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Abstract. In this paper, we consider the decision tables provided by
experts in the field. We construct an algorithm for executing a highly
parallel program represented by a fuzzy Petri net from a given decision
table. The constructed net allows objects to be identified in decision
tables to the extent that appropriate decisions can be made. Conditional
attribute values given by experts are propagated by the net at maximum
speed. This is done by properly organizing the net’s work. Our approach
is based on rough set theory and weighted generalized fuzzy Petri nets.
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1 Introduction

Rough set theory, proposed by Pawlak in 1982 [18], is a mathematical tool for
dealing with unclear, imprecise, incoherent and uncertain knowledge. It has been
observed for many years that both research and applications of rough set theory
are attracting more and more attention of researchers. It can be successfully used
in many areas of application alone or in combination with other approaches.
Here, we use this theory to support modeling of decision-making systems using
weighted generalized fuzzy Petri nets.

In this paper, we assume that a decision table S representing experimental
knowledge is given [17]. It consists of a number of rows labeled by elements from
a set of objects U , which contain the results of measurements, observations,
reviews etc. represented by a value vector of conditional attributes (conditions)
from A together with a decision d corresponding to this vector. Values of con-
ditions are provided by experts in the field. In some applications the values of
conditional attributes can be interpreted as states of local processes in a com-
plex system and the decision value is related to the global state of that system
[13,16,24]. Sometimes it is necessary to transform a given experimental decision
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table by taking into account other relevant features (new conditional attributes)
instead of the original ones. This step is necessary when the decision algorithm
constructed directly from the original decision table yields an inadequate classi-
fication of unseen objects or when the complexity of decision algorithm synthesis
from the original decision table is too high. In this case some additional time
is necessary to compute the values of new features after the original values are
given. The input for our algorithm consists of a decision table (if necessary,
pre-processed as described above).

We shall construct a fuzzy Petri net allowing to make a decision as soon
as a sufficient number of conditional attribute values is known and conclusions
drawn from the knowledge encoded in S (cf. [22]). In the paper we formulate
this problem and present its solution.

First, we assume that knowledge encoded in S is represented by rules auto-
matically extracted from S. We consider acceptable rules in S, i.e. rules for which
the accuracy factor need not necessarily be equal to 1 [23]. We assume that the
knowledge encoded in S is complete in the sense that invisible objects have
attribute value vectors consistent with rules extracted from S. This assumption
may be too restrictive, because the rules for the classification of new objects
should be generated only from appropriate features (attributes). The rule is
active if the values of all attributes on its left side are given. Our algorithm
should propagate information from attributes to other attributes as soon as
possible. This is the reason for generating true decision rules corresponding to
relative reducts with respect to the decision in S [22]. The last step of our algo-
rithm is the implementation of the set of generated rules using fuzzy Petri nets.
Each step of a computation of the constructed fuzzy Petri net consists of two
phases. In the first phase, it is checked that all condition values are known, and
if so, in the second phase, new information about the values is sent through the
net at maximum speed. The whole computation process is carried out by proper
organization of the net’s work.

In the paper, we use fuzzy Petri nets [3,5,10,12,30] as a model of the tar-
get decision-making system. Net properties can be verified using tools for the
analysis of Petri nets (see e.g. [28]).

Over the past few decades, there has been a series of modifications to the
classic fuzzy Petri nets (FPNs) [12] to deal with complex decision-making sys-
tems. Chen [4] introduced weight factors into FPNs and proposed a weighted
FPN (WFPN) model. Ha et al. [7] extended his work by adding input and output
weight factors into WFPNs. Then the intuitionistic fuzzy sets were integrated
into FPNs, and an intuitionistic FPN was presented in [11,26]. Skowron and
Suraj [23] developed a parallel algorithm for real-time decision-making based
on rough set theory and classic Petri nets. Peters et al. [20] combined the the-
ory of FPNs, rough sets, and colored Petri nets to develop a rough fuzzy Petri
net model. Suraj and Fryc [27] introduced time factor to approximate Petri nets,
which plays a vital role in developing real-time decision-making systems. Bandy-
opadhyay et al. [1] proposed to link Petri nets and soft sets and introduced a soft
Petri net model. Suraj and Hassanien [29] combined the theory of FPN and sets
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of fuzzy intervals to avoid the problem of determining the exact membership or
truth value.

This paper establishes some relationships between rough set theory and fuzzy
Petri nets. Parameter values such as rule certainty coefficients, input and out-
put weights of arcs in the net model are calculated automatically from a given
decision table. The empirical example provided here shows the effectiveness of
the proposed model.

The rest of this paper is organized in the following way. Section 2 contains
some background knowledge regarding rough set theory. In Sect. 3, the weighted
generalized fuzzy Petri net formalism is given. Section 4 describes three struc-
tural forms of decision rules and a method for transformation of decision tables
into weighted generalized fuzzy Petri nets. An example illustrating the approach
presented in this paper is provided in Sect. 5. Finally, Sect. 6 suggests some direc-
tions for further research related to our approach.

2 Preliminaries of Rough Set Theory

In this section we recall basic notions of rough set theory. Among them are those
of information systems, indiscernibility relations, dependencies of attributes, rel-
ative reducts, significance of attributes and rules [14,15].

2.1 Information Systems and Decision Systems

An information system is a pair S = (U,A), where U is a non-empty finite set
of objects called the universe and A is a non-empty finite set of attributes such
that a : U → Va for every a ∈ A. The set Va is called the value set of a, and
V =

⋃
a∈A Va is said to be the domain of A.

Let S = (U,A) be an information system and let B ⊆ A and X ⊆ U . Then
there is associated an equivalence relation ind(B): ind(B) = {(u, u′) ∈ U × U :
for every a ∈ B a(u) = a(u′)}. ind(B) is called the B-indiscernibility relation.
If (u, u′) ∈ ind(B), then objects u and u′ are indiscernible from each other by
attributes from B. The equivalence classes of the B-indiscernibility relation are
denoted [u]B .

We can approximate X using only the information contained in B, construct-
ing the B-lower and B-upper approximations of X, denoted by BX and BX
respectively, where BX = {u : [u]B ⊆ X} and BX = {u : [u]B ∩ X �= ∅}. The
objects in BX can be with certainty classified as members of X on the basis of
knowledge in B, while the objects in BX can be only classified as possible mem-
bers of X on the basis of knowledge in B. The set X is rough if BX − BX �= ∅.

A decision system (a decision table) is any information system of the form S =
(U,A ∪ {d}), where d /∈ A is a distinguished attribute called decision attribute
(decision). The elements of A are called conditional attributes (conditions).

Let S = (U,A ∪ {d}) be a decision system. The cardinality of the image
d(U) = {k : d(u) = k for some u ∈ U} is called the rank of d and is denoted by
r(d). We assume that the set Vd of values of the decision d is equal to {1, ..., r(d)}.
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Let us observe that the decision d determines a partition {X1, ...,Xr(d)} of the
universe U , where Xk = {u ∈ U : d(u) = k} for 1 ≤ k ≤ r(d). The set Xi is
called the i-th decision class of S. If X1, ...,Xr(d) are the decision classes of S,
then the set BX1∪ ...∪BXr(d) is called the B-positive region of S and is denoted
by POSB(d).

Any decision system S = (U,A ∪ {d}) can be represented by a data table
with the number of rows equal to the cardinality of the universe U and the
number of columns equal to the cardinality of the set A ∪ {d}. On the position
corresponding to the row u and column a the value a(u) appears.

Example 1. A small decision system is shown in Table 1. We have a set of
objects (patients) U = {1, 2, 3, 4, 5, 6}, a set of conditional attributes (symptoms)
A = {H (Headache), M (Muscle-pain), T (Temperature)}. The decision attribute
is denoted by F (Flu). The possible values of attributes from A ∪ {F} are equal
to no, yes, normal, high, or very high and r(F) = 2. The decision F defines a
partition {X1,X2} of U , where X1 = {1, 2, 3, 6}, X2 = {4, 5}. Each row of the
table can be seen as information about specific patient.

Table 1. An example of a decision system

U/A ∪ {d} H M T F

1 no yes high yes

2 yes no high yes

3 yes yes very high yes

4 no yes normal no

5 yes no high no

6 no yes very high yes

2.2 Dependency of Attributes

An important issue in data analysis is discovering of dependencies between
attributes. Intuitively, a set of attributes C depends totally on a set of attributes
B, denoted by B ⇒ C, if there exists a functional dependency between values
of C and B.

Let S = (U,A) be an information system and let B,C ⊆ A.
We say that the set C depends on B in degree k (0 ≤ k ≤ 1), denoted by

B ⇒k C, if k = γ(B,C) = |POSB(C)|
|U | , where POSB(C) =

⋃
X∈U/C B(X) and

|X| denotes the cardinality of X �= ∅. The set POSB(C) is called a positive region
of the partition U/C with respect to B. In fact, it is the set of all elements of U
that can be uniquely classified to blocks of the partition U/C by means of B.

Let B,C ⊆ A, and B′ ⊆ B. A set B′ is a C-reduct of B (or B′ is a relative
reduct of B with respect to C), if B′ is a minimal subset of B and γ(B,C) =
γ(B′, C).
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Example 2. Consider once again the decision system presented in Table 1. For
example, for the dependency {H,M,T}⇒k{F} we get k = 2/3. However, for
the dependency {T}⇒k{F}, we get k = 1/2. The attribute T offers a worse
classification than the entire set of attributes H, M, T. It is worth to noting that
neither H nor M can be used to recognize flu, because for both dependencies
{H}⇒k{F} and {M}⇒k{F} we have k = 0. In Table 1 there are two relative
reducts with respect to {F}, R1 = {H, T} and R2 = {M, T} of the set of
conditions {H, M, T}.

2.3 Significance of Attributes

Significance of an attribute a in a decision system S = (U,A ∪ {d}) can be
evaluated by measuring the effect of removing of an attribute a ∈ A from the
attribute set A on the positive region defined by the table S.

Let B ⊆ A. Significance of an attribute a ∈ A is defined as follows:
σ(B, d, a) = γ(B, {d}) − γ(B − {a}, {d}) = |POSB({d})|−|POSB−{a}({d})|

|U | , and
is simply denoted by σ(a) when B and {d} are understood.

This numerical factor measures the difference between γ(B, {d}) and γ(B −
{a}, {d}), i.e. it says how the factor γ(B, {d}) changes when an attribute a is
removed.

Note that the following relationship is also met: 0 ≤ σ(B, d, a) ≤ 1.

Example 3. Using the above formula for the decision system from Example 1,
we obtain the following results for Table 1:

1. For the set of conditional attributes A: σ(H) = 0, σ(M) = 0, σ(T) = 1/2
2. For the relative reduct R1: σ(H) = 1/6, σ(T) = 2/3
3. For the relative reduct R2: σ(M) = 0, σ(T) = 3/4

2.4 Rules in Decision Systems

Rules express some of the relationships between values of the attributes described
in decision tables. In this subsection we recall the definition of rules as well as
other related concepts.

Let S = (U,A ∪ {d}) be a decision system, B ⊆ A ∪ {d}, and V =
⋃

a∈A

Va ∪ Vd.
Atomic formulae over B and V are expressions of the form a = v. They are

called descriptors over B and V , where a ∈ B and v ∈ Va. The set DESC(B, V )
of formulae over B and V is the least set containing all atomic formulae over B
and V and closed with respect to the propositional connectives OR (disjunction),
AND (conjunction) and NOT (negation).

Let τ ∈ DESC(B, V ). ‖τS‖ denotes the meaning of τ in the decision system
S which is the set of all objects in U with the property τ . These sets are defined
as follows:
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1. if τ is of the form a = v then ‖τS‖ = {u ∈ U : a(u) = v}
2. ‖(τ OR τ ′)S‖=‖τS‖∪‖τ ′

S‖; ‖(τ AND τ ′)S‖=‖τS‖∩‖τ ′
S‖; ‖NOT τS‖=U−‖τS‖.

The set DESC(A, Va), a ∈ A, is called the set of conditional formulae of S.
A decision rule r for S is any expression of the form IF τ THEN d = v,

where τ ∈ DESC(A, Va), v ∈ Vd and ‖τS‖ �= ∅. Formulae τ and d = v are called
the predecessor and the successor of the decision rule r. ‖τS‖ is the non-empty
set of objects matching the decision rule and ‖τS‖ ∩ ‖(d = v)S‖ is the set of
objects supporting the rule. With every decision rule r we can associate sev-
eral numerical factors. The accuracy factor of the decision rule r is the number
acc(r) = |‖τS‖∩‖(d=v)S‖|

|‖τS‖| , while the strength factor of the decision rule r is under-

stood as str(r) = |‖τS‖∩‖(d=v)S‖|
|U | . The decision rule r is true in S, if acc(r) = 1,

otherwise it is acceptable in S.
It is also easy to see that 0 ≤ str(r) ≤ acc(r) ≤ 1 for every the decision rule

r in S.

Example 4. Let us consider the decision system table S from Example 1 pre-
sented in Table 1. Using the method for generating decision rules in S [22], we
get the following rules, corresponding to the relative reduct R1 = {H, T} along
with the numerical factors defined above:

– r1: IF H=no AND T=very high THEN F=yes; str(r1) = 1/6, acc(r1) = 1
– r2: IF H=yes AND T=very high THEN F=yes; str(r2) = 1/6, acc(r2) = 1
– r3: IF H=no AND T=high THEN F=yes; str(r3) = 1/6, acc(r3) = 1
– r4: IF H=yes AND T=high THEN F=yes; str(r4) = 1/6, acc(r4) = 1/2
– r5: IF H=yes AND T=high THEN F=no; str(r5) = 1/6, acc(r5) = 1/2
– r6: IF H=no AND T=normal THEN F=no; str(r6) = 1/6, acc(r6) = 1

Note that the rules r1, r2, r3, r6 are true in Table 1, while the other rules are
acceptable in this table.

For a systematic overview of rule synthesis, see e.g. [9,15,21].

3 Weighted Generalized Fuzzy Petri Nets

Fuzzy Petri nets are a modification of classic Petri nets to deal with imprecise,
unclear or incomplete information in knowledge-based systems that are widely
used to model fuzzy production rules and rule-based reasoning.

In this section, we define weighted generalized fuzzy Petri nets (WGFP-net).
The new model is a modification of generalized fuzzy Petri nets, proposed in
[25]. The main difference between the current net model and the previous one
concerns the weights of arcs. Weights are now added to the input and output
arcs. They are any numbers from 0 to 1, automatically calculated from the data
table and interpreted in the concepts of rough set theory (see Sect. 4) (cf. [2,10]).
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In this paper WGFP-nets are used as a tool for computing a parallel program
from a given decision table. After modeling a decision table by a WGFP-net the
states are identified in the net to an extent allowing to take the appropriate
decisions.

We also assume that the reader knows the basic concepts of classic Petri nets
[6] and triangular norms [8].

Let [0, 1] denotes the set of real numbers between 0 and 1.
A weighted generalized fuzzy Petri net is a tuple N = (P, T, I,O,

M0, S, α, β, γ,Op, δ), where: (1) P = {p1, p2, . . . , pn} is a finite set of places;
(2) T = {t1, t2, . . . , tm} is a finite set of transitions; (3) I : P × T → [0, 1] is
the input function that maps directed arcs from places to output transitions of
those places. If a directed arc (p, t) exists between a place p and a transition t,
then I(p, t) > 0, otherwise 0. The values of I(p, t) for (p, t) ∈ P × T are called
input weights of transitions t and are denoted by iw; (4) O : T × P → [0, 1] is
the output function that maps directed arcs from transitions to output places
of those transitions. If a directed arc (t, p) exists between a transition t and a
place p, then O(t, p) > 0, otherwise 0. The values of O(t, p) for (t, p) ∈ T ×P are
called output weights of transitions t and are denoted by ow; (5) M0 : P → [0, 1]
is the initial marking; (6) S = {s1, s2, . . . , sn} is a finite set of statements; (7)
α : P → S is the statement binding function; (8) β : T → [0, 1] is the truth
degree function; (9) γ : T → [0, 1] is the threshold function; (10) Op is a union
of t-norms and s-norms called the set of operators, and the sets P , T , S, Op are
pairwise disjoint; (11) δ : T → Op × Op × Op is the operator binding function.

We also accept that if I(p, t) = 0 (O(p, t) = 0) then the directed arc from
input (output) place p to transition t does not exist in the net drawing. Similarly,
if M0(p) = 0 then the token does not exist in the place p. In addition, if I(p, t) = 1
(O(t, p) = 1), then the weight of the arc equal to 1 is also disregarded in the
net drawing. The numbers β(t) and γ(t) are placed in a net picture under the
transition t. The first number is interpreted as the truth degree of an implication
corresponding to a given transition t. The role of the second one is to limit the
possibility of transition firings, i.e., if the input operator In value for all values
corresponding to input places of the transition t is less than a threshold value γ(t)
then this transition cannot be fired (activated). The operator binding function δ
connects transitions with triples of operators (In,Out1, Out2). The first operator
in the triple is called the input operator, and two remaining ones are the output
operators. The input operator In concerns the way in which all input places are
connected with a given transition t (more precisely, statements corresponding to
those places). However, the output operators Out1 and Out2 concern the way in
which the next marking is computed after firing the transition t. In the case of
the input operator we assume that it can belong to one of two classes, i.e., t- or
s-norm, whereas the second one belongs to the class of t-norms and the third to
the class of s-norms.

Let N be a WGFP-net. A marking of N is a function M : P → [0, 1].
The dynamic behavior of the system is represented by the firing of the cor-

responding transition, and the evolution of the system is represented by a firing
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sequence of transitions. We assume that the networks built in the form presented
in this paper operate according to the firing rule consisting of the following three
steps:

1. A transition t ∈ T is enabled (or ready for firing) for marking M if the
number produced by input operator In for all input places of the transition t
by M multiplied by the relevant weights of arcs is positive and greater than,
or equal to the number being a value of threshold function γ corresponding to
the transition t. Formally, the following condition for γ(t) should be satisfied:
In(iwi1 · M(pi1), iwi2 · M(pi2), ..., iwik · M(pik)) ≥ γ(t) > 0, where In is an
input operator of the transition t, iwij is an input weight of t and M(pij) is
a marking of a place pij for j = 1, 2, ..., k.

2. A transition can fire only if it is enabled.
3. If M is a marking of N enabling transition t and M ′ is the marking derived

from M by firing transition t, then for each p ∈ P a procedure for computing
the next marking M

′
is as follows: (1) Tokens in all output places of t are

modified in the following way: at first the value of input operator In for all
input places of t is computed, next the value of output operator Out1 for the
value of In and for the value of truth degree function β(t) is determined, and
finally, a value corresponding to M

′
(p) for each p ∈ O(p) is obtained as a

result of output operator Out2 for the value of Out1 multiplied by the weight
ow and the current marking M(p). (2) Tokens in the remaining places of net
N are not changed.

Formally, for each p ∈ P

M ′(p) =

⎧
⎪⎨

⎪⎩

Out2(ow · Out1(In(iwi1 · M(pi1), iwi2 · M(pi2), ..., iwik · M(pik)), β(t)),

M(p)) if p ∈ O(t)

M(p) otherwise

We also assume that if several transitions are simultaneously enabled in the
same marking (i.e. transitions are concurrent) then they can be fired by an
application of the firing rule described above in one and the same step and the
resulting marking is computed according to this rule.

Fig. 1. A WGFP-net with the initial marking: (a) before firing t1, (b) after firing t1
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Example 5. Consider a WGFP-net in Fig. 1. For the net we have: the set of
places P = {p1, p2, p3}, the set of transitions T = {t1}, the input function I and
the output function O in the form: I(p1, t1) = iw1 = 2/5, I(p2, t1) = iw2 = 1/2,
I(p3, t1) = iw3 = 0, O(t1, p1) = ow1 = 0, O(t1, p2) = ow2 = 0, O(t1, p3) =
ow3 = 1, and the initial marking M0 = (1/2, 2/5, 0), the set of statements S =
{s1, s2, s3}, the statement binding function α : α(p1) = s1, α(p2) = s2, α(p3) =
s3, the truth degree function β : β(t1) = 1.0, the threshold function γ: γ(t1) =
0.1, the set of operators Op = {ZtN, GtN, ZsN}, the operator binding function
δ: δ(t1) = (ZtN, GtN, ZsN), where ZtN(a, b) = min(a, b) (minimum, Zadeh t-
Norm), GtN(a, b) = a · b (algebraic product, Goguen t-Norm), and ZsN(a, b) =
max(a, b) (maximum, Zadeh s-Norm). The transition t1 is enabled by the initial
marking M0, since ZtN(I(p1, t1) · M0(p1), I(p2, t1) · M0(p2)) = min(1/5, 1/5) =
1/5 ≥ 0.1 = γ(t1). Firing transition t1 by the marking M0 transforms M0 to
the resulting marking M ′ = (1/2, 2/5, 1/5), because ow3· GtN(1/5, β(t1)) = 1·
GtN(1/5, 1.0) = 1/5 and ZsN(1/5,M0(p3)) = max(1/5, 0) = 1/5. Note that in
this case the transition t1 is still enabled by M ′, but when it is fired at this
marking, the result marking is the same as M ′. We omit the detailed description
of the relevant calculations illustrating the transformation from the marking M ′

to M ′ after firing t1. They run similarly to these above.

4 Transformation of Decision Systems into WGFP-nets

Now we present a method for transforming decision rules representing a given
decision system into a WGFP-net.

We assume that a decision system is represented by decision rules of the form
IF τ THEN d = v.

Let S = (U,A ∪ {d}) be a decision system, and DESC(A, Va) be the set of
the set of conditional formulae of S.

In the paper, we consider three structural forms of decision rules with a list
of numerical factors enclosed in square brackets ‘[’ and ‘]’ characterizing these
rules (cf. [4,7,10]).

Type 1: A simple decision rule

r1 : IF a = v THEN d = v′

[b; σ(a), str(r1); acc(r1)]

where a = v and d = v′ denote descriptors such that a = v ∈ DESC(A, Va) and
v′ ∈ Vd, b is the truth degree value of a = v, σ(a) is significance of the attribute
a, while str(r1) and acc(r1) are the strength factor and the accuracy factor of
the rule r1, respectively.

A WGFP-net structure of the decision rule r1 is shown in Fig. 2, where iw
is the input weight of the transition r1 and interpreted as σ(a), while ow is the
output weight of r1 and interpreted as str(r1) (see Subsect. 2.3 and 2.4). A larger
value of iw or ow means a stronger corresponding connection. However, the value
β(r1) = c is interpreted as acc(r1). Similarly as before, the larger value of β the



70 Z. Suraj et al.

Fig. 2. A WGFP-net representation of the rule of type 1

more credible the rule is. The value of γ represents the threshold value. Larger
value b requires greater truth degree of the rule precedence, i.e., a = v. The
operator In and the operators Out1, Out2 represent the input operator and the
output operators, respectively. According to Fig. 3 the token value in an output
place p′ of a transition t corresponding to the decision rule r1 is calculated as
b′ = ow · Out1(b · iw, c), if b · iw ≥ d, where d = γ(r1) and γ(r1) is the threshold
value associated to the transition r1 and it is given by an expert in the field
during the simulation process of the network.

If the predecessor or the successor of a decision rule contains AND or OR
(propositional connectives), it is called a composite decision rule. Below, two
types of composite decision rules are presented together with their WGFP-net
representation (see Fig. 3 and Fig. 4).

Fig. 3. A WGFP-net representation of the rule of type 2

Type 2: A composite conjunctive decision rule in the predecessor of the rule

r2 : IF a1 = v1 AND a2 = v2 · · · AND ak = vk THEN d = v′

[b1, b2, . . . , bk; σ1(a), σ2(a), . . . , σk(a), str(r2); acc(r2)]

where a1 = v1, a2 = v2, . . ., ak = vk, d = v′ denotes descriptors, and b1, b2,
. . ., bk, b′ their truth degree values, respectively. The meaning of all numerical
factors characterizing this rule is similar to the meanings of the relevant factors
described for the rule of type 1. The token value b′ is calculated in the output
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place as follows (Fig. 3): b′ = Out1(In(b1 · iw1, b2 · iw2, . . . , bk · iwk), c)) · ow), if
In(b1 · iw1, b2 · iw2, . . . , bk · iwk) ≥ d, where d = γ(r2).

Type 3: A composite disjunctive decision rule in the successor of the rule

r3 : IF a′ = v′ THEN d = v1 OR d = v2 · · · OR d = vn

[b′; σ1(a′), σ2(a′), . . . , σn(a′), str1(r3), str2(r3), . . . , strn(r3); acc1(r3), acc2(r3), . . . , accn(r3)]

where a′ = v′, d = v1, d = v2, . . . , d = vn denotes descriptors, and b′ is the
truth degree value of a′ = v′. The token value for the type 3 is calculated in each
output place as follows (Fig. 4): bj = owj · Out1(b′ · iw, cj), if b′ · iw ≥ dj , where
dj = γj(r3), j = 1, . . . , n.

Fig. 4. A WGFP-net representation of the rule of type 3

Remarks:

1. It is easy to see that the rule of type 1 is a particular case of the rule of
type 2, as in the case of the rule of type 1, there is only one descriptor in
the predecessor. Type 3 can also be easily converted to type 1. Therefore,
without losing generality, we can only consider the rules of type 1 and 2.

2. As the rules of type 1 and 3 have only one descriptor in their predecessors,
we may omit the input operator In in Fig. 2 and 4. Nevertheless, for better
readability of these figures we leave the operator where it is. What’s more,
the rule of type 3 can be generalized in the case when in the predecessor of
the rule instead of one descriptor we have a conjunction of descriptors (as in
the rule of type 2). Then the net modeling of such a rule in relation to its
predecessor is similar to the one done for the rule of type 2.

3. We assume that the initial markings of output places are equal to 0 in all
net models corresponding to the considered rule types. Therefore, in the
descriptions of the token values in output places we do not regard the out-
put operator Out2. In the opposite case, i.e., for non-zero markings of output
places, we should take into account this output operator. Thus, in each for-
mula presented above the final token value a′ should be computed as follows:
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b′ = Out2(b′′,M(p′)), where b′′ denotes the token values computed for suit-
able rule types by means of formulas presented above, and M(p′) is a marking
of output place p′. Intuitively, a final token value corresponding to M ′(p′) for
each output place p′ of a transition representing a decision rule r is obtained
as a result of Out2 operation for the computed Out1 operation value and the
current marking M(p′).

Using the method described above, we can formulate a simple algorithm that
constructs a WGFP-net based on a given set of rules extracted from a decision
system S. This algorithm transforms the rule into a WGFP-net depending on
the form of the transformed rule.

Let S = (U,A ∪ {d}) be a decision system.

Algorithm 1: Construction of WGFP-net using a set of decision rules
in S
Input : A finite set R of decision rules in with a list of parameters
Output: A WGFP-net NS

F ← ∅; (* The empty set. *)
for each r ∈ R
if r is a rule of type 1 then

construct a subnet Nr as shown in Fig. 2;

if r is a rule of type 2 then
construct a subnet Nr as shown in Fig. 3;

if r is a rule of type 3 then
construct a subnet Nr as shown in Fig. 4;

F ← F ∪ {Nr};
integrate all subnets from a family F on joint places and create a result net NS ;
return NS ;

5 An Example

To illustrate our methodology, let’s reconsider the decision rules corresponding
to the relative reduct R1 from Example 4 along with a full list of parameters
needed to build a structure of WGFP net model:

– r1: IF H=no AND T=very high THEN F=yes [σ(H) = 1/6, σ(T) = 2/3,
str(r1) = 1/6; acc(r1) = 1]

– r2: IF H=yes AND T=very high THEN F=yes [σ(H) = 1/6, σ(T) = 2/3,
str(r2) = 1/6; acc(r2) = 1]

– r3: IF H=no AND T=high THEN F=yes [σ(H) = 1/6, σ(T) = 2/3, str(r3) =
1/6; acc(r3) = 1]

– r4: IF H=yes AND T=high THEN F=yes [σ(H) = 1/6,σ(T) = 2/3, str(r4) =
1/6; acc(r4) = 1/2]
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– r5: IF H=yes AND T=high THEN F=no [σ(H) = 1/6, σ(T) = 2/3, str(r5) =
1/6; acc(r5) = 1/2]

– r6: IF H=no AND T=normal THEN F=no [σ(H) = 1/6, σ(T) = 2/3,
str(r6) = 1/6; acc(r6) = 1]

Fig. 5. An example of the WGFP-net model for the diagnosis of flu diseases with the
initial marking

Using Algorithm 1 (Sect. 4) for constructing a WGFP-net on the base of
a given set of rules, we present the WGFP-net model corresponding to these
rules. This net model is shown in Fig. 5. Note that the places p2 and p4 include
the truth degree values 3/4 and 1/2 corresponding to the descriptors H=yes
and T=high, respectively. The remaining places on the net model are empty.
In this example, input weights iw attached to arcs belong to the interval [0,1]
and are shown in Fig. 5. Moreover, there are: the truth degree function β :
β(t1) = β(t2) = β(t3) = β(t6) = 1.0 and β(t4) = β(t5) = 0.5, the threshold
function γ: γ(ti) = 0.1 for i = 1, 2, ..., 6, the set of operators Op = {ZtN, GtN,
ZsN} and the operator binding function δ defined as follows: δ(ti) = (ZtN, GtN,
LsN) for all transitions in the net.
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Fig. 6. An example of the WGFP-net model for the diagnosis of flu diseases with the
final marking after firing the transitions t4, t5

Assessing the statements (descriptors) attached to places p2 and p4, we
observe that transitions t4 and t5 are enabled in the initial marking (see Fig. 5).
After firing these transitions in any order we obtain the same values for the deci-
sions F=yes, F=no equal to 1/48 (see Fig. 6). This means that an unambiguous
decision does not exist in this case. In the net model with parameters (and this
is the model presented in the paper) the problem of ambiguity of decisions is
easier to solve than in the model without parameters. In a situation like this,
the ambiguity of decisions could be relatively easily resolved if the weights of the
output arcs for t4 and t5 were different. This situation is possible with a different
interpretation of the weights of the input and/or output arcs in this net model.
We intend to address this problem in more detail in our future research work.

It is also visible in this figure that in the current marking the transitions
t4 and t5 are still enabled. Firing these two transitions in the current marking
does not change this marking, therefore the simulation of the net operation is
already completed. We omit the particular calculation in this case, because it
runs similarly as in Example 5 (Sect. 3).
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6 Conclusion

Trying to make fuzzy Petri nets more realistic with regard to the perception of
physical reality, in this paper we established the relationship between fuzzy Petri
nets and rough set theory. This link is of a methodological nature and shows the
possible application of rough set methodology to transform the WGFP-net into
a more realistic net model. In the proposed model, the weights of arcs and the
function β are interpreted using appropriate concepts from the rough set theory,
thanks to which their values are calculated from data tables. Decision rules are
also automatically generated from these tables, which are the basis for building
the net model of the decision algorithm. In addition, the considered net model
allows the use of any triangular norms to describe the behavior of the WGFP-
nets. The approach developed seems promising and one could try to apply it to
problems that can be solved in a similar way.

It is worth noting that the presented net model allows relatively quickly
identify the objects specified in a given decision table. However, the algorithm
described does not propagate information from attributes to other attributes as
soon as possible. If such an algorithm did this, we would achieve even faster
decision making in the net model. It is well known that this aspect is extremely
important in real-time systems. This is the reason to consider in the next study
the rules in minimal form, i.e. with a minimal number of descriptors on its left
hand side. Another interesting problem arises when we are unable to determine
the exact membership or value of truth, then we should focus our attention
on e.g. interval fuzzy sets [19] to indicate their scope instead of exact values.
Therefore, it seems useful to examine the WGFP-net in the context of interval
t-norms. This should make the model proposed here even more flexible, general
and practical. These are just some examples of problems that we would like to
examine using the approach presented in the paper.
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