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Abstract. This paper reports on a new CT volume registration method, using
3D Convolutional Neural Networks (CNN). The proposed method uses the
Least Square Generative Adversarial Network (LSGAN) model consisting of the
Contraction-Expansion registration network as the LSGAN’s generator and a
deep 3D CNN classification network as the LSGAN’s discriminator. The
training of the generator is performed first on its own, using Charbonnier and
smoothness loss functions, with progressive weights update moving from lower
to higher resolution layers of the Expander. Subsequently, the complete network
(Contraction-Expansion with the Discriminator) is trained as a LSGAN network.
For the training, CREATIS and COPDgene datasets have been used in a self-
supervised paradigm, using 3D warping of the moving volume to estimate the
error with respect to the reference volume. The input to the network has
256 � 256 � 128 � 2 voxels and the output is displacement field of
128 � 128 � 64 � 3 voxels. The Contraction-Expansion registration network,
on its own, achieves mean error of 1.30 mm with 1.70 standard deviation
(SD) on the DIR-LAB dataset. When the whole proposed LSGAN network is
used, the mean error is further reduced to 1.13 mm with 0.67 (SD). Therefore,
the use of the GAN paradigm reduces the mean error by approximately 15%,
providing the state-of-the-art performance.

Keywords: Image registration � Convolutional neural network � Generative
adversarial network

1 Introduction

Image registration is an essential step in the Radiotherapy workflows. For many
patients, multiple CT scans are performed during and after treatment. Common
deformable image registration algorithms require cost function optimization between
any two volumes [1]. This means that for any new registration, the algorithm needs to
go through computationally demanding and time-consuming optimization process.
These problems could cause a bottleneck for some radiation therapy (RT) workflows
including treatment planning. Clinical applications of the 4D CT data registration
including semi-automated target volume and organ at risk contour propagation;
assessment of motion effects on dose distributions (4D RT quality assurance, dose
warping) [2] and 4D CT-based lung ventilation estimation and its incorporation into
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RT treatment planning [3]. Image registration plays also vital role in computer aided
diagnosis pipelines, radiation treatment planning, and image-guided interventions. For
all these applications, it is valuable to quantify the registration error locally. Image
registration is often validated using ‘overlap’ measures (as Dice index of organs
overlap). The most popular way to determine registration accuracy, however, is the
Target Registration Error (TRE) on corresponding points in the registered images [4].
These points are commonly relevant anatomical landmarks annotated by experts. For
deformable registration problems, these landmarks should cover the entire region of
interested to be accurate descriptors of the local registration.

More recently, many researchers are tackling the medical image registration uti-
lizing convolutional neural network. The authors in [4] presented a supervised
approach using sliding window to directly estimate the registration error using syn-
thetically deformed CT images as well as publicly available dataset containing land-
marks annotations. Yang et al. [5] also used sliding window technique to estimate the
deformation field for 3D brain DIR. The main issue that could be mentioned about the
patch-based learning is the lack of the global information about the transformation that
may not be adequately represented in small motion displacement but could appear in
large displacement cases as in the CT scans. In the context of Generative Adversarial
Network (GAN), researchers perform multimodal registration using GAN [6],
Wasserstein GAN (WGAN) [7], InfoGAN [8], and Cycle GAN [9, 10].

In [6] vanilla GAN is utilized to register Magnetic Resonance (MR) and 3D intra-
procedural transrectal ultrasound (TRUS). They used supervised learning to train a
discriminator part of the network by providing the output of the generator and a
simulated motion field. Authors in [11] developed a probabilistic generative model and
demonstrate their VoxelMorph network on a 3D brain registration task.

In this paper, the deformable registration problem in performed using 3D CNN.
The required deformation is achieved using motion vectors to estimate the per-pixel
displacement estimation in 3D using both local and global representations by training
with the full size of the CT volume of 256 � 256 � 128 voxel. Then a Bayesian
version of the model is introduced by converting it to probabilistic architecture [12].
This conversion achieved by adding a discriminator to the network to be train it in a
GAN paradigm. The output of the model represents the 3D motion vectors of
128 � 128 � 64 � 3 dimension. Which consists of three channels that required to
compensate for the deformation of the moving volume with respect to a reference
volume. Unlike [6] the discriminator trained with the CT volumes to during the net-
work regularization. Introducing the LSGAN to the network improved the training and
increased the performance of the network on the test set.

2 Method

In this paper, the deformable image registration is performed by designing the
Transformation function to perform the mapping from the moving image to the ref-
erence image. Let IFðxÞ : XF ! R and IMðxÞ : XM ! R be two real value images
defined on their corresponding spatial domains XF � R

3 and XM � R
3 respectively.
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The task is to find the function bT : XM ! XF , bT xð Þ ¼ xþ bU(xÞ, mapping pixels in the
moving domain XM to their corresponding pixels in the reference domain XF . In the
non-rigid registration framework this function is usually estimated through solving
following optimization problem:

bU ¼ arg mineU ðsimðIF ; IMðeUÞÞþ bregðeUÞÞ ð1Þ

where simðÞ is a so called fidelity term depending on the observed data and regðÞ is so
called regularization term which reflects known or assumed properties of the dis-
placement filed bU , typically encoding information about some form of bU smoothness.

The quality of the registration, i.e. estimated function bT , can be assessed in a
number of ways, in this paper the Target Registration Error (TRE) [13] is used.
The TRE measure the displacement (here using the Euclidean distance) of bTðxÞ from
the true positions T xð Þ of the registered points [4]:

TRE : XF ! R
þ : x ! T xð Þ � bTðxÞ��� ��� ð2Þ

In practice the true positions are not know and manually annotated set of target points
(landmarks) is used as a surrogate of these true positions. Therefore, manually anno-
tated corresponding landmarks pF 2 XF and pM 2 XM are used and the TRE measure
Euclidean distance between pF and the relocated, by the bT , pM points.

2.1 Network

The implementation of the convolutional network for this deformable image registra-
tion consists of five 3D convolutional layers with down-sampling in the contractive part
with the expander part consisting of up-sampling followed by corresponding 3D
convolutional layer, see Table 1. At each layer of the contractive part, the features are
down-sampled across the three dimensions, x, y, and z. Similarly, at the expander part
the features are up-sampled at each layer across the three dimensions. The input to the
network consists of the two volumes the reference and the moving volumes with
volume size of 128 � 256 � 256 as input size and the output size of 64 � 128 � 128
pixels, which is up-sampled later for the TRE computations. The size of the output has
been chosen due to the limited computational resources. The activation function uti-
lized in this implementation is leaky ReLU. At each layer of the expander a recon-
struction sampler is attached to map the moving volume to the reference volume using
the transformation or the displacement function that the convolutional network is
learning. This displacement consists of three maps corresponding to the x, y, and z
components of the transformation function.

The discriminator consists of five blocks of VGG network layers [14] with input of
64 � 128 � 128 � 2. The layer block consists of 3D convolution, down-sampling,
batch normalization, and then leaky ReLU activation function. At the end of the
discriminator there are two Fully Connected Neural Network (FCNN) layers. In
addition to the activation between these FCNN layers, dropout layers with 50% dropout
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rate are attached. Then the discriminator is terminated with a regression layer to classify
the input. The input to the network can be either: the reference volume concatenated
with the same volume after adding uniform noise in a range between [−0.01, 0.01] or a
reference volume concatenated with the warped moving volume. In the context of
GAN model, the real class corresponds to the reference volume concatenated with its
noisy version, while the fake class is represented by the reference volume concatenated
with the moving volume. As the discriminator is starting to classify the fake input as a
legitimate input, the generator performance improved. A simplified diagram repre-
senting the proposed architecture is shown in Fig. 1.

Table 1. The details network configuration. (a) Contractive part. (b) Expanding part. (c) Dis-
criminative part.

Contractive Part
Layer Input Output No. of Features Downscale
Conv1 256x256x128x2 128x128x64x32 32 2
Conv2 128x128x64x32 64x64x32x64 64 2
Conv3 64x64x32x64 32x32x16x128 128 2
Conv4 32x32x16x128 16x16x8x256 256 2
Conv5 16x16x8x256 8x8x4x512 512 2

(a)

Expanding Part
Layer Input Skip-Conn Output No. of Feature

maps
Upscale

Up-Conv1 8x8x4x512 16x16x8x256 16x16x8x256 256 2
Up-Conv2 16x16x8x256 32x32x16x128 32x32x16x128 128 2
Up-Conv3 32x32x16x128 64x64x32x64 64x64x32x64 64 2
Up-Conv4 64x64x32x64 128x128x64x32 128x128x64x32 32 2
Up-Conv5 128x128x64x32 128x128x64x3 3 1

(b)

(c)

Discriminator
Layer Input Output No. of Feature

maps
Downscale

Conv1 128x128x64x2 64x64x32x8 8 2
Conv2 64x64x32x8 32x32x16x16 16 2
Conv3 32x32x16x16 16x16x8x32 32 2
Conv4 16x16x8x32 8x8x4x64 64 2
Conv5 8x8x4x64 4x4x2x128 128 2
FCNN 4x4x2x128 64 64

Drop-out
FCNN 64 16 16

Dropout
FCNN 16 1 1

198 E. R. Anas et al.



2.2 Training Procedure

The training of the network consists of two phases; the Contractive-Expander phase
and the GAN phase. The Contractive-Expander training phase includes the training of
each convolutional layer of the Expander using 5000 iterations. It starts at the lowest
resolution and gradually involving higher resolution levels of the expander, in each
case trained using 5000 iterations. To estimate the error between the reconstructed or
warped moving volume and the reference volume the Generalized Charbonnier

(GC) penalty function qðxÞ ¼ jjxjj2 þ �2
� �a=2

[15] is considered as the fidelity term,

see Eq. (3). This loss function is often used for optical flow and depth estimation. The
function behaves as an L2 loss function close to the zero, to encourage smoothness, and
L1 otherwise, to encourage robustness against outliers. It is also sometimes called L1-
L2 loss function.

The function is defined as:

sim ¼ ‘GC ¼
X

i;j;k
IFði; j; kÞ � IMwarpedðiþ u; jþ v; kþ lÞ� �2 þ �2

� �a=2
ð3Þ

Fig. 1. A simplified diagram representing the proposed network architecture. It consists of two
parts: the contractive-expander as generator and the discriminator.
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where a and � are chosen experimentally to be 0.7 and 0.0001 respectively, and u, v,
and l are elements of the displacement field eU . The adopted fidelity term implies
assumption that the true corresponding points in both volumes have the same intensity.
However, this assumption is not exactly true in case of lung CT data, which can change
intensity values of the corresponding points due to changing air volume in the lungs in
the inhale and exhale phases. In the follow on work a suitable intensity correction will
be considered, which can be learned independently or as a function of the local
Jacobians. In the current registration model, it is hypothesized that the adopted GAN
implementation may implicitly compensate for that fidelity term modeling inaccuracy.

In addition to this loss function, while acting globally on the volume, the effect on
regions with less image structure could create unambiguity in the displacement vector
estimation (aperture problem). To address this ambiguity, smoothing function that can
minimize the multiple velocity scoring area is utilized, Eq. (4).

reg ¼ ‘Sðu; v; lÞ ¼
X

W ;H;D
qðrbUÞ ð4Þ

where bU is the estimated deformable displacement and the loss function estimated
across the volume (W ;H;D). q is the realization of the GC function that is applied on
these smooth surfaces like the organs with insufficient image structure. This function
will also enhance the smoothness of the moving voxels and close any gap within the
representation of the displacement across the organ’s boundaries. The total loss esti-
mation is performed using the following weighting:

‘Total ¼ ‘GC þ b� ‘S ð5Þ

The warping of the moving volume is performed using the method reported in [16] as
in Fig. 2. To reconstruct the volume, a bilinear interpolation.

The next training phase (GAN training) starts while training the last layer of the
generator part of the GAN network. In this phase the discriminator starts to be involved
in the training. The dropout layers in the discriminator were quite effective in stabi-
lizing the discriminator during the training of the model and mitigate against overfit-
ting. The last layer is left without activation and the results value is compared to (1) in
the case of the real image and (−1) in the case of fake image using LSGAN.

With the Least Square GAN, the discriminator is trained following loss function of
Eq. (6) [17]:

min
D

VLSGAN Dð Þ ¼ 1
2

Ex�PdataðxÞ D xð Þ � 1ð Þ2
h i

þEz�PzðzÞ D Gðzð ÞÞþ 1ð Þ2
h i� �

ð6Þ

here, DðxÞ is the prediction of the discriminator when the input is the true reference
volume, while D Gðzð ÞÞ is the prediction of the discriminator when the input is the fake
(which is the generator output or the warped moving volume IMwarped). Simultaneously
the target of the generator is to learn the distribution PzðzÞ by sampling the input
variable z from the dataset distribution and map it though differentiable network. The
loss function to train the generator to perform the above-mentioned function for this
particular GAN is defined as in Eq. (7):
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min
G

VLSGAN Gð Þ ¼ 1
2
Ez�PzðzÞ D Gðzð ÞÞð Þ2

h i
ð7Þ

Using this arrangement, the model continued in its training using the optimization
provided by the LSGAN network. It is worth mentioning that during the inferencing
stage the discriminator network is stripped and only the generator network is involved
in the operation.

During the training, an Adam optimizer is adopted with a starting learning rate of
0.0001 that reduced after each 5000 iteration by a factor of 1.4. Each 5000 iterations, a
layer weights of the expander part are updated starting from the lowest layer and going
to the highest layer. The loss function is calculated using Eqs. (5) during this phase of
training. When the training reaches the last layer of the expander part, the discriminator
joins the training and Eqs. (5) and (7) are utilized during the training of the generator in
the following fashion:

Li[ 2000 ¼ ‘Total þ k�min
G

VLSGAN Gð Þ ð8Þ

where k ¼ 0:4.
In typical implementation, the recommendation is to have a reasonably batch size

that is more than one sample. However, both the model and the volume sizes allowed
only one sample per batch during the training, meaning that the model is updating the
weight after each sample (volume of 128 � 256 � 256 � 2). On the other hand, the
volume of 128 images per volume can still represents the statistical properties of the
dataset to some extent.

2.3 Dataset and Data Acquisition

For the training dataset both the CREATIS [18] and COPDgene [19] dataset have been
used. The CREATIS dataset contains 4D CT scans for 6 patients, each patient having
10 volumes of 141 images that represent different stages of the inhale and exhale cycle.
When the sample acquired from this dataset, a random start such that 128 images is
available for date input. COPDgene consists of inhale and exhale set of images for 10
patients with around 100 images or slab per volume, at each acquisition the sample has
been resized to fit the network input using bilinear interpolation. Furthermore, during
the acquisition of the data, the volumes randomly swapped to be sometime as fixed
volume and other time as a moving volume which increased the variability of the
dataset. Both datasets include landmarks, but they were not considered during the
model testing.

For the test set the 4D DIR-LAB dataset [20] has been used. This dataset consists of
10 patients with each patient entry includes 10 volumes. The other important feature of
this dataset is that it includes 300 landmark per volume for volume 1 and 5. By
conventions, the researchers map volume 5 to volume 1 of each patient.

CT Scan Registration with 3D Dense Motion Field Estimation Using LSGAN 201



3 Results

In this work the results were obtained for two cases. The first case is to train the model
without the GAN implementation. The training is performed using the reconstruction
error obtained from the difference between the reconstructed (warped) moving volume
and the reference volume, Eqs. (5). The training for this case of training included 60K
iteration. In the second case, the LSGAN network is implemented as in Fig. 1 and the
training included: a) Contractive-Expanding network trained for 20000 iteration using
the warping loss, Eqs. (5). b) The discriminator joined the training for the rest of 40K
iterations. The error used to train the GAN during the 40K iterations is obtained from
the classification of the combination of the reconstructed moving volume with the
reference volume in one instance and the reference volume only in the second instance,
Eqs. (6–7).

Figure 2 shows landmarks for two volumes (Patient 8) of DIR-LAB before the
registration and after the registration. It is worth mentioning at this point that the
volume that has been used for this experiment is quite big (128 slides) and covers a
large space of the human body, it is expected that the model provides similar quality of
registration for the other parts of the body like the liver, stomach and other organs
under the pulmonary system and the diaphragm.

Table 2 lists on first column the landmark errors estimation before registration,
followed by registration obtained from [21], following to that the result obtained from
training only the Contractive-Expander (The generator part only) network in one case
and training the LSGAN in the second case. In the first case, when the model consists
of the generator only, the regularizations techniques involved in Eqs. (3–4) are utilized.
The model performed with good performance; however, it could be due to the rela-
tively limited dataset size the model didn’t generalized will with new dataset. This can
be noticed by the amount of the maximum error produced. The first case of training
achieved 1.30, 1.70, and 16.34 for average, SD and maximum error respectively. The
average TRE in the case of the LSGAN training shows an improvement of about 15%
on the mean error. For the LSGAN the error was 1.13, 0.67, 5.70 for average, SD and
maximum error respectively. This improvement can be related to the fact that the model
was less prone to the overfitting. When the discriminator incorporated in the network to
be training in GAN paradigm, the regularization effect due to the Dropout layers
provided better conditions for the network training and improved the generalization of
the model.
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Inferior
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Fig. 2. Annotated points of DIR-LAB, volume 8. (a): Before registration, (b): After registration,
all axes in millimeters. The more color saturated points represent points closer to the viewer.
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Furthermore, it has been noticed that part of the better performance in the LSGAN
is related to the lower maximum error obtained. It can be seen in Fig. 2 that the max
error appears when a large displacement is required. Having lower maximum error in
the estimation of the LSGAN tells us that the model’s responses to large displacement
improved which is usually challenging in the deformable registration problem. Fig-
ure 3, shows the error distributions (using the configuration with the discriminator
network) for the averaged results reported in Table 2.

The model can perform the dense motion field prediction in about 19.3 ms using
INVIDIA TITAN X Pascal graphical interface with 16 GB computer memory and Intel
i7 CPU.

It can be seen in the table that the summation error generated regarding the volumes
(P1-P5) is higher than the error summation of (P6-P10). This difference in the error is
related to the fact that number of slides of (P1-P5) is smaller than 128. During the test,
to complete the volume to 128 slides, the slide padding is applied by replicating the last
slide to complete the volume to 128 slides. For instance, for volume P1, the number of
slides is 94, which means that the padding needed to complete the volume is 34 slides
to complete the input volume to be 256 � 256 � 128. Figure 4 shows a cross section
for the output x-direction displacement field of P1. It is hypothesized that such padding
could introduce error which is bigger than expected for what seems to be simpler
displacement field.

Table 2. Target Registration Error (TRE) for DIR-LAB dataset. Each column consists of three
values, Error Mean, (Error SD), and (Maximum Error) except for results obtained from reference
[21] which includes Error Mean, (Error SD). The first column (Before Registration) is the error of
the landmarks between the reference and the moving volumes. The send column (Registration) is
the convolutional network of Fig. 1 trained without GAN. The third column (Registration with
GAN) is the complete implementation of Fig. 1 which include both the generator and the
discriminator. The measurement shows improvements of the registration results while training
the model with Mean Square Generative Adversarial Network (LSGAN). About 15%
improvement in the registration obtained after training with GAN paradigm.

DIR-LAB Before After from [21] After with Contractive-Expander (mm) After with LSGAN (mm)

P1 3.89(2.77)(10.90) 1.05(0.5) 2.55(1.39)(16.17) 1.29(0.85)(6.28)

P2 4.33(3.89)(17.69) 1.08(0.6) 1.04(1.44)(15.89) 1.30(0.64)(3.29)

P3 6.94(4.04)(16.55) 1.46(0.9) 0.82(0.81)(4.87) 0.99(0.66)(4.61)

P4 9.72(4.89)(20.25) 2.05(1.5) 1.51(2.57)(21.67) 1.27(0.57)(4.44)

P5 7.34(5.52)(24.77) 2.02(1.7) 1.11(2.35)(27.33) 1.153(0.65)(6.43)

P6 10.89(6.9)(27.59) 2.48(1.8) 0.89(1.16)(10.77) 0.95(0.49)(4.19)

P7 11.02(7.4)(30.63) 2.78(2.3) 1.12(1.36)(17.08) 1.03(0.59)(6.05)

P8 14.99(8.9)(30.57) 3.96(3.8) 1.74(2.66)(22.65) 1.50(1.04)(9.38)

P9 7.91(3.97)(15.76) 1.89(1.2) 0.82(1.18)(8.30) 0.75(0.29)(2.10)

P10 7.30(6.3)(27.79) 2.35(2.5) 1.42(2.05)(18.58) 1.07(0.92)(10.25)

Mean 8.43(5.48)(22.19) 2.11(0.9) 1.30(1.70)(16.34) 1.13(0.67)(5.70)
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P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

TRE in millimeters TRE in millimeters

Fig. 3. The TRE histogram shows for all the volumes of DIR-LAB dataset. The horizontal axis
shows the Error values.
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4 Conclusion

This paper describes a novel deformable volume registration method using contraction-
expansion CNN, configured without and with a discriminator sub-network within a
GAN training framework. The proposed architecture is evaluated on the DIR-LAB
dataset with registration performed on exhale – inhale sequences of lung CT scans. The
results show that the proposed method achieves better performance when trained with
the discriminator sub-network in the GAN training regime. The use of the discriminator
in the GAN like-training improves the performance of the network by approximately
15%, with the state-of-the-art TRE mean error of 1.13 mm and 0.67 mm SD. These
results are competitive when compared to previously reported method evaluated on the
same dataset. Although the inference time has not been always clearly reported in
previously published work, it is worth mentioning that the estimation of the dense
motion field when using the proposed method seems also to be competitive as it
enables to estimate the entire 3D registration motion field within 19.3 ms. The future
work will be focused on better understanding of the role of the discriminator and
changes to configuration of the described model to directly reflect intensity differences
between corresponding points in the exhale – inhale sequences of lung CT scans.
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