
Rough Forgetting

Patrick Doherty1,2 and Andrzej Sza�las1,3(B)

1 Department of Computer and Information Science, Linköping University,
581 83 Linköping, Sweden

{patrick.doherty,andrzej.szalas}@liu.se
2 School of Intelligent Systems and Engineering, Jinan University (Zhuhai Campus),

Zhuhai, China
3 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

andrzej.szalas@mimuw.edu.pl

Abstract. Recent work in the area of Knowledge Representation and
Reasoning has focused on modification and optimization of knowl-
edge bases (KB) through the use of forgetting operators of the form
forget(KB , R̄), where R̄ is a set of relations in the language signature
used to specify the KB. The result of this operation is a new KB where
the relations in R̄ are removed from the KB in a principled manner
resulting in a more efficient representation of the KB for different pur-
poses. The forgetting operator is also reflected semantically in terms of
the relation between the original models of the KB and the models for
the revised KB after forgetting. In this paper, we first develop a rough
reasoning framework where our KB’s consist of rough formulas with a
semantics based on a generalization of Kleene algebras. Using intuitions
from the classical case, we then define a forgetting operator that can be
applied to rough KBs removing rough relations. A constructive basis for
generating a new KB as the result of applying the forgetting operator to
a rough KB is specified using second-order quantifier elimination tech-
niques. We show the application of this technique with some practical
examples.

1 Introduction and Motivations

In Artificial Intelligence, the field of Knowledge Representation and Reasoning
(KRR) deals with the use of logical languages to represent knowledge or beliefs
and the use of inference in some logic to derive additional knowledge or belief
implicit in a base theory represented as a set of logical formulas. The explicit base
theory is often called a Knowledge Base (KB). Consequences A of the KB are
derived through a consequence relation, KB |= A. A signature Σ (vocabulary) is

The first author has been supported by the ELLIIT Network Organization for
Information and Communication Technology, Sweden; the Swedish Foundation for
Strategic Research SSF (SymbiKBot Project); and a guest professor grant from
Jinan University (Zhuhai Campus). The second author has been supported by grant
2017/27/B/ST6/02018 of the National Science Centre Poland.

c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-52705-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52705-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-52705-1_1

4 P. Doherty and A. Sza�las

associated with the logical language and is used for specifying the legal relations,
functions, constants, etc., used in the syntax of formulas.

In recent years, there has been much interest in the topic of forgetting oper-
ations in KRR [12]. Intuitions for such operators are based loosely on the fact
that humans often forget what they know or believe for reasons of efficiency
in reasoning. Mapping this loose intuition over to KRR results in some very
powerful and useful techniques for dealing with redundant information in KB’s,
optimizing query retrieval in relation to KB’s [10,17], progressing databases [18],
forgetting with description logics [6,31] and rule based languages [26,27], dealing
with missing information and dataset reduction [14], forgetting sets of literals in
first-order logic [28], in addition to other techniques. In general, one major type
of forgetting aims at removing information from a KB in a controlled manner
where the syntactic elimination has a principled semantic correlation character-
ized in model theory.

Given a KB and a signature Σ, a common type of forgetting, forget(KB , Σ′),
can be formulated where Σ′ � Σ and KB ′ is the result of forgetting the compo-
nents in Σ′ in KB . One interesting question is the relation between the models
and consequences of KB and the consequences of KB ′ after the forgetting oper-
ation is applied to KB . Initial intuitions for this type of forgetting can be traced
all the way back to Boole [2] and his use of variable elimination. Assume a
propositional language with signature Σ = {p, q, r}. Given a propositional for-
mula A and a signature Σ′ = {p}, the result of forgetting p in A, forget(A,Σ′),
is A+

p ∨ A−
p , where A+

p is the result of replacing all occurrences of p in A with
‘true’ and A−

p is the result of replacing all occurrences of p in A with ‘false’ and
simplifying the result.

In KRR application areas such as robotics, the knowledge or beliefs robots
have about different aspects of the world, is often incomplete and/or uncertain.
Consequently, one wants to find a concise way to model this. Rough set the-
ory [7,8,22,23] has been used to model different types of incompleteness using
indiscernibility and approximations. The general idea is to begin with a universe
of individuals and define an indiscernibility relation over these individuals. In the
classical case, this generates an equivalence relation over individuals. A rough
set is defined by specifying a lower and upper approximation, each consisting
of a number of equivalence classes generated by the indiscernibility relation. All
individuals in equivalence classes included in the lower approximation are in the
rough set, all equivalence classes in the upper approximation intersect with the
rough set, and the individuals in the remaining equivalence classes lie outside the
set. This brings to mind a division of individuals into a tripartite division remi-
niscent of three-valued logics. Later in the paper, this intuition will be formalized
more precisely. In the context of KRR, there has been interest in generalizations
of logical languages and inference to include rough logical languages and infer-
ence using rough theories [8]. This generalization will be used as a vehicle for
specifying rough forgetting operators applied to rough relations in such logics.

Another application area for rough sets and logics is with big data applica-
tions. According to [14],

Rough Forgetting 5

“most of the attribute values relating to the timing of big data [. . .] are
missing due to noise and incompleteness. Furthermore, the number of miss-
ing links between data points in social networks is approximately 80% to
90% and the number of missing attribute values within patient reports
transcribed from doctor diagnoses are more than 90%.”

Rough sets are discussed in [14] as one of remedies to deal with missing data. In
this context, the combination of rough sets with the use of forgetting operations
might prove to be very useful. In cases where important information is missing, it
might be useful to forget the relation or find a relation’s explicit definition and –
using the definition – complete parts of the missing content. In fact, the second-
order quantifier elimination techniques which we describe in this paper and use
as a tool for forgetting, provide us with definitions of eliminated (forgotten)
relations as a side effect.

This paper is primarily about developing a first-order logical framework for
rough theories that can be used to construct rough KB’s, with a formal semantics
based on rough relational structures. Given such a logic, we then define a forget-
ting operator that can be applied to rough theories and we provide the semantics
for such an operator. The forgetting operator is based on second-order quantifier
elimination techniques developed for rough theories. In previous work, we have
shown how second-order quantifier elimination techniques can be automated for
well-behaved fragments of second-order logic. We expand on these results in the
context of rough theories.

The paper is structured as follows. In Sect. 2 we discuss the rough reasoning
framework used throughout the paper. In Sect. 3, we recall definitions for for-
getting used with classical logic and then generalize these and introduce rough
forgetting. Next, in Sect. 4, we provide second-order quantifier elimination the-
orems with proofs which can serve as foundations for algorithmic techniques
for rough forgetting. Section 5 provides a number of examples showing how the
proposed techniques work in practice. Finally, Sect. 6 concludes the paper.

2 Rough Reasoning Framework

Rough sets [21,22] have been defined in many ways (see, e.g., [4,5,7,8,16,23,
25,29,30] and numerous references there). Three- and many-valued approaches
have been intensively studied in the context of rough sets [3,4,15,16]. In the
current paper we will follow the presentation of [16].

Definition 1 (Approximation space). Let U be a set of objects and E be an
equivalence relation on U , Then A = 〈U , E〉 is called an approximation space.
By the lower approximation (s+) and upper approximation (s⊕) of a set s ⊆ U
we mean:

s+
def= {x ∈ U | ∀y

(
E(x, y) → y ∈ s

)
}; s⊕ def= {x ∈ U | ∃y

(
E(x, y)∧y ∈ s

)
}. (1)

A set s ⊆ U is definable in A iff s is a union of equivalence classes of E.

6 P. Doherty and A. Sza�las

In rough sets, E represents an indiscernibility relation. Approximations are
interpreted as follows, where s ⊆ U is a set:

– the lower approximation s+ represents objects certainly belonging to s;
– the upper approximation s⊕ represents objects possibly belonging to s.

Definition 2 (Rough sets). For an approximation space A, the ordered pair
〈sl, su〉, where sl ⊆ su and sl, su are definable sets, is called a rough set (wrt
A).1

Remark 1. In the literature, the equivalence relation used to define rough
approximations has been argued to be too strong for many application areas
[8,24,25]. In fact, seriality of E (i.e., the property that ∀x∃y(E(x, y)) has been
proposed as the weakest well-behaved requirement on E. This ensures that
the lower approximation is included in the upper approximation of a rough
set [11,29].

Note also that, according to [19, Section 19.3], every reflexive similarity rela-
tion can be refined to an equivalence relation in a natural way. So reflexivity can
be used as a basic requirement on indiscernibility relations.2

As shown in [16], there is a close correspondence between rough sets and
Kleene algebras defined below.

Definition 3 (Kleene algebra). An algebra K = 〈K,∪,∩,−,⊥,�〉 is called
a Kleene algebra if the following hold.

1. K is a De Morgan algebra, i.e., 〈K,∪,∩,⊥,�〉 is a distributive lattice with
the greatest element � and the least element ⊥, and for all s, t ∈ K,
(a) −(s ∩ t) = −s ∪ −t (De Morgan property),
(b) − − s = s (involution).

2. s ∩ −s ≤ t ∪ −t, for all s, t ∈ K (Kleene property).

Note that in Definition 3 we refer to “greatest” and “least” elements. As usual
in lattice theory, we mean the ordering:

s ≤ t
def≡ (s = s ∩ t), (equivalently: t = s ∪ t). (2)

For rough sets, a subclass of Kleene algebras, rough Kleene algebras, will
have the role of Boolean algebras for classical sets.

Definition 4 (Rough Kleene algebra). Let U be a set of objects. A Kleene
algebra K = 〈K,∪,∩,−,⊥,�〉 is called a rough Kleene algebra over U iff:

1 The set sl serves as the lower approximation and su – as the upper approximation
of a set.

2 Note that reflexivity implies seriality.

Rough Forgetting 7

– K consists of pairs of sets 〈sl, su〉 such that sl ⊆ su ⊆ U ;
– ⊥ def= 〈∅, ∅〉,� def= 〈U ,U〉;
– −〈sl, su〉 def= 〈−su,−sl〉.
By a generalized rough set we mean any element of K.

As the logical counterpart of rough Kleene algebras we will use the three
valued logic of Kleene, K3, with truth values T (true), F (false) and U (unknown),
ordered by:

F < U < T, (3)

with connectives ∨,∧,¬. The semantics of connectives is defined by:

τ1 ∨ τ2
def= max{τ1, τ2}; τ1 ∧ τ2

def= min{τ1, τ2}; (4)

¬F def= T; ¬U def= U; ¬T def= F, (5)

where τ1, τ2 ∈ {F,U,T} and max,min are the maximum and minimum wrt (3).
Let us now define the syntax of rough formulas used in this paper. In addition

to connectives ¬,∧,∨ and quantifiers ∀,∃ of Kleene logic K3, we add two con-
nectives: ∈ and ⊆. Their intended meaning is rough set membership and rough
set inclusion, respectively.

Definition 5 (Syntax of rough formulas). Let V be a set of first-order vari-
ables (representing domain elements), C be a set of constants and R be a set of
relation symbols. Then:

– Kleene formulas, KF, are defined by the grammar:

〈KF 〉 ::= 〈R〉 | ¬〈KF 〉 | 〈KF 〉 ∨ 〈KF 〉 | 〈KF 〉 ∧ 〈KF 〉 |
∃〈V 〉〈KF 〉 | ∀〈V 〉〈KF 〉;

– rough formulas, RF, are defined by the grammar, where C ∪ V denotes tuples
consisting of constants and/or variables:

〈RF 〉 ::= 〈KF 〉 | 〈C ∪ V 〉 ∈ 〈KF 〉 | 〈KF 〉 ⊆ 〈KF 〉 |
¬〈RF 〉 | 〈RF 〉 ∨ 〈RF 〉 | 〈RF 〉 ∧ 〈RF 〉 |
∃〈V 〉〈RF 〉 | ∀〈V 〉〈RF 〉.

An occurrence of a variable is called bound in a formula if it appears inside
the scope of a quantifier. It is called free when it is not bound.

Rough theories (rough knowledge bases) are defined below.

Definition 6 (Rough theories, rough knowledge bases). Finite sets of
rough formulas are called rough theories (or rough knowledge bases). A finite
set of formulas T is understood as a single formula being the conjunction of for-
mulas in T :

∧

A∈T

A.

8 P. Doherty and A. Sza�las

Remark 2. In the rest of the paper we will often use the traditional syntax
for relations. For example, rather than writing ∀x∃y

(
(x, y) ∈ r

)
, we will write

∀x∃y
(
r(x, y)

)
.

Definition 7 (Rough literals and facts). By a rough literal we mean an
expression of the form ±r(ē), where ± is the empty symbol or ¬, r is a relation
symbol and ē is a tuple of constants and/or variables. By a rough fact we mean
a rough literal not containing variables.

The following important property, justifying the use of K3 in the context of
rough forgetting, is an immediate consequence of Theorems 8, 11, 15, proved
in [16]. Below:

– AK is the class of Kleene algebras;
– RS is the class of rough Kleene algebras;
– A |=t,f B iff for every assignment w : RF −→ {F,U,T},

• w(A) = T implies w(B) = T, and
• w(B) = F implies w(A) = F.

Corollary 1. For any rough formulas A,B ∈ RF:

A |=AK B iff A |=t,f B iff A |=RS B, (6)

where |=AK and A |=RS are semantic consequence relations for AK and RS,
respectively.

To define the semantics of rough formulas, we first need a generalization of
relational structures to their rough version.

Definition 8 (Rough relational structures). Let U be a set of objects, K
be a rough Kleene algebra over U and n ≥ 1 be a natural number. By an n-
argument rough relation over U we mean any generalized rough set consisting
of tuples of the Cartesian product Un. By a rough relational structure we mean
〈U , r1, . . . , rk〉 where for 1 ≤ i ≤ k, ri is an ni-argument rough relation over U .
One-argument rough relations are called rough concepts and two-argument ones
are called rough roles.

The semantics of rough formulas is defined below, where A(x←a) denotes
the formula obtained from A by substituting all free occurrences of variable x in
A by constant a.

Definition 9 (Semantics of rough formulas). Let U be a set, K =
〈K,∪,∩,−,⊥,�〉 be a rough Kleene algebra over U and R = 〈U , r1, . . . , rk〉 be a
rough relational structure,

Rough Forgetting 9

1. The value of a rough formula, vsR : KF −→ K, is inductively defined by:
– for a relation symbol r, vsR(r) def= rR where rR is the relation r in R;3

– vsR(¬A) def= −vsR(A);
– vsR(A ∨ B) def= vsR(A) ∪ vsR(B);
– vsR(A ∧ B) def= vsR(A) ∩ vsR(B);
– vR

(
∃x(A(x))

) def=
⋃

a∈U
vsR

(
A(x←a)

)
;

– vR
(
∀x(A(x))

) def=
⋂

a∈U
vsR

(
A(x←a)

)
.

2. The truth value of a rough formula, vR : RF −→ {F,U,T}, is defined induc-
tively:
– for a Kleene formula A with k free variables, ā ∈ Uk, and vsR(A) =

〈rl, ru〉,

vR
(
ā ∈ A

) def=

⎧
⎨

⎩

T when a ∈ rl;
U when a ∈ ru \ rl;
F when a ∈ U \ ru.

– vR(A ⊆ B) def=
{

T when for all ā ∈ Uk, vR(ā ∈ A) ≤ vR(ā ∈ B);
F otherwise,

where A,B are Kleene formulas with k free variables, and ≤ is the reflex-
ive closure of (3);

– vR(¬A) def= ¬vR(A), for ◦ ∈ {∨,∧}, vR(A ◦ B) def= vR(A) ◦ vR(B),
where the semantics of ¬,∨,∧ on truth values is defined by (4)–(5);

– vR
(
∃x(A(x))

) def= max
a∈U

{
vR

(
A(x←a)

)}
, where max is the maximum

wrt (3);

– vR
(
∀x(A(x))

) def= min
a∈U

{
vR

(
A(x←a)

)}
, where min is the minimum

wrt (3).

We write R |= A to indicate that vR(A) = T. We say that formulas A and
B are equivalent, iff for every R, vR(A) = vR(B).

3 Forgetting and Rough Forgetting

In the rest of the paper, we assume that knowledge bases are given in the form
of finitely axiomatizable theories. As indicated in Definition 6, each theory con-
sisting of a finite set of axioms is understood as a single formula, being the
conjunction of the axioms.

3 To simplify notation, we use the same notation for relation symbols and correspond-
ing rough relations. Similarly, objects in U are identified with constants denoting
them.

10 P. Doherty and A. Sza�las

3.1 Forgetting

The following definition, theorem and example have been formulated in [18].

Definition 10 (Forgetting). Let r be a relation symbol and M1, M2 be rela-
tional structures. Then M1∼rM2 denotes the fact that M1 differs from M2 at
most in the interpretation of r.

Let T be a theory. A theory T ′ is a result of forgetting r in T iff for any
relational structure M′, M′ |= T ′ iff there is a relational structure M such that
M |= T and M∼r M′. By forget(T ; r) we denote the result of forgetting r in T .

In the rest of the paper T (r←X) denotes the formula resulting from T (r) by
replacing every occurrence of r in T by X.

Theorem 1. Let r be a relation symbol and X be a second-order variable with
the same number of arguments as r. Then forget(T ; r) ≡ ∃X

(
T (r←X)

)
.

Example 1. Let T ≡
(
(student(joe) ∨ student(john)) ∧ teacher(john)

)
. Note

that:
(
(student(joe) ∨ student(john)) ∧ teacher(john)

)(
student←X

))
=

(X(joe) ∨ X(john)) ∧ teacher(john). (7)

Using Theorem 1 and (7) we have:

forget(T ; student) = ∃X
(
(X(joe) ∨ X(john)) ∧ teacher(john)

)
. (8)

It can be easily shown that the formula ∃X
(
(X(joe)∨X(john))∧teacher(john)

)
,

thus forget(T ; student) too, is equivalent to teacher(john).

Theorem 1 shows that the problem of computing forget(T ; r) can be reduced
to second-order quantifier elimination. For this purpose, in the current paper we
will adapt the techniques of [1,20] to rough theories.4

3.2 Rough Forgetting

Rough forgetting is defined by analogy with Definition 10.

Definition 11 (Rough forgetting). Let r be a relation symbol and R1, R2 be
rough relational structures. Then R1≈r R2 denotes the fact that R1 differs from
R2 at most in the interpretation of r.

Let T be a rough theory. A theory T ′ is a result of rough forgetting r in T
iff for any rough relational structure R′, R′ |= T ′ iff there is a rough relational
structure R such that R |= T and R≈r R′. By rforget(T ; r) we denote the for-
mula being the result of rough forgetting of r in T .

4 For a broad discussion of related second-order quantifier elimination techniques
see [13].

Rough Forgetting 11

As in the case of classical forgetting, we have the following theorem analogous
to Theorem 1, where we use a second-order quantifier, whose semantics is defined
by:5

vR
(
∃X

(
T (X)

) def= max
s∈K

{vR
(
T (X←s)

)
}, (9)

where max,min are the maximum and minimum wrt (3).

Theorem 2. Let r be a rough relation symbol and X be a second-order vari-
able with the same number of arguments as r. Then for every rough relational
structure R:

vR
(
rforget(T ; r)

)
= vR

(
∃X

(
T (r←X)

))
.

Comparing to classical forgetting, in rough forgetting we deal with rough
relations rather than with the classical relations. Thus, ∃X in Theorem 2 is
a second-order quantification over rough sets rather than over the classical ones.

4 Eliminating Second-Order Quantifiers from Rough
Formulas

To formalize second-order quantifier elimination methods and related concepts,
we need a notation A(X←B[z̄]) defined as follows. Let A,B be rough formulas
such that A contains an n-argument second-order variable X and z̄ is a tuple of
n first-order variables with free occurrences in formula B. Then:

A(X←B[z̄])

denotes the result of substituting all occurrences of the second-order variable X
by B(z̄), where z̄ in B is respectively substituted by actual parameters of X
(possibly different in different occurrences of X). For example,

(
X(a) ∨ X(b)
︸ ︷︷ ︸

A(X)

)(
X← r(z, y)

︸ ︷︷ ︸
B(z,y)

[z]
)

is (r(a, y) ∨ r(b, y)).

The quantifier elimination techniques we develop are based on a monotonicity
property, defined as follows.

Definition 12 (Monotonicity). Let X be a second-order variable represent-
ing n-argument relations and let z̄ be a tuple consisting of n (first-order) vari-
ables. We say that a rough formula A(X) is monotone in X iff for every rough
relational structure R and rough formulas B,C not containing X and with z̄
being all variables with free occurrences, one of the following properties holds:

vR(B(z̄)) ≤ vR(C(z̄)) implies vR
(
A(X←B[z̄])

)
≤ vR

(
A(X←C[z̄])

)
; (10)

vR(B(z̄)) ≤ vR(C(z̄)) implies vR
(
A(X←C[z̄])

)
≤ vR

(
A(X←B[z̄])

)
. (11)

5 Recall that K is the universe of a rough Kleene algebra K, fixed earlier.

12 P. Doherty and A. Sza�las

Properties (10) and (11) are called up-monotonicity and down-monotonicity of
A, respectively.

The following theorem adapts Ackermann’s Lemma [1,9,13] to rough
theories.

Theorem 3. Let X be an n-argument second-order variable. Let z̄ be an n-
tuple of variables, A(z̄) be a rough formula containing no occurrences of X, with
variables z̄ occurring free, and let B(X) be a rough formula with X as a free
variable.

1. If B(X) is down-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= vR

(
B

(
X←A[z̄]

))
. (12)

2. If B(X) is up-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(X(z̄) ⊆ A(z̄)) ∧ B(X)

))
= vR

(
B

(
X←A[z̄]

))
. (13)

Proof. Let us prove (12).6 Let R be an arbitrary rough relational structure.
We have to prove three equivalences vR(lhs) = τ iff vR(rhs) = τ for τ ∈
{T,U,F}, where lhs and rhs are respectively the letfthand and the righthand
side of Equation (12):

1. (→) Assume that vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= T. In this case,

there is X such that vR
(
∀z̄(A(z̄) ⊆ X(z̄))

)
= T and vR

(
B(X)

)
= T. Thus,

by Definition 9, for every z̄, vR
(
A(z̄)

)
≤ vR

(
X(z̄)

)
. By down-monotonicity of

B(X) in X we conclude that vR
(
B

(
X←A[z̄]

))
= T.

(←) Assume that vR
(
B

(
X←A[z̄]

))
= T. To show that there is X satisfying

vR
(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

)
= T it suffices to set ∀z̄

(
X(z̄) def= A(z̄)

)
.

2. (→) Assume that vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= U. In this case,7

there is X such that vR
(
∀z̄(A(z̄) ⊆ X(z̄))

)
= T and B(X) = U. Thus, by

Definition 9, for every z̄, vR
(
A(z̄)

)
≤ vR

(
X(z̄)

)
. By down-monotonicity of

B(X) in X we conclude that vR
(
B

(
X←A[z̄]

))
≥ U. Suppose that:

vR
(
B

(
X←A[z̄]

))
= T. (14)

However, by 1.(←), (14) implies vR

(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

)
)

= T,

contradicting the assumption. Therefore, vR
(
B

(
X←A(z̄)[z̄]

))
= U.

(←) Here, like in the previous point, it suffices to set ∀z̄
(
X(z̄) def= A(z̄)

)
.

6 The proof of (13) is analogous, so we skip it here.
7 Note that ⊆ is two-valued, i.e., its truth value can only be T or F.

Rough Forgetting 13

3. (→) Assume that vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= F. By points 1.(←)

and 2.(←), the value vR
(
B

(
X←A[z̄])

))
can neither be T nor U (since, as

before, this would contradict the assumption). Therefore we can only con-
clude that vR

(
B

(
X←A[z̄])

))
= F.

4. (←) Here, like in the previous points, it suffices to set ∀z̄
(
X(z̄) def= A(z̄)

)
.

The following theorem adapts the fixpoint theorem proved in [20] to rough
theories, where LfpX

[
A(X)

]
and GfpX

[
A(X)

]
stand for the least and the

greatest fixpoint of A(X) wrt X. Note that we deal with complete lattices and
will always make sure that A(X) is up-monotone in X, such fixpoints exist by
Knaster and Tarski fixpoint theorem.

Theorem 4. Let X be an n-argument second-order variable. Let z̄ be an n-tuple
of variables, A(X, z̄) be a rough formula in which variables X and z̄ are free. Let
A(X, z̄) be up-monotone in X and let B(X) be a rough formula with X being a
free variable.

1. If B(X) is down-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(A(X, z̄) ⊆ X(z̄)) ∧ B(X)

))
=

vR
(
B

(
X←LfpX

[
A(X, z̄)[z̄]

]))
.

(15)

2. If B(X) is up-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(X(z̄) ⊆ A(X, z̄)) ∧ B(X)

))
=

vR
(
B

(
X←GfpX

[
A(X, z̄)[z̄]

]))
.

(16)

Proof. (Sketch) The proof is similar to the proof of Theorem3. In the case of (15)
it suffices to notice that the least X satisfying the lefthand side of the equality
is defined by the least fixpoint of A(X). In the case of (16) the suitable X is
defined by the greatest fixpoint of A(X).

Remark 3. Theorems 3 and 4 provide us with definitions of the least and the
greatest rough relations interpreting eliminated relation symbols:

– if the lefthand side of (12) is true then the least relation X satisfying the
formula ∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X) is defined by ∀z̄

(
X(z̄) def= A(z̄)

)
;

– if the lefthand side of (13) is true then the greatest relation X satisfying the
formula ∀z̄(X(z̄) ⊆ A(z̄)) ∧ B(X) is defined by ∀z̄

(
X(z̄) def= A(z̄)

)
;

– if the lefthand side of (15) is true then the least relation X satisfying the for-
mula ∀z̄(A(X, z̄) ⊆ X(z̄))∧B(X) is defined by ∀z̄

(
X(z̄) def= LfpX

[
A(X, z̄)

])
;

14 P. Doherty and A. Sza�las

– if the lefthand side of (16) is true then the greatest relation X satisfy-
ing the formula ∀z̄(A(X, z̄) ⊆ X(z̄)) ∧ B(X) is defined by ∀z̄

(
X(z̄) def=

GfpX
[
A(X, z̄)

])
.

These definitions can be used for computing lower and upper approximations of
the eliminated relations.

The following lemma shows monotonicity properties of connectives, useful in
second-order quantifier elimination. It directly follows from Definition 9.

Lemma 1.

1. z̄ ∈ X is up-monotone in X;
2. X ⊆ Y is down-monotone in X and up-monotone in Y ;
3. for ◦ ∈ {∨,∧}, X ◦ Y is up-monotone in X and in Y ;
4. ¬X is down-monotone in X;
5. for Q ∈ {∀,∃}, Qx(X(x)) is up-monotone in X.

5 Applications and Examples

5.1 The Scenario

Below we will use the following notation:

– x, y are variables denoting places and p1, . . . , pn are constants denoting places;
– ice(x) stands for “x being covered by ice”, rain(x) – for “rain in x”, freezing(x)

– for “temperature in x being close to 0oC”, safe(x) – for “x being safe” and
base(x) indicating that “there is a base in place x”;

– connected(x, y) stands for “places x, y being (directly) connected”,
slippery(x, y) – for “connection from x to y being slippery”, and
sconnected(x, y) – for “x, y being safely connected” (perhaps indirectly, via a
chain of connections connected()).

Let us consider a scenario formalized by the following theory T :

∀x∀y
((

ice(x) ∨ ice(y)
)

⊆ slippery(x, y)
)
∧ (17)

∀x∀y
(
(x = y) ∨ connected(y, x)) ⊆ connected(x, y)

)
∧ (18)

∀x∀y
((

(connected(x, y) ∧ ¬slippery(x, y))∨
∃z(sconnected(x, z) ∧ sconnected(z, y))

)
⊆ sconnected(x, y)

)
∧ (19)

∀x
(
base(x) ⊆ safe(x)

)
∧ (20)

∀x
(
safe(x) ⊆

(
base(x) ∨ ∃y(sconnected(x, y) ∧ base(y))

))
∧ (21)

∀x
(
(rain(x) ∧ freezing(x)) ⊆ ice(x)

)
. (22)

Note that the relations used in (17)–(22) are rough relations which can be spec-
ified as a part of the considered theory. For example, given that there are n
places, and:

Rough Forgetting 15

– connected()’s lower approximation is {〈p1, p14〉, . . . , 〈p20, pn〉} and its upper
approximation is the complement of {〈p7, p9〉, . . . , 〈p20, p30〉, . . .};

– rain()’s lower approximation is {p3, . . . , p48} and its upper approximation is
the complement of {p1, p2};

– ice()’s lower and upper approximation is {p1, . . . , p17};
– freezing()’s lower and upper approximation is {p1, . . . , pn},

one can add to the theory the following conjunction of rough facts:

connected(p1, p14) ∧ . . . ∧ connected(p20, pn)∧ (23)
¬connected(p7, p9) ∧ . . . ∧ ¬connected(p20, p30) ∧ . . . ∧

rain(p3) ∧ . . . ∧ rain(p48) ∧ ¬rain(p1) ∧ ¬rain(p2)∧ (24)
ice(p1) ∧ . . . ∧ ice(p17) ∧ ¬ice(p18) ∧ . . . ∧ ¬ice(pn)∧ (25)
freezing(p1) ∧ . . . ∧ freezing(pn). (26)

Remark 4. It is important to note that the conjunction of rough facts, as speci-
fied by (23)–(26), does not affect the applicability of the second-order quantifier
elimination techniques provided by Theorems 3 and 4.

5.2 Forgetting Rough Concepts

In the first example, let us forget ice() in the scenario theory above. That is, we
consider rforget(T ; ice()) and, according to Theorem 2, we eliminate ∃X from
formula:

∃X
(

∀x
(
(rain(x) ∧ freezing(x)) ⊆ X(x)

)

︸ ︷︷ ︸
corresponding to (22)

∧

∀x∀y
(
(X(x) ∨ X(y)) ⊆ slippery(x, y)

)

︸ ︷︷ ︸
corresponding to (17)

∧B
)
,

(27)

where B
def=

(
(18)∧(19)∧(20)∧(21)

)
. According to Lemma 1, the part of (27) cor-

responding to (17) is down-monotone in X thus, using equality (12) of Theorem 3,
we obtain the following formula equivalent to (27):

∀x∀y
((

(rain(x) ∧ freezing(x)) ∨ (rain(y) ∧ freezing(y))
)

⊆ slippery(x, y)
)

∧ B.

In the second example, let us forget base() in the scenario theory above. We
consider rforget(T ; base()) and apply Theorem2 to eliminate ∃X from:

∃X
(

∀x
(
X(x) ⊆ safe(x)

)

︸ ︷︷ ︸
corresponding to (20)

∧

∀x
(
safe(x) ⊆

(
X(x) ∨ ∃y(sconnected(x, y) ∧ X(y))

))

︸ ︷︷ ︸
corresponding to (21)

∧C
)
,

(28)

16 P. Doherty and A. Sza�las

where C
def=

(
(17)∧(18)∧(19)∧(22)

)
. According to Lemma 1, the part of (28) cor-

responding to (21) is up-monotone in X thus, using equality (13) of Theorem 3,
the equivalent of (28) is ∀x

(
safe(x) ⊆

(
safe(x)∨∃y(sconnected(x, y)∧safe(y))

))
.

Observe that the resulting formula is equivalent to T, so rforget(T ; base()) is
equivalent to C. Indeed, when base() is forgotten, the theory no longer provides
useful information about safe(), too.

5.3 Forgetting Many-Argument Relations

Forgetting rough relations with more than one argument is very similar to forget-
ting rough concepts. To illustrate the use of Theorem4, let us forget connected().
That is, consider rforget(T ; connected()) and, according to Theorem2, we elim-
inate ∃X from:

∃X
(

∀x∀y
(
(x = y ∨ X(y, x)) ⊆ X(x, y)

)

︸ ︷︷ ︸
corresponding to (18)

∧

∀x∀y
((

(X(x, y) ∧ ¬slippery(x, y)) ∨
︸ ︷︷ ︸

corresponding to (19), line 1

(29)

∃z(sconnected(x, z) ∧ sconnected(z, y))
)

⊆ sconnected(x, y)
)

︸ ︷︷ ︸
(19), line 2

∧D
)
,

where D
def=

(
(17) ∧ (20) ∧ (21) ∧ (22)

)
.

According to Lemma 1, the part of (29) corresponding to (19) is down-monotone
in X thus, using equality (15) of Theorem 4, we obtain the following equivalent
of (29):

∀x∀y
((

(LfpX(x, y)
[
x = y ∨ X(y, x)

]
(x, y) ∧ ¬slippery(x, y))∨

∃z(sconnected(x, z) ∧ sconnected(z, y))
)

⊆ sconnected(x, y)
)

∧ D.
(30)

Note that Lfp
[
. . .

]
in (30) is equivalent to x = y, so (30) can further be

simplified to:

∀x∀y
((

(x = y ∧ ¬slippery(x, y))∨
∃z(sconnected(x, z) ∧ sconnected(z, y))

)
⊆ sconnected(x, y)

)
∧ D.

6 Conclusions

In this paper, we provided basic foundations for the specification and application
of a forgetting operator for rough theories. To do this, we defined a logical lan-
guage for rough theories consisting of rough formulas and a semantics for such
formulas containing rough relations, in terms of rough Kleene algebras. Using
intuitions from work with forgetting operators in classical logic, we then specified
a rough forgetting operator in the context of rough relational theories. We then
showed how the constructive generation of the result of applying a forgetting

Rough Forgetting 17

operator to a rough theory could be achieved by using second-order quantifier
elimination techniques. These foundations open up opportunities for the use of
these rough logics for KRR applications and the study of additional types of
forgetting operators in this context, in particular of forgetting in rule languages
that use a Kleene logic-based semantics. Also, algorithmic techniques based on
insights using second-order quantifier elimination techniques, are worth investi-
gating as a basis for forgetting operators used with rough relational theories.

References

1. Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematis-
chen logik. Mathematische Annalen 110, 390–413 (1935)

2. Boole, G.: An Investigation of The Laws of Thought on Which are Founded the
Mathematical Theories of Logic and Probabilities. Macmillan, London, UK (1854)

3. Ciucci, D.: Orthopairs: a simple and widely used way to model uncertainty. Fun-
dam. Inform. 108(3–4), 287–304 (2011)

4. Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough
sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS,
vol. 8375, pp. 1–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54756-0 1

5. D’eer, L., Cornelis, C.: A comprehensive study of fuzzy covering-based rough set
models: definitions, properties and interrelationships. Fuzzy Sets Syst. 336, 1–26
(2018)

6. Del-Pinto, W., Schmidt, R.: ABox abduction via forgetting in ALC. In: The 33rd
AAAI Conference on Artificial Intelligence, pp. 2768–2775. AAAI Press (2019)

7. Demri, S., Or�lowska, E.: Incomplete Information: Structure, Inference, Complexity.
EATCS Monographs. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-
662-04997-6

8. Doherty, P., �Lukaszewicz, W., Skowron, A., Sza�las, A.: Knowledge Representation
Techniques. A Rough Set Approach. Studies in Fuzziness and Soft Computing, vol.
202. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33519-6

9. Doherty, P., �Lukaszewicz, W., Sza�las, A.: Computing circumscription revisited. J.
Autom. Reason. 18(3), 297–336 (1997)

10. Doherty, P., �Lukaszewicz, W., Sza�las, A.: Computing strongest necessary and weak-
est sufficient conditions of first-order formulas. In: 17th IJCAI, pp. 145–151 (2001)

11. Doherty, P., Sza�las, A.: On the correspondence between approximations and simi-
larity. In: Tsumoto, S., S�lowiński, R., Komorowski, J., Grzyma�la-Busse, J.W. (eds.)
RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-25929-9 16

12. Eiter, T., Kern-Isberner, G.: A brief survey on forgetting from a knowledge repre-
sentation and reasoning perspective. KI 33(1), 9–33 (2019)

13. Gabbay, D., Schmidt, R., Sza�las, A.: Second-Order Quantifier Elimination. Foun-
dations, Computational Aspects and Applications, Studies in Logic, vol. 12. College
Pub. (2008)

14. Hariri, R., Fredericks, E., Bowers, K.: Uncertainty in big data analytics: survey,
opportunities, and challenges. J. Big Data 6, 44 (2019)

15. Konikowska, B., Avron, A.: Reasoning about covering-based rough sets using three
truth values. J. Appl. Log. IfCoLoG J. Log. Appl. 6(2), 361–382 (2019)

https://doi.org/10.1007/978-3-642-54756-0_1
https://doi.org/10.1007/978-3-642-54756-0_1
https://doi.org/10.1007/978-3-662-04997-6
https://doi.org/10.1007/978-3-662-04997-6
https://doi.org/10.1007/3-540-33519-6
https://doi.org/10.1007/978-3-540-25929-9_16

18 P. Doherty and A. Sza�las

16. Kumar, A., Banerjee, M.: Kleene algebras and logic: Boolean and rough set repre-
sentations, 3-valued, rough set and Perp semantics. Studia Logica 105(3), 439–469
(2017)

17. Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A.,
Giunchiglia, F., Selman, B. (eds.) Proceedings of the 7th International Conference,
KR2000, pp. 167–175. Morgan Kaufmann (2000)

18. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on
Relevance, pp. 154–159 (1994)

19. Nguyen, L.A., Sza�las, A.: Logic-based roughification. In: Skowron, A., Suraj, Z.
(eds.) Rough Sets and Intelligent Systems - Professor Zdzis�law Pawlak in Memo-
riam. Intelligent Systems Reference Library, vol. 42, pp. 517–543. Springer, Berlin
(2013). https://doi.org/10.1007/978-3-642-30344-9 19

20. Nonnengart, A., Sza�las, A.: A fixpoint approach to second-order quantifier elimi-
nation with applications to correspondence theory. In: Or�lowska, E. (ed.) Logic at
Work: Essays Dedicated to the Memory of Helena Rasiowa. Studies in Fuzziness
& Soft Computing, vol. 24, pp. 307–328. Springer, Heidelberg (1998)

21. Pawlak, Z.: Information systems - theoretical foundations. Inf. Syst. 6, 205–218
(1981)

22. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

23. Polkowski, L.: Rough Sets. Mathematical Foundations, Advances in Intelligent and
SoftRough Sets. Mathematical Foundations, Advances in Intelligent and Soft, vol.
15. Physica-Verlag, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1776-8

24. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Infor-
maticae 27, 245–253 (1996)

25. S�lowiński, R., Vanderpooten, D.: A generalized definition of rough approximations
based on similarity. IEEE Trans. Knowl. Data Eng. 12(2), 331–336 (2000)

26. Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In:
Rossi, F. (ed.) Proceedings of the IJCAI 2013, pp. 1162–1168. IJCAI/AAAI (2013)

27. Wang, Z., Wang, K., Zhang, X.: Forgetting and unfolding for existential rules. In:
McIlraith, S., Weinberger, K. (eds.) Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, pp. 2013–2020. AAAI Press (2018)

28. Wernhard, C.: Literal projection for first-order logic. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389–402. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87803-2 32

29. Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: Lin, T.Y.,
Cercone, N. (eds.) Rough Sets and Data Mining, pp. 47–75. Springer, Boston
(1997). https://doi.org/10.1007/978-1-4613-1461-5 3

30. Zhang, Q., Xie, Q., Wang, G.: A survey on rough set theory and its applications.
CAAI Trans. Intell. Technol. 1(4), 323–333 (2016)

31. Zhao, Y., Schmidt, R.A.: FAME(Q): an automated tool for forgetting in description
logics with qualified number restrictions. In: Fontaine, P. (ed.) CADE 2019. LNCS
(LNAI), vol. 11716, pp. 568–579. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29436-6 34

https://doi.org/10.1007/978-3-642-30344-9_19
https://doi.org/10.1007/978-3-7908-1776-8
https://doi.org/10.1007/978-3-540-87803-2_32
https://doi.org/10.1007/978-1-4613-1461-5_3
https://doi.org/10.1007/978-3-030-29436-6_34
https://doi.org/10.1007/978-3-030-29436-6_34

	Rough Forgetting
	1 Introduction and Motivations
	2 Rough Reasoning Framework
	3 Forgetting and Rough Forgetting
	3.1 Forgetting
	3.2 Rough Forgetting

	4 Eliminating Second-Order Quantifiers from Rough Formulas
	5 Applications and Examples
	5.1 The Scenario
	5.2 Forgetting Rough Concepts
	5.3 Forgetting Many-Argument Relations

	6 Conclusions
	References

