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Abstract. Accurate segmentation of cellular structures is critical for
automating the analysis of microscopy data. Advances in deep learning
have facilitated extensive improvements in semantic image segmentation.
In particular, U-Net, a model specifically developed for biomedical image
data, performs multi-instance segmentation through pixel-based classifi-
cation. However, approaches based on U-Net tend to merge touching cells
in dense cell cultures, resulting in under-segmentation. To address this
issue, we propose DeepSplit; a multi-task convolutional neural network
architecture where one encoding path splits into two decoding branches.
DeepSplit first learns segmentation masks, then explicitly learns the more
challenging cell-cell contact regions. We test our approach on a chal-
lenging dataset of cells that are highly variable in terms of shape and
intensity. DeepSplit achieves 90% cell detection coefficient and 90% Dice
Similarity Coefficient (DSC) which is a significant improvement on the
state-of-the-art U-Net that scored 70% and 84% respectively.

1 Introduction

Cellular imaging is a prevalent tool in biomedical research as it facilitates
studying changes in cellular behaviour under different conditions. These include
detecting changes in cell shape in cancer cells and characterising cellular response
to various genetic and pharmacological treatments [14]. Analysis of these image
datasets requires accurate segmentation of various biological entities, such as
cells and nuclei. In particular, various measurements of cell shape can be used to
infer different cellular states such as cell death, division, motility, and differenti-
ation [11]. High throughput microscopy techniques have dramatically increased
the rate at which cellular images can be obtained, making it infeasible for experts
to manually segment each image. Therefore, robust automatic segmentation of
microscopy images is essential to draw accurate scientific conclusions from the
obtained measurements [5].
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Our key contribution is to define the problem of multiple instance segmenta-
tion of cellular images as a multi-task problem involving 1) semantic segmenta-
tion of cell masks, and 2) separation of adjacent cells. This is achieved through
an architecture termed DeepSplit. DeepSplit is composed of one encoding branch
followed by two decoding branches where each branch optimises for one of these
tasks. By combining established semantic segmentation of cell masks with the
separation mask of adjacent cells we explicitly tackle the challenge of cell merg-
ing. This approach leads to significantly improved overall segmentation results.

Furthermore, our work utilises a cumulative learning approach where these
two tasks are trained in two stages. Firstly the segmentation decoding branch is
trained while freezing the learning in the separation branch. Once segmentation
is learned, the separation decoding branch is trained to classify pixels in cell-
cell contact regions. We demonstrate that DeepSplit can successfully segment
challenging cellular imaging data where cells vary highly in both their intensity
and shape. To our knowledge, this is one of the most effective ways to enforce
separation between touching cells.

Fig. 1. Example image of Breast Cancer cells. a) Raw image. b) Ground truth
segmentation mask. c) Ground truth separation mask.

Related Work. Classical image segmentation techniques such as intensity
thresholding and watershed segmentation do not perform sufficiently well on
images of overlapping and densely packed cells [17]. The main challenge is that
the boundaries between touching cells are often indistinct, making it difficult for
a non-expert to accurately identify the boundaries (Fig. 1). Machine learning,
and particularly deep learning, approaches have proven highly successful in seg-
mentation tasks [1,7,8,18]. These are thoroughly reviewed by Taghanaki et al.
[16]. Machine learning’s effectiveness in this task is owed to its ability to learn
features more complex than any classical algorithm could detect, making better
use of the information contained in the images. However, these methods require
large, labelled data sets for training purposes. Accurate labelling is a challenging
and laborious task making it infeasible when diverse cellular imaging datasets
are generated on a regular basis.
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U-Net is one of the most used architectures for segmenting cellular images
as it requires far less training data while achieving accurate segmentation [13].
Additionally, U-Net utilises a weighted loss function which prioritises correct
assignment of pixels in the boundaries between touching cells. This is critical
to its performance in separating adjacent cells. However, increasing the weights
assigned to boundary pixels extensively has been noted to result in inaccurate
delineation of cell boundaries [6]. Furthermore, it has been illustrated through
the nuclear segmentation challenge that the merging of adjacent nuclei remains a
problem even when large amounts of annotations are available (23,165 annotated
nuclei) [3]. The task of cellular segmentation, which is the focus of this work,
is even more challenging as there is a higher degree of variation in terms of
morphology and cell size, and because the boundaries between cells are less well
defined.

Inspired by the success of U-Net, a number of extensions have been proposed.
For example, V-Net [12] incorporates additional residual connections. Jeugo
et al. [10] modified DenseNet [9] for segmentation purposes by adapting the
U-Net architecture. There have also been many experiments varying the depth,
channel count, and number of attention blocks. However, despite impressive
DSCs when applied to standard datasets, all of these share the fundamental
problem of overfitting to the foreground pixels, resulting in poor boundary detec-
tion and merging of adjacent cells. One approach proposed to correct the merg-
ing errors is applying a global probabilistic model to refine U-Net segmentation
results [6]. This work uses simple size and shape checks to detect possible incor-
rect merges of nuclei and employs a geometric elliptical model to separate these
nuclei. However, this approach assumes a specific shape of segmented objects
as well as the presence of a boundary with a distinct texture, making it diffi-
cult to generalise this approach to more challenging cellular imaging datasets.
Therefore, there is a pressing need for advanced neural network architectures
that explicitly aim to reduce merging error.

Böhm et al. [2] employed a multi-task approach for segmenting overlapping
translucent objects. They formulated the segmentation problem as two tasks: 1)
object detection, and 2) object segmentation. For the object segmentation prob-
lem, they further encoded the 2D segmentation masks into 3D sheared masks.
Although this approach can reduce merging errors, it does not guarantee accu-
rate segmentation of cell boundaries. DCAN [4] is another multi-task architecture
that won the 2015 MICCAI Gland Segmentation Challenge by adding an addi-
tional branch for learning gland contours. However, in our case cell boundaries
are mostly detected correctly except between neighbouring cells. Here, we aim
to achieve accurate detection and delineation of cell boundaries by explicitly
learning to classify pixels falling between adjacent cells.

2 Methods

We introduce DeepSplit; an architecture with one encoder branch and two
decoder branches, as shown in Fig. 2. The first decoder branch is for traditional
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segmentation. The second decoder branch (the separation branch) is explicitly
used to predict the boundary pixels between adjacent cells, which motivates the
name DeepSplit. Features that are learned by the segmentation decoder branch
are shared by adding cross connections to the separation branch. Importantly,
this provides substantial contextual information that aids with the separation
task. These cross connections are critical to DeepSplit’s performance.

Fig. 2. DeepSplit Architecture. Each block consists of two 3 × 3 convolutional
layers followed by a ReLU activation function with random dropout at a rate of 20%.
The resolution of the feature maps is indicated on the left of each block (e.g. 512×512)
while the number of feature maps is indicated on the top of each block (e.g. 1, 64, 64).

2.1 Segmentation Task

The encoding branch has five blocks, where each block consists of two 3 × 3
convolutional layers interleaved with ReLU activation layers. Each block is fol-
lowed by a 2 × 2 max pooling operation with stride of 2 pixels to decrease the
resolution of the feature maps, descending to the next block down. The decoding
branches use the same blocks but replace the max pooling operations with 2× 2
up-sampling operations. Like the typical U-Net architecture, cross connections
are also added from the encoding to the segmentation decoding branch. It is the
combination of high-resolution, high-level context from the encoding branch, and
the low resolution features describing global context from the decoding branch
which permits accurate segmentation with minimal training data.
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2.2 Separation Task

Since many segmentation errors are due to mistakenly merging two cells, we
added an additional branch for learning the challenging cell-cell contact regions.
This branch has exactly the same configuration as the segmentation decoding
branch.

2.3 Alternative Architectures

In addition to DeepSplit and U-Net, we tested two other variations on the
DeepSplit architecture; Branch-Net and Double-U-Net. Like DeepSplit, Branch-
Net and Double-U-Net are U-Nets with added layers and a separation output.
The Branch-Net architecture adds an auxiliary branch to U-Net with 3 addi-
tional convolutional blocks to retune the trained U-Net to improve separation.
The Double-U-Net architecture follows the U-Net with a second, smaller U-Net
(Appendix Fig. 5 and Fig. 6 respectively).

3 Dataset and Training

3.1 Dataset

Training is performed using an original dataset of MCF-10a epithelial breast
cells in vitro expressing a Green Fluorescent Protein (GFP) that binds to YAP
protein. This poses a challenge as different cells express different levels of the
protein, making some cells much brighter than others. There also exists an enor-
mous variety of cell shapes in the dataset. Another major challenge is that these
cells tend to adhere to one another. This makes the segmentation of these images
a difficult task. As these types of images are routinely acquired and tend to vary
from one experiment to another, it is essential to develop flexible approaches
that can work on a limited number of annotations. 50 images were manually
annotated, each with a resolution of 512 × 512. 80% of the images are used for
training, 10% for validation, and 10% for testing.

3.2 Training

Pre-processing. Histogram equalisation is applied to the raw images to enhance
image contrast. We have not applied any image denoising in our experiments.
Although some noise is present in the images, the loss of information in the
image associated with denoising is found to be too detrimental to justify its use.

Data Augmentation. Augmentation is a key step in compensating for the
shortage of labelled data. Furthermore, by introducing various operations on
the image, augmentation enforces the network to learn transition invariant fea-
tures. Images are shifted, flipped, rotated, and subjected to elastic deformations
[15] such that 19 additional images are derived from each original image. The
intuition as to why elastic transformations in particular are so effective is that
cells are capable of deforming in all of these ways, so the new images contain
cells which look natural and realistic.
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Loss Function. A binary cross-entropy loss is used. The loss function for the
segmentation task is weighted with a variety of schemes based on that used by
Ronneberger et al.:

ω(x) = ωc(x) + ω0 ∗ exp(−(d1(x)2 + d2(x)2)/2σ2) (1)

ω(x) is the weight map. d1 and d2 are the distances to the nearest and second
nearest cells for each background pixel in (x). ω0 and σ are constants that need
to be set explicitly. ωc(x) is a weight map attributing the same weight to every
foreground pixel such that the total weight attributed to all foreground pixels is
equal to that of all background pixels.

For the separation task, pixels which are part of cells are assigned a weight of
5. Pixels between adjacent cells, determined to be the white regions in the sepa-
ration reference data, have a weight of 22.6. As errors in classifying background
pixels will be corrected when intersected with results from the segmentation
branch, we assign background pixels a weight of 1. The high weight of pixels
between adjacent cells is critical to split incorrectly merged cells. The medium
weight of cell pixels ensures that as few of them as possible are classified as
boundary pixels, however if some are then that is an acceptable price to pay for
accurate cell separation.

Random Dropout is used to increase the robustness and generalisability
of the model. Dropout incorporates degrees of redundancy during training by
forcing some nodes to have a weight of zero. This ensures that accurate segmen-
tation or separation is not dependent on any one feature. A dropout rate of 20%
is used.

Optimisation. Adam, stochastic gradient descent with and without momen-
tum, AdaGrad, and AdaDelta were tested. The Adam optimiser is used because
it converged faster than other tested optimisers in all experiments where con-
vergence was achieved within 10 epochs.

Initialisation of the weights in the convolutional layers is conducted ran-
domly. In the cumulative learning approach, the separation task is trained based
on the pretraining from the segmentation task.

Post-processing is used primarily to clean up artefacts arising in the results.
Standard Scikit Learn functions are employed to fill small holes in segmented
objects or filter small segments. Additionally, a custom watershed algorithm is
developed to aid the separation of incorrectly merged cells. The seed points for
this algorithm are placed at the centres of cells. Labels are then propagated out
from each of these seed points, with labels from different seed points theoretically
meeting at places where cells have been incorrectly merged. As the GFP marker
used is localised differentially between the cytoplasm and the nucleus, boundaries
can occur within cells. So cutting at every border between labels would incor-
rectly cut many cells in half. To account for that, cuts are only performed along
borders below a certain length criterion. This is found to marginally improve
cell separation accuracy.
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3.3 Evaluation Metrics

One of the key metrics employed is the aforementioned Dice Similarity Coeffi-
cient (DSC). This is the most commonly used metric for gauging segmentation
performance, however it fails to capture the accuracy of cell separation. An incor-
rect merge of two cells reduces DSC very little. Consequently, models that overfit
to the foreground pixels can still obtain excellent DSC scores.

To address this challenge, we propose a second metric based on cell detection
performance. Cells in the predicted and ground truth mask are matched by
comparing their position and area. Cells present in the ground truth masks
but not detected are defined as false negatives (FN), while those present in the
segmentation mask but not in the ground truth are defined as false positives
(FP). Cells present in both masks are defined as true positives (TP). The cell
detection score (CDS) is then calculated using the same formula as the DSC,
but using these different definitions of true and false positives and negatives:

CDS = 2TP/(2TP + FP + FN) (2)

Here CDS achieves two goals as if it is high, not only have the cells been
well separated, the cells in the results will also have approximately correct mor-
phologies. This is important to ensure that the network is capable of generating
sufficiently accurate results for useful analysis. It is worth noting that the CDS
is exceptionally punitive towards incorrectly merged cells, as two merged cells
will count not only as two false negatives, but also one false positive.

4 Experiments and Results

4.1 Cumulative Learning

Cumulative DeepSplit is trained in two stages. First, we train the network to
learn segmentation masks through the first decoding branch while setting the
weight for the separation loss to zero. Once converged, the results from this
stage are taken to be the results of the segmentation task. Effectively, this cor-
responds to training a typical U-Net. In the second stage, DeepSplit is retrained
where the weights for the segmentation loss and the separation loss are deter-
mined empirically. We found that best results can be obtained when weighting
segmentation loss by a factor of 0.3 compared to a factor of 1 for the sepa-
ration loss. The cross connections between the two decoding branches provide
context from the segmentation task without interfering with the training of the
separation task, leading to better separation results. The final results from the
separation branch are then intersected with the segmentation masks from the
first stage. In other words, pixels that are false positives in the segmentation task
are suppressed by the separation results and vice versa. Table 1 shows that this
approach significantly outperforms U-Net on our data set. Interestingly, training
two independent U-Nets for each of the tasks did not perform well, illustrating
the benefits of the proposed multi-task convolutional network.
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We explored other architectures that, like DeepSplit, specify an additional
separation task to gain insights into DeepSplit performance. The first adds an
auxiliary branch to the end of the decoding segmentation branch (Branch-U-
Net). The second follows the segmentation U-Net with another smaller U-Net
(Double-U-Net). Both of these architectures achieve significant improvements
on U-Net performance. However, DeepSplit produces better separation results
than the other architectures, leading to superior DSC and CDS. These results
demonstrate that architectures that formulate multi-instance segmentation as
two tasks (segmentation and separation) can significantly improve the segmen-
tation results. Furthermore, DeepSplit outperforming Branch-Net and Double-
U-Net highlights the value of cross connections between the segmentation and
separation branches, which allows sharing information from the segmentation
task with the separation task.

Table 1. Proposed multi-task cumulative DeepSplit results compared to U-Net. In
cumulative learning, the network is trained in two stages. Results are presented before
and after post-processing to facilitate easier comparisons.

Experiment DSC CDS Post-processed DSC Post-processed CDS

U-Net 0.841 0.699 0.842 0.704

Cumulative DeepSplit 0.911 0.903 0.911 0.903

Cumulative Branch-Net 0.878 0.886 0.881 0.890

Cumulative Double-U-Net 0.903 0.895 0.903 0.895

4.2 Simultaneous Learning

We found that training DeepSplit in two stages is critical to DeepSplit perfor-
mance. Training DeepSplit from scratch to learn segmentation and separation
simultaneously performed worse than a typical U-Net (Table 2). This was also
true of simultaneous training for Branch-U-Net and Double-U-Net. This sug-
gests that learning the separation mask impedes the learning of the segmen-
tation mask. A simultaneously trained DeepSplit performs slightly better than
the other architectures because the segmentation and separation branches are
trained in parallel, reducing the number of layers being influenced by two com-
peting tasks. These results reflect the effectiveness of the proposed cumulative
learning approach.

5 Discussion

The results obtained in this work demonstrate the advantage of multi-task cumu-
lative learning. The cumulative DeepSplit results in a significant improvement in
segmenting adjacent cells when compared to a simple U-Net approach. We illus-
trate the power of DeepSplit based on a small and challenging training dataset.
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Table 2. Results for simultaneous learning of the segmentation and separation tasks
as compared to U-Net.

Experiment DSC CDS Post-processed DSC Post-processed CDS

U-Net 0.841 0.699 0.842 0.704

Simultaneous DeepSplit 0.805 0.748 0.812 0.770

Simultaneous Branch-Net 0.688 0.702 0.689 0.706

Simultaneous Double-U-Net 0.796 0.720 0.802 0.742

(a) Image (b) Ground truth (c) DeepSplit result

Fig. 3. Example result from Cumulative DeepSplit. The green cell has been detected
despite not being present in the ground truth, demonstrating that DeepSplit can
slightly improve on reference data. The red cell has long thin protrusions which the
network fails to detect as part of the cell. (Color figure online)

Furthermore, upon close inspection of the results, instances are found of sup-
posed errors in the results arguably being minor improvements on the ground
truth, as seen in Fig. 3. This is in part a reflection of the extreme difficulty in
accurately generating segmentation ground truth by hand, especially when there
is a substantial variation in cell brightness and the cell boundaries are indistinct.

By adding a second decoding branch solely for predicting where touching
segments need to be split, DeepSplit addresses one of the major challenges in
cellular segmentation. U-Net has a tendency to overfit to the foreground pix-
els, accepting errors in boundary pixels as there are not many of them. To our
knowledge, DeepSplit is the first architecture that attempts to learn to separate
adjacent cells by explicitly learning to segment pixels at the boundaries between
cells. Critical to DeepSplit’s performance is learning segmentation and separa-
tion in two stages. This suggests that learning the segmentation task first helps
the network focus its attention on features that are discriminative of foreground
versus background. Once these features are learned, we then focus the atten-
tion of the network towards features that are predictive of the boundaries, while
having access to segmentation features via the cross connections. Giving some
limited weight to the segmentation task allows its layers to continue producing
reasonable segmentation results, ensuring that the context it provides to the sep-
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(a) Image (b) Ground truth (c) DeepSplit result

(d) U-Net result (e) Branch-Net result (f) Double-U-Net result

Fig. 4. Example results obtained by the various proposed architectures and U-Net
versus the ground truth segmentation masks. Instances where DeepSplit correctly sep-
arates cells that were merged in the U-Net results are circled.

aration task is useful throughout the training process. The order of these stages
is based on the task difficulty and contribution to the final results. Specifically,
segmenting the foreground is easier than classifying pixels between adjacent cells.
Furthermore, as there are many more foreground pixels it is intuitive to learn
those first (Fig. 1).

Although this work is a significant advance from U-Net, more work is needed
to address more challenging cell shapes. In particular cells with thin protrusions
are being incorrectly split. This is also an issue with typical U-Nets, and remains
an open challenge. More annotations of the challenging cells might be needed to
circumvent this problem. Furthermore, the multi-stage training can significantly
increase the computational workload associated with training the model. Future
work would include developing adaptive weighting schemes of the different tasks
to ensure minimal training time.

Additionally, it is observed that the evaluation metrics employed have a pro-
found impact on the solutions found and results obtained. Each metric comes
with its own biases. A naive approach employing only DSC would lead to a result
that solely minimises erosion, but allows cells to incorrectly merge. Focusing on
CDS alone would result in huge erosion. There is therefore a requirement to
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employ a range of evaluation metrics to achieve a trade-off that yields the most
scientifically accurate measurements. This approach facilitates a more nuanced
understanding of the outputs, which is crucial in developing biologically mean-
ingful results.

6 Conclusions

This paper explores the problem of accurate boundary detection in cell segmen-
tation when limited training data is available. Firstly, it is found that there
exists a trade-off between boundary detection and accurate pixel-wise segmen-
tation, such that these two tasks are best approached as separately as possible.
Secondly, it is shown that access to context from a segmentation task is essen-
tial for CNNs to learn accurate separation results. The more contextual features
provided from the segmentation task, the better the separation results become.
Thirdly, new network architectures are explored, culminating in the develop-
ment of the successful DeepSplit architecture adopting a cumulative learning
approach. Together, these three developments are found to significantly improve
segmentation results.

A Appendix

Fig. 5. Branch-Net architecture. The orange blocks highlight the additional convolu-
tional layers. (Color figure online)
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Fig. 6. Double-U-Net architecture. Orange highlights the additional U used for sepa-
ration. (Color figure online)
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