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Abstract. Perivascular spaces are fluid-filled tubular spaces that follow
the course of cerebral penetrating vessels, thought to be a key part in the
brain’s circulation and glymphatic drainage system. Their enlargement
and abundance have been found associated with cerebral small vessel dis-
ease. Thus, their quantification is essential for establishing their relation-
ship with neurological diseases. Previous works in the field have designed
visual rating scales for assessing the presence of perivascular spaces and
proposed segmentation techniques to reduce flooring and ceiling effects
of qualitative visual scales, processing times, and inter-observer variabil-
ity. Nonetheless, their application depends on the acquisition quality. In
this paper, we propose a framework for improving perivascular spaces
quantification using both texture analysis and total variation filtering.
Texture features were considered for evaluating the image quality and
determining automatically whether filtering was needed. We tested our
work using data from a cohort of patients with mild stroke (n = 60)
with different extents of small vessel disease features and image qual-
ity. Our results demonstrate the potential of our proposal for improving
perivascular spaces assessments.
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1 Introduction

Perivascular spaces (PVS), also referred to as Virchow-Robin spaces, are fluid-
filled tubular spaces that follow the course of deep cerebral perforating ves-
sels, thought to play a role in cerebral hemodynamics and interstitial fluid
drainage [3,7,9,22]. In magnetic resonance imaging, these spaces are visible on
T1-w or T2-w as thin linear or round structures of cerebrospinal fluid like signal
located in deep grey matter and white matter [21]. Although they may be normal
at any age, their enlarged appearance has been found associated with ageing,
hypertension, features of cerebral small vessel disease [4,9,22]; cognitive impair-
ment [1,14]; and active inflammation [17]. Therefore, their precise quantification
may help to further validate their use as a neuroimaging feature for brain dis-
eases and shed light on pathophysiological mechanisms of stroke, dementia, and
other neurological disorders.

Visual rating scales accounting for the overall burden of PVS [14,16] have
been used in clinical practice and considered the gold standard in assessing
PVS, but are prone to inter-observer variability. Semi-automatic (e.g. threshold-
ing) [8,20] and fully-automatic [3] schemes to segment PVS reduce both process-
ing time and subjectivity, but their application is subject to the quality of the
acquisitions [4,12]. We hypothesise that image enhancement can help to reduce
imaging artefacts and potentially improve PVS segmentation.

The total variation optimisation framework is a widespread strategy for
denoising [18], reconstruction [13], and artefact suppression [6]. In the work
of Block et al. [6], the authors commented that a key property of the total
variation seminorm is that it reacts to the extent of artefacts: the higher the dis-
tortion degree, the higher the value of the total variation component. Therefore,
its minimisation leads to artefact suppression. This particular asset makes such
a strategy appealing as it could reduce imaging artefacts and perhaps lead to
improved PVS quantification.

In this research work, we design a framework to identify magnetic resonance
images corrupted by imaging artefact and examine whether the total variation
framework permits reducing these artefacts while retaining clinically-relevant
information. We use data from a cohort of patients with mild stroke with varied
extents of small vessel disease features. The contributions of this work are three-
fold: 1) we propose a fully functional framework for improving the assessment
of PVS; 2) we show qualitatively that our pipeline correctly identifies noisy
images and reduces visual artefacts on them; 3) we show quantitatively that,
when images are noisy, the relationship between computational measurements
and visual clinical ratings is stronger when filtered scans are used instead of the
original acquisitions.

2 Materials and Methods

Our processing framework consists of three steps, as shown in Fig. 1. First, we
extract texture features to determine whether image requires filtering or not.
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Second, if artefact reduction is needed, we use the total variation optimisation
framework. Third, we segment PVS in both filtered and unfiltered scans in two
regions of interest (basal ganglia and centrum semiovale) for each patient in
the sample. To validate our proposal, we determine whether quantitative PVS
computational measures extracted from filtered scans relate better (or not) to
clinical visual scores when images are noisy. Details of each step are provided in
the following sections.
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Fig. 1. High-level scheme of our processing pipeline per input volume. The inputs
are T2-w scans. First, examined whether the scans need filtering or not using texture
analysis. Second, we filter the scan, in case it is needed. Third, we segment perivascular
spaces using a fully validated strategy.

2.1 Subjects, Imaging, and Clinical Scores

We used data from an ongoing prospective study (The Mild Stroke Study 3:
ISCTRN 12113543) of patients with a recent mild stroke (n = 60; 24 women;
median age 69 years [IQR 58–75]; age range 40 to 85 years) with a varied bur-
den of neuroimaging features of small vessel disease. Ethical approval for this
study was obtained from South East Scotland Research Ethics Committee (Ref
18/SS/0044) on 31/05/2018. NHS Lothian Research & Development approved
this study on 31/05/2018 (Ref 2018/0084). Imaging was carried out on a 3T MRI
scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) using
a 32-channel head receive coil. Structural MRI at baseline consisted of 3D sagittal
MPRAGE T1-w imaging (TR/TE/TI = 2500/4.37/1100 ms, 7◦ flip angle, 1 mm
isotropic acquired resolution, 25.6 × 25.6 cm field of view), 3D sagittal SPACE
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fluid-attenuated inversion recovery imaging (TR/TE/TI = 5000/388/1800 ms,
1 mm isotropic acquired resolution, 25.6 × 25.6 cm field of view), and 3D axial
SPACE T2-w imaging (TR/TE = 3200/408 ms, 0.94 × 0.94 × 0.90 mm acquired
resolution, 24.0 × 24.0 cm field of view).

We considered a visual clinical rating recorded at baseline to account for the
presence and extent of enlarged PVS in the basal ganglia and centrum semio-
vale [15]. An experienced neuroradiologist rated PVS on T2-w images of the
whole sample. The distribution of such scores in our cohort is depicted in Fig. 2.
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Fig. 2. Distribution of clinical visual ratings accounting for the presence and abundance
of perivascular spaces in patients in our cohort. On the left, visual scores for basal
ganglia. On the right, visual scores for centrum semiovale. The number inside each bar
corresponds to the number of patients in each category.

2.2 Texture-Based Image Quality Classification

While filtering noisy scans may reduce false positives, it may reduce true posi-
tives in clean ones. Our first step consists of automatically determining whether
the input scan requires being filtered or not. For that, we extracted the six Haral-
ick texture features indicative of variability/homogeneity (i.e. energy, contrast,
correlation, homogeneity, entropy and variance) [11] from the acquired T2-w
image and used logistic regression to predict whether filtering was needed or
not. A trained analyst blind to our classification process classified the images
into “noisy” and “clean/smooth”.

2.3 Segmentation of Perivascular Spaces

We segmented tubular-like structures in T2-w images in two regions of interest,
centrum semiovale and basal ganglia, using the method described in Ballerini
et al. [2]. The method consists of image enhancement, thresholding, and con-
nected component analysis. We applied the three-dimensional Frangi filter [10] to
enhance tubular geometrical objects, such as PVS. We computed the “vesselness”
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of each voxel at scales from 0.4 and 0.8 and a step of 0.2, combined responses
for each filter, and thresholded them using default parameters (α = 0.5, β = 0.5
and C = 500). The connected component analysis step consisted of identifying
3D voxel clusters with lengths between 3 and 50 mm and filtering out large can-
didates (volume higher than 1000 voxels) as they potentially corresponded to
white matter hyperintensities. Further details of the method are described in
full in [2].

We defined PVS count as the number of connected components in the seg-
mented images and volume as the total number of voxels classified as PVS mul-
tiplied by the voxel size and divided by the intracranial volume.

2.4 A Total Variation Optimisation Framework for Reducing
Imaging Artefacts

Block et al. [6] explained that the total variation increases with the extent of
truncation artefacts and showed that its minimisation could suppress imaging
artefacts in synthetic and real magnetic resonance images. We built our image
filtering framework on that premise as follows. Let Y ∈ R

N×M×L be the original
acquisition, our task consists of regressing X ∈ R

N×M×L such that the following
cost function is minimised

λ||X||TV +
1
2
||HX − Y ||22, (1)

where H is a transformation matrix, λ is a weighting parameter than controls
the filter strength, and ||X||TV =

∑ ||∇X||. This formulation permits obtaining
an artefact-reduced image, due to the total variation component, which appears
similar to the original one, due to the fidelity term. We optimised the cost func-
tion iteratively by updating X according to the following formula:

X(i+1) = X(i) + γ(i) ·
[

λ · ∇
( ∇X(i)

||∇X(i)||
)

+ Hᵀ(HX(i) − Y )
]

, (2)

where X0 is the starting point, γ(i) determines the step in the direction of the
gradient at the i-th iteration, and ᵀ represents the transpose operation. We found
the most suitable value for γ(i) using the line search algorithm. Note that the
number of iterations and the parameter λ need to be tuned up in such a way
the output preserves clinically relevant structures, such as PVS, while smoothing
regions affected by artefacts. As we carried out our filtering in the image domain,
the matrix H is the identity matrix.

2.5 Validation Against Clinical Parameters

We applied ordinal logistic regression to assess whether computational measures
could predict clinical visual scores, the Kruskal-Wallis test to determine whether
patient grouped according to visual scores presented similar quantitative mea-
sures, and the polyserial correlation to calculate the degree of correlation between
visual and computational values. We carried out our statistical analyses using
RStudio v1.1.456 with R v3.5.1.
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3 Results

3.1 Qualitative Results

Visual examples of filtering with three different filter strengths (in particular,
λ = 2, 5 and 10) are presented in Fig. 3. The higher the weight of the total
variation component, the smoother the output. This parameter is critical in our
assessments as a low value for λ results in noisy scans in which PVS are still
visible while a high value results in smooth scans in which noise is reduced but
many PVS may be discarded. By visually examining scans filtered with different
parameter values, we found out experimentally that a value λ = 2 and 100
iterations led to acceptable filtering results for the entire cohort. Of note, such
an assessment does not ensure these parameters lead to the best association or
correlation between clinical visual scores and PVS quantification.

Segmentation examples before and after filtering on noisy and “clean” scans
are shown in Fig. 4. In noisy scans, filtering tends to decrease the number of
detected PVS, possibly due to a reduction of false positives. Filtering “clean”
scans resulted in a reduction on both PVS count and volume. Since these images
did not exhibit visual artefacts, this outcome suggests underestimation and jus-
tifies the use of the texture-based image quality classification strategy.

3.2 Texture-Based Image Quality Classification Results

We determined whether to filter an input scan or not based on its textures. The
process consisted of three steps. First, we split our original dataset into train-
ing (67%) and testing (33%). We divided in such a way the ratio of “noisy”
images in each dataset was the same (30%). Second, we trained seven logistic
regression models: six using Haralick feature independently and one combining
them all. We tune parameters using a 10-fold cross-validation strategy. Third, we
tested the performance of each model on the test set in terms of the area under
the curve. The combination of all texture features resulted in better classifica-
tion values (AUC = 88.80%) compared to independent approaches (AUC: Energy
75.00%; Contrast 67.86%; Correlation 66.67%; Homogeneity 55.95%; Entropy
71.43%; Variability 70.24%). From hereon, we used the logistic regression model
using all textures to determine whether to filter input scans (Intercept: β =
–41.32 (CI –198.48, 95.74), p = 0.56; Energy: β = –559.15 (CI –1216.58, –169.76),
p < 0.05; Contrast: β = –11.42 (CI –26.73, –1.96), p = 0.6; Correlation: β = 25.72
(CI –49.91, 118.83), p = 0.52; Homogeneity: β = –0.66 (CI –5.75, 3.95), p = 0.78;
Entropy:β = 2.25 (CI –0.88, 6.48), p = 0.21; Variance: β = –0.01 (CI –0.05, 0.02),
p = 0.39). Of note, this equation is suitable for this specific acquisition protocol
and, thus, it needs to be readjusted for another one.
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Fig. 3. Artefact reduction on T2-w scans. From left to right, original scan and filtered
ones using λ = 2, 5, 10 and 100 iterations. Of note, the higher the lambda, the smoother
the scan. Recall that perivascular spaces appear as thin linear or round structures of
cerebrospinal fluid like signal located in deep grey matter and white matter.

3.3 Validation Against Clinical Visual Rating

We determined the suitability of the filtering technique by examining
the strength of the relationship between quantitative scores and clinical
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Fig. 4. Effect of artefact reduction on perivascular space segmentation. From left to
right, original scan and filtered scan using λ = 2 and 100, segmentation results using
the original acquisition and segmentation results using filtered acquisition. Recall that
perivascular spaces appear as thin linear or round structures of cerebrospinal fluid like
signal located in deep grey matter and white matter.

visual ratings versus when omitted. We hypothesised that the strength of such
relationships improves after filtering.

We used ordinal logistic regression to examine whether clinical visual scores
could predict the count and volume of PVS extracted from original and filtered
scans. The regression results are condensed in Table 1.

While R2 values were approximately 13% and 40% for both count and volume
of PVS in the basal ganglia in original scans, they increased to 30% and 47% for
the same measurements when filtered. In all measurements from the basal gan-
glia, the computational scores were strong predictors of the clinical visual scores
and were positively associated with them (Original: βcount = 0.01 (CI 0.00, 0.02),
p< 0.01 and βvolume = 20.28 (CI 12.11, 31.54), p< 0.001; Filter all: βcount = 0.02
(CI 0.01, 0.04), p< 0.001 and βvolume = 35.92 (CI 21.25, 50.59), p< 0.001; Pro-
posed scheme: βcount = 0.02 (CI 0.01, 0.03), p< 0.001 and βvolume = 34.99 (CI
21.14, 48.83), p< 0.001). In the centrum semiovale, the relationships were not
as evident as in the basal ganglia before filtering. While in most of the cases, no
significant relationships were observed (Original: βcount = 0.00 (CI 0.00, 0.00),
p = 0.16 and βvolume = 0.76 (CI 0.00, 1.52), p = 0.05; Filter all: βcount = 0.00 (CI
0.00, 0.00), p = 0.26), our proposed selective filtering scheme resulted in signif-
icant ones (βcount = 0.00 (CI 0.00, 0.00), p< 0.05 and βvolume = 2.48 (CI 1.33,
3.64), p< 0.001).
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Table 1. Ordinal logistic regression with quantitative measures of PVS as predictor
and clinical visual scores as outcome variable. We consider the count and volume as
quantitative PVS measurements. The R2 correspond to the Nagelkerke’s R2. CI: con-
fidence interval. BG: basal ganglia. CSO: centrum semiovale.

Original Filter all Proposed selective filtering

VariableR2 (%)β 95% CI P -value R2 (%)β 95% CI P -value R2 (%)β 95% CI P -value

BG Count 12.96 0.01 0.00, 0.02 9.20e-

03

29.98 0.02 0.01, 0.04 1.14e-

04

29.38 0.02 0.01, 0.03 1.18e-

04

Volume 39.48 20.2812.11, 31.542.46e-

05

46.84 35.9221.25, 50.591.59e-

06

44.98 34.9921.14, 48.837.27e-

07

CSOCount 0.73 0.00 −0.00, 0.00 1.62e-
01

2.53 0.00 −0.00, 0.00 2.58e-
01

11.03 0.00 0.00, 0.00 1.62e-

02

Volume 7.55 0.76 -0.00, 1.52 5.02e-
02

22.38 2.15 0.91, 3.39 6.67e-

04

34.81 2.48 1.33, 3.64 2.37e-

05

We applied the Kruskal-Wallis test to determine whether patients with sim-
ilar visual rating presented similar computational PVS count and volume. We
compared the results obtained before and after filtering. The outputs are con-
densed in Table 2. Both count and volume were significantly different for patients
with different PVS visual scores in the basal ganglia regardless of whether all
scans were filtered (Count: χ2 = 14.74, df= 2, p< 0.001 and Volume: χ2 = 27.35,
df = 2, p< 0.001), some of them based on their predicted image quality (Count:
χ2 = 15.76, df = 2, p< 0.001 and Volume: χ2 = 25.67, df= 2, p< 0.001), or not
(Count: χ2 = 6.58, df = 2, p< 0.05 and Volume: χ2 = 22.19, df= 2, p< 0.001).
The case was not the same when patients were grouped based on their PVS
visual scores in the centrum semiovale. We found significant differences in both
measurements when using our texture-based selective filtering in both count
(Count: χ2 = 16.88, df = 2, p< 0.001 and Volume: χ2 = 24.11, df = 2, p< 0.001).
In the rest of the cases, we only found significant variations when considering the
overall PVS volume computed from both unfiltered (χ2 = 11.64, df = 2, p< 0.01)
and filtered data (Filter all: χ2 = 18.16, df = 2, p< 0.001). Of note, in all cases,
the differences between patient groups were more noticeable (i.e. lower p-value)
using measures computed from enhanced scans.

We considered the polyserial correlation to quantify the correlation between
categorical visual scores and quantitative PVS measures. The results are pre-
sented in Table 2. The correlation between computational measurements and
visual scores increased consistently after filtering. In the basal ganglia, corre-
lation results went from ρCount = 0.38 (CI 0.35, 0.41) and ρVolume = 0.63 (CI
0.61, 0.65) when segmenting PVS on raw acquisitions to ρCount = 0.57 (CI 0.55,
0.59) and ρVolume = 0.70 (CI 0.68, 0.72) when preprocessing the proposed filter-
ing strategies. Similarly, in the centrum semiovale, the correlation for both count
and volume increased from ρCount = –0.10 (CI –0.13, –0.06) and ρVolume = 0.27
(CI 0.24, 0.30) to ρCount = 0.14 (CI 0.10, 0.17) and ρVolume = 0.42 (CI 0.39, 0.45)
when filtering all scans and to ρCount = 0.30 (CI 0.26, 0.33) and ρVolume = 0.57
(CI 0.55, 0.60) when using our proposal. Of note, the sign of the correlation
between the visual rating and the computational PVS count in the centrum
semiovale changed from negative on original scans to positive on filtered scans.
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Table 2. Kruskal-Wallis test and polyserial correlation results between quantitative
and visual measures of perivascular spaces before and after image filtering. We consider
the count and volume as quantitative measurements of the presence of perivascular
spaces. CI: confidence interval. BG: basal ganglia. CSO: centrum semiovale.

Original Filter all Proposed selective filtering

Variable Kruskal-Wallis Correlation Kruskal-Wallis Correlation Kruskal-Wallis Correlation

ρ 95% CI ρ 95% CI ρ 95% CI

BG Count 3.72e-02 0.38 0.35, 0.41 6.29e-04 0.58 0.56, 0.61 3.78e-04 0.57 0.55, 0.59

Volume 1.51e-05 0.63 0.61, 0.65 1.51e-06 0.70 0.68, 0.72 2.67e-06 0.70 0.68, 0.72

CSOCount 7.53e-01 –0.10 –0.13, –0.06 7.48e-02 0.14 0.10, 0.17 7.51e-04 0.30 0.26, 0.33

Volume 8.70e-03 0.27 0.24, 0.30 4.06e-04 0.42 0.39, 0.45 2.37e-05 0.57 0.55, 0.60

4 Discussion

In this paper, we propose a framework for reducing imaging artefacts retro-
spectively while retaining clinically-relevant biomarkers of small vessel disease,
perivascular spaces (i.e. abbreviatedly PVS) in particular. Our framework con-
sisted of three steps: automatic image quality assessment, filtering, and segmen-
tation. First, we automatically examined the quality of the input scans using
texture features. If the quality was acceptable, filtering was avoided; otherwise,
the data would be processed. Second, distorted images were processed using the
total variation optimisation framework to reduce imaging artefacts. Third, we
used a previously validated segmentation pipeline to detect and quantify PVS.
Although our approach is not the first one enhancing PVS [12], this is the first
time that the effect of filtering has been assessed quantitatively using clinical
visual ratings.

Evaluation of our pipeline was carried out using three statistic tools to inves-
tigate the relationship between clinical visual scores accounting for the PVS
presence and extent using two quantitative measurements: count and volume.
We inspected these values in two regions of interest of clinical relevance, the
basal ganglia and centrum semiovale. First, simple linear regression revealed
that filtering led to similar or stronger associations compared to when omitted
regardless of the region of interest and the measurement. Second, the Kruskal-
Wallis test demonstrated that, in most cases, except for the PVS count in the
centrum semiovale, differences between groups of patients were significantly and
these differences were more evident when segmenting PVS from filtered scans
as opposed to unfiltered ones. Third, the polyserial correlation between clinical
visual scores and quantitative measurements before and after filtering showed
that visual scores correlated better with quantitative measures computed from
filtered scans compared to those of unfiltered ones. In all cases, the use of our
automatic image quality assessment strategy resulted in similar or superior per-
formance compared to when filtering all scans or none.

The primary outcomes of the current work are three-fold. First, artefact
reduction is necessary to make use of images that would otherwise be discarded
due to their level of distortion and to reduce potential false positives. Note that
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the former aspect is crucial, more in large-scale studies. For example, 23% of 700
T2-w scans of the Lothian Birth Cohort 1936 were not processed since imaging
artefacts hindered their segmentation [4]. We think that imaging enhancement
can help to improve the quality of the images, reducing the research waste and
adding more confidence to studies results. Second, the total variation framework,
which targets truncation and noise artefacts in particular, seems promising and
suitable for reducing visual artefacts mainly due to truncation and motion and
improving PVS segmentation and quantification. However, our pipeline needs
further testing on a larger sample and in cross-sectional and longitudinal studies.
Third, the application of such a filtering strategy needs to be applied only to
cases in which image quality is low as filtering clean scans might be detrimental.

Our proposal was evaluated on a subsample of a study of mild stroke. Accord-
ingly, we plan to carry out the same assessment on a larger sample to draw
stronger conclusions about the pertinence and suitability of imaging enhance-
ment for improving computational methods for studying small vessel disease.
The lack of ground truth prevents us from telling with confidence whether fil-
tering is indeed better than omitting it. Nonetheless, we think that a careful
statistical analysis looking at the strength of the associations between quanti-
tative computational measurements of PVS and demographics and clinical risk
factors could provide us insights on whether the proposal improves the evalua-
tion process or not. Additionally, we selected a useful filter strength qualitatively,
not quantitatively. In the future, we will consider alternative image quality clas-
sification schemes (e.g. using deep learning [5] or evolutionary algorithms [19],
which have proven useful in medical and biomedical analyses) and carry out
cross-validation or hold-out tests to systematically determine a suitable value
for it. Moreover, the current proposal needs to be tested on other structural and
dynamic sequences to examine whether it is suitable not only for improving the
segmentation and quantification of PVS, but also other neuroimaging features
of small vessel disease.
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