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Abstract. This paper shows that deep modelling of subtle changes of
cardiac motion can help in automated diagnosis of early onset of cardiac
disease. In this paper, we model left ventricular (LV) cardiac motion in
MRI sequences, based on a hybrid spatio-temporal network. Temporal
data over long time periods is used as inputs to the model and delivers
a dense displacement field (DDF) for regional analysis of LV function.
A segmentation mask of the end-diastole (ED) frame is deformed by
the predicted DDF from which regional analysis of LV function endo-
cardial radius, thickness, circumferential strain (Ecc) and radial strain
(Err) are estimated. Cardiac motion is estimated over MR cine loops.
We compare the proposed technique to two other deep learning-based
approaches and show that the proposed approach achieves promising
predicted DDFs. Predicted DDFs are estimated on imaging data from
healthy volunteers and patients with primary pulmonary hypertension
from the UK Biobank. Experiments demonstrate that the proposed
methods perform well in obtaining estimates of endocardial radii as car-
diac motion-characteristic features for regional LV analysis.

Keywords: Cardiac MRI sequences · Cardiac motion · U-Net ·
Convolutional LSTM · Dense displacement field · Left ventricular
function

1 Introduction

Magnetic resonance imaging (MRI) is widely used to assess cardiac function for
cardiovascular disease diagnosis. Cardiac motion estimation highlights regional
deformation of the myocardium, which is related to the severity of cardiovascular
disease. Cardiac motion can be determined from the displacement field in MRI.
Moreover, cardiac motion estimation can be regarded as an image registration
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problem. Shen et al. [8] proposed a spatio-temporal 4D deformable registration
method for cardiac motion estimation in MR image sequences. De Craene et al.
[3] estimated motion and strain in 3D echocardiography by finding the 4D veloc-
ity field with spatio-temporal B-Spline kernels.

In recent years, deep learning-based methods have achieved promising results
for deformable registration-based motion characterization. Zheng et al. [10] esti-
mated cardiac motion using a variant of U-Net [7] with a semi-supervised learn-
ing strategy. Qin et al. [6] suggested a Siamese style recurrent spatial transformer
network for cardiac motion estimation, to guide cardiac segmentation. Both of
these works required expert manual segmentation of the left ventricle.

A major challenge is to estimate the effect of cardiac functional changes via
automated cardiac motion analysis. The early onset of symptoms already causes
an increased strain on the heart, but the strain-related changes are not always
easy to see by eye until more significant cardiac structural changes occur. Motion-
characteristic features, such as time series of the endocardial radius, thickness,
circumferential strain (Ecc) and radial strain (Err) are related to cardiac disease
and they are easy to explain as characteristics of pathological cardiac motion.
Motion analysis is therefore also useful for early stage characterization of disease.

In this paper, we propose a deep learning-based architecture with a self-
supervised strategy to characterise the spatio-temporal patterns of left ventric-
ular (LV) cardiac motion in cardiac MR cine loops for improving the character-
ization of heart conditions. We compare the proposed method with two other
state-of-the-art methods. Specifically, we extract motion-characteristic features
and time series of the endocardial radius, thickness, Ecc and Err, based on the
output dense displacement field (DDF) of the proposed method, and compare
these features between a healthy group and a primary pulmonary hypertension
(PPH) pathological group.

Contributions. The contributions of this work are as follows. (1) To our knowl-
edge, this is the first attempt to exploit 2D + t spatio-temporal patterns with
convolutional Long Short-Term Memory (ConvLSTM) in LV cardiac motion
with a self-supervised strategy. (2) The predicted DDF of this method can be
used to determine motion-characteristic features, namely a time series of the
endocardial radius, thickness, Ecc and Err. These features are able to charac-
terize different cardiac motion in health and pathologies. (3) We demonstrate
that spatio-temporal patterns achieve better performance than the spatial-only
pattern for cardiac motion estimation and regional analysis of LV function.

2 Spatio-Temporal Network

In this paper, cardiac motion estimation is considered as an image registration
problem. The goal then becomes to estimate the spatial transformation of each
point in the cardiac structure over the whole cardiac cycle. Let {It}t=0,1,2,...,N

indicate the cardiac MR cine loop frames, where N is the total number of frames.
Each pixel-wise point x0 from the end-diastole (ED) frame I0 corresponds to a
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Fig. 1. Network Overview. A sequence of image pairs {(I0, It)}t=1,2,3,...,n is given as
input to the U-Net convolutional network. The output of the U-Net, an initial dense
displacement field (DDF), is fed to the convolutional LSTMs (ConvLSTM) to update
the hidden states. The final output (predicted DDF) is used in subsequent analysis.



Going Deeper into Cardiac Motion to Model Fine Spatio-Temporal Features 297

certain point xt at the time frame t. In image registration, It(xt) and I0(T (x0))
denote the pixel value at same physical location. The spatial transformation T
is represented by a DDF, described as ut where ut(x0) = xt − x0.

We model a function gθ(I0, It) = ut using a deep learning architecture, where
θ are the optimal parameters of the architecture that can be trained by opti-
mising a function that considers the similarity of the source-target image pair
(I0, It) and a spatio-temporal smoothness constraint. We estimate the motion
from the ED frame I0 to all other time frames It, and generate a new image
sequence {I

′
t}t=0,1,2,...,N . The complete pipeline of the proposed architecture is

presented in Fig. 1, and is described in Sect. 2.1.

2.1 Network Architecture

Our deep learning architecture is a combination of a fully convolutional network
(FCN) and a recurrent neural network (RNN). We describe the function of the
FCN and RNN as follows.

U-Net. The FCN component explores the spatial information in each 2D
slice (intra-slice information). U-Net [7] is employed due to its well-known
ability to represent image features for biomedical image segmentation. It con-
sists of encoder and decoder parts with skip connections. The U-Net detail is
shown in the middle part of Fig. 1. A sequence of source-target image pairs
{(I0, It)}t=1,2,3,...,N is input to the U-Net convolutional network. The image pair
is concatenated into a 2-channel 2D image. The encoder uses blocks of the 2D
convolutional layers (3 × 3 kernel size), 2D batch normalization, rectified linear
unit (ReLu) and 2D max pooling layer (2 × 2 window size). The decoder uses
blocks of the transposed 2D convolutional layers (2 × 2 kernel size), 2D batch
normalization and ReLu. The output of the U-Net is an initial dense displace-
ment field (DDF), which is fed to initialise the LSTM to update the hidden
states.

Convolutional LSTMs. The RNN component learns temporal relationships
along the timeline (inter-slice information). We stack multiple convolutional
LSTMs (ConvLSTM) [9], in order to increase the likelihood of detecting long-
term dependencies of the cardiac motion over the cardiac cycle. We ran our
architecture with different numbers of layers and kernel sizes in the ConvLSTM.
Based on the validation performance, we stack 2 ConvLSTM layers with a 3-
pixel kernel size in each layer. The number of input channels and the number of
hidden channels of the ConvLSTM are each 2, where information in one channel
represents the displacement in the x direction and in the other represents the
displacement in the y direction.

The ConvLSTM can learn which information to keep in the long-term state,
which information to drop, and which information to read. We present the details
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of the LSTM in Fig. 1. Let the current input be XT , and the previous hidden
state is HT−1. Then,

IT = σ(WXI ∗ XT + WHI ∗ HT−1 + WCI ◦ CT−1 + BI),
FT = σ(WXF ∗ XT + WHF ∗ HT−1 + WCF ◦ CT−1 + BF ),
CT = FT ◦ CT−1 + IT ◦ tanh(WXC ∗ XT + WHC ∗ HT−1 + BC),
OT = σ(WXO ∗ XT + WHO ∗ HT−1 + WCO ◦ CT + BO),
HT = OT ◦ tanh(CT ).

Here ∗ is the convolution operator and ◦ is the Hadamard product (also
called element-wise product). WXI ,WXF ,WXO,WXC ,WHI ,WHF ,WHO and
WHC represent the convolutional filters. BI , BF , BO and BC are the biases for
each layers. The input gate IT controls which part of the new input information
will be kept in the long-term state. The forget gate FT decides which part of
the long-term state is removed. The output gate OT decides which part of the
long-term state is read. CT is the long-term state. The short-term state HT is
the motion state in cardiac MR cine loop frames and indicates the output -
predicted DDF.

Loss Function. The loss function (L) is defined as the sum of an image
intensity-based similarity loss Lm and a regularisation loss Ls on the predicted
DDF displacements. Namely, L = Lm + Ls . Lm measures the mean squared
error between each pixel in the registered source image I

′
0 and the target image

It. Lm = 1
N

∑N
t=1(It − I

′
t)

2. According to the spatial transformation network
[4], I0 is transformed to I

′
t using bilinear sampling. The second term, Ls, is

the spatial and temporal smoothness penalty, which controls the variation of
displacements over space and time via an approximated Huber loss [6]. Mathe-
matically, Ls = λ1Lspatial +λ2Ltemporal , where Lspatial calculates first-order
spatial derivatives and Ltemporal calculates first-order temporal derivatives. λ1

and λ2 are regularization parameters which are chosen empirically.

2.2 The Regional Analysis of Left Ventricular Function

The high-level steps in regional analysis of LV function are summarised in Fig. 2.
The segmentation mask of the ED frame is deformed to another frame based
on the predicted DDF. Automatic post-processing is applied to identify the LV
endocardial and epicardial borders. To smooth the borders of deformed masks on
the mid-slice 6-segments model of the 17-Segment AHA model [2], we performed
a morphological closing operation (kernel size = 2) on them.

We divide the resulting predicted myocardium mask into segments based on
the 17-Segment Model (AHA). Firstly, we find the barycenter of the LV and the
right ventricle (RV) in the middle slice of the short axis view image. Secondly, we
define the straight line between these two points as the initial line. Thirdly, we
rotate this initial line around the barycenter point of the LV by 60, 120, 180, 240,
300◦ and divide the middle slice into 6 segments. Morphological transformations
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and barycenter location are implemented using OpenCV. The time series of the
endocardial radius, thickness, Ecc and Err are measured in these 6 segments. In
each segment, mean and standard deviation are used to show the rich detail. To
this aim, we sample all the points on the endocardial border for the endocardial
radius, 5 points by every 12◦ for the thickness and Err. Considering the small
perimeter on the end-systolic (ES) frame, we divide the endocardial border into
3 sets instead of 5 sets for Ecc.

Fig. 2. Overview of the proposed framework for quantifying cardiac motion. The pre-
dicted DDF is applied to deform the segmentation mask of the ED frame from which
the regional analysis of left ventricular endocardial radius, thickness, circumferential
strain (Ecc) and radial strain (Err) can be estimated.

Strain Computation. Left ventricular strain indicates the deformation of the
myocardium over the whole cardiac cycle and is shown in percentages. In each
time frame T , circumferential strain (Ecc) and radial strain (Err) are computed
as E = dT −dED

dED
× 100%. Here dED is the length on the ED frame, dT is the

length on the time frame T . In each sample, we choose the arc length of the
endocardial border for the Ecc computation and LV wall thickness for the Err
computation.

3 Experiments

3.1 Data Acquisition

Short-axis view cardiac MR image sequences from the UK BioBank1 were used
in this study. The CMR is obtained from a 1.5 T scanner (MAGNETOM Aera,
Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany). A stack
cine balanced steady-state free precession (bSSFP) of short-axis images, around
12 slices, covers the entire left and the right ventricles. In-plane resolution is
1.8 × 1.8 mm2, while the slice thickness is 8.0 mm and slice gap is 2.0 mm.

1 UK BioBank. https://www.ukbiobank.ac.uk/.

https://www.ukbiobank.ac.uk/
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Each sequence contains 50 consecutive time frames per cardiac cycle. We ran-
domly selected image sequences of 450 subjects for training, 47 subjects for
validation and 100 subjects for testing.

3.2 Implementation Details

Pre-processing. For training and testing the deep learning architecture, all
images were cropped to a size of 192 × 192 pixels because of GPU limitations,
and the intensity normalisation applied to the cropped images. The segmentation
mask of the LV endocardial and epicardial borders and the right ventricular (RV)
endocardial borders at the ED frame was generated from using the FCN method
proposed by Bai et al. [1] and used to quantify cardiac motion.

Training. The model is trained over 150 epochs using Adaptive Moment Esti-
mation (Adam) optimisation [5] with learning rate 0.0001 and a batch size of 1.
For the smoothness penalty of the loss, we set λ1 to 0.002 and λ2 to 0.0002 based
on algorithm performance on the validation dataset. Further, we randomly select
one frame in the selected slice to be frame I0. We set the input image sequence
length to 20 frames due to GPU memory limitations. The proposed network was
implemented using Python 3.7 with Pytorch. All the experiments are run with
computational hardware GeForce GTX 1080 Ti GPU 10 GB.

3.3 Evaluation Metrics.

To quantify the similarity between the predicted image and the target image,
we use three image metrics: the normalised root mean-squared error (NRMSE),
the mean structural similarity index (MSSIM) and the peak signal to noise ratio
(PSNR). A two-sided Wilcoxon signed rank test is used to find where there is a
statistically significant difference in these three metrics among three methods.

4 Results

4.1 Quantitative Results

Table 1 summarizes the comparative results on the MRI sequences and the ES
frame between the proposed and other methods. It is observed that the pro-
posed method is superior to Qin et al.’s method [6] and U-Net [7]. The pro-
posed method achieves an accuracy with a NRMSE of 0.053 ± 0.017, MSSIM
of 0.851 ± 0.049, and PSNR of 35.391 ± 2.976 on the MRI sequences, and a
NRMSE of 0.065 ± 0.012, MSSIM of 0.836 ± 0.036, and PSNR of 33.399 ± 1.120
on the ES frame. U-Net yielded the lowest MSSIM and PSNR value and the
highest NRMSE value on both the MRI sequences and the ES frame among the
evaluated approaches. Using a two-sided Wilcoxon signed rank test, statistically
significant greater results than Qin et al.’s and U-Net were obtained (p < 0.05)
for all the measurements.
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Fig. 3. Cardiac motion estimation comparison on the ES frame of the MRI sequences
between (top row to bottom row) the proposed method, Qin et al.’s method [6] and
U-Net [7].
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Table 1. Quantitative comparison on the MRI sequences and the ES frame between
our method and two other methods, Qin et al.’s [6] and U-Net [7]. The results are
presented as mean ± standard deviation. The best performance is indicated in bold.
The � indicates that our method results are statistically significant greater (p < 0.05)
than other methods using a two-sided Wilcoxon signed ranks test.

Method Proposed method Qin et al.’s U-Net

The MRI sequences

NRMSE 0.053 ± 0.017 � 0.059 ± 0.020 0.075 ± 0.030

MSSIM 0.851 ± 0.049 � 0.848 ± 0.050 0.825 ± 0.060

PSNR 35.391 ± 2.976 � 34.633 ± 3.301 32.651 ± 3.725

ES Frame

NRMSE 0.065 ± 0.012 � 0.075 ± 0.014 0.091 ± 0.024

MSSIM 0.836 ± 0.036 � 0.829 ± 0.036 0.806 ± 0.048

PSNR 33.399 ± 1.120 � 32.168 ± 1.325 30.595 ± 1.876

4.2 Representative Examples

Cardiac Motion Estimation. Figure 3 shows an example cardiac motion esti-
mation comparison on the 19th frame (ES) of the MRI sequence between the
proposed method, Qin et al.’s method [6] and U-Net [7], using spatial-only pat-
terns. It is observed that the proposed method provides a higher MSSIM 0.853
and PSNR 32.556 and a lower NRMSE 0.090 than the other methods on the pre-
dicted ES frame. The displacement image visualizes the DDF. Different colours
describe the different motion directions, and the colour intensity expresses the
magnitude of the displacement. The proposed method estimates higher displace-
ments (visualised as a stronger colour in Fig. 3 middle column) compared to other
methods, especially at the centre area of the LV blood pool. The U-Net seems to
be less accurate, because it has strong background noise (shown in green) com-
pared to the proposed method and the Qin et al.’s method. The displacement
error maps show that the U-Net has the largest difference at the LV and the
surrounding area, followed by the method of Qin et al.

Left Ventricular Function Evaluation. In our dataset, we do not have man-
ual image segmentation. In order to do regional analysis of LV function, we ran
Bai et al.’s algorithm [1] to get the segmented ED frame. Then we warped the
segmented ED frame to other frames in the sequence. Table 2 and Fig. 4 shows
an example of a healthy volunteer and a primary pulmonary hypertension (PPH)
patient with the proposed method. Figure 4 shows an example of a time series of
the endocardial radius, thickness, Err and Ecc in the six segments of myocardium
estimated for a healthy volunteer and a PPH patient. Compared to a healthy
volunteer, the LV of the PPH patient has poor contraction over the whole cardiac
cycle, and as a result, the endocardial radius of a hypertension patient is larger
than that of a healthy volunteer. For instance, the endocardial radius (orange)
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of segment 1 contracts less. Table 2 shows that on the 19th frame (ES), the mean
radius of segment 1 is 10.69 pixel from the PPH patient, while the mean radius
of segment 1 is 9.79 pixel from the healthy volunteer. In clinical practice, the
endocardial radius should take on its smallest value over the cardiac cycle on
the ES frame, because the volume of the LV blood pool reaches the minimum
value then. Moreover, the LV wall thickness from all six segments is smaller for
the PPH patient, compared to the healthy one. Due to the reduced thickness,
we conclude that this left ventricle exhibits atrophy.

Table 2. Example results of peak mean value on the ES frame of the motion- char-
acteristic features, time series of the endocardial radius (Endo radius), and thickness,
circumferential (Ecc) and radial strain (Err) for cardiac segments (Seg) (0–5) over a
cardiac cycle for a healthy volunteer and a primary pulmonary hypertension (PPH)
patient in the proposed method.

Healthy

Feature Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5

Endo radius 9.344 9.789 9.836 9.145 9.333 9.537

Thickness 6.721 6.451 8.265 7.865 7.249 7.437

Err 57.154 60.842 66.751 60.259 27.565 22.271

Ecc −11.728 −14.485 −8.657 −9.314 −11.071 −9.586

PPH

Endo radius 9.643 10.693 9.139 9.675 10.465 9.174

Thickness 4.143 6.203 5.395 5.069 4.643 5.218

Err 39.992 97.947 58.334 52.159 55.657 31.872

Ecc −8.657 −5.586 −9.414 −6.899 −8.657 −7.414

5 Discussion

In this work we have proposed a deep learning-based approach to cardiac MR
motion analysis that uses a self-supervised paradigm to learn spatio-temporal
features in cardiac MR cine loops. The results show the ability of the proposed
approach to capture spatio-temporal patterns and predict a dense displacement
field (DDF) over a full cardiac cycle. The proposed method has higher accuracy
than the method of Qin et al. and U-Net which we attribute to the use of
spatio-temporal features. According to our experiments, the best DDF results
are obtained when we stack 2 ConvLSTM layers with a 3-pixel kernel size in
each layer.

The predicted DDF is employed to deform an ED myocardium mask to other
frames and perform regional LV endocardial radius, thickness, Ecc and Err time-
series analysis. The results show the potential of the proposed approach to eval-
uate the clinical parameters for cardiovascular diseases. Currently, we do not
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Fig. 4. Example results of estimated endocardial radius (mean and standard deviation
shown), thickness(mean and standard deviation shown), radial strain (mean and stan-
dard deviation shown) and circumferential strain (mean and standard deviation shown)
for cardiac segments (0–5) plotted over a cardiac cycle. Myocardial segment notation
(top); and results for a healthy volunteer (left column), and a primary pulmonary
hypertension patient (right column).
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use interpolation to smooth feature time series. In our experiments, we find that
it is not necessary to smooth the curve. We can use the unsmoothed curve of
the endocardial radius to explain the abnormal motion phenomenon in the PPH
pathological group.

There are some limitations of this work. The UK BioBank consists of mainly
healthy volunteers, and has a sparse number of PPH patients. The model may
not well represent the motion and strain patterns typically seen in PPH patients.

6 Conclusion

We present a novel spatio-temporal network to characterise cardiac motion, visu-
alise the dense displacement field and explain motion-characteristic features in
a healthy group and a pathological group. The model learns meaningful spatio-
temporal patterns of the cardiac motion that can be used for LV regional func-
tion analysis. Future work will extend this method to analyse the basal, mid-
cavity and apical slices of the LV. The motion and strain analysis method is not
disease-specific and could be extended extend to other cardiac conditions such
as ischaemic health disease, assuming suitable training examples are available.
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