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Abstract. Selective segmentation is an important aspect of image pro-
cessing. Being able to reliably segment a particular object in an image has
important applications particularly in medical imaging. Robust methods
can aid clinicians with diagnosis, surgical planning, etc. Many selective
segmentation algorithms use geometric constraints such as information
from the edges in order to determine where an object lies. It is still a
challenge where there is low contrast present between two objects, and
an edge is difficult to detect. Relying on purely edge constraints in this
case will fail. We aim to make use of area constraints in addition to edge
information in a segmentation model which is robustly capable of seg-
menting regions in an image even in the presence of low contrast, when
given suitable user input. In addition, we implement a deep learning algo-
rithm based on this model, allowing for a supervised, semi-supervised or
unsupervised approach, depending on data availability.
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1 Introduction

Image segmentation has many important applications in medical imaging, pro-
viding a tool for clinicians to assist with diagnosis, monitoring, surgical planning
etc. Variational methods have been well studied over the past few decades, the
first major contribution was by Mumford and Shah [12], who proposed a region
based method involving segmentation by approximating an input image. Another
important region based approach is the piecewise constant two-phase version of
the Mumford-Shah method by Chan and Vese [6]. A second approach for seg-
mentation are edge based methods, such as the active contour method proposed
by Kass et al. [10], which was further developed by Caselles et al. in the Geodesic

Work supported by UK EPSRC grant EP/N014499/1.

© Springer Nature Switzerland AG 2020
B. W. Papiez et al. (Eds.): MIUA 2020, CCIS 1248, pp. 93-104, 2020.
https://doi.org/10.1007/978-3-030-52791-4_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52791-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-52791-4_8

94 L. Burrows et al.

Active Contours model (GAC) [4]. These edge based approaches involve driving
an active contour from an initial point, aiming to segment an object by stopping
it at an edge, making use of an edge detector.

Although image segmentation is a widely studied subject, there exist many
open challenges. First, no models are yet capable to segment any given image
(i.e. without assumption of the underlying images and its quality). Second, few
models in particular aim for selective segmentation. Third, many variational
models are non-convex which make both the theory and algorithm challenging.
Fourth, many important applications cannot provide sufficient training data for
leaning models. This paper addresses the task of selective segmentation and
developing leaning algorithms that do not rely on a large training set of data.

Selective segmentation is of particular importance in medical imaging, as
often we are only interested in a particular object (or objects) of interest. Most
variational selective segmentation methods take a hybrid approach, combining
both region and edge based methods to impose geometrical constraints on a
particular region of interest. In 2005, Gout et al. [8] adopted the GAC model,
making use of some marker points M, typically input by the user, to indicate
the region of interest. This was further adapted by Badshah and Chen [1], who
added region information in the form of the contribution by Chan-Vese [6]. Rada
and Chen [14] introduced area constraints to the Badshah-Chen method in order
to increase reliability. The aim was to impose a constraint on the area of the
region inside the contour, by ensuring that the area was close to that of the area
of the region defined by the user.

In 2015, Spencer and Chen [18] introduced a model making use of the
Euclidean distance as a standalone term, giving more control over the distance
constraint by tuning the parameter in front. This method provides good results
however is dependent on the placement of M and sensitive to parameter selec-
tion. Most recently, Roberts and Chen [15] proposed to replace the Euclidean
distance with a Geodesic distance, which increases when an edge is detected,
providing a much more intuitive distance constraint for selective segmentation.

The Roberts-Chen model provides a robust framework to selectively seg-
ment objects, particularly where edges are well defined. It is still a difficult
challenge to segment an object where edges aren’t well defined and low contrast
is present. The authors in [15] provide a solution in the form of “antimarkers”,
which allow the user to indicate unwanted regions, but this requires more user
interaction, which we would prefer to minimise. An alternate approach is to use
edge enhancement ideas as in [3], however this is a time consuming preprocess.

In this work, we consider merging the Roberts-Chen model with the area
constraint idea from Rada and Chen in order to maximize the benefit of the
given marker set M and to reduce the reliance on just edge information. The
area constraint allows us to impose a penalty in the case that an edge is weak
or unable to be detected by the geodesic distance. In the original work from
Rada and Chen [14], they proposed a non-convex approach using level sets so a
global minimiser is not assumed. This paper (i) reformulates the Rada model to
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a relaxed version so that a proof of convexity can be given, and (ii) implements
a deep learning algorithm based on this new model.

2 Related Works

In this section we will review some related works. Let 2 C R? be a bounded
image domain, with image z defined on {2. We will focus on two-phase models,
so that our region of interest is denoted as {21, and the background is denoted
by 25 = 02\£2;. The task of these variational segmentation methods is to find
the contour I" which separates (21 and (2.

In the following we review the Rada-Chen model [14], which is based on the
framework of Chan-Vese [6]. This method makes use of a marker set M input by
the user. Formally, this is a set of n points defined as M = {x; € 2,i =1,...,n}.
The Rada-Chen model takes the following form:

min {Length(F) + /\1/
F,Cl,Cg -Ql

-|-g((/ﬂldx—Al)Q-l-(/QQCZX—Az)2>}7 (1)

where c¢; and ¢y are the average intensities of z inside and outside of I" respec-
tively, and A is the area of the polygon defined by M, and Ay =1 — A;.

In order to solve this, the level and set idea from [13] is used. In this way, we
can represent our contour I" in terms of a level set ¢ such that:

(z —c1)?dx + )\2/ (2 — co)?dx

£22

I'= {x € Qlplx) =0}
in(I') = {x € £[p(x) > 0} (2)
out(I) = {x € 2|¢(x) < 0}.

The Rada-Chen model reformulated in terms of a level set is given by:

min {/ g|VHE(<p)|dx—|—/\/(z—C1)2He(<P)+(2—02)2(1—He(90))dx
Q Q

+ 5(( [ o)t ) + ([ (0= He)ix - A2)2> JRCY

where we have set A = A\ = Ao, He(p) = 1(1 4 2 arctan(£)) is the regularised
Heaviside function, and g = ¢g(|Vz|) is an edge detector given by g(s) = m.

The final term of the Rada-Chen model enforces a penalty on the area inside
the contour I, so that the area inside I" has a similar area to A;. This encourages
the output of the model to be selective, however there is no location information
to put a penalty on the contour from evolving far away from M. A potential
result is that the output contour can be disconnected over the whole image
domain with the sum of its area similar to A;, but not necessarily close to M.
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In 2015, Spencer and Chen [18] introduced a stand-alone distance term mak-
ing use of the Euclidean distance, and also reformulating their model from a
non-convex version using Heavisides and level sets, to a convex-relaxed version
using the ideas from [5]. Later, Roberts and Chen [15] replaced the Euclidean
distance with Geodesic distance, so that their model is as follows:

min ul dx 270127 2702211 X
[ aivul s [ (=) = (= enpud

Uu,C1,C2
+ a/ v(u) dx+9/ Deu dx, (4)
2 o)

where v(u) is a penalty term to encourage the output u to be constraint between
[0,1]. D¢ is the Geodesic distance, which puts a penalty on regions away from
M.

The Geodesic distance from M was introduced in [15] and involves solving
the following Eikonal equation:

{VDG(X)| = e + Ba|V2(x)| + 06Dp, x€ 02 )

Dg(X)ZO, X eM,

where D is the Euclidean distance from M. This can be solved quickly using
fast marching [17], or fast sweeping [20] methods, for example.

The model using the Geodesic distance is robust to user input, and provides
excellent results for segmenting images in which the edges are well defined. A
single click for relatively simple objects will usually suffice, and in comparison
to other models, the geodesic distance requires less input usually. In [15], the
authors discuss potential problems such as noise in an image (it is suggested
that we smooth the image z before solving the system (5) and low contrast,
to which a solution is proposed involving using a second set of markers, called
anti-markers, to indicate unwanted regions and put an appropriate penalty on
them. While this can be a solution, this requires more user input.

Overall, the geodesic distance is a good penalty, however it can be tricky to
tune the smoothing appropriately to remove noise, but to also preserve sensitive
edges in regions of low contrast. Therefore, in the next section, we pair up the
area constraint from Rada-Chen [14] with the geodesic distance from Roberts-
Chen [15] to both restrict the segmentation result from evolving far from M,
and to also restrict it from evolving too much from the input area.

3 Proposed Model

In this section we propose a new model, which uses both the geodesic distance
and an area constraint, and minimises the following functional:

F(u):/Qg\Vu\dx—i-)\/Q((z—cl)z—(z—cQ)Q)udx+oz/ v(u)dx

9]

+§(/Qudx—z41)2+9/QDGUdX- (6)
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Our area constraint puts a penalty on the area of the region inside I'. This
is simpler, but equivalent to the area constraint in (3).
In the following we provide a proof that each term is convex.

F(u) =TVy(u) + f(u) +r(u) (7)
where TV, (u ng\Vu\dx fw) =X [,((z=c1)? = (2—c2)?)udx+0 [, Doudx+
o [, v(u)dx and r(u) (fQ udx — Al)z. It is known from [15,18] that f(u) is

convex, and an explicit proof can be found in [9] for the convexity of the T'V,(u)
term. Therefore we give a proof that the area constraint term is fully convex.
To prove convexity we consider ¢ € [0,1] to be a constant, and the following to
hold Vuq, uso:

qb/guldx—l—(l—qﬁ)/nugdx—Al)Q

=
(
< (¢/{2u1dx—A1)2+ ((1—¢)/{2U2dX—A1)2
¢
¢

2r(un) + (1= ¢)*r(uz)
r(ur) + (1 = @)r(uz).

Therefore, for fixed ¢; and ¢z, the model given in (6) is clearly fully convex,
thus a global minimizer is guaranteed and our output is not dependent on the
initialisation.

Numerical Algorithm
Minimising the functional (6) using the Euler-Lagrange equation with respect
to u yields the following system:

( Vu

ou
i R 0N — = N
g|Vu|) f=0,x¢€, 0, x € 012,

on

where f = /\<(z —c1)?— (2 — 62)2> + av'(u) + f(fn udx — Al) + 0D¢.
We use the gradient descent method to solve the above system, given by:

ou
o=V (GVu) - £,

where G = |V’;u‘. To solve this, an additive operator splitting (AOS) method
is used [11,19], which is an efficient, semi-implicit method, allowing for larger
time steps which still ensuring stability in the numerical scheme. To account for
the instability introduced by the penalty term v/(u), we use the improved AOS2
method introduced in [18].
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4 Deep Learning Algorithms

While numerically solving our model can provide accurate results, it can be
time consuming to solve. In addition to solving the model, we can implement
our method into a learning algorithm. We can take three separate approaches
to this: supervised, semi-supervised and unsupervised. Suppose we have N total
training images, and let uy (2, M) be the output of our network with weights W
and input z, with M defined as the polygon formed by M. In the following we
denote u) as uU) = uy (20, MG)).

1. Supervised Algorithm: Using a supervised approach, we can take our func-
tional and use it as a loss function. We can make use of ground truth labels
in the fidelity term as done in [7], as follows:

Z/ (J)|VU(J)|dX+)\/(( @) — )2 — () — 5)HuPdx

+§(/ u(j)dx—Agj) +9/ DGj)u(j)dx, (8)
2\ Jo Q

vl) are the ground truth labels, and ¢f and ¢5 are 1 and 0 respectively (as
v is 1 and 0 inside and outside I respectively.)

2. Unsupervised Algorithm: If ground truth labels aren’t available, we can
implement an unsupervised approach by using the image in the fidelity, as
done in the classical approach:

Lus(W Z/ 9P| Vu?|dx + /\/ (29 — D75y _ (0 D7y 0) gx
i §(/ uD dx — Agn n 9/ DY dx, )
2 2 2
17 (”HYs : o .
where ¢} and ¢y are fixed to be the average intensity inside and outside
M, defined as:

G)TS Jo 2OMO) dx G)US Jo 20 (1 —MU)dx
T M@dx % T [ (T MO)dx

3. Semi-supervised Algorithm: If ground truth labels are available for only
a select few, we can use a combination of the supervised and unsupervised:

. N 2 . i
Lss(W Z/ D vud)|dx + 2 (/ <J>dx—A§”) +0/Dg)u(ﬂ)dx
2
+ Z)\/ (09 =) = () — 5)H)uPDdx

+ Z /ZU 72 20— 972 ax (10)

Jj=N1+1
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where N7 is the number of ground truth labels available, and N is the total
number of images.

Architecture: The network architecture is outlined in Fig. 1. The network takes
in an image, z, of size 256 x 256 and a binary mask of the same size, which is
defined using the user input M. We use a U-Net [16] like structure, in which
convolutional layers are applied to both the image and mask separately down-
wards. At the bottleneck, we join the two separate paths together using a dot
product, and then have a single upward path, outputting a segmentation result
of the same size as the input. U-Net [16] is a popular architecture for semantic
segmentation, as it is able to extract both low level abstract information from the
initial layers, and high level abstract information from the final layers, resulting
in a fine and accurate prediction.

aseasen)

- >
LR TR | B

z q
: H

1z

=P 2 x(3x3 Convolution, BatchNorm, ReLU) EB» Max-Pooling & Dot product

—— Skip connection - Concatenate m» 1x1 Convolution, Sigmoid = Upsampling

Fig. 1. Structure of our network with two downward paths.

Dataset: We make use of the Liver Tumour Segmentation Benchmark (LiTS)
[2], which provides image data and ground truth labels for both the liver and
lesions on the liver. We focus on only segmenting the lesions for the application
of our algorithm. We used a total of 1552 images, resizing them to 256 x 256 and
using only slices in the database that contained a Liver tumour. We made use of
70%, 15%, 15% of the data in the training, validation and test sets respectively.

Our network requires an initial mask (the polygon formed by M), which for
the classical approach usually is gathered via a user clicking on the target object.
In order to save us from clicking on each image individually, we use the regions
defined in the ground truth and shrink them. These shrunk regions then define
our mask, which effectively simulates a user clicking on a small region inside
each object.
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5 Numerical Results

A A A4

(a) Input M. (b) R-C model. (c) Ours. (d) Ground truth.

(h) Ground truth.

(i) Input M. (j) R-C model. (k) Ours. (1) Ground truth.

Fig. 2. Results of some low contrast images solved in the variational setting (non DL).
Clearly for objects of low contrast, our method provides an improvement over the R-C
model, as the R-C model is unable to detect an edge.

We begin by looking at some results from the model solved in the variational set-
ting, and aim to compare our method against the Roberts-Chen (R-C) method
[15]. Figure2 shows three examples. The first is a synthetic image to clearly
demonstrate the advantages of ours over R-C. The triangle in the middle selected
by M has intensity 0, whereas the intensity to the left has intensity roughly 0.05.
The geodesic distance alone is unable to put a penalty on the left triangle, thus
the R-C method fails to segment the selected triangle. With area constraints
introduced, our method clearly is an improvement, able to segment the middle
triangle.

The middle and bottom row of Fig. 2 show medical examples of an aneurysm
of the abdominal aorta. The data was acquired from the Royal Liverpool Hos-
pital and ground truth labels were provided for comparison. Segmenting the
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abdominal aorta is challenging due to regions of low contrast, as objects touching
the aorta often have similar intensity. It is clear to see our method successfully
prevents the segmentation result from leaking onto nearby objects of similar
intensity.

We now examine results from the DL setting, moving focus to the previously
discussed LiTS dataset. Figure 3 show some results of the LiTS dataset using our
model from a variety of different approaches, namely: classically solving as dis-
cussed in Sect. 3, deep learning approaches in the unsupervised, semi-supervised
and supervised settings. We also present a table of quantitative results in Table 1,
which shows the time and associated DICE score for each example and each
method of solving. We see from the table that while the variational method of
solving provides good results, it is both time consuming to solve and tune suit-
able parameters. The deep learning approaches provide an exponentially faster
method of solving and offer better results in the supervised and semi-supervised
setting.

Table 1. Quantitative results from the examples shown in Fig. 3.

Variational | Unsupervised | Semi-supervised | Supervised
Time (s) | 27.84 0.33 0.42 0.29
DICE 0.886 0.846 0.976 0.997
Time (s) | 13.52 0.30 0.34 0.38
DICE 0.638 0.562 0.881 0.790
Time (s) | 80.59 0.33 0.33 0.36
DICE 0.906 0.855 0.985 0.997
Time (s) | 73.80 0.29 0.33 0.29
DICE 0.919 0.739 0.979 0.977

Table 2 shows the mean and standard deviation DICE score from the entire
test set, for each of the approaches plus two common other approaches. We
compare with a standard U-Net, one of which uses DICE in the loss, the other
uses binary crossentropy - two popular losses for semantic segmentation. We see
that using our adjusted architecture and loss provides improved results from the
standard approaches.

It is clear to see that the supervised algorithm provides the best results for
the segmentation of lesions, and therefore is the algorithm we recommend if
ground truth labels are available. As acquiring ground truth labels by experts
is often difficult, our unsupervised (or semi-supervised if limited ground truth is
available) algorithm is sufficient at producing good results.
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(p) Classical (q) Unsupervised (r) Semi-S (S) Supervised (t) Grouth truth

Fig. 3. A collection of results using our test data from the LiTS dataset. We have
the variational model solved using AOS2 on the far left, the next column shows the
output of our unsupervised model, the middle column shows the semi-supervised (semi-
s) model, fourth column shows results from our fully supervised model, and the final
column shows the ground truth labels.

Table 2. Quantitative results from the whole of the test set, showing the mean and
standard deviation of DICE score.

Unsupervised | Semi-sup | Supervised | U-Net (DICE) | U-Net (Cross-entr.)
Mean 0.671 0.851 0.876 0.552 0.530
Std Deviation | 0.305 0.198 0.219 0.347 0.340

6 Conclusion

We have presented a fully convex model for selective segmentation, which is
effective when identifying regions of interest in which low contrast is present.
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We have shown how to solve it in the classical variational setting and also pre-
sented a deep learning version, in which we use the functional in the loss function
of a network. The deep learning approach can be implemented in either a super-
vised, unsupervised or semi-supervised setting, allowing for flexibility in the case
of no or some available ground truth labels. All three implementations are use-
ful, depending on data availability. In addition, we have demonstrated how our
variational model outperforms previous models, particularly for images of low
contrast.
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