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Abstract. In oncology, Positron Emission Tomography (PET) is frequently
performed for cancer staging and treatment monitoring. Metabolic active tumor
volume (MATV) as well as total MATV (TMATV - including primary tumor,
lymph nodes and metastasis) derived from PET images have been identified as
prognostic factor or for evaluating treatment efficacy in cancer patients. To this
end a segmentation approach with high precision and repeatability is important.
Moreover, to derive TMATV, a reliable segmentation of the primary tumor as
well as all metastasis is essential. However, the implementation of a repeatable
and accurate segmentation algorithm remains a challenge. In this work, we
propose an artificial intelligence based segmentation method based on textural
features (TF) extracted from the PET image. From a large number of textural
features, the most important features for the segmentation task were selected.
The selected features are used for training a random forest classifier to identify
voxels as tumor or background. The algorithm is trained, validated and tested
using a lung cancer PET/CT dataset and, additionally, applied on a fully inde-
pendent test-retest dataset. The approach is especially designed for accurate and
repeatable segmentation of primary tumors and metastasis in order to derive
TMATV. The segmentation results are compared with conventional segmenta-
tion approaches in terms of accuracy and repeatability. In summary, the TF
segmentation proposed in this study provided better repeatability and accuracy
than conventional segmentation approaches. Moreover, segmentations were
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accurate for both primary tumors and metastasis and the proposed algorithm is
therefore a good candidate for PET tumor segmentation.

Keywords: Tumor segmentation � PET � Textural feature segmentation �
Repeatability � Artificial intelligence

1 Introduction

Positron Emission Tomography is widely used in oncology for cancer diagnosis and
treatment monitoring [1, 2]. The volume of the segmented tumor in the PET image,
also known as metabolic active tumor volume (MATV) as well as the total MATV
(TMATV – including metastasis and lymph nodes or, in case of malignant lymphoma:
all involved sites) is one important metric for the evaluation of therapy response. For a
correct diagnosis, segmentation accuracy is crucial. For treatment follow-up, it is
essential that observed differences in MATV/TMATV are caused by biological
changes in the underlying tumor tissue and not by segmentation errors. Therefore, it is
important that a segmentation algorithm yields accurate as well as repeatable seg-
mentation results. Moreover, it is of interest to use a segmentation approach relying on
PET information only as MATV may not be equal to and is fundamentally different
from anatomical tumor size which can be extracted from a CT image. However, the
implementation of such an algorithm is not trivial due to the challenges coming with
PET images among them factors regarding the low signal-to-noise ratio, low spatial
resolution, and partial volume effects [3]. Especially for smaller lesions, the partial
volume effect can reduce the apparent tumor uptake making the lesion therefore dif-
ficult to detect and segment. Additionally, the image quality of a PET image depends
highly on the scanner type, as well as on image acquisition and reconstruction.
A segmentation algorithm leading to good results for images of one institution might
not work for images of another institution. However, the EARL accreditation program
aims to address this problem by harmonizing images across institutions.

In recent years, machine learning (ML) based segmentations such as Convolutional
Neural Networks or classifiers classifying each voxel as tumor or background have
shown very promising results for various segmentation tasks [4]. However, in PET
imaging, few studies use advanced ML based segmentation approaches for metabolic
active tumor segmentation. Even more, most studies combine the information of PET
and low-dose CT images in order to get reliable segmentation results [5–7] but the
image quality of low-dose CT is not optimal for segmentation purposes. Moreover, as
stated above, MATV is not the same as anatomical tumor size and a segmentation
based on PET information only may be more suitable to measure MATV, i.e. the
metabolic active parts of the tumors. Therefore, it is of interest to develop segmentation
approaches that rely on PET information only. Additionally, ML based segmentation
approaches were so far only trained and applied on primary tumors, while for the
calculation of TMATV, also an accurate and repeatable segmentation of metastasis and
lymph nodes is important.

In this work, we present a textural feature (TF) based segmentation method
designed especially for the accurate and repeatable segmentation of primary tumors and
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metastasis. Moreover, our aim was to develop an explainable algorithm that uses hand-
crafted features which can provide additional knowledge about tumor characteristics to
physicians. The results of the TF segmentation approach is compared with conven-
tional segmentation algorithms used in the clinic.

2 Materials and Methods

2.1 Datasets

The study was registered at clinical trials.gov (NCT02024113) and was approved by
the Medical Ethics Review Committee of the Amsterdam UMC and registered in the
Dutch trial register (trialregister.nl, NTR3508). All patients gave informed consent for
study participation and use of their data for scientific research.

Two datasets acquired at two hospitals were included in this study with both
datasets providing similar image quality as they were following the recommendations
of the EARL accreditation program [8]. All images were converted to standardized
uptake value (SUV) in order to normalize the images for differences in injected tracer
dose and patient weight. Before the start of the segmentation process, a random
bounding box was drawn around every tumor.

Training and Testing Dataset. For training, validating, and testing the algorithm, 96
images of patients with NSCLC Stage III and IV were included (Ziekenhuis Oost
Limburg, Belgium). Patients fasted at least six hours before scan start and were scanned
60 min after tracer injection. All images were acquired on a Gemini TF Big Bore
(Philips Healthcare, Cleveland, OH, USA). For attenuation correction, a low dose CT
was performed. All images were reconstructed to a voxel size of 4 � 4 � 4 mm using
the vendor provided BLOB-OS-TOF algorithm. More details about the patient cohort
can be found in previous studies [9]. The images were split randomly in training,
validating, and testing sets, where 56 images were used for training, 14 images for
validation, and 26 images for independent testing. All 451 lesions of the patients
(primary tumors, lymph nodes, and metastasis) were included.

Test-Retest Dataset. For test-retest evaluation, we analyzed ten fully independent
PET/CT scans of patients with Stage III and IV NSCLC. Images were acquired on a
Gemini TF PET/CT scanner (Philips Healthcare, Cleveland, OH, USA) at a different
institution (Amsterdam University Medical Center). These ten patients underwent two
whole-body PET/CT scans on two consecutive days. Patient fasting time, time between
tracer injection and scan start, as well as image reconstruction was the same as in the
previous described dataset. More information about the patient cohort can be found in
previous work [10]. A total of 28 lesions were included in the analysis.

Ground Truth Segmentations. The ground truth segmentations were obtained by
applying an automatic segmentation which identified all voxels with a SUV above 2.5
as tumor (here after SUV2.5). An expert medical physicist adjusted all segmentations
manually. This approach was chosen as it has been demonstrated that the manual
adaption of a (semi-) automatic algorithm is more robust than a pure manual seg-
mentation [11].
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2.2 Segmentation Approaches

Textural Feature Segmentation (TF). In this segmentation approach, textural fea-
tures were used for the voxel-wise segmentation of the tumor. As first step, every voxel
was regarded as center of a scanning window. For each scanning window, textural
features were calculated. Initially, scanning windows of size 3, 5, and 7 were used. For
every view (axial, sagittal, coronal) a separate segmentation was performed. This
means for e.g. the axial view textural features of scanning windows with size
3 � 3 � 1, 5 � 5 � 1 etc. were calculated. Calculated features included statistical
(e.g. mean/kurtosis), intensity, as well as features describing the heterogeneity of a
region (textural features). Before the calculation of textural features, the intensity
values in the bounding box were discretized using a fixed bin number of 64. In the
discretization step, every voxel intensity value is transformed to an integer value
between 1 and 64. This step is required in order to calculate a large number of textural
features. In total, 264 features were calculated for each voxel (88 for each neighbor-
hood size). All steps before feature calculation are illustrated in Fig. 1.

In order to reduce the number of calculated features, the most useful features for the
segmentation task were obtained using the feature importance obtained by a random
forest. For each orientation, a separate feature selection was applied. This led to five
representative features: energy, total energy, perc90, maximum, and mean for scanning
window of size 3 and additionally maximum for size 5. The number of features
resulting in the best accuracy was derived by experiments. Examples of these feature
images are displayed in Fig. 2.

For classifying each voxel as tumor or background, a random forest was trained. The
optimal hyper-parameter for the random forest were determined using a grid search
with varying several parameters. This led to a random forest consisting of 1000

Fig. 1. Illustration of steps prior to feature selection. First, for each voxel a scanning window is
defined. Directly from this scanning window, statistical features are calculated. For the
calculation of textural features, the scanning window is discretized to contain only a limited
number of discretized values. From the discretized scanning window, textural features are
calculated.
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decision trees, a tree depth of 100, minimum samples split of 5 with using bootstrap
samples for tree building. After classification, the probability prediction images of the
three orientations were stored. The probability images contain information how certain
the algorithm is with its decision. In our algorithm, we used the majority vote of the
probability images as final segmentation. Hereby, all three probability images are
added and all voxels with a summed probability of more than 1.8 (and not 1.5 as it
would be in a classical majority vote setting) were included in the tumor mask. This
more strict threshold was chosen in order to include only voxels with a confident
prediction certainty and deal in this way with the fuzziness of the tumor border in PET
images.

Different Configurations of TF Approach. For the TF segmentation, we especially
investigated the impact on using the combination of three 2D neighborhoods with the
use of one 3D neighborhood as described in previous papers [4, 6]. For this purpose,
we extracted textural features of cubic 3D neighborhoods of size 3, 5, and 7. Feature
selection and classification were performed as described above. As for the 3D
approach, there is only one classifier used (and not three for the different views), also
no majority vote was necessary for the construction of the final segmentation.

Moreover, we also compared the use of a ‘classical’ majority vote approach (with a
threshold of 1.5) with the more strict MV approach described above in terms of
accuracy and repeatability.

Conventional Segmentation Algorithm. The accuracy and reproducibility of the TF
segmentation was compared with two threshold based and established segmentation
algorithm:

– 41%SUVMAX: all voxels with intensity values higher than 41% of the maximal
SUV value (SUVMAX) are regarded as tumor

– SUV4: all voxels with a SUV higher than 4 are included in the segmentation

Moreover, two majority vote (MV) approaches based on four frequently used
thresholding approaches were included in the comparison. The underlying segmenta-
tion algorithm are described in previous work [12]. The two MV segmentation methods
include:

– MV2: the consensus of at least two of the approaches
– MV3: the consensus of at least three of the approaches

Fig. 2. Original PET image and example feature images of one tumor: Energy (left), Mean
(middle), and Kurtosis (left). Energy and mean were selected as representative feature for the
segmentation task, while kurtosis was not. All features are calculated from a 3 � 3 � 1 scanning
window.

Textural Feature Based Segmentation 7



2.3 Evaluation of Segmentation Algorithm

For the evaluation of the implemented segmentation algorithm, the approaches were
compared in terms of accuracy and repeatability. The data analysis was performed in
Python 3.6.2 using the packages numpy and scipy.

Accuracy of Segmentation Approaches. In order to determine segmentation accu-
racy, the Jaccard Coefficient (JC) between ground truth and performed segmentation
was calculated. The JC is a measure for the overlap of the two segmentations: It is the
ratio between the intersection and the union of two labels:

JC ¼ A\B
A[B

A JC of 1 indicates perfect overlap, while a JC of 0 indicates that there is no overlap at
all.

Repeatability Evaluation. The repeatability of the segmentation approaches was
evaluated by comparing the differences of segmented volume across days. For this
purpose, the percentage Test-Retest difference (%TRT) was calculated:

TRT% ¼ volDay1 � volDay2
�
�

�
�

ðvolDay1 þ volDay2Þ=2 � 100

The %TRT gives a measure for the proportional differences in segmented volume
between the two consecutive scans.

JC values and TRT% were compared across segmentations using the Friedman test.
The Friedman test is a non-parametric test which does not assume a normal distribution
of the data or independency of observations. It compares the rank of each data point
instead of only comparing mean or median values. This means that if a segmentation
algorithm results consistently in more accurate results, it will be ranked higher even
though its mean or median might be lower. As the Friedman test only contains
information if there was a significant difference in the data, a Nemenyi test was per-
formed in order to assess which methods resulted in significant differences. P-values
below 0.05 were considered as statistically significant. In order to correct for multiple
comparisons, the p-values were corrected using the Benjamini-Hochberg correction.

3 Results

3.1 Comparison with Different Configurations of TF Algorithm

As displayed in Fig. 3 the TF approach using the classical majority vote resulted in
lower accuracy when compared with the approach proposed in this work. The classical
MV resulted in an underestimation in the majority of lesions. Moreover, it missed more
lesions than the more strict majority vote approach.

The main segmentation differences between the two majority vote thresholds were
observed at the tumor border. Two examples where the more strict threshold resulted in
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more true positive classified voxels are illustrated in Fig. 4. The use of 3D neighbor-
hoods led also to a drop in segmentation accuracy when compared with the approach
proposed in this work. Hereby, overestimations were observed in all cases. The dif-
ferences in JC values between the approach proposed in this study and the two com-
parable approaches were found to be significant (p-value < 0.05).

Fig. 3. JC values for different configurations of the TF segmentation approach: On the left
(TF) the approach proposed in this work, Middle (TF_MV): The approach using a ‘normal’
majority vote (MV) approach, Right (TF_3D): Combining three dimensional neighborhoods

Fig. 4. Two segmentation results of random forest (one patient left, one patient right):
Original PET image (Upper row), results with original majority vote approach (middle row) and
with combining the probability images of the random forest (lower row). Green: true positives,
White: true negative, Blue: False positives, Black: False positives (Color figure online)
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At the same time, the approach proposed in this work resulted in better repeatability
than the other two configurations of the TF algorithm as displayed in Fig. 5. The 3D
approach resulted in the lowest repeatability. However, the differences in TRT%
coefficient were not significant.

3.2 Comparison with Conventional Segmentation Approaches

The boxplots of JC values for the testing as well as the external TRT dataset are
displayed in Fig. 6. TF and MV2 segmentation resulted in general in the highest JC
values. Significant differences in JC values were only observed between TF and SUV4,
TF and 41%SUVMAX, MV2 and SUV4, as well as MV2 and 41%SUVMAX segmen-
tation for the testing data. In the test-retest dataset, only TF and 41%SUVMAX, as well
as MV2 and 41%SUVMAX segmentation resulted in significant differences.

Fig. 5. Test-retest coefficient %TRT for different configurations of the TF segmentation: On the
left (TF) the approach proposed in this paper, Middle (TF_MV): The approach using a ‘normal’
majority vote (MV) approach, Right (TF_3D): Combining three dimensional neighborhoods

Fig. 6. Jaccard Coefficient (JC) values for both datasets: JC values for the testing set (left figure)
and the test-retest dataset (right figure) for the different segmentation algorithm included in the
study (SUV4: Standardized Uptake Value 4, 41%SUVMAX, MV2: Majority Vote 2, MV3:
Majority Vote 3, TF: Textural Feature based approach).
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As displayed in Fig. 7, the accuracy of the segmentation was dependent on the
lesion size. Bigger lesions resulted in higher JC values than smaller lesions. However,
also for smaller lesions the TF and MV2 approach resulted in a better accuracy than the
conventional segmentation approaches.

All approaches missed some small lesions completely. This was the case when the
tumors were located close to another high uptake region such as the kidney. Hereby,
the kidney was incorrectly identified as tumor and the tumors were completely missed.
A similar scenario was observed for two bigger lesions, for which all approaches
resulted in a JC value below 0.5. This was the case when the tumors were located close
to the heart which was incorrectly included in the segmentation.

Figure 8 displays the TRT-coefficients for all segmentation algorithm. TF and MV2
segmentation yield lower mean, and standard deviation of TRT% values than the other
segmentation approaches. After applying the Benjamini-Hochberg correction, the
differences in TRT were not significantly different. In the majority of the cases, a high
TRT% came in combination with low JC values and large percentage volume differ-
ences. The lesion size did not influence the repeatability of the segmentations.

4 Discussion and Conclusion

The segmentation approach proposed in this work, outperformed conventional seg-
mentation algorithm regarding segmentation accuracy and repeatability. Its perfor-
mance was similar to a majority vote based approach. Therefore, the proposed
segmentation approach is suitable for the segmentation of all lesions in PET images.

The segmentation of smaller lesions remains also for this approach a challenging
task. One reason for this effect might be that with decreasing tumor size, small mis-
classifications have a higher impact on accuracy metrics. Smaller lesions also come
with a lower tumor-to-background ratio and are therefore more difficult to detect.
Moreover, some of the metastasis are also located close to other high-uptake regions

Fig. 7. Jaccard Coefficient (JC) values dependent on lesion size: JC values for bigger (left
figure) and smaller (right figure) lesions for all segmentation approaches included in the study
(SUV4: Standardized Uptake Value 4, 41%SUVMAX, MV2: Majority Vote 2, MV3: Majority
Vote 3, TF: Textural Feature based approach).
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(such as the kidney) what opposes a special challenge to a segmentation algorithm.
The TF based approach achieves in general a higher accuracy than similar approaches
proposed in other studies [3, 4]. An important difference between our method and other
published algorithm is that our approach relies on the PET image information only and
can therefore also be used when only a low-dose CT is acquired aside of the PET image
[5, 6].

The selected features are simple statistic measurements describing tumor uptake.
This is due to the fact that they were determined for primary tumors, metastasis, and
lymph nodes. More complex textural features are selected when only primary tumors
are included in the feature selection step. This is likely due to the fact that for primary
tumors texture and background are similar. However, it is a strength of our algorithm
that it yields accurate and repeatable segmentation results for all lesions in a patient.
Nonetheless, including the feature selection in the segmentation step might improve the
selected features and performance of the segmentation algorithm.

In future work, we plan to compare the results of the proposed segmentation
algorithm with the results of a CNN. However, as CNNs require a large amount of
training data and act more like a black-box, we wanted to focus in this work on an
explainable machine learning based segmentation approach that can also be used with
little amount of training data. We developed this approach for the segmentation of
MATV in PET images, but this approach will likely also yield good results when
applied on MR or contrast-enhanced CT images. In future studies, we also plan to use
this approach in order to understand changes in tumor tissue e.g. before and after
radiotherapy.

In summary, we demonstrate in this work that our proposed ML based segmen-
tation has not only the potential to accurately segment lesions but also to result in
repeatable segmentations. Therefore, the proposed segmentation approach is suitable
for the segmentation of tumors in PET images.

Fig. 8. Test-Retest Coefficient (TRT%) for all segmentation approaches: If the TRT% is close to
0, the repeatability of the segmentations is excellent. Abbreviations of the segmentation
algorithm: MV3: Majority Vote 3, MV2: Majority Vote 2, TF: Textural Feature based approach,
Max41: 41%SUVMAX, SUV4: Standardized Uptake Value 4)
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