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Abstract. Quantitative imaging biomarkers derived from magnetic res-
onance imaging of the pancreas could reveal changes in pancreas organ
volume and shape manifest in chronic disease. Recent developments in
machine learning facilitate pancreas segmentation and volume extrac-
tion. Machine learning methods could also help in designing a data-driven
approach to pancreas shape characterization. We present an automated
pipeline for pancreas volume and shape characterization. We start off
with deep learning-based segmentation; we show the impact of choice of
loss function in pancreas segmentation by comparing a 3D U-Net model
trained using soft Dice over cross-entropy loss. Then, a diffeomorphic
algorithm for group-wise registration as well as manifold learning are
used to extract prominent shape features from the segmentation masks.
The technique shows potential in a subset (N = 3,909) of the UK Biobank
imaging sub-study for (1) automated quality control, e.g. suboptimal
pancreas coverage acquisitions; and (2) determining abnormal pancreas
morphology, that might reflect different patterns of fat infiltration. To
our knowledge, this work is the first to attempt learning pancreas shape
features.

Keywords: Pancreas · Magnetic resonance imaging · Volume · Fat
infiltration

1 Introduction

Much like chronic liver disease, the incidence of chronic pancreas disease is rising
rapidly reflecting the increasing worldwide prevalence of obesity [20]. Obesity
causes fat infiltration in organs such as the liver and pancreas and triggers a set
of inflammatory responses that can ultimately lead, in the pancreas, to chronic
pancreatitis and pancreatic cancer. Quantitative magnetic resonance imaging
(MRI) has become the gold standard tool for early detection, diagnosis and
monitoring of chronic liver disease due to its soft tissue contrast, lack of radiation,
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high accuracy and precision, even in the most obese patients. This has resulted
in the development of imaging biomarkers such as corrected T1 (cT1) [12] and
proton density fat fraction (PDFF) [15].

Similar considerations motivate the development of imaging biomarkers for
assessing the pancreas, which is increasingly important as it is fundamentally
implicated in obesity-related conditions such as the metabolic syndrome and
diabetes. Pancreas fat infiltration is often heterogeneous, with person-specific
patterns of infiltration, which rules out two-dimensional and local quantification
approaches. It is also usually asymptomatic and only reported incidentally as
part of abdominal imaging routines. Furthermore, evaluation of pancreas fat
content is important in the context of transplant [5], but is often only subjectively
assessed. Evidently, there is a need for quantitative tools to assess pancreas state,
including fat content.

The volume of the pancreas has been reported to change under certain con-
ditions, such as type I and type II diabetes [10,17]. The advent of deep learning-
based approaches – particularly convolutional neural networks (CNNs) – has
substantially improved pancreas segmentation accuracy. However, the pancreas
remains one of the most challenging organs to segment, with potentially het-
erogeneous pathology and boundaries that are often unclear. This uncertainty
leads to high inter-rater variability that impairs training, even for state-of-the-
art approaches. In addition, substantial variability in acquisition sequences and
parameters, as well as patient-related variability in signal-to-noise ratio and
image uniformity (even for a fixed acquisition), make it difficult to develop robust
pancreas segmentation methods.

Pancreas morphology may also be altered through disease processes [10,22].
Imaging biomarkers of pancreas morphology have thus far relied on manual
approaches, such as subjective scoring systems of e.g. surface “irregularity” (1
to 5 score) [10]. Automated approaches have used carefully engineered, non-
organ-specific metrics such as curvature [22]. Advances in machine learning and
modern pattern recognition invite more data-driven approaches for pancreas
shape characterization. To this end, there are methods used in brain imaging for
group-wise registration and computational anatomy [6,9] that may yield robust
and useful imaging biomarkers for the pancreas.

In this work, we report the development of a pancreas shape characterization
pipeline which has potential for disease stratification and automated quality
control. We used deep learning-based segmentation, a computational anatomy
method involving registration to a template, and manifold learning. We validate
our pipeline using data from the UK Biobank imaging sub-study.

2 Materials and Methods

Our method is based on a deep learning model to compute pancreas segmen-
tations for each case. Though the focus of this work is not a comparison of
deep learning architectures for segmentation of the pancreas, but rather to pro-
vide base performance of such a pipeline, we explored differences in performance
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given by two commonly used loss functions in the pancreas segmentation prob-
lem. Segmentations on a separate dataset are then used to extract total pancreas
volume and to extract shape metrics via diffeomorphic image registration and
non-linear dimensionality reduction.

Data. MRI acquisitions from the imaging sub-study of UK Biobank [19], aim-
ing to scan 100,000 volunteers, were used to develop a deep learning based pan-
creas segmentation model. Specifically, we used the “Pancreas fat - DICOM”
volumetric acquisition (Field ID 20202) which targets the abdominal loca-
tion of the pancreas. Only datasets from the first imaging visit (Instance 2)
were used. Imaging data was acquired with a Siemens Aera 1.5T (Siemens
Healthineers AG, Erlangen, Germany) at the Stockport, Manchester, UK
imaging center using the FLASH-3D acquisition (TE/TR = 1.15/3.11 ms, voxel
size = 1.1875× 1.1875× 1.6 mm), with 10◦ flip angle and fat suppression.

Manual Annotations. Manual annotations were performed on N = 217 cases
using the 3D brush tool in ITK-SNAP [23]. Where pancreas coverage was incom-
plete, only the pancreas volume covered by the field of view was annotated (see
Fig. 1).

Fig. 1. Two coronal slices of a case with partial pancreas head coverage in the breath-
hold acquisition, shown in ITK-SNAP. Arrows indicate pancreas head (yellow), body
(blue), and tail (green). (Color figure online)

Model Training. Keras with TensorFlow 1.13 as backend was used for training
U-Net CNN segmentation models [16] based on an available architecture [7],
adapted from 2D to 3D convolutions and input size of our data [14]. A random
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affine transformation (up to 3◦ rotation, 5% translation, 5% scaling) was applied
to each case at training time, different for each case at every epoch, for data
augmentation purposes. Adam optimization was used with learning rate = 5e-5,
as well as batch size = 1 and 100 epochs.

195 datasets with annotations were used for training the model, while a
random selection of 22 cases (10%) were used as our validation set and were not
seen during training. The model was checkpointed every 10 out of 100 epochs
and the instance with lowest validation loss was chosen as the segmentation
model to be used in subsequent stages.

Loss Function. The choice of loss function is reported to be an important
step in pancreas segmentation, due to the substantial class-imbalance of a small
structure in a relatively large field of view [11,13]. We experimented with two
loss functions, binary cross-entropy loss and soft Dice loss, in order to observe
the potential improvement of soft Dice over binary cross-entropy in the pancreas
segmentation problem, using the same network architecture. This yielded two
separate models that were named ModelCE and ModelDSC, respectively.

ModelDSC was chosen for subsequent experimentation and derivation of met-
rics in subsequent sections and Results. The subsequent work does not place any
restrictions on the nature of the segmentation model, though segmentation accu-
racy will naturally affect subsequent analysis.

Predictions. ModelDSC was used to make inferences on a new cohort of 3,909
subjects from UK Biobank drawn from the same pool of cases used for training
that shared the same acquisition parameters. Segmentation volumes were calcu-
lated for all cases in this cohort using the number of voxels in the segmentation
mask and the acquisition voxel size.

Diffeomorphic Registration and Kernel Generation. Predicted segmen-
tations’ volumetric masks for 600 of the 3,909 cases were iteratively registered
towards a group average using the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) via Geodesic Shooting approach [2] in the ‘Shoot’ Toolbox
of SPM121, in order to generate a set of average template images that became
sharper as the algorithm converged (see Fig. 2).

The scalar momenta maps were generated with SPM12 using the last tem-
plate image together with the deformation fields and the Jacobian determinant
fields; scalar momenta images were smoothed using a 10 mm Gaussian kernel.
A 600× 600 kernel similarity matrix (Gram matrix) was then computed with
SPM12 using the smoothed scalar momenta maps.

A manifold learning procedure was applied to the kernel matrix by making
use of the “kernel trick” [3]. The Principal Component Analysis (PCA) algo-
rithm in scikit-learn2 was run on the kernel matrix to extract the 10 principal
1 SPM12 revision 7771, https://www.fil.ion.ucl.ac.uk/spm/, under MATLAB R2019b.
2 scikit-learn version 0.22.1, https://scikit-learn.org/stable/.

https://www.fil.ion.ucl.ac.uk/spm/
https://scikit-learn.org/stable/
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components of variation of the shapes of pancreas segmentation masks. The end
goal of this step was to obtain a dimensionality-reduced space where we could
explore the separation between pancreata from control subjects and pancreata
with different conditions, e.g. with different pancreas fat infiltration patterns.

Fig. 2. The Template images increasingly sharpened as the LDDMM algorithm pro-
gressed. The coronal (top) and axial (bottom) views of Template0, i.e. average of
segmentation masks (left), and Template4, i.e. the last template file produced by the
algorithm (right), are shown.

Regress Out Volume. In the unmodified kernel matrix, we found pancreas
volume to be among the strongest descriptor of the data (see Fig. 3). However,
we are primarily interested in volume-invariant shape metrics, as there is already
an independent straightforward way of deriving volume from the segmentation
masks. In order to treat shape metrics independently of pancreas volume, pan-
creas segmentation volumes were regressed out of the kernel matrix K by using
the “residual-forming” matrix R:

X =

⎡
⎢⎣

1 v1
...

...
1 vn

⎤
⎥⎦ , R = I −XX+, K ′ = RKR (1)

where (v1, v2, ..., vn ) are the pancreas volumes for all 600 subjects, I is
the identity matrix and X+ = (X ′X)−1X ′ is the Moore–Penrose pseudoinverse.
The kernel matrix K ′ output was the kernel matrix after unconfounding pancreas
volume.
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Fig. 3. Plotting the 1st vs the 2nd component of PCA (run on the original kernel
matrix) shows that volume is a strong descriptor of the data, with the largest variation
along the 1st component. Both plots show the same data; left plot shows image projec-
tions of the segmentation masks as datapoints (blank images are zero-volume cases);
right shows color-coding by segmentation volume (color bar from 0 to 126 ml). Volume
was subsequently regressed out to yield volume-invariant shape metrics.

Labelling. Fat-infiltrated regions of the pancreas appears dark in our fat-
suppressed images. The expectation from a segmentation algorithm working on
this kind of acquisitions is that fat-infiltrated portions of the pancreas will not be
delineated, leaving only pancreas parenchyma. Thus, segmentation masks with
missing portions of the pancreas may indicate different fat infiltration patterns.

We labelled a subset of segmentation masks with clearly missing portions
of the pancreas, further identifying which portion was missing, either the head
(label 1) or the body and tail of the pancreas (label 2). Labelling was performed
under the assumption that the previous segmentation stage did not miss any
parenchymal regions of the pancreas. A total of 56 cases were labelled, 28 missing
most of the pancreatic head, and 28 missing most of the pancreatic body and
tail.

3 Results

3.1 Pancreas Volume

Model Evaluation. Pancreas segmentations were computed in the 22 datasets
of the validation set with both ModelCE and ModelDSC models. More specifi-
cally, ModelCE was the checkpoint model at epoch 50 and ModelDSC was the
checkpoint model at epoch 60 (lowest validation loss). The performance on each
dataset was assessed in terms of Dice Similarity Coefficient (DSC) compared
to manual annotations. Overall, ModelCE and ModelDSC had median± std
DSC performance respectively of 0.706± 0.243, 0.837± 0.136. ModelDSC’s per-
formance was statistically significantly higher than ModelCE (one-tailed two-
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sample t-test, p< 0.01), and gave higher DSC on 21/22 cases. Examples from
the two models are compared in Fig. 4.

Quality Control. A total of 42 subjects had reported zero volumes which,
upon inspection, corresponded either to imaging artefacts or no pancreas cover-
age. Wrap-around artefacts were the most common in those with zero volume.
There was a greater prevalence of high BMI cases among acquisitions with arte-
facts compared with the entire population (p< 0.01). Zero-volume cases with no
pancreas coverage often imaged the heart, perhaps due to incorrect repositioning
during the imaging routine. Moreover, a total of 198 subjects had non-zero vol-
umes that were smaller than 10 ml. These often depicted cases where coverage
was suboptimal, or cases where the segmentation failed to delineate the entire
pancreas region. An arbitrary threshold of 10 ml was defined to exclude cases
for subsequent group-wise comparisons, though more thorough quality control
measures should be implemented in the future.

Population Measurements. The mean pancreas segmentation-derived vol-
ume in the 3,669 remaining subjects was 55.8 ml. Pancreas volume determi-
nation allowed for relative comparisons between subjects (see Fig. 5). Overall,
males had a larger pancreas than females (p< 0.01), while overweight (body mass
index, BMI = [25, 30)) people had larger pancreata than normoweight subjects
(p< 0.01), but not significantly smaller than obese subjects (p = 0.99).

3.2 Pancreas Morphology

Preliminary results showing a two-dimensional space defined by the 1st and 4th
modes of variation of pancreas segmentation shape, offers potential for clas-
sification (see Fig. 6). In the decomposition of the subset kernel of manually
labelled cases, simple (albeit without independent validation) linear discrimina-
tion using the 1st and 4th components showed 93% performance in determining
the assigned labels. No clear separation was observed between the selected sub-
set of labelled cases when including all data. A tendency was observed in shape
differences between genders, as shown in Fig. 6.

4 Discussion and Conclusions

This paper presented a pipeline for pancreas imaging biomarkers of volume and
shape, through advanced organ segmentation and representation learning. To
our knowledge, this work is the first to attempt learning pancreas morphology,
instead of using hand-engineered features. Advanced feature extraction from
pancreas segmentation masks may have potential in discovery, diagnosis and
monitoring of chronic disease. This is our first step towards the ambitious goal
of developing a data-driven, machine learning-based approach to analysis of pan-
creas state and pathology.
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ModelCE=0.486, ModelDSC=0.835 ModelCE=0.563, ModelDSC=0.840

ModelCE=0.768, ModelDSC=0.864 ModelCE=0.883, ModelDSC=0.918

ModelCE=0.653, ModelDSC=0.775 ModelCE=0.899, ModelDSC=0.895

Fig. 4. Examples showing qualitative performance of the segmentation models com-
pared to manual annotations (ModelCE, yellow contour; ModelDSC, cyan contour;
manual label, red overlay). The 2D slice shown for each dataset was selected based on
largest cross-sectional area of the manual pancreas annotation in the 3D image. Dice
Similarity Coefficient (DSC) scores for the 3D segmentation are included above each
case (ModelCE: ModelCE DSC; ModelDSC: ModelDSC DSC). The last 6 of the 22
cases in the validation set are shown. (Color figure online)

This work did not focus in particular on the choice of deep learning net-
work architecture for pancreas segmentation. Recent works have reported self-
optimized U-Net configurations [8], as well as model architectures improving
on U-Net for pancreas segmentation in CT and MRI data [4,13]. Instead, the
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Fig. 5. Volume statistics on the UK Biobank cohort (N = 3,669) showing impact of
gender and BMI. Left, volume comparisons between Male and Female subjects. Right,
volume comparisons between subjects in different BMI groups, namely Normal, Over-
weight and Obese.

significant differences in performance of the two segmentation models shown in
this work –differing only by the optimization loss function– demonstrate the
importance of certain hyperparameters in pancreas segmentation in addition
to the choice of model architecture, possibly due to the high class-imbalance.
Other more advanced loss functions incorporating surface distance measures in
combination with soft Dice loss have been introduced [1].

The relatively low median DSC of the better performing model reaf-
firms pancreas segmentation as a challenging problem, which our downstream
segmentation-derived metrics will depend on. In particular, the distinction
between small volumes and segmentation failures (i.e. missing pancreas struc-
tures) is unclear. A threshold of 10 ml was arbitrarily chosen to filter out what
were considered segmentation failures. In the future, specific a priori quality
control measures for outlier detection and that are independent from volume
estimates will be considered. This would increase our confidence in the reported
volume measurements. UK Biobank provides an excellent big-data resource to
approach quality control from a machine learning perspective [21].

The calculated mean volunteer pancreas volume is reportedly smaller than
that reported in the literature [17], perhaps reflecting the prevalence of acquisi-
tions with only partial pancreas coverage. The assumption that partial coverage
is both random and equally distributed among the groups is reasonable, therefore
the relative comparisons between groups presented in this work are still valid; the
comparison results were also consistent with previous literature [10,18]. Future
work should look into volume comparisons between groups with different con-
ditions reported in the UK Biobank study, such as metabolic disease or type II
diabetes. Absolute pancreas volume measurement in UK Biobank needs further
consideration, and perhaps other acquisitions with more coverage (albeit lower
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Fig. 6. Running PCA on the kernel revealed components in the manifold space with
potential capability to identify fat infiltration patterns, as well as for shape characteri-
zation. (A) Subset of labelled cases that had missing body/tail portions of the pancreas
(blue dots) and missing pancreatic head (brown dots). (B) Male (magenta dots) and
female (green dots) gender differences in shape over the entire cohort. Left and right
plots in (A) and (B) rows show the same data; left plots show image projections of the
segmentation masks as datapoints. (Color figure online)

resolution), such as whole-body scans, could be used to correct for the missing
volume. In general, it was found that segmentation performance was accurate
independently of field-of-view coverage.

Manual labelling of segmentations with missing portions of the pancreas as
putative fat infiltrated regions (in fat-suppressed scans) assumed full pancreas
coverage and acceptable pancreas segmentation performance, which does not
always hold. However, the promising results shown in this work reflect the poten-
tial performance of such a method in an eventual fat-infiltrated pancreas popu-
lation, and provide a biomarker that is complementary to PDFF, which reflects
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parenchymal fat deposition. It is worth noting that at this stage the classification
of fat-infiltrated patterns relies on prior detection of fat-infiltrated cases. This
was performed manually by visual inspection, but automated detection should
be considered in future work.
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