
André Brinkmann · Wolfgang Karl ·
Stefan Lankes · Sven Tomforde ·
Thilo Pionteck · Carsten Trinitis (Eds.)

LN
CS

 1
21

55

33rd International Conference
Aachen, Germany, May 25–28, 2020
Proceedings

Architecture of
Computing Systems –
ARCS 2020

Lecture Notes in Computer Science 12155

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

André Brinkmann • Wolfgang Karl •

Stefan Lankes • Sven Tomforde •

Thilo Pionteck • Carsten Trinitis (Eds.)

Architecture of
Computing Systems –
ARCS 2020
33rd International Conference
Aachen, Germany, May 25–28, 2020
Proceedings

123

Editors
André Brinkmann
Johannes Gutenberg University of Mainz
Mainz, Germany

Wolfgang Karl
Karlsruhe Institute of Technology
Karlsruhe, Germany

Stefan Lankes
RWTH Aachen University
Aachen, Germany

Sven Tomforde
Christian-Albrecht University of Kiel
Kiel, Germany

Thilo Pionteck
Otto-von-Guericke University Magdeburg
Magdeburg, Germany

Carsten Trinitis
Technical University of Munich
Garching b. München, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-52793-8 ISBN 978-3-030-52794-5 (eBook)
https://doi.org/10.1007/978-3-030-52794-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3083-2775
https://orcid.org/0000-0002-5825-8915
https://orcid.org/0000-0001-6518-1226
https://orcid.org/0000-0002-6750-3652
https://doi.org/10.1007/978-3-030-52794-5

Preface

The 33rd edition of the International Conference on Computer Architecture (ARCS
2020) was planned to be held at RWTH Aachen University, one of the oldest technical
universities in Germany and a member of the German TU9-association of technical
universities. The conference would have taken place during May 25–28, 2020, and
therefore in the middle of the 150th anniversary celebrations of RWTH Aachen.

The coronavirus disease COVID-19, nevertheless, completely changed the way of
living in Germany, Europe, and all over the world in 2020. The physical execution of
nearly all scientific conferences had to be stopped, as borders were closed and all
bigger events had to be canceled to confine the spread of the disease and therefore to
save lives. This of course also hit ARCS 2020 and the Organizing Committee made the
decision to cancel the networking event for our community in the exciting city of
Aachen. Due to the extraordinary situation only these conference proceedings were
published. In addition, the organization team offered the possibility to publish videos
of the contributions in order to foster the dissemination of the results.

The ARCS conference series has over 30 years of tradition reporting leading-edge
research in computer architecture and operating systems. ARCS addresses the complete
spectrum from fully integrated, self-powered embedded systems up to
high-performance computing systems and provides a platform covering newly
emerging and cross-cutting topics, such as autonomous and ubiquitous systems,
reconfigurable computing and acceleration, neural networks and artificial intelligence,
as well as outlooks on future topics such as post-Moore architectures and organic
computing.

The focus of the 2020 conference was set on concepts and tools for incorporating
self-adaptation and self-organization mechanisms in high-performance computing
systems. This includes upcoming approaches for runtime modifications at various
abstraction levels, ranging from hardware changes to goal changes and their impact on
architectures, technologies, and languages. The conference was organized by the
special interest group on “Architecture of Computing Systems” of the GI (Gesellschaft
für Informatik e. V.) and ITG (Informationstechnische Gesellschaft im VDE).

ARCS 2020 attracted 33 submissions from authors in 15 countries worldwide,
including China, Colombia, South Korea, Venezuela, and the USA. Each submission
was reviewed by a diverse and dedicated Program Committee. 3 submissions received
3 qualified reviews and the remaining 30 submissions got 4 or even 5 reviews, leading
to a total of 116 reviews.

The Program Committee selected 12 submissions to be published in the proceed-
ings, which corresponds to a 37% paper acceptance rate. The accepted papers cover a
variety of topics from the ARCS core domains, including scheduling, near-data pro-
cessing, HW architectures, or the application of transactional memory.

ARCS has a long tradition of hosting associated workshops. The following three
workshops were organized in conjunction with the main conference this year and we
decided to include the accepted papers within the conference proceedings:

– 14th GI/ITG Workshop on Parallel Systems and Algorithms (PASA 2020)
– 6th FORMUS3IC Workshop
– Third Workshop on Computer Architectures in Space (CompSpace 2020)

We thank the many individuals who contributed to ARCS 2020, in particular the
members of the Program Committee and all the additional external reviewers for their
time and effort in carefully reviewing and judging the submissions. We further thank all
authors for submitting their work to ARCS and presenting accepted papers as video
contributions. The workshops were organized and coordinated by Carsten Trinitis, the
proceedings were compiled by Thilo Pionteck, publicity was managed by Lena Oden,
and the website was maintained by Markus Hoffmann. Thanks to all these individuals
and all the many other people who helped in the organization of ARCS 2020.

May 2020 André Brinkmann
Wolfgang Karl
Stefan Lankes

Sven Tomforde

vi Preface

Organization

General Chairs

Stefan Lankes RWTH Aachen University, Germany
Wolfgang Karl Karlsruhe Institute of Technology, Germany

Program Chairs

Sven Tomforde University of Kiel, Germany
André Brinkmann Johannes Gutenberg University Mainz, Germany

Workshop and Tutorial Chair

Carsten Trinitis Technical University of Munich, Germany

Publicity Chair

Lena Oden FernUniversität in Hagen, Germany

Publication Chair

Thilo Pionteck Otto von Guericke University Magdeburg, Germany

Web Chair

Markus Hoffmann Karlsruhe Institute of Technology, Germany

Program Committee

Mladen Berekovic Universität zu Lübeck, Germany
Jürgen Brehm Leibnitz Universität Hannover, Germany
André Brinkmann Johannes Gutenberg University Mainz, Germany
Uwe Brinkschulte Goethe-Universität Frankfurt am Main, Germany
João M.P. Cardoso Universidade do Porto, Portugal
Thomas Carle Institut de Recherche en Informatique de Toulouse,

France
Ahmed El-Mahdy Egypt-Japan University of Science and Technology,

Egypt
Lukas Esterle Aarhus University, Denmark
Dietmar Fey Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Giorgis Georgakoudis Lawrence Livermore National Laboratory, USA

Roberto Giorgi University of Siena, Italy
Daniel Gracia-Pérez Thales Research and Technology, France
Christian Gruhl University of Kassel, Germany
Jan Haase Universität zu Lübeck, Germany
Jörg Hähner University of Augsburg, Germany
Heiko Hamann Universität zu Lübeck, Germany
Andreas Herkersdorf Technical University of Munich, Germany
Christian Hochberger Technische Universität Darmstadt, Germany
Gert Jervan Tallinn University of Technology, Estonia
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Jörg Keller FernUniversität in Hagen, Germany
Dirk Koch The University of Manchester, UK
Hana Kubátová FIT CTU, Czech Republic
Stefan Lankes RWTH Aachen University, Germany
Erik Maehle Universität zu Lübeck, Germany
Lena Oden FernUniversität in Hagen, Germany
Alex Orailoglu University of California, San Diego, USA
Thilo Pionteck Otto von Guericke University Magdeburg, Germany
Mario Porrmann Osnabrück University, Germany
Jürgen Mottok Ostbayerische Technische Hochschule Regensburg,

Germany
Reza Salkhordeh Johannes Gutenberg University Mainz, Germany
Toshinori Sato Fukuoka University, Japan
Wolfgang

Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Martin Schulz Technical University of Munich, Germany
Leonel Sousa Universidade de Lisboa, Portugal
Olaf Spinczyk Osnabrück University, Germany
Benno Stabernack Fraunhofer Institute for Telecommunications,

Heinrich Hertz Institute, Germany
Walter Stechele Technical University of Munich, Germany
Anthony Stein University of Augsburg, Germany
Tim Süss University of Applied Science Fulda, Germany
Djamshid Tavangarian Universität Rostock, Germany
Jürgen Teich Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Sven Tomforde University of Kassel, Germany
Carsten Trinitis Technical University of Munich, Germany
Theo Ungerer University of Augsburg, Germany
Hans Vandierendonck Queen’s University Belfast, UK
Daniel Versick NORDAKADEMIE - Hochschule der Wirtschaft,

Germany
Stephane Vialle CentraleSupelec and UMI GT-CNRS 2958, France
Klaus Waldschmidt Goethe-Universität Frankfurt am Main, Germany
Dominic Wist BIOTRONIC Berlin, Germany
Stephan Wong Delft University of Technology, The Netherlands

viii Organization

Additional Reviewers

Christoph Borchert Osnabrück University, Germany
Peter Brand Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Hugues Cassé Institut de Recherche en Informatique de Toulouse,

France
Boris Dreyer Technische Universität Darmstadt, Germany
Jorge Echavarria Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Farnam Khalili Maybodi University of Siena, Italy
Kevin Kremer Johannes Gutenberg University Mainz, Germany
Leon Li University of California, San Diego, USA
Diogo Marques Universidade de Lisboa, Portugal
Rolf Meyer Universität zu Lübeck, Germany
Nuno Neves INESC-ID Lisboa, Portugal
Elbruz Ozen University of California, San Diego, USA
Marco Procaccini University of Siena, Italy
Oskar Pusz Leibnitz Universität Hannover, Germany
Paul Renaud-Goud Institut de Recherche en Informatique de Toulouse,

France
Amin Sahebi University of Siena, Italy
Frederic Schimmelpfennig Johannes Gutenberg University Mainz, Germany
Ladislav Steffko University of California, San Diego, USA
Ramon Wirsch Technische Universität Darmstadt, Germany
Mahdi Zahedi Delft University of Technology, The Netherlands

6th FORMUS3IC Workshop

Program Committee

Dietmar Fey Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany

Jens Harnisch Infineon AG, Germany
Martin Hobelsberger Hochschule München, Germany
Jose Daniel Gracia Sanchez Universidad Carlos III de Madrid, Spain
Ralph Mader Continental AG, Germany
Vaclav Matousek University of West Bohemia, Czech Republic
Avi Mendelson Technion University, Israel
Jürgen Mottok Ostbayerische Technische Hochschule Regensburg,

Germany
Tobias Schüle SIEMENS AG, Germany
Andreas Sailer Vector, Germany
Christian Siemers Clausthal University of Technology, Germany
Michael Wong Codeplay, UK

Organization ix

Third Workshop on Computer Architectures in Space (CompSpace)

Program Committee

Carsten Trinitis Technical University of Munich, Germany
Sebastian Rückerl Technical University of Munich, Germany
Nicolas Appel Technical University of Munich, Germany

14th Workshop on Parallel Systems and Algorithms (PASA)

Program Committee

Martin Dietzfelbinger Technische Universität Ilmenau, Germany
Steffen Christgau Zuse Institute Berlin, Germany
Andreas Döring IBM Zürich, Switzerland
Norbert Eicker Jülich Supercomputing Centre, Germany
Thomas Fahringer Universität Innsbruck, Austria
Dietmar Fey Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Rolf Hoffmann Technische Universität Darmstadt, Germany
Klaus Jansen Christian-Albrechts-Universität zu Kiel, Germany
Ben Juurlink Technische Universität Berlin, Germany
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Jörg Keller Fernuniversität in Hagen, Germany
Stefan Lankes RWTH Aachen University, Germany
Christian Lengauer University of Passau, Germany
Erik Maehle Universität zu Lübeck, Germany
Ulrich Margull Technische Hochschule Ingolstadt, Germany
Ernst W. Mayr Technical University of Munich, Germany
Ulrich Meyer Goethe-Universität Frankfurt am Main, Germany
Friedhelm Meyer

auf der Heide
Universität Paderborn, Germany

Juergen Mottok Ostbayerische Technische Hochschule Regensburg,
Germany

Wolfgang Nagel Technische Universität Dresden, Germany
Michael Philippsen Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Harald Räcke Technical University of Munich, Germany
Karl Dieter Reinartz Hochstädt, Germany
Christian Scheideler Universität Paderborn, Germany
Bettina Schnor Universität Potsdam, Germany
Martin Schulz Technical University of Munich, Germany
Uwe Schwiegelshohn Technische Universität Dortmund, Germany
Peter Sobe Hochschule fr Technik und Wirtschaft Dresden,

Germany
Carsten Trinitis Technical University of Munich, Germany
Rolf Wanka Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany

x Organization

Contents

Main Concerence

Approximate Data Dependence Profiling Based on Abstract Interval
and Congruent Domains. 3

Mostafa Abbas, Rasha Omar, Ahmed El-Mahdy, and Erven Rohou

Evaluating Dynamic Task Scheduling with Priorities and Adaptive Aging
in a Task-Based Runtime System . 17

Thomas Becker and Tobias Schüle

An Architecture for Solving the Eigenvalue Problem
on Embedded FPGAs . 32

Alwyn Burger, Patrick Urban, Jayson Boubin, and Gregor Schiele

ECC Memory for Fault Tolerant RISC-V Processors 44
Alexander Dörflinger, Yejun Guan, Sören Michalik, Sönke Michalik,
Jamin Naghmouchi, and Harald Michalik

3D Optimisation of Software Application Mappings
on Heterogeneous MPSoCs . 56

Gereon Führ, Ahmed Hallawa, Rainer Leupers, Gerd Ascheid,
and Juan Fernando Eusse

Towards a Priority-Based Task Distribution Strategy for an Artificial
Hormone System . 69

Eric Hutter and Uwe Brinkschulte

He..ro DB: A Concept for Parallel Data Processing
on Heterogeneous Hardware . 82

Michael Müller, Thomas Leich, Thilo Pionteck, Gunter Saake,
Jens Teubner, and Olaf Spinczyk

Investigating Transactional Memory for High Performance
Embedded Systems . 97

Christian Piatka, Rico Amslinger, Florian Haas, Sebastian Weis,
Sebastian Altmeyer, and Theo Ungerer

X-CEL: A Method to Estimate Near-Memory Acceleration Potential
in Tile-Based MPSoCs. 109

Sven Rheindt, Andreas Fried, Oliver Lenke, Lars Nolte, Temur Sabirov,
Tim Twardzik, Thomas Wild, and Andreas Herkersdorf

Engineering an Optimized Instruction Set Architecture
for AMIDAR Processors . 124

Alexander Schwarz and Christian Hochberger

Scaling Logic Locking Schemes to Multi-module Hardware Designs 138
Dominik Šišejković, Farhad Merchant, Lennart M. Reimann,
Rainer Leupers, and Sascha Kegreiß

Exploration of Power Domain Partitioning with Concurrent Task Mapping
and Scheduling for Application-Specific Multi-core SoCs. 153

Bo Wang, Aneek Imtiaz, Joachim Falk, Michael Glaß, and Jürgen Teich

FORMUS3IC Workshop

Scalable, Decentralized Battery Management System Based
on Self-organizing Nodes . 171

Andrea Reindl, Hans Meier, and Michael Niemetz

Security Improvements by Separating the Cryptographic Protocol
from the Network Stack onto a Multi-MCU Architecture 185

Tobias Frauenschläger, Sebastian Renner, and Jürgen Mottok

Equally Distributed Bus-Communication Access Rights for Inter MCU
Communication Using Multimaster SPI . 200

Manuel Dentgen, Sebastian Renner, and Jürgen Mottok

Workshop on Computer Architectures in Space (CompSpace)

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs. . . . 215
Corrado De Sio, Sarah Azimi, and Luca Sterpone

Satellite Onboard Data Reduction Using a Risc-V Core Inside
an RTG4-Based Data Processing Pipeline . 228

Gasper Skvarc Bozic, Thomas Unterlinner, Tanja Eraerds, Sabine Ott,
and Markus Plattner

Workshop on Parallel Systems and Algorithms (PASA)

Accelerating Real-Time Applications with Predictable Work-Stealing 241
Florian Fritz, Michael Schmid, and Jürgen Mottok

Author Index . 257

xii Contents

Main Concerence

Approximate Data Dependence Profiling
Based on Abstract Interval and Congruent

Domains

Mostafa Abbas1(B) , Rasha Omar1(B) , Ahmed El-Mahdy1,3(B) ,
and Erven Rohou2(B)

1 Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
{mostafa.abbas,rasha.omar,ahmed.elmahdy}@ejust.edu.eg

2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
erven.rohou@inria.fr

3 Alexandria University, Alexandria, Egypt

Abstract. Although parallel processing is mainstream, existing pro-
grams are often serial, and usually re-engineering cost is high. Data
dependence profiling allows for automatically assessing parallelisation
potential; Yet, data dependence profiling is notoriously slow and requires
large memory, as it generally requires keeping track of each memory
access. This paper considers employing a simple abstract single-trace
analysis method using simple interval and congruent modulo domains to
track dependencies at lower time and memory costs. The method gathers
and abstracts the set of all memory reference addresses for each static
memory access instruction. This method removes the need for keeping
a large shadow memory and only requires a single pair-wise analysis
pass to detect dependencies among memory instructions through simple
intersection operations. Moreover, the combination of interval and con-
gruent domains improves precision when compared with only using an
interval domain representation, mainly when the data is not accessed in
a dense access pattern. We further improve precision through partition-
ing memory space into blocks, where references in each block abstracted
independently. An initial performance study is conducted on SPEC CPU-
2006 benchmark programs and polyhedral benchmark suite. Results show
that the method reduces execution time overhead by 1.4× for polyhedral
and 10.7× for SPEC2006 on average; and significantly reduces memory
by 109780× and 6981× for polyhedral and SPEC2006 respectively; the
method has an average precision of 99.05% and 61.37% for polyhedral
and SPEC respectively. Using memory partitioning resulted in improv-
ing mean precision to be 82.25% and decreasing memory reduction to be
47× for SPEC2006 suite.

Keywords: Data dependence profiling · Dynamic binary analysis ·
Congruent domains · Interval domains

A. El-Mahdy—On-leave from Alexandria University.
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-52794-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_1&domain=pdf
http://orcid.org/0000-0001-6781-5384
http://orcid.org/0000-0003-0000-4311
http://orcid.org/0000-0001-9736-1352
http://orcid.org/0000-0002-8060-8360
https://doi.org/10.1007/978-3-030-52794-5_1

4 M. Abbas et al.

1 Introduction

Data dependence profiling is an essential step towards deciding on parallelis-
ing loops, especially for heterogeneous parallel platforms, where the cost of re-
engineering originally serial programs is high. However, obtaining the profiles
is generally a costly operation as it requires instrumenting all memory access
instructions; hence it suffers from significant memory consumption and runtime
overhead (i.e., separate records for every accessed memory address). Therefore,
profilers rely on approximation methods, trading-off accuracy with analysis over-
head. One typical method is sampling the execution trace, where only a portion
of the trace is analysed [5,23]. However, sampling is prone to missing some depen-
dence arcs and losing the most recent relationships. Other profilers tackle the
runtime overhead by parallelising runtime analysis [10,17,24].

This paper considers performing a form of abstract analysis for all memory
references over the whole program. The analysis borrows from the well-known
abstract interpretation static analysis method, which is used to generate an
abstract collective program state for all possible execution traces [1,6,18]. Here,
we specialise the method to analyse only one execution trace (profiling trace).
Moreover, we do not perform abstract computations or interpretations over the
abstract state; instead, we rely on the underlying execution system to generate
the current state and use a corresponding abstract operation (Union) to gather
and approximate the state. In other words, the main aim is to generate an
abstract single-trace semantics, from the current execution trace.

The advantage of this approach is that we dramatically reduce the memory
size required for the analysis, as there is no need to have a shadow memory,
which is typical in profilers. Moreover, we only perform pair-wise operations on
the static memory access instructions after gathering their trace state, to identify
data-dependence, thus also significantly reducing profiling time. The trade-off
here is precision or false dependencies, while the sensitivity or true dependencies
are never missed.

In this paper, for each dynamic memory access operation, we use a corre-
sponding abstract operation that joins the current memory access address with
the current abstracted set of seen addresses for the corresponding memory access
instruction, thus generating an abstract single-trace semantic for all static mem-
ory instructions. The abstraction uses a composite abstract domain, consisting
of interval and congruent domains. The former provides an approximation of the
covered range, and the latter provides information about the access pattern. We
partition the memory address space into blocks and associate a value from the
composite domain for each block, to further improve precision.

This paper has the following contributions:

– Utilise abstract interval and congruent domains to approximate the accessed
memory location for each static memory access instruction.

– Conduct an initial performance investigation using polyhedral benchmark and
SPEC CPU-2006 benchmark suites using the Pin system [14].

Approximate Data Dependence Profiling 5

– Utilise the gathered semantics to detect pair-wise memory data dependencies
(RAW, WAR, and WAW) from binary files at runtime for all static memory
access instructions.

This paper is organised as follows: Sect. 2 discusses related work. Section 3
provides an overview of abstract interpretation and defines the interval and con-
gruent domains and their corresponding operations. Section 4 discusses our pro-
filing algorithm. Section 5 presents our initial results. Finally, Sect. 6 concludes
our paper and discusses future work.

2 Related Work

2.1 Static Analysis

Abstract interpretation is a static analysis method that generates a collective
program semantics at each program point. The method relies on generating
abstract equations that generate the collective program semantics at each pro-
gram point. Abstract interpretation is not generally used in the context of data
dependence analysis for imperative programs (functional programs have in-depth
treatment, e.g., [3]); nevertheless, there are attempts in this direction [8,16].

Ricci [20] is an early attempt to consider dependence analysis by combining
interval and bisection domains; the latter is used to maintain relations among
pairs of variables. The technique is applied at the source level on some kernels.
Moreover, the use of the bisection domain helped to reduce the interval width,
whereas in our approach we consider the density of the elements in the interval,
as well conducting the analysis on the binary level; however, we do not generate
collective semantics for all possible traces; we only consider the profiling trace,
which is typical for profilers.

The use of the congruence domain in abstract interpretation is described
in detail in Bydge’s master thesis [4]. This paper adopts the same definitions
and operations for that domain. However, the thesis does not consider program
parallelisation.

Tzolovski [22] has discussed possible data dependence abstractions, which
included direction and distance vectors as defined by Maydan et al. [15]. In
this paper, we explore an initial practical implementation of simple dependence
detection and leave more elaborate possible abstractions for future work.

SecondWrite [11] is a static binary rewriter tool. It analyses the dependence
in regular loops in binary programs and workout to rewrite a parallelised binary
version. SecondWrite translates the x86 binary input to the intermediate format
of the LLVM Compiler and then uses the x86 back-end LLVM to write the output
binary. They make use of the LLVM IR rich infrastructure, such as control-
flow analysis, data-flow analysis, and optimisation passes to generate a parallel
alternative version according to which loop can be partitioned.

6 M. Abbas et al.

2.2 Dynamic Analysis

Li et al. [13] introduce a profiler for the sequential and parallel program based
on LLVM. They tackle the runtime overhead by parallelising the profiler. The
profiler records memory accesses using signatures to achieve efficiency in space,
(as an approximate representation, concept from transactional memory [21])
rather than instrument every memory access. The serial profiler has a 190×
slowdown on average for NAS benchmarks and a 191× slowdown on average
for Starbench programs and consumed memory up to 7.856GB. By using lock-
free parallel design, the runtime overhead reduces to 78× for NAS and 93× for
Starbench. By using a signature with 100 million slots, the memory consumption
reduces to 649MB (NAS) and 1390MB (Starbench), with accuracy less than
0.4% false-positive rate and less than 0.1% false-negative rate.

Chen et al. [5] implement a data dependence profiling tool on top of the Intel’s
Open Research Compiler (ORC) to provide information about the dynamic
behaviour of data dependence in programs, mainly for nested loops.

They study two approximation methods: shadow memory and sampling tech-
niques, as a trade-off to mitigate both space and runtime overhead. The tool
speculatively ignores dependence edges (between the source and the sink) that
have low probability. The threshold value of this low probability can be deter-
mined by the overhead of a data mis-speculation process according to the target
machine. The slowdown ranges from 16% to 167% on SPEC CPU2000 bench-
marks compared to the original execution time by using a sampling rate of 0.0001
to 0.1, respectively, and with a precision ranging from 30% to 10% in missing
dependence edges.

Vanka et al. [23] implement a set-based profiling approach coupled with
software signatures. The key insight is that set-level tracking provides a bet-
ter trade-off between accuracy and performance. At compile time, they identify
the essential dependence relationships according to a specific optimisation (i.e.
speculative code motion) for profiling at runtime. The profiling analysis working
on sets, figuring out set’s relationships dependence, rather than working with
pair-wise dependence relationships. The set-based profiler is implemented as an
IR level pass in LLVM and applied to SPEC2000 benchmarks for presenting
results. They achieved a slowdown 2.97× with the accuracy range from 0.15 and
0.17, measured by normalised average Euclidean distance.

Norouzi et al. [19] implement an extension of DiscoPoP data dependence pro-
filer that uses a hybrid (static and dynamic) approach in reporting the existence
of data dependence in the polyhedral loops. The static dependence analysis part
excludes the detected dependent memory access instructions in the annotated
area by PLUTO (an auto-parallelising compiler for polyhedral loops) and hence
excludes them in the dynamic analysis. Finally, static and dynamic dependencies
are merged in an appropriate way to be used later in suitable parallelisation dis-
covery tools. It is clear that if no polyhedral loops are detected in a program, the
hybrid approach turns into purely dynamic. By conducting experiments on Poly-
bench and NAS Parallel Benchmarks suits, they achieved a median profiling-time
reduction by 62% compared to DiscoPoP profiler framework.

Approximate Data Dependence Profiling 7

Li et al. [12] introduce a profiling method based on repeatedly skipping mem-
ory operations in loops. They used DiscoPoP to implement the profiler. The
experiments on NAS Parallel Benchmarks and Starbench parallel benchmark
suite show a reduction on runtime overhead by 42.5% on average. The reduction
runtime mainly comes from the data dependence building phase, where updating
the shadow memory remains as the traditional way. The effect of this approach
results from the existence of sequencing memory access patterns in loops (e.g.
arrays), if not exists, the profiling suffers from extra runtime overhead due to
the extra conditions compared to traditional one.

3 Proposed Method Formulation

3.1 Gathering Single-Trace Semantics Dynamically

Our method differs from typical abstract interpretation in that we obtain the
abstract collective semantics for a single-trace of the program, instead of all
traces. Also, we rely on abstracting the collective semantics for only memory read
and write operations, not all program points. Moreover, instead of generating
abstract equations, and statically solve or interpret them, we rely on obtaining
actual read and write addresses values at runtime from the underlying execution
environment, and collect the obtained concrete values into collected abstract
semantics (i.e. all possible referenced address seen for each memory instruction).
In other words, we define a corresponding operation that collects the semantics.
Thus, for a memory access operation i reading or writing from/to address a, we
define the abstract collective semantics, Σ at this operation as:

Σi = Σi ∪ α({a}) (1)

Where Σ ∈ DA; and DA is an abstract domain with partial lattice with
ordering relation ∪, moreover, α() is an abstraction function that abstracts the
current concrete partial collective semantic set into an abstract one. We also
adopt a composite abstract domain that consists of interval and congruence
domains. The congruent domain is helpful to represent stride memory access
patterns, and the interval domain considers the lower and upper limits of memory
access address. It is worth mentioning that abstract interpretation guarantees
sound analysis, where the obtained collective semantics is always a superset of
the concrete collective semantics.

3.2 The Interval Domain

The interval domain [7] is an abstract domain that can determine safe lower
and upper limits of program variables. The abstract interval domain, DI , is
defined as:

DI = {[a, b]},∀a ≤ b ∈ Z (2)

The ∪ and ∩ operators are defined as:

8 M. Abbas et al.

[a, b] ∪ [a′, b′] = [min(a, a′),max(b, b′)] (3)

[a, b] ∩ [a′, b′] =

{
[max(a, a′),min(b, b′)] if max(a, a′) ≤ min(b, b′)
φ otherwise

(4)

3.3 The Congruence Domain

The congruence domain [9] consists of abstract values denoted, aZ + b, Where
b ∈ Z and a ∈ N. We will call a the modulo and b the remainder. A congruence
relation (c, b) is defined as c ≡ b mod a. The set of all C such that c ∈ C and
c ≡ b mod a, is C = {aZ + b : ∀Z ∈ Z}.

Thus, we define the abstract congruent, DCG, domain as:

DCG = {aZ+ b},∀a, b ∈ N (5)

The ∪ and ∩ operators are defined as:

(aZ+ b) ∪ (a′
Z+ b′) = gcd{a, a′, |b − b′|}Z+min{b, b′} (6)

(aZ+ b) ∩ (a′
Z+ b′) =

{
lcm{a, a′}Z+ b′′ if b ≡ b′ mod gcd{a, a′}
φ otherwise

(7)

Where b′′ ≡ b mod a and also b′′ ≡ b′ mod a′.

4 Profiling Framework

4.1 Pin Framework

Pin [14] is a framework for dynamic binary instrumentation framework. Simi-
lar to other frameworks, users can observe the running code, detect intensive
functions and loops, monitor parameters, and modify the code while it runs.
Pin framework provides an API to let users build custom tools called Pintools,
which in turn dynamically instruments the compiled binary files in the user space
application. By inserting an appropriate runtime analysis routine for a kind of
instructions, we can understand the behaviour of a given binary program.

Our profiler inserts instrumentation code dynamically into the binary code
for each memory read/write operation; which is mainly callbacks to the corre-
sponding runtime analysis routines. The profiler can operate on three different
modes. The first one performs conventional profiling, where the second one per-
forms a comprehensive (i.e. pairwise method) profiling. Both the first and second
modes can be considered as a different perspective of ground truth for the under-
lying data dependence, as it provides an exhaustive, accurate data dependence

Approximate Data Dependence Profiling 9

results. However, it suffers from immense memory and runtime overhead. The
third operation mode performs the proposed profiling technique. Our imple-
mentation focuses only on memory references, where data dependence between
registers can be easily detected by convenient static analysis.

4.2 Conventional Profiling Technique

For each executing memory instruction, the runtime analysis records the effective
memory address and corresponding instruction address as a key, value, and mode
(read/write) tuple in a hash table. The hash table, thus, keeps track of the last
instruction accessed that memory address.

The analysis routine can then construct a corresponding dependence arc at
runtime when a memory write operation happens, marking out a dependence
relation (i.e. RAW, WAR, WAW) between the current and the last instruction
that accessed the same memory location, i.e. a dependence relation between the
current memory instruction and the closest prior instruction(s) which depends
on. This method is close to the baseline algorithms of previous work (e.g. [12]).

4.3 Comprehensive Profiling Technique

Conventional data dependence profiling aims to capture dependencies among
executing instructions; i.e. memory references, not static instructions. Another
approach, as defined by Bernstein Conditions [2], is to compare the set of all
accessed memory locations for each instruction; a depending pair would have a
non-empty intersection.

This analysis requires capturing the set of all data references for each
static memory instruction, which results in great storage, and complexity of
O(n2) intersections, where n is the stored memory address. This analysis is
close to the baseline algorithms of previous work [5,10]. Our proposed method
(described below) essentially abstracts this method, significantly reducing the
storage requirements.

4.4 Abstract Profiling Technique

The third profiling operating mode is the proposed abstract approximate pro-
filing. As in the previously mentioned profiling techniques, the profiler inserts a
callback to the runtime analysis routine for each memory access instruction.

The input to the proposed algorithm is effectively a memory access trace.
The trace can be generated dynamically by an underlying execution environment
or read from an off-line trace file, that has been collected before. The trace is
defined as the sequence of the tuples (inst, mode, address), where ‘inst’ refers
to the memory instruction address, ‘mode’ refers to whether the instruction is
read or write, and finally ‘address’ is the effective memory address accessed by
the instruction.

At runtime, the analysis routine manipulates memory addresses by convert-
ing them into corresponding abstract interval and congruent domain values,

10 M. Abbas et al.

and accumulating them to the recorded (abstract) addresses, according to Eqs. 3
(referred to as αInterval) and 6 (referred to as αCongruent) as mentioned above.
Here, each static memory instruction has its hash table entry for collecting
abstract profiling data. The substantial difference from conventional profiling
is that the profiler stores only the abstract set of seen memory addresses, for
each memory instruction (i.e. limited number of entries related to the number of
static memory instructions). Finally, we compute the intersection between those
intervals/congruence values of memory instructions (read or write) according
to the aforementioned Eqs. 4 and 7, indicating the potential of the existence
of dependence. The intersection conditions require both interval and congruent
domain to intersect.

It is worth noting that abstract profiling (as well as comprehensive profiling)
cannot distinguish between WAR/RAW dependence, where ordering relations
are not kept. In future work, we will consider abstracting this order by keeping
distance information among instructions.

4.5 Experimental Study

Figure 1 demonstrates the effectiveness of interval and congruent domain in
exploring data dependence between memory references. Figure 1-(a) shows an
example where statements S1 and S2 are independent, as each memory access
has its separate index values (e.g. one is even, and the other is odd). The upper
(not shaded) part of Table 1 shows the corresponding assembly instructions,
their addresses, and interval/congruence analysis results. Apparently, there is
no intersection using the congruence domain, thus no dependence, even though
the intervals intersect. On the other hand, Fig. 1-(b) shows another example
where S3 and S4 are independent also, as each part of the array are accessed in
two different loops. The shaded part of Table 1 shows its corresponding results. It
is clear that there is no intersection in the interval domain, thus no dependence,
even though the congruent domain intersects. By considering both congruent
and interval intersections for reporting a dependence, this can provide for the
better potential to improve precision. Thus both abstract domains provide a
safe approximation to the concrete domain (i.e. absence of dependence in one
abstract domain is sufficient to decide the absence of dependence on the concrete
domain).

Table 1. The output results show the effect of the different domains on analysis.

Inst. Address Inst. Loc. Assembly code Interval domain Congruence domain

f3ed7cb S1 movsd qword ptr [rax+rdx*8], xmm0 [7e3e0, 7e420] 10 Z + 7e3e0

f3ed7e1 S2 movsd xmm1, qword ptr [rax+rdx*8] [7e3d8, 7e418] 10 Z + 7e3d8

0c048f2 S3 movsd qword ptr [rax+rdx*8], xmm0 [7b698, 7b6b0] 8 Z + 7b698

0c04942 S4 movsd xmm2, qword ptr [rax+rdx*8] [7b6b8, 7b6d8] 8 Z + 7b6b8

Abstract profiling may introduce false dependence arcs. Figure 2-(a) show a
simple example that clarifies the causes of the false-positive relationships that

Approximate Data Dependence Profiling 11

may happen. This example does not have any real data dependence relation-
ships because of the writes at S1 only access memory exclusively in the range
between ExprMIN and ExprMAX of the array a, while, the reads at S2 hap-
pen elsewhere. Figure 2-(b) shows the reported dependence graph contains two
false-positive arcs. One arc between S1 and S2 because the interval of S1 =
[ExprMIN,ExprMax] intersects with the interval of S2 = [IMIN, IMAX]
and the related congruent values also intersect. The other arc between S2 and
itself representing WAW dependence.

We can enhance the precision by partitioning the memory address space
into blocks (with a block size of 2k bits) and abstracting each block address
space. For the previous example, the false positive eliminated if S1 and S2
access different blocks of memory, and hence there is no intersection between the
two instruction’s memory blocks. In this study, we did experiments for various
memory block size, as demonstrated in the next section.

Fig. 1. Two examples are showing the effect of the different domains on analysis.

Fig. 2. A simple example is showing a case of false-positive dependence arcs.

5 Results

We have evaluated the proposed profiling method over fifteen kernels from the
polyhedral benchmark suite (PolyBench/C 3.2) and eleven programs from SPEC
CPU 2006 benchmark suite to asses both the accuracy of the profiled dependen-
cies and performance. We have conducted experiments on a machine with Intel
Core I7, 16GB memory and running Ubuntu release 18.04 (64-bit) operating
system. For this study, we considered detecting two data dependence classes:
RAW/WAR and WAW.

12 M. Abbas et al.

The profiling results form polyhedral benchmark suite seems pretty optimistic
for our method. Results show that the method reduces execution time overhead
by 1.4× on average and having a significant memory reduction 109780× on aver-
age of memory space with 100% of sensitivity and 99.05% on average of precision
compared to comprehensive profiling baseline. The following part elaborates in
more details SPEC profiling results, which is more challenging.

Table 2. Abstract analysis of SPEC2006 benchmarks.

Benchmark name Dyn. Mem. Inst Static. Mem. Inst Memory Red. Memory Red. Sensitivity (%) Precision 1 (%) Precision 2 (%)

(millions) Conventional (X) Comprehensive (X) TP/(TP+FN) TP/(TP+FP) TP/(TP+FP)

401.bzip2 2,701 (29.9%) 3,068 2044.0 22032.3 100 54.1 70.4

403.gcc 653 (17.3%) 59,465 30.7 366.2 100 16.0 45.3

429.mcf 1,227 (41.2%) 743 17472.3 46907.8 100 95.9 100.0

445.gobmk 571 (22.0%) 5,744 43.0 205.9 100 17.8 80.2

456.hmmer 5,310 (38.3%) 1,132 110.8 409.3 100 39.3 83.6

458.sjeng 3,280 (20.8%) 3,269 2391.8 2489.7 100 41.1 61.4

462.libquantum 40 (17.8%) 313 58.8 201.5 100 62.0 79.6

464.h264ref 27,145 (31.7%) 10,854 856.8 1903.6 100 17.8 33.2

471.omnetpp 284 (24.6%) 2,931 168.6 390.9 100 31.1 38.4

473.astar 6,071 (28.0%) 1,698 708.5 1863.7 100 54.0 66.4

483.xalancbmk 71 (25.5%) 32,884 7.8 21.8 100 13.5 16.5

Table 2 discusses the abstract analysis profiler results. The first two columns
list the benchmark programs and their dynamic read and write instruction counts
(and their per cent relative to all dynamic instructions), which in turn affects the
amount of runtime analysis overhead for each program. The third column lists
the static memory instructions, which affects the memory overhead for the pro-
posed abstract profiling. The fourth and fifth columns show an extreme reduction
in memory usage overhead, averaging 2172× and 6981× compared to conven-
tional and comprehensive, respectively. It is clear that our proposed profiler
significantly saves memory when compared with both baseline profiling. It needs
only four memory records to keep abstract data for each static memory access
instruction (i.e. min and max address values for the interval domain, and a and
b values for the congruent domain) compared to keeping all the executed data
memory access address. This advantage enables scalability in profiling memory-
intensive program, especially in low memory devices.

Finally, the last three columns report the accuracy of the proposed profiler
in terms of sensitivity and precision. The sensitivity (recall) of the proposed
abstract analysis achieved 100% accuracy in detecting all occurred data depen-
dencies (as expected). The positive predictive value (precision) is calculated in
the seventh and eighth columns, precision 1 and precision 2, compared to conven-
tional and Comprehensive profiling baseline, respectively1. Results indicate that
our system intends to overestimate the dependence relations; this is expected due
to the underlying abstraction concept. However, the sensitivity metric is gener-
ally essential, as not missing a dependence is more important than reporting
wrong dependence because it would affect the correctness of the parallelisation
decision. Both sensitivity and precision are formulated by calculating TP (true

1 We use two metrics as conventional profiling edges connect two dynamic instruction
instances, whereas comprehensive profiling connects two static instructions; thus,
ground truth is represented differently in each case.

Approximate Data Dependence Profiling 13

positive; how many actual dependence pairs are detected by the proposed pro-
filer), FN (false negative; how many missed dependence pairs), and FP (false
positive, how many dependence pairs reported but are wrong). It is worth men-
tioning that the precision is low (61.4% on average), due to successive calls to
the same functions, which leads to having some clusters of data corresponding
to each call.

Figure 3 shows the slowdown for each benchmark program. We can notice
the differences in runtime overhead in each benchmark program between con-
ventional, comprehensive, and abstract profiling. Notably, the runtime overhead
of abstract profiling is better than the comprehensive (10.7×) and the conven-
tional (1.4×) profiling techniques on average, where it saves memory but needs
runtime processing for every dynamic memory instruction. In future work, we
will work on tackling the runtime overhead. Figure 4 shows the precision analysis
and memory reduction for different memory block size. It is clear that block size
is a decreasing function of precision and an increasing function of memory reduc-
tion. Block size of 212 bits seems to be a good design point as memory reduction
is still significant (47× average memory reduction) with 82.25% precision.

SD3 [10] as related work, implemented on Pin and used a SPEC2006 to
present the results compared to the pairwise method as a baseline (i.e. com-
prehensive). The SD3 baseline has more runtime overhead than our baseline
implementation. For example, the slowdown baseline of 462.libquantum and
456.hmmer is 90× and 210× respectively; moreover, most of the reminder SPEC
programs fail due to lack of memory resources (consumes more than10 GB mem-
ory). On the other side, our implementation of the baseline has a slowdown 7.42×
and 71.54×, respectively for the same two programs, and a slowdown of all tested
programs 402.4× on average. Serial SD3 has 289× slowdown on average for the
top 20 hottest loops. The parallelised version of SD3 shows a 70× slowdown
on average (8 tasks on 8 cores). The proposed profiler shows 37.4× on average
for profiling the whole program, and a memory reduction 6981× on average.

Fig. 3. Abstract profiling overhead on SPEC2006 benchmark.

14 M. Abbas et al.

Fig. 4. Memory reduction and precision analysis for different memory block size.

Moreover, our technique applies to other approaches that intend to mitigate
profiling overhead like sampling and parallelisation, which we aim to investigate
in the future.

6 Conclusions and Future Work

This paper has considered employing a simple abstract representation based
method for detecting data dependence at the binary level. This approach has
combined both an interval and congruent abstract domains to detect data depen-
dence relations, as well as abstracting partitioned memory sub address spaces.
We have implemented this approach on the Pin dynamic binary instrumenta-
tion framework and conducted an initial performance study on both SPEC and
polyhedral benchmark suite. Results show perfect recall rate of 100% with a
significant memory reduction in comparison with the profiling baseline. Future
work includes considering more elaborate abstract properties such as dependence
vectors as integrating this profiling method with an automatic parallelisation
framework.

References

1. Abstract Interpretation in a Nutshell. http://www.di.ens.fr/%7Ecousot/AI/
IntroAbsInt.html. Accessed 24 February 2018

2. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Electron.
Comput. 5, 757–763 (1966)

3. Bueno, F., De La Banda, M.G., Hermenegildo, M.: Effectivness of abstract inter-
pretation in automatic parallelization: a case study in logic programming. ACM
Trans. Program. Lang. Syst. (TOPLAS) 21(2), 189–239 (1999)

4. Bygde, S.: Abstract interpretation and abstract domains. Master’s thesis, Västerås,
Sweden, May 2006

5. Chen, T., Lin, J., Dai, X., Hsu, W.-C., Yew, P.-C.: Data dependence profiling for
speculative optimizations. In: Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp.
57–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24723-4_5

http://www.di.ens.fr/%7Ecousot/AI/IntroAbsInt.html
http://www.di.ens.fr/%7Ecousot/AI/IntroAbsInt.html
https://doi.org/10.1007/978-3-540-24723-4_5

Approximate Data Dependence Profiling 15

6. Cousot, P.: A gentle introduction to abstract interpretation. In: The 9th Inter-
national Symposium on Theoretical Aspects of Software Engineering, Nanjing,
China, September 2015, pp. 1–46. http://www.di.ens.fr/~cousot/publications.
www/slides-public/PCousot-TASE-2015-AI-tutorial-4-1.pdf

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

8. Cousot, P., Cousot, R.: Abstract interpretation: past, present and future. In: Pro-
ceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), pp. 1–10 (2014)

9. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.
30(3–4), 165–190 (1989)

10. Kim, M., Kim, H., Luk, C.K.: SD3: a scalable approach to dynamic data-
dependence profiling. In: 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 535–546. IEEE (2010)

11. Kotha, A., Anand, K., Smithson, M., Yellareddy, G., Barua, R.: Automatic paral-
lelization in a binary rewriter. In: 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 547–557. IEEE (2010)

12. Li, Z., Beaumont, M., Jannesari, A., Wolf, F.: Fast data-dependence profiling by
skipping repeatedly executed memory operations. In: Wang, G., Zomaya, A., Perez,
G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9531, pp. 583–596. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27140-8_40

13. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: IEEE International Parallel and Distributed Processing
Symposium, pp. 484–493. IEEE (2015)

14. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Conference on Programming Language Design and Implemen-
tation (2005)

15. Maydan, D., Amarsinghe, S., Lam, M.: Data dependence and data-flow analysis
of arrays. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC
1992. LNCS, vol. 757, pp. 434–448. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-57502-2_63

16. Midkiff, S.P.: Automatic Parallelization: An Overview of Fundamental Compiler
Techniques. Morgan & Claypool Publishers, San Rafael (2012)

17. Moseley, T., Shye, A., Reddi, V.J., Grunwald, D., Peri, R.: Shadow profiling: hid-
ing instrumentation costs with parallelism. In: International Symposium on Code
Generation and Optimization (CGO 2007), pp. 198–208. IEEE (2007)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-03811-6

19. Norouzi, M., Ilias, Q., Jannesari, A., Wolf, F.: Accelerating data-dependence pro-
filing with static hints. In: Yahyapour, R. (ed.) Euro-Par 2019. LNCS, vol. 11725,
pp. 17–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29400-7_2

20. Ricci, L.: Automatic loop parallelization: an abstract interpretation approach. In:
Proceedings. International Conference on Parallel Computing in Electrical Engi-
neering, pp. 112–118. IEEE (2002)

21. Sanchez, D., Yen, L., Hill, M.D., Sankaralingam, K.: Implementing signatures for
transactional memory. In: 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), pp. 123–133. IEEE (2007)

http://www.di.ens.fr/~cousot/publications.www/slides-public/PCousot-TASE-2015-AI-tutorial-4-1.pdf
http://www.di.ens.fr/~cousot/publications.www/slides-public/PCousot-TASE-2015-AI-tutorial-4-1.pdf
https://doi.org/10.1007/978-3-319-27140-8_40
https://doi.org/10.1007/3-540-57502-2_63
https://doi.org/10.1007/3-540-57502-2_63
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-030-29400-7_2

16 M. Abbas et al.

22. Tzolovski, S.: Data dependences as abstract interpretations. In: Van Hentenryck,
P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 366–366. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0032756

23. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using soft-
ware signatures. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pp. 186–195 (2012)

24. Yu, H., Li, Z.: Multi-slicing: a compiler-supported parallel approach to data depen-
dence profiling. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, pp. 23–33 (2012)

https://doi.org/10.1007/BFb0032756

Evaluating Dynamic Task Scheduling
with Priorities and Adaptive Aging in a

Task-Based Runtime System

Thomas Becker1(B) and Tobias Schüle2

1 Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
thomas.becker@kit.edu

2 Siemens AG, Corporate Technology, 81739 Munich, Germany
tobias.schuele@siemens.com

Abstract. The high degree of parallelism of today’s computing systems
often requires executing applications and their tasks in parallel due to
a limited scaling capability of individual applications. In such scenar-
ios, considering the differing importance of applications while scheduling
tasks is done by assigning priorities to the tasks. However, priorities may
lead to starvation in highly utilized systems. A solution is offered by
aging mechanisms that raise the priority of long waiting tasks. As mod-
ern systems are often dynamic in nature, we developed a two-level aging
mechanism and analyzed its effect in the context of 6 dynamic scheduling
algorithms for heterogeneous systems. In the context of task scheduling,
aging refers to a method that increases the priority of a task over its life-
time. We used a task-based runtime system to evaluate the mechanism
on a real system in two scenarios. The results show a speed up of the
average total makespan in 9 out of 12 conducted experiments when aging
is used with the cost of additional waiting time for the applications/jobs
with higher priority. However, the job/application with the highest pri-
ority is still finished first in all cases. Considering the scheduling algo-
rithms, Minimum Completion Time, Sufferage, and Relative Cost benefit
in both experiments by the aging mechanism. Additionally, no algorithm
significantly dominates all other algorithms when total makespans are
compared.

Keywords: Dynamic task scheduling · Task priorities · Heterogeneous
architectures

1 Motivation

Modern computing systems used in fields like embedded and high performance
computing feature a high degree of parallelism and are often equipped with addi-
tional accelerators, e.g. GPUs. This parallelism can be used to execute different
functionality or applications in parallel as not all applications are able to exploit
the available computational power due to a lack of scaling capability. However,
executing multiple applications and their corresponding tasks in parallel can be
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 17–31, 2020.
https://doi.org/10.1007/978-3-030-52794-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_2

18 T. Becker and T. Schüle

problematic if a certain quality of service is required or expected for a subset of
the applications. A common way to express differing importance of applications
or functionality in non-safety-critical systems is to assign priorities accordingly.
In highly utilized systems though, static task priorities can lead to the starva-
tion of certain tasks. Starvation can be avoided by applying aging mechanisms.
Aging refers to the technique of raising the priority of tasks that have waited a
certain amount of time in the system for execution. This is not to be confused
with hardware aging, where the fault rate of a hardware component increases
over its lifetime.

Today’s computing systems are often dynamic in nature, which means that
the set of tasks to be executed does not remain static, and tasks’ start times may
be unknown as they may be triggered by signals or user interactions. Therefore,
we focus on dynamic scheduling algorithms and add an adaptive aging mecha-
nism that considers the current system state and load.

Generally, heterogeneous architectures present many challenges to applica-
tion developers. A state-of-the-art solution is offered by task-based runtime sys-
tems that abstract from the underlying system and provide helpful functionality
for developers. To utilize these features, we integrate our work into an existing
task-based runtime system, the Embedded Multicore Building Blocks (EMB2),
an open-source runtime system and library developed by Siemens. In summary,
we make the following contributions:

– We integrate 6 dynamic scheduling algorithms into a task-based runtime sys-
tem and add the ability to consider task priorities.

– We develop a two-level adaptive aging mechanism to extend the scheduling
module.

– We evaluate the algorithms without and with aging on a real system and
investigate their behavior in terms of different metrics.

– We analyze the effect of aging in these experiments.

The remainder of this paper is structured as follows: In Sect. 2 we briefly discuss
the problem statement and the necessary fundamentals of our work. EMB2 is
shortly introduced in Sect. 3. Section 4 presents the extensions made to EMB2

and the scheduling algorithms we implemented. The experimental setup and the
obtained results are presented in Sect. 5. Finally, we discuss related work (Sect. 6)
and conclude with directions for future work (Sect. 7).

2 Fundamentals and Problem Statement

The basic scheduling problem comprises a set of n tasks T := {t1, . . . , tn} that
has to be assigned to a set of m processing units P := {p1, . . . , pm}. Next to
mapping a task ti to a processing unit pj , scheduling also includes the assign-
ment of an ordering and time slices. In the case of heterogeneous systems, the
processing units pj may have different characteristics, which can lead to varying
executions times for a single task on different units [22]. Scheduling problems
are generally considered to be NP-hard [10].

Dynamic Task Scheduling with Priorities and Adaptive Aging 19

As there is no algorithm that can solve all scheduling problems efficiently,
there exist many heuristics. Generally, these can be classified into static and
dynamic algorithms [20]. The main difference is that static algorithms make all
decisions before a single task is executed, whereas dynamic algorithms schedule
tasks at runtime. Hence, static algorithms have to know all relevant task infor-
mation beforehand, while dynamic ones do not need full information and are
able to adapt their behavior.

This work targets tasks that may potentially create infinite task instances
for execution and whose start times may be unknown. Therefore, we focus on
dynamic scheduling algorithms. Additionally, we allow adding priorities to tasks.
In general, task priorities can be set before runtime for every instance of this
task and remain static over its lifecycle, or they are dynamically set for every
task instance at runtime and may change over time [5]. The earliest deadline first
(EDF) algorithm [9] is a well-known example with dynamic task priorities. Each
task instance is assigned the priority p = 1

d when it arrives in the system, where
d is the deadline of this instance. Contrary to EDF, rate-monotonic scheduling
[16] assigns static priorities. Each task is assigned the priority p = 1

ri
, where

ri is the period of task ti. In this work, an application developer is allowed to
assign a static priority to a task, which is then used for all instances of this
task. However, we also utilize an aging mechanism that is allowed to increase
the priority of a single task instance in order to improve fairness if the waiting
time of an instance is considered too long. In addition, it has to be noted that
we do not support task preemption.

3 Embedded Multicore Building Blocks

EMB2 [21] is a C/C++ library and runtime system for parallel programming of
embedded systems.1 One of the challenges EMB2 aims to solve is to reduce the
complexity of heterogeneous and parallel architectures for application develop-
ers. EMB2 builds on MTAPI, a task model that allows several implementation
variants for a user-defined task. An application developer defines a specific func-
tionality (kernel), e.g., a matrix multiplication, and is then allowed to provide
one or multiple implementations for this task. Thereby, the application devel-
opment can be separated from implementing specific kernels and the underlying
hardware. These kernels targeting specific accelerators can then be optimized by
hardware experts.

MTAPI additionally allows a developer to start tasks and to synchronize
on their completion, where the actual execution is controlled by the runtime
system. Thereby, the developer has to guarantee that only tasks that are ready to
execute and have their dependencies fulfilled are started. MTAPI’s tasks are more
light-weight than a thread and distributed among worker threads for execution.
Execution takes place concurrently to other tasks that have been started and it
is allowed to start new tasks within a task.

1 https://embb.io/.

https://embb.io/

20 T. Becker and T. Schüle

In previous work, we already extended EMB2 to support sophisticated
scheduling on heterogeneous architectures [2]. For this purpose, we added a gen-
eral processing unit abstraction that allows grouping identical units into groups.
All processing units are represented by an OS-level worker thread that is used
to execute the tasks mapped to this processing unit. Furthermore, we added a
monitoring component to EMB2 that monitors task execution. In the current
version, the component measures task execution times including potentially nec-
essary data transfers. The measurements are stored within a history database
with the task’s problem size as key. The stored data is then used to predict
execution times of upcoming tasks to improve scheduling decisions. Finally, we
added an abstract scheduler module and six dynamic scheduling heuristics for
heterogeneous architectures to EMB2.

As of yet, necessary data transfers for the execution on accelerators are not
considered separately. This means that a task executed on an accelerator always
transfers its data on and off the accelerator regardless of its predecessor and
successor tasks. The high-level architecture of EMB2 can be seen in Fig. 1.

Fig. 1. High-level architecture of EMB2 [21]

4 Dynamic Scheduling Algorithms

This section presents the extensions added to EMB2 to support task priorities,
the algorithms that have been integrated into EMB2, and the adaptive aging
mechanism used to increase fairness.

We selected the algorithms on the basis of their runtime overhead, since
scheduling decisions have to be made as fast as possible in dynamic systems, their
implementation complexity, and their ability to work with limited knowledge
about the set of tasks to be executed. The selected heuristics can be classified
into immediate and batch mode. Immediate mode considers tasks in a fixed
order, only moving on to the next task after making a scheduling decision. In
contrast, batch mode considers tasks out-of-order and so delays task scheduling
decisions as long as possible, thereby increasing the pool of potential tasks to
choose from.

Dynamic Task Scheduling with Priorities and Adaptive Aging 21

4.1 EMB2 Extensions

Both the abstract scheduler module and each processing unit abstraction created
for [2] comprise queues to store tasks. The scheduler queue stores all tasks ready
to execute, while the processing unit queues store all tasks assigned to this
specific unit. For EMB2 to be able to support different task priorities, each
queue was replaced by a set of queues with one queue for every priority level.
Assigned tasks and tasks ready to execute are then stored in queues according
to their current priority.

4.2 Immediate Mode Heuristics

Minimum Completion Time (MCT). [1] combines the execution time of a
task ti with the estimated completion time ct of the already assigned tasks of a
processing unit pj . In total, MCT predicts the completion time ct of a task ti
and assigns ti to the processing unit pj that minimizes ct of ti.

4.3 Batch Mode Heuristics

Min-Min. [12] extends the idea of MCT by considering the complete set of
currently ready-to-execute tasks. The heuristic then assigns the task ti that
has the earliest completion time to the processing unit pj that minimizes the
completion time of ti ct(ti). In general, the core idea is to schedule shorter tasks
first to encumber the system for as short a time as possible. This can lead to
starvation of larger tasks if steadily new shorter tasks arrive in the system.

Max-Min. [15] is a variant of Min-Min and based on the observation that Min-
Min often leads to large tasks getting postponed to the end of an execution
cycle, needlessly increasing the total makespan because the remaining tasks are
too coarse-granular to partition equally. So, Max-Min schedules the tasks with
the latest minimum completion time first, leaving small tasks to pad out any
load imbalance in the end. However, this can lead to starvation of small tasks if
steadily new longer tasks arrive.

RASA. [18] is a combination of both Min-Min and Max-Min. It uses them
alternatively for each iteration, starting with Min-Min if the number of resources
is odd, and Max-Min otherwise.

Sufferage. [15] ranks all tasks ready-to-execute according to their urgency
based on how much time the task stands to lose if it does not get mapped
to its preferred resource. The ranking is given by the difference between the
task’s minimum completion time and the minimum completion time the task
would achieve if the fastest processing unit would not be available.

22 T. Becker and T. Schüle

Relative Cost (RC). [17] uses the new metric rc, which divides ct of a task
ti by its average ct over all processing units, to rank tasks. RC both uses a
static and a dynamic variant of the relative cost metric to compute the final
metric. The static variant is defined as γs(ti, pj) = et(ti,pj)

etavg(ti)
, where et(ti, pj) is

the execution time of task ti on processing unit pj , and etavg(ti) is the average
execution time of ti over all processing units. γd(ti, pj), the dynamic variant is
defined as γd(ti, pj) = ct(ti,pj)

ctavg(ti)
, where ct(ti, pj) is the completion time of ti on pj ,

and ctavg(ti) is the average ct of ti over all processing units. The second variant
is dynamic as ct is updated after each time a task is mapped to a processing unit.
The variants are then combined into rc = γs(ti, pj)α · γd(ti, pj), where α ∈ [0, 1]
determines the effect of the static costs. In this work, we use α = 0.5. RC then
maps the task with minimum rc to pj that minimizes ct(ti).

4.4 Aging Mechanism

We added a two-level aging mechanism to the scheduling module of EMB2 to
avoid starvation of tasks. The first level was integrated directly into the scheduler
module. Tasks ready to execute are stored into priority-specific ready-queues.
Therefore, if there are n distinct priority levels, n separate ready-queues are
created. Each time the scheduler is activated, each non-empty queue with a
priority lower than the set maximum priority is checked for potential aging
candidates if at least two times the amount of active processing units of tasks
are currently ready to execute. So, the aging mechanism is only activated if
at least 2 · p tasks are currently enqueued with p being the number of active
processing units. A task in a ready-queue is selected for priority promotion if
the task is older than the average task waiting time multiplied with a threshold
factor αprom. After a task is promoted to a new priority queue by increasing its
priority, the task is pushed to the back of the queue and its waiting time reset.

The second level of the aging mechanism targets the processing units’ waiting
queues. Each processing unit possesses priority-specific queues, where assigned
tasks are stored. Again, if there are n distinct priority levels, each processing
unit possesses n separate waiting queues. A task is assigned to the priority level,
which it last had in the scheduler. As long as a processing unit is active, i.e.
at least one waiting queue is non-empty, each non-empty queue with a priority
lower than the set maximum priority is checked for potential aging candidates.
Again, a task in a waiting queue is selected for priority promotion if the task
is older than the average queue waiting time multiplied with a threshold factor
αprom. Actually, different threshold factors αprom can be used. However in this
work, we use αprom = 1.7 for both levels. This value was determined empirically
as a compromise to reduce overall priority promotion while still enabling the
promotion for long-waiting tasks. Again, the waiting time of a task is reset after
a promotion and it is pushed to the back of the new queue.

Dynamic Task Scheduling with Priorities and Adaptive Aging 23

5 Experiments

As benchmarks we considered two different scenarios with all benchmark tasks
providing both a CPU and a GPU OpenCL implementation. The first sce-
nario consists of three independent heterogeneous tasks with differing priorities
and has already been used in our previous work [2]. This benchmark resembles
dynamic systems as the task instances are started sporadically, thereby adding
a random component to the starting point of a task instance.

For the second scenario, we execute two benchmarks of the Rodinia bench-
mark suite [4], hotspot3D and particlefilter, in parallel with different priorities.
Both benchmarks distribute their work over several parallel tasks.

All experiments were conducted ten times with and without aging. For each
experiment, we measured the makespan of each application or job, and the total
makespan of all tasks. We then computed the average, the minimum, and the
maximum. The makespan is defined as the time from start to finish of an appli-
cation or task. Additionally, we measured the flow time of each task and again
computed the average, the minimum, and the maximum. The flow time of ti is
defined as ti,flow = ti,finish− ti,release, where ti,release is the release time or system
arrival time of ti and ti,finish is the finish time of ti. So, ti,flow is basically the
time ti spends in the system. It has to be noted that the flow time is usually
dominated by a task’s waiting time. This potentially leads to large differences
between minimum, average, and maximum values.

5.1 Experimental Setup

The experiments were performed on a server with two Intel Xeon E5-2650 v4
CPUs with 12 cores at 2.2 GHz each and dynamic voltage and frequency scal-
ing enabled, an NVIDIA Tesla K80, and 128 GB of 2.4 GHz DDR4 SDRAM
DIMM (PC4-19200). The software environment includes Ubuntu 18.04.3, the
Linux 4.15.0-74.84-generic kernel, glibc 2.27, and the nvidia-410.48 driver. EMB2

was compiled with the GCC 7.4.0 compiler. We limited EMB2 to 16 CPU cores
for the experiments in order to increase the system load and simulate a highly
utilized system.

The scheduling algorithms presented in Sect. 4 operate in the so-called pull
mode. In pull mode, the scheduler gets triggered iff at least one processing unit
is idle. We chose this mode because it allows the scheduler to collect a set of
tasks, which is needed to benefit from the batch mode heuristics.

5.2 Independent Heterogeneous Jobs

We chose three video-processing tasks that have both an OpenCL and a CPU
implementation for the first scenario:

24 T. Becker and T. Schüle

– J1 (Mean): A 3 × 3 box blur.
– J2 (Cartoonify): Performs a Sobel operator with a threshold selecting black

pixels for edge regions and discretized RGB values for the interior. The Sobel
operator consists of two convolutions with different 3 × 3 kernels followed by
the computation of an Euclidean norm.

– J3 (Black-and-White (BW)): A simple filter which replaces (R,G,B) values
with their greyscale version (R+G+B

3 , R+G+B
3 , R+G+B

3).

All operations were applied to the kodim23.png test image. The three operations
execute for 72.8 ms, 165.97 ms, and 11.4 ms on the CPU and 3.4 ms, 3.1 ms, and
3.1 ms on the GPU. We assigned Mean the priority 1, Cartoonify the priority
2, and Black-and-White the priority 0 with 2 being the highest and maximum
priority in the system. A sporadic profile was used to create task instances of
these three jobs. New task instances were released with a minimum interarrival
time of 1

k s, where k is the parameter to control the load, plus a random delay
drawn from an exponential distribution with parameter λ = k. By varying k,
we can generate a range of different loads. The evaluation workload consists of

Table 1. Makespan results of the independent heterogeneous jobs experiment

MCT Min-Min Max-Min Suff RASA RC

Cartoonify min w/o aging 1.43 s 1.46 s 1.45 s 1.46 s 1.42 s 1.44 s

min w/ aging 1.68 s 1.64 s 1.79 s 1.51 s 1.79 s 1.59 s

avg w/o aging 1.49 s 1.56 s 1.54 s 1.53 s 1.59 s 1.52 s

avg w/aging 1.88 s 1.87 s 2.22 s 1.68 s 2.25 s 1.82 s

max w/o aging 1.64 s 1.70 s 1.65 s 1.74 s 1.78 s 1.65 s

max w/ aging 2.38 s 2.24 s 3.67 s 2.23 s 3.71 s 2.69 s

Mean min w/o aging 2.17 s 2.31 s 2.35 s 2.36 s 2.29 s 2.35 s

min w/ aging 2.20 s 2.69 s 2.46 s 2.48 s 2.43 s 2.70 s

avg w/o aging 2.29 s 2.45 s 2.49 s 2.48 s 2.51 s 2.46 s

avg w/ aging 2.37 s 2.86 s 2.71 s 2.60 s 2.62 s 2.85 s

max w/o aging 2.55 s 2.82 s 2.70 s 2.86 s 2.93 s 2.70 s

max w/ aging 2.57 s 3.08 s 3.23 s 2.68 s 3.14 s 3.06 s

BW min w/o aging 2.38 s 2.75 s 2.79 s 2.83 s 2.68 s 2.85 s

min w/ aging 2.28 s 2.42 s 2.72 s 2.52 s 2.35 s 2.56 s

avg w/o aging 2.51 s 2.92 s 2.98 s 2.95 s 2.96 s 2.97 s

avg w/ aging 2.46 s 2.57 s 2.98 s 2.74 s 2.58 s 2.80 s

max w/o aging 2.77 s 3.27 s 3.23 s 3.32 s 3.38 s 3.27 s

max w/ aging 2.70 s 2.74 s 3.23 s 2.84 s 2.75 s 2.99 s

Total min w/o aging 2.38 s 2.75 s 2.79 s 2.83 s 2.68 s 2.85 s

min w/ aging 2.31 s 2.69 s 2.72 s 2.62 s 2.52 s 2.70 s

avg w/o aging 2.51 s 2.92 s 2.98 s 2.95 s 2.96 s 2.97 s

avg w/ aging 2.47 s 2.86 s 3.03 s 2.74 s 2.82 s 2.90 s

max w/o aging 2.77 s 3.27 s 3.23 s 3.32 s 3.38 s 3.27 s

max w/ aging 2.70 s 3.08 s 3.67 s 2.82 s 3.71 s 3.06 s

Dynamic Task Scheduling with Priorities and Adaptive Aging 25

3000 tasks corresponding in equal proportions to instances of all three jobs. We
conducted the experiment for k = 2000 to simulate a heavily utilized system.
The results of the makespan measurements can be seen in Table 1.

They show that for 5 out of 6 algorithms the average total makespan is
improved by adding the aging mechanism, with Max-Min being the only algo-
rithm where the makespan increases by 1.6%. On average over all algorithms,
the average makespan is improved by about 3.75%. Sufferage profits the most
with an improvement of about 7.5%. Considering the single applications, aging
increases the average makespan for Cartoonify by about 26.9% and for Mean by
about 8.9% compared to a decrease of 6.7% for Black-and-White. Especially for
Max-Min and RASA, which uses Max-Min, the average makespan of Cartoonify
suffers from an increase of over 40%. Other noteworthy results are an increase of
over 13.7% for the maximum measured total makespan for Max-Min and of over
9.5% for RASA, which correlates with an increase of 123.1% and 108% respec-
tively for Cartoonify. Comparing the algorithms, MCT achieves the best average
total makespan with and without aging while Max-Min achieves the worst result
in both cases. Sufferage gets the second best results in both cases.

Further, we obtained results for the flow time ti,flow of each task instance ti
and then computed the minimum, average and maximum flow time for all three
jobs. Table 2 lists the results.

The results show a significant increase, by 95.2% on average, in the average
flow time for Cartoonify in 5 out of 6 experiments, with RC being the exception.
For Cartoonify, this correlates with an increase in the maximum flow time for
each algorithm. In contrast, the average flow time for both Mean and Black-and-
White decreases for each algorithm by 13.1% on average and 25.67% on average,

Table 2. Flow time results of the independent heterogeneous jobs experiment

MCT Min-Min Max-Min Suff RASA RC

Cartoonify min w/o aging 1.54ms 1.61ms 1.46ms 1.49ms 1.46ms 1.48ms

min w/ aging 1.77ms 2.00ms 1.47ms 1.56ms 1.51ms 1.61ms

avg w/o aging 214.01ms 239.59ms 222.93ms 229.04ms 233.67ms 220.88ms

avg w/ aging 477.43ms 355.65ms 427.44ms 230.28ms 730.11ms 202.69ms

max w/o aging 1047.54ms 948.90ms 1500.34ms 1137.52ms 1000.74 ms 1124.99ms

max w/ aging 1306.71ms 1553.85ms 3624.45ms 1454.86ms 3313.17 ms 1838.82ms

Mean min w/o aging 1.81ms 1.72ms 1.62ms 1.72ms 1.64ms 1.64ms

min w/ aging 2.99ms 6.05ms 1.65ms 1.81ms 1.66ms 1.79ms

avg w/o aging 1073.45ms 1208.23ms 1206.62ms 1261.46ms 1145.06 ms 1226.23ms

avg w/ aging 904.87ms 1092.57ms 1030.84ms 1073.86ms 886.34ms 1213.63ms

max w/o aging 1498.08ms 2570.64ms 2708.11ms 2513.19ms 2180.18 ms 2605.41ms

max w/ aging 1459.64ms 26617.62ms 3196.53ms 1904.88ms 2830.09 ms 2883.13ms

BW min w/o aging 1.41ms 1.69ms 1.33ms 1.41ms 1.44ms 1.57ms

min w/ aging 1.76ms 1.76ms 1.49ms 1.37ms 1.48ms 1.73ms

avg w/o aging 1744.71ms 2085.71ms 2085.25ms 2142.52ms 2016.48 ms 2123.33ms

avg w/ aging 1400.28ms 1333.99ms 1946.73ms 1587.36ms 1263.95 ms 1517.70ms

max w/o aging 2365.10ms 2823.32ms 3116.59ms 2914.91ms 2817.72 ms 3026.06ms

max w/ aging 2089.93ms 2161.86ms 3210.39ms 2321.71ms 2402.84 ms 2666.41ms

26 T. Becker and T. Schüle

respectively. This shows the effect of the aging mechanism as the waiting time for
task instances of both jobs is reduced by increasing their priority. For Black-and-
White, this also correlates with a decrease in the maximum flow time measured.

5.3 Parallel Applications

The second scenario consists of two Rodinia benchmark applications, Hotspot3D
and Particlefilter, executed in parallel. Hotspot3D iteratively computes the
heat distribution of a 3D chip represented by a grid. In every iteration, a new
temperature value depending on the last value, the surrounding values, and a
power value is computed for each element. We chose this computation as kernel
function for a parallelization with EMB2 and parallelized it over the z-axis.
The CPU implementation then further splits its task into smaller CPU specific
subtasks. This is done manually and statically by the programmer to use the
underlying parallelism of the multicore CPU and still have a single original CPU
task that handles the same workload as the GPU task. For the evaluation, we
used a 512 × 512 × 8 grid with the start values for temperature and power
included in the benchmark, and 1000 iterations. The average runtime on the
CPU is 5.03 ms and 7.36 ms on the GPU.

Particlefilter is a statistical estimator of the locations of target objects
given noisy measurements. Profiling showed that findIndex() is the best candi-
date for a parallelization. findIndex() computes the first index in the cumulative
distribution function array with a value greater than or equal to a given value.
As findIndex() is called for every particle, we parallelized the computation by
dividing the particles into work groups. The CPU implementation again fur-
ther divides those groups into subtasks. We used the standard parameters 128
for both matrix dimensions, 100 for the number of frames, and 50000 for the
number of particles for the evaluation. The average task runtime on the CPU
is 17.8 ms and 6.5 ms on the GPU. Table 3 shows the makespan results without
and with aging respectively for this experiment.

Overall, the average total makespan is improved by a speed up of about
3.16% when aging is used and the average total makespan improves for 4 out
of 6 algorithms, with Min-Min and RASA being the exceptions. In this scenario
Max-Min improves most by using aging with a speed up of about 4.5%. The
individual average makespans decrease by 0.6% for Particlefilter and by 1.6%
for Hotspot3D. It is also noteworthy that the minimum obtained makespan of
Hotspot3D decreases by over 13% for both Max-Min and Sufferage. When the
algorithms are compared, Min-Min achieves the best average total makespan
without aging and Max-Min the best result with aging, with Min-Min getting
the second best result.

Again, we additionally monitored the flow time ti,flow for all task instances ti
and computed the minimum, average, and maximum over all instances for both
applications. The results are shown in Table 4.

Dynamic Task Scheduling with Priorities and Adaptive Aging 27

Table 3. Makespan results of the Rodinia benchmarks experiment

MCT Min-Min Max-Min Suff RASA RC

Particlefilter min w/o aging 26.46 s 26.52 s 25.97 s 26.57 s 26.62 s 25.61 s

min w/ aging 27.25 s 25.96 s 26.37 s 26.82 s 26.23 s 26.42 s

avg w/o aging 27.61 s 27.73 s 27.82 s 27.72 s 27.56 s 27.85 s

avg w/ aging 27.76 s 27.17 s 27.49 s 27.61 s 27.62 s 27.67 s

max w/o aging 28.79 s 27.92 s 28.83 s 28.54 s 28.79 s 29.56 s

max w/ aging 28.62 s 28.37 s 28.55 s 28.97 s 29.15 s 29.47 s

Hotspot3D min w/o aging 26.84 s 27.82 s 29.91 s 30.52 s 26.63 s 30.22 s

min w/ aging 26.27 s 25.37 s 26.02 s 25.93 s 25.33 s 27.82 s

avg w/o aging 30.93 s 30.59 s 31.44 s 31.38 s 30.71 s 31.78 s

avg w/ aging 30.70 s 30.59 s 30.03 s 30.96 s 30.64 s 30.93 s

max w/o aging 32.60 s 32.18 s 32.02 s 32.28 s 32.09 s 33.46 s

max w/ aging 31.81 s 31.91 s 31.71 s 32.47 s 31.83 s 33.16 s

Total min w/o aging 26.84 s 27.82 s 29.91 s 30.52 s 26.63 s 30.22 s

min w/ aging 27.42 s 26.68 s 26.62 s 26.82 s 26.48 s 27.82 s

avg w/o aging 30.93 s 30.59 s 31.44 s 31.38 s 30.71 s 31.78 s

avg w/ aging 30.81 s 30.72 s 30.09 s 31.05 s 30.76 s 30.93 s

max w/o aging 32.60 s 32.18 s 32.02 s 32.28 s 32.09 s 33.46 s

max w/ aging 31.81 s 31.91 s 31.71 s 32.47 s 31.83 s 33.16 s

The results show a decrease in the minimum and maximum flow time of
Hotspot3D for 5 and 4 algorithms, respectively. This correlates with shorter
waiting times caused by a priority raise. The averages roughly remain unchanged.
This can be explained by the much larger number of tasks for Hotspot3D, which
are executed after Particlefilter is finished and thereby dominate the average for
Hotspot3D.

Table 4. Flow time results of the Rodinia benchmarks experiment

MCT Min-Min Max-Min Suff RASA RC

Particlefilter min w/o aging 4.58 ms 4.56 ms 4.52 ms 4.92 ms 4.59 ms 4.34 ms

min w/ aging 4.29 ms 4.37 ms 4.68 ms 4.65 ms 4.18 ms 4.45 ms

avg w/o aging 42.16 ms 42.10 ms 43.93 ms 43.61 ms 42.19 ms 42.21 ms

avg w/ aging 43.35 ms 41.98 ms 43.46 ms 41.69 ms 42.66 ms 43.47 ms

max w/o aging 564.30 ms 568.94 ms 606.79 ms 663.52 ms 528.12 ms 723.96 ms

max w/ aging 636.67 ms 506.50 ms 490.95 ms 639.28 ms 651.32 ms 543.53 ms

Hotspot3D min w/o aging 2.34 ms 1.96 ms 2.15 ms 1.92 ms 1.94 ms 1.67 ms

min w/ aging 1.63 ms 1.65 ms 1.62 ms 1.63 ms 2.33 ms 1.62 ms

avg w/o aging 13.33 ms 13.06 ms 13.27 ms 13.16 ms 13.25 ms 13.49 ms

avg w/ aging 13.31 ms 13.28 ms 13.16 ms 13.31 ms 13.17 ms 13.37 ms

max w/o aging 932.72 ms 801.60 ms 838.39 ms 686.93 ms 648.79 ms 819.58 ms

max w/ aging 709.43 ms 674.13 ms 656.37 ms 938.87 ms 664.43 ms 735.07 ms

28 T. Becker and T. Schüle

6 Related Work

Known existing task-based runtime systems such as HALadapt [14], the TANGO
framework [8], and HPX [11] do not employ task priorities to distinguish applica-
tion importance. StarPU [3], though, supports assigning a priority per processing
unit type to a task. Compared to our work, StarPU does not adapt priorities at
runtime.

Task or job scheduling algorithms with priorities are usually employed in
the context of real-time systems, especially hard real-time systems with strict
deadlines. These algorithms can be classified by the way they assign priorities [5].
Algorithms like EDF [9] or least laxity first (LLF) [6] assign each task instance
a different priority. Thereby, EDF assigns each instance an individual static
priority based on its deadline (see Sect. 2), whereas the priorities assigned by
LLF are dynamically adapted as the laxity, the remaining time until a task has
to be started to fulfill its deadline, decreases over time [5]. Contrary to this,
algorithms like RMS [16] set a static priority that applies to each instance. The
work of this paper differs from these algorithms as our tasks do not possess
deadlines. In our work, an application developer is allowed to set a priority for a
task that then applies to each instance. However, we additionally utilize an aging
mechanism to increase fairness, i.e. priorities may be dynamically adapted.

Similarly to EDF, list scheduling algorithms [22–24] prioritize and then order
individual task instances by computing metrics like the upward rank used by the
heterogeneous earliest finish time (HEFT) heuristic.

Kim et al. [15] consider task priorities and deadlines in the context of dynamic
systems, where the arrival of tasks is unknown. The paper uses three priority
levels, high, medium, low, that can be assigned to task instances. The priorities
are combined with the tasks’ deadlines to compute the worth of executing a task.
Thereby, a scheduling order is created. In contrast to our approach, priorities
are not dynamically adapted to avoid starvation.

Aging mechanisms have been employed in several other works. Kannan
et al. [13] implemented three priority queues and task instances get promoted to
a higher priority level after a fixed time interval. Similarly, the priority of a task
also gets promoted at fixed time intervalls in [19]. In [7], a counter is decreased
after high priority tasks are executed. If a threshold is reached, a low priority
task is executed next.

7 Conclusion and Future Work

In this work, we developed an adaptive aging mechanism and integrated it in
combination with six different dynamic scheduling algorithms into the task-based
runtime system EMB2. We evaluated the scheduling algorithms in two scenarios
with task priorities, a benchmark consisting of three independent heterogeneous
jobs with a sporadic profile, and two Rodinia benchmarks executed in parallel.
Thereby, the experiments were conducted without and with the developed aging
mechanism to examine its effects.

Dynamic Task Scheduling with Priorities and Adaptive Aging 29

The results show a slight improvement in total average makespan (average
speed up of 3.75% and 3.16%) for 5 out of 6 algorithms in the first and for
4 out of 6 algorithms in the second scenario. As expected, this correlates with
an increase in the average makespan for the applications with higher priorities
caused by additional waiting time (the total time spent in queues in the scheduler
and processing unit). This is also reflected in the flow time measurements. The
average increase of 95.2% for the average flow time of the Cartoonify benchmark
is exemplary for this statement. However, the average flowtime and the average
makespan of the application/job with the highest priority remain lowest over all
applications/jobs in all experiments. In return, the aging mechanism reduces the
waiting time which is reflected by improvements of the average makespan and the
average flow time of the job/application with the lowest priority (25% decrease
in average flowtime for black-and-white). A comparison between the scheduling
algorithms shows that no algorithm dominates the other ones considering the
average total makespan. MCT, Sufferage, and RC, though, are able to profit in
all experiments by using aging.

In summary, our adaptive aging mechanism slightly improves the overall
makespan in most experiments while reducing the time a low priority task has to
wait for its execution, thereby increasing fairness, and still securing the fastest
execution and shortest time spent in the system for the job with the highest
priority. In the future, supplemental evaluations are necessary to further solidify
these conclusions. Furthermore, additional optimization goals next to fairness
and makespan, like energy consumption, have to be considered.

References

1. Armstrong, R., Hensgen, D., Kidd, T.: The relative performance of various mapping
algorithms is independent of sizable variances in run-time predictions. In: Seventh
Proceedings of the Heterogeneous Computing Workshop (HCW 1998), pp. 79–87,
March 1998. https://doi.org/10.1109/HCW.1998.666547

2. Becker, T., Karl, W., Schüle, T.: Evaluating dynamic task scheduling in a
task-based runtime system for heterogeneous architectures. In: Schoeberl, M.,
Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds.) ARCS 2019. Lecture Notes
in Computer Science, vol. 11479, pp. 142–155. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18656-2 11

3. Bramas, B.: Impact study of data locality on task-based applications through the
Heteroprio scheduler. PeerJ Comput. Sci. 5, e190 (2019). https://doi.org/10.7717/
peerj-cs.190. https://hal.inria.fr/hal-02120736

4. Che, S., et al..: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characteriza-
tion (IISWC), IISWC 2009, pp. 44–54. IEEE Computer Society, Washington, DC
(2009). https://doi.org/10.1109/IISWC.2009.5306797

5. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor sys-
tems. ACM Comput. Surv. 43(4), 1–44 (2011). https://doi.org/10.1145/1978802.
1978814

6. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time
tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)

https://doi.org/10.1109/HCW.1998.666547
https://doi.org/10.1007/978-3-030-18656-2_11
https://doi.org/10.1007/978-3-030-18656-2_11
https://doi.org/10.7717/peerj-cs.190
https://doi.org/10.7717/peerj-cs.190
https://hal.inria.fr/hal-02120736
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814

30 T. Becker and T. Schüle

7. Dhivya., P., Sangamithra., V., KamalRaj, R., Karthik, S.: Improving the resource
utilization in grid environment using aging technique. In: Third International Con-
ference on Computing, Communication and Networking Technologies (ICCCNT
2012). pp. 1–5, July 2012. https://doi.org/10.1109/ICCCNT.2012.6395912

8. Djemame, K., et al.: TANGO: transparent heterogeneous hardware architecture
deployment for energy gain in operation. CoRR abs/1603.01407 (2016). http://
arxiv.org/abs/1603.01407

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

10. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E.,
Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5,
pp. 287–326. Elsevier (1979)

11. Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., Kaiser, H.: HPX - An open
source C++ Standard Library for Parallelism and Concurrency. In: Proceedings of
OpenSuCo 2017 (OpenSuCo 2017), Denver, Colorado, USA, November 2017, p. 5
(2017)

12. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977). https://doi.org/10.1145/
322003.322011. http://doi.acm.org/10.1145/322003.322011

13. Kannan, G., Thamarai Selvi, S.: Nonpreemptive priority (NPRP) based job
scheduling model for virtualized grid environment. In: 3rd International Conference
on Advanced Computer Theory and Engineering (ICACTE), vol. 4, pp. V4-377–
V4-381, August 2010. https://doi.org/10.1109/ICACTE.2010.5579461

14. Kicherer, M., Nowak, F., Buchty, R., Karl, W.: Seamlessly portable applications:
managing the diversity of modern heterogeneous systems. ACM Trans. Archit.
Code Optim. 8(4), 42:1–42:20 (2012). https://doi.org/10.1145/2086696.2086721.
http://doi.acm.org/10.1145/2086696.2086721

15. Kim, J.K., et al.: Dynamically mapping tasks with priorities and multi-
ple deadlines in a heterogeneous environment. J. Parallel Distrib Com-
put. 67(2), 154–169 (2007). https://doi.org/10.1016/j.jpdc.2006.06.005.
http://www.sciencedirect.com/science/article/pii/S0743731506001444

16. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973). https://doi.org/10.1145/
321738.321743

17. Wu, M.-Y., Shu., W: A high-performance mapping algorithm for heterogeneous
computing systems. In: Proceedings 15th International Parallel and Distributed
Processing Symposium. IPDPS 2001, pp. 6 pp, April 2001

18. Parsa, S., Entezari-Maleki, R.: RASA: a new task scheduling algorithm in grid
environment. World Appl. Sci. J. 7, 152–160 (2009)

19. Pathan, R.M.: Unifying fixed- and dynamic-priority scheduling based on priority
promotion and an improved ready queue management technique. In: 21st IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 209–220
(2015)

20. Rajak, N., Dixit, A., Rajak, R.: Classification of list task scheduling algorithms: a
short review paper. J. Ind. Intell. Inf. 2 (2014). https://doi.org/10.12720/jiii.2.4.
320-323

21. Schuele, T.: Embedded Multicore Building Blocks: Parallel Programming Made
Easy. Embedded World (2015)

https://doi.org/10.1109/ICCCNT.2012.6395912
http://arxiv.org/abs/1603.01407
http://arxiv.org/abs/1603.01407
https://doi.org/10.1145/322003.322011
https://doi.org/10.1145/322003.322011
http://doi.acm.org/10.1145/322003.322011
https://doi.org/10.1109/ICACTE.2010.5579461
https://doi.org/10.1145/2086696.2086721
http://doi.acm.org/10.1145/2086696.2086721
https://doi.org/10.1016/j.jpdc.2006.06.005
http://www.sciencedirect.com/science/article/pii/S0743731506001444
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.12720/jiii.2.4.320-323
https://doi.org/10.12720/jiii.2.4.320-323

Dynamic Task Scheduling with Priorities and Adaptive Aging 31

22. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Task scheduling algorithms for heterogeneous
processors. In: Proceedings of the Eighth Heterogeneous Computing Workshop
(HCW 1999), pp. 3–14, April 1999. https://doi.org/10.1109/HCW.1999.765092

23. Xu, Y., Li, K., Hu, J., Li, K.: A genetic algorithm for task scheduling on hetero-
geneous computing systems using multiple priority queues. Inf. Sci. 270, 255–287
(2014). https://doi.org/10.1016/j.ins.2014.02.122. http://www.sciencedirect.com/
science/article/pii/S002002551400228X

24. Zhao, H., Sakellariou, R.: An experimental investigation into the rank function
of the heterogeneous earliest finish time scheduling algorithm. In: Kosch, H.,
Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 189–
194. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45209-6 28

https://doi.org/10.1109/HCW.1999.765092
https://doi.org/10.1016/j.ins.2014.02.122
http://www.sciencedirect.com/science/article/pii/S002002551400228X
http://www.sciencedirect.com/science/article/pii/S002002551400228X
https://doi.org/10.1007/978-3-540-45209-6_28

An Architecture for Solving
the Eigenvalue Problem
on Embedded FPGAs

Alwyn Burger1(B) , Patrick Urban1 , Jayson Boubin2 ,
and Gregor Schiele1

1 University of Duisburg-Essen, 47057 Duisburg, Germany
{falwyn.burger,gregor.schiele}@uni-due.de,

patrick.urban@stud.uni-due.de
2 The Ohio State University, Columbus, OH, USA

boubin.2@osu.edu

http://www.uni-due.de/es, http://www.osu.edu

Abstract. Resource-limited embedded devices like Unmanned Aerial
Vehicles (UAVs) often rely on offloading or simplified algorithms. Fea-
ture extraction such as Principle Component Analysis (PCA) can reduce
transmission data without compromising accuracy, or even be used for
applications like facial detection. This involves solving eigenvectors and
values which is impractical on conventional embedded MCUs.

We present a novel hardware architecture for embedded FPGAs that
performs eigendecomposition using previously unused techniques like
squared Givens rotations. That leads to a 3x performance improvement
for 16× 16 covariance matrices over similar approaches that use much
larger FPGAs. Offering higher than 30 fps at only 68.61µJ per frame,
our architecture creates exciting new possibilities for intelligent mobile
devices.

Keywords: Hardware architecture · FPGA · Feature extraction

1 Introduction

Eigendecomposition and feature extraction have been the focus of continued
research for many years [19,25,26]. Algorithms like principle component anal-
ysis (PCA) allow us to simplify a dataset to only its important features by
identifying its distinguishing eigenvectors. By projecting data into a reduced
eigenspace (the space described by the eigenvectors), we can simplify problems
like facial detection and recognition to a comparison of a few eigenvalues, i.e.
the relative weight of each eigenvector. More applications of these techniques
are being developed, e.g. in the field of convolutional neural networks (CNNs)
where PCA can find dominant features and compress network structures [12].

However, PCA’s batched nature and computational complexity makes it
infeasible for resource-limited devices. In power-limited applications such as
Unmanned Aerial Vehicles (UAVs) that rely on camera feeds, feature extraction
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 32–43, 2020.
https://doi.org/10.1007/978-3-030-52794-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_3&domain=pdf
http://orcid.org/0000-0001-7537-5665
http://orcid.org/0000-0003-1051-5086
http://orcid.org/0000-0002-4296-9624
http://orcid.org/0000-0003-4266-4828
https://doi.org/10.1007/978-3-030-52794-5_3

An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs 33

could offer data size reduction through local preprocessing. Adding the online
learning capabilities of incremental PCA (IPCA) further allows the devices to
incorporate incoming images into the training set – thereby continuously improv-
ing its performance.

To enable this, an accelerator architecture is required that efficiently per-
forms eigendecomposition on an embedded FPGA. This offers improved energy
efficiency for small devices over GPUs, and additionally provides flexibility over
ASICs as it can be reconfigured to deploy another accelerator at runtime. Dele-
gating this complex computational task to a local FPGA promises considerably
improved processing power over doing everything on a MCU.

However, most techniques for doing eigendecomposition such as the QR algo-
rithm [11] strongly depend on trigonometric functions or square roots to com-
pute a Givens rotation matrix [14] which are resource inefficient on such devices.
Although alternatives like Squared Givens Rotations (SGR) [9] would be con-
siderably more efficient, they introduce scaling issues and have to the authors’
knowledge not been successfully used in the QR algorithm.

In this paper we present a revolutionary hardware architecture design for
performing eigenvalue decomposition (EVD) on an embedded FPGA. By using
a number of state-of-the-art optimization techniques in a novel way, our system
is capable of increasing processing speed by 3–4x over current literature without
compromising accuracy.

Our main contributions are

1. a highly resource-optimized computing architecture for solving eigenvalue
problems,

2. that is scalable from tiny embedded FPGAs to standard desktop models
through a fully homogeneous network of processing elements,

3. and offers pipelined single clock processing elements for maximum processing
speed.

We present our solution by looking at related work in Sect. 2, followed by
an overview of our solution in Sect. 3. The details of the technical contributions
follows in Sect. 4, after which we evaluate our solution in Sect. 5. Finally, we study
the application case of UAVs in Sect. 6 and conclude with some final thoughts
in Sect. 7.

2 Related Work

Incremental PCA [1,6] is a relatively recent development. It offers us the crucial
benefit of online training and avoids the expansion of the covariance matrix
as the training dataset is expanded. Conventional eigensolver algorithms have
been found to be ill-suited to GPU architectures [18] even though they can
achieve nearly 5x speedup over CPUs. QR decomposition (which computes a
single iteration of the QR algorithm) specifically has been implemented using
different GPU-based accelerator architectures [17,18].

Similar to our approach, Guerrero-Ramı́rez et. al. [15] presented the first
eigensolver based on systolic arrays that implements the QR algorithm using

34 A. Burger et al.

FPGAs. These arrays describe a network of processing elements, where each
partially computes a function and passes to their neighbors. In this case, they
iteratively calculate trigonometric functions. Their implementation improved
processing time by a factor of 1.17x–1.37x compared to CPU architectures.

A slower solution that includes a full PCA solver was shown by Korat [19].
It uses significantly more FPGA resources than the previously mentioned work,
and showed that some of the components such as mean calculation and data
normalization are very inefficient on FPGAs.

Ultimately, these authors were limited by having to iteratively approxi-
mate trigonometric functions using the COordinate Rotation DIgital Computer
(CORDIC) algorithm [21] – causing severe slowdown for more processed bits [23].
Additionally, their resource consumption is impractically high for an embed-
ded FPGA. Other projects that use systolic arrays for QR decompositions on
FPGAs [8,27] have similar limitations. To the best of the authors’ knowledge
our work represents the first FPGA implementation of the QR algorithm using
systolic arrays based on an algorithm that does not rely on trigonometric func-
tions.

3 Solution Design

At the core of our EVD (see Fig. 1) is the triangular systolic array (a) to per-
form QR decomposition. It is composed of two types of nodes: boundary (b)
on the diagonal of the triangular matrix and internal (c) off the diagonal. This
iteratively computes the eigenvalues and eigenvectors of a provided covariance
matrix, entering in a skewed order (d). The QR-array results can be fed back
into the system using the buffer (e) until the result converges, at which point
the deskewed output (f) is presented. The scaled output of each step of the QR
array is down-scaled (g).

Fig. 1. Parallel triangular systolic array processor to determine the eigenvalues and
eigenvectors by calculating the QR decomposition based on SGR in an iterative manner.

An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs 35

The starting point for our solution is the QR decomposition. We first con-
sider a real symmetric matrix A0 of dimensions n × n, which is the covariance
matrix for the PCA to be applied. The rank of this matrix corresponds with
the number of eigenvectors being computed, effectively controlling the number
of features being extracted. The approximate determination of the eigenvalues
and eigenvectors is done with the QR algorithm. It is an iterative application of
the QR decomposition, which factorizes a matrix by means of plane rotations,
e.g. Givens rotations.

Each QR iteration is given as:

[Qi, Ri] = qrd(Ai) (1)
Ai+1 = RiQi (2)

and is performed n times over the matrix A until its diagonal elements con-
verge to the eigenvalues. The collection of eigenvectors Q themselves could be
determined by calculating the product of all these orthogonal matrices Qi:

Q =
n∏

i=0

Qi (3)

Using SGR allows us to first use Ai to compute Ri, and even to solve Eq. 1
by processing the identity matrix I to compute Qi. The orthogonal similarity
transformation Ai+1 follows by processing Ri. Furthermore, the eigenvectors Q
in Eq. 3 can be determined efficiently by processing each computed Qi. As all of
these are processed in the same way, we can reuse the processing elements for
improved efficiency.

Each iteration in the QR algorithm thus consists of the input sequence S =
{A,Q,R}. The problem remains that all Ri and Qi are scaled by the SGR,
meaning it cannot be directly used for further iterations.

4 Technical Implementation Contributions

Our primary contribution addresses the internal structure of the processing ele-
ments in the QR array. We improve upon the latency of current state-of-the-art
algorithms by using the square-root-free algorithm proposed by Döhler [9] to
avoid the associated latency. It allows our processing elements to have a latency
of only one clock cycle.

Although SGR has been used for QR decomposition, it has not been applied
to the QR algorithm due to scaling problems. Since results should be fed through
multiple iterations, this would cause overflow errors. To the authors’ best knowl-
edge SGR has therefore not been used for EVD using the QR algorithm.

4.1 SGR Result Scaling

The SGR algorithm scales each calculated QR decomposition [9], which means
that it cannot be used for the QR algorithm directly. Especially when using
fixed-point representation, this will quickly cause overflow.

36 A. Burger et al.

We found the result to be as shown in Eq. 4, which shows that the eigenvalues
λi found on the diagonal of R∗ are squared. Additionally, other values are linearly
scaled with the value of λ2

i . Similarly, each column in Q∗ is scaled.

A R* Q*⎡

⎢⎢⎢⎣

a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann

⎤

⎥⎥⎥⎦
SGR−−−→
QR

⎡

⎢⎢⎢⎣

λ2
1 λ1r12 · · · λ1r1n

0 λ2
2 · · · λ2r2n

...
...

. . .
...

0 0 · · · λ2
n

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

λ1q11 · · · λnq1n
λ1q21 · · · λnq2n

...
. . .

...
λ1qn1 · · · λnqnn

⎤

⎥⎥⎥⎦
(4)

A well-known approach for determining reciprocal square roots [10] is given
by iteratively solving the Newton Method

yi+1 =
1
2
(3yi − y3

i xin) y0 = 0.5 (5)

until it converges to y = 1√
xin

. However, this can be slow under a bad initial
guess y0 very different from the actual result. An interesting approach to this
was coined for the video game Doom1, where the initial guess is varied depending
on the input value.

Extending on this concept, we have developed a novel way to use lookup-
tables (LUTs) for using this with fixed-point numbers. By choosing from a pre-
computed set of appropriate y0 based on the input xin, we can reduce the number
of iterations required for convergence. Given a sufficiently large LUT with 128
24-bit entries to create a very accurate initial guess, we can directly solve Eq. 5
in a single iteration.

4.2 Shared Division

Solving EVD using SGR requires two divisions [7,9,20], which for a matrix width
of n would result in 1

2 (n2−n) dividers. Since they are non-trivial to implement in
hardware (particularly the reciprocal of the divisor), this would be very resource-
intensive.

Therefore, we studied the schedule of active nodes in the array as shown in
Fig. 2. As division is only required in diagonal mode, this shows that only one
division occurs per row. This allows us to share the dividers more efficiently, and
to reduce the required number to n. For a 16× 16 covariance matrix, this leads
to a reduction of 104 divider circuits.

4.3 HDL Optimizations

Similarly, large binary multipliers occupy substantial logic resources in FPGAs.
One can build a sequential circuit using multiplexers on the inputs that cycles
a single multiplier for multiple usages. The basic idea is to first get the result of
A * B in a register, then to multiply that by C.
1 https://github.com/id-Software/DOOM.

https://github.com/id-Software/DOOM

An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs 37

Fig. 2. Propagation through the array at time ti highlighting the active nodes

Additionally, the DSPs are optimized using a technique called retiming, which
involves moving registers across combinatorial logic to improve the design perfor-
mance without affecting the input or output behavior of the circuit [22]. Despite
the optimized interconnection in dedicated logic, adder chains used to implement
binary multipliers in DPS slices cause delays.

Based on anecdotal evidence, this technique improved our maximum fre-
quency possible from 247.64 MHz to 373.13 MHz. This increase of 50.67% greatly
boosts performance, as the worst case slack is greatly improved.

5 Evaluation

Before our approach can be applied to a practical system, we must first evaluate
how well it performs. It is aimed at embedded FPGAs that have been shown to
be very capable in applications such as small neural networks [5,24]. Not only
must we ensure that our design is efficient enough to fit this resource-constrained
class of FPGAs, but also that the resulting performance is adequate to offer real-
world usability.

5.1 Resource Utilization

Firstly, we consider the resource consumption on the FPGA. As detailed in
Sect. 4, the greatest impact on this is through the size of the processed matrix.
Larger matrix sizes enable the computation of more eigenvectors at increased
complexity, thereby extracting more identifiable features. Therefore, we varied
this size in Table 1 and captured the number of resources consumed by each
solution.

Note that these results are an absolute number and is valid for the entire
7 series devices from Xilinx, as they are all based on the same architecture.
This provides a convenient way to choose the correct FPGA to use for a specific
application, based on the limiting hardware resource. For example, the Spartan
7 range varies in available DSP slices from 10 on the S6 to 160 on the S100. It

38 A. Burger et al.

Table 1. Synthesis results for Xilinx-7 series FPGAs in absolute numbers

Matrix width Logic cells Flip-flops DSP slices

4 × 4 3,940 1,497 15

8 × 8 11,616 5,548 45

16 × 16 36,165 21,612 153

also shows that the implemented homogeneous architecture is easily adaptable to
larger-scale deployment, as a larger FPGA could simply support a larger matrix
and thereby enable larger inputs and more complex applications.

To put these numbers in context, we compare them to the most recently
published CORDIC-based eigensolvers [15,19] in Fig. 3. We consider specifically
the logic cells and DSP slices, as these are commonly the limiting factors.

Fig. 3. Comparison of the resource utilization of different matrix sizes with related
work

Omitting the additional logic required by a CORDIC-based approach signif-
icantly improves our resource consumption, as almost half of the logic cells are
saved. More importantly, the number of DSP blocks are reduced by almost 85%.
This allows us to use FPGAs with significantly fewer resources, or to support a
larger covariance matrix.

5.2 Throughput

Before the system’s throughput rate can be calculated, the maximum operating
frequency fmax must be determined using a static time analysis. Table 2 lists the

An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs 39

maximum possible clock rates for all targets as the matrix size is varied. As the
other solution is not open source, only the clock frequencies achievable in [15]
are provided for comparison. Unsurprisingly, the maximum clock rate at which
the implemented design can be operated decreases with increasing logic density.

Table 2. Maximum operating frequencies in [MHz] depending on the matrix width

Target fmax matrix width

4 × 4 8 × 8 16 × 16

XC7S100 239.01 228.31 219.11

XC7A100 265.75 237.87 237.98

XC7K70 339.90 272.18 252.46

EP4SGX230 [15] 235.32 220.15 201.35

To determine the throughput rate, the combined latency of the processing
elements must be considered. Each has a latency of p = 6 clock cycles. The
number of iterations to be performed is set to k = 30 for a direct comparison
with related work.

Firstly, the latency of initially filling the FIFO buffers is LFIFO = 3n − 1
cycles, where n is again the matrix width. Each of the QR iterations requires
LQR = 24n − 6 while the inverse square root consumes a constant LSqrt = 12
clock cycles.

This leads to a model of the overall latency L and throughput T of

L(n, k) = LFIFO + k · (LQR + LSqrt) (6)

T (n, k) =
fmax

L(n, k)
=

fmax

24nk + 3n + 6k − 1
solutions/s (7)

where each solution refers to a complete calculation of all eigenvalues and -
vectors [15]. The maximum operating frequency fmax results from the static
timing analysis results shown in Table 2.

Figure 4 compares the throughput of our approach to a CORDIC-based app-
roach [15] and a desktop CPU. The SGR-QR was implemented on a Xilinx
Spartan-7 XC7S100, and a fixed point representation of 24 bits was chosen to
match the input signals in each DSP48 block. Note that the frequency of the
memory is assumed to be at least as fast as the main clock fmax.

The SGR-QR is faster than the CORDIC-based approach implemented on
the considerably larger Virtex-7 (3.81x for 4 × 4 to 4.26x for 16 × 16 matrices).
The benefits of our highly parallel architecture over higher clocked CPUs become
particularly evident for larger matrices. This is due to our approach’s linear
runtime, while CPU implementations are commonly O(N3) and single-threaded.

40 A. Burger et al.

4 8 12 16
0

100

200

300

Matrix width

T
im

e
(µ

s)

SGR-QR (ours)
Guerrero-Ramı́rez et. al. [15]

Ryzen 7 3800X (CPU)

Fig. 4. Time in µs required to compute a single eigenpair of different matrix sizes

5.3 Estimated Power Usage

Using the maximum clock frequency from Table 2, the implementation results for
a number of embedded FPGAs from the Xilinx-7 Family are shown in Table 3.

Table 3. Implementation results for matrix size 16 × 16

Target LUT FF DSP Power [W]

Spartan-7 XC7S100 49% 17% 96% 1.402

Artix-7 XC7A100 49% 17% 64% 1.379

Artix-7 XC7A200 23% 8% 21% 1.238

Kintex-7 XC7K70 76% 26% 64% 1.425

Kintex-7 XC7K160 31% 11% 26% 1.214

Apart from the proportional resource consumption for a number of devices,
the estimated power usage is also provided by the Vivado software of Xilinx.
This is the active consumption of the device, highlighting the importance of
processing speed to offset the cost of keeping the FPGA powered.

6 Application Case Study

Our system is designed with high energy and resource efficiency in mind in
order to support the small, battery-powered devices used in many pervasive
or organic computing applications. One example is a fully autonomous aerial
system (FAAS) that combines unmanned aerial vehicles (UAV), edge comput-
ers, and data centers to create intelligent systems. They should autonomously
explore their environment and accomplish high level goals without human inter-
vention [3], which requires expensive techniques such as facial detection.

An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs 41

UAVs typically only carry small batteries with flight times between 15 and
25 min and therefore rely on offloading tasks to edge and cloud systems [4]. Trans-
ferring images between edge and UAV is costly, taking on the order of seconds
in prior work [4]. Prior work on micro aerial vehicles with in-situ vision sys-
tems performed detections locally on UAV. Increased frame rates and decreased
power-consumption were achieved by downsampling (5–12 fps) and compressing
incredibly small images (17 fps) to be used as input to neural networks [2,13]. In
aerial applications this can lead to loss of critical information contained in small
regions. Instead, our system can be used as a local facial detection algorithm or
as preprocessing to reduce offloaded data to only the important features.

Therefore, we evaluated our architecture design using the well-known FDDB
dataset [16]. A sliding window of 250 × 250 pixels is moved over an input image
of resolution 640×480. The covariance matrix varies with the number of training
images from 4 to 16 faces. For this dataset, 95% of the variance could be described
with 62.5% of vectors – offering substantial data reductions. Processing speed
of an EVD on the Spartan 7 S100 for different size covariance matrices are
presented in Fig. 5. Using a naive classifier, increasing the matrix size from 4×4
to 16 × 16 increased the accuracy from 44.6% to 55.5% (in line with similar
approaches [16]).

4 6 8 10 12 14 16
0

40

80

120

160

Matrix width

F
P
S

Fig. 5. Frames per second for facial detection application

The speed is reduced for larger matrices, but even at 16×16 the performance
remains above 30fps. This shows the trade-off between speed and complexity,
which can be combined with Table 3 to tailor the hardware choice. Each device’s
power usage allows us to estimate the energy usage per frame to between 3.14µJ
for n = 4 and 68.61µJ for n = 16. Although related work does not provide
this information, we are confident that our system is more energy efficient, as
transmitting even an image preview (720 × 900) can take a UAV 1.4 s [4].

7 Conclusion and Future Work

We presented our approach for EVD on an embedded FPGA. Through optimiza-
tions like systolic arrays and dynamically scaling SGR results, we achieved an
improvement of 3x performance over other approaches. Additionally, the archi-
tecture is resource optimized enough to be used even on small embedded FPGAs
like a Xilinx Spartan 7.

42 A. Burger et al.

In future work, we hope to implement this onto a set of drones augmented
with FPGAs for real-world experiments. We also plan to investigate using this
feature extraction method as a preprocessor for CNNs. By using the reconfigura-
bility of the FPGA, we can switch between EVD to perform a learning feature
extraction on incoming data followed by a neural network. This provides pro-
cessing complexity heretofore impractical on embedded devices used in organic
computing applications.

Acknowledgements. The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the KI-Sprung LUTNet project
(project number 16ES1125).

References

1. Artac, M., Jogan, M., Leonardis, A.: Incremental PCA for on-line visual learning
and recognition. In: Object Recognition Supported by User Interaction for Ser-
vice Robots, vol. 3, pp. 781–784. IEEE (2002). https://doi.org/10.1109/icpr.2002.
1048133

2. Boroujerdian, B., Genc, H., Krishnan, S., Cui, W., Faust, A., Reddi, V.:
MAVBench: micro aerial vehicle benchmarking. In: 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 894–907. IEEE (2018).
https://doi.org/10.1109/MICRO.2018.00077

3. Boubin, J., Chumley, J., Stewart, C., Khanal, S.: Autonomic computing challenges
in fully autonomous precision agriculture. In: IEEE International Conference on
Autonomic Computing (ICAC), pp. 11–17 (2019). https://doi.org/10.1109/ICAC.
2019.00012

4. Boubin, J.G., Babu, N.T., Stewart, C., Chumley, J., Zhang, S.: Managing
edge resources for fully autonomous aerial systems. In: Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, pp. 74–87. ACM (2019). https://
doi.org/10.1145/3318216.3363306

5. Burger, A., Qian, C., Schiele, G., Helms, D.: An embedded CNN implementation
for on-device ECG analysis. In: IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops) (2020)

6. Cardot, H., Degras, D.: Online principal component analysis in high dimension:
which algorithm to choose? arXiv preprint arXiv:1511.03688 (2015)

7. Cerato, B., Masera, G., Viterbo, E.: Enabling VLSI processing blocks for MIMO-
OFDM communications. VLSI Design 2, 11 (2008). https://doi.org/10.1155/2008/
351962

8. Chen, D., Sima, M.: Fixed-point CORDIC-based QR decomposition by Givens
rotations on FPGA. In: International Conference on Reconfigurable Computing
and FPGAs, pp. 327–332. IEEE (2011). https://doi.org/10.1109/ReConFig.2011.
38

9. Döhler, R.: Squared givens rotation. IMA J. Numer. Anal. 11(1), 1–5 (1991).
https://doi.org/10.1093/imanum/11.1.1

10. Ercegovac, M.D., Lang, T., Muller, J.M., Tisserand, A.: Reciprocation, square root,
inverse square root, and some elementary functions using small multipliers. IEEE
Trans. Comput. 49(7), 628–637 (2000). https://doi.org/10.1109/12.863031

https://doi.org/10.1109/icpr.2002.1048133
https://doi.org/10.1109/icpr.2002.1048133
https://doi.org/10.1109/MICRO.2018.00077
https://doi.org/10.1109/ICAC.2019.00012
https://doi.org/10.1109/ICAC.2019.00012
https://doi.org/10.1145/3318216.3363306
https://doi.org/10.1145/3318216.3363306
http://arxiv.org/abs/1511.03688
https://doi.org/10.1155/2008/351962
https://doi.org/10.1155/2008/351962
https://doi.org/10.1109/ReConFig.2011.38
https://doi.org/10.1109/ReConFig.2011.38
https://doi.org/10.1093/imanum/11.1.1
https://doi.org/10.1109/12.863031

An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs 43

11. Francis, J.G.: The QR transformation a unitary analogue to the LR
transformation–Part 1. Comput. J. 4(3), 265–271 (1961). https://doi.org/10.1093/
comjnl/4.3.265

12. Garg, I., Panda, P., Roy, K.: A low effort approach to structured CNN design using
PCA. IEEE Access 8, 1347–1360 (2019). https://doi.org/10.1109/ACCESS.2019.
2961960

13. Genc, H., Zu, Y., Chin, T.W., Halpern, M., Reddi, V.J.: Flying IoT: toward low-
power vision in the sky. IEEE Micro 37(6), 40–51 (2017). https://doi.org/10.1109/
MM.2017.4241339

14. Golub, G.H., Van Loan, C.: Matrix Computations, 4th edn. The Johns Hopkins
University Press, Baltimore (2013)

15. Guerrero-Ramı́rez, J.E., Velasco-Medina, J., Arce, J.C.: Hardware design of an
eigensolver based on the QR method. Analog Integr. Circ. Sig. Process 82(1),
125–134 (2014). https://doi.org/10.1109/LASCAS.2013.6519065

16. Jain, V., Learned-Miller, E.: FDDB: a benchmark for face detection in uncon-
strained settings. Technical report. UM-CS-2010-009, University of Massachusetts,
Amherst (2010)

17. Johansen, T.A.H.: On the improvement and acceleration of eigenvalue decompo-
sition in spectral methods using GPUs. Master’s thesis, UiT Norges arktiske uni-
versitet (2016)

18. Kerr, A., Campbell, D., Richards, M.: QR decomposition on GPUs. In: Proceedings
of 2nd Workshop on General Purpose Processing on Graphics Processing Units,
pp. 71–78. ACM (2009). https://doi.org/10.1145/1513895.1513904

19. Korat, U.A., Alimohammad, A.: A reconfigurable hardware architecture for prin-
cipal component analysis. Circuits Syst. Signal Process. 38(5), 2097–2113 (2018).
https://doi.org/10.1007/s00034-018-0953-y

20. Ma, L., Dickson, K., McAllister, J., McCanny, J.: MSGR-based low latency complex
matrix inversion architecture. In: 9th International Conference on Signal Process-
ing, pp. 410–413. IEEE (2008). https://doi.org/10.1109/ICOSP.2008.4697158

21. Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of
cordic: algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I
Regul. Pap. 56(9), 1893–1907 (2009). https://doi.org/10.1109/TCSI.2009.2025803

22. Pan, P., Lin, C.C.: A new retiming-based technology mapping algorithm for LUT-
based FPGAs. In: Proceedings of the 1998 ACM/SIGDA Sixth International Sym-
posium on Field Programmable Gate Arrays, pp. 35–42. ACM (1998). https://doi.
org/10.1145/275107.275118

23. Ren, M.: Cordic-based Givens QR decomposition for MIMO detectors. Ph.D. the-
sis, Georgia Institute of Technology (2013)

24. Schiele, G., Burger, A., Cichiwskyj, C.: The elastic node: an experimentation plat-
form for hardware accelerator research in the internet of things. In: Proceedings
of the IEEE International Conference on Autonomic Computing, ICAC, pp. 84–94
(2019). https://doi.org/10.1109/ICAC.2019.00020

25. Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction
techniques. arXiv preprint arXiv:1403.2877 (2014)

26. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pp. 586–591 (1991). https://doi.org/10.5120/20740-3119

27. Yu, H.: FPGA-based implementation of QR decomposition. Master’s thesis, Ari-
zona State University (2014)

https://doi.org/10.1093/comjnl/4.3.265
https://doi.org/10.1093/comjnl/4.3.265
https://doi.org/10.1109/ACCESS.2019.2961960
https://doi.org/10.1109/ACCESS.2019.2961960
https://doi.org/10.1109/MM.2017.4241339
https://doi.org/10.1109/MM.2017.4241339
https://doi.org/10.1109/LASCAS.2013.6519065
https://doi.org/10.1145/1513895.1513904
https://doi.org/10.1007/s00034-018-0953-y
https://doi.org/10.1109/ICOSP.2008.4697158
https://doi.org/10.1109/TCSI.2009.2025803
https://doi.org/10.1145/275107.275118
https://doi.org/10.1145/275107.275118
https://doi.org/10.1109/ICAC.2019.00020
http://arxiv.org/abs/1403.2877
https://doi.org/10.5120/20740-3119

ECC Memory for Fault Tolerant RISC-V
Processors

Alexander Dörflinger1(B), Yejun Guan1, Sören Michalik2, Sönke Michalik2,
Jamin Naghmouchi2, and Harald Michalik1

1 Institute of Computer and Network Engineering (IDA), Technische Universität
Braunschweig, Braunschweig, Germany

{doerflinger,guan,michalik}@ida.ing-tu-bs.de
2 Institute for Robotics and Process Control (IRP), Technische Universität

Braunschweig, Braunschweig, Germany
{soeren.michalik,so.michalik,naghmouchi}@tu-braunschweig.de

Abstract. Numerous processor cores based on the popular RISC-V
Instruction Set Architecture have been developed in the past few years
and are freely available. The same applies for RISC-V ecosystems that
allow to implement System-on-Chips with RISC-V processors on ASICs
or FPGAs. However, so far only very little concepts and implementations
for fault tolerant RISC-V processors are existing. This inhibits the use of
RISC-V for safety-critical applications (as in the automotive domain) or
within radiation environments (as in the aerospace domain). This work
enhances the existing implementations Rocket and BOOM with a generic
Error Correction Code (ECC) protected memory as a first step towards
fault tolerance. The impact of the ECC additions on performance and
resource utilization are discussed.

Keywords: BOOM · Cache · Error correction code · Fault injection ·
RISC-V · Rocket · Scrubbing · Single Event Effects

1 Introduction

The free and open RISC-V Instruction Set Architecture (ISA) has attracted
an active community building processor cores and ecosystems, which makes it
competitive to established processor designs. There is a strong growth forecast
for the number of RISC-V cores in industrial-, consumer-, and other areas [13].
However, there are only a few approaches of fault-tolerant RISC-V designs for
safety-critical and radiation-tolerant applications, which would open its use for
the automotive and areospace domain. An exploitation of this market potential
requires compliance with corresponding safety standards.

Mitigation of transient faults is one important mechanism for fault-tolerant
electronics. ISO26262 [10] names error detection to increase the diagnostic cov-
erage, which is required for electronics of higher safety levels. Furthermore,
aerospace systems operating in environments with increased radiation levels are

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 44–55, 2020.
https://doi.org/10.1007/978-3-030-52794-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_4

ECC Memory for Fault Tolerant RISC-V Processors 45

subject to non-destructive Single Event Effects (SEEs). An effective mitigation
technique for hereby caused soft errors in memories are again error correction
(and detection) codes [8]. Therefore, this paper will present how existing RISC-V
implementations can be enhanced with Error Correction Codes (ECCs).

Contribution: This work devises and implements a highly configurable ECC
protection for arbitrary memory structures and applies it to two different RISC-V
processor systems. Some ECC implementations are already existing for RISC-V
designs. However, they cover only parts of the memory structures of a proces-
sor core and/or are limited to small low-power solutions with processing power
restrictions. The generic and configurable ECC approach of this work targets
also large RISC-V cores for high performance computing and fully covers all
memory structures. This prepares RISC-V for its use in safety-critical appli-
cations and radiation-intense environments. Together with further fault toler-
ance mechanisms (e.g., lockstep operation or other redundancy schemes), high
performance RISC-V systems could be made available for the automotive and
aerospace domain.

The rest of this paper is organized as follows: Sect. 2 presents existing fault
tolerance concepts for RISC-V processors and Sect. 3 gives an introduction to
the Chipyard1 framework used within this work. A detailed description of the
new ECC concept follows in Sect. 4. Results of its implementation are presented
in Sect. 5.

2 Related Work

The SHAKTI-F design [9] mitigates SEEs by combining ECC with recomputa-
tion techniques. It features a relatively small 5-stage in-order microprocessor.
However, its development has been discontinued and it is not maintained within
the current SHAKTI-C class core anymore. Fault tolerance of caches, typically
representing the largest and hence most susceptible memory structures within a
processor system, is not addressed. The Klessydra microprocessor [4] based on
PULPino2 is a configurable 2 to 4-stage RISC-V implementation. Several time-
and space redundancy techniques have been applied for fault tolerance. Again,
error protection for larger memory structures has not been addressed yet.

Apart from SHAKTI-F and Klessydra (being free and open), some pro-
prietary implementations are available targeting space applications. Microsemi
(Microchip Technology Inc.) offers the Mi-V3 ecosystem, which allows to instan-
tiate RISC-V cores on their radiation tolerant FPGAs. Cobham Gaisler released
the 64 bit NOEL-V4 soft-core recently. However, just as the LEON3/4 processor,
it is not fault tolerant by design; fault tolerant versions are built from radiation
hardened standard cell libraries and are hence bound to specific technologies.

1 https://chipyard.readthedocs.io/en/latest, UC Berkeley.
2 https://pulp-platform.org.
3 https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-

ecosystem.
4 https://www.gaisler.com/index.php/products/processors/noel-v.

https://chipyard.readthedocs.io/en/latest
https://pulp-platform.org
https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-ecosystem
https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-ecosystem
https://www.gaisler.com/index.php/products/processors/noel-v

46 A. Dörflinger et al.

Just as the LEON3/4 based System-on-Chips (SoCs) GR712 [5] and GR740 [6],
NOEL-V uses write-through and no-write allocate cache policies. This guaran-
tees that an erroneous cache line can be corrected by fetching its copy from a
higher memory hierarchy level at any time. It makes an error correction code
dispensable, because an error detection (e.g., parity bit) suffices. However, the
hereby utilized write policies typically yield lower performance than write-back
and write allocate.

The Rocket and BOOM RISC-V cores by UC Berkeley implement write-back
and write allocate cache policies and are partly equipped with optional ECC.
A Single Error Correction Double Error Detection (SEC-DED) code protects
the caches of the SiFive U-series IPs (U54, U74) and SoC (FU540), which uti-
lize the 5-stage in-order Rocket processor core. The BROOM tapeout [2] adds
resilience methods to the 7-stage out-of-order BOOMv2 processor. Several tech-
niques tolerate hard bit errors in L1 and L2 caches, which allows an aggressive
reduction of the core voltage. However, the approach requires to know the posi-
tion of erroneous bits beforehand (e.g. by running a built-in self-test). Hence, it
cannot correct soft errors at arbitrary bit positions and does not increase fault
tolerance.

3 Rocket and BOOM Processor Cores Within Chipyard

The Chipyard framework developed by UC Berkeley bundles RISC-V cores,
peripherals, software compilers, simulators, and further tools for SoC develop-
ment. It targets both FPGA implementations and ASIC design. Hardware com-
ponents are programmed in the Chisel hardware description language (HDL).
Chisel is based on object-oriented Scala and adds hardware construction prim-
itives. Frequently utilized hardware elements are collected in a Chisel standard
library (e.g., multiplexers, arbiters, counters, FIFO queues, etc.). As a modern
programming language, it offers high abstraction, re-usability, and parameteri-
zation options. Compared to well-established HDLs such as Verilog and VHDL,
the increased abstraction level results in a higher line of code efficiency and
speeds up development times. However, it also adds complexity to simulation
and netlist generation: Chisel code has to be compiled into an intermediate cir-
cuit representation (FIRRTL) before it is transformed into synthesizable Verilog.

Chipyard integrates two RISC-V implementations, which are both highly con-
figurable. The 5-stage in-order Rocket core [1] offers both 32 and 64 bit register
file widths, several branch prediction options, arbitrary cache sizes, and optional
ISA extensions (MAFD). The core provides three privilege levels, addresses vir-
tual memory, and is capable to boot Linux. Rocket is already equipped with the
ECC options Parity, SEC, and SEC-DED for both L1I$ and L1D$ (tag and data
each) which can be activated with limitations. Rocket provides blocking and non-
blocking versions for the L1D$. The non-blocking version allows hit-under-miss
requests, which enables the in-order processor to execute further instructions
until the load data is used. However, this powerful non-blocking L1D$ variant
does not support ECC in its tag field at all, and its implementation in the data

ECC Memory for Fault Tolerant RISC-V Processors 47

field results in compile errors (several versions up to the current v1.3 have been
tested without success).

Chipyard allows an easy replacement of the Rocket core with the 7-stage
superscalar out-of-order BOOM core [3]. The instruction fetch unit is equipped
with complex predictors (e.g., GShare and TAGE). A tapeout in TSMC 28 nm
achieved 1.0 GHz and a Coremark of 3.77 per MHz [2], which makes BOOM one
of the best performing RISC-V implementations. The BOOM utilizes the non-
blocking L1D$ version of the Rocket, hence it is afflicted with the same ECC
problems as described above. The L1I$ does not support any ECC implementa-
tion. Further resilience methods have been applied to the BOOM implementation
[2]. However, they only target static hard errors and cannot mitigate arbitrary
soft errors.

The cache resilience works on Rocket and BOOM are promising but not
complete. ECC has been successfully applied only to the Rocket core, with
restrictions. Memory structures apart from caches such as Branch Prediction
Unit (BPU) tables and the Page Table Walker (PTW) are not protected. So
far, the BOOM core lacks ECC protection for memories completely. Those gaps
are closed in this work using a generic ECC memory described in the following
section. The generic design makes it easy to apply it to all memory structures
and is not limited to L1 caches. This work concentrates on the ECC integration
in Rocket and BOOM; however, the parameterizable ECC memory interface
allows to migrate the approach to other processor implementations as well.

4 Generic Error Correcting Memory Component

4.1 ECC Memory Requirements

Within the Rocket core only caches and one BPU table are implemented as
memory arrays; all other buffers are mapped to registers due to their small
size. This results in a small number of memory arrays ranging from 4 to 11,
depending on the Rocket core configuration (Table 1). The more complex BOOM
core additionally implements several buffers of the BPU and the PTW as memory
arrays, due to their increased size. This results in 18 to 38 memory arrays within
the BOOM core, depending on its configuration. The BOOM Small and Medium
configurations differ mainly by their issue width; however, memory sizes and
organization are very similar. The same applies for differences between Large
and Mega configurations.

Enhancing all those memory arrays with ECC protection separately requires
multiple and far-reaching code changes. For the Rocket core with FIRRTL
transformation and simulation times ranging from 10 to 21 min5, this would
be still feasible. However, the BOOM core generation and simulation takes up to
185 min, making a custom ECC adaption of each memory array very laborious.

5 Depending on its configuration; measured for run-bmark-tests on Intel i5-6500
3.20 GHz, 48GB RAM.

48 A. Dörflinger et al.

Table 1. Number of memory arrays for selected Rocket and BOOM configurations

Core configuration L1I$ L1D$ BPU PTW Sum

Rocket (Tiny) 2 2 0 0 4

Rocket (Big) 5 5 1 0 11

BOOM (Small) 5 5 7 1 18

BOOM (Medium) 5 5 7 1 18

BOOM (Large) 17 9 11 1 38

BOOM (Mega) 17 9 11 1 38

Hence, a generic ECC memory component has been developed separately, which
can simply replace existing arrays and keeps the integration effort minimal.

The access scheme (e.g., single/dual-ported) and array organization (e.g., row
of words) differs for each array, which has been considered during the develop-
ment of the generic ECC protected memory called ECCmem. Hereby the newly
created ECCmem component goes beyond existing IP such as Synopsis Design-
Ware STAR ECC IP, the ARM Artisan embedded memory IP, and Xilinx ECC
IP [14]. It is technology independent, i.e. not bound to any FPGA family or ASIC
process, and additionally mitigates error accumulation, which is not addressed
in any of the existing solutions.

4.2 ECCmem Component

Figure 1 depicts the overall ECCmem architecture. Dashed blocks are instan-
tiated depending on configuration settings. The IOs read/write request and
response make use of Chisel’s Decoupled interface, wrapping the data vectors
with a ready-valid pair. This interface abstraction allows a simple replacement
of existing memories with the ECCmem module.

ECCmem
Component

M
U

X Fault
Injection

Debug
Counters

Encoding Decoding

Correction
Buffer Memory

Array

(single/
dual

ported)
Scrubbing

resp
serror
derror

w
rit

e
re

q
re

ad
 re

q
ki

ll

M
U

X

stat

Fig. 1. Configurable ECCmem component

Depending on the capabilities of the selected ECC option, single and double
errors are signaled through dedicated outputs (serror, derror) and tracked in

ECC Memory for Fault Tolerant RISC-V Processors 49

error counter registers. Statistics on soft errors can be retrieved from further
debug counters containing the number of read/write accesses, fault injection-,
and error correction events. When relying on this error statistic information,
reads from uninitialized data have to be precluded as they may result in inad-
vertent error events. One solution is to initialize the complete memory at boot
time (applied e.g. to the BOOM data cache tag array). Another option is to
set the kill signal, canceling read accesses to uninitialized data in subsequent
clock cycles. This is a feasible solution for e.g. cache data arrays, because the
initialization information can be retrieved from the coherency flags one clock
cycle after issuing the read access.

Listing 1.1 gives an overview of the parameterization options of the ECCmem
module, which satisfy the diverse requirements of memory arrays within the
Rocket and BOOM implementations. The object oriented Chisel programming
language makes it easy to handle the parameterization. Some ECCmem ports are
conditional (depending on the configuration), which is not supported by other
HDLs.

Listing 1.1. ECCmem Parameterization

class ECCmemParams(
ecc code : Code = SECDEDCode,
r e g enc inpu t : Boolean = false ,
r eg enc output : Boolen = false ,
r e g de c i npu t : Boolean = false ,
r eg dec output : Boolean = false ,
depth : UInt = 1024 ,
row format : Vec [UInt] ,
b l o c k s i z e : Int = 8 ,
i n t e r l e a v i n g : Boolean = true ,
s i n g l e p o r t e d : Boolean = true ,
c o r r e c t i o n b u f f e r : UInt = 1 ,
scrubbing : Boolean = true ,
s c r ubb i n g i n t e r v a l : UInt = 4 ,
f a u l t i n j e c t i o n : Boolean = true ,
name : S t r ing

)

Encoding and Decoding. The ecc code parameter allows to select different
detection/correction codes. The current implementation supports the algorithms
none, parity, and hamming codes (SEC, SEC-DED). Hsiao codes could be added
in future for reduced area and delay overheads. Several reg * options allow to
insert registers at encoder/decoder inputs and outputs, which can be used to
relax timing. In particular, the decoding path can result in long signal latencies,
which may require corresponding register insertions.

50 A. Dörflinger et al.

Array Organization. The parameters depth, row format, and block size
define the array organization (Fig. 2). The read/write data may be partitioned
into several words within a row. Individual words may be accessed using a read-
/write mask. A word can be further divided into blocks, which allows arbitrary
ECC widths. This facilitates a fine-grained balancing of area overhead and encod-
ing/decoding latency: the smaller the block size, the smaller its encoding/decod-
ing latencies, but the higher its area overhead. Each block contains the original
data and ECC bits being grouped together. The interleaving option shuffles
bits of different blocks. It mitigates SEEs causing multi-bit errors in neighbor-
ing cells, because the erroneous bits will be spread across different blocks. With
the single ported option, the memory type can be selected. By default, a dual
ported memory will be generated (e.g. required for BOOM data cache). Arrays
with exclusive read/write access (e.g. BOOM instruction cache) benefit from the
optimized resource utilization of single ported memory.

word
block

row

ECC bits
data bits

depth
Fig. 2. ECCmem array organization

Correction Buffer. With the current ECC implementations (parity, SEC,
SEC-DED), two or more accumulated errors cannot be corrected, and depend-
ing on the selected ECC algorithm, not even detected. When using codes with
single error correction capabilities, the corrected data can be written back to
memory. Any correction buffer size greater 0 enables this error correction
option. It mitigates error accumulation, because a single error typically gets cor-
rected before a second SEE strikes the same block. In order to minimize the
impact on the overall system, write back accesses are assigned with a lower
priority than read and write requests. The corrected word is stored within a
correction buffer until there is no concurrent write access (and in case of single-
ported memory no concurrent read access). Corrected data must not overwrite
updated data. Therefore, an entry within the correction buffer gets cleared once
it senses a regular write access to the same memory address as the destination
of corrected data. Once the correction buffer writes its content back to memory,

ECC Memory for Fault Tolerant RISC-V Processors 51

the soft error has been removed. This error correction process typically com-
pletes before detection of a second error in another arbitrary word being read.
However, systems with high read/write loads (i.e. long retention times in the
correction buffer) and high expected error rates, may use a correction buffer
depth of >1.

Scrubbing. In the past, only very small numbers of SEE-caused soft errors
were expected in on-chip memories such as caches of earth-bound applications,
hence error accumulation has not been an issue [12]. However, the soft error rate
increases exponentially with voltage decrease, and error accumulation has to be
considered when relying on new technologies [7]. Furthermore, space applications
can be exposed to multiple SEEs within minutes [11], depending on the FPGA
or ASIC technology and the mission region. When operating under such condi-
tions, the interval of system read accesses to memory arrays is not sufficient for
preventing error accumulation. This applies for caches in particular: Cache line
access patterns are hardly predictable, which increases the probability of error
accumulation for less frequently accessed data regions.

To overcome this problem, the optional scrubbing option regularly reads the
complete memory array, and guarantees a minimum interval of single bit error
corrections. Again, the scrubbing mechanism is assigned with a lower priority
than read requests (and write requests in case of single-ported memory) to elim-
inate any negative performance impact on the overall system. As depicted in
Fig. 1, the scrubbing block generates continuous read accesses to memory. Once
the decoding block detects a correctable error in one of the reads triggered by the
scrubbing block, the corrected data will be passed to the correction buffer which
handles the write back to memory. In order to prevent an overflow, a full cor-
rection buffer forces the scrubbing process to pause. Scrubbing adds high load
on the read port of the memory, which can increase the power consumption.
This effect can be limited by setting the scrubbing interval, which defines
together with the operating frequency and memory depth the scrubbing period
(Eq. 1). When setting the scrubbing interval to 0, the ECCmem component
attempts to scrub the memory as fast as possible. In this case Eq. 1 gives only a
lower bound of the scrubbing period, because any other regular read (and write)
request stalls a scrubbing access.

scrubbing period =
1
f

· depth · (scrubbing interval + 1) (1)

Scrubbing accesses are distributed evenly in time for a balanced load dis-
tribution. To achieve this, a scrubbing counter decrements by 1 each clock
cycle and triggers a scrubbing access to the next memory row once it hits 0
(1© in Fig. 3). A scrubbing access increments the counter again by the defined
scrubbing interval. Higher priority accesses (read/write requests) delay the
scrubbing access 2©. Multiple high priority accesses could cause the scrubbing
counter to underflow, which is prevented by stalling the scrubbing access 3©.

52 A. Dörflinger et al.

t

sc
ru

bb
in

g
co

un
te

r

scrubing access
higher priority access

stalled scrubbing accesses = 0 1 0

1 2 3 4

Fig. 3. Distributing scrubbing accesses in time

Stalled accesses are executed as soon as no other high priority access blocks the
memory port 4©.

Fault Injection. The fault injection option allows sporadic injection of
1-bit and 2-bit errors with a user-defined probability into already encoded data
(containing both data- and ECC bits) when writing to memory. This feature
is used to test the functionality of the ECC, correction buffer, scrubbing, and
debug counters. It further allows to simulate the processor behavior under SEEs,
which can replace expensive radiation tests to some extent.

5 Evaluation

All memory arrays of Rocket and BOOM have been replaced with the ECCmem
component described in Sect. 4. The integration did not require any far reaching
changes, because the read/write request and response interfaces allowed a
simple mapping to existing memories. The kill signal (compare Sect. 4.2) is
generated correctly for all memories by determining the status of the memory
content (initialized/uninitialized). The ECCmem is designed to have no effect
on system performance (except when inserting additional register stages with a
reg * option). Both the write back of corrected data and the scrubbing mecha-
nism are low prioritized, preventing to thwart read/write accesses. This has been
verified running benchmark tests in a Verilator simulation for various Rocket and
BOOM configurations (Table 2). Results for the Dhrystone benchmark are iden-
tical before and after integration of the ECCmem component.

Due to the similarity of the Small/Medium and Large/Mega variants regard-
ing memory size and organization (Table 1), resource utilization results will be
discussed for the Small and Mega configurations only, but apply for the Medium
and Large variants respectively. Figure 4 (left) summarizes the resource utiliza-
tion of BOOM implementations on the Xilinx Virtex UltraScale+ VCU118 eval-
uation board and the respective overhead for ECC protection. Figure 4 (right)
plots the results for an ASIC synthesis in the GlobalFoundries 22 nm FDX tech-
nology (12 T), whereas area is reported for combinatorial cells, flip-flops, and

ECC Memory for Fault Tolerant RISC-V Processors 53

Table 2. Dhrystone results for different Rocket and BOOM configurations

Core configuration Dhrystones/s

Rocket (Big) 1912

BOOM (Small) 1920

BOOM (Medium) 2526

BOOM (Large) 3521

BOOM (Mega) 3700

memory macros separately. The ECCmem components have been configured
with default parameters, except for array specific attributes such as width, depth,
and single/dual ported variants. Hence, a SEC-DED code is applied; scrubbing,
error correction, and fault injection are activated.

k LUTs k Registers BRAM DSP
0

50

100

150

200

250

300

am
ou

nt
 o

f X
C

V
U

9P
 re

so
ur

ce
s

Small ECC
Small
Mega ECC
Mega

Comb Flop Memory
0

0.1

0.2

0.3

0.4

0.5
A

SI
C

 a
re

a
[m

m
2]

Fig. 4. Resource utilization of Small- and Mega BOOM configurations with and with-
out ECC protection. Left: Xilinx Virtex UltraScale+ XCVU9P FPGA resources. Right:
Area for GF 22 nm FDX technology after synthesis.

The FPGA resource overhead for ECC protected BOOM variants compared
to original BOOM implementations is calculated in Table 3. It shows moderate
overhead for logic (5.31%) and registers (3.44%) on average, but a large increase
of RAM resources (41.68%). The ECC memory protection has no effect on DSP
utilization. The area increase of the ASIC synthesis yields similar results.

For further evaluation of the increased RAM utilization, Fig. 5 depicts the
RAM size for caches and other memory arrays within BOOM implementations
with and without ECC protection. The overhead of RAM resources depends on
the selected ECC block size. Here the block size has been limited to 26 bits for
all memories, which adds a maximum of 6 parity bits to each block. The block
size can be only as large as the memory word size. Hence, very small word sizes
result in high area overheads, as it is the case for e.g. the Branch Target Buffer

54 A. Dörflinger et al.

Table 3. Resource/area overhead of ECC protection for BOOM cores

Core config FPGA resource overhead ASIC area overhead

LUT Regs BRAM DSP Comb Flop Mem

Small BOOM 7.50% 3.47% 42.11% 0% 7.40% 4.52% 38.89%

Mega BOOM 3.11% 3.41% 41.25% 0% 4.82% 5.77% 40.85%

Average 5.31% 3.44% 41.68% 0% 6.11% 5.15% 39.87%

Bimodal Predictor table (BTB bim) with 1 bit words. In this case, applying
TMR to this array is a more area efficient protection against SEEs.

0

10

20

30

40

50

m
em

or
y

si
ze

 [k
B

yt
e]

L1I$
 ta

g

L1I$
 da

ta

L1D
$ t

ag

L1D
$ d

ata

BTB bi
m

BTB ta
g

BTB da
ta

GSha
re

PTW

Small ECC
Small
Mega ECC
Mega

Fig. 5. ECC BRAM overhead for individual memories

6 Conclusion

In this paper we presented a generic solution to enhance existing RISC-V pro-
cessor core implementations with ECC protected memory. When selecting codes
with error correction capabilities, error accumulation can be mitigated by writ-
ing corrected data back to memory. Applying a scrubbing mechanism further
reduces probabilities of error accumulation. As a reference implementation, all
memory structures within the Rocket and BOOM cores have been replaced by
the newly developed ECC protected memory. Logic and register overheads for
the ECC protection are small, while RAM resource usage increases as expected
for the applied hamming codes. Future work will complete the fault tolerance
mechanisms for RISC-V processors by applying further redundancy techniques,

ECC Memory for Fault Tolerant RISC-V Processors 55

which enables the use of RISC-V for safety-critical applications and the aerospace
domain. Hereby, the remaining processor logic could be protected using TMR
or lockstep techniques.

Acknowledgment. This work has been funded by BMWI under grant number 50
RK 1820 and is part of the DLR Raumfahrtmanagement Komponenteninitiative.

References

1. Asanović, K., et al.: The rocket chip generator. Technical report. UCB/EECS-
2016-17, EECS Department, University of California, Berkeley, April 2016

2. Celio, C., Chiu, P., Asanović, K., Nikolić, B., Patterson, D.: Broom: an open-source
out-of-order processor with resilient low-voltage operation in 28-nm cmos. IEEE
Micro 39(2), 52–60 (2019). https://doi.org/10.1109/MM.2019.2897782

3. Celio, C., Chiu, P.F., Nikolic, B., Patterson, D.A., Asanović, K.: Boom v2: an open-
source out-of-order RISC-V core. Technical report. UCB/EECS-2017-157, EECS
Department, University of California, Berkeley, September 2017

4. Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F., Olivieri, M.: The microar-
chitecture of a multi-threaded RISC-V compliant processing core family for IoT
end-nodes. In: De Gloria, A. (ed.) ApplePies 2017. LNEE, vol. 512, pp. 89–97.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93082-4 12

5. Cobham Gaisler AB: GR712-UM, 2.12 edn. (2018)
6. Cobham Gaisler AB: GR740-UM-DA, 2.3 edn. (2019)
7. Dixit, A., Wood, A.: The impact of new technology on soft error rates. In: Interna-

tional Reliability Physics Symposium. pp. 5B.4.1–5B.4.7, April 2011. https://doi.
org/10.1109/IRPS.2011.5784522

8. European Cooperation for Space Standardization - ECSS: ECSS-Q-HB-60-02A
Space Product Assurance - Techniques for Radiation Effects Mitigation in ASICs
and FPGAs Handbook, 1 edn., September 2016

9. Gupta, S., Gala, N., Madhusudan, G.S., Kamakoti, V.: SHAKTI-F: a fault tolerant
microprocessor architecture. In: IEEE 24th Asian Test Symposium (ATS), pp. 163–
168, November 2015. https://doi.org/10.1109/ATS.2015.35

10. International Organization for Standardization - ISO: ISO 26262 - Road Vehicles
- Functional Safety, 2016 edn., April 2016

11. Michel, H., Guzmán-Miranda, H., Dörflinger, A., Michalik, H., Echanove, M.A.:
SEU fault classification by fault injection for an FPGA in the space instrument
SOPHI. In: NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pp. 9–15, July 2017. https://doi.org/10.1109/AHS.2017.8046353

12. Mukherjee, S.S., Emer, J., Fossum, T., Reinhardt, S.K.: Cache scrubbing in micro-
processors: myth or necessity? In: Proceedings of the 10th IEEE Pacific Rim Inter-
national Symposium on Dependable Computing, pp. 37–42, March 2004. https://
doi.org/10.1109/PRDC.2004.1276550

13. SEMICO Research Corporation: RISC-V Market Analysis The New Kid on the
Block, cc315-19 edn., November 2019

14. Xilinx Inc.: ECC LogiCORE IP Product Guide, PG092, v2.0 edn. (2017)

https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1007/978-3-319-93082-4_12
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/ATS.2015.35
https://doi.org/10.1109/AHS.2017.8046353
https://doi.org/10.1109/PRDC.2004.1276550
https://doi.org/10.1109/PRDC.2004.1276550

3D Optimisation of Software Application
Mappings on Heterogeneous MPSoCs

Gereon Führ1(B), Ahmed Hallawa1, Rainer Leupers1, Gerd Ascheid1,
and Juan Fernando Eusse2

1 RWTH Aachen University, Aachen, Germany
{fuehr,hallawa,leupers,ascheid}@ice.rwth-aachen.de

2 Silexica GmbH, Cologne, Germany
eusse@silexica.com

Abstract. Increasing the efficiency of parallel software development is
one of the key obstacles in taking advantage of heterogeneous multi-core
architectures. Efficient and reliable compiler technology is required to
identify the trade-off between multiple design goals at once. The most
crucial objectives are application performance and processor power con-
sumption. Including memory power into this multi-objective optimisa-
tion problem is of utmost importance. Therefore, this paper proposes the
heuristic MORAM solving this three-dimensional Pareto front calcula-
tion. Furthermore, it is integrated into a commercially available frame-
work to conduct a detailed evaluation and applicability study. MORAM
is assessed with representative benchmarks on two different platforms
and contrasted with a state-of-the-art evolutionary multi-objective algo-
rithm. On average, MORAM produces 6% better Pareto fronts, while it
is at least 18× faster.

Keywords: Power-performance trade-off · Mapping · Heterogeneous ·
MPSoCs · Multi-objective optimisation · Pareto

1 Introduction

For today’s computational requirements of the embedded domain, heterogeneous
Multi- and Many-Processor Systems-on-Chip (MPSoCs) provide the best trade-
off for power, performance and cost requirements. However, developers writing
applications for MPSoCs are forced to consider the increased hardware complexi-
ties all at once. Moreover, power management techniques, such as Dynamic Volt-
age and Frequency Scaling (DVFS), have to be set carefully to handle power bud-
gets efficiently. Especially for high-performance embedded applications, memory
power consumption has a share of up to 46% of the entire system power [11,16].
Hence, fast and accurate compiler technology has to ease software development
and determine the trade-off between all requirements.

Consequently, it is not a coincidence that the simultaneous optimisation of
different goals is the next evolution towards optimised software [6,12,13,15,18].
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 56–68, 2020.
https://doi.org/10.1007/978-3-030-52794-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_5

3D Optimisation of SW Application Mappings on Heterogeneous MPSoCs 57

This simultaneous optimisation is essentially a Multi-Objective Optimisation
Problem (MOOP), which is known to be NP-hard [25]. The main research focus
is still towards application performance and Processing Element (PE) power
consumption, neglecting the impact of the memory to the entire power share.
Therefore, this paper presents a solution for this three-dimensional MOOP. Com-
pared to single-objective optimisation, an entire set of non-dominated optimal
solutions is determined. This set is also known as Pareto front. These precom-
puted solutions can be used during execution of the application to select the
most appropriate configuration dynamically [22,23].

In the literature, there are numerous multi-objective optimisation algorithms,
e.g. particle swarm optimisation [31,32]. However, a widely utilised family of
algorithms suitable for MOOPs in the context of MPSoC optimisation are Evo-
lutionary Multi-Objective Algorithms (EMOAs) (Sect. 2). EMOAs are preferred
as they find close-to-optimal solutions. They are general-purpose search strate-
gies, population-based and inspired by biological evolution. However, EMOAs
are performance sensitive to their hyperparameter setup. Also, the deterioration
in solution quality is significant when the computational resources are restricted.

Much attention has also been paid to ensuring comprehensive tool flows.
Examples are HOPES [14], DAEDALUS [29] or MAPS [19], and SLX [2].

As a consequence, this work proposes the novel heuristic MORAM designed
to calculate three-dimensional Pareto fronts. The MOOP considers the objec-
tives application performance, PE and memory power consumption for software
application mapping on MPSoCs. The solution quality is comparable with a
state-of-the-art EMOA implementation, while the computation is much faster.
Further, MORAM is integrated into SLX to enable the evaluation of the appli-
cability and quality. The case studies are based on representative benchmarks
and two different hardware platforms: ODROID-XU3 [1], and an in-house Het-
erogeneous Many-core Virtual Platform (HeMVP).

2 Related Work

For single-objective problems, heuristics find satisfactory solutions in a short
time frame by extracting and integrating the MPSoC platform and applica-
tion features [27]. As the MOOP solution space is significantly larger, heuris-
tic approaches are commonly not considered. To mention one example that
addresses an MOOP, the authors of [10] present a heuristic which computes
the Pareto front for two objectives: application performance and PE power.
It achieves comparable solutions but with considerably faster speed than an
EMOA.

More popular approaches for MOOPs are machine learning models, getting
the best power-performance trade-off. The authors of [6] propose run-time opti-
misation of task mapping, voltage and frequency selection. A library is generated
storing the Pareto optimal system configuration for minimum power and maxi-
mum performance. At run time, the most appropriate configuration is selected.
In [13], a multinomial logistic regression classification is used to map a set of

58 G. Führ et al.

classifiers offline to Pareto optimal platform configurations. During run-time,
these classifiers are invoked to select the most suitable configuration for the
current system load. A later approach applies Deep Q-Learning to dynamically
control the processor type, their number and frequency [12]. Similar to all these
run-time methods, design-time training is necessary. With the heuristic app-
roach of the paper at hand, there is no need to apply a machine learning model.
Pareto optimal configurations are available immediately after the execution of
the heuristic.

Software mapping optimisation based on EMOAs is presented, e.g. in [18].
Following the divide-and-conquer principle, a decomposition approach avoids
handling the entire MOOP at once. The workload balancing for each proces-
sor, cluster and communication network is computed independently. A post-
optimisation step captures the final Pareto front of this mapping problem. In [15],
the two objectives application performance and memory energy consumption are
optimised based on EMOAs. The latter comes closest to the approach proposed
in this work. The heuristic of this paper optimises for performance, processor
power and memory power consumption as a three-dimensional MOOP.

3 System Model

For the exploration and modelling of the mapping problem, SLX requires an
application written in C for Process Networks and an MPSoC platform model
as input. The tool offers heuristics to optimise for performance, PE power con-
sumption, or solving the MOOP of both objectives [5]. A target-specific code
generator translates the parallel code including the output of these heuristics
into plain C code that is fed into the MPSoC compiler.

3.1 Application Model

The Kahn Process Network (KPN) model of computation is a well-known app-
roach for modelling parallel behaviour [17]. Processes execute deterministically
and sequentially, and communicate via unbounded point-to-point First-In First-
Out (FIFO) channels. As a consequence, the mapping problem is reduced to the
optimal distribution and mapping of the processes and selection of the appro-
priate power modes.

KPN applications are described as directed graphs, i.e. A = {Z, C}, where
Z is the set of the application processes and C is the set of directed FIFO
channels. Via the FIFO channel cij ∈ C, a process zi ∈ Z can communicate
with process zj ∈ Z. For the implementation of KPN applications in ANSI-C, a
small set of keywords form C for Process Networks (CPN). With this, processes
and channels, and the required operations for accessing them are described. As
unbounded FIFO channels cannot be realised, the minimum size is chosen that
allows deadlock-free execution of the application.

In order to assess the application and generate timing and power informa-
tion, an event-driven approach simulates a CPN application. The combination

3D Optimisation of SW Application Mappings on Heterogeneous MPSoCs 59

of static and dynamic profiling enables the computation of process and total
execution time, as well as individual and collective power values. The dynamic
profiling collects traces that contain the execution dependent behaviour of the
application, such as write accesses to output channels. This timing simulation
engine estimates the execution time, including communication within a 20%
error margin [4].

3.2 MPSoC Model

The MPSoC platform model specifies, e.g., memory and communication archi-
tecture, and type and number of PEs. An MPSoC platform L is modelled as
a directed graph: L = {R,E}, where R is a set of hardware resources present
in the platform and E defines a set of connections. In this paper, R contains
a set of all PEs Q, all memories M, and all caches K, with R = Q ∪ M ∪ K
and (Q ∩ M) ∪ (Q ∩ K) ∪ (M ∩ K) = ∅. The set Mq = {m1,m2, ...} denotes all
memories reachable by q ∈ Q.

A write Hardware Channel (HWC) is the path from q to a reachable m ∈ Mq

using connections {e1, e2, ...} ∈ E, crossing caches {k1, k2, ...} ∈ K. For read
HWCs, the direction is the opposite. FIFO channels are assigned to HWC after
the processes Z are mapped to Q. An HWC consists of a write HWC starting
at the source PE qi and a read HWC ending at sink PE qj . Both write and read
HWC use the same m ∈ {Mqi ∩ Mqj}. Existing heuristics take care to choose a
reachable m that is closest to both PE.

Power information is defined for each PE and memory. Hardware resources
connected to the same power supply are part of a common voltage domain.
Similarly, all resources connected to the same clock are part of the same
frequency domain. The underlying power model consists of the basic CMOS
power consumption parts, i.e. leakage power P s

f,i = I · Vf and dynamic power
P d
f,i = C · f · V 2

f , where i indicates the hardware resource, I denotes the leak-
age current, Vf is the permitted minimum voltage for frequency f , and C is
the switching capacitance and f the operating frequency. In [21], it is shown
that with this model, power estimates for PEs including L1 caches are possible
with about 9% error on average. The memory power model achieves average
estimation errors of 15% (DRAM) and 11% (SRAM).

4 Multi-objective Optimisation

The objective functions are evaluated by simulating the task mapping and plat-
form power configuration. The objective space has 3 values: the execution time of
the application te, the average power consumed by the PEs PQ and the average
power consumed by the memories PM. The following reasoning explains why
it is sufficient to not include memory allocation in the decision space. It only
consists of the process mapping and the platform power configuration, i.e. the
selection of voltage and frequency.

60 G. Führ et al.

Due to the principles of KPN, source processes send their data to destination
processes via the FIFO channels. This procedure requires writes and reads to the
memory because the FIFO buffer is allocated there and contributes to increment
the memory power consumption. By changing the process-to-PE mapping, the
access behaviour to the underlying memory hierarchy is implicitly influenced.

For single shared main memory systems, the effectiveness of the caches can
be exploited with an optimal mapping and thus the memory power reduced. In
the case of distributed memories of different size or purposes, i.e. scratchpad
or shared, it makes sense to allocate the FIFO buffer always to the most local
memory (Sect. 3.2). If the source and destination process are assigned to PEs
that do not share a scratchpad, the HWC is, e.g., routed via the main memory.
The consequence is higher memory power consumption and slower application
execution time.

4.1 Problem Definition

For the formal problem definition, the processes Z and available PEs Q are
part of the inputs. The platform power configuration set C is also required and
taken from the platform model. C contains the set of possible frequencies F ,
the permitted minimum voltage Vf for a selected frequency f , the switching
capacitance C and the leakage current I for every hardware resource. The CPN
simulation engine computes te, PQ and PM according to Eq. 1, 2 and 3.

te =
∑

q∈Q

∑

z∈Z

Mz,q

fk,q
(tcz,q + tsz,q) (1)

PQ =
∑

q∈Q

∑

z∈Z
P d
f,qMz,q + P s

f,q (2)

PM =
∑

m∈M
P s
m + P d

m · um (3)

The number of cycles used by z scheduled on q are given with tcz,q. The simulated
inter-process dependencies and concurrencies are considered with tsz,q, namely
the latencies incurred by context switches and FIFO data communication, i.e.
delays caused by the HWCs. The utilisation of the memory um is calculated
using the HWC access activity trace, which is generated by the CPN simulation
engine. Mz,q = 1 indicates that process z is mapped to PE q.

The resulting minimisation problem is given in Eq. 4, where (4b) and (4c)
define that each process is mapped on exactly one PE.

min f =
(
te, PQ, PM)

(4a)

s.t.
∑

q∈Q
Mz,q = 1, ∀z ∈ Z (4b)

Mz,q ∈ {0, 1}, ∀z ∈ Z, ∀q ∈ Q (4c)

3D Optimisation of SW Application Mappings on Heterogeneous MPSoCs 61

4.2 Heuristic: MORAM

MORAM finds a Pareto front approximation for the objectives application exe-
cution time te, PE and memory power consumption, PQ and PM. As invoking
the CPN simulation engine is a major bottleneck, and due to the large search
space, a pruning step is necessary. This procedure is taken from [10]. The authors
prove that this reduces the search space effectively and application-independent.
The final Pareto front is generated on the basis of this reduced exploration
space. The heuristic contains further techniques reducing the amount of CPN
simulation engine calls.

Algorithm 1 shows the entire pseudo code of MORAM with the input sets:
PEs Q, the processes Z, and all platform power configurations C. The heuristic
outputs the final Pareto front in form of the objective value vectors te ∈ R

|PP |,
PQ ∈ R

|PP |, PM ∈ R
|PP |, with |PP | being the number of the final Pareto points.

Further, the corresponding platform power configurations C ∈ R
|PP |×|Q|×2 con-

tain the selected frequency and voltage per PE and Pareto point. Also, the pro-
cess mappings M ∈ {0, 1}|PP |×|Z|×|Q| are part of the output. In the following,
the individual steps of MORAM are discussed.

PruneSearchSpace. First, a pre-pruning phase is necessary if |C| is very large
to keep the run time of the entire pruning phase acceptable. To formalise this, a
user-defined number N enables a uniform distributed random process, selecting
N platform configurations, as shown in line 6–8. The uniform distribution ensures
a representative selection of all possible C. According to [10], a reasonable choice
of N would be N = 105.

Second, a classification and selection procedure is performed based on two
qualifiers: Total Nominal Power (TNP) and the Execution Time Indicator (ETI)
(lines 9–11). The TNP value for a c ∈ C is computed as given in Eq. 5. The ETI
reflects an execution time approximation, where the processes are assumed to
have all input data available and are ready to execute. Also, the process-to-PE
assignment is not done to remain mapping independent. The execution time is
calculated for every PE type Qtype ⊆ Q. Hence, inter-process dependencies and
concurrencies are not considered in Eq. 6.

PTNP =
∑

q∈Q
P d
f,q + P s

f,q (5)

tETI =
∑

q∈Qtype

∑

z∈Z
tcz,q/fq (6)

A configuration is considered non-dominated, if no other configurations with
lower PTNP and tETI are available (line 12). As there are too many remaining con-
figurations C′, only a fraction is selected (lines 13–15), namely every �log2(|C′|)	.
This log2 based selection size causes an efficient reduction of the solution space,
trading subsequent algorithm run time with potential Pareto front candidates.

Originally designed for two objectives, this pruning procedure provides a
notion of whether c ∈ C is a potential candidate for the final Pareto front.

62 G. Führ et al.

Algortihm 1: Heuristic MORAM

Input: Q, Z, C
Output: M ∈ {0, 1}|PP |×|Z|×|Q|, C ∈ R

|PP |×|Q|×2, te ∈ R
|PP |, PQ ∈ R

|PP |,
PM ∈ R

|PP |, with |PP | being the number of the final Pareto points
1 Function MORAM()
2 Cpareto = PruneSearchSpace(Q, Z, C);
3 {M, C, te, PQ, PM} = GetParetoFront(Q, Z, Cpareto);

4 return Mz,q∀z∀q, C∀q, te, PQ, PM;

5 Function PruneSearchSpace(Q, Z, C)
6 if |C| > N then
7 Cnew = N randomly selected entries of C;
8 C = Cnew;

9 foreach c ∈ C do
10 c.TNP = calculate total nominal power;
11 c.ETI = calculate execution time indicator;

12 C′ = non-dominated c ∈ C according to TNP and ETI; sort ascending by ETI;

13 for i = 0; i < |C′|; i +=
⌊
log2(|C′|)⌋ do

14 Cpareto.append(C′.at(i));

15 return Cpareto

16 Function GetParetoFront(Q, Z, Cpareto)
17 foreach c ∈ Cpareto do
18 set c; fsize = |c.frequencyDomains|;
19 process mapping to q ∈ Q with lowest TNP; calculate PM, PQ and te;
20 for x = 2, i = 0; i < fsize; x++ do
21 i = Fibonacci(x);
22 if i > fsize then
23 i = fsize;

24 Qi = take all q ∈ Q within i frequency domains with lowest TNP;

25 process mapping with minCut(|Qi|); calculate PM, PQ and te;

26 process mapping with merge(|Qi|); calculate PM, PQ and te;

27 return all non-dominated c ∈ Cpareto AND process mappings according to PM, PQ

and te;

Figure 1 exemplifies that Cpareto forms already a good approximation, when
computing a minCut(|Q|) mapping for demonstration purposes. This minCut
mapping strategy is explained in the next section.

Fig. 1. Process mapping with minCut(|Q|) for each c ∈ Cpareto, audio filter and HeMVP

3D Optimisation of SW Application Mappings on Heterogeneous MPSoCs 63

GetParetoFront. MORAM computes three different types of mappings during
the Pareto front generation: (i) A graph splitting approach is applied on the basis
of minimum cuts, dubbed minCut. It focuses on outputting minimum memory
power mappings. The KPN graph A of the application is first treated as a single
set. After one cut, two sets are produced, which can be mapped to the available
PEs. The minimum cut algorithm of [30] is used to keep the FIFO channel
communication costs between the new subsets minimised. These cuts are done
|Q| times to have as many subsets as PEs available.

(ii) A graph merging approach is chosen to start from the opposite side
than minCut, dubbed merge. It is chosen to generate mappings with maximum
performance. Each node of the KPN graph A is considered as an individual set.
Subsets are grouped if they have high FIFO channel communication cost but
do not have a high processing load after being merged. These considerations are
necessary to achieve optimal performance with low communication cost. Due to
the brevity of this paper, the merge procedure cannot be discussed in detail. In
brief, the notion of attraction and repulsion forces acting on the subsets is used.
The former occurs for high FIFO channel communication and is calculated on
the basis of FIFO channel sizes. Repulsion forces between subsets are high if the
processing load of the individual subsets is high. It is based on the ETI value.

(iii) Assigning all processes to the PE which has the lowest TNP is done to
get a mapping solution with the slowest execution time and lowest power values.
In other words, a corner case of the Pareto front is ensured to be included in the
final approximation of the non-dominated set.

The entries of Cpareto are input to the final Pareto front calculation and
considered further (line 17). For each c ∈ Cpareto, mapping type (iii) is computed
(line 19). Type (i) and (ii) are evaluated on the granularity of the frequency
domains to save run time and iterate more coarse through the added parallel
computation options (lines 20–26). Starting with one domain that hosts PEs
with minimum TNP, mapping is done utilising only a few PEs to save power.
With every added domain, more PEs are considered. With this procedure, the
number of idling PEs, which switch to a low power mode, can be maximised in
the beginning. Further, distributing the processes among more PEs offers better
performance but causes higher PE and memory power consumption.

In case of a high number of frequency domains, it is not necessary to increase
the current frequency domain count linearly, due to Amdahl’s law. It describes
the theoretical speed-up when increasing the PE count for parallel applications.
Approximating resulting speed-up curve requires the most samples in the begin-
ning, as the curve levels out. The best approximation is the Fibonacci series
because adding a frequency domain results in several added PEs.

In the end, MORAM computes the final Pareto front based on all c ∈ Cpareto

and process mappings that are non-dominated for the three objectives (line 27).

5 Experimental Results

The experimental results consist of two case studies to evaluate the quality and
performance. The comparison Pareto front is calculated with the R2-EMOA.

64 G. Führ et al.

The speed-up of MORAM is computed in relation to the R2-EMOA. The solu-
tion quality is indicated with the Hypervolume Indicator (HI) to identify which
Pareto front is superior. A non-dominated front is considered better if its solu-
tions are well distributed across the objective space and cover a larger area for
each objective value. The HI compresses these conditions, i.e. diversity and dom-
inance into one single value. It is the only method mentioned in the literature
that achieves these Pareto-compliant conditions as unary indicator [8].

The comparison Pareto front is calculated with the indicator EMOA pre-
sented in [10], dubbed R2-EMOA. It has been chosen because R2 indicator based
EMOA are proven to be efficient and less computational expensive in objective
domains ≥3 [9]. Two variants are used. The unconstrained R2-EMOA has a pop-
ulation size of 100 and does 6000 evaluations. The constraint variant is limited
to a population with 50 individuals and an iteration count of 600.

Execution times and power estimates are solely computed using the CPN
simulation engine, due to sufficient accuracies (3.1 and 3.2). A set of representa-
tive parallel applications is used [7]. The number of processes is given in brackets:
audio filter (11), JPEG encoder (24), multiple input multiple output orthogo-
nal frequency division multiplexing MIMO OFDM transceiver (36), space-time
adaptive processing STAP (16), and sobel filter (5). In-house implementations
complement the benchmark set: an LTE uplink receiver physical layer bench-
mark LTE (19) [28], and a Mandelbrot set computation with 16 Man16 and 150
Man150 worker processes round off the benchmark set, Discrete Cosine Trans-
formations DCT (8) typically used in video compression.

Table 1. MORAM HI performance relative to constrained R2-EMOA

ODROID-XU3 HeMVP

Audio filter −1.1% ++

DCT −1.6% ++

JPEG −2.7% ++

LTE −3.6% ++

Man150 ++ ++

Man16 + ++

MIMO OFDM ++ ++

Sobel filter −7.9% −0.1%

STAP + ++

+: Better than constrained R2-EMOA
++: Better than unconstrained R2-EMOA

5.1 Case Study: ODROID-XU3

The ODROID-XU3 board [1] is built around the Samsung Exynos-5422 proces-
sor with ARM big.LITTLE architecture. The frequency ranges from 200 MHz

3D Optimisation of SW Application Mappings on Heterogeneous MPSoCs 65

to 1400 MHz (little) and 2000 MHz (big) in steps of 100 MHz per cluster. The
ODROID-XU3 supports two levels of coherent caches. Each core has its own
set of private L1 instruction and data caches. Per cluster, a shared L2 cache is
deployed, which is connected to a 2 GB LPDDR3 DRAM running at 933 MHz.
The operating system takes care of automatically setting the most efficient volt-
age.

The run time of MORAM ranges between 1.5 s and 138 s. Compared to the
constrained R2-EMOA, the minimal speed-up is 27× and 200× on average. The
run time numbers are shown in Fig. 2. Table 1 gives an overview of the HI mean
performance relative to constrained and unconstrained R2-EMOA. MORAM cal-
culates Pareto fronts that are less than 8% worse compared to the constrained
R2-EMOA for half of the benchmarks. In four cases, the R2-EMOA is outper-
formed. Averaging over all cases, the constrained R2-EMOA is 1% better.

au
dio

filt
er

DCT
JP

EG LT
E

Man
150

Man
16

MIM
O

OFD
M

sob
el

filt
er

ST
AP

100
101
102
103
104

ru
n
ti
m
e
[s
]

MORAM constrained R2-EMOA

Fig. 2. R2-EMOA and MORAM run times for ODROID-XU3

au
dio

filt
er

DCT
JP

EG LT
E

Man
150

Man
16

MIM
O

OFD
M

sob
el

filt
er

ST
AP

102
103
104
105
106

ru
n
ti
m
e
[s
]

MORAM constrained R2-EMOA

Fig. 3. R2-EMOA and MORAM run times for HeMVP

5.2 Case Study: HeMVP

A SystemC [3] in-house virtual prototype, dubbed HeMVP, models a heteroge-
neous platform with a hierarchical structure. The platform subsystems consist
of either one ARM Cortex-A9 or ADSP Blackfin 609 DSP (BFIN), with private
incoherent L1 instruction and data caches. A local memory (1 MB, the same
frequency as the PE) is available per subsystem. Four ARM and four BFIN
subsystems are combined into a cluster, which also contains a bus and memory
(4 MB, 250 MHz). Four clusters are connected globally with a bus, which grants
access to shared memory (128 MB, 100 MHz).

66 G. Führ et al.

The HeMVP has a total of 32 PEs. Two subsystems of same PE type are
grouped into a frequency domain, while four share the same voltage domain. The
frequency ranges from 200 MHz to 1200 MHz for the ARMs, and from 100 MHz
to 500 MHz for the Blackfins. For both, the step size is 100 MHz. This leads to
|C| = 8.4 · 1013.

The bare metal runtime environment sets the lowest applicable voltage per
voltage domain automatically. Further, it takes care of powering down unused
PEs to a clock gated state. Memories that have no data assigned to are powered
off entirely. All three memory levels can be used to store the data of FIFO chan-
nels. Also, cluster memories host the data structures for synchronisation. The
shared memory provides stack, heap and shared code. The memory modelling
engine of [24] is used to generate viable power traces. For ARM and BFIN, the
power models presented in [20,26] are deployed.

The aforementioned N is set to 105 to enable the pre-pruning step, as rec-
ommended in [10]. The run times for MORAM and the constrained R2-EMOA
are shown in Fig. 3. Due to the larger |C| and mapping options, MORAM com-
putes between 1.8 min and 18 min. This is at least 88× and on average 278×
faster than the constrained R2-EMOA. Further, Table 1 reveals that the heuristic
computes Pareto fronts with an HI almost always better than the unconstrained
R2-EMOA. On average, MORAM is 4% better.

The reason results from domain knowledge which is explained as follows. The
memory assignment of FIFO channel buffers is done implicitly, as explained in
Sect. 4. The design of MORAM accounts for the process-to-PE dependent HWC
placement. However, the R2-EMOA falls into the category of meta-heuristics.
They incorporate none to just a few assumptions about the addressed optimi-
sation problem. This has the advantage that it can be used for a much wider
variety of problems. The drawback becomes visible for this MOOP in the form
of the missing domain knowledge.

6 Conclusion

This paper proposed a software mapping heuristic approach which solves the
three-dimensional optimisation problem of application performance, memory
and PE power. Pareto fronts could enable trade-off evaluation and serve as an
alternative to established methods for the training of online optimisation algo-
rithms. The applicability and the quality of MORAM were evaluated using two
different case studies and a state-of-the-art indicator based EMOA. The heuristic
computed Pareto fronts for the ODROID-XU3 and the targeted representative
benchmarks at least 80× faster, while having an HI 1% worse compared to the
constrained R2-EMOA. Furthermore, testing the heuristic in a highly complex
search space scenario, the HeMVP showed a minimum speed-up of 88×. On
average, a 4% better HI compared to the unconstrained version was achieved.

3D Optimisation of SW Application Mappings on Heterogeneous MPSoCs 67

References

1. ODROID-XU3. http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu3. Acce-
ssed Jan 2020

2. Silexica GmbH. http://silexica.com. Accessed Jan 2020
3. SystemC. http://www.accellera.org/downloads/standards/systemc. Accessed Jan

2020
4. WHITEPAPER - pushing performance: analysis and optimisation of multicore

communication with SLX. https://www.silexica.com/resources/#whitepapers-
reached. Accessed Jan 2020

5. WHITEPAPER - SLX multi-objective optimisation (MOPT). https://www.
silexica.com/resources/#whitepapers-reached. Accessed Jan 2020

6. Aalsaud, A., Shafik, R., Rafiev, A., Xia, F., Yang, S., Yakovlev, A.: Power-aware
performance adaptation of concurrent applications in heterogeneous many-core
systems. In: Proceedings of ISLPED 2016 (2016)

7. Aguilar, M., Jimenez, R., Leupers, R., Ascheid, G.: Improving performance and
productivity for software development on TI multicore DSP platforms. In: EDERC,
September 2014

8. Berghammer, R., Friedrich, T., Neumann, F.: Convergence of set-based multi-
objective optimization, indicators and deteriorative cycles. Theoret. Comput. Sci.
456, 2–17 (2012)

9. Brockhoff, D., Wagner, T., Trautmann, H.: 2 indicator-based multiobjective search.
Evol. Comput. 23(3), 369–395 (2015)

10. Führ, G., Hallawa, A., Leupers, R., Ascheid, G., Eusse, J.F.: Multi-objective opti-
misation of software application mappings on heterogeneous MPSoCs: TONPET
versus R2-EMOA. Integration 69, 50–61 (2019)

11. Ghose, S., Yaglikçi, A.G., Gupta, R., Lee, D., et al.: What your DRAM power
models are not telling you: lessons from a detailed experimental study. ACM Meas.
Anal. Comput. Syst. 2(3), 1–41 (2018)

12. Gupta, U., Mandal, S.K., Mao, M., Chakrabarti, C., Ogras, U.Y.: A deep
Q-learning approach for dynamic management of heterogeneous processors. IEEE
Comput. Archit. Lett. 18(1), 14–17 (2019)

13. Gupta, U., Patil, C.A., Bhat, G., Mishra, P., Ogras, U.Y.: DyPO: dynamic pareto-
optimal configuration selection for heterogeneous MpSoCs. ACM Trans. Embed.
Comput. Syst. 16(5s), 123:1–123:20 (2017)

14. Ha, S., Jung, H.: HOPES: programming platform approach for embedded sys-
tems design. In: Ha, S., Teich, J. (eds.) Handbook of Hardware/Software Code-
sign, pp. 951–981. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-
017-7267-9 1

15. Holzkamp, O.: Memory-aware mapping strategies for heterogeneous MPSoC sys-
tems. Ph.D. thesis, Technical University of Dortmund, Germany (2017)

16. Jung, M., Mathew, D.M., Zulian, F., Weis, C., Wehn, N.: A new bank sensitive
DRAMPower model for efficient design space exploration. In: Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS) (2016)

17. Kahn, G.: The semantics of a simple language for parallel programming. In: Pro-
ceedings of Information Processing, Stockholm, Sweden, August 1974

18. Kang, S.H., Yang, H., Schor, L., Bacivarov, I., Ha, S., Thiele, L.: Multi-objective
mapping optimization via problem decomposition for many-core systems. In: IEEE
10th Symposium on Embedded Systems for Real-time Multimedia, October 2012

http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu3
http://silexica.com
http://www.accellera.org/downloads/standards/systemc
https://www.silexica.com/resources/#whitepapers-reached
https://www.silexica.com/resources/#whitepapers-reached
https://www.silexica.com/resources/#whitepapers-reached
https://www.silexica.com/resources/#whitepapers-reached
https://doi.org/10.1007/978-94-017-7267-9_1
https://doi.org/10.1007/978-94-017-7267-9_1

68 G. Führ et al.

19. Leupers, R., Aguilar, M.A., Eusse, J.F., Castrillon, J., Sheng, W.: MAPS: a soft-
ware development environment for embedded multicore applications. In: Ha, S.,
Teich, J. (eds.) Handbook of Hardware/Software Codesign, pp. 917–949. Springer,
Dordrecht (2017). https://doi.org/10.1007/978-94-017-7267-9 2

20. Onnebrink, G., et al.: Black box power estimation for digital signal processors using
virtual platforms. In: RAPIDO 2016 Workshop (2016)

21. Onnebrink, G., et al.: DVFS-enabled power-performance trade-off in MPSoC SW
application mapping. In: SAMOS, July 2017

22. Quan, W., Pimentel, A.D.: A hybrid task mapping algorithm for heterogeneous
MPSoCs. ACM Trans. Embed. Comput. Syst. 14, 1–25 (2015)

23. Reddy, B.K., Singh, A.K., Biswas, D., Merrett, G.V., Al-Hashimi, B.M.: Inter-
cluster thread-to-core mapping and DVFS on heterogeneous multi-cores. IEEE
Trans. Multi-Scale Comput. Syst. 4(3), 369–382 (2018)

24. Rudolf, J., Strobel, M., Benz, J., Haubelt, C., Radetzki, M., Bringmann, O.: Auto-
mated sensor firmware development - generation, optimization, and analysis. In:
Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifika-
tion von Schaltungen und Systemen (MBMV) (2019)

25. Schranzhofer, A., Chen, J.J., Thiele, L.: Dynamic power-aware mapping of applica-
tions onto heterogeneous MPSoC platforms. IEEE Trans. Industr. Inf. 6, 692–707
(2010)

26. Schuermans, S., Leupers, R.: Power Estimation on Electronic System Level using
Linear Power Models. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
01875-7

27. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: survey of current and emerging trends. In: Proceedings of Design Automa-
tion Conference (DAC) (2013)

28. Själander, M., McKee, S., Brauer, P., Engdal, D., Vajda, A.: An LTE uplink
receiver PHY benchmark and subframe-based power management. In: Performance
Analysis of Systems and Software (ISPASS) (2012)

29. Stefanov, T., Pimentel, A., Nikolov, H.: DAEDALUS: system-level design method-
ology for streaming multiprocessor embedded systems on chips. In: Ha, S., Teich,
J. (eds.) Handbook of Hardware/Software Codesign, pp. 983–1018. Springer, Dor-
drecht (2017). https://doi.org/10.1007/978-94-017-7267-9 30

30. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)
31. Zhang, Y., Gong, D.-W., Cheng, J.: Multi-objective particle swarm optimization

approach for cost-based feature selection in classification. IEEE/ACM Trans. Com-
put. Biol. Bioinf. (TCBB) 14(1), 64–75 (2017)

32. Zhang, Y., Gong, D.-W., Ding, Z.: A bare-bones multi-objective particle swarm
optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–
227 (2012)

https://doi.org/10.1007/978-94-017-7267-9_2
https://doi.org/10.1007/978-3-030-01875-7
https://doi.org/10.1007/978-3-030-01875-7
https://doi.org/10.1007/978-94-017-7267-9_30

Towards a Priority-Based Task
Distribution Strategy for an Artificial

Hormone System

Eric Hutter(B) and Uwe Brinkschulte

Goethe University Frankfurt, Frankfurt am Main, Germany
{hutter,brinks}@es.cs.uni-frankfurt.de

Abstract. This paper presents a priority-based task distribution strat-
egy as an extension to the Artificial Hormone System (AHS). The AHS is
a distributed middleware based on self-organization principles. It allows
to distribute tasks to processing nodes in a self-organizing way while
neither having a single-point-of-failure nor requiring external user input.
Node failures are detected automatically, resulting in relocation of any
affected tasks to operational nodes. This provides self-healing capabili-
ties if sufficient computational resources are available.

Our extension allows tasks to have priorities and enables self-healing
by gracefully degrading the system based on the task priorities if the
computational resources are not sufficient to completely self-heal the sys-
tem. We present our extension and analyze its worst-case time bounds for
self-configuration as well as self-healing. Quickly degrading the system
in overload situations requires a strategy deciding which tasks to stop in
such situations. We present a simple strategy and analyze its worst- and
average-case self-healing duration.

Keywords: Artificial Hormone System · Organic Computing ·
Self-organization · Self-healing · Task distribution

1 Introduction

New ways to handle the increasing complexity observed in embedded sys-
tems while simultaneously coping with component failures have to be found.
One promising approach is to adapt self-organizational principles to computer
systems.

The Artificial Hormone System (AHS) middleware [14] adapts the natural
endocrine system in order to decentrally manage tasks in a distributed system:
By exchanging digital messages, called hormones after their biological model, via
a communication network, tasks can be distributed in the system in a flexible
and self-organizing manner, exhibiting properties such as self-configuration and
self-healing.

This paper deals with an extension to the AHS middleware that supports task
assignment priorities, thus allowing graceful system degradation if the amount of
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 69–81, 2020.
https://doi.org/10.1007/978-3-030-52794-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_6

70 E. Hutter and U. Brinkschulte

node failures is too big to allow the system to fully heal itself. Our contribution
is three-fold:

1. We describe a priority-based task-decision strategy for the AHS.
2. We derive hard time bounds for this strategy’s self-configuration and self-

healing capabilities.
3. We analyze the worst- and average-case time required to degrade a system in

an overload situation.

The paper is structured as follows: We first present related work and the
general AHS in Sects. 2 and 3. Section 4 describes our priority-based extensions
to the AHS. Its worst-case time bounds are derived in Sect. 5. Section 6 proposes
a simple degradation strategy to self-heal the system in overload situations and
analyzes its worst- and average-case healing times. Finally, Sect. 7 concludes this
paper.

2 Related Work

The approach presented in this paper enables a distributed system to recover
from hardware failures by dynamically (re)configuring itself. A classical way to
improve a system’s robustness against such types of failures is the duplication
of functional units: By providing each unit with an identical, redundant unit in
hot stand-by, a limited number of failures can be compensated. This pattern is
frequently used for safety-critical control units in the automotive domain, albeit
recent approaches like the AutoKonf project [10] try to reduce costs by sharing
a single backup between multiple different control units so that a single failure
can be compensated.

In contrast, our approach allows to assign tasks to a distributed system’s
computing nodes in a self-organizing way, allowing more flexibility. Task priori-
ties allow gradual system degradation after so many node failures have occurred
so that the system can no longer fully recover. This flexible mechanism allows
to reduce the number of required backup nodes while still being able to tolerate
a limited number of node failures.

Our approach is inspired by multiple general research trends: IBM’s Auto-
nomic Computing initiative [8] introduced self-x properties such as self-
configuration, selfoptimization or selfhealing. These properties can also be
observed in systems based on Organic Computing principles [11]: Organic Com-
puting can be characterized as a postponement of various decisions to the sys-
tem’s run-time that were traditionally made at design time [9], allowing the
system to dynamically adapt to changed operational conditions [13].

The resulting dynamism distinguishes our concept from approaches like [6]
where a (offline) precomputed adaption scenario is applied in case of node failures
or overload situations. In contrast, our approach completely postpones the cal-
culation of adaption responses to the run-time and thus allows a more dynamic
reaction.

Towards a Priority-Based Task Distribution Strategy for an AHS 71

Nevertheless, our concept is by far not the only approach to assign tasks in
distributed systems.

Contract Net Protocols [12] can be employed to distribute tasks to agents in
a multi-agent system. The approach presented in [17] consists of an improved
Contract Net Protocol for task assignment and employs self-healing capabilities
as well as task priorities. Yet, contrarily to our approach, it is not completely
decentralized and does not guarantee hard real-time bounds.

Contract Net Protocols have also been used for task assignment in Wireless
Sensor Networks (WSNs), e.g. in [4]. Other recent research in this domain utilizes
self-organization principles [16], game theory [5] or particle swarm optimization
[7,15]. Many of these approaches employ some kind of task priority, e.g. deadline-
based priorities or number of dependent tasks in a task graph. Additionally, with
WSN nodes typically having a limited energy budget, energy-efficiency is one of
the main goals of these approaches, rather than guaranteeing real-time behavior
as with our approach. In addition, WSNs do not guarantee that any two nodes
have a direct communication link as required by our approach, thus needing
different methods to distribute the tasks.

To the best of our knowledge, no self-organizing middleware for prioritized
task allocation in distributed systems comparable to our approach exists.

3 The Artificial Hormone System

The Artificial Hormone System (AHS) is a completely decentralized middleware
based on Organic Computing principles that allows the distribution of tasks in
a self-organizing way. If a processing element (PE) fails, the remaining PEs will
compensate this failure by re-configuring themselves.

The AHS works by realizing control loops based on hormones, which are
short digital messages, on all PEs in the system: They exchange eager values for
all tasks, indicating their suitability for each task. In every cycle of the hormone
control loop (called hormone cycle), each PE tries to make a decision upon one
task by comparing its own eager value with all received eager values. If it has
sent the highest eager value for some task T in the current cycle, it is allowed
to start executing T .

Once T has been started, its PE will start sending out a suppressor hormone
for this task. Upon receiving this suppressor, the other PEs will reduce their eager
values for T accordingly, preventing them from taking additional instances of T .

Accelerator hormones act antagonistically to suppressors by increasing a
task’s eager value: Tasks that cooperate in some way or work on similar problems
may be defined as related. When a task T is running on some PEγ , accelerators
for all tasks related to T are spread in the vicinity of PEγ . This furthers the exe-
cution of those tasks on neighboring PEs, forming functional clusters of related
tasks.

Figure 1 shows the basic principle of the hormone control loop. It is com-
pletely decentralized and thus, the AHS has no single point of failure. In addi-
tion, the original AHS (without our priority extension) can guarantee hard time
bounds, allowing its use in real-time systems:

72 E. Hutter and U. Brinkschulte

Fig. 1. Hormone control loop executed on PEγ . For each task Ti, a modified eager
value Emiγ (its static local eager value Eiγ plus all received accelerators Aiγ minus
all received suppressors Siγ) is sent to all PEs. If the sent modified eager value is
positive and greater than all received modified eager values, Ti may be taken. Thus,
suppressors for Ti will be sent to all other PEs (preventing infinite assignments of Ti)
and accelerators for tasks related to Ti will be sent to neighboring PEs, forming clusters
of related tasks on them.

– The system’s initial self-configuration requires at most m hormone cycles,
where m is the number of tasks to distribute.

– In case a PE running mf tasks fails, the AHS will automatically perform a
self-healing by reassigning those tasks among the healthy PEs. This takes at
most mf +a hormone cycles where a is the number of hormone cycles required
to notice the failure (by missing suppressors for the failed tasks).1

The length of each hormone cycle can be chosen arbitrarily, a lower bound is
only imposed by the communication bus’ latency and bandwidth.

For more detailed information on the AHS, please refer to [1–3,14].

4 A Priority-Based Task Decision Strategy

4.1 Motivation

The AHS’ self-healing capabilities are insufficient if the remaining PEs do not
have enough computational resources to execute all tasks. With many systems
consisting of tasks with mixed criticality levels, this may easily lead to situations
where low-criticality tasks are running, but high-criticality tasks previously exe-
cuted on the failed PE cannot be reassigned. In fact, it is undefined which task
subset will be running in such situations.
1 In the AHS’ current implementation, a = 2 hormone cycles holds.

Towards a Priority-Based Task Distribution Strategy for an AHS 73

The AHS models system load by means of load suppressors a task sends to
the PE it is running on, thus limiting the number of tasks the PE can take. If it
is fully loaded, it will send an eager value of 0 for all remaining tasks. Therefore,
situations of system overload can in principle be recognized by examining the
hormones broadcasted in the system.

We thus implemented an AHS extension that allows to give each task a
priority. This priority is used to (a) control the order in which tasks are assigned
during the initial self-configuration and (b) resolve system overload situations
by stopping tasks of low priority, freeing capacities for high-priority tasks.

4.2 Conception

Our approach, the priority-based task decision strategy, is an extension of the
AHS’ so-called aggressive task decision strategy [2]: Each PE may take at most
one task per hormone cycle. If more than one task were taken per cycle and PE,
all tasks could be assigned before accelerators had a chance to become effective,
failing to cluster related tasks. Using the aggressive task decision strategy, each
PE actively searches for a task it may take in each cycle. This allows at least
one PE to take one task per cycle, resulting in the time bound of m hormone
cycles to distribute m tasks mentioned in Sect. 3.

Our priority-based task decision strategy has the same operating principle
with the following differences: Each task has an integer priority that is known to
and equal on all PEs in the system. Each PE searches its task list for a task to
be taken in the order of descending priorities. If the received hormones suggest
that another PE has won some task T (and thus might take it in this cycle),
no task T ′ having a lower priority than T ’s may be taken in the current cycle,
ensuring a correct order of task assignment. Figure 2a sketches this procedure:
The variable lockPrio is used to stop deciding on tasks after a higher-priority
task has been identified that may be taken on another PE in this cycle. The
variable missingTask is used to track a high-priority task that is not running
in the system because of an overload situation. Both variables are set by the
sub-procedure Decide(T) as shown in Fig. 2b.2

The decide procedure works by comparing the local eager value sent with all
received eager values. There are three possible outcomes of this comparison:

a) No bidders: No PE sent a positive modified eager value for T . If suppressors
were received for T instead, T is taken somewhere and the decision procedure
may continue to the next task. Else, no PE has capacities to take T , so the
system is in an overload situation. In this case, lockPrio is set to prevent
tasks of lower priority from being taken and missingTask is used to track
this situation.

b) Loser: The local PE did not send the highest eager value for T . Thus, it sets
lockPrio to prevent taking any task of lower priority.

2 For the sake of brevity, only a simplified variant of Decide (T) is depicted with some
parts omitted, e.g. the offer mechanism belonging to the AHS’ self-optimization.

74 E. Hutter and U. Brinkschulte

Fig. 2. Priority-based task decision strategy

c) Winner: The local PE sent the highest eager value for T . Thus, it takes T
(and will send a suppressor for T in the next cycle, preventing the other PEs
from taking an additional instance of this task).

The current hormone cycle ends once a task has been taken or a task with lower
priority than lockPrio has been reached. If, in the latter case, missingTask is
set, some high-priority task is not running because of an overload situation. In
order to resolve this situation, each PE will try to drop tasks of low priority in
order to free up resources and send an eager value >0 for this task.

This is, however, based on the following fundamental assumption:

Assumption. Any task may be (temporarily) stopped at any time in order to
free up resources for tasks of higher priority.

It is up to a task dropping strategy to decide on which specific tasks will be
stopped in an overload situation; more information on this matter as well as
the priority-based task decision’s time bounds will be presented in the following
sections.

5 Worst-Case Analysis

Our priority-based extension can still guarantee real-time behavior for self-
configuration as well as self-healing if the remaining capacities are sufficient
to redistribute all failed tasks:

Towards a Priority-Based Task Distribution Strategy for an AHS 75

Self-Configuration. It can be shown that it takes at most 2m − 1 hormone
cycles to assign m tasks during the system’s initial self-configuration. As our
strategy is based on the aggressive strategy, a similar argument to the one given
in [2] can be employed: Each PE searches actively for a won task, thus at least
one task is taken per cycle in the system. However, after a task T is taken by
some PEα in cycle i, all other PEs will still send out an eager value >0 for
T in cycle i + 1 before PEα’s suppressor for T finally becomes effective. This
introduces one delay cycle in which no task allocation can happen after the last
task of each priority level has been assigned. Thus, if all m tasks have different
priorities, m−1 delay cycles are introduced and self-configuration takes at most
2m − 1 hormone cycles.

Self-Healing. If a PE fails, it won’t send any more hormones. Thus, it is possible
to detect this failure by missing hormones. This takes a constant amount of a
hormone cycles.3 Afterwards, the failed tasks are automatically re-assigned with
the time bound for self-configuration applying. If mf tasks were running on
the failed PE and the remaining PEs’ resources suffice to take all those tasks,
self-healing thus takes at most 2mf − 1 + a hormone cycles.

If, however, the remaining capacities do not suffice to take all failed tasks,
the system is considered to be in an overload situation. Since a premise of our
priority-based task decision is to allow gracefully degrading the system in such
situations, the next section will deal with overload situations.

6 Overload Situations

As mentioned in Sect. 4.2, a task dropping strategy is responsible for deciding on
which specific tasks to stop in overload situations. However, a model is required
to facilitate the analysis of such situations. Thus, let v be the number of PEs
that remain operational. Let PE× denote the failed PE and PE1 . . .PEv denote
the remaining PEs. Additionally, we will make the following assumptions:

– All tasks have different priorities.
– All tasks induce equal load to the PEs and each PE may execute any task.
– At the instant PE× fails, PE× and PE1 . . .PEv are each completely utilized

by executing exactly m tasks.
– No additional PE failure occurs during self-healing.

The resulting model is visualized in Fig. 3.

6.1 Task Dropping Strategy

We now propose the following task dropping strategy to resolve an overload
situation:

3 As mentioned before, a = 2 holds.

76 E. Hutter and U. Brinkschulte

Fig. 3. Overload model used during analysis

Strategy. Upon noticing an overload situation, each PE shall stop all running
tasks that have a priority lower than the priority of the highest-priority task that
is currently not running.

In the context of Fig. 2, this strategy basically stops all tasks having a priority
lower than missingTask ’s priority. After the tasks have been stopped, the system
re-configures itself by assigning as many of the highest-priority non-running tasks
as possible. Since the system is in overload, not all tasks can be assigned, but no
more tasks will be stopped by the next invocation of the task dropping strategy.
As this is arguably a very simple strategy, we called it naive task dropping. In
addition, analyzing its worst-case in the given model is straightforward:

Theorem 1 (Worst-Case Analysis for Overload Situations). Self-healing
in an overload situation takes at most 2mv + a hormone cycles when using the
naive task dropping strategy.

Proof. It takes a constant amount a of hormone cycles to notice the failure of
PE× due to missing suppressors. All v remaining PEs are fully utilized, so the
system is in an overload situation.

Thus, in the next cycle, missingTask is set to the highest-priority task that
was previously running on PE× and no task is taken in the system. The strat-
egy will now stop all tasks with a priority lower than missingTask ’s priority;
if missingTask is the single-highest priority task, a total of mv tasks will be
stopped.

Starting with the following cycle, the mv highest-priority tasks (of all mv+m
non-running tasks) will be assigned, taking 2mv − 1 cycles at most.

As a result, no more than 2mv − 1 + 1 + a = 2mv + a hormone cycles are
required to complete the self-healing and reach a stable system state again. ��

6.2 Average-Case Analysis

In this paper, we additionally want to analyze the time required for self-healing
when using this strategy in the average case. Although an average-case analysis
is not relevant in the context of real-time systems, we decided to nevertheless
analyze it in this regard: The expected self-healing duration might especially be
of interest for scenarios that don’t require hard real-time bounds.

Towards a Priority-Based Task Distribution Strategy for an AHS 77

Preparations. In order to facilitate this analysis, some arrangements have to
be made:

Definition 1. Let n, k ∈ N. Then, the rising factorial nk shall be defined as

nk := n · (n + 1) · · · (n + k − 1)
︸ ︷︷ ︸

k factors

=
n+k−1
∏

i=n

i.

Lemma 1. For k,m ∈ N with k ≥ 1,

k
∑

i=1

im = k · (k + 1)m

1 + m
holds.

Proof. Multiplying with (m!/m!) allows to convert the summands to binomial
coefficients:

k
∑

i=1

im = m! ·
k

∑

i=1

im

m!
= m! ·

k
∑

i=1

(

i + m − 1
m

)

= m! ·
k+m−1

∑

i=m

(

i

m

)

This sum can now be simplified using the identity
∑n

i=r

(
i
r

)

=
(
n+1
r+1

)

:

= m! ·
(

k + m

m + 1

)

= m! · km+1

(m + 1)!
= k · (k + 1)m

1 + m
.

��

Analysis. We can now analyze the naive task dropping strategy’s average case
within our overload situation model, assuming all tasks are distributed randomly
to the available PEs. For this reason, we quantify the number of tasks stopped
on average:

Theorem 2. Let X be a random variable representing the number of tasks
stopped by the naive task dropping strategy and E [X] its expected value. Then,
E [X] = (m2v)/(1 + m) holds.

Proof. We will first calculate the probability distribution of X by assuming that
all (v + 1) · m tasks are distributed in sequence of descending priorities to mv
positions on PE1 . . .PEv and mv positions on PE×.

Obviously, 0 ≤ X ≤ mv holds: In case the m lowest-priority tasks are running
on PE×, no tasks have to be stopped. If the highest-priority task is running on
PE×, all tasks on PE1 . . .PEv are stopped.

Generalizing this argument yields

– X = mv ⇐⇒ The highest-priority task is set to one of PE×’s m positions.
– X = mv − 1 ⇐⇒ The second-highest-priority task is the first task to be set

to one of PE×’s m positions.
...

78 E. Hutter and U. Brinkschulte

– X = 0 ⇐⇒ The (m · (v + 1) − 1)-highest-priority task (which is the m-
lowest-priority task) is the first task to be set to one of PE×’s m positions.

Thus, the probability distribution of X is given by

P (X = mv) =
m

m · (v + 1)

P (X = mv − 1) =
mv

m · (v + 1)
· m

m · (v + 1) − 1

P (X = mv − 2) =
mv

m · (v + 1)
· mv − 1
m · (v + 1) − 1

· m

m · (v + 1) − 2
...

P (X = 0) =
mv

m · (v + 1)
· mv − 1
m · (v + 1) − 1

· · · 1
m + 1

︸ ︷︷ ︸

mv highest-priority tasks on PE1 . . .PEv

· m

m

This is equivalent to

P (X = j) =

mv
∏

i=j+1

i

mv+m
∏

i=m+j+1

i

· m

m + j
= m ·

mv
∏

i=j+1

i

mv+m
∏

i=m+j

i

(1)

for all 0 ≤ j ≤ mv. Figure 4 plots the probability distribution as given by this
equation for arbitrarily chosen values of m and v.

0 5 10 15 20 25
0

0.05

0.1

0.15

Fig. 4. Probability distribution of number of tasks stopped by naive task dropping
strategy for m = 4 and v = 6

Towards a Priority-Based Task Distribution Strategy for an AHS 79

Equation 1 now allows us to calculate E [X]:

E [X] =
∑mv

j=0 j · P (X = j) =
∑mv

j=1 j · m ·
mv∏

i=j+1
i

mv+m∏

i=m+j

i

= m · ∑mv
j=1 j · (mv)!/j!

(mv+m)!/(m+j−1)! = m · ∑mv
j=1

(m+j−1)!/(j−1)!
(mv+m)!/(mv)!

= m
mv+m∏

i=mv+1
i

· ∑mv
j=1

(
∏m+j−1

i=j i
)

= m
(mv+1)m · ∑mv

j=1 j
m

This expression can be simplified using Lemma 1:

= m
(mv+1)m · mv·(mv+1)m

1+m = m2v
1+m .

��

Discussion. When examining the number of tasks dropped by the naive task
dropping strategy, it becomes obvious that its worst case is not substantially
worse than the average case, especially for large values of m:

lim
m→∞

worst case
average case

= lim
m→∞

mv
m2v
1+m

= lim
m→∞

(

1 +
1
m

)

= 1.

As a result, no significant outliers from the average case are to be expected when
utilizing this task dropping strategy.

In addition, initial self-configuration for mv tasks requires 2mv − 1 hormone
cycles, while self-healing in an overload situation takes at most 2mv+a hormone
cycles: Both bounds are linear in the number of tasks with different (and small)
additive constants.

7 Conclusion

This paper described a priority-based extension to the AHS middleware. We
analyzed its worst-case time bounds for self-configuration and self-healing. Addi-
tionally, a strategy was proposed allowing to degrade the system in case of an
overload situation. Its worst and average cases were analyzed. The results show
that this strategy does not perform substantially worse in its worst case than it
does on average.

Future work will deal with thorough evaluations of our concept as well as
further research on degrading the system in overload situations, especially with
developing more elaborate task dropping strategies, possibly guaranteeing even
better time bounds for self-healing in overload situations.

Additionally, our current analyses assume a reliable communication network.
Although empirical experiments suggest that the AHS can handle a limited
degree of communication failures quite well, we plan to shift our research focus
to guaranteeing time bounds and the system’s overall consistency even in the
presence of such failures.

80 E. Hutter and U. Brinkschulte

References

1. Brinkschulte, U.: Increasing the stability of an Artificial Hormone System for
task allocation by accelerator bounds. In: 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC
2013), pp. 1–10. IEEE, Paderborn, June 2013

2. Brinkschulte, U., Pacher, M.: An aggressive strategy for an artificial hormone sys-
tem to minimize the task allocation time. In: 2012 IEEE 15th International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pp. 188–195. IEEE, Shenzhen, April 2012

3. Brinkschulte, U., Pacher, M., von Renteln, A., Betting, B.: Organic real-time mid-
dleware. In: Higuera-Toledano, M.T., Brinkschulte, U., Rettberg, A. (eds.) Self-
Organization in Embedded Real-Time Systems, pp. 179–208. Springer, New York
(2013). https://doi.org/10.1007/978-1-4614-1969-3 9

4. Chen, L., Xue-song, Q., Yang, Y., Gao, Z., Qu, Z.: The contract net based task
allocation algorithm for wireless sensor network. In: 2012 IEEE Symposium on
Computers and Communications (ISCC), pp. 600–604, July 2012

5. Edalat, N., Tham, C.K., Xiao, W.: An auction-based strategy for distributed task
allocation in wireless sensor networks. Comput. Commun. 35(8), 916–928 (2012)

6. Fohler, G., Gala, G., Pérez, D.G., Pagetti, C.: Evaluation of DREAMS resource
management solutions on a mixed-critical demonstrator. In: 9th European
Congress on Embedded Real Time Software and Systems (ERTS 2018), Toulouse,
France, January 2018

7. Guo, W., Li, J., Chen, G., Niu, Y., Chen, C.: A PSO-optimized real-time fault-
tolerant task allocation algorithm in wireless sensor networks. IEEE Trans. Parallel
Distrib. Syst. 26(12), 3236–3249 (2015)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

9. Müller-Schloer, C., Tomforde, S.: Organic Computing – Technical Systems for Sur-
vival in the Real World. AS. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-68477-2

10. Orlov, Sergey, Korte, Matthias, Oszwald, Florian, Vollmer, Pascal: Automati-
cally reconfigurable actuator control for reliable autonomous driving functions
(AutoKonf). 10th International Munich Chassis Symposium 2019. Proceedings, pp.
355–368. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-26435-
2 26

11. Schmeck, H.: Organic computing - a new vision for distributed embedded sys-
tems. In: Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2005), pp. 201–203, May 2005

12. Smith, R.G.: The contract net protocol: high-level communication and control in
a distributed problem solver. IEEE Trans. Comput. C–29(12), 1104–1113 (1980)

13. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight.
arXiv:1701.08125 [cs], January 2017. http://arxiv.org/abs/1701.08125

14. von Renteln, A., Brinkschulte, U., Pacher, M.: The artificial hormone system—an
organic middleware for self-organising real-time task allocation. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds.) Organic Computing—A Paradigm Shift for
Complex Systems, pp. 369–384. Springer, Basel (2011). https://doi.org/10.1007/
978-3-0348-0130-0 24

15. Yang, J., Zhang, H., Ling, Y., Pan, C., Sun, W.: Task allocation for wireless sensor
network using modified binary particle swarm optimization. IEEE Sens. J. 14(3),
882–892 (2014)

https://doi.org/10.1007/978-1-4614-1969-3_9
https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1007/978-3-658-26435-2_26
https://doi.org/10.1007/978-3-658-26435-2_26
http://arxiv.org/abs/1701.08125
http://arxiv.org/abs/1701.08125
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24

Towards a Priority-Based Task Distribution Strategy for an AHS 81

16. Yin, X., Dai, W., Li, B., Chang, L., Li, C.: Cooperative task allocation in
heterogeneous wireless sensor networks. Int. J. Distrib. Sens. Netw. 13(10),
1550147717735747 (2017)

17. Zhang, J., Wang, G., Song, Y.: Task assignment of the improved contract net
protocol under a multi-agent system. Algorithms 12(4), 70 (2019)

He..ro DB: A Concept for Parallel Data
Processing on Heterogeneous Hardware

Michael Müller1, Thomas Leich2, Thilo Pionteck3, Gunter Saake3,
Jens Teubner4, and Olaf Spinczyk1(B)

1 ESS Group, Institute of Computer Science, Osnabrück University,
Osnabrück, Germany

{michael.mueller,olaf.spinczyk}@uos.de
2 Harz University of Applied Sciences, Wernigerode, Germany

tleich@hs-harz.de
3 Otto-von-Guericke-University, Magdeburg, Germany

thilo.pionteck@ovgu.de, saake@iti.cs.uni-magdeburg.de
4 DBIS Group, Department of Computer Science, TU Dortmund University,

Dortmund, Germany
jens.teubner@cs.tu-dortmund.de

Abstract. Due to the growing demand on processing power and energy
efficiency by today’s data-intensive applications developers have to deal
with heterogeneous hardware platforms composed of specialized comput-
ing resources. These are highly efficient for certain workloads but diffi-
cult to handle from the software engineering perspective. Even state-of-
the-art database management systems do not exploit all heterogeneous
hardware components, as their characteristics differ significantly. They
are thus hard to integrate within a coherent database architecture.

To address this problem, we propose a design concept that is based on
a layered system software architecture: He..ro DB transforms a data-flow
graph that describes the data-processing application to a task-based exe-
cution plan. Task implementations for the different computing resources
and a reasonable degree of parallelism are chosen automatically based
on available resources. The concept can cover any hardware configura-
tion and application scenario. It is versatile and offers opportunities for
independent optimization on each layer.

Keywords: Heterogeneous many-core systems · Data processing ·
Databases · Task-parallel programming

1 Introduction

The hardware industry is trying to cope with the growing demand on com-
putational power and energy efficiency of today’s data-intensive applications

This work has been carried out in the course of the priority program 2037 Scalable Data
Management for Future Hardware funded by the German Research Foundation (DFG).
The authors would like to thank the DFG for funding and all the project partners for
the helpful discussions.

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 82–96, 2020.
https://doi.org/10.1007/978-3-030-52794-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_7

He..ro DB: A Concept for Parallel Data Processing 83

by developing hardware that is inherently parallel and also heterogeneous. For
example, the Xilinx Ultrascale+ combines four ARM cores, two ARM Cortex
R5 cores and an FPGA fabric on one chip.

Especially data-intensive cyber-physical systems could benefit from the effi-
ciency of these modern hardware platforms. However, we are not aware of any
database management system that could make use of all heterogeneous resources
at once in parallel for boosting its query processing performance. A novel soft-
ware architecture would be needed. However, for the designers of system software
this kind of platform raises a lot of new research questions. In this paper we will
address the following:

RQ1: How can the available hardware resources be fairly assigned to isolated
concurrent applications?

RQ2: Is it possible to abstract from individual resource types without losing
the ability to exploit a computing resource’s specific strengths?

RQ3: With which execution model can applications – especially data-
intensive programs with high demands on computing power – make use of
and benefit from the available heterogeneous resources in a coordinated and
parallel manner?

To facilitate system software engineering for heterogeneous platforms that are
running data-intensive application, this paper presents a design concept, namely
the He..ro-DB architecture and a preliminary evaluation of an early prototypical
implementation. By a layered software architecture different concerns become
cleanly separated and optimizations are possible on each of these layers inde-
pendently. The He..ro-DB architecture assumes that data-processing operations
can be expressed as a data-flow graph containing logical operators and edges
along which data flows from data sources to data sinks, e.g. database tables.
We sketch an architecture that is able to transform this high-level description
into an optimized execution plan that consists of elementary operations, which
we call tasks. During this transformation process the most appropriate degree of
functional and data parallelism is estimated and the most promising selection
of optimized task implementations for the heterogeneous computing resources is
made.

The outline of this paper is as follows: To motivate the need for the pre-
sented conceptual design framework Sect. 2 will discuss existing approaches to
integrate heterogeneous computing resources into data-processing systems. As
none of the existing systems is able to exploit all available (heterogeneous) com-
puting resources, we will describe the He..ro DB system software architecture in
Sect. 3. The validation of the approach is based on a concrete application sce-
nario. Section 4 will explain how that would be handled in a He..ro-based system
software stack. Section 5 will reflect the presented architecture by discussing the
design space, the decisions that have been made, and the remaining freedom for
concrete implementations. Finally, we will present the results of a performance
evaluation that we conducted with the He..ro DB prototype implementation in
Sect. 6 and our conclusions in Sect. 7.

84 M. Müller et al.

2 Related Work

The Utilization of heterogeneous computing resources, such as FPGAs and
GPUs, to accelerate database operations has been investigated intensively in
the recent years. So all major operators have been realized as FPGA functions
or GPU kernels, such as sorting [5,12,16], selection [8,15] and join [5,9,18].
Although significant performance improvement could be achieved, none of them
allowed to accelerate a whole query.

To accelerate a whole query, query compilers for accelerators have been inves-
tigated. So Sukhwani et al. [17], Glacier [11] and Hawk [3] provide a query com-
piler for FPGAs (the former) and GPUs. Though these solutions are limited to
specialized database machines, as they do not provide an execution model that
allows load balancing or dynamic adaptation.

With OmniDB [19] and Ocelot [7], attempts have been made to create a
fully heterogeneous DBMS. As both use a hardware-oblivious approach though,
they cannot make full use of the special characteristics each accelerator provides.
By using a hardware-sensitive approach, though sacrificing portability, CoGaDB
[2] and Hype [4] can improve the utlization of accelerator hardware even more,
leading to better system performance. However, these solutions do not take con-
currently running applications into account and are thus exposed to performance
degradation by interference with other applications.

OpenCL1 has made the notion of a kernel, a closed unit of parallel work,
the de-facto standard execution model for heterogeneous programs. It allows the
application programmer to offload certain functions (kernels) to an accelerator.
Although OpenCL provides a good way of abstracting hardware details while
still preserving most of its characteristics, it does not provide any means for
multiprogramming or scheduling. FluidiCL [13], StarPU [1] and Harmony [6]
try to fill this gap by providing a coherent programming model and runtime for
heterogeneous tasks. These runtimes schedule tasks or kernels on a given acceler-
ator depending on the expected load and timing requirements of the application.
Though, none of them consider multiprogramming, i.e. the concurrent execution
of isolated applications.

So far none of the mentioned solutions provide a holistic approach allow-
ing database applications and other concurrent applications to fully leverage
the potential of modern parallel and heterogeneous hardware, while providing
abstractions for heterogeneous processors, sophisticated load balancing and iso-
lation of concurrent applications without losing the ability to distribute hetero-
geneous resources among them. This encourages the motivation for our proposal
which addresses all the mentioned challenges.

3 He..ro-DB Architecture

This section describes the proposed architecture in detail. It starts by giving an
overview and continues with a discussion of each layer in a bottom-up manner.
1 See https://www.khronos.org/opencl.

https://www.khronos.org/opencl

He..ro DB: A Concept for Parallel Data Processing 85

3.1 Overview

The He..ro-DB architecture seperate resource management (Layer 0), task
scheduling (Layer 1) and query planing (Layer 2) from eachother in their own
functional layer. Applications run in isolated resource containers, called cells,
having their individual task scheduler and query planer, if needed. This allows
maximium flexibility regarding the choice of implementations. So each applica-
tion may have its own tailored scheduling and query planing. As the management
of hardware resources has to be done application-independently Layer 0 exists
only once as shared layer for all applications.

3.2 Layer 0: Resource Partitioning

Layer 0 is responsible for assigning the available hardware resources to applica-
tion cells running concurrently on the same hardware platform.

Provided Functions: For a special-purpose system with only a single appli-
cation, Layer 0 may have almost no functionality. But most modern systems
are more complex and isolation of system components is needed, as for cyper-
physical systems where mission-critical control functions shall be isolated from
other parts of the system. Below is a list of functions that a Layer 0 Implemen-
tation would provide;

Isolation: In order to avoid propagation of errors between application cells and
system software components as well as security issues, temporal and spatial
isolation are required. A typical way of achieving this is by virtualization of
resources, such as CPU and main memory. In today’s heterogeneous hardware
landscape not all computing resources support virtualization on the hardware
level. In this case access can be granted only through a special API, which
fully controls resource usage.

Prioritization: Since the criticality of applications in a system may dif-
fer, the Resource partitioning shall take priorities into account. So a high-
priority application (e.g. an interactive user-application) shall be granted
more resources than a low-priority one (e.g. a background task). The resource
management shall also withdraw resources from lower priority applications
when needed by an application of higher priority. Realtime applications might
be supported by static assignment of isolated hardware resources.

Mapping: Software components running within one cell are more likely to inter-
act with each other than components in different cells. Therefore, Layer 0
should optimize the placement of cells with the system. For example, in a
Non-Uniform Memory Architecture (NUMA) it would make sense to take
locality with NUMA regions into account. The same holds for memory areas
and I/O devices used by a cell.

Stabilization: A cell reconfiguration (adding, withdrawing, or replacing
resources) is always costly. Therefore, Layer 0 must implement strategies to
keep cells as stable as possible. The minimum amount of resources that are

86 M. Müller et al.

assigned to a cell is a certain percentage of all resources and depends on prior-
itization. However, cells produce load dynamically and it is only necessary to
provide these resources if actually needed. In such “full load” situations a cell
can be given even more resources if other cells are not under full load at the
same time. Here a good balance between reactivity and stabilization must be
found. The load situation with the cells must be constantly monitored with
low overhead.

The list of functions is not intended to be complete. It motivates the need for a
global resource management software layer that simplifies application develop-
ment by handling several operational concerns transparently.

Interface: Layer 0 shall provide a Cell Management Interface (CMI) and a
Resource Introspection Interface (RII). CMI is needed to start, configure, and
stop application cells. RMI can be used by cells to get information about the
physical resources assigned to them. Changes in resource assignment can be
signaled to the affected domain. If resources have to be withdrawn, the affected
cell will be granted a reasonable amount of time to stop using the resources.
Layer 1 is designed in a manner that allows resources to be released quickly
(see next section) and to exploit the specific features of the assigned physical
hardware components.

Structure/Implementation: The Resource Partitioning layer resembles an
exokernel. Both share the same principle that there is almost no abstraction
of the underlying hardware, to allow optimizations in the applications running
on top. This distinguishes Layer 0 from hypervisors which virtualize a complete
computer system, hiding the characteristics of the actual hardware, and also
from monolithic and microkernel operating systems which usually only provide
an abstract machine.

Although Layer 0 is a kind of exokernel, its resource management strategies
differ greatly. The original exokernel was designed for machines with a single
or only a few CPUs and with uniform memory access. However, the resource
partitioning of He..ro DB is designed for heterogeneous many-core systems with
complex memory hierarchies and non-uniform memory access that call for new
ways of assigning hardware resources.

3.3 Layer 1: Task-Based Runtime System

The purpose of Layer 1 is to provide a runtime system for each cell with a
programming model for arbitrary applications that want to make use of hetero-
geneous computing, memory, and I/O resources in a coherent and automatically
optimized way. Figure 1 shows the components of Layer 1 and its interfaces to
Layer 0 and 2.

He..ro DB: A Concept for Parallel Data Processing 87

Fig. 1. Structure and interface of the Task-Based Runtime System

Provided Functions: The main function provided by Layer 1 is the execution
of tasks that are submitted by Layer 2 components, such as data processing
operations. In this context we define a task as a finite and non-preemptible com-
putation on any of the heterogeneous resources of the machine that may read
or write data structures in memory (data objects) and may have parameters. A
task is a member of a task family and has a number of attributes that describe
its usage of resources and interactions with other tasks. Each task in a task
family implements a semantically equivalent computation, such as sorting an
array of integers or scanning a table for a specific entry, in a different way. The
main purpose of this concept is to group variants of data-processing code that is
implemented and optimized for different heterogeneous hardware components.
In Fig. 1, for instance, the task T1 exists in two variants (family members): One
that can execute on a CPU and one GPU implementation. Task families must
not be empty, but don’t have to be complete.

The Task Manager is responsible for a number of scheduling and placement
decision needed to execute a task. The Object Manager component keeps track of
the available memory resources and provides a cost model for memory transfers.
During operation the task and object manager have to deal with the following
issues:

Load Balancing: If Layer 2 submits a GPU task, but the only assigned GPU is
already in use for another task, the task manager may either put the new task
into a waiting list or choose another member from the task’s family and run
the same computation on a different hardware resource. By this mechanism
the load on the heterogeneous computing resources can be balanced.

Optimization: Load balancing shall reduce the performance of the system as
little as possible. Therefore, the task placement decision must take a cost
model into account that considers necessary copying of memory objects and
the expected resource usage of the different task family members. The latter
information shall be provided by the developer or a dynamic profiler in task
attributes.

88 M. Müller et al.

Synchronization: If tasks have data dependencies or require mutual exclusion
while accessing a certain memory object, an elegant way to achieve serializa-
tion is to simply insert the tasks in the same waiting list. This scheme avoids
costs that would otherwise be induced by lock-based synchronization. How-
ever, load balancing and optimization might sometimes outweigh the benefits
of this kind of task synchronization.

Adaptation: The resource partitioning Layer 0 aims at keeping the assigned
resources stable. Nevertheless, Layer 1 must be able to deal with elasticity, i.e.
dynamic resource availability. Layer 0 describes the available resources and
signals changes by the RII. When a resource is added, Layer 1 can use that
from that moment on for the execution of new tasks. Resource withdrawal is
more challenging. Layer 1 must make sure that the resource is no longer used
within a short period of time. Otherwise, Layer 0 would simply terminate the
cell. This is done by resubmitting the tasks that are currently on the waiting
list of the resources and waiting for the running task to finish.

Interface: The Task Execution Interface (TEI) provides functions for submit-
ting tasks. These are executed asynchronously at a later point in time. For each
task there are static attributes, such as the kind of computing resource needed
and the expected execution costs. Parameters provided during task submission
include references to input and output data objects and synchronization depen-
dencies to other tasks.

Besides this, the Resource Introspection Interface (RII) from Layer 0 is also
provided as a Layer 1 interface. Thereby, Layer 2 components, such as data-
processing operations, can create task execution plans with optimized and well-
balanced long-term task-to-resource mappings. As a consequence – if available
resources and the load situation are stable and as planned by Layer 2 – Layer
1 will never have to send a task to a different resource than it was intended to
run on by Layer 2.

Layer 1 also provides a Load Introspection Interface (LII). It describes the
current load situation and can be used to inform Layer 2 components if tasks
from that component have to be executed often on other computing resources
than intended. This allows Layer 2 to create a new execution plan that takes the
current resource availability and load situation into account. By this means there
is a feedback from Layer 0 up to Layer 2, for instance, when a newly started
high-priority application (cell) consumes so many resources that re-planning on
all levels becomes necessary.

Structure/Implementation: The Task-Based Runtime System can be regar-
ded as a lightweight library operating system or Unikernel [10], because there
is one instance per application cell. The runtime system can assume that the
application tasks are cooperative. There is no need for user/supervisor-mode
separation or other protection means on this level. Traditional operating system
features such as file systems or network protocol stacks can be implemented
either on top of Layer 1 within an application cell or in a separate global system

He..ro DB: A Concept for Parallel Data Processing 89

service cell, which would also make use of the task-based runtime system, as it
facilitates the handling of dynamic resource availability.

3.4 Layer 2: Data Processing

The Data Processing layer maps the operations of a data-processing application
to the task-based execution model of Layer 1.

Provided Functions: For each operation, such as a query on an in-memory
database, Layer 2 creates a state machine as shown in Fig. 2. The following
functions are involved:

Planning: The first performed step is the step-wise transformation of a data-
flow-oriented logical query plan into a physical execution plan that exploits
task as well as data parallelism and all available heterogeneous computing
and memory resources simultaneously. It also considers the current resource
availability and the expected execution costs of the task implementations. An
example for this can be found in Sect. 4.

Task Families: During planning a high-level operation must be broken down
into primitive operations for which there is a task-based implementation in
the pool of task families (see Fig. 1). These implementations are the building
blocks of any performed database operation. They are part of Layer 2 and
assumed to be known by its planning component.

Execution: When the plan is ready, the respective tasks must be submitted
with the Task Execution Interface (TEI) of Layer 1. Tasks are represented
at runtime by special memory objects called task objects. These memory
objects hold the task parameters and all other dynamic task attributes. Layer
2 creates, destroys, and modifies these objects with the help of the Layer 1
object manager.

Dynamic Re-planning: In case that Layer 1 signals a high percentage of
tasks that had to be executed on a different computing resource than it was
planned, a re-planning will be triggered.

Interface: The logical query plan is provided by the data-processing application
as a set of linked memory objects through the Data Processing Interface (DPI).
The planning and execution steps are triggered by submitting a built-in Layer 2
task that will create further sub-tasks. Hence, planning can also benefit from all
heterogeneous computing resources and parallelism. The results of the operation
are passed to the applications via memory objects and callback tasks that are
triggered when results are ready.

Structure/Implementation: The first and most challenging part of the imple-
mentation is the planning. High-level operations must be broken down into prim-
itive operations and task families that implement these primitives must be found.

90 M. Müller et al.

Based on an estimation of data volume, costs per task, costs for memory object
transfers, and the available resources, the plan must to transformed into a task
graph. Finally, the planned tasks must be executed by passing the respective
task family members to Layer 1.

4 Case Study

Fig. 2. Per-operation state machine

We validate the presented architecture
by explaining how a simple hypotheti-
cal data-procession operation would be
executed on an exemplary heterogeneous
hardware platform. This time we handle
the architectural layers from top to bot-
tom.

4.1 Scenario

The hardware platform consists of a multi-core CPU, a GPU that supports
multiple independent execution contexts, and an FPGA with two equally-sized
re-configurable regions. An in-memory database table R shall be scanned for
entries that fulfill the conditions P1, P2, and P3: σP1∧P2∧P3(R). A conventional
query optimizer, which only works on the logical level, can turn this relational
algebra expression into the data-flow-oriented execution plan shown in Fig. 3
(left part). We regard this as the input for Layer 2.

4.2 Layer 2

Layer 2 is responsible for planning and for submitting tasks as already shown in
Fig. 2. Before planning the execution of a new query, Layer 2 gets information
on currently available CPU, GPU, and FPGA resources from Layer 1 (LII). If
another query is already being executed, it is likely that it uses all available
cell resources. Therefore, both, the old and the new query execution, must be
(re-)planned with an adequate fraction of the resources and considering priori-
ties. Similarly, re-planning is necessary when a query execution terminates and
additional resources become available or in situations in which Layer 0 has to
resize the cell. In the following, we will focus on planning a single query and its
execution.

Planning. During the planning phase the logical data-flow-oriented execution
plan (Fig. 3) is searched for structural patterns that would allow a graph trans-
formation. For example, a specific primitive could be replaced by a task node or a
number of cooperating tasks. The tasks are chosen from the pool of task families.

He..ro DB: A Concept for Parallel Data Processing 91

It is also possible that a transformation replaces a group of nodes. In our example
scenario, the three nodes “Selection σP2”, “Selection σP3”, and “Intersection”
would be matched and replaced be an efficient FPGA-based implementation of
this compound operation.

Eventually, all logical primitives will be replaced by task nodes. It is a com-
plex optimization problem to apply transformations in the right order to mini-
mize the resource consumption during the execution phase. In order solve this
problem, Layer 2 needs a cost model so that alternative paths in the search space
can be compared. Therefore, estimates for execution costs must be provided by
the developer of each task implementation. This metadata is also stored in the
pool of task families. Furthermore, costs for transferring data between different
memories are provided by the object manager in Layer 1. Based on this, it can be
decided to replace the three aforementioned nodes by an FPGA-based selection
task and two data transfer tasks as shown on the right-hand side of Fig. 3.

Fig. 3. Execution plan transformation

After replacing all prim-
itives with the “cheapest”
available task implementa-
tions, performance optimiza-
tions by exploiting data par-
allelism would be taken into
account. For example, the
cheapest implementation of
“Selection σP1” would in our
scenario be a CPU-based
task, because the data trans-
fer costs from CPU memory
to GPU memory might be prohibitively high. The planner would consider instan-
tiating multiple parallel CPU tasks that perform the selection after splitting the
data into chunks. However, the compound operation on the FPGA can be instan-
tiated only once, because only one FPGA region with the necessary hardware
structure is available. The optimal amount of parallel selection tasks on CPU
cores depends on the data rate of the FPGA task, because the results of both
sides will have to be merged. Both data paths should produce results with the
same rate. In our scenario the planner predicts that the FPGA will handle the
data faster than the parallel CPU cores. Therefore, it also uses the GPU for a
part of the data to further boost the data rate of “Selection σP1”. Again, nodes
for splitting, transferring data, and merging would be added. Figure 4 shows the
final execution plan.

92 M. Müller et al.

Fig. 4. Final execution plan for the case
study

Execution. Typically, the plan
execution will be performed in a
pipelined manner. For example, in
our scenario the FPGA has only a
small amount of on-chip RAM. It is
not possible to copy all the data from
R to the FPGA memory at once. As
a consequence, the task for selecting
rows that match P2 and P3 will have
to be triggered many times. The exe-
cution engine is responsible for allo-
cating the necessary task object, set-
ting up task parameters, and trigger-
ing follow-up tasks upon completion.
Data dependencies in the execution
plan define the order in which tasks
must be submitted.

Tasks can use data objects that may reside in any memory region as input
or output. The Layer 1 object manager is responsible for copying data from one
region to another if necessary. This means that the data transfer nodes in the
execution plan can be ignored. They are only needed for cost estimation.

4.3 Layer 1

Layer 1 manages work queues for all computing resources. Besides assigning
tasks to these queues the task manager monitors the load. For example, in our
scenario the costs calculated by the planner on Layer 2 might have been too
imprecise. It might turn out that all CPU cores are overloaded. In this case,
Layer 1 would access the pool of task families and replace a CPU task by a
GPU task. The object manager would automatically perform the necessary data
transfers.

Layer 1 is thus capable of performing short-term load balancing. However, if
the rate of these replacements exceeds a threshold, Layer 1 would be informed
to trigger re-planning.

The implementation handles all tasks that are submitted within the cell. This
means that also other application tasks or tasks submitted by a library operating
system contribute to dynamically changing load situations.

4.4 Layer 0

Layer 0 monitors the resource usage of all cells. While the cell is executing the
query, it might withdraw resources from other cells that produce a low load.
For example, a second cell might have been running with CPU cores at a low
clock speed. While the query is running, Layer 0 might decide to withdraw CPU
cores from the second cell, increase the clock of the remaining cores, and add the
withdrawn cores to the cell that executes the query. A signal mechanism will be
used to inform Layer 1 asynchronously.

He..ro DB: A Concept for Parallel Data Processing 93

5 Discussion

This section will reflect on the design decisions that we made and issues that
were intentionally not addressed.

Decision: Task abstraction The ability to abstract from arbitrary heteroge-
neous computing resources requires a universal abstraction. The “task” can
model the execution of a function on a CPU, a kernel on a GPU, or the data
flow through gates on an FPGA. Tasks are smaller units of computation than
threads and it is, thus, easier to annotate data structures used for input and
output.

Decision: Layer 0 and 1 support arbitrary tasks It would be unrealistic
to assume that the complete hardware platform is always dedicated to data
processing. Therefore, we created a functional hierarchy that first handles
resource partitioning and global management functions on Layer 0. If these
features are not needed, Layer 0 could be reduced to a simple introspection
mechanism that describes the available (static) hardware resources to the lay-
ers above.
Layer 1 implements the task execution model. If there was only a data-
processing application on a dedicated system, this application would still
benefit from the functions provided here. Supporting location transparent
identification and automatic transfer of data objects simplifies the design of
all software layers above.

Decision: Dynamic resources Layer 1 and 2 assume that resources can be
withdrawn. This can have multiple reasons: First, Layer 0 might decide to
assign some resources to another cell. However, even in systems with only
one application, resources might be dynamic. For example, due to thermal
issues not all computing resources can always run at full speed. The system
software might need to throttle certain hardware components, which makes
it necessary to deal with this problem. Furthermore, in future manycore sys-
tems, computing resources might permanently fail or be intentionally turned
off to control aging.
Assuming dynamic resource availability makes cost calculations for data pro-
cessing operations unreliable. However, this situation is not new to optimizers
in DBMS and can be dealt with by re-planning.

Decision: Task Families We are aware that OpenCL allows developers to
program an algorithm that could run on either CPU, GPU, or FPGA. In
our opinion this approach is orthogonal to the concept of task families. The
members of a task family could be generated from the same source code, e.g.
from OpenCL code, or from completely differently code. The only assump-
tion is that the functional behavior (input-to-output transformation for given
parameters) is the same. It is not necessary that a task family has members
for all computing resources – any subset is sufficient. By not assuming that
task family members are created from the same source code there is room for
arbitrary implementation optimizations.

94 M. Müller et al.

Not addressed features: Various system optimizations are possible on Layer
0, which are left to individual implementations. So far our prototype only
posseses a task scheduler that schedules a set of tasks in a way that the
makespan is minimized. More sophisticated strategies can be implemented
on Layer 1 that also consider the memory hierarchy. As query optimization
is a research area on its own, we sketched only a few ideas for inspiring
developers.

6 Prototype Performance

Fig. 5. Makespan for processing units in µs

In a set of early experiments with our
prototype implementation we have
evaluated the performance of selec-
tion operators. Figure 5 shows that
combining CPU cores and a GPU
actually pays off (right column). The
execution platform was a notebook with Intel Core i7 CPU with eight cores and
an integrated GPU2. He..ro DB was executed directly on the hardware without
any other system software. Our prototype lacks Layer 0. Therefore, Layer 1 is a
self-made bare-metal tasking framework.

The test data was a 16 MiB sized table from the TPC-H benchmark [14]. 16
queries of three different kinds were executed randomly. The implementations
of the selection operators were provided as a task family: Code for the GPU
was written in OpenCL while the code for the CPU was written in C++. The
task scheduler could thus decide at runtime where the next task (operator) is
to be executed. In the combined CPU/GPU run this decision was based on an
execution time estimate, which is contributed by each task itself. With this the
scheduler can estimate for each execution unit when the new task would start
to be executed, based on the length of the task queue, and when it would be
finished. The processor, which would finish the task first, is chosen.

During the experiments it turned out that for the highly memory bound
selection operator, the integrated GPU is only three times faster than an i7 CPU
core. For compute-intensive tasks we have seen much higher speedups on the
same platform. This makes us believe that we follow the right approach, because
(A) the combined use of CPU core and accelerators improves the performance
and (B) the scheduling decision is non-trivial—meaning that a specialized system
software component is needed.

7 Conclusions

This paper addressed the problem of exploiting all available computing resources
on a modern heterogeneous hardware platform for data-intensive applications.

2 Only seven CPU cores were used for task execution, as the eighth core was needed
for benchmark control and time measurement.

He..ro DB: A Concept for Parallel Data Processing 95

The proposed He..ro DB is a design concept that is based on a layered system
software architecture. It can be used as a blueprint for future system designs and
supports independent optimizations on all of its layers. Some of the presented
ideas have already been implemented in prototype systems by the authors.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. CCPE 23(2),
187–198 (2011)

2. Breß, S.: The design and implementation of CoGaDB: a column-oriented GPU-
accelerated DBMS. Datenbank-Spektrum 14(3), 199–209 (2014). https://doi.org/
10.1007/s13222-014-0164-z

3. Breß, S., Köcher, B., Funke, H., Rabl, T., Markl, V.: Generating custom
code for efficient query execution on heterogeneous processors. arXiv preprint
arXiv:1709.00700 (2017)

4. Breß, S., Saake, G.: Why it is time for a HyPE: a hybrid query processing engine
for efficient GPU coprocessing in DBMS. Proc. VLDB Endow. 6(12), 1398–1403
(2013)

5. Casper, J., Olukotun, K.: Hardware acceleration of database operations. In: Pro-
ceedings of the FPGA 2014, pp. 151–160, New York, NY, USA. ACM (2014)

6. Diamos, G.F., Yalamanchili, S.: Harmony: an execution model and runtime for
heterogeneous many core systems. In: Proceedings of HPDC 2008, pp. 197–200.
ACM (2008)

7. Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. Proc. VLDB Endow. 6(9), 709–720
(2013)

8. István, Z., Sidler, D., Alonso, G.: Runtime parameterizable regular expression oper-
ators for databases. In: FCCM 2016, pp. 204–211, May 2016

9. Kaldewey, T., Lohman, G., Mueller, R., Volk, P.: GPU join processing revisited.
In: 8th International Workshop on DaMoN (DaMoN 2012), pp. 55–62, New York,
NY, USA. ACM (2012)

10. Madhavapeddy, A., et al.: Unikernels: library operating systems for the cloud.
SIGPLAN Not. 48(4), 461–472 (2013)

11. Mueller, R., Teubner, J., Alonso, G.: Glacier: a query-to-hardware compiler. In:
ACM SIGMOD International Conference on Management of Data (SIGMOD 2010)
(2010)

12. Mueller, R., Teubner, J., Alonso, G.: Sorting networks on FPGAs. VLDB J. 21(1),
1–23 (2012). https://doi.org/10.1007/s00778-011-0232-z

13. Pandit, P., Govindarajan, R.: Fluidic kernels: cooperative execution of OpenCL
programs on multiple heterogeneous devices. In: 12th International Symposium on
Code Generation and Optimization (CGO 2014), pp. 273:273–273:283, New York,
NY, USA. ACM (2014)

14. Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. ACM SIGMOD Rec. 29(4), 64–71 (2000)

15. Sidhu, R., Prasanna, V.K.: Fast regular expression matching using FPGAs. In:
FCCM 2001, pp. 227–238, March 2001

16. Sukhwani, B., et al.: Large payload streaming database sort and projection on
FPGAs. In: IEEE International Symposium on Computer Architecture and High
Performance Computing, pp. 25–32. IEEE (2013)

https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.1007/s13222-014-0164-z
http://arxiv.org/abs/1709.00700
https://doi.org/10.1007/s00778-011-0232-z

96 M. Müller et al.

17. Sukhwani, B., et al.: A hardware/software approach for database query acceleration
with FPGAs. Int. J. Parallel Progr. 43(6), 1129–1159 (2015). https://doi.org/10.
1007/s10766-014-0327-4

18. Ueda, T., Ito, M., Ohara, M.: A dynamically reconfigurable equi-joiner on FPGA.
IBM Tehnical Report RT0969 (2015)

19. Zhang, S., He, J., He, B., Lu, M.: OmniDB: towards portable and efficient query
processing on parallel CPU/GPU architectures. Proc. VLDB Endow. 6(12), 1374–
1377 (2013)

https://doi.org/10.1007/s10766-014-0327-4
https://doi.org/10.1007/s10766-014-0327-4

Investigating Transactional Memory
for High Performance Embedded Systems

Christian Piatka1(B), Rico Amslinger1, Florian Haas1, Sebastian Weis2,
Sebastian Altmeyer1, and Theo Ungerer1

1 University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
{piatka,amslinger,haas,altmeyer}@es-augsburg.de,

ungerer@informatik.uni-augsburg.de
2 TTTech Auto Germany GmbH, Emmy-Noether-Ring 16, 85716 Unterschleißheim,

Germany
sebastian.weis@tttech-auto.com

Abstract. We present a Transaction Management Unit (TMU) for
Hardware Transactional Memories (HTMs). Our TMU enables three dif-
ferent contention management strategies, which can be applied accord-
ing to the workload. Additionally, the TMU enables unbounded trans-
actions in terms of size. Our approach tackles two challenges of tradi-
tional HTMs: (1) potentially high abort rates, (2) missing support for
unbounded transactions. By enhancing a simulator with a transactional
memory and our TMU, we demonstrate that our TMU achieves speedups
of up to 4.2 and reduces abort rates by a factor of up to 11.6 for some
of the STAMP benchmarks.

Keywords: Transactional memory · Contention management ·
Unbounded transactions · Embedded systems

1 Introduction

To fully utilize multicores, the ability to generate efficient parallel code is essen-
tial. Because in-depth parallelization has proven to be very error prone, alter-
native synchronization mechanisms, such as transactional memories (TM) [12],
evolved to be a subject of research.

Implementations of hardware transactional memories were integrated into
commercial high performance chips from Intel and IBM. Despite their bene-
fits, current available commercial HTMs (e.g. Intel’s TSX) do not meet the high
requirements of embedded systems. Commercial HTMs statically implement con-
tention management strategies, which can lead to high abort rates. To meet the
high requirements concerning power consumption, embedded systems depend on
low abort rates. Another disadvantage of COTS HTMs is that they bound trans-
actions in several ways. The size of a transaction is limited by the capacity and

This project received funding by Deutsche Forschungsgemeinschaft (DFG).

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 97–108, 2020.
https://doi.org/10.1007/978-3-030-52794-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_8

98 C. Piatka et al.

associativity of the L1 cache. In addition, transactions are aborted by events like
interrupts, which limits their duration. This can negatively impact performance
and complicates usability, leading to more programming errors, which is unac-
ceptable for embedded systems due to the increasing demands of computational
power and the scarce resources provided.

For our work, we developed two challenges: (1) Lowering abort rates by pro-
viding effective contention management. (2) Enabling unbounded transactions
in terms of size. We want to achieve these goals by implementing a Transaction
Management Unit (TMU). The main contributions of this paper are: (1) The
design of a flexible TMU, which enables the user to apply different contention
management strategies. (2) A solution to enable unbounded transactions, con-
sidering their size.

The rest of this paper is structured as follows: After giving an overview on
the state of the art of transactional memories, we will describe our TMU. In
the following section, our proposal is evaluated. At the end of this paper, we
discuss related work and conclude by summing up our results and describing
future work.

2 State of the Art

A transaction is a sequence of instructions that is monitored by the transac-
tional memory system. The beginning and the end of a transaction are usually
marked by special instructions. To ensure a correct execution of the program,
the transactional memory system has to ensure that every transaction fulfills the
following three criteria: (1) Transactions have to be executed atomically, which
means that they commit or abort as a whole. (2) Transactions have to run iso-
lated, which means that they do not impact each other. (3) The transactional
executions have to be serializable, which means that a sequential execution with
a matching output exists.

To fulfill these criteria, the transactional memory system has to ensure that
values, which are consumed in a transaction, are not modified by another trans-
action running in parallel. For this purpose, read and write accesses in a transac-
tion are logged at cache line granularity in a read and write set. A conflict occurs
whenever a write access of a transaction tries to manipulate a cache line, which
is already added to the read or write set of a competing transaction. A conflict
also occurs, when a read access tries to read a cache line already contained in
the write set of another transaction. To keep track of read and write accesses
inside of transactions, HTMs usually utilize the cache coherence protocol.

If a conflict is detected, it has to be resolved by the HTM, by aborting all
but one of the conflicting transactions. This involves setting back all the memory
modifications performed during the transactions (rollback). Additionally, the
read and write sets have to be cleared and the register files have to be restored.
Afterwards, the aborted transactions have to be restarted.

Another source of transactional aborts are physical limits of the hardware,
or interrupts. Physical restrictions are usually based on the size or associativity

Investigating TM for High Performance Embedded Systems 99

of the L1 caches, which are used to store the transactional read and write sets.
Most HTM systems do not implement any mechanisms to allow the read or write
set to overflow the size or associativity of the cache. This limits the transactions
in terms of consumed and modified cache lines. Interrupts limit a transaction
concerning its duration. Frequent transaction aborts because of physical limits
or interrupts can be critical for the performance, since a significant amount of
work has to be discarded.

Due to these physical restrictions, a programmer usually has to provide an
alternative path of execution utilizing different synchronization mechanisms,
which are not affected by physical hardware boundaries. The fallback path is
a weak spot for transactional memory usage. It uses alternative synchronization,
which can be error prone and reduce performance, depending on the depth of
parallelization. Additionally, it takes away one of the main advantages, which is
the easy usability, because the fallback path increases the complexity of the par-
allel code. Providing an efficient alternative would render transactional memory
superfluous.

3 Transaction Management Unit

In this section, we first describe the implementation and the hardware setup of
our system. Afterwards, we give a short overview of the selection of contention
management strategies we implemented. At the end of this section, we explain
how our solution is able to support unbounded transactions concerning their
size.

Fig. 1. The multicore system we consider consists of up to 16 cores. Each core has a
private L1 instruction cache (L1I$) as well as a private L1 data cache (L1D$). The
TMU is integrated into the L2 cache and is able to monitor the messages relevant for
the transactional execution.

100 C. Piatka et al.

3.1 Hardware Integration

As depicted in Fig. 1, our TMU is integrated into the shared L2 cache. We con-
sider a multicore system with N cores (we assume N ≤ 16). The TMU monitors
the execution and collects as well as provides data concerning the transactions.
To be able to favor a transaction over others, our TMU is able to store priorities.
Four (log2 16) bits are needed at most to be able to save a specific priority for
every core. The priority of a transaction can be specified by the programmer at
transaction start. The default priorities are the core IDs. In order to store pri-
orities, timestamps, or performance counters, our TMU provides a 64 bit value.
The timestamps can be set at different times (e.g. transaction start, transac-
tion commit, etc.) depending on the conditions of the contention management
strategy. Performance counters provide information concerning the transactional
execution, e.g. the number of committed transactions. To mark whether a trans-
action runs unbounded, the TMU provides an additional bit per core. The TMU
consists of a memory, which stores information, relevant for the transactional
execution of each core. The information stored depends on the applied strategy.
To resolve a conflict, the TMU takes as inputs (1) the core ID of the core run-
ning the transaction, which detected the conflict, and (2) the core IDs of the
cores running the conflicting transactions. After comparing the corresponding
data, the TMU signals to abort the transaction that detected the conflict, or
the conflicting transactions. We optimistically estimate an upper bound for the
hardware costs, when considering a 16 core multicore, by:

memory = 2 × 16 × 65 bit = 260 byte (1)
comparators = 2 × 16 × 65 bit = 260 byte (2)

= 520 byte

Because we rely on a dual ported memory, we doubled the assumed mem-
ory capacity in our estimation (Eq. 1). A comparator works similar to an adder,
which is the reason why the hardware costs are approximately double the amount
of the bits compared (Eq. (2)). Even if we consider the double amount for addi-
tional hardware cost, our approach consumes less than 0.05% of the space pro-
vided by a 2 MB L2 cache.

3.2 Contention Management Strategies

Whenever a conflict between two running transactions occurs, the responsibility
for resolving the conflict is handed over to the TMU. Depending on the strategy,
the priority, a timestamp, or the number of commits are stored in the TMU.
After comparing the relevant data, the TMU determines which of the conflicting
transactions are aborted. We implemented three strategies:

priority : The transaction with the higher priority is allowed to continue. This
strategy allows to enforce an ordered commit of the transaction and a priori-
tization of a transaction over others. We would like to utilize this strategy in
the future to enable various real-time strategies (e.g. mixed criticality).

Investigating TM for High Performance Embedded Systems 101

timestamp [16]: The transaction, that started first can carry on. Taking the
timestamp of a transaction into account reduces the indeterminism concerning
the aborts and guarantees progress.

commit : The transaction on the core, which committed fewer transactions is
able to continue. This strategy leads to a more balanced execution, because
cores, which were not able to commit transactions, are favored when conflicts
occur.

Unbounded transactions always overrule the contention management strategy.

3.3 Unbounded Transactions

Transactions have to abort whenever a transaction’s read or write set exceeds
the size or associativity of the L1 cache. Therefore, most HTMs have to provide
a fallback mechanism consisting of an alternative execution path. This does not
only make it harder for the programmer to write efficient and correct code, it
can also be crucial for performance because of the loss of already computed
work. The TMU monitors the transactional execution and sets a bit whenever a
transaction is forced to run in unbounded mode. Whenever the bit is set, conflicts
are resolved favoring the unbounded transaction. Therefore, the transaction will
never be aborted, which means it does not have to be rolled back. Since it is
guaranteed that the transaction will succeed, the backup version of the cache
line is not needed, which allows the transaction to use the entire cache hierarchy.
The TMU can only support one unbounded transaction at the time. If another
transaction or thread tries to perform a conflicting access, the TMU takes actions
to suppress them, e.g. by stalling the core.

4 Evaluation

For the implementation of our approach, we utilized the gem5 simulator [4].
We selected the STAMP benchmark suite [6] to evaluate our approach. In this
section we will describe in detail our evaluation methodology followed by the
presentation of our results.

4.1 Simulation Methodology

The gem5 [4] is a cycle accurate processor simulator. It offers the possibility to
choose an instruction set architecture out of a selection such as ARMv7, x86,
etc. Furthermore, the periphery can be configured freely. The configuration of
our system is described in Table 1. We chose this configuration, as it models
a contemporary embedded multicore. High-performance embedded systems as
smartphones exhibit similar specifications.

Due to the long run times entailed by the large input set of the STAMP
benchmark suite [6] and the authors’ recommendation to use the smaller input
configuration for simulators, we chose to do our evaluation with the small input
configuration depicted in Table 2.

102 C. Piatka et al.

Table 1. System configuration

Num CPUs {1,2,4,8,16}
Microarchitecture ARM Cortex-A15

L1 data cache 32KB

L1 data cache assoc. 8

L2 cache 2MB

L2 assoc 16

Cache coherence Directory-based

Table 2. Benchmark configuration

Benchmark Parameters

bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

genome -g256 -s16 -n16384

intruder -a10 -l4 -n2038 -s1

kmeans -m40 -n40 -t0.05 -i inputs/random2048-d16-c16.txt

labyrinth -i inputs/random-x32-y32-z3-n96.txt

ssca2 -s13 -i1.0 -u1.0 -l3 -p3

vacation -n2 -q90 -u98 -r16384 -t4096

yada -a20 -i inputs/633.2

4.2 Baseline Transactional Memory System

For our baseline, we implemented a transactional memory system into the ARM-
based gem5 simulator [4]. The implementation of the interface is similar to those
offered by Intel TSX [13] and the newly announced ARM TME [3]. Our interface
allows the programmer to explicitly start and end transactions using the corre-
sponding commands, which are provided by our transactional memory system.

Our baseline HTM detects and resolves conflicts eagerly: Conflicts are
detected instantly when the conflicting memory access occurs (in contrast to
detecting them at commit time). When a conflict occurs, the transaction, that
detects the conflict, aborts to resolve it.

We provide a fallback path with regular POSIX Thread synchronization in
our baseline implementation. In our baseline as well as in the runs supported
by our TMU, a transaction is executed in the fallback path, if the attempt to
execute the transaction failed 100 times. Trying to re-execute a transaction for
100 times makes sense, because the execution of a transaction in the fallback
path prohibits the other cores to execute work. Whenever the read or write of
a transaction in our baseline exceeds the L1 cache, it is directly executed in the
fallback path.

Investigating TM for High Performance Embedded Systems 103

4.3 Analysis

We evaluated the STAMP benchmark suite [6]. Figure 2 depicts the evaluation of
the eight STAMP benchmarks bayes, genome, intruder, kmeans, labyrinth, vaca-
tion, ssca2 and yada. Each graph depicts three lines. All lines show the absolute
speedup compared to the reference execution (one core, no synchronization). We
focused on the region of interest, which are the parts executed by transactions,
because they can be quite small compared to the entire benchmark, making it
difficult to show the effects of our work. We calculated the speedup as shown by
Eq. 3.

speedup =
reference execution time
examined execution time

(3)

The labeling of the lines in Fig. 2 indicates whether the line represents the base-
line execution or a contention management strategy combined with unbounded
transactions.

In the following, we describe in detail the behavior of the evaluated bench-
marks:

bayes: For the benchmark bayes, we were able to beat the baseline execution
for most executions. Up to 62 unbounded transactions are executed, which
shows that it is beneficial to implement unbounded transactions concerning
their size. We are able to achieve the best speedup for the execution with
four cores and the timestamp strategy. Considering the entire run time of the
benchmark, the part in which transactions were executed, is extremely short.

genome: The benchmark genome scales quite well. Our system produces the
same results as the baseline. The features of the TMU become relevant for
the executions with eight and sixteen cores. For these runs, we are able to
significantly lower the number of aborted transactions. In these executions,
transactions are started, which do not fit in the L1 cache and therefore have
to be executed in the fallback path. Because of our TMU, we are prepared
for these cases and are able to continue without having to abort them.

intruder : For the benchmark intruder, we made similar observations as with
the benchmark genome. The main difference is that the positive effects of
our extensions only take effect for the execution with sixteen cores. For this
execution, the baseline contention management strategy performs so poorly,
that we are able to lower the abort rate by a factor of 11.6. Within the
execution of the benchmark, no transaction faces a capacity problem, which
means we achieve the speedup only through better contention management.

kmeans: For the benchmark kmeans, we were not able to outperform the base-
line. The reason for this is that no transaction, for any execution, faces a
capacity problem, which means no unbounded transaction has to be executed.
Additionally, the benchmark has hardly any conflicts, which eliminates the
grounds of what we can improve.

labyrinth: The baseline execution for the benchmark labyrinth is below one,
because the benchmark launches fairly big transactions, which do not fit in
the L1 cache and cause the transaction to abort and execute in the fallback
path. The already achieved computational progress is discarded, which is

104 C. Piatka et al.

12 4 8 16
0

2

4

6

sp
ee
du

p
bayes

baseline
timestamp+unb.
commit+unb.

12 4 8 16
0

2

4

6

genome

12 4 8 16
0

2

4

6

sp
ee
du

p

intruder

12 4 8 16
0

2

4

6
kmeans

12 4 8 16
0

2

4

6

labyrinth

12 4 8 16
0

2

4

6

cores

sp
ee
du

p

ssca2

12 4 8 16
0

2

4

6

cores

vacation

12 4 8 16
0

2

4

6

cores

yada

Fig. 2. Results of the execution of the STAMP benchmark suite [6]. For the bench-
marks genome, intruder and yada we improved performance compared to the baseline
implementation.

why the baseline execution falls below one. For this benchmark, our work is
beneficial. We manage to raise the speedup above the baseline execution and
one.

ssca2 : The benchmark ssca2 behaves similar to the benchmark kmeans. Hardly
any of the almost 50000 committed transaction aborts. None of the transac-
tions faces an issue with the capacity of the L1 cache.

vacation: The observations, which can be made for the benchmark vacation, are
similar to those of the benchmarks kmeans and ssca2. Of the 4097 committed
transactions, a maximum of only about 490 transactions aborts. Additionally,
all of the transactions fit into the L1 cache, which is why no unbounded
transactions are needed.

Investigating TM for High Performance Embedded Systems 105

yada: The baseline execution for the benchmark yada suffers from a lot of con-
flicts, due to poor contention management. To commit around 4900 transac-
tions, up to 33590 aborts occur. Additionally, some transactions face a prob-
lem with the capacity of the L1 cache. Therefore, the TMU handles up to
170 unbounded transactions, which is beneficial to performance and allows
us to improve the baseline execution with both strategies. Additionally, we
are able to achieve speedups bigger than one.

In Fig. 3, we depicted the number of aborts for every benchmark of the
STAMP benchmark suite [6]. The line labeled as baseline depicts the baseline
execution. The other lines represent an execution with a contention manage-
ment strategy. Because we want to show the benefits of the implemented con-
tention management strategies, we disabled the unbounded transactions for this
evaluation.

For most of the benchmarks, we are able to lower the number of the aborts.
Especially for executions with 8 and 16 cores. For these executions, the con-
tention management strategy of the baseline performs poorly and we are able to
reduce the number of aborts significantly for some benchmarks.

For the benchmarks, which already had a low abort rate, our strategies were
not beneficial and sometimes even caused more aborts (e.g. ssca2). Our strategies
perform best, when the contention between the transactions is high.

Our evaluation showed that our work is beneficial to a transactional memory
system in terms of performance and abort rates.

5 Related Work

There are some proposals describing how to handle unbounded transactions e.g.
[2,7,8,14]. In this section we describe and discuss solutions for similar problems.

The authors of [5] focused on unbounded transactions. They proposed a
permissions-only cache, which allows large transactions by only tracking read
and write bits without the corresponding data. Once the permissions-only cache
overflows, one of two proposed implementations, to handle unbounded transac-
tions, can be utilized. ONE-TM-Serialized only allows one overflowed transaction
at a time and stalls the other cores. ONE-TM-Concurrent allows several con-
current transactions to run in parallel, although only one transaction can run
in overflowed-mode. Our approach possesses the same runtime characteristics as
ONE-TM-Concurrent, the difference between the approaches lies in the manage-
ment of the unbounded transaction. In contrast to [5], where the authors propose
to use per block meta data to ensure the correct execution of the unbounded
transaction, we use our TMU to manage and protect the unbounded transaction.
Due to a LogTM-style [14] baseline transactional memory system, the authors’
proposal is also able to survive interrupting actions performed by the operating
system. Contention management strategies were no subject to the authors.

The authors of [9] adapted an HTM for embedded systems, focusing on energy
consumption and complexity. In this proposal, the authors evaluate different
cache structures and three different contention management schemes (eager, lazy,

106 C. Piatka et al.

12 4 8 16

0

2

4

6

·103
ab

or
ts

bayes

baseline
timestamp
commit

12 4 8 16

0

1

2

3

·103
genome

12 4 8 16

0

1

2

·105

ab
or
ts

intruder

12 4 8 16

0

1

2

3

·102 kmeans

12 4 8 16

0

1

2

·103
labyrinth

12 4 8 16

0

3

6

9
·101

cores

ab
or
ts

ssca2

12 4 8 16

0

2

4
5

·102

cores

vacation

12 4 8 16

0

1

2

3

4
·104

cores

yada

Fig. 3. We were able to reduce the number of aborts for most of the benchmarks.
Especially the benchmarks, for which a lot of aborts were saved (genome, intruder,
etc.), achieved significant speedups, which can be observed in Fig. 2.

forced-serial), concerning their complexity and energy consumption. The authors
also provide a mechanism to support overflowing transactions (exceeding cache
limits) by running them in serial mode. Because the authors are very sensitive for
complexity, they only allow a simple execution mode for unbounded transactions.
Therefore, running a transaction in serial mode means that all other CPUs get
suspended. The overflowed transaction can now run isolated and is able to utilize
the complete memory hierarchy. Our approach differs from [9], because we focus
on performance and abort rates. Therefore, we provide a more complex execution
mode for unbounded transactions. Furthermore, we offer several different and
more complex contention-management strategies.

The work describing the most relevant contention management policies focus
on software transactional memories (STM) [10,11,16,17]. Later work has applied

Investigating TM for High Performance Embedded Systems 107

some of these contention management strategies to HTMs e.g. [15]. In contrast
to our work, the authors focused on using HTM as an synchronization primitive
for an operating system as well as managing it in the scheduler. This made
it necessary to implement a new more complex HTM. The authors focused,
concerning the contention management strategies, on finding a well performing
policy in most of the cases. This makes sense, since the best working policy is
workload dependent, as also mentioned by the authors.

6 Conclusion and Future Work

In our work, we present a TMU, which is located in the shared L2 cache and
costs approximately less than 0.05% of the space of a 2 MB L2 cache. We provide
three different contention resolution policies and enable unbounded transactions.
In our evaluation, we did not consider the contention management strategy,
which enables priorities, because in our perspective it would not produce any
interesting results concerning its execution time. The priority strategy will be of
more focus in our future work. By our evaluation with the gem5 simulator [4]
and the STAMP benchmark suite [6], we show that the TMU is beneficial for
performance and is able to reduce the number of aborted transactions.

The work we present in this paper is the foundation to employ several other
features. To further increase performance, we also would like to enable thread-
level speculation, which will utilize the TMU to ensure correct execution. Our
research also concerns fault tolerance utilizing transactional memory [1], where
we will also consider investigating the use of the TMU. Because safety is a major
issue for embedded systems, we want to try to utilize our TMU to enable mixed
criticality and real time for hardware transactional memories.

References

1. Amslinger, R., Weis, S., Piatka, C., Haas, F., Ungerer, T.: Redundant execution
on heterogeneous multi-cores utilizing transactional memory. In: Berekovic, M.,
Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol.
10793, pp. 155–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77610-1 12

2. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: 11th International Symposium on High-Performance
Computer Architecture, pp. 316–327, February 2005. https://doi.org/10.1109/
HPCA.2005.41

3. ARM Ltd.: Transactional memory extension (TME) intrinsics. https://developer.
arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics.
Accessed 13 Jan 2020

4. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2),
1–7 (2011). https://doi.org/10.1145/2024716.2024718

5. Blundell, C., Devietti, J., Lewis, E.C., Martin, M.M.K.: Making the fast case
common and the uncommon case simple in unbounded transactional memory.
SIGARCH Comput. Archit. News 35(2), 24–34 (2007). https://doi.org/10.1145/
1273440.1250667

https://doi.org/10.1007/978-3-319-77610-1_12
https://doi.org/10.1007/978-3-319-77610-1_12
https://doi.org/10.1109/HPCA.2005.41
https://doi.org/10.1109/HPCA.2005.41
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1273440.1250667
https://doi.org/10.1145/1273440.1250667

108 C. Piatka et al.

6. Minh, C.C., Chung, J.W., Kozyrakis, C., Olukotun, K.: STAMP: stanford trans-
actional applications for multi-processing. In: 2008 IEEE International Sympo-
sium on Workload Characterization, pp. 35–46, September 2008. https://doi.org/
10.1109/IISWC.2008.4636089

7. Chuang, W., et al.: Unbounded page-based transactional memory. SIGARCH
Comput. Archit. News 34(5), 347–358 (2006). https://doi.org/10.1145/1168919.
1168901

8. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
336–346 (2006). https://doi.org/10.1145/1168857.1168900

9. Ferri, C., Wood, S., Moreshet, T., Bahar, R.I., Herlihy, M.: Embedded-TM: energy
and complexity-effective hardware transactional memory for embedded multicore
systems. J. Parallel Distrib. Comput. 70(10), 1042–1052 (2010). https://doi.org/
10.1016/j.jpdc.2010.02.003

10. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management. In:
Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 303–323. Springer, Heidelberg
(2005). https://doi.org/10.1007/11561927 23

11. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention
managers. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on
Principles of Distributed Computing, pp. 258–264 (2005). https://doi.org/10.1145/
1073814.1073863

12. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp. 289–300 (1993). https://doi.org/10.1145/165123.
165164

13. Intel Corporation: Intel Transactional Synchronization Extensions (Intel TSX)
Overview. https://software.intel.com/en-us/cpp-compiler-developer-guide-and-ref-
erence-intel-transactional-synchronization-extensions-intel-tsx-overview.
Accessed 23 Jan 2020

14. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: log-
based transactional memory. In: 2006 The Twelfth International Symposium on
High-Performance Computer Architecture, pp. 254–265 (2006). https://doi.org/
10.1109/HPCA.2006.1598134

15. Rossbach, C.J., Hofmann, O.S., Porter, D.E., Ramadan, H.E., Aditya, B., Witchel,
E.: TxLinux: using and managing hardware transactional memory in an operating
system. In: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles, pp. 87–102 (2007). https://doi.org/10.1145/1294261.1294271

16. Scherer, W.N., Scott, M.L.: Contention management in dynamic software transac-
tional memory. In: PODC Workshop on Concurrency and Synchronization in Java
Programs, pp. 70–79 (2004)

17. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic soft-
ware transactional memory. In: Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Distributed Computing, pp. 240–248 (2005). https://
doi.org/10.1145/1073814.1073861

https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1145/1168919.1168901
https://doi.org/10.1145/1168919.1168901
https://doi.org/10.1145/1168857.1168900
https://doi.org/10.1016/j.jpdc.2010.02.003
https://doi.org/10.1016/j.jpdc.2010.02.003
https://doi.org/10.1007/11561927_23
https://doi.org/10.1145/1073814.1073863
https://doi.org/10.1145/1073814.1073863
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-ref-erence-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-ref-erence-intel-transactional-synchronization-extensions-intel-tsx-overview
https://doi.org/10.1109/HPCA.2006.1598134
https://doi.org/10.1109/HPCA.2006.1598134
https://doi.org/10.1145/1294261.1294271
https://doi.org/10.1145/1073814.1073861
https://doi.org/10.1145/1073814.1073861

X-CEL: A Method to Estimate
Near-Memory Acceleration Potential

in Tile-Based MPSoCs

Sven Rheindt1(B), Andreas Fried2, Oliver Lenke1, Lars Nolte1,
Temur Sabirov1, Tim Twardzik1, Thomas Wild1, and Andreas Herkersdorf1

1 Technical University of Munich (TUM), Munich, Germany
sven.rheindt@tum.de

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract. Near-memory acceleration strives to tackle the data-to-task
locality issue in MPSoCs in order to obtain higher performance and
lower power consumption. However, it is not easy to determine whether
the advantages arise from the near-memory integration or the hardware
acceleration (versus software execution). We propose X-CEL, a method
to accurately estimate the potential of near-memory acceleration using
an easy-to-integrate near-memory core. We showcase X-CEL’s benefits
with three variants of graph copy mechanisms in a tile-based MPSoC.
Evaluations reveal that the estimated speedup is in good accordance with
the actual speedup achieved by the near-memory accelerator.

Keywords: Data-to-task locality · Near-memory acceleration · Design
space exploration · Graph copy · Tile-based MPSoC

1 Introduction

The performance and power consumption of today’s MPSoCs are dependent on
data-to-task locality more than ever. A significant amount of energy and time is
nowadays spent on data transfers between processor cores and the main memory,
especially for memory-intensive applications, which are dominated by data access
and movement [3,10]. Conventionally, sophisticated cache hierarchies are used
to improve data-to-task locality by bringing data closer to the processor cores,
thus lowering memory access latencies and the energy footprint. However, their
benefit is decreasing due to the emergence of large, irregular and cache-unfriendly
datasets, utilized by today’s and future applications [10]. The locality challenge
becomes worse when shifting towards tile-based manycore architectures, as on
these the distance between physically distributed cores and memory grows.

Many recent approaches therefore leverage in- or near-memory computing
to bridge the widening gap between processors and memory [1,16,22,25,27].
The majority of them use near-memory accelerators (NMAs), which perform

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 146371743 – TRR 89: Invasive Computing.

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 109–123, 2020.
https://doi.org/10.1007/978-3-030-52794-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_9

110 S. Rheindt et al.

their task both close to memory, as well as in a dedicated hardware module
(either near the memory or as a specific accelerator layer in a 3D-stacked circuit).
NMAs usually achieve a higher computational density and performance than a
software solution while saving energy and resources at the same time. On the
other hand, they sacrifice the flexibility of general-purpose computing and every
new accelerator requires a significant hardware development effort.

However, it is not always clear which portion of the performance advantage of
the NMA originates from the location (i.e., near-memory integration) or type of
function implementation (i.e. software execution versus hardware acceleration).
The impact of either one of the two effects is highly dependent on the applica-
tion and the underlying system architecture. To determine the optimal design, it
is therefore essential to analyze the influence of both effects on multiple impor-
tant user- and case-specific decision criteria, such as: performance, power consump-
tion, resource usage, design effort, flexibility (general- vs. fixed-purpose), system
or accelerator utilization, etc. The analysis whether 1. a near-memory integration
(near-memory core or near-memory accelerator) is beneficial at all, 2. a dedicated
hardware accelerator can outperform a software-programmable core for the given
task, or 3. whether only the combination of both achieves a speedup, is crucial to
avoid unnecessary and costly development effort. However, it is not trivial to quan-
titatively predict the effect of the individual optimizations before implementing
and measuring them. Further, it has to be determined if a near-memory core or
accelerator can handle the workload which is outsourced to it by many cores.

Therefore, a method for speedup estimation which helps the developer to
make early yet robust design choices would be of much benefit. Conventionally,
a design space exploration (DSE) is mostly performed on a virtual prototype
(i.e. simulation-based) or an FPGA-based prototype [8,19]. Both need at least
an accurate model or an implementation of the NMA, which already requires a
good amount of development effort if the DSE is expected to yield conclusive
results. To avoid this effort, we envision an orthogonal approach that could be
applied to both virtual and FPGA-based prototyping. We therefore

– propose X-CEL, an agile, measurement-based method to estimate the
speedup potential of near-memory accelerators in a tile-based MPSoC,

– showcase X-CEL with a case study of three graph copy mechanisms (two of
them are near-memory),

– and provide an in-depth evaluation of this case study.

This agile development method builds on actual measurements of an intermedi-
ate, easy-to-integrate near-memory core implementation. With the intermediate
stage, we achieve a better estimation of the target design (near-memory acceler-
ator) because in it the near-memory dimension (i.e. location) has been decoupled
from the accelerator dimension (i.e. type of function implementation).

The rest of the paper is organized as follows: Sect. 2 describes the related
work. In Sect. 3, we present X-CEL followed by the case study in Sect. 4. Section 4
is divided into a description of the showcase scenario (Sect. 4.1 and 4.2) and how
we apply X-CEL to it (Sect. 4.3). We further perform an in-depth analysis of the
evaluation results in Sect. 5, before concluding in Sect. 6.

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 111

2 Related Work

Our work is closely related to design space exploration (DSE) of heterogeneous
systems. As Sangiovanni-Venticelli et al. strive to do in their platform-based
design method [23], we place our approach early in the design phase.

During a DSE run, the DSE needs to be able to evaluate the performance of
each considered design point. Conventionally, it follows either a simulation-based
or analytical method as defined by Pimentel [19]. When a custom hardware unit
is part of the system, both of these methods need a model of that unit to be
developed beforehand. Reagen et al. [21] and Altaf et al. [2] demonstrate this
approach for the simulation-based and analytical methods, respectively.

There is also the measurement-based evaluation method, but Pimentel asso-
ciates this with a prohibitively high development overhead. This is because
instead of a (simplified) model of the custom hardware, the evaluation now
needs a full prototype.

Our approach, however, is orthogonal to conventional DSE and allows us
to bypass the need to develop a model or prototype beforehand. As we target
near-memory acceleration (NMA), we extrapolate its performance by leverag-
ing measurements of an easy-to-integrate, software-programmable near-memory
core, without the need for the actual accelerator.

Recently, there has been much interest in NMAs for numerical applications
[16,25], graph processing [11], and system software [27]. For dealing with object
graphs, Maas et al. presented an accelerator (albeit not an NMA) to speed up
tracing garbage collection [13]. Rheindt et al. specifically targeted the problem
of copying object graphs with an NMA [22], which is also the focus of our paper.

There are also sophisticated software-only approaches to efficiently copy
object graphs without costly (de)serialization: Mohr et al. [14] presented Pegasus,
which targets embedded MPSoCs, while Skyway by Nguyen et al. [17] optimized
object graph transfers over networks.

3 X-CEL

X-CEL is a measurement-based method to estimate and analyze the speedup
potential of near-memory accelerators in tile-based manycore architectures. To
be able to conquer the complexity of this endeavor, we propose an agile two-
stage approach, which separates the near-memory from the hardware accelerator
dimension. This decoupling of both effects allows us to make a better estimation.

Our method categorizes the activity of a parallel application scenario run-
ning on an MPSoC into three parts: 1. the task of interest (TOI), which would
benefit from near-memory computing and which is often memory-intensive, 2.
all remaining tasks of the application, and 3. idle time of the cores. Figure 2
illustrates this for a parallel application running on Ncpu cores. As depicted and
defined in Fig. 2, ttoi and tother are the accumulated times over all application
cores executing the task of interest and the remaining tasks, respectively. The
TOI can either be given as a design choice to be explored/analyzed or it can

112 S. Rheindt et al.

Fig. 1. X-CEL reduces the
design space exploration com-
plexity by one dimension.

Fig. 2. Example manycore application scenario
including definitions of ttoi, tother, tidle and tapp.

be determined through application profiling, e. g. last-level cache misses indicate
which task(s) have the most DRAM accesses.

The idle times arise from sequential parts of the application, limited paral-
lelism, data dependencies, as well as inter-thread communication and synchro-
nization overhead. If there are several different tasks of interest, X-CEL could
also be individually applied to them to analyze the speedup potential of each. In
the following, we assume one task of interest which is executed multiple times
throughout the application.

The tile-based manycore architecture we consider (an example is depicted in
Fig. 4), contains a main memory, a two level cache hierarchy, many cores and
potentially a software-programmable near-memory core (NMCore) or dedicated
hardware near-memory accelerator (NMA). Thus, we can differentiate between
three implementation variants: 1. baseline (far-from-memory & without accel-
erator): the task of interest (TOI) and all others tasks are executed parallelized
on the far-from-memory cores, 2. NMCore (near-memory, but without accel-
erator): the task of interest is executed near-memory on the near-memory core,
while all others tasks remain on the distributed cores, and 3. NMA (near-
memory & accelerated): similar to NMCore, but the task of interest is offloaded
to the near-memory hardware accelerator.

Beginning with the existing baseline variant, X-CEL introduces and leverages
an agile development step via the NMCore variant. The near-memory core serves
well as an intermediate step in the two-stage estimation since it has negligible
development effort compared to the near-memory accelerator: The existing soft-
ware algorithm of the TOI just needs to be executed on an additionally instan-
tiated core. This offloading needs to be properly synchronized with the rest of
the system. As depicted in Fig. 1, X-CEL decouples the near-memory from the
hardware acceleration dimension. In contrast, an estimation of the NMA using
the baseline measurements would incorporate a change of both dimensions at
the same time. This would be a difficult endeavor in such a complex system
with many superposed effects of MPSoCs and parallel programming. Therefore,
a refined estimation based on the NMCore variant is more promising because
the near-memory dimension is fixed due to the same location of the NMCore
and the NMA in the architecture.

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 113

Fig. 3. Flowchart showing the steps of X-CEL

Our proposed X-CEL method thus follows the steps depicted in Fig. 3:

Step 1. Identify the task of interest (TOI) of the application scenario that
could benefit from near-memory acceleration. In case of more than one TOI,
apply X-CEL either individually or in a combined manner to them.
Step 2.1. Execute the baseline variant and measure the accumulated CPU time
of all application cores taken by the task of interest tbasetoi , all other parts of the
program tbaseother, as well as the overall runtime tbaseapp .
Step 2.2. Determine a first speedup estimate S 1

est of the NMA variant using the
baseline measurements. Given that only the TOI is accelerated, while the rest
of the application remains untouched, an upper bound estimate is given by:

S 1
est =

tbaseother + tbasetoi

tbaseother

(1)

Step 3. If S 1
est ≈ 1, the TOI has a negligible fraction of the total execution

time. There is thus no speedup potential through near-memory computing and
the baseline variant can be used. If, however, S 1

est > 1+εsat, where εsat expresses
a user-defined satisfying margin, we consider it worthwhile to speedup the TOI
with near-memory computing. However, the confidence of this first stage esti-
mate S 1

est is not very high, as the estimation for the near-memory accelerator
is based on the baseline variant which is neither near-memory integrated nor
accelerated. Therefore, we refine the estimation in the next steps.
Step 4.1. Integrate the near-memory core (NMCore) variant.
Step 4.2. Execute this variant and measure the respective times of the different
tasks tnmc

toi , tnmc
other, as well as the overall runtime tnmc

app .
Step 4.3. Determine the actual speedup of the NMCore variant relative to the
baseline implementation:

Snmc
act =

tbaseapp

tnmc
app

(2)

Step 4.4. Analyze whether the near-memory core becomes a bottleneck by
monitoring its utilization. If tnmc

toi ≈ tnmc
app , meaning the NMCore is utilized almost

114 S. Rheindt et al.

during the whole execution time of the application, the use of a second near-
memory core might be an option. However, as commonly known, interleaved
accesses of several cores to the same DRAM memory bank can even deteriorate
the performance due to row conflicts. We experienced this behavior and hence
employ only one near-memory core.
Step 4.5. Based on the NMCore measurements, refine the speedup estimate for
the NMA compared to the baseline variant:

S 2
est =

tnmc
other + tnmc

toi

tnmc
other

· Snmc
act (3)

As the NMCore and the NMA are located in the same position in the architec-
ture, this second stage estimate is invariant to the near-memory dimension. It
therefore promises a higher confidence.
Step 5. Compare the actual speedup achieved by the NMCore variant Snmc

act

(Step 4.3) with S 2
est (Step 4.5), which is the refined estimation for the NMA

speedup potential. Both are relative to the baseline variant and thus directly
comparable. If S 2

est ≈ Snmc
act , there is no remaining speedup potential for the

hardware accelerator and the near-memory core is sufficient. If S 2
est > Snmc

act +
εrem, where εrem expresses a big enough remaining speedup margin, the near-
memory accelerator should be considered. However, the development effort and
the required hardware resources of the NMA should not be neglected in this
decision.
Step 6. Develop and implement the near-memory accelerator.
Step 7. Finally, measure the NMA variant and perform an analysis of how close
both estimates S 1

est and S 2
est approach the NMA variant.

4 X-CEL Case Study

This section presents a case study of X-CEL applied to near-memory graph copy.
We first motivate the choice of near-memory graph copy as a showcase scenario
(Sect. 4.1) and describe the prototype and benchmark setup of our case study
(Sect. 4.2), before applying X-CEL to it (Sect. 4.3).

4.1 Motivation for Near-Memory Graph Copy

As mentioned in Sect. 1, data-to-task locality and the reduction of data move-
ment is especially challenging on tile-based manycore architectures. Although
parallel applications and operating systems help to exploit the increased scala-
bility, they often impose significant overhead for inter-tile communication, data
transport and thread synchronization. Common communication patterns of par-
allel applications, libraries, and operating systems require the transfer of arbi-
trary data to remote tiles and its subsequent processing there. As tile-based
architectures often omit hardware support for inter-tile cache coherence and
consistency [4,5,12], inter-tile communication (data transfer and thread synchro-
nization) has to be handled explicitly via e. g. message passing (e. g. MPI [15])

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 115

Fig. 4. Tile-based architecture.

or partitioned global address space (PGAS) programming (e. g. X10 [24] or
Chapel [7]). These models have in common that they require data transfers
between the memory partitions associated with each processor. These architec-
tures therefore normally provide direct memory access (DMA) engines to support
efficient transfer of data.

However, if object oriented programming (e. g. Java, X10, Chapel) is used,
the data to be copied will be object graphs consisting of objects pointing to
each other. These pointered data structures cannot be directly copied by a
DMA engine since all copied pointers would become invalid. Since it is crucial
for the performance of object-oriented applications on such architectures, many
approaches optimize the transfer or handling of object graphs [13,14,17,22].

As one of them (Pegasus [14]) uses neither near-memory integration, nor
hardware acceleration, it serves well as a baseline implementation in the case
study. Another state-of-the art implementation of the same mechanism (NE-
MESYS [22]) on the other hand leverages full near-memory acceleration. Both
approaches target a MPSoC architecture as well.

4.2 Prototype and Benchmark Setup of the Case Study

We use a tile-based manycore architecture synthesized on a multi-FPGA system
consisting of four Xilinx Virtex-7 2000T FPGAs [20]. The 4 × 4 tile MPSoC
prototype design consists of up to 15 compute tiles and one memory tile, which
is located at grid position (1,1). Figure 4 depicts the top-left-most 2 × 2 part of
the whole design.

Each compute tile contains 4 cores (Gaisler SPARC V8 LEON 3 [6,26] pro-
cessors) with private L1 caches. They are configured in write-through mode
and kept intra-tile coherent by a classical bus snooping coherence scheme. The
LEON 3 cores further use branch prediction and a floating-point unit. Each
compute tile is further equipped with an L2 cache, which caches accesses to the

116 S. Rheindt et al.

Table 1. Cache and memory parameters.

Parameter Value Parameter Value

L1-I cache sets 2 LEON 3 freq. 50 MHz

L1-I cache set size 16 kByte L1 & L2 cache freq. 50 MHz

L1-I cache line size 32 Byte TLM freq. 50 MHz

L1-D cache sets 2 MEM ctrl freq. 100 MHz

L1-D cache set size 16 kByte NMCore freq. 50 MHz

L1-D cache line size 16 Byte NMA freq. 100 MHz

L2 cache sets 4 Local-DMA freq. 100 MHz

L2 cache set size 128 kByte L1 cache policy Write-through

L2 cache line size 32 Byte L1 hit time 1 cycle

L2 cache policy Write-back L2 hit time 20 cycles

Tile-local memory (TLM) 8 MByte L2 miss time 90 cycles

Main MEM 2 GByte TLM acc. time 20 cycles

remote main memory, and a tile-local memory (TLM), which holds the program
text, OS data, and temporary user data.

The memory tile is additionally connected to the off-chip DDR-3 main mem-
ory and also contains the near-memory core (LEON 3 core with L1 cache) or
accelerator (NMA) if present.

A network adapter (NA) connects the tiles to the NoC routers and carries out
the remote load-store operations received from the L2 cache back-end. Besides
that, the NA can forward remote task invocations and trigger commands to
the NMA. Table 1 gives an overview of the core, cache, accelerator and memory
configuration parameters.

A distributed operating system [18] which is able to exploit the described
hardware features runs on the FPGA prototype. We use the X10 IMSuite bench-
marks [9] – a collection of distributed parallel kernels using the PGAS model –
in the same configuration as [22].

4.3 X-CEL Applied to Near-Memory Graph Copy

To demonstrate X-CEL, we now apply it to the above-mentioned graph copy
problem on this tile-based manycore architecture. In this section, we pick one
(MinimumSpanningTree, MST) out of the twelve IMSuite benchmarks and run it
on 15 compute tiles (MST-15) to showcase the different steps of the framework.
For a complete study of all twelve benchmarks and different number of compute
tiles, refer to the evaluation in Sect. 5.

InStep 1 of the framework, we identify the memory-intensive graph copy oper-
ation as the task of interest (TOI). This task is part of the inter-tile communication
routine of the runtime systemand therefore occurs during the execution of any kind
of parallel application on our system. As outlined in Sect. 3, our goal is to decide

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 117

whether to perform this graph copy operation on a core in the receiving compute
tile, on the near-memory core, or on a near-memory accelerator (see Fig. 4).

In every variant, the sending processor first needs to ensure that the latest
version of the object graph G is in main memory. Since our architecture does
not provide inter-tile cache coherence, the processor traverses G and explicitly
writes back all necessary cache lines. After the write back on sender side and
the invalidation on destination side, both the receiving processor and any near-
memory processing elements now have a consistent view of G, and the copying
operation can begin.

In the baseline variant, the receiving processor itself does the graph copying
[14]. Here, the complete object graph needs to be cloned remotely via the cache
hierarchy and the NoC from the source memory partition S to the processor and
back to the destination memory partition D. The operation is indicated in Fig. 4
with the beige arrow. This limits performance and pollutes the receiver’s caches
with the source graph. On the other hand, this approach requires no additional
hardware and the newly copied data is available in the receiver’s cache right
away.
Steps 2.1–2.2. We execute the baseline variant, which yields the following
measurements:

tbasetoi tbaseother tbaseapp S 1
est

MST-15 32.66 s 27.16 s 14.32 s 2.20×

Note, that ttoi and tother are accumulated times over all cores, as defined in
Fig. 2, while tapp is not.
Step 3. As the speedup potential S 1

est = 2.20× > 1 + εsat is satisfyingly large,
we go on to analyze the near-memory core variant.
Step 4.1. We implement the NMCore variant, where the memory-intensive
graph copy is outsourced to the near-memory core. The near-memory core per-
forms the same software graph copy algorithm as the baseline variant. A negligi-
ble effort is required to integrate the near-memory core in the system, schedule
the existing graph copy software algorithm on it and maintain consistency with
it. The near-memory core is assisted by a state-of-the-art DMA engine for copy-
ing larger amounts of consecutive, non-pointered data, if existent. Figure 4 shows
the existing system architecture including the near-memory core in green.
Steps 4.2–4.4. The execution and measurement of the NMCore variant yielded
the following times:

tnmc
toi tnmc

other tnmc
app Snmc

act S 2
est

MST-15 3.09 s 23.00 s 8.94 s 1.60× 1.82×

The actual speedup of the this variant was measured as Snmc
act = 1.60×. How-

ever, since the NMCore is only utilized during roughly one third (tnmc
toi = 3.09 s)

118 S. Rheindt et al.

of the total application runtime (tnmc
app = 8.94 s), it is far from becoming the

bottleneck.
Step 4.5. Based on the measurement results of Step 4.2, we can now do a
better estimation of the NMA variant. According to the numbers depicted above,
the speedup estimate for the NMA variant compared to the baseline can be
calculated to S 2

est = 1.82×.
Step 5. As S 2

est = 1.82× > 1.60× = Snmc
act , we still see potential to achieve

a higher speedup by using the near-memory accelerator. However, before this
decision is made, all different benchmarks and application scenarios should be
evaluated, which is done in Sect. 5. Also the development effort and the required
hardware resources (compared to the NMCore) should be considered in this
decision.
Step 6. Develop a graph copy NMA as proposed by Rheindt et al. [22]. This
implementation uses a near-memory accelerator to perform the graph copy oper-
ation which executes the same graph copy functionality as the processor core
using a slightly different algorithm that can be performed by a hardware module
[22]. The NMA is indicated in purple in Fig. 4. This speeds up the copy oper-
ation itself and leaves the processors free for other tasks. However, it requires
a tremendous development effort, as well as additional hardware resources of
approximately the size of one core. Furthermore, the functionality of the NMA
is limited to the graph copy task.
Step 7. The execution and measurement of the NMA variant brought these final
results:

tNMA
toi tNMA

other tNMA
app SNMA

act

MST-15 1.65 s 21.38 s 7.69 s 1.86×

The actual measured speedup of the NMA SNMA
act = 1.86× is very close

and even slightly larger than the estimate S 2
est = 1.82×. Under the assumption

that tother is not effected by the NMA implementation, S 2
est was defined as an

upper bound. However, tother decreased to tNMA
other = 21.38 s compared to the

baseline implementation’s tbaseother = 27.16 s, which helps to explain the additional
improvement compared to the estimate.

5 Evaluation

This section presents the full case study and in-depth analysis for all twelve
IMSuite benchmarks and a varying number of compute tiles between one
and 15.

We examine the performance predictions of X-CEL in more detail. To this
end, we use all benchmarks from the X10-IMSuite, and run them each on differ-
ently sized systems (1, 2, 3, 4, 8, 12, and 15 compute tiles). We then compare
the two stages of performance predictions made by X-CEL with the actual per-
formance achieved by the NMA.

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 119

Fig. 5. Individual benchmark speedups of the NMA () normalized to the baseline
for varying number of compute tiles, including S 1

est(), S 2
est(): x-axis: number

of computes tiles with four cores each, y-axis: relative speedup.

Figure 5 shows the speedups achieved by the NMA in each benchmark with
varying system size, relative to the baseline variant of the same system size. The
solid line shows the actual speedups, whereas the dashed lines and
depict S 1

est and S 2
est, respectively.

For the systems with 3 and 15 compute tiles, we also show the run-times of
each variant (Baseline, NMCore, and NMA) in Fig. 6. The dashed lines in these
charts represent the run-times predicted by S 1

est and S 2
est.

The validity of X-CEL rests on two conditions: First, that S 1
est gives an

indication whether near-memory computing could accelerate the given program
at all, and second that S 2

est gives an accurate prediction of the run-time achieved
by an NMA. We will now examine these two conditions in turn.

We first observe that S 1
est usually gives an upper bound on the achievable

speedup. That is to say, if S 1
est is close to 1, the application will certainly not

benefit from near-memory computing.
S 1
est only under-estimates the speedup in the DR and DS benchmarks. A

closer analysis of the graph copy tasks performed shows a difference to the other
benchmarks: DR and DS have many very small graph copy tasks to perform

120 S. Rheindt et al.

Fig. 6. Runtime measurements of the IMSuite benchmarks with three (Top) and 15
compute tiles (Bottom), respectively.

(e. g., DS transfers a single object of 24 bytes 17 856 times [22]). Thus, the
offloading and synchronization overheads come to play a larger role, which our
model does not handle as well. Still, we see that S 1

est fulfills its function well in
most cases.

When examining S 2
est, we observe that S 2

est approximates the actual speedup
well, with a root mean square error of 0.23. Out of all the 84 configurations we
evaluated (12 benchmarks × 7 system sizes), in 60 configurations S 2

est deviated
by less than 5% from the actual speedup.

The other 24 configurations warrant a closer analysis, because too low
speedup estimates have a different impact from too high ones: X-CEL uses S 2

est

as an indication of whether to develop a dedicated hardware accelerator (see
Step 5 in Sect. 3). If S 2

est turns out to under-estimate the NMA’s speedup, this
is hardly a problem, because the NMA performs better than expected. On the
other hand, if S 2

est over-estimates the speedup, the effort spent developing the
NMA may have been wasted.

Out of the 24 configuration where S 2
est deviates by more than 5 %, it under-

estimates the speedup in 14 cases, and over-estimates it in 10. The under-
estimates are relatively large in places (up to 32.9 % for DR on 15 compute
tiles), but as we have explained, this is not problematic. On the other hand, the
over-estimates are at most 10.2 % (HS on 8 compute tiles), and indeed only 5 of
the 10 over-estimates are larger than 6 %.

Considering that X-CEL does not need any information about the actual
algorithm, the estimates it provides are quite accurate in most cases. Morevoer,
if they deviate from the speedup achievable by the NMA, they usually err on
the safe side from the developer’s point of view.

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 121

6 Conclusion

We presented X-CEL, a measurement-based method to estimate the potential
of near-memory acceleration. It helps to perform an early yet robust estima-
tion whether the development effort of a near-memory accelerator is worthwhile.
The two-stage method is based on measurements of an easy-to-integrate near-
memory core (near-memory, but no accelerator) variant, which is closer to the
target design than the existing baseline implementation (neither near-memory,
nor hardware-accelerated). We showcased X-CEL with a (near-memory) graph
copy problem in a tile-based MPSoC with a set of distributed graph algorithm
kernels. An in-depth analysis revealed that the second stage estimate is within
5 % of the actual speedup in 70 % of the configurations. Moreover, it has 36 %
higher accuracy than the original estimate.

Future work could refine the estimation model, as well as extend the frame-
work to more case studies.

All in all, we envision X-CEL to become an x-cel-lent tool in the hand of
developers to make sophisticated predictions on the near-memory acceleration
potential and thereby avoid unnecessary development effort.

References

1. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory
accelerator for parallel graph processing. In: Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture, Portland, OR, USA, 13–17 June
2015, pp. 105–117 (2015). https://doi.org/10.1145/2749469.2750386

2. Altaf, M.S.B., Wood, D.A.: LogCA: a high-level performance model for hard-
ware accelerators. In: 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pp. 375–388, June 2017. https://doi.org/10.1145/
3079856.3080216

3. Arnold, O., Fettweis, G.: Power aware heterogeneous MPSoC with dynamic task
scheduling and increased data locality for multiple applications. In: 2010 Inter-
national Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation, pp. 110–117, July 2010. https://doi.org/10.1109/ICSAMOS.2010.
5642075

4. Carter, N.P., et al.: Runnemede: an architecture for ubiquitous high-performance
computing. In: 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 198–209, February 2013. https://doi.org/10.
1109/HPCA.2013.6522319

5. Choi, B., et al.: DeNovo: rethinking the memory hierarchy for disciplined paral-
lelism. In: 2011 International Conference on Parallel Architectures and Compilation
Techniques (PACT 2011), Galveston, TX, USA, 10–14 October 2011, pp. 155–166
(2011). https://doi.org/10.1109/PACT.2011.21

6. Cobham Gaisler: LEON 3 (2010). http://gaisler.com/index.php/products/
processors/leon3

7. Cray Inc.: Chapel language specification (2019). https://chapel-lang.org/docs/
downloads/chapelLanguageSpec.pdf

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/3079856.3080216
https://doi.org/10.1145/3079856.3080216
https://doi.org/10.1109/ICSAMOS.2010.5642075
https://doi.org/10.1109/ICSAMOS.2010.5642075
https://doi.org/10.1109/HPCA.2013.6522319
https://doi.org/10.1109/HPCA.2013.6522319
https://doi.org/10.1109/PACT.2011.21
http://gaisler.com/index.php/products/processors/leon3
http://gaisler.com/index.php/products/processors/leon3
https://chapel-lang.org/docs/_downloads/chapelLanguageSpec.pdf
https://chapel-lang.org/docs/_downloads/chapelLanguageSpec.pdf

122 S. Rheindt et al.

8. Gries, M.: Methods for evaluating and covering the design space during early design
development. Integr. VLSI J. 38(2), 131–183 (2004). https://doi.org/10.1016/j.vlsi.
2004.06.001

9. Gupta, S., Nandivada, V.K.: IMSuite: a benchmark suite for simulating distributed
algorithms. J. Parallel Distrib. Comput. 75, 1–19 (2015). https://doi.org/10.1016/
j.jpdc.2014.10.010

10. Kogge, P.: Memory intensive computing, the 3rd wall, and the need for innova-
tion in architecture (2017). https://memsys.io/wp-content/uploads/2017/12/The
Wall.pdf

11. Li, G., Dai, G., Li, S., Wang, Y., Xie, Y.: GraphIA: an in-situ accelerator for large-
scale graph processing. In: Proceedings of the International Symposium on Memory
Systems (MEMSYS 2018), Old Town Alexandria, VA, USA, 01–04 October 2018,
pp. 79–84 (2018). https://doi.org/10.1145/3240302.3240312

12. Lyberis, S., et al.: Formic: cost-efficient and scalable prototyping of manycore archi-
tectures. In: 2012 IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines, pp. 61–64, April 2012

13. Maas, M., Asanović, K., Kubiatowicz, J.: A hardware accelerator for tracing
garbage collection. In: Proceedings of the 45th Annual International Symposium on
Computer Architecture (ISCA 2018), pp. 138–151. IEEE Press, Piscataway (2018).
https://doi.org/10.1109/ISCA.2018.00022

14. Mohr, M., Tradowsky, C.: Pegasus: efficient data transfers for PGAS languages
on non-cache-coherent many-cores. In: Proceedings of the Conference on Design,
Automation & Test in Europe, pp. 1785–1790. European Design and Automation
Association (2017)

15. MPI Forum: MPI: a message passing interface standard version 3.1 (2015). https://
www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

16. Neggaz, M.A., Yantir, H.E., Niar, S., Eltawil, A.M., Kurdahi, F.J.: Rapid
in-memory matrix multiplication using associative processor. In: 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2018), Dresden,
Germany, 19–23 March 2018, pp. 985–990 (2018). https://doi.org/10.23919/DATE.
2018.8342152

17. Nguyen, K., Fang, L., Navasca, C., Xu, G., Demsky, B., Lu, S.: Skyway: connecting
managed heaps in distributed big data systems. In: ACM SIGPLAN Notices, vol.
53, pp. 56–69. ACM (2018)

18. Oechslein, B., et al.: OctoPOS: a parallel operating system for invasive comput-
ing. In: McIlroy, R., Sventek, J., Harris, T., Roscoe, T. (eds.) Proceedings of the
International Workshop on Systems for Future Multi-Core Architectures (SFMA).
Sixth International ACM/EuroSys European Conference on Computer Systems
(EuroSys), vol. USB Proceedings, pp. 9–14. EuroSys (2011)

19. Pimentel, A.D.: Exploring exploration: a tutorial introduction to embedded sys-
tems design space exploration. IEEE Des. Test 34(1), 77–90 (2017). https://doi.
org/10.1109/MDAT.2016.2626445

20. PRO DESIGN Electronic GmbH: FPGA module xc7v2000t (2019). https://www.
profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t

21. Reagen, B., Shao, Y.S., Wei, G.Y., Brooks, D.: Quantifying acceleration: pow-
er/performance trade-offs of application kernels in hardware. In: International
Symposium on Low Power Electronics and Design (ISLPED) (2013)

22. Rheindt, S., Fried, A., Lenke, O., Nolte, L., Wild, T., Herkersdorf, A.: NEMESYS:
near-memory graph copy enhanced system-software. In: Proceedings of the Inter-
national Symposium on Memory Systems (MEMSYS 2019), pp. 3–18. ACM, New
York (2019). https://doi.org/10.1145/3357526.3357545

https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.vlsi.2004.06.001
https://doi.org/10.1016/j.jpdc.2014.10.010
https://doi.org/10.1016/j.jpdc.2014.10.010
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://memsys.io/wp-content/uploads/2017/12/The_Wall.pdf
https://doi.org/10.1145/3240302.3240312
https://doi.org/10.1109/ISCA.2018.00022
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.23919/DATE.2018.8342152
https://doi.org/10.23919/DATE.2018.8342152
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/10.1109/MDAT.2016.2626445
https://www.profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t
https://www.profpga.com/products/fpga-modules-overview/virtex-7-based/profpga-xc7v2000t
https://doi.org/10.1145/3357526.3357545

X-CEL: A Method to Estimate Near-Memory Acceleration Potential 123

23. Sangiovanni-Vincentelli, A., Martin, G.: Platform-based design and software design
methodology for embedded systems. IEEE Des. Test Comput. 18(6), 23–33 (2001).
https://doi.org/10.1109/54.970421

24. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language spec-
ification (2019). http://x10.sourceforge.net/documentation/languagespec/x10-
latest.pdf

25. Schuiki, F., Schaffner, M., Gürkaynak, F.K., Benini, L.: A scalable near-memory
architecture for training deep neural networks on large in-memory datasets. IEEE
Trans. Comput. 68(4), 484–497 (2019). https://doi.org/10.1109/TC.2018.2876312

26. SPARC Inc.: The SPARC Architecture Manual, Version 8, sav080si9308 edn.
(1992)

27. Yitbarek, S.F., Yang, T., Das, R., Austin, T.M.: Exploring specialized near-
memory processing for data intensive operations. In: 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2016), Dresden, Germany, 14–18
March 2016, pp. 1449–1452 (2016)

https://doi.org/10.1109/54.970421
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
https://doi.org/10.1109/TC.2018.2876312

Engineering an Optimized Instruction Set
Architecture for AMIDAR Processors

Alexander Schwarz(B) and Christian Hochberger

Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
{schwarz,hochberger}@rs.tu-darmstadt.de

Abstract. Newly developed instruction set architectures are nowadays
typically based on the RISC principle. Yet, more abstract instruction
sets also have their advantages. In the AMIDAR project Java Bytecode
was used as the instruction set. Instructions are realized as composi-
tions of micro instructions that are distributed to specialized functional
units. An explicit timing of these micro instructions is not necessary in
AMIDAR processors. This simplifies the conversion of compute intense
instruction sequences into hardware structures while the system is run-
ning. The relatively high abstraction level of the Bytecode facilitates the
analysis and synthesis remarkably. Yet, the native execution of the Byte-
code comes with a number of drawbacks. In this contribution, we show a
new instruction set architecture that preserves the high abstraction level
of Bytecode while at the same time avoiding inefficient data transports.
We show that on average the new instruction set reduces the number of
clock cycles for our benchmark set by a factor of 3.

Keywords: Instruction set architecture · Microarchitecture ·
Self-timed · Java processor · Online synthesis

1 Introduction

Most new developments in the area of microprocessors use RISC instruction sets.
The RISC nature of instruction sets eases decoding and creation of pipelines.
On the down side, analyzing such instruction sequences can be very difficult. An
instruction set with higher abstraction level will provide more specialized and
targeted instructions. Thus, it will be easier to reverse engineer the intention of
the programmer.

This is an essential property if we consider dynamic software/hardware
migration. In AMIDAR processors, such online synthesis is one major factor
for an efficient application execution. Existing AMIDAR processors use Java
Bytecode as their instruction set. While we could demonstrate that it is very
suitable for an online synthesis into HW structures, we also found that Bytecode
makes excessive use of the stack and the local variable memory. Many of these
data transports could be avoided.

The motivation to use Java Bytecode as instruction set is twofold: 1) Android
based smartphones are programmed with languages that generate Java Bytecode
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 124–137, 2020.
https://doi.org/10.1007/978-3-030-52794-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_10

Optimized ISA for AMIDAR 125

which is then converted into Dalvik executables. Alternatively, a true Java Byte-
code processor like an AMIDAR processor could be used in such platforms. 2)
Java as programming language has gained a lot of attention for embedded sys-
tems due to its inherent safety features. Consequently, real HW implementations
of Java Bytecode processors exist and are in commercial use.

In this contribution, we present a novel instruction set architecture (ISA)
that preserves the high abstraction level of Java Bytecode, while at the same
time reducing the amount of data transports to a minimum. On average, the
resulting instruction set can be executed with less than one third of the original
AMIDAR clock cycles.

The paper is structured as follows. Section 2 explains the AMIDAR principle.
In Sect. 3 we explain the design of the new ISA (requirements, basic concept,
code generation and binary format). Section 4 presents challenges together with
our solutions for many detail problems with the new ISA. An evaluation of the
new ISA is shown in Sect. 5. Finally, a conclusion and an outlook are given.

2 The AMIDAR Principle

AMIDAR [3] processors are composed of multiple functional units (FUs) which
work independently of each other. Independence of FUs is a major strength of
AMIDAR. It facilitates hardware design and provides opportunities for runtime
reconfiguration. Figure 1 illustrates the structure of a Java processor. The Token
Machine is a special FU which decodes program instructions into tokens and
sends them to FUs using the token distribution network. Tokens contain the
information which operations to execute and where to send the results to. Data
can be exchanged between FUs using a data interconnect.

!!!

Fig. 1. Structure of the processor

In previous versions of AMIDAR processors, tags are used for synchronizing
data with FU operations. Using this technique, every token and data packet
contains a tag number. The receiving FU compares the tags of data packet and
next token to execute. Only if both tags are equal, the data packet is accepted.
Otherwise, the sender has to retry until data transmission is successful. Conse-
quently, no assumptions about the timing of FUs are required and communica-
tion between FUs is self-timed.

126 A. Schwarz and C. Hochberger

Apart from its role as instruction decoder, the Token Machine executes all
operations which change control flow like branches and method invocations.
Furthermore, it provides constants contained in the code. The Frame Stack FU
stores for each thread a stack of method frames. Every frame comprises a section
for local variables and an operand stack. The Object Heap FU stores objects,
arrays and static variables. The Thread Scheduler FU decides which thread to
execute and provides thread synchronization using monitors. Several ALUs exist
for integer and floating point arithmetic. A coarse grained reconfigurable array
(CGRA) is used as flexible hardware accelerator [10].

3 Design of the New ISA

3.1 Motivation

The Frame Stack FU has been identified as bottleneck in previous versions of
AMIDAR processors, which use Java Bytecode as their instruction set. Most
instructions access the operand stack for reading or writing data. This results in
many transfers from and to the Frame Stack FU. Consequently, reducing these
data transfers is the main motivation for developing a new ISA.

3.2 Requirements

The processor should run Java programs on a high level of abstraction, like the
previous AMIDAR implementation. However, these programs should be executed
with higher performance by eliminating unnecessary data transfers. Reconfigu-
ration features like dynamic software/hardware migration should still be sup-
ported. This leads to the following requirements.

– Data should be transmitted directly between FUs whenever possible without
using intermediate storage. Thereby, execution time and energy consumption
are reduced (see Sect. 5).

– Hardware requirements should be moderate. Reducing hardware requirements
to an absolute minimum is not the goal. Complex FU operations should still
be supported to provide fast execution of programs. On the other hand, com-
plex and energy-consuming techniques for dynamic scheduling and data syn-
chronization should be avoided (see Sects. 4.3 and 4.4).

– Instruction encoding should be compact in order to avoid a bottleneck
between code memory and instruction decoder. However, an increased code
size in comparison to Java Bytecode can hardly be avoided because small code
size is a major strength of Bytecode due to the stack principle (see Sect. 5).

– Arbitrary complex control flow which is expressible in high level languages
should be supported (see Sect. 3.3).

– No assumptions about FU timing behavior should be required, neither during
code generation nor during token generation (See Sect. 4.3).

– The token generator should have the freedom to assign operations to different
FUs as another means for runtime reconfiguration. This assignment should
not be fixed by the programmer or code generator (see Sect. 4.5).

Optimized ISA for AMIDAR 127

3.3 Basic Concept

The basic idea of the new ISA is to specify data flow between instructions explic-
itly instead of using an operand stack. Each instruction which produces a result
specifies another instruction which will receive this result. The four components
of an instruction are shown in Fig. 2. Every instruction specifies the operation
to execute. Some operations require an additional constant. The result reference
specifies the instruction which will receive the result. It consists of an instruc-
tion offset and a port. The offset is relative to the current instruction in order
of execution. A value of 0 references the instruction which is executed next. It is
important to note that the static position in the code is not relevant for this off-
set. Many operations require more than one operand. Therefore, a port number
is used in the result reference to specify which of these operands is sent.

Fig. 2. Assembler representation of one instruction

An example of the resulting code is given in Fig. 3 together with an illus-
tration of control and data flow. The first instruction sends the constant 10 to
port 0 of either the add or the sub instruction. The read instruction in line 2
obtains a value from scratch pad memory address 3 and sends it to port 1 of
the brg instruction in line 4. The next instruction in line 3 sends a value from
scratch pad memory to port 1 of either the add or the sub instruction. The
branch instruction in line 4 determines which of both is executed by comparing
the received value with zero. Both the add and the sub instructions send their
result to port 0 of the mul instruction in line 11. As only one of both is exe-
cuted, the mul instruction receives exactly one value at its port 0. This value is
multiplied with the value read from scratch pad memory address 4. The result
is written back to the same address.

This example shows some important features of this kind of data flow descrip-
tion. Every value which is produced by an instruction must have exactly one
receiver on every possible path of the program. Furthermore, every instruction
must receive exactly one value on each of its ports on every possible path of the
program. Every port of an instruction can behave like a φ function as known
from static single assignment (SSA) forms in compiler engineering. Port 0 of the
mul instruction is an example for this. Either the result of the addition or of the
subtraction is received depending on the previously executed program path.

3.4 Code Generation

Code for the new ISA can be generated from two types of sources. The first type
is assembler code. As the processor operates on a similar level of abstraction as

128 A. Schwarz and C. Hochberger

Fig. 3. Basic code example (black: data flow, blue: control flow) (Color figure online)

Java Bytecode, meta-information like class structures is part of this code. Bodies
of methods are filled with instructions in assembler representation as defined
in Fig. 2. An assembler has been engineered which converts a set of assembler
files to a single binary named New AMIDAR Executable (NAX). This binary
contains all information which is required to execute a program on a hardware
implementation of the processor.

Fig. 4. Code generation from Java source code

The second much more useful type of source code is Java code. The corre-
sponding tool flow is depicted in Fig. 4. A standard Java compiler produces class
files from Java source code. A newly developed transpiler converts a set of class
files to a NAX file. Figure 4 also shows a simplified version of this transpilation
process. The Java analysis and optimization framework Soot is used to convert
Bytecode from class files to an SSA form called Shimple [6]. Instruction selec-
tion creates a control flow graph for each method of the Shimple representation.
Each node of such a control flow graph in turn points to a directed acyclic graph
(DAG) defining data dependencies between instructions in the corresponding

Optimized ISA for AMIDAR 129

block. Instruction scheduling orders the instructions in each block to respect
dependencies implied by the DAG on the one hand and hardware restrictions on
the other hand.

3.5 Binary Format

A binary format for the instructions has already been defined as shown in Fig. 5.
Every instruction has a width of 24 bits. This is the smallest multiple of one byte
which can store all relevant information and leaves small room for extensions.
Code is stored in an external DRAM which is accessed using a 32 bit AXI inter-
face. A sequence of 32 bit words is converted to a sequence of 24 bit instructions
in the instruction fetch stage of the Token Machine.

Fig. 5. Binary format of instructions

Five types of instructions exist. The type is encoded in the highest bits. Bit
21 is reserved for future extensions.

– S-type is used for normal instructions which do not produce results. This is
typically the case for memory store operations. The Funct7 field holds the
operation. Bit 12 distinguishes between 32 bit and 64 bit operations.

– R-type is used for normal instructions which produce results. This type con-
tains the same fields as S-type plus instruction offset and port for specifying
the result reference. Bit 7 is set to 1 if the result should be kept in the output
queue as explained in Sect. 4.1.

– I-type is used for sending constant values. Constants up to 14 bits can be
stored in the Imm14 field. Larger constants must either be computed or stored
in the constant pool. Special operations exist for loading these constants from
the pool.

– J-type is used for unconditional jumps. The Imm21 field holds the address
of the jump target relative to current position in the code.

– B-type is used for conditional branches. The Imm17 field again holds the
relative address of the target. The comparison which decides whether the
branch is taken or not is encoded in field Funct3. Bit 3 is reserved for future
extensions.

130 A. Schwarz and C. Hochberger

4 Challenges

Realization of this ISA has been started by implementing an assembler and a
software simulator. Afterwards, the transpilation process has been developed
to be able to write programs in Java. All design choices have been taken with
possible hardware implementations in mind. This section depicts some of the
challenges which have been encountered on this way and their solutions.

4.1 Duplicating Data

As already mentioned in Sect. 3.3 each result must have exactly one receiving
instruction. However, one value might be required as operand for multiple oper-
ations. Two mechanisms are provided to solve this problem. The first one is a
small scratch pad memory, which is implemented as additional functional unit.
Values can be written to it and can be read multiple times using addresses. Nev-
ertheless, this contradicts the original idea of transferring data directly between
FUs without intermediate storage. Using the second mechanism, instructions
can specify that their result should not be removed from the output queue of
the sending FU. Afterwards, a special send again instruction can be used to
send this value again to another receiver. If instructions are close together and
only few copies are required, the last mechanism is preferred. Otherwise, scratch
pad memory is used. The generic structure of an FU is shown in Fig. 6 and is
explained in Sect. 4.3.

4.2 Discarding Data

Conversely, it is beneficial in some situations to discard data explicitly. For exam-
ple, if control flow branches and a value is only required in one branch, the pro-
cessor must be instructed to discard this value. In register based architectures
this is done implicitly by overwriting registers. In this ISA the nop instruction
can be used for this purpose. When a result is targeted to such an instruction
during execution, the sending FU is informed to remove the value from its output
queue without sending it.

4.3 Data Synchronization

The tag mechanism used for data synchronization in the previous AMIDAR
implementation has several disadvantages. Firstly, data must be resent frequently
in some situations, which results in lost bus cycles. Secondly, concurrency is
limited because only data packets are accepted which match the next token
to execute. Thirdly, depending on size and topology of the interconnect, tag
comparators can be part of a long combinatorial path starting from the sending
FU via the comparator of the receiving FU back to the acknowledgment signal
of the sending FU.

Optimized ISA for AMIDAR 131

Fig. 6. Hardware components for synchronizing data

Consequently, a new synchronization mechanism has been invented. It uses
explicit operation addresses to match data and operations. The important hard-
ware components for this mechanism are depicted in Fig. 6. The first thing to
note is that tokens are transferred to an FU in two parts. The operation code is
sent as soon as the instruction has been decoded. The target information is sent
afterwards when the receiving instruction has been decoded.

It is assumed, that an instruction IN1 has already been decoded which results
in operation OP1 to be executed on FU1. The result of OP1 has already been
computed and stored in the result queue of FU1. IN1 references instruction IN2

as receiver for its result.
Now, the Token Machine decodes IN2 and sends the corresponding opera-

tion OP2 to the operation memory of FU2. A line of this memory consists of
an operation and one data word for each port of FU2. An operation is stored
together with its operands in one line. The address of a line is named operation
address. Operations are written and read cyclically. Before the next operation
can be written to a line, this line must be read and sent to execution. Hence,
operation storage has FIFO semantics. Instructions which are mapped to the
same FU are executed in the order they are decoded. In contrast, operands can
be stored to the memory in any order using operation address and port. An
operation can only be sent to execution when all its operands have been stored
to the memory.

The Token Machine has an operation counter for FU2 which is in sync
with the operation write address of the operation memory. Therefore, the token
machine knows the operation address of OP2. It sends FU address and operation
address of OP2 together with the result port specified in IN1 to the target queue
of FU1. The token machine sends operations and corresponding target informa-
tion in the same order. As a consequence, the entries at the front of result queue
and target queue belong to each other. They are removed simultaneously and
sent via data interconnect to FU2 where the data word is written to the memory
location given by operation address and port.

Decoding is blocked when the target queue is full or no free operation address
is available. As an operation is always sent before the target information pointing
to this operation, it can be guaranteed that free space is always available in the

132 A. Schwarz and C. Hochberger

operation memory when sending a data word. Consequently, no acknowledgment
signal is required from the receiver to the sender.

Sizes of result queues and numbers of lines in the operation memories are free
parameters which still have to be optimized. These parameters must be known
for instruction scheduling. The values assumed during code generation may be
lower than those provided by hardware.

4.4 Target Resolution

After the Token Machine has decoded an instruction and has assigned it to an
FU, it must resolve the result reference and send this target information to the
FU. The required hardware components are illustrated in Fig. 7.

Fig. 7. Hardware components for resolving result references

The main component is the resolution memory. It stores FU and opera-
tion addresses of the instructions which have been decoded last. The number of
addresses in this memory is a free parameter and limits the distance of result
references between instructions. A counter generates the resolution address for
each decoded instruction. It serves as write address for the resolution memory.

Now assume instruction IN1 has just been decoded and assigned to FU1

with resolution address RES1. Its instruction offset points to instruction IN2,
which will be executed by FU2 with resolution address RES2. Port and offset
are directly extracted from the instruction. Adding RES1 to the offset yields
RES2, which is stored in the unresolved target queue of FU1 together with the
port.

When IN2 is decoded, its FU and operation addresses are stored to the
resolution memory at address RES2. At the same time, RES2 is located at the
front of the unresolved target queue. As a consequence, the resolution memory
is read from this address. The circuit detects when FU and operation addresses
of IN2 are available and sends this information together with the port to the
target queue of FU2. The most significant bit of the resolution address is not

Optimized ISA for AMIDAR 133

used for addressing the memory but as tag for the memory contents. This allows
to detect when new information has been written.

4.5 Instruction Scheduling

Instruction scheduling is a more complex task in comparison to register based
architectures. Several constraints beyond data and control dependencies between
instructions must be considered to produce executable code.

– Instruction offsets are limited by the binary instruction format and the size
of the resolution memory in the Token Machine.

– When a result is sent over a branch to different (exclusive) instructions, these
instructions must have the same distance to the sender because the sender
can only specify one instruction offset. This can be seen in Fig. 3. If a nop
would be inserted before the sub instruction, the operands of the subtraction
would not be received.

– The code must be free of deadlocks. If no care is taken, deadlocks are easily
produced, which cause the processor to stop. As this constraint is the most
difficult to handle, it is explained in more detail.

Fig. 8. Deadlock example

Figure 8 shows an example for a deadlock. Inputs of addition and compari-
son are not shown because they are not relevant for the deadlock. Both addition
and comparison are executed on the same FU. Consequently, the result of the
addition is placed at the front of the output queue, the result of the compar-
ison behind it. However, the receiver of the addition result cannot be resolved
because the branch has not been evaluated yet. Therefore, this result cannot be
removed from the output queue. The branch in turn is waiting for the result
of the comparison, which is blocked by the result of the addition. A cycle of
dependencies is produced, which causes the processor to stop. A simple solution
for this deadlock is to change the order of addition and comparison.

There are many more constellations causing deadlocks. They can be statically
detected by building dependency graphs and searching for cycles in these graphs.
Theoretically, a dependency graph must be constructed for each possible execu-
tion path in a program. Calling convention ensures that no deadlocks can appear
across method boundaries. Consequently, methods can be analyzed separately.

134 A. Schwarz and C. Hochberger

Loops still produce an infinite number of paths. However, result references are
limited to the current or the next loop iteration. Therefore, no additional dead-
locks can appear after analyzing two loop iterations. The number of paths can
still grow exponentially. In practice, this problem is solved using a sliding window
algorithm. The window slides along the control flow of the method. Whenever
the next instruction is added to the window, cycles are searched and removed.
Afterwards, instructions which can be proven not to cause new deadlocks are
removed from the window. When the algorithm detects that a window position
has already been encountered, analysis of this path can be finished. While the
problem still has exponential complexity, this algorithm finds all deadlocks in
reasonable time even in methods with very complex control flow.

Different actions for removing deadlocks have been implemented. A suitable
action is chosen depending on the deadlock constellation. In contrast to finding
deadlocks, the problem of removing deadlocks has not been fully solved yet.
In some situations, the scheduler fails to produce code free of deadlocks and
informs the user about it. Current research investigates different approaches for
systematically resolving all deadlocks.

A special forward operation is available to facilitate instruction scheduling. It
just forwards the received input to another instruction. In hardware, forwarding
is done by a separate FU, which helps to fulfill the mentioned constraints.

No new dependencies are introduced if two instructions are executed on dis-
tinct FUs instead of on a single FU. Hence, this cannot cause new deadlocks.
Consequently, exact assignment of operations to FUs is not required for deadlock
analysis. It must only be guaranteed that certain categories of instructions will
not be executed on the same FU.

5 Evaluation

The benchmark set used for evaluation comprises 9 encryption algorithms, 7 hash
algorithms, and 4 image filters. Additionally, ADPCM encoding/decoding, JPEG
encoding, and regular expression matching have been evaluated. Execution times
have been determined using simulators which imitate hardware behavior. FU
timings of the existing hardware implementation are applied. Each benchmark
has been executed once in the simulator for the Bytecode based AMIDAR pro-
cessor and twice in the simulator for the new ISA. In the last case, benchmarks
have been executed with 1 and 2 instructions decoded in parallel. Afterwards,
the speedup has been calculated. For the new ISA, the following parameters have
been chosen, which seem to be minimal values for reasonable execution.

– Resolution Memory Size: 16
– Operation Memory Size (all FUs): 8
– Output Queue Size (all FUs): 4

Figure 9 illustrates the speedups for all benchmarks. An average speedup of
3.69 is achieved in the single issue case and 4.64 in the dual issue case. Hence, a

Optimized ISA for AMIDAR 135

Fig. 9. Speedups achieved in comparison to Bytecode (simulated)

Fig. 10. Data transfers between FUs (left) and code size (right) in comparison to
Bytecode

significant speedup in comparison to Java Bytecode can be noted. Furthermore,
dual issue is clearly advantageous for this ISA.

However, some benchmarks differ from the average. The first exception is
Contrast Filter, which uses floating point operations. As these operations are
time consuming, speedup achieved by an improved ISA is lower. JPEG encode
is a complex, data dominated algorithm, which is split across multiple methods.
This lowers the speedup to 2.55. RegExp is an example for control flow dominated
algorithms with many method invocations. It shows a speedup of 2.14.

The main reason for high speedups is the reduced number of data transfers
between FUs. They are decreased by a factor of 2.98 in average as shown in
Fig. 10. This has been a major design goal as defined in Sect. 3.2. On the other
hand, code size grows by a factor of 4.25 in average, which is caused by an
increased size and number of instructions.

All benchmarks require less than 10 s for code creation from class files, with
the exception of SIMD512 (40 s) and RIPEMD160 (15 s). In this benchmark

136 A. Schwarz and C. Hochberger

set a substantial number of methods from the Java standard library has to be
included in the binary file. Measurement has been carried out on an Intel Core
i7-6700 CPU with 16 GB RAM and a Java 1.8 HotSpot JVM on Ubuntu 16.04.

6 Related Work

AMIDAR processors use principles from dataflow machines [4]. Thus, often a
comparison is made with such processors. In contrast to such machines, AMI-
DAR avoids the known issues with typical dataflow machines [7]:

– Broadcasting of tokens is done only for a handful of FUs. Thus, handling of
tokens is not a problem.

– In a dataflow machine, the availability of input data must be checked for a
huge set of operations concurrently. This is often done using costly content
addressable memories. In AMIDAR, the availability of input data needs to be
checked only localy inside of a functional unit. Thus, it can be implemented
much more efficiently.

– Dataflow machines can suffer from deadlocks, if the program is not composed
in a proper way. Such situations are not easy to detect and thus greatly
complicate the compiler.

Even if dedicated dataflow processors are not longer researched due to the
mentioned problems, dataflow is still used in scientific computing approaches.
Maxeler uses a Java-like language to generate dataflow graphs and a compiler
maps those graphs onto a set of field programmable gate arrays [2]. The big
drawback of this approach is its inability to execute regular code. It is only
efficient in high-throughput computing.

In AMIDAR, FUs synchronize with each other by the exchange of data. In a
similar manor, Transport Triggered Architectures (TTA) [1] use the transport of
data to start new operations. Nevertheless, AMIDAR provides more elasticity,
since it allows arbitrary execution time for an FU without the need to adjust the
microinstructions. In contrast, TTAs require exact knowledge of the FU timing,
since the result of an operation must be moved to its destination at the proper
time. Even worse is the problem of the huge code memory of TTAs. In order
to provide a high degree of parallelism, TTAs must be able to control as many
independent data transports as possible. This results in very wide instructions
which in turn need a large code memory. Unfortunately, the majority of the code
uses only few of the possible transport slots. Approaches have been published
that reduce this memory size by means of compression [5]. AMIDAR avoids the
huge code memory in a different way by generating the token sets on the fly
from a more abstract instruction set.

Finally, one could think about other instruction set architectures than Java
Bytecode. Candidates could be Low Level Bit Code [8] from the LLVM frame-
work, Common Intermediate Language [9] from the .NET framework. They share
approximately the same abstraction level. Yet, it turns out that both come with
severe drawbacks compared to the Java Bytecode. Compute instructions in CIL

Optimized ISA for AMIDAR 137

and LLVM Bit Code do not contain type information. Thus, the required type
of operation (int, float, double) has to be reconstructed from the sources of the
data. In the worst case, they need to be combined with type conversions at
runtime.

7 Conclusion and Future Work

In this work, a promising novel ISA for AMIDAR processors has been presented.
It borrows ideas from data flow architectures and in simulation shows significant
speedups compared to Java Bytecode as ISA. Through thorough engineering we
were able to fulfill almost all requirements that were defined. Only code size
leaves room for improvement. However, we are willing to pay this cost in favor
of the provided advantages.

A hardware implementation is already existing for a number of components
for this new ISA. The remaining components are currently in progress. The full
implementation will then be validated against the simulation. An adaptation of
the synthesis process to the new ISA is also currently in progress.

We believe that our transpiler still has some room for improvement. In order
to support general purpose applicability of the processor, we will need to add
support for multi-threading and for debugging (which both already exist for the
Bytecode based AMIDAR processor).

References

1. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Hoboken
(1997)

2. Gan, L., et al.: A highly-efficient and green data flow engine for solving Euler atmo-
spheric equations. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–6 (2014)

3. Gatzka, S., Hochberger, C.: The AMIDAR class of reconfigurable processors. J.
Supercomput. 32(2), 163–181 (2005). https://doi.org/10.1007/s11227-005-0290-3

4. Gurd, J.R., Kirkham, C.C., Watson, I.: The Manchester prototype dataflow com-
puter. Commun. ACM 28(1), 34–52 (1985)

5. Heikkinen, J., Cilio, A., Takala, J., Corporaal, H.: Dictionary-based program com-
pression on transport triggered architectures. In: IEEE International Symposium
on Circuits and Systems (ISCAS 2005), pp. 1122–1125 (2005)

6. Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The Soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop (CETUS 2011), October 2011

7. Lee, B., Hurson, A.: Issues in dataflow computing. In: Yovits, M.C. (ed.) Advances
in Computers, vol. 37, pp. 285–333. Elsevier, Amsterdam (1993)

8. LLVM Project: LLVM bitcode file format. https://llvm.org/docs/BitCodeFormat.
html

9. Various: Standard ECMA-335 Common Language Infrastructure (CLI). ECMA
International, Geneva, Switzerland (2012)

10. Wolf, D.L., Jung, L.J., Ruschke, T., Li, C., Hochberger, C.: AMIDAR project:
lessons learned in 15 years of researching adaptive processors. In: 2018 13th Inter-
national Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), pp. 1–8, July 2018

https://doi.org/10.1007/s11227-005-0290-3
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html

Scaling Logic Locking Schemes
to Multi-module Hardware Designs

Dominik Šǐsejković1(B), Farhad Merchant1, Lennart M. Reimann1,
Rainer Leupers1, and Sascha Kegreiß2

1 Institute for Communication Technologies and Embedded Systems,
RWTH Aachen University, Aachen, Germany

{sisejkovic,merchantf,reimannl,leupers}@ice.rwth-aachen.de
2 Hensoldt Cyber GmbH, Ottobrunn, Germany

sascha.kegreiss@hensoldt-cyber.com

Abstract. The involvement of third parties in the integrated circuit
design and fabrication flow has introduced severe security concerns,
including intellectual property piracy, reverse engineering and the inser-
tion of malicious circuits known as hardware Trojans. Logic locking has
emerged as a prominent technique to counter these security threats by
protecting the integrity of integrated circuits through functional and
structural obfuscation. In recent years, a great number of locking schemes
has been introduced, thereby focusing on a variety of security objectives
and the resiliency against different attacks. However, several major pit-
falls can be identified in the existing proposals: (i) the focus on isolated
and often small circuit components, (ii) the assumption of unrealistic
attack models that enable powerful attacks on logic locking and (iii)
the design of very specific locking schemes targeted towards achieving
resilience against specific attacks. These observations strongly impair
the practicality of logic locking. Therefore, in this paper we present a
holistic framework for scaling logic locking schemes to common multi-
module hardware designs, thereby showcasing an industry-ready pathway
of applying logic locking in a realistic design flow. The framework repre-
sents an enhancement of the previously published Inter-Lock methodol-
ogy, offering several algorithmic improvements as well as toolflow imple-
mentation details to facilitate the applicability of the framework to large
multi-module designs. The framework is tested and evaluated on a real-
life 64-bit RISC-V core.

Keywords: Hardware security · Processor cores · IC Design
integrity · Locking framework · RISC-V

1 Introduction

The Integrated Circuit (IC) design and fabrication flow is nowadays heavily
driven by third party Intellectual Property (IP) and outsourcing the fabrication
to off-site foundries. This business model reduces the total IC design and fabri-
cation cost, and shortens the time-to-market enabling companies to stay com-
petitive in the semiconductor industry. However, the involvement of untrusted
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 138–152, 2020.
https://doi.org/10.1007/978-3-030-52794-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_11

Scaling Logic Locking Schemes to Multi-module Hardware Designs 139

third parties has raised countless security concerns, ranging from IP piracy to
the insertion of hardware Trojans [13].

As a reaction to the security threats, various design-for-trust countermeasures
have been introduced, including logic locking, IC camouflaging [14], watermark-
ing [7], split manufacturing [2] and IC metering [4]. Logic locking is identified as a
premier technique to protect the integrity of IC designs, as it can protect against
adversaries located anywhere in the IC supply chain. The core idea of logic lock-
ing is the insertion of additional obfuscation logic into a gate-level netlist in
order to make the original design functionally dependent on a secret key [15].
Since the key is only known to the IP owner, the design remains concealed while
being in hands of external parties.

Motivation: Despite the tremendous amount of proposed logic locking solutions
in the past, the ever increasing amount of key-recovery attacks represent a serious
challenge to designing practical and resilient locking schemes. Moreover, several
major pitfalls can be identified in the existing proposals:

– Isolation: Existing proposals mostly focus on isolated and often small circuit
components or sequential circuits treated as a single component (e.g., singular
gate-level netlist). This has the major drawback that the attack complexity
relies on the security of the most vulnerable component. Therefore, all com-
ponents can be attacked independently.

– Inflexibility: Modern designs typically include multiple isolated but function-
ally interconnected components that we refer to as modules (e.g., controller
or decoder in a processor). Treating the complete designs as a single iso-
lated component disables the applicability of expert knowledge about the IP.
Often, it is necessary to adapt the security measures for specific components
depending on their position, significance or exposure in the design. For exam-
ple, some components might be more vulnerable to a specific attack, requiring
dedicated security enhancements. Moreover, by adapting the overhead of the
implied security measure in selected components, the overall power dissipa-
tion, chip area or performance can be steered to fulfill the desired customer
requirements. If the design is seen as a single isolated unit, the mentioned
adaptations become significantly more difficult to implement.

– Impracticality: Existing logic locking proposals are focused on thwarting spe-
cific attack vectors or achieving particular security objectives [1,15]. This
hampers the practicality of logic locking, as its applicability depends on
achieving very specific goals, instead of offering a general solution.

Contribution: To address the mentioned pitfalls, in this paper we introduce
a holistic framework that enables the applicability of any logic locking scheme
to modern multi-module hardware designs. Hereby, the focus of the work is
not to design a specific locking scheme, but rather to present a methodology of
scaling logic locking to multi-module hardware designs in a practical design flow,
thereby taking the complexity and the interdependent nature of modern designs
into account. The main contributions of this work include the following:

140 D. Šǐsejković et al.

– Based on the proposed Inter-Lock methodology [10], we present and dis-
cuss multiple enhancements of the framework in regard to optimizing the
integration of security features into a multi-module design, thereby focusing
on the exploitation of existing design interdependencies.

– We showcase the framework in a realistic and industry-ready scenario based
on a 64-bit RISC-V processor, thereby discussing the implementation, con-
figuration and realization of the toolflow from a practical point of view.

– We evaluate the security-cost trade-off implied by the framework on the
selected real-life case study.

The rest of this article is organized as follows. Section 2 introduces the back-
ground on logic locking. The framework improvements, setup and application
are presented in Sect. 3. The evaluation results are discussed in Sect. 4. Related
work is introduced in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Preliminaries

2.1 Logic Locking

A major type of logic locking is referred to as combinational logic locking. This
locking type performs design manipulations of the combinational path of inte-
grated circuits. The core idea is the extension of Boolean functions with redun-
dant logic that is bound to an activation key. If the correct key is provided,
the design performs as originally intended. Otherwise, an incorrect key ensures
the generation of faulty outputs for at least some input patterns. Combinational
logic locking is typically applied to a gate-level netlist representation of a design
by inserting different types of key-controlled gates into specific locations in the
netlist. These gates are referred to as key gates.

As an example, let us consider the random locking scheme known es EPIC [9].
This scheme is based on the insertion of XOR and XNOR (XOR + INV) gates
at random locations in the design. An XOR gate buffers the second input when
its first input is fixed to 0. Same is true for an XNOR gate and the fixed input
value 1. Following this rule, the XOR/XNOR gates can be disseminated in the
netlist, thereby preserving the original functionality when a correct key is given.
Due to the presence of INV, an adversary has to guess if the INV is part of the
locking or original functionality, i.e., removal attacks are mitigated.

In the past years, a great variety of combinational locking schemes has been
introduced, including locking strategies based on AND/OR, XOR/XNOR and
MUX gates. A comprehensive overview of the historical evolution of combina-
tional locking schemes can be found in [15].

In the current literature, logic locking is also referred to as “logic encryption”
or “logic obfuscation”. In this work, the term “logic locking” implicitly refers to
combinational logic locking.

Scaling Logic Locking Schemes to Multi-module Hardware Designs 141

2.2 Logic Locking in the IC Design Flow

The ICdesign and fabricationflow including logic locking is presented inFig. 1.The
flow consists of two regimes: the trusted and the untrusted. The trusted regime
incorporates the tools and personnel involved in the design of the original IP.
This includes the design of the register-transfer level and the initial logic synthe-
sis (not shown in Fig. 1) as well as the application of logic locking to the gate-level
netlist. Note that after locking, the netlist typically needs to be resynthesized once
more to incorporate the changes. The untrusted regime includes an external design
house (for the layout synthesis) and the foundry. Hereby, logic locking protects the
integrity of the original IP by binding its functionality to a secret key.

Fig. 1. Logic locking in the IC design flow

Attack Model: Finding the secret key is the first barrier that needs to be over-
come by an adversary to successfully unlock and understand the design. Typically,
it is assumed that an adversary has the locked netlist as well as an activated IC with
oracle I/O access (available from the semiconductor market) at his disposal. This
combination enables a great variety of powerful key-recovery attacks [1,11]. How-
ever, it has recently been shown that the key storage itself can be compromised by
probing attacks or key-extraction hardware Trojans, thereby gaining access to the
key without the necessity to formally attack the locking scheme [3,8]. Moreover,
most attacks rely on having full access to a scan chain. However, genuine IC ven-
dors typically do not leave a scan chain open (especially in security-critical IPs) or
simply use a secured scan chain [5]. Based on these observations, we limit our app-
roach to the following realistic attack assumption: the adversary has only access to
the locked netlist. Therefore, the locking mechanism is effective only for the first
batch of produced ICs before an activated IC with the identical locking mechanism
and key is available on the market.

3 The Inter-Lock Framework for Processor Cores: A
Practical Approach

In this work, we present the practical implementation details of the critical steps
of the Inter-Lock [10] flow as well as several algorithmic improvements that
enable a targeted applicability of the approach to any hardware design. With
the provided details, we bridge the gap between a theoretical locking scheme and
its applicability to a large-scale multi-module design.

142 D. Šǐsejković et al.

RISC-V Case Study: All details and improvements are presented through a
case study based on the open-source 6-stage in-order Ariane processor [16]. This
core implements the 64-bit RISC-V instruction set [12].

Fig. 2. The inter-lock flow

Framework Setup and Implementation: Inter-Lock is designed to exploit
the inherent interdependent nature of common hardware designs; different mod-
ules (components) communicate with each other through forward and backward
connections (similar to forwarding in pipelined processors). To utilize this exist-
ing feature for security purposes in addition to locking, Inter-Lock adapts the
original functionality of every selected module in a design to generate a subset of
the activation key for other modules. This creates a security dependence between
selected modules; only if one module is correctly activated, its co-dependent
modules can be unlocked as well. This functional dependence has the following
consequences:

– Since part of each module key is internally derived, an adversary is not able
to distinguish between common and key inputs.

– The overall design functionality depends on the correct activation of all com-
ponents. A single incorrect key in one module creates a chain reaction of
functional failures throughout all security-dependent modules.

– To correctly unlock a design, the adversary needs to attack all modules at
once. This holds as well in case of attacks that include an activated IC with
a closed scan chain.

The complete Inter-Lock flow is presented in Fig. 2. The input is a hardware
design description on Register-Transfer Level (RTL). In our case, this is the
complete Ariane core available in System Verilog. The output is the same core
with the embedded security features. All intermediate steps are described in the
following sections in more detail, thereby following the flow in Fig. 2.

3.1 Module Selection

The module selection incorporates the selection of design modules that will be
included in the locking procedure. A module defines an enclosed (System) Verilog
module. For example, a common processor design typically consists of modules

Scaling Logic Locking Schemes to Multi-module Hardware Designs 143

Table 1. Ariane combinational modules

IC Abbreviation #Inputs #Gates #Outputs

flush controller logic f ctrl 145 22 11

csr buffer logic c buff 222 134 90

instruction scan i scan 32 240 139

instruction realigner logic i real 183 629 276

compressed decoder c dec 32 848 34

commit stage commit 985 1584 417

branch unit br unit 342 1655 328

decoder decoder 518 2169 362

pc select pc sel 521 3333 128

branch prediction br pred 814 4669 333

alu alu 206 7412 65

such as a decoder, ALU, controller and others. Any number of modules can be
selected for the locking. However, at this stage, it makes sense to only select the
modules that are critical in terms of security to mitigate the area/power/delay
overhead implied by the locking scheme. For a module to be eligible for further
processing, it must not contain further instantiations of other modules or any
sequential elements (registers). The reason for these requirements is that logic
locking typically works on combinational paths. Therefore, we focus our flow on
purely combinational modules. Even though this decision seems fairly limiting,
with a few simple adjustments, any module can be transformed to a combina-
tional one, as discussed in the next section. For the purpose of the case study,
we selected all Ariane modules shown in Table 1.

3.2 Module Preprocessing

This step prepares a set of selected modules for the locking procedure. The
input to this stage is a set of RTL modules, while the output is a set of the
same modules in a generic gate-level netlist format. In our case, the generic
netlist is represented with simple gate primitives that are defined in the Verilog
standard. The preprocessing consists of the following steps: (i) the resolution
of inter-module instantiations, (ii) the isolation of combinational logic, (iii) the
transformation from RTL to generic Verilog assignments and (iv) the transfor-
mation from assignments to a generic gate-level netlist.

Resolution of Inter-Module Instantiations: One module can include mul-
tiple instantiations of other modules within its body, especially since we are still
operating on RTL at this point. The construct of an instantiation is not com-
patible with logic locking. Therefore, we need to resolve it. Two viable options
are available. The first option includes flattening the module during the process
of mapping to a generic library (addressed in the next section). The second one
includes temporarily commenting the instantiation while the module proceeds

144 D. Šǐsejković et al.

in the framework flow. Afterwards, the instantiation can be re-embedded into
the code. In our flow, we proceed with the first option.

Isolation of Combinational Logic: Typically, a single module consists of a
combinational path and sequential elements. To simplify the locking procedure
that is drafted for combinational logic, we propose the structural isolation by
creating internal wrappers for the purely combinational path. An example is
shown in Fig. 3 (a). Here, the flush controller logic of the Ariane core is extracted
and separated from the sequential part into the module file flush controller logic.
This step is repeated for the following modules as well: csr buffer logic and
instruction realigner logic.

Fig. 3. Examples: (a) Isolation of combinational logic and (b) Assignment to gate-level
transformation

Transformation from RTL to Generic Verilog Assignments: To enable a
smooth transition from RTL to a generic gate-level netlist, we rely on the utiliza-
tion of an intermediate verilog assignments format. These assignments enable the
generation of a generic netlist, thereby decoupling the design from any specific
technology. To generate a gate-level netlist, the RTL design must be synthe-
sized according to a technology library. Afterwards, the produced netlist can be
processed either as technology dependent or stored in a technology-independent
format. The latter has the benefit of remaining independent of any technology
or tool specifications, i.e., no specific technology library is necessary. Therefore,
the design can proceed with any design flow (e.g., ASIC or FPGA). In our case
study, we utilize the Synopsys Design Compiler (DC) to map the RTL to a
generic library. Afterwards, DC can be instructed to store the generated netlist
in a Verilog format that results in simple assignments. In principle, any synthesis
tool and technology library can be used for this step.

Transformation from Assignments to Generic Gate-Level Verilog: The
final preprocessing step transforms the assignment-level Verilog into a generic
gate-level netlist. To perform this task, we utilize the open-source PyVerilog
library. This library is able to parse a Verilog file and represent it as an

Scaling Logic Locking Schemes to Multi-module Hardware Designs 145

Abstract Syntax Tree (AST). Through a simple traversal of the AST, we map
the assignments to primitive Verilog gates. An example transformation is shown
in Fig. 3 (b).

3.3 Inter-Locking

Once the generic gate-level netlists are prepared, the next step includes the setup
and execution of the Inter-Lock procedure. The procedure consists of three major
parts: (i) constellation selection, (ii) application of a logic locking scheme and
(iii) module interlocking (dependence creation). All three steps are described in
the following.

Fig. 4. Example: constellation selection Fig. 5. Example: constellation setup
file

Constellation Selection: The first step defines the security interdependence
between modules, i.e., which modules influence the correct activation of other
modules in a design. The goal of defining a constellation is to create a cyclic
interdependence, meaning that every module depends on the activation of every
other module. To understand the principle, we represent all modules as a depen-
dency graph in Fig. 4. A node represents a single module and an arc represents
a security dependency. This dependency is defined by a source and a sink mod-
ule, where the activation of the sink depends on the activation of the source. In
other words, once a source module is correctly activated, it generates the cor-
rect internal keys for the sink module. The nodes use the abbreviated naming
scheme defined in Table 1. Moreover, the nodes in the example are placed accord-
ing to their position in the processor pipeline. To ensure that an adversary has
to consider all modules at once in an attack, all nodes must be included in the
dependency graph. This can be done by selecting a constellation in which every
node has at least one input and one output arc. If this is achieved, starting from
any node, a dependency chain can be traced back, covering all other nodes in
the constellation.

146 D. Šǐsejković et al.

Besides the security dependencies, the constellation selection also includes
the selection of the external key length for each module. To support a simple
setup of a selected constellation, we propose a setup file consisting of multiple
entries of the following format:

< source > [< sink : num interlocks : use reg >] < key len >, where:

• < source >: Name of source module.
• [< sink : num interlocks : use reg >]: Optional list of all sink modules for

which the source module generates internal keys (known as interlocks), where:
– sink: Name of sink module.
– num interlocks: Number of internal key inputs to be generated.
– use reg: Defines if a register should be placed between the source and

sink module for every interlock.
• < key len >: Total external key length for the source module.

Using this format, every selected module needs to be described in the file. In
other words, the file must contain as many lines as there are modules, as every
module must be listed as a source at least once. A simple example is provided
in Fig. 5.

Key Length: Note that if a particular module is dependent on others, its total
key length equals the sum of its external key length and the number of interlocks
(internal key) from all other modules it is influenced by. For example, the total
key length of c dec is 20 + 64 = 84 bits. This implies that the total external key
length of the whole design is, in fact, smaller than the actual key, as the internal
keys are hidden through interlocks. Compared to the fixed constellations of the
previous work [10], this format enables a more flexible application of the locking
mechanisms drafted specifically for a selected architecture. Hereby, the designer
can follow a few simple rules while drafting a setup (in this case, biased towards
processor designs):

– Create dependencies between modules that are near each other, e.g., at
most one pipeline stage apart. This follows the natural implementation of
a pipelined core, without raising suspicion.

– Place registers between modules that are naturally divided by a pipeline stage
(e.g., between br pred and c dec).

– Register placement is not required if the source and the sink are both in the
same pipeline stage and a functional connection already exists; for example,
if the output of the source is directly driving the sink in the original design
(e.g., between c dec and decoder).

– Register placement is not required if the source and the sink are in different
pipeline stages where a dependency creates a forwarding path (e.g., between
decoder and pc sel).

Application of Logic Locking: This step includes the application of a selected
locking scheme to all preprocessed input modules. Since the framework itself is
independent of the actual locking scheme that is applied, any scheme can be

Scaling Logic Locking Schemes to Multi-module Hardware Designs 147

selected at this point. To perform the locking, the toolflow has to calculate
the correct total key length for each source module (sum of external and all
internally-derived keys). Afterwards, a selected locking scheme is applied using
this particular key length, where the key itself can be randomly generated or
predefined. Moreover, the process of creating interdependencies (internal keys)
does not interfere with the actual locking mechanism, since the locking only
cares about the key input itself rather than how the key is derived. A modular
implementation enables a simple switching of locking schemes and the targeted
application of specific schemes to specific modules. This can especially be useful
in the case when a module is more exposed (e.g., to the primary inputs or
outputs), thereby being more susceptible to selected attacks. For the case study,
we selected the simple random locking scheme described in Sect. 2.1. This scheme
is a superset of other XOR-based locking schemes as it disseminates XOR/XNOR
gates on random locations, i.e., without making biased decisions. Therefore, it
is a valid selection for the cost evaluation.

Module Inter-Locking: Inter-locking is defined as the procedure of adapting
the functionality of the source and sink modules to generate the security depen-
dencies defined in the selected constellation. The input to this stage is a set of
already locked modules. The idea is as follows. A source module must generate
correct and constant output keys for all its sink modules once activated. Note
that this is true only for a correct key; otherwise, the output keys are changing
based on the circuit input. This internal key bits are referred to as interlocks.
To perform this task, the inter-locking procedure integrates an additional Inter-
Locking Circuitry (ILC) to the source module. The properties of the ILC can be
summarized as follows:

– If the source itself is not correctly activated, the ILC generates incorrect
outputs. On the contrary, if the source is activated, the output keys must be
correct and constant. This is achieved through a random Boolean function
whose output depends on a subset of the key inputs of the source.

– The ILC is indistinguishable from the rest of the source implementation.
This is achieved by binding the functionality and structure of the ILC to the
original source functionality. More details can be found in [10].

Activation Procedure: An important part of Inter-Lock is the activation proce-
dure of the whole design. Compared to the existing work, we introduce several
implementation details that enable a smooth design activation in terms of logic
locking. As previously, we focus on the Ariane core. For a correct activation of
the core, the correct external key must be provided to all locked modules before
the execution starts. This is performed by setting the reset signal for a given
amount of cycles. Afterwards, the reset is lifted and the core starts executing.
Depending on how the inter-locking procedure is implemented, the activation
can fail if not facilitated with multiple “free” cycles. We propose the following
activation sequence strategies:

– Cycle-Preventive Insertion: Let us assume that two modules influence each
other, i.e., they both act as source and sink. This constellation can create haz-
ardous combinational loops and an unstable activation sequence. The latter

148 D. Šǐsejković et al.

can occur if both activations are at all times incomplete because both mod-
ules never become fully activated (one is waiting for the other and vice versa).
This can be prevented by avoiding the usage of key outputs (interlocks) of
the first module in the input cone of the ILC of the second module. On one
hand, this cycle-preventive insertion is impairing the unrestricted dissemina-
tion of key gates, thereby having a negative impact on the underlying locking
scheme. On the other hand, this insertion does not necessarily require register
placement as cycles are prevented by design. In both cases, if longer security
dependencies exist, the core needs multiple cycles until a stable activation is
reached. This can be achieved by blocking the core for multiple cycles through
the reset input or by providing multiple NOP instructions before the actual
code execution. This activation sequence mimics a sequential locking mech-
anism, as the core has to move through different cycles until reaching the
correct activated state. Moreover, an interesting observation can be made: it
only works if the reset state of the core is correctly implemented. We noticed
this in different versions of the same Ariane core. One had a faulty reset
which led to changed states in the core regardless of the activated reset. Such
a behavior impacts the activation procedure as it changes signal values that
in turn lead to faulty ILC outputs even if the locking mechanism is correctly
implemented. This showcases the tight interleaving of the locking mechanism
with the functionality of the core.

– Exclusive Insertion: This insertion adapts the inter-locking procedure by
ensuring that the ILC of every module exclusively depends on external keys.
If this is the case, the activation of all modules is performed instantly, i.e.,
within the first cycle. The security of this approach is not affected, since we
assume that the ILC is indistinguishable by design. So an adversary has no
advantage in detecting the ILC even if exclusive insertion is used.

3.4 Integration

Once the inter-locking is performed, the resulting locked modules must be reinte-
grated into the original design. To facilitate this procedure, the toolflow generates
a hub; a Verilog module defining the correct wiring based on the selected constel-
lation. The input of this module are all external keys as well as all internal key
outputs (interlocks) generated by all source modules. The output consists of all
final (internal and external) keys for every module. All these connections might
be routed through multiple levels of module instantiations, depending on the
location of the locked module. Note that this step also includes the integration
of RTL modules that have not been modified by the locking procedure.

3.5 Testing and Verification

The result of the integration is a locked design containing RTL and generic
technology-independent Verilog netlists. To verify the correctness of the Inter-
Lock flow, we resort to equivalence checking and functional unit testing. The
equivalence checking is performed using Synopsys Formality, thereby formally

Scaling Logic Locking Schemes to Multi-module Hardware Designs 149

comparing the original RTL to the synthesized core with the correct activation
key applied. Note that this step is still performed in-house; therefore, the key
is known. The equivalence checker proves that the module preprocessing, inter-
locking as well as integration have not introduced functional errors to the core;
i.e., with the correct key, the design is functionally equivalent to the original.
Functional testing can further be performed to check the desired functionality
of the core. Hereby, we applied the open-source RISC-V test suite containing a
set of assembly and benchmark tests [16]. Once the design is verified, it can pro-
ceed with either the ASIC or FPGA flow since the Inter-Lock toolflow provides
technology-independent locking.

Fig. 6. (a) Post-synthesis AT-plot for different total external key lengths and (b) Area
and power overhead at Tclk = 4 ns (250 MHz)

4 Cost Evaluation

4.1 Experimental Setup

The cost evaluation is performed on the Ariane core, including all modules from
Table 1. The main objective of this evaluation is to show the cost impact of
locking a variety of critical processor modules. Hereby, it becomes difficult to
select all necessary Inter-Lock properties (constellation, number of interlocks,
key size and others). Therefore, we propose the following setup. We evaluate a
set of fixed total external key lengths (1024, 2048, 4096 and 8192). This implies
that, e.g., a key of 1024 bits is divided among all selected modules (similar to
the example in Fig. 5). For each key length, the constellation is fixed to the
one shown in Fig. 4. The register insertion is done using exclusive insertion, as
discussed in Sect. 3.3. The external key is divided among the modules linearly
to the module size (number of gates). As a rule of thumb, we fixed the total
number of interlocks generated by a source module to 5% of the amount of
its original outputs. In case a source has multiple sink modules, the interlocks
are evenly divided among them. Logic synthesis was done with Synopsy DC
using the standard-performance cell library for the UMC 90 nm CMOS process
operating under typical conditions (1 V, 25 ◦C). QuestaSim was used for RTL
and gate-level simulation. A security analysis of the approach is available in [10].

150 D. Šǐsejković et al.

4.2 Evaluation Results

We performed an Area vs Time (AT) evaluation to compare the influence of
various total external key lengths to the original design. The results are presented
in the AT-plot in Fig. 6 (a). The area is shown in Gate-Equivalent (GE) and the
clock period (Tclk) in ns. One GE is the area of one 2-input drive-1 NAND gate.
The original design achieves a minimum Tclk of 2 ns (500 MHz). As expected,
the design area as well as the minimum Tclk are increasing with larger keys. The
1024-bit key design is able to achieve Tclk = 2 ns, resulting in 0% delay overhead.
However, the 2048-bit, 4096-bit and 8192-bit key designs achieve Tclk = 3.25 ns,
Tclk = 3.75 ns and Tclk = 4 ns respectively. This implies a delay overhead
between 62.50% and 100%.

The second evaluation concerns the cost comparison of the locked variants for
Tclk = 4 ns. This clock period is achieved for all key lengths. By fixing the clock
period, we can take a closer look at the area and power cost differences, as shown
in Fig. 6 (b). The area overhead ranges from 2.7% (1024-bit) to 19% (8192-bit).
As expected, the area overhead doubles (approximately) when doubling the key
length. The power overhead increases in line with the area (approximated with
DC); from 2.4% (1024-bit) to 27.5% (8192-bit). At Tclk = 4 ns, the original
design area is 220.71 kGE, while the total power is 43.37 mW.

The presented results provide us with a closer look at the cost of applying
locking schemes to a practical processor design at a larger scale, thereby consid-
ering multiple modules, their interdependencies as well as large external keys.
Moreover, based on the evaluation, one can choose an appropriate hardware-
secured processor design, thereby balancing the area, power and delay overhead
against the key length.

5 Related Work

A similar framework-based approach is known as MIRAGE [6]. This framework
can be used for design space exploration as well as obfuscation strength analysis.
However, the focus of the framework lies within the selection and evaluation of
specific logic locking schemes applied to isolated components. In comparison, our
approach takes a more abstract view of the locking procedure for multi-module
designs, regardless of the specific locking scheme. In that regard, MIRAGE can
be used for the dedicated selection of locking schemes for each specific component
of the overall design within Inter-Lock. Therefore, in this paper, we do not focus
on algorithmic details of prior locking schemes, as our approach is decoupled
from any algorithmic specifications. An extensive overview of locking schemes
can be found in [15], as well as in the prior work [10].

6 Conclusion

This paper presents the application of Inter-Lock from a practical point of view,
thereby addressing an important security challenge; scaling logic locking mech-
anisms to multi-module designs under the consideration of their complexity and

Scaling Logic Locking Schemes to Multi-module Hardware Designs 151

interdependent nature. We presented multiple framework improvements and pro-
vided an in-depth overview of the setup and implementation of the underlying
toolflow. All framework components were showcased through a practical case
study based on a 64-bit RISC-V processor. Furthermore, we evaluated the cost
impact of the approach in terms of area, power and delay overhead compared
to various key lengths. The insights provided in this paper offer a first look into
the procedure and cost of comprehensively locking a modern processor design.
In future work, we plan to perform an evaluation on a multi-core environment.

References

1. Azar, K.Z., Kamali, H.M., Homayoun, H., Sasan, A.: Threats on logic locking: a
decade later. GLSVLSI 2019, 471–476 (2019). https://doi.org/10.1145/3299874.
3319495

2. Imeson, F., Emtenan, A., Garg, S., Tripunitara, M.: Securing computer hardware
using 3D integrated circuit (IC) technology and split manufacturing for obfusca-
tion. In: 22nd USENIX, pp. 495–510. USENIX, Washington (2013)

3. Jain, A., Zhou, Z., Guin, U.: TAAL: tampering attack on any key-based logic
locked circuits. ArXiv abs/1909.07426 (2019)

4. Koushanfar, F.: Provably secure active IC metering techniques for piracy avoidance
and digital rights management. IEEE TIFS 7(1), 51–63 (2012). https://doi.org/
10.1109/TIFS.2011.2163307

5. Lee, J., Tebranipoor, M., Plusquellic, J.: A low-cost solution for protecting IPs
against scan-based side-channel attacks. In: 24th IEEE VTS, pp. 6–99, April 2006.
https://doi.org/10.1109/VTS.2006.7

6. Menon, V.V., Kolhe, G., Schmidt, A., Monson, J., French, M., Hu, Y., Beerel, P.A.,
Nuzzo, P.: System-level framework for logic obfuscation with quantified metrics for
evaluation. In: 2019 IEEE SecDev, pp. 89–100, September 2019. https://doi.org/
10.1109/SecDev.2019.00020

7. Newbould, R.D., Irby, D.L., Carothers, J.D., Rodriguez, J.J., Holman, W.: Water-
marking ICs for IP protection. Electron. Lett. 38(6), 272–274 (2002). https://doi.
org/10.1049/el:20020143

8. Rahman, M.T., Tajik, S., Rahman, M.S., Tehranipoor, M., Asadizanjani, N.: The
key is left under the mat: on the inappropriate security assumption of logic locking
schemes. Cryptology ePrint Archive, Report 2019/719 (2019). https://eprint.iacr.
org/2019/719

9. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits.
In: 2008 DATE, pp. 1069–1074, March 2008. https://doi.org/10.1109/DATE.2008.
4484823

10. Šǐsejković, D., Merchant, F., Leupers, R., Ascheid, G., Kegreiß, S.: Inter-lock: logic
encryption for processor cores beyond module boundaries. In: 2019 IEEE ETS, pp.
1–6, May 2019. https://doi.org/10.1109/ETS.2019.8791528

11. Šǐsejković, D., Leupers, R., Ascheid, G., Metzner, S.: A unifying logic encryption
security metric. In: SAMOS 2018, SAMOS 2018, pp. 179–186. ACM, New York
(2018). https://doi.org/10.1145/3229631.3229636

12. Waterman, A., Lee, Y., Patterson, D., Asanovic, K.: The RISC-V instruction set
manual. volume I: user-level ISA, version 2.0, Technical report UCB/EECS-2014-
54 (2014)

https://doi.org/10.1145/3299874.3319495
https://doi.org/10.1145/3299874.3319495
https://doi.org/10.1109/TIFS.2011.2163307
https://doi.org/10.1109/TIFS.2011.2163307
https://doi.org/10.1109/VTS.2006.7
https://doi.org/10.1109/SecDev.2019.00020
https://doi.org/10.1109/SecDev.2019.00020
https://doi.org/10.1049/el:20020143
https://doi.org/10.1049/el:20020143
https://eprint.iacr.org/2019/719
https://eprint.iacr.org/2019/719
https://doi.org/10.1109/DATE.2008.4484823
https://doi.org/10.1109/DATE.2008.4484823
https://doi.org/10.1109/ETS.2019.8791528
https://doi.org/10.1145/3229631.3229636

152 D. Šǐsejković et al.

13. Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M.M.: Hardware
trojans: lessons learned after one decade of research. ACM Trans. Design Autom.
Electr. Syst. 22(1), 6:1–6:23 (2016). https://doi.org/10.1145/2906147

14. Yasin, M., Sinanoglu, O.: Transforming between logic locking and IC camouflaging.
In: 2015 IDT, pp. 1–4, December 2015. https://doi.org/10.1109/IDT.2015.7396725

15. Yasin, M., Sinanoglu, O.: Evolution of logic locking. In: 2017 IFIP/IEEE VLSI-
SoC, pp. 1–6, October 2017. https://doi.org/10.1109/VLSI-SoC.2017.8203496

16. Zaruba, F., Benini, L.: The cost of application-class processing: energy and
performance analysis of a Linux-ready 1.7-GHZ 64-bit RISC-V core in 22-NM
FDSOI technology. IEEE TVLSI 27(11), 2629–2640 (2019). https://doi.org/10.
1109/TVLSI.2019.2926114

https://doi.org/10.1145/2906147
https://doi.org/10.1109/IDT.2015.7396725
https://doi.org/10.1109/VLSI-SoC.2017.8203496
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114

Exploration of Power Domain
Partitioning with Concurrent Task

Mapping and Scheduling for
Application-Specific Multi-core SoCs

Bo Wang1(B), Aneek Imtiaz2, Joachim Falk1, Michael Glaß3, and Jürgen Teich1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
bo.wang1102@gmail.com, {joachim.falk,juergen.teich}@fau.de

2 Technische Universität München, Munich, Germany
aneekimtiaz@gmail.com

3 Universität Ulm, Ulm, Germany
michael.glass@uni-ulm.de

Abstract. This paper proposes a novel approach to explore the design
space of Power Domain (PD) partitioning in the architecture definition
phase of heterogeneous SoCs. By formulating an Integer Linear Program
(ILP), task mapping and scheduling is determined concurrently while
considering power-off dependencies among cores in the same PD and the
power-gating break-even time. Compared to state-of-the-art approaches
aiming at design phases where task mapping and scheduling has been
frozen, our proposed approach shifts joint exploration into earlier design
phases, creates more power-gating opportunities for PD partitions, and
thus identifies better trade-offs in terms of energy consumption and
design costs.

Keywords: Power domain partition · Task mapping and scheduling ·
Evolutionary algorithm · Integer linear programming

1 Introduction

Power gating is an effective technique to reduce static power consumption of
System-on-Chips (SoCs), like 5G New Radio modems in which dozens of hetero-
geneous cores are often adopted to achieve Gbits/s uplink and downlink speed.
An SoC is divided into multiple Power Domains (PDs), which can be switched
off individually when all cores and Hardware (HW) IPs in the same PD are
idle, a so-called common idle interval. Power-gating control is more flexible
when finer-grained power domains are partitioned. However, this would indeed
result in a huge design, verification, and layout effort, even increase area and
degrade power consumption and timing closure [13]. On the other hand, due to

This research work was funded by Intel Deutschland GmbH.

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 153–167, 2020.
https://doi.org/10.1007/978-3-030-52794-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_12

154 B. Wang et al.

Fig. 1. Task graphs for given applications V0 and V1 with the same period TP but
different deadline TD, as well as underlying heterogeneous architecture R.

parallelism among tasks, merging HW resources which are active simultaneously
into the same power domain may reduce design complexity without sacrificing
power efficiency.

Some researchers have started investigating methodologies for exploration of
PD partitioning to trade off energy consumption and the number of PDs. In [13],
PD partitioning is explored by using a Multi-Objective Evolutionary Algorithm
(MOEA), but it aims at the design phases in which task mapping and schedul-
ing has been accomplished already, and determines the idle intervals of each
HW resource rather than optimizing them. During subsequent PD partitioning,
common idle intervals are post-processed for each PD, as well as power-gating
break-even times. Power gating is exploited only for common idle intervals longer
than a break-even time. After that, energy consumption is evaluated for parti-
tion candidates. Finally, trade-off fronts are obtained by the MOEA in terms
of energy consumption and the number of used power domains. However, this
approach does not explore the influence of task mapping and scheduling. We
illustrate the lost potential through a motivating example in the following.

1.1 Motivating Example

Figure 1 shows two periodic applications with the same period generated by
TGFF [5], as well as a HW architecture consisting of three fully connected het-
erogeneous processors. Power consumption of each processor is modeled by three
power states [14], i.e., Prun, Pidle, and Poff , where the state RUN denotes the
resource actively executing a program task, IDLE denoting being powered on
with no task in execution, and OFF denoting the power-gated mode. First, task
mapping and scheduling is performed to minimize energy consumption, where
only two states – RUN and IDLE – and transition energy between them are
assumed for processors. After that, PD partitions are explored using the app-
roach in [13]. The found trade-off fronts are presented in Fig. 2. Take the trade-off
front with 2 PDs as an example shown in Fig. 3(a). Although rb is idle from 0 ms
to 23 ms, PD1 cannot be powered off because ra is still executing. If the task
mapping and scheduling would consider the power-off dependency between ra
and rb, it may re-allocate the tasks and align the execution in the same PD.

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 155

Unfortunately, scheduling before PD partitioning does not have such knowledge
and, thus, misses optimization potential.

Based on this observation, we propose a methodology to explore power
domain partitioning with concurrent task mapping and scheduling. For each
candidate explored during PD partitioning, task mapping and scheduling is per-
formed with additional constraints for the power domain dependency and power-
gating break-even time. As a result, more and longer common idle intervals in
each PD may be created by properly mapping and aligning task execution on
processors, as shown for v03 in Fig. 3. Power consumption is thus reduced due
to longer power-gated state as shown in Fig. 3(b) and Fig. 2. More important,
system architects may even prefer the 2-PD option identified by our approach to
reduce design cost if it already meets the power target. The proposed approach
actually expands the exploration space of PD partitioning.

Fig. 2. Power domain partitioning and task mapping & scheduling for the trade-off
front with 2 PDs for the motivating example: (a) PD partitioning performed after
task mapping and scheduling; (b) PD partitioning with concurrent task mapping and
scheduling as proposed in this work.

Fig. 3. Trade-off fronts for normalized energy (to energy of 1-PD trade-off front
obtained by partitioning PDs after task mapping and scheduling) vs. number of power
domains (design complexity).

156 B. Wang et al.

1.2 Contribution

State-of-the-art approaches for PD partitioning exploration consider power vs.
design cost for heterogeneous multi-core SoCs where task mapping and schedul-
ing has been already frozen at design time, e.g., assuming multiple subsystems
are re-used and integrated in an SoC. This paper discusses the further optimiza-
tions applicable to SoCs when task mapping and scheduling can be combined
with PD partitioning and jointly optimized. Our major contributions are sum-
marized as follows:

– Tasks are mapped and scheduled specifically for each PD partition candidate,
concurrently with PD partitioning exploration by a Multi-Objective Evolu-
tionary Algorithm (MOEA). This aligns task execution and creates more
common idle intervals for power gating.

– Task mapping and scheduling is formulated as an Integer Linear Programming
(ILP), in particular integrating: 1) power-on/off dependencies introduced by
PD partitioning among HW resources in the same PD; 2) constraints of power-
gating break-even time due to transition energy and latency overhead.

– Experimental results show that our proposed joint exploration can identify
much better trade-off fronts with significantly reduced design costs but with-
out scarifying the power target. E.g., one experiment shows that the same
power target can be achieved by 2 PDs, instead of 8 PDs when applying the
approach in [13].

The aimed application domains of this work are time-critical or safety-critical
[3] application specific embedded systems, such as wireless communications and
electric vehicles [10]. There, most application tasks and use cases are known at
design time, and static scheduling is also more favorable due to its determinism.

2 Related Work

Several research works exist on how to partition power domains at circuit level.
In [2], Finite State Machine with Datapath (FSMD) circuits are decomposed
into loosely coupled domains which may be power or clock gated. But, the work-
load characteristics are not considered. In [1], an approach leveraging rule-based
design is proposed to automatically partition combinational logic into multiple
PDs while considering usage characteristics. However, all of these studies [1,2]
focus on micro-architecture level and RTL design phases. In [13], PD partitioning
is explored at the Electronic System Level (ESL), thus for SoC architecture defi-
nition phases, but after task mapping and scheduling has been accomplished. As
motivated earlier, this may hinder the maximization of idle intervals to reduce
power or to allow to lower the number of power domains. In [7], a relevant task
mapping and scheduling problem is discussed to Maximize Common Idle Interval
(MCIT) among all cores, though the objective is to reduce active time and power
consumption of a shared memory. The ILP formulation of common idle intervals
is based on a discrete time axis. In [6], the idle interval of each core is modeled

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 157

at a continuous time axis. But the approach does not formulate common idle
intervals. In both [7] and [6], homogeneous multi-core systems are considered.
However, these are different from the power optimization of a heterogeneous
architecture. Allocating tasks to more energy efficient cores may lead to lower
power than merely pursuing MCIT. Moreover, both works do not investigate PD
partitioning problem, but assume each core in an individual power domain.

Fig. 4. The proposed design flow for exploration of power domain partitioning with
concurrent task mapping and scheduling.

Some other works address voltage-frequency islands partitioning at system
level [9,12], to reduce dynamic power. But the problem formulation is different.
PD partitioning has to model power-off states, on/off dependencies within power
domains, and power-off break-even times. This is difficult to model together with
the problem of task mapping and scheduling. And, [12] does not consider task
mapping and scheduling while [9] considers scheduling but not mapping.

3 Overview of the Methodology

An overview of our methodology is presented in Fig. 4.

Given

– Periodic applications, each of which can be modeled as a directed acyclic
task graph G(V,E, TP , TD), in which a task v belongs to the set of tasks
V , E denotes data dependencies among tasks, an arbitrary period TP and
deadline TD.

– An SoC architecture consisting of a set of HW resources denoted as R, power
model of any resource r ∈ R in different power states, e.g., Prun,r, Poff,r,
Pidle,r, power-gating transition latency Ttr off (r) and energy Etr off,r, as
well as wake-up transition latency Ttr on,r and energy Etr on,r from power-off
state.

158 B. Wang et al.

– Mapping constraints that represent which task can be realized on which
resource and the execution time of each task Dv,r for a given resource.

Objective and Solution
The objective is to explore trade-off fronts in terms of energy consumption and
the number of power domains (representing a measure of design complexity) for
the problem of power domain partitioning including task mapping and schedul-
ing.

An MOEA in [11] is used to explore the space of PD partitionings. Physical
design or floorplan constraints can be added to prune the exploration space,
if they can be forecast from previous products. For example, two resources far
away in floorplan make less sense to be placed into the same PD.

For each PD partition, an ILP is generated and solved to determine a map-
ping and schedule for each task and a suitable schedule of power mode transitions
for each PD, with the objective to minimize the energy consumption. Power-
on/off dependencies of HW resources in the same PD, power-gating transition
energy and break-even time are all considered here. The energy consumption
value derived by the ILP solver is fed back to the MOEA as one evaluated
objective of each PD partition. The state-based power modeling approach as in
[14] is chosen because it achieves sufficient accuracy at system level and early
design phases. The power models can be refined along the design cycle, e.g.,
consider different active power Prun,r for different types of tasks running on a
resource.

This work considers only static scheduling at design time. In principle, it may
inspire the solution that considers the impact of run-time task migration. For
example, add online scheduling algorithms after the ILP solver, and then evaluate
the power consumption of each PD partition. However, it would take significantly
longer exploration time, because the simulation is required to evaluate the power
consumption. This is not the target application domain of this work.

4 ILP Formulation

The time is assumed to be discrete, divided into unit time intervals [t, t + 1),
for t = 0, 1, . . ., which we call time slots [7]. We refer to [t, t + 1) as time slot
t, or even as time t. Tasks are assigned to time slots and Dv,r is an integer.
The continuous-time version of the same problem can be approximated as a
discrete-time version.

In this work, multiple independent periodic applications, e.g., [V0, . . . , VL],
with arbitrary deadlines and periods, can be considered together in a single ILP.
This applies to the architecture which supports multiple applications simultane-
ously. A hyper-period of all applications, denoted as M , is chosen to map and
schedule tasks from all applications within this hyper-period. Moreover, when
the deadline of an application is longer than the period, a pipelined schedule
is performed, i.e., a task graph is divided into several pipeline stages so the

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 159

current iteration of the task can overlap in execution with previous iterations
[15]. However, our methodology is not limited to any specific pipeline approach,
which is also not the focus of this paper. The following formulations are elab-
orated by using only one application with multiple periods for ease of explana-
tion. But experiments in this work were done for problems containing multiple
applications.

Table 1 defines ILP constants which are determined for each PD partitioning
candidate by the MOEA. Table 2 explains the introduced ILP binary variables
prior to introducing the ILP mapping and scheduling model.

Table 1. Constants in ILP formulation related to power gating and PD partitioning,
and determined by the MOEA.

Symbols Description

pd A power domain from power domain set PD

pd(r) The power domain containing resource r

R(pd) Set of all resources in power domain pd

Tbe,pd Break-even time of power domain pd

Ttr on,pd Off-on transition time of power domain pd

Ttr off,pd On-off transition time of power domain pd

Etr on,pd Off-on transition energy of power domain pd

Etr off,pd On-off transition energy of power domain pd

Table 2. Binary variables in ILP formulation related to power gating and PD parti-
tioning.

Symbols Description

Xk,v,r 1 iff task v is mapped to resource r in period k

Sk,v,t 1 iff task v in period k is starting at time t

Br,t 1 iff resource r is busy at time t

Cpd,t 1 iff all resources in power domain pd are mutually idle at time t

Ipd,t 1 iff all resources in power domain pd are mutually idle from time t to
time t + Tbe,pd − 1

Opd,t 1 iff power domain pd is in off state at time t

Zpd,t 1 iff power domain pd has either on-off or off-on transition at time t

4.1 Objective Function

An application with N periods is to be scheduled on a heterogeneous archi-
tecture. The interval of time slots is denoted as T = [0 . . .M − 1], where the

160 B. Wang et al.

hyper-period M = NTP in case of only one application. The objective function
of the ILP is to minimize the total energy consumption according to Eqs. (1)–(8),
including energy consumption of each resource in power states RUN , IDLE and
OFF , denoted as Erun,r, Eidle,r and Eoff,r, as well as total on-off and off-on
transition energies of each power domain, denoted as Etot tr,pd.

minimize:
∑

r∈R

(
Erun,r + Eidle,r + Eoff,r

)
+

∑

pd∈PD

Etot tr,pd (1)

Erun,r =
∑

t∈T

Br,t ∗ Prun,r, ∀r ∈ R (2)

Eidle,r =
(∑

t∈T

(
1 − Br,t

) −
∑

t∈T

Opd(r),t

)
∗ Pidle,r, ∀r ∈ R (3)

Eoff,r =
(∑

t∈T

Opd(r),t − 1
2

∗ Jpd(r)

∗(
Ttr off,pd(r) + Ttr on,pd(r)

)) ∗ Poff,r, ∀r ∈ R (4)

Transition energy of a power domain is calculated by Eqs. (5)–(8). Jpd denotes
total number of transitions (both on-off and off-on) in power domain pd. The
PD transition latency is determined by the resource with the longest latency in
this PD. During power-off and power-on transitions, other resources are assumed
to be in OFF state and IDLE state after its own transition, respectively. The
related energies are modeled as part of the PD transition energy, as calculated
by

Etr off,pd =
∑

r∈R(pd)

(
Etr off,r +

(
Ttr off,pd − Ttr off,r

) ∗ Poff,r

)
,∀pd ∈ PD (5)

Etr on,pd =
∑

r∈R(pd)

(
Etr on,r +

(
Ttr on,pd − Ttr on,r

) ∗ Pidle,r

)
, ∀pd ∈ PD (6)

Etr,pd = Etr off,pd + Etr on,pd, ∀pd ∈ PD (7)

Etot tr,pd =
1
2

∗ Jpd ∗ Etr,pd, ∀pd ∈ PD (8)

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 161

4.2 Constraints

Here, we focus on explanation of ILP formulation related to power gating and PD
partitioning. Other ILP constraints for basic task mapping and scheduling are
not elaborated, since they are very well-known and not novel, e.g. task mapping
constraints, task dependency constraints, deadline constraints, and so on [8].

Unique Start Time Constraint: Each task must start exactly once, thus in
one time slot.

∑

t∈T

Sk,v,t = 1, ∀k ∈ [1 . . . N], ∀v ∈ V (9)

Resource Busy Time Constraint: The number of busy slots of a resource
should be equal to the total execution time of all tasks mapped on it. Moreover,
from the start time slot of a task, it should be consecutive 1’s assigned to the
busy vector of a resource on which the task is mapped.

∑

t∈T

Br,t =
N∑

k=1

∑

v∈V

Xk,v,r ∗ Dv,r, ∀r ∈ R (10)

t+Dv,r−1∑

i=t

Br,i ≥ Dv,r ∗ (
Sk,v,t + Xk,v,r − 1

)
,

∀v ∈ V,∀r ∈ R,∀k ∈ [1 . . . N],∀t ∈ [0 . . .M − Dv,r] (11)

Common Idle Time Constraint: A power domain is idle only when all
resources in that domain are idle. This can be modeled by performing a log-
ical NOR operation among the busy vectors of all resources in that domain:

Cpd,t = ¬(∨r∈R(pd) Br,t

)
, ∀t ∈ T, ∀pd ∈ PD (12)

The NOR operation is nonlinear, but the Boolean logic operation can be
transformed to linear constraints. Let NR(pd) denote the number of resources
in power domain pd. Equation (12) is transformed as below.

∑

r∈R(pd)

(
1 − Br,t

)− NR(pd) ∗ Cpd,t ≥ 0, ∀t ∈ T,∀pd ∈ PD (13)

∑

r∈R(pd)

(
1 − Br,t

)− NR(pd) ∗ Cpd,t ≤ NR(pd) − 1, ∀t ∈ T,∀pd ∈ PD (14)

Off State Time Constraint: A power domain should be switched off only
when its common idle interval is longer than its power-gating break-even time

162 B. Wang et al.

which can be modeled as Eqs. (15)–(17), and rounded to the nearest greater
integer.

Ttr,pd = Ttr off,pd + Ttr on,pd (15)

Tbe p,pd =
Etr,pd − Ttr,pd

∑
r∈R(pd) Poff,r

∑
r∈R(pd)

(
Pidle,r − Poff,r

) (16)

Tbe,pd = �max {Ttr,pd, Tbe p,pd}	 (17)

To derive off-state slot vectors, an auxiliary variable Ipd,t = 1 is introduced
to represent Tbe,pd adjacent slots of a pd from slot t to slot t + Tbe,pd − 1 are all
idle. This can be done by a logical AND operation:

Ipd,t = ∧t+Tbe,pd−1
i=t Cpd,i, ∀t ∈ [0 . . .M − Tbe,pd],∀pd ∈ PD (18)

And, Tbe,pd − 1 zeros have to be padded at the beginning and the end of
vector Ipd,t using Eq. (19).

Ipd,t = 0, ∀pd ∈ PD, ∀t ∈ {
[1 − Tbe,pd . . . − 1],

[M − Tbe,pd + 1 . . .M − 1]
}

(19)

Now, the final off state time slot vector Opd,t can be derived from Eq. (20).
The off state slot Opd,t = 1 if any of Ipd,t = 1 from slot t − Tbe,pd + 1 to slot
t. It can be performed by a logical OR operation. Equations (18) and (20) are
non-linear, but they can be transformed into linear inequalities in a similar way
as shown in Eq. (12). The details are not shown here.

Opd,t = ∨t
i=t−Tbe,pd+1Ipd,i, ∀t ∈ T,∀pd ∈ PD (20)

Transition State Time Constraint: On-off and off-on transition states are
formulated by taking logical XOR operation of the current and previous one slot
in the off state vector, as given in Eqs. (21). Similarly, it can be transformed
into linear inequalities as well. The number of power domain transitions, i.e.,
Jpd, includes both off-on and on-off.

Zpd,t = Opd,t−1 ⊕ Opd,t, ∀t ∈ [1 . . .M − 1], ∀pd ∈ PD (21)

Jpd =
∑

t∈[1...M−1]

Zpd,t, ∀pd ∈ PD (22)

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 163

5 Experimental Results

The proposed approach has been experimented on different benchmarks. The
first set of benchmarks is from a public benchmark suite E3S [4], while the
second one consists of synthetic benchmarks generated using the tool TGFF [5].
The main program of the flow was implemented using Python, but the MOEA
was implemented using Java [11]. All of programs have been executed on a laptop
with an i5-5300U CPU @ 2.3 GHz (2 cores, 4 threads) and 12 GB DDR memory.

For comparison, the same experiments were performed by applying the app-
roach [13] performing PD partitioning after task mapping and scheduling. We
called it as the reference approach in the following. Here, various task mapping
and scheduling algorithms can be applied before PD partitioning with desired
optimization objectives, like execution time or power. They lead to different
energy consumption after PD partitioning and power gating. Since our work
focuses on energy optimization, as a fair comparison, we performed an energy-
aware task mapping and scheduling also using the approach of ILP. But in this
ILP formulation, processors are assumed to be only in RUN or IDLE states
without OFF states. PD partitioning and power-gating related constraints are
not applied during this step. Therefore, in the objective function, Eoff,r and
Etot tr,pd in Eq. (1) become zero, and

∑
t∈T Opd(r),t in Eq. (3) are zero too.

1 2 3 4 5 6 7 8 9
40

50

60

70

80

90

100

Number of Power Domains

N
o
rm

a
li
ze

d
E
n
e
rg

y
(%

)

(a) Our proposed approach

Telecom
Networking
Consumer

1 2 3 4 5 6 7 8 9
40

50

60

70

80

90

100

Number of Power Domains

N
o
rm

a
li
ze

d
E
n
e
rg

y
(%

)

(b) The reference approach

Telecom
Networking
Consumer

Fig. 5. Trade-off fronts for E3S benchmarks with normalized energy (to energy of 1-PD
partition obtained by the reference approach [13], i.e., PD partitioning performed after
mapping and scheduling) vs. hardware complexity (number of power domains).

5.1 Benchmark Applications from E3S

Three benchmarks are selected from E3S [4], i.e., Networking, Telecom and Con-
sumer. They are scheduled onto a heterogeneous architecture consisting of a 2-D
3 × 3 mesh of processors whose power consumption is also specified in E3S. The

164 B. Wang et al.

transition latency in Table 1 varied in the range of 10–50 us, and the task exe-
cution times ranged in the interval of 0.5–1 ms. The transition energies Etr off,r

and Etr on,r in Eqs. (5)–(6) were assumed zero in the following. Therefore, the
power-gating break-even time Tbe,pd was determined by the transition latency
Ttr,pd according to Eqs. (16)–(17).

The MOEA has been configured to use 20 generations with 10 individuals
per generation. For each number of power domains, the solutions with the lowest
normalized energy according to Eqs. (1)–(8) are shown in Fig. 5.

It can be noticed that for each number of power domains, the trade-off point
using our approach has a lower energy. This is because our concurrent mapping
and scheduling of tasks with PD partitioning is able to create more common idle
intervals specific for each PD partition to allow more power-off opportunities.
Therefore, better power savings can be achieved even with fewer power domains.
For example, in the benchmark of Telecom, a lower power consumption can be
achieved even with 2-PD partition, in comparison to a trade-off point for an 8-PD
partition in the reference approach [13]. Much better PD partitioning trade-off
points can be identified to meet the power target at significantly reduced design
cost.

The exploration took 8–9 h in which we set the timelimit of the ILP solver
to 3 min. Notably, this is longer than the approach [13] which took about 1–
2 h This is expected, because our approach has to perform task mapping and
scheduling in addition. Still, limiting the ILP solver to 3 min has two impacts:
1) the currently best found solution by the ILP may not be the optimal one
in terms of energy consumption, but has a relative optimality gap of 10–20%,
reported by the solver; 2) the ILP solver even may not find any feasible solution
as the problem size increases, though it never happened in our benchmarks.
Nevertheless, our approach was always able to find lower energy consumption
points for each number of PD partitions. If more exploration time is acceptable,
our approach would be able to probably find even better results. This is a trade-
off that system architects can decide during system-level exploration.

Table 3. Three use cases generated by TGFF.

Use case Application Period Deadline Hyper-period Iterations

1 V0 9 ms 9 ms 18 ms 2

V1 18 ms 18 ms 1

2 V0 7.5 ms 6 ms 15 ms 2

V1 15 ms 12 ms 1

V2 7.5 ms 6 ms 2

3 V0 5 ms 10 ms 10 ms 2

V1 10 ms 15 ms 1

V2 10 ms 12 ms 1

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 165

5.2 Benchmarks Generated by TGFF

Three benchmarks have been generated by TGFF [5], with different tightness
of deadline, i.e., the deadline is equal to, shorter, or longer than the period, as
shown in Table 3. Each use case has multiple applications to be scheduled over
their hyper-period. When the deadline is longer than the period, e.g., in use case
3, or a multimedia streaming application, different iterations of applications
can overlap. Therefore, we partitioned the task set and performed scheduling
for steady state in one hyper-period [15]. All three use cases have size in the
range of 40–50 tasks whereas the heterogeneous architecture consists of a 2D
mesh with 3 × 3 processors. The power data, transition time, and energy for
these processors were obtained from an in-house design. The EA parameters for
the exploration are the same as for the E3S benchmarks. As shown in Fig. 6,
our proposed approach also identifies better trade-off fronts than the reference
approach [13].

1 2 3 4 5 6 7 8 9
30

40

50

60

70

80

90

100

Number of Power Domains

N
or

m
al
iz
ed

E
n
er

gy
(%

)

(a) Our proposed approach

Use case 1
Use case 2
Use case 3

1 2 3 4 5 6 7 8 9
30

40

50

60

70

80

90

100

Number of Power Domains

N
or

m
al
iz
ed

E
n
er

gy
(%

)

(b) The reference approach

Use case 1
Use case 2
Use case 3

Fig. 6. Trade-off fronts for TGFF benchmarks with normalized energy (to energy of
1-PD partition obtained by the reference approach [13], i.e., PD partitioning performed
after mapping and scheduling) vs. hardware complexity (number of power domains).

5.3 Scalability Analysis

The total exploration time depends on two parts: 1) EA parameters, mainly the
number of generations and individuals per generation (PD partition options),
which typically increases with the higher complexity of the hardware architec-
ture; 2) execution time of ILP solver for each PD partition option, which scales
non-linearly with the size of hardware architecture, the size of task graph, and
most importantly, with the time scale of the schedule. Therefore, our approach
is not easily scalable for bigger problems. We experimented the execution time
of the ILP solver, given an architecture of a mesh network with 6 processors.
When increasing the number of tasks to 80 and set the relative optimality gap of

166 B. Wang et al.

the ILP solver to 20%, a feasible schedule cannot be found within 2 h though it
is preferred in the range of minutes as a part of whole flow. Alternative models
for scheduling might be the key to reduce the number of binary variables and
thus search space of the ILP formulation to improve scalability.

Although our performed experiments were solvable for real-world benchmarks
in still an acceptable amount of time, we envision to investigate scalability in
future work.

6 Conclusion

In this paper, an exploration approach is proposed to systematically explore PD
partitioning for heterogeneous multi-core SoCs, jointly with task mapping and
scheduling. An ILP-based task mapping and scheduling is performed for each PD
partition candidates while partitioning PDs by a Multi-Objective Evolutionary
Algorithm. The ILP formulation considers the constraints of power-off dependen-
cies among hardware resources belonging to the same PD and the power-gating
break-even time. For a given PD partition, it creates more and longer common
idle intervals of PDs which can be switched off more often to save power. Com-
pared to state-of-the-art approaches performed after task mapping and schedul-
ing frozen, our approach offers significantly larger optimization opportunities
for system architects. It has been shown that better trade-off fronts in terms of
energy consumption and number of PDs and thus hardware costs may be found
by shifting exploration to earlier design phases.

Acknowledgments. This research work was funded by Intel Deutschland GmbH, and
finished before Bo Wang and Aneek Imtiaz left Intel. We would like to acknowledge
Dr. Yang Xu and Dr. Ralph Hasholzner at Intel, and also Dr. Thomas Wild and Prof.
Andreas Herkersdorf at Technische Universität München, for valuable discussions.

References

1. Agarwal, A., Arvind, A.: Leveraging rule-based designs for automatic power
domain partitioning. In: ICCAD, November 2013

2. Agarwal, N., et al.: FSMD partitioning for low power using simulated annealing.
In: ISCAS, May 2008

3. Baruah, S., Fohler, G.: Certification-cognizant time-triggered scheduling of mixed-
criticality systems. In: RTSS, November 2011

4. Dick, R.: Embedded system synthesis benchmarks suites (E3S) (2017). http://
ziyang.eecs.umich.edu/∼dickrp/e3s/

5. Dick, R., Rhodes, D., Wolf, W.: TGFF: task graphs for free. In: CODES/CASHE,
March 1998

6. Esmaili, A., Nazemi, M., Pedram, M.: Modeling processor idle times in MPSoC
platforms to enable integrated DPM, DVFS, and task scheduling subject to a hard
deadline. In: ASPDAC, January 2019

7. Fu, C., Zhao, Y., Li, M., Xue, C.J.: Maximizing common idle time on multicore
processors with shared memory. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems (2017)

http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://ziyang.eecs.umich.edu/~dickrp/e3s/

Power Domain Partitioning with Concurrent Task Mapping and Scheduling 167

8. Glaß, M., Teich, J., Lukasiewycz, M., Reimann, F.: Hybrid optimization techniques
for system-level design space exploration. In: Ha, S., Teich, J. (eds.) Handbook
of Hardware/Software Codesign. Springer, Dordrecht (2017). https://doi.org/10.
1007/978-94-017-7267-9 8

9. Liu, Y., Yang, Y., Hu, J.: Clustering-based simultaneous task and voltage schedul-
ing for NoC systems. In: ICCAD, November 2010

10. Lukasiewycz, M., et al.: Cyber-physical systems design for electric vehicles. In:
DSD, September 2012

11. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J-a modular framework
for meta-heuristic optimization. In: GECCO, July 2011

12. Ogras, U.Y., Marculescu, R., Choudhary, P., Marculescu, D.: Voltage-frequency
island partitioning for GALS-based networks-on-chip. In: DAC, June 2007

13. Wang, B., et al.: Exploration of power domain partitioning for application-specific
SoCs in system-level design. In: GI/ITG/GMM Workshop Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen,
MBMV, March 2016

14. Xu, Y., et al.: A very fast and quasi-accurate power-state-based system-level power
modeling methodology. In: Herkersdorf, A., Römer, K., Brinkschulte, U. (eds.)
ARCS 2012. LNCS, vol. 7179, pp. 37–49. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28293-5 4

15. Yang, H., Ha, S.: Pipelined data parallel task mapping/scheduling technique for
MPSoC. In: DATE, April 2009

https://doi.org/10.1007/978-94-017-7267-9_8
https://doi.org/10.1007/978-94-017-7267-9_8
https://doi.org/10.1007/978-3-642-28293-5_4
https://doi.org/10.1007/978-3-642-28293-5_4

FORMUS3IC Workshop

Scalable, Decentralized Battery
Management System Based on

Self-organizing Nodes

Andrea Reindl(B) , Hans Meier(B) , and Michael Niemetz(B)

Faculty of Electrical Engineering and Information Technology, Ostbayerische
Technische Hochschule Regensburg, Regensburg, Germany

andrea.reindl@st.oth-regensburg.de,

{hans.meier,michael.niemetz}@oth-regensburg.de
https://www.oth-regensburg.de

Abstract. Due to the transition to renewable energy sources and the
increasing share of electric vehicles and smart grids, batteries are gain-
ing in importance. Battery management systems (BMSs) are required for
optimal, reliable operation. In this paper, existing BMS topologies are
presented and evaluated in terms of reliability, scalability and flexibil-
ity. The decentralisation of BMSs and associated advantages are shown.
A scalable, reconfigurable BMS based on a distributed architecture of
self-organized, locally controlled nodes is proposed. For distributed sys-
tem control, producers, batteries and consumers each are equipped with a
local microcontroller based control unit, which monitors and controls the
local parameters with its own computing and communication resources.
Features, advantages and challenges to overcome of the proposed app-
roach are described.

Keywords: Renewable energy sources · Battery management
systems · Multi-microcomputer system · Topology · Scalability ·
Reconfigurable architectures · Availability · Decentralized control ·
Fault tolerant control · Controller Area Network · Distributed
management

1 Introduction

With an increasing share of renewable energy sources and electric vehicles, bat-
teries are one of the most utilized energy storage media [1]. Battery use is essen-
tial for maintaining the energy balance and for improving the quality as well as
the reliability of power supply in renewable energy systems [2]. A critical chal-
lenge facing the widespread adoption of battery technology is to ensure unin-
terrupted, fail-safe power supply and safe, optimal battery operation to extend
battery life. Battery Management Systems (BMSs) are used for these purposes
and provide the interfaces between energy producers, consumers and batter-
ies (Fig. 1). They administer system control and management with regard to
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 171–184, 2020.
https://doi.org/10.1007/978-3-030-52794-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_13&domain=pdf
http://orcid.org/0000-0002-8903-4703
http://orcid.org/0000-0003-2661-8338
http://orcid.org/0000-0001-9607-4888
https://doi.org/10.1007/978-3-030-52794-5_13

172 A. Reindl et al.

energy storage and transmission. Main functions of the BMS include charge
and discharge control, balancing, input/output current and voltage monitoring,
temperature control, battery protection, fault diagnosis and evaluation [3].

Fig. 1. Principle architecture of a BMS indicating participants, communication and
power flow

For this purpose, the following functional requirements are relevant for a
BMS:

– Current, voltage and temperature measurement
– State of charge (SOC) and state of health (SOH) determination
– Communication
– Robustness against electromagnetic interference (EMI)
– Redundancy of the system in terms of functional safety
– Electrical isolation of the functional systems
– Balancing [4,5]

Besides the BMS unit, which includes data acquisition, status monitoring and
control, the topology of the BMS is crucial for large-scale battery management.
The topology covers the electrical connection of the individual batteries or bat-
tery cells, the control structure and the communication architecture. It directly
influences costs, ease of installation, maintenance, measurement accuracy and
above all the reliability of the system.

This paper first describes existing BMS topologies together with relevant
literature and outlines their benefits and limitations. The proposed classification
divides the BMS topologies into

– centralized,
– modularized,
– distributed and
– decentralized.

The identified trend towards the decentralization of BMSs is shown: Centralized
BMSs with a single control unit [6–8] are increasingly replaced by a decentralized
management, whereby sensor, control and computing resources are distributed
[9–13]. The characteristics of the control strategies are therefore analysed and
compared.

Decentralized Battery Management System 173

An approach for a fully decentralized, distributed BMS based on autonomous,
locally operating units is proposed. The characteristics and advantages of the
proposed approach are described. The requirements, particularly in terms of
system control and management, are analysed and challenges to be overcome
are identified. The aim is to provide a holistic overview of the features of the
proposed BMS and the resulting system requirements.

2 Battery Management System Topologies

2.1 Centralized

In centralized BMSs, the entire functionality is integrated into a single mod-
ule, which is connected to the batteries or battery cells via several wires (see
Fig. 2) [14]. The centralized BMS provides single cell voltage, string current and
temperature measurement.

A centralized BMS is described in [15] based on a single chip. The protective
function is divided into two stages. The first stage monitors voltage, current,
temperature and coordinates the balancing function. Another approach for a
centralized BMS is provided in [16]. Advantages of centralized BMS include cost-
effectiveness as well as maintenance and repair. If only a single integrated circuit
is used, costs are reduced and errors are easily detected. Another advantage is
the accuracy, as centralized BMS use the same offsets for all cells. The clearly
defined coordination structure provides effective system control.

Fig. 2. Reduced block diagram of a BMS based on centralized topology

Disadvantages include the large number of long cable connections, which
considerably increase the risk of short circuits. Furthermore, inputs can easily
be mixed up and incorrectly connected and connections can become loose, which
increases the susceptibility to errors.

Another disadvantage is the lack of scalability and flexibility of the system
architecture. In central master-slave BMSs, the maximum number of batteries
is strictly predefined. During system development, the number of actively used
batteries is fixed and can usually only be changed afterwards by changing the
wiring. Adding additional cells is not possible at all if all input connectors are
used or vice versa, some inputs might remain unused. In addition, only prede-
fined, mostly single battery technologies are supported and combinations thereof
are not feasible.

174 A. Reindl et al.

Furthermore, the master controller is a single point of failure. The entire
system control depends on the error-free function of the master controller. In case
of failure or malfunction of the master controller, the entire system operation
is endangered. This is a significant disadvantage, especially with regard to a
reliable, uninterruptible power supply.

2.2 Modularized

Modularized BMSs are characterized by several identical modules, which are
connected to the individual batteries or battery cells via cables, similar to cen-
tralized BMS (Fig. 3). The BMS modules provide data acquisition (single cell
voltage, current, temperature) and communication interfaces to the other BMS
modules. Often one of the modules is assigned to the role of master or a separate
module serves as master. The master module controls the entire battery pack
and communicates with the rest of the system, while the other modules merely
record the measured data and transmit it to the master.

A modularized BMS with the aim of improving the performance of BMS to
provide a safe, reliable and cost-efficient solution for smart grids and electric
vehicles is proposed in [3]. The modularized BMS for electric vehicles presented
in [17] focuses on effective single cell monitoring and balancing for a large number
of battery cells with comparatively small size and complexity. An advantage of
modularized BMSs is the improved manageability. The modules are placed close
to the batteries, which avoids long cables. To improve functional safety, the
function of the BMS can be easily replicated on the individual modules. The
scalability is also increased compared to centralized BMSs. If the battery pack
is extended by further cells, another BMS module is simply appended.

The number of inputs of the BMS modules is still fixed and under certain
circumstances, inputs may remain unused. In addition, the costs of modularized
BMSs are higher. Compared to centralized BMS, the failure of one BMS module
does not endanger the entire battery operation. Defective battery cells or bat-
teries are simply removed from the system, reducing capacity but maintaining
operation.

Fig. 3. Block diagram of a BMS based on a modular topology

2.3 Distributed

In distributed BMSs, each cell string or cell is equipped with its own BMS
module. The Cell BMS modules provide measurement of operating parameters,

Decentralized Battery Management System 175

balancing and communication. The BMS controller handles the calculation and
communication (Fig. 4).

A distributed BMS divided into a master and several battery modules for
real-time monitoring and reporting of battery operating conditions is proposed
in [18]. This approach combines central control management and distributed
data collection. In order to reduce costs and time-to-market and to increase
flexibility, scalability and adaptability, a distributed BMS with smart battery
cell monitoring is presented in [19]. The smart battery cell monitoring consists
of electronics for monitoring and a data transmission interface for bidirectional
communication with the superordinate BMS. The BMS functions as the master
and controls energy storage at system level.

Fig. 4. Block diagram of a BMS based on a distributed topology

The distributed BMS simultaneously offers a high level of reliability and
robustness as well as a cost-efficient development process, allowing a significant
reduction in the cost of the final battery pack. The advantages of distributed
BMSs compared to centralized and modularized topologies are scalability and
flexibility. No maximum number of inputs is defined and cells can be added
or removed even after installation. This allows easy hardware integration for
homogeneous modules. Scaling the battery pack to the size required for different
applications does not require any changes to the hardware or software of the
modules–only additional battery cell modules have to be assembled or removed.
Furthermore, the single point of failure of centralized approaches is avoided.
Local control of each cell additionally increases safety. Sensor information only
needs to be processed for the local cell and mandatory actions can be triggered
immediately. A further advantage is the high measurement accuracy, which is
achieved by the specialization of the battery cell module. Furthermore, shorter
connecting wires enable more accurate voltage measurement and better interfer-
ence immunity. Maintenance or replacement of defective parts is facilitated by
the modular, distributed architecture.

Disadvantageous are the increased costs for the BMS, as a separate BMS
module is required for each cell and for most applications also an additional
master module.

2.4 Decentralized

The decentralization of BMSs is a possible solution to overcome the disadvan-
tages of central control structures. Decentralized BMSs consist of several equal

176 A. Reindl et al.

units, which provide the entire functionality locally and autonomously. Each
of the individual BMS units is able to operate independently of the remain-
ing ones. Communication lines between the units enable information exchange
and task coordination between the units. They are used in several decentralized
BMS (Fig. 5). While this architecture offers advantages like scalability, minimal
integration effort and increased functional safety, the development requires new
methods. Decentralized BMSs are further subdivided into communication-less,
wireless and wired communication based topologies. A decentralized BMS with-
out communication requirements is proposed in [20]. The smart cells work locally
and autonomously, which increases safety and reliability.

A decentralized BMS based on the droop control for a series connection of bat-
tery cells is presented in [21]. Droop control is applied to ensure power sharing
among connected components. Droop characteristics are used for the power dis-
tribution, which correspond to V-I characteristics in voltage droop control. They
determine the required output/input current according to the actual voltage devi-
ation. Physically the droop control behaves like an output resistance. Therefore the
droop characteristic is also called virtual resistance. [22,23] Droop control offers
high reliability due to the decentralized architecture and the communication-less
control. A drawback of the droop-based control is the imprecise control [24]. With
the consideration of line resistance in a droop-controlled system, the output volt-
age of each converter cannot be exactly the same. Therefore, the output current
sharing accuracy is affected. In addition, the voltage deviation increases with the
load due to the droop characteristic [25].

Due to the possibility of cable breaks in wired communication systems like
CAN or I2C, BMS approaches based on wireless communication are developed
[26]. As a possible solution, [26] proposes a distributed and decentralized wireless
BMS based on an Internet of Things (IoT) network.

In [27], a fully decentralized BMS is proposed, whereby the entire BMS
functionality is integrated into the cell management units. One cell manage-
ment unit per cell is used, providing local sensing and management capabilities
autonomously and system-level functionality by coordination via communica-
tion. A CAN bus is used for wired communication, which enables broadcast
communication between the cells. The major advantage of decentralized BMSs
is the absence of a central control unit, on which error-free function the entire
operation depends. Furthermore, the scalability and flexibility are advantageous.
The number of inputs is not fixed and can be extended/reduced even after
installation.

Fig. 5. Block diagram of a decentralized BMS

Decentralized Battery Management System 177

A challenging feature is the distributed system control based on the equal,
parallel-operating and autonomous nodes. In addition, it has to be ensured that
the single point of failure is not only shifted but eliminated. For a reliable system,
a holistic approach is required.

2.5 Overview and Evaluation of the Battery Management System
Topologies

The decentralization of the BMS topology results in functionality distributed to
several individual units. The functional units are closer to the battery/battery
cell and more elaborately equipped to work independently. Operation is becom-
ing increasingly independent of a central coordination unit and the failure of
individual functional units has a minor impact on the system function. As a
result, the reliability of the system is improved. The scalability increases with
rising decentralisation. The number of batteries/battery cells is not limited by
pre-defined inputs but is variable even after the initial layout. Individual bat-
teries/battery cells can be added or removed. A variable number of batteries
results in enhanced flexibility. The BMS is adaptable to the requirements of a
wide range of applications.

Table 1 summarizes the evaluation of existing BMS topologies in terms of
reliability, scalability and flexibility. Compliance with the criteria is evaluated,
where ++ means full compliance, + partial compliance, 0 neutral, – partially
not satisfied, and – – not satisfied at all.

Table 1. Evaluation of existing BMS topologies in terms of reliability, scalability and
flexibility

BMS topology Reliability Scalability Flexibility

Centralized – – – – – –

Modularized 0 – –

Distributed + + +

Decentralized ++ ++ ++

3 Decentralized Battery Management System Based
on Self-Organizing Nodes

The proposed system is fully decentralized and consists, in contrary to the pro-
posed approaches, of three types of modules: renewable energy producers, bat-
teries and consumers. All components are connected together with a common
power line and at least one global communication bus (Fig. 6).

178 A. Reindl et al.

Fig. 6. Block diagram of the decentralized BMS

3.1 Distributed Control

For distributed, autonomous control, each battery, producer and consumer is
equipped with its own local control unit (LCU). The LCU includes:

– Current, voltage and temperature measurement to record actual operating
parameters,

– a communication interface for data exchange between the components.
– a microcontroller for calculation, data management and evaluation,
– a DC/DC converter with target current and target voltage values which are

adjustable during operation, and
– a relay which is opened in case of failures to avoid safety critical voltage levels

or for maintenance purposes.

Producers and consumers use the LCU to provide their operating parameters for
load/generation forecasts and for voltage control. Batteries provide the ability
to absorb excess power or deliver missing power and thus are able to control the
system. Therefore, additional algorithms for system control and leader election
are implemented on the LCUs of the batteries.

The implemented software for system control manages both the actual oper-
ating data such as current, voltage and temperature and the system states result-
ing from previous measurements. The SOC and the SOH are determined. In
addition, the battery fitness (BF) is defined. The BF is a numerical value based
primarily on SOC, SOH, number of charge cycles, time of last charge/discharge,
the system-wide normalized capacity and the actual operating parameters. Tak-
ing into account the optimum operating range of the respective battery technol-
ogy, the battery condition is evaluated. The criteria, e.g. SOC or temperature,
are weighted. The criteria weighting can be adjusted depending on the battery

Decentralized Battery Management System 179

technology and the system status. The adjustment of the weighting provides
the basis for system optimization according to various criteria such as cost mini-
mization, maximum safety or availability. The BF enables a system-wide definite
evaluation of different battery technologies. In turn, this enables the combination
of different battery technologies in a single system. The combination of different
battery technologies offers advantages including optimization of the system con-
trol, extending battery life and increasing system reliability [28]. Additionally,
it offers a second life application to a wide range of batteries [29,30].

The BF is also a decision criterion for the leader election. The participating
nodes work autonomously and locally and control the system in a collaborative
manner. Highly parallel computer systems exist for solving complicated mathe-
matical problems. In contrast, the challenging task in the context of the proposed
approach is to structure, intelligently equip and network the nodes to such an
extent that the overall system and its control interact harmoniously. The LCUs
are interacting in the physical domain in their control task while communication
latency for negotiations is high compared to the control requirements. In addi-
tion, in reality the nodes do not work perfectly synchronized but asynchronously
[31]. Therefore, the development of a system control consisting of decentralized,
autonomous, distributed, asynchronous nodes is a non-trivial, challenging task.
The target of the decentralized control structure is to make the system indepen-
dent of the error-free function of a component. This can be achieved if the role
of the central control unit is not permanently assigned to a single component.

Therefore, instead of the decentralized system control being distributed to all
nodes, the approach of the system control coordinated by a temporary master
which gets reassigned on a regular basis was chosen. One LCU of the batteries is
chosen as the temporary central control unit applying a leader election algorithm.
The temporary central control unit determines the required charge/discharge
power of the remaining battery nodes, taking into account their BF. In case of
failure, malfunction or changes in control capability, one of the battery nodes is
selected as the new central control unit. As a result, the single point of failure
of existing centralised approaches is avoided.

3.2 Communication

Communication between the peer nodes is the key to the autonomous, local
control of the decentralized BMS. For autonomous decision making and sys-
tem control, the nodes communicate their operating parameters and work on
a system-wide consistent database. A suitable communication methodology is
required to enable fast and energy-efficient communication between the nodes.
Furthermore, a robust communication architecture is required to withstand the
harsh environments of e.g. automotive applications. In addition, establishing a
secure communication protocol between the individual nodes is essential for the
safe operation of the BMS. Therefore a well-proven, robust, noise-free, fast and
reliable communication technology is required. To achieve a minimum of inte-
gration effort, an architecture with minimal wiring harness is required for the
distributed topology.

180 A. Reindl et al.

A bus-based communication architecture achieves higher bandwidth and
enables broadcast communication between the nodes, which is advantageous
for the leader election and system control. Controller Area Network (CAN) is a
robust bus-based broadcast communication technology. It is particularly suitable
for applications with a small amount of information to be exchanged. Further-
more, CAN is a message-based network and each node is equipped with a filtering
mechanism that filters messages based on their identifiers. Thus, only messages
relevant to the node are considered. Due to its characteristics CAN is chosen as
communication technology for the decentralized BMS. For first implementations
a communication based on a single CAN bus is used. For future developments
dual CAN, CAN in combination with optical data transmission via polymer opti-
cal fiber (POF) and CAN combined with Ethernet are conceivable approaches
providing diverse redundancy to increase system reliability and availability.

3.3 Suitability for Active Balancing

The decentralized BMS is able to support active balancing. On the one hand,
weaker batteries are protected by taking the BF and thus also the SOC into
account when setting the target value for individual energy delivery. In addition,
batteries with higher SOC are set to higher target currents during discharge while
those with lower SOC absorb higher charging currents. On the other hand, the
controllable relays allow individual batteries to be disconnected from the power
line. An additional power line between the batteries could additionally enable
effective, active balancing by connecting the batteries to be balanced (Fig. 7).
This architecture enables one-to-one, one-to-many and manyto-many balancing
at a voltage level controlled by the DC/DC converter [32]. Taking into account
the BF, the system–wide standardised nominal capacity and the SOC, the more
powerful batteries supply the weaker ones.

3.4 Scalability and Integration

The number of inputs and thus of participants is not fixed in the proposed
decentralized BMS. A minimum of two batteries is recommended for a reliable
supply. Adding and removing nodes is possible after installation and during
operation. Both hardware and software are designed for effective integration [33].
The variable number of participants, which can be adjusted and changed during
operation, allows the system to be adapted to requirements changing over its
lifetime. Optimizations in terms of e.g. cost efficiency, safety or maximum service
life can be implemented or changed. The reconfigurable architecture increases
reliability, performance and flexibility of the proposed BMS [34].

3.5 Flexibility

The variable number of participants and the possibility to use and combine
different battery technologies increases the flexibility of the system. Existing

Decentralized Battery Management System 181

Fig. 7. Additional lines and individually controllable relays enable one-to-one, one-to-
many and many-to-many active balancing

approaches tend to specialize in a single battery technology [35,36]. In order
to improve the performance and energy density, new battery technologies are
constantly being developed [37–39]. The BMS is flexible and effective in adapting
to changing conditions for optimal and safe battery operation. The software
is effectively expandable and software updates during operation support the
effective integration and potentially necessary software adjustments supporting
new battery technologies [40].

3.6 Fields of Application

The flexible, scalable, reconfigurable architecture opens up various fields of appli-
cation including uninterruptible power supply, electric vehicles, (islanded) dc
microgrids, grid support for peak load shaving or load management. The appli-
cations result in different requirements for the BMS. For electric vehicles, for
instance, high availability, safety and energy density with minimum size and
weight are required. For islanded micro grids, the relevant criteria include effec-
tive service lifetime, cost efficiency, reliability and resistance to environmental
effects. In addition, various battery technologies and combinations thereof are
supported. The combination of different battery technologies improves the sys-
tem control as well as the battery life of various applications [41]. Furthermore,
second life and second use applications are possible for a large number of bat-
teries [30].

4 Conclusion

In this paper, existing BMS topologies were presented and discussed in terms
of scalability, flexibility and reliability (cf. Table 1). A decentralized, distributed

182 A. Reindl et al.

BMS based on self-organized and locally operating nodes was proposed. The
system control is distributed among the LCUs, which record operating param-
eters and provide their own computing and communication capacities. Pos-
sible approaches for the coordination of a control system based on a many-
microcomputer system were suggested. Communication requirements were anal-
ysed and suitable technologies were selected. The resulting flexible architecture
allows optimized system configurations for a wide range of applications, adapt-
ability to newly developed battery technologies and multi-criteria optimizations.

5 Outlook

Future developments will further optimize the reliability and fault tolerance of
the system. Several communication technologies are combined to achieve vari-
ous redundancies. As a fallback strategy in case of communication failure, the
implementation of a droop-based control is planed. It is avoided to move only the
single point of failure. The goal is to avoid a single point of failure holistically on
the system. Additionally a strategy for active charge balancing during operation
under consideration of the BF, which does not require additional hardware, will
be developed.

Acknowledgement. The authors thank N. Balbierer and M. Farmbauer for help-
ful discussions and T. Singer for developing a test environment to validate DC/DC
converters.

References

1. Coppez, G., Chowdhury, S., Chowdhury, S.P.: The importance of energy storage
in renewable power generation: a review. In: IEEE 45th International Universities
Power Engineering Conference, pp. 1–5 (2010)

2. Coppez, G., Chowdhury, S., Chowdhury, S.P.: Review of battery storage opti-
mization in distributed generation. In: Proceedings of IEEE Joint International
Conference on Power Electronics, Drives and Energy Systems, pp. 1–6 (2010)

3. Eichi, H.R., et al.: Battery management system: an overview of its application in
the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 7(2), 4–15 (2013)

4. Lelie, M., et al.: Battery management system hardware concepts: an overview.
Elsevier Appl. Sci. 8, 534 (2018)

5. Xiong, R.: Battery Management Algorithm for Electric Vehicles. Springer, Singa-
pore (2020). https://doi.org/10.1007/978-981-15-0248-4

6. Bonfiglio, C., Roessler, W.: A cost optimized battery management system with
active cell balancing for lithium ion battery stacks. In: IEEE Vehicle Power and
Propulsion Conference, pp. 304–309 (2009)

7. Zhang, A., et al.: Research of battery management system for integrated power
supply. In: IEEE Chinese Automation Congress (CAC), pp. 3178–3181 (2017)

8. Bowkett, M., et al.: Design and implementation of an optimal battery management
system for hybrid electric vehicles. In: IEEE 19th International Conference on
Automation and Computing, pp. 1–5 (2013)

https://doi.org/10.1007/978-981-15-0248-4

Decentralized Battery Management System 183

9. Stuart, T.A., Zhu, W.: Modularized battery management for large lithium ion cells.
Elsevier J. Power Sources 196, 458–464 (2009)

10. Pavić, I., et al.: Decentralized master-slave communication and control architecture
of a battery swapping station. In: IEEE International Conference on Environment
and Electrical Engineering and IEEE Industrial and Commercial Power Systems
Europe (EEEIC/I&CPS Europe), pp. 1–6 (2018)

11. Čermák, K., Bartl, M.: Decentralized battery management system. In: 15th Inter-
national Scientific Conference on Electric Power Engineering (EPE), pp. 599–603
(2014)

12. Karavas, C.-S., et al.: A multi-agent decentralized energy management system
based on distributed intelligence for the design and control of autonomous poly-
generation microgrids. Elsevier Energy Convers. Manage. 103, 166–179 (2015)

13. Mahmood, H., Michaelson, D., Jiang, J.: Decentralized power management of a
PV/battery hybrid unit in a droop-controlled islanded microgrid. IEEE Trans.
Power Electron. 30, 7215–7229 (2015)

14. Andrea, D.: Battery Management Systems for Large Lithium-Ion Battery Packs,
pp. 44–49. Artech House, Boston (2010)

15. Xiao-feng, W., Jian-ping, W., Hai-lin, H.: The smart Battery management system.
In: IEEE International Conference on Test, pp. 29–32 (2009)

16. Texas Instruments. Multicell 36-V to 48-V Battery Management System Ref-
erence Design, Datasheet (2017). http://www.ti.com/lit/ug/tiducn1/tiducn1.pdf.
Accessed 11 Mar 2020

17. Kim, C.H., Kim, M.Y., Moon, G.W.: A modularized charge equalizer using a bat-
tery monitoring IC for series-connected Li-Ion battery strings in electric vehicles.
IEEE Trans. Power Electron. 28, 3779–3787 (2013)

18. Linlin, L., et al.: Research on dynamic equalization for lithium battery management
system. In: IEEE 29th Chinese Control And Decision Conference (CCDC), pp.
6884–6888 (2017)

19. Lorentz, V., et al.: Smart battery cell monitoring with contactless data trans-
mission. In: Meyer, G. (ed.) Advanced Microsystems for Automotive Applications
2012, pp. 15–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29673-4 2

20. Frost, D.F., Howey, D.A.: Completely decentralized active balancing battery man-
agement system. IEEE Trans. Power Electron. 33, 729–738 (2018)

21. Chowdhury, S.M., et al.: A novel battery management system using a duality
of the adaptive droop control theory. In: IEEE Energy Conversion Congress and
Exposition, pp. 5164–5169 (2017)

22. Yaoqin, J., Dingkun, L., Shengkui, P.: Improved droop control of parallel inverter
system in standalone microgrid. In: 8th International Conference on Power Elec-
tronics - ECCE Asia, Jeju, pp. 1506–1513 (2011)

23. Haileselassie, T.M., Uhlen, K.: Impact of DC line voltage drops on power flow of
MTDC using droop control. IEEE Trans. Power Systems 27(3), 1441–1449 (2012)

24. Augustine, S., Mishra, M.K., Lakshminarasamma, N.: Adaptive droop control
strategy for load sharing and circulating current minimization in low-voltage stan-
dalone DC microgrid. IEEE Trans. Sustain. Energy 6, 132–141 (2015)

25. Lu, X., et al.: An improved droop control method for DC microgrids based on low
bandwidth communication with DC bus voltage restoration and enhanced current
sharing accuracy. IEEE Trans. Power Electron. 29, 1800–1812 (2014)

26. Faika, T., Kim, T., Khan, M.: An Internet of Things (IoT)-based network for dis-
persed and decentralized wireless battery management systems. In: IEEE Trans-
portation Electrification Conference and Expo, pp. 1060–1064 (2018)

http://www.ti.com/lit/ug/tiducn1/tiducn1.pdf
https://doi.org/10.1007/978-3-642-29673-4_2
https://doi.org/10.1007/978-3-642-29673-4_2

184 A. Reindl et al.

27. Steinhorst, S., Lukasiewycz, M., Narayanaswamy, S., et al.: Smart cells for embed-
ded battery management. In: IEEE International Conference on Cyber-Physical
Systems, Networks, and Applications, pp. 59–64 (2014)

28. Merei, G., et al.: Optimization of an off-grid hybrid power supply system based on
battery aging models for different battery technologies. In: IEEE 36th International
Telecommunications Energy Conference (INTELEC), pp. 1–6 (2014)

29. Alharbi, T., Bhattacharya, K., Kazerani, M.: Planning and operation of isolated
microgrids based on repurposed electric vehicle batteries. IEEE Trans. Ind. Inform.
15, 4319–4331 (2019)

30. Reinhardt, R., Christodoulou, I., Garćıa, B.A., et al.: Sustainable business model
archetypes for the electric vehicle battery second use industry: towards a conceptual
framework. Elsevier J. Clean. Prod. 254, 119994 (2020)

31. Al-Nayeem, A., et al.: A formal architecture pattern for real-time distributed sys-
tems. In: IEEE Real-Time Systems Symposium, pp. 161–170 (2009)

32. Steinhorst, S., et al.: Distributed reconfigurable battery system management archi-
tectures. In: IEEE 21st Asia and South Pacific Design Automation Conference, pp.
429–434 (2016)

33. Reindl, A., Meier, H., Niemetz, M.: Software framework for the simulation of a
decentralized battery management system consisting of intelligent battery cells. In:
2019 IEEE Student Conference on Research and Development, pp. 75–80 (2019)

34. Rahman, M.A., de Craemer, K., Büscher, J., et al.: Comparative analysis of recon-
figuration assisted management of battery storage systems. In: IECON 2019–45th
Annual Conference of the IEEE Industrial Electronics Society, pp. 5921–5926
(2019)

35. Zhu, F., et al.: Battery management system for Li-ion battery. IEEE J. Eng.
2017(13), 1437–1440 (2017)

36. Zhu, W., Shi, Y., Lei, B.: Functional safety analysis and design of BMS for Lithium-
Ion battery energy storage system. Energy Storage Sci. Technol. 9, 271–278 (2020)

37. Pu, X., et al.: Recent progress in rechargeable Sodium-Ion batteries: toward high-
power applications. Small 15, 1805427 (2019)

38. Du, H., et al.: Advanced Li-SexSy battery system: electrodes and electrolytes. Else-
vier J. Mater. Sci. Technol. (2020)

39. Gentil, S., Reynard, D., Girault, H.H.: Aqueous organic and redox-mediated redox
flow batteries: a review. Elsevier Curr. Opinion Electrochem. 21, 7–13 (2020)

40. Reindl, A., Schneider, V., Meier, H., Niemetz, M.: Software update of a decentral-
ized, intelligent battery management system based on multi-microcomputers. In:
Symposium Elektronik und Systemintegration (ESI) (2020)

41. Aneke, M., Wang, M.: Energy storage technologies and real life applications - a
state of the art review. Elsevier Appl. Energy 179, 350–377 (2016)

Security Improvements by Separating the
Cryptographic Protocol from the Network
Stack onto a Multi-MCU Architecture

Tobias Frauenschläger(B), Sebastian Renner, and Jürgen Mottok

Laboratory for Safe and Secure Systems (LaS3), Technical University of Applied
Sciences Regensburg, 93053 Regensburg, Germany
{tobias.frauenschlaeger,sebastian1.renner,

juergen.mottok}@oth-regensburg.de

Abstract. The number of IoT devices in SCADA and ICS systems is
rising quickly, especially in the domain of critical infrastructures. But
these kinds of systems are performing mission critical tasks like con-
trolling devices in industrial facilities or substations in the smart grid.
Therefore, they are subject to a lot of regulatory standards. Yet, to pro-
vide remote access over the internet, special architectures are developed
to integrate a network interface into these devices without inferring with
the actual functionality. However, these architectures either lack security
measures against cyber-attacks or do not offer the necessary performance
for time-critical communication interfaces. To solve that, an architecture
consisting of three units is introduced in this paper to provide a network
interface with extensive security measures and a high performance. The
main feature is the isolation of the cryptographic functionality onto an
additional MCU. After proposing the basic concept, the paper presents
many implementation details. Based on the current state of implemen-
tation, a concept validation of the realized architecture is described.

Keywords: Cyber-security · Functional safety · Network security ·
Industrial Internet of Things · Industrial Control System · Supervisory
Control and Data Acquisition System · Multi microcontroller setup ·
Dos prevention · Critical infrastructures

1 Introduction

With the tremendous growth of the Internet-of-Things (IoT), nowadays nearly
everything is connected to the internet, which greatly improves the functional-
ity of many different device categories and even enables new use-cases. By now,
this trend reached the industrial sector and critical infrastructures in the form
of Industrial IoT (IIoT). Supervisory Control and Data Acquisition Systems
(SCADA), e.g. the power grid or water supply, or Industrial Control Systems
(ICS) like production facilities are connected to the internet to provide an inter-
face to an external instance. This enables new possibilities regarding supervision,
maintenance, control and automation.
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 185–199, 2020.
https://doi.org/10.1007/978-3-030-52794-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_14

186 T. Frauenschläger et al.

Most of these systems feature a single point-to-point connection between an
end-device in the field and the control unit of the operator. This end-device
can be a single PLC (Programmable Logic Controller) or a gateway concentrat-
ing local data traffic. Due to the importance of error-free functionality of these
systems, intense safety measures are applied to all components.

Unlike functional safety, cyber-security has rather been neglected in the past.
For a long time, hardly any security measures were applied to these networks
providing a huge attack surface for an adversary to cause serious damage. To
prevent a scenario like that, new standards were issued prescribing minimal
requirements for cyber-security measures. In order to comply with these new
standards, a device has to meet new additional requirements. This turns out to
be a non-trivial task, as extensive measures are necessary. Therefore, a compre-
hensive solution must be developed.

In the research project Energy Safe and Secure System Module (ES3M), such
a solution is developed at the moment [10]. Currently focused on the power
grid, a module consisting of four Microcontroller Units (MCUs) is developed
to secure the communication between a substation and the controlling station
of an energy provider. However, the created system architecture can easily be
ported to any other SCADA, ICS or automotive system. The key characteristic
of this architecture is the separation of the cryptographic functionality from
the network communication onto two independent MCUs. This separation with
its characteristics and implementation details will be further presented in this
paper.

1.1 Contribution

Building upon existing work, the paper contributes the following points to the
topic of secure communication architectures.

– Higher security confidence: Complete isolation of the cryptographically sen-
sitive data from the network communication onto two separate MCUs

– Small size: The reduction of complexity and code size results in more testable
and maintainable software for each MCU

– Transparent functionality: No influence on the actual task of the system
– Efficiency: Performance guarantees are given

1.2 Structure

The paper is structured as follows. In Sect. 2, the background and the context of
the paper is presented. Based on this, Sect. 3 evaluates related work. Section 4
describes the basic concept of the architecture, while in Sect. 5 the concrete
implementation is introduced. As the implementation isn’t completely finished
at the time of writing, Sect. 6 only presents basic performance characteristics
of the system and mainly depicts the concepts we plan for a comprehensive
validation of the architecture in the future. Section 7 concludes the paper with
an outlook to future work.

Security Improvements with a Multi-MCU Architecture 187

2 Background

2.1 Regulatory Context

Within the current research context, in [2] the regulatory security measures are
outlined that must be applied to communication interfaces inside the power grid.
In this standard, the usage of the Transport Layer Security (TLS) protocol is
prescribed for all TCP/IP based connections. This results in the application of
both symmetric and asymmetric cryptography as well as X.509 certificates for
securing the communication channel. Because most of the application specific
protocols running on top of the communication interface assume a persistent
connection, the maximum TLS session time is set to 24 h in the standard. This
is a trade-off between the lifetime of the secure channel and the time in between
new connection setups.

Next to the security related prescriptions, the field of application within
critical infrastructures or industrial facilities results in extensive functional safety
requirements. In [1], the definition of so called Safety Integrity Levels (SIL) can
be found. Based on this classification, specific measures can be derived that must
be implemented by a device. In the given context, many of the devices in question
can be classified to be SIL3, which implies a device availability of ≥99.99999%
and an error-rate of ≤10−7. To reach such numbers, both a periodic self-test of
each MCU and additional monitoring by an independent instance is necessary.

2.2 Attack Vectors

Based on analyses of cyber-attacks on SCADA systems [5] and on IoT smart-
world critical infrastructures [6], two different attack vectors can be identified.
Firstly, due to a lack of proper security measures regarding confidentiality,
integrity and authenticity, the communication can easily be eavesdropped or
even modified by an adversary. On the one hand, this can reveal sensitive data,
but on the other hand, the attacker can also harm both communication parties
in various ways. Through modifications of the data traffic, the operation of a
device or the whole system can be manipulated in a malicious way, so the actual
functionality is not executed correctly. This could stop the system or even cause
serious physical damage. Also, modified data may result in wrong status infor-
mation about the system leading to incorrect operation or maintenance steps.
The second attack vector is a Denial-of-Service (DoS) attack. In this scenario,
the communication interface is flooded with data, so proper communication is
not possible anymore. This, again, may cause the system to fail in its actual task
and prevent surveillance or control functionality.

The usage of TLS in the communication channel will prevent all possible
attacks of the first attack vector. Because a DoS attack is very hard to prevent,
it must be ensured that such attacks will not interfere with the actual task,
causing malfunction in the device functionality. Also, the network interface of
the device must be fully operational as soon as the DoS attack is over. In order
to assure that, the internal functionality and also the functional safety measures
must be well prepared for this kind of situation.

188 T. Frauenschläger et al.

3 Related Work

To overcome the possible attacks while conforming to the regulatory context
described in Sect. 2, an extensive security solution is necessary. Niedermaier et
al. proposed a Dual-MCU architecture that secures a device in an ICS system
from a DoS attack [8]. Instead of putting both the control and the network func-
tionality onto a single MCU, the features are split onto two MCUs. One handles
all the network communication, in the following referred to as NW-MCU, while
the second one performs the actual control job relevant to the overall system,
further named IO-MCU. The communication between the two is done over a
SPI (Serial Peripheral Interface) connection in a timely deterministic fashion.
In the case of a DoS attack, all additional processing is done on the NW-MCU
without influencing the IO-MCU. The result is an unaltered behavior regard-
ing the control functionality during and also after a DoS attack. An additional
benefit of this split architecture is the reduction in complexity and code size on
each MCU. This simplifies software testing, reduces bugs and enables an easier
certification.

This proposed architecture is a proper security solution for the second attack
vector, but it lacks cryptographic measures against eavesdropping or manipu-
lating the data traffic described in the first attack scenario. Therefore, adequate
measures must be integrated, namely in the form of inserting TLS into the pro-
tocol stack. This could be done directly on either the NW-MCU or the IO-MCU,
keeping the proposed architecture as is. However, this would on the one hand
lead to cryptographically sensitive data being stored in memory that is directly
accessible over the network interface. Due to bugs and vulnerabilities in the soft-
ware in use, this sensitive data, e.g. certificates or private keys, can be obtained
by an adversary. In high-class processors, this problem is normally addressed
by hardware additions called Trust Zones [7] that isolate memory regions from
unauthorized processes. But within this research context, only simple MCUs in
the form of System-on-Chip modules are used that do not provide such func-
tionality. On the other hand, adding TLS to the IO-MCU would increase the
workload and the complexity of its software, resulting in the need for a more
powerful MCU. However, this should be avoided, as it would create other chal-
lenges related to the regulatory context and certification efforts.

A Possible Solution for that are Secure Elements. In 2016, Pascal Urien pre-
sented so called security modules based on secure elements that include complete
TLS/DTLS protocol functionality for the application in IoT devices [11]. These
modules are low power and low priced external chips with their own CPU and,
most importantly, tamper-proof memory. The communication between the mod-
ule and a main MCU is done using the ISO 7816 communication interface [3].
To provide TLS functionality to the application, a software bridge runs on the
main MCU. It receives the cipher text from the network stack and sends it
to the secure element for processing. After decryption, the plain text is sent
back to the MCU, where the software bridge forwards the data to the actual
application software. A transmission of plain text over the secure channel works

Security Improvements with a Multi-MCU Architecture 189

accordingly in the opposite direction. This enables a secure communication using
TLS without storing cryptographically sensitive data on the main MCU.

The combination of both approaches, namely the addition of a NW-MCU
and a secure element implementing TLS, could address all in Sect. 2.2 described
attacks. However, this solution would still have problems. Firstly, when connect-
ing the secure element to the NW-MCU, the decrypted plain text sent back
from the secure element is stored on the NW-MCU until it is forwarded to the
IO-MCU. Thus, it would still be possible for an adversary to read or modify
the plain text due to vulnerabilities in the software. Connecting the secure ele-
ment to the IO-MCU would prevent that issue, but in this case the workload
and complexity of the IO-MCU would again be increased, as it would have to
communicate with two parties at the same time. Secondly, the ISO 7816 based
communication between a MCU and the secure element and the CPU inside the
secure element itself are both very slow, causing a large delay of up to several
hundred milliseconds in the processing of the data [11]. In case of high traffic, this
may quickly become a bottleneck, no matter to which MCU the secure element
would be connected.

Based on this work, in the next section we introduce an extended architecture
to resolve the issues in current designs. This architecture introduces an additional
MCU to further isolate the TLS functionality from the network stack without
increasing the load of the MCU running the actual application.

4 Basic Concept

Building on the introduced architecture from Sect. 3, another split of function-
ality is performed. Providing a clear and consistent naming scheme, the name
NW-MCU is kept for the existing MCU handling all the network related func-
tionality. The MCU running the actual application, named IO-MCU in [8], is
now called APP-MCU, as the application is not limited to I/O control in the
context of this paper. In addition to these two MCUs, a new MCU is added imple-
menting the TLS functionality, named Crypto-MCU. It is inserted in between
the NW-MCU and the APP-MCU, keeping the functionality of both unchanged.
The resulting architecture is shown in Fig. 1.

APP-MCU Crypto-MCU NW-MCU
Network

Control-
func onality

Fig. 1. New architecture with the additional Crypto-MCU

As can be seen in Fig. 1, the NW-MCU still handles all network related func-
tionality including the protection against DoS attacks. The raw TCP payload
received over the network interface is forwarded to the Crypto-MCU without any

190 T. Frauenschläger et al.

processing. This payload contains the TLS records, which are then processed on
the Crypto-MCU. Thereafter, the decrypted plain text is sent to the APP-MCU,
which is finally using and interpreting it. Data sent from the APP-MCU to the
network is processed in the opposite direction through all three MCUs. The com-
munication between the MCUs is based on SPI with additional hardware flow
control for timely determinism and improved robustness.

With this architecture, the cryptographically sensitive data, like keys, cer-
tificates and the decrypted plain text, are completely isolated from the network
interface and therefore not accessible from the outside. Even if an adversary
gains access to the NW-MCU due to a software vulnerability, he cannot obtain
or even modify the sensitive data because of the physical separation onto two
different MCUs.

To further increase the security of the architecture, two additional compo-
nents are added. On the one hand, a dedicated Random Number Generator
(RNG) is placed on the printed circuit board (PCB), generating high entropy
random numbers. The selected device is certified in the strongest class PTG.3 [9],
which is suitable for any cryptographic application. With it, proper ephemeral
keys can be generated. On the other hand, a secure element, as already mentioned
in Sect. 3, is added to the system, connected to the Crypto-MCU. However, it is
not used to implement the complete TLS functionality, but merely for authenti-
cation during the TLS handshake. Certified to Common Criteria EAL 5+ [4], it
provides a tamper-proof storage for certificates and private keys, and even fea-
tures an on-device key generation, resulting in the private keys never leaving the
secure element. This ensures maximum security. All in all, the proposed archi-
tecture builds an extensive security solution that can protect a device, meaning
the APP-MCU in this context, from both attack vectors described in Sect. 2.

5 Implementation

To prove the security improvements of our proposed architecture, we created
a prototype containing all of the described components. The details of specific
implementations are presented in this section.

5.1 Hardware Setup

The created prototype with all the described components can be seen in Fig. 2.
It shows three boards, each containing one MCU. The green board in the mid-
dle is a custom PCB containing the Crypto-MCU, the secure element and the
dedicated RNG. The boards on the left and the right side are off-the-shelf devel-
opment boards from STMicroeletronics1, representing the APP-MCU and the
NW-MCU. For easy development, all three MCUs are of the same type in this
setup. The two development boards contain the MCU STM32H743ZIT2 that is

1 https://www.st.com/en/evaluation-tools/nucleo-h743zi.html.
2 https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html.

https://www.st.com/en/evaluation-tools/nucleo-h743zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html

Security Improvements with a Multi-MCU Architecture 191

based on an ARM Cortex-M7 core with a 480 MHz clock frequency. The Crypto-
MCU is of the type STM32H753ZIT, which offers the same features as noted
above, except for additional hardware accelerators for the Advanced Encryp-
tion Standard (AES) algorithm. The MCU type has been chosen due to the
high performance while still being a System-on-Chip design, the huge amount
of communication interfaces for potential future evaluations and the extensive
options for hardware-based network packet filtering.

Fig. 2. Current hardware setup with the separation onto three controllers

5.2 Communication Between the MCUs

Before we dive into the specific software details of each MCU, the communication
interface between the MCUs is presented. As already mentioned, the communi-
cation is based on SPI. However, not the default master-slave topology is used,
but a more flexible multi-master system is deployed. This way, a communication
with equally distributed access rights is possible, enabling both MCUs to initiate
a data transmission whenever they want to. To achieve this, both participants
can act as either master or slave depending on the transmission direction. This
is configured in software using a flow control based on additional I/O lines. By
sharing the SPI lines between the two participants, only half-duplex transmis-
sion is possible. For the current prototype, we use this interface for both com-
munications between the three MCUs. But in case of another, maybe simpler
APP-MCU, the interface between it and the Crypto-MCU can be changed to a
different connection type, e.g. standard SPI or UART (Universal Asynchronous
Receiver Transmitter).

For the message transmission over this interface, a proprietary protocol con-
sisting of a Header and optional Payload has been defined. The header contains
the type of the message, the length of the optionally following payload and a

192 T. Frauenschläger et al.

CRC (Cyclic Redundancy Check) field, each occupying 2 bytes. Currently, there
are five different message types defined, further described in Table 1.

Table 1. Message Types and their Meaning

Message type Meaning

Connection Start Command to start a new network connection. This can
either mean actively connecting to a server or listening
for incoming connections

Connection Established Notification that a new connection has been established

Connection Stop Command to stop the current network activity. This
can either mean to close an active connection or to stop
listening for incoming connections

Connection Closed Notification that all network activities are stopped

Payload Transmission of network payload

The first four message types are used for controlling and synchronizing the
state machines on the different MCUs. Messages with the ‘Payload’ type are then
used to actually exchange payload data between the MCUs. Based on these mes-
sages, the cooperation of the MCUs with their distinct functionality is managed.

5.3 Software of the Crypto-MCU

To reduce the amount of additional work for the critical APP-MCU, the Crypto-
MCU is considered to be the master of the system related to network function-
ality. This means that it controls the NW-MCU with its functionality, while
simultaneously exchanging the plain text network data with the APP-MCU. In
order to provide a clear and scalable architecture, the software is written in the
C++ programming language (Version 2014). This enables bundling functional-
ity inside classes with a properly abstracted interface. This way, a loose coupling
of the different software components is possible. Additionally, the FreeRTOS3

kernel (Version 10.3.1) is integrated to provide a runtime environment. This
real-time operating system is well-suited for MCUs and built with an empha-
sis on reliability and ease of use. The main functionality of the Crypto-MCU is
modeled in three functional units called PayloadProcessor, PayloadTransceiver
and InterControllerConnection, each represented by a single class. The Pay-
loadTransceiver and InterControllerConnection classes are used for the payload
exchange between the Crypto-MCU and the NW-MCU as well as the APP-MCU.
This leads to a double instantiation of both classes. The PayloadProcessor class
isolates the actual TLS functionality from the remaining code. The overall struc-
ture is shown in Fig. 3, with each unit and other implementation related details
explained in more detail in the following sections.
3 https://www.freertos.org/.

https://www.freertos.org/

Security Improvements with a Multi-MCU Architecture 193

Fig. 3. Structure of the functional units inside the Crypto-MCU software

PayloadProcessor. This class forms the core of the Crypto-MCU software.
Here, all the TLS related functionality is isolated from the rest of the software.
The program execution is based on an Event-driven architecture. At startup, a
task is created to handle all incoming events. These events are created in the
PayloadTransceiver objects and are sent to the PayloadProcessor over an asyn-
chronous event-queue. There are two categories of events: state-change events
and payload-processing events. A state-change event either contains the com-
mand to start a new or stop a currently active network connection, or indicates
the establishment or termination of a connection. A payload-processing event
either means encryption or decryption of actual payload with subsequent for-
warding of the processed data.

For the TLS capabilities, the open-source mbedTLS 4 library is used. It offers
a simple API and is widely used in the embedded community. The code is slightly
modified in some places to enable the usage of the RNG, the secure element and
the AES hardware accelerators of the MCU. Due to the isolation of TLS and
therefore all cryptographically sensitive data into a single task with a defined
communication interface using the event-queue, the sensitive data can easily be
protected with a Memory Protection Unit (MPU). This, in combination with the
additional usage of the secure element for storing private keys and certificates,
greatly improves the security of the whole system.

PayloadTransceiver. In this class, the state of a single external MCU is man-
aged. Therefore, this class is instantiated twice, both for the NW-MCU and the
APP-MCU (see Fig. 3). Internally, this class works in a very similar way as the
PayloadProcessor class. It also features an Event-driven architecture with an
event-queue that stores events for sequential processing. In this case, there are,
again, two categories of events: Either there is an external message available
from the other MCU or a message from the PayloadProcessor has been received.
These messages can either contain payload to forward to the other MCU or
are used to change the state of the network connection. In case of an external
message, the header is parsed and proper events for the PayloadProcessor are
created and added to its event-queue.

4 https://tls.mbed.org/.

https://tls.mbed.org/

194 T. Frauenschläger et al.

The fact that there are three event-queues in total on the Crypto-MCU may
seem overly complicated at first, but this architecture results in many advan-
tages. The most important one is the independence of each processing unit.
This results in improved timely behavior compared to an otherwise single bigger
event-driven system that provides the same functionality, because each task can
process the events at its own pace without slowing down the others. Furthermore,
the CPU load is reduced by a heavy usage of Direct Memory Access controllers
(DMAs) for the communication interfaces and the hardware accelerators. The
free CPU resources can then be used for processing the remaining event-queues.
Another positive aspect of the different event-queues is the possibility to over-
come temporary bottlenecks in the processing pipeline, for example caused by
a faster reception of incoming data from the NW-MCU compared to the actual
decryption, due to the storing capacity of the queues. Lastly, this separation
simplifies the usage of a MPU to further secure the decrypted payload from
unauthorized access.

InterControllerConnection. The last of the three classes handles the actual
communication with the other MCU, as described in Sect. 5.2. This way, the
physical communication interface is independent from the logic implemented
in the PayloadTransceiver class. As shown in Fig. 3, there are two objects of
this class, each one connected to one MCU via SPI and to one of the Payload-
Transceiver objects. Furthermore, this abstraction enables a simple replacement
of the communication interface, which can benefit future developments. Inter-
nally, the transmission and the reception of messages is split. The reception is
handled in a distinct task, while the transmission is done from within the Pay-
loadTransceiver task in a blocking manner. The synchronization between the
two is done using a mutex.

All in all, the modularity of the Crypto-MCU software with the three event-
queues enables responsive and efficient data processing in both directions. More-
over, by splitting the functionality, additional security measures in the form of a
MPU can be applied. Finally, the use of FreeRTOS allows scalability for future
software additions.

5.4 Software of the NW-MCU

Following the concepts of the Crypto-MCU software, the NW-MCU software
also features an event-driven architecture. To ease the development efforts and
to minimize the written code, as much code as possible is shared between the
MCUs. The result of this effort is the structure shown in Fig. 4.

Compared to the software structure of the Crypto-MCU, there are only a few
differences observable in Fig. 4. Mainly, the PayloadProcessor object is gone. As
there is no TLS functionality needed on this controller, we do not need an object
of this class. Additionally, there is only one PayloadTransceiver object, because
we only have to handle one state machine on this controller. The last difference
is the replacement of one InterControllerConnection object with an object of the

Security Improvements with a Multi-MCU Architecture 195

Fig. 4. Structure of the functional units inside the NW-MCU software

class NetworkConnection. With the presence of an event-queue on the NW-MCU,
this software has the same advantages as described for the Crypto-MCU software.
Also, the complete fundamental software framework including the FreeRTOS
kernel is shared between the MCUs.

The NetworkConnection class mimics the interface of the InterController-
Connection class in order to work with the existing PayloadTransceiver object.
However, the implementation is very different. Inside this class, the actual net-
work connection is handled, using the Lightweight IP5 stack (LWIP). This open-
source library provides a complete TCP/IP network stack with support for many
additional features.

Based on the already described functionality of the data processing and the
different messages that are exchanged between the MCUs, a state machine has
been created and implemented on the NW-MCU. It is shown in Fig. 5.

Fig. 5. State machine implemented in the NW-MCU software

As you can see in Fig. 5, there are four different states defined: NotConnected,
Connected, Starting and Stopping. The first two states are the persistent ones,
in which an active connection is established or not. In the NotConnected state,
the NW-MCU is idle. This is also the default state after system startup. In the
Connected state, the NW-MCU actively forwards payload both from the Crypto-
MCU to the network endpoint and vice versa. The latter two states are more
5 https://savannah.nongnu.org/projects/lwip/.

https://savannah.nongnu.org/projects/lwip/

196 T. Frauenschläger et al.

of a temporary kind. The Starting state indicates that the NW-MCU is trying
to establish a new connection. Depending on the configuration, this can either
mean that it actively tries to connect to a remote host or that it is acting as a
host listening for an incoming connection on a given port. The Stopping state
is the counterpiece to this, meaning that currently all network activity is being
terminated. This again can imply closing an active connection to a host or to
stop listening for an incoming connection. In the current setup, the NW-MCU
is able to handle only a single connection at a time. However, this limitation can
easily be removed in future developments.

The state transitions are also shown in Fig. 5. There are two types of tran-
sitions: Commands from the Crypto-MCU and events from the network stack.
The two message types Connection Start and Connection Stop, already shown
in Table 1, trigger transitions to the Starting and Stopping states respectively.
As soon as the network stack indicates a successfully established connection
or that all network activity is terminated, the state changes to Connected or
NotConnected. In either case, a message of the type Connection Established or
Connection Closed is sent to the Crypto-MCU announcing the state transition
(see Table 1). Not shown in Fig. 5 are the state transitions caused by errors. If
such a situation is encountered, either the Stopping or the NotConnected state
is entered, depending on the current state and the actual error.

With the presented state machine and the code shared with the Crypto-MCU,
a flexible, responsive and robust software handling the network connection is
created. In cooperation with the Crpyto-MCU, both attack vectors described in
Sect. 2.2 are addressed.

5.5 Software of the APP-MCU

The last MCU in the proposed architecture is the APP-MCU. It runs the
actual application, to which a secure network interface, implemented by the
Crypto-MCU and the NW-MCU, is provided. With the presented architecture,
no restriction is given related to the application running on the APP-MCU. It
can be anything from a real-time I/O control to a more complex gateway device.
Independent from the main functionality, the software of the APP-MCU has to
run the already known functional units consisting of a slightly modified Pay-
loadTransceiver object and an InterControllerCommunication object. This is
necessary for the APP-MCU to communicate with the Crypto-MCU. The mod-
ified PayloadTransceiver provides an interface for the actual application to send
and receive data over the secured network connection.

Within the current research project, the application running on the proto-
type’s APP-MCU is not the endpoint of the network data, but rather acts as a
network gateway forwarding the payload to another network host. This way, the
prototype represents a gateway device that provides a secured network channel
using TLS. For the software of the APP-MCU, this means that the structure
is almost identical to the one of the NW-MCU aside from an inverted network
behavior. This enables sharing most of the code between the NW-MCU and the
APP-MCU.

Security Improvements with a Multi-MCU Architecture 197

6 Concept for Validation

The current prototype, with the APP-MCU mirroring the functionality of the
NW-MCU creating a network security gateway, provides a solid setup for vali-
dation of the proposed security architecture. At the time of writing, the imple-
mentation described in Sect. 5 is a work in progress. The software for each of the
three MCUs is in an working state, but not all features are completely done or
well optimized yet. Therefore, comprehensive and sound validation results can-
not be created at the moment. However, some basic performance measurements
are presented to prove the viability of our architecture.

– Currenty, the TLS handshake, including the secure element for authentica-
tion, takes around 1.2 s to complete. However, this process is not yet fully
optimized.

– The delay caused by the processing chain of the NW-MCU and the Crypto-
MCU is around 5 ms for network payload to finally reach the APP-MCU.

– DoS attacks are completely handled by the NW-MCU and the Crypto-MCU
without affecting the actual functionality.

Based on these first promising results, the concept for the comprehensive val-
idation of the system is already defined. Using the gateway functionality created
within the current research project, the following tests, with additional com-
parison to other in this paper presented architectures, are planned for a future
work.

– Measurement of the processing delay under different network traffic loads
– Behavior during and after different DoS attacks related to TCP and TLS
– Penetration tests regarding security aspects
– Tests related to functional safety and reliability of the system

7 Conclusion and Outlook

In this paper, a Multi-MCU security architecture has been presented. In addi-
tion to an APP-MCU running the actual application, two MCUs are added to
provide security functionality in the form of TLS (Crypto-MCU) and a DoS pro-
tected network interface (NW-MCU). We showed that related work already has
partial solutions against the identified attack vectors on SCADA and ICS sys-
tems relevant for this paper. However, all presented solution either lack proper
security measures, do not provide the performance necessary in some of these
critical systems or imply the need of a more powerful APP-MCU. Following
this, we propose a new architecture featuring two additional MCUs for provid-
ing a secure network interface. One of them takes care of all network related
functionality, while the second one is solely handling the security functionality.
This physically isolates all cryptographically sensitive data from a remote access,
highly increasing the security while providing protection against DoS attacks.

198 T. Frauenschläger et al.

In conclusion, the current state of the prototype seems promising. The basic
functionality is working as described in this paper, with no problems resulting
from the use of a Multi-MCU architecture. In a future work, the architecture
will be further verified against the dependability objectives like functional safety
and IT-security. Also the performance characteristics will be analyzed.

References

1. IEC 61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. Technical report International Electrotechnical Commis-
sion, April 2010

2. IEC 62351–3: Power systems management and associated information exchange -
data and communications security; Part 3: Communication network and system
security - Profiles including TCP/IP. Technical report International Electrotech-
nical Commission, October 2014

3. International Organization for Standardization: Identification cards - Integrated
circuit cards - Part 3: Cards with contacts - Electrical interface and transmission
protocols. Standard ISO/IEC, 7816–3 (2006)

4. International Organization for Standardization: Information technology - Secu-
rity techniques - Evaluation criteria for IT security. Standard ISO/IEC 15408–
1/2/3:2009, December 2009

5. Irmak, E., Erkek, I.: An overview of cyber-attack vectors on SCADA systems. In:
2018 6th International Symposium on Digital Forensic and Security, ISDFS, pp.
1–5, March 2018. https://doi.org/10.1109/ISDFS.2018.8355379

6. Liu, X., Qian, C., Hatcher, W.G., Xu, H., Liao, W., Yu, W.: Secure Internet of
Things (IoT)-based smart-world critical infrastructures: survey, case study and
research opportunities. IEEE Access 7, 79523–79544 (2019). https://doi.org/10.
1109/ACCESS.2019.2920763

7. Mukhtar, M.A., Bhatti, M.K., Gogniat, G.: Architectures for security: a compar-
ative analysis of hardware security features in Intel SGX and ARM TrustZone.
In: 2019 2nd International Conference on Communication, Computing and Digital
systems (C-CODE), pp. 299–304, March 2019. https://doi.org/10.1109/C-CODE.
2019.8680982

8. Niedermaier, M., Merli, D., Sigl, G.: A secure Dual-MCU architecture for robust
communication of IIoT devices. In: 2019 8th Mediterranean Conference on Embed-
ded Computing, MECO, pp. 1–5, June 2019. https://doi.org/10.1109/MECO.2019.
8760188

9. Schindler, W., Killmann, W.: A proposal for: Functionality classes for random num-
ber generators. Bundesamt für Sicherheit in der Informationstechnik, September
2011

https://doi.org/10.1109/ISDFS.2018.8355379
https://doi.org/10.1109/ACCESS.2019.2920763
https://doi.org/10.1109/ACCESS.2019.2920763
https://doi.org/10.1109/C-CODE.2019.8680982
https://doi.org/10.1109/C-CODE.2019.8680982
https://doi.org/10.1109/MECO.2019.8760188
https://doi.org/10.1109/MECO.2019.8760188

Security Improvements with a Multi-MCU Architecture 199

10. Frauenschläger, T., Dentgen, M., Mottok, J.: Systemarchitektur eines Sicher-
heitsmoduls im Energiesektor. In: 2. Symposium Elektronik und Systemintegra-
tion: Intelligente Systeme und ihre Komponenten: Forschung und industrielle
Anwendung, April 2020. https://www.haw-landshut.de/fileadmin/Hochschule
Landshut NEU/Ungeschuetzt/ITZ Cluster Forschung/ClusterMST/Symposium-
ESI/2020/Tagungsbandbeitraege/A1-3 OTH-Regensburg Frauenschlaeger ESI
2020.pdf

11. Urien, P.: Innovative TLS/DTLS security modules for iot applications: concepts
and experiments. In: Mandler, B., Marquez-Barja, J., Mitre Campista, M.E.,
Cagáňová, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S., Fazio, M.,
Somov, A., Vieriu, R.-L. (eds.) IoT360 2015. LNICST, vol. 169, pp. 3–15. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47063-4 1

https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://doi.org/10.1007/978-3-319-47063-4_1

Equally Distributed Bus-Communication
Access Rights for Inter MCU

Communication Using Multimaster SPI

Manuel Dentgen(B), Sebastian Renner, and Jürgen Mottok

Laboratory for Safe and Secure Systems (LaS3), Technical University of Applied
Sciences, Seybothstraße 2, 93053 Regensburg, Germany

{manuel.dentgen,sebastian1.renner,juergen.mottok}@oth-regensburg.de

Abstract. With the rising complexity and processing power of mod-
ern computer systems, the amount of MCU on a single PCB also rises.
These microcontrollers often need to communicate with each other to
exchange payload and control information in a bidirectional manner.
Today’s well-established communication protocols in MCUs either do
not fit modern transmission speed requirements or do have an inappro-
priate master-slave attribute, which does not allow the communication
partners to have equal bus access rights. Therefore, this paper introduces
an extension of the Serial Peripheral Interface (SPI) to allow an equally
distributed access right for the communication interface between two
microcontrollers. It simultaneously does fit modern transmission speed
requirements of a common network interface, so that the message trans-
mission does not constitute a bottleneck in data processing. Besides the
protocol design, we do also provide a first prototype implementation,
which constitutes a proof of concept.

Keywords: Multimaster · SPI · Communication · Master · Slave ·
Bidirectional · Equally distributed transmission rights ·
Microcontroller · MCU · Embedded · Ethernet · Inter · Controller ·
Conversion · Flow control · Multimaster · Serial peripheral interface

1 Introduction

Within the context of the research project Energy Safe and Secure System Mod-
ule (ES3M) [9] at the Technical University of Applied Sciences (Ostbayerische
Technische Hochschule - OTH) in Regensburg, a module for the separation of
the security protocol layer from the network stack is developed. To achieve this,
the individual tasks of those layers are divided among several Microcontroller
Units (MCUs) on a single Printed Circuit Board (PCB). The goal of this con-
cept is to get a higher security level, since the sensitive security mechanisms
are outsourced to a distinct centralized controller, which is not directly acces-
sible from the external network. At the same time the controller, which can
be accessed from the external network, has no security tasks. A third controller
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 200–212, 2020.
https://doi.org/10.1007/978-3-030-52794-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_15

Inter MCU Communication Using Multimaster SPI 201

enables the module to communicate with an additional independent and isolated
communication interface. This principle is shown in Fig. 1.

Fig. 1. Task separation of the security protocol layer and the network stack with the
third Input/Output-controller on the left

1.1 Contribution

During the development of the research project it has become apparent, that
the task separation principle used can easily be adopted to other application
fields, e.g. for automotive or aviation. The third controller could communicate
with an already existing sensor or actuator by connecting them via a standard
communication interface. Our concept shall enable the conversion of low-level
communication networks to Ethernet with an increased security level in those
fields, without the need to exchange every single device, but by simply including
this kind of module in a network.

However, the used MCUs only contain a single Ethernet Media Access Con-
trol (MAC) interface, which is used for the communication with the external net-
work. This results in the necessity to implement another communication channel
between the microcontrollers. The approach for this has to reach a similar trans-
mission speed to what Ethernet already offers, to not create a bottleneck in
data processing. It also has to allow bus access control on both sides with equal
rights to allow an unconditional transmission in both directions. This paper will
introduce such a communication interface.

1.2 Structure

The paper is structured as follows. In Sect. 2, some similar concepts to the one
introduced in this paper are presented and compared to each other. It shall also
be clarified why those are not fitting for our kind of task. Then in Sect. 3, the idea
and theory behind the introduced architecture is presented, while considering
the points previously mentioned. Section 4 focuses on the implementation of the
concept within the context of the research project. Next, in Sect. 5 a proof of
concept is presented, because the final implementation is not yet finished due to
limitations of the current hardware. Section 6 summarizes the current state of
the inter-controller communication and gives a brief outlook on future work.

202 M. Dentgen et al.

2 Related Work

The idea of connecting several microcontroller units together and thereby gener-
ating a network of multiple controllers is not a new task in the embedded world.
Various connection and design approaches have been made over the last years,
all with the goal to achieve a fast, robust and secure communication between
multiple controllers.

Niedermaier et al. [4] introduced a robust communication for the Industrial
Internet of Things (IIoT) sector. They provide a concept to connect a communi-
cation interface with a following proof of concept. The presented architecture is
similar to the one presented in this paper. However, they have used a standard
serial peripheral interface for the inter-controller communication, with one of the
controllers being the SPI master. This implies that the two communication part-
ners are not equally permitted to access the communication bus. Besides other
properties, this is not suitable for our project. We desire an inter-controller com-
munication where both communication partners are fully authorized to access
the bus.

Peng et al. [5] have presented a similar approach to our idea. They have real-
ized an inter-controller communication using a dual-port Random Access Mem-
ory (RAM), and with that converting RS232 or RS485 to an Ethernet interface.
However, they have developed a non-protected Ethernet endpoint, while we want
to use a loop-through with an additional security mechanism.

Szekacs et al. [8] have implemented an inter-controller communication using
the two interfaces SPI and Inter Integrated Circuit (I2C) simultaneously. Their
original goal was to connect a huge amount of sensors to one master using the
I2C-interface. As they have found out that they are not able to connect the
estimated amount of sensors using only this communication type, they decided to
extend their layout with several microcontrollers, all having their own connection
to the sensors and communicating via SPI to the master. Maemunah et al. [3]
have implemented a similar concept to them, by connecting multiple sensors to
a MCU and sending all the measured data via a single interface to a processing
master. The master is again the reason why we cannot use these approaches,
since we want to use an equal bus access method.

The discussion shows that there are many inter-controller connection tech-
niques, but none of them fitted perfectly for our task. Therefore, we have elab-
orated our requirements for the inter-controller communication more precisely
and compared it to well established protocols with the goal to find a fitting
interface.

3 Protocol Design

The previous chapter showed which elaborated communication systems are
already available and why those are not suitable for the system presented here.
Therefore, this chapter clarifies the requirements of the aspired communication
interface. On the basis of this information, some well established communication
protocols can be evaluated and eventually one is chosen.

Inter MCU Communication Using Multimaster SPI 203

3.1 Abstracting the Problem to Two Controllers

While speaking of three controllers for the research project prior to this section,
the actual aspired communication interface represents a point-to-point (PTP)
connection between two MCUs, which will be used twice originating from the
centralized security controller. Therefore the problem can be abstracted to a
data transmission between two controllers which is shown in Fig. 2. This repre-
sents another security benefit next to the task separation. The two connections
are not implemented via a single bus system, but are separated from each other
to prevent the data from being intentionally looped past the actual security con-
troller. Thereby we achieve a higher security level, already during the hardware
design phase.

Fig. 2. Communication principle broken down to two controllers

As mentioned before, an important setting for our communication protocol
is the transmission speed between the controllers. The connection of the network
controller can have a transmission speed of up to 100 Mbit/s. To not constitute
a bottleneck in data processing, the inter-controller communication should also
achieve a similar transmission speed to this extent. Another important property
of the protocol is the fully equal transmission right in both directions. The
reason for this is the possibility for both controllers to start a communication,
as independent asynchronous data transmission is possible in our architecture.
However, this results in the need for a full duplex transmission or the presence
of a flow control between the two controllers, as no data shall be lost during
transmission. These three aspects are the essential prerequisites for the transfer
protocol.

3.2 Communication Protocols

With this information, some already well-established communication protocols
can be elaborated and compared to each other. Communication protocols are
sufficiently available, all having different advantages and disadvantages compared
to each other. Examples for well-established communication interfaces, used by
embedded devices in our daily life, are UART, I2C, SPI, CAN or Ethernet.
Besides those, there are a lot of proprietary communication protocols, which are
specially adapted to an application by the developer of a device. Besides the
aspect that it is difficult to get access to these proprietary interfaces, we have
decided to use and extend a widespread protocol to make it available for a wider
range of microcontrollers.

204 M. Dentgen et al.

As already mentioned, Ethernet is not included in the evaluation due to the
insufficient amount of hardware-modules on a single MCU. If it was possible
to connect the controllers via several Ethernet networks, this would be the pre-
ferred solution for our problem. To compare the well-established interfaces, some
characteristics of them have to be clarified. This includes transmission direction
and the usage of a clock signal.

Transmission Variants. Transmission protocols can be subdivided according
to their possible transmission directions in relation to the time course. There
are two different types of transmission types which can be considered for our
application. They are called Half-Duplex and Full-Duplex. Half-Duplex describes
the possible data flow in both directions, but not at the same time. This means
that a message transmission between controller 1 and controller 2 can only take
place in one direction at a time, which would be a clear limitation in our system.
Full-Duplex on the other hand allows transmission in both directions at the same
time. To make this possible, the transmission is usually realized on two different
channels (lines). UART and SPI offer a Full-Duplex transmission, while I2C and
CAN are Half-Duplex due to restrictions caused by fewer lines.

Clock Line. Next to the transmission direction, the protocols can also be
divided into the groups asynchronous and synchronous. The difference here is the
presence or absence of a clock line. This means that with synchronous protocols
there is an additional line over which a clock signal is transmitted. It is always
generated by one of the communication partners and read by the others. A valid
data bit can then be generated and detected at the falling or rising edge of the
clock line. This allows independent operation of the two controllers and simul-
taneously synchronous data transmission, because edge sampling is one way of
resynchronizing the transmission. When using an asynchronous interface, a valid
data bit has to be detected by a specified bit length. The critical part with asyn-
chronous protocols is, that the controllers have to work synchronously during
a transmission. When the internal processing clock of the controllers and with
that the calculation of the bit length gets out of sync, a reliable detection of the
bit states can no longer be guaranteed. This effect gets worse when transmitting
large messages. It also results in the fact that asynchronous protocols usually do
allow a lower maximum transfer rate than synchronous protocols. While UART
and CAN are asynchronous protocols, SPI and I2C belong to the category of
synchronous protocols. A further detailed comparison of several serial commu-
nication protocols can also be found at [2]. We have summarized the attributes
described in this chapter in Table 1, including the four presented communication
protocols:

Next to the comparison of the already mentioned aspects, it is also possible
to compare the energy consumption. Solheim et al. [6] have done exactly that
with I2C and SPI. They found out that I2C has a higher energy consumption
than SPI and assume that the necessary pull-up resistors for the I2C bus are the
reason for this.

Inter MCU Communication Using Multimaster SPI 205

Table 1. Comparison of the attributes of different communication protocols

Transmission direction Clock line

SPI Full-Duplex synchronous
I2C Half-Duplex synchronous
UART Full-Duplex asynchronous
CAN Half-Duplex asynchronous

3.3 Selected Communication Interface

The previous section shows clear advantages of SPI in comparison to the other
interfaces presented. The higher transmission speed, the Full-Duplex attribute
and the low energy consumption of SPI has led to the decision to use this interface
in our system.

The well-established Serial Peripheral Interface was originally designed by
Motorola Inc. to realize a fast, robust and synchronous data transmission
between a single master and several slaves [7]. With this transmission proto-
col, the master always is the initiator of a message transfer, while a slave can
only send an answer to a prior sent request. Furthermore, the master is gen-
erating the clock signal and with that the possibility of synchronizing the con-
trollers. This concept fitted most implementations in the embedded world so
far, because usually circuits had a single microcontroller which represented an
intelligent unit, while all other integrated circuits have just been passive and non-
intelligent (e.g. RaspberryPi1, BeagleBoneBlack2). However, this method cannot
fulfill our requirements of equally distributed communication rights between two
microcontrollers. The one-sided initiation possibility always results in one of the
controllers not being able to start a communication, which is not suitable for
the in this paper described task. A consequence of this fact is the extension of
the serial peripheral interface, while other attributes of the interface do already
fit pretty good into our task.

Additionally Tongsan et al. [10] provide a software-defined inter-processor
communication for embedded systems. They suggest to realize a software layer
with a well-defined API to make the controlled hardware exchangeable. We have
decided to use and integrate this technology into our system in order to remain
flexible for possible extensions or changes as SPI still has its downsides.

4 Implementation of the Communication

After describing the theoretical background of the communication presented in
this paper, we go on to the actual implementation. To do so, we briefly present
aspects of the research project and clarify some necessary details of the specific
controllers.
1 https://www.raspberrypi.org/.
2 https://beagleboard.org/black.

https://www.raspberrypi.org/
https://beagleboard.org/black

206 M. Dentgen et al.

4.1 Context of the Research Project

The research project, for which this inter-controller communication was devel-
oped, essentially consists of the three microcontrollers, which do implement the
task separation of security protocol and network stack. In the context of the
project, the TLS protocol for the security mechanism with an underlying TCP
connection is used. This is depicted in Fig. 3. The three controllers are of the
type STM32H73, which provide many interfaces established in the embedded
world, but, like already mentioned, just a single Ethernet interface. In theory,
other MCUs would fit into our project, but we have chosen this one, as it has
a high transmission speed Serial Peripheral Interface compared to other con-
trollers. Nevertheless, future developments on other controllers should remain
possible.

Like mentioned in the beginning of this paper, the main aspect of this multi-
controller architecture is the separation of the security protocol from the network
stack. The security protocol used in the project is Transport Layer Security
(TLS) 1.24, implemented by the open source project mbedTLS5, along with the
network stack LightweightIP6 licensed under the BSD license. For the MCUs the
real-time kernel (version 10.3.1) FreeRTOS7 for resource constrained systems
with custom developed low level drivers are used, because they offer a smaller
attack surface than e.g. a whole Linux-distribution, which has a higher amount
of security vulnerabilities.

Fig. 3. Task separation of the currently developed research project

4.2 Transmission Speed

The MCU used in our system can run an internal clock speed of up to 480 MHz.
This allows us to use the full SPI transmission speed of up to 133MHz as master
[1, p. 193], which results in the fact, that we should be able to realize the aspired
100 MBit/s transmission speed mentioned in Sect. 3. However, it is still necessary
to extend the interface, as not all attributes specified are fulfilled by standard
SPI.
3 https://www.st.com/resource/en/datasheet/stm32h743bi.pdf.
4 https://tools.ietf.org/html/rfc5246.
5 https://tls.mbed.org/download.
6 https://savannah.nongnu.org/projects/lwip/.
7 https://www.freertos.org/index.html.

https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
https://tools.ietf.org/html/rfc5246
https://tls.mbed.org/download
https://savannah.nongnu.org/projects/lwip/
https://www.freertos.org/index.html

Inter MCU Communication Using Multimaster SPI 207

4.3 Necessary Connections of the Standard SPI

A standard serial peripheral interface has four lines to connect two communica-
tion partners. Those lines are the Clock (CLK), Master Out Slave In (MOSI),
Master In Slave Out (MISO) and Chip Select (CS - sometimes called Slave Select
(SS)). The last one is necessary when SPI is used as a bus system, where more
than two controllers span the communication network. This is not intended for
our project as we do only have two controllers. The resulting Point-To-Point
(PTP) connection makes this line unnecessary for our concept.

4.4 Equal Transmission Rights

Another special characteristic, which is used within our system, is the so called
unconventional Multimaster SPI. Using this setting, we do not have a distinct
master of the SPI bus, like it is described in Sect. 3. Instead, the master of the
communication is exchangeable to be always the transmitter of a message. At
the same time, the receiver of data always has to be the SPI slave. This idea
is visualized in Fig. 4. The advantage of this principle is an equal transmission
right for both controllers, in contrast to the one-sided transmission right with
normal SPI.

Fig. 4. Distribution of the SPI master attribute for the transmission of data

Simultaneously, when data is always transmitted by the master, there is
no need for the Master In Slave Out line, as data will always be put on the
Master Out Slave In line. This means, the only two connections necessary of
the standard SPI communication are the CLK and MOSI lines, which are both
controlled by the SPI master and read by the SPI slave. Using this method, the
two controllers are always in SPI slave mode, as long as they do not want to
transmit data themselves. If they again want to transmit a message, they switch
to master mode and write to the lines. The downside of this concept is that
there is no longer a Full-Duplex communication possible, as we do only have
one line left for data transmission. Furthermore, it needs a kind of flow control
to negotiate the transfer right for the prevention of a concurrent writing on the
lines.

208 M. Dentgen et al.

4.5 Flow Control

While two of the four original SPI lines were removed, additional lines for query-
ing and confirming the transmission right have to be added. These lines get the
names Request To Send (RTS) and Clear To Send (CTS), which are both imple-
mented as active low. As the names suggest, the RTS signal of one controller is
used to query the right for a transmission to the other controller. The second
controller can then allow a transmission via its CTS line. To fully enable this
functionality for both controllers, four pins are required, two inputs and two out-
puts each. The connection principle and line directions (input/output) is shown
in Fig. 5. The result of these pins is a flow control of the data sent between the
two controllers.

Fig. 5. Connection between the two controllers with additional RTS and CTS input
and output lines

Starting a Communication. The procedure depicted in Fig. 6 is required to
start a communication. Whenever there is no communication ongoing on the bus,
a controller can request a transmission to its communication partner by pulling
down its RTS output line. The request can be accepted by the communication
partner by simply pulling its own CTS output, which is connected to the CTS
input of the requesting controller, to low. This simple principle guarantees that
both controllers are set correctly for the next transmission. After this sequence,
the SPI master can initiate the transmission by generating a clock signal and
putting the corresponding bit sequence onto the MOSI line. At the same time,
the SPI slave will read a new bit for every rising edge on the clock pin. Both
communication partners do have the information that there is a transmission
ongoing due to the flow control mechanism and therefore no data can get lost
because of an concurrent write on the lines.

If the requested controller does not acknowledge the transmission with a pull
down of its CTS line, an error handling of the message transmission must occur.
This can for example be realized by pulling up the RTS line of the requesting

Inter MCU Communication Using Multimaster SPI 209

Fig. 6. Procedure for starting a communication

controller, with a following renewed pull down of the RTS line after a defined
timeout.

The amount of transmitted bytes in a single transmission has to be set
before the transfer itself. There are several ways to solve this task. We have
simply added a header with a fixed length, which is sent prior to every payload
data. With the constant amount of header bytes, both controllers can set their
transmitting/receiving hardware for the right amount of bytes. The header then
contains the amount of bytes which will be sent as data after the header block
itself. This technique allows both controllers to always have information about
the transmission size which is sent between them.

Fig. 7. Procedure for a finished communication

Finished Communication. A data transmission is finished or terminated with
the sequence shown in Fig. 7. As both communication partners know the amount
of sent bytes, the reading controller confirms the reception of the corresponding

210 M. Dentgen et al.

amount of bytes by pulling up its CTS line again. Following that, the send-
ing controller pulls up its RTS line to signal the finished transmission. On the
basis of this short sequence, both controllers are informed about the successful
transmission.

After this sequence, the transmission of a single data block is finished and
both controllers with all lines have reached their initial position. This means,
both are ready for a new transmission to be set up.

5 Validation

The first implementation of the introduced protocol of this paper is already
finished. We were able to connect two controllers using the multimaster SPI and
the additional pins described in Sect. 4. Since we currently do not have a single
PCB, to which the three controllers are attached, we are still working with patch
wires that connect several NUCLEO boards from STM8 with each other. This
is the reason for using a lower transmission speed of 1 MHz, to avoid damage to
the hardware by voltage overshoots on the lines.

Fig. 8. Extract of an exemplary communication. Communication Partner 1 pulls its
RTS line (orange) down to indicate a transmission request. Communication partner 2
replies to the request by pulling down its own CTS line (red) and with that accepting
the following transmission. Subsequently the data transmission of the header (6 bytes)
with the three 2-byte fields CRC, TYPE and LENGTH can be seen. The termination
of the transmission includes the pull up of the CTS line from communication partner
2 with a following pull up of the RTS line of communication partner 1. (Color figure
online)

Figure 8 shows the communication between our Point-To-Point connection
using a logic analyzer. The described sequence of the corresponding RTS and
CTS lines of the two controllers from Sect. 4 is well recognizable. In the figure

8 https://www.st.com/resource/en/data_brief/nucleo-h743zi.pdf.

https://www.st.com/resource/en/data_brief/nucleo-h743zi.pdf

Inter MCU Communication Using Multimaster SPI 211

we do see a transmission of the mentioned header, which is 6 bytes long in our
current implementation. The Header can easily be adapted to any other use
case by just changing a few code lines in the software. Our message header is
structured as follows. The first two bytes do include a to be implemented Cyclic
Redundancy Check (CRC) for our communication. Bytes 3 and 4 include the
message type. Those are adapted to the research project and in this case it means
that payload data will be sent within the next block. The last two bytes include
the data length of the following payload block. The sent data between the two
controllers was the simple string testing. Every single character is sent as byte
(ASCII) which results in the seven payload bytes depicted. The transmission of
the data block would include another flow-control scheme described in Sect. 4,
but this is not shown in the figure.

As we have not tested the higher transmission speed, this is just a proof-
of-concept. We plan on making several tests when the PCB with all controllers
is finished and ready to use. We will test especially, if we can actually reach
the aspired data throughput of 100 MBit/s. However, this will take even more
time for investigation and planning on testing and measuring methods and is
therefore postponed to a future publication.

6 Conclusion

This paper presents an extended SPI communication interface using multimaster
SPI, which was developed during a research project at the Technical University
of Applied Sciences in Regensburg. It establishes a Point-To-Point connection
of two MCUs, where both communication partners have a fully equal right to
write on the bus. To prevent the loss of data because of a concurrent write on the
lines, a flow control mechanism was implemented which allows the negotiation of
the write permission. A prototype of the concept was successfully implemented,
which constitutes the proof of concept. We believe that our prototype can be
adopted to many other fields in the embedded world. Detailed load and perfor-
mance tests are still missing, but will be presented and evaluated in a future
publication.

References

1. STM32H742xI/G STM32H743xI/G, 32-bit Arm®Cortex®-M7 480MHz MCUs,
up to 2MB Flash, up to 1MB RAM, 46 com. and analog interfaces, Rev. 7, April
2019. https://www.st.com/resource/en/datasheet/stm32h743bi.pdf. Accessed 12
Mar 2020

2. ElPROCUS: Overview on electronic communication protocols (2019). https://
www.elprocus.com/communication-protocols/. Accessed 13 Jan 2020

3. Maemunah, M., Riasetiawan, M.: The Architecture of Device Communication in
Internet of Things using inter-integrated circuit and serial peripheral interface
method. In: 2018 4th International Conference on Science and Technology, ICST,
pp. 1–4, August 2018. https://doi.org/10.1109/ICSTC.2018.8528663

https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
https://www.elprocus.com/communication-protocols/
https://www.elprocus.com/communication-protocols/
https://doi.org/10.1109/ICSTC.2018.8528663

212 M. Dentgen et al.

4. Niedermaier, M., Merli, D., Sigl, G.: A secure dual-MCU architecture for robust
communication of IIoT devices. In: 2019 8th Mediterranean Conference on Embed-
ded Computing, MECO, pp. 1–5, June 2019. https://doi.org/10.1109/MECO.2019.
8760188

5. Peng, D., Zhang, H., Li, H., Xia, F.: Development of the communication protocol
conversion equipment based on embedded multi-MCU and Mu-C/OS-II. In: 2010
International Conference on Measuring Technology and Mechatronics Automation,
vol. 2, pp. 15–18, March 2010. https://doi.org/10.1109/ICMTMA.2010.195

6. Solheim, T., Grannæs, M.: A comparison of serial interfaces on energy critical sys-
tems. In: 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP
International Symposium on System-on-Chip (SoC), pp. 1–4, October 2015.
https://doi.org/10.1109/NORCHIP.2015.7364373

7. Hill, S.C., Jelemensky, J., Heene, M.R.: US Patent 4816996: Queued serial periph-
eral interface for use in a data processing system, March 1989. http://www.
freepatentsonline.com/4816996.pdf. Accessed 13 Jan 2020

8. Szekacs, A., Szakaill, T., Hegykozi, Z.: Realising the SPI communication in a mul-
tiprocessor system. In: 2007 5th International Symposium on Intelligent Systems
and Informatics, pp. 213–216, August 2007. https://doi.org/10.1109/SISY.2007.
4342659

9. T. Frauenschläger, M. Dentgen, J. Mottok: Systemarchitektur eines Sicher-
heitsmoduls im Energiesektor, April 2020. https://www.haw-landshut.de/
fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/
ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-
Regensburg_Frauenschlaeger_ESI_2020.pdf. Accessed 12 Apr 2020

10. Tongsan, P., Piromsopa, K.: A software-defined inter-processor communication for
embedded system. In: 2016 13th International Joint Conference on Computer Sci-
ence and Software Engineering, JCSSE, pp. 1–6, July 2016. https://doi.org/10.
1109/JCSSE.2016.7748848

https://doi.org/10.1109/MECO.2019.8760188
https://doi.org/10.1109/MECO.2019.8760188
https://doi.org/10.1109/ICMTMA.2010.195
https://doi.org/10.1109/NORCHIP.2015.7364373
http://www.freepatentsonline.com/4816996.pdf
http://www.freepatentsonline.com/4816996.pdf
https://doi.org/10.1109/SISY.2007.4342659
https://doi.org/10.1109/SISY.2007.4342659
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://www.haw-landshut.de/fileadmin/Hochschule_Landshut_NEU/Ungeschuetzt/ITZ_Cluster_Forschung/ClusterMST/Symposium-ESI/2020/Tagungsbandbeitraege/A1-3_OTH-Regensburg_Frauenschlaeger_ESI_2020.pdf
https://doi.org/10.1109/JCSSE.2016.7748848
https://doi.org/10.1109/JCSSE.2016.7748848

Workshop on Computer Architectures
in Space (CompSpace)

On the Evaluation of SEU Effects on AXI
Interconnect Within AP-SoCs

Corrado De Sio, Sarah Azimi, and Luca Sterpone(&)

Politecnico di Torino, Turin, Italy
{corrado.desio,sarah.azimi,luca.sterpone}@polito.it

Abstract. G-Programmable System-on-Chips offering the union of a processor
system with a programmable hardware gave rise to applications that choose
hardware acceleration to offload and parallelize computationally demanding
tasks. Due to flexibility and performance they provide at low cost, these devices
are also appealing for several applications in avionics, aerospace and automotive
sectors, where reliability is the main concern. In particular, the interconnection
architecture, and especially the AXI Interconnection for FPGA-accelerated
applications, plays a critical role in these systems. This paper presents a relia-
bility analysis of the AXI Interconnect IP Core implemented on Zynq-7000
AP-SoC against SEUs in the configuration memory of the programmable logic.
The analysis has been conducted performing a fault injection campaign on the
specific section of the configuration memory implementing the IP Core under
test, which has been implemented within a benchmark design. The results are
analyzed and classified, highlighting the criticality of the AXI Interconnect IP
Core as a point of failure, especially for SEU-hardened hardware accelerator
relying on mitigation techniques based on fine-grained and coarse-grained
replication.

Keywords: AXI � Interconnecting � AP-SoC � FPGAs � SEUs � Fault injection

1 Introduction

In the last years, the advantages provided by the integration of a processor system and
other components such as memories and programmable hardware on a single chip have
become appealing for a wide range of applications within several domains. Especially,
the reduction of cost and developing time along with the increasing of integration and
flexibility is very interesting even in fields such as avionics, aerospace and automotive,
where reliability is the main concern [1–3]. In particular, All-Programmable-System-
on-Chips (AP-SoCs) combine on the same chip both a processor system and a Field
Programmable Gate Array (FPGA), commonly referred as programmable logic. This
architecture allows the designer to offload the processor system moving and paral-
lelizing on the programmable logic the computationally demanding tasks as well as
implementing customized hardware applications interacting with the processor and
the other modules of the chips. Moreover, the time to design is shortened by the reuse
of optimized IP blocks provided by vendors and third parties or developed through
High-Level Synthesis (HLS) tools (even almost transparently to the user) [4, 5].

© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 215–227, 2020.
https://doi.org/10.1007/978-3-030-52794-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_16

Typically, the IP blocks are connected to each other and/or with the processor through
an Advanced Microcontroller Bus Architecture (AMBA), mainly using an Advanced
eXtensible Interface (AXI). However, the benefits provided by the on-chip SRAM-
based FPGA come along with the reliability issues characterizing these devices. In
particular, Single Event Upsets (SEUs) are a dominant source of error for these devices.
SEUs can occur in the memory cells of FPGAs when they are exposed to ionizing
radiation typical of the space environment, inducing undesired bitflips in the content of
the memory cell struck by the ionized particle. However, the effect of SEUs are usually
not permanent even if they may produce error states and outputs in the application.
Though, when the corrupted memory cell belongs to the configuration memory of the
FPGA it can undermine the correctness of the implemented design causing semi-
permanent misbehaviors. Indeed, the behavior of the configurable hardware is defined
by a bitstream downloaded in the configuration memory of the device where it pro-
grams the basic programmable elements of the FPGA (i.e. LUTs, Flip-Flops, DSP, PIP,
etc.). Hence if the corrupted memory cell of the configuration layer was configuring a
critical resource of the implemented design, the fault will affect the application until the
configuration memory is rewritten with the correct content. To mitigate the SEUs
induced errors, several techniques have been proposed, such as periodic refresh of the
configuration memory to scrub accumulated faults (scrubbing) and replication of the
resources to detect and correct misbehavior (e.g. Dual Module Redundancy, Triple
Module redundancy).

In this work, we perform a reliability analysis of the AXI Interconnect IP Core by
Xilinx for connecting one or more AXI memory-mapped master devices or cores to one
or more memory-mapped slave devices or cores, usually used in the AP-SoC as
standard mean to interconnect the processor system and the IP cores implemented on
the programmable logic. At first, we proposed a benchmark design, subsequently
implemented on an AP-SoC Zynq7000, based on the hardware acceleration paradigm.
The reliability analysis is carried out through a fault injection campaign addressing the
specific section of the configuration memory related to the AXI Interconnect block
under test. The experimental results have been aggregated and analyzed to classify
produced errors. Finally, the criticality of the AXI Interconnect IP Core as a point of
failure even with the hardening of the hardware-accelerated core has been exposed in
the conclusion.

The paper is organized into six sections. Section 2 is dedicated to related works,
Sect. 3 reports the background of AP-SoC, reliability of programmable devices against
SEUs and the AXI Interconnection IP Core by Xilinx. Section 4 describes the evalu-
ation workflow, the design under test and fault injection platform. In Sect. 5, the
performed fault injection campaign is described, and the obtained results are reported,
classified and analyzed. To conclude, in Sect. 6, we discuss the results and future work.

2 Related Works

Related works focus mainly on the reliability of HLS generated IP Cores and their
interfaces. In [6, 7], the reliability evaluation of AXI Interfaces implemented using
Vivado HLS is reported. The authors evaluate the reliability of different versions of a

216 C. De Sio et al.

custom IP core characterized by different interfaces and hardened solutions against
multiple bit upsets. However, the adopted mitigation techniques are restricted to the
HLS core, leaving aside the AXI Interconnection IP Core and only one of the proposed
configurations implements a hardened AXI Interface (i.e. triplicated AXI-Stream
Interface). Even though the interface is triplicated, the AXI Interconnect IP Core is still
unhardened and not replicated. Most importantly, it is in common between the
instances of the replicated interface. Indeed, AXI Interconnect IP Core is usually used
also for mapping in memory of registers of initialization, status, and management of the
AXI-DMA IP Core, that manage direct memory access between the memory and
devices and cores implementing AXI4-Stream interfaces. The authors perform injec-
tions considering the AXI-DMA IP Cores and AXI Interconnect IP Core as a single
module, reporting that it is a weak link even after interface replication. In [8], the
authors perform analysis on the previously described configuration, reporting the same
trend for replicated interfaces connected to a single unhardened AXI Interconnect IP
Core.

3 Background

3.1 AP-SoC

The AP-SoC is an electronic device integrating a hard processor system and an FPGA
into the same chip. Figure 1 shows the general scheme of the Zynq-7000 AP-SoC
architecture. However, the block architecture of different AP-SoCs is very similar and
they differ mainly for the I/Os, the characteristics of the processor systems as well as
for the size and technology of the programmable logic. In this paper, we carry out our
experiments and analyses on the Zynq-7000 AP-SoC which consists of a dual-core
ARM Cortex-A9 processors and a 28 nm Series 7 programmable logic [9].

The presence of both processor system and programmable hardware enables the
possibility to easily combine software programmability with custom hardware accel-
eration. An FPGA, and so the integrated programmable logic of the AP-SoC, consists
of two layers named Application Layer and Configuration Layer. The Application
Layer is composed of the resources available to the user to implement the desired
hardware application. The resources are programmable logic elements, such as DSPs,
LUTs, flip-flops, and programmable routing elements, such as Programmable-
Interconnection-Points (PIPs). The logic functions of these resources and their inter-
connection are univocally defined by the content of the configuration memory. Indeed,
the programmable logic is programmed by downloading and storing a bitstream into
the configuration memory. The configuration memory is the main component of the
Configuration Layer. Different sections of the configuration memory configure different
sections and resources of the Application Layer. The bitstream can be generated by the
user using vendor tools starting from the netlist of a target circuit. Additionally, the rise
of HLS tools has made the development of core for hardware acceleration easier,
providing optimization and interface management through high-level directives [10].

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs 217

3.2 SEUs in FPGAs Configuration Memory

Single Event Effects (SEEs) are a phenomenon that can occur when the silicon of an
integrated circuit is hit by ionizing radiation and particles. The interaction between the
silicon of the integrated circuits and the particles can cause several effects in the device,
leading to displacement in the lattice of the material, transitory glitches of current, and
change the status of bistable elements. In particular, SEUs are one of the most dominant
SEEs [11, 12]. They are soft-errors caused by the change of the content of a memory
cell when it is struck by a charged particle and so affecting the device functionality for a
short period without undermining the device integrity. However, since FPGAs con-
figuration memory data are not usually rewritten during device execution, an SEU
corrupting a configuration memory cell will affect the application behavior permanently
until the next power cycle or reconfiguration. Figure 2 shows an example of how an
interconnection can be disabled by a bitflip in the configuration memory. In the figure,
a charged particle striking the memory cell generates an open fault in the intercon-
nection line that can be fixed only by rewriting the correct content in the configuration
memory.

In order to mitigate the effects on the application layer induced by the SEUs in the
configuration memory, several techniques have been proposed. In particular, SEU-
hardening design techniques for FPGAs involve either replication at the gate level
(fine-grained) or at the module level (coarse-grained) to detect and eventually correct
the errors [13].

AMBA

AMBA

INTEGRATED
MEMORY
MAPPED

PERIPERHALS

PROCESSOR
CORES ARM

A9

MEMORY CONTROLLERS

PROCESSING SYSTEM

PROGRAMMABLE LOGIC

AXI MASTER GENERAL
PURPOSE

AXI SLAVE GENERAL
PURPOSE

AXI SLAVE
H

IG
H

P
ERFO

RM
AN

CE

AXI ACCELERATOR
INTEGRITY PORT

Fig. 1. General overview of Zynq-7000 AP-SoC.

218 C. De Sio et al.

3.3 AMBA and AXI Interconnect IP Core

AMBA is a standard developed by ARM for the interconnection of blocks in a system-
on-chip. AMBA supports high-performance and high-frequency communication and
includes the specification for AXI4 interfaces. In particular, AXI4, AXI4-Stream, and
AXI4-Lite have been adopted by Xilinx for IP blocks interfacing and on-chip com-
munication [14]. Additionally, as previously illustrated in Fig. 1, AXI ports for general
purpose and high-performance communication, as well as the AMBA AXI intercon-
nect, are present on Xilinx AP-SoCs.

The AXI Interconnect IP Core is a logic core provided in the Xilinx IP catalog to be
implemented in the programmable logic [15]. It allows connecting AXI masters and
AXI slaves modules transparently to the user accordingly with the interface charac-
teristics of any IP block. The AXI Interconnect IP Core can be configured to support
various communication models (i.e. 1-to-N, N-to-1, N-to-M).

In this paper, we will focus on the 1-to-N interconnect model, typical of hardware-
accelerated systems architecture. In the 1-to-Nmodel, a single master is present and it can
access several memory-mapped slaves to use the AXI interconnection module. Figure 3
shows a schema of the 1-to-N communication model. Generally, in the hardware accel-
erator paradigm, the processor system acts as master, demanding computationally
expensive tasks to the hardware modules (slaves). The slave modules can perform dif-
ferent operations if different tasks need to be accelerated on the hardware or perform the
same operation on different data vector if a highly parallel computation is desired.

Fig. 3. Single master-multiple slaves AXI architecture.

Fig. 2. SEUs affecting the configuration memory section programming a switch matrix.

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs 219

Additionally, the architecture can be used to perform the same function on the same data
as mitigation techniques based on the replication, and compare obtained results from the
hardware modules to detect and eventually correct errors.

4 Evaluation Platform and Workflow

For analyzing the reliability of the AXI Interconnect IP Core, we developed a
benchmark design based on the hardware-accelerator paradigm. The hardware-
accelerator module has been replicated emulating a dual with comparison approach
for the detection of the misbehaviors in the programmable logic, with the detection
check implemented on the processor side. The fault injection campaign has been
carried out using a previously developed fault injection platform. The platform can
perform automatized fault injection campaigns on the sections of the configuration
memory related to the specific modules under test. Moreover, it provides insight into
the structure of the configuration memory under test. The platform runs on a host
computer connected to the AP-SoC managing of the generation of faulty configuration
bitstream as well as of the download in the configuration memory. The test routine
executing on the processor system stimulates the hardware accelerators with a ran-
domly generated test vector. The outputs are compared by the processor system with
the expected results and sent the execution report to the host computer. Then, the errors
are classified accordingly with their characteristics and patterns. In the following
subsections, the evaluation platform and the adopted workflow are reported in detail.

4.1 Benchmark Design

The benchmark design consists of a duplicated hardware accelerator connected to the
processor system through the AXI Interconnect IP Core. The hardware accelerator has
been developed using Vivado HLS. It computes a non-linear signature from four 32 bit
fixed-point parameters (22 bits for the integer part and 10 bit for the decimal part). The
custom IP core implements also an AXI4-Lite interface that provides access to six
memory-mapped registers, four for the inputs, one for the output, and a control register.
The architecture of the system under test is illustrated in Fig. 4.

PROCESSOR SYSTEM

PROGRAMMABLE LOGIC

AXI M GP

AXI Interconnect
IP Core

HW Accelerator
IP #1

AXI4- LITE

HW Accelerator
IP #1

AXI4- LITE

HOST COMPUTER

FAULT INJECTION
PLATFORM

JTAGUART

TEST
ROUTINE

AP-SOC ZYNQ-7000

Fig. 4. The overall scheme of the evaluation platform architecture.

220 C. De Sio et al.

The processor system is connected to two instances of the hardware accelerator by
the AXI Interconnect IP Core configured as single master-multiple slaves. Both the two
hardware accelerators as well as the AXI Interconnect IP Core are implemented in the
AP-SoC programmable hardware. Additionally, the AP-SoC is connected with a host
computer. The host computer can configure the FPGA using the JTAG interface and
can start the test routine running on the processor system through a serial connection
with the processor. On the same channel, it can receive the report generated by the test
routine.

4.2 Test Routine

The test routine running on the processor system consists of three parts: a preamble, a
body, and an epilogue. In the preamble, the routine initializes the software data
structures for using the hardware accelerator IPs and verify that they are in a correct
state. In the body, the routine stimulates alternately each hardware with 1000 different
inputs. For each input, it collects the result and verify its correctness or detects if the IP
under test hangs. In the epilogue, the routine reports the status of the IP cores to the
fault injection platform and signals the end of the test routine. During all the phases, the
processor system reports the status of the test routine and IP cores executions results to
the host computer which stores them for future analysis.

Fig. 5. Fault injection workflow.

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs 221

4.3 Fault Injection Workflow

An enhanced version of the fault injection platform presented in [16] has been used for
the fault injection campaign. PyXEL can interface with Vivado to retrieve the list of the
resources used for implementing a specific hierarchical cell (e.g. the AXI Intercon-
nect IP Core) and provide to the user the coordinates in terms of frames and bits where
they are programmed. Moreover, it allows generating a visual representation of the
content of the configuration memory facilitating the definition of the constraints for the
location of the injections. Using these features, it has been possible to limit the fault
injection coordinates to the configuration memory section implementing the specific
module under test. The platform runs on the host computer and manages the experi-
mental workflow. In detail, it controls the generation of the injection locations and
injected bitstreams, the download of the faulty bitstreams in the configuration memory,
the trigger of the test routine, and the collection of results. All the injections steps are
automated and executed by the platform without user interaction. A representation of
the described workflow is reported in Fig. 5

5 Experimental Analysis and Results

The reliability analysis of AXI Interconnect IP Core has been performed through a fault
injection campaign. The AXI Interconnect IP Core has been implemented in the pro-
grammable logic of a Zynq-7000 AP-SoC within a benchmark design based on the
hardware accelerator paradigm. Zynq-7000 AP-SoC integrates on the same chip a
Dual-core ARM Cortex-A9 and a 28 nm Xilinx Series 7 programmable logic. The
performed fault injection campaign emulates SEUs effect in the configuration memory
through bitflips in the bitstream. The amount of injection has been selected accordingly
with the target confidence and error margin. The coordinates of injection have been
chosen in order to affect only the AXI Interconnect IP core under test. Results are
reported in terms of overall error rate computed as the number of faulty bitstreams that
generated an error in one or more on-hardware computation out of the amount of faulty
bitstream tested. Additionally, incorrect behaviors of the design under test have been
classified in different categories accordingly to their effect on the system.

5.1 Fault Injection Campaign

To perform an analysis of the errors produced by emulating radiation-induced SEUs in
the configuration memory affecting the AXI Interconnect IP Core, a fault injection
campaign has been carried out. We singularly injected 10,000 bitflips in the configu-
ration memory section configuring the AXI Interconnect IP Core under evaluation. The
configuration memory section selected for injection consists of 338,446 bits and spans
over 196 frames belonging to a single clock region. Figure 6 shows the floorplanning
of the implemented benchmark design as shown by the Vivado device view. The
resources implementing the AXI Interconnect IP Core are represented in blue and
highlighted by a yellow square. In this paper, we will focus on the 1-to-N interconnect
model, typical of hardware-accelerated systems architecture. In the 1-to-N model, a

222 C. De Sio et al.

single master is present and it can access several memory-mapped slaves to use the
AXI interconnection module. Figure 3 shows a schema of the 1-to-N communication
model. Generally, in the hardware accelerator paradigm, the processor system acts as
master, demanding computationally expensive tasks to the hardware modules (slaves).
The slave modules can perform different operations if different tasks need to be
accelerated on the hardware or perform the same operation on different data vector if a
highly parallel computation is desired. Additionally, the architecture can be used to
perform the same function on the same data as mitigation techniques based on the
replication, and compare obtained results from the hardware modules to detect and
eventually correct errors. In the top-left corner is represented the processor system with
the hard interconnections. Similarly, Fig. 7 reports a subsection (from the frame 1800
to the frame 7400) of the configuration memory as shown by the fault injection plat-
form. The part to inject is highlighted by the yellow square.

Please notice that a single frame spans only over a single clock region and frames
belonging to the same clock region are sequential in the configuration bitstream and
accordingly in the configuration memory view produced by PyXEL. Though, the
sequence of clock region in the bitstream is out of order compared to the device view
exposed by Vivado. Therefore, blocks in Fig. 7 result displaced compared to their
position in Fig. 6.

Fig. 6. The Vivado view of the design, and the part selected for the injection (yellow square).
(Color figure online)

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs 223

Accordingly with (1), 10,000 injections allow to conservatively estimate with 0.01
of margin error (e) and 95% confidence level the probability that a bitflip in the injected
section of configuration memory can be a source of error for the system under test [17].

n ¼ N
1þ e2 � N� 1

t2 � p� 1� pð Þ
ð1Þ

In particular, n is the minimum number of injections needed to meet the target
margin of error e. N is the population size (i.e. the 338,446 injectable bits) and p is the
estimated probability of a fault to result in an error. We conservatively chose p = 0.5
which maximizes the value of n. The parameter t is the cut-off point corresponding to
the desired confidence level computed with respect to the Normal distribution. We
choose a 95% confidence level for which the value of t is 1.96.

The injection coordinates, in terms of frames and bit, have been independently and
randomly generated subsampling with replacement the section of the configuration
memory under test. The fault injection campaign required about 25 h to complete.

5.2 Analysis of Results

As a result 306 out of the 10,000 faulty bitstream have generated errors in the circuit.
The fault injection campaign showed an overall error rate of 3.06% with a 1% margin
error and a 95% confidence interval. Please notice that only a subset of the resources
related to the configuration memory section under test is used and consequently the
number of bits with value 1 is significantly lower than the number of bits with value 0.
Nonetheless, they are more likely to generate errors in the application when corrupted
[18]. In detail, only 10% of the injected faults were 1 to 0 bitflips but 18% generated
errors. Therefore about 50% of errors were generated by injections from 1 to 0 despite
the asymmetry in the subsampling. Table 1 reports a summary of the injections and
results they generated.

Fig. 7. A Section of the Configuration Memory view of the benchmark generated by PyXEL
and the subsection selected for the injection campaign (yellow square). (Color figure online)

224 C. De Sio et al.

5.3 Classification of Faulty Results

The results have been classified accordingly with the issue they produced in the system.
As reported in Table 2, more than 88% of errors provoked a failure of both the
hardware accelerators. Please notice that even if for clarity faults are classified
accordingly with the effect they generate on the communication with the hardware
accelerator cores, given the injection process previously reported, all the faults are
caused by a malfunction of the AXI Interconnect IP Core. In detail, in 49.35% of the
detected misbehaviors, both the hardware accelerator cores cannot be initialized cor-
rectly or stopped to work after few successful communications. In 32.68% of the cases,
both the hardware cores can be reached by the processor system but their computations
are faulty. In 4.90% of cases, only one core out of two can be reached by the test
routine but the results it returns are wrong. Only in the 11.76% of the faulty cases, we
have one of the two core behaving correctly, while the other does not respond to the
stimuli. The results are summarized in Table 2.

Additionally, it has been observed that when both the cores produce erroneous
computation, the returned values are the same. Therefore, it is impossible to detect the
fault without comparing them with the golden result even with the replication of the
hardware accelerator.

6 Conclusions and Future Works

In this paper, we evaluated the reliability of AXI Interconnect IP Core against SEUs.
The study has been carried out through a fault injection campaign in the configuration
memory of Zynq-7000 programmable logic. Errors have been classified accordingly

Table 1. Summary of SEUs injections and results

Injected fault Amount Generating errors

0-to-1 9155 (91.55%) 154 (1.6%)
1-to-0 845 (8.45%) 152 (17.9%)
Total 10 000 (100%) 306 (3.06%)

Table 2. Classification of system faults

Class Amount

Both HW cores hang 151 (49.35%)
Both HW cores fail 100 (32.68%)
Single HW core fails 36 (11.76%)
HW core fails + HW core hang 15 (4.90%)
Others 4 (1.31%)
Total 306 (100%)

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs 225

with their effect on the system and type. The analysis has shown as AXI Intercon-
nection IP Core can be a source of errors for architecture exploiting hardware accel-
eration. Additionally, it has been shown as errors generated in the interconnection core
can thwart mitigation techniques based on the replication of hardware modules. As
future work, the design of a hardened the AXI Interconnect IP core needs to be
performed to perform a comparative analysis

References

1. Flesch, G., Keymeulen, D., Dolman, D., Holyoake, C., McKee, D.: A system-on-chip
platform for earth and planetary laser spectrometers. In: 2017 IEEE Aerospace Conference,
Big Sky, MT, pp. 1–12 (2017)

2. Sabogal, S., George, A., Crum, G.: ReCoN: a reconfigurable CNN acceleration framework
for hybrid semantic segmentation on hybrid SoCs for space applications. In: 2019 IEEE
Space Computing Conference, SCC, Pasadena, CA, USA, pp. 41–52 (2019)

3. Shea, E., George, A.: OPIR video preprocessing and compression for on-board aerospace
computing. In: 2017 IEEE National Aerospace and Electronics Conference, NAECON,
Dayton, OH, pp. 142–148 (2017)

4. Vaidya, B., Surti, M., Vaghasiya, P., Bordiya, J., Jain, J.: Hardware acceleration of image
processing algorithms using Vivado high level synthesis tool. In: 2017 International
Conference on Intelligent Computing and Control Systems, ICICCS, Madurai, pp. 29–34
(2017)

5. Toft. J.K., Nannarelli, A.: Implementation of hardware accelerators on Zynq, Kgs. Lyngby:
Technical University of Denmark. DTU Compute-Technical Report-2016, No. 7 (2016)

6. Benevenuti, F., Kastensmidt, F.L.: Reliability evaluation on interfacing with AXI and AXI-S
on Xilinx Zynq-7000 AP-SoC. In: 2018 IEEE 19th Latin-American Test Symposium,
LATS, Sao Paulo, pp. 1–6 (2018)

7. dos Santos, A.F., Tambara, L.A., Benevenuti, F., Tonfat, J., Kastensmidt, F.L.:
Applying TMR in Hardware Accelerators Generated by High-Level Synthesis Design Flow
for Mitigating Multiple Bit Upsets in SRAM-Based FPGAs. In: Wong, S., Beck, A.C.,
Bertels, K., Carro, L. (eds.) ARC 2017. LNCS, vol. 10216, pp. 202–213. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56258-2_18

8. Benevenuti, F., Kastensmidt, F.L.: Analyzing AXI Streaming Interface for Hardware
Acceleration in AP-SoC Under Soft Errors. In: Voros, N., Huebner, M., Keramidas, G.,
Goehringer, D., Antonopoulos, C., Diniz, Pedro C. (eds.) ARC 2018. LNCS, vol. 10824,
pp. 243–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78890-6_20

9. Xilinx, Inc.: Zynq-7000 All Programmable SoC: Technical reference manual, San Jose, CA,
USA, User Guide, UG585, July 2018

10. Xilinx, Inc.: Vivado design suite user guide: high level synthesis, San Jose, CA, USA, User
Guide, UG902, December 2018

11. Quinn, H.: Radiation effects in reconfigurable FPGAs. Semicond. Sci. Technol. 32(4),
044001 (2017)

12. Du, B., et al.: Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA.
IEEE Trans. Nucl. Sci. 66(7), 1813–1819 (2019)

226 C. De Sio et al.

https://doi.org/10.1007/978-3-319-56258-2_18
https://doi.org/10.1007/978-3-319-78890-6_20

13. Siegle, F., Vladimirova, T., Ilstad, J., Emam, O.: Mitigation of radiation effects in SRAM-
Based FPGAs for space applications. ACM Comput. Surv. 47(2), 34 (2015). Article 37

14. Xilinx, Inc.: Vivado Design Suite: AXI Reference Guide, San Jose, CA, USA, User Guide,
UG1037, July 2017

15. Xilinx, Inc.: AXI Interconnect v2.1: LogiCORE IP Product Guide, San Jose, CA, USA,
Product Guide, PG059, December 2017

16. Bozzoli, L., De Sio, C., Sterpone, L., Bernardeschi, C.: PyXEL: an integrated environment
for the analysis of fault effects in SRAM-based FPGA routing. In: 2018 International
Symposium on Rapid System Prototyping, RSP, Torino, Italy (2018)

17. Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P.: Statistical fault injection: quantified
error and confidence. In: 2009 Design, Automation & Test in Europe Conference &
Exhibition, Nice, pp. 502–506 (2009)

18. De Sio, C., Azimi, S., Bozzoli, L., Du, B., Sterpone, L.: Radiation-induced single event
transient effects during the reconfiguration process of sram-based FPGAs. Microelectro.
Reliab. 100, 113342 (2019). ISSN 0026-2714

On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs 227

Satellite Onboard Data Reduction Using
a Risc-V Core Inside an RTG4-Based

Data Processing Pipeline

Gasper Skvarc Bozic(&), Thomas Unterlinner, Tanja Eraerds,
Sabine Ott, and Markus Plattner

Max Planck Institute for Extraterrestrial Physics,
Giessenbachstr. 1, 85748 Garching, Germany

gaskvarc@mpe.mpg.de

Abstract. The Wide Field Imager (WFI) is one of two scientific instruments
onboard the next generation European x-ray observatory ATHENA. It will orbit
Lagrange point L2 and send the acquired science data to a single ground station
with a downlink that is available for several hours once per day. The data rate of
the downlink is a bottleneck, which limits the amount of science data that can be
transferred.
Measurement data of the eRosita satellite which is in operation since mid of

2019 shows that a high radiation background generates parasitic sensor data that
adds to the science data. In order to remove the parasitic data from the science
data stream onboard, a Risc-V softcore processor implementation in the
RTG4 FGPA has been studied. Depending on the observation scenario, the data
rate is reduced by a factor of more than 50.
Within this article, we describe the WFI onboard processing architecture, the

sensor effects on space radiation and the hard- and software architecture of the
Risc-V softcore that can be implemented to reduce the data rate on board. Three
test cases are defined and executed to verify the performance of the data
reduction scheme.

Keywords: ATHENA � WFI � Risc-V � RTG4 � Real-time � Onboard
processing

1 Real-Time Data Processing Onboard ATHENA WFI

The Wide-Field-Imager (WFI) is one of two science instruments onboard the next gen-
eration x-ray space telescope ATHENA (Advanced Telescope for High ENergy Astro-
physics) [1]. Its camera system consists of four large and one fast sensor, sensitive in the
energy range from 0.2 eV up to 10 keV. The sensors are based on DEPFET (DEpleted
P-channel Field-Effect Transistor) technology, 2-dimensional arrays of 512 � 512
(large), and 64 � 64 (fast) pixels, respectively. The sensors are operated in parallel,
independent from each other, in rolling shutter mode. This means that 511 (63) rows are
active and record incoming x-ray photons while one row is readout. Since the detection
principle shall also resolve the energy of each incoming x-ray photon, the sensors have to
be read out at rates of more than 50 Mega-Pixel per second to avoid a pile-up.

© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 228–238, 2020.
https://doi.org/10.1007/978-3-030-52794-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_17

In order to achieve the pixel read-out rate, each sensor is read out with eight
channels operated in parallel. The eight data streams of one sensor are processed in
real-time parallel processing pipelines that are implemented inside a Microchip
RTG4 FPGA. The processing steps of each pipeline are:

• Offset correction: Every pixel has its individual offset value that is subtracted from
the current measurement value.

• Common Mode Correction: Variations in the read-out ASICs cause an offset value
common to all values of one read-out line. This offset is subtracted from all 64
pixels of one channel.

• Event and Pattern Filter: The pixel (energy) values are compared to thresholds that
span the valid energy range. Pixels within the valid range are flagged as “valid”. In
case several neighboring pixels show valid values, the pattern is analyzed [2].

• Event List Generator: Dependent on the operational mode, the valid events are
selected and spatial coordinates, as well as timestamps, are added to them.

All of these pipeline stages are based on pixel-wise data processing, i.e. each stage
executes operations on the data stream of its detector channel without dependency on
neighboring channels, see [3] for details. The output of the data processing pipeline is
an Event List that includes all event data of the frame, i.e. coordinates of an event (pixel
that was hit by x-ray photon), the energy (ADC value) and the time stamp (arrival time
of the x-ray photon sampled with the frame rate). The event list of a frame is stored in
an FPGA internal buffer (block RAM).

Pixel-wise Data Correc on

Memory
(holds pixel correc on values)

Event List

≈ 1.25 Mbit/s

Sensor data
≈ 734 Mbit/s

8 channels

Memory I/F ≈ 2.5 Gbit/s

Offset
Correc on

Common
Mode

Correc on

Event and
Pa ern

Filter

Event List
Generator

Sp
ac

eW
ire

In

te
rfa

ce

So core-based
MIP Correc on

Sequencer
Frame

Processor
Control Unit

Buffer

Frame
Processor

SoC

Detector
Control

Fig. 1. Block diagram of FPGA (red: real-time processing pipeline, blue: softcore). (Color
figure online)

Satellite Onboard Data Reduction Using a Risc-V Core 229

In addition to the real-time data processing pipeline, the FPGA accommodates

• a Sequencer block that generates all dynamic signals required for detector control in
rolling shutter mode

• a Frame Processor Control Unit based on a finite state machine
• a Risc-V softcore that processes the event list (see Sect. 3)

The downlink data rate for a given satellite is limited. On the other hand, we want
to transfers as much relevant science data to a ground station as possible. It is beneficial
if the system allows it to do some data processing on the satellite itself and thus reduce
the required downlink data rate. The described RTG4 FPGA processing pipeline
already significantly reduces the science data rate. However, since RTG4 FGPA pro-
vides a flexible implementation environment, we investigated if the science data rate
can be further reduced by implementing a Risc-V softcore for executing a Minimum
Ionizing Particles (MIPs) exclusion algorithm.

2 Science Data Disturbance by Ionizing Particles

In the ideal case of observation, the processing pipeline can be adjusted to all the
required observation scenarios. Additional events, however, are created in reality due to
radiation that is existing in the halo orbit around L2. The particles that cause such
events are called Minimum Ionizing Particles (MIPs) and include mainly protons.
Pixels directly hit by a MIP receive energies above the threshold of maximum energy
range and are removed within the data processing pipeline.

However, a MIP not only creates a direct detector hit but can also generate sec-
ondary radiation due to interaction with the structure surrounding the detector system.
These secondaries, in turn, create events that cannot be distinguished from valid events
generated by x-ray photons. Because of these effects, an additional processing step has
to be implemented that identifies events from the event list that are located within a
certain distance from a MIP event and remove them from the list. The area around the
MIP event that could contain secondary events caused by the MIP depends on several
parameters: MIP energy, incident angle, material (type and thickness) crossed by the
MIP, etc. Geant4 simulations are carried out, taking into account these characteristics
of incoming particles and the detector surroundings.

This simulation approach has been verified using data from the eRosita mission [4].
Although eRosita has a different type of sensor, the sensitivity regarding MIPs is
comparable. Measurement results obtained by the eRosita cameras in orbit around
Lagrange point L2 have been used for model correlation and yield an agreement within
10% between simulation and measurement results. Applying the same approach to
ATHENAWFI with an adapted simulation model yields an average rate of 2 MIP/cm2/s
and an average count of 10 pixels that are hit by one MIP directly. This results in an
average value of 0.41 MIP per frame of a large sensor and 10−4 MIP per frame of the fast
sensor.

230 G. Skvarc Bozic et al.

3 RISC-V Softcore Architecture and MIP Removal
Algorithm

As described in Sect. 1, the real-time data processing is implemented in FPGA-based
pipelines. Data from all pixels flow through the pipeline stages and additional infor-
mation based on the processing stages is added in the form of flags. At the end of the
pipeline, that Event List Generator selects the valid events and forwards them into an
FPGA internal buffer memory. This is the place, where the raw data has been reduced
by two to three orders of magnitude. Based on the nature of the task responsible for
identifying the events within the defined region of a MIP as described in Sect. 2, it
would be difficult to implement the required logic in the FPGA fabric. Therefore, a
softcore microprocessor is used to perform the required task.

3.1 Softcore Microprocessor Architecture

Figure 2 depicts the softcore microprocessor architecture where blue and green blocks
represent components implemented in the FPGA fabric. Whereas, red blocks represent
components external to the FPGA. Green blocks indicate fabric interfaces with the
physical world. The architecture is based on a 32-bit Risc-V CPU with a 32-bit AHB
internal interconnect. For the design presented in this paper a Risc-V soft IP core
(MiV_RV32IMA_L1_AHB) from Microsemi was used. This Risc-V soft IP core has a
separate bus for memory and memory-mapped peripherals. The memory bus is con-
nected to a DDR3 memory controller which interfaces the external DDR3 memory
where program data is stored.

Several different peripherals were implemented. The most important is the dual-port
SRAM with APB wrapper. This is the interface between the fabric parallel data
pipeline and softcore microprocessor as depicted in Fig. 1. Other peripherals such as
GPIO and UART are used for debugging purposes and provide an interface between
the microprocessor and a PC. All peripherals are connected via the APB bus and
through the AHB to APB bridge to the main interconnect. A second APB bus is used as
an interface between the CoreABC processor and the memory controller. The Cor-
eABC is a small co-processor used for external memory configuration and initializa-
tion. After power-up, certain configuration registers in the DDR3 external memory
have to be configured.

The softcore microprocessor implementation was designed for the RTG4 target
device with a system clock running at 50 MHz. The JTAG component included in the
architecture enables the programming of the microprocessor and advanced debugging
capabilities.

As an interface between fabric and microprocessor two options are possible. One is
the dual-port SRAM and the other is FIFO buffers. At this point, dual-port memory was
chosen as it simplifies testing. Currently, we do not have a dummy data generator that
could fill the FIFO buffer and mimic the parallel data pipeline, because the interface
between parallel data pipeline and softcore microprocessor is not yet completely
defined. With SRAM we can write the generated event list at the beginning of program
execution to the SRAM. The dual-port memory is connected to the APB peripheral bus

Satellite Onboard Data Reduction Using a Risc-V Core 231

for simplicity. In case the memory penalty is significant then the SRAM can be moved
directly to the AHB bus and improve the performance as long as the burst transfer
mode of the AHB bus is utilized.

3.2 Event List Structure

The input to the algorithm running on the Risc-V microprocessor is an Event List,
which is the output of the frame processing pipeline. Its structure is shown in Fig. 3.
For each frame, the Event List header is generated that contains the time stamp in the
form of the frame counter and additional housekeeping data e.g. threshold values used
in the pipeline stages. Each event is represented as one line that contains amongst
others the following data:

• Energy value (bits number 36 down to 23): The 14-bit output of the ADC represents
the energy of the pixel

• Line address (bits number 22 down to 14): The 9-bit value corresponds to line
number 0–511

• Pixel address (bits number 13 down to 5): The 9-bit value corresponds to the
column number 0–511

• Flags (bits number 4 down to 0): Information gained by the pipeline stages and
added to each event indicating, for example, the results of threshold comparison.

Figure 3 illustrates the event list and shows a frame. The blue dots represent pixels
illuminated with x-ray photons.

Fig. 2. Softcore microprocessor architecture with AHB internal interconnect. (Color fgure
online)

232 G. Skvarc Bozic et al.

3.3 MIP Pixel Exclusion

Since the input to the algorithm is already a reduced dataset in from of an Event List it
is not beneficial to reconstruct the frame in the microprocessor as this introduces
substantial memory penalty and usage. Therefore, the generated Event List is con-
sidered as data point dataset. Each MIP event is represented by multiple pixels where
each pixel corresponds to one data point in the generated Event List. When the Event
List is passed to the processor, the processor does not know which event pixels belong
to one MIP event even though this would be obvious if one would plot the data points.
Therefore, it is necessary to perform a clustering algorithm in order to identify different
MIP events and the number of them. However, because prior to clustering the number
of clusters is unknown a hierarchical clustering algorithm or some other form of non-
parametric clustering algorithm is needed.

The algorithm presented in this paper uses the DBSCAN clustering algorithm [5]
since it is a non-parametric density-based clustering algorithm and suits this application
well. Once all the clusters or rather MIP event groups (tracks) are identified it can be
determined if other events occurred within the MIP event region. In order to do this, the
region around each MIP event has to be defined. In our case, an elliptical exclusion area
around the MIP tracks was chosen. First, a centroid is calculated for each cluster and
other ellipse parameters based on mathematical equations presented in [6]. Based on
these parameters an ellipse border is computed and with it the region around the
MIP. Afterward, the non-flagged events can be checked if they fall into any of the
computed regions if they do, they are flagged which indicates that they belong to a MIP
event as explained in Sect. 2.

The algorithm depicted in Fig. 4 was first tested as a MATLAB script where one
can also visualize all the results and prove the algorithm correctness. After successful
test with MATLAB scripts the algorithm was rewritten in C to test it on the Risc-V
microprocessor.

Fig. 3. Event list format and example frame. (Color figure online)

Fig. 4. Secondaries detection algorithm flow diagram.

Satellite Onboard Data Reduction Using a Risc-V Core 233

Prior to described algorithm above, we used a simpler algorithm for detecting MIP
events. It is based on an insertion sort algorithm with time complexity of O(n2), which
is comparable to the worst-case time complexity O(n2) of the DBSCAN algorithm.
Based on the results from Tables 1 and 2 it was determined that an algorithm with time
complexity O(n2) is a feasible solution for our target application. However, the algo-
rithm based on insertion sort had a significant drawback as it could not distinguish
between two MIP events with either the same Line addresses (y coordinate) or the same
Pixel addresses (x coordinate). Therefore, a new algorithm for identifying MIP events
was needed.

As can later be seen from results in Sect. 4, the current C implementation of the
new algorithm is nowhere near required timing constraints. However, we are confident
that with optimized range query function we can achieve similar results as we did with
the insertion sort based algorithm, if not better.

4 Experimental Results

Three different scenarios have been tested for the new algorithm:

• Test 1 has been performed with a constant number of *50 events with an
increasing number of MIP events (with an average of 10 pixels per MIP).

• Test 2 always included 3 MIP events per frame and the number of events has
gradually been increased.

• Test 3 has been performed with a constant number of *50 events, a constant
number of MIP events (3 MIPs per frame), and an increasing number of pixels per
MIP event.

Table 1. Performance for processing one event list with one MIP event (insertion sort)

Number of events Flagged events Cycles Execution time [ms]

750 189 382500 7,65
500 113 256700 5,10
350 22 171100 3,42

Table 2. Performance for processing one event list with multiple MIP events (insertion sort)

Number of events Flagged events Cycles Execution time [ms]

780 206 515900 10,30
505 101 328100 6,97
350 22 202400 4,04

234 G. Skvarc Bozic et al.

Test 2 and test 3 demonstrate the timing complexity of the DBSCAN clustering
algorithm which is expected to be O(n2) in the worst case, result of using a linear
search. Algorithm is affected by the Event List growth and it does not matter which
number of events increases be it either MIP or regular events. However, test 2 has
worse performance as significant number of regular events introduces additional timing
penalty because of another linear search in the last block of the algorithm depicted in
Fig. 4.

It should be pointed out that these results can be affected by the size of a MIP
region since more events can fall into a region. However, this is only significant when a
large number of events are present in a frame, and more events need to be processed.
Moreover, for each test case, a random Event List was generated.

Figure 5 depicts the result from the measurement of the execution time of the
function executing algorithm as described in Fig. 4. The execution time linearly
increases with the increasing number of MIP events. The dotted trendline (linear
approximation) also confirms this behavior.

Figure 6 depicts the relation between the execution time and the increasing number
of events per frame. As seen by the dotted trendline the execution time follows an
O(n2) the worst-case timing complexity characteristic in the case of the DBSCAN
algorithm.

Fig. 5. Execution Time of the algorithm compared to the increasing number of MIP events per
frame

Satellite Onboard Data Reduction Using a Risc-V Core 235

Figure 7 depicts the measurement result when the number of pixels per MIP event
is increased. As seen by the dotted trendline the execution time follows an O(n2) the
worst-case timing complexity characteristic in the case of the DBSCAN algorithm.

Fig. 6. Execution Time of the algorithm compared to the increasing number of events per frame

Fig. 7. Execution Time of the algorithm compared to the increasing number of pixels per MIP

236 G. Skvarc Bozic et al.

Figure 8 depicts visual results from the algorithm described in Sect. 3.3. Generated
Event List is shown in the left figure where events are represented by blue dots.
Generated Event List is plotted in a 512 � 512 pixel frame in order to have a visual
representation of the sensor array. The figure on the right depicts detected MIP events
with their elliptic regions. The color of MIP events is not important and it is there just
to visually distinguish between different MIP events. Two sizes of ellipse regions are
shown, where smaller regions marked with the red color include fewer events from the
Event List as opposed to larger regions marked with blue color.

5 Conclusion

In this paper, a use case of a softcore microprocessor in space application was pre-
sented. In particular, a MIP pixel exclusion algorithm running on a Risc-V softcore
microprocessor as part of the WFI onboard processing architecture. The softcore
microprocessor architecture was based on a 32-bit Risc-V RV32IMA CPU with a 32-
bit AHB internal interconnect.

Two different approaches were tested for the MIP pixel exclusion algorithm. One
based on an insertion sort algorithm, which proved that algorithms with time com-
plexity O(n2) are a feasible solution for our application. However, it turned out it is not
suitable for all scenarios. Therefore, a second more robust algorithm concept based on
data clustering DBSCAN algorithm was presented. Its executions times were far off
from required timing constraints. The most significant drawback of the current
DBSCAN based algorithm is the range query function. Currently it is implemented as
naïve linear search of the Event List which results in saver timing penalty and thus
making the DBSCAN algorithm of timing complexity O(n2). Mover, another search for
elements is performed in the final stage of the new algorithm which introduces addi-
tional timing penalty.

Fig. 8. Visualization of the algorithm results described in Sect. 3.3. (Color figure online)

Satellite Onboard Data Reduction Using a Risc-V Core 237

Nevertheless, with DBSCAN having a worst-case time complexity of O(n2) we are
confident that with an optimized range query function based on r*-tree or kd-tree data
indexing structure we can achieve similar results, if not better, as with the insertion sort
based algorithm. With the use of data indexing structure the expected timing com-
plexity of DBSCAN is O(n * log(n)).

Our next steps are to write an optimized C code for the range query, run the test on
the Risc-V softcore microprocessor, and see if our speculations are correct.

References

1. Nandra K., et al.: The hot and energetic universe – a white paper presenting the science theme
motivating the ATHENA + Mission. http://www.the-athena-x-ray-observatory.eu

2. Schanz, T., et al.: A fast one-chip event-preprocessor and sequencer for the Simbol-X
LowEnergy detector. Nucl. Instrum. Methods Phys. Res. A 624, 392–395 (2010)

3. Plattner M., et al.: WFI electronics and on-board data processing. In: Proceedings SPIE 9905,
Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99052D, 11 July
2016. https://doi.org/10.1117/12.2235375

4. Meidinger, N., et al.: Development of the focal plane PNCCD camera system for the X-ray
space telescope eROSITA. Nucl. Instrum. Methods Phys. Res. A 624, 321–329 (2010)

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters. In: KDD-96 Proceedings, pp. 226–231. AAAI (1996)

6. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley
Publishing Company, Boston (1992)

238 G. Skvarc Bozic et al.

http://www.the-athena-x-ray-observatory.eu
https://doi.org/10.1117/12.2235375

Workshop on Parallel Systems and
Algorithms (PASA)

Accelerating Real-Time Applications
with Predictable Work-Stealing

Florian Fritz(B), Michael Schmid, and Jürgen Mottok

Laboratory for Safe and Secure Systems - LaS3,
Regensburg University of Applied Sciences, Regensburg, Germany

{florian2.fritz,michael3.schmid,juergen.mottok}@oth-regensburg.de

Abstract. Modern compute architectures often consist of multiple CPU
cores to achieve their performance, as physical properties put a limit on
the execution speed of a single processor. This trend is also visible in the
embedded and real-time domain, where programmers are forced to par-
allelize their software to keep deadlines. Additionally, embedded systems
rely increasingly on modular applications, that can easily be adapted to
different system loads and hardware configurations.

To parallelize applications under these dynamic conditions, often dis-
patching frameworks like Threading Building Blocks (TBB) are used
in the desktop and server segment. More recently, Embedded Multicore
Building Blocks (EMB2) was developed as a task-based programming
solution designed with the constraints of embedded systems in mind.

In this paper, we discuss how task-based programming fits such sys-
tems by analyzing scheduler implementation variants, with a focus on
classic work-stealing and the libraries TBB and EMB2. Based on the
state of the art we introduce a novel resource-trading concept that allows
static memory allocation in a work-stealing runtime holding strict space
and time bounds. We conduct benchmarks between an early prototype
of the concept, TBB and EMB2, showing that resource-trading does
not introduce additional runtime overheads, while unfortunately also not
improving on execution time variances.

Keywords: Real-time · Parallel programming · Work-stealing

1 Introduction

Modern processors rely on multiple cores and accelerating hardware to achieve
their performance, as the execution speed of a single processor is physically lim-
ited by heat output and power draw. Consequently, developers have to explic-
itly parallelize their applications to achieve faster execution. Doing this man-
ually can be tedious and error prone, therefore most industries have adopted
dispatching frameworks to help with this process. The key idea behind these
libraries is that programmers only declare how their work can be split up into
individual tasks, while the framework’s runtime schedules the work dynamically

c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 241–255, 2020.
https://doi.org/10.1007/978-3-030-52794-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_18

242 F. Fritz et al.

onto available system resources. Common examples are Intel’s Threading Build-
ing Blocks (TBB), Microsoft’s Parallel Patterns Library (PPL) and the Open
Multi-Processing (OpenMP) standard. While task-based programming is a de
facto standard in desktop applications and scientific computations, these frame-
works are still uncommon for embedded systems due to their highly dynamic
nature. A first contender entering this domain is Embedded Multicore Building
Blocks (EMB2), by specifically focusing on requirements like task priorities and
static-memory allocation.

In sight of these various implementation variants, we investigate how different
scheduling approaches and their concrete implementations affect their suitability
for high performance embedded systems. Specifically, we take interest in using
task-based programming to gradually parallelize individual real-time applica-
tions (Sect. 2). For this, we first recapitulate the commonly used work-stealing
algorithm [3], draw implications for the predictability on embedded devices and
discuss what challenges practical implementations face. As two examples, we
study the internals of TBB, a representative of modern desktop implementa-
tions, and EMB2, a contender specifically for the embedded space (Sect. 3). We
find that work-stealing fits our use-case from a theoretical standpoint, but no
implementation guarantees static memory usage and strict theoretical bounds.
Following this, we introduce a novel resource-trading algorithm that enables us
to implement a C++ work-stealing library with static memory allocation and
strict theoretical bounds (Sect. 4). Finally, we analyze how the three libraries
perform on an octa-core ARM system. We conduct tests on both an isolated
and multiprogrammed system using small problem sizes to evaluate how viable
the frameworks are for embedded real-time applications (Sect. 5).

2 System Model and Requirements Context

We consider the acceleration of applications executing on an operating sys-
tem (OS) scheduling threads onto a symmetric multicore processor using a real-
time schedule, e.g. preemptive fixed priority scheduling. Each application1 τi
periodically performs work by releasing a sequence of threads to be executed by
the OS. To be applicable for real-time and embedded use-cases, the applications
must guarantee predictable time and memory bounds, as unexpected deadline
misses are not acceptable.

Looking at a single application τi, we consider the process of gradually par-
allelizing it. For this a programmer can use the aforementioned dispatching
frameworks to introduce sections of task-based parallelism to speed up com-
pute intensive algorithms. This process breaks down the algorithms into a series
of individual tasks, resulting in a Directed Acyclic Graph (DAG) where vertices
denote computations and edges represent ordering constraints between them.
Figure 1 shows a small example DAG, further discussed in the following section.

1 Usually in real-time literature applications are referred to as tasks and threads are
called jobs, however, this conflicts with the notation in task-based programming.

Accelerating Real-Time Applications with Predictable Work-Stealing 243

The dispatching framework creates a pool of Pi worker threads within the
application τi to execute the tasks. A variety of techniques exist to schedule the
DAG cooperatively among this thread pool. A simple method is to distribute
the work statically. However, this can result in poor load balancing for irregular
workloads, or in multiprogrammed systems if single workers are preempted. On
the other hand, there exist a variety of dynamic dispatching algorithms which
aim to improve load balancing. Variations include, among others, list scheduling
(GNU OpenMP), work-sharing (EMB2) and work-stealing (TBB).

From the point of view of the OS, applications are therefore following a fork-
join structure. Each application starts with a single, main thread, until a parallel
algorithm is executed on a pool of Pi worker threads (fork). When the workers
have completed all tasks, the application joins back into a single serial thread.
The fork-join procedure can be repeated multiple times. This leads to a two level
scheduler: the OS preemptively schedules jobs onto physical processor cores, the
application internally executes tasks cooperatively on the worker threads.

3 State of Task-Based Programming

In theory, list schedulers provide optimal bounds for distributing task-based
programs. However, they suffer from memory contention in real implementations
which can lead to bad average case runtimes. Because of this, work-stealing
variants have prevailed instead. The idea is to associate each processor with its
own deque (double ended queue) in which tasks are pushed and popped locally as
long as the worker thread does not run out of tasks. The processor only interacts
with other deques when it has no more work, in which case it tries to steal work
from another processors deque.

Work-stealing therefore acts mostly decentralized, avoiding contention on
shared data structures like a central task queue. This makes it perform well
on modern microarchitectures, both in theory [3] and practice [2,10]. However,
implementation details can significantly affect memory usage and runtime prop-
erties of work-stealing frameworks. To assess the use of such libraries in real-
time systems, we first recapitulate the proven bounds of classic work-stealing
and discuss how it maps to practical libraries implementing it. Next, we analyze
the schedulers used in TBB and EMB2, to show where practical task-parallel
libraries are heading in general and in the embedded space.

3.1 Classic Work-Stealing

Blumofe proves the first good space and time bounds for fully strict compu-
tations [3]. Figure 1 shows part of a strict DAG with three potentially parallel
computation strands shaded in gray. Dotted edges are called spawn edges and
allow the control flow to diverge, curved edges are data dependencies between
strands of execution, enforcing ordering of tasks. Parallel strands form a parent-
child relationship, where a parent spawns a child. For a computation to be fully
strict, data dependency edges must only go from child to parent.

244 F. Fritz et al.

I IV

III

IIspawn dependency

Fig. 1. DAG of computation in classic
work-stealing

A

B C

D E F

A A

B

A

C

A

C

D

A

C

E

A

C

F

Fig. 2. Invocation tree (left) and resulting
call-stacks (right)

While at first seeming restrictive, strict computations are those that are intu-
itively well-formed, i.e. spawning a child strand corresponds to an asynchronous
subroutine call. Listing 1 shows an example program that could result in a DAG
similar to Fig. 1, spawning two potentially parallel sub procedure calls in lines 5
and 6, then synchronizing to wait for their completion in line 8. The API shown
in the example is known as nested fork-join parallelism [7] and implemented
in libraries like Cilk [5] and TBB [8]. Interpreting parallelism as asynchronous
subroutine calls allows us to view the execution as walking over an invocation
tree (Fig. 2), where a serial execution is a preorder walk of the tree and parallel
execution schedules walk the tree asynchronously2.

In the randomized work-stealing algorithm there are four main events when
worker threads interact with the scheduler and diverge from this serial execution
[3]: (1) spawning, i.e. pushing a task to the bottom of their local deque; (2)
enabling a blocked task, i.e. being the last predecessor in the DAG to finish; (3)
executing the last vertex in a string of execution; (4) stealing, i.e. running out
of local work and stealing uniformly at random from the top of other deques.

To analyze the time and space requirements of invocation trees under work-
stealing variants, three properties are of interest: (1) S1 is the space required for
a serial execution, which is the peak memory usage when run on a single thread.
In the invocation tree on the left side of Fig. 2, this corresponds to the deepest
stack on the right side (A, C, D); (2) T1 is the total work in the DAG and equals
execution time on a single thread; (3) T∞ is the critical, or longest path in the
DAG. It is equal to the execution time on unlimited workers, as the ordering
constraints of the critical path force it to execute serially.

2 Fork-Join parallel APIs and invocation trees hide details compared to fully-strict
DAGs and have not the same expressive power. However, we use them to simplify
our arguments and all proofs hold on the DAG, too.

Accelerating Real-Time Applications with Predictable Work-Stealing 245

Following the above rules and definitions, one can show that the active part
of the parallel invocation tree, i.e. all tasks that are executing, waiting for pre-
decessors or enqueued in a deque, have the busy-leaves property [3]: each leaf of
the active invocation tree has a processor working on it. When run on Pi worker
threads, at most Pi branches of the tree can be active, as each branch has a leaf
and therefore one of the processors working on it. Each branch uses a maximum
of S1 memory, leading to the space bound in Eq. (1).

SP ≤ S1Pi (1)

The proof leading to the time bound of randomized work-stealing uses a more
complicated delay sequence argument [3]. Intuitively, the proof shows that it is
very unlikely that there are many steal attempts without stealing a task that
makes progress on the critical path. The expected number of time steps used to
perform steals is T∞Pi. To finish a computation the steals T∞Pi and the work
T1 are added up and divided by the number of workers, leading to the expected
time bound in Eq. (2). Additionally, the execution time can be bounded to a
fixed value with a high probability. Similar bounds hold for multiprogrammed
environments [1].

TP = O(T1/Pi + T∞) (2)

A framework holding the busy-leaves property and the time bounds can there-
fore be practical for a soft real-time application requiring a bounded memory
footprint and a certain quality of service.

3.2 Work-Stealing Implementation Challenges

The main challenge for work-stealing implementations is to adapt the program-
ming language’s serial semantics to a parallel execution, as compiled languages
like C/C++ are designed with a stack based, linear execution in mind. For exam-
ple while work-stealing both D and F in Fig. 2 can execute concurrently, having
one thread observe the stack (A, C, D) and a second one observe (A, C, F) at
the same time. Building such a diverging stack is known as a cactus-stack in
language design. In order to keep time and space bounds, as well as stick close

246 F. Fritz et al.

to serial semantics, a work-stealing scheduler has to maintain a cactus-stack and
make sure that tasks are never blocked by the implementation. If for example
a thread executing Listing 1 encounters the sync (vertex I in Fig. 1) and has to
wait for children to complete (vertex II and III), it must make the rest of the
function (vertex IV) executable by another worker. Additionally, implementa-
tions must amortize their scheduling overheads against the work T1/P and span
T∞ of the computation, e.g. if the stealing process incurs overheads they must
be considered as a factor in the T∞ term.

To understand how implementations can approach this challenge, we present
some common variants found in frameworks below.

Heap Allocated Stack Frames – One solution to build a cactus-stack is to
allocate each function frame on the heap instead of the stack. This allows for non-
blocking execution and strict space bounds, as only the active stack frames of the
invocation tree are kept allocated and stacks are independent of worker threads.
Cilk [5] implements this principle and therefore holds both theoretical time and
space bounds. The drawback to this approach is that it requires compiler support
or exhaustive manual code transformations to adopt a heap-stack-frame calling
convention, making it less interoperable with existing software and incurring
overheads on every function call.

Execute on Worker Stacks – Another approach is to execute tasks directly on
the linear stacks of each worker thread. This method requires no special language
constructs, but problems occur when a synchronization point is reached. If a
thread reaches e.g. the sync() in line 8 of Listing 1 and has to wait for children
to finish, the function frame lies on top of the stack. To stay greedy, the worker
has to start stealing, but executing the stolen task directly on top of the worker’s
stack leads to two problems: (1) the stack can grow unbounded, as the worker
can pile up multiple stolen stacks, (2) the task waiting at the sync() is blocked
until all stolen tasks above have finished, as it is buried in the call stack.

This technique therefore violates both strict time and space bounds. To pre-
vent unbounded space usage sometimes restricted stealing approaches are
used, limiting work-stealing attempts to a subset of tasks. Examples for this are
leapfrogging [4,15] and depth-restricted stealing [8]. However, restricting steals
can potentially lead to near serial execution times [13].

One Stack per Steal – To keep the portability of execution on regular stacks
but not block in tasks, an option is to always execute a stolen task on a new
stack. This technique holds strict time bounds, but uses S1Nsteals memory pro-
portional to the number of active stolen tasks. As with restricted stealing, some
implementations like Cilk Plus limit the parallelism in favor of bounded mem-
ory usage, setting a fixed amount of stacks and stopping stealing if they are
exhausted.

Memory Mapped Cactus-Stack – This solution uses an OS modification
for thread local memory mapping, allowing the runtime system to give each
worker thread the illusion of having a linear stack [9], holding strict bounds.

Accelerating Real-Time Applications with Predictable Work-Stealing 247

The main drawbacks are frequent memory mappings and either OS support or
tricks around processes and virtual memory.

3.3 Case Study: TBB and EMB2

Looking at actual implementations of task-based programming, we first examine
TBB, the industry leading task-parallel library in C++. The framework offers
a low level fork-join task-parallel API, high level parallel patterns, concurrent
data-structures and includes an optional scalable memory allocator. Overall,
TBB’s goals are to achieve high throughput by offering a composable, portable
task-based API that does not require compiler support and can be gradually
incorporated to existing applications.

Internally, TBB [8,14] resembles mostly classic work-stealing for scheduling
tasks, with decentralized LiFo deques and randomized stealing. It uses a combi-
nation of the ‘execute on worker stacks’ and ‘heap allocated stack frames’ strat-
egy for task execution. When using the high level fork-join APIs that are easily
added to existing code (like in Listing 1), it executes the tasks on the worker
threads, loosing strict bounds. Alternatively, one can re-write code with explicit
task and continuation objects, manually building up a heap-allocated cactus-
stack. This looses normal call-stack semantics, but in return mostly keeps classic
bounds. The parallel patterns internally use this style for efficiency. In case a
worker stack becomes too deep, TBB stops stealing, restricting parallelism in
favor of application stability.

In contrast to this general purpose library, the EMB2 [12] task scheduler
specifically targets the embedded market. It is based on the Multicore Task Man-
agement API (MTAPI) [6] specification, an industry standard for lightweight
task scheduling on resource constrained embedded systems with heterogeneous
hardware. Specifically, EMB2 implements a MTAPI standard compliant task
scheduling environment in C, which can be used directly, but is also utilized by
parallel patterns offered by EMB2’s high level C++ API. The framework offers
support for acceleration hardware, supports core affinity as well as task pri-
orities and allocates all runtime resources exclusively during startup. Overall,
EMB2 offers a portable solution to dispatch tasks onto different components
of a resource constrained system, acting more like a ‘whole system scheduler’
similar to an OS and is not restricted to strict fork-join parallelism on the CPU.

Looking at EMB2’s scheduling and task management, we only discuss execu-
tion on the CPU. Each thread is associated with multiple FiFo queues for differ-
ent task priorities, with workers pulling tasks in either local-first or priority-first
order. Task execution uses the ‘run on workers stacks’ technique and tasks are
blocked in the stack while stolen tasks are executed above. Newly spawned tasks
are distributed to threads in a round robin fashion. The combination of work-
sharing and FiFo queues leads to a fair task execution, i.e. old tasks are executed
first, ensuring that no single task is buried in queues. This fits the ‘whole system
scheduler’ style of MTAPI, i.e. a system that continuously spawns mostly inde-
pendent tasks needing to finish in a timely manner. However, no formal bounds
can be provided and especially tree-like computations use much memory as the

248 F. Fritz et al.

schedule results in a breadth first execution of the invocation tree. To make
use of the static resource allocation, the programmer has to manually find the
maximum number of spawned tasks.

In summary, TBB sticks as close to classic work-stealing as possible, while
focusing on portability and average system throughput. When necessary, it
diverges from theoretical bounds in favor of a portable and simple implementa-
tion. This trend can be seen in most general purpose implementations. EMB2

in contrast offers a task-based API, similar to TBB, but tunes its scheduler for
fair task execution and offers specialized features like static resource allocation
at startup.

4 Work-Stealing with Static Memory Allocation

EMB2 shows that static, predictable resource usage and clean task-based paral-
lel APIs are in demand on embedded platforms. However, their fair scheduling
model is better suited for controlling the whole system rather than gradually
introducing parallel sections in individual applications. Classic work-stealing on
the other hand is a good fit for this purpose and can also ease the reasoning on
upper memory bounds. A combination of work-stealing and static memory allo-
cation at startup can therefore lead to predictable application behavior. Unfor-
tunately, modern frameworks like TBB intentionally hurt the tight bounds of
randomized work-stealing and make liberal use of a general purpose memory
allocator. On a desktop machine occasional usage of more memory or longer
execution times are well worth the trade-off. For an embedded system, in con-
trast, unpredictability can cause major issues.

To bring work-stealing closer to the embedded domain, we explore how a C++
library implementation can provide tight and predictable memory bounds while
also keeping the runtime properties of classic work-stealing and a natural fork-
join API. The core of the prototype – called Predictable Parallel Patterns Library
for Smart and Scalable Systems (P3LS3) – is a novel resource-trading scheme
that integrates memory management into the stealing procedure. This allows
the implementation to allocate all memory statically at startup, guaranteeing a
maximum application footprint after a single, serial measurement run.

4.1 Resource-Trading Algorithm

Existing implementations like Cilk and TBB allocate all resources used dur-
ing scheduling on the heap. This adds a multithreaded memory allocator as
an abstraction layer to be considered in a pessimistic analysis. The different
orders of allocation that can happen must be taken into account for exact mem-
ory requirements, as well as the sporadic work involved in balancing memory
between threads or requesting new pages from the OS.

To avoid this issue, the resource-trading algorithm incorporates the balancing
of memory into the stealing process. This amortizes the management overhead
into the T∞ term of the time bound and allows for a strict space bound. The

Accelerating Real-Time Applications with Predictable Work-Stealing 249

starting point is the maximum amount of resources RS a serial invocation tree
can allocate. Figure 3 shows RS exemplary as the dark shaded areas, indicating
the active part of the deepest invocation tree (we use RS instead of S1 to more
accurately describe our implementation later on).

A

B C

RS

RB

RS −RB

Fig. 3. Invocation tree with resource-trading

Resource-trading has the same linear growing bound RSPi as work-stealing.
Each worker thread is associated with RS resources at startup, with no additional
allocations during runtime. By proofing that a worker thread never runs out
of resources with this initial configuration, the bound RSPi follows trivially.
Specifically, we show that a thread always starts stealing with RS resources and
these are enough to run until returning to the stealing state.

A serial execution of the invocation tree has by definition enough resources,
therefore the interactions during the work-stealing algorithm are of interest. The
critical point where a thread loses resources of its initial RS pool are synchroniza-
tion points where another thread stole part of the work and is not yet finished.
Figure 3 shows this situation. The first, dark shaded thread eventually returns
from task B, requiring task C to be finished before continuing working on task A.
However, task C is currently being executed by the second, light shaded thread.
To not idle the first worker has to start stealing. Unfortunately, all resources
including A and upwards must be kept allocated, making the first thread lose
RB blocked resources.

To solve this, each thread trades in resources to compensate for potentially
blocked resources of another worker on a steal. In the example in Fig. 3 the
second thread trades RB of its initial RS resources to task A when stealing C.
This leaves the worker with RS −RB resources for the remaining invocation tree,
which are sufficient for executing it, as RS equals the longest branch. Following
this trade-in rule and the busy-leaves property, each task t with n active child
tasks has n − 1 traded resources associated with it. The first n − 1 children
finishing can not execute t, but can combine their free resources with one of the
traded in resources to enter the stealing state with the initial RS resources. The
last child finishing does not require spare resources, as it can continue working
on the parent task, freeing its resources when finishing it.

250 F. Fritz et al.

Following this simple trade-in rule, resources can be balanced between the
workers only on steal and synchronization events, leading to strict space bounds.
The trading affects the time bounds by adding the work to trade resources to
the steal procedure. When the work required for stealing is proportional to c∞,
the expected time bound in Eq. (3) follows.

TP = O(T1/Pi + c∞T∞) (3)

4.2 Prototype Implementation

In order to keep the busy-leaves property and strict time bounds, the prototype
must implement a cactus-stack and not block in threads. The system model
suggests that parallel sections are clearly defined and should be predictable in
resource usage, having the execution switch from a serial to a parallel section
explicitly. Figure 3 shows this with a switch from the serial stack (shaded) to the
parallel invocation tree at the top, dotted line. We decide to build a cactus stack
by executing each spawned task on a small stackful coroutine3, as spawns tend
to be dense in a parallel section, requiring only a small stack per task. Calls into
purely serial code that potentially uses more stack space are run on a separate,
bigger stack, as indicated with the bottom, dotted line in Fig. 3. By doing this,
P3LS3 holds strict theoretical bounds and implements the API in Listing 1.

The previous section on the resource-trading algorithm introduced abstract
resources RS that can be split and united at any point. However, memory can not
be split and united at will, as computers rely on continuous blocks of memory in
the virtual address space. Our first prototype therefore trades fixed size memory
blocks managed in a linked list, i.e. it trades the stackfull coroutines to execute
tasks. Each thread starts with D blocks equal to the deepest spawn depth and
trades are performed by slicing and concatenating parts of the lists. The time
c∞ to perform a steal is therefore c∞ = O(D).

The stealing procedure integrating resource-trading is implemented in a non-
blocking manner, thus holding bounds on a multiprogrammed environment [1].
During stealing, a flag is atomically updated from a thief to acquire a task,
similar to Wool [4]. The new value indicates both the stolen state of the task
and contains the traded in resources, making the action of stealing and trading
in resources atomic. Each task additionally holds a stack of currently traded in
resources, which is also used to implicitly synchronize as the last finishing child
encounters an empty resource stack.

During development the program must be executed once to measure the
maximum size of the coroutines and the computation depth D by triggering
the biggest possible invocation tree. These measured values are then used to
configure the scheduler, which during startup acquires the SP = O(Pi(S1 +
D)) memory required for the execution. This way of finding the static memory

3 The resource-trading algorithm can work with any other choice of cactus-stack and
non-blocking scheduler. We choose coroutines as we are interested in exploring a
pure library solution with a clean API.

Accelerating Real-Time Applications with Predictable Work-Stealing 251

footprint is very accessible for the developer, as it only depends on few metrics
and the model of an invocation tree is simple to reason about.

5 Performance Analysis

We evaluate the performance of P3LS3 by comparing it to TBB (2019, interface
version 11000) and EMB2 (v1.0.0). All benchmarks are executed on a Banana
Pi M3 as an example of a high performance embedded system. The board is
equipped with an A83T ARM SoC housing a Cortex-A7 octa-core processor
clocked at 1.6 GHz and runs the vendor supplied linux operating system, which
is based on the 3.4.39 smp preemp kernel. The benchmark applications are com-
piled with GCC v5.4 using optimization level -03.

We first analyze the scheduling overhead of the frameworks using the syn-
thetic load of unbalanced tree search [11], followed by an embarrassingly parallel
row wise matrix multiplication. Further benchmarks where conducted, but are
not shown for brevity. However, they all show the same trend as seen in the
following evaluation. Each benchmark is discussed in one of the following sub-
sections, with diagrams showing the resulting speedups and full execution time
distributions. The box plots indicate the 95th and 5th percentile execution times
with whiskers and all fliers are included.

All measurements are performed in both isolated and multiprogrammed sys-
tem conditions. Isolated tests are executed with minimal influences from other
processes running on the system, by isolating the benchmark processor cores
and using the round robin real-time scheduler. These isolated measurements
are most common in other benchmarks, and thus can be used for comparison.
To simulate a multiprogrammed system, we intentionally run one higher priority
process per CPU core, potentially preempting the currently running benchmark.
The processes are periodically performing work and memory access, resulting in
a measured per core utilization of an average 25%.

5.1 Unbalanced Tree Search

Unbalanced tree search [11] constructs and traverses a highly unbalanced tree
by calculating a hash value at each node. The benchmark spawns a task for each
node, resulting in very unpredictable load with many synchronization points,
revealing the frameworks scheduling overhead. For our test, we choose to spawn
an initial 140 nodes at the tree root and eight children with a probability of
q = 0.124875. This leads to a tree with about 71,000 nodes and therefore the
same amount of spawned tasks. We repeat each benchmark 50 times.

Figure 4a shows that TBB and P3LS3 both achieve a near identical speedup
in this test, while EMB2 can not accelerate the computation, even introducing
a significant slowdown at low core counts. This confirms the assumption that
decentralized work-stealing and its depth-first tree traversal is superior to the
work-sharing scheduler used in EMB2 for this kind of fine-grained, recursive
tasks. Turning to the time distributions in a multiprogrammed environment,

252 F. Fritz et al.

(a) average case speedups (b) multiprogrammed time distribution

Fig. 4. Results of the unbalanced tree search benchmarks.

shown in Fig. 4b, we can see generally low dispersion for TBB and P3LS3, close to
the serial measurements. EMB2 in contrast shows by far the biggest irregularity
in execution times. This trend is also visible in non synthetic divide and conquer
algorithms like a fast Fourier transform, although it is less pronounced.

5.2 Matrix Multiplication

We implement a row wise matrix multiplication as an example of an embarrass-
ingly parallel algorithm. Using the frameworks parallel for constructs, rows
are executed concurrently, making the libraries handle splitting up data and
load balancing internally. We choose a matrix size of 128 × 128 and repeat each
benchmark 5000 times.

The measured average speedups compared to the serial implementation are
shown in Fig. 5a. All three frameworks nearly reach the theoretical upper bound
of a perfect, linear speedup when being executed on an isolated system, with TBB
being the fastest by a slight margin. When looking at the multiprogrammed envi-
ronment, all frameworks show worse speedups. Interestingly, EMB2 slows down
more drastically than the other two frameworks on lower core counts, suggest-
ing problems with either load balancing or synchronization. Looking closer at
the time distributions in Fig. 5b, we notice a trend of more consistent execution
times with increasing thread count and observe that the libraries do not intro-
duce more variance than a serial execution, suggesting that the overall system
jitter by the higher priority workers dominates.

Accelerating Real-Time Applications with Predictable Work-Stealing 253

(a) average case speedups (b) multiprogrammed time distribution

Fig. 5. Results of the matrix multiplication benchmarks.

6 Conclusion

We analyzed how task-parallel programming and dispatching frameworks fit into
the embedded and real-time domain. We argue that classic work-stealing offers
good theoretical bounds and our tests verify that it leads to consistently fast exe-
cution times even on small problem sizes. Specifically, the benchmarks show that
EMB2 suffers from load balancing issues, while TBB and P3LS3 perform almost
equally well on all tests. This behavior results from P3LS3 and TBB using a lock-
free work-stealing scheduler, while EMB2 uses a mostly work-sharing implemen-
tation and therefore, find the former to be superior for parallelizing individual
applications. Furthermore, all benchmarks show that the use of work-stealing
frameworks does not increase the dispersion of the execution times compared to
a sequential execution. The uncertainty from randomized stealing is dominated
by other system effects.

Our remaining concern with existing dispatching frameworks is their liber-
ate use of dynamic memory management and occasional deviation from classic
work-stealing bounds in favor of mainstream usability. As embedded systems can
require static resource allocation, we implemented a prototype work-stealing
library in C++, offering both static memory allocation and strict theoretical
bounds. Our time measurements show that our early prototype P3LS3, imple-
menting the proposed resource-trading approach, can keep up with the industry
leading TBB. Unfortunately, P3LS3 can not improve execution time variances
compared to TBB, even though TBB implements blocking style work-stealing
and uses dynamic memory management. Under our current measurement con-
ditions, we can therefore not detect any sporadic, negative effect on execution
times resulting from dynamic memory allocations.

254 F. Fritz et al.

Currently, we focus on the performance of individual applications, in future
work we would like to investigate the behavior of multiple task-parallel applica-
tions running concurrently on a real-time OS. We would also like to refine our
measurements, by including memory usage and by looking at smaller problem
sizes. Lastly, we want to explore if resource-trading can be integrated into par-
allel patterns that require structured memory allocations, like e.g. divide and
conquer algorithms with temporary buffers.

References

1. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1998, Puerto Vallarta, Mexico,
pp. 119–129. ACM (1998). https://doi.org/10.1145/277651.277678

2. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes
for an irregular fast multipole method application. In: 13th International Workshop
on OpenMP, IWOMP 2017. LNCS, vol. 10468, pp. 92–106. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65578-9 7

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science, pp. 356–368, November 1994. https://doi.org/10.1109/SFCS.1994.365680

4. Faxen, K.: Efficient work stealing for fine grained parallelism. In: 39th International
Conference on Parallel Processing, pp. 313–322, September 2010. https://doi.org/
10.1109/ICPP.2010.39

5. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI 1998, Montreal, Que-
bec, Canada, pp. 212–223. ACM (1998). https://doi.org/10.1145/277650.277725

6. Gleim, U., Levy, M.: MTAPI: parallel programming for embedded multicore sys-
tems. Technical report (2013)

7. Halpern, P.: Strict fork-join parallelism. Technical report N3409, September 2012
8. Kukanov, A., Voss, M.J.: The foundations for scalable multi-core software in

Intel® threading building blocks. Intel Tech. J. 11, 309–322 (2007). https://doi.
org/10.1535/itj.1104.05

9. Lee, I.T.A., Boyd-Wickizer, S., Huang, Z., Leiserson, C.E.: Using memory map-
ping to support cactus stacks in work-stealing runtime systems. In: Proceedings
of the 19th International Conference on Parallel Architectures and Compilation
Techniques - PACT 2010. Vienna, Austria, p. 411. ACM Press (2010). https://doi.
org/10.1145/1854273.1854324

10. Li, J., Dinh, S., Kieselbach, K., Agrawal, K., Gill, C., Lu, C.: Randomized work
stealing for large scale soft real-time systems. In: IEEE Real-Time Systems Sym-
posium, RTSS, pp. 203–214, November 2016. https://doi.org/10.1109/RTSS.2016.
028

11. Olivier, S., et al.: UTS: an unbalanced tree search benchmark. In: International
Workshop on Languages and Compilers for Parallel Computing, LCPC 2006.
LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72521-3 18

12. Schuele, T.: Embedded multicore building blocks - parallel programming made
easy. In: Embedded World 2015 (2015)

https://doi.org/10.1145/277651.277678
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1109/ICPP.2010.39
https://doi.org/10.1109/ICPP.2010.39
https://doi.org/10.1145/277650.277725
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1109/RTSS.2016.028
https://doi.org/10.1109/RTSS.2016.028
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1007/978-3-540-72521-3_18

Accelerating Real-Time Applications with Predictable Work-Stealing 255

13. Sukha, J.: Brief announcement: a lower bound for depth-restricted work stealing.
In: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2009, Calgary, AB, Canada, pp. 124–126. ACM
(2009). https://doi.org/10.1145/1583991.1584025

14. Voss, M., Asenjo, R., Reinders, J.: Pro TBB. Apress, Berkeley (2019)
15. Wagner, D.B., Calder, B.G.: Leapfrogging: a portable technique for implementing

efficient futures. In: Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 1993, San Diego, Cali-
fornia, USA, pp. 208–217. ACM (1993). https://doi.org/10.1145/155332.155354

https://doi.org/10.1145/1583991.1584025
https://doi.org/10.1145/155332.155354

Author Index

Abbas, Mostafa 3
Altmeyer, Sebastian 97
Amslinger, Rico 97
Ascheid, Gerd 56
Azimi, Sarah 215

Becker, Thomas 17
Boubin, Jayson 32
Brinkschulte, Uwe 69
Burger, Alwyn 32

De Sio, Corrado 215
Dentgen, Manuel 200
Dörflinger, Alexander 44

El-Mahdy, Ahmed 3
Eraerds, Tanja 228
Eusse, Juan Fernando 56

Falk, Joachim 153
Frauenschläger, Tobias 185
Fried, Andreas 109
Fritz, Florian 241
Führ, Gereon 56

Glaß, Michael 153
Guan, Yejun 44

Haas, Florian 97
Hallawa, Ahmed 56
Herkersdorf, Andreas 109
Hochberger, Christian 124
Hutter, Eric 69

Imtiaz, Aneek 153

Kegreiß, Sascha 138

Leich, Thomas 82
Lenke, Oliver 109
Leupers, Rainer 56, 138

Meier, Hans 171
Merchant, Farhad 138
Michalik, Harald 44

Michalik, Sönke 44
Michalik, Sören 44
Mottok, Jürgen 185, 200, 241
Müller, Michael 82

Naghmouchi, Jamin 44
Niemetz, Michael 171
Nolte, Lars 109

Omar, Rasha 3
Ott, Sabine 228

Piatka, Christian 97
Pionteck, Thilo 82
Plattner, Markus 228

Reimann, Lennart M. 138
Reindl, Andrea 171
Renner, Sebastian 185, 200
Rheindt, Sven 109
Rohou, Erven 3

Saake, Gunter 82
Sabirov, Temur 109
Schiele, Gregor 32
Schmid, Michael 241
Schüle, Tobias 17
Schwarz, Alexander 124
Šišejković, Dominik 138
Skvarc Bozic, Gasper 228
Spinczyk, Olaf 82
Sterpone, Luca 215

Teich, Jürgen 153
Teubner, Jens 82
Twardzik, Tim 109

Ungerer, Theo 97
Unterlinner, Thomas 228
Urban, Patrick 32

Wang, Bo 153
Weis, Sebastian 97
Wild, Thomas 109

	Preface
	Organization
	Contents
	Main Concerence
	Approximate Data Dependence Profiling Based on Abstract Interval and Congruent Domains
	1 Introduction
	2 Related Work
	2.1 Static Analysis
	2.2 Dynamic Analysis

	3 Proposed Method Formulation
	3.1 Gathering Single-Trace Semantics Dynamically
	3.2 The Interval Domain
	3.3 The Congruence Domain

	4 Profiling Framework
	4.1 Pin Framework
	4.2 Conventional Profiling Technique
	4.3 Comprehensive Profiling Technique
	4.4 Abstract Profiling Technique
	4.5 Experimental Study

	5 Results
	6 Conclusions and Future Work
	References

	Evaluating Dynamic Task Scheduling with Priorities and Adaptive Aging in a Task-Based Runtime System
	1 Motivation
	2 Fundamentals and Problem Statement
	3 Embedded Multicore Building Blocks
	4 Dynamic Scheduling Algorithms
	4.1 EMB2 Extensions
	4.2 Immediate Mode Heuristics
	4.3 Batch Mode Heuristics
	4.4 Aging Mechanism

	5 Experiments
	5.1 Experimental Setup
	5.2 Independent Heterogeneous Jobs
	5.3 Parallel Applications

	6 Related Work
	7 Conclusion and Future Work
	References

	An Architecture for Solving the Eigenvalue Problem on Embedded FPGAs
	1 Introduction
	2 Related Work
	3 Solution Design
	4 Technical Implementation Contributions
	4.1 SGR Result Scaling
	4.2 Shared Division
	4.3 HDL Optimizations

	5 Evaluation
	5.1 Resource Utilization
	5.2 Throughput
	5.3 Estimated Power Usage

	6 Application Case Study
	7 Conclusion and Future Work
	References

	ECC Memory for Fault Tolerant RISC-V Processors
	1 Introduction
	2 Related Work
	3 Rocket and BOOM Processor Cores Within Chipyard
	4 Generic Error Correcting Memory Component
	4.1 ECC Memory Requirements
	4.2 ECCmem Component

	5 Evaluation
	6 Conclusion
	References

	3D Optimisation of Software Application Mappings on Heterogeneous MPSoCs
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Application Model
	3.2 MPSoC Model

	4 Multi-objective Optimisation
	4.1 Problem Definition
	4.2 Heuristic: MORAM

	5 Experimental Results
	5.1 Case Study: ODROID-XU3
	5.2 Case Study: HeMVP

	6 Conclusion
	References

	Towards a Priority-Based Task Distribution Strategy for an Artificial Hormone System
	1 Introduction
	2 Related Work
	3 The Artificial Hormone System
	4 A Priority-Based Task Decision Strategy
	4.1 Motivation
	4.2 Conception

	5 Worst-Case Analysis
	6 Overload Situations
	6.1 Task Dropping Strategy
	6.2 Average-Case Analysis

	7 Conclusion
	References

	He..ro DB: A Concept for Parallel Data Processing on Heterogeneous Hardware
	1 Introduction
	2 Related Work
	3 He..ro-DB Architecture
	3.1 Overview
	3.2 Layer 0: Resource Partitioning
	3.3 Layer 1: Task-Based Runtime System
	3.4 Layer 2: Data Processing

	4 Case Study
	4.1 Scenario
	4.2 Layer 2
	4.3 Layer 1
	4.4 Layer 0

	5 Discussion
	6 Prototype Performance
	7 Conclusions
	References

	Investigating Transactional Memory for High Performance Embedded Systems
	1 Introduction
	2 State of the Art
	3 Transaction Management Unit
	3.1 Hardware Integration
	3.2 Contention Management Strategies
	3.3 Unbounded Transactions

	4 Evaluation
	4.1 Simulation Methodology
	4.2 Baseline Transactional Memory System
	4.3 Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

	X-CEL: A Method to Estimate Near-Memory Acceleration Potential in Tile-Based MPSoCs
	1 Introduction
	2 Related Work
	3 X-CEL
	4 X-CEL Case Study
	4.1 Motivation for Near-Memory Graph Copy
	4.2 Prototype and Benchmark Setup of the Case Study
	4.3 X-CEL Applied to Near-Memory Graph Copy

	5 Evaluation
	6 Conclusion
	References

	Engineering an Optimized Instruction Set Architecture for AMIDAR Processors
	1 Introduction
	2 The AMIDAR Principle
	3 Design of the New ISA
	3.1 Motivation
	3.2 Requirements
	3.3 Basic Concept
	3.4 Code Generation
	3.5 Binary Format

	4 Challenges
	4.1 Duplicating Data
	4.2 Discarding Data
	4.3 Data Synchronization
	4.4 Target Resolution
	4.5 Instruction Scheduling

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Scaling Logic Locking Schemes to Multi-module Hardware Designs
	1 Introduction
	2 Preliminaries
	2.1 Logic Locking
	2.2 Logic Locking in the IC Design Flow

	3 The Inter-Lock Framework for Processor Cores: A Practical Approach
	3.1 Module Selection
	3.2 Module Preprocessing
	3.3 Inter-Locking
	3.4 Integration
	3.5 Testing and Verification

	4 Cost Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References

	Exploration of Power Domain Partitioning with Concurrent Task Mapping and Scheduling for Application-Specific Multi-core SoCs
	1 Introduction
	1.1 Motivating Example
	1.2 Contribution

	2 Related Work
	3 Overview of the Methodology
	4 ILP Formulation
	4.1 Objective Function
	4.2 Constraints

	5 Experimental Results
	5.1 Benchmark Applications from E3S
	5.2 Benchmarks Generated by TGFF
	5.3 Scalability Analysis

	6 Conclusion
	References

	FORMUS3IC Workshop
	Scalable, Decentralized Battery Management System Based on Self-organizing Nodes
	1 Introduction
	2 Battery Management System Topologies
	2.1 Centralized
	2.2 Modularized
	2.3 Distributed
	2.4 Decentralized
	2.5 Overview and Evaluation of the Battery Management System Topologies

	3 Decentralized Battery Management System Based on Self-Organizing Nodes
	3.1 Distributed Control
	3.2 Communication
	3.3 Suitability for Active Balancing
	3.4 Scalability and Integration
	3.5 Flexibility
	3.6 Fields of Application

	4 Conclusion
	5 Outlook
	References

	Security Improvements by Separating the Cryptographic Protocol from the Network Stack onto a Multi-MCU Architecture
	1 Introduction
	1.1 Contribution
	1.2 Structure

	2 Background
	2.1 Regulatory Context
	2.2 Attack Vectors

	3 Related Work
	4 Basic Concept
	5 Implementation
	5.1 Hardware Setup
	5.2 Communication Between the MCUs
	5.3 Software of the Crypto-MCU
	5.4 Software of the NW-MCU
	5.5 Software of the APP-MCU

	6 Concept for Validation
	7 Conclusion and Outlook
	References

	Equally Distributed Bus-Communication Access Rights for Inter MCU Communication Using Multimaster SPI
	1 Introduction
	1.1 Contribution
	1.2 Structure

	2 Related Work
	3 Protocol Design
	3.1 Abstracting the Problem to Two Controllers
	3.2 Communication Protocols
	3.3 Selected Communication Interface

	4 Implementation of the Communication
	4.1 Context of the Research Project
	4.2 Transmission Speed
	4.3 Necessary Connections of the Standard SPI
	4.4 Equal Transmission Rights
	4.5 Flow Control

	5 Validation
	6 Conclusion
	References

	Workshop on Computer Architectures in Space (CompSpace)
	On the Evaluation of SEU Effects on AXI Interconnect Within AP-SoCs
	Abstract
	1 Introduction
	2 Related Works
	3 Background
	3.1 AP-SoC
	3.2 SEUs in FPGAs Configuration Memory
	3.3 AMBA and AXI Interconnect IP Core

	4 Evaluation Platform and Workflow
	4.1 Benchmark Design
	4.2 Test Routine
	4.3 Fault Injection Workflow

	5 Experimental Analysis and Results
	5.1 Fault Injection Campaign
	5.2 Analysis of Results
	5.3 Classification of Faulty Results

	6 Conclusions and Future Works
	References

	Satellite Onboard Data Reduction Using a Risc-V Core Inside an RTG4-Based Data Processing Pipeline
	Abstract
	1 Real-Time Data Processing Onboard ATHENA WFI
	2 Science Data Disturbance by Ionizing Particles
	3 RISC-V Softcore Architecture and MIP Removal Algorithm
	3.1 Softcore Microprocessor Architecture
	3.2 Event List Structure
	3.3 MIP Pixel Exclusion

	4 Experimental Results
	5 Conclusion
	References

	Workshop on Parallel Systems and Algorithms (PASA)
	Accelerating Real-Time Applications with Predictable Work-Stealing
	1 Introduction
	2 System Model and Requirements Context
	3 State of Task-Based Programming
	3.1 Classic Work-Stealing
	3.2 Work-Stealing Implementation Challenges
	3.3 Case Study: TBB and EMB2

	4 Work-Stealing with Static Memory Allocation
	4.1 Resource-Trading Algorithm
	4.2 Prototype Implementation

	5 Performance Analysis
	5.1 Unbalanced Tree Search
	5.2 Matrix Multiplication

	6 Conclusion
	References

	Author Index

