
Approximate Data Dependence Profiling
Based on Abstract Interval and Congruent

Domains

Mostafa Abbas1(B) , Rasha Omar1(B) , Ahmed El-Mahdy1,3(B) ,
and Erven Rohou2(B)

1 Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
{mostafa.abbas,rasha.omar,ahmed.elmahdy}@ejust.edu.eg

2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
erven.rohou@inria.fr

3 Alexandria University, Alexandria, Egypt

Abstract. Although parallel processing is mainstream, existing pro-
grams are often serial, and usually re-engineering cost is high. Data
dependence profiling allows for automatically assessing parallelisation
potential; Yet, data dependence profiling is notoriously slow and requires
large memory, as it generally requires keeping track of each memory
access. This paper considers employing a simple abstract single-trace
analysis method using simple interval and congruent modulo domains to
track dependencies at lower time and memory costs. The method gathers
and abstracts the set of all memory reference addresses for each static
memory access instruction. This method removes the need for keeping
a large shadow memory and only requires a single pair-wise analysis
pass to detect dependencies among memory instructions through simple
intersection operations. Moreover, the combination of interval and con-
gruent domains improves precision when compared with only using an
interval domain representation, mainly when the data is not accessed in
a dense access pattern. We further improve precision through partition-
ing memory space into blocks, where references in each block abstracted
independently. An initial performance study is conducted on SPEC CPU-
2006 benchmark programs and polyhedral benchmark suite. Results show
that the method reduces execution time overhead by 1.4× for polyhedral
and 10.7× for SPEC2006 on average; and significantly reduces memory
by 109780× and 6981× for polyhedral and SPEC2006 respectively; the
method has an average precision of 99.05% and 61.37% for polyhedral
and SPEC respectively. Using memory partitioning resulted in improv-
ing mean precision to be 82.25% and decreasing memory reduction to be
47× for SPEC2006 suite.

Keywords: Data dependence profiling · Dynamic binary analysis ·
Congruent domains · Interval domains

A. El-Mahdy—On-leave from Alexandria University.
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-52794-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_1&domain=pdf
http://orcid.org/0000-0001-6781-5384
http://orcid.org/0000-0003-0000-4311
http://orcid.org/0000-0001-9736-1352
http://orcid.org/0000-0002-8060-8360
https://doi.org/10.1007/978-3-030-52794-5_1

4 M. Abbas et al.

1 Introduction

Data dependence profiling is an essential step towards deciding on parallelis-
ing loops, especially for heterogeneous parallel platforms, where the cost of re-
engineering originally serial programs is high. However, obtaining the profiles
is generally a costly operation as it requires instrumenting all memory access
instructions; hence it suffers from significant memory consumption and runtime
overhead (i.e., separate records for every accessed memory address). Therefore,
profilers rely on approximation methods, trading-off accuracy with analysis over-
head. One typical method is sampling the execution trace, where only a portion
of the trace is analysed [5,23]. However, sampling is prone to missing some depen-
dence arcs and losing the most recent relationships. Other profilers tackle the
runtime overhead by parallelising runtime analysis [10,17,24].

This paper considers performing a form of abstract analysis for all memory
references over the whole program. The analysis borrows from the well-known
abstract interpretation static analysis method, which is used to generate an
abstract collective program state for all possible execution traces [1,6,18]. Here,
we specialise the method to analyse only one execution trace (profiling trace).
Moreover, we do not perform abstract computations or interpretations over the
abstract state; instead, we rely on the underlying execution system to generate
the current state and use a corresponding abstract operation (Union) to gather
and approximate the state. In other words, the main aim is to generate an
abstract single-trace semantics, from the current execution trace.

The advantage of this approach is that we dramatically reduce the memory
size required for the analysis, as there is no need to have a shadow memory,
which is typical in profilers. Moreover, we only perform pair-wise operations on
the static memory access instructions after gathering their trace state, to identify
data-dependence, thus also significantly reducing profiling time. The trade-off
here is precision or false dependencies, while the sensitivity or true dependencies
are never missed.

In this paper, for each dynamic memory access operation, we use a corre-
sponding abstract operation that joins the current memory access address with
the current abstracted set of seen addresses for the corresponding memory access
instruction, thus generating an abstract single-trace semantic for all static mem-
ory instructions. The abstraction uses a composite abstract domain, consisting
of interval and congruent domains. The former provides an approximation of the
covered range, and the latter provides information about the access pattern. We
partition the memory address space into blocks and associate a value from the
composite domain for each block, to further improve precision.

This paper has the following contributions:

– Utilise abstract interval and congruent domains to approximate the accessed
memory location for each static memory access instruction.

– Conduct an initial performance investigation using polyhedral benchmark and
SPEC CPU-2006 benchmark suites using the Pin system [14].

Approximate Data Dependence Profiling 5

– Utilise the gathered semantics to detect pair-wise memory data dependencies
(RAW, WAR, and WAW) from binary files at runtime for all static memory
access instructions.

This paper is organised as follows: Sect. 2 discusses related work. Section 3
provides an overview of abstract interpretation and defines the interval and con-
gruent domains and their corresponding operations. Section 4 discusses our pro-
filing algorithm. Section 5 presents our initial results. Finally, Sect. 6 concludes
our paper and discusses future work.

2 Related Work

2.1 Static Analysis

Abstract interpretation is a static analysis method that generates a collective
program semantics at each program point. The method relies on generating
abstract equations that generate the collective program semantics at each pro-
gram point. Abstract interpretation is not generally used in the context of data
dependence analysis for imperative programs (functional programs have in-depth
treatment, e.g., [3]); nevertheless, there are attempts in this direction [8,16].

Ricci [20] is an early attempt to consider dependence analysis by combining
interval and bisection domains; the latter is used to maintain relations among
pairs of variables. The technique is applied at the source level on some kernels.
Moreover, the use of the bisection domain helped to reduce the interval width,
whereas in our approach we consider the density of the elements in the interval,
as well conducting the analysis on the binary level; however, we do not generate
collective semantics for all possible traces; we only consider the profiling trace,
which is typical for profilers.

The use of the congruence domain in abstract interpretation is described
in detail in Bydge’s master thesis [4]. This paper adopts the same definitions
and operations for that domain. However, the thesis does not consider program
parallelisation.

Tzolovski [22] has discussed possible data dependence abstractions, which
included direction and distance vectors as defined by Maydan et al. [15]. In
this paper, we explore an initial practical implementation of simple dependence
detection and leave more elaborate possible abstractions for future work.

SecondWrite [11] is a static binary rewriter tool. It analyses the dependence
in regular loops in binary programs and workout to rewrite a parallelised binary
version. SecondWrite translates the x86 binary input to the intermediate format
of the LLVM Compiler and then uses the x86 back-end LLVM to write the output
binary. They make use of the LLVM IR rich infrastructure, such as control-
flow analysis, data-flow analysis, and optimisation passes to generate a parallel
alternative version according to which loop can be partitioned.

6 M. Abbas et al.

2.2 Dynamic Analysis

Li et al. [13] introduce a profiler for the sequential and parallel program based
on LLVM. They tackle the runtime overhead by parallelising the profiler. The
profiler records memory accesses using signatures to achieve efficiency in space,
(as an approximate representation, concept from transactional memory [21])
rather than instrument every memory access. The serial profiler has a 190×
slowdown on average for NAS benchmarks and a 191× slowdown on average
for Starbench programs and consumed memory up to 7.856GB. By using lock-
free parallel design, the runtime overhead reduces to 78× for NAS and 93× for
Starbench. By using a signature with 100 million slots, the memory consumption
reduces to 649MB (NAS) and 1390MB (Starbench), with accuracy less than
0.4% false-positive rate and less than 0.1% false-negative rate.

Chen et al. [5] implement a data dependence profiling tool on top of the Intel’s
Open Research Compiler (ORC) to provide information about the dynamic
behaviour of data dependence in programs, mainly for nested loops.

They study two approximation methods: shadow memory and sampling tech-
niques, as a trade-off to mitigate both space and runtime overhead. The tool
speculatively ignores dependence edges (between the source and the sink) that
have low probability. The threshold value of this low probability can be deter-
mined by the overhead of a data mis-speculation process according to the target
machine. The slowdown ranges from 16% to 167% on SPEC CPU2000 bench-
marks compared to the original execution time by using a sampling rate of 0.0001
to 0.1, respectively, and with a precision ranging from 30% to 10% in missing
dependence edges.

Vanka et al. [23] implement a set-based profiling approach coupled with
software signatures. The key insight is that set-level tracking provides a bet-
ter trade-off between accuracy and performance. At compile time, they identify
the essential dependence relationships according to a specific optimisation (i.e.
speculative code motion) for profiling at runtime. The profiling analysis working
on sets, figuring out set’s relationships dependence, rather than working with
pair-wise dependence relationships. The set-based profiler is implemented as an
IR level pass in LLVM and applied to SPEC2000 benchmarks for presenting
results. They achieved a slowdown 2.97× with the accuracy range from 0.15 and
0.17, measured by normalised average Euclidean distance.

Norouzi et al. [19] implement an extension of DiscoPoP data dependence pro-
filer that uses a hybrid (static and dynamic) approach in reporting the existence
of data dependence in the polyhedral loops. The static dependence analysis part
excludes the detected dependent memory access instructions in the annotated
area by PLUTO (an auto-parallelising compiler for polyhedral loops) and hence
excludes them in the dynamic analysis. Finally, static and dynamic dependencies
are merged in an appropriate way to be used later in suitable parallelisation dis-
covery tools. It is clear that if no polyhedral loops are detected in a program, the
hybrid approach turns into purely dynamic. By conducting experiments on Poly-
bench and NAS Parallel Benchmarks suits, they achieved a median profiling-time
reduction by 62% compared to DiscoPoP profiler framework.

Approximate Data Dependence Profiling 7

Li et al. [12] introduce a profiling method based on repeatedly skipping mem-
ory operations in loops. They used DiscoPoP to implement the profiler. The
experiments on NAS Parallel Benchmarks and Starbench parallel benchmark
suite show a reduction on runtime overhead by 42.5% on average. The reduction
runtime mainly comes from the data dependence building phase, where updating
the shadow memory remains as the traditional way. The effect of this approach
results from the existence of sequencing memory access patterns in loops (e.g.
arrays), if not exists, the profiling suffers from extra runtime overhead due to
the extra conditions compared to traditional one.

3 Proposed Method Formulation

3.1 Gathering Single-Trace Semantics Dynamically

Our method differs from typical abstract interpretation in that we obtain the
abstract collective semantics for a single-trace of the program, instead of all
traces. Also, we rely on abstracting the collective semantics for only memory read
and write operations, not all program points. Moreover, instead of generating
abstract equations, and statically solve or interpret them, we rely on obtaining
actual read and write addresses values at runtime from the underlying execution
environment, and collect the obtained concrete values into collected abstract
semantics (i.e. all possible referenced address seen for each memory instruction).
In other words, we define a corresponding operation that collects the semantics.
Thus, for a memory access operation i reading or writing from/to address a, we
define the abstract collective semantics, Σ at this operation as:

Σi = Σi ∪ α({a}) (1)

Where Σ ∈ DA; and DA is an abstract domain with partial lattice with
ordering relation ∪, moreover, α() is an abstraction function that abstracts the
current concrete partial collective semantic set into an abstract one. We also
adopt a composite abstract domain that consists of interval and congruence
domains. The congruent domain is helpful to represent stride memory access
patterns, and the interval domain considers the lower and upper limits of memory
access address. It is worth mentioning that abstract interpretation guarantees
sound analysis, where the obtained collective semantics is always a superset of
the concrete collective semantics.

3.2 The Interval Domain

The interval domain [7] is an abstract domain that can determine safe lower
and upper limits of program variables. The abstract interval domain, DI , is
defined as:

DI = {[a, b]},∀a ≤ b ∈ Z (2)

The ∪ and ∩ operators are defined as:

8 M. Abbas et al.

[a, b] ∪ [a′, b′] = [min(a, a′),max(b, b′)] (3)

[a, b] ∩ [a′, b′] =

{
[max(a, a′),min(b, b′)] if max(a, a′) ≤ min(b, b′)
φ otherwise

(4)

3.3 The Congruence Domain

The congruence domain [9] consists of abstract values denoted, aZ + b, Where
b ∈ Z and a ∈ N. We will call a the modulo and b the remainder. A congruence
relation (c, b) is defined as c ≡ b mod a. The set of all C such that c ∈ C and
c ≡ b mod a, is C = {aZ + b : ∀Z ∈ Z}.

Thus, we define the abstract congruent, DCG, domain as:

DCG = {aZ+ b},∀a, b ∈ N (5)

The ∪ and ∩ operators are defined as:

(aZ+ b) ∪ (a′
Z+ b′) = gcd{a, a′, |b − b′|}Z+min{b, b′} (6)

(aZ+ b) ∩ (a′
Z+ b′) =

{
lcm{a, a′}Z+ b′′ if b ≡ b′ mod gcd{a, a′}
φ otherwise

(7)

Where b′′ ≡ b mod a and also b′′ ≡ b′ mod a′.

4 Profiling Framework

4.1 Pin Framework

Pin [14] is a framework for dynamic binary instrumentation framework. Simi-
lar to other frameworks, users can observe the running code, detect intensive
functions and loops, monitor parameters, and modify the code while it runs.
Pin framework provides an API to let users build custom tools called Pintools,
which in turn dynamically instruments the compiled binary files in the user space
application. By inserting an appropriate runtime analysis routine for a kind of
instructions, we can understand the behaviour of a given binary program.

Our profiler inserts instrumentation code dynamically into the binary code
for each memory read/write operation; which is mainly callbacks to the corre-
sponding runtime analysis routines. The profiler can operate on three different
modes. The first one performs conventional profiling, where the second one per-
forms a comprehensive (i.e. pairwise method) profiling. Both the first and second
modes can be considered as a different perspective of ground truth for the under-
lying data dependence, as it provides an exhaustive, accurate data dependence

Approximate Data Dependence Profiling 9

results. However, it suffers from immense memory and runtime overhead. The
third operation mode performs the proposed profiling technique. Our imple-
mentation focuses only on memory references, where data dependence between
registers can be easily detected by convenient static analysis.

4.2 Conventional Profiling Technique

For each executing memory instruction, the runtime analysis records the effective
memory address and corresponding instruction address as a key, value, and mode
(read/write) tuple in a hash table. The hash table, thus, keeps track of the last
instruction accessed that memory address.

The analysis routine can then construct a corresponding dependence arc at
runtime when a memory write operation happens, marking out a dependence
relation (i.e. RAW, WAR, WAW) between the current and the last instruction
that accessed the same memory location, i.e. a dependence relation between the
current memory instruction and the closest prior instruction(s) which depends
on. This method is close to the baseline algorithms of previous work (e.g. [12]).

4.3 Comprehensive Profiling Technique

Conventional data dependence profiling aims to capture dependencies among
executing instructions; i.e. memory references, not static instructions. Another
approach, as defined by Bernstein Conditions [2], is to compare the set of all
accessed memory locations for each instruction; a depending pair would have a
non-empty intersection.

This analysis requires capturing the set of all data references for each
static memory instruction, which results in great storage, and complexity of
O(n2) intersections, where n is the stored memory address. This analysis is
close to the baseline algorithms of previous work [5,10]. Our proposed method
(described below) essentially abstracts this method, significantly reducing the
storage requirements.

4.4 Abstract Profiling Technique

The third profiling operating mode is the proposed abstract approximate pro-
filing. As in the previously mentioned profiling techniques, the profiler inserts a
callback to the runtime analysis routine for each memory access instruction.

The input to the proposed algorithm is effectively a memory access trace.
The trace can be generated dynamically by an underlying execution environment
or read from an off-line trace file, that has been collected before. The trace is
defined as the sequence of the tuples (inst, mode, address), where ‘inst’ refers
to the memory instruction address, ‘mode’ refers to whether the instruction is
read or write, and finally ‘address’ is the effective memory address accessed by
the instruction.

At runtime, the analysis routine manipulates memory addresses by convert-
ing them into corresponding abstract interval and congruent domain values,

10 M. Abbas et al.

and accumulating them to the recorded (abstract) addresses, according to Eqs. 3
(referred to as αInterval) and 6 (referred to as αCongruent) as mentioned above.
Here, each static memory instruction has its hash table entry for collecting
abstract profiling data. The substantial difference from conventional profiling
is that the profiler stores only the abstract set of seen memory addresses, for
each memory instruction (i.e. limited number of entries related to the number of
static memory instructions). Finally, we compute the intersection between those
intervals/congruence values of memory instructions (read or write) according
to the aforementioned Eqs. 4 and 7, indicating the potential of the existence
of dependence. The intersection conditions require both interval and congruent
domain to intersect.

It is worth noting that abstract profiling (as well as comprehensive profiling)
cannot distinguish between WAR/RAW dependence, where ordering relations
are not kept. In future work, we will consider abstracting this order by keeping
distance information among instructions.

4.5 Experimental Study

Figure 1 demonstrates the effectiveness of interval and congruent domain in
exploring data dependence between memory references. Figure 1-(a) shows an
example where statements S1 and S2 are independent, as each memory access
has its separate index values (e.g. one is even, and the other is odd). The upper
(not shaded) part of Table 1 shows the corresponding assembly instructions,
their addresses, and interval/congruence analysis results. Apparently, there is
no intersection using the congruence domain, thus no dependence, even though
the intervals intersect. On the other hand, Fig. 1-(b) shows another example
where S3 and S4 are independent also, as each part of the array are accessed in
two different loops. The shaded part of Table 1 shows its corresponding results. It
is clear that there is no intersection in the interval domain, thus no dependence,
even though the congruent domain intersects. By considering both congruent
and interval intersections for reporting a dependence, this can provide for the
better potential to improve precision. Thus both abstract domains provide a
safe approximation to the concrete domain (i.e. absence of dependence in one
abstract domain is sufficient to decide the absence of dependence on the concrete
domain).

Table 1. The output results show the effect of the different domains on analysis.

Inst. Address Inst. Loc. Assembly code Interval domain Congruence domain

f3ed7cb S1 movsd qword ptr [rax+rdx*8], xmm0 [7e3e0, 7e420] 10 Z + 7e3e0

f3ed7e1 S2 movsd xmm1, qword ptr [rax+rdx*8] [7e3d8, 7e418] 10 Z + 7e3d8

0c048f2 S3 movsd qword ptr [rax+rdx*8], xmm0 [7b698, 7b6b0] 8 Z + 7b698

0c04942 S4 movsd xmm2, qword ptr [rax+rdx*8] [7b6b8, 7b6d8] 8 Z + 7b6b8

Abstract profiling may introduce false dependence arcs. Figure 2-(a) show a
simple example that clarifies the causes of the false-positive relationships that

Approximate Data Dependence Profiling 11

may happen. This example does not have any real data dependence relation-
ships because of the writes at S1 only access memory exclusively in the range
between ExprMIN and ExprMAX of the array a, while, the reads at S2 hap-
pen elsewhere. Figure 2-(b) shows the reported dependence graph contains two
false-positive arcs. One arc between S1 and S2 because the interval of S1 =
[ExprMIN,ExprMax] intersects with the interval of S2 = [IMIN, IMAX]
and the related congruent values also intersect. The other arc between S2 and
itself representing WAW dependence.

We can enhance the precision by partitioning the memory address space
into blocks (with a block size of 2k bits) and abstracting each block address
space. For the previous example, the false positive eliminated if S1 and S2
access different blocks of memory, and hence there is no intersection between the
two instruction’s memory blocks. In this study, we did experiments for various
memory block size, as demonstrated in the next section.

Fig. 1. Two examples are showing the effect of the different domains on analysis.

Fig. 2. A simple example is showing a case of false-positive dependence arcs.

5 Results

We have evaluated the proposed profiling method over fifteen kernels from the
polyhedral benchmark suite (PolyBench/C 3.2) and eleven programs from SPEC
CPU 2006 benchmark suite to asses both the accuracy of the profiled dependen-
cies and performance. We have conducted experiments on a machine with Intel
Core I7, 16GB memory and running Ubuntu release 18.04 (64-bit) operating
system. For this study, we considered detecting two data dependence classes:
RAW/WAR and WAW.

12 M. Abbas et al.

The profiling results form polyhedral benchmark suite seems pretty optimistic
for our method. Results show that the method reduces execution time overhead
by 1.4× on average and having a significant memory reduction 109780× on aver-
age of memory space with 100% of sensitivity and 99.05% on average of precision
compared to comprehensive profiling baseline. The following part elaborates in
more details SPEC profiling results, which is more challenging.

Table 2. Abstract analysis of SPEC2006 benchmarks.

Benchmark name Dyn. Mem. Inst Static. Mem. Inst Memory Red. Memory Red. Sensitivity (%) Precision 1 (%) Precision 2 (%)

(millions) Conventional (X) Comprehensive (X) TP/(TP+FN) TP/(TP+FP) TP/(TP+FP)

401.bzip2 2,701 (29.9%) 3,068 2044.0 22032.3 100 54.1 70.4

403.gcc 653 (17.3%) 59,465 30.7 366.2 100 16.0 45.3

429.mcf 1,227 (41.2%) 743 17472.3 46907.8 100 95.9 100.0

445.gobmk 571 (22.0%) 5,744 43.0 205.9 100 17.8 80.2

456.hmmer 5,310 (38.3%) 1,132 110.8 409.3 100 39.3 83.6

458.sjeng 3,280 (20.8%) 3,269 2391.8 2489.7 100 41.1 61.4

462.libquantum 40 (17.8%) 313 58.8 201.5 100 62.0 79.6

464.h264ref 27,145 (31.7%) 10,854 856.8 1903.6 100 17.8 33.2

471.omnetpp 284 (24.6%) 2,931 168.6 390.9 100 31.1 38.4

473.astar 6,071 (28.0%) 1,698 708.5 1863.7 100 54.0 66.4

483.xalancbmk 71 (25.5%) 32,884 7.8 21.8 100 13.5 16.5

Table 2 discusses the abstract analysis profiler results. The first two columns
list the benchmark programs and their dynamic read and write instruction counts
(and their per cent relative to all dynamic instructions), which in turn affects the
amount of runtime analysis overhead for each program. The third column lists
the static memory instructions, which affects the memory overhead for the pro-
posed abstract profiling. The fourth and fifth columns show an extreme reduction
in memory usage overhead, averaging 2172× and 6981× compared to conven-
tional and comprehensive, respectively. It is clear that our proposed profiler
significantly saves memory when compared with both baseline profiling. It needs
only four memory records to keep abstract data for each static memory access
instruction (i.e. min and max address values for the interval domain, and a and
b values for the congruent domain) compared to keeping all the executed data
memory access address. This advantage enables scalability in profiling memory-
intensive program, especially in low memory devices.

Finally, the last three columns report the accuracy of the proposed profiler
in terms of sensitivity and precision. The sensitivity (recall) of the proposed
abstract analysis achieved 100% accuracy in detecting all occurred data depen-
dencies (as expected). The positive predictive value (precision) is calculated in
the seventh and eighth columns, precision 1 and precision 2, compared to conven-
tional and Comprehensive profiling baseline, respectively1. Results indicate that
our system intends to overestimate the dependence relations; this is expected due
to the underlying abstraction concept. However, the sensitivity metric is gener-
ally essential, as not missing a dependence is more important than reporting
wrong dependence because it would affect the correctness of the parallelisation
decision. Both sensitivity and precision are formulated by calculating TP (true

1 We use two metrics as conventional profiling edges connect two dynamic instruction
instances, whereas comprehensive profiling connects two static instructions; thus,
ground truth is represented differently in each case.

Approximate Data Dependence Profiling 13

positive; how many actual dependence pairs are detected by the proposed pro-
filer), FN (false negative; how many missed dependence pairs), and FP (false
positive, how many dependence pairs reported but are wrong). It is worth men-
tioning that the precision is low (61.4% on average), due to successive calls to
the same functions, which leads to having some clusters of data corresponding
to each call.

Figure 3 shows the slowdown for each benchmark program. We can notice
the differences in runtime overhead in each benchmark program between con-
ventional, comprehensive, and abstract profiling. Notably, the runtime overhead
of abstract profiling is better than the comprehensive (10.7×) and the conven-
tional (1.4×) profiling techniques on average, where it saves memory but needs
runtime processing for every dynamic memory instruction. In future work, we
will work on tackling the runtime overhead. Figure 4 shows the precision analysis
and memory reduction for different memory block size. It is clear that block size
is a decreasing function of precision and an increasing function of memory reduc-
tion. Block size of 212 bits seems to be a good design point as memory reduction
is still significant (47× average memory reduction) with 82.25% precision.

SD3 [10] as related work, implemented on Pin and used a SPEC2006 to
present the results compared to the pairwise method as a baseline (i.e. com-
prehensive). The SD3 baseline has more runtime overhead than our baseline
implementation. For example, the slowdown baseline of 462.libquantum and
456.hmmer is 90× and 210× respectively; moreover, most of the reminder SPEC
programs fail due to lack of memory resources (consumes more than10 GB mem-
ory). On the other side, our implementation of the baseline has a slowdown 7.42×
and 71.54×, respectively for the same two programs, and a slowdown of all tested
programs 402.4× on average. Serial SD3 has 289× slowdown on average for the
top 20 hottest loops. The parallelised version of SD3 shows a 70× slowdown
on average (8 tasks on 8 cores). The proposed profiler shows 37.4× on average
for profiling the whole program, and a memory reduction 6981× on average.

Fig. 3. Abstract profiling overhead on SPEC2006 benchmark.

14 M. Abbas et al.

Fig. 4. Memory reduction and precision analysis for different memory block size.

Moreover, our technique applies to other approaches that intend to mitigate
profiling overhead like sampling and parallelisation, which we aim to investigate
in the future.

6 Conclusions and Future Work

This paper has considered employing a simple abstract representation based
method for detecting data dependence at the binary level. This approach has
combined both an interval and congruent abstract domains to detect data depen-
dence relations, as well as abstracting partitioned memory sub address spaces.
We have implemented this approach on the Pin dynamic binary instrumenta-
tion framework and conducted an initial performance study on both SPEC and
polyhedral benchmark suite. Results show perfect recall rate of 100% with a
significant memory reduction in comparison with the profiling baseline. Future
work includes considering more elaborate abstract properties such as dependence
vectors as integrating this profiling method with an automatic parallelisation
framework.

References

1. Abstract Interpretation in a Nutshell. http://www.di.ens.fr/%7Ecousot/AI/
IntroAbsInt.html. Accessed 24 February 2018

2. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Electron.
Comput. 5, 757–763 (1966)

3. Bueno, F., De La Banda, M.G., Hermenegildo, M.: Effectivness of abstract inter-
pretation in automatic parallelization: a case study in logic programming. ACM
Trans. Program. Lang. Syst. (TOPLAS) 21(2), 189–239 (1999)

4. Bygde, S.: Abstract interpretation and abstract domains. Master’s thesis, Västerås,
Sweden, May 2006

5. Chen, T., Lin, J., Dai, X., Hsu, W.-C., Yew, P.-C.: Data dependence profiling for
speculative optimizations. In: Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp.
57–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24723-4_5

http://www.di.ens.fr/%7Ecousot/AI/IntroAbsInt.html
http://www.di.ens.fr/%7Ecousot/AI/IntroAbsInt.html
https://doi.org/10.1007/978-3-540-24723-4_5

Approximate Data Dependence Profiling 15

6. Cousot, P.: A gentle introduction to abstract interpretation. In: The 9th Inter-
national Symposium on Theoretical Aspects of Software Engineering, Nanjing,
China, September 2015, pp. 1–46. http://www.di.ens.fr/~cousot/publications.
www/slides-public/PCousot-TASE-2015-AI-tutorial-4-1.pdf

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

8. Cousot, P., Cousot, R.: Abstract interpretation: past, present and future. In: Pro-
ceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), pp. 1–10 (2014)

9. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.
30(3–4), 165–190 (1989)

10. Kim, M., Kim, H., Luk, C.K.: SD3: a scalable approach to dynamic data-
dependence profiling. In: 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 535–546. IEEE (2010)

11. Kotha, A., Anand, K., Smithson, M., Yellareddy, G., Barua, R.: Automatic paral-
lelization in a binary rewriter. In: 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 547–557. IEEE (2010)

12. Li, Z., Beaumont, M., Jannesari, A., Wolf, F.: Fast data-dependence profiling by
skipping repeatedly executed memory operations. In: Wang, G., Zomaya, A., Perez,
G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9531, pp. 583–596. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27140-8_40

13. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: IEEE International Parallel and Distributed Processing
Symposium, pp. 484–493. IEEE (2015)

14. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Conference on Programming Language Design and Implemen-
tation (2005)

15. Maydan, D., Amarsinghe, S., Lam, M.: Data dependence and data-flow analysis
of arrays. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC
1992. LNCS, vol. 757, pp. 434–448. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-57502-2_63

16. Midkiff, S.P.: Automatic Parallelization: An Overview of Fundamental Compiler
Techniques. Morgan & Claypool Publishers, San Rafael (2012)

17. Moseley, T., Shye, A., Reddi, V.J., Grunwald, D., Peri, R.: Shadow profiling: hid-
ing instrumentation costs with parallelism. In: International Symposium on Code
Generation and Optimization (CGO 2007), pp. 198–208. IEEE (2007)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-03811-6

19. Norouzi, M., Ilias, Q., Jannesari, A., Wolf, F.: Accelerating data-dependence pro-
filing with static hints. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725,
pp. 17–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7_2

20. Ricci, L.: Automatic loop parallelization: an abstract interpretation approach. In:
Proceedings. International Conference on Parallel Computing in Electrical Engi-
neering, pp. 112–118. IEEE (2002)

21. Sanchez, D., Yen, L., Hill, M.D., Sankaralingam, K.: Implementing signatures for
transactional memory. In: 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pp. 123–133. IEEE (2007)

http://www.di.ens.fr/~cousot/publications.www/slides-public/PCousot-TASE-2015-AI-tutorial-4-1.pdf
http://www.di.ens.fr/~cousot/publications.www/slides-public/PCousot-TASE-2015-AI-tutorial-4-1.pdf
https://doi.org/10.1007/978-3-319-27140-8_40
https://doi.org/10.1007/3-540-57502-2_63
https://doi.org/10.1007/3-540-57502-2_63
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-030-29400-7_2

16 M. Abbas et al.

22. Tzolovski, S.: Data dependences as abstract interpretations. In: Van Hentenryck,
P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 366–366. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0032756

23. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using soft-
ware signatures. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pp. 186–195 (2012)

24. Yu, H., Li, Z.: Multi-slicing: a compiler-supported parallel approach to data depen-
dence profiling. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, pp. 23–33 (2012)

https://doi.org/10.1007/BFb0032756

	Approximate Data Dependence Profiling Based on Abstract Interval and Congruent Domains
	1 Introduction
	2 Related Work
	2.1 Static Analysis
	2.2 Dynamic Analysis

	3 Proposed Method Formulation
	3.1 Gathering Single-Trace Semantics Dynamically
	3.2 The Interval Domain
	3.3 The Congruence Domain

	4 Profiling Framework
	4.1 Pin Framework
	4.2 Conventional Profiling Technique
	4.3 Comprehensive Profiling Technique
	4.4 Abstract Profiling Technique
	4.5 Experimental Study

	5 Results
	6 Conclusions and Future Work
	References

