · � · ∂π − 6∂π · �3 · ∂π
)
. (3.47)

The complete Lagrangian of π is a linear combination of these terms: L = c1L1 +
c2L2 + c3L3 + c4L4 + c5L5. Clearly, the next step consists in coupling of these
Lagrangians to gravity. But let us first describe some perturbative effects of these
couplings.

One of the interesting effects is that these galileon terms Li are not renormalized
under quantum corrections! The reasons are as follows [64]. First, the galileon is
massless, so, its propagator is 1/k2. Then, all galileon couplings c3, c4, c5 have neg-
ative mass dimensions, therefore the contributions to these terms possess quadratic
and even higher divergences. After integration of subloops, the leading divergence
is proportional to

∫
d4k(k2)n , with n ≥ −1, and this integral vanishes within dimen-

sional regularization. Finally, the subleading contributions to galileon vertices vanish
as well (this proof is more sophisticated being based on analysis of symmetries). In
principle, such conclusions are natural for a massless theory with derivative cou-
plings. Other divergent contributions in the galileons theory in the flat space, which
do not match the form of the classical action, in particular, involve more derivatives
(f.e. �2 terms), are discussed in [65].

Clearly, the next step is the coupling of the scalar π to the gravity. One of the first
ideas consists in coupling of galileons to the curvature, so we have terms like [66,
67]:

δS4 =
∫

d4x
√−g(πμπ

μ)(πνG
νρπρ), (3.48)

where πμ ≡ ∇μπ, etc., or the higher terms like πμπ
μνπρGνρ, or the simplest terms

πμπνGμν (the last term is the example of the John term, see below). So, effectively
we have a gravity-coupled scalar field with strongly nonlinear dynamics involving
derivative depending couplings. As it has been claimed in [67], these terms are of
special interest within the cosmological context, where it has been explicitly shown
that the solutions with constant H = ȧ

a are consistent for the presence of galileons,
therefore de Sitter-like exponential expansion is possible in this case, with neither
potential term for the scalar nor cosmological constant are employed, therefore the
galileons theory is a sound candidate for the role of the dark energy. In [68], it was
argued that only the minimal scalar-gravity couplings must be considered, as a result,
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there were introduced four typical galileon-gravity coupling terms called John, Paul,
George and Ringo:

LJohn = VJ (π)Gμν∇μπ∇νπ;
LPaul = VP(π)Pμνρσ∇μπ∇νπ∇ρ∇σπ;

LGeorge = VG(π)R;
LRingo = VR(π)G. (3.49)

where Pμναβ = − 1
4ε

μνρσεαβγδRρσγδ is the double dual of the Riemann curvature.
In [68], the cosmological aspects of the theory involving these terms were studied,
especially, it was argued how the known cosmological self-tuning problem is solved
in this theory. Various issues related to the cosmic acceleration in this context are
studied numerically also in [69]. Many other papers are also devoted to galileon
cosmology. However, up to now the galileons are mostly considered namely within
the cosmological context, there are only a few papers on other solutions such as f.e.
black holes (see f.e. [70]). An interesting review of galileons is presented in [71]. To
close this section, we note that many aspects of galileons still must be studied.

3.5 Conclusions

We formulated several examples of scalar-tensor gravity models whose form
does not match the standard quintessence-gravity Lagrangian L = √|g|( 1

16πG R −
1
2g

μν∂μφ∂νφ − V (φ)) which is well studied, both within the cosmological and QFT
contexts. Explicitly, we considered the 4D CS modified gravity, the Brans–Dicke
gravity and the galileons theory. These theories display new interesting features.

First of all, the CSMG allows for the CPT symmetry breaking, and, for a certain
form of the CS coefficient, also for the Lorentz symmetry breaking, opening thus
a way for intensive studies of Lorentz-breaking modifications of gravity. Some of
these studies will be discussed in the next chapter. Besides, in the presence of the
gravitational CS term new solutions impossible within the usual GR arise.

Second, the Brans–Dicke gravity represents itself as a theory allowing to rule out
the gravitational constant possessing negative mass dimension and hence implying
in problems with quantum description of the gravity. Moreover, it turns to be that
some new solutions which are not consistent within the GR, are also possible.

Third, the galileons theory turns out to be a sound candidate for a description
of the dark energy allowing for accelerated solutions. Besides of this, the galileons
contributions to the action arise within applying the Stuckelberg approach for the
massive gravity. Essentially, at the first step one introduces the new vector field to
construct the gauge invariant extension for the mass term of the gravity, and at the
second step, to achieve the gauge symmetry for this vector field, one introduces the
scalar field whose action matches the galileon form [72].
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To conclude, for the scalar-tensor gravity models, one has essentially new results.
One of the most interesting conclusions is the possibility to introduce the Lorentz
symmetry breaking within the gravitational context, for a special form of the CS
coefficient. However, it is clear that in this context, an extension of gravity through
introduction of vector fields seems to be more promising since the vacuum expec-
tations of vector fields can yield constant vectors necessary to introduce privileged
space-time directions breaking thus the Lorentz symmetry.
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