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Abstract Certain epithelia secrete HCO;~ to drive fluid secretion, to modify
luminal pH and properties of secreted mucus, and to fulfill other functions of a
given epithelium. Dysregulation of HCO; ™~ secretion can lead to conditions such as
malabsorption, acid/base disturbances, cystic fibrosis, biliary cirrhosis, peptic, and
duodenal ulcers. In addition to the transport of HCO;™ across the epithelium,
epithelial cells also need to maintain intracellular pH, despite significant HCO;™~
extrusion and sometimes even despite exposure to external acid. In this chapter, we
will introduce the main plasma membrane acid/base transporters and describe their
role in general cellular homeostasis. The same transporters are also used in building
the molecular machinery for vectorial HCO3 ™ transport, i.e., bicarbonate secretion.
We will highlight HCO; ™ secreting epithelia by examples from the digestive system
(pancreas, salivary glands, hepatobiliary system, and duodenum), the renal
collecting duct B-intercalated cell, as well as the choroid plexus epithelium of the
brain. We seek an integrative approach to understand the HCO3 ™ secretion processes
by combining historical perspectives with molecular and genetic studies as well as
studies of selected regulatory systems.
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12.1 Introduction

12.1.1 Overview

A number of epithelia in our body secrete significant amount of HCO;3 ™, which is
often accompanied by fluid secretion. One of the important early observations was
made on the pancreas, which secretes pancreatic juice rich in HCO5;™~ and poor in
CI", a relation between two anions that together with later studies on isolated
pancreatic duct epithelium became important steps for understanding general cellu-
lar models for HCO; ™ secretion (Fig. 12.1a and b). The purpose of epithelial HCO; ™~
secretion is manifold, as presented by examples of epithelia chosen for this chapter.
For example, HCO3;™ secretion can set extracellular pH, buffer and protect cells
against acids produced and secreted by cells during digestive or metabolic processes,
and solubilize proteins and other macromolecules. Dysregulation of these processes
can lead to serious diseases such as cystic fibrosis, biliary cirrhosis, peptic, and
duodenal ulcers. In addition to transporting significant amounts of HCO;~ from
interstitium to lumen, epithelia face another major challenge—they have to defend
their intracellular pH (pH;). This fact is a challenge to scientists, as it is often difficult
to study and separate the transepithelial acid/base transport as opposed to the trans-
port across the single plasma cell membrane exerted for the purpose of pH; regula-
tion. In the first part of the chapter, we will introduce the main H*/HCO;~
transporters and describe their role in general cellular acid/base homeostasis.
These “building blocks” will then be used to equip epithelial cells so that they can
perform vectorial HCO3™ transport, i.e., secretion. Other ion channels and trans-
porters necessary for overall transepithelial HCO;3;™ transport will be given in
specific tissues/organs. We will focus on HCO3 ™ secreting epithelia of the digestive
system (pancreas, salivary glands, hepatobiliary system, and duodenum), choroid
plexus epithelium of the brain, and renal collecting ducts. Combining the historical
perspectives with molecular and genetic studies in this chapter, we hope to mark a
more integrative approach that will help us to understand the challenges of HCO5;™
secretion.

12.1.2 Cellular Acid/Base Homeostasis

In secretory epithelial cells, as in most other cells, the intracellular pH is maintained
within the range 7.1-7.4, as most cellular processes have a pH optimum within this
range (Boron and Boulpaep 2017). The balance between production, consumption,
and transmembrane movement of acid/base equivalents determines the intracellular
pH (pH;). The cellular buffering capacity is not regulating the steady-state pH;, but
determines the size and rate of the pH change inflicted by an acute acid or base
challenge (Boron and Boulpaep 2017). The intrinsic buffering capacity is set by the
cellular weak acid/base pairs such as phosphate, bicarbonate, and anionic proteins.
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Fig. 12.1 (a) The classical
electrolyte excretion curves
showing the relationship
between secretory rates and
electrolyte concentrations in
pancreatic juice collected
from the dog pancreas
stimulated with secretin.
Reproduced with
permission from
(Bro-Rasmussen et al.
1956). Similar excretory
curves were obtained for the
cat pancreas (Case et al.
1969). Similar excretory
curves are expected for the
human pancreas. (b) The
cellular model of ion
transport in a pancreatic duct
cell as established from
electrophysiological studies
of isolated perfused rat
pancreatic ducts.
Reproduced with
permission from (Novak and
Greger 1988b). (c) The
relation between secretory
rates and HCO3 ™
concentrations in the
pancreatic juice of various
species. Secretion was
stimulated with secretin and
secretory rates were
corrected for body weights.
Reproduced with
permission from (Novak
etal. 2011)
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In addition to the intrinsic buffers, the open buffer system of CO,/HCO;™ enables
very efficient buffering of pH. Virtually all cells express plasma membrane ion
transporters that contribute to cellular pH homeostasis. Some of these exploit the
inward gradient for Na* to drive acid or base transport. Other transporters are
dependent on, for example, the C1~ gradient, the HCO;3™ gradient, electrical gradi-
ent, or ATP hydrolysis to drive the transport. Also, some ion channels may contrib-
ute to acid/base transport. Most cells express acid/base transporters (and channels),
depending on the function of the specific cell, and especially in HCO;3 -secreting
epithelia a great variety of such transporters are found.

12.1.2.1 Sodium Hydrogen Exchangers (NHEs, SLC9)

Most of the NHEs mediate the electroneutral exchange of intracellular H* for
extracellular Na* given typical ionic distribution and intracellular pH. Of the nine
members of the NHE gene family, only NHE1 (SLCY9AI) seems ubiquitously
expressed and is therefore regarded as the central cellular acid extruder (Orlowski
and Grinstein 2004). Linked to this function, NHE1 plays a role in cell volume
regulation, cell migration, and cell cycle regulation in various health cells, including
cancer cells (Flinck et al. 2018). NHE2 and NHE3 (SLC9A2 and A3, respectively)
are luminal proteins mainly found in Na* absorptive epithelia. Nevertheless, both
can be found alongside potent HCO; ™ secretory machinery in the alkaline secretory
cells of the stomach surface, duodenal villus cells, and exocrine gland ducts. In these
cases, NHE2 and NHE3 could potentially favor HCO;~ absorption rather than
secretion (Praetorius et al. 2000). The last plasma membrane SLC9 member,
NHE4 (SLC9A4), is a basolateral alternative to NHE1 in specialized cells of the
kidney, stomach, salivary glands, and liver. NHEs are inhibited by amiloride and its
derivatives, as well as cariporide with the highest potency toward NHE1 (Scholz
et al. 1995).

12.1.2.2 Sodium Bicarbonate Cotransporters (NBCs and NDCBEs,
SLC4)

The electrogenic Na*™-HCO; ™~ cotransporter NBCel (SLC4A4) was the first Na*-
HCOj;™ cotransporter to be identified at the molecular level (Romero et al. 1997).
NBCel mediates electrogenic Na™-HCO;~ cotransport with either 1:2 or 1:3 stoi-
chiometry depending on the tissue and is localized to the basolateral surface in
epithelial cells involved in vectorial HCO5;™ transport in the kidney, intestine and
pancreatic ducts (Boron and Boulpaep 1983; Schmitt et al. 1999). The second
electrogenic NBC, i.e., NBCe2 (SLC4A5), displays similar transport properties as
NBCel, also with varying Na*:HCO; "~ stoichiometries (Pushkin et al. 2000; Sassani
et al. 2002; Virkki et al. 2002). NBCe2 expression pattern is more controversial;
NBCe2 is described in epithelial tissues such as liver, testis, kidney, lung, and the
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choroid plexus, where it is localized to the luminal membrane (Abuladze et al. 2004;
Pushkin et al. 2000; Virkki et al. 2002).

The Na'-dependent exchange of CI~ and HCO;  has been found in various
tissues (Boron and Knakal 1992; Liu et al. 1990; Schlue and Deitmer 1988). Two
Na*-dependent ClI- and HCO; exchangers have been described NDCBEI
(SLC4A8) and NCBE (SLC4A10) (Grichtchenko et al. 2001; Virkki et al. 2003;
Wang et al. 2000). These transporters were characterized as electroneutral, DIDS-
sensitive, and work with an apparent stoichiometry of 1Na*:1C1 :2HCO; ™, where
Na" and HCO; ™ are normally imported and C1~ extruded from the cells. The C1~
dependence of NCBE has been challenged by compelling experiments in a study by
Parker and colleagues (Parker et al. 2008). The only epithelial expression sites
described thus far is the choroid plexus and connecting tubules for NCBE and
hepatobiliary system for NDCBE1 (Grichtchenko et al. 2001; Wang et al. 2000;
Strazzabosco et al. 1997; Banales et al. 2006b). At these sites, the transporters may
well take part in transepithelial movement of both Na* and HCO; ™.

The electroneutral NBC, NBC3, or NBCnl (Choi et al. 2000; Pushkin et al.
1999), also belongs to the SLC4 gene family (SLC4A7). As the name indicates, the
apparent Na":HCO; ™~ stoichiometry is 1:1. This means that it is normally importing
the two ions into cells. NBCn1 is expressed in the basolateral membranes in many
epithelia including HCO;™ secretory epithelia, such as the stomach surface cells,
duodenum, colon, and choroid plexus. Except for epithelial variants of NBCnl, the
NBCs and NDCBEs are inhibited by stilbene derivatives such as DIDS and SITS
(Aalkjaer and Cragoe Jr. 1988; Boedtkjer et al. 2006; Bouzinova et al. 2005;
Odgaard et al. 2004; Praetorius et al. 2001, 2004a). The drug S0859 seems to be a
general inhibitor of Na™-HCO;3~ cotransporter (Larsen et al. 2012). For further
details on NBCs see Chap. 4 of Vol. 3.

12.1.2.3 Classical Anion Exchangers (AE, SLC4)

AE1-3 are Na*-independent C1"/HCO; ™~ exchangers which are electroneutral and all
belong to the SLC4 gene family (SLC4A1-3). AE1, or band-3 protein, was first
demonstrated in red blood cells where it exports HCO5; ™~ (Lux et al. 1989). After
entry into the red blood cells, CO, is hydrated and carbonic anhydrases accelerate
the subsequent formation of HCO; ™~ and H*. The H" is buffered by hemoglobin and
HCOj; ™ extrudes in exchange for C1™ (the chloride shift) by AE1. Type-A-interca-
lated cells of the renal collecting duct express an epithelial variant of AE1. This
basolateral plasma membrane anion exchanger may play a supportive role for the
apical acid secretion by extruding HCO;™ to the blood side (Kollert-Jons et al.
1993). Another member, AE2 is expressed basolaterally in most epithelia, except for
the hepatobiliary system, and is involved in the protection of the cells against
alkalization (Alper 2006). AE2 deletion in mice results in a severe phenotype with
growth retardation, gastrointestinal dysplasia, biliary cirrhosis, and death before
weaning (Gawenis et al. 2004; Concepcion et al. 2013). AE3 is expressed mainly
in excitable tissues, such as brain and heart, but is also found in gastrointestinal
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enterocytes (Yannoukakos et al. 1994). Human AE3 point mutations have been
associated with seizures, most likely as a consequence of the impaired neuronal pH;
regulation (Hentschke et al. 2006). The AE’s like NBC’s and NDCBE’s are inhibited
by DIDS.

12.1.2.4 Promiscuous Anion Exchangers

A separate gene family of anion exchangers with a more promiscuous anion trans-
port profile has taken a central position in understanding transepithelial HCO3;™
movement. The SLC26 genes give rise to 12 transporters, which are expressed in
many different tissues and mediate very diverse functions, transporting anions, such
as sulfate, oxalate, phosphate, chloride, bicarbonate, iodide, and formate to a vari-
able extent (Alper and Sharma 2013; Mount and Romero 2004). Several of the gene
family members encode HCO; ™ transporters: SLC26A3,-4,-6,-7, and -9 (Alper and
Sharma 2013). The stoichiometry and thereby electrogenic properties of the HCO3;™
transport some of these proteins is debated (for detailed review (Alper and Sharma
2013; Cordat and Reithmeier 2014)). While DRA (Down-Regulated in Adenoma,
SLC26A3) and Pendrin (SLC26A4) mediate electroneutral C1"/HCO;™ transport
(Chernova et al. 2003; Shcheynikov et al. 2008), CFEX/PAT1 (SLC26A6), SUT2
(SLC26A7), and SLC26A9 has been described as both electrogenic and
electroneutral CI /HCOj3;~ exchangers, the latter two in some reports even as ion
channels, probably depending on expression system and species (Chernova et al.
2005; Petrovic et al. 2004; Kim et al. 2005; Kosiek et al. 2007). Dysfunction of the
intestinally expressed DRA produces congenital chlorodiarrhoea (Hoglund et al.
1996), which is caused by reduced luminal C1"/HCO;™ exchange in the intestinal
tract (Melvin et al. 1999). Pendrin, SLC26A4, is defective in the Pendred syndrome,
in which patients suffer from impaired hearing and thyroid function. The symptoms
result from dysfunctional thyroid C17/I" exchange, defective C1 /HCO3;~ exchange
in the stria vascularis of the inner ear, and mice probably also decreased renal
collecting duct HCO;™ reabsorption (Masmoudi et al. 2000; Royaux et al. 2000,
2001). PAT-1 (or CFEX) also exchanges C1~ with HCO;™ and seems necessary for
normal pancreatic and duodenal bicarbonate secretion (Ko et al. 2002b;
Shcheynikov et al. 2006). Finally, deletion of SLC26A9 has been shown to impair
luminal alkalization in the gastric mucosa (Demitrack et al. 2010) and duodenal
HCOj;™ secretion as well as worsening intestinal function and survival of CFTR-
deficient mice (Liu et al. 2015)

12.1.2.5 Anion Channels

One of the long-lasting challenges in the bicarbonate transport field is the question of
whether C1™ /anion channels can conduct HCO; ™ in physiological conditions. Many
patch-clamp studies of the cystic fibrosis transmembrane regulator Cl1~ channel
(CFTR) have shown that in physiological-like conditions, the permeability ratio
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PHCO; /PCI1™ is 0.2-0.5, implying that secretion of CI~ would dominate. Several
studies suggest that CFTR could become more HCO;™~ permeable if intracellular
CI™ was reduced (Ishiguro et al. 2009; Park et al. 2010, 2012). It is proposed that
some cell volume/C1™ regulatory mechanisms could be contributing to the regulation
of HCO;™ permeability and this will be discussed in relation to the pancreas (see
Sect. 12.2.2.1). For additional information about CFTR, see Chaps. 15 and 16 of
Vol. 3. Bicarbonate secreting epithelia also express Ca* activated Cl1~ channels,
CaCC. The identity of CaCC channels has been difficult to pinpoint (see Duran et al.
2010). After suggestions of CCl-2 and bestrophins, the TMEM16/ANO family was
discovered (Caputo et al. 2008; Schroeder et al. 2008; Yang et al. 2008). One of the
members, TMEM16A/ANOL, is regarded as a good candidate for CaCC in epithelia
and again relevance for HCO;3 ™ secretion has been raised. Modulation of the channel
HCO;™ permeability by Calmodulin, and not With No Lysine kinases (WNKs), has
been tested and discussed (Jung et al. 2013; Yu and Chen 2015). Further information
about TMEM16 can be found in Chap. 17 of Vol. 3. Recently, it was proposed that
pore dilatation of CFTR, TMEMI16A/ANOI1, and glycine receptor increases
PHCO; /PC1™ (Jun et al. 2016). Interestingly, Bestrophins (BEST1) have relatively
high HCO;™ permeability in HEK293 cells (Qu and Hartzell 2008; Kane Dickson
et al. 2014). Bestrophin function is well documented in retinal diseases and in
HCOj; -secreting epithelia, it is less clear (see below). The volume-regulated
anion channels, VRACs, are ubiquitously expressed channels composed of
LRRCS heteromers (Jentsch 2016; Jentsch et al. 2016) (see Chap. 11 of this
volume). Volume regulation is important in epithelia (Pedersen et al. 2013b), though
the direct role of VRAC in ion/HCO;™ secretion is difficult to unmask (Catalan et al.
2015).

As mentioned above, SLC26A9 also behaves as a CI~ channel, which is consti-
tutively active and has a minimal conductance to HCO; ", but HCO; ™ can facilitate
CI™ transport (Loriol et al. 2008). SLC16A9 is often co-expressed with CFTR and
there may be direct physical interactions with CFTR mediated by PDZ proteins
(Bertrand et al. 2017). Potential role of SLC16A9 channels in cystic fibrosis and
other diseases is proposed, but the detailed role of SLC26A9 as a channel, anion
exchanger, or modulator of other channels/transporters is yet to be elucidated in
specific tissues (Balazs and Mall 2018; Liu et al. 2018).

12.1.2.6 Vacuolar H*-ATPase and H'/K*-ATPase

Vacuolar H*-ATPases, (V-ATPases), are expressed ubiquitously in the lysosomal
system, but certain cells are known to express V-ATPases on the plasma membrane
(Breton and Brown 2013; Cotter et al. 2015). The V-ATPases are large transmem-
brane protein complexes consisting of several subunits and resembles the mitochon-
drial ATP synthases. Only complexes with the certain specific composition of
subunits can reside in the plasma membrane. The energy resulting from ATP
hydrolysis is exploited to move H* across the membrane without counterion trans-
port. Hence, V-ATPases are electrogenic. Epithelial cells such as renal intercalated
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cells and epididymis use V-ATPase for transepithelial transport (Brown et al. 2009;
Pastor-Soler et al. 2008). The V-ATPase is inhibited by bafilomycin and
concanamycin (Huss and Wieczorek 2009). A separate group of P-type ATPases
mediate the exchange of H" and K™, i.e., the H/K*-ATPases. The H*/K*-ATPases
are classified in two families: gastric and non-gastric (also called colonic); and
a-subunits are coded by ATP4A and ATPI2A (ATPIALI) genes, respectively
(Modyanov et al. 1991, 1995; Sachs et al. 2007; Forte and Zhu 2010; Sangan
et al. 2000). The pump complex consists of two a- and two B-subunits, whereby
the gastric a assembles with gastric § subunit (A7P4B), while non-gastric o subunits
can assemble with gastric or Na*/K*-ATPase p subunits. The gastric H/K*-ATPase
is best known from the gastric corpus/fundus glands, where it mediates potent H*
secretion for gastric acid, but is also expressed in kidney and cochlea; and the
non-gastric form is expressed in colon, kidney, skin, and placenta (Pestov et al.
1998). Some HCO;3;™ secreting epithelia also express these pumps (see below).
Proton pump inhibitors such as omeprazole are potent inhibitors of gastric HK*-
ATPases, while high concentrations of potassium-competitive acid blockers and
ouabain probably inhibit the non-gastric type (Grishin and Caplan 1998; Grishin
et al. 1996; Swarts et al. 2005).

12.1.2.7 Carbonic Anhydrases

HCO;™ and H* are the major biologically relevant base and acid, respectively. The
most potent cellular pH homeostasis and base secretion relies on a steady supply of
these ion species. The hydration of CO, occurs spontaneously at a sufficient rate,
while the uncatalyzed hydrolysis of H,COj is quite slow for biological purposes.
Thus, the carbonic anhydrases, which catalyze the conversion of CO, + H,O to
HCO;™ and H", are of major importance both for pH homeostasis and bicarbonate
secretion and there are 14 different CA isoenzymes: CA I-III and VII are cytosolic;
1V, IX, and XII are membrane associated; V is mitochondrial and VI is secreted
(Supuran 2008). The canonical and ubiquitously expressed form is CAIIL. This
enzyme has one of the fastest turnovers in mammalian biology (Maren 1962) and
is a soluble cytosolic protein. In recent years, it has become evident that other forms
of carbonic anhydrases are resident in the plasma membrane, either with extracellu-
lar enzyme activity (GPI anchored) or with cytosolic sub-membrane activity. Acet-
azolamide has been used to block carbonic anhydrases for decades, and seem to
block both cytosolic and membrane-associated enzyme forms. In any case, inhibi-
tion of HCO3;~ formation by this drug has a profound impact on epithelial bicar-
bonate secretion in several tissues. Interestingly, some investigators have reported
the physical as well as functional interaction between carbonic anhydrases and
bicarbonate transporters, such as AE2 and NBCel and such interactions could
facilitate transport by securing the substrate to the HCO3 ™ transporters (McMurtrie
et al. 2004; Becker et al. 2014).
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12.1.3 Vectorial Bicarbonate Transport

It is evident that bicarbonate secreting epithelia need to employ one of the
abovementioned mechanisms to extrude HCO5;™~ from the cytosol into the luminal/
apical compartment. Epithelia with potent bicarbonate extrusion are generally
equipped with anion channels, with promiscuous anion exchangers or with an
electrogenic Na*-HCO; ™~ cotransporter at the site of exit. However, to avoid cellular
acidification, the cells must have just as effective means of getting rid of the H*
across the opposite plasma membrane to avoid damaging acidification and to sustain
the production of new HCOj3 . So, in the case of luminal HCO; ™ secretory epithelia,
the cells must have sufficient acid extrusion mechanisms such as NHE1/4 or an H*-
ATPase. Alternatively, the luminal HCO; ™~ secretion can be supported by basolateral
HCO;™ entry through any of the Na™ driven HCO; -transporters.

In the following sections, selected epithelia with distinct acid/base transport
characteristics will be described: pancreatic ducts, salivary glands, hepatobiliary
system, duodenum, collecting duct, and choroid plexus. While the first four organs
have high to very high HCO;™ output, the choroid plexus epithelium has an
intermediate HCO3;™ output, and the terminal renal collecting ducts exemplifies
epithelia with little or no transepithelial HCO;~ movement, where a subset of
specialized cells mediate HCO;~ secretion depending on the acid/base status.
Thus, similarities and differences in molecular machinery for HCO;3;™ transport
between these tissues may help establishing hypotheses regarding the functional
roles of specific acid-base transporters and ion channels.

12.2 Pancreas

12.2.1 The Prototype of a Bicarbonate Secretor Is a Complex
Gland: Integrated Function and Morphology

The pancreas and other exocrine glands are composed of at least two main types of
epithelia—secretory acini/endpieces and excretory ducts. Thaysen and coworkers
(Bro-Rasmussen et al. 1956) proposed the two-stage hypothesis of secretion for
complex exocrine glands and this can still be used as a starting point to understand
their integrated function. Basically, it says that acini/endpieces secrete fluid similar
to that in plasma in their electrolyte composition, and they secrete macromolecules
such as enzymes. The ducts may modify this secretion, and in the pancreas, they do
so by adding a secretion of their own (Fig. 12.1a). Pancreatic ducts are generally
regarded as leaky epithelia expressing aquaporins and they are able to secrete a fluid
that is HCO; ™ -rich and alkaline (Bro-Rasmussen et al. 1956; Steward and Ishiguro
2009; Wilschanski and Novak 2013; Ishiguro et al. 1998; Fernandez-Salazar et al.
2004; Novak et al. 2011; Wang et al. 2015). In humans, the maximum HCO;3;™
output in the secretin-stimulated gland is about 500 pmol/h/g pancreas tissue weight.
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This output would be at least five times higher if it is assumed that it arises from
pancreatic ducts contributing around 20% to pancreas mass in humans.

The well-established function of pancreatic bicarbonate secretion is that it con-
tributes to buffering of acid chyme entering duodenum; the other contributors are
duodenal epithelium and bile duct epithelium (Ainsworth et al. 1992). Recently, it
has been discussed whether the bicarbonate secretion has an additional function
already within the pancreas (Hegyi et al. 2011; Wilschanski and Novak 2013; Novak
et al. 2013). That is, there are some indications that the acinar secretion might be
acidic and the function of adjoining ducts may be therefore to alkalinize this acinar
secretion very early in its passage through the duct tree, and thus prevent premature
activation of digestive enzymes and maintain the balance in exo-/endocytosis in
acini (Freedman and Scheele 1994; Freedman et al. 2001; Behrendorff et al. 2010;
Hegyi and Petersen 2013). The third possible function for bicarbonate secretion is to
solubilize mucins, and although this has not been proven for the pancreas (Quinton
2008, 2010), it has been shown that the very early key symptom in cystic fibrosis is
reduced HCO;™ secretion and mucoviscidosis in the pancreas (Andersen 1938;
Kopelman et al. 1985, 1988).

Pancreatic juice collected from the pancreas stimulated with the main “secreta-
gogue” in many species, secretin, has electrolyte composition that depends on
secretory rates (Fig. 12.1a). Basically, at high secretory rates, the pancreatic juice
is rich in HCO5;™ and poor in CI™ and as secretion decreases HCO; ™~ falls and C1™
increases in a mirror-like fashion. Na* concentrations do not change with flow rate
and are plasma-like. K* concentrations are similar to or higher than in plasma.

Over many years, it has been regarded that some animals produce juice low in
HCO;5;™ concentrations (mice, rats, rabbits), while the pancreas of other species
produces secretion with high HCO;™~ concentrations (man, dog, cat, pig, and guinea
pig). Nevertheless, close analysis shows that HCO3™ concentrations in pancreatic
juice among different species may depend on the relative proportion of acinar to duct
cells contributing to the final secretion. If corrected for this, it becomes apparent that
secretion of all species, summarized in Fig. 12.1c, falls within one excretory curve,
which implicates similar secretory mechanisms in all species. But why does HCO;™
fall and CI™ increases with the falling secretory rate (Fig. 12.1a)? These curves are
often pictured but are rarely elaborated. One explanation is provided by the
ad-mixture hypothesis, which states that the final secretion is a mix of fluids with
different compositions (acini and ducts) (Fig. 12.2a). Another theory is the exchange
theory (implying exchange of HCO;3;  for Cl7). This is most apparent at low
secretory rates, that is, when secretion from acini and proximal ducts is low, distal
ducts are not overridden by incoming secreted fluid and thus they use their full
capacity to simply exchange HCO;™ for Cl, a process referred to recently as
“HCO;~ salvaging”. This HCO3; /Cl™ exchange was demonstrated many years
ago on the cat main pancreatic duct (see below) that was perfused with various
solutions and could carry out such an exchange (Case et al. 1969). Yet another, so far
theoretical possibility is that pancreatic ducts can also secrete H*, a process most
obvious in low secretory rates. These explanations might not be mutually exclusive
and they implicate that the ductal tree is heterogeneous.
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Fig. 12.2 (a) Schematic diagram showing simplified pancreas with acini, proximal and distal
ducts, and pancreatic juice with a typical range of HCO; ™~ concentrations. Inserts show two types of
cells with the cellular models for a HCO; ™~ secreting cell (b) and a cell that is exchanging HCO; ™
for C1™ (c). Interstitial/plasma HCO;3 ™~ concentration is 25 mmol/l, pancreatic juice contains 25-150
mmol/l HCO;™ and depends on the secretory rate and stimulation (see Fig. 12.1). Molecular
identities of ion transporters, channels, and receptors are discussed in the text; question marks
indicate unclear identities, localization, or functions. Intracellular signaling is simplified, stimula-
tory (green) and inhibitory (red) pathways, and other interaction between cAMP and Ca** signaling
(double-headed arrow) are discussed in Sect. 12.2.4.3. The ion transport model for pancreatic acinar
cells is reviewed elsewhere (Heitzmann and Warth 2008) and is similar to Cl~ secreting salivary
acini (see Sect. 12.3)

The ductal tree comprises 5-20% of the pancreas tissue mass, depending on the
species, and morphologically ducts are quite different—progressing from interca-
lated, small intralobular, larger intralobular, inter-/extralobular and eventually join-
ing into main ducts that might join the bile duct in some species (Kodama 1983;
Ashizawa et al. 1997; Githens 1988; Bouwens and Pipeleers 1998; Gmyr et al.
2004). The cell types progress from the flat small cells with large long primary cilia
to cuboidal and later columnar cells with short primary cilia. Large ducts contain
several cell types, including mucus-secreting cells and single endocrine cells. The
centroacinar cells are very flat cells extending from intercalated cells into the acinar
lumen and their physiological function is not established. Recently, pancreatic duct
glands have been described as a potential progenitor niche (Yamaguchi et al. 2015).

Given the morphological heterogeneity of the ductal tree, one could expect some
functional heterogeneity. However, functional studies are limited to ducts that can be
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isolated or micro-dissected from animals and to culture models, mostly pancreatic
ductal adenocarcinoma cell models. Nevertheless, combined with data acquired
from transgenic cell/animal models, immunohistochemistry, and many other tech-
niques, coherent models can be proposed.

12.2.2 HCO; and H* Transporters in Pancreatic Ducts
12.2.2.1 CFTR and C1"/HCO;~ Exchangers

The first studies of cellular mechanisms for pancreatic duct HCO;™ transport
showed, surprisingly, that secretin/cAMP activated Cl~ channels on the luminal
membranes of isolated rat pancreatic ducts (Fig. 12.1b) (Novak and Greger 1988b;
Gray et al. 1988). Almost in parallel, the cystic fibrosis transmembrane conductance
regulator, CFTR, was discovered (Riordan et al. 1989; Kerem et al. 1989), and it was
shown to have properties of a C1™ channel, also in the pancreatic ducts (Tabcharani
et al. 1991; Gray et al. 1993) (Fig. 12.2b). Subsequently, CFTR was
immunolocalized in human and rodent pancreas to intercalated and small
intralobular ducts, which also express other key proteins in HCO5;™ secretion,
aquaporins and carbonic anhydrases (Hyde et al. 1997; Marino et al. 1991;
Kumpulainen and Jalovaara 1981; Burghardt et al. 2003). Since pancreatic HCO3;™
and fluid secretion is a defect in cystic fibrosis, and since the underlying signatures
are mutations in CFTR, the channel has been considered as the key element in the
pancreatic duct secretion (Wilschanski and Novak 2013). Nevertheless, the question
whether and how CFTR Cl™ channels could transport HCO5;~ has been a long-
lasting challenge (see Sects. 12.1.2 and 12.2.4.3).

The first proposal for HCO;™ exit pathway was the Cl /HCO;  exchange
mechanism coupled to luminal CI™ channels, thus allowing CI™ recirculation and
net HCO;™ secretion, though this would only account for 60-80 mM HCO;™ in
secretion (Novak and Greger 1988a, b). Through intensive efforts in molecular and
cell biology, the following Cl /HCO;  exchangers were identified. The anion
exchanger SLC26A3, also known as DRA and SLC26A6, also known as PAT-1,
was found expressed on the luminal membrane of large mouse and human pancreatic
ducts and (Greeley et al. 2001; Lohi et al. 2000). These two exchangers have
different stoichiometry showing Cl1":HCO;~ of 2:1 for SLC26A3 and 1:2 for
SLC26A6. It was proposed that SLC26A3 was expressed in more distal ducts.
SLC26A6 was more proximal on the luminal membrane of intralobular ducts, and
rarely on larger ones (Ko et al. 2002b, 2004). Theoretically, the CI"/HCO;"
exchange of 1:2 for SLC26A6 would be thermodynamically more favorable for
HCOj;™ secretion, while SLC26A3 would favor HCO5; ™~ absorption (Fig. 12.2b and
c¢). There is a functional coupling between SLC26A6 and CFTR, and this involves
the R domain of CFTR and sulfate transporter anti-sigma (STAS) domains of
SLC26A6 exchanger (Ko et al. 2004; Dorwart et al. 2008; Wang et al. 2006;
Stewart et al. 2009). Nevertheless, studies using knockout strategy for SLC26A
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exchanger showed some interdependence between the two isoforms and varied
effects on duct/pancreas secretion (Ishiguro et al. 2007; Song et al. 2012).

AE2 (SLC4A2), another anion exchanger from the SLC4 family, was demon-
strated, usually on the basolateral membranes, in a number of pH; studies in
pancreatic ducts (Stuenkel et al. 1988; Zhao et al. 1994; Rakonczay Jr. et al.
2006). However, immunohistochemical studies are not congruent as to which
membrane the transporter is localized (Hyde et al. 1999; Roussa et al. 2001; Kulaksiz
and Cetin 2002). Most likely, AE2 is more involved in pH; regulation rather than
transepithelial HCO; ™ transport.

SLC26A9 is also weakly expressed in the pancreas (Liu et al. 2015), but whether
and how it contributes to pancreatic HCO;  and fluid secretion remains to be
explored in detail. Nevertheless, interesting speculations of whether SLC26A9 as a
CI™ channel potentiates HCO3 /Cl™ exchange, or is itself the exchanger and/or
regulates CFTR (Balazs and Mall 2018; Liu et al. 2018).

12.2.2.2 Calcium-Activated Cl1~ channels

In addition to cyclic AMP regulated secretion, a number of studies show that
agonists such as acetylcholine and extracellular nucleotides (see below) act via
Ca** signaling to stimulate Ca**-activated C1~ channels (CaCC) (see Chap. 17 of
Vol. 3), and thus could support duct secretion (Gray et al. 1989, 1994; Pahl and
Novak 1993; Hug et al. 1994; Winpenny et al. 1998; Szalmay et al. 2001; Pascua
et al. 2009). In pancreatic ducts, studies on human duct cell lines show that they
express TMEM16A/ANO1, which targets to the luminal membrane upon stimula-
tion and gives rise to the secretory potential in polarized duct epithelia (Wang et al.
2013; Wang and Novak 2013). This channel could be relevant for pancreatic HCO3; ™
secretion (see Sect. 12.1.2). There is also one immunohistological study on human
pancreatic sections showing that the ANO1/DOG-1 antibody localizes to
centroacinar and small ducts cells, and the channel is grossly over-expressed in
pancreatic cancer and other gastrointestinal stromal tumors (Bergmann et al. 2011;
Sauter et al. 2015). BEST1 is expressed in CFPAC-1 cells (Marsey and Winpenny
2009), but whether it plays an important role as CaCC in normal pancreatic ducts is
not clear.

12.2.2.3 NBCs, NHEs, and Carbonic Anhydrases

HCOj;™ transport across the luminal membrane, whatever the mechanism is, relies
on the provision of cellular HCO3; ™. One well-supported solution is the import of
HCO;™ across the basolateral membrane via a Na* coupled process, i.e., Na*-
HCOj;™ cotransporters, NBC. One NBC isoform was cloned from the pancreas,
pNBC (NBCelB, SLC4A4) and it transports 1 Na*™: 2 HCO; ™ and putative inhibitor
H,DIDS inhibits about 50% of duct secretion (Abuladze et al. 1998; Ishiguro et al.
1998; Choi et al. 1999). pNBC is found on the basolateral membranes of epithelial
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cells of a duct tree in the human pancreas, though in rat pancreas it was also acinar
and duct labeling was occasionally on both membranes (Marino et al. 1999; Satoh
et al. 2003). If pancreatic ducts were relying predominantly on this transporter,
secretion would be highly dependent on the provision of HCO;  from
interstitium/plasma rather than endogenous CO, production, CA activity, and H*
extrusion mechanism. This was found to be the case for isolated cat pancreas and
guinea pig ducts, though H,DIDS inhibited about 50% of secretions (Schulz 1971;
Case et al. 1970; Ishiguro et al. 1998).

Another isoform, the electroneutral NBCnl (NBC3, SLC4A7), is also expressed
in pancreas (Damkier et al. 2006), though one study shows that in mouse ducts it
interacts with CFTR, it is inhibited by cAMP and therefore should be placed on the
luminal membrane and possibly regulate HCO;™~ salvage (Park et al. 2002b)
(Fig. 12.2c¢).

An alternative or additional solution for cellular HCO5;~ (and H") provision is
carbonic anhydrase (CA) catalyzed hydration of CO,, provided from metabolism
and/or HCO5; ™ /CO, buffer system. Isoforms CAIL IV, VI, IX, and XII are expressed
in the human pancreas and cultured duct tumor cells (Kumpulainen and Jalovaara
1981; Nishimori et al. 1999; Nishimori and Onishi 2001). CAII and CAIV interact
with H/HCO;™ transporters, however, localization of the CA isoforms do not
always match the predicted localization of the transporters in pancreatic ducts. For
example, CAII is found intracellularly and on the luminal membrane (Alvarez et al.
2001), and it seems to interact with NHE1 and NBC3 (Li et al. 2002; Loiselle et al.
2003). CALIV is expressed in the luminal membrane of the ductal tree (centroacinar
cells and in intercalated, intralobular, and interlobular ductal cells) (Fanjul et al.
2004; Mabhieu et al. 1994), but it interacts with NBCel in expression studies
(Alvarez et al. 2003). CA IX and XII are expressed on the basolateral membranes
of normal and pathological samples of the pancreas (Kivela et al. 2000; Juhasz et al.
2003). Carbonic anhydrases have been somewhat neglected in pancreatic duct
studies in recent years. Nevertheless, CAs are key enzymes in pancreatic duct
function, as their inhibition leads to marked effects on pH; and pancreatic secretion
(Hollander and Birnbaum 1952; Case et al. 1979; Cheng et al. 1998; Steward et al.
2005; Rakonczay Jr. et al. 2006).

Intracellular H*, generated from CA activity or metabolism, can be extruded out
of the cell by a Na*/H" exchanger (NHE). Such exchanger was proposed based on
the observation that pancreatic duct secretion could be maintained efficiently without
HCOj3;™ by a number of weak lipid-soluble acids, such as acetate (Schulz et al. 1971;
Case et al. 1979). NHE, sensitive to amiloride and derivatives, has been detected in
many studies monitoring secretion of the whole pancreas in different species and
later on isolated pancreatic ducts (Wizemann and Schulz 1973; Veel et al. 1992;
Novak and Greger 1988a; Ishiguro et al. 1998; de Ondarza and Hootman 1997;
Fernandez-Salazar et al. 2004; Szucs et al. 2006). Nevertheless, amiloride type
inhibitors could decrease secretion by about 20-50%. One of the NHE isoforms,
the ubiquitous NHE1 (SLC9A1) is the major pH; regulator. In functional studies, it
was revealed that NHE contributed significantly to pH; regulation in many duct
preparations including pig, guinea pig, rat and mice ducts and human duct cell lines
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(Veel et al. 1992; Szucs et al. 2006; de Ondarza and Hootman 1997; Ishiguro et al.
2000; Novak and Christoffersen 2001; Lee et al. 2000; Demeter et al. 2009;
Rakonczay Jr. et al. 2006; Olszewski et al. 2010). There is some molecular evidence
for NHEI expression is normal ducts and localization appears to be on the
basolateral membrane (Lee et al. 2000; Roussa et al. 2001), thus function in secretion
(and pH; regulation) could be supported. In addition, the NHE2 and 3 isoforms are
expressed on the luminal membrane of main ducts and are proposed to interact with
CFTR via PDZ domains (Lee et al. 2000; Ahn et al. 2001; Marteau et al. 1995).
These exchangers would then not support secretion, but conduct HCO3™ salvage
(or pH; regulation) (Fig. 12.2¢).

12.2.2.4 Proton Pumps

The above models do provide a number of answers, but still, we are left with the
problem of how to explain high HCO;™ concentrations and why inhibitors of NHE1,
NBC, and CA are relatively ineffective in blocking secretion (Fernandez-Salazar
et al. 2004; Grotmol et al. 1986). The above transporters and ion channels rely on
gradients that are created by the Na*/K*-ATPase. Another solution to create HCO; /
H* gradients would be to extrude H" via the V-ATPase. In one early study
V-ATPase on the basolateral membrane was proposed (Villanger et al. 1995), and
V-ATPase was detected on basolateral membrane of intralobular ducts, although
occasionally some cells had luminal staining (Roussa et al. 2001). A number of
functional studies gave contradictory findings (Zhao et al. 1994; Ishiguro et al. 1996;
de Ondarza and Hootman 1997; Cheng et al. 1998), perhaps depending on which
parameters were measured. It seems that the contribution of the pump to pH;
regulation is relatively small (compared to NHE1), but inhibition of secretion or
short-circuit currents with V-ATPase blockers can be significant.

Recently, other types of H" pumps have been detected in pancreatic ducts. Both
rodent (and human) ducts express the gastric type H/K*-ATPases (ATP4A and
ATP4B) and non-gastric types H*/K*-ATPase (ATP12A) (Novak et al. 2011; Wang
et al. 2015). Inhibition of these with proton pump inhibitors such as omeprazole and
SCH28080 reduced pH; recovery in response to acid loads, and more importantly,
they reduced secretion in isolated pancreatic ducts and in the whole pancreas tested
in vivo (Novak et al. 2011; Wang et al. 2015). The immunohistochemical study
showed that the H'/K*-ATPases (mainly colonic type) are localized to the
basolateral membrane, and thus is consistent with HCO5 ™ - secretion model. How-
ever, some H*/K*-ATPases were also localized to the luminal membrane, especially
the gastric form (Novak et al. 2011). At present, the function of these pumps in
pancreatic ducts is unclear, similar to other HCO; ™ -secreting epithelia such as the
airway epithelia (Novak et al. 2013), but interestingly ATP12A is upregulated in CF
airways (Shah et al. 2016; Scudieri et al. 2018). It is speculated that these luminal
pumps are creating a buffer zone protecting cells against bulk secretion which is
pH > 8. In addition, luminal H*/K" pumps in distal ducts would by virtue of H*
secretion have more impact on pancreatic juice composition at low flow rates and
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minor at high flow rates, thus explaining excretory curves for HCO;~ (Fig. 12.1).
Furthermore, the luminal H/K* pumps would recirculate K* extruded by the
luminal K™ channels (Hayashi et al. 2012; Novak et al. 2013; Wang et al. 2015).

12.2.2.5 K* Channels

In addition to HCO5; /H™ transporters, it K* channels are important for pancreatic
duct secretion. They maintain the resting potential, and during stimulation opening
of K* channels and hyperpolarization of the membrane potential maintains the
driving force for C1~ or HCO; ™ exit (Novak and Greger 1988a, 1991). Conductance
for K" (Gg) is both present on the basolateral and luminal membranes and
equivalent-circuit analysis has shown that the luminal K* channels contribute with
at least with 10% to the total conductance in stimulated duct (Novak and Greger
1988a, 1991). Modeling in salivary glands confirms that such a ratio of luminal to
basolateral K* channels would optimize secretion without destroying the
transepithelial potential and transport (Almassy et al. 2012; Cook and Young
1989). Another function of luminal K* channels could be to contribute to secreted
K, as pancreatic juice contains 4-8 mM K* (Sewell and Young 1975; Caflisch et al.
1979; Seow et al. 1991; Wang et al. 2015). The molecular identities and function of
only some K* channels are known (see Hayashi and Novak 2013). The best studied
until now are the Ca**-activated K* channels. The K¢,1.1 channels (maxi-K, BK,
coded by KCNMAT) are present in pancreatic ducts (Hede et al. 2005; Venglovecz
etal. 2011) (Fig. 12.2b). Earlier patch-clamp studies indicate that these channels are
located basolaterally (Gray et al. 1990; Hede et al. 1999). However, recent studies
indicate that these channels are expressed on the luminal membrane and activated
by, e.g., low concentrations of bile acids (see below). Evidence for another K*
channel activated by extracellular ATP via purinergic P2 receptors was provided
in studies of rat and dog duct epithelia (Hug et al. 1994; Nguyen et al. 1998) and later
the intermediate conductance, KCa3.1 channel (IK, SK4, coded by KCNN4) was
documented (Hede et al. 2005; Jung et al. 2006; Hayashi et al. 2012).
Immunolocalization indicates that Kc,3.1 is expressed on both luminal and
basolateral membranes (Fig. 12.2b). The K¢,3.1 channel activator EBIO enhanced
secretion potential in Capan-1 monolayer indicating that these channels are impor-
tant in pancreatic duct secretion (Hayashi et al. 2012; Wang et al. 2013). Recent
studies on pancreatic ducts offer molecular identities of several other K* channels,
including KVLQT1, HERG, EAG2; Slick and Slack (Hayashi et al. 2012), and
interestingly the pH sensors TASK-2 and TREK-1 (Fong et al. 2003; Sauter et al.
2016). Nevertheless, the function and regulation of these channels in pancreatic
physiology need to be studied.
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12.2.2.6 Aquaporins and NKCC1

Taking that pancreatic ducts are secretory, water follows paracellularly and
transcellulary via aquaporins (AQP). AQP1 is expressed on centroacinar cells and
luminal and basolateral membrane of intercalated ducts and AQPS is expressed
luminally and labeling decreases in larger ducts in the human pancreas and is
more distal in rodent pancreas (Burghardt et al. 2003, 2006). Notably, AQPs are
co-expressed with CFTR in the same cells.

Upon stimulation of secretion, there would be a significant reduction in cell
volume due to solute transport followed by osmotically obliged water. Subsequently,
the cell volume would need to be reinstituted and one of the most important trans-
porters in that respect is the Na*-K*-2CI~ cotransporter (NKCC1, SLCI12A2). This
transporter is expressed in pancreatic ducts, however, it is not clear whether
shrinkage-activation of NKCC1 occurs in pancreatic ducts, or first following with-
drawal of stimuli, as is the case in salivary acinar cells (see Sect. 12.3.2). Addition-
ally, NKCC1 could provide cellular CI™ for Cl -driven fluid transport. In fact,
diuretics such as bumetanide can inhibit duct/pancreas secretion, but the effect
depends on the species (Fernandez-Salazar et al. 2004; Grotmol et al. 1986).

12.2.3 Integrating lon Channels and Transporters
to Pancreatic Ducts

Taking the above-described channels and ion transporters and placing them into one
cell model becomes rather problematic—such cell would secrete and absorb at the
same time. Therefore, it should be also considered where these transporters are
localized within the pancreatic duct tree. Since there are only very few functional
studies on native ducts from different regions of the ductal tree, we have to resort to
taking into account heterogeneity in duct morphology and immunohistochemistry,
and interaction between channels/transporters in expression studies. Studies sum-
marized in the preceding sections have indicated that small proximal ducts express
CFTR, CA, SLC26A, AE2, NBCle, and AQP1. The larger, distal ducts express
SLC26A3, and possibly CFTR, NBCnl, and NHE3, as well. It is not yet clear
whether AE2, K* channels, H*-pumps, and NKCC1 are differentially expressed.
For simplicity, if one inserts these transporters into two cells (Fig. 12.2b and ¢), it
becomes apparent that the first cell has a potential to secrete, while the second has the
possibility to exchange HCO;3 ™ for CI. It cannot be excluded that these two models
are two different states of one cell at different times or conditions. However, a very
likely scenario is that one cell represents small proximal ducts that are secreting
HCOj; -rich fluid, and the other represents large interlobular/lobar ducts that are
modifying incoming fluid but not contributing with a net fluid secretion. The
simplest interpretation for these data obtained for large distal ducts is that they
reabsorb HCO3™ in exchange for C1—thus giving the rise to the excretory curve
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(Fig. 12.1). Nevertheless, with maximal stimulation and maximal secretory rates,
pancreatic secretion is HCO5 ™ rich. Potentially, one would expect acidic interstitial
pH, which could favor pathogenic processes in pancreatitis and pancreatic cancer
(Novak et al. 2013; Pedersen et al. 2017).

12.2.4 Regulation of Pancreatic Duct Secretion

The classical HCO5; -evoking secretagogue is secretin, though a number of other
hormones and transmitters can also evoke and co-regulate HCO;3 ™ secretion. Even
cholinergic stimulation and cholecystokinin (CCK) can evoke HCO; ™ secretion in
some species, and they can potentiate the secretin effect on the volume of secretion
(Hickson 1970; Holst 1993; Park et al. 1998; You et al. 1983; Evans et al. 1996;
Chey and Chang 2001; Szalmay et al. 2001). Here, we will consider the novel
paracrine and autocrine regulators of pancreatic ducts—those secreted by acini and
ducts themselves (nucleotides) and those that are entering the duct via the retrograde
route (bile acids). Subsequently, we will consider novel interaction between signal-
ing pathways and ion transporters and how they can in an integrative way affect
pancreatic duct secretion.

12.2.4.1 Purinergic Signaling

In physiological settings, the function of pancreatic acini and ducts is coordinated
(Hegyi and Petersen 2013). It has become accepted that purinergic signaling con-
tributes to integrating acinar and duct functions, in particular fine-tuning duct
performance. Pancreatic acini release ATP, some of which is stored in zymogen
granules and released upon hormonal and cholinergic stimulation (Sorensen and
Novak 2001; Haanes and Novak 2010; Haanes et al. 2014) and small amounts of
ATP can be also detected in pancreatic juice, though most is hydrolyzed by ecto-
nucleotidases (Kordas et al. 2004; Yegutkin et al. 2006) (Fig. 12.2a). ATP is also
most likely released from nerves, as well as from acini and duct cells in response to
cell volume changes, mechanical and chemical stress. In contrast to acini, pancreatic
ducts express a number of functional purinergic (P2Y2, P2Y4, P2Y11, P2X4, and
P2X7) and adenosine (A2A and A2B) receptors that regulate various epithelial
transporters (see Novak 2008, 2011) (Fig. 12.2b and c). For example, luminal
ATP (or UTP) can increase anion and fluid secretion, and this involves the regulation
of TMEM16A/ANOI1 and CFTR, as well as Kc,3.1 and CI"/HCO5;™~ exchange
(Chan et al. 1996; Hug et al. 1994; Ishiguro et al. 1999; Namkung et al. 2003;
Hede et al. 2005; Jung et al. 2006; Novak et al. 2010; Hayashi et al. 2012; Wang
et al. 2013). In addition, luminal ATP stimulates P2X7 receptors and potentiates
cholinergically evoked ductal secretion (Novak et al. 2010). Furthermore, ATP/UTP
also potentiates cAMP-evoked mucin secretion (Jung et al. 2010). Ca** signaling
and P2Y2 and P2X7 receptors in particular have been considered in these actions.
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Adenosine receptors via cAMP signaling regulate CFTR (Novak et al. 2008). From
the basolateral side, ATP released by nerves and/or distended epithelium can also
affect the secretion and some purinergic receptors are inhibitory to secretion (e.g.,
P2Y?2 receptors inhibit K¢,1.1 channels), while other P2 receptors, including P2Y11
receptors, may have positive effects on secretion (Hede et al. 1999, 2005; Ishiguro
et al. 1999; Nguyen et al. 2001; Wang et al. 2013). A number of processes in
purinergic signaling are pH sensitive, and it will be relevant to investigate those in
the microenvironment of the duct epithelium (Novak et al. 2013; Kowal et al.
2015b). Due to the fact that nucleotides/side could stimulate a multitude of P2 and
adenosine receptors acting via Ca”* and cAMP signaling, interactions need to be
considered. For further information about P2X receptors in epithelial transport, the
reader is directed to Chap. 28 of Vol. 3.

12.2.4.2 Bile Acids

Systemic bile acids (primary or secondary) produced in the liver and by gut
microbiota, are becoming regarded as important physiological regulators of a wide
range of cells. In the exocrine pancreas, though, bile acids (BA) may exert additional
effects, as they can enter pancreatic duct tree by reflux following outflow obstruction
by gallstones, and apparently affect both duct and acinar cells. Biliary acute pancre-
atitis (AP), or gallstone obstruction-associated AP, account for a significant percent-
age of clinical cases of AP and animal and cellular models are important tools for
understanding development of this disease (Wan et al. 2012). Many studies have
been carried out on acinar cells, and it has been shown that at high concentrations
(mM) of, for example, taurine-conjugated BA cause large increases in intracellular
Ca”*, activation of intracellular trypsinogen and necrosis (Voronina et al. 2002,
2004; Gerasimenko et al. 2006; Kim et al. 2002). These BA effects are mediated by
TGRS5/Gpbarl receptor, which is expressed on the apical surface of pancreatic acini
in mice (Perides et al. 2010).

Only a few studies show that BA also have effects on pancreatic ducts, but these
may be important since pancreatic ducts are pivotal for the maintenance of the
physiological function of the whole pancreas. BA have a bimodal effect on pancre-
atic ducts inducing pancreatic fluid hypersecretion in the early stages of pancreatitis
and hyposecretion during the onset of the disease (Czako et al. 1997). Studies on
isolated ducts and duct epithelia show that this bimodal effect may be related to
concentration of BA used. At high (>mM) concentrations BA have a detrimental
effect. For example, in guinea pig ducts non-conjugated BA, chenodeoxycholate
acid (CDCA) at 1 mM, caused large sustained increase in Ca”", inhibited HCO; ™~
transport, caused mitochondrial damage and increased permeability of duct cells,
and caused mitochondrial damage (Venglovecz et al. 2008; Maleth et al. 2011). In
bovine duct cell monolayer 5 mM taurodeoxycholic acid (TDCA) decreased epithe-
lial resistance due to damage of the epithelial barrier (Alvarez et al. 1998). At
lower concentrations, BAs have positive effects. For example, in epithelium
derived from the dog main duct, TDCA increased luminal G¢; and basolateral G
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in Ca®*-dependent manner (Okolo et al. 2002). In other studies on guinea pig ducts
and CFPAC-cells, it was shown that 0.1 mM CDCA increased Ca®* via PLC and 1P;
(inositol 1,4,5-trisphosphate) and stimulated HCO3 ™ transport (i.e., pH; monitoring),
though NBC, NHE, AE or CFTR or other CI” channels seem not to be primary
targets (Venglovecz et al. 2008; Ignath et al. 2009). Studies on guinea pig ducts show
that a low dose CDCA activated maxi-K* channels on the luminal membrane and
thereby could initiate the secretory machinery (Venglovecz et al. 2011). Thus, it is
proposed at high concentrations BA are damaging, but at low concentrations BA
would be able to promote duct secretion, and thus wash out refluxed bile. It was not
yet clear whether these physiological-like BA signals are mediated via TGRS/
Gpbarl receptors One study offers another explanation. CDAC can evoke ATP
release from duct cells, which then stimulates purinergic receptors and thereby
increases cellular Ca®*. TGR5 receptor is not involved in this process but can play
a protective role at high Ca®* conditions by stimulating Na*/Ca”* exchanger (Kowal
et al. 2015a).

12.2.4.3 Synergistic Intracellular Signaling: Calcium, cAMP, and Cell
Volume

In pancreatic ducts, as in other biological systems, physiological regulation would
involve stimulation of several types of receptors and coordination of several signal-
ing pathways to stimulate relevant ion transporters on both luminal and basolateral
membranes to achieve transcellular secretion of ions/fluid, as well balancing cell
volume and pH; changes. Utilizing synergism of signaling pathways would ensure
maximum effect without running each pathway at a maximum capacity, which could
be detrimental to cell survival, as exemplified by Ca**-mediated cellular toxicity
(Berridge 2012). Here, we summarize the evidence for the interaction of Ca** and
cAMP signaling pathways and their effect on pancreatic duct ion transport.

First of all, some agonists, such as ubiquitous nucleotides/sides signal via mul-
tiple receptors: coupled to Gg, G, G; proteins (P2Y and adenosine receptors) and
ligand-gated ion channels (P2X receptors) (Jacobson and Muller 2016; Burnstock
2017). Pancreatic ducts express G-protein coupled P2Y receptors, P2X receptors,
and various nucleotidases, such that ATP would have multiple effects via cAMP and
Ca** signaling (Novak 2008, 2011) (Fig. 12.2).

Another synergistic mechanism occurs at the ion channel level, where Ca®*-
sensitive K* channels can alter the driving force for anion secretion through
cAMP/PKA regulated CFTR. Further potentially synergistic mechanism to increase
secretory output is the parallel anion transport through CaCC channels and CFTR
channels in pancreatic ducts. However, there is evidence that there is some
interdependence between CFTR and CaCC, such that malfunctioning CFTR
(CF models) down-regulates expression or function of CaCC in parallel to CFTR
(Gray et al. 1994; Winpenny et al. 1995; Pascua et al. 2009; Wang et al. 2013).

The central channel in the pancreatic duct is CFTR, which is a part of signaling
complex that includes scaffolds, adaptors, and many regulatory enzymes associated
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with cAMP/PKA signaling (Frizzell and Hanrahan 2012). Several studies show that
there is cross-talk between Ca>* signaling and CFTR activation. There are Ca>*
sensitive adenylate cyclases 1 and 8 (Namkung et al. 2010; Martin et al. 2009) and
Ca”*-dependent activation of tyrosine kinases (Src2/Pyk complex), both of which
could eventually alter the activity of CFTR, as shown for airway and intestinal
epithelia (Billet and Hanrahan 2013; Billet et al. 2013). Another effect at the CFTR
level would be priming of some PKC isoforms that enhance the activity of CFTR
(see Billet and Hanrahan 2013).

Furthermore, synergy between Ca** and cAMP signaling could be exerted by the
third messenger IRBIT (IP; receptor-binding protein released with IP3). Agonists
that couple to G, increase cAMP and via PKA phosphorylation of the IP; receptor,
and receptors that activate G increase level of IP3. Increased affinity of IP3R to IP;
facilitates the release of IRBIT from the apical pools, which then translocates and
coordinates epithelial fluid and HCO; ™~ secretion by stimulating NBCelB and CFTR
and SLC26A6 (Yang et al. 2009, 2011). This type of synergy is well studied in
pancreatic ducts using genetic modifications of SLC26A6 and IRBIT (Park et al.
2013). Using cAMP/Ca** signaling agonist pairs such as forskolin/carbachol, secre-
tin/carbachol, forskolin/carbachol—synergy in fluid secretion and HCO3™ flux is
revealed.

Lastly, the inhibitory pathways, which are downstream of Ca** and cAMP should
be considered. Cell signaling pathways involving volume- and low Cl ™ -sensitive
With No Lysine kinases (WNKs), acting via Ste20-like kinases, SPS-related proline/
alanine-rich kinase (SPAK) and oxidative stress responsive kinase (OSR1), may be
key factors in secretory epithelia, since they regulate NKCC1 and other transporters
(Kahle et al. 2006; McCormick and Ellison 2011). Basically, these kinases are
activated by hyperosmolarity (cell shrinkage) and low intracellular C1™, and thus
would restore cell volume. In relation to pancreas, WNKI1 and 4 are expressed in
lateral membranes of interlobular and main pancreatic ducts and they inhibit NKCCl1
and SLC26A6 (Choate et al. 2003; Kahle et al. 2004). Other studies show that WNKs
inhibit CFTR (Yang et al. 2007, 2011). For example, in mice ducts, it was shown that
WNKSs and SPAK reduced expression of CFTR and NBCel—and duct secretion
(Yang et al. 2011). IRBIT increases membrane surface expression of NBCelB,
CFTR, and SCL26A6 and thus overcomes antagonizing WNK/SPAK signaling,
which otherwise reduces secretion (see above). It seemed somewhat surprising
then that the WNK/OSR1/SPAK system stimulated by low intracellular CI™ could
change the permeability of CFTR in favor of HCO; ™, i.e., PHCO; /PCI™ increased
from 0.24 to 1.09, and at the same time inhibited SLC26A6 and A3 (Park et al. 2010,
2012). It is proposed that WNK signaling for distal ducts and IRBIT signaling for
proximal ducts could be a part of the mechanisms underlying overall pancreatic duct
function (see Lee et al. 2012; Park and Lee 2012).

The above section indicates that cell volume regulation, e.g., via WNK/OSR1/
SPAK system may be important for pancreatic ducts. Similarly, autocrine and
paracrine signaling via volume-sensitive ATP release must be a key regulator in
short- and long-term cell volume and ion transport in epithelia, including the
pancreatic duct. Although cell volume regulation it is a cornerstone in epithelial
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physiology and pathophysiology we know very little about this process in in
pancreatic ducts (Pedersen et al. 2013b).

12.3 Salivary Glands

12.3.1 Salivary Glands: Heterogenous Structures
and Functions

Saliva is a complex mixture of fluid containing amylase, lipase, glycoproteins (e.g.,
mucins, vitamin B12 binding haptocorrin), proline-rich proteins and proteins regu-
lating calcium phosphate and hydroxyapatite formation (e.g., statherins, histatins,
and cystatins), growth factors (e.g., EGF), antibacterial agents (immunoglobulins,
lysozyme, lactoferrin), water, and electrolytes (including varied concentrations of
HCOj3; ) and minerals. The major function of the salivary glands is to protect the
teeth and oral-oesophageal mucosa (by modulating re-/demineralization of teeth
enamel, protecting gingiva, and antibacterial actions); initiate digestive processes;
enhance taste perception and provide lubrication; and provide pH buffering capacity
(bicarbonate, phosphate, proteins) (Humphrey and Williamson 2001; Matsuo 2000;
Pedersen et al. 2002, 2013a). In some animals, salivary glands have additional
functions, e.g., in grooming and evaporative cooling keeping oral cavity moist in
panting, regulating salt homeostasis (e.g., in crocodiles). Major human salivary
glands supply about 90% of the whole saliva and comprise of three pairs of exocrine
glands: parotid glands (P), submandibular (submaxillary) (SM) glands and sublin-
gual glands (SL). The rest of the secretion is provided by hundreds of minor glands
spread throughout the oral cavity (Pedersen et al. 2013a). The largest glands in
human, parotid glands, contain serous acinar cells and secrete amylase-rich secre-
tions. The submandibular glands contain seromucous and serous acini and produce
mucous saliva. The sublingual glands are the smallest glands and contain prevalently
mucous acini and produce mucin-rich viscous secretion. Secretions that originate in
acini are conducted through short intercalated ducts (that may be secretory) to
striated ducts, characterized by many mitochondria and folds on the basal mem-
brane, and to excretory (extralobular) ducts leading to the main excretory duct of
Stensen (P), Wharton (SM) or series of excretory ducts (SL) (Pedersen et al. 2013a).
In some glands/animals, e.g. male rodents, the striated ducts of SM contain granules
and are referred to as granular ducts (Schneyer et al. 1972). Salivary glands are under
the control of both branches of autonomic nervous systems, as well as higher brain
centers and autocrine/paracrine regulation (Schneyer et al. 1972; Garrett 1987,
Pedersen et al. 2002, 2013a; Proctor and Carpenter 2014).

The major component of saliva is water (99%) and electrolytes and there are
special relationships between those and secretory rates (see Fig. 12.3). Based on
these relationships Thaysen and coworkers proposed that saliva was formed in two
stages—in acini and ducts (Thaysen et al. 1954). Similar hypotheses were proposed
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Fig. 12.3 The relation between secretory rates and electrolyte concentrations in saliva collected
from salivary glands of various species. Preparations were in vivo glands or ex vivo perfused glands
stimulated with cholinergic agonist, e.g., pilocarpine or carbachol, (full lines). In some experiments
on perfused glands, C1™ transport was inhibited, e.g., with furosemide (dot-dash line). Some glands
were stimulated with f-adrenergic agonist, isoproterenol (dotted line). Secretory rates were
corrected for gland weights and data were redrawn from publications on the rabbit submandibular
gland (Case et al. 1980, 1984; Novak and Young 1986); the rat submandibular gland (Young and
Martin 1971); the human parotid gland (Thaysen et al. 1954); the sheep parotid gland (Compton
et al. 1980) and the kangaroo parotid gland (Beal 1984)

for the pancreas and other exocrine glands, though importantly, the function of ducts
differs among various gland types (Bro-Rasmussen et al. 1956; Schwartz and
Thaysen 1956). In the following paragraphs, the simplest scenario valid for most
salivary glands will be outlined (Fig. 12.4). In the first stage, salivary acini generate
primary saliva that is isotonic plasma-like fluid that is high in Na* and Cl~ concen-
trations, K* concentrations are slightly above the plasma (Schneyer et al. 1972;
Young et al. 1980). The anion-gap is most likely HCO; ™ secreted at about plasma-
concentrations (see Sect. 12.3.4 for exceptions). In the second stage, the ducts
reabsorb Na™ and Cl1™ and partially compensate electrolytes by secreting some K*
and HCO; . The ductal epithelium is electrically tight and water impermeable
(Young et al. 1980). In this respect, the salivary ducts are fundamentally different
from the pancreatic ducts, the latter being a leaky and secretory epithelium (see Sect.
12.2.1). Due to hypertonic salt transport in salivary ducts, final saliva in many gland
types and species is hypotonic. Importantly though, tonicity and electrolyte patterns
depend on the secretory rate (acini) and saturation of various transporters on the
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Fig. 12.4 (a) Schematic diagram showing a simplified salivary gland with acini and excretory
ducts and saliva with a typical range of HCO; ™~ concentrations for most cholinergically stimulated
salivary glands and special salivary glands and/or special circumstance (see Fig. 12.3). (b) Inserts
show the cellular models for acinar cells that can secrete C1™ relatively independent of HCO; ™ and
rely on NKCC1 and double exchange system (e.g., SM glands). Some acini rely primarily on
HCO; ™ transport (e.g., parotid glands) and express NBCel, marked with *. See also Fig. 12.3. (¢)
Cellular model of a duct cell that is absorbing Na* and C1™ (via luminal ENaC-CFTR channels or
double exchange system) and secreting K* and HCO3 ™~

downstream ducts. Above-described processes would give rise to the simplest
excretory curves (Fig. 12.3 rat, rabbit, human glands).

A number of studies were conducted to verify the two-stage theory, including
micropuncture studies that involve sampling and analyzing fluid at or close to acini/
intercalated ducts and in downstream ducts, as well as studies on isolated salivary
ducts. These are summarized in earlier reviews in this field (Martinez et al. 1966;
Young and Schogel 1966; Young et al. 1980). In the current research on exocrine
glands, many advanced techniques on cellular/genetic level are used, but it is still
very valuable to take the integrative approach and return to the whole gland secretion
and electrolyte patterns. Nonetheless, understanding of ion transport in salivary
glands is particularly challenging as there are three different major glands (parotid,
submandibular, and sublingual), there are large interspecies and even male/female
variations in structure and regulation, and these may reflect very varied salivary
gland functions.
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In the following section, we will describe the basic ion transport mechanisms in
acini and ducts of most common experimental animals (rat, mouse, rabbit) stimu-
lated with cholinergic stimulation that evokes the largest fluid secretion rates
(Figs. 12.3 and 12.4). Later (Sects. 12.3.4 and 12.3.5) we will consider other
modes of stimulation, e.g., sympathetic, as well as specific glands/animals and
experimental conditions that evoke saliva with unusual ion compositions. This
holds in particular HCO3™ secretion, which shows the most bewildering variety of
excretion patterns (Fig. 12.3) and may originate in acini and/or ducts (Young et al.
1980; Novak 1993) (Fig. 12.3b). In humans, parotid glands can secrete up to
40-60 mM HCO;, though mixed saliva from major and minor salivary glands
rarely exceeds 20-25 mM HCO; ™ (Thaysen et al. 1954; Bardow et al. 2000). Human
parotid glands have HCO5;™ output ranging from about 40 to 500 pmol/h/g gland
weight. Rat and rabbit submandibular stimulated with cholinergic stimulus have
similar HCO3™ output ranging from about 40 to 400 pmol/h/g gland weight. In sheep
and kangaroo parotid the output ranges from around 100 to 1500 pmol/h/g gland
weight (see Fig. 12.3).

12.3.2 Ion Channels and Transporters in Salivary
Gland Acini

Since many salivary glands commonly studied (e.g., rodent P and SM) can secrete
very efficiently without exogenous HCO;~ and/or with CA inhibitors, the ion
transport models for acini are based predominantly on the transport of CI™. Cl™ is
transported across the basolateral membrane via loop diuretic sensitive Na*-CI1™
cotransporter, later identified as NKCC1 in several preparations including human
parotid acini (Case et al. 1982, 1984; Martinez and Cassity 1983; Turner et al. 1986;
Nauntofte and Poulsen 1986; Moore-Hoon and Turner 1998; Evans et al. 2000;
Nakamoto et al. 2007) (Fig. 12.4b). An alternative mechanism for NaCl transport is
the parallel transport via Na*/H" and ClI"/HCO;  exchangers, as proposed from
studies of isolated glands (Novak and Young 1986; Turner and George 1988).
Interestingly, the C1"/HCO;~ exchanger, most likely AE2, is upregulated when
NKCCI is inhibited or genetically silenced (Evans et al. 2000). AE2 is expressed
together with NHEI on the basolateral membrane of acini (He et al. 1997; Lee et al.
1998; Park et al. 1999). In NHEI—/— mice, parotid acini express higher activity of
AE2 and CAII, as determined by pH; measurements, indicating increased CI~ and
HCO;™ transport across the plasma membranes, though no data on salivary secretion
are available (Gonzalez-Begne et al. 2007). There is also evidence for NBCle
expression on salivary gland acini (see Sect. 12.3.4), but in many glands transport
of ClI" is sufficient to drive full fluid secretion.

Parasympathetic stimulation produces large saliva volumes (see Sect. 12.3.5),
e.g., acetylcholine acting via muscarinic receptors, increases intracellular Ca®*
concentrations and Ca®* signaling has been well-studied mode of stimulus-secretion
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coupling (Petersen 2014), though more recent studies show that similar to the
pancreas there is a synergism between Ca>* and cAMP signaling (see Jung and
Lee 2014; Ahuja et al. 2014). In salivary acini, Ca®* signals are essential in
regulating Cl™ efflux via the luminal channels. These CaCC properties are
corresponding to recently identified CI~ channel TMEM16A/ANOI1, and subman-
dibular glands from TMEM 16a-/- mice produce lower amount of saliva (Romanenko
et al. 2010; Catalan et al. 2015). Some TMEM16A/ANOL1 is also expressed on the
luminal membrane of intercalated ducts, though another CaCC candidate
Besthropin-2 may be relevant to duct function (Romanenko et al. 2010). Expression
of TMEM16A/ANOL is also found on the luminal membrane of human parotid acini
and intercalated ducts (Chenevert et al. 2012) (Fig. 12.4b). Studies in HEK293 cells
and SM gland acini indicate that TMEM16A/ANO1 anion selectivity is dynamically
modulated by Ca**/calmodulin, possibly increasing PHCO; /PCl~ (Jung et al.
2013). Regarding CFTR, the protein is expressed on the luminal membrane of
ducts, but there are contradicting reports regarding the expression of CFTR in SM
of rodent acini. Nevertheless, since in mice with AF508 mutation in CFTR or
inhibition of CFTR had no significant effect on salivary secretion rate, other C1~
channel must have rescued secretion (He et al. 1997; Zeng et al. 1997; Catalan et al.
2010).

Sympathetic stimulation leading to p-adrenoceptor stimulation and cAMP sig-
naling produces lower volumes of HCO; ™ - and protein-rich saliva (Case et al. 1980).
One study shows that isoproterenol stimulates secretion in salivary glands of mice
where TMEM16A and CFTR have been ablated, and inhibitor sensitivity profiles
indicate VRAC channels may be involved (Catalan et al. 2015).

One of the most marked effects in salivary acini is the loss of intracellular K*
upon stimulation, as observed in initial studies on in vivo glands and isolated acini
(Burgen 1956; Nauntofte 1992). Also, many electrophysiological studies on plasma
membrane potentials in acini reported hyperpolarizing “secretory potentials”, which
would be consistent with increased K* conductance, and Ca**-activated maxi-K*
channels were characterized in patch-clamp studies (Imai 1965; Petersen and
Poulsen 1967; Maruyama et al. 1983; Petersen and Gallacher 1988). Ca**-activated
K" channels (BK-Kc,1.1 and IK-K,3.1) have been identified on the basolateral
membrane (Wegman et al. 1992; Park et al. 2001a; Nehrke et al. 2003; Begenisich
et al. 2004; Romanenko et al. 2007) (Fig. 12.4b). It is now well accepted that the
basolateral K* channels serve for K™ recirculation necessary for the operation of the
Na*/K* pump and thus secretion. However, micropuncture studies and analysis of
fluid close to acini, indicated that the primary secretion has K* concentrations higher
than the plasma, e.g., up to 10 mM K" (Young and Schogel 1966; Mangos et al.
1966, 1973) (see Schneyer et al. 1972), indicating that there may be some secretory
mechanisms for K™ on the luminal membrane. Hence, it was proposed that K*
channels are also present on the luminal membrane of salivary acini and various
mathematical models verified that luminal K* channels are necessary for creating the
driving force for C1™ exit and account for at least 10-20% of total K* conductance in
acinar cells (Cook and Young 1989; Palk et al. 2010). Recent studies on mouse
parotid acini using spatially localized manipulation of Ca®* and whole cell patch
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clamp show that the very small area of the luminal membrane, e.g., approximately
3-8% of the overall plasma membrane (Poulsen and Bundgaard 1994), expresses
high density of Kc,1.1 and K¢,3.1 channels (Almassy et al. 2012). These channels
exhibit some interdependence/interaction (Thompson and Begenisich 2006, 2009).
In submandibular acini, it seems that the apical Ca** signals stimulate CaCC, and
only when signals spread to the basolateral membrane and/or the membrane is
depolarized, then the basolateral K* channels are activated. It also seems that either
Kcal.1 or Ke,3.1 can support full secretion in the mouse submandibular gland; and
only a double knockout of these K* channels reduces secretion significantly
(Romanenko et al. 2007). Whether incongruence between parotid and submandib-
ular acini is related to different Ca®* signaling or patterns of K* channel expression is
not clear yet. Nevertheless, the most significant K™ secretion is contributed by the
ducts (see Sect. 12.3.3) (Fig. 12.4c).

In normal salivary secretion water transport, occurring by transcellular and
paracellular routes and the cell volume regulation is dependent on the expression
of water channels, aquaporins. The most important aquaporin in salivary gland acini
is AQPS5, as determined in knockout studies on mice (Ma et al. 1999; Krane et al.
2001; Murakami et al. 2006; Kawedia et al. 2007). Cell volume regulation is
important in many cellular functions, including epithelial transport (Pedersen et al.
2013Db). In secreting epithelia, physiological stimulus leads to opening of luminal
Cl™ channels and basolateral/luminal K* channels and osmotically driven water
movement leads to shrinkage of secreting cells. Basolateral transporters and pH;
regulating mechanisms need to be activated to provide ions for luminal exit.
Nevertheless, in the secretory state these mechanisms are unable to maintain the
cell volume of salivary secretory cells which remain shrunken, until the stimulus is
terminated, after which, cell volume recovers (Dissing et al. 1990; Foskett 1990;
Nakahari et al. 1990, 1991; Lee and Foskett 2010). This seems to be the case for the
Ca** signaling pathways, as cAMP-mediated signaling leads to increased cell
volume in salivary acini and VRAC may be involved (Catalan et al. 2015).

12.3.3 Ion Channels and Transporters in Salivary
Gland Ducts

The cornerstone in salivary duct ion transport is NaCl absorption (and KHCO3
secretion), and it is apparent that Na* and C1™ excretion curves are following each
other (Fig. 12.3a and c). One possible mechanism for NaCl absorption is the
electroneutral model—luminal Na*/H* and C1 /HCO; ™~ exchangers. The alternative
model is the parallel activity of epithelial Na* channels (ENaC) and CFTR
(Fig. 12.4c). There is evidence for both systems and it has been proposed that
ducts of low-HCO; ™~ secretors (mouse and rabbit SM) are dominated by Na* and
CI" channels on the luminal membrane, while ducts of high HCO;™ secretors (rat
SM) are dominated by the double exchangers (Chaturapanich et al. 1997).
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There is solid evidence for ENaC expression on the luminal membrane of salivary
ducts (Fig. 12.4c), and ENaC is regulated by ubiquitin-protein ligase Nedd4
(Komwatana et al. 1996b; Dinudom et al. 1998, 2001; Cook et al. 2002). There
are number of electrophysiological and inhibitors studies on isolated ducts and
glands supporting the evidence for ENaC, e.g., low concentrations of amiloride
leads to increased NaCl content in saliva (Bijman et al. 1981; Komwatana et al.
1996a). CFTR is expressed on the luminal membrane of salivary ducts and its
inhibition by specific inhibitors and CFTR knockout leads to decreased NaCl
absorption and increased salt excretion in saliva, as seen in murine models of CF
(Dinudom et al. 1995; Zeng et al. 1997; Catalan et al. 2010). If CFTR is to transport
CI" from lumen to the cell, it requires markedly depolarized luminal membrane
potential, which has not been measured, but quantitative modeling of salivary ion
transporters strongly supports this model (Patterson et al. 2012). Exit pathway for
CI” on the basolateral membrane is not clear and proposals include a
hyperpolarization-activated C1~ channel (Clcn2), KCI cotransporter (KCC1), or
CI' /HCO;  exchanger (AE4) (Romanenko et al. 2008; Roussa et al. 2002; Ko
et al. 2002a). Note that the basolateral membrane needs to be more hyperpolarized
than the luminal to permit CI™ exit out of the cell toward interstitium.

The molecular basis for the alternative electroneutral NaCl transport model is
more difficult to pinpoint. Salivary ducts express NHE2 and NHE3 on the luminal
membrane and their function is not clear, as knockout of either NHE isoform has no
effect on salivary secretion in mice (Park et al. 2001b; Lee et al. 1998). Salivary
ducts also express SLC26A4 and A6 (Shcheynikov et al. 2008) and although they
differ in coupling C17: HCO3™ (i.e., 1:1 versus 1:2), they could ensure Cl™ influx
into duct cells and HCO;3™ efflux, and it seems that either one can explain the
excretory curves in a model simulation of salivary ducts (Patterson et al. 2012).

There are several other transporters that could contribute to duct HCO; ™~ secretion
(or HCO3 ™ absorption). On the basolateral membrane, the means of HCO3; ™ import
into duct cells could be NBCel (e.g., guinea pig SM) or NBCnl1 (e.g., rat SM ducts,
human SM, and P) (Li et al. 2006; Gresz et al. 2002). Alternatively, or in addition,
NHEI1 on the basolateral membrane together with CAII could be a part of HCO5; /
H* system involved in secretion and/or pH; regulation (Park et al. 1999). Interest-
ingly, some NBC transporters, NBC3 and NBCel, are also expressed on the luminal
membrane of several types of salivary ducts, and their proposed functions are to
absorb (salvage) HCO;~ (Park et al. 2002b; Li et al. 2006; Gresz et al. 2002).
Presumably, HCO;™ ductal absorption would occur if salivary acini were secreting
primary fluid rich in HCO3;™ (see below).

Regarding H* pumps, immunohistochemical studies show a presence of
V-ATPases in intracellular compartments in SM granular and main ducts in rats
with normal acid-base balance, but in the rat parotid gland, the pumps are close to the
luminal membrane of the striated and excretory ducts (Roussa et al. 1998; Roussa
and Thevenod 1998). The pump has not been studied functionally, though
heterogenic distribution may indicate that the parotid glands have special acid/base
challenges. The H/K* pump (not the putative passive H'/K" exchanger, Fig. 12.4¢)
has not been seriously considered in salivary glands, except for one study where
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proton pump inhibitors (omeprazole and SCH28080) did not have effect on pH; on
striated ducts from the rat parotid in a given experimental condition (Paulais et al.
1994).

In many species, the collected saliva has K* concentrations several-fold higher
than the plasma and it is inversely related to secretory rate, and often HCO;™
excretion follows similar pattern (see exception Sect. 12.3.4). Therefore, it is not
surprising that one of the original proposals to explain KHCO; secretion (Knauf
et al. 1982; Paulais et al. 1994) was a K*/H* exchanger working in parallel with Na™/
H* exchange and C1"/HCO; ™~ exchange (Fig. 12.4¢). Together these would perform
a functional K*/HCO; ™~ cotransport on luminal membrane and provide Na* and C1~
for the basolateral exit. Such K*/H* transporter has not been cloned and several
studies show that K* and HCO5 ™ transport is not very tightly coupled (Nakamoto
et al. 2008; Chaturapanich et al. 1997). Therefore, other K* exit pathways have been
considered, such as the luminal K* channels. Striated and excretory SM ducts
express Kc,l.1 channels and knockout studies show that much decreased K*
secretion in whole glands, indicating that indeed these channels are important for
ductal secretion (Nakamoto et al. 2008).

Using the above transport components for salivary glands ducts, and experimen-
tal values obtained from various studies and modeling, it has been possible to
reproduce excretory curves similar to Fig. 12.3 for major ions in saliva, including
HCO;5~ concentrations 35-45 mM and K* of 20-60 mM (Patterson et al. 2012).

12.3.4 Salivary Glands Can Secrete Very High Bicarbonate
and/or Potassium: Where and When?

Now that the basics of ion transport in salivary gland acini and ducts have been
presented, we can consider three special circumstances in which some salivary
glands secrete saliva with very high HCO3™ concentrations, with/without accompa-
nying K" (Fig. 12.3b and d), and try to resolve how this happens.

First of all, as introduced above, ducts can secrete HCO3;~ (and K*), though
without accompanying water fluxes and the lower the secretory rate of saliva is, the
higher the concentrations of HCO;~ and K" are (Fig. 12.3b and d hyperbolic
curves). These patterns can be particularly dominant with some forms of stimulation
(see Sect. 12.3.5).

Salivary glands of some animals have a large capacity to secrete HCO3;~ and
concentrations are almost as high as in the pancreas. This is the case for foregut
fermenters such as sheep, cattle, camels, and kangaroos, where usually parotid
glands supply well-buffered saliva to stabilize pH of the fermenting digesta and
saliva can contain 110-120 mM HCO;™ (and also 20-60 mM phosphate), though
K" is relatively low 5-15 mM (Kay 1960; Young and van Lennep 1979; Beal 1984)
(Fig. 12.3). The analysis of the relationship between the salivary flow rate and
electrolyte concentrations suggests that the primary secretion itself must be high in
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HCOj;™ concentration and that the duct contribution is relatively small. This con-
clusion is supported by micropuncture studies on sheep parotid, which showed that
CI™ concentrations were about 50 mM (Compton et al. 1980). By inferences then,
HCO;™ must have been correspondingly high (due to very small volumes H*/
HCOj;™ could not be measured) and that furosemide, and inhibitor of NKCC1, had
a relatively small effect on saliva secretion (Wright et al. 1986). Further studies
showed that the sheep parotid acini exhibited acetylcholine stimulated a Na*-depen-
dent HCO; -influx and a Na™-HCO;~ cotransport was proposed (Poronnik et al.
1995; Steward et al. 1996). Subsequently, it was verified that bovine parotid acini
express NBCelB at high levels (on mRNA and protein levels) and show large
electrogenic currents (Yamaguchi and Ishikawa 2005) (Fig. 12.4b). The transporter
is localized on the basolateral membrane of acini and interacts with IRBIT
(Yamaguchi and Ishikawa 2012).

The NBCel transporter is also expressed in other acini, such as rat and human
parotid acini, and this is in accordance with observations that parotid glands can
secrete saliva with relatively high HCO;3;~ concentrations (Roussa et al. 1999; Park
et al. 2002a; Bardow et al. 2000). Correspondingly, the excretory curve patterns are
consistent with the acinar origin of HCO; ™ secretion (Fig. 12.3b). In submandibular
glands, acinar secretion is not dependent on HCO; ™~ driven transport normally, as the
CI™ driven transport is dominating (Case et al. 1982, 1984). Nevertheless, if C1™
transport is inhibited, these glands can also produce saliva with concentrations
>100 mM HCOj;™ (although secretion rate is diminished) (Fig. 12.3b rabbit SM).
This indicates that, most likely, SM acini also have the machinery to transport and
drive HCO; ™ transport (Novak and Young 1986). This is in fact revealed if glands
are stimulated with B-adrenergic rather than muscarinic agonists (Case et al. 1980).

12.3.5 Regulation of Salivary Gland Secretion

The main regulation of saliva secretion is via the autonomic nervous system, and
little if any by hormones (Proctor and Carpenter 2014). Parasympathetic and sym-
pathetic stimulation leads to activation of muscarinic M1 and M3 receptors and ol
receptors on salivary gland cells, respectively, that via Gy, eventually leading to
Ca** signaling. Furthermore, noradrenaline via p receptors and G, and stimulates
cAMP/PKA signaling pathway. Both parasympathetic and sympathetic stimulations
result in approximately similar plasma-like primary secretion, as measured in, e.g.,
rat SM (Young and Martin 1971). However, parasympathetic stimulation causes 6—8
times higher fluid secretion compared to sympathetic one, the latter resulting in more
concentrated protein secretion. Salivary ducts are also well innervated by autonomic
nerves and they modify secretion mainly by stimulating K* and HCO;3 ™~ secretion
(Young and Martin 1971; Martin and Young 1971). In particular, B-adrenergic
receptors stimulation can result in disproportionately greater effect on K* and
HCO;™ concentrations in small volumes of final saliva (Case et al. 1980)
(Figs. 12.3b and d dotted lines). Furthermore, sympathetic stimulation via
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[B-adrenergic receptors (at low concentrations) can modulate saliva composition by
activation of CFTR, and thereby increasing the rate of Na* absorption (Dinudom
et al. 1995).

Effects of acetylcholine and noradrenaline are modulated by a number of
non-adrenergic non-cholinergic (NCNA) co-transmitters, including VIP,
substance P, neuropeptide Y, NO, ATP, and others (Pedersen et al. 2013a; Proctor
and Carpenter 2014). Under physiological conditions, it may be expected that
multiple transmitters would collaborate to induced salivary fluid and protein secre-
tion. The synergistic effects of cCAMP/PKA and Ca”* signaling have been demon-
strated in many studies and recent data indicate that IRBIT mediates synergism
between these signaling pathways (Bruce et al. 2002; Ahuja et al. 2014; Jung and
Lee 2014).

Extracellular nucleotides/sides are probably NANC and also autocrine/paracrine
signaling molecules that have an important function in coordinating salivary gland
functions including HCO; ™ secretion. The purinergic signaling has been pioneered
in salivary glands (see Novak 2011). It is most likely that ATP is a cotransmitter with
acetylcholine or noradrenaline and a number of P2 receptors are expressed and
functional on salivary gland acini. In particular, P2X4 and P2X7 receptors have
been described in early studies and it is clear that in physiological conditions they do
not form permeable pores, but rather remain cation channels/receptor that
co-regulate secretion, for example, by aiding Ca®* signaling and stimulating K*
and Cl™ channels. Recent studies show that in the rat parotid acini P2X4 receptors
are located on the basolateral membrane, while P2X7 receptors are enriched on the
luminal membrane, and they evoke spatially distinct Ca** signals and effects on
protein exocytosis (Bhattacharya et al. 2012), and fluid secretion in mouse salivary
glands (Nakamoto et al. 2009; Novak et al. 2010) (Fig. 12.4). Interestingly, the P2Y
receptors are expressed transiently, e.g., during gland development (P2Y1) and
stress (P2Y2). Furthermore, ATP is most likely also stored in secretory granules
and it is secreted into duct lumen and ATP can be detected in the whole saliva
(Ishibashi et al. 2008; Novak et al. 2010). In addition, the duct epithelium also
releases ATP spontaneously or in response to, for example, mechanical stimulation
(Shitara et al. 2009; Ryu et al. 2010). Here it acts via P2Y2 receptors to increase C1™~
absorption by stimulating CFTR (Ishibashi et al. 2008). It is not clear how HCO3;™
transport is affected and how luminally expressed P2X7 receptors regulates salivary
duct function.
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12.4 Hepatobiliary System

12.4.1 Hepatobiliary System: Concerted Action of Several
Types of Epithelial Cells

The hepatobiliary system shares many similarities with the pancreas. It secretes
highly complex bile containing 95% water with electrolytes, bile salts and bilirubin,
lipids, proteins, enzymes, peptides and amino acids, nucleotides, heavy metals, and
vitamins (Boyer 2013). Most importantly, bile contains 15-55 mM HCO; . The
hepatobiliary system is composed of several types of epithelial cells: hepatocytes,
cholangiocytes, and gallbladder epithelial cells; all of which contribute to the
formation of bile in several stages. Hepatocytes, the major liver cell population
(65%) secrete primary or canalicular bile, which is driven by bile salt-dependent
transport and bile salt-independent transport of bicarbonate and reduced glutathione,
and osmotically obliged water flux. Canalicular bile is delivered to the intrahepatic
bile ducts, which are lined with cholangiocytes, forming about 3—5% of liver cell
population, and these modify bile by secretion and absorption (Fig. 12.5a). The
intrahepatic biliary duct system is the most important epithelium in the liver regard-
ing the ability to secrete HCO3;™ containing fluid in response to secretin and other
regulators. This secretion contributes to alkalization and fluidization of bile, which
prevents protonation and absorption of weak lipophilic acids. In addition, distally it
provides the buffer function in the duodenum—similar to the pancreatic duct system
(Boyer 2013). In the last stage, gallbladder concentrates and stores bile, but also
modifies it by secretion in some species, and lastly delivers it to the duodenum
during feeding. Assuming that in a human the canalicular bile acid-independent flow
and bile duct flow together are about 4 pl/min/kg body weight and final bile contains
15-55 mM HCO5 ™~ (Banales et al. 2006b; Boyer 2013) it can be approximated that
HCO;3;™ output is about 0.3—0.7 pmol/h/g liver weight. Considering the whole organ
though, HCO5™ output of 300-700 pmol/h is a significant output.

12.4.2 Canalicular Bile Salt-Independent Flow Generated by
Hepatocytes

Canalicular bile fluid is secreted by hepatocytes and secretion has two components
(see above). The bile-salt dependent fraction is driven by a series of organic anionic
transporters, BA transporters, multidrug resistance transporters (MRP) (Esteller
2008). The bile salt-independent fraction is driven by the transport of glutathione
and HCO;5™, each contributing about 50% to this fraction (Banales et al. 2006b;
Boyer 2013; Esteller 2008). Glutathione is secreted via organic anion transporter
MPR2/ABCC2. Bicarbonate is secreted via a DIDS-sensitive Na*-independent C1~/
HCOj; ™ exchanger (AE2) expressed on the luminal membrane (Fig. 12.5b) (Meier
et al. 1985; Martinez-Anso et al. 1994). Apparently, CFTR is not expressed in
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Fig. 12.5 (a) Schematic diagram showing a simplified hepatobiliary system composed of hepato-
cytes and cholangiocytes. Hepatocytes secrete canalicular bile fluid driven by bile-salt dependent
fraction and bile-salt independent fraction. Cholangiocytes secrete C1~, HCO5;  and fluid and
absorb bile acids, glucose, amino acids, and water. (b) Insert shows cellular model for bile-salt
independent HCO3;  —driven fluid secretion only. (¢) Insert shows cellular model for ion transport
and regulation in cholangiocytes with a primary cilium (expressing several receptors and channels).
CFTR¥* indicates that CFTR is functional in large but not small cholangiocytes

hepatocytes and it might be another C1~ channel that together with AE2 coordinates
or performs HCO; ™ secretion, and water follows via AQP8 (Banales et al. 2006b).
HCO; ™ loaders on the basolateral membrane of hepatocytes are most likely NHEI,
and also NHE2 and 4 (Moseley et al. 1986; Pizzonia et al. 1998). In addition, NHE3
is expressed on the canalicular membrane and more importantly on the apical
membrane of cholangiocytes, where it most likely participates in fluid absorption
(Mennone et al. 2001). Electrogenic Na*-HCO5 ™ cotransport was demonstrated in
studies using plasma membrane vesicles and microlectrodes and subsequently,
NBCel/SLC4A4 and NBCe2/NBC4/SLC4A5 were identified (Fitz et al. 1989;
Renner et al. 1989). However, the expression of NBCel is low while NBC4,
especially NBC4c variant, is high in the liver (Pushkin et al. 2000; Abuladze et al.
2004).
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12.4.3 Intrahepatic Biliary Duct System: Ion Transport
in Cholangiocytes

Intrahepatic biliary duct system is a network of interconnecting bile ductules and
ducts that extend from canals of Hering, partly lined with hepatocytes, to ductules
(<15 pm) lined with cholangiocytes, and then converge to large bile ducts (>15 pm)
of increasing diameter to interlobular, septal, segmental ducts and then hepatic and
common hepatic duct (Tabibian et al. 2013). Along the duct system, cholangiocytes
change in size, morphology, regulation, and function. Although they account only
for 3-5% of the liver population, they are responsible for about 30—40% of bile
volume, depending on species. The magnitude of the ductal contribution of basal
bile flow depends on species and can vary from 10 to 30%. Primarily cholangiocytes
secrete C17, HCO;3;  and fluid, and they reabsorb bile acids, glucose, and amino
acids. Secretin stimulates HCO5 ™~ secretion and this determines the pH and hydration
of bile, and thereby decreases protonation of glycine-conjugated bile acids and thus
their passive reabsorption (see Sect. 12.4.5), and lastly, it contributes to alkalization
of duodenal contents (Boyer 2013; Beuers et al. 2012). In the following section, we
will only focus on cholangiocyte ion channels and transporters involved in HCO;™
transport.

Ductal bile secretion is a regulated process that is initiated by the transport of C1~
across the luminal membrane into the ductal lumen and coupling to AE2, as verified
in isolated bile duct unit preparations (IBDU). CFTR has been identified and it is
functional in large but not small IBDU (Fitz et al. 1993; Alpini et al. 1997; Cohn
et al. 1993; Dutta et al. 2011). However, some studies have challenged the role of
CFTR as the primary route for CI™ exit; rather they ascribed the protein a regulatory
role in ATP release (see below). In response to mechanical stimulation (fluid flow
and cell swelling) and ATP stimulation, cholangiocytes isolated from various spe-
cies exhibit CaCC (Tabibian et al. 2013). The molecular identity of these channels
was unknown until recent studies showed that TMEM16A/ANOL is a good candi-
date (Dutta et al. 2011, 2013). It seems that CFTR is only expressed in larger bile
ducts, while TMEM16A is expressed in both small and large bile ducts (Dutta et al.
2011). Interestingly, CaCC contribution to anion transport is several-fold higher
than CFTR.

Similar to pancreatic ducts, CI”~ channels are functionally coupled to CI /HCO; ™
exchanger and AE2 is indeed the main effector of both basal and stimulated CI™/
HCO;™ exchange (Banales et al. 2006a, b; Strazzabosco et al. 1997; Aranda et al.
2004; Concepcion et al. 2013). Interestingly, AE2—/— mice develop biochemical,
histological, and immunological alterations resembling primary biliary cirrhosis
(Concepcion et al. 2013). The luminal membrane of cholangiocytes also expresses
amiloride-insensitive NHE2/SLC9A2 and amiloride-sensitive NHE3/SCL9A3 and
NHE4/SLC9A4 (Banales et al. 2006b). The function of these is not clear, though
NHE3 knockout studies showed that the exchanger is important in fluid absorption
in resting duct epithelium and also interacts with CFTR (Mennone et al. 2001). The
Cl™ secretory response is maintained by small conductance Ca®*-activated K*



12 Fundamentals of Bicarbonate Secretion in Epithelia 495

channels, SK2 (K¢,2.2, KCNN2) expressed on the luminal membrane (Feranchak
et al. 2004).

NHEIL is expressed on the basolateral membrane of cholangiocytes and it has a
multitude of functions, including regulation of pH; and cell volume, and
transepithelial HCO;™ transport in rat and human bile ducts (Spirli et al. 1998;
Banales et al. 2006b). In addition, another acid extruder, V-ATPase was identified
and functional in pig cholangiocytes (Villanger et al. 1993), though it seems not
important in human cholangiocytes (Strazzabosco et al. 1997). CA is also expressed
in bile ducts, though compared to other HCO;3;™ secretory organs CA activity is
rather low (Banales et al. 2006b).

Regarding the Na* coupled HCO;~ import mechanisms across the basolateral
membrane, there seem to be some interspecies variations (Fig. 12.5¢). Na*-depen-
dent C1"/HCO;~ exchanger, NDCBE1/SLC4AS8, which has been cloned in humans
(Grichtchenko et al. 2001) is assumed to import HCO5;~ across the basolateral
membrane of cholangiocytes (Strazzabosco et al. 1997; Banales et al. 2006b). In
rat cholangiocytes, several HCO; ™ transport mechanisms are functional as revealed
by pH; measurements (Strazzabosco et al. 1997). But apparently in the rat liver only
the NBC4c variant of NBCe2/NBC4/SLC4A5 is expressed in cholangiocytes and
hepatocytes, though in cholangiocytes it is expressed apically (Abuladze et al. 2004).
In murine cholangiocytes, NBCel/SLC4A4 is expressed on the luminal membrane
(Uriarte et al. 2010), and in order to secrete HCO; ™ into the lumen, it would require
coupling of several HCO;~ to one Na® and highly hyperpolarized membrane
potential.

K* channels are providing the driving force secretion and at least two types of
channels are expressed on the basolateral membrane—Kc,3.1 and SK2/Kc,2.2
(KCNN2) (Dutta et al. 2009; Feranchak et al. 2004). NKCC1 and Na*/K*-pump
are also expressed on the basolateral membranes. A number of AQP are expressed in
cholangiocytes, in particular, AQP4 on the basolateral membrane and AQP1 on the
luminal membrane, though there are species differences (Banales et al. 2006b;
Tabibian et al. 2013).

There are additional transport systems in cholangiocytes in addition to those
dealing with anion transport. Cholangiocytes take up bile salts via Na*-dependent
transporter ABAT or ASBT (SLCI0A2) and released them across the basolateral
membrane through truncated isoform of the same carrier (Tabibian et al. 2013;
Banales et al. 2006b). Glucose is taken up by sodium-glucose transporter SGLT1
(SLC5A1I) and released by GLUT1 (SLC2A1) (Tabibian et al. 2013). Glutathione, the
tripeptide that is one of the principal driving forces for canalicular bile salt-
independent secretion, is degraded by y-glutamyltranspeptidase, expressed in
cholangiocyte apical membranes, and resulting glutamate, cysteine and glycine are
reabsorbed by Na*-dependent transport in cholangiocytes (Tabibian et al. 2013).
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12.4.4 Gallbladder Epithelium

The function of the gallbladder is to store bile and concentrate it during
interdigestive phases by salt-dependent water reabsorption. Most studies on the
rabbit and Necturus gallbladders showed that this transport was electroneutral
(Na*/H* and Cl1 /HCO; exchangers in parallel) and these epithelia have low
resistance and are regarded as a leaky type (Petersen and Reuss 1983; Petersen
et al. 1990). However, in studies on human and primate gallbladders it was discov-
ered that these electrically silent absorptive organs can secrete, under the influence of
secretin, HCO3; ™ -containing fluid after meals (Igimi et al. 1992; Svanvik et al. 1984).
This secretion seems to depend on CFTR-like cAMP activated channels that have
relatively high permeability to HCO3;~ (Meyer et al. 2005). The importance of CFTR
is highlighted in pig models of cystic fibrosis, where the disruption of CFTR leads to
gallbladder and bile duct abnormalities (Rogers et al. 2008). Furthermore, prairie
dog gallbladder shows forskolin-induced short-circuit current that was due to CFTR
(Moser et al. 2007). This preparation is often used as an experimental model of
human cholelithiasis, due to its unique propensity for developing gallstones on high-
cholesterol chow. The basolateral HCO; ™~ transport in gallbladder epithelium is
carried out by pNBCI1 and the driving force for secretion is maintained by cAMP
stimulated K* channels that are also sensitive to Ca>* and pH, but their identity is not
clear (Moser et al. 2007; Meyer et al. 2005).

12.4.5 Regulation of Bile Formation

The bile formation that occurs in at least three steps is also regulated at three levels.
The first step is the canalicular bile fluid secretion by hepatocytes that occurs
continuously and is relatively poorly regulated (Esteller 2008; Banales et al.
2006b). Interestingly, one regulator of canalicular HCO;~ secretion is glucagon
(Lenzen et al. 1997; Alvaro et al. 1995), which increases cAMP and stimulates the
insertion of vesicles containing C1" /HCO;~ exchanger (AE2, SLC4A2) and AQPS
(Gradilone et al. 2003). In the last step, gallbladder secretion is regulated by secretin
and gallbladder contraction is stimulated by CCK.

The most extensive regulation of bile modification (secretion and absorption)
occurs in bile ducts (Banales et al. 2006b; Tabibian et al. 2013). Firstly, there are
regulatory factors modifying the basal secretion of cholangiocytes. The most impor-
tant hormone is secretin that is released as a physiological response to meals; the
other two are bombesin (gastrin-releasing peptide) and vasoactive intestinal peptide
(also a neurotransmitter). Secondly, acetylcholine and noradrenaline potentiate
secretin- stimulated HCO5;~ and fluid secretion. Thirdly, many factors such as
somatostatin, gastrin, insulin, dopaminergic agonists, a2 adrenergic receptor ago-
nists, endothelin, GABA, and cytokines (e.g., IL1, IL6, TNFa), inhibit basal and
secretin-stimulated cholangiocyte secretion. Lastly, there a number of bile-borne
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factors (flow and osmolality, amino acids, glucose, nucleotides, bile acids), that
regulate cholangiocyte function. Here, we will focus on regulation by nucleotides
and bile acids, similar to the section above dealing with pancreatic ducts.

12.4.5.1 Purinergic Signaling

Both hepatocytes and cholangiocytes release adenosine nucleotides, they express a
number of ecto-nucleotidases, and both cell types express a number of P2 and P1
receptors (Schlosser et al. 1996; Chari et al. 1996; Fausther and Sevigny 2011).
Cholangiocytes exhibit shear/flow-sensitive and cell volume sensitive ATP is
release, as well as release stimulated by forskolin and ionomycin, and it has been
proposed that CFTR is regulating this ATP release (Schlosser et al. 1996; Chari et al.
1996; Fiorotto et al. 2007; Minagawa et al. 2007). Nevertheless, it seems that ATP
release is larger in small upstream cholangiocytes compared to downstream ones,
indicating that smaller ducts could signal to larger ones via paracrine ATP signal
(Woo et al. 2008), and that other mechanism than CFTR are important in regulating
ATP secretion. In fact, recent studies indicate that ATP is also released by vesicular
exocytosis similar to the pancreas (Feranchak et al. 2010; Woo et al. 2010).

Both P2 and adenosine receptors regulate cholangiocytes by stimulating K*, C1™
and HCOj;™ secretion. P2 receptors on the basolateral membrane of cholangiocytes,
similar to acetylcholine evoked Ca** signaling, seem to have minimal effect on bile
duct secretion (Nathanson et al. 1996), possibly due to rapid hydrolysis of nucleo-
tides (Dranoff et al. 2001). The most prominent effects are relayed by the P2
receptors on the luminal membrane, many of which stimulate Ca®* signaling or
induce Ca®* influx, which leads to stimulation of CaCC, short-circuit current and
ductal alkalization (Woo et al. 2010; Dranoff et al. 2001). Mechanosensitive ATP
release stimulates TMEM 16A/ANO1 in human cholangiocytes from small and large
biliary ducts (Dutta et al. 2011, 2013). There a number of receptors expressed on
cholangiocytes, e.g., mouse and rat express P2X4 and P2Y2, as well as P2Y 1, P2Y4,
P2Y6, P2Y12, and P2Y13 receptors (Woo et al. 2010; Dranoff et al. 2001; Doctor
et al. 2005). Interestingly, the P2Y 12 receptor is expressed on the primary cilium and
induces cAMP signaling (Masyuk et al. 2008).

12.4.5.2 Bile Acids

Bile acids are synthesized from cholesterol in the liver and excreted into bile and
subsequently into the small intestine, where they facilitate digestion and absorption
of dietary fats and fat-soluble vitamins. Bile acids are also signaling hormone-like
molecules that act on many tissues/cells in our body and do so by activating several
different receptors and sensing proteins including nuclear farnesoid X receptor
(FXR), pregnane X receptor (PXR) and G-protein coupled receptor TGRS (Gpbar-
1) (Keitel and Haussinger 2013; Pols et al. 2011). FXR and PXR are strongly
expressed in hepatocytes, while TGRS is strongly expressed in cholangiocytes.
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Cholangiocytes are exposed to millimolar concentrations of bile acids and con-
jugated salts. Such concentrations would be toxic to cholangiocytes and several
defense mechanisms are at hand. One of these is the formation of micelles of
phospholipids and bile salts. Another defense mechanism proposed is the biliary
HCOj;™ secretion (van Niekerk et al. 2018). It has been suggested that BA profile/
composition changes radially from the midstream to the apical membrane of
cholangiocytes (Keitel and Haussinger 2013). Cholangiocytes express TGRS in
the primary cilia, the apical membrane, and sub-cellular (Keitel et al. 2010; Masyuk
et al. 2013). In particular, the primary cilia, which are mechano-, chemo-, and
osmosensors, could sense BA and via TGRS receptors that trigger cAMP signaling
pathways that stimulate CFTR and AE2 and thus HCO; ™ secretion. Bile acids also
stimulate CaCC directly (Shimokura et al. 1995), or through CFTR regulated ATP
release and P2 receptor-mediated stimulation of CaCC (Fiorotto et al. 2007). The
outcome of these events would be the formation of unstirred HCO3 ™ layer, so-called
“HCO5;~ umbrella”, which together with dense glycocalyx creates a protective
microenvironment at the apical membrane of cholangiocytes and prevents the
protonation of glycine-conjugated bile acids dominating in human bile (Beuers
et al. 2010; Keitel and Haussinger 2013; van Niekerk et al. 2018). Thereby,
cholangiocytes would be protected from diffusion of these polar and pro-apototic
acids. Relevance of this system is demonstrated in patients with primary biliary
cirrhosis, in which AE2 expression in bile ducts is reduced, leading to defective
HCO;™ secretion and BA mediated cell injury (Keitel and Haussinger 2013).

12.5 Duodenum

The pH of the duodenal luminal contents is more or less dictated by the acid chyme
arising from the stomach until the pH is neutralized by the pancreatic and hepatic
outlets. In order to withstand the potentially damaging effect of low bulk pH, the
duodenal epithelium creates a mucous layer. This layer is supplemented with
HCOj;™ from the epithelial cells to create a protective barrier toward acid and
contributes to pH neutralization of duodenal contents (Allen and Flemstrom 2005;
Flemstrom and Kivilaakso 1983; Williams and Turnberg 1981; Ainsworth et al.
1990, 1992). In rabbit duodenum, HCO;™ secretion amounts to 154 pEQ/cm/h,
while other species have lower rates (Flemstrom et al. 1982). Duodenal ulcers result
from an unbalance between protective factors such as mucus and HCO3 ™, and the
aggressive factors gastric acid, pepsin, and the infestation with pathogenic
Helicobacter pylori. The long-prevailing model for duodenal epithelial HCO;™~
secretion was inspired by studies of the exocrine pancreas given above. As men-
tioned, the functional coupling of a luminal surface C1™ channel and a CI /HCO3™
exchanger is fuelled by intracellular conversion of CO, and H,O to form HCO; ™~ and
H* catalyzed by intracellular carbonic anhydrases. The intracellular pH is normal-
ized by basolateral NHE mediated extrusion of protons. The essence of this model is
still standing, but a number of recent investigations have greatly expanded and
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Fig. 12.6 Schematic diagram showing a current model for HCO;™ secretion from duodenal
enterocytes. In this model, secreted HCO3;~ does not arise from the blood side CO, and intracellular
conversion to HCO;~ and H*. Instead, CO, enters from the luminal side, which has high pCO,, and
potentially counteracting the HCO;~ secretion and challenging the cellular pH homeostasis.
HCO;™ for maintaining intracellular pH and for secretion may arise from the basolateral HCO; ™
import

refined the understanding of the molecular machinery for duodenal bicarbonate
secretion (Fig. 12.6).

The involvement of interstitial CO,, which enters the cells and CA and generates
HCO;™ for secretion, has been challenged. In the duodenum, the luminal pCO, is
higher than anywhere else in the mammalian body (Rune and Henriksen 1969), due
to the massive neutralization of gastric acid mainly by the pancreatic bicarbonate and
hepatobiliary outlets. CO, crosses the luminal membrane to allow the enterocytes to
sense and respond to luminal acid in a complex interplay with cytosolic carbonic
anhydrase and a moderating effect of luminal carbonic anhydrases (Holm et al. 1998;
Kaunitz and Akiba 2002, 2006a, b; Sjoblom et al. 2009). Beside the cytosolic CAII,
the duodenal enterocytes express the membrane-bound luminal CAXIV and
basolateral CAIX (Lonnerholm et al. 1989; Saarnio et al. 1998). As reviewed
recently, it is most likely that the CA activity is centrally involved in acid sensing
and signaling in the duodenal enterocytes rather than participating in HCO;3;™
secretion directly (Sjoblom et al. 2009).

Isolated duodenal epithelial cells exhibit NHE activity (Ainsworth et al. 1996,
1998; Isenberg et al. 1993). The findings were first interpreted as basolateral NHE1
activity according to the general working model. However, a subsequent study of
mouse duodenal enterocytes reported several distinct NHE activities and evidenced
the molecular expression of NHEI in the basolateral membrane, and NHE2 and
NHES3 in the luminal membrane (Praetorius et al. 2000; Praetorius 2010). NHE1
seems expressed at low abundance as compared to NHE2 and NHE3 and is an
unlikely mechanism for eliminating intracellularly produced protons from duodenal
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enterocytes. Interestingly, Na*-HCO;~ cotransport may serve an important role in
the duodenum as a supply for intracellular HCO5 ™~ as a defense against intracellular
acid formed from CO, entering from the lumen (Akiba et al. 2001a, b). The robust
expression of the HCO;™ loaders NBCel and NBCnl in the basolateral membrane
of duodenal epithelial cells spurred the hypothesis that HCO;3 ™ is transported from
the interstitial space to the lumen via a transcellular route, where the two transporters
import HCO; ™~ in symport with Na* from the interstitium to the cell (Praetorius et al.
2001).

Acidified rabbit enterocytes display potent Na*-dependent recovery of pH; in the
presence of the CO,/HCO;™ buffer system (Ainsworth et al. 1996; Isenberg et al.
1993). DIDS and H,DIDS only slightly affected the recovery rate from the acid load.
A similar DIDS-insensitive Na* dependent HCO3~ import was observed in mouse
(Praetorius et al. 2001) and rabbit duodenal enterocytes (Jacob et al. 2000b). Human
duodenal enterocytes express both NBCnl and NBCel, although immunoreactivity
for the latter is subtle compared to the renal and pancreatic staining (Damkier et al.
2007). Nevertheless, the DIDS-sensitive electrogenic NBCel has been put forward
by several investigators as the main HCO;  import mechanism for transcellular
HCO;™ secretion, although both NBCnl transport and the duodenal Na*-HCO;™~
import are relatively DIDS insensitive (Jacob et al. 2000a; Praetorius et al. 2001).
Importantly, based on NBCn1 knockout studies in mice, it was recently shown that
NBCnl is the major contributor to Na*-dependent HCO3 ™ transport as well as basal
and acid-induced HCO;™ secretion (Chen et al. 2012; Singh et al. 2013b).

The mechanism by which duodenal enterocytes extrude HCOj;™ across the
luminal membrane has been a matter of intense debate. Many transporters and
channels have been investigated, among which CFTR and the proteins DRA
(SLC26A3), PAT1 (SLC26A6), and SLC26A9 have been the most prominent exam-
ples. First, it is firmly established that basal and agonist-induced duodenal HCO3;™
secretion strongly depends on CFTR expression (Clarke and Harline 1998; Hogan
et al. 1997a, b; Seidler et al. 1997). It is still not clear how much CFTR conductance
contributes to HCO; ™ secretion directly. First, HCO; ™ extrusion does not depend on
CFTR, at least in isolated duodenal villus cells (Praetorius et al. 2002). Second, DRA
mediates electroneutral CI /HCO;~ exchanger (Alper et al. 2011), is involved in
NaCl absorption throughout the leaky intestinal segments, and seems mainly
expressed in the lower villus/crypt axis in the duodenum (Walker et al. 2009). The
study indicates that DRA contributes to bicarbonate secretion mainly in the lower
villus/crypt. PAT1 is mainly expressed in the proximal small intestine and is
prevalent in the villus region where it also functions as the predominant anion
exchanger (Simpson et al. 2007; Singh et al. 2013a; Walker et al. 2009). Knockout
of PATI reduces basal duodenal HCO3™ secretion by approximately 70%, while
knockout of DRA only induced a 30% reduction (Simpson et al. 2007). However,
only a minor role for PAT1 was found in acid-stimulated HCO3™ secretion (Singh
et al. 2013a). The relevance of this transport system was highlighted in a recent
study. Here, H. pylori infestation decreased duodenal mucosal CFTR and SLC26A6
expression via increased serum transforming growth factor  (TGFp) in both mice
and a human duodenal cell line (Wen et al. 2018). The SLC26A9 gene product is
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mainly expressed in the proximal gastrointestinal tract and found in the crypt region
of the duodenum (Liu et al. 2015). SLC26A9 is associated with anion conductance
and the corresponding knockdown mice have reduced acid-induced duodenal
HCO; ™ secretion and worsened intestinal function and survival of CFTR-deficient
mice (Singh et al. 2013a; Walker et al. 2009; Liu et al. 2015). An integrative model
of duodenal bicarbonate secretion is shown in Fig. 12.6.

Among the many stimulators of duodenal bicarbonate secretion, luminal acid is a
physiological and effective agonist (Flemstrom and Kivilaakso 1983; Isenberg et al.
1986; Allen and Flemstrom 2005). The neurohumoral control of duodenal HCO;™
transport is mediated either directly by cholinergic innervation acting on M3 recep-
tors and indirectly via paracrine melatonin secretion from enterochromaffin cells,
both using Ca®* signaling to induce stimulation (Sjoblom and Flemstrom 2003). The
same study shows that CCK also enhances HCO; ™~ secretion through Ca®* signaling.
One of the first agonists to be discovered was PGE2, which acts via cAMP as well as
Ca”* signaling (Aoi et al. 2004), while the stimulatory effect of enterotoxin and
guanylins occurs through cGMP increases (Guba et al. 1996; Joo et al. 1998). The
intracellular signals are most likely to stimulate HCO;3 ™ secretion via regulation of
the luminal membrane transporters and channels, with CFTR being the best
documented.

12.6 Renal Intercalated Cells

The overall function of the kidneys is broadly to secure homeostasis and this is
achieved by maintaining water and electrolyte balance, acid/base balance, blood
pressure, and rid the organism of waste products (Boron and Boulpaep 2012, 2017).
The kidneys filter the blood plasma in the renal corpuscles and then modify the
filtrate to conserve appropriate amounts of water, nutrients, and salt by secretion and
reabsorption processed in an intricate system of renal tubules. As an integral part of
the process, the kidney helps to maintain normal acid/base balance by adjusting the
secretion of acid/base equivalents. Among the many epithelial cell types in the renal
tubular system, a single one has the capacity of secreting HCO5; ™~ which is the type-B
intercalated cell (IC). These cells are restricted to the late distal convoluted tubules,
the connecting tubules, and cortical collecting ducts, and are functionally mirror
images of the acid-secreting type-A ICs (Kwon et al. 2012). In the mentioned renal
cortical segments, the intercalated cells comprise almost 50% of the tubular cells.
Most of the cortical ICs are type-B cells, whereas medullary collecting ducts
exclusively contain type-A ICs. Interestingly, the numbers of intercalated cell
types can vary in a regulated and dynamic fashion. The number of type-A ICs is
increased in response to metabolic acidosis (Schwartz et al. 1985). It seems that the
change in relative numbers relies on the ability of type-B ICs to differentiate into
type-A ICs, given the proper stimulus (Schwartz et al. 1985). Hensin is a protein that
is secreted by the epithelial cells and incorporated in the extracellular matrix and is
necessary for cell differentiation (Gao et al. 2010; Al-Awqati 2013; Schwartz et al.
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Fig. 12.7 (a) Schematic diagram showing the molecular machinery for acid/base transport in type-
A intercalated cells from the renal tubular system. (b) Schematic diagram showing the molecular
machinery for acid/base transport in type-B intercalated cells from the renal tubular system

2002). It stimulated differentiation of type-B ICs to type-A ICs only in its polymeric
forms induced by binding of certainly activated integrins and the activity of extra-
cellular galectin 3 (Hikita et al. 2000; Schwaderer et al. 2006; Vijayakumar et al.
2008). Figures 12.7a and b depict the two types of cells and evidence for ion
transporters is elaborated below.

The bicarbonate secreting type-B IC (or -IC) was first described in the turtle
bladder (Leslie et al. 1973; Stetson and Steinmetz 1985), which like similar cells in
toad skin shares the functional significance for HCO;3 ™ secretion, as well as transport
properties with mammalian renal type-B ICs (Schwartz et al. 1985). The studies
showed that these cells were characterized by the luminal extrusion of HCO; ™ in
exchange for C1, thereby affecting pH homeostasis in the opposite direction as the
already described type-A ICs. The opposite function of the two cell types is
accompanied by different polarization of V-ATPases and anion exchangers. The
acid-secreting type-A ICs expresses the V-ATPase in the luminal membrane,
whereas type-B ICs have basolateral V-ATPase (Brown et al. 1988a). It is now
evident that the type-B ICs use the SLC26A4 gene product pendrin to extrude
bicarbonate apically into the urine. Pendrin is an anion exchanger shown to function
as a C1" /HCO; ™~ exchanger in the type-B ICs (Royaux et al. 2001). This was the first
study to show that pendrin is expressed in the apical membrane of type-B ICs and is
involved in HCO;™ secretion when animals were challenged by alkalosis, but not
under baseline conditions. Importantly, the renal tubules lose apical C1"/HCO;~
exchange and the capability to rid the body of excess base by the urine when the
pendrin gene is disrupted (Amlal et al. 2010; Royaux et al. 2001). Type-A ICs
expresses a renal specific variant of the anion exchanger AE1 (SLC4AI) in the
basolateral membrane to extrude excess HCO;~ (Alper et al. 1989). For both
types of ICs, the source for acid/base extrusion is the intracellular conversion of
CO; and H,O to protons and HCO; . The reaction rate is critically dependent on the
intracellular carbonic anhydrase, CAIl, and therefore inhibited by acetazolamide or
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CAII gene deletion (Breton et al. 1995; Sly et al. 1983). Pendrin function is sensitive
to changes in local pH (Azroyan et al. 2011), whereas the expression level and
function are reduced by metabolic acidosis and increased in alkalosis (Frische et al.
2003; Petrovic et al. 2003; Wagner et al. 2002). The key modulator of pendrin
expression may not be systemic pH alone but include a concomitant change in
circulating C1~ (Hafner et al. 2008; Vallet et al. 2006; Verlander et al. 2006). At the
hormone level, there is an agreement that angiotensin II stimulates pendrin either
directly or via activation of the V-ATPase (Wagner et al. 2011).

Thus, the acid/base transport models for ICs are quite simple and well established,
but have nevertheless been challenged somewhat by more recent findings. First,
antibodies against the human NBC3, also known as NBCnl (SLC4A7) colocalized
the protein with the V-ATPase in vesicles and the apical membrane of rat type-A ICs
and to the basolateral membrane of type-B ICs (Kwon et al. 2000; Pushkin et al.
1999). The authors detected DIDS-sensitive NBC activity in the apical surface of
type—A ICs. These findings were surprising, as NBC would function as an
electroneutral alternative transporter for type-A ICs to acidify the urine. In the
type-B ICs the function would be to acidify the interstitium in parallel to direct H*
transport by V-ATPase. However, antibodies against the corresponding rat protein,
NBCnl, localized the protein basolaterally in rat type-A ICs (Vorum et al. 2000).
This localization of NBC is counterintuitive, as a main task for that membrane is in
fact base extrusion. It should be mentioned that neither antibody produced labeling
of human or mouse renal intercalated cells, but was expressed elsewhere in the
kidney in humans (Damkier et al. 2007). Thus, data on NBCn1 expression in the ICs
are inconsistent and the lack of renal phenotype of SLC4A7 depleted mice indicates
that its function may be much less important than the H*-ATPase function.

Second, recent discoveries have led to a change of the paradigm that intercalated
cells are simply acid/base regulating cells, but participate also in Cl™ transport.
Previously, C1I~ was expected to take a paracellular route depending solely on a
transepithelial potential difference and Cl~ permeable tight junctions such as the
aldosterone regulated claudin-4 (Le et al. 2005). Pendrin was established as a
transcellular route for connecting tubule and collecting duct Cl™ reabsorption
(Wall et al. 2004). Genetic deletion of pendrin was shown to eliminate collecting
duct CI™ reabsorption in mineralocorticoid- and bicarbonate-treated mice. Thus,
pendrin knockout mice are protected from mineralocorticoid-induced hypertension,
while overexpression of pendrin leads to hypertension in mice on high-NaCl diet
(Jacques et al. 2013; Verlander et al. 2003). The significance of HCO; ™ secretion by
pendrin was also suggested to directly affect the function of the principal cell Na*
loader ENaC (Pech et al. 2010). Whereas single-gene knockout for the distal tubule
NaCl reabsorption protein NCC and pendrin are surprisingly benign, mice with
NCC-pendrin double knockout have a severe salt and volume wasting alkalotic
phenotype, even under control conditions (Soleimani et al. 2012). Thus, according
to the current model of collecting duct, Na™ reabsorption and Cl~ reabsorption takes
place in separate cells—principal cells and type-B ICs, respectively (Wall and Pech
2008). Pendrin now seems to take part in the electroneutral NaCl reabsorption
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mechanism in addition to its role in alkalization in metabolic alkalosis. It is not
known how these roles are separated and regulated.

The SLC4AS gene product NDCBE] has been associated with electroneutral and
thiazide sensitive NaCl reabsorption in the cortical collecting duct (Leviel et al.
2010). It may reside and function in the luminal membrane of the type-B ICs and in
the proposed model (Fig. 12.7), NDCBEI and pendrin work in concert with two
turnovers of pendrin for each NDCBEI turnover to yield electroneutral, pH neutral
NaCl reabsorption through type-B ICs. The model is based on the observations that
Na* reabsorption in collecting ducts are not completely inhibited by amiloride, but
contains a thiazide component under some experimental conditions. Also, the
authors find luminal C1I- and CO,/HCO;~ dependence of the thiazide sensitive
Na* transport in isolated cortical collecting ducts from Na* depleted animals.
Furthermore, they detect NDCBEI protein expression and mRNA in the relevant
tubular segments and demonstrate lack of such transport in tubules from NDCBE]
knockout mice (Leviel et al. 2010). In a separate study, the SLC4A9 gene product,
usually named AE4, was suggested as the basolateral Na* exit pathway in these cells
(Chambrey et al. 2013). It was shown, that the AE4 gene deletion greatly reduced
thiazide sensitive Na* and CI~ reabsorption. Interestingly, AE4 is suggested to work
as an electrogenic Na*-HCOj3 ™ extruder in their model. This would, however, render
the total reabsorption process electrogenic, as extrusion of Na* and HCO;~
(depending on the electrochemical gradients) would usually be in a 1:3 stoichiom-
etry and the model, only 1 Cl™ follows through CIC channels in the basolateral
membrane. As all these discoveries have a profound impact of our understanding of
renal electrolyte handling, it is highly important to establish the electrochemical
gradients of the type-B ICs in order to validate the model, which also suggests the
V-ATPase as the creating mechanism for transmembrane gradients (as opposed to
the Na*/K*-ATPase (Chambrey et al. 2013)). It is also necessary to localize the
NDCBEI] protein in the apical membrane of type-B ICs, and directly evidence that
thiazides target this protein e.g., by ligand binding assays. In Xenopus laevis oocytes,
neither NDCBEI nor pendrin seemed to be the site of action for thiazides, and
carbonic anhydrase was only discharged as target in control experiments in untreated
collecting ducts (Leviel et al. 2010). Furthermore, before NDCBEI/ is recognized as
important in renal Na* and Cl~ reabsorption and in blood pressure regulation, it is
necessary to report normal urine electrolytes, pH, osmolarity as well as blood
pressure values at baseline and in Na® depleted NDCBE1 KO mice. Whereas
principal cell-specific ENaC subunit knockout has a profound impact on baseline
Na*® and K* homeostasis, as well as urine output (Christensen et al. 2010), both
pendrin KO and NDCBE1 KO phenotypes seem mild as far as they have been
reported.
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12.7 Choroid Plexus Epithelium

The choroid plexus epithelium (CPE) produces the majority of the intraventricular
cerebrospinal fluid, CSF. Rougemont and colleagues directly demonstrated the
involvement of the choroid plexus in CSF formation in 1960 (Rougemont et al.
1960), although this had already been suggested by J. Faivre and H. Cushing (1914)
and Faivre (1854). Rougemont’s group established that the solute contents in the
nascent CSF differed from a simple plasma ultrafiltrate. Taken together with later
studies, the evidence that CSF cannot be a simple ultrafiltrate includes (1) the CSF is
approximately 5 mOsM hypertonic compared to plasma (Davson and Purvis 1954);
(2) the [Na*] and [HCO5 ] are slightly higher, whereas [K*] and [CI] are lower
than expected in the CSF at equilibrium (Ames III et al. 1964); and (3) there is a
5 mV lumen positive electrical potential difference across the choroid plexus
epithelium. Therefore, the choroid plexus must sustain a secretory function, given
that most intraventricular CSF arises from this structure. The CSF has many impor-
tant functions in the central nervous system. CSF fills the internal and external fluid
spaces and thereby cushions the central nervous system, keeps the intracranial
pressure at controlled levels, and it stabilizes the composition of the brain extracel-
Iular fluid. Primarily, CPE secreted fluid contains NaHCO;, and therefore, can
neutralize acid produced by neuronal activity. The choroid plexus epithelium also
secretes growth factors and nutrients into the CSF that are crucial for the brain
development and function (Damkier et al. 2013). Importantly, CSF also helps to
remove, i.e., absorb, K™ produced by active neurons, as well as breakdown products
of serotonin and dopamine. The composition of newly formed CSF is roughly
150 mM Na*, 3 mM K*, 130 mM CI~, and 25 mM HCO;~ (Davson and Segal
1996; Johanson and Murphy 1990). The choroid plexus produces up to 0.4 ml/g/min
fluid, which gives approximately 60 pmol HCO5 /h/g tissue output.

While some mechanisms of CSF secretion are well established, other aspects of
secretion are not fully understood. For example, the main transport mechanisms for
Na* into the choroid plexus epithelium from the blood side are not defined. Another
central question is how HCOj;™ is extruded from the cells into the CSF. Clues into
the main transport pathways are reflected by the wide profile of drugs inhibiting CSF
secretion: ouabain, acetazolamide, amiloride, DIDS, bumetanide, and furosemide
(Ames III et al. 1965; Davson and Segal 1970; Johanson and Murphy 1990; Melby
etal. 1982; Wright 1972). The secretion rate of CSF is also influenced by the HCO; ™
concentration at the basolateral side (Mayer and Sanders-Bush 1993; Saito and
Wright 1983). Thus, CO,/HCO;3;  metabolism seems important for CSF secretion.
Before describing the putative HCO3™ extrusion mechanisms, we will give the
general transport machinery that creates and sustains the gradients permitting
HCOj;™ secretion. Lastly, other acid/base transporters that may assist or modify
HCOj;™ secretion are considered.
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12.7.1 Basic Secretory Machinery

As opposed to most other epithelia, the choroid plexus Na*/K*-ATPase is localized
to the luminal membrane. Ventricular application of ouabain blocks the
transepithelial net Na* flux as well as the CSF secretion (Ames III et al. 1965;
Davson and Segal 1970; Wright 1978). The luminal Na*/K*-ATPase expression is
confirmed by both immunoreactivity and ouabain binding studies (Ernst et al. 1986;
Masuzawa et al. 1984; Praetorius and Nielsen 2006; Quinton et al. 1973; Siegel et al.
1984). The luminal Na*/K*-ATPase directly transports Na* into the CSF and also
maintains the Na* and K* gradients that drive most other transport processes in CSF
secretion (Fig. 12.8). Na*/K"-ATPase complexes consisting of «l, and either 1 or
B2 subunits, which are expressed in the choroid plexus together with the y-subunit,

Lumen

Basolateral

Aldosterone
Cortisol

Fig.12.8 Schematic diagram showing a simplified model of the CSF and thereby HCO; ™ secretion
process by the choroid plexus epithelium. Although HCO;3 ™ secretion greatly depends on carbonic
anhydrase activity, it also fully relies on a DIDS-sensitive basolateral supply of Na* and HCO; .
The luminal HCO; ™ extrusion is electrogenic and CSF pH increases are followed by an increase in
CSF Na* content, indicating a molecular or functional coupling of the extrusion of both ions.
Interconversion between CO, + H,O and H* + HCOj; ™ is catalyzed by carbonic anhydrases, i.e.,
luminal CAXII and intracellular CAIL. C1™ conductances are characterized as a volume sensitive
anion conductance (VRAC) and an inward rectifying CI~ conductance (Clir), whereas the K*
channels probably include Kv1.3, Kv1.1, and Kir7.1. KCCs are also a luminal K* exit pathway
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phospholemman (FXYD1) (Feschenko et al. 2003; Klarr et al. 1997; Zlokovic et al.
1993). These subunits were confirmed in a recent proteomic study on FACS isolated
mouse choroid plexus epithelial cells (Damkier et al. 2018). This study also revealed
the expression of a2, a4, and p3 Na*/K*-ATPase subunits.

K* channels expressed on the luminal membrane have several functions. Firstly,
they are important for K* recycling in connection with the Na*/K*-ATPase activity.
Secondly, K* channels are the main determinant for the membrane potential. This is
important for the luminal HCO;™ secretion, which is electrogenic. Thirdly, certain
K" channels (inward rectifiers) are also important for cellular uptake of K* in
hyperpolarized voltages in order to provide a K* sink, e.g., removal of neuron
derived K*. K* channels were first identified in the choroid plexus by patch-
clamping the luminal membrane of Necturus maculosa cells (Brown et al. 1988b;
Christensen and Zeuthen 1987; Zeuthen and Wright 1981). Several K* conductances
have been identified: an inward-rectifying conductance (Kir7.1 channels), and
outward-rectifying conductances (Kv1.1 and Kv1.3) (Doring et al. 1998; Kotera
and Brown 1994; Speake and Brown 2004). KCNQ1/KCNE2 channels may also
contribute to the outward-rectifying conductance (Roepke et al. 2011). All these K*
channel proteins are expressed in the luminal membrane of rat and mouse choroid
plexus (Nakamura et al. 1999; Roepke et al. 2011; Speake and Brown 2004).
Proteomic analysis confirmed the expression of Kir7.1 and voltage-gated potassium
channel KCNE2, and detected potassium channel subfamily K* member 1 KCNK1/
TWIK-1 as well (Damkier et al. 2018).

The CPE cells express abundant NKCC1 in the luminal membrane (Keep et al.
1994; Plotkin et al. 1997). With the typical ionic distribution across the luminal
membrane in CPE, NKCCl is close to equilibrium (Keep et al. 1994). Thus, both
inward and outward NKCCI1 transport has been observed (Steffensen et al. 2018;
Gregoriades et al. 2018). Measurements of the precise ionic gradients operating
in vivo will hopefully soon settle this discrepancy. The K*-CI™ -cotransporters
(KCCs) are electroneutral and transport of the ions out the cells is driven by the
outward [K"] gradient across cell membranes. KCCs are like NKCC1 inhibited by
furosemide (Russell 2000). KCCs were described as a furosemide-sensitive K*- and
CIl -dependent transport in the luminal membrane of bullfrog choroid plexus
(Zeuthen 1991). KCC1 and KCC4 (SLCI2A7) most likely mediate the observed
transport in the luminal membrane, whereas KCC3a (SLC12A6) is expressed in the
basolateral membrane (Karadsheh et al. 2004; Pearson et al. 2001). KCC4 may,
therefore, contribute to the recycling of K* across the luminal membrane helping to
sustain the Na*/K*-ATPase activity (Fig. 12.8). Interestingly, the proteomic study
mentioned above identified only NKCC1, KCC1, KCC4, and included a new
candidate, CCC1/Cipl (SLCI2A9) in mouse choroid plexus epithelial cells
(Damkier et al. 2018).
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12.7.2 Luminal HCO3;™ Extrusion

A substantial C1~ and HCO3™ efflux across the luminal membrane of the choroid
plexus occurs via electrogenic pathways, mainly anion channels for CI™. The
mechanisms involved in HCO; ™ efflux are less well described, but may overlap to
some extend with the C1™ extrusion. The majority of CI~ moves via a transcellular
route, because luminal DIDS minimizes C1~ secretion (Deng and Johanson 1989).
There are several potential candidates for Cl1~ channels. Inward-rectifying anion
conductances (Clir) have been shown by patch-clamping in CPE cells from several
species (Kajita et al. 2000; Kibble et al. 1996, 1997) and Clir channel activity is
augmented by protein kinase A (Kibble et al. 1996), and inhibited by protein kinase
C (Kajita et al. 2000). For the amphibian choroid plexus, Saito and Wright proposed
that cAMP-regulated ion channels conducting C1~ and HCO;3 ™ form the main efflux
pathway for the anions in the luminal membrane (Saito and Wright 1984). Inward
rectifier C1™ (Clir) channels have high HCO3~ permeability in mammals (Kibble
et al. 1996). The molecular identity of the Clir channel remains to be determined.
Apart from the intracellular chloride channels CLIC1, CLIC3-6, and CLCCI1, only
voltage-dependent anion-selective channel VDACI, VDAC2, VDAC3 were
detected at the molecular level (Damkier et al. 2018)

The CFTR does not seem to contribute to cAMP-regulated CI™ conductance in
the choroid plexus (Kibble et al. 1996, 1997). CIC-2 channels are also unlikely to
play a significant role in the choroid plexus transport, as Cl~ conductance is
unaffected in the choroid plexus epithelium from CIC-2 knockout mice (Speake
et al. 2002). VRACs were also identified in the choroid plexus epithelium (Kibble
etal. 1996, 1997). VRAC:s are most likely less important for CSF secretion, as their
Cl™ conductance at normal cell volumes is low (Kibble et al. 1996; Millar and
Brown 2008). LRRC8A was the only subunit of volume-regulated anion channels
detected in the recent mouse proteomic study (Damkier et al. 2018).

An alternative mechanism for luminal HCO;™~ extrusion to Cl~ channels is the
electrogenic cotransporter NBCe2 (or NBC4), which mediates the transport of 1 Na*
with 2-3 HCOj3™ ions (Sassani et al. 2002; Virkki et al. 2002). In rat choroid plexus,
NBCe2 is situated in the luminal membrane (Bouzinova et al. 2005). In the mouse, it
mediates the export of 1 Na* for 3 HCO; ™~ across the luminal membrane (Millar and
Brown 2008). A significant increase in the CSF Na* content without a reciprocal
change in CSF K* occurs in rodents exposed to 11% CO, at the CSF side (Nattie
1980). This finding indicates that a Na*-dependent acid/base transporters, such as
NBCe2, is involved in compensating CSF pH for the increased pCO,. Indeed, the
composition of the CSF is changed in NBCe2 gene trap knockout mice with a
significant decrease in [HCO; ] from 24 to 20 mM (Kao et al. 2011). Direct
evidence for a role in CSF pH regulation was shown recently in another NBCe2
knockout mouse model. When HCl was injected into the ventricle cavity, only
NBCe2 wildtype mice efficiently normalized the low CSF pH (Christensen et al.
2018). This effect was confirmed by NBCe2 siRNA injections. These findings
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strongly suggest that NBCe2 participates directly in the regulation of CSF pH by
extruding HCO3™.

12.7.3 Other Acid/Base Transporters of Consequence
Jor HCO3;™~ Secretion

The V-ATPase does not seem to be expressed in the luminal plasma membrane of
the choroid plexus epithelium. Among the many V-ATPase subunits only a few are
associated with plasma membrane expression of the entire complex. The B1 subunit,
which is involved in plasma membrane targeting, is not expressed at mRNA level in
the choroid plexus, but B2 mRNA is detectable in these cells (Christensen, Damkier,
and Praetorius, unpublished data). Thus, the V-ATPase complexes seem restricted to
the lysosomal system in these cells. The rabbit choroid plexus expresses mRNA
encoding the non-gastric H/K*-ATPase (Lindvall-Axelsson et al. 1992; Pestov
et al. 1998). Interestingly, luminally applied omeprazole inhibited CSF secretion in
another study indicating the gastric H*/K*-ATPase activity gastric (Lindvall-
Axelsson et al. 1992). Both V-ATPase and H/K*-ATPase are expressed at the
luminal membrane together with HCO; ™ transporters, thus, counteracting ongoing
HCO;™ secretion. Thus also in this epithelium, the role of H*-pumps is not clear.

Two NHE forms are expressed in the choroid plexus epithelium: NHE1 and
NHEG6. The mRNA encoding the NHE1 isoform was detected in the mouse choroid
plexus (Damkier et al. 2009; Kalaria et al. 1998) and the Na*/H" exchange activity of
isolated epithelial cells from rats and mice is inhibited by EIPA (Bouzinova et al.
2005; Damkier et al. 2009). In most epithelia, NHE1 is localized to the basolateral
membrane (Orlowski and Grinstein 2004), and this was also believed to be the case
for the choroid plexus epithelium, as intravenous application of amiloride was
reported to inhibit the rate of CSF secretion in vivo (Murphy and Johanson 1989).
Nevertheless, NHE1 is located in the luminal membrane of both mouse and human
choroid plexus (Damkier et al. 2009; Kao et al. 2011). NHE6 mRNA was recently
detected in the mouse choroid plexus epithelium and the protein was mainly
localized to the luminal membrane (Damkier et al. 2018). Functionally, NHE activity
in the choroid plexus seems confined to the luminal plasma membrane (Damkier
et al. 2009). The luminal membrane location of the NHE1 and NHE6 in CPE
predicts that the protein mediates H* extrusion from the epithelium to the CSF,
Thus, NHE1 and/or NHE6 may serve roles in preventing increases in CSF pH,
thereby counteracting efficient HCO3; ™~ secretion.

The SLC4A10 gene product NCBE or NBCn2 has been described as a DIDS-
sensitive, electroneutral Na*™-HCO; ™ cotransporter driven by the inward Na* gradi-
ent (Damkier et al. 2010; Giffard et al. 2003; Wang et al. 2000). These authors found
that the Na* dependent HCO; ™ transport required intracellular CI™ in mammalian
cell lines, and the transporter was therefore called NCBE for Na*-dependent C1 ™/
HCOj;™ exchanger. However, Parker et al. showed that the human SLC4A10 gene
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product did not extrude CI~ when expressed in Xenopus laevis oocytes, and protein
was renamed the protein NBCn2 by these scientists (Parker et al. 2008). This
controversy is not resolved and in this chapter, we use the rodent name NCBE for
simplicity.

The NCBE is a basolateral plasma membrane protein in the choroid plexus
(Praetorius and Nielsen 2006; Praetorius et al. 2004b), and it is believed to contribute
to both Na* and HCO3 ™~ uptake from the blood side. The involvement in cellular Na*
and HCO; ™ uptake is supported by a finding that reports a 70% decrease in the Na™-
dependent HCO;™ import into choroid plexus cells in an NCBE knockout mouse
model (Jacobs et al. 2008). In the murine choroid plexus, NCBE activity can account
for almost all of the DIDS-sensitive Na*-dependent HCO; ™~ import (Damkier et al.
2009).

The electroneutral Na*-HCO3; ™~ cotransporter 1, NBCnl, is also expressed in the
choroid plexus epithelium (Praetorius et al. 2004b). It is normally found in the
basolateral membrane of mammalian choroid plexus epithelial cells, but it is local-
ized to the luminal membrane in certain mouse strains and regionally in human
choroid plexus (Damkier et al. 2009; Praetorius and Nielsen 2006). The epithelial
NBCnl form seems to be DIDS insensitive. In rat choroid plexus, a large fraction of
the pH; recovery from acid load was mediated by DIDS insensitive Na*™-HCO; ™~
cotransport (Bouzinova et al. 2005). However, the NBC activity in choroid plexus
from NBCnl knockout mice is indistinguishable from that of wild type littermates
(Damkier, unpublished results). Thus, NBCn1 protein is not an obvious candidate to
participate in transcellular HCO; ™ transport.

AE2 mediates electroneutral uptake of Cl™ in exchange for HCO; ™ and is the
only anion exchanger from the SLC4 family in the choroid plexus. AE2 was first
localized in the basolateral membrane of mouse choroid plexus epithelium (Lindsey
et al. 1990) and later found at the same site in choroid plexus tissue from other
mammals (Alper et al. 1994; Praetorius and Nielsen 2006). AE2 is the only known
basolateral entry pathway for CI™ and may, therefore, be very important for CSF
secretion. Two lines of evidence suggest the implication of basolateral AE in CSF
formation. The inward chemical gradient for C1~ would favor AE2 mediated C1™
uptake across the basolateral membrane in the choroid plexus. Furthermore, DIDS
applied from the blood side greatly reduce Cl™ transport into the CSF (Deng and
Johanson 1989; Frankel and Kazemi 1983).

12.7.4 Model for Bicarbonate Secretion by the Choroid
Plexus

A significant body of evidence shows that HCO5 ™ transport is an essential element
of the CSF secretion and here we summarize the most important transporters
(Fig. 12.8). CSF secretion is greatly decreased by carbonic anhydrase inhibition
(Vogh et al. 1987; Ames III et al. 1965; Davson and Segal 1970; Welch 1963), and
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Na*/K*-ATPase activity is diminished in the absence of CO,/HCO; ™ in amphibian
CPE (Saito and Wright 1983). In humans, the intracranial pressure is also reduced by
the carbonic anhydrase inhibition in humans (Cowan and Whitelaw 1991). It appears
that the majority of the ions secreted to the CSF take a transcellular route. Na™, ClI,
HCO; ™, and Ca®* are secreted into the CSF, while K* is reabsorbed. The transport of
these ions is carefully regulated to provide a relatively constant CSF composition
despite fluctuations in their plasma or brain extracellular fluid concentrations
(Husted and Reed 1976; Jones and Keep 1988; Murphy et al. 1986). NCBE may
be a good candidate for mediating HCO3 ™~ uptake from the blood side, while NBCn1
can only assist in cases where this protein is situated in the basolateral membrane. In
the choroid plexus as elsewhere, cellular HCO; ™ is also generated from CO, and
H,O catalyzed by carbonic anhydrases, and inhibition of the carbonic anhydrases by
acetazolamide reduced CSF secretion by approximately 50% (Vogh et al. 1987). The
choroid plexus expresses the cytosolic carbonic anhydrase CAII as well as the
membrane-associated isoforms CAXII and CAIX (Kallio et al. 2006). For the actual
extrusion of HCO3™ to the lumen, NBCe?2 is identified as a key contributor for
regulating CSF pH (Christensen et al. 2018). This does not rule out that the luminal
anion conductances also provide HCO3 ™ transport across the luminal membrane.

12.7.5 Regulation of CP Bicarbonate Secretion

The control and regulation of choroid plexus secretion of HCO5; ™~ and CSF is a topic
of major clinical importance. Several life-threatening conditions resulting in an
increased intracranial pressure, such as head trauma, tumors, stroke, and irradiation
damage, can potentially be alleviated by acute reduction of CSF secretion. The
relevance of the bicarbonate transporters was underscored in a recent study, where
inhibition of NCBE was found efficient as a therapeutic target in post-hemorrhagic
hydrocephalus in rat pups (Li et al. 2018). The CSF contains very little protein
buffers and the appropriate pH level is most likely kept solely by the CO,/HCO;3™
buffer system. Adjustments of the HCO;™ extrusion from the choroid plexus can
potentially control the deviations of CSF pH from neutral values. However, virtually
nothing is known about the potential acid/base sensing.

Arginine vasopressin (AVP, or antidiuretic hormone ADH) decreases the CSF
secretion and reduces the blood flow to the choroid plexus (Johanson et al. 1999).
The choroid plexus expresses Vl1a receptors (Ostrowski et al. 1992; Phillips et al.
1988). AVP is actually produced by CPE stimulated by local angiotensin II through
AT1 receptor-mediated activation. Activation of Vla receptor in the luminal mem-
brane decreases CSF secretion by the CPE (Szmydynger-Chodobska et al. 2004).
Accordingly, Ca®* increases transiently in the choroid plexus epithelium upon
vasopressin administration (Battle et al. 2000), without affecting cAMP levels
(Crook et al. 1984). A local system of renin, angiotensinogen as well as
angiotensin-converting enzyme (ACE) and ATI1 receptors are expressed in the
choroid plexus epithelium (Chai et al. 1987a, b; Gehlert et al. 1986; Imboden et al.
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1987; Inagami et al. 1980). However, the significance of this local RAS system in the
choroid plexus is unclear apart from increasing AVP production. The mineralocor-
ticoid and glucocorticoid receptors are expressed in the choroid plexus (de Kloet
et al. 2000; Weber et al. 2003). Plasma glucocorticoid levels usually greatly exceed
aldosterone levels, and in aldosterone sensitive cells, the specificity of MR receptor
activation is assured by intracellular conversion of cortisol to inactive metabolites by
enzyme 11B-hydroxysteroid dehydrogenase type 2 (11fHSD2). Importantly, the
choroid plexus expresses 11BHSD type 1 instead of 11BHSD2 (Sinclair et al.
2007) and it is therefore unlikely that aldosterone exerts specific MR mediated
actions on the choroid plexus epithelium.

Regarding intracellular signaling, it is unknown how Ca”* inhibits CSF secretion
by the choroid plexus. There are substantial numbers of expressed transport mech-
anisms that are activated by cAMP and/or PKA. However, cAMP and/or PKA
induction has only been shown for isoproterenol, prostaglandin, serotonin, and
histamine (Crook et al. 1984). Finally, it is noted that the choroid plexus also
expresses receptors for atrial natriuretic factor, endothelin-1, serotonin, bradykinin,
and insulin, all of which could affect HCO;  secretion (Chodobski and
Szmydynger-Chodobska 2001).

12.8 Conclusions and Perspectives

The importance of HCO; ™ secretion is clearly demonstrated by the large selection of
ion transporters and channels involved in the process, and the fact that mutations or
dysregulation of these can lead to a large spectrum of diseases. In this chapter, we
have covered a wide selection of, but not all, epithelia that secrete HCO; . In leaky
epithelia, HCO; ™ secretion is accompanied by fluid secretion, while in tight epithelia
(such as salivary gland ducts and CCDs), HCO; ™ is usually exchanged for another
anion. One of the analyses made in this chapter is that there is a great spectrum of
secreted HCO;3 ™ concentrations, secretion rates and therefore HCO3 ™~ outputs, which
range from 1 to 1000 pmol/h/g tissue or organ. These values could be more revealing
if corrected for the mass of cells actually performing HCO;3™ secretion in the given
organ. Nevertheless, it should be pointed out that HCO;3 ™ secretion is usually only a
part of a complex function any given epithelium performs, and it is regulated by
specific neurotransmitters/hormones and locally generated agents or agents from
neighboring organs or tissues. Therefore, it is not unexpected to see that there are
many molecularly different transporters and constellations for bicarbonate secreting
epithelia presented in this chapter. Nevertheless, we seek to deduce whether there are
any common mechanisms for HCO;™ secretion. It appears that the basolateral
membranes of epithelia express one or more members of the NBC transporter
family, and/or NHEs and intracellular CA generating H* and HCO3~ from CO,.
The HCO5 ™ exit on the luminal membrane is a little more controversial. It seems that
CI" channels in the combination of HCO; /Cl™ exchangers (SLC26 family), espe-
cially the electrogenic type of exchanger, are favored and suffice for many epithelia.
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Also, permeability of C1™ channels to HCO; ™~ has been proposed. In a few epithelia,
electrogenic NBC has been proposed, but functional evidence for general epithelial
HCOj;™ secretion is required. Nevertheless, transport mechanism producing fluid
with more than 100 mM HCOj;™ concentrations are still elusive and we are missing
information about the electrochemical gradients (membrane voltages, intracellular
anion concentrations), CO, permeability, and the question still remains whether
passive anion transporters are sufficient to explain HCO3™ exit across the luminal
membrane. Key components in the secretory models are also various Cl™ and K*
channels, that can be stimulated by agonists to open and provide accompanying ions
and appropriate membrane voltages.

The most potent HCO5; ™ secretors, such as pancreas, some salivary glands, and
duodenum could potentially affect body acid/base balance. Therefore, it is not
surprising that these epithelia are very finely regulated, perform only periodically
when stimulated, and at low secretion rates, HCO3 ™ is reabsorbed or salvaged. This
requires HCO3 ™ reabsorbing mechanism, usually localized at the distal part of the
complex structures of glands or gastrointestinal tract. These mechanisms could
include certain isoforms of NBC transporters, or NHEs, and H* transporters.

Since the 1990s research has led to molecular identification of many transport
proteins involved in bicarbonate secretion. Future challenges are to pinpoint the
most important pH and CO, sensors, elucidate the effect of local regulating agents,
and clarify which acid/base transporters are involved in pH; regulation as opposed to
pH. regulation carried out by HCO; ™ secretion. Most importantly, studies of bicar-
bonate secretion and regulation on more integrated organ and whole-body settings
could provide some important answers.
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