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Abstract. Automatic detection and identification of the intervertebral
discs on the spine MR images is a challenging task due to similarity
of the discs on the same image, size and shape differences between sub-
jects, and poor resolution. Many deep learning-based methods have been
proposed recently to achieve automated detection and identification of
human intervertebral discs. However, since there is usually only a small
amount of labeled vertebral images available, employing an end-to-end
deep learning system is not easily achievable. In this paper, we use a
multi-stage deep learning system to detect and identify human lumbar
discs from MRI data. We first use a Faster Region based Convolutional
Neural Network (FRCNN) method to detect candidate disc positions.
Each candidate from the FRCNN becomes a node in a weighted graph
structure. The edge weights between the nodes are calculated using the
FRCNN scores and the scores from a Binary Classifier Network (BCN)
that tests compatibility of the nodes of the edge. A novel application of
Dijkstra’s shortest path algorithm in this network produces both local-
izations and identifications of the lumbar discs in a globally optimal
manner. Experiments on our dataset of 80 MRI scans from 80 patients
achieved very promising results as they exceeded the state of the art
alternatives on similar datasets.

Keywords: Spine Lumbar MRI · Detection of intervertebral disc ·
Faster RCNN · Dijkstra’s Algorithm

1 Introduction

Detecting the anatomical structure of the human vertebrae is crucial for many
applications such as diagnosis of degenerative discs, finding herniated and slip-
ping discs [16] and detecting abnormality in the spine. With the current medical
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practice, this operation is mostly performed manually which makes it subjec-
tive, prone to human errors, time-consuming, and expensive. As a result, many
computerized methods have been proposed to detect the anatomical structure
of the human vertebrae. For example, Oktay and Akgul [11] introduce a model-
based Markov-chain-like graphical model. Lootus et al. [10] present a method
that employs a graphical model combined with a Deformable Part Model. These
classical methods generally consider the problem as many sub-localization prob-
lems (one for each intervertebral disc or vertebra) and then combine the results
of these sub-localizations in a graphical method that models the whole verte-
bra. The sub-localization stages usually employ hand-crafted feature extraction
based machine learning techniques.

Recently, deep learning-based methods have exceeded state of the art results
for the detection of human vertebral structure. Forsberg et al. [3] use two Convo-
lutional Neural Network (CNN) models to assign scores to given image patches
and then combine the results of these networks under a graphical model to
enforce the whole vertebrae constraints. Chen et al. [2] also employ a random
forest classifier to get coarse localization of the vertebra efficiently. These coarse
positions are passed to a joint CNN model to enforce both local and pairwise
constraints of the vertebrae. Still on the same topic, Wang et al. [14] proposes
a multi-stage system that learns vertebrae specific deep features using auto-
encoders and then enforces anatomical context-related constraints later.

End-to-end deep learning systems are known to produce better results com-
pared to sequential multi-stage (or pipe-lined) systems partly because every
aspect of end-to-end systems is directed towards the final goal [6]. With the
end-to-end approach, since there are no intermediate stages, there are no stage
combination or fusion decisions which makes the overall system more robust.
However, end-to-end systems need large amounts of training data if the task
at hand is not trivial. Since the labeled data for the vertebral MR images is
scarce, deep learning methods usually avoid building an end-to-end system that
takes the whole MR image of the vertebrae as an input and produces the final
positions and labels of the individual discs. All the cited methods above propose
systems with stages that employ one or more deep networks whose results are
combined later, which makes it possible to train networks on small patches of
the whole MR images. Although multi-stage approaches are more convenient for
the network training, fusion of the resulting data in the subsequent stages should
be done in a robust way to eliminate errors caused by this process. We argue
that there should be guarantees of optimality for the data fusion or combination
steps, which should address the robustness problems of stage based methods.

In this paper, we follow the same multi-stage deep learning approach to
automatically localize and identify the InterVertebral Discs (IVD) of human
vertebra from MR images. Different from the other systems, we propose a method
that optimally combines the data produced by the system stages. Our method
consists of two stages. In the first stage, we use Faster RCNN (FRCNN) network
[12] to learn every single lumbar IVD individually. In the second stage, we use
a Binary Classifier Network (BCN) to learn about two neighboring discs to use
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more global context information about the candidate disc positions produced
from FRCNN. Our main contribution in this paper is the fusion of prediction
scores of the FRCNN’s and the confidence scores of BCN’s in the shortest path
setting to make a globally optimal disc localization and identification decision.
We build a graph whose nodes represent the candidate positions produced by
the FRCNN. The edge that connects two nodes in this graph is assigned a weight
produced by our BCN about these two candidate positions. The shortest path
through this network makes a globally optimal disc localization and identification
decision, which can be achieved in polynomial time using Dijkstra’s shortest path
algorithm.

Although the proposed method is not an end-to-end trainable deep network
system, the results of our stages are brought together in a globally optimal man-
ner which partially addresses the missing feedback loop problem of multi-stage
systems. The proposed system is original in terms of using two very popular deep
networks in a shortest path environment. The result shows that our detection
accuracy is 96.25% and localization error is 1.08 mm which is comparable with
the state of the art methods. The proposed system is very modular and easily
implementable because it uses very well known FRCNN and BCN methods. It
is also very fast because both FRCNN and BCN stages are designed to be fast.
Polynomial time Dijkstra’s shortest path algorithm is also very efficient.

The rest of this paper is organized as follows: Sect. 2 explains Lumbar MRI
Data and the proposed method. Section 3 describes the dataset, experiment, and
results and Sect. 4 presents our conclusions.

2 Lumbar MRI Data and the Proposed Method

2.1 Lumbar MRI Data

The human spine consists of 33 vertebra connected with IVDs. There are five
types of vertebrae: cervical vertebrae, thoracic vertebrae, lumbar vertebrae,
sacrum vertebrae, and coccyx vertebrae. Magnetic Resonance Imaging (MRI)
and Computed Tomography (CT) are the two most widely used methods to scan
the vertebrae. In this study, we focus on IVDs in the lumbar vertebra region on
MR images. These IVDs are L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1. Figure 1
shows an example MR image with labeled lumbar IVDs from our dataset.

2.2 First Training Stage: Pre-trained Faster RCNN

The identification and localization of discs on an MR image can be considered as
an object detection problem, which is usually harder than classification problems.
Classical CNN models are not directly applicable for the object detection tasks.
To address this issue, Girshick et al. [5] present a model which combines region
proposals with CNN’s named Region-Based CNN (RCNN). RCNN is good at
object detection accuracy but slow at training and testing time. It also needs a
large amount of memory. Because of these drawbacks, Girshick et al. [4] proposes
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Fig. 1. Example of labeled L1-L2, L2-L3, L3-L4, L4-L5, L5-S1 discs on MR image from
our dataset

a new model that uses a region of interest pooling method named Fast RCNN,
which is 9 times faster than RCNN and also has better accuracy. Later, Ren
et al. [12] used a new region proposal method to achieve higher accuracy and
lower execution time than Fast RCNN. This method is called Faster RCNN
(FRCNN). Due to its high accuracy and near real-time execution, we use FRCNN
in our model to produce lumbar disc candidate positions for each IVD in the
lumbar region.

In this stage, firstly we prepare our training data. We extract x and y coor-
dinates, width and height information of each lumbar IVDs and label them
with their disc names. To determine the beginning and the end of the lumbar
spine, we also extract positions of top (T12) and bottom (S1) lumbar verte-
bra, which makes the system more robust. At the end, we have 7 classes (5
IVDs, T12 and S1 vertebra). We give this training data directly to FRCNN
for training. Since our data is scarce and classes are very similar to each other,
we do transfer learning and use the pre-trained FRCNN Inception V2 model
provided by Tensorflow trained on COCO dataset. After the training, at the
testing time, the model produces bounding boxes for every disc with a score.
Lets denote the candidate disc positions as cj ∈ R2 and every lumbar disc label
as di ∈ {L1 − L2, L2 − L3, L3 − L4, L4 − L5, L5 − S1, T12, S1}. We also define
probability PE (di|cj), which defines the likelihood of having a disc di at posi-
tion cj . The trained FRCNN model produces candidate discs coordinates, their
labels, and scores.
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FRCNN methods are very favorable in terms of their localization error, i.e.,
the position error of the localized discs. FRCNN can also achieve very good
detection accuracy rates if there is a good amount of training data. However,
the labeled IVD data is very limited for our application. Furthermore, since the
appearances of the five discs in the lumbar region are very similar to each other,
FRCNN methods produce many false candidates for each disc type with high
prediction accuracy scores. As a result, an FRCNN cannot be used on its own for
the localization and identification of all the lumbar discs. In order to address this
problem, we propose to use more global context information about the candidate
disc positions.

2.3 Second Training Stage: Binary Classification Network

In the previous step, the trained FRCNN model learns every IVD as an inde-
pendent class and it has no idea about sequencing between them. In this stage,
we create a CNN model that takes candidate image locations of two neighbor-
ing discs, such as L1-L2 and L2-L3. This network makes a binary decision that
shows if these two discs are really neighbors. This way, we can lower the num-
ber of false positives produced by the FRCNN method. To prepare the training
data, image patches that contain two consecutive neighboring discs are cropped
(For example, one of the image patches includes L1-L2 and the other includes
L2-L3.) We follow the method introduced by Karakoc et al. [9] for image patches
cropping. Since consecutive discs are locally very similar, four patches extracted
from the same center point with different scales to give more information to the
model. Every patch is resized to 64×64 and combined into a 128×128 image. We
designed a network model that consists of two 2D convolutional layers, 2D max-
pooling layer, dropout layer, flatten layer, dense layer, dropout layer, and dense
layer. Softmax is used as an activation function, stochastic gradient descent as
the optimizer and categorical cross-entropy as a loss function. In the testing
phase, the BCN model is given two disc patches, ci and ci−1, and it produces
the probability of having these two patches as neighbors on an MRI image as
PT (ci, ci−1).

Although the decision produced by the BCN is more globally informed than
the FRCNN model, it still uses information about only two neighboring discs.
In order to get a globally optimal localization and identification results, we use
the prediction scores of the FRCNN’s and the confidence scores of BCN’s in a
graph shortest path setting.

2.4 Graphical Model for Optimal Disc Center Localization and
Identification

We propose a graphical model that combines the results of these two networks
for the final localization and identification of the disc centers. In the first stage,
the FRCNN model produces scores and positions for every candidate individual
disc. We take a maximum of five predicted candidate positions for every disc.
We build a graph whose nodes represent these candidate positions. The edge



148 M. Zeybel and Y. S. Akgul

that connects two nodes is given a weight produced by our FRCNN and BCN
(Fig. 2). Our edges connect two sequential candidate disc positions. To calculate
the edge costs between nodes i and j, we use

W =

{
1 − PE (di|cj) if i = 0 or i = n

1 − PE (di|cj) + 1 − PT (ci, ci−1) otherwise
(1)

where n is the number of discs and vertebra. We try to minimize our cost function
to find the most probable disc sequence. The shortest path through this network
makes a globally optimal disc localization and identification decision, which can
be achieved in polynomial time using Dijkstra’s shortest path algorithm. Figure 2
shows a visualization of Dijkstra’s algorithm on our system.

Fig. 2. Visualization of Dijkstra’s Algorithm on our system. T12 and S1 nodes represent
the first and last lumbar vertebra of interest. We take these vertebra to determine the
starting and ending points of the lumbar spine. L1-L2, L2-L3,...L5-S1 nodes represent
IVDs. The top five prediction coordinates generated from FRCNN are produced for
each disc. Every edge weight is calculated based on BCN and FRCNN scores with
Eq. 1.

2.5 Overall System

To sum up the overall system, in the first stage, lumbar discs and their coor-
dinates are given to the pre-trained FRCNN model. While FRCNN model is
trained on individual IVDs, in the second stage, BCN is trained to learn the
relations between two consecutive discs. Figure 3 shows our visualization of the
training procedures.

At the testing stage, given an image, the FRCNN model produces candidate
discs. Every combination of two candidate discs are given to BCN and BCN pro-
duces a score about the probability of these two discs being neighbors. According
to FRCNN and BCN results, all of the path costs starting from the first lumbar
disc to the last lumbar disc are calculated. Finally, the most probable sequential
disc path that has the minimal cost is found by Dijkstra’s algorithm. Figure 4
shows visualization of our testing system.
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Fig. 3. Visualization of our training system. In the first training stage lumbar discs,
first and last lumbar vertebra are trained with FRCNN. In the second training stage,
every two consecutive disc is trained with BCN to learn the sequence of discs.

3 Experiments

In first stage of training, {xmin, xmax, ymin, ymax, width, height, class name} fea-
tures extracted for every lumbar disc by a volunteer radiologist. To extract these
features, we use a tool named LabelImg1. With this tool, the radiologist takes
discs in rectangles and labels them. The tool generates xml files for every MR
image containing positional information of every disc. We have 80 MR lumbar
images in our dataset. Since our data is very small for deep learning, we aug-
ment the data by resizing, rotating, scaling, shearing, and translating the images
by interval values. For resizing (450, 600), for rotating (−6,+6), for translating
(−0.15,+0.15), for scaling (−0.25,+0.25) and for shearing (−0.1,+0.1) limit
values are used as intervals. One hundred newly augmented images are gener-
ated for every image via randomly selected augmentation parameters between
intervals. Since we use 10 fold cross validation as the evaluation method, at the
end of the augmentation, we have 7200 training images and 800 test images for
each fold. To extract positional information of these augmented pictures, we use
a public augmentation library.2. Then all of these images with their label data
are used to train the FRCNN. The initial learning rate of the model is 0.0002
and the activation function is softmax. We train our model with 57 000 epoch
which takes about 2 h. At testing time, FRCNN gives predicted bounding boxes
and their probabilities on average 0.48 s for a single lumbar MR image.

1 https://github.com/tzutalin/labelImg.
2 https://github.com/Paperspace/DataAugmentationForObjectDetection.

https://github.com/tzutalin/labelImg
https://github.com/Paperspace/DataAugmentationForObjectDetection
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Fig. 4. Visualization of our testing system. Firstly, test image is given to FRCNN
which produces candidate discs. Every combination of two candidate discs are given
to BCN to get probability about they come in sequence. These two scores are given to
the Eq. 1 and the weight of the edges are calculated. Finally, Dijkstra’s Algorithm is
run to find the optimal path in polynomial time.

For the BCN model, we use the same training data with FRCNN. Firstly we
combine two consecutive discs and crop the image patches from the center of
this consecutive disc. Since the appearance of the combination of two consecutive
discs is similar, we take four image patches with different scales from the same
disc center. These four image patches resized to 64×64 and combined in an image
with 128 × 128 size. The main aim of this process is to obtain more information
about two sequential disc centers. We have 7200 training data and 800 test data
like the first training stage in a single cross-validation fold. Softmax is used as an
activation function, stochastic gradient descent as an optimizer and categorical
cross-entropy as a loss function. The learning rate is 0.0001. The result of BCN
measures the possibility of two discs coming consecutively. The model is tested
with 10 fold cross-validation. The average BCN accuracy is 92%, which is not
very good but we do not use BCN results by themselves. They are used in the
shortest path setting along with the FRCNN outputs.

Finally, we create a weighted graph with FRCNN and BCN results. The result
of the shortest path algorithm produces smallest cost disc path on average 1.1
seconds. The accuracy of 10 fold cross-validation for the overall system is 96.25%.
We calculate localization errors both only on true positives and on all dataset
separately. Also we find accuracy, localization error and standard deviation of
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FRCNN model by itself, which makes a good baseline. To find localization error
between detected and ground truth disc centers, Euclidean distance formula is
used. Each pixel is 0.625 × 0.625 mm given by the MRI data. Figure 5 shows
the box plot of the localization errors for every lumbar disc.

Fig. 5. The box plot shows the mean localization error for every disc. Localization
error is calculated with Euclidean distance between the detected bounding box center
and the ground truth disc center. In the box plot, the horizontal line in each box shows
the median error, the bottom and top of each box shows the 25th and 75th percentile
errors, respectively. ‘*’ signs represent the statistical outlier errors.

Table 1 shows accuracy, localization error mean and standard deviation for
FRCNN and our system. The results show that our system is quite fast and
reliable.

Table 1. Values shows accuracy, localization error mean, standard deviation for
FRCNN and our system with and without false positives.

Dataset Accuracy Mean error (mm) Standard deviation

Only FRCNN (True positives) 85% 1.04 0.64

Only FRCNN (True positives+False positives) 85% 2.47 5.60

FRCNN + BCN + Dijkstra’s Algorithm (True

positives)

96.25% 1.08 0.68

FRCNN + BCN + Dijkstra’s Algorithm (True

positives+False positives)

96.25% 1.98 4.63

Examples of our results on MR images is shown in Fig. 6. Green plus signs
are marked by the expert and red ones are the output of our system.

We use the same dataset with Oktay and Akgul [11]. Their localization error
is 3.25 mm for discs and their accuracy is 97.82%. Our localization error is
1.08 mm and our accuracy is 96.25%. The execution time of our system is 1.1 s.
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Fig. 6. Results of our system. Green plus signs are marked by the expert and the red
one’s are the outputs of our system. For the images from (a) to (m), the system can
find all discs correctly, on the last 3 images from (n) to (p) are miss-classified images
where the system is confused about all discs due to a single shift. (Color figure online)

This shows that our system can identify and localize disc in seconds with com-
parable performance with the state of the art.

We also compare our results with other studies in this area. Table 2 shows a
comparison of our method with other studies.

Although (except Oktay and Akgul [11]) accurate comparison cannot be
made because the datasets are different from other studies, we can make infer-
ences that using two networks in a shortest path environment gives high accu-
racy values because of both using local and global context information. Also, our
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Table 2. Comparison with the other methods.

Method Accuracy Dice score Mean error (mm) Standard deviation Execution time

Our method 96.25% 1.08 0.68 1.1 s

Jamaludin et al. [8] 84 1.1 0.6

Glocker et al. [7] 81% 6.10 5.5 Less than 2min

Oktay et al. [11] 97% 3.1

Suzani et al. [13] 95% 18.2 11.4 Less than 3 s

Chen et al. [2] 84% 8.82 13.04

Lootus et al. [10] 84% 3.3 3.2 Less than 1min

Cai et al. [1] 98.1% 3.23 2.09

Yang et al. [15] 90.0% 6.4 5.9 3 s

study shows that using pre-trained FRCNN in spine MR images makes the local-
ization error (mean error) better and can reach state of the art performance as
shown by our experiments. The near real-time execution performance feature of
FRCNN and Dijkstra’s algorithm makes the mean execution time of our system
1.1 s per image, which is quite fast compared to other studies.

4 Conclusions

In this paper, we described our method for the automatic detection and identi-
fication of lumbar discs from the MRI data, which is very important for several
applications. Although the proposed system is not trained in an end-to-end fash-
ion, our novel employment of Dijkstra’s shortest path algorithm makes the final
results optimal given the available outputs of FRCNN and BCN components.
Our system obtains the candidate lumbar disc positions from an FRCNN mod-
ule, which are known as fast and accurate object detectors. Many false positives
produced by the FRCNN module are eliminated by the shortest path algorithm
that uses a second Binary Classification Network to calculate edge weights. The
final localization and identification results are comparable with the state of the
art methods. The run time of the system is very favorable because the main
system components (FRCNN, BCN, shortest path) are known to be very effi-
cient. This system is also easily applicable to different sequential multi-stage
deep learning systems. For the future work, we plan to apply this method to 2D
and 3D CT and MR images of the whole human vertebrae and discs.
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