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Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings
of the 17th International Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA 2020), which took place virtually due to the
COVID-19 pandemic, June 24–26, 2020. Since 2004, DIMVA has been bringing
together leading researchers and practitioners from academia, industry, and government
to present and discuss novel security research in the broader areas of intrusion detec-
tion, malware analysis, and vulnerability assessment. DIMVA is organized by the
Special Interest Group – Security, Intrusion Detection, and Response (SIDAR) – of the
German Informatics Society (GI).

This year, DIMVA received 45 valid submissions from academic and industrial
organizations from more than 60 different institutions across 21 countries. Each sub-
mission was carefully reviewed by at least three Program Committee members or
external experts. The submissions were evaluated on the basis of scientific novelty,
importance to the field, and technical quality. The final selection of papers was decided
by Program Committee members during online discussions. The Program Committee
selected 13 full papers for presentation at the conference and publication in these
proceedings, resulting in an acceptance rate of 28.9%. The accepted papers present
novel ideas, techniques, and applications in important areas of computer security,
including Web security, malware analysis and defense, security of industrial systems
and cyber physical systems, attack mitigation, network security, and software security.

A successful conference is the result of the joint effort of many people. We would
like to express our appreciation to the Program Committee members and external
reviewers for the time spent reviewing papers, participating in the online discussion,
and shepherding some of the papers to ensure the highest quality possible. We also
deeply thank the members of the Organizing Committee for their hard work in making
DIMVA 2020 such a successful event. We are wholeheartedly thankful to our sponsors
ERNW, Siemens, and Springer for generously supporting DIMVA 2020. We also
thank Springer for publishing these proceedings as part of their LNCS series and the
DIMVA Steering Committee for their continuous support and assistance.

Finally, DIMVA 2020 would not have been possible without the authors who
submitted their work and presented their contributions, as well as the attendees. We
would like to thank them all, and we look forward to their future contributions to
DIMVA.

June 2020 Clémentine Maurice
Leyla Bilge

Gianluca Stringhini
Nuno Neves
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Automated CPE Labeling of CVE
Summaries with Machine Learning

Emil Wåreus1,2(B) and Martin Hell2(B)

1 Debricked AB, Malmö, Sweden
2 Department of Electrical and Information Technology,

Lund University, Lund, Sweden
{emil.wareus,martin.hell}@eit.lth.se

Abstract. Open Source Security and Dependency Vulnerability Man-
agement (DVM) has become a more vital part of the software secu-
rity stack in recent years as modern software tend to be more depen-
dent on open source libraries. The largest open source of vulnerabilities
is the National Vulnerability Database (NVD), which supplies devel-
opers with machine-readable vulnerabilities. However, sometimes Com-
mon Vulnerabilities and Exposures (CVE) have not been labeled with a
Common Platform Enumeration (CPE) -version, -product and -vendor.
This makes it very hard to automatically discover these vulnerabilities
from import statements in dependency files. We, therefore, propose an
automatic process of matching CVE summaries with CPEs through the
machine learning task called Named Entity Recognition (NER). Our pro-
posed model achieves an F-measure of 0.86 with a precision of 0.857 and
a recall of 0.865, outperforming previous research for automated CPE-
labeling of CVEs.

Keywords: Machine learning · Open source · Vulnerabilities · CVE ·
CPE

1 Introduction

In almost all software development today, using open source and third-party com-
ponents is crucial for its success. It is beneficial to the quality, security, functional-
ity, and development efficiency. However, at the same time, it increases the expo-
sure to vulnerabilities in code developed by third parties. To maintain control over
the security of the developed software, the maintainers need to continuously moni-
tor if vulnerabilities have been introduced or found in these third-party dependen-
cies. This is commonly done with Dependency Vulnerability Management (DVM)
tools that automate the process of Software Composition Analysis (SCA), and
matches used software components with known vulnerabilities.

The main source of vulnerabilities is the National Vulnerability Database
(NVD) [15]. These vulnerabilities have a unique Common Vulnerabilities and
Exposures (CVE) identifier. The list of such identifiers is maintained by Mitre
c© Springer Nature Switzerland AG 2020
C. Maurice et al. (Eds.): DIMVA 2020, LNCS 12223, pp. 3–22, 2020.
https://doi.org/10.1007/978-3-030-52683-2_1
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4 E. Wåreus and M. Hell

and includes a short summary of the vulnerability. In the last few years, around
30–50 new vulnerabilities have been given a CVE identifier and been recorded
in NVD each day. Combining this with the fact that software projects can have
thousands of dependencies, including transitive dependencies, it is clear that the
process of identifying new vulnerabilities must be automated.

NIST security professionals take the CVEs as they are published by Mitre
and link one or more Common Platform Enumerations (CPE) [14] to each CVE.
These CPEs are used to specify which software and versions are vulnerable.
NIST also adds other pieces of information, such as a CVSS score, and thus
maintains a rich database of information about published vulnerabilities.

While the summary, as recorded in the original identifier provided by Mitre,
often includes information regarding which product and versions are affected, the
list of CPEs formalizes this information and provides it in a standardized, and
machine-readable, format. Thus, the CPE is a crucial addition to the CVE infor-
mation when vulnerability identification and assessment are being automated.

Unfortunately, far from all CVEs maintained in the NVD database are cor-
rectly linked to CPEs. Moreover, as reported in [4], there is a notable time-lag
from the first CVE disclosure to the addition of CPEs to the vulnerability. In
2018, the median time to correctly assign the CPE metadata was 35 days. The
manual effort performed in the analysis of CVEs is not limited to only assigning
CPEs in this 35 day period, but we are only interested in the CPEs in our cur-
rent experiments. As soon as the CVE is known (or even before), exploits are
developed and attacks can be found in the wild. Thus, such a time-lag can leave
a software system vulnerable to attacks since automated tools are not able to
correctly inform developers and users of these vulnerabilities.

In this paper, we use Natural Language Processing (NLP), or more specifi-
cally, Named Entity Recognition (NER), to automatically build a CPE, or list
of CPEs, from the summary text. We build a model inspired by [12]. As input
to the model, we use word and character level embeddings, casing-features, and
a security lexicon of common CPEs. The model itself consists of a Bidirectional
Long-Short-Term Memory (BLSTM) network together with a Conditional Ran-
dom Field (CRF) to determine the labels. Using such NLP algorithms, we achieve
unprecedented performance, with an F-measure of 0.8604, recall of 0.8637, and
precision of 0.8571.

The paper is organized as follows. In Sect. 2 we give a brief background on
the vulnerability data of interest and Natural Language Processing. In Sect. 3
we present the dataset that we use and its corresponding labels. In Sect. 4 we
frame the problem and determine how we evaluate our results. Section 5 presents
our model, the features, and some theory for the model. Then, we present and
discuss our results in Sect. 6. Related work is described in Sect. 7 and the paper
is concluded in Sect. 8.
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2 Background

2.1 Vulnerability Data

A new vulnerability is often reported as a CVE. The list of CVEs is maintained
by Mitre and each entry contains a unique CVE number, a short summary, and
at least one external reference [20]. The CVE summary typically includes the
affected product and versions. An example of the ShellShock CVE-2014-6271 is
given below.

GNU Bash through 4.3 processes trailing strings after function definitions in the
values of environment variables, which allows remote attackers to execute arbi-
trary code via a crafted environment, as demonstrated by vectors involving the
ForceCommand feature in OpenSSH sshd, the mod cgi and mod cgid modules in
the Apache HTTP Server, scripts executed by unspecified DHCP clients, and other
situations in which setting the environment occurs across a privilege boundary
from Bash execution, aka “ShellShock.”

This information is then used by NVD, adding, among other things, a CVSS
score, and a list of CPEs. The CVSS score provided by NIST is environment
independent, but useful when assessing the severity of the vulnerability. The
CPE provides a standardized string for defining which product and versions are
affected by the vulnerability.

The current version of CPE is 2.3. The format is specified in [14], and is given
by the string

cpe:2.3:part:vendor:product:version:update:edition:
language:sw edition:target sw:target hw:other

The first part defines that it is a CPE and its version. Then, part can be one
of h for hardware, a for application and o for operating system. The following
fields are used to uniquely specify the component by defining vendor, the name
of the product, the product version etc. It is common to use the fields up to
and including version, even though, as can be seen, further details about the
component can be defined. An example, as can be found in CVE-2014-6271, is
given by

cpe:2.3:a:gnu:bash:4.3:*:*:*:*:*:*:*

NVD also provides a JSON feed with CVE data for each vulnerability. This feed
supports additional fields for defining ranges of versions that are vulnerable. This
feed provides a more efficient representation if there are many versions affected.
This feed is further detailed in Sect. 3.

NVD consists of around 130 000 vulnerabilities (early 2020). The summary
is given immediately when the CVE is published since it is required by Mitre,
while the CPE is later added by NVD. The discrepancy differs between different
CVEs, but an analysis in [4] reported that, in 2018, the median to correctly
assign CPE data was 35 days.



6 E. Wåreus and M. Hell

2.2 Natural Language Processing and Named Entity Recognition

Natural Language Processing (NLP) is the task to make computers understand
linguistics, usually with the support of machine learning. Within NLP, tasks
such as machine translation, document classification, question answering sys-
tems, automatic summary generation, and speech recognition are common [10].
One of the main advantages of using machine learning for NLP is that the
algorithms may gain a contextual semantic understanding of text where clas-
sifications are not dependent on a single word, but rather a complex sequence
of words that can completely alter the meaning of the document. This may be
beneficial to our system, as new CPEs that have not been seen before in the
NVD database may be correctly classified from the CVE-summary through a
contextual understanding of the document.

Named Entity Recognition (NER), or sequence labeling, is the NLP task of
classifying each word in a sequence. One of the most common benchmarks in
NER is the CoNLL-2003 dataset [21], where the task is to label words with ether
person-, organization-, or location-names. NER is an important task within NLP,
as a system needs to understand what category a word or sub-sequence belongs
to truly understand the contextual meaning of the document.

3 Data and Labels

To successfully create machine learning models, it is necessary to collect data
to train it. The goal for the model is to learn the general underlying structure
of the problem through training on that data, which acts as a representation
of that problem. This data is referred to as the dataset. Our dataset consists of
historical vulnerabilities with already determined CPEs. These can be retrieved
using the NVD data feed. Each entry in the dataset have the following features:

– cveId: The unique identifier and name for each CVE.
– updatedAt: The date and time of the last update from NVD for this par-

ticular CVE.
– summary: A text description of the CVE, often naming the vulnerable soft-

ware, including product, vendor, and version.
– cweName: The Common Weakness Enumerator.
– cpes: A list of CPEs linked to this particular CVE. Each CPE contains:

• vendor: The vendor of the product or software.
• product: Name of the software.
• version: An exact statement of a single vulnerable version.
• versionStartExcluding: All versions are vulnerable after (excluding) this

version.
• versionStartIncluding: All versions are vulnerable after (including) this

version.
• versionEndExcluding: All versions are vulnerable before (excluding) this

version.
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• versionEndIncluding: All versions are vulnerable before (including) this
version.

Our analysis concludes that 81.9% of all CPEs from CVEs in NVD only
specifies one of the following fields: version, versionStartExcluding, versionStart-
Including, versionEndExcluding, and versionEndIncluding. About 14.5% have
no version range specified, and 3.6% have exactly two version ranges specified.
Figure 1 illustrates how a CVE-CPE link can be structured.

Fig. 1. Overview of the relationship between a CVE and multiple CPEs.

As seen in Fig. 1, some of the product and vendor strings can be found in
the summary. The version can also be found in the summary but is dependent
on the context of the summary to determine if other versions are vulnerable (in
this case all versions before version 1.16.3). In this paper, only the summary
is regarded as input features, the CPE-list as the labels, and all other data is
disregarded in the model. Naturally, all CPEs may not be possible to link to the
summary through text models as there is no occurrence of the product or vendor
in the paragraph. This is shown in Fig. 1, as Oracle Solaris is not mentioned in
the paragraph, but is considered vulnerable from the context that X.Org xorg-
server is vulnerable. In our analysis, we find that about 59% of CPEs can be
mapped with regex methods to its CVE summary, and for 27% of the CVEs,
all corresponding CPEs can be mapped to its summary. To map a CPE to a
CVE-summary, each single word/version-string in the CPE must be matched to
a word in the summary disregarding casing and special characters. Multi-word
labels must be matched in the correct order, and up to 5 intermediate words are
disregarded.

A sequence word labeling model requires a label for each word in the sen-
tence. There are eight labels to consider in the CPEs provided by NVD: vendor,
product, version, versionStartExcluding, versionStartIncluding, versionEndEx-
cluding, verisonEndIncluding, and O (which denotes the none-label). Some ven-
dors or products consist of multiple words, which need to be accurately predicted
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by the model. To denote this, labels are split into B- and I-labels where B denotes
a start of a label, and I denote the word following the previous B or I labeled
words. A part of an example sentence, taken from the CVE summary in Fig. 1,
can be seen in Table 1.

Table 1. Example of labeled sentence.

Text: extension in X.Org Server before 1.16.3 allows remote authenticated

Label: O O B-product I-product O B-versionEndExcluding O O O

4 Problem Statement and Evaluation

The high-level problem we try to solve is one of determining what software and
what versions are described in a document. This could be limited to mapping
each document to already existing CPEs in the available CPE-list [16]. We choose
not to do this because the available CPE-list is deficient as it is lacking entries
for many products. Analyzing all available CPEs mentioned in CVEs, about
60% of those are only mentioned once. Thus, the probability of a new CVE
describing a new, none existent, CPE is high. Therefore, we decide to allow
our system to create new CPEs, in terms of finding software that has not been
mentioned in any existing CPE list yet. A completely successful NER-predicted
CVE-summary from our test-data will let us reconstruct all corresponding CPEs
correctly, while the model may create new CPEs on new CVE-summaries.

To determine success, we measure our system as conventional NER-model.
Over each predicted sequence we calculated the precision

precision =
∑

true positive
∑

true positive +
∑

false positive
, (1)

recall

recall =
∑

true positive
∑

true positive +
∑

false negative
, (2)

and their harmonic mean F1

F1 = 2 · precision · recall

precision + recall
, (3)

and remove every correctly predicted O-label from the measurements as it greatly
inflates the result. We also measure the overall accuracy of the model as the
number of completely correctly NER-predicted CVE-summaries divided by the
total number of summaries in that particular dataset. A hold-out strategy is
implemented to measure these metrics, with a training set to train the model
on, a validation set to optimize the model during development, and a testing set
to test the final result.

The final model is intended to be used in DVM-tools to provide an estimation
of CPEs that are associated with a CVE. This estimated association is provided
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with no or very little time-lag, which may prevent “one day”-vulnerabilities. The
time-lag was further discussed in Sect. 1. Furthermore, additional CPEs could
be provided to older CVEs that have been incorrectly labeled with the wrong
CPEs or are missing some CPE associations.

5 Modeling

In this section, the feature engineering and machine learning model is described.
The model is inspired by the work of [2] and [12] in the context of generic NER,
where the contribution was to feed the text-data into multiple input sequences
to capture different levels of semantics in the text. In brief, words are converted
to vector representations [13] to embed contextual semantic meaning in its vec-
tor values. Additional word level and character level features are engineered to
capture variations, such as word level numerical saturation, casing, and com-
monly used CPE-products and -vendors. These features are fed into a recurrent
Bidirectional Long Short-term Memory (BLSTM) network to perform sequence
labeling. Dropout [19] is used to regularize the model after concatenated embed-
dings, after the recurrent layer, and within the case-feature layer. This model
was chosen as it presented a superior performance on the specific task of CPE-
labeling compared to other common architectures, such as BERT [3]. The model
is also suitable, as domain knowledge can easily be embedded through feature
engineering. An overview of the architecture is presented in Fig. 2.

Fig. 2. Overview of the model architecture and data pipeline.

5.1 Feature Engineering

This subsection will discuss the four parallel input layers used in the feature
engineering part of our model as seen in Fig. 2. These are word level embed-
dings, character level embeddings, word level case-features, and a word level
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lexicon of known statements. The word and character level embeddings are
regarded as part of the base model, and case and lexicon features are regarded
as optional/experimental features to the model. The output features are con-
catenated into an information rich sequential matrix that is fed into a neural
network described in Sect. 5.2.

Word Level Embeddings. Each word is transformed into a 50, 100, 200,
or 300 dimensional numerical vector to represent the semantics of that word
with Glove embeddings [18]. These embeddings are pre-trained on a large set of
Wikipedia articles and consists of a vocabulary of 400 000 words. This language
model serves as a good starting point for our experiments, as they are well
documented and tested, which enables us to look into other variables in the
modeling. These embeddings are not tuned during training and missing words
from the vocabulary are assigned a default randomly generated vector.

Character Level Features. To extract character level features for each word,
we employ a three-stage process of embedding on character level, applying a
one-dimensional convolution (CNN-layer), and extracting the final word-features
with a max-pooling layer. The embeddings are randomly initialized and tuned
during training. Dropout is applied to prevent the model from overfitting. The
employed CNN-layer has a filter-size of 30 and a kernel-size of 3. A max-operation
is done over each filter, so each word outputs a character-feature vector of shape
(1, 30), and for the whole word-sequence a shape of (word-sequence-length, 30).
Character level features enable the model to learn new words through decoding of
character-sequences, and can thereby give similar output-values to insignificant
variations of very similar character sequences. As our text-domain (security)
is quite different from the pre-trained word level embeddings (Wikipedia), the
character level embeddings enable our model to learn security-related semantics.

Word Level Case Features. In the task to find versions, products, and ven-
dors, casing and other word-properties may be important to determine the label
of that particular word. For instance, it is common that products’ and ven-
dors’ names are capitalized. The version label contains a high concentration of
character level digits, but may also contain mid-word punctuation and special
characters. Table 2 shows the different case-features, which are fed into random-
uniformly initialized trainable embeddings with the same dimension as the num-
ber of cases.

Security Lexicon. To embed domain knowledge into the system, a security-
lexicon is built. The labels product and vendor are included in the lexicon fea-
tures. The lexicon is constructed from the complete set of CVEs from the NVD
database consisting of about 130 000 vulnerabilities describing about 50 000
different products, excluding all CVEs in the validation and test dataset. Each
entry into the lexicon can describe one of three entities, product, vendor, and
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Table 2. Number of entries in security lexicon

Case Property

Numeric Integer fraction = 1.0

Mostly numeric Integer fraction > 0.5

Contains numeric Integer fraction ≤ 0.5

All lower All lower case

All upper All upper case

Initial upper First character upper case

Default All other cases

product and vendor. Some product/vendor names exist both as products and
vendors, which explains this separate feature. The total number of entries in the
lexicon can be seen in Table 3.

Table 3. Number of entries in security lexicon

Feature Number of entries

Product 8513

Vendor 3097

Product and vendor 1005

When constructing the security lexicon, only common CPE-products and
-vendors are added to the lexicon. The cutoff was set to the top 80% of the
most common products and vendors to avoid CPEs with very few mentions. As
seen in Fig. 3, the accumulated product mentions are heavily skewed towards
products with very few mentions. This distribution may discourage the use of
a lexicon-feature and increase the importance of case-features and contextual
understanding of the model, as the probability of new CVE-summaries contain-
ing already existing CPEs has historically been low.

5.2 Neural Network

The input layer of the model consists of some or all features described in Sect. 5.1.
The outputs of these features are all considered as embeddings that can be con-
catenated into a high-dimensional feature-map considering multiple characteris-
tics of the input sequence. These concatenated embeddings are then fed into a
neural network for sequence classification. The network architecture is inspired
by [12], where the embeddings are fed into a Bidirectional Long Short-term
Memory (BLSTM) layer and labels are decoded in a Conditional Random Field
(CRF).
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Fig. 3. Accumulated mentions of product over the number of mentions of a product.
The X-axis denotes the number of mentions of individual CPE-product and the Y-
axis denotes the number of accumulated mentions of products with X-mentions. The
mean of the distribution is 4.69 mentions per product and the median is 1 mention per
product.

BLSTM-Layer. The LSTM [7] neural network unit is a type of recurrent layer
that has theoretically strong capabilities to capture long-distance dependencies
in sequential data. In text-data, recurrent models are capable of capturing con-
textual semantics in the data, and correctly model the sequential variations and
dependencies of that text data. Conventional recurrent units suffer from prob-
lems such as the vanishing and exploding gradient [1,17] which disables these
networks to be effective on some tasks. The LSTM unit handles these complica-
tions by an internal architecture consisting of an input gate, output gate, forget
gate, and a cell state. An overview of the LSTM cell can be seen in Fig. 4.

Fig. 4. Long Short Term Memory cell. The input gate, output gate, forget gate, and
cell state are marked in dotted lines.
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In the figure, Xt denotes the t’th embedded input word to the LSTM cell
and h represents the hidden state. The variable ht−1 is the output from the
previous LSTM cell and ht serves as the output prediction from this LSTM cell
for the t’th word in the sequence. C denotes the cell state, which passes the
memories of the already processed sequence to the LSTM cell. The forget gate
is a nested neural network with a sigmoid activation function that scales the
previous hidden state sequence between 0 and 1, where a low output value for
a particular part of the sequence denotes that word should be forgotten. The
output from the forget gate ft is derived through

ft = σ(Wf × concat(ht−1,Xt) + bf ), (4)

where Wf and bf are the trainable weights. The activation function σ is derived
through

σ(x) =
1

1 + e−x
. (5)

The input gate values are derived similar to Eq. (4),

it = σ(Wi × concat(ht−1,Xt) + bi), (6)

where Wi and bi are trainable weights as well. Similarly to Eq. (4), the sigmoid
in Eq. (6) normalizes the input values and previous hidden state between 0 and
1, which corresponds to their relative importance in this particular time step t.
This layer is responsible to decide what new data should be added to the cell
state. To calculate the cell state, the input and previous hidden state is passed
through the following equation

ĉt = tanh(Wc × concat(ht−1,Xt) + bc), (7)

to calculate the actual information that the input at step t brings. Wc and bc
are trainable weights. The tanh function normalizes the input between −1.0 and
1.0 through the following equation

tanh(x) =
ex − e−x

ex + e−x
. (8)

The relative importance is calculated for X and h and applied to the output
from Eq. (7), which together with the forget gate forms the cell state through

Ct = ft × Ct−1 + it × ĉt, (9)

where Ct−1 is the previous cell state. To calculate the output from a particular
part of the sequence, which corresponds to the hidden state ht, the input Xt

and ht−1 are passed through an output gate. This gate decides what information
should be passed to the next hidden state and output as a sequence prediction.
The output gate is derived through

ôt = σ(Wo × concat(ht−1,Xt) + bo), (10)
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where Wo and bo are trainable weights and the current hidden state is calculated
through

ht = ôt × tanh(Ct). (11)

The output is passed to the next layer of the model, and is a matrix of shape
[batch size, sequence length, weight shape], where the batch size is the number
of parallel input examples fed to the model, sequence length is length of the
sentence, and weight shape is a user set parameter that decides the number of
weights used in the four nested neural networks.

To make this LSTM layer bidirectional [6], one simply use two separate, but
identical, LSTM layers that pass over the input sequence in one direction each.
The output is then concatenated. The output is regularized with dropout [19].

The reason for using a BLSTM is that an LSTM cell does not know anything
about the future sequence t+1, t+2, . . ., which may be contextually valuable. For
instance, when classifying a version, a part of the sequence may be “[..] vulnerable
version 1.3.4 and earlier”. A BLSTM can capture the semantic meaning of “and
earlier”, and correctly classifies this as versionEndIncluding.

CRF-Layer. As shown in the architectural overview in Fig. 2, the output from
the BLSTM is fed to a Conditional Random Field (CRF) [8] layer. The benefits of
a CRF layer is statistically correlated label determination when assigning a class
to a word in a sequence. For instance, the probability of a word being labeled
with I-product increases if the previous word has been labeled with B-product.
With CRF, labels are assigned jointly to reflect a final prediction for all entities
in the sequence that make sense together. This is done through conditional
probabilities and global normalization of a random field model.

Consider the output sequence of the BLSTM-layer h = {h1,h2,hi, ...,hN},
where hi denotes the numerical vector output from the BLSTM-layer corre-
sponding to the i’th word from the CVE-summary word sequences of length
N . The label sequence y = {y1, y2, yi, ..., yN} denotes each corresponding labels
to the CVE-summary word sequence, where yi denotes the predicted label for
the i’th word. Y (h) denotes the universe of all possible labels for h. The condi-
tional random field describes the conditional probability of label yi in respect to
input hi and surrounding labels yv �=i = yv∼i, where ∼ denotes v as close to i, as
p(yi|hi, yv, v ∼ i) over all possible label sequences.

To determine the probability, a layer of weights W and biases b are used as

p(y|h;W,b) =
∏n

i=1 γi(yi−1, yi,hi)∑
y∗∈Y (h)

∏n
i=1 γi(y∗

i−1, y
∗
i ,hi)

, (12)

where
γi(y

′
, y,hi) = exp(WT

y′ ,yhi + by′ ,y). (13)

The weights are trained through gradient descent and the Adam optimizer [11],
as the rest of the model. The output of the CRF-layer is decoded from the
highest conditional probability over the full sequence and serves as the output
of the model.
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6 Results and Discussion

6.1 Training

To train the model a dataset of 15190 CVEs from NVD was used, with an evalua-
tion set of 3798 entries and a test set of 4748 entries. The test and evaluation split
was done randomly. Experiments were conducted on whether to do a time-split
instead of the dataset to prevent look-ahead bias but resulted in an insignificant
performance change. The model was optimized with Bayesian hyperparameter
optimization [9] over the following hyperparameters:

– The learning rate is a parameter that scales how much each weight should be
updated in each gradient descent step [11].

– The number of cells in the LSTM-layers determines the size of the weight
matrices Wf , Wi, Wof , and Wc, and their corresponding biases.

– Whether the casing features should be used.
– Whether the lexicon features should be used.
– The dimension of word level embeddings of pre-trained vectors.
– The dimension of character level embeddings of randomly initialized vectors.
– The Dropout-rate before and after the BLSTM-layer, and inside the char-

features.
– The Recurrent dropout-rate in the LSTM-cells which determines the dropout

rate of previous hidden state ht−1.

The training was performed on NVIDIA TESLA K80 GPU and it took about
4–6 h to train the model once. In total, it took about 30 h to do the full train-
ing sweep on 16 K80s for 80 training iterations with different hyperparameter
settings. This amounts to about 20 GPU-days. The parameter search space can
be seen in Table 4. The Adam optimizer [11] was used to update the trainable
parameters in the model and early stopping to reduce the risk of overfitting.

Table 4. Hyperparameters search space and parameters used for best result.

Hyperparameter Optimal value Search space

Learning rate 0.00113 0.0001 to 0.01

LSTM cells 305 100 to 400

Use casing True True or False

Use lexicon False True or False

Word embedding dimension 100 50, 100, 200, or 300

Character embedding dimension 119 10 to 120

Dropout 0.2106 0.2 to 0.8

Recurrent dropout 0.2486 0.2 to 0.8
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6.2 Main Results

In Table 5 the results are presented for the different model configurations. It is
clear that the security lexicon did not provide any significant signal to improve
the model. The word level casing feature proved beneficial to the performance
with a significant improvement over the base model. The best performance on
the test set was attained without the lexicon features and with casing features
with an F-measure of 0.8604, a precision of 0.8571, and a recall of 0.8637. It
is also clear that the same model had the best performance on the validation
set, but we can see some indications of overfitting to the training-set as the F-
measure, recall, and precision are much higher. This may indicate that additional
performance could be gained with more aggressive regularization techniques.
The fully combined model had much worse performance on the training set and
similar performance on the test and validation set. This may indicate that further
training and hyperparameter optimization could increase the performance of this
model and enable it to surpass the other options.

Table 5. Results of the four training cases

Model Test set Validation set Training set

F1 Precision Recall F1 Precision Recall F1 Precision Recall

Base model 0.8499 0.8437 0.8562 0.8435 0.8379 0.8491 0.9498 0.9404 0.9595

+ lexicon 0.8554 0.8604 0.8505 0.8493 0.8570 0.8418 0.9986 0.9983 0.9989

+ case 0.8604 0.8571 0.8637 0.8533 0.8536 0.8530 0.9963 0.9952 0.9973

+ lexicon + case 0.8574 0.8505 0.8645 0.8527 0.8482 0.8572 0.9422 0.9336 0.9510

An example of the output can be seen in CVE-2018-11761, where “In Apache
Tika 0.1 to 1.18, the XML parsers were not configured to limit entity expansion.
They were therefore vulnerable to an entity expansion vulnerability which can lead
to a denial of service attack.” is correctly parsed to vendor : apache, product :
tika, versionStartIncluding : 0.1, versionEndIncluding : 1.18 by the model.
This example was in the test set, and is therefore never seen by the algorithm
during training.

6.3 Performance over CPE-product, -vendor, and -version

At a more granular level shown in Table 6, we can observe the performance of
each label on the test set, as well as the number of instances of each label in the
test set Label Count and the number of predicted instances Prediction Count.
We can see that some classes perform better than others. The F-measure is
high for B-vendor, B-product, and B-version, as well as I-product. It is clear
that there is a correlation between Label Count and all performance scores,
which makes sense for this type of model as neural networks tend to be very
data-hungry. In Fig. 6 labels with more examples in the dataset clearly have
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higher performance than less common labels. There seems to be a cutoff at
approximately 300 examples to have an F-measure above 0.8. We can also observe
that the performance for multi-word labels are worse, as the scores for I-labels
are lower. To further increase the performance on I-labeled entries, it may be
beneficial to create n-grams features in the lexicon or collect additional data for
those particular cases. Figure 5 visualizes the results from Table 6. The model
achieves a similar distribution over each label, which is visualized in Fig. 7.

Table 6. Granular test results from model with case features and without lexicon.
Scores are over each possible label for the model. Label Count describes how many
instances of that particular label is present in the test set, and Prediction Count
describes how many predictions the model produces for a particular label.

Label F1 Recall Precision Prediction count Label count

B-versionEndIncluding 0.7817 0.7817 0.7817 875 875

B-version 0.8573 0.8618 0.8527 2655 2627

B-versionStartIncluding 0.7415 0.7238 0.76 100 105

B-product 0.8711 0.8774 0.8649 4840 4771

O 0.9935 0.9931 0.9938 184649 184768

B-versionEndExcluding 0.7987 0.7922 0.8053 303 308

B-vendor 0.9126 0.8951 0.9308 2715 2823

I-version 0.4396 0.3509 0.5882 34 57

B-versionStartExcluding 0 0 0 2 1

I-product 0.8549 0.8812 0.8302 3787 3568

I-vendor 0.5714 0.5 0.6667 111 148

I-versionEndExcluding 0 0 0 0 1

I-versionEndIncluding 0.2581 0.16 0.6667 6 25

I-versionStartExcluding 0 0 0 0 0

I-versionStartIncluding 0 0 0 0 0

6.4 Feature Analysis

The lexicon features did not provide any significant performance gains together
with or compared to the case-features. It is possible that the case features better
captured characteristics of the vendor and product labels since those are com-
monly capitalized in some manner, rather than over-relying on a fairly static
memory of common labels. This result is in line with the distribution of prod-
ucts shown in Fig. 3, as 60% of all products NVD are mentioned only once. Other
papers, such as [4] and [5] use keyword-based systems or features targeting nar-
row properties of the vendor- and product label. These systems are not taking
the context of the sequence into consideration when performing classification,
which we believe is the main reason why we achieve significantly better results.
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With a contextually aware classification, our system is able to find new CPEs
that have never been seen before by NVD in any CVEs. This is highly desirable
in a system to automatically extract CPEs from CVEs due to the distribution
in Fig. 3.

Fig. 5. Precision, F-measure, and Recall over each possible class for the model with
case-features and without lexicon-features.

Fig. 6. Scatter plot over Label Count
and F1-score for each class (exclud-
ing ‘O’). This plot indicates that there
seems to be a minimum amount of
examples in each class to achieve an F1-
score above .8 at approximately 300.

Fig. 7. Label and Prediction count for
each class in the test dataset. Note that
the ‘O’-label is removed for this visual-
ization.
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6.5 Increasing Performance on Rare Labels

Our dataset consists of about roughly 20% of all available CVEs NVD, which
may limit our results. This particular subset was chosen as over 90% of all CPE-
version, -product, and -vendor strings for all CPEs paired with a CVE could be
found in the summary through regular expression. Stronger regular expressions
could increase the number of training examples, and further increase the perfor-
mance of the system. To increase the performance in the more challenging task
of classifying multi-word labels, an overweight to these cases could be provided
to the training data, or the model could be pre-trained on a larger high-quality
data set such as CoNLL 2003 [21].

6.6 Error Analysis

The overall accuracy of the system of correctly labeling every CPE in each CVE
is 0.6744, measured as the full CVE-summary being correctly NER-annotated
by the system. If the system only regards pursuing vendor and product clas-
sification, the accuracy would increase to 0.7772, which is more comparable to
earlier research as they do not always search for version ranges in the summary.
The distribution of the number of errors in all sequences that were incorrect
is visualized in Fig. 8, where the accumulated error for sequences with up to 3
errors stands for about 80% of the miss-classified summaries. Looking further
into what types of errors the model makes, Fig. 9 visualizes in total about 90%
of all miss-classifications. In the top four spots, regarding about 40% of the error
are bad predictions on the product label, with the I-label scoring higher than
the B-label. This strengthens the hypothesis that the system needs improve-
ment to better find multi-word labels. The top two mistakes contribute to a
lower precision, as it incorrectly finds a CPE-product where there is none, and
error three and four contributes to a lower recall as products are miss-classified
as a O-words.

7 Related Research

Other research has tried more extensive engineering of text-features to extract
CPEs from the CVE-summary published by NVD. In [5] the authors mine the
target product, vendor, and version from the summary by tokenization of each
word much like our case-feature and lexicon-feature to discover punctuation, cap-
italization, and commonly used vendors/products. They also generate snippets
(sequence of tokens) to cover multi-word labels through engineered rules based
on the feature vector. Multiple token-sequences can then be grouped into a CPE
(vendor-product-version link) based on rules, such as that all version tokens that
are within 6 tokens of a product token are assigned to that product token. The
context of each version is analyzed to determine the version type (before/after,
including/excluding). The authors achieve an F-measure of 0.70 (precision: 0.71,
recall: 0.69), which we significantly outperforms as we attain an F-measure of
0.86 (precision: 0.857, recall: 0.864).
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Fig. 8. Distribution of number of miss-
classifications in a sequence over all
miss-classifications.

Fig. 9. Common miss-classifications
made by the system. This explains
about 90% of the error.

A similar system of finding CPEs to “one day”-vulnerabilities was proposed
in [4], where the authors use a key-word based technique with TF-IDF to find
the probability of each word being assigned to a certain sub-class within a CPE.
The output of the model is an ordered list of words with a high probability of
being a relevant word in a CPE. The authors results may not be comparable
to our research, as their system is not intended for automated use and needs
explainability. Although, to make a fair comparison we compare their results of
the precision of the top predicted word in each ordered list, which is just below
0.6. Our system achieves a higher precision of 0.857. Still, their research indicates
that a TF-IDF implementation of a lexicon feature could provide additional
performance to our system in terms of finding already mentioned products and
vendors.

The model is largely based upon [12], which combined engineered features,
a BLSTM-network and a CRF-layer to perform NER on the CoNLL 2003 [21]
dataset. They achieve an F-measure score as high as 0.9121, which to our knowl-
edge held the state-of-the-art during some time in 2016. Results from different
datasets are not comparable, as the quality and the general challenge of each
dataset may be different. Other, more recent, implementations of state-of-the-
art NLP-models were implemented in our research such as BERT [3], but with
a significant decrease in performance compared to our model.

8 Conclusion

Our research concludes that it is possible to automate CPE-labeling of CVEs
with machine learning with high precision and recall, in regards to the CPEs
that are actually mentioned in the CVE-summary. Our model is able to find
CPE-products, -vendors, and -versions with an F-measure 0.8604 (precision:
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0.8571, recall: 0.8637) through NER-tagging, and completely reconstruct all cor-
responding CPEs in 67.44% of CVE-summaries. This system enables DVM-tools
to automatically and without time-lag get an estimate of some CPEs a partic-
ular CVE describes and thereby reduce the risk of becoming a victim of a “one
day”-vulnerability. Additionally, CPEs may also be found in incorrectly labeled
CVEs or from vulnerabilities from other sources, such as forums, email-threads,
or RSS-feeds. To our knowledge, our results establish a new state-of-the-art in
extracting CPEs from CVE-summaries.

The system could be further developed by embedding knowledge of the avail-
able universe of CPEs into the results of the prediction so that each estimated
CPE could be pared to one or multiple existing CPEs. A TF-IDF or n-grams
implementation of the security lexicon feature, as in [4], could also improve the
performance of the system, possibly also taking advantage of a security-lexicon,
which in our case brings no noteworthy additional performance.
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Abstract. A software supply chain attack is characterized by the injec-
tion of malicious code into a software package in order to compromise
dependent systems further down the chain. Recent years saw a number
of supply chain attacks that leverage the increasing use of open source
during software development, which is facilitated by dependency man-
agers that automatically resolve, download and install hundreds of open
source packages throughout the software life cycle. Even though many
approaches for detection and discovery of vulnerable packages exist, no
prior work has focused on malicious packages. This paper presents a
dataset as well as analysis of 174 malicious software packages that were
used in real-world attacks on open source software supply chains and
which were distributed via the popular package repositories npm, PyPI,
and RubyGems. Those packages, dating from November 2015 to Novem-
ber 2019, were manually collected and analyzed. This work is meant to
facilitate the future development of preventive and detective safeguards
by open source and research communities.

Keywords: Application security · Malware · Software supply chain

1 Introduction

In general, software supply chain attacks aim to inject malicious code into a
software product. Frequently, attackers tamper with the end product of a given
vendor such that it carries a valid digital signature, as it is signed by the respec-
tive vendor, and may be obtained by end-users through trusted distribution
channels, e.g. download or update sites.

A prominent example of such supply chain attacks is NotPetya, a ransomware
concealed in a malicious update of a popular Ukrainian accounting software [8].
In 2017, NotPetya targeted Ukrainian companies but also hit global corpora-
tions, causing damage worth billions of dollars and is said to be one of the most
c© Springer Nature Switzerland AG 2020
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devastating cyberattacks known today [30]. In the same year, a malicious version
of CCleaner, a popular maintenance tool for Microsoft Windows systems, was
downloadable from the vendor’s official website, and remained undetected for
more than a month. During this period it was downloaded around 2.3 million
times [27]. Another flavor of supply chain attacks aims at injecting the malicious
code into a dependency of a software vendor’s product. This attack vector was
already predicted by Elias Levy in 2003 [29], and recent years saw a number of
real-world attacks following that scheme. Such attacks become possible, because
modern software projects commonly depend on multiple open source packages,
which themselves introduce numerous transitive dependencies [2]. Such attacks
abuse the developers’ trust in the authenticity and integrity of packages hosted
on commonly used servers and their adoption of automated build systems that
encourage this practice [1].

A single open source package may be required by several thousands of open
source software projects [23], which makes open source packages a very attractive
target for software supply chain attacks. A recent attack on the npm package
event-stream demonstrates the potential reach of such attacks: The alleged
attacker was granted ownership of a prominent npm package simply by asking
the original developer to take over its maintenance. At that time, event-stream
was used by another 1,600 packages, and was on average downloaded 1.5 million
times a week [22]. Open source software supply chain attacks are comparable to
the problem of vulnerable open source packages which may pass their vulnerabil-
ity to dependent software projects. This is known as one of the OWASP Top-10
application security risks [31]. However, in case of supply chain attacks, mali-
cious code is deliberately injected and attackers employ obfuscation and evasion
techniques to avoid detection by humans or program analysis tools.

The main contribution of this paper is the collection, categorization, and
manual analysis of a dataset with malicious code from 174 packages that were
used for real-world attacks on open source software supply chains between 2015
and 2019.

The remainder of the paper is structured as follows: Sect. 2 summarizes
related work and Sect. 3 outlines the methodology used for the main contribu-
tions of this paper. Section 4 presents the necessary background on supply chain
attacks, in particular two attack trees developed both on the basis of the dataset
and by reviewing and investigating potential attacks and actual weaknesses of
open source ecosystems. That is followed by Sect. 5, presenting the analysis and
categorization of the actual code of 174 malicious packages observed in the wild.
Section 6 summarizes and concludes the paper.

2 Related Work

Related work mostly covers vulnerable packages, which contain design flaws or
code errors that are accidentally introduced, without bad intention but through
negligence, and which may pose a potential security risk. In contrast to that,
malicious packages contain design flaws or code errors that have been imple-
mented selectively, with caution and the intention to be exploited or triggered



Backstabber’s Knife Collection 25

at later times in the software life cycle. Technically, malicious code and vulner-
able code may look identical, the main difference lies in the intention of the
developer (or lack thereof) and, in some cases, the use of evasion or obfuscation
techniques to hinder the detection of such code.

Malicious and vulnerable packages reside in the same ecosystem and live
through the same software life cycle. As such, related works that investigate
package reuse in open source ecosystems in general, or the impact and spread of
vulnerable packages in particular, also apply to malicious packages.

Decan, Mens, and Constantinou [13] leveraged security reports in order to
examine how and when vulnerabilities in npm software packages are discovered
and fixed. In order to assess the effect on other packages hosted on npm, a
dependency graph was used. The key findings are that nearly half of the pack-
ages inherited vulnerabilities from other packages, and that version pinning to
vulnerable and outdated packages are the main cause for such inherited vulner-
abilities, even if fixes are available.

Zimmermann, Staicu, Tenny, and Pradel [40] were able to verify these findings
and provide mitigation techniques. Highly popular packages and highly active
developers were identified as single point of failures. Thus, the authors propose to
raise developer awareness through training as well as automated code analysis.

Pfretzschner and Othmane [32] proposed a system to identify software supply
chain attacks in npm packages by static code analysis. The tool is able to detect
four kinds of attacks: Leakage of global variables, manipulation of global vari-
ables, local function manipulation, and dependency-tree manipulation. However,
the authors failed to identify real-world examples of these attacks for evaluation.

Garrett, Ferreira, Jia, Sunshine, and Kästner [18] proposed anomaly detec-
tion through unsupervised learning in order to identify suspicious package
updates. For that purpose they collected over 700,000 packages from npm and
normal behavior was inferred from 1,500 randomly selected packages. The sys-
tem reported 539 suspicious updates per week reducing manually inspection by
89%.

Jukka Ruohonen [33] examined vulnerable Python packages regarding their
CVSS (Common Vulnerability Scoring System) score and the respective weak-
ness according to CWE (Common Weakness Enumeration). An auto regressive
model was used to calculate how likely a new release is vulnerable based on
previous releases’ vulnerability. It was found that the prediction of this event
is difficult despite good statistical performance. However, the supply chain of a
package was not taken into consideration.

While related work mostly focused on vulnerable packages and impact assess-
ment with regard to specific open source ecosystems, especially Node.js (npm),
this work considers malicious packages across several ecosystems.

3 Methodology

It is important to distinguish between vulnerable and malicious packages. As
said, vulnerable packages may contain design flaws or code errors that are acci-
dentally introduced, without bad intention but through negligence, and which
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may pose a potential security risk. According to the Cambridge Dictionary mali-
cious means “intended to cause damage to a computer system, or to steal
private information from a computer system”. Technically, malicious and vul-
nerable coding can be similar or even identical, thus, the main difference lies in
the attacker’s intention.

The main contribution of this paper is a dataset of malicious packages used in
real-world attacks and their analysis. The analysis is detailed in Sect. 5 and com-
prises the subset of malicious packages used in real-world attacks for which the
actual malicious code could be obtained (typically a compressed archive). Com-
pilation took place between July 2nd and August 2nd, 2019 and was updated on
27th of January 2020. The dataset covers the programming languages JavaScript
with its package repository npm, Java (Maven Central), Python (PyPI), PHP
(Packagist) and Ruby (RubyGems), which are the most popular languages
according to newly created GitHub repositories in 2018 [17].

During that time, the vulnerability database Snyk1, security advisories2,3,4,
and research blogs (e.g. [3,4]) were reviewed to identify malicious packages and
possible attack vectors. Only packages that are explicitly labeled as malicious
are considered. Leaving out packages labeled as vulnerable might lead to missing
some malicious packages. However, manually reviewing all vulnerable packages
to find intention and hence prove maliciousness is infeasible. Likewise, the devel-
opment of an automatized procedure is out of scope for this work but definitely
desirable for future work.

Nonetheless, parts of the collection are automatized. This way no packages
should be missed because of negligence or fatigue. A parser for the Snyk database
is utilized to extract names, affected versions, and disclosure dates of packages
listed as malicious. In the next step the publication of malicious versions of a
package are dated according to Libraries.io5, a service that monitors package
releases across all major package repositories. Advisories and public incident
reports are used to date the public disclosure of the malicious package.

Malicious packages are typically not available anymore on standard package
repositories of the respective programming language, e.g. npm or PyPI. Thus,
the script tries to download the affected version of a package from a PyPI6,
RubyGems7, or npm8 mirror. Failed attempts are manually checked for avail-
ability.

Collected packages are statically analyzed in a manual fashion. The package’s
metadata like name and publication/disclose date are analyzed to find out how
it were injected into the ecosystem and how long it was available. The location
of the suspicious code is found by manually looking through the package’s code.
1 https://snyk.io.
2 https://www.npmjs.com/advisories.
3 https://github.com/rubysec/rubygems-advisories.
4 https://github.com/pypa/warehouse.
5 https://libraries.io.
6 https://nero-mirror.stanford.edu.
7 https://mirror.auckland.ac.nz.
8 https://registry.npm.taobao.org.
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In-depth analysis is carried out to verify the maliciousness as well as to reveal
the trigger and condition for malicious behavior, what its objective and targeted
operating system (OS) is, and whether obfuscation was employed.

4 Background: Supply Chain Attacks

This background section starts with a high-level introduction of activities and
systems related to open source software development projects in Sect. 4.1. Fur-
thermore, different attack vectors for software supply chains will be presented
with the help of two attack trees. In general, attack trees allow for a system-
atic description of attacks against any kind of system [34]. The root node of a
given tree thereby corresponds to the attacker’s top-level goal, and child nodes
represent alternative ways to achieve it. The top-level goals of the attack trees
presented in Sects. 4.2 and 4.3 are to inject malicious code into the software sup-
ply chain, thus, into a dependency of a development project, and to trigger that
malicious code in different circumstances.

4.1 Open Source Development Projects

In a typical development environment as visualized in Fig. 1, Maintainers are
members of a development project who administer the depicted systems, provide,
review and approve contributions, or define and trigger build processes. Open
source projects also receive code contributions from contributors, which may
be reviewed and merged into the project’s code base by maintainers. The build
process ingests the source code and other resources of a project, and has the
goal to produce software artifacts. These artifacts are subsequently published
such that they become available to end-users and other development projects,
either through to distribution platforms like app stores such that they may be
consumed by end-users or to package repositories for other development projects.

The project resources reside in a version control system (VCS), e.g. Git, and
are copied to the local file system of the build system. Among those resources is
a declaration of direct dependencies, which is analyzed at the start of the build
process by a dependency manager in order to establish the complete dependency
tree with all direct and transitive dependencies. As all of them are required
during the build, for instance, at compile time or during test execution, they are
downloaded (pulled) from package repositories such as PyPI9 for Python, npm10

for Node.js, or Maven Central11 for Java.
Such project environments are subject to numerous trust boundaries, and

many threats target the respective data flows, data stores and processes. Man-
aging those threats may be challenging even when considering only the environ-
ment of a single software project. When considering supply chains with dozens
or hundreds of dependencies, it is important to notice that such an environment
9 https://pypi.org.

10 https://www.npmjs.com.
11 https://search.maven.org/.

https://pypi.org
https://www.npmjs.com
https://search.maven.org/
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Fig. 1. High-level development and build activities.

exists for every single dependency, making it obvious that the combined attack
surface of such projects is considerably larger than that of software entirely
developed in-house.

Taking the perspective of attackers, malevolent actors have the intention to
compromise the security of the build or runtime environment of software projects
through the infection of one or more upstream open source packages, each one
of which is developed in environments comparable to Fig. 1. How to reach this
goal is described in the following sections by means of two attack trees that
provide a structured overview about attack paths to inject a malicious code into
dependency trees of downstream users and to trigger its execution at different
times or under different conditions.

4.2 Injection of Malicious Code

The attack tree illustrated by Fig. 2 is an extension and refinement of the graph
presented by Pfretzschner and Othmane [32], and has as top-level goal to inject
malicious code into the dependency tree of downstream packages. Thus, the
goal is satisfied once a package with malicious code is available on a distribution
platform, e.g. package repository, and it became a direct or transitive dependency
of one or more other packages.

To inject a package into dependency trees an attacker may follow two possible
strategies, he may either infect an existing package or submit a new package.

Obviously, developing and publishing a new rogue package using a name that
is not used by anybody else avoids interference with other legitimate project
maintainers. However, such a package has to be discovered and referenced by
downstream users in order to end up in the dependency trees of victim packages.
This may be achieved using a name similar to existing package names (typosquat-
ting) [3,4,14,15,35,36], or by developing and promoting a trojan horse [12]. An
attacker might also use the opportunity to reuse the identifier of an existing
project, package, or user account withdrawn by its original and legitimate main-
tainer (use after free) [10].
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Fig. 2. Attack tree to inject malicious code into dependency trees.

The second strategy is to infect an existing package that already has users,
contributors and maintainers. The attacker might choose packages for different
reasons, e.g. a significant number or specific group of downstream users. Once
the attacker chooses a package to infect, the malicious code may be injected into
the sources, during the build, or into the package repository.

Open source projects live and strive through community contributions. Thus,
attackers can mimic benign project contributors. For instance, an attacker may
pretend to solve an existing issue by creating a pull request (PR) with a bug fix or
a seemingly useful feature or dependency [19]. The latter could be used to create
a dependency on an attacker-controller package created from scratch using the
techniques described beforehand. In any case, this PR has to be approved and
merged into the main code branch by a legitimate project maintainer. Alter-
natively, an attacker may commit malicious code into the project’s code base
all by himself by using weak or compromised credentials or security-sensitive
API tokens [21,26]. Furthermore, attackers may become maintainer themselves
through social engineering [22]. In all cases, no matter how the malicious code
has been added to the sources, it will become part of an official package dur-
ing the next release build—regardless where that build happens. Compared to
attacks on build systems and package repositories, malicious code in VCS is more
accessible to manual or automated reviews of commits or entire repositories.

The compromise of build systems typically entails tampering with resources
used throughout the build process, e.g. compilers, build plugins or network ser-
vices such as proxies or DNS servers. Such resources may be compromised if
the build system, be it a developer’s work station or a dedicated build server, is
subject to vulnerabilities, or if insecure communication channels are such that
attackers can manipulate the package download from repositories [1,38]. The
release builds of the targeted package may also run on a shared build system
and thus used by multiple projects [20]. Depending on the setup, such build
processes may not run in isolation, hence resources such as package caches or
build plugins are shared between the builds of different projects. In this case, an
attacker may compromise shared resources during a malicious build of a project
under his control such that the targeted project is compromised at a later point
in time.
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Even popular package repositories are still subject to simple but severe secu-
rity vulnerabilities. While all the other attack vectors seek to inject malicious
code into a single package, the exploit of vulnerabilities in package repositories
themselves puts the entire repository with all its packages at risk [24,25]. Similar
to injecting the code in the sources, the attacker may use weak or compromised
credentials [7,9,11,16,39] or gain maintainer authorizations through social engi-
neering [22] in order to publish malicious versions of legitimate packages.

Further, an attacker may upload malicious package versions to alternative
repositories or repository mirrors [5,6] that are not provisioned by the original
maintainers, and wait for victims pulling dependencies from there. Supposedly,
such repositories and mirrors are less popular, and the attack is dependent on
the victim’s configuration, e.g. the order of repositories queried for dependencies
or the use of mirrors.

4.3 Execution of Malicious Code

Once malicious code is present in a project’s dependency tree, the attack tree
illustrated by Fig. 3 has the top-level goal to trigger the malicious code under
different conditions. Such conditions may be used to evade detection and/or
target attacks towards specific users and systems.

Malicious code may trigger at different life cycle phases of the infected pack-
age and its downstream users (c.f. Sect. 5.3). If malicious code is contained in
test cases, the attack primarily targets the contributors and maintainers of the
infected package, which run such tests on their developer work stations and
build systems. In many of the recorded attacks, malicious code is contained
in install scripts, which are automatically executed during package installation
by downstream users or their dependency managers. Such install scripts exist
for Python and Node.js, and may be used to perform pre- or post-installation
activities. Malicious code in install scripts puts the contributors and maintainers
of downstream packages as well as their end users at risk. Malicious code may
also be triggered at runtime of downstream packages, which requires that it is
invoked as part of the regular control flow of the victim package. In Python, this
may be achieved by including malicious code in init .py, which is invoked
through import statements. In JavaScript, this may be achieved by monkey-
patching (modifying) existing methods. The specifics of individual programming
languages, package managers, etc. may easily be covered by refining this goal.

Independent of the life cycle phase, the execution of malicious behavior may
always trigger (unconditioned) or only if certain conditions are met (conditional
execution). As for any other malware, conditioned execution complicates the
dynamic detection of malicious open source packages, since the respective con-
ditions may not be known, understood or met in sandbox environments. Condi-
tioning the execution on the application state is a common means to evade detec-
tion, e.g. in test environments or dedicated malware analysis sandboxes. Again,
the specifics of individual build systems may be covered by respective sub goals,
e.g. the presence of Jenkins environment variables indicates that malicious code is
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triggered during a build rather than in a production environment. Moreover, con-
ditions may be related to a specific victim package, e.g. check a specific application
state such as the balance of a crypto wallet [22]. Heavy reuse of open source pack-
ages may lead to a malicious package ending up in the dependency tree of many
downstreampackages. If only certain packages are of interest to attackers, theymay
condition the code execution on the nodes of a given dependency tree at hand [22].
Furthermore, the operating system used may serve as condition.

5 Description of the Dataset

The dataset contains 174 packages and was compiled according to our method-
ology as described in Sect. 3. A total number of 469 malicious packages could
be identified. Additionally, 59 packages were found that could be identified as
proof of concept (published by researchers) and hence are excluded from further
examination. Eventually, we were able to obtain at least one affected version for
174 packages. The rate of successful downloads of malicious packages for npm
is 109/374 (29.14%), for PyPI 28/44 (63.64%), for RubyGems 37/41 (90.24%),
and for Maven Central 0/10 (0.00%). All statements and statistics below refers
to the set of downloaded packages as it is infeasible to infer characteristics from
unobserved packages.

5.1 Composition and Structure

The dataset consists of 62.6% packages published on npm and hence are writ-
ten for Node.js in JavaScript. The remaining packages were published via PyPI
(16.1%, Python) and via RubyGems (21.3%, Ruby). Unfortunately, a malicious
Java package targeting Android developers could not be downloaded. For PHP,
we were not able to identify any malicious package at all.

The complete dataset is available for free on GitHub12. However, access will
be granted on justified request only due to ethical reasons. The dataset is struc-
tured as follows: package-manager/package-name/version/package.file.

Malicious packages are grouped by their originating package manager on
the first level. Further, multiple affected versions of one package are grouped

12 https://dasfreak.github.io/Backstabbers-Knife-Collection.

https://dasfreak.github.io/Backstabbers-Knife-Collection
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under the respective package’s name. As example for the affected version of
the well-known case of event-stream it is: npm/event-stream/3.3.6/event-stream-
3.3.6.tgz.

Fig. 4. Publication dates of collected
packages.

Fig. 5. Temporal distance between date
of publication and disclosure.

5.2 Temporal Aspects

Figure 4 visualizes the publication dates of the collected packages which range
from November 2015 to November 2019. The publication and disclosure dates
are identified according to the upload time of the package and the publication
date of the corresponding advisory identifying the respective version as malicious
(cf. Sect. 3). A trend for an increasing number of published malicious packages is
apparent. While malicious packages for PyPI are known to date back to 2015 and
since then are increasing, npm gained a massive amount of malicious packages
in 2017. Malicious packages on RubyGems experienced a boom in 2019.

Note that there are more incidents in total than Fig. 4 references, as it does
not include reported malicious packages that we could not obtain. PyPI and npm
show an ever-increasing trend as they can easily be used to spread malicious code
due to their package managers’ ability to execute arbitrary code on installation
(c.f. Sect. 5.3). In contrast to that, RubyGems does not allow code execution on
install but seems to be targeted more often in recent attacks. This might be due
to PyPI’s and npm’s increasing efforts to hinder attackers from abusing their
package repositories and managers, respectively.

Figure 5 shows that on average a malicious package is available for 209
days (min = −1,max = 1, 216, σ = 258, x̃ = 67) before being publicly reported.
A minimum of −1 days was reached for npm/eslint-config-airbnb-standard/2.1.1
which was affected by npm/eslint-scope/3.7.2. Even though the infection of
npm/eslint-scope/3.7.2 was known, the package was still in use due to the devel-
opers’ re-packaging strategy, i.e. the infected version was hard copied into the
source of npm/eslint-config-airbnb-standard/2.1.1. The maximum of 1, 216 days
was reached by npm/rpc-websocket/0.7.7 which took over an abandoned package
and went undetected for a long period.
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In general this shows that packages tend to be available for a longer period.
While PyPI has the highest average online time, that period varies the most for
npm, and RubyGems tends to detect malicious packages more timely.

5.3 Trigger of Malicious Behavior

Malicious behavior of a package may be triggered at different points of interaction
with the package. Most typically, a package may be installed, tested, or executed.
A separation per package repository is visualized in Fig. 6.

It is apparent that most malicious packages (56%) start their routines
on installation, which might be due to poor handling of arbitrary code during
install. This can be triggered by the package repositories’ install command, e.g.
npm install <package>, which invokes code as defined in the package’s defi-
nition, e.g. package.json and setup.py. This code might be arbitrary to do
whatever is necessary to install the package, e.g. download additional files. It is
by far the easiest way for attackers to effectively activate their malicious code
and hence used frequently. This seems very common for malicious packages on
PyPI. The difference for nmp and PyPI might stem from npm packages having
more dependencies than a typical Python package [37] which might lead to more
malicious packages targeting other dependent package on runtime like in the case
of event-stream [22].

In contrast, Ruby does not implement such install logic and hence no packages
for that case exist in Ruby. Consequentially, all found packages on RubyGems use
runtime as trigger, often targeting Ruby on Rails, a server-side web application
framework. Overall, 43% of the packages expose their malicious behavior during
the program’s runtime, i.e. when invoked from another function.

For 1% of the packages the test routines are used as trigger. Invoking the
test routine of npm/ladder-text-js/1.0.0 would execute sudo rm -rf /* which,
if successful, deletes all the user’s files. Note that this observation might not
generalize due to the low number of found packages using this technique.

Fig. 6. Trigger of malicious behavior separated per package repository and overall.

5.4 Conditional Execution

As seen in Fig. 7, 41% of the packages check for a condition
before triggering further execution. This may depend on the appli-
cation’s state, e.g. check whether the main application is in production
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Fig. 7. Ratio of conditional and unconditional execution per package repository and
overall.

mode (e.g. RubyGems/paranoid2/1.1.6 ), resolvability of a domain name (e.g.
npm/logsymbles/2.2.0 ), or the amount contained in a crypto wallet (e.g.
npm/flatmap-stream/0.1.1 ). This may be done to find profitable targets and
evade sandboxing (dynamic analysis).

Other techniques are to check whether another package is present in the
dependency tree (e.g. npm/load-from-cwd-or-npm/3.0.2 ) or whether the pack-
age is executed on a certain OS (e.g. PyPI/libpeshka/0.6 ). This is done to either
target another package or because the malicious functions rely on OS character-
istics and functions.

The majority of packages published on PyPI and RubyGems execute uncon-
ditionally. For npm the ratio of conditional and unconditional execution is nearly
equal. However, packages from PyPI seem not to use Application State as con-
dition which might be due to Python not being used on server-side – unlike npm
and Ruby (on Rails) – very often.

5.5 Injection of Malicious Package

In Fig. 8 it is apparent that most (61%) malicious packages mimic existing
packages’ names via typosquatting. A deeper analysis of that phenomenon
revealed that the Levenshtein distance of an average typosquatting package to
its target is 2.3 (min = 0,max = 11, σ = 2.05, x̃ = 1.0). In some cases the
typosquatting target is available from another package repository, e.g. the Linux
package repository apt under the exact same name. This is for instance the
case for python-sqlite. The maximum distance of 11 is reached in the case of
pythonkafka which targeted kafka-python. Common techniques are adding or
removing hyphens, leaving out single letters, or exchange of letters that are often
mistyped. A word that is targeted exceptionally often is “color” or, respectively,
its British English counterpart: “colour”. Typosquatting is already proven to be
a highly effective technique to infect large numbers of victims in short time [36].

The second most common injection method was the infection of an exist-
ing package. This may often be achieved with compromised credentials for the
repository system (e.g. npm/eslint-scope/3.7.2 ). In most cases, the exact infec-
tion technique could not be determined in retrospect. This is because the related
source is often removed from the version control system or no further details
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about the injection are made public. Hence, these packages are listed as infect
existing package. This technique requires more work from the attackers point of
view as he has to take over a developer’s/publisher’s account first. Once that is
accomplished, an update containing malicious content can easily reach numerous
users as they are already using that package and depend on its functionality. It is
especially dangerous if no version pinning is used and dependencies are updated
automatically.

Fig. 8. Injection technique used to introduce the malicious package into a package per
package repository and overall.

Another injection technique is to create a new package which consist of noth-
ing but the malicious package to which we refer to as trojan horse. No meaningful
typo-squatting targets were found for these packages. These packages might have
been around as preparation for further attacks to be used in conjunction with
an infected existing package or standalone.

5.6 Primary Objective

As shown in Fig. 9, most packages aim at data exfiltration. Commonly,
the data of interest is the content of /etc/passwd, ∼/.ssh/*, ∼/.npmrc, or
∼/.bash history. Furthermore, malicious packages try to exfiltrate environ-
ment variables (which might contain access tokens) and general system informa-
tion. Another popular target (7 reported packages, 3 of them available in our
dataset) is the token for the voice and text chat application Discord. A Dis-
cord user’s account may be linked to credit card information and thus be used
for financial fraudulence. Exfiltrated data – especially access tokens – may be
used for further attacks and spreading of the malicious code [28]. Credit card
information may be used for financial fraud.

Moreover, 34% of the packages function as dropper to download second stage
payload. Another 5% open a backdoor, i.e. reverse shell, to a remote server and
await further instructions. This category will turn victims into zombies that
can be controlled by the attacker, e.g. for DDoS attacks. 3% aim to cause a
denial of service by exhausting resources through fork bombs and file deletion
(e.g. npm/destroyer-of-worlds/1.0.0 ) or breaking functionality of other packages
(e.g. npm/load-from-cwd-or-npm/3.0.2 ). This only yields gain for an attacker if
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a competing party is attacked. Only 3% have financial gain as primary objec-
tive by for instance running a cryptominer in the background (e.g. npm/hooka-
tools/1.0.0 ) or stealing cryptocurrency directly (e.g. pip/colourama/0.1.6 ). In
addition, combinations of the above mentioned objectives might occur.

5.7 Targeted Operating System

In order to identify the targeted OS, the source code was manually ana-
lyzed for hints which may be as explicit as an if–then construct like if
platform.system() is ’Windows’ as used in e.g. PyPI/openvc/1.0.0 or
implicit by relying on resources only available on certain OS. These resources
may be for instance files containing sensible information like .bashrc etc. (cf.
Sect. 5.6, npm/font-scrubber/1.2.2 ) or executables like /bin/sh (e.g. npm/rpc-
websocket/0.7.11 ).

Fig. 9. Primary objective of the malicious package per package repository and overall.

The analysis of the packages for their targeted OS as shown in Fig. 10 revealed
that most packages (53%) are agnostic, i.e. do not rely on OS-specific
functions. The analysis was done on the initial visible code of the package and
thus the targeted OS of the second stage payload remains unknown. However,
Unix-like systems seem to be targeted more often than Windows and macOS.
This might be due to Unix-like systems being used as build environments and
hence more valuable data like access tokens (c.f. Sect. 5.6) may be accessible.

There is only one known case of macOS being the target in which the package
npm/angluar-cli/0.0.1 performs a denial of service attack on the McAfee virus
scanner for macOS by deleting and modifying its files.

Fig. 10. Targeted operating system per package repository and overall.
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5.8 Obfuscation

Malicious actors often try to disguise the presence of their code, i.e. hindering
its detection by sight. Noticeable in Fig. 11 is that nearly the half of the
packages (49%) employ some kind of obfuscation. Most often a different
encoding (Base64 or Hex) is used to disguise the presence of malicious functions
or suspicious variables such as domain names. This is an easy and effective way
to go since most languages have these capabilities on-board without external
dependencies.

Fig. 11. Employed obfuscation technique per package repository and overall.

A technique often used by benign packages to compress source code and
thus save bandwidth is minification. However, this is a welcome opportunity
for malicious actors to sneak in extra code which is unreadable for humans (e.g.
npm/tensorplow/1.0.0 ). Another way to hide variables is to use string sampling.
This requires a seemingly random string which is used to rebuild meaningful
strings by picking letter by letter (e.g. npm/ember-power-timepicker/1.0.8 ).

In one case the malicious functions are hidden by encryption. The package
npm/flatmap-stream/0.1.1 leverages AES256 with the short description of the
targeted package as decryption key. That way, the malicious behavior is solely
exposed when used by the targeted package. Furthermore, combinations of the
above mentioned techniques exist.

5.9 Clusters

In order to infer on the presence of attack campaigns, all packages were analyzed
for reuse of malicious code or dependency relationships. The malicious code
snippets that were manually identified were compared visually for similarity.
This way, it was possible to identify 21 clusters for which at least two
packages either have similar malicious code in common, or an attacker-controlled
package depends on another one with the actual malicious code. In total, 157 of
the 174 packages (90%) belong to a cluster. On average a cluster comprises 7.28
packages (min = 2,max = 36, σ = 8.96, x̃ = 3).

A cross comparison of publications dates of packages within one cluster
revealed that the average temporal distance between publications is 42 days,
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6:50:18 (min = 1:29:40,max = 353 days, 11:17:02, σ = 78 days, 0:43:10, x̃ =
7 days, 15:24:51). The biggest cluster was formed around the crossenv case [35]
counting 36 packages published with an average temporal distance of 5.98 days.
It was published in two waves, 11 packages within 15 min on 19th of July 2017
and another 25 packages within 30 min on 1st of August 2017.

The cluster having publication dates that are 353 days apart consists of the
two packages PyPI/jeilyfish/0.7.0 and PyPI/python3-dateutil/2.9.1. The first
was published on 12/11/18 12:26 AM and contained code that download a script
to steal SSH and GPG Keys from Windows machines. It went undetected for a
long time until the second package was published on 11/29/19 11:43 AM which
did not contain malicious code itself but referenced the first package. The cluster
was reported and deleted on 12/12/19 05:53 PM.

While most clusters solely contain packages from one package repository, it
was possible to find a cluster that mainly contained packages from npm but
also RubyGems/active-support/5.2.0 from RubyGems. This means that attack
campaigns exist or at least techniques flow across multiple package repositories.

5.10 Code Review of Two Malicious Packages

For vivid illustration, npm/jqeury/3.3.1 (left) and RubyGems/active-
support/5.2.0 (right) will be discussed in Fig. 12. They both belong to the same
cluster according to our manual assessment of code similarity, even though they
were published on different repositories.

6 Discussion and Conclusions

From an attacker’s point of view, package repositories represent a reliable and
scalable malware distribution channel. We were able to create the first man-
ually curated dataset of malicious open source packages that have been used
in real-world attacks. It consists of 174 malicious packages (62.6% npm, 16.1%
PyPI, 21.3% RubyGems) ranging from November 2015 to November 2019. Man-
ual analysis revealed that most packages (56%) trigger their malicious behavior
on installation, and 41% use further conditions to determine whether to run
or not. More than half of the packages (61%) leverage typosquatting to inject
themselves into the ecosystem, and data exfiltration is the most common goal
(55%). The packages typically are agnostic to operating systems (53%), and
often employ obfuscations (49%) to hide themselves. Finally, we were able to
detect multiple clusters of malicious packages through reused code even across
different programming languages. The dataset provides insight and is available
for free to facilitate research in the area of prevention, detection, and mitigation
of software supply chain attacks.

However, there are some limitations. Our dataset is highly biased towards
malicious packages that are written in JavaScript for Node.js and published on
npm which is due to npm’s enormous size and popularity. Unfortunately, we
were not able to obtain malicious packages for Java (Maven Central) and PHP
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(Packagist). Furthermore, roughly 34% of the malicious packages are droppers
with the goal to download a second stage payload, which might not be avail-
able anymore. One might notice that we listed the deployment in alternative
repository or mirrors as injection method but downloaded most of the packages
from such sources. While it is possible that these packages have been altered to
be malicious, the package’s presence in our dataset is still valid as the package
would be malicious is both cases. Furthermore, the “intended” maliciousness
according to the advisories was verified through manual analysis. Leaving out
packages labeled as vulnerable might lead to missing some malicious packages.
However, automated detection of maliciousness is out of scope of this work but
up for future work. One possible approach for applying the lessons learned from
our manual code review could be to identify common control or data flow pat-
terns in malicious code, e.g., silenced exceptions, and search for their presence
in other packages.

Our analysis shows that it is important to make use of already available secu-
rity means. To tackle the most prominent trigger – arbitrary code execution dur-
ing installation – package managers need to be reworked. Python, for instance,
already offers Python Wheels,13 which avoids code execution during installa-
tion. We offer two recommendations for dealing with existing infected packages.
For maintainers, multi-factor authentication and strong passwords should be
mandatory. Developers should use version pinning. However, the version needs
to be chosen absolute, i.e. no automated security patches or bug fixes (minor
updates) which again may be counterproductive when it comes to vulnerabil-
ities. Typosquatting packages are already being frequently purged by common
package repositories but nonetheless make it through often. General awareness
of developers and more stringent rules from the package repositories may help
against that type of attack.

However, now that a dataset exists it is possible to use proven malicious
packages as seeds in order to find more related cases (c.f. Sect. 5.9). In this
context, the manually curated and labeled dataset allows for supervised learning
approaches that support the automated and repository-wide search for malicious
packages. Moreover, with regard to existing and new mitigation strategies, the
presented dataset may pose as a benchmark. Last, acknowledging the importance
of a comprehensive and up-to-date dataset, it will be necessary to continue its
curation – contributions are welcome.

Acknowlegements. This work is funded under the SPARTA project, which has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 830892.

13 https://pythonwheels.com/.
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Abstract. Cybersecurity research relies on the reproducibility and deep
understanding of attacks to devise appropriate solutions. Different kinds
of testbeds are typically used to systematically execute attacks and evalu-
ate defenses. Testbeds are widely used to demonstrate Building Automa-
tion and Control System (BACS) attacks and defenses, considered too
risky to be executed on real infrastructures. However, those testbeds
implement arbitrary configurations of building services that do not resem-
ble real-world deployments. In this work, we present the first BACS
testbed specially designed to assess the impact of cyberattacks from the
victim’s perspective. It features general purpose building services such as
illumination, ventilation, and temperature control, whose configuration
is easily adapted to emulate the requirements of real-world locations. In
this way, the context added to our testbed allows us to better under-
stand the impact of BACS attacks through concrete and realistic scenar-
ios. Moreover, by analyzing different configurations of the BACS (i.e.,
contexts), we found out that identical attacks may have dramatically
different impacts. Thus, reinforcing our view on the relevance of adding
context to BACS testbeds.

1 Introduction

Cyber Physical Systems (CPSs) refer to a variety of applications where com-
puter systems interact with physical aspects of the world [22]. Those physical
aspects include variables such as speed, temperature, and pressure, whose auto-
mated control has proved crucial in many industries. The building automation
industry is one of them, where physical variables are controlled through building
services such as heating, ventilation, and air conditioning. The interconnection
and centralized management of building services is achieved through Building
Automation and Control Systems (BACSs).

The influence that CPSs exert in the real world has been traditionally
regarded as a major security concern. For that reason, the impact of CPS
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attacks has been typically measured as the deviation of physical variables from
pre-established setpoints [1,14,33]. While such deviations indeed constitute the
physical manifestation of an attack, not all of them represent a threat. In fact,
several physical changes may naturally occur without noticeable consequences.

Specifically on BACSs, the experience on real-life attacks suggests that the
adversaries’ goal is typically to leverage the physical capabilities of the system
to thwart business processes [8,24]. We deem these attacks as a specialization
of physical impact attacks, tailored to drift physical variables beyond a business
acceptable threshold (see Fig. 1). Since BACS attacks have a direct effect on
organizations’ daily operations, we argue that the impact assessment of BACS
attacks should be done from the victim’s perspective, specifically, the Business
Continuity Impact (BCI).

Fig. 1. Controlled variables have limits beyond which the supported activity gets neg-
atively affected. Such limits depend on each specific activity.

From a defensive perspective, BACS attacks must be carefully analyzed by
cybersecurity researchers to devise appropriate solutions. The replicability of
such attacks is crucial to methodically evaluate defensive approaches. However,
attack execution in production infrastructures is risky. To overcome this limita-
tion, testbeds provide a safe experimentation platform that removes the risk of
damaging production systems.

Traditional BACS testbeds serve as a demonstration platform for defensive
mechanisms [11,13,25] whose capabilities are, in turn, commonly demonstrated
in light of two sets of attacks: those that can and cannot be handled by the
defensive tool. No context nor special attention to the attacker’s goal is needed
for such experiments; the focus is placed on the low level details of the attack.
Instead, we address the challenge of building the first BACS testbed specialized
in the assessment of the BCI of cyberattacks.

The testbed described in this work implements three general building services,
namely, illumination, ventilation, and temperature control. Those building ser-
vices can be reconfigured to fit the requirements of diverse business contexts.
Such reconfigurability can hardly be achieved in other kind of CPS testbeds,
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where one particular scenario is commonly embedded in the hardware itself (e.g.,
electric grid, water treatment plant, etc.). Leveraging this feature, our testbed
allows to reproduce identical attacks on different business contexts and compare
their BCI.

Our results show that the context is crucial to properly assess the impact of
cyberattacks. The reason being that the BCI is always relative to the victim’s
use of building services. This insight gets embodied in the testbed by configuring
the building services according to the victim’s needs. Only then, a context-rich
BCI assessment of cyberattacks can be conducted.

Contribution. (i) A detailed description of the development process of a BACS
testbed specialized in the assessment of Business Continuity Impact (BCI) of
cyberattacks. We provide all the engineering materials, custom software, and
information sources needed to replicate our testbed.

(ii) We provide empirical evidence of the context’s relevance by exposing
remarkably different impacts (BCI) on identical attacks. Through the implemen-
tation of three different emulated environments in our testbed, we provide con-
crete and realistic examples that show how different organizations under identical
attacks suffer the consequences differently.

Organization. Hereafter the paper is organized as follows. The literature review
is presented in Sect. 2. We elaborate on the tight relation between business pro-
cesses and BACSs in Sect. 3. Section 4 describes the process of creating a testbed
for BCI assessment from the victim’s perspective, followed by our experiments
in Sect. 5. Finally, we present the conclusions of our work in Sect. 6.

2 Related Work and Background

Testbeds. The common objective of all security CPS testbeds is to execute
attacks and to evaluate defenses. On top of that, different goals are set which
yield different testbed implementations. Not necessarily mutually exclusive, typ-
ical testbed goals are demonstration, education, and impact assessment [20,32].
Demonstration testbeds are built to convince stakeholders of the applicability of
both offensive and defensive research findings [32]. Education testbeds are skill-
development platforms where students, researchers, and practitioners can learn
hands-on [2,21]. Finally, impact assessment testbeds use a variety of metrics to
quantify the consequences of cyber attacks [1,23,27].

BACS testbeds in particular, have overlooked the relevance of impact anal-
yses of cyberattacks to mostly focus on the demonstration of security solu-
tions [11,13,25]. To show the strengths and weaknesses of these tools, they
appeal to attack instances to exemplify success and failure cases. Although we
acknowledge the illustrative value of such testbeds, the lack of high level context
information makes it difficult to recognize the attacks’ potential impact in real-
world scenarios and to realize the actual value of the proposed defenses. Our
testbed addresses this limitation by incorporating context as part of its default
operation.
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Impact Metrics. Several Industrial Control System (ICS) testbeds have been
built to study the physical impact of cyberattacks. For instance, a water treat-
ment testbed is used in [33], where the impact is defined as the deviation in the
pre-established pH level of the water. In [1], a water distribution testbed is pre-
sented where the impact of attacks is measured as the decrease in the supplied
water with respect to the normal capacity of the system. Yet another example
are the smart-grid testbeds presented in [23,27], where the impact of attacks
is measured in terms of voltage (in)stability, generation loss, and load shedding
increment.

Other kinds of impact have been analyzed as well. Packet delays have been
measured as the impact of communication outages [23], and even the perfor-
mance decrease after introducing cybersecurity controls has been considered [9].

Most impact metrics do not consider the level of disruption from the orga-
nization’s perspective. Since the goal of BACSs is to support diverse business
processes in organizations, a measure of the business impact of cyberattacks is
needed. A BACS BCI metric is described in [12]. In summary, it is based on
a methodology that merges business and technical aspects of the BACS. From
the technical perspective, this methodology leverages on a graph data structure
whose nodes and edges represent BACS components and functional dependencies,
respectively. BACS components are then labeled with an initial score that rep-
resents their support on business processes. Finally, a centrality measure (called
BACRank) is computed on the graph to score BACS components based on their
BCI.

Rather than designing a new impact metric, our goal in this project is to build
a testbed that works as a BACS reference implementation whose properties (e.g.,
design, emulated business processes, etc.) are used to instantiate existing BCI
metrics.

Attacks. There are two main types of attacks in CPSs: those inherited from the
IT domain and the attacks that exploit the physical capabilities of the system.
Examples of attacks inherited from the IT domain are packet flooding, packet
spoofing, and password attacks [15]. On the other hand, attacks that leverage the
physical capabilities of the CPS include triggering alarms, opening/closing valves,
blinking lights, etc. [1,29]. IT attacks often serve as a first step towards cyber-
physical attacks. The scope of our work is focused on cyber-physical attacks.

Specifically on the BACS domain, different attacks have been described in
literature. Many of them targeting BACnet (ISO 16484-5) [3], one of the most
popular BACS protocols currently in use [13]. A condensed list of attacks is
shown in Table 1.

An attack classification framework is needed to methodically analyze attacks
and defenses. The threat intelligence community has developed a number of tax-
onomies to structure knowledge about cyberattacks. One of such taxonomies
is Mitre’s ATT&CK framework [31]. This framework describes Tactics, Tech-
niques, and Procedures used by adversaries. Tactics are the high-level goals
of the attacker, whereas techniques refer to the expected actions required to
achieve those goals. Finally, the procedures describe specific details about how to
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Table 1. BACS attacks described in literature.

Protocol Attack Reference

MS/TP DoS via frame desynchronization [16]

ICMP DoS via smurf attack [15]

IP DoS via packet flooding [15]

PPP Backdoor via modem connection [15]

BACnet DoS via malformed packet injection [19]

BACnet DoS via Initialize-Routing-Table command [15]

BACnet DoS via Reinitialize-Device command [11]

BACnet Snooping via I-Am-Router-To-Network command [15]

BACnet DoS via depletion of CoV subscriptions [26]

BACnet Firmware corruption via File object writing [10]

BACnet Data manipulation via WriteProperty attack [19]

instantiate the techniques. Although the ATT&CK framework was initially cre-
ated for standard IT enterprise environments, an analogous framework for ICSs
has been published recently.1 Since the ICS version of the framework fits more
accurately the BACS attacks discussed in this paper, we use it to categorize the
type of attacks we aim to study and the concrete instances of attacks executed.

3 Business Processes and BACSs

According to the Information Systems Audit and Control Association (ISACA),
a business process is a set of inter-related activities that deliver a specific product
or service to a customer [17]. Building services play an important role in orga-
nizations, supporting the execution of their business processes [12]. However,
the configuration of the BACS is different depending on the supported business
processes. Each business process location has a set of desired or, in many cases,
required environmental conditions it must comply with in order to fit its pur-
pose. Ventilation, temperature, illumination, among other conditions, are speci-
fied for different locations in diverse documents such as standards, regulations,
and best practices guides. Thus, setpoints, thresholds, and control algorithms
change depending on the particular setting. Examples of regulated environmen-
tal conditions are shown in Table 2, taken from [4–7,28,30].

Ventilation requirements are commonly expressed as liters per second (L/s)
or cubic feet per minute (CFM). Those requirements are intended to keep the
CO2 level below the specified values. Details on how to convert such measures
to CO2 parts per million (ppm) can be found in Appendix A.

1 https://collaborate.mitre.org/attackics/.

https://collaborate.mitre.org/attackics/
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Table 2. Required environmental conditions for diverse business process locations.

Business process Business
process
location

Illumination
(lux)

Ventilation
(CO2 ppm)

Temperature
(◦C)

Surgeries Operating
room

[500–600] ≤770 [20–24]

Teaching Lecture
hall

[300–500] ≤1400 [20–27]

Server hosting Data cen-
ter

[50–100] – [18–27]

Blood tests Laboratory [750–1200] ≤1400 [20–27]

Physical conditioning Fitness
gym

[200–300] ≤880 [20–22]

4 Testbed for Business Continuity Impact Assessment

Current security testbeds in the BACS domain focus on the demonstration of the
protection capabilities of defensive tools. Such demonstrations typically compare
the set of attacks that the tool can handle with the set of attacks it cannot. While
these attack-based demonstrations draw all attention to the technicalities of the
attack, no context information is given to illustrate the attack’s potential impact
in real-world scenarios and the best use cases for the proposed tools. No BACS
testbeds up to now, have used contextual information to analyze the impact of
cyberattacks.

To fill this gap, the focus of our testbed is the assessment of attacks impact
from the business perspective. We refer to such impact as Business Continuity
Impact (BCI). Our aim is to analyze attacks that exploit the physical capabilities
of the BACS and whose ultimate goal is to hinder business processes in the
targeted organization. In this section, we describe the development process of
our testbed, covering its requirements, design, and implementation.

4.1 Requirements

Scenarios. The goal of our testbed is to provide a platform to assess the impact
of attacks launched against different business scenarios. We define scenario as the
combination of a business process location (in previous sections regarded as the
context) and its supporting building services. Our observation, as can be derived
from Table 2, is that a reduced subset of core building services can abstractly
represent different business process locations. Based on this observation, the
requirement for our testbed is to implement automated illumination, ventilation,
and temperature control, so it can reproduce the environmental conditions of
diverse locations such as those listed in Table 2. Finally, a software tool is needed
to reconfigure and adapt these building services to the requirements of different
locations.
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Attacks. We focus on attacks that take advantage of the physical capabilities
of the BACS. According to Mitre’s tactics, techniques, and procedures hierarchy,
those attacks correspond to the impair process control tactic,2 in which “[t]he
adversary is trying to manipulate, disable, or damage physical control processes.”.
From a high level perspective, the requirement for our testbed is to provide the
technical means to reproduce impair process control attacks.

Impact Assessment. The required impact assessment metric must consider the
business process where the BACS is deployed. In particular, we are concerned
with attacks that can affect the normal execution of business processes. Such
metric is commonly known as BCI and allows to assess the impact of the attacks
launched against our testbed from the business perspective. Since our testbed
should be easily reconfigured to emulate different scenarios, the impact metric
can be used to compare identical attacks on many of them. The goal of such
experiments is to figure out to what extent the context influences the BCI.

To summarize our requirements, Fig. 2 shows the relation between attacks,
scenarios, and the impact assessment metric, where Ii,j is the BCI of attack i
under scenario j.

Fig. 2. Summary of our experimental setup requirements: (1) Reproducibility of impair
process control attacks; (2) Reproducibility of diverse scenarios modeled through build-
ing services; and (3) A BCI metric to compare the impact of attacks on multiple
scenarios.

4.2 Design

The minimal experimental setup needed to launch attacks and compute the cor-
responding BCI, must implement one scenario comprised of at least one business
process location and one building service. The building service embodies the tech-
nical attack surface that will be targeted by the adversary. The business process
tunes the impact metric so that its magnitude reflects the consequences of the
attack.

Our testbed integrates illumination, ventilation, heating, and cooling as build-
ing services. Figure 3 depicts those services as implementations of an abstract
BuildingService. Whereas each Scenario uses one or more BuildingService(s),

2 https://collaborate.mitre.org/attackics/index.php/Impair Process Control.

https://collaborate.mitre.org/attackics/index.php/Impair_Process_Control
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Fig. 3. High level design of our experimental setup.

a BuildingService might not necessarily model a Scenario. This is how BACS
testbeds have been built in the past. It is only by configuring the environmental
conditions of a BusinessProcessLocation that the overall Scenario required to
compute the BCI is added to the testbed. From a design perspective, we do not
limit the business process locations that can be emulated in our testbed.

The control algorithm differs per building service. Whereas some are acti-
vated upon specific time conditions, others require feedback from the environ-
ment. The former is known as open control loop (see Algorithm 1) and the latter
as closed control loop (see Algorithm 2). In our testbed, the illumination service
is handled by an open control loop. The ventilation and temperature control use
closed control loops.

Algorithm 1. Simplified open control loop.
while True do

if time for action = True then
take action()

else
stop action()

end if
end while

Algorithm 2. Simplified closed control loop.
while True do

if controlled var > upper limit then
decrease controlled var()

else if controlled var < lower limit then
increase controlled var()

end if
end while
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The design of BCI metrics is a complex task beyond the scope of this work.
Instead, we use self-evident scenarios whose attacks’ BCI can be deduced by
domain experts from the business processes’ technical requirements. We back up
the expert-based assessment with the BCI metric proposed in [12]. We do not
design new BCI metrics nor enhance existing ones.

In [12], the components to be assessed are represented as nodes in a graph
data structure. The edges of the graph represent dependencies between compo-
nents. The components’ impact scoring is executed in three steps. First, each
node is annotated with an initial score that, among other information, considers
the relevance of the component from the business perspective. During the sec-
ond step, the edges are annotated with an estimation of the dependency strength.
Finally, after all nodes and edges have been annotated, a graph centrality algo-
rithm (called BACRank) is executed on the graph to assign the final impact
score.

The granularity of the components to be assessed depends on the needs of
the organization. To simplify our discussion, we use building services as high
level components to be assessed. This decision reduces the graph size to only
three nodes: illumination, ventilation, and temperature control, which includes
the heating and cooling services.

4.3 Implementation

Hardware. BACSs comprise diverse components in a 3-layered hierarchical
arrangement. At the bottom, there are sensors and actuators, commonly referred
to as field devices. In the middle, embedded computers in charge of taking inputs
from the sensors and sending output signals to the actuators make up the control
layer. On top, there is a management layer which provides unified control and
monitoring to BACS administrators.

In our testbed, we use the BACnet communication protocol at the control and
management layers [3]. Although at these layers we use software and hardware
commonly used in real BACS deployments, at the field level we use smaller
actuators than those used in real buildings. This is due to our down-scaled
version of building rooms.

We built two physical modules that represent real building rooms. The first
module is a mechanical room that contains heating and cooling hardware that
emulates a building’s boiler and chiller, respectively. The second module is a
generic building room that requires heating and cooling services from the first
module. Moreover, it has a thermostat, illumination, and ventilation hardware.
The thermostat contains temperature, humidity, occupancy and CO2 sensors
(inputs) and relays to interact with the actuators (outputs). Both modules are
physically connected to allow the heat/cold transfer. Figure 4 shows a picture of
both physical modules.3

3 The 3D CAD designs, schematics of custom electronics, and bill of materials are pub-
lished in https://www.utwente.nl/en/eemcs/scs/downloads/2020 BACS testbed/.

https://www.utwente.nl/en/eemcs/scs/downloads/2020_BACS_testbed/
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Since the illumination service must adapt to different lighting requirements,
it is controlled by an analog output that regulates the light intensity. The analog
output provides a maximum of 20 mA at [0–12] VDC, which is too low to feed the
high power LEDs installed in the building room. A customized electronic circuit
was designed to dim the lights according to the driving analog output. The other
actuators are controlled using binary outputs connected to relays. Thus, avoiding
the need for additional circuitry.

The cost of the project can be divided in three parts. The structural compo-
nents, which includes the aluminum base, profiles, plexiglass, among others, have
an approximate cost of $700 USD. The BACnet specific hardware and software
has an approximate cost of $3.500 USD (see Table 3). Finally, other components
including power supplies, actuators, relays, etc. have an approximate cost of
$500 USD. After considering outsourced services (e.g., plexiglass laser cutting),
the overall cost of the physical components of the testbed is about $5.000 USD.
We consider this as reasonable costs for a small testbed and it should allow other
research groups to replicate our testbed.

Table 3. BACnet components used in our testbed.

Vendor Product BACnet profile Approximate cost

KMC BAC-5050 Router $1.000 USD

KMC FlexStat BAC-131136CEW B-ASC $1.000 USD

MBS BACeye version 2.1.0.15 B-OWS $500 USD

Janitza UMG 604-PRO B-SA $1.000 USD

Fig. 4. Testbed modules. The building room (on the right) is physically connected to
the mechanical room (on the left) to allow air flow.

Communication. As stated above, the chosen BACS communication protocol
is BACnet [3]. The underlying protocols include UDP, IP, ICMP, Ethernet, and
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MS/TP. A PPP connection to the Public Switched Telephone Network (PSTN)
is also added since it has been documented as an important attack vector for
BACS networks [15]. The variety of protocols available provides a considerable
attack surface. A network diagram of our testbed is shown in Fig. 5.

Historian

OWS 1
PSTN

BACnet
Router

Modem

Core switch

Heater

Ventilation

Illumination

OWS 2

IP link
MS/TP link
PPP link
Electrical signals

192.168.100.50

192.168.100.5
(attacker)

192.168.100.2

192.168.100.80

Cooler

Fig. 5. Network topology (including electrical signals to actuators).

The IP network implements a star topology. The core switch has been con-
figured with a mirroring port to collect all the network traffic exchanged during
the experiments.

Software. The most important software applications used in our testbed are
BACeye 2.1.0.15 and bacnet-stack 0.8.6.4 Using bacnet-stack we implement a
Linux-based Operator Work Station (OWS 1 in Fig. 5). It runs a custom appli-
cation developed to quickly reconfigure the testbed to meet the environmental
requirements of predefined business process locations.

BACeye runs on a Windows-based OWS, which we assume under control of
the attacker (OWS 2 in Fig. 5). Network captures taken during the experiments
might show legitimate and malicious traffic from this computer.

The firmware version of the FlexStat controller is R2.1.0.18. The BAC-5050
router runs firmware build R1.8.0.1.

5 Empirical Analysis of BACS Attacks

We execute attacks against the illumination (I), ventilation (V), and temperature
control (T) services implemented in our testbed. As specified in our testbed’s
requirements (Sect. 4.1), the attacks considered is this work correspond to Mitre’s
impair process control tactic. One step down in the ATT&CK hierarchy, there
are 11 techniques to implement such tactic. Since we want to replicate the same
attack conditions on different scenarios, we chose the Unauthorized Command
4 https://sourceforge.net/projects/bacnet/.

https://sourceforge.net/projects/bacnet/
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Message technique for all the attacks. According to Mitre’s website,5 follow-
ing this technique “[a]dversaries may send unauthorized command messages to
instruct control systems devices to perform actions outside their expected func-
tionality for process control.”. Further down in the hierarchy, we also fix the
attack procedure. We chose one of the attacks listed in Table 1, specifically, data
manipulation via the WriteProperty attack [19]. This attack consists of a syn-
tactically valid BACnet message that changes a property in a BACnet object.

To achieve our goal of comparing the BCI of identical attacks on different
scenarios, we pick three business process locations from Table 2, namely the
operating room, lecture hall, and data center. Those locations are chosen due to
their diverse building service requirements. During the experiments, the testbed
is configured to fit the environmental conditions defined for each business process
location.

The BCI of cyberattacks can be computed in advance by understanding the
requirements of business processes on building services. Building services that
are essential for business processes will have larger BCI than other services.
The impact levels assigned to building services are technically-backed choices
made by domain experts. In what follows, we present a short description of such
technically-backed choices for each location assessed. A summary is presented in
Table 4.

Operating Room. The World Health Organization deems illumination as “one
of the major nonstructural elements in a hospital” [35]. While most people would
agree that all environmental conditions in operating rooms are important, the
severity and immediacy of an attack on the illumination service are key factors to
consider it as the highest priority service, above the ventilation and temperature
control, both considered of medium impact.

Lecture Hall. The concern for air quality is common in densely occupied indoor
spaces [4]. A high concentration of CO2 (e.g., ≥1400 ppm) might lead to illness
symptoms such as headaches and dizziness. Moreover, the ventilation is consid-
ered a high priority service in lecture halls since it has been shown that improving
the air quality increases the students performance [34]. Although illumination
and temperature are also relevant, they have been scored as medium impact
services.

Data Center. Data centers are extremely sensitive to temperature [6]. Whereas
low temperatures increase the chances of electrostatic discharges, high temper-
atures might damage the servers’ hardware, or trigger safety mechanisms to
automatically power them off. For those reasons, temperature control is by far
considered the most important building service for the continuity of operations
in a data center. Data centers do not have ventilation requirements (see Table 2)
mainly because servers do not produce CO2 in-situ. Finally, illumination is pri-
marily used to enable video surveillance. For those reasons, the ventilation and
illumination are deemed as low impact services.

5 https://collaborate.mitre.org/attackics/index.php/Technique/T855.

https://collaborate.mitre.org/attackics/index.php/Technique/T855
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Table 4. BCI levels of building service attacks on different contexts. Highlighted in
bold font the high impact services per location.

Attack Operating room Lecture hall Data center

Illumination High Medium Low

Ventilation Medium High Low

Temperature Medium Medium High

5.1 Attacks

We configured our testbed according to the chosen scenarios to launch three
attacks in each of them: turning the illumination off, stopping the ventila-
tion service, and stopping the temperature control service. All attacks are exe-
cuted against the thermostat FlexStat BAC-131136CEW (BACnet Application-
Specific Controller). The specifics of each attack are detailed in Table 5. These
attacks do not respond to vulnerabilities particular to the device but to the
BACnet protocol itself.6

Table 5. Attack procedures against the building controller. Object types and instance
numbers provided to ease the analysis of the corresponding pcap files.

No Attack BACnet service Object type Object instance Written value

1 Illumination WriteProperty Analog output 5 0

2 Ventilation WriteProperty Binary output 1 0

3 Temperature WriteProperty Binary output 2,1 0

Illumination. The ambient light in the room where the testbed is located is
measured in the range of [46, 52] lux. All the illumination experiments start with
sensor readings in this range. After approximately 40 samples of ambient light,
the illumination service is turned on at the intensity needed to meet the require-
ments of each specific scenario. Approximately 40 samples later the first attack
is executed, which causes the sensor to report the ambient light intensity again,
confirming thus the attack. Figure 6 shows the illumination samples collected
during our experiments for each scenario.

Ventilation. Unlike lecture halls and operating rooms, data centers do not have
CO2 requirements (see Table 2). Since there are no consequences from the busi-
ness perspective, we did not execute a ventilation attack on the data center
scenario.

6 Network captures of each attack are published in pcap format at https://www.
utwente.nl/en/eemcs/scs/downloads/2020 BACS testbed/.

https://www.utwente.nl/en/eemcs/scs/downloads/2020_BACS_testbed/
https://www.utwente.nl/en/eemcs/scs/downloads/2020_BACS_testbed/
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Fig. 6. Illumination attack on different scenarios. The y-axis represents lux units for
all scenarios. Data points collected during the experiment are shown using the “+”
character. Dashed lines show the minimum and maximum allowed values.

During the experiments, the ambient CO2 level is in the range of [632,
674] ppm. For both ventilation attacks we take approximately 10 sensor readings
before leaking CO2 inside the testbed’s building room. We use 16 g cylinders of
CO2 commonly found in bike shops to inflate tires. As expected, the CO2 values
increase but are quickly brought back to normal by the ventilation service. Once
the CO2 values are below the threshold, the fan is automatically deactivated
which causes the CO2 level to rise above the maximum limit again. The maxi-
mum limit violation triggers the ventilation service a second time. At this point,
the attack is executed (i.e., the ventilation is turned off) which causes the CO2

level to keep increasing. Finally, the CO2 source depletes its content which drops
the sensor readings again. Figure 7 shows the CO2 level in our testbed during
both experiments simulating the lecture hall and operating room locations.

Fig. 7. Ventilation attack on the lecture hall and operating room scenarios. The data
center scenario is excluded since it does not have specific CO2 requirements. The y-
axis represents CO2 ppm units for both scenarios. Data points collected during the
experiment are shown using the “+” character. The dashed line shows the maximum
allowed values.

Temperature Control. Each experiment starts by recording the ambient tem-
perature of the testbed’s building room. Afterwards, a source of heat is placed
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inside the room. For these experiments, three anti-spill aluminum bottles filled
with boiling water are used as heat source.

As in the previous experiments, we first let the system react as it was designed
to work. Later on, the third attack is executed which turns off both the cooler,
physically located in the testbed’s mechanical room, and the fan, located in
the testbed’s building room. Both devices are controlled from the thermostat by
binary output object instances 2 and 1, respectively. Although the attack com-
prises two components, the goal is to increase the temperature regardless of the
CO2 level measured by the ventilation service. Figure 8 shows the temperature
plots of our three experiments.

Fig. 8. Temperature attack on different scenarios. The y-axis represents degrees Celsius
for all scenarios. Data points collected during the experiment are shown using the “+”
character. Dashed lines show the minimum and maximum allowed values.

5.2 BACRank Scoring

To back up the intuitive BCI of attacks discussed in the previous section, here we
follow the methodology described in [12] to measure it. As discussed in Sect. 4.2,
the BACS must be modeled as a graph data structure, where the nodes represent
the building services implemented: illumination, ventilation, and temperature
control.

The edges of the graph model the way in which the BACS is programmed and
built. In our testbed, the illumination and ventilation services do not have exter-
nal dependencies. The temperature control service, on the other hand, depends
on the ventilation service to make the heat/cold transfer from the mechanical
room to the building room. From the implementation point of view, the strength
of such dependency is 100%. A graphical representation of the graph is shown
in Fig. 9.

According to [12], each asset m of the BACS is represented as a vertex in the
graph, where the granularity of such assets can range from specific data points
to entire building services. The initial score given to each vertex (denoted as δ)
at time t is defined as:

δ(m, t) =

{
max1≤i≤n(β(pi) · γ(sj , pi)) if time(pi, t) = time(m, t) = 1,
0 otherwise,
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Fig. 9. Graph used to compute the BCI of the illumination (I), ventilation (V), and
temperature control (T).

where function β returns the Business Impact Analysis (BIA) [18] score of busi-
ness process pi, out of n business processes in the organization. Moreover, func-
tion γ encodes how relevant building service sj (of which m is part) is to business
process pi. Finally, time is a binary function that is overloaded to take as input a
business process or a BACS asset. time(pi, t) = 1 means that business process pi
is running at time t, and time(m, t) = 1 means that asset m is needed at time t.

Three components of the δ function are simplified when using the BACRank
methodology in our testbed:

Assets. Unlike [12], that considers software modules as the assets to evaluate,
we use building services as coarse grained assets. This decision simplifies our
discussion while preserving all the properties of the original methodology.

Business Processes. Since we consider only one business process per orga-
nization (i.e., hospital→operating room, hosting company→data center, and
university→lecture hall), subscripts are not needed for business processes. Fur-
thermore, since BIA scores of different organizations are not comparable, we
assume each business process to have identical values for β.

Time. We assume that all building services and business processes are
needed/active at the time of the assessment.

These changes lead to a simplified version of the original function:

δ(sj) = γ(sj , p).

Thus, it is clear that the initial scoring of each building service is a function
of the business process p. Table 6 specifies the initial scores of the building ser-
vices implemented in our testbed. Moreover, it contains the final BCI score of
each service and, consequently, of the attacks targeting them. Details on how
to compute the BACRank score are described in [12]. A brief summary is also
provided in Appendix B.

Table 6. Initial and BCI scores of the implemented building services. Highlighted in
bold font the BCI values considered high in Table 4.

Location δ(I) δ(V ) δ(T ) BCI(I) BCI(V) BCI(T)

Operating room 1.0 0.5 0.5 1.0 1.0 0.5

Lecture hall 0.5 1.0 0.5 0.3 1.0 0.3

Data center 0.1 0.1 1.0 0.1 1.0 1.0
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The BACRank-based BCI score is normalized in the range [0–1] per orga-
nization. By comparing the BCI scores from Table 6 with the BCI scores from
Table 4, it is possible to observe a match in the most important building ser-
vices. That is not the case for some services previously considered of medium or
low impact. This is because in addition to business aspects, BACRank consid-
ers technical aspects omitted in the first assessment. The BACRank-based BCI
tends to increase the ventilation service score because other building service (i.e.,
temperature control) as a strong dependency on it.

6 Conclusion

We have presented the first BACS security testbed focused on the assessment
of Business Continuity Impact (BCI) of cyberattacks. The unique feature of our
testbed is its capability to reconfigure the implemented building services to fit
the requirements of different business process locations. Its BACS design and
emulated business processes are used to instantiate existing BCI metrics, which
shed light on the impact of identical attacks on different scenarios. We have
made available all the materials needed for other research groups to replicate
our testbed and experiments.

The hardware of our testbed is essentially similar to the hardware found in
existing testbeds. In the same way that we abstractly represent business pro-
cesses as specific configurations of the BACS, existing testbeds could incorpo-
rate context by configuring their building services to fit the needs of business
processes of choice. Regardless of the original purpose of their testbed (e.g.,
education, demonstration, etc.), the addition of context would enable them to
analyze attacks from the victim’s perspective.

Although simple BCI assessments could be done independently of a physical
testbed, more sophisticated BCI metrics require additional information such as
the BACS design. In these cases, the BACS design of the testbed could be used
as an input of the BCI metric. We have presented both kinds of assessments in
this work. The development of new BCI metrics was beyond our scope.

Using our testbed, we showed that the addition of context is required to
properly assess the BCI of BACS attacks. More than a requirement, such context
is a crucial aspect that can swing an attack evaluation from high impact (e.g.,
illumination in an operating room) to low impact (e.g., the same illumination
attack in a data center).

A key aspect of our BCI assessments is that the impact scores are linked
to the targeted physical variables (and their corresponding building services)
but not to the attack procedures. This approach decouples our reasoning about
cyberattacks from the low level details of their implementation. The impact
materializes only after the variable crosses a predefined threshold, whatever the
means.

The selection of security controls should be based on the concept of risk,
commonly defined as the product of impact and probability of attacks. By iden-
tifying the impact of physical variables on business processes, it is possible to
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make a better assessment of the defensive tools needed to protect the business
continuity. This aspect is typically overlooked by current BACS testbeds focused
on the demonstration of security solutions.

As future work, we will use the context added to our testbed to experiment
with context-aware intrusion detection systems. Moreover, we will address the
execution of automated attacks as an optimization problem that tries to maxi-
mize the impact in each particular scenario.

Acknowledgments. This work is partially funded by the Costa Rica Institute of
Technology.

A Ventilation Rate

The ventilation rate Q, commonly measured in liters per second (L/s), is com-
puted using Eq. 1, where:

– G is the CO2 generation rate per person (assumed 0.005 L/s).
– Ci is the acceptable indoor CO2 concentration, measured in parts per million

(ppm) and is different per business process location.
– Ca is the ambient CO2 concentration (assumed 350 ppm).

Q =
G

(Ci − Ca)
(1)

The CO2 values in Table 2 refer to the Ci parameter, which can be obtained
rearranging Eq. 1, given Q.

B BACRank Centrality Measure

The BACRank centrality measure is defined as:

BACRank(m, t; i) =

{
δ(m, t), at iteration i = 0,

δ(m, t) +
∑

n∈N+(m) BACRank(n, t; i − 1) · ω(em,n), for i > 0.

The BACRank score measures the BCI of node m at time t through several
iterations i. At iteration 0, each node in the graph gets as score the initial value
assigned by the δ function (see Sect. 5.2). For all the following iterations, node m
gets as score the initial value δ plus a contribution from the nodes that depend
on m. We call this set N+(m). The contribution consists on a fraction of current
BACRank score of all nodes n ∈ N+(m). The fraction of the transferred score
depends on the weight of the edge (denoted ω) between nodes m and n. After a
number of iterations, depending on the complexity of the graph, the BACRank
score converges for all nodes in the graph. This is then considered the final BCI
score of each element in the BACS.
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Abstract. Modern Operating Systems (OSs) enable user processes to
obtain full access control over other processes initiated by the same user.
In scenarios of sensitive security processes (e.g., antivirus software), pro-
tection schemes are enforced at the kernel level such as to confront arbi-
trary user processes overtaking with malicious intent. Within the Win-
dows family of OSs, the kernel driver is notified via dedicated routines
for user-mode processes that require protection. In such cases the ker-
nel driver establishes a callback mechanism triggered whenever a handle
request for the original user-mode process is initiated by a different user
process. Subsequently, the kernel driver performs a selective permission
removal process (e.g., read access to the process memory) prior to pass-
ing a handle to the requesting process. In this paper we are the first
to demonstrate a fundamental user-mode process access control vulner-
ability, existing in Windows 7 up to the most recent Windows 10 OSs.
We show that a user-mode process can indeed obtain a fully privileged
access handle before the kernel driver is notified, thus prior to the call-
back mechanism establishment. Our study shows that this flaw can be
exploited by a method to (i) disable the anti-malware suite Symantec
Endpoint Protection; (ii) overtake VirtualBox protected processes; (iii)
circumvent two major video game anti-cheat protection solutions, Bat-
tlEye and EasyAntiCheat. Finally we provide recommendations on how
to address the discovered vulnerability.

1 Introduction

Process isolation acts as a core OS security function, prohibiting user interaction
with processes that do not belong to them. Hence, the OS prevents access to pro-
cess memory, and does not allow interference with process execution. Nonethe-
less, interaction is possible if two processes are owned by the same user. Whilst
both processes have the same owner, interaction is not considered as a security
c© Springer Nature Switzerland AG 2020
C. Maurice et al. (Eds.): DIMVA 2020, LNCS 12223, pp. 67–88, 2020.
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risk as in reality many processes require such interaction to fulfill their tasks.
For instance, a debugger must be able to attach itself to another process to con-
trol it and access its process memory. In fact, OSs provide Application Program
Interface (API) functions to support such interactions. Namely, Linux provides
the ptrace system call to observe and control another process whereas Windows
provides the OpenProcess system call to obtain process handles that can then
be used to interact with other API functions (e.g., ReadProcessMemory).

Regardless of the usefulness derived from the interaction between various
user-mode processes, there exist situations where such functionality needs to
be controlled. For example, on a desktop computer all User Interface (UI)-
dependent processes initiated by the user have access to each other. Unavoidably,
if the user accidentally executes a piece of malware, the resulted spawned pro-
cess is able to access and control all other processes belonging to the same user.
Consequently, the malware can deploy a range of operations on other processes,
including suspending or terminating the process, or reading and modifying its
memory. Under this simple access take over, malware would therefore be in a
position to access a banking application and read credit card details, or suspend
execution of anti-virus software processes running as the current user.

The Windows OS family contains kernel API functions for modules (drivers)
to protect security sensitive processes such as anti-virus software. As currently
implemented in Windows OSs, the kernel driver is notified when a user-mode
process requiring protection starts. Subsequently, the kernel driver registers a
callback procedure in memory, triggered every time another process requests a
handle on the protected process. The kernel driver is set up to intercept system
calls such as OpenProcess, and selectively remove permissions (e.g. read access
to the process memory) before passing the handle to the requesting process.
Subsequently, the caller obtains a process handle with reduced capabilities that
prevent security critical forms of process interaction. In general, the kernel driver
feature is widely used in Windows OS to protect critical processes. For instance,
anti-virus software utilises the aforementioned feature to prevent malware from
disabling anti-virus processes; Virtual Machines (VMs) use it to enforce appro-
priate isolation preventing access to security critical kernel functions exposed
by their drivers from other processes; anti-cheat software uses this feature to
prevent cheaters from obtaining access to the game process.

In this paper we show that the previously described protection method can
be circumvented, highlighting a fundamental issue within the Windows OSs.
We argue that this discovery is not a traditional vulnerability that could be
fixed with a simple patch, but rather a core OS security design flaw. Through
this work, we demonstrate that arbitrary user-mode processes can obtain fully
privileged handles before the kernel driver instruments a callback protection
procedure. Consequently, user-mode processes can outrun notification routines
destined for the kernel protection driver of the newly created processes. This vul-
nerability has been acknowledged by Microsoft (see Sect. 6.5); however, Microsoft
argues that the issue should be addressed by individual software developers, as
addressing it on a kernel level would lead to backward compatibility issues.
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The contributions of our work are:

– Outrunning Kernel Notifications: we introduce how kernel notification rou-
tines can be outrun by an unprivileged user-mode process.

– Example Exploits: we show how the flaw can be exploited to (i) disable the
anti-malware suite Symantec Endpoint Protection; (ii) take control of Virtual-
Box protected processes; (iii) circumvent the two major video game anti-cheat
protection software solutions, BattlEye and EasyAntiCheat.

– Mitigating the Flaw by Design: we recommend that user-mode functions tak-
ing a Process identifier (PID) as a parameter should not be able to do so
with incomplete initialisation since kernel routines are triggered post initiali-
sation. Although, Microsoft does not plan to implement such functionality as
it would create compatibility issues.

– Handle Invalidation Procedure: we indicate that on spawn detection of the
protected process, the kernel driver could initiate immediate termination,
thus invalidating any handle that might have been obtained by exploiting the
discovered vulnerability. The driver can then respawn the process from kernel-
space and set up callback protection without delay. However, the proposed
procedure has limitations and cannot be used in all cases.

The remainder of this paper is structured as follows: Sect. 2 focuses on the
required background knowledge to understand the identified vulnerability, asso-
ciated exploits, and their impact. Section 3 discusses the discovered vulnerabil-
ity and two example exploits applying alternate exploitation methods. Section 4
demonstrates the vulnerability and our two exploits over three case studies.
Related work is presented in Sect. 5, followed by a discussion in Sect. 6 detailing
how we discovered the vulnerability, its consequences, and possible solutions. We
conclude and summarise the paper in Sect. 7.

2 Background

One of the many roles an OS has, is to enable processes to execute concurrently,
securely isolated, with sufficient guarantees that they will not disrupt each other
or the overall system. However, in some cases processes require interaction to
fulfill their tasks, and must request authorisation to do so from the OS. Tradi-
tionally, on Microsoft Windows OSs the function OpenProcess is used to request
a handle on a target process; the obtained handle represents authorisation.

A handle has a set of privileges [1] allowing it to be used for specific opera-
tions. For instance, a process handle may permit the creation of child processes
and new threads, duplication of handles, querying of information, setting of quo-
tas as well as suspension, resumption and termination of the process. Moreover,
a handle can permit the creation of virtual memory operations, reading and
writing of the process virtual memory, and synchronisation with a given target
process. Many of these aforementioned privileges can be used to alter adja-
cent processes, it may therefore be important to apply restrictions. Examples of
processes where privilege limitation is necessary include anti-malware software,
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software using drivers exposing sensitive kernel functions, banking and point of
sale applications, and multiplayer video game processes.

Access to processes can be limited by executing them as different users. How-
ever, if processes are executed under the same user, control can be challenging to
implement, as by default a user has full access to all of his processes. In addition,
processes running as administrator can also access user processes. Microsoft pro-
vides a standard method to implement such protection using specialised kernel
API functions, to limit handle privileges obtained for a process running as the
same user or higher privileged users. To the best of our knowledge, this is the
only officially advised method to implement such a security mechanism.

A kernel driver uses the kernel API function PsSetCreateProcessNotifyRou-
tine/Ex to receive notification of new processes. When a new handle on a process
is requested, a callback previously registered with ObRegisterCallbacks is trig-
gered, and the kernel process can apply filters to limit the privileges of this
handle. Thus, fine-grained access control amongst processes owned by the same
user or more privileged users can be implemented. This is an important feature,
as on a Windows OS most processes run under the user logged into the GUI of
the system. This includes processes of security critical applications.

2.1 Notification Routines

To implement process protection, the kernel driver must be notified of new pro-
cesses in the system. The driver registers a create process notify routine using
PsSetCreateProcessNotifyRoutine/Ex providing a pointer to one of its functions
that will be executed when a new process is created or terminated. The pseudo-
code in Listing 1.1 depicts the key instructions.

1 NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject ,

PUNICODE_STRING RegistryPath) {

2 PsSetCreateProcessNotifyRoutine (

ProtectionDriverFindProtected , FALSE);

3 }

4

5 NTSTATUS ProtectionDriverFindProtected (HANDLE ParentId ,

HANDLE ProcessId , BOOLEAN Create) {

6 // Code executed at process creation

7 }

Listing 1.1. Key steps to register a notify routine

In the DriverEntry function, the kernel driver calls PsSetCreateProcessNo-
tifyRoutine with ProtectionDriverFindProtected as a parameter. This instructs
the kernel to execute the driver’s function ProtectionDriverFindProtected when
new processes are created or terminated. The kernel passes parameters to this
function: (i) a HANDLE to the parent process, (ii) a HANDLE to the new
process, and (iii) a BOOLEAN indicating if the process was started or termi-
nated. Now that the driver is notified of any new processes, it can be decided in
ProtectionDriverFindProtected if a process requires protection, and what type
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of protection to apply. For example, protection might be applied to processes
matching a specific image name or signature.

Figure 1 shows the sequence of events when a new process is created. In
this diagram, process A starts process B. For example, process A could be
explorer.exe used to find and then double click on an application to start process
B. The parent process (process A) in this example uses CreateProcess to create
process B, however, the same sequence of events occurs if another function is
used to create process B (e.g. CreateProcessAsUser, ShellExecute, or system).

Fig. 1. Creating a new process with a driver’s process create notify routine

Fig. 2. Handle request with a driver having set up callbacks protection
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The kernel performs various checks and operations to prepare process B for exe-
cution. Amongst these operations, the kernel creates memory structures describ-
ing the new process, such as KPROCESS or EPROCESS, and attributes a
unique PID to the new process, making it reachable with other API functions
taking a PID as a parameter, including OpenProcess. The kernel then looks
at the registered create process notify routines, and transfers execution to the
drivers having registered one. In our example, control is then passed to our ker-
nel driver, and its ProtectionDriverFindProtected function is executed. The code
in this function first checks whether protection should be applied, then applies
it if necessary.

This specific sequence of events is problematic as the newly created process
B is accessible before protection can be applied. Process B can be addressed
by other processes in the system before protection is applied in Step 4. This
provides a time window for malicious processes to obtain a handle on process
B before protection is put in place. The driver then transfers control back to
the kernel, then back to the user-mode process, and finally process A continues
execution and process B starts executing with protection in place.

2.2 Protection via Callback

The kernel driver registers a callback so that when a handle on a process is
requested, a function in the kernel driver is called. This process is depicted in
Fig. 2. Before delivering the requested handle, the kernel first transfers execution
to the driver, and passes parameters allowing it to retrieve relevant informa-
tion about the handle operation to perform adequate filtering. This information
includes whether the handle is newly created or duplicated, whether it is a kernel
handle or not, a pointer to the target process or thread, a pointer to the object
type, and a pointer to a memory structure describing operation-specific param-
eters. With this mechanism, a driver can apply fine grained filtering on handles
to the process it protects. The decision on which processes to protect is per-
formed when the driver is notified on the creation of new processes as described
in the previous section. The driver can, for example, remove specific rights on a
handle, preventing operations including reading or writing the process memory.
After the driver’s callback function is executed, the driver transfers control back
to the kernel, and then back to the user-mode process having initially requested
the handle. Listing 2 shows the key steps to register a callback.

1 PVOID pCbHandle = NULL;

2 OB_OPERATION_REGISTRATION obCbOp;

3 OB_CALLBACK_REGISTRATION obCbReg;

4 obCbOp.ObjectType = PsProcessType;

5 obCbOp.Operations |= OB_OPERATION_HANDLE_CREATE;

6 obCbOp.PreOperation = PreCbOp;

7 obCbReg.OperationRegistration = &obCbOp;

8 ObRegisterCallbacks (&obCbReg , &pCbHandle);

9 OB_PREOP_CALLBACK_STATUS PreCbOp(PVOID RegistrationContext ,

POB_PRE_OPERATION_INFORMATION OperationInformation) {
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10 // Code executed at handle request

11 }

Listing 1.2. Key steps to set up callbacks protection

To register a callback, we initialise and fill the required memory structures,
specifying that we want our callback to be triggered when a handle is requested
on processes. We set our callback to be executed when a new handle is created
with the flag OB OPERATION HANDLE CREATE, and supply a pointer to
the function to be executed. Finally we register the callback by calling ObRegis-
terCallbacks.

3 Vulnerability

A vulnerability arises from an insecure time period during new process creation.
In this initial phase the process is initialised by performing all of the operations
required prior to the execution of the program. Among these operations, the OS
kernel internal memory structures describing this new process are created, and
the process is given a unique PID, enabling API functions taking a PID as a
parameter, including OpenProcess. This insecure time period is present between
stage 2 and 4, as shown in Fig. 1. During initialisation, any driver designed to
apply protection has not yet received notification that a new process has been
created, and therefore no protection can be applied, while the process is already
reachable from API functions. Figure 3 shows a simplified time-line of these
events.

Fig. 3. Time-line of a newly spawned process

Exploiting this insecure period of time is therefore possible if one can (i) know
that a newly process has spawned and (ii) know its PID, before the initialisation
completes. We have discovered two different methods to accomplish this and
exploit the vulnerability.

The First Method is Based on Registering a Job Object on the Par-
ent Process of the Target Process. A job object allows groups of processes
to be managed as a unit. Job objects are namable, securable, sharable objects
that control attributes of the processes associated with them [2,3]. We noticed
that job objects allow a process to be notified of a new child process with its
PID directly after it starts, before the initialisation phase completes, and before
the driver is notified and applies any protection. Our exploit can then simply
call OpenProcess to obtain a fully privileged process handle before protection
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is applied. We named this first exploit hFromJob, since it gives a fully privi-
leged handle (h) using a job object (FromJob), following the Hungarian naming
convention that Microsoft traditionally uses.

The Second Method Uses Aggressive PID Guessing. We simply start
several threads calling OpenProcess on all the possible IDs that the new process
could be assigned. A separate thread then analyses all the handles gathered,
and stops the exploit once it has obtained a handle to the targeted process. We
named this second exploit hThemAll, since it obtains a fully privileged handle
(h) by attempting to obtain it through all possible PIDs (ThemAll).

3.1 Exploit Using Job Object (hFromJob)

In this first exploit, we create a job object on explorer.exe assuming that the
target process will spawn as its child process. This configuration is useful as a
proof of concept, as it represents starting a process by double-click, the normal
procedure a user would adopt to start a new process. This exploit can be adapted
to other scenarios by creating a job object on the known parent process. For
example, programs started from the command line have cmd.exe as parent; the
job object should therefore be on this process instead.

The key steps are to create an IO port handle using CreateIoCompletion-
Port, create a handle to the job object with CreateJobObjectW, configure the
job object with SetInformationJobObject, and finally assign the job object to the
parent process with AssignProcessToJobObject. The exploit process will be noti-
fied of new processes being spawned by checking the I/O completion port queue.
Therefore, we start a thread on a function that checks the queue as fast as pos-
sible, and directly calls OpenProcess on any new process. This method outruns
kernel process notification routines since the notification from the job object
takes place before the end of the initialisation phase. This exploit has the follow-
ing requirements: (i) the parent process of the targeted process must be known
in advance, and (ii) it must be possible to obtain a process handle on the parent
with the permissions PROCESS SET QUOTA and PROCESS TERMINATE.
The C++ source code for this exploit can be found on GitHub [4].

3.2 Exploit Using PID Guessing (hThemAll)

An alternative approach is possible. It is feasible to simply predict or “guess”
the PID of the target process. To the best of our knowledge, it is not possible to
predict with 100% accuracy the PID of the next process to be spawned from user-
mode, therefore we took advantage of how Windows manages PIDs to narrow
the search space for the next PID: (i) Both process IDs and thread IDs are
generated in the same namespace, therefore, they cannot overlap [5]; (ii) PIDs
& TIDs are always multiples of 4; (iii) Windows attempts to keep process and
thread IDs in low numbers.
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The exploit starts by listing all currently existing PIDs and TIDs, excluding
them as potential PID for our target process to be spawned. We then create
several threads attempting to obtain a fully privileged handle on every possible
PID as fast as possible. Every new process handle is placed in a list analysed by
a separated thread individually. When a handle to the target process is found,
the exploit terminates. The C++ source code can also be found on GitHub. [6]

4 Case Studies

We developed our own protection driver following Microsoft’s driver developer
guidelines. We first use this demonstrator to clearly showcase the vulnerability.
Thereafter, we describe how the vulnerability can be exploited to (i) disable the
anti-malware suite Symantec Endpoint Protection; (ii) take control of Virtual-
Box protected processes; (iii) circumvent the two major video game anti-cheat
protection software, BattlEye and EasyAntiCheat. We demonstrate that the
vulnerability can be used to bypass protection mechanisms for a wide variety of
current applications, highlighting the severity of this issue.

4.1 Bypassing Our Own Protection Driver

Anti-malware solutions, security critical applications, and video game anti-cheat
software are not open source and often obfuscate code structure and operations.
We decided that our work would benefit from presenting the vulnerability in a
context where both attack and target code structure is known. This allows us to
precisely pinpoint and clearly describe the vulnerability along with the sequence
of events leading to its exploitation. We therefore developed a minimalist kernel
driver that installs protection for a specific process that we then target with our
exploits; we attempt to obtain a fully privileged handle to the process protected
by the kernel driver.

The simplified pseudo-code in Listing 1.3 shows the key steps our driver fol-
lows to set up protection. The full code of the driver can be found on GitHub [7].

The driver starts by registering a routine with PsSetCreateProcessNotify-
Routine, which causes our driver’s function ProtectionDriverFindProtected to
be called whenever a process is created or terminated, as explained in Sect. 2. It
then registers a callback by calling the function ProtectionDriverSetProtection,
which will cause the function PreCbOp to be executed when a new handle is
requested on a process. This function, not included in the pseudo code for sim-
plicity, fills the required memory structures before calling ObRegisterCallbacks
as per Microsoft’s guidelines [8].
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1 HANDLE hProtectedPID = NULL;

2 NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject ,

PUNICODE_STRING RegistryPath) {

3 PsSetCreateProcessNotifyRoutine (

ProtectionDriverFindProtected , FALSE);

4 RegisterCallback ();

5 }

6 NTSTATUS ProtectionDriverFindProtected (HANDLE ParentId ,

HANDLE ProcessId , BOOLEAN Create) {

7 if (IsProtected(ProcessId , "Protected.exe"))

8 hProtectedPID = ProcessId;

9 }

10 OB_PREOP_CALLBACK_STATUS PreCbOp(PVOID RegistrationContext ,

POB_PRE_OPERATION_INFORMATION OperationInformation) {

11 HANDLE TargetProcessId = PsGetProcessId (( PEPROCESS)

OperationInformation ->Object);

12 if (TargetProcessId != hProtectedPID)

13 return OB_PREOP_SUCCESS ;

14 if (OperationInformation ->Operation ==

OB_OPERATION_HANDLE_CREATE)

15 OperationInformation ->Parameters ->

CreateHandleInformation .DesiredAccess &= ~

PROCESS_TERMINATE;

16 }

Listing 1.3. Key steps of the protection driver

The function ProtectionDriverFindProtected checks the new process’s image
name and compares it to the protected process name, then sets the protected
process ID in the global variable hProtectedPID when found. In our proof of
concept driver we protect the latest instance of any process with the image name
Protected.exe. This first phase allows the driver to find the protected process ID,
so the defence mechanism using callbacks can modify future requested handles.

If the requested handle is on the protected process, the function PreCbOp
removes the permission PROCESS TERMINATE (0x1) as evidence, demon-
strating that the handle permissions were successfully edited by our driver. This
last phase represents the defence mechanism implemented by our driver.

As an experiment, we first launch a dummy process named Protected.exe,
and then attempt to obtain a fully privileged handle from another process. This
works as intended, obtaining a fully privileged handle and therefore full access
to the target process. Next, we load our protection driver, then execute Pro-
tected.exe and attempt to obtain a fully privileged handle from another process.
This results in the acquisition of a handle without PROCESS TERMINATE
(0x1) permission. This indicates that our protection driver has successfully pro-
tected the process, and removed the permission to terminate it on the handle.

Finally we terminate Protected.exe and execute our two exploits (hFromJob
and hThemAll) described in Sect. 3 before executing Protected.exe. This time,
both our exploits successfully obtain a fully privileged handle, which indicates
that the protection was not in place on time to protect the process. This shows
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that kernel notification routines are slow enough that we can obtain a handle
using PID guessing (with exploit hThemAll), and that user-mode process notifi-
cations obtained from job objects are also faster than kernel notification routines
(with hFromJob). This allows us to bypass any protection set after PsSetCre-
ateProcessNotifyRoutine/Ex by outrunning them from unprivileged user-mode
processes; in this specific case we bypassed the callback protection.

We provide a short video demonstrating this experience [9].

4.2 Disabling Anti-malware

In this second case study we use our exploits to obtain a fully privileged handle
on the service process of Symantec Endpoint Protection. Symantec anti-malware
service, ccSvcHst.exe, is spawned as a child of services.exe under the user NT
AUTHORITY \SYSTEM, which spawns another instance of the same binary
running under the current user.

When requesting a fully privileged handle on the anti-malware user process
using OpenProcess with PROCESS ALL ACCESS, a handle is received but with
only the following permissions: Query information, Create processes, VM read,
Synchronize, Read control, and Write owner (0x1AF490). This demonstrates
that Symantec’s driver installs protection to modify the handle permissions on
its user-mode processes with ObRegisterCallbacks. The driver also needs to be
notified of the system process being spawned, which is done with PsSetCre-
ateProcessNotifyRoutine/Ex. Thus, the anti-malware appears to use the protec-
tion method we described and is therefore potentially vulnerable.

For this experiment our hFromJob exploit is not usable, as it requires a handle
to the parent process of the target with the permissions PROCESS SET QUOTA
and PROCESS TERMINATE to make use of the API AssignProcessToJobOb-
ject. The system process services.exe, being a protected system process (Pro-
tected Process Light (PPL)) means that OpenProcess would fail. It should be
possible to use this exploit if one bypasses PPL and obtains a sufficiently privi-
leged handle on services.exe, however for simplicity we will only use the exploit
hThemAll for this case study where no additional steps are required.

We begin the experiment by configuring hThemAll to look for a handle on a
process named ccSvcHst.exe using 6 threads. We execute the exploit, then start
the service of the anti-virus. Once the user processes have spawned, we used
Process Hacker [10] to verify the permissions of our process handle, and observe
that we have been granted a fully privileged handle.

With this fully privileged handle it is now possible to tamper with the anti-
malware system in a variety of ways. Most anti-malware have watchdog systems
restarting the user-mode process if terminated, therefore simply terminating it
has little interest, however a very simple workaround is to freeze its threads with
the API NtSuspendProcess, disabling malware detection alerts to the user, and
disrupting its real-time protection capabilities. Since this technique exploits an
insecure time period at launch, a piece of malware executing early, i.e. during the
boot or user login sequence, could take control of the anti-malware processes from
the start. Otherwise the malware could terminate the process using a variety of
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methods ranging from simply calling TerminateProcess to a denial of service, in
which case the anti-malware watchdog would restart a new instance, allowing us
to exploit the vulnerability on this newly spawned process. Malware could also
simply wait for the process to restart on its own during maintenance and update
cycles.

4.3 Bypassing Virtualisation Defences

Virtualisation solutions are complex in that they require device drivers to pro-
vide additional functionality at kernel level. They are also required to make these
capabilities available to specific user-mode processes. Therefore, virtualisation
kernel drivers will often expose potentially sensitive functionality to user-mode
processes. For this reason, only the trusted user-mode process of the virtuali-
sation software should be able to access the virtualisation environment’s kernel
driver. This includes processes running under the same user or a user with higher
of privileges. If a privileged handle is obtained on the virtualisation user-mode
process, then malware could leverage this handle to obtain access to the kernel
driver via the captured user-mode process.

Virtualisation software Virtual Box uses a driver for the protection of its
user-mode processes. When a virtual machine is started, another instance of
VirtualBox.exe is spawned, which has a handle on the driver VBoxDrvStub with
read and write permissions. The second instance of VirtualBox.exe then spawns
a thrird instance of VirtualBox.exe which is the process running the virtual
machine. This process has a handle on the driver VBoxDrv with read and write
permissions. Both of these processes are protected in such a way that if another
process operating under the same user, or a higher privileged user, attempts
to obtain a fully privileged handle, the returned handle is modified to only
have the access mask 0x131c11 (Query information, VM read, Suspend/resume,
Terminate, Synchronize, Delete, Read control).

Through the use of exploits hThemAll and hFromJob, we can successfully
obtain a fully privileged handle on the first instance of VirtualBox.exe. This
process has a handle on the driver VBoxDrvStub, which exposes potentially
sensitive kernel functionality. Both exploits successfully provide a fully privileged
handle on the second instance of VirtualBox.exe that is normally protected. This
gives us access to the driver VBoxDrvStub that could be leveraged for further
exploitation. Interestingly, our exploits do not obtain a fully privileged handle
on the third instance of VirtualBox.exe protected process. This indicates that
this process is either protected, or more likely is spawned differently. This latter
behaviour could be used as a basis for effective mitigation of the vulnerability.
We discuss this later in Sect. 6.

4.4 Bypassing Video Game Anti-cheat Defences

Obtaining access to a game’s process allows hackers to manipulate it to gain
unfair advantages. Anti-cheat companies offer game developers software to pre-
vent other programs, including programs running at higher privilege levels from
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gaining access to the game’s process using protection drivers. For our use cases,
we have experimented on games protected by the two major anti-cheat systems:
BattlEye and EasyAntiCheat.

We observe that a lesser privileged handle is obtained despite requesting
all privileges on the game process, indicating the use of the vulnerable APIs.
Using our two exploits, we successfully obtain a fully privileged handle on games
protected by both anti-cheat software solutions.

We have informed anti-cheat software providers of this vulnerability (see
Sect. 6), they have now included additional defences. We discuss these additional
defences in more detail in Sect. 6. The vulnerability affected a wide variety of
internationally recognised anti-cheat protected games with millions of players.

5 Related Work

This section presents other security mechanisms available in Microsoft Windows
and evaluate their validity as mitigation. We also present academic work and
patents related to the very specific nature of the vulnerability discussed.

5.1 Other Windows Security Mechanisms

Protected Processes: The Protected Process security mechanism was intro-
duced in Windows Vista and has been expanded in later versions with variants
including Protected Process Light (PPL). Protected processes differ from regular
processes due to the level of access other processes in the system can obtain on
them [11]. When a process is protected by this mechanism, other non-protected
processes can only obtain handles on it with tightly restricted rights. If it was
possible to spawn a process as protected from its initial inception, including
the initialisation phase, this could void our exploits. Unfortunately, this security
mechanism is only reserved for system use and is not available for third party
software developers.

Anti-malware Services Protection: Microsoft provides a complete guide and
specialised tools for anti-malware developers, allowing their driver to launch
before other boot-start drivers, and therefore ensure that subsequent drivers do
not contain malware [12]. This security measure helps protect against malicious
drivers, but does not offer any mitigation against the presented attack, since it
does not change the order of operations during process creation.

Mandatory Integrity Control (MIC): MIC is a mechanism for controlling
access to securable objects [13]. It uses 4 levels of integrity with the labels low,
medium, high, and system, preventing lower integrity processes from accessing
the resources of higher levels. The MIC security mechanism was introduced in
Windows Vista. This could in very specific circumstances mitigate the presented
attack. For example, if the exploits were started with the low integrity label,
and the target was allocated a medium integrity label, the exploits would fail.
However this security mechanism falls short when defending interactions between
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processes of the same integrity level. Since most processes run within the same
level, this cannot be considered a reliable counter-measure. For anti-malware
solutions specifically, running their critical processes with a high integrity level
should provide protection against the exploits when run with the medium default
integrity level.

Protected Mode: The protected mode is based on MIC and was originally
created to enhance the security of Microsoft’s web browser Internet Explorer [14].
This security feature was designed to limit possible attacks from a compromised
Internet Explorer process, by running it with greatly reduced privileges. To the
best of our knowledge, it is not possible to run third party programs in protected
mode natively. Even if this was possible, as a security mechanism it is designed
to restrict a specific process, preventing it from interacting with others, not to
prevent access from other processes as the vulnerable APIs targeted in this paper
do. This security mechanism is therefore not a viable option.

AppContainer Isolation: When creating a program with AppContainer, the pro-
cess is executed with extreme limitations, allowing only those features critical to
the program operations. This security feature functions in a similar way to other
mandatory access control implementations in other operating systems, such as
Security-Extended Linux (SELinux) or AppArmor in Linux. All non-required
resources are kept out of reach, including other processes, therefore a compro-
mised or malicious process cannot take over the rest of the machine [15]. Files,
registry, windows, and network resources are also restricted, and access can be
managed with fine granularity if required. Finally, process isolation prevents the
AppContainer program from influencing other processes. However, after experi-
menting with AppContainer ourselves, we were able to restrict a process’s access
to resources and other processes, but could not restrict other processes from
accessing itself. Consequently, we could not use AppContainer as a valid form of
mitigation.

5.2 Research Efforts and Patents

A multitude of projects and software make use of kernel notify routines and call-
backs. PsSetCreateProcessNotifyRoutine/Ex and ObRegisterCallbacks are often
used for automated malware detection and prevention, or program behavioural
analysis which permits the creation of tools for reverse engineering such as Cap-
ture presented in [16].

There exist only a few usable methods to monitor the behaviour of a program
for which the source code is not available. These methods can be categorised as
follows: (i) User level API hooking, (ii) kernel level API hooking, and (iii) Ker-
nel callbacks [16]. User-level API hooking can be easily detected or bypassed
by unprivileged programs. For this reason the quasi-totality of reputable anti-
malware use solutions in kernel space. Many kernel-mode malware and rootkits
made use of kernel level API hooking (e.g. SSDT hooking) to hide their pres-
ence and execute malicious code stealthily, consequently Microsoft now defends
the kernel with various protections including PatchGuard (also known as Kernel
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Patch Protection, KPP). A good example of malware making use of PsSetCre-
ateProcessNotifyRoutine/Ex is the Rustock Rootkit and Spam Bot studied and
documented in [17]. Due to its potential for abuse, it is no longer possible to
enact kernel level API hooking on the modern versions of Windows, leaving only
user level API hooking and a set of kernel API functions to implement security.

A presentation on how anti-viruses implement their monitoring, detection,
and defences can be found in [18]. As recommended by Microsoft, all 5 of the
major anti-viruses investigated in this work make use of the kernel callbacks
and routines, including PsSetCreateProcessNotifyRoutine/Ex to obtain process
creation and termination notifications to then run analysis and mitigations. This
makes these anti-viruses vulnerable to the attack presented in this paper. One
of the anti-viruses tested in [18] is Norton Security 2015, which is the anti-virus
we selected as a use case.

A multitude of academic projects and patents in the field of malware analysis
heavily rely on PsSetCreateProcessNotifyRoutine/Ex. In [19] a set of monitoring
drivers are presented, including a process monitoring driver that uses PsSetCre-
ateProcessNotifyRoutine to obtain information on newly created or terminated
processes. In [20] the researchers attempted to correlate network traffic with
user applications using the vulnerable API. Injecting data flow control object
into processes using the same system as in our protection driver (using first
PsSetCreateProcessNotifyRoutine then ObRegisterCallbacks) is presented in [21].
In [22], a system stored on a mass storage device is presented that registers a
process notification routine to then hook functions in processes. Two researchers
have designed a portable dynamic malware analysis tool following Microsoft rec-
ommendations in [23], therefore using the vulnerable PsSetCreateProcessNotify-
Routine to monitor process activities. A system aiming at identifying processes
responsible for system slow downs making use of process notification routines
is presented in [24]. In [25], a method relying on hooking/detouring the exe-
cution flow of PsSetCreateProcessNotifyRoutine/Ex to prevent malware from
de-registering notify routines is presented. Because of their reliance on the vul-
nerable API, all of these projects could be disrupted or bypassed entirely.

6 Discussion

6.1 Discovery

The vulnerability was discovered whilst investigating how several system pro-
cesses obtained privileged handles on video games despite active anti-cheat using
protection drivers. Three system processes held privileged handles: csrss.exe (all
privileges), lsass.exe (read/write), and PcaSvc’s svchost.exe (all privileges).

We investigated how PcaSvc obtained its handle, and quickly identified that
it was accommodated through a normal OpenProcess call. We also noticed that
if a delay is placed before calling OpenProcess, when execution is resumed the
handle is modified as intended by the protection driver. This indicated that
Windows system processes receive new process notifications before the kernel
notification routine are triggered.
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To verify this hypothesis, we developed a proof of concept exploit by hooking
OpenProcess in PcaSvc’s process. With this hook, the PID of the new process
is passed to another process using shared memory and its execution is resumed
using a semaphore, allowing it to call OpenProcess and obtain a fully privileged
handle. This exploit confirmed that PcaSvc was outrunning the kernel process
notification routines used by the anti-cheat driver.

By analysing the internals of PcaSvc, we discovered that job objects are
used to receive notifications. We then created the standalone exploit hFromJob
replicating PcaSvc’s behaviour. Finally, we developed the second exploit hThe-
mAll, which affords fewer restrictions and further confirms that the vulnerability
emerges from an insecure time period during process initialisation.

6.2 Vulnerability Time Period Measurement

Measuring the vulnerability time period is not easy, since it depends on hardware
characteristics such as CPU frequency, number of cores, threads, and also current
system state and other parameters hard to fully control. We have conducted all
our experiment in a 2.40 GHz mono-core VM on an idle system.

To measure the vulnerability time period we have counted how many fully
privileged handles could be retrieved before the protection is set up. We have
used the first non-fully privileged handle obtained as a sign that the exploita-
tion time window has finished. We have measured using 3 methods: (1) using
the RDTSC (Read Timestamp Counter) CPU instruction to get a number of
CPU cycles, (2) QueryPerformanceCounter, which is a Microsoft supplied high
resolution time stamp that can be used for time-interval measurements, and (3)
GetTickCount64 which uses the CPU clock to give an interval in milliseconds.

We first modified hFromJob, so that when its first fully privileged han-
dle is obtained, it calls a measuring function that keeps calling OpenProcess
requesting all permissions and verifying if the returned handles correctly has
them using NtQueryObject. When the first lesser privileged handle is obtained,
the measuring function calculates the time difference using the methods listed
above. hFromJob successfully obtained between 63 and 105 fully privileged han-
dles during our tests, occuring during 21 to 35 million cycles (from RDSTC),
while QueryPerformanceCounter returned between 89 and 140 k (with a base
frequency of 10 million retrieved with QueryPerformanceFrequency). GetTick-
Count64 doesn’t provide enough accuracy and returned 0 in all our tests, indi-
cating that the vulnerability is faster than its accuracy (Microsoft estimates this
accuracy to be between 10 and 16 ms). Using the RDTSC readings, the vulnera-
bility time period was measured to be between 8.75 and 14.5 ms, while using the
readings of the performance counter the vulnerability time period is measured
between 8.9 and 14 ms.

hThemAll is harder to measure, since we use a set of threads blindly attempt-
ing to get handles and a control thread looking for our target. By configuring
the exploit to be extremely aggressive and using up most of the system resources
by using 16 threads for exploitation we notice that many more (thousands) fully
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privileged handles are obtained. Since the resources that should be used to ini-
tialise the process are redirected to the exploit, the vulnerability time period
is extended due to the initialisation phase being slowed down. We attempted
to measure the vulnerability time period with a single-threaded version. Since
this exploit does PID guessing, we ran the experiment multiple times aiming at
guessing the PID correctly soon to reveal the vulnerability time period. In the
best result, hThemAll successfully obtained more 218 fully privileged handles
before being stopped. This indicates that the vulnerability was present for at
least 29 ms.

6.3 Implications

The discovered vulnerability poses the question of how to best implement pro-
tections for user-mode processes. Microsoft provides routines to obtain notifi-
cations in kernel drivers, however we demonstrated that they can be outrun by
user-mode processes. Therefore a malicious process can outrun and consequently
bypass any protections set up following reception of such notifications, simply
through execution prior to its target. The protection can also be defeated after
the target has been started if it can be forcibly restarted (e.g. by terminating it
or crashing it).

The identified vulnerability allows outrunning thread notification routines
set up with PsSetCreateThreadNotifyRoutine/Ex, and load image notification
routines set up with PsSetLoadImageNotifyRoutine. Since writing to the process
memory is possible with the process handle, a malicious program can force the
execution of any code with a simple detour or hook within the context of the
target process before any notification routine is triggered.

The most severe consequences of this vulnerability are for anti-malware solu-
tions. Due to the fact that a process with malicious intent can interact with
other processes before the routines trigger, it is feasible to fully modify and
control them before protection has been applied. Malware can, for example, exe-
cute malicious code within the context of another process, or hijack the process
completely with techniques such as process hollowing [26]. As demonstrated,
if malware can be started early enough, or can force the user-mode process of
the anti-virus to restart. Thus malware can control, disable, or prevent it from
alerting the user of any present threats.

We argue that applications requiring exposure of sensitive kernel mode func-
tions to their user-mode process, such as virtualisation software, are also at risk.
These applications limit access to their user-mode processes obtaining a handle
on the driver, thus preventing other processes from using these critical kernel
functions. If an external process gains access to the permitted user-mode pro-
cess possessing a valid handle on the driver, it can then can be exploited as
demonstrated by our Virtual Box use case.

In general, a number of applications with high security requirements may
be at risk; examples include other virtualisation and anti-malware software, but
also banking applications or point-of-sales systems. In the latter two examples,
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applications store security-critical information (e.g. full credit card details) in
memory which could be retrieved with memory scanning.

While Microsoft does not explicitly promotes PsSetCreateProcessNotifyRou-
tine/Ex to set up this security mechanism, it is to the best of our knowledge
required to set up such protection. The different case studies of real-world soft-
ware presented in this paper confirms this to an extent.

Setting up this protection solely with callbacks is possible, however it is not
possible to retrieve information on the process requesting the handle. Conse-
quently, all handles get their permissions modified, including handles for Win-
dows system processes such as csrss or lsass which either respectively prevent
the new process to initialise and run or create various instability and/or crashes.
This worryingly indicates that the operating system itself requires the behaviour
leading to the vulnerability to function correctly, making patching even more
challenging for the kernel developers.

Because the timeline of the different notifications and triggers are not docu-
mented, developers may have written vulnerable code by wrongly assuming that
kernel notifications should trigger before user-mode notifications, which is not
precised on Microsoft API documentation. It is our opinion that kernel noti-
fications should always trigger before user-mode following the protection rings
hierarchy.

We thoroughly tested this vulnerability through the case studies discussed in
Sect. 4 on Windows 10 x64 and Windows 7 x64 up to date as of November 2019.
Furthermore, we hypothesise the vulnerability is most likely present in other
Windows versions including Windows 8, all Windows editions and architectures
included.

6.4 Responsible Disclosure

We first disclosed the vulnerability to Microsoft in July 2018 following their
guidelines [27]. The formal disclosure provided a description of the vulnerability,
the code of both exploits [4,6], and the protection driver [7], along with the
compiled binaries to allow for the recreation of our experiments. Moreover, we
provided a video of the vulnerability in action [9]. The response from Microsoft
was produced almost a year after our disclosure and is provided in Sect. 6.5.

In parallel, we also disclosed this vulnerability to the remaining stakeholders
from our case studies. In fact, after disclosing our finding to anti-cheat compa-
nies, we noticed that they implemented new countermeasures aiming at prevent-
ing the exploitation of this vulnerability. Our analysis shows that the affected
anti-cheat companies developed a procedure that terminates the first instance
of the game launched, then respawns it from kernel space to obtain the handle
instantly and set up the callback without delay. This behaviour appears sim-
ilar to our observations with VirtualBox. Such a solution is sub-optimal for a
number of reasons. Overall, a malicious program can still briefly obtain a fully
privileged handle on the first instance. Moreover, it is not applicable for all
programs. Since this solution requires forceful termination of the protected pro-
cess, and subsequent respawning from kernel-space, some applications may not



Outrunning Windows Kernel Notification Routines from User-Mode 85

function correctly after such an operation. Furthermore, in order to implement
this solution, developers are required to have a signed kernel mode driver, this
is not common for most developers. Note however that this solution should be
applicable on the use cases previously presented in Sect. 4.

We have also identified the development of an additional defence and detec-
tion mechanism that implements a periodic walk-through of the handle table for
all running processes. The goal of this mechanisms is to search for open handles
on protected processes. Thus, if a handle to a protected process is found, the
implemented procedure modifies the granted permissions. It is unclear how anti-
cheat companies implement such a process, since it requires using undocumented
kernel functions and memory structures to do Direct Kernel Object Modification
(DKOM), which is discouraged by Microsoft.

6.5 Microsoft’s Response

Microsoft replied to our responsible disclosure and have acknowledged the vulner-
ability. Unfortunately, Microsoft “will not be addressing this scenario for in mar-
ket operating systems via a security update”. The response decision extends fur-
ther stating that Microsoft’s “assessment considers this scenario to be a defense
in depth against third party products”. Finally Microsoft acknowledges that fix-
ing this vulnerability “for in market OS’s would potentially result in significant
application compatibility issues”. Microsoft also gave us permission to publicly
disclose this vulnerability.

In our opinion, fixing this vulnerability would require changes to the functions
themselves, including the parameters they take. Eventually, such an approach
would most likely not be retro-compatible and cause problems. However, a new
function could be made available with a new name, most likely with the suffix
Ex or Ex2 as per Microsoft’s tradition, with a security notice placed on the
older functions indicating that a newer, more secure function is available as it
has been done many times in the past for other vulnerable functions.

In order to efficiently address the discovered vulnerability, the affected kernel
function must be modified. Ironically this is made impossible by default due to
various security mechanisms preventing any kernel modifications such as Ker-
nel Patch Protection (KPP, also known as PatchGuard). Unfortunately, without
Microsoft upgrading the kernel API functions, this vulnerability cannot be ade-
quately fixed in all circumstances. Nonetheless, in the next section we explore
possible solutions that, while they will not be able to remove the vulnerability,
could significantly mitigate it without requiring kernel modifications.

6.6 Possible Solutions

The most appropriate solution would be to modify the kernel so that user-mode
functions taking a PID as a parameter either instantly fails or, more elegantly,
get delayed until the process finishes its initialisation, and the kernel routines
trigger. This solution can only be implemented by Microsoft.
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A solution could be to use notification routines allowing notification of the
process to protect being spawned, but then directly terminating the process and
spawning it again from kernel space using a function that immediately returns
either the PID or a handle, such as ZwCreateProcess. This appears to be the
solution anti-cheat softwares have set up following our disclosure, and how Vir-
tualBox is spawning the virtual machine’s VirtualBox.exe dedicated process.
This solution is effective but requires a signed kernel driver, which most devel-
opers do not have and comes at a cost, in addition to the expertise required for
its implementation. It may also be inapplicable in many scenarios, especially if
attempting to protect third party processes that are not designed to be forcibly
terminated then restarted in a different way. Fortunately, the software in our use
cases satisfy these requirements and can implement this solution.

Based on our reverse engineering, anti-cheat software appears to have imple-
mented an additional mitigation in addition to the aforementioned solution.
They periodically scan the object table of all processes running on the system,
and if a handle to the protected process is found the permissions are then edited
accordingly to the desired filtering rules. This is not in our opinion a viable solu-
tion, as our exploits would still obtain privileged handles and could use them for
a brief moment which is sufficient to tamper with the process. This mitigation
also requires the use undocumented internal kernel functions and memory struc-
tures, as well as Direct Kernel Object Modification (DKOM) which are highly
discouraged by Microsoft. Note that while this solution doesn’t fully protect
against the vulnerability, it allows detection of exploitation.

It is possible to set up a handle permission filter using callbacks without
being notified of newly spawned processes, and therefore without using the vul-
nerable API functions. Using this method, all handles are filtered and have their
permissions modified. Unfortunately, in this case even Window’s vital systems
processes such as csrss.exe have their handle permissions modified, which prevent
the protected process to execute correctly. Quite ironically, it seems that Win-
dows itself makes use of this insecure time period to operate correctly. This may
be prevented if the driver could collect information about the process requesting
the handle from within the callback function, and let Windows system pro-
cesses acquire unmodified handles, along with possible other white-listed pro-
cesses. Unfortunately, with the current kernel callback functions it is not possible
to retrieve such information, making this solution impossible. Microsoft could
implement this solution without compatibility issues by modifying the kernel
memory structure POB PRE OPERATION INFORMATION to include infor-
mation about the requesting process. Alternatively, Microsoft could modify the
kernel callback API functions, to have an additional parameter allowing for the
retrieval of this information, however this would unavoidably lead to compati-
bility issues due to function parameters and memory structures changes.

7 Conclusions

In this paper we introduce a fundamental security design flaw within the
Microsoft Windows OSs. We demonstrated the feasibility of outrunning
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Windows kernel process notification routines from unprivileged user-mode pro-
cesses. Thus, effectively bypassing any protection set in kernel mode following
notification routines. Consequently, Microsoft’s standard method of protecting
user processes via a kernel driver is ineffective. We verified our work on current
Windows 7 x64 and Windows 10 x64 up to date up to date as of November 2019.

In order to validate our findings, we implemented our own protection driver
and assessed its features. Our findings highlight that the discovered vulnerability
can be exploited to bypass protection built for sensitive and widely used appli-
cations. We have assessed and demonstrated the aforementioned property by
studying the behaviour of the (i) Symantec Endpoint Protection anti-malware
suite; (ii) virtualisation environments such as VirtualBox; (iii) anti cheat pro-
tection software such as BattlEye and EasyAntiCheat. In addition, solutions to
address the vulnerability were presented, namely to change the Windows API for
handle requests, respawning the protected process from kernel space to imme-
diately set up protection, scanning object tables system-wide for detection and
protection, and providing sufficient information to callback driver functions to
avoid using routines.

We disclosed the vulnerability to Microsoft. Microsoft acknowledged the
problem but decided against a OS patch. As shown, in response to our work
application developers have reacted and implemented unique fixes to their appli-
cations. However, we feel that this is an inefficient strategy as the solutions are
incomplete, different from case to case, and have to be re-designed for each sit-
uation. A comprehensive solution in the form of an OS update from Microsoft
would effectively mitigate this vulnerability, however there would be an unde-
sirable cost from a compatibility perspective. Maybe this work serves as a well
documented example where security improvements cannot be easily balanced
with other industry requirements.

We have made the source code of every binary discussed in this paper publicly
available on GitHub [4,6] so developers can assess if their solutions are vulner-
able, and attempt to implement additional security on a minimalist protection
driver [7] before adding it to their products. A compiled version is also available
for quick testing and experimenting. Finally we made a video showing the API
functioning normally, then the effects of our exploits [9].

Overall, we argued that the discovered vulnerability is not caused by a simple
development bug, but rather a fundamental security flaw deeply ingrained in the
OS core design, laying the foundations for a new generation of OS-level attacks.
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Abstract. Automatic exploit generation for heap vulnerabilities is an
open challenge. Current studies require a sensitive pointer on the heap to
hijack the control flow and pay little attention to vulnerabilities with lim-
ited capabilities. In this paper, we propose HAEPG, an automatic exploit
framework that can utilize known exploitation techniques to guide exploit
generation. We implemented a prototype of HAEPG based on the symbolic
execution engine S2E [15] and provided four exploitation techniques for
it as prior knowledge. HAEPG takes crashing inputs, programs, and prior
knowledge as input, and generates exploits for vulnerabilities with lim-
ited capabilities by abusing heap allocator’s internal functionalities.

We evaluated HAEPG with 24 CTF programs, and the results show that
HAEPG is able to accurately reason about the type of vulnerability for 21
(87.5%) of them, and generate exploits that spawn a shell for 16 (66.7%)
of them. All the exploits could bypass NX [25] and Full RELRO [28]
security mechanisms.

Keywords: Automatic exploit generation · Heap vulnerability ·
Symbolic execution

1 Introduction

Automated exploit generation (AEG) is becoming an important method in
vulnerability-centric attacks and defenses. Software vendors use it to evaluate
the severity of security vulnerabilities more quickly and allocate appropriate
resources to fix critical vulnerabilities. Defenders learn from synthetic exploits
to generate Intrusion Detection System rules and block potential attacks.

Most AEG solutions [12,13,20,23,26] usually only support stack-related or
format string vulnerabilities, which are rare in modern systems [2]. Due to the
complexity of heap allocator functions, only a few existing solutions can generate
exploits for heap-based vulnerabilities. These solutions have different approaches.
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For instance, Revery [30] applies a layout-oriented fuzzing and control-flow
stitching solution to explore exploitable states in paths derived from vulnera-
bility points. Gollum [22] employs a custom heap allocator to create exploitable
heap layouts and a fuzzing technique based on prior work [21] to solve the heap
manipulation problem. SLAKE [14] uses a static-dynamic hybrid analysis to
search for useful kernel objects and manipulates heap layout by adjusting the
free list in the slab.

All these solutions corrupt a sensitive pointer (e.g., VTable pointer) and
derive an attacker-controlled memory-write or indirect call, which means that
the presence of a sensitive pointer is key to hijack the control flow. In this case,
once the heap layout is well arranged, an attacker creates an exploit primitive
with only one operation, i.e., triggering the vulnerability, and we call it single-
hop exploitation. However, not all vulnerabilities can be exploited using simple
single-hop techniques. For example, with an off-by-one error [11], it is infeasible
to fully control any sensitive pointer by merely triggering the vulnerability, let
alone overwriting the instruction pointer to an arbitrary value. To solve this
issue, the following challenges need to be addressed:

Challenge 1: Exploring the Power of Heap Vulnerabilities with Limited
Capabilities. To exploit vulnerabilities with limited capabilities, an attacker
needs to manipulate the heap layout and abuse the heap allocator’s internal func-
tionalities to create several intermediate hops, expand the range of corruptible
memory with the help of the hops, and eventually derive an arbitrary memory-
write or indirect call. We call these techniques multi-hop exploitation. Some
solutions [19,32] aim to discover such techniques for heap allocators. However,
they can not apply the techniques to programs with heap-based vulnerabilities
automatically. To the best of our knowledge, existing AEG solutions paid very
little attention to it.

Challenge 2: Modeling Heap Interactions Between Programs and
Heap Allocators. To conduct multi-hop exploitation, AEG solutions have to
craft inputs and drive victim programs to allocate and deallocate objects of a
specific size or write specific data to heap objects. However, programs typically
do not expose any direct interfaces for users to interact with their heap alloca-
tors. Therefore, AEG solutions have to recognize heap interactions and assemble
them in a particular way to generate exploits.

Our Solution. In this paper, we propose HAEPG to address the challenges above.
Given a program with heap-based vulnerabilities and crashing inputs, it attempts
to achieve the execution of arbitrary code through multi-hop exploitation.

HAEPG abstracts machine-level instructions and function calls interacting with
the heap allocator as heap interactions. It relies on the fact that most programs
distribute functions with function dispatchers (e.g., event handling and connec-
tion processing loops) and extracts the paths that make up such dispatchers.
Then, HAEPG applies hybrid techniques to locate and analyze heap interactions
and infer dependencies between different interactions and paths.
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After this, HAEPG collects runtime information in programs when executing
crashing inputs. It inspects vulnerable objects and analyzes the type of memory
corruption as well as the size of corrupted data.

Furthermore, we studied manual multi-hop exploitation techniques for heap
vulnerabilities. These techniques usually abuse the heap allocator’s internal func-
tionalities and improve the vulnerabilities’ capability by carefully crafted heap
interaction sequences. We designed a templating language to abstract known
multi-hop exploitation techniques as exploit templates. HAEPG uses them to
achieve an arbitrary execution and generate end-to-end exploits.

We built a prototype of HAEPG based on the symbolic execution engine S2E
[15] and wrote templates for four exploitation techniques of ptmalloc [4], the
standard allocator of glibc, and evaluated it on 24 programs from well known
Capture The Flag (CTF) competitions. The results show that HAEPG is able to
accurately reason about the type of vulnerability for 21 (87.5%) of them, and
generate exploits that spawn a shell for 16 (66.7%) of them.

2 Motivational Example

In this section, we give an example to illustrate multi-hop exploitation and reveal
problems AEG solutions encounter when handling the example.

The Vulnerability. The example is running on a GNU/Linux system with
an unmodified version of glibc.. As shown in Fig. 1, the program has three func-
tions, i.e., addItem, removeItem, editItem, which are used to allocate an object,
release an object, and modify an object. There is a poison-null-byte error [16]
at Line 22, but it only corrupts the meta-data between heap objects, while the
content of the heap objects remains unaltered.

Multi-hop Exploitation. The example in Fig. 1 shows the exploitation via the
unsafe unlink technique [9]. We first allocate three heap objects A, B, and C.
The pointer that the program used to access object B is stored in BSS. Then,
we trigger the vulnerability in object A to shrink the object B’s size, as shown
in state 3, and forge a fake chunk in object A in state 4. The fake chunk is well
arranged to bypass sanity checks and leads to an arbitrary write primitive in
state 6 after releasing object B in state 5. Finally, we corrupt a function pointer
with the arbitrary write primitive and hijack the control flow.

These states can be categorized as follows:

– Initial state: State when the program starts running, e.g., state 1.
– Preparation state: State when the program manipulates memory layouts

for exploitation before the corruption happens, e.g., state 2.
– Corrupting state: State when triggering the vulnerability, e.g., state 3.
– Intermediate state: State that the program would go through for reaching

an exploitable state from the initial state, e.g., state 4-5.
– Exploitable state: State with an exploit primitive for exploitation, e.g.,

state 6 and 7.
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P A B Cstate 2
preparation state

0x90 0x100

P A B Cstate 3
corrupting state

B.size = 0x100

B.size = 0x101

Poison null byte:

P B Cstate 4
intermediate state

F.size = 0x81
F.fd = &P-0x18
F.bk = &P-0x10

F

B.pre_size = 0x80

P Cstate 5
intermediate state F

Free B to trigger unlink:

P Cstate 6
exploitable state F

Overwrite P with the address of an function pointer

1. void addItem(){
2. int size = read_int();
3. size_list[index] = size;
4. heap_list[index] = malloc(size);
5. if(!heap_list[index])
6. puts(“malloc error”);
7. return;
8. }
9. void removeItem(){
10. if(heap_list[index]){
11. free(heap_list[index]);
12. heap_list[index] = 0;
13. }
14. if(size_list[index])
15. size_list[index] = -1;
16. }
17. void editItem(){
18. for(int i = 0; i < size_list[index]; i++){
19. read(0, heap_list[index] + i, 1);
20. if(!heap_list[index][i])
21. break;
22. }
23. heap_list[index][size_list[index]] = NULL;
24. }
25. void main(){
26. while(True){
27. index = readInst();
28. choice = readInst();
29. switch(choice){
30. case 1: addItem(); break;
31. case 2: removeItem(); break;
32. case 3: editItem(); break;
33. }
34. }
35. }

Memory State Transformation of the Exploitation:

P Cstate 7
exploitable state

F
Corrupt the function pointer and trigger rip hijacking

rip
rsp

rbx
rax

rip
rsp

rbx
rax

rip
rsp

rbx
rax

rip
rsp

rbx
rax

rip
rsp

rbx
rax

rip
rsp

rbx
rax

state 1
initial state

rip
rsp

rbx
rax

Global
Variables

Heap 
Objects

Corrupted 
Data Registers

Fig. 1. An example of poison-null-byte

It is easy for modern fuzzing tools [10,33] to generate crashing inputs for
the vulnerability. However, most of the AEG solutions could not handle this
case because there is no direct exploit primitive upon crash of the program. For
instance, the auto-exploit kit framework Mechanical Phish [26], which is devel-
oped by Shellphish and came third in DARPA CGC [17], could only detect the
vulnerability and generate no exploit for the example, because Mechanical Phish
requires a controllable pointer for injecting shellcodes or rop-chains. The solution
Revery [30] could find the corrupting state 3. However, it has no capabilities for
bypassing the heap allocator’s sanity checks and enhancing the vulnerability’s
capability, and thus could not turn the vulnerability into an exploit.

3 Methodology

Figure 2 shows an overview of HAEPG. It takes programs and crashing inputs as
input, and templates for the guidance of exploitation. HAEPG first models heap
interactions of the target program with function paths and heap primitives. It
extracts function paths from the program using static analysis, and dynamically
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tracks instructions and function calls of the function paths interacting with the
heap allocator during runtime and records relations of different heap interactions.

Then, HAEPG runs the program with the crashing input to retrieve infor-
mation about the vulnerability, including its type and the scale of corrupted
data. We designed a templating language for templating widely used exploita-
tion techniques. Each template contains the necessary information for guiding
the exploitation. HAEPG filters applicable exploit templates by checking if the
heap allocator and the program meets the templates’ requirements. It attempts
to generate an attack sequence and cyclically assesses and corrects the sequence
until the program reaches an exploitable state, or the analysis exceeds a config-
urable upper bound for generation attempts (e.g., 20 times).

Finally, HAEPG uses the generated exploit primitive to corrupt the instruction
pointer for transferring control flow to one-gadget [18]. One-gadgets are code
fragments inside glibc that invokes “/bin/sh” without any arguments, effectively
spawning a shell for the attacker. Once HAEPG detects a shell process is created
in the target program, it solves the path and data constraints collected when
executing the attack sequence and generates an exploit input.

Heap Interaction Modeling

Template-Guided Exploit Generation

Prog
Function 

Path 
Extraction

Heap Primitive 
Analysis

Vulnerability 
Analysis

Attack 
Sequence 

Generation

Attack 
Sequence 

Assessment &
Correction

Exploit 
Generation

Crashing 
Input Template

Exploit
Input

Initial
Attack 

Sequence

Heap Primitives

Function
Paths

Vulnerability Type 
& Capability

Function 
Paths Verified

Attack 
Sequence

Fig. 2. Overview of HAEPG

3.1 Heap Interaction Modeling

Function Path Extraction. A function dispatcher is a code structure that is
widely used in programs for function distribution, and usually implemented as
if-else or switch-case structure wrapped in a loop. Programs cyclically receive
instructions at the loop entry and execute corresponding functions. We define
the basic block sequences from the loop entry to the loop exit as function paths,
which have the following properties:

– Atomicity: Function paths are indivisible at runtime. A program cannot
execute half of a function path and then jump to other function paths. The
structure of the function dispatcher has determined that each function path
must be executed entirely before executing others.
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– Reentrant: Function paths have the same entrance and exit. When it reaches
the exit of the function path, the program returns to the entrance and chooses
the next function path according to instructions. Thus a program can execute
a function path several times through proper instructions.

To extract function paths, HAEPG first generates a control-flow graph of the target
program and marks the loops containing the function calls of heap allocations or
deallocations as candidate function dispatchers. If the loop body of the function
dispatcher is a switch-case statement, HAEPG will search for the basic block with
several successors and extract the path of each successor as a function path.
Otherwise, the loop body could be a sequence of nested if-else statements. HAEPG
will traverse the loop backward the starting from the end of the loop body and
check the number of each basic block’s precedents during the traversal. The first
basic block, which has a large number of precedents, e.g., more than 5, would be
marked as the merge point of all dispatched functions, and we extract all paths
from the loop entry to this block as function paths.

Heap Primitive Analysis. Heap primitives model the interactions between
programs and heap allocators. We distinguish between the following three types
and their attributes:1

Allocation
size: the size of allocation
addr: the address returned
by the heap allocator

Deallocation
addr: the address to be
released

Edit
base: the base of edit address
offset : the offset of edit address
data: the data to be written

In general, heap primitives are these program machine instructions: (1) func-
tion calls interacting with the heap allocator, such as malloc, calloc, free, etc.
(2) function calls with heap pointers as arguments, such as read, fgets, etc. (3)
memory-write instructions with heap objects as the destination address.

To analyze heap primitives, HAEPG executes function paths using symbolic
execution. It symbolizes all input bytes and tracks instructions and the calling
of APIs interacting with the heap region. HAEPG only records instructions and the
calling of the APIs in the target program as heap primitives and ignores shared
libraries, because tracking both the target program and the shared libraries
would increase performance overhead. If any attribute of heap primitives are
symbolic, HAEPG will solve and record the range of it without concretizing it.
To reason about the relationship between heap primitives, HAEPG associates a
globally unique taint tag for each heap pointer returned by an allocation and
identifies primitives that operated on a tainted pointer.

3.2 Vulnerability Analysis

We obtain crashing inputs with AFL [33] and analyze the vulnerability’s capa-
bility by detecting violations of memory usage. HAEPG dynamically executes the
1 Note that we only model the basic interaction types. Heap allocators can have other

types of interactions (e.g., realloc), which are outside the scope of this paper.
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crashing inputs and taints return pointer of allocations similarly to the heap
primitive analysis. Additionally, it propagates the tag to the pointed memory
object’s bytes. We further add annotations about a heap object’s status to the
tags: Initially, tags are uninitialized, and instructions writing to the object
will change the status to busy while instructions releasing the object will change
it to free. Furthermore, HAEPG records the size of corresponding objects for
tags. If any instruction accesses the heap memory, we could get the pointer’s tag
ptag and the pointed object’s memory tag mtag, together with the statuses and
sizes of them. Before changing the statuses of them, HAEPG checks if any of the
violation rules shown in Table 1 is triggered.

Table 1. List of vulnerability types, trigger options, and violation rules

Vulnerability type Trigger operation Violation rule

Double free Free a heap chunk mtag.status == free or
ptag.status == free

Use After Free Store n bytes of data in
memory address [base + off

] (base and off are the base
and offset of addressing)

mtag.status == free or
ptag.status == free

Overflow n + off >ptag.size

Poison Null Byte n + off == ptag.size + 1
and the last byte of data is
null byte

Off by One n + off == ptag.size + 1

If a violation rule is triggered, HAEPG will record the scale of corrupted data,
such as the range of overflowed bytes or the size of the vulnerable chunk.

3.3 Template-Guided Exploit Generation

In this section, we will illustrate our method of exploit generation. We bring
existing exploitation techniques as prior knowledge of constructing memory
states and reaching exploitable states into HAEPG. Moreover, instead of hard-
coding exploitation techniques into HAEPG, we developed a templating language
to describe exploitation techniques. The method of dynamic interpreting tem-
plates and constructing attack sequences provides flexibility and extendability
to HAEPG.

Templates. The procedure of applying exploitation techniques is program-
sensitive, as even slight changes in the target program result in need of vastly
different exploitation strategies. Thus we collect constant and essential com-
ponents of exploitation techniques and abstract them as templates, which give
information over the following components:
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– Backbone Primitives Sequence: The order of heap primitives, which used
to trigger the vulnerability and abuse internal functionalities of heap alloca-
tors, remains constant. For example, cyclically releasing a heap chunk in the
fastbin attack to gain an arbitrary allocation from a double-free vulnerability
[5]. We refer to such heap primitives as a backbone primitives sequence.

– Layout Constraints: Intermediate states of the multi-hop exploitation may
need to meet certain constraints. For example, an unsafe unlink attack
requires the victim chunk to be allocated in unsortedbin size, and the fake
chunk to be adjacent to the victim chunk. We refer to such constraints as
layout constraints.

– Requirements: To use an exploitation technique, the program has to meet
some requirements. For example, the program must have the ability to allo-
cate objects in fastbin size for fastbin attack.

These components indicate how to construct memory states to reach an
exploitable state in multi-hop exploitation and constraints that memory states
should satisfy. Likewise, each template consists of three parts, including require-
ments of using the template, backbone primitives, and layout constraints. We will
introduce the templating language we used to abstract exploitation techniques
in Sect. 4.3.

Attack Sequence Generation. Attack sequence generation is closely tied to
the provided templates. Firstly, HAEPG checks if the target program meets the
specified requirements, such as the vulnerability type and the glibc version. If
the program passed these checks, HAEPG will select this template for the next
steps; otherwise, it will try other templates.

Next, HAEPG traverses the backbone primitives of the template. It scans all
function paths to find the ones containing the backbone primitives, and combines
these function paths together with their heap primitives as an attack sequence.

We designed the following two methods to execute an attack sequence:

– Heap Simulator: The simulator is an independent binary that uses the same
heap allocator as the target program (i.e., ptmalloc for our prototype). We
use it to execute the heap primitives of the attack sequence and simulate the
intermediate states of the target program.

– Symbolic Execution: We let the target program execute function paths of
the attack sequence and associate heap primitives as data constraints with
the interrelated memory data and registers in S2E (e.g., transform the size of
allocations to data constraints of malloc/calloc’s first argument).

Attack Sequence Assessment and Correction. HAEPG assesses the attack
sequence according to the layout constraints of the template. It dynamically
executes the target program and the attack sequence and records heap layouts
at runtime. Then, it extracts the address of each essential heap object, the real
size of them, and the address where the object pointers are stored, etc. With this
information, once precedent backbone primitives of a memory state are finished,
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HAEPG will check if the current heap layout meets the layout constraints, including
the distance of heap objects and the status of them.

To improve performance, HAEPG first uses the heap simulator for a quick
assessment. Only after the attack sequence passed the assessment, HAEPG will
use S2E for an accurate assessment.

If the layout constraints are met, the program will enter an exploitable state,
and HAEPG would attempt to generate an exploit. Otherwise, HAEPG will find the
conflicting heap layout. Then, HAEPG will infer the reason for the conflict and
attempt to correct it. In general, the reasons for the conflict are as follows:

1. Heap chunk A should be free but it is busy or uninitialized;
2. Heap chunk A and B must be adjacent but there are other busy chunks

between them;
3. Heap chunk A and B must be adjacent but the adjacent chunk of A is free.

For the first case, HAEPG inserts a path into the attack sequence to release the
chunk A. For the second case, HAEPG tries to insert paths to release all chunks in
the middle of chunk A and B. If chunks cannot be released, HAEPG would allocate
a heap chunk with the same size as chunk A before the allocation of it to get a
new heap layout, which might lead to a satisfying heap layout. The third case is
generally caused by extra heap chunks of the freelist which make chunk B gets
allocated on a wrong slot, and HAEPG fills extra chunks by allocating chunks with
the same size as B. Finally, HAEPG generates a new attack sequence and repeats
the assessment and correction until it finds an attack sequence that leads to an
exploitable memory state (i.e., a state matching the layout constraints).

Exploit Generation. Once the attack sequence passed the assessment, HAEPG
executes it using symbolic execution and detect exploit primitives by tracking
instructions of the target program and checking if symbolic data is present in one
of the following locations: (1) the content and target address for memory-write
instructions and function calls; (2) the head pointer of one of the bins; (3) the
target address for indirect calls/jumps; (4) the value of function pointers of the
program and glibc (e.g., GOT and malloc hook).

Based on the location of symbolic data, HAEPG can use one of the following
exploit primitives to derive an exploit input:

– Arbitrary Execution (AX): If the target address of indirect calls is sym-
bolic, or any function pointer is symbolic, HAEPG could corrupt the instruction
pointer to an arbitrary value. In this case, HAEPG uses a one-gadget [18] as the
target address. Note that each one-gadget has individual memory and regis-
ter constraints that need to be satisfied. Hence, HAEPG will check the related
memory and registers when the instruction pointer is corrupted and pick a
proper one-gadget for exploitation.

– Arbitrary Write (AW): If the value and the target address of any memory-
write instructions or function calls are symbolic, HAEPG can write arbitrary
data to an arbitrary location. HAEPG leverages it to overwrite a function
pointer of the GOT or glibc (glibc is preferred if Full RELRO [28] is enabled)
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and exercises a function path that calls the corrupted function pointer, which
transforms the exploit primitive to an arbitrary execution.

– Arbitrary Allocation (AA): If the head pointer of a bin is symbolic, HAEPG
can allocate a chunk at an arbitrary location. However, this primitive has
different constraints based on the type of bin. For tcache, the allocator does
not check the meta-data of the allocated chunk, so we treat the primitive as
an arbitrary write primitive; For fastbin, the allocator checks the consistency
of chunk size, so an attacker has to find or construct a fake meta-data to
bypass the sanity check. Fortunately, there are some data in glibc which is
suitable for bypassing the sanity check and transforming the exploit primitive
to an arbitrary execution2.

After corrupting the instruction pointer with a one-gadget, HAEPG will hook
the APIs for process generation (e.g. execve). Once HAEPG detects an invokation
of these APIs with the argument of bash’s path, it solves constraints collected
when executing the attack sequence and generates an exploit input.

4 Implementation

4.1 Static Analysis

Control Flow Graph Construction. As discussed by Shoshitaishvili et al.
[27], it is very challenging to recover an accurate CFG for programs due to
indirect calls. Since CFG generation is not a contribution of this paper, we only
focus on programs with no recursion and indirect calls. We developed a simple
CFG generation program for HAEPG’s prototype, which constructs the CFG by
extracting jump targets of basic blocks in the disassembly using static analysis.
It is sufficient for our evaluation set.

Redundant Function Path Simplification. Since a function path is a
sequence of basic blocks, branches create a new function path for each branch
target. As we use dynamic analysis to infer the dependencies between function
paths, a large number of function paths increases HAEPG’s performance overhead.
As we only focus on heap interactions, most of the function paths are redun-
dant for HAEPG because heap interactions of them are the same or similar, which
will cause dynamic analysis to do repetitive work. Besides, some function paths
should be dropped because they are not related to exploitation. We simplify
function paths with the following methods:

– Merging: We construct the CFG for the branch in Line 14 to Line 16 in
Fig. 1, as shown in Fig. 3.a. To reduce the impact of branches on the number
of paths, we extract an API call sequence from the paths and mark the

2 For example, the function pointers nearby malloc hook in glibc, which could be mis-
taken as valid meta-data by the allocator. We could directly overwrite malloc hook
and hijack the instruction pointer by allocating a chunk on it.
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Paths of (a) branch graph:
before merging:

P1: ...→14→15→16→...
P2: ...→14→16→...

after merging:
P: ...→14→<branch tag>→16→...

Paths of (b) loop graph:
before merging:

P1: ...→18→19,20→22→18... →19,20→21→23→...
P2: ...→18→19,20→22→18... →18→23→...

after merging:
P: ...→18→<loop tag>→23→...

21

Fig. 3. Two types of structure to be optimized

branch with a branch tag if the API call sequence does not contain heap
interactions.
A loop can have more than one exit, and the extra exits increase the number
of function paths. We take the loop of func3 in Fig. 1 as an example, and the
CFG is shown in Fig. 3.b. The loop has two exits, i.e., Line 21 and 23. Since
Line 23 is the successor of Line 21, we regard Line 23 as the only exit of the
loop and replace the loop with a ¡to merge function paths exiting from Line
21 or 23 into one.

– Pruning: Programs check functions’ return values and perform different
operations if they indicate the failure of function execution. Such opera-
tions are usually organized with conditional branches, which also increase
the number of function paths. As exploiting the failure of function calls usu-
ally depends on programs rather than heap allocators, we consider them out
of scope for HAEPG. We discard those paths as irrelevant and filter them out
using a lightweight taint analysis for functions’ return values.

4.2 Dependency of Function Paths

HAEPG may fail to execute function paths because program variables do not
meet path constraints in symbolic execution. In this case, HAEPG executes other
function paths first, which set the program variables correctly. We refer to these
variables as reliant variables, and the latter function paths are the dominant
paths of the formers. For example, we assume that function path FP1 is the
sequence of line number 27-29-30-5-7 in Fig. 1, and FP2 is 27-29-31-10-11-14-15
(we only take the line number of branches). HAEPG would fail to jump to Line
11 from Line 10 when executing FP2 without executing FP1 first because the
value of heap list[index] does not meet FP2’s path constraints. In this case,
heap list[index] is the reliant variable of FP2, and FP1 is the dominant path
of FP2.

HAEPG has to find all dominant paths for such function paths to avoid missing
heap primitives in them. It first dynamically executes function paths and records
the following information: (1) new values that the function path used to overwrite
or update the original reliant values; (2) constraints not being satisfied and
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Listing 1. Template of unsafe unlink

1 RQMT: Include(UNSORTEDBIN, hmodel.malloc_sizes) and

2 Include(vuln.type, ["Off-by-One", "Poison-Null-Byte", "Overflow"])

↪→ and

3 VersionLower(allocator.ver, "2.26")

4 EXEC: vul_ptr = Allocation(size = (0x80 + RANDNUMB * 0x10 + 8), tag = vul.

↪→ vul_tag)

5 vic_ptr = Allocation(size = (0xf0 + RANDNUMB * 0x100))

6 sep_ptr = Allocation(size = RANDNUMB)

7 SATS: adjacent(vul_ptr, vic_ptr) == True and adjacent (vic_ptr, topchunk)

↪→ == False

8 EXEC: vul_data = h64(0) + h64(vul_ptr.size - 8 + 1) + h64(vul_ptr.base - 0

↪→ x18) + h64(vul_ptr.base - 0x10) + RANDBYTE * (vul_ptr.size - 0x28)

↪→ + h64(vic_ptr.size & (~8)) + "00"

9 Edit(base = vul_ptr, offset = 0, data = vul_data)

10 SATS: vul_ptr.chunk.fd == 0 and

11 vul_ptr.chunk.bk == (vul_ptr.chunk.raw_size - 0x10) and

12 vic_ptr.chunk.pre_size == (vic_ptr.chunk.bk - 1) and

13 vic_ptr.chunk.raw_size & 1 == 0

14 EXEC: Deallocation(vic_ptr)

15 EXEC: Edit(base = vul_ptr.base - 0x18, offset = 0, data = "A" * 0x20)

causing termination of states in symbolic execution. HAEPG infers expected values
of reliant variables by solving these constraints and finds function paths that can
set reliant variables correctly (i.e., the dominant paths).

4.3 Templating Engine

Templating Language. Our templating language describes exploitation tech-
niques via requirements, backbone primitives, and layout constraints. We mark
them in the template with labels RQMT , EXEC , and SATS , as shown in
Listing 1. The language provides users with functions and objects to describe
exploitation techniques, and Table 2 shows the central components of the lan-
guage.

We employ the following methods to concretize the attributes of the heap
primitives of attack sequences:

– Direct Calculation: HAEPG determines some of the attributes of heap prim-
itives based on the range of them and the template, such as the size of an
allocation. It solves these attributes when constructing the attack sequence.
We refer to it as direct calculation.

– Lazy Calculation: Some of the attributes of heap primitives could only be
determined at runtime, such as vul ptr.chunk, vul ptr.base, and the data of
edit at Line 7 in Listing 1. They remain unsolved when the attack sequence
is constructed. HAEPG collects runtime information and solves these attributes
during the execution. We refer to it as lazy calculation.

Note that the Allocation function returns a HeapChunk object whose
member variables represent meta-data’s fields, the user payload, and the address
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where the heap pointer is stored. A user does not need to initialize these member
variables because HAEPG would automatically initialize them using lazy calcula-
tion. Listing 1 shows the template of unsafe unlink. It intuitively describes the
exploitation of Fig. 1 showcased in.

When generating attack sequences, the backbone primitives from the same
EXEC label are out of order, and HAEPG simulates the changes of reliant variables
and sorts backbone primitives on the premise that reliant variables meet the
expectation of function paths.

Heap Simulator. The main part of the simulator is a loop that wraps the
three heap primitive functions described in Sect. 3.1. It takes heap primitives
as the input and executes the corresponding functions to simulate the heap
interactions of the target program. After finishing the execution of each function,
the simulator will output its heap layout. HAEPG uses the simulator to simulate
the memory states of the target program.

5 Evaluation

To evaluate the effectiveness of HAEPG, we implemented a prototype of HAEPG and
assessed it with 24 programs CTF challenges, and all of them can be found in
ctftime.org [1], pwnable.tw [7], and github.com [3]. We selected programs based
on the following criteria: (1) programs must have at least one heap vulnerability,
and vulnerabilities are diverse; (2) programs with higher scores are preferred. In
general, challenges with higher scores are more difficult. Most selected challenges
have higher scores than the median score for their CTF game, and 4 of them
have the highest score in the exploitation category. We wrote templates for
four common heap exploitation techniques: fastbin attack [5], unsafe unlink [9],
house of force [6], and tcache poisoning [8], which are applicable to a significant
amount of CTF challenges. However, some challenges are not shipped with their
respective glibc, and we provided default glibc for them (2.27 for those whose
intended solution involves tcache and 2.24 for others)3. The result shows that
HAEPG can generate exploits for most of them.

All programs are tested in Ubuntu18.04, with Intel(R) Xeon(R) Gold 6154
CPU @ 3.00GHz*24 and 512GB RAM. We enabled NX [25] and disabled ASLR
[24] for all programs. We disabled ASLR because bypassing ASLR it is an orthog-
onal problem out of the scope of this paper.

5.1 Effectiveness

Table 3 shows the result of our evaluation. It contains details of programs, such as
names and CTF competitions. Moreover, it shows the glibc version, the vulner-
ability type that HAEPG identified, and whether HAEPG could generate an exploit

3 We provided ld.so for different versions of glibc, and changed the absolute paths of
ld.so and libc.so to relative paths for all test cases. In this way, we were able to load
arbitrary ld.so and libc.so on our evaluation system.
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Table 2. List of function and variables provided by the templating language

Types Name Description

Object vuln vulnerability information, including vulnerability type
and capability (for example, overflowed data size)

hmodel heap interaction model, including function paths and
their heap primitives

allocator the allocator, including the version information

Type HeapChunk value returned by Allocation

Function Include check if two parameters are inclusive

Allocation allocation primitive

Deallocation deallocation primitive

Edit edit primitive

Adjacent check if two heap objects are adjacent in heap layout

Distance return the distance of two heap objects

for them. As a result, HAEPG accurately reasons about the type of vulnerabil-
ity for 21 (87.5%) programs successfully and generate working exploits for 16
(66.7%) of them. Moreover, we bypassed Full RELRO [28] by corrupting the
function pointers in glibc (e.g., malloc hook) instead of GOT.

We also evaluated Revery [30] and Mechanical Phish [26] as a comparison,
and none of them could generate exploits for these programs. Revery found
corrupting states for these challenges. It reached unlink states for challenges
that could be exploited with unsafe unlink (the results of them are marked with
“*” in Table 3). However, Revery could not generate complete exploits because it
uses fuzzing to explore the memory state space. Unfortunately, this is insufficient
to forge fake chunks. Mechanical Phish found crashing states for these challenges
with Driller [29], but it could not generate exploits because there was no pointer
corrupted with symbolic bytes. Hence, Mechanical Phish could not hijack the
instruction pointer or inject shellcodes/rop-chains.

5.2 Performance

To evaluate the performance of HAEPG, we recorded the time HAEPG spent for heap
interaction modeling and exploit generation, as shown in Fig. 4. With the help of
merging and pruning, HAEPG reduced the number of function paths significantly,
and the total time for exploit generation of most programs is less than 400 s. The
program with the most function paths without simplification is airCraft, which
has 4284 function paths. Heap interaction modeling of this program without
simplification took more than 10 h, while after removing the redundant function
paths, it only left 6 of them and took 344 s for modeling. Besides, programs with
complex algorithms, such as note3, which has a sophisticated bitwise algorithm,
require a lot of analysis time due to complex constraints that need more time
for solving.
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Table 3. List of CTF pwn programs evaluated with HAEPG

Exp.

Tech.

Name CTF Glibc ver. Vul. type Exp. prim. Exp.

gen.

Revery M.

Phish

Fastbin

Attack

CaNaKMgF

Remastered

ASIS CTF

2017

2.23 Double

Free

AA ✔ ✗ ✗

halconyheap TJCTF 2019 2.23 Double

Free

AA ✔ ✗ ✗

stringer RCTF 2018 2.23 Double

Free

AA ✔ ✗ ✗

secretgarden Pwnable.tw 2.23 Double

Free

AA ✔ ✗ ✗

babyheap Fireshell

CTF 2019

2.24 UAF AA ✔ ✗ ✗

aircraft RCTF 2017 2.24 UAF AA ✗ ✗ ✗

Unsafe

Unlink

stkof HITCON

2014

2.23 Overflow AW ✔ ✗* ✗

simple note Tokyo

Westerns

2017

2.24 Off by

One

AW ✔ ✗* ✗

fb AliCTF 2016 2.24 Poison

Null Byte

AW ✔ ✗* ✗

note3 ZCTF 2016 2.19 Overflow AW ✔ ✗* ✗

House of

Force

gryffindor InCTF 2017 2.23 Overflow AX ✔ ✗ ✗

bamboobox NTU-CTF-

2017

2.24 Overflow AX ✔ ✗ ✗

Tcache

Poisoning

three BCTF 2018 2.27 UAF AA ✔ ✗ ✗

penpal world RedpwnCTF

2019

2.27 UAF AA ✔ ✗ ✗

one SECCON

CTF 2019

2.27 Double

Free

AA ✔ ✗ ✗

girlfriend StarCTF

2019

2.27 Double

Free

AA ✔ ✗ ✗

zero to hero PicoCTF2019 2.27 Double

Free

AA ✔ ✗ ✗

– house of atum BCTF 2018 2.27 UAF – ✗ ✗ ✗

– iz heap lv2 ISITDTU

CTF 2019

2.27 Off by

One

– ✗ ✗ ✗

– schmaltz InCTF 2019 2.28 Double

Free

– ✗ ✗ ✗

– children tcache HITCON

2018

2.27 Poison

Null Byte

- ✗ ✗ ✗

- Auir CSAW CTF

2017

2.23 – – ✗ ✗ ✗

– Secret Note V2 HITCON

2018

2.23 – – ✗ ✗ ✗

– Car Market ASIS CTF

2016

2.23 – – ✗ ✗ ✗
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Fig. 4. Time intervals of modeling heap interaction and exploit generation

5.3 A Multi-hop Exploitation Case Study

We take stkof as an example and show how HAEPG automatically generates an
exploit for a CTF challenge. The binary has three critical functions in stkof ,
do alloc, do dealloc, and do edit, which are used for allocating, deallocating, and
modifying heap chunks, respectively. An overflow in the do edit function allows
an attacker to write an arbitrary amount of data past the bounds of a chunk.
Based on the vulnerability’s capability, HAEPG used the template of unsafe unlink
(as shown in Listing 1) for exploitation.

As shown in Fig. 5, HAEPG first generated Attack Sequence 1 based on the
unsafe unlink template. The template required the vul ptr and vic ptr to be adja-
cent when triggering the vulnerability. However, the glibc created stdout buffer
between the vul ptr and vic ptr unexpectedly when initializing io streams (HAEPG
did not capture it because it only tracked heap interactions in stkof and ignored
shared libraries). Thus HAEPG attempted to fix the heap layout by releasing the
stdout buffer first. Since stdout buffer was generated by glibc, there is no func-
tion path that can release it. Hence, HAEPG tried to create a new heap layout. It
constructed Attack Sequence 2 by inserting a function path with an allocation
primitive. HAEPG used the primitive to allocate a chunk ph ptr in the same size
as vul ptr. The ph ptr is allocated at vul ptr’s original address and forced the
vul ptr and vic ptr to be allocated at higher addresses, and they are adjacent to
each other as desired. Now, the meta-data of vic ptr can be corrupted through
the overflowing from vul ptr. Through the last deallocation, the heap allocator
finally unlinked the fake chunk inside vul ptr and caused an arbitrary write prim-
itive. HAEPG corrupted malloc hook with a one-gadget pointer via this primitive
and hijacked the instruction pointer by inserting the function path of do alloc
into the Attack Sequence 2. When a shell was spawned, HAEPG generated the
exploit input in S2E.
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1. vul_ptr = Allocation(0x80)
2. vic_ptr = Allocation(0xf0)
3. sep_ptr = Allocation(0x20)
4. Edit(vul_ptr, vul_data)
5. Deallocation(vic_ptr)

vul_ptr stdout_buffer vic_ptr sep_ptr

1. ph_ptr = Allocation(0x80)
2. vul_ptr = Allocation(0x80)
3. vic_ptr = Allocation(0xf0)
4. sep_ptr = Allocation(0x20)
5. Edit(vul_ptr, vul_data)
6. Deallocation(vic_ptr)

ph_ptr stdout_buffer vic_ptr sep_ptr

do_alloc

do_edit

do_free

stkof

TemplateAttack Sequence 1 Attack Sequence B

Heap Layout 1 Heap Layout 2

Assessment &
Correction

Heap Primitives &
Function Paths

vul_ptr

Fig. 5. Heap primitives to exploit stkof

5.4 Failed Cases

Failed on Exploit Generation: HAEPG corrupted a forward pointer of fastbin
for airCraft. However, exploiting the AA primitive derived from fastbin attack
requires a fake meta-data which is valid for size 0x88 in this case. HAEPG could not
find such a primitive to store the illegal heap object, so it could not construct an
exploitable state. To exploit the challenge, an attacker has to forge a fake chunk
on the global data region in advance, which is beyond HAEPG’s ability.

HAEPG failed on house of atum because the program only provides two heap
objects for use at the same time, which are not sufficient for existing templates.
The intended way is to confuse the tcache list and fastbin list.

Missing Capable Templates: HAEPG relies on templates for exploit generation,
which means it can only handle the cases that are exploitable with existing tem-
plates, and can not use unknown exploitation techniques by itself. For instance,
HAEPG can not handle children tcache, iz heap lv2, and schmaltz because they
are not exploitable with the provided templates. The intended solutions for
children tcache, iz heap lv2 are to overlap heap objects by corrupting heap
meta-data and triggering consolidation. As to schmaltz, the intended solution
is to put a chunk in two different tcache lists and then corrupt the link pointer
of it to get an AA primitive.

We downgraded the glibc version for them for further tests. HAEPG success-
fully generated exploit inputs for iz heap lv2 and schmaltz with the templates
of unsafe unlink and tcache poisoning. HAEPG could not solve children tcache
because the program only provides one chance to write for each object, which is
not sufficient for provided templates.

Failed on Vulnerability Detection: Since HAEPG tracked heap interactions
at the object level, it failed to detect memory corruptions in some cases. For
instance, the challenge Car Market has a buffer overflow inside objects, i.e.,
it will corrupt the adjacent data fields rather than adjacent objects. A more
fine-grained method is needed to handle this case.

Failed on Program Analysis: HAEPG could not analyze sophisticated pro-
grams, such as SecretNoteV 2, which has an AES encryption algorithm, and
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Auir, which is an obfuscated program. As HAEPG relies on symbolic execution,
these programs generated a large number of complex constraints and states,
resulting in path/state explosion.

6 Related Work

Automatic Exploit Generation. Mechanical Phish [26] is a cyber reasoning
system developed by the Shellphish team for DARPA’s CGC [17]. It finds PoCs
of vulnerabilities using Driller [29] and reproducing crashing states in Angr [27].
Then, it checks if input data corrupts write pointers or the instruction pointer
at crashing points. If so, it will create shellcodes or rop-chains for exploitation.
In the end, it solves data constraints and generates exploit inputs.

Revery [30] is an automatic exploit generation tool for heap-based vulnerabil-
ities. It employes taint analysis and shadow memory to detect memory corruption
in crashing inputs. Moreover, it searches for exploitable points using a layout-
oriented fuzzing technique. In the end, Revery generates exploits by stitching
the diverging paths and crashing paths together. As shown in Sect. 5, Revery
failed on the evaluation set because the fuzzing technique that Revery used to
explore exploitable points is not capable of multi-hop exploitation.

FUZE [31] is a novel framework to automate the process of kernel UAF
exploitation. It analyzes and evaluates system calls which are valuable and use-
ful for kernel UAF exploitation using kernel fuzzing and symbolic execution.
Then, it leveraged dynamic tracing and SMT solver to guide the heap layout
manipulation. The authors used 15 real-world vulnerabilities to demonstrate
that FUZE could not only escalate kernel UAF exploitability but also diversify
working exploits.

SLAKE [14] is a solution to exploit vulnerabilities in the Linux kernel. It uses
a static-dynamic hybrid analysis to search for objects and syscalls which are use-
ful for kernel exploitation. Then, SLAKE models the capability of vulnerability
and matching the capability with corresponding objects. To exploit the vulner-
ability, SLAKE chooses the method of exploitation based on the vulnerability
type and manipulates heap layouts by adjusting the free list in the slab.

Gollum [22] is the first approach to automatic exploit generation for heap
overflows in interpreters. It employes a custom heap allocator SHAPESHIFTER
to generate exploitable heap layouts and utilizes a genetic algorithm to find heap
interaction sequences that can lead to the target heap layouts. If Gollum reaches
the target heap layouts, it corrupts the function pointers of victim objects by
triggering heap overflows. Like HAEPG, Gollum corrupts the instruction pointer
with one-gadgets to generate exploits.

The solutions above which toward interpreter or kernel explore the heap state
space with the knowledge of language grammars or kernel syscalls. However,
there is no such standard input protocol for applications as each application
parses inputs differently. Our method modeled heap interactions in the dimension
of the program path, and the result showed the potency of it.
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Besides, these solutions assume there is a sensitive pointer which could be
overwritten by merely heap layout manipulation and triggering vulnerabilities.
As we discussed before, the premise does not always hold for some vulnerabilities
and applications, which makes exploitation harder. Our method could effectively
solve this problem, and this is the main advantage of our method over others.

Moreover, instead of encoding existing exploitation techniques into HAEPG,
we developed a templating language to abstract them. A user could write their
templates without the need to know the internal details of HAEPG. The solutions
mentioned above have no such interface.

Heap Exploitation Techniques Discovery. Heaphopper [19] is an automated
approach to analyze the exploitability of heap implementations in the presence
of memory corruption. It takes the binary library of heap implementation, a list
of transactions (e.g., malloc and free), the maximum number of transactions that
an attacker can perform, and a list of security properties as input. Heaphopper
generates lists of transactions by enumerating permutations of the transactions
and generate C files and compiled programs for them. Then, it executes these
programs and tracks the memory states of them. If any program leads to states
violating the security properties, Heaphopper will take the C file of it as output.

ARCHEAP [32] uses fuzzing rather than symbolic execution to discover new
heap exploitation techniques. It generates test cases by mutating and synthesiz-
ing heap operations and attack capabilities, and checks whether the generated
test cases can be potentially used to construct exploitation primitives, such as
arbitrary write or overlapped chunks. As a result, ARCHEAP discovered five pre-
viously unknown exploitation primitives in ptmalloc and found several exploita-
tion techniques against jemalloc, tcmalloc, and even custom heap allocators.

The solutions above focus on exploit techniques discovery rather than appli-
cation, so they are usually used for heap allocator’s security assessment. Our
solution can generate exploits using known exploit techniques, but it can not
make use of unknown exploit techniques.

7 Discussion

HAEPG is dedicated to automating the process of multi-hop exploitation for heap-
based vulnerabilities. However, it has the following limitations:

– HAEPG could not analyze sophisticated programs or real-world programs. First,
the static analysis which HAEPG used to extract CFG is not good at handling
indirect calls/jumps. Second, symbolic execution’s drawbacks make HAEPG
only applicable to small programs. Third, a significant amount of real-world
programs uses multi-threading or multi-processing, which brings additional
challenges to the program analysis techniques used by HAEPG.

– HAEPG is fundamentally incomplete because it only searches for specific mem-
ory states based on existing templates rather than exploring the whole mem-
ory state space, which means HAEPG could not generate exploits with exploita-
tion techniques where no template is given.
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– HAEPG is implemented for ptmalloc and can not generate exploits for programs
using other allocators for now. To adapt HAEPG to other heap allocators, we
have to change the codes of parsing heap objects, the strategy of heap layout
manipulation, and the codes of detecting and leveraging exploit primitives.
We leave it as future work.

8 Conclusion

In this paper, we proposed an automatic exploit generation solution HAEPG for
heap vulnerabilities, which uses hybrid techniques to build the heap interaction
model and navigate the multi-hop exploitation. HAEPG could generate complex
exploits that abuse heap allocator’s internal functionalities and enhance the vul-
nerabilities’ capability step by step, which previously could only be completed
manually. We evaluated HAEPG with CTF challenges, and the result showed the
effectiveness of HAEPG. In the end, we believe that HAEPG improves the state-of-
the-art of automated exploit generation and provides useful building blocks for
solving remaining challenges in the field.
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Abstract. VoIP is a class of new technologies that deliver voice calls
over the packet-switched networks, which surpasses the legacy circuit-
switched telecom telephony. Android provides the native support of VoIP,
including the recent VoLTE and VoWiFi standards. While prior works
have analyzed the weaknesses of VoIP network infrastructure and the
privacy concerns of third-party VoIP apps, no efforts were attempted to
investigate the (in)security of Android’s VoIP integration at the system
level. In this paper, we first demystify Android VoIP’s protocol stack and
all its four attack surfaces. We then propose a novel vulnerability assess-
ment approach that assembles on-device Intent/API fuzzing, network-
side packet fuzzing, and targeted code auditing. By testing Android from
version 7.0 to the recent 9.0, we have discovered 8 zero-day Android VoIP
vulnerabilities, all of which were confirmed by Google with bug bounty
awards. The security consequences are serious, including denying voice
calls, caller ID spoofing, unauthorized call operations, and remote code
execution. To mitigate these vulnerabilities and further improve Android
VoIP security, we uncover a new root cause that requires developers’
attention during their design and implementation.

1 Introduction

VoIP is a class of new technologies that deliver voice calls over the packet-
switched networks, instead of the legacy circuit-switched telecom networks, i.e.,
the so-called Public Switched Telephone Network (PSTN). By transmitting the
voice data over the Internet, VoIP offers clear benefits over the PSTN calling
service, including improved quality of service, high-fidelity codecs, and lower
monetary costs. As a result, network operators are actively promoting VoIP to
modern Android smartphones [1–3], with the latest VoLTE (Voice over LTE)
and VoWiFi (or Wi-Fi Calling) schemes being deployed.

Existing works on Android VoIP security, however, are far from comprehen-
sive. They focused either on the weaknesses of VoIP network infrastructure, e.g.,
the insecure deployment of VoIP protocols at the network service providers’ side,
c© Springer Nature Switzerland AG 2020
C. Maurice et al. (Eds.): DIMVA 2020, LNCS 12223, pp. 110–131, 2020.
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or on the privacy concerns of third-party VoIP apps. Notably, Li et al. [4] and
Kim et al. [5] discovered multiple vulnerabilities in VoLTE’s both control- and
data-plane functions, and Xie et al. [6] uncovered four vulnerabilities in oper-
ational Wi-Fi calling services. Regarding Android VoIP’s client-side security,
only the privacy risks of some VoIP apps were tested [7,8], e.g., whether their
traffic are encrypted with SSL/TLS. It is thus unclear whether Android’s VoIP
integration at the operating system level are secure or not.

In this paper, we conduct the first study to systematically analyze Android
VoIP’s (in)security at the system level. Our study begins with a demystification
of Android VoIP’s protocol stack and its attack surfaces. Specifically, we study
VoIP-related Android system code to identify VoIP components and their imple-
mentations, including SIP (Session Initiation Protocol) via the nist-sip library,
SDP (Session Description Protocol) via gov.nist.javax.sdp, RTP (Real-time
Transport Protocol) via librtp-jni.so, codecs via libstagefright, and SIP
user agent via the system phone and dialer apps. Furthermore, we identify all
the four potential attack surfaces that allow physical, local, remote, and nearby
attacks against Android VoIP.

With these components and their attack surfaces in mind, we propose a
novel vulnerability assessment approach that assembles on-device Intent/API
fuzzing, network-side packet fuzzing, and targeted code auditing. First, we per-
form Android Intent and system API fuzzing to comprehensively fuzz the local
surface. Second, we set up a unique VoIP testbed to perform three protocol
fuzzings that mutate different fields in SIP, SDP, and RTP protocols either
directly from a user agent or through a Man-In-The-Middle proxy. Lastly, we
combine automatic fuzzing tests with targeted code auditing, including log-
driven and protocol specification based auditing, to eventually determine vul-
nerabilities.

By periodically fuzzing VoIP components on the recent Android OS from
version 7.0 to 9.0 over two years, we have discovered a total of nine zero-day vul-
nerabilities, eight of which are system vulnerabilities and have been confirmed
by Google with bug bounty awards. Two-thirds of these vulnerabilities can be
exploited by a network-side adversary, which suggests that Android VoIP’s major
risks come from the remote and nearby attack surfaces. Moreover, six of nine vul-
nerabilities’ severity levels were rated by Google Android security team as high
or critical (the most two serious levels), which implies that most of Android VoIP
vulnerabilities are serious. The incurred security consequences include denying
voice calls, caller ID spoofing, unauthorized call operations, and remote code
execution. Furthermore, we uncover a new root cause, incompatible processing
between VoIP and PSTN calls, that leads to six VoIP vulnerabilities and requires
developers’ extra attention in their future design and implementation.

To summarize, we have made the following contributions in this paper:

– The first demystification of Android VoIP’s protocol stack and all its four
attack surfaces (Sect. 3);

– A novel approach that assembles on-device Intent/API fuzzing, network-side
packet fuzzing, and targeted code auditing (Sect. 4);
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– New and comprehensive vulnerability assessment results, with nine zero-day
vulnerabilities analyzed and their root causes uncovered (Sect. 5 and Sect. 6).

User Agent User Agent

SIP

SIP

SIP

SIP

RTP

SIP Proxy SIP Proxy

Registar

Fig. 1. A typical network infrastructure of SIP.

2 Background

Before presenting our work, we first introduce the necessary background on VoIP
and Android in this section.

2.1 VoIP Background

Android VoIP mainly uses the SIP (Session Initiation Protocol) protocol, which
was drafted by IETF in RFC 3261 [9]. As a VoIP signaling protocol, SIP pro-
vides a mechanism for one or more participants to create, modify, and terminate
sessions. Fig. 1 presents a typical network infrastructure of SIP, which consists
of the following components:

– User Agent (UA): A SIP user agent is a logical network node of SIP, which is
responsible for creating, sending, and receiving SIP messages and maintains
a SIP session.

– Proxy Server: A SIP proxy server helps deliver SIP messages between different
user agents. It can also perform routing control and check the integrity of SIP
messages.

– Registrar Server: A SIP registrar server is used for accepting SIP REGISTER
requests from user agents, and places the location information it receives in
those requests.
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Similar to HTTP, SIP is a text-based protocol. It employs SDP (Session
Description Protocol) to describe session contents. A typical SIP message can
be an INVITE, REGISTER, OPTIONS, BYE, or CANCEL request. One impor-
tant field in the SIP header is the SIP URI (Unified Resource Identifier),
which represents the sender or receiver address. A SIP URI is in this format:
sip:user name@server ip address, e.g., sip:anonymous@192.168.8.151.

A SIP call involves three phases: the initial signaling phase, the conversation
phase, and the end signaling phase. The INVITE and BYE requests are used
in the two signaling phases. During the conversation phase, two calling parties
exchange audio/video streams using the codecs that are negotiated via RTP
(Real Transmission Protocol) [10].

2.2 Android Background

On Android, each application, no matter a system or a third-party app, runs in
its own app sandbox [11]. Different apps communicate with each other through
a new IPC (Inter-Process Communication) channel called Binder-based Intent.
Each app has its own private data and requires permissions to access sys-
tem’s resources. For example, systems VoIP apps have the RECORD AUDIO and
CALL PRIVILEGES permissions.

There are four kinds of Android components, including the user interface
based Activity, the long-running Service, the event-triggered Broadcast Rec-
eiver, and the database-like Content Provider. Although the Intent-based
inter-component communication (ICC [12]) enables flexible code and data shar-
ing across different components, it also brings a widely spreading threat called
component hijacking [13,14]. By sending a crafted (malicious) Intent message to
an exported component that reserves dangerous permissions or sensitive data, an
adversary could misuse the permissions [15,16], manipulate private data [13,17].
In this paper, besides system-level vulnerabilities, we also uncover one compo-
nent hijacking vulnerability in a popular VoIP application.

3 Demystifying Android VoIP

In this section, we demystify Android VoIP’s implementation and all its four
attack surfaces. To the best of our knowledge, we are the first to give this demys-
tification.

3.1 Android VoIP’s Protocol Stack

By studying Android’s source code, we are able to depict its implementation of
VoIP protocol at different layers. Figure 2 highlights Android VoIP’s protocol
stack in the gray color. Starting from the bottom layer, the stack consists of the
following components:
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Fig. 2. Android’s integration of VoIP protocol stack.

– SIP (Session Initiation Protocol): Android’s SIP implementation directly
uses the nist-sip library, which was developed by National Institute of
Science of Technology (NIST). It is a purely Java based SIP implementa-
tion, and provides API classes (e.g., SipSession and SipProfile) via the
android.net.sip package.

– SDP (Session Description Protocol): Similar to SIP, Android’s SDP also uses
the NIST implementation (gov.nist.javax.sdp), and provides a hidden API
class called SdpSessionDescription.

– RTP (Real-time Transport Protocol): Android implements RTP in a C/C++
dynamic link library called librtp-jni.so. It also provides a few API classes
via the android.net.rtp package.

– Audio or Video Codec: Android VoIP supports only a handful of codecs,
including PCM (Pulse-Code Modulation) type A and type U codec, AMR
(Adaptive Multi-Rate) codec, and GSM EFR (Enhanced Full Rate) codec.
Supporting these codecs relies on libstagefright.

– SIP UA (User Agent): Android VoIP implements its UA into the system
phone app (com.android.phone). It is a high-privilege app under the Linux
user group of radio. Hence, it can not only access typical phone-related per-
missions (e.g., accessing user contacts and making a phone call) but also low-
level resources in the Telephone Manager and Radio Interface Layer (RIL).
Additionally, displaying VoIP caller numbers is handled by the system dialer
app (com.android.dialer).

It is worth noting that these VoIP components are not isolated in Android.
Indeed, a VoIP session on Android always initiates from the SIP UA and goes
through all those protocol and codec components. As a result, by targeting at
the system phone and dialer apps, we can trigger Android VoIP’s code flows and
test the entire Android VoIP components.
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3.2 Android VoIP’s Attack Surfaces

Figure 3 shows all the potential surfaces that Android VoIP could be attacked:

– Physical Attack Surface: If an adversary could physically access a victim
user’s phone, he is able to set the phone’s VoIP configuration without the
authorization, causing a security breach. Although such attack is rare, it still
needs to be considered, as we will demonstrate in Sect. 5.

– Local Attack Surface: Since the system phone app is a privileged app, it can
access not only permission-protected resources but also system interfaces in
Telephone Manager and Radio Interface Layer (RIL). An on-device malicious
app thus can attack the phone app via the IPC communication to obtain
VoIP-related privileges.

– Remote Attack Surface: Since the phone needs to communicate with outside
via IP and mobile communication, it brings another attack surface. Specifi-
cally, a network-side adversary can send crafted payloads in SIP/SDP/RTP
packets to exploit Android VoIP components remotely, causing remote denial
of service and code execution.

– Nearby Attack Surface: With the popularity of HFP (Hand-Free Profile)
devices, a user may use a Bluetooth earphone or a Bluetooth car kit during
her VoIP call. These nearby Bluetooth devices bring a new attack surface.
On one hand, the malicious payload in VoIP traffic may reach to the sys-
tem Bluetooth components. On the other hand, the malicious traffic from
Bluetooth devices may also attack VoIP components.
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RIL Layer
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Fig. 3. Android VoIP’s four attack surfaces: physical, local, remote, and nearby.
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4 Methodology

After understanding Android’s VoIP integration and its attack surfaces, we pro-
pose a novel approach to systematically assessing Android VoIP’s vulnerabilities.
In this approach, we first automatically test Android VoIP components via on-
device and network-side fuzzing, and further combine them with targeted code
auditing to eventually determine vulnerabilities. In this section, we present these
three modules, among which network-side packet fuzzing is the most special one.

4.1 On-Device Intent/API Fuzzing

To comprehensively fuzz the local surface of Android VoIP components, we per-
form both Android Intent fuzzing and system API fuzzing. Specifically, Intent
fuzzing aims to test exported components in VoIP system apps, while system
API fuzzing tries to discover unprotected VoIP system service interfaces. In
this subsection, we first introduce the fuzzing framework before present its two
detailed fuzzing methods.

Drozer Console

Drozer
Agent

Intent 
Fuzzing

PC

Identify Exposed 
Surfaces

Mutate 
Parameters

Record Logs

Android Phone

System 
VoIP Apps

system_server
adb

logcat

adb
forward

System API 
Fuzzing

Fig. 4. The on-device fuzzing framework, with not only the conventional Intent fuzzing
but also the creative system API fuzzing based on Java reflection.

On-Device Fuzzing Framework. As shown in Fig. 4, we develop an on-device
fuzzing framework based on Drozer [18]. We use a drozer console on PC to control
the fuzzing process on a test phone via its drozer agent. We deliver fuzzing
commands through Android’s adb forward command and receive fuzzing logs
through the adb logcat command. For both Intent and system API fuzzing, we
perform these three steps: identifying exposed surfaces, mutating parameters,
and recording logs.

On-Device Intent Fuzzing. In the Intent fuzzing, exposed surfaces are VoIP
apps’ exported components that can be accessed by any other third-party apps
on the same phone. We identify these exported components by analyzing com-
ponent information in the app’s AndroidManifest.xml file. To mutate Intent
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parameters, we try both empty (i.e., null) parameters and the parameters that
satisfy a component’s data schemes (e.g., content:// and vk.voip).

On-Device System API Fuzzing. In the system API fuzzing, exposed sur-
faces are those unprotected system service interfaces. We identify them by using
Java reflection to invoke Android ServiceManager’s listServices function,
which can list not only all the available system service interfaces but also
their accepted parameter types. We then launch targeted fuzzing against these
exposed service interfaces according to their parameter types.

4.2 Network-Side Packet Fuzzing

To test Android VoIP’s network components, we need to launch network-side
packet fuzzing. In this subsection, we first introduce our testbed for network-
side fuzzing, and then present three protocol fuzzing and two fuzzing modes.

mjUA UAAndroid Phone

OpenSIPS Proxy

Client Fuzz
SIP Fuzz
SDP Fuzz
RTP Fuzz

MITM Fuzz

ARP Spoof

Fig. 5. Our testbed for network-side fuzzing.

Setting up the Testbed. Figure 5 shows the architecture of our testbed for
network-side fuzzing, where an Android phone acts as the victim user and
a mjSIP-based User Agent mimics the adversary. Note that mjSIP [19] is a
command-line based SIP UA implementation with flexible options. Addition-
ally, we use OpenSIPS [20] to establish a SIP proxy server, and connect all these
three parties in the same Wi-Fi network.

Fuzzing Different Protocols. We leverage mjSIP (uac.sh) to fuzz all the
three protocols in the Android VoIP stack (see Sect. 3), namely SIP, SDP, and
RTP fuzzing. Listing 1.1 shows the mjUA commands used in our three fuzzing
methods. Additionally, we install an AutoAnswer app in the Android phone to
automate the entire fuzzing process.

– SIP Fuzzing: In this fuzzing, we mutate the user name and server name
in a SIP URI name. For example, we can use a long SIP name to launch
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Listing 1.1. A list of the mjUA commands used in our fuzzing.

$ ./uac.sh -h
-f <file >: specifies a configuration file (sdp fuzzing)
-c <call_to >: config the victim SIP URI
-y <secs >: could be used as fuzz interval time
--display -name <str >: display name (sip fuzzing)
--user <user > : user name (sip fuzzing)
--send -file <file > the specified audio file (rtp fuzzing)

Listing 1.2. The media description we leverage for SDP fuzzing.

# Media descriptors:
# One or more ’media’ (or ’media_desc ’) parameters specify for each media:

media type , port , and protocol/codec.
# Zero or more ’media_spec ’ params can be used to specify attributes: codec

name , sample rate , and frame size.
# Examples:
# media=audio 4000 rtp/avp
# media_spec=audio 0 PCMU 8000 160
# media_spec=audio 8 PCMA 8000 160
# media_spec=audio 101 G726 -32 8000 80
# media_spec=audio 102 G726 -24 8000 60
# media=video 3002 rtp/avp
# media_spec=video 101

the fuzzing: $./uac.sh --user <long SIP name>. Additionally, we can also
change the display SIP name using the display-name option, as shown in
Listing 1.1.

– SDP Fuzzing: In this fuzzing, we mutate different fields in the SDP’s media
description. We launch the SDP fuzzing by preparing variants of a mjSIP
configuration file: $./uac.sh -f configFile.cfg. The media format of this
configuration file is listed in Listing 1.2. Specifically, we can change the
“media” and “media spec” parameters in multiple ways. For example, we can
use different media type, port, and protocol/codec for the “media” parameter
and specify different media attributes for the “media spec” parameter.

– RTP Fuzzing: To fuzz RTP codecs, we generate PCMU/PCMA/AMR/GSM-EFR
codec corpuses and send them to the Android phone one by one via mjUA’s
send-file option. The detailed fuzzing code is shown in Fig. 6. Specifically,
we first prepare a seed file called sample-gsm-8000.gsm, and use this seed
file to randomly generate different audio files (fuzz $i.tone).

Direct Fuzzing and MITM Fuzzing. As shown in Fig. 5, we pro-
vide two fuzzing modes: direct fuzzing from the UA and MITM
(Man-In-The-Middle) fuzzing. To enable the MITM fuzzing, we leverage
this Ethercap [21] command to perform an ARP spoof for construct-
ing a transparent proxy: sudo ettercap -T -V hex -F rtpfuzz.ef -M arp
/192.168.8.152// /192.168.8.191//. With such a MITM proxy, it is con-
venient for us to leverage existing VoIP traffic for mutation. For example, we
can mutate RTP headers by setting an Ethercap filter, which can specify which
packet to filter and how to manipulate. The mutated new packets will be then
forwarded to the Android phone.
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Fig. 6. A code illustration of our RTP/Codec fuzzing.

4.3 Targeted Code Auditing

To eventually determine vulnerabilities, it is necessary to launch manual code
auditing after the automatic fuzzing. In this subsection, we propose two targeted
code auditing methods that leverage fuzzing logs and protocol specification to
reduce manual efforts.

Table 1. Zero-day Android VoIP vulnerabilities discovered in our work.

Discovery

method

ID CVE/AID Attack

vector

Vulnerable entry

component

Affected

Android

Severity

level

Security

consequence

On-device

Fuzzing

V1 H1-#386144 Local com.vkontakte.android All Low Triggering a

call without

user’s consent

V2 CVE-2017-

11042

Local org.codeaurora.ims ≤ 7.1.2 Moderate Unauthorized

setting of call

transfer

V3 A-

31823540-1

Remote com.android.dialer ≤ 7.1.1 High Undeniable

VoIP call

spam

Network-

side

Fuzzing

V4 CVE-2017-

0394

Remote com.android.phone ≤ 7.1.1 High Remote DoS

once accepting

a call

V5 CVE-2018-

9475

Remotea com.android.bluetooth ≤ 9.0 Critical Remote code

execution due

to overflow

V6 CVE-2019-

9311

Remotea com.android.bluetooth ≤ 9.0 Moderate Remote DoS

once receiving

a call

Code

Auditing

V7 CVE-2016-

6763

Physical com.android.phone ≤ 7.0 High Sensitive data

leak;

Permanent

DoS

V8 A-

31823540-2

Remote com.android.dialer ≤ 7.1.1 High Caller ID

spoofing

V9 A-32623587 Remote com.android.dialer ≤ 7.1.1 High Caller ID

spoofing
a These two remote vulnerabilities could be triggered only when the phone is connected with a nearby

Bluetooth HFP device.
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Log-Driven Auditing. Both on-device and network-side generate a num-
ber of fuzzing logs. We thus leverage them for a log-driven code audit-
ing. Specifically, for a process crash produced by our fuzzing, we can collect
either a Java exception for Java components (e.g., IllegalStateException:
Reject SDP: no suitable codecs) or a fault status for native code
(e.g., pid: 8112, tid: 8161, name, XXX, signal 11 (SIG SEGV), fault
addr: YYY). Moreover, we can obtain the detailed location where the
code encounters an error, e.g., createAnswer(SipAudioCall.java:805) and
libbluetooth jni.so(clccRes- ponseNative+30). We then use these code
locations to driven our auditing.

Protocol Specification Based Auditing. PSTN and VoIP protocols have
some specifications that we can leverage for a targeted auditing. For example,
special attributes, e.g., the call transfer splitting character “&” and the phone
number prefix “phone-context”, in PSTN may have different behaviors in VoIP,
which we will illustrate later. We then leverage this kind of protocol specification
differences for an efficient auditing.

5 Evaluation

In this section, we present our results of fuzzing VoIP components on the recent
Android OS from version 7.0 to 9.0. Since this is a periodic fuzzing effort (i.e.,
not a single experiment) over a period of around two years, we focus on reporting
our findings in this paper. As shown in Table 1, we have discovered a total of nine
zero-day vulnerabilities, eight of which are system vulnerabilities and have been
confirmed by Google with bug bounty awards. Table 1 lists the meta information
of these vulnerabilities, including the entry components where vulnerabilities can
be triggered from, the severity level rated by Google Android Security team, and
the corresponding security consequence.

5.1 Vulnerabilities Discovered via On-Device Fuzzing

By performing on-device fuzzing, we find that Android VoIP generally protects
its local attack surface, with only one vulnerability discovered by the system
API fuzzing and no vulnerable component identified by the Intent fuzzing. To
also demonstrate the effectiveness of our Intent fuzzing, we test and identify a
VoIP vulnerability in a very popular app called VK1, which has cumulatively
over 100 million installs on Google Play.

V1: Maliciously Triggering a VoIP call in the VK App. The VK
app (version 5.13) was identified by us to contain an exported component,
LinkRedirActivity, which accepts an Intent with the content:// scheme and
with the vk.voip data type. Surprisingly, LinkRedirActivity would directly
make a VoIP call to a VK user account specified by the vk.voip data. As a

1 https://play.google.com/store/apps/details?id=com.vkontakte.android.

https://play.google.com/store/apps/details?id=com.vkontakte.android
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result, an on-device malicious app can send a crafted Intent to trigger a VoIP
call without user’s consent and even when the phone screen is turned off. More
seriously, the victim user could be eavesdropped if the callee VK account was set
to an account under the attacker’s control, the idea of which is similar to the login
CSRF (Cross-Site Request Forgery) [22] attack in web security. To patch this
vulnerability, VK added a user confirmation dialog before LinkRedirActivity
can make any VoIP call.

V2: Unauthorized Call Transfer in the IMS Interface. Android has a sys-
tem service called QtilMS, which is for IMS (IP Multimedia Subsystem) related
functionality and implemented by Qualcomm. However, our system API fuzzing
found that QtilMS exposed two VoIP APIs, SendCallTransfer Request and
SendCallForwardUncondTimer, to any third-party app. Normally, these two
system APIs are only accessible to those with the CALL PRIVILEGES permis-
sion. However, our fuzzing shows that any app without the permission can also
invoke the APIs, because no checking is enforced by QtilMS. As a result, an on-
device malicious app can misuse those two privileged APIs to set unauthorized
call transfer. To mitigate this, Qualcomm added the permission check for the
access of those two QtilMS APIs.

5.2 Vulnerabilities Discovered via Network-Side Fuzzing

Compared to the on-device fuzzing, our network-side fuzzing discovered more
VoIP vulnerabilities, as shown in Table 1. This suggests that Android VoIP’s
major risks come from the remote and nearby attack surfaces. In this subsection,
we first introduce two vulnerabilities that can be exploited remotely, and then
present another two vulnerabilities that involve the nearby Bluetooth-based HFP
(Hands-Free Profile) devices.

V3: Undeniable VoIP Call Spam Due to Long SIP Name. We discovered
this vulnerability through a SIP fuzzing test using the long SIP name: $./uac.sh
--user <long SIP name> <victim’s sip account>. As shown in Fig. 7, the
callee user’s VoIP phone interface could be filled up by the very long SIP name,
e.g., 1,043 characters in our test case. In this scenario, the victim user cannot
answer or reject a call, because no button is shown up. If the adversary frequently
launches this undeniable VoIP call spam, the victim has to disable the network
connection or shutdown her phone. We call this kind of denial of service attack
“VoIP call bomb”, as similar to SMS bomb [23]. To defend against this attack,
Google restricts the length of SIP user name.

V4: Remote DoS in Telephony Once Accepting a Call. We discovered
this vulnerability through the SDP fuzzing using a malformed configuration file:
$./uac.sh -f malformed.cfg. As shown in Fig. 8, it can crash the victim’s
phone process once she accepts the call, causing a remote DoS (denial of ser-
vice). Our fuzzing identified two weaknesses in the affected Telephony module,
either of which could be exploited for the attack. One way is to use a codec
that is not in the supported codec list (see Sect. 3.1). For example, if we add
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Fig. 7. A demo of exploiting V3. Fig. 8. A demo of exploiting V4.

“media spec=audio 102 G726-24 8000 60” into the malformed.cfg file, the phone
process crashes with an illegal state exception “Reject SDP: no suitable codecs”.
The other way is to use the invalid SDP description. For example, if we add
“media=AAAA 4000” into the malformed.cfg file, the phone process crashes
with an illegal SDP argument exception. To patch these weaknesses, Google
added exception catch statements for those two unhandled exceptions.

The Model of Bluetooth-Involved VoIP Vulnerabilities. As shown in
Table 1, the V5 and V6 vulnerabilities could be triggered only when the phone is
connected with a nearby Bluetooth device. Hence, we first explain the model
of these Bluetooth-involved VoIP vulnerabilities before presenting their spe-
cific weaknesses. Figure 9 depicts such a vulnerability model. Specifically, mobile
phone acts as an AG (Audio Gateway) in the HFP (Hands-Free Profile) com-
munication, and Bluetooth earphone or Bluetooth car kit is the HF (Hand Free)
device. When a remote attacker makes a VoIP call to a phone connected with
a HF device, the HF device will query all the call information (e.g., caller num-
ber) from the phone via HFP’s AT+CLCC command. As a result, the VoIP
call input will be delivered to libbluetooth-jni for processing. A vulnerability
could happen if it cannot process an unexpected VoIP call input (e.g., a long user
name), because Bluetooth may consider only the traditional, instead of VoIP,
phone call.

V5: Remote Code Execution Due to Stack Buffer Overflow. Both V5
and V6 suffer from the unexpected long user name (or caller number) in a VoIP
call. For V5, the vulnerable code locates in the function of preparing CLCC
response, as shown in Listing 1.3. It tries to return the caller number in the
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Fig. 9. A model of Bluetooth-involved VoIP vulnerabilities.

Listing 1.3. The vulnerable code of stack buffer overflow in V5.

bt_status_t HeadsetInterface :: ClccResponse (...) {
...
if (number) {

size_t rem_bytes = sizeof(ag_res.str) - res_strlen;
char dialnum[sizeof(ag_res.str)]; // length is 513 bytes
size_t newidx = 0;
if (type == ADDRTYPE_INTERNATIONAL && *number != ’+’)

dialnum[newidx++] = ’+’;
}

for (size_t i = 0; number[i] != 0; i++) {
if (utl_isdialchar(number[i]))

dialnum[newidx++] = number[i]; // Overflow when > 513
}
...

}

CLCC response, but uses only a 513-byte array (dialnum) to store it. A stack
buffer overflow thus happens when a caller number with more than 513 bytes is
inputted. This vulnerability allows an adversary to overwrite the return address
of the ClccResponse function, causing remote code execution. For example,
the adversary can launch the exploit using this command: $./uac.sh --user
$(python -c ’print ‘‘8’’*1055’).

V6: Remote DoS in Bluetooth Once Receiving a Call. This vulnera-
bility is similar to V5, but it is triggered when the call state changes, i.e.,
BTHF CALL INCOMING in Listing 1.4. In this example, developers also did not
expect the long caller number in a VoIP call. Specifically, the return value of
the first snprintf statement can be greater than sizeof(ag res.str)’s 513
bytes. Since the sizeof(ag_res.str)-xx variable now is an unsigned negative
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Listing 1.4. The vulnerable code of integer underflow in V6.

case BTHF_CALL_STATE_INCOMING:
if (num_active || num_held)

res = BTA_AG_CALL_WAIT_RES;
else

res = BTA_AG_IN_CALL_RES;

if (number) {
int xx = 0;
// number (xx) might be longer than sizeof(ag_res.str)
xx = snprintf(ag_res.str , sizeof(ag_res.str), "\"+%s\""

,number);
ag_res.num = type;
if (res == BTA_AG_CALL_WAIT_RES)

snprintf (& ag_res.str[xx], sizeof(ag_res.str)-xx,",%d"
,type); //a negative value becomes a large integer

}
break;

number, it becomes a very large positive integer, which eventually triggers the
abort checking statement and causes remote DoS. Compared to the DoS in V4,
triggering DoS in V6 requires a Bluetooth device connected, but just needs to
receive, rather than answer, a call.

To patch V5 and V6, Google restricted the length of caller number inputted
in the Bluetooth module.

5.3 Vulnerabilities Discovered via Code Auditing

In this subsection, we present the vulnerabilities that are dedicatedly discovered
by our targeted code auditing. Specifically, we are able to use protocol specifica-
tion based auditing to discover these vulnerabilities, since their root causes are
the inconsistency between VoIP’s specification and Android’s traditional phone
call processing.

V7: Data Leak and Permanent DoS Due to Path Traversal. In this vul-
nerability, we exploit the inconsistency between SIP URI and Android/Linux
file directory. Specifically, SIP URI treats “..” and “/” as normal characters,
whereas they are special characters in the Android’s file name convention. As a
result, a path traversal vulnerability appears in the code shown in Listing 1.5.
The directory that contains the serialized “.pobj” SIP profile file is named in
this format: “sip user@server ip”, e.g., “alice@171.11.160.202”. An attacker thus
can misuse these two names to manipulate the path of mProfileDirectory.
For example, by physically setting “sip user” and “server ip” in the format
of Fig. 10(a), mProfileDirectory becomes “/data/data/com.android.phone/
files/alice/@SomeSite/../../../../../../sdcard/” and leaks the sensi-
tive SIP profile file to the public SD card. A permanent DoS could also happen

Listing 1.5. Simplified vulnerable code of path traversal in V7.

File f = new File(mProfileDirectory + p.getProfileName ())
File f = new File(new File(root , name), ".pobj")
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if “server ip” is set to overwrite another system app’s file, e.g., mmssms.db shown
in Fig. 10(b). Due to this fake mmssms.db file, the real one cannot be created
and thus deny any SMS functionality. Only a factory reset can recover the phone.

(a) Leaking data to SD card. (b) Causing permanent DoS.

Fig. 10. Demo screenshots of exploiting the vulnerability V7.

V8: Caller ID Spoofing Due to Mis-parsing “&”. The last two vulnera-
bilities, V8 and V9, are due to the inconsistency between SIP URI and PSTN
(Public Switched Telephone Network) number format. In vulnerability V8, it
is related to a special character “&” in the caller number. For a caller number
with “&”, the system dialer app treats the number before “&” as the actual
calling number and the number after “&” as the call transfer number, according
to PSTN’s convention. However, the dialer does not consider an incoming VoIP
call and performs the same for a VoIP call number. As a result, an adversary can
mimic any phone number by simply adding a “&” character in the end, causing
a caller ID spoofing attack. For example, the attacker can mimic the emergency
number by setting the SIP name as “911&”, as shown in Fig. 11(a). He can also
spoof as a contact number of the victim if the attacker knows the number, and
the dialer will display the name and profile photo of the spoofed contact, as
shown in Fig. 11(b).

V9: Caller ID Spoofing Due to “phone-context”. Another inconsistency
between SIP URI and PSTN number format is the “phone-context” parame-
ter [24], which can be used to specify the prefix of a phone number. For example,
in PSTN’s convention, the number “650253000;phone-context=+1” is equivalent
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(a) Spoofing as an emergency. (b) Spoofing as a contact. (c) Spoofing as Google in V9.

Fig. 11. Demo screenshots of exploiting the vulnerability V8 and V9.

Table 2. Incompatible behaviors between VoIP and PSTN calls.

ID Attribute Incompatible behaviors

V3 Number length 513+ bytes in SIP URI ≤ 513 in PSTN no

V5 Number length 513+ bytes in SIP URI ≤ 513 in PSTN no

V6 Number length 513+ bytes in SIP URI ≤ 513 in PSTN no

V7 “../” character Part of SIP URI Parent dir in Linux

V8 “& ” character Part of SIP URI Call transfer in PSTN

V9 “phone-context” Part of SIP URI Prefix for PSTN no

to “+1650253000”, where the value of “phone-context” becomes the prefix of the
number. However, such convention should not apply to VoIP calls, which is unfor-
tunately ignored by the dialer app. As a result, an adversary can intentionally
set the caller number as “650253000;phone-context=+1”, and the dialer app will
interpret it as “+1650253000” and display it as Google’s call, which is clearly
presented in Fig. 11(c). Note that such mapping from “+1650253000” to Google
is automatically performed by Android’s CallerID mechanism [25], which tries
to correlate well-known phone numbers or mark spam numbers in the normal
scenario. But here it worsens the severity instead.

6 A New Root Cause

Besides the vulnerability-level cause analysis in Sect. 5, we try to uncover the
root causes underneath those vulnerabilities. Among the nine vulnerabilities we
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discovered, three of them have previously known root causes, i.e., no protection of
exported components in V1 [13,15], no checking of system APIs in V2 [26,27],
and missed error handling in V4 [28]. For the rest of six vulnerabilities, we
identify a new root cause that is dedicated to Android VoIP and not known
before.

We call this root cause “incompatible processing between VoIP and PSTN
calls”. Specifically, since both VoIP calls and traditional PSTN calls are han-
dled by the Android telephony system, there exist some incompatible processing
behaviors between VoIP and PSTN calls. Such incompatibility is the root cause
of six VoIP vulnerabilities we identified, as summarized in Table 2. For example,
for the attribute of phone number length, VoIP SIP can use more than 513 bytes,
whereas only less than 513 bytes is used in the traditional PSTN phone number.
Other examples are the special characters of “../”, “&”, and “phone-context”,
which could be treated as a part of the URI in VoIP SIP. But they originally
have special meanings in the Linux and PSTN specification, causing incorrect
processing in the Android VoIP code. Understanding these incompatible behav-
iors and other potential incompatibility between VoIP and PSTN calls can help
us further improve Android VoIP security. We thus call for VoIP developers’
extra attention in their future design and implementation.

7 Related Work

In this section, we present the closely related research on VoIP security, protocol
fuzzing, and Android dynamic testing.

VoIP Security. There were some research [29–33] to explore the general secu-
rity issues of VoIP, e.g., denial of service, eavesdropping, and call hijacking,
since over ten years ago. In particular, the VOIPSA organization gave a clear
taxonomy [34] of VoIP’s threats. Recently, with the high popularity of Android
phones and mobile networks, researchers started to investigate the security of
VoIP apps and network infrastructure in the real world. They have identified the
privacy risks in some VoIP apps [7,8] and infrastructure vulnerabilities in several
mobile carriers [4–6]. In particular, both Li et al. [4] and Kim et al. [5] identify a
number of serious vulnerabilities in mobile carriers’ VoLTE networks, including
free data, caller spoofing, over-billing, and denial-of-service. Compared with all
these works, we are the first to systematically study the security of system-level
VoIP implementation on Android, with 8 zero-day vulnerabilities identified and
confirmed by Google.

Protocol Fuzzing. Our network-side fuzzing in Sect. 4.2 belongs to the gen-
eral category of network protocol fuzzing. In the classical book of Fuzzing:
Brute Force Vulnerability Discovery [35], the authors explained network pro-
tocol fuzzing on both Windows and Unix. Regarding the stateful network pro-
tocol fuzzing, SNOOZE [36] and Prospex [37] are two pioneer systems. Auto-
Fuzz [38] is an open-source network protocol fuzzing framework. There are also
some fuzzers specific to certain protocols, such as for OPC protocol [39] and TLS
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libraries [40,41]. Moreover, KiF [42] is a dedicated SIP fuzzer that was released
in 2007, but unfortunately, it does not apply to Android phones. Very recently,
Pham et al. proposed AFLNet [43], a greybox fuzzer based on the popular AFL
(American Fuzzy Lop) to specifically fuzz network protocol implementations. In
this paper, our network-side fuzzing tool is the first Android VoIP fuzzer for SIP,
SDP, and RTP fuzzing.

Android Dynamic Testing. Our on-device fuzzing in Sect. 4.1 is related to
the general Android dynamic testing [44–48]. For example, SMV-Hunter [44] and
FileCross [45] leveraged Android adb commands to dynamically test Android
apps’ security vulnerabilities. AppIntent [46], further instrumented Android
operating system for the effective dynamic testing of Android apps. Two crowd-
sourcing apps, UpDroid [47] and NetMon [48], were recently proposed to lever-
age crowds’ user interaction for dynamic app tests in the wild. Besides gen-
eral Android dynamic testing, the closest work to our Intent fuzzing is Intent-
Fuzzer [49], which also leveraged Drozer for Intent fuzzing. The difference is that
our fuzzing targets at VoIP components, instead of the permission-protected
components in IntentFuzzer [49]. Additionally, buzzer (Binder Fuzzer) [50] ana-
lyzed input validation vulnerabilities associated with Android system services,
which is similar to our System API fuzzing except that we use Java reflection
to effectively identify service interfaces and their parameters. Furthermore, our
on-device fuzzing is an unified framework that performs both Intent and System
API fuzzing.

8 Conclusion

In this paper, we conducted the first study to systematically investigate the
(in)security of Android’s VoIP integration at the system level. We began with a
demystification of Android VoIP’s protocol stack and all its four attack surfaces.
We then proposed a novel vulnerability assessment approach that first employs
on-device Intent/API fuzzing and network-side packet fuzzing to automatically
test Android VoIP components, and further combines them with targeted code
auditing to eventually determine vulnerabilities. By periodically fuzzing VoIP
components on the recent Android OS from version 7.0 to 9.0 over two years,
we discovered a total of nine zero-day vulnerabilities, two-thirds of which can
be exploited by a network-side adversary. These vulnerabilities caused serious
security consequences, including denying voice calls, caller ID spoofing, unautho-
rized call operations, and remote code execution. Finally, we uncovered a new
root cause, incompatible processing between VoIP and PSTN calls, that leads to
six VoIP vulnerabilities and requires developers’ extra attention in their future
design and implementation.
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Abstract. Given the ever-increasing number of malicious bots scouring
the web, many websites are turning to specialized services that advertise
their ability to detect bots and block them. In this paper, we investi-
gate the design and implementation details of commercial anti-bot ser-
vices in an effort to understand how they operate and whether they can
effectively identify and block malicious bots in practice. We analyze the
JavaScript code which their clients need to include in their websites and
perform a set of gray box and black box analyses of their proprietary
back-end logic, by simulating bots utilizing well-known automation tools
and popular browsers.

On the positive side, our results show that by relying on browser
fingerprinting, more than 75% of protected websites in our dataset, suc-
cessfully defend against attacks by basic bots built with Python scripts
or PhantomJS. At the same time, by using less popular browsers in terms
of automation (e.g., Safari on Mac and Chrome on Android) attackers
can successfully bypass the protection of up to 82% of protected web-
sites.

Our findings show that the majority of protected websites are prone
to bot attacks and the existing anti-bot solutions cannot substantially
limit the ability of determined attackers. We have responsibly disclosed
our findings with the anti-bot service providers.

1 Introduction

The modern web is home to benign and useful bots, such as, search engine
crawlers that provide easy access to information around the web. Yet the same
technology that enables benign bots is also utilized by malicious bots which dis-
rupt services, steal business and customer information, and make illicit profits
for their operators. Malicious bots are used to automatically find and exploit
vulnerabilities on websites (such as outdated and vulnerable Content Manage-
ment Systems) [15], scrape email addresses and content for sending spam and
creating phishing websites, registering thousands of accounts and selling them
via underground markets (e.g. for fake followers on social networks [47]) and
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brute forcing login forms with credentials stolen from other websites (known as
credential stuffing). Some of the recent bot attacks include, ride-sharing compa-
nies scraping pricing and vehicle information from their competitors websites [9].
Similarly, the bots targeted the airline industry, causing an increase in the look-
to-book ratio which leads to increased fees [11].

According to recent estimates, more than 50% of traffic on the web belongs
to bots with more than half of that belonging to malicious ones [19]. In this
environment, specialized anti-bot services have emerged which offer bot detection
and bot blocking as a service to their clients. Even though these services claim
to utilize an impressive array of technologies, their operation and effectiveness
in detecting and blocking bots have not been evaluated.

In this paper, we report on the first analysis of 15 popular anti-bot services.
We identify the JavaScript code which their clients deploy on their websites
and perform a white box analysis of its operation. We observe heavy reliance
on browser fingerprinting including recent fingerprinting techniques that finger-
print a system’s graphics card, local IP address, and even whether the browser
attempts to lie about its identity. To understand whether this extracted informa-
tion is sufficient to detect and block abusive bots, we utilize six different existing
automation tools, ranging from off-the-shelf crawlers, to automated browsers.
Through the use of carefully designed experiments, we evaluate the ability of
the most popular anti-bot services to stop attacks, such as, content scraping,
credential brute forcing, and account hijacking.

Among others, we find that few services are capable of significantly slowing
down attackers and that certain unusual crawling tools, such as, an AppleScript-
controlled Safari Browser and an ADB-controlled Android smartphone can suc-
cessfully crawl large numbers of webpages and conduct account attacks. More
specifically, at least 68% of our simulated scraping requests were not blocked,
and more than 90% of our account takeover attempts were successful with at
least one of the tested tools. In addition, for more than half of our target web-
sites, there is at least one tool that enables us to do 1,000 password brute force
attempts without getting blocked.

Contrary to our expectations, we discover that having a bot reach websites
from a public cloud does not significantly decrease its performance since exist-
ing services put more emphasis on browser fingerprints rather than source IP
address.

2 Background

Since malicious bots can lie about their identity, prior research has proposed a
number of methods for bot detection, including behavior-based detection (based
on the premise that bots browse websites differently than real users [24,29]),
detection based on accessing content that is invisible for regular users [39,52] and
more recently, based on browser fingerprinting [14]. Once a visitor is suspected
to be a bot, the website can request the solving of CAPTCHAs, rate-limit the
user, or altogether block traffic from the offending IP address.
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Even though web developers may try to implement the aforementioned tech-
niques, it is unlikely that the developers of small websites can keep up with the
adaptation from the side of the bot authors. In order to keep up with attackers,
new businesses have emerged that sell bot-detection services to their clients, sim-
ilar to anti-DDoS companies which protect their clients against DDoS attacks.
Website owners can then integrate these services with their website to block bots
without needing to know how a bot was identified. One major benefit of using
such services compared to a custom implementation of an anti-bot mechanism,
is the threat-information sharing that happens in the background. If bot activity
with certain characteristics is detected on website A, website B that is also a
client of the same anti-bot service, can get information about this bot and block
it immediately at its first interaction.

Anti-bot companies advertise a range of bot-related attacks which they can
detect and stop. By analyzing the descriptions of their services, we summarize the
attack scenarios performed by malicious bots into the three following categories
(these attacks are discussed in more detail in Sect. 5):

– Account Takeover, also known as credential stuffing, refers to automated
login attempts with stolen or leaked credentials to target websites. In this
case, attackers may take advantage of users reusing credentials across services
and leaked password databases found in underground markets.

– Credential Brute Force is another type of account takeover attack. In this
scenario, the attacker uses a list of popular passwords against user accounts
to break into them.

– Content Scraping is an automated attempt to steal proprietary website
information, such as product price lists and inventory, to gain a business
advantage.

Fingerprint & Events

Server Side Events

Risk Score /
Recommended Action

Web Browser

Web ServerAnti-bot Service

 HTTP Connection

Fig. 1. High-level architecture of anti-bot services

The general structure for anti-bot services is depicted in Fig. 1. We arrived
at this architecture by studying the design of multiple anti-bot services and
abstracting away service-specific details. When users visit a website protected by
an anti-bot service, fingerprinting scripts gather information from their browser
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and send it directly to the anti-bot service’s back-end. Information about how
users interact with the website and actions taken, such as, login attempts and
viewed pages, are also transmitted to the anti-bot service by the webserver using
server-side APIs. Plugins are typically provided for popular content management
systems (such as WordPress and Drupal) and integration is also available at
the website and webserver layers using provided SDKs. In this architecture,
every visitor of the website has a unique identifier which is later used by the
webserver to query the anti-bot service and receive a risk score. Depending on
the configuration of the website, different thresholds on the risk score can trigger
different events, such as, showing a CAPTCHA, limiting the number of requests
of suspicious users, or altogether blocking them.

A key component of each service is their fingerprinting scripts, which attempt
to collect as many signals as possible for distinguishing between human and bot-
like behavior. Browser fingerprinting has evolved substantially in the past few
years from querying simple JavaScript APIs [20] to the rendering of complex
3D scenes with WebGL [16]. By collecting a range of information about the
browser, the operating system and the hardware of a device, anti-bot services
can obtain a precise view of the overall browsing system which can be used
for detecting bots [14]. Next, such services usually claim to have sophisticated
machine learning models on their back-end servers, which are trained to identify
bot-related fingerprints on large volumes of data that they observe across their
clients. In order to get a complete view of these services, both the coverage of
fingerprinting features, as well as the accuracy of their back-end models have to
be measured to quantify their effectiveness. Hence, in this study, we perform an
analysis of their deployed fingerprinting scripts (Sect. 3), as well as gray box and
black box testing of anti-bot back-end models (Sect. 5). Our experiments allow
us to not only capture the effectiveness of each anti-bot service in detecting
bots, but to also measure how well websites interpret and act upon the risk
score reported by each anti-bot service.

3 Analysis of Anti-bot Services

For our analysis, using popular search engines, we searched for phrases such as,
“bot detection” and “bot prevention”, and compiled a list of 15 popular services
in September 2017. Table 1 lists the discovered services ranked according to
their number of clients. The process of identifying client websites is described in
Sect. 5.

Overall, we see that almost half of the anti-bot services have thousands of
client websites with Cloudflare being the most popular service having 13.65%
of its clients from the Alexa’s top 1 million websites. The number of clients
for Cloudflare in Table 1 represents the total number of websites observed using
Cloudflare. The numbers are based on “BuiltWith” website statistics, which
provides reports on web technologies [10]. Since all other services specialize only
in bot protection, we already know that clients that use these services want to
defend against bots. Whereas for Cloudflare, there can be various reasons to use
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Table 1. Popular anti-bot services

Service Type # Clients Alexa 1M

Cloudflare (G) Bot attacks 7, 250, 835 13.65%

Sift Science Bot attacks 18, 733 3.41%

Iovation Account fraud 14, 280 1.62%

ShieldSquare (G) Bot attacks 8, 151 1.46%

PerimeterX Bot attacks 7, 808 1.14%

InfiSecure Bot attacks 5, 443 0.11%

DataDome (G) Bot attacks 912 5.48%

ThreatMetrix Account fraud 628 5.41%

Distil Bot Defense Bot attacks 484 38.43%

Castle (G) Account fraud 260 4.62%

Simility Account fraud 182 2.20%

ThisData Account fraud 138 1.45%

Kount Access Account fraud 124 31.45%

Unbotify Bot attacks 60 3.33%

DupZapper Account fraud 33 3.03%

Overall Anti-bot 7, 311, 809 13.56%

their service such as DDOS protection, CDNs, or for adding HTTPS support to
a website. Therefore, only a subset of these websites might configure Cloudflare’s
firewall to block bots.

Services in Table 1 marked with (G) indicate those for which we could acquire
an account (trial or paid) without having to talk to a sales representative. For
these services, we were able to conduct gray box testing, in addition to the black
box testing for all services. Among the services we study, we can distinguish the
following two main types:

– Universal solutions against bot attacks usually collect fingerprints and
user-behavior data from clients using JavaScript and other common browser
fingerprinting methods. They also collect information from the web server
including the specific actions taken by users, such as, the browsing of a specific
page, or the submission of a form.

– Specific services against account fraud that focus on the defense against
account takeover and credential stuffing attacks. These services make use of
both bot detection and anomalous account activity to identify attacks.

All of the anti-bot services listed in Table 1, except Cloudflare, use finger-
printing scripts on their clients’ websites to assist them in bot detection. We
collected client-side fingerprinting scripts from the 14 anti-bot services that use
this technique. Next to beautifying and statically analyzing the JavaScript code,
we dynamically executed the scripts in order to inspect the sent payloads and
detect what fingerprinting-related APIs they utilize. For that, we used a cus-
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tom browser extension (following the approach of Lerner et al. [28]) that can
intercept browser API calls on a page.

3.1 Fingerprinting and Automation Detection Mechanisms

First, we observed that most services use standard fingerprinting features, such
as, screen properties, available fonts, plugins and MIME types. We observed
similar features being collected to those reported by Vastel et al. [50]. The par-
ticular techniques in extracting these features differ, e.g. some services directly
enumerate the navigator.plugins object, some simply use the PluginDetect
library [7], and others have further custom checks. In comparison, we witness
that few services incorporate more recent fingerprinting techniques, such as,
Canvas or WebGL fingerprinting that can provide a more accurate view of the
system’s hardware.

Another finding, supporting the fact that anti-bot scripts attempt to cap-
ture obvious signs of web automation, is the variety of checks to detect Phan-
tomJS, Nightmare [2], Selenium, and headless Chrome browsers. Different ser-
vices use different techniques, such as, printing a stack trace and searching for
the “selenium” keyword or probing for the existence of known variables (e.g.,
window.callPhantom). By deploying these checks against our own Selenium
installations, we discovered that most of the deployed checks do not work for
recent Selenium versions (except the navigator.webdriver property which is
still present on the Selenium ChromeDriver).

Even though not all services use state-of-the-art fingerprinting techniques,
those that do also try to detect inconsistencies in the collected browser finger-
prints. For example, the user-agent sent by Selenium can be modified to look like
a Firefox browser on Android, or Safari on iOS. The problem is that these mod-
ifications can lead to inconsistencies where modified and unmodified attributes
cannot possibly belong to the same browsing environment. Three services make
use of client-side code to detect such cases of mismatch between attributes.

Table 2. Known fingerprinting libraries

Source library # Services Source library # Services Source library # Services

Fingerprintjs2 [4] 4 PluginDetect [7] 3 fonts2.swf [1] 1

FontList.swf [4] 3 Evercookies [3] 1 Modernizr [5] 1

As Table 2 shows, a significant number of anti-bot services rely on existing
fingerprinting libraries, such as, the popular Fingerprintjs2 [4]. We also observed
services that use other advanced fingerprinting features, including the detection
of the local IP address through WebRTC and Flash, as well as the recording of
user actions, i.e., mouse moves and clicks. Some collect and send this data only
once, whereas others periodically collect and report this information. Finally, we
discovered a number of cases where more novel fingerprinting techniques were
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used, like the recently deprecated Battery status API [38] (Castle), AudioCon-
text fingerprinting (PerimeterX), and even DOM changes to a supplied HTML
page with different input fields (ThreatMetrix) which can be used to detect
browser extensions [44]. This demonstrates that a small number of anti-bot ser-
vices are closely following browser-fingerprinting research, and incorporate this
research in their products.

A service which includes anti-bot functionality but differs from the rest is
Cloudflare [17]. Unlike the evaluated third-party anti-bot services, Cloudflare
itself is responsible for all resolutions of their clients’ domains. As a result,
Cloudflare can detect and block traffic at their servers, without any input from
their clients. After analyzing the requests, we observed that Cloudflare does not
perform any type of client-side fingerprinting using JavaScript or Flash. Cloud-
flare mostly relies on IP reputation (historical malicious activity), firewall rules
based on HTTP requests, and rate limiting to prevent automated and malicious
behavior.

3.2 Anti-bot Service Integration with Websites

As depicted in Fig. 1, anti-bot services communicate the decision (often in the
form of a risk score) to their clients upon each request. In this section we present
our observations on how risk scores or decisions are communicated to clients and
how the websites react to these reports.

Communicating the Raw Risk Score. Services like Cloudflare, directly com-
municate the score to their clients and let them decide which thresholds to choose
when blocking bots (e.g., show a CAPTCHA when risk score is greater than 50).

Communicating the Final Verdict. Services like Castle interpret the risk
score internally and communicate the final verdict (Allow, Challenge, or Block)
to the client websites through their API. Website administrators can then decide
to show a CAPTCHA or notify the user via third-party channels.

Handling Everything in the Background. These services analyze the col-
lected fingerprints and events, redirecting users to CAPTCHAs or block pages.
As a result, the whole process of decision making happens in the background
and website administrators have no control over it. Occasionally, there are no
tunable parameters exposed to administrators which means that false positives
have to be communicated and remediated through customer-support channels.

Finally, next to communicating the risk score and decision making, how web-
sites react to bots is also defined by the anti-bot service. Some services have the
ability to be deployed inline with the web traffic (e.g., Distil Bot Defense and
Cloudflare). In this scenario they can straightforwardly redirect malicious users
to CAPTCHAs and block pages. Similarly, the integrated SDK can communi-
cate with the anti-bot service and redirect the detected threats to specific block
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pages. Lastly, the reaction may be left up to the website developers. In the exam-
ple of Castle, website developers can decide to block the request or notify the
users about the breach.

4 Available Tools for Building Bots

In this section, we introduce the tools that we utilized to evaluate whether the
anti-bot services are capable of detecting attackers of different levels of expertise
(reflected in the complexity of their tools). We categorize the tools that are
available for attackers in three groups, covering multiple levels of complexity:

– Basic bots: The least sophisticated approach is based on general-purpose
automation tools (e.g., Python Requests and PhantomJS). Python Requests
scripts are capable of sending GET and POST requests but do not execute
JavaScript (these are conceptually similar to utilizing command-line tools,
such as, wget and curl). This is the most basic approach that we expect
to be detected by anti-bot services. We also include PhantomJS in this
category, which was the first easy-to-script, headless, JavaScript-supporting
browser [40] and therefore attracted a great deal of abuse [41].

– Automated Browsers: The second and more sophisticated category
involves using real browsers (e.g., Firefox and Chrome) automated by Sele-
nium. These bots can often be augmented with user-action simulation, such
as, mouse moves, floating delays, and page scroll.

– Less Popular fingerprints: Anti-bot companies claim to share threat infor-
mation between their clients. As a result, common tools used to create bots
can be detected more effectively. Contrastingly, attackers can incorporate
less popular tools to potentially bypass bot detection mechanisms, due to
their limited history of malicious activity. To model this approach, we use
AppleScript-automated Safari and ADB-automated Chrome on Android.

5 Experimental Setup

To analyze the effectiveness of anti-bot services in terms of preventing bot activ-
ity, we utilize a number of real-world attack scenarios. In this section, we describe
the categories of our tests, and how we utilize tools from different bot categories
presented in Sect. 4. We implement a large number of web automation scripts
that can interact with websites at different levels of complexity. Each test is
comprised of attack and tool combination and is executed from hosts with IP
addresses belonging to our campus and a public cloud. These addresses are picked
from a pool of 30 campus IP addresses and 30 cloud IP addresses distributed
across 8 geographical regions.
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5.1 Gray Box Experiments

For the companies that we could obtain paid or trial accounts, we integrate their
SDK with our testing website (a WordPress-based, web application). Under the
gray box scenario, we run our tests in a fully controlled environment where we
control both the bots as well as the website receiving the bot traffic. By moni-
toring the administration panel provided by the anti-bot service, we have access
to the final decisions to allow or block the traffic. Nevertheless, the machine
learning models and decision boundaries used to classify the incoming traffic is
still a black box. As such, we call these set of tests, gray box.

1. Test Preparation. Initially, for each “attack category,” and “web automa-
tion tool,” we create scripts to mount the attacks and measure their success.
Our tests cover the following categories:

Fig. 2. Screenshot of blocking message from Distil Networks

– Account Takeover: In this setup, we create an account on websites utilizing
anti-bot services (either our own for gray box testing or third-party websites
for black-box testing) from a fixed geographical location, IP address, and
browser. We then attempt to automatically login to this account from different
geographical locations and IP addresses using our bots. This discrepancy
in login location, browser fingerprint, and use of automation tools should,
in principle, trigger the account-takeover protection system to prevent the
“malicious” login activity or alert the user.

– Credential Brute Force: To implement this scenario, we use our web
automation tools and try to login with 1,000 invalid credentials. We then
measure the number of requests before getting blocked. According to prior
work [26,32], at least 4% of passwords created under different password policy
schemes can be found in under 1,000 guesses.

– Content Scraping: By extracting product list and pricing information from
1,000 pages, we evaluate whether the anti-bot service will block our bots.
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2. Test Execution. Each attack script is executed from different IP addresses
which we rotate as necessary. The hosts are located on our campus and on
Linode (a public cloud provider). The reason for using two different locations
is to simulate attackers who have access to premium IP address space that is
not associated with crawling activity, versus attackers who can just rent virtual
machines on public clouds. We do not perform multiple attacks at the same
time to ensure that the detection of one attack does not affect the detection of
another.

3. Post-processing of Results. After each test, we inspect the anti-bot admin-
istration panel and look for reports of blocked bots based on the IP address we
used for each attack.

5.2 Black Box Experiments

Most services require their potential customers to talk to a sales representative,
prove their identity as a real business, and go through a series of interactions to
acquire and adopt anti-bot services. Since we cannot perform gray box testing
for these service, we devised a set of black box experiments.

Data Collection. After compiling our list of anti-bot services that we wish to
evaluate, we crawl the web and find websites that adopt these services. Starting
with a list of known clients for each anti-bot service (e.g., list of clients on the
website of anti-bot services), we analyze their websites to identify unique content,
such as, JavaScript files or DOM elements that can be used as a signature to
detect more clients of each service. The resulting signatures are then queried in
the PublicWWW [8] and NerdyData [6] code-search engines and the results are
supplemented with our own crawls of the Alexa top 1 million websites.

Given the number of tests we wish to conduct and that we need website-
specific scripts that can fill forms and navigate each website, it is not feasible
to evaluate all clients of each service. As such, we decided to focus on a sub-
set of their clients by randomly selecting ten clients for each anti-bot service.
We ensure that the selected websites do not exhibit any client-side signs (e.g.
JavaScript libraries) that would suggest that they are utilizing any anti-bot ser-
vice, other than the evaluated ones. We also removed websites which, through
experimentation, showed signs of additional, server-side software blocking our
requests. This is not a challenge since block pages used by anti-bot services are
distinctive (Fig. 2) and HTML tags, URLs, and variable names within the page
source point to the anti-bot company.

1. Test Preparation. We target the same attack categories that we discussed in
gray box tests. Since we do not have access to the administration panel this time,
we devised heuristics to detect being blocked based on the received response.
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– Account Takeover and Credential Brute Force: We use the same type
of scripts that we used in gray box tests. Note that in both experiments we
create an account on the target website and only target our own user account
during the experiments, for ethical purposes.

– Content Scraping: In this attack scenario, we inspect the websites of clients
of anti-bot services, and identify content that is a likely target for scraping
by malicious crawlers (such as pricing of products and inventory details). We
then implement the necessary automation scripts for each website, attempting
to scrape 1,000 pages worth of content.

We spent a total of 5 man-months developing automation scripts for all
tested websites which could appropriately navigate each website according to
our desired tests. Another obstacle that we had to overcome is that, due to the
churn of clients of the anti-bot services, we had to often repeat experiments with
new randomly sampled websites, as some websites stopped being clients of the
services before we were able to finish our experiments.

2. Test Execution. Using the same infrastructure, we run our experiments
against selected clients of each service. To generalize our results, in addition to
Linode, we ran a set of pilot tests from AWS and did not observe significant
differences in the results (5% over 60 tests) showing that the choice between
popular and less popular cloud providers does not have significant impact on
the final results.

3. Post-processing of Results. After each test, we inspect our logs and screen-
shots to locate the number of successful attempts each bot made before getting
blocked and to make sure any observed blocking is the outcome of fingerprint-
related and behavior-related information that these services gather from our bots
and correlate with server-side events.

The extracted information consisting of fingerprint, headers and user actions
are used by each anti-bot service to come up with a verdict for each user ID,
which their client will use to decide whether they should block the current
request. Section 6 discusses the results from this step in more detail. In all cases
where we received unexpected responses, we manually inspected them to ver-
ify that our scripts were indeed blocked. We define “success” and “failure” as
follows:

– Successful content scraping is defined as our bot loading the content for
1,000 pages on protected websites containing information that would be worth
scraping for attackers.

– Successful account takeover is defined as our bot being able to login
to a target user account from a different location and fingerprint from the
actual user’s fingerprint used to register and login to the account. The test is
considered to have failed when the tool fails to login with explicit (e.g. “You
are blocked”) or implicit (e.g. “Incorrect credentials”) responses.
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– Successful brute forcing in our experiment is defined as a bot sending
1,000 login attempts with incorrect credentials and then being able to login
with correct credentials. We designed this test in a way that simulates an
attacker attempting a large number of incorrect credentials before finding the
correct one.

For credential brute-forcing experiments, we distinguish the following cases
as being blocked: being blocked with an explicit message, receiving a CAPTCHA
in order to login, target user account being locked (note that this is always our
account), being rate-limited for a considerable amount of time or not being able
to login with correct credentials after brute forcing. The last case is based on
the observation that some anti-bot services silently increase the risk score when
the noisy brute force behavior is observed, and as a result, prevent the bot from
logging in even with correct credentials.

5.3 Ethical Considerations

To understand how real anti-bot services detect malicious bots on their client
websites, we cannot avoid sending bot-like traffic to public websites. To conduct
these experiments in an ethical fashion we took special care when designing them
and conducting them. For content scraping, we access content that is considered
public, i.e., it is not behind a registration wall. For account takeovers, we only
try to log in to our own account on all websites from a location/fingerprint that
is different from the one that we utilized to register that account. Lastly, for
account brute forcing, we only make login attempts against our own accounts,
never trying to log in into the accounts of other users. We provide ample time
between requests (in the order of seconds) allowing our requests to be interleaved
with regular traffic received by the evaluated popular websites. Our bots behave
as humans and therefore never send any maliciously-crafted input to target web
applications.

As a result, we are confident that our experiments did not have any negative
consequences, neither for the protected websites, nor for the anti-bot services
themselves.

6 Analysis of Results

In this section, we describe the results of our bot experiments on our test websites
(gray box testing) and on client websites of popular anti-bot services (black
box testing). By combining data across both types of experiments, we uncover
shortcomings and flaws of these services. Our focus in this section is on the
common patterns across the services that will provide an opportunity for the
attackers to bypass their protection. As our study is not meant to promote one
product over another, we opt to anonymize the names of the anti-bot services.
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6.1 Gray Box Testing Results

From the list of anti-bot services that we initially started with, we were able to
obtain accounts from four services: Service #3, Service #4, Service #2 (provid-
ing generic anti-bot protection) and Service #1 (providing specialized protection
against account fraud). For the first two services, installing their WordPress plu-
gins and including the JavaScript file in all of our pages was sufficient to adopt
them. After each client request reaches the webserver, these plugins collect the
request context including HTTP headers, cookies and IP addresses and report
it back to the anti-bot service through their APIs. Conversely, Service #2 pro-
tection is enabled by routing website traffic through their servers by changing
DNS records. In the case of Service #1, while the JavaScript code sends back
information on each page load, we needed to manually call their API upon
authentication and report the event. Upon successful authentication, we then
have to query their API to receive a verdict (Allow, Challenge, and Block) that
defines what action the service recommends. The reaction to these verdicts is
also the website developers’ responsibility and can vary for each client website
(e.g., showing CAPTCHA, or requesting a second factor of authentication).

Gray Box Content Scraping Results. The number of successful content-
scraping attempts against the three services which protect against it (Service
#3, Service #4, and Service #2) is listed in Table 3. For Service #2, none of
our scraping bots was ever blocked, regardless of their location (i.e. Campus vs.
Cloud). While further fine-tuning the rate limits might be helpful to block more
aggressive bots, as long as bots keep their request number low, they can hide
within normal user traffic and remain undetected.

Our results show that Service #3 clearly makes a distinction in its decisions to
block bots based on their source IP address. Requests from bots originating from
campus IP addresses were strictly more successful, compared to those of Linode
datacenters. For Service #4, this observation does not always hold true. While
Firefox Stripping (i.e. with fingerprinting script blocked) got worse results when
originating from Linode, AppleScript and Mobile scrapers remained undetected.
This suggests that Service #3 places more weight on the source IP address
in their decision-making model, compared to Service #4. Service #3 trusts IP
addresses to the extent that attackers with access to prime IP addresses from
outside datacenters (Campus address space, in our case) can scrape content even
with trivial tools from the “Basic Bots” category.

Gray Box Account Fraud Results. The account-fraud tests are relevant for
all four companies in our gray box experiment. We analyze the results for both
account takeover and account brute force tests. The time window of interaction
for account takeover is limited to two requests (one to grab the CSRF token and
one to login). As a result, features, such as, login history including locations,
fingerprint of used devices and fingerprints of bots, are more effective in this
scenario compared to behavioral anomaly detection. Table 4 shows the number
of successful brute force attempts along with whether the account takeover was
successful.
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Table 3. Number of successful content scraping attempts (Gray box)

Service Tool/IP Python Phantom

JS

Firefox

(Stripping)

Chrome Chrome

(Mouse)

Firefox

(Mouse)

Safari Mobile

Service #2 Campus 1000 1000 NA 1000 1000 1000 1000 1000

Cloud 1000 1000 NA 1000 1000 1000 1000 1000

Service #3 Campus 1000 0 1000 1000 1000 1000 1000 1000

Cloud 4 0 21 23 7 14 24 23

Service #4 Campus 21 0 1000 0 1 1 1000 1000

Cloud 3 1 16 0 0 0 1000 1000

Plain Python Outperforms PhantomJS: The first unexpected observation,
which is consistent among nearly all tests and anti-bot services, is that Phan-
tomJS has inferior performance to plain Python scripts. For example, all services
with client fingerprinting capability block login attempts from PhantomJS. Our
hypothesis is that this tool was so much overused by attackers (PhantomJS
was the first headless JavaScript-supporting browser) that anti-bot services have
enough features to detect it with high confidence. Contrastingly, since Python
scripts are not capable of executing JavaScript, anti-bot services give them the
benefit of the doubt (e.g. it may be a JavaScript-blocking user) and allow a few
requests to go through before taking action.

Safari Breaks into All User Accounts: Interestingly, none of the services
block Safari that is automated by Applescript. To our surprise, the risk score
reported by Service #1 for Applescript is very low (17/100) even though a real
user never logged into the user account with an Apple device or Safari. For com-
parison, this score is in the range of 70–88 for Selenium and 100 (i.e. maximum
risk) for PhantomJS.

Table 4. Number of brute force attempts before getting blocked (Gray box) Check-
marks indicate successful account takeover

Service Service #1 Service #2 Service #3 Service #4

Tool CampusCloudCampusCloudCampusCloudCampusCloud

Python 1000 � 0 � 5 � 5 � 240 � 12 � 2 � 1000 �

PhantomJS0 � 0 � 5 � 5 � 0 � 0 � 0 � 0 �

Chrome 0 � 0 � 5 � 5 � 250 � 23 � 0 � 0 �

Firefox 10 � 0 � 5 � 5 � 405 � 21 � 1 � 0 �

Safari 1000 � 0 � 5 � 5 � 334 � 13 � 1000 � 1000 �

Not Executing JavaScript Can Be Helpful: Finally, using Python, our bots
were able to successfully log into user accounts both from Campus and Linode
IP addresses with a high degree of success. Service #1 was the only exception
which returned the verdict of “Challenge” only for Python requests from Linode.
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For brute force tests (Table 4), similar to account takeover results, Service #3
shows higher sensitivity to source IP addresses and blocks requests from Linode
more aggressively whereas Service #4 does not penalize Python and Safari-based
bots. For Service #1, this transition from Campus to Cloud was enough to mark
all our login attempts as malicious and increase their risk scores, shifting them
to their next verdict category: from Allow to Challenge and from Challenge to
Block.

6.2 Overall Content Scraping Results

In this section, we report on six anti-bot services which were either included
in our gray box tests or match our criteria for black box tests, that is: (a)
provide overall protection against automated attacks/mention content scraping
as a covered use case; (b) have a representative sample of at least 10 client
websites. We chose distinct websites that use only the corresponding service out
of the known anti-bot solutions. Each website was tested against eight different
automation tools among three bot categories and each test included the scraping
of 1,000 pages.

Table 5 summarizes our results for content scraping from gray box tests and
black box tests. The column named “IP sensitivity” indicates whether using IP
addresses from Cloud (Linode) rather than Campus makes the service block our
bots earlier. If there is more than 50% change (i.e., at least half of the websites
that did not block us on campus IPs blocked us from cloud IPs), we consider
the service to be highly sensitive to cloud IP addresses and if the change is less
than 50%, we say the impact of source IP address is low. Finally if we do not
observe a significant difference when moving from Campus to Cloud, we infer
that presence/absence of an IP address from a cloud provider, does not have an
effect on the blocking decision.

In Tables 5 and 6, partial success is marked with half-filled circles indicating
that either some tools within that bot category were not blocked (e.g., Phan-
tomJS was blocked but Python was not), or some websites protected by the
same service blocked a tool within a category while others did not. Even though
we do not have enough information for a definitive answer, we opine that the
partial difference in behavior among clients of the same anti-bot company is the
result of different characteristics of their normal traffic and the dynamic nature
of the machine learning models.

Basic Bots: Nearly all services with the exception of Service #2 are able to
block “basic bots” to some extent. Among them, Service #5 and Service #4
successfully block both Python and PhantomJS consistently on all their clients.

Automated Browsers: Service #4 always detects and blocks automated
browsers. While Firefox automated by Selenium goes undetected by Service #5
and Service #7, Selenium Chrome is blocked quickly (in less than 100 requests).
Adding page scrolls and mouse moves to our automated browsers only helped
with Service #7 which led to scraping 1,000 pages on some clients and getting
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Table 5. Service ability to block content scraping by different bots (Gray box and
Black box tests) (�: Blocked, ��: Some automation tools can bypass, �: Failed to
block)

Anti-bot service Basic bots Automated
browsers

Less popular FPs Stripping IP
sensitivity

Service #2 (G) � � � NA None

Service #3 (G) �� � � NA High

Service #4 (G) � � � � None

Service #5 � �� �� � None

Service #6 �� � � NA None

Service #7 �� �� � � Low

blocked after around 60 attempts on other clients where we could previously
make less than five successful requests.

Less Popular Fingerprints: Applescript-Safari and Chrome on Android are
able to bypass the limitations imposed by most anti-bot services. The only excep-
tion is Service #5 where some of their clients block Applescript-Safari while
others block Chrome on Android. Even the websites that block either of these
tools, do so after 300–600 attempts. Compared to basic bots and automated
browsers which made less than 10 successful attempts on Service #5 clients,
this demonstrates that unpopular, JavaScript-enabled clients can be significantly
more successful in evading detection.

Stripping: Stripping refers to blocking fingerprinting JavaScript when scraping
content from the websites. None of the services allowed our bots to scrape more
pages when client side fingerprints were stripped, and most of the time we got
blocked earlier (e.g., in less than 5 attempts on Service #5). Since Service #2,
Service #3 and Service #6 either do not perform client-side fingerprinting via
JavaScript or do not block our automated browsers, we can not compare their
performance when automated browsers are used and fingerprinting scripts are
blocked.

Figure 3 generalizes the performance of different scraping bots across all eval-
uated services. There we can see that, even though the different traffic patterns
of different websites lead to noisy results, there are clear patterns that favor
some tools over others. For example, when operating either an Android bot or a
Firefox-Selenium one with added mouse moves from “premium” address space,
attackers can scrape content from the vast majority of sites and services. For
cloud tests, we repeated the experiments for the tools that showed better per-
formance from campus IP addresses.

6.3 Overall Account Fraud Results

Here, we present our results for the Account Takeover and Brute Force experi-
ments. We analyzed ten anti-bot services which advertise themselves as general
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Fig. 3. Performance of content scraping bots

anti-bot or account-fraud protection services and for which we could find at least
ten distinct client websites that allowed us to register a new user (a requirement
for these experiments). We evaluate these services against five tools by perform-
ing a total of 2,800 tests.

Fig. 4. Performance of account takeover bots

Account Takeover Results. Overall, 2–8% of websites blocked all our account
takeover attempts across all bot categories from Campus and Cloud IP addresses
respectively. Applescript-Safari was the most successful tool with 82.5% average
success rate. Bots based on Safari automated by AppleScript, were able to break
into user accounts with unseen fingerprints (Safari browser) and from new IP
addresses. Table 6 summarizes our results for gray box and black box tests for
account takeover and brute force tests. The results are sobering. By looking at
Fig. 4, we observe that because of the absence of a large number of requests to
the service during account takeover (attackers have already stolen the credentials
and are logging in from a “foreign” environment), most services fail to block
the attack. We have already seen that general bot-detection mechanisms fail to
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block most of the bots right away except basic bots, which also holds true for
account takeover attacks. The change in fingerprint and location of the login
attempt were not enough to raise an alarm and block the takeover in many of
our attempts. As a result, even with the worst-performing bot (i.e. PhantomJS)
attackers can successfully conduct an account takeover attack in 40–60% of the
time.

Table 6. Service ability to block account takeover by different bots (Gray box and
Black box tests) (�: Blocked, ��: Some automation tools can bypass, �: Failed to
block) Brute force: number of websites without any login rate-limiting

Anti-bot service Basic bots Automated
browsers

Less popular FPs Brute force IP
sensitivity

Service #1 (G) �� �� � 6/10 High

Service #2 (G) � � � 0 None

Service #3 (G) �� � � 4/10 High

Service #4 (G) �� �� � 10/10 Low

Service #5 � � �� 3/10 High

Service #6 �� � � 7/10 Low

Service #7 �� �� �� 3/10 Low

Service #8 � � � 9/10 None

Service #9 �� �� �� 7/10 High

Service #10 � �� � 8/10 Low

Credential Brute Force Results. The results for this section are summarized
in Table 6. Column “Brute Force” in this table refers to the number of websites
on which at least one of our bots was able to perform 1,000 brute force attempts
against their login forms. This not only shows the lack of defense from anti-
bot services but also signifies that neither the website nor the anti-bot service
enforce a hard limit on the number of failed attempts (e.g. by account lockout,
CAPTCHA or IP address ban). Lu et al. studied the presence of rate limiting
mechanisms on top Alexa websites and already pointed out this lack of protec-
tion [30]. Our results support Lu et al.’s findings by showing that, even among
the websites that actively seek to protect against bot attacks, 30–100% of them
do not enforce any type of login rate limiting.

Among all tested services, Service #5 and Service #7 blocked more categories
of bots and enforced rate limits on a wider range of tested clients. For Service
#4 and Service #8, almost none of their tested clients enforced rate limiting.
Interestingly, simple rate-limiting on POST requests to login pages enforced by
Service #2, is sufficient to fully prevent brute force attacks, even without any
type of client-side fingerprinting.
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Contrary to content-scraping results, different tools from automated browsers
and less popular fingerprint categories achieve similar results. However, Safari
is still the best performing bot. Orthogonally to the type of bot being used,
we observe that most anti-bot services become slightly stricter when the bot
is sending authentication requests from Cloud IP addresses. For example, the
average number of successful requests by Safari, drops from 564 to 433 after
transitioning to cloud. This subtle effect is visible in Fig. 5. More importantly,
the hourglass-like distributions of Fig. 5 show that the majority of bruteforce
attempts are either blocked in under 400 attempts (the narrow “neck” of the
hourglass) or not blocked at all. With the use of more sophisticated tools (right
side of the Fig. 5), the number of successful 1,000 bruteforce attempts increases.

When combining account takeover and brute force protection, Service #5,
Service #7 and Service #9 block bots across all categories. Yet, specific tools
are able to evade detection. On the other end, websites using Service #8 in our
dataset did not show any specific pattern of blocking bots (except one website
that was enforcing a local rate limit to block brute force attempts).

Fig. 5. Performance of brute force bots

7 Discussion

In this paper, we conducted the first, large-scale study of commercial anti-bot
services that websites can use to detect and protect their content and their users
against malicious bots. Using basic bots as well as popular and less popular
automated browsers, in conjunction with different types of IP address space
(public clouds vs. campus networks), we evaluated—in an ethical fashion—the
ability of ten services to detect and block bots on the websites of their customers.
While each service has its own specific strengths and weaknesses (as described
in Sect. 5 and Sect. 6), we can still observe common patterns across services. We
describe these patterns (and their implications) below:

Variance Across Clients of the Same Service. An unexpected finding of
our experiments is that not all clients of the same service block bots in the
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same way. This could suggest that some services are more sensitive to false
positives than others, but it could also suggest misconfigurations from the side
of clients of anti-bot services. Our recommendation is that anti-bot services
regularly perform bot-based crawling of their own clients and observe whether
their own attempts are blocked by their clients. In the cases where blocking is
under a configurable threshold, these anti-bot services can reach out to their
clients and inquire whether the recorded permissiveness is a conscious choice or
merely a misconfiguration.

Browser Fingerprinting. Virtually all services rely, to a certain extent, on
browser fingerprinting as part of their bot-detection logic. Browser fingerprinting
is a powerful mechanism that can be used either constructively (for authentica-
tion) or destructively (for unwanted online tracking) to re-identify users (includ-
ing attackers). Yet it is also susceptible to evasions when attackers are aware
of it. When it comes to advanced attackers who can mix and match bots, con-
structively using browser fingerprinting is more likely to work in a whitelisting
fashion (i.e. is the current user’s browsing environment, similar to their past
browsing environment?) rather than in a blacklisting fashion (i.e. is the current
user’s fingerprint matching that of a previously-observed, malicious bot?).

PhantomJS is Universally Recognizable. As we showed in our experiments
in Sect. 5, PhantomJS is universally recognizable by anti-bot services and often
performs worse than simple bots that do not support JavaScript at all. Even
though this is desirable for detecting attackers abusing PhantomJS, academic
researchers have also extensively relied on PhantomJS for web-security [37,42,
45,48,51] and web-privacy [13,43] studies. Assuming the increasing adoption
of anti-bot services, this means that the results obtained through PhantomJS-
related crawling will be decreasingly accurate. In the short term, we recommend
that researchers avoid using PhantomJS in favor of newer and more complete
crawling tools, such as, headless Chrome and OpenWPM [21]. In the long term,
we need both the technical means to evaluate the fingerprintability of crawling
frameworks used for research, as well as a discussion between stake-holders on
how crawling-based studies should be best conducted.

8 Responsible Disclosure

During this study we observed behaviors that can either be attributed to
customer-website misconfigurations of an anti-bot service (i.e. customers do not
fully take advantage of the detection capabilities of anti-bot services) or can be
blind spots within the detection models of the evaluated services. As such, we
contacted 7 services with what we regarded as high-impact misconfigurations
or security issues on their client websites in December 2019. During these com-
munications, our goal was to share our findings and obtain more information
about the design decisions and details that we could not observe as outsiders.
Ultimately, three services (ThreatMetrix, DataDome, and Castle) reached back
to us. We have shared the list of vulnerable target websites in our study and our
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bot scripts with the anti-bot services upon their request and we are in continuous
conversation with them. We hope that this information will be used to increase
the accuracy and coverage of these services.

9 Related Work

Research-wise, despite its potential for abuse, bot identification has only
attracted limited research which, given the adaptations from bot authors, can
quickly become dated. Existing attempts to differentiate crawlers from real
users rely on differences in their navigational patterns, the percentage of HTTP
methods in requests, the types of links requested, and the timing between
requests [24,29,46]. These features are then used in supervised machine-learning
algorithms trained using ground truth that the authors of each paper were able to
procure, typically by manually labeling traffic of one or more webservers to which
they had access. Xie et al. propose an offline method for identifying malicious
crawlers by searching for clusters of requests towards non-existent resources [52].
Next to ML-based methods, Park et al. [39] investigated the possibility of detect-
ing malicious web crawlers by looking for mouse movement, the loading of Cas-
cading Style Sheets, and the following of an invisible link that is present in the
HTML code of a page yet is invisible to regular users. McKenna [31] recently
experimented with more types of invisible links and resources but was unable to
gauge their effectiveness due to size and duration limitations of their study.

Interestingly, the majority of work on bot detection predates browser finger-
printing despite the latter appearing as early as 2010 [12,13,18,20,21,23,27,36]
even though as we showed throughout this paper, all but one of the evaluated
anti-bot services heavily rely on fingerprinting for identifying bots.

All the prior research that focused on adding new attributes to a finger-
print [22,33,35,44], notably techniques like canvas [34], AudioContext [21] or
WebGL [16] fingerprinting, is especially relevant to anti-bot services as it could
offer more ways to distinguish a bot from a regular user. Moreover, there exists
machine-learning approaches to link fingerprint evolutions over time [49] which
could be used to track changes in a bot fingerprint. Relying on fingerprinting
techniques, Bursztein et al. proposed Picasso, a tool aimed at identifying inor-
ganic traffic through canvas fingerprinting [14].

Jueckstock et al. introduced VisibleV8, an instrumented Chromium based
browser that is capable of monitoring dynamic JavaScript API calls [25]. The
authors found that 29% of top 50k Alexa websites probe for artifacts of auto-
mated browsing environment but do not evaluate the usage of these artifacts and
whether these websites can detect different types of bots in practice. Vastel et
al. study the presence of bot-detection artifacts over the Alexa top 10K websites
[50]. While they focus on fingerprinting behavior of anti-bot systems, our study
systematically evaluates the overall benefits and drawbacks of existing anti-bot
approaches as they are deployed in the wild. Moreover, we model real world
attack scenarios whereas previous work focused on the fingerprinting surface of
browsers and blocking behavior when visiting target websites.
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10 Conclusion

In this paper, we reported on the first analysis of anti-bot services for the web. By
isolating and analyzing the JavaScript code which the clients of anti-bot services
need to utilize, we identified near universal-reliance on browser fingerprinting,
including recently-proposed fingerprinting techniques, as well as checks for the
consistency of the presented fingerprints. Through large-scale, black box and
gray box analyses of each service using off-the-shelf automation tools as well as
less-popular automated environments, we quantified the ability of these services
to detect and block bots. We discovered that many services perform poorly and
browsers that are less commonly automated (i.e Safari on Mac and Chrome on
Android) can achieve an overall success rate of 80% during content-scraping
attempts. We also discovered that the location of a bot on a public cloud is
secondary to its fingerprint and only 4 services are sensitive to the location of
source IP address. This allows attackers to launch massive bot campaigns by
renting low-cost virtual machines on public data centers.

Overall, our findings suggest that existing services can stop basic bots, but
are currently not capable of blocking specialized tools and even the less popular
automated browsers, which can bypass the protection of around 75% of content-
scraping targets. As such, they cannot substantially limit determined attackers.
At the same time, our findings are relevant for all research involving the crawling
of websites since websites that utilize anti-bot services may be able to identify
the tools used by researchers (such as PhantomJS) and thereby evade accurate
analysis.
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Abstract. When it comes to leaked credentials and credit card informa-
tion, we observe the development and use of anti-fingerprinting browsers
by malicious actors. These tools are carefully designed to evade detec-
tion, often by mimicking the browsing environment of the victim whose
credentials were stolen. Even though these tools are popular in the under-
ground markets, they have not received enough attention by researchers.
In this paper, we report on the first evaluation of four underground,
commercial, and research anti-fingerprinting browsers and highlight their
high success rate in bypassing browser fingerprinting. Despite their suc-
cess against well-known fingerprinting methods and libraries, we show
that even slightest variation in the simulated fingerprint compared to
the real ones can give away the presence of anti-fingerprinting tools. As
a result, we provide techniques and fingerprint-based signatures that can
be used to detect the current generation of anti-fingerprinting browsers.

1 Introduction

Major database hacks and personal information leaks have been the common
cyber news headline for the past couple of years. Haveibeenpwned1, the website
that hosts the records of publicly known credential leaks, currently hosts 428
instances of credential leakage from different websites, including some highly
popular (e.g. Linkedin and Dropbox). The number of accounts affected by these
leaked credentials adds up to over 773 million accounts.

In a similar fashion, the online shopping industry has been the prime target
of attackers. In 2019, over 180,000 websites were successfully attacked by Mage-
cart hackers [11]. By implanting malicious JavaScript code on hacked websites,
attackers behind these operations steal credit card and payment information of
clients upon checkout. According to statistics from the security industry [11],
these attacks have so far affected more than 2 million users.

The stolen credentials and credit card information typically end up being
sold in bulk in the underground markets [30]. Verification and monetization of
1 https://haveibeenpwned.com/.
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the stolen information at scale requires specific tools. Automation is also a vital
part of these malicious operations as the size of the data that needs to be verified
and then abused becomes increasingly larger. As a result, malicious actors have
built automation tools to speed up this process. The existing anti-bot and fraud
detection tools and services heavily rely on browser fingerprinting [13]. In order to
bypass these mechanisms, malicious actors use specialized browsers that enable
them to easily switch fingerprints or simulate a target browsing environment
and evade detection. We assembled our list of anti-fingerprinting browsers by
searching the underground markets for the tools that malicious actors use, as
well as commercial and research projects that promise to defend against tracking.
Success stories (e.g., reaching over 90% success rate in carding attempts) and
tutorials on configuring and efficiently using these browsers are widely available
on different carding forums [1,2,9,10]. Malicious actors use these forums to trade
the stolen credit card information and share their latest tips on successful cashout
strategies.

Tools such as AntiDetect [22] and Fraudfox [21] are commonly incorporated
to mask the browser fingerprints of attackers and evade detection from tools
that look for known good (i.e. belonging to a specific benign user) or known
bad (i.e. belonging to a previously seen attacker) fingerprints. These browsers
not only enable attackers to switch browser fingerprints, they also give them
the ability to mimic a victim’s environment, such as, setting their timezone and
screen resolution to match the victim when visiting websites to make fraudulent
purchases or access the hacked accounts.

Even though these tools are popular among attackers, they have not received
the attention they deserve from the research community. In this paper, we study
the techniques that these tools incorporate to remain undetected and quan-
tify their effectiveness against state-of-the-art, in browser fingerprinting. After
analyzing the fingerprintable surface of these tools, we show that we were able
to devise fingerprinting-based signatures for all of them which can be used to
uniquely identify them. Our findings can be used by the existing anti-fraud sys-
tems to precisely identify the usage of anti-fingerprinting browsers.

2 Background

In a typical case of online fraud, multiple entities are involved. Usually, one party
is responsible for stealing credentials, which are then sold in bulk to another
party to be monetized [28]. The timeliness of these events is crucial. As the
stolen information gets stale, it is more likely for the compromised websites or
individual victims to have been informed about their information being stolen
and invalidate their credentials. In the mean time, to prevent issues with stolen
credentials, merchants who process payment information started to incorporate
browser fingerprinting to detect fraudulent and automated browsing activities.

Companies providing fraud detection services commonly use browser-
fingerprinting to track users [4,5,7,27]. By collecting information from users’
web browsers, these services build browsing profiles of normal users. This infor-
mation is then used to filter out fraudulent requests.
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State-of-the-art browser fingerprinting identifies users by leveraging features
such as HTTP headers and available JavaScript APIs [16,24]. The act of fin-
gerprinting transcends the actual browser, enabling the identification of the
operating system and the underlying hardware [15]. This is typically achieved
based on the characteristics of rendered images within an HTML canvas ele-
ment [14,25]. Other researchers have focused on other parts of the browsing
environment to build more robust fingerprints by extracting the list of available
fonts and browser extensions [18,29]. Fingerprintjs2 [32], a well-known browser
fingerprinting library, compiles the previously mentioned fingerprinting meth-
ods in a JavaScript module that can be integrated with any website to collect
browser fingerprints of its visitors. Lastly, behavioral features of the user like the
use of clicks or touch can be collected to separate interactive user activity from
that of an automated client.

3 Anti-fingerprinting Browsers

To battle fingerprinting, anti-fingerprinting browsers capable of modifying the
content of their fingerprint were created. We categorize the browser fingerprint
modification schemes into three groups. Each group has its own benefits and
drawbacks as we discuss below:

– JavaScript Injection: In this method, JavaScript is injected into all web-
pages loaded by the browser. This way, JavaScript properties and methods
are overwritten to send different information to servers. For example, when a
script wants to access navigator.userAgent or render a canvas image, it will
find the newly injected version instead of the default one. The strength of this
approach is the ease of deployment and maintainability. However, prior work
has shown that these spoofing extensions may not offer the best protection
against fingerprinting as they often present incomplete coverage of JavaScript
objects and can create impossible configurations [26].

– Native Spoofing: Native spoofing modifies the source code of the browser
to return modified values. For some attributes, changing the sent value is as
simple as rewriting a string but for other methods like canvas fingerprinting,
successful modifications require a deeper understanding of a browser’s code-
base to find the right methods and modify them appropriately. The strength
of this solution is that it can be hard to detect as an inspection of the Doc-
ument Object Model (DOM) is not sufficient to detect traces of spoofing.
However, the downside is that the cost of maintenance can be high, requiring
a complete rebuild of the browser after each update.

– Recreating Complete Environments: This method consists of utilizing a
virtualized browsing environment with a desired configuration on top of the
host system. The advantage of this method is that the fingerprint presented
to servers is genuine as the components truly run on the system. For the same
reason, no impossible configurations can result from such an approach. On
the downside, this approach requires more system resources compared to a
simple browser extension or a modified browser.
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In this section, we analyze research, commercial, and underground tools
against fingerprinting, in order to understand whether masking the true fin-
gerprint of a device can help bypass current fingerprinting techniques. Next, we
list the tools that are included in this study along with the anti-fingerprinting
mechanism they use.

AntiDetect and Fraudfox [JavaScript Injection]. AntiDetect is one of the
first tools that surfaced online against browser fingerprinting, gaining visibil-
ity from a 2015 article [3]. AntiDetect uses JavaScript injection and relies on
a browser extension to change the exhibited browser fingerprint. To improve
usability, users are presented with an interface where they can choose a profile
from a pool of existing browser fingerprint profiles. Fraudfox appeared at approx-
imately the same time as AntiDetect and works in a similar fashion by providing
an interface to users for selecting the fingerprint they want to expose [21]. Fraud-
fox offers the option to modify several attributes separately and also targets
advanced techniques, such as, font fingerprinting. It uses a custom Windows XP
virtual machine and a tool named OSfuscate to change the TCP/IP fingerprint
of the system in order to confuse nmap-like tools that can identify OSes based
on the structure of network packets.

Mimic [Native Spoofing]. Mimic is a modified Chrome browser that uses
native spoofing to modify its fingerprint [8]. Users can generate various profiles
and activate the desired fingerprinting protection. One particularly interesting
feature of Mimic is that it gives users the option to either block, or introduce noise
into some fingerprinting-related APIs. In contrast to the previously mentioned
underground tools, Mimic takes a different approach and advertises itself as a
generic solution against browser fingerprinting that can be used for marketing,
journalism, cyber investigation, and even web scraping activities.

Blink [Recreating Complete Environments]. Blink is a moving-target-style
defense against browser fingerprinting. Proposed by Laperdrix et al. [23], this
tool assembles a set of components at runtime into a virtual machine. Upon each
execution, the virtual machine’s environment is modified with new configurations
(e.g., timezone, available fonts, etc.) in order to generate an organic browser
fingerprint. This guarantees that the exhibited fingerprint is coherent compared
to the other tools where the artificial combination of browser properties can
easily result in impossible configurations.

A full comparison of the tools along with the exact fingerprinting techniques
that each of them counters, can be found in Table 1. The main tactic that these
tools incorporate against detection is frequent rotation of valid fingerprints. That
is, the common elements in browser fingerprints as mentioned both in the litera-
ture and popular opensource fingerprinting libraries such as Fingerprintjs2, are
configurable.

These values are faked through a large list of valid fingerprints that is either
shipped with these browsers or can be easily generated through their interface.
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For instance, AntiDetect comes with over 4,000 profiles and Fraudfox includes
profiles with 90 user-agents and 5 browsers and 6 operating systems. Moreover,
users can choose to add noise to certain APIs such as audio context and the
canvas API. This variety makes it hard to derive features from the common fin-
gerprinting libraries to uniquely identify these browsers. Interestingly, Fraudfox
has been tested against popular browser fingerprinting tools and the successful
rotation of fingerprints and removal of tracking information (e.g., Evercookies [6])
has been verified in the underground carding forums [10].

All of the studied anti-fingerprinting browsers, except Blink, which is dis-
cussed separately in Sect. 4, modify or add noise to the existing browser proper-
ties. We will discuss in more detail how this type of modification will inherently
introduce inconsistencies and demonstrate concrete examples of these inconsis-
tencies and use them to build signatures that uniquely identify these browsers
in Sect. 4.

Table 1. Overview of the studied tools with the fingerprinting techniques they counter
Tool AntiDetect Fraudfox Mimic Blink

Type Injection Injection Native Recreation

Tested version 7.1 1.5.1 1.4.8 1.0

Number of profiles

or components

>4,000 600 fonts, 90

user-agents, 85

plugins, 5

browsers and 6 OS

1,000 2,762 fonts, 39

plugins, 6

browsers and 4 OS

Browser used Firefox 41-48 Firefox 41 Chrome 61 Latest versions of

Chrome and

Firefox

Network - Proxy through

SocksCap64 +

Obfuscation of OS

Network packet

through OSfuscate

Built-in proxy

management

(HTTP, Socks5)

Built-in support

for Tor

User Agent � � � �

Language � � �

Screen � � �

Navigator � � � �

Timezone � � � �

Date �

Fonts � � �

Plugins � � � �

Media devices �

Canvas Noise (letters in

strings)

Noise (fonts and

colors)

Noise (fonts and

colors)

Noise (change of

OS)

WebGL Blocked Blocked Only vendor and

renderer

Noise (change of

OS)

WebRTC � Block or fake IP

address

Geolocation � �

Hardware

Concurrency

�
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4 Detecting the Anti-fingerprinting Tools

To extract unique characteristics that can be used to uniquely identify each
browser, we analyzed each tool using the techniques described by Nikiforakis
et al. [26] and Acar et al. [12]. We investigate built-in JavaScript objects, such
as, navigator and screen with and without anti-fingerprinting mechanisms,
looking for inconsistencies. According to Vastel et al., existing bot detection
schemes already use similar techniques to detect the presence of impossible fin-
gerprints [34]. To the best of our knowledge, we are the first to report on the
fingerprintability of dedicated anti-fingerprinting tools.

navigator.getGamepads.toString.toString ()

// Returns "function () { return "function getGamepads () {

[native code] }";}"

//

// Standard Firefox returns

//"function toString () {

// [native code]

//}"

CanvasRenderingContext2D .prototype.__lookupSetter__ ("

strokeStyle").toString ()

// Returns

//"function (){

//"use strict ";

//this.strokeStyle=settings.strokeStyle }"

//

// Standard Firefox returns

//"function set strokeStyle () {

// [native code]

//}"

canvas = document.createElement("canvas");

canvasContext = canvas.getContext("2d");

canvasContext.fillStyle = "#ff6600";

canvasContext.fillStyle.toString ();

// Returns the color set by the user: "#71 cda0"

// Standard Firefox returns the color from the script: "#

ff6600"

Listing 1. Detecting JavaScript injection performed by AntiDetect (top)
and Fraudfox (bottom)

• AntiDetect Since AntiDetect relies on a browser extension, a single line of
JavaScript is sufficient to detect injected values. Notably, objects created through
JavaScript are easily identifiable as they only contain a toString function. In
Listing 1 (top), we can clearly see the getGamepads function written by the
developers to modify the returned value as if it was a native one.
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Like other tools relying on JavaScript injection, inconsistencies in fingerprints
are possible and frequent. One example is when AntiDetect launches a Chrome
profile where one can observe the presence of both webkit and moz prefixed
properties which is impossible as these belong to two different rendering engines.
Another example is a mismatch between two attributes where the user-agent
reports a 64-bit OS and the navigator.platform indicates a 32-bit one.

• Fraudfox presents the same shortcomings as AntiDetect as it also relies on
the same spoofing method. However, one needs to look elsewhere to find traces
of JavaScript injection. As shown in Listing 1 (bottom), the developers directly
poison the prototype of specific objects. One can also easily find the parameters
that are set in the tool’s interface like the exact filling color of the canvas API.
This could, in fact, act as a long-time identifier if the user always reuses the same
profile without regularly updating the canvas color. Finally, Fraudfox has its own
set of inconsistencies. For example, Chrome profiles present moz -prefixed prop-
erties but no webkit ones. Mac profiles show .dll extension for plugins instead of
.plugin.

• Mimic is harder to detect compared to the two previous solutions because
it does not rely on JavaScript injection. However, the browser is still identifi-
able through some unique inconsistencies that come from its database of fin-
gerprints. When spoofing the WebGL Renderer, Mimic always add the ANGLE
string in front of every value. However, this string can only be found on Win-
dows as Chrome uses the ANGLE backend on this operating system to translate
OpenGL API calls to DirectX. On Linux, plugins with the .so extension are vis-
ible creating an inconsistency if a Windows or a Mac profile is selected. Finally,
Mimic presents an incorrect priority in the HTTP language header. The sec-
ond language should present a priority of 0.9 (“en-US,en;en;q=0.9”) but Mimic
returns one of 0.8 (“en-US,en;en;q=0.8”). Changing the priority is easily fixable
in the profile database but it shows that the smallest detail can render a tool
identifiable.

Focus on Canvas Poisoning. Each tool also has its own canvas poisoning
technique, which as we demonstrate is identifiable. Figure 1 illustrates them.

(a) Standard Chrome (b) AntiDetect

(c) Fraudfox (d) Zoom on the top left part of the ‘q’ of the
Mimic’s rendering

Fig. 1. Renderings of the same canvas test
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AntiDetect changes the letters of a given string and their position. Fraudfox
modifies the colors set by a script. This is directly configurable in the interface of
the tool. Moreover, since the tool runs on Windows XP, the OS does not have any
fonts that support emojis (presence of a green square at the end of the strings).
Mimic is different from the other two as the modification is almost invisible for
the user. Mimic introduces a small amount of noise but an in-depth analysis
reveals that the transparency of some pixels were changed (on the zoomed-in
image, the top half of the orange rectangle is more transparent than the bottom
half).

Overall, our findings demonstrate that a combination of several tests is suf-
ficient to precisely identify all evaluated anti-fingerprinting tools. The quirks
discovered can be corrected but our results confirm that it is difficult to design
an anti-fingerprinting tool that is not detectable. For both JavaScript injection
and native spoofing, the smallest oversight can make the user stand out, be
marked as malicious and invalidate the offered protection.

Blink and the Recreation of Complete Environments

In this section, we showed how the operators of anti-fraud systems can fingerprint
anti-fingerprinting tools, based on the latter’s inability of perfectly mimicking
a non-native browsing environment. Blink, the research prototype by Laperdrix
et al. [23] that we introduced in Sect. 3, sets itself apart from the rest by the
fact that it does not attempt to mimick a foreign environment. Instead, Blink
assembles a real environment with different components and launches that envi-
ronment in a virtual machine. As such, none of the techniques presented in this
section can be used to detect Blink since there is no mimicking involved and
therefore no inconsistencies to be discovered.

Despite Blink’s attractiveness for defeating fingerprinting-based, unwanted
online tracking (since users can keep changing their fingerprints and therefore
break the linking of browser sessions), we argue that Blink’s utility is limited for
attackers. This is because, an attacker who tries to match the fingerprinting of
a victim user, must utilize Blink to recreate the entire browsing environment of
their victim. This requires not just the installation of the appropriate software,
but even the purchase of the appropriate hardware (e.g. to match the num-
ber of threads in the victim’s CPU and how the victim’s graphics card renders
complex 3D scenes). All of this is clearly possible for highly targeted attacks
but also highly unlikely for the monetization of credentials, since the invest-
ment in assembling the right environment can exceed the profit from the stolen
credentials.

5 Related Work

Prior work can be split into the study of underground markets, browser finger-
printing, and bot-based fraud detection.
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Singh et al. studied the underground ecosystem of credit card fraud [28].
They describe the different methods that attackers use to steal credit card infor-
mation. These methods range from POS malware to exploitation of a vulnerabil-
ity. Given the difficulty and risk associated with monetizing stolen credentials,
attackers often resort to selling these illicitly obtained credentials to other attack-
ers specializing in monetization. The authors then go over the existing channels
to monetize the cards (e.g. by delivering high-end goods purchased with stolen
credentials to unsuspecting users who believe they are working for a shipping
company and will then re-ship the goods to another destination [19]). Other
works focused on trafficking of fraudulent twitter accounts in the underground
markets [31]. Fallmann et al. discussed their finding on probing these markets [17]
and Thomas et al. assessed the effect of data breaches on the activities of under-
ground markets [30].

In the realm of browser fingerprinting, researchers keep identifying fea-
tures that can be extracted from browsers and make browser fingerprints more
robust [14,15,18,25,29,33]. As fingerprinting-based fraud detection tools incor-
porate these features into their techniques, the tools used by attackers must
also account for them (such as accounting for canvas-based fingerprinting, as
described in Sect. 4).

One of the challenges in the study of JavaScript files and fingerprinting scripts
is instrumenting the various API calls and monitoring them. VisibleV8 is a
Chromium based browser that is easy to maintain over time and provides the
ability to monitor JavaScript API calls [20]. The authors used their customized
browser to analyze the prevalence of scripts that query for bot and browser
automation artifacts on popular Alexa websites.

6 Conclusion

In this paper, we showed that anti-fingerprinting tools are capable of bypass-
ing the protection of state-of-the-art fingerprinting techniques by masking the
components that are queried by fingerprinting libraries. We analyzed their mask-
ing techniques (i.e., JavaScript injection, native spoofing, and the recreation of
complete environments) and described the process of identifying fingerprinting-
based inconsistencies which can be used to identify them and block them. Our
analysis showed that all tools that attempt to mimick non-native environments
are unique fingerprintable and therefore can be identified by anti-fraud systems,
through the use of our proposed fingerprinting vectors. Finally, we discussed the
difficulty of fingerprinting tools that are based on the recreation of browsing
environments and the reasons why these tools are highly unlikely to be used in
generic, non-targeted attacks.
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Abstract. Fake antivirus (AV) software is a serious threat on the Inter-
net to make users install malware and expose their personal information.
Fake removal information advertisement (FRAD) sites, which introduce
fake removal information for cyber threats, have emerged as platforms for
distributing fake AV software. Although FRAD sites seriously threaten
users who have been suffering from cyber threats and need information
for removing them, little attention has been given to revealing these
sites. In this paper, we propose a system to automatically crawl the web
and identify FRAD sites. To shed light on the pervasiveness of this type
of attack, we performed a comprehensive analysis of both passively and
actively collected data. Our system collected 2,913 FRAD sites in 31 lan-
guages, which have 73.5 million visits per month in total. We show that
FRAD sites occupy search results when users search for cyber threats,
thus preventing the users from obtaining the correct information.

Keywords: Fake AV software · Social engineering attacks

1 Introduction

Antivirus (AV) software is one of the basic defense strategies for protecting
users’ devices. The major AV software market was valued at 3,770 million USD in
2018 [12], and attackers focus on the needs of such pervasive AV software to gain
financial benefits. Specifically, fake AV software, which are rogue applications
disguised as legitimate AV software, is used to manipulate users’ devices and
steal money or sensitive information [2,18]. For example, once fake AV software
is installed, the software displays fake virus scan results to get users to purchase
additional licenses [4,23].

Fake AV software is a traditional cyber threat that can effectively spread
malware and unwanted software on the web [11,22]. To infect users and gain more
profit, attackers take advantage of online advertisements that target many people
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to distribute fake AV software [26]. The web pages served by these advertisements
typically show fake virus infection alerts or messages claiming the necessity of
installing their software. These web pages also attract users with promises of
speeding up their machines [24]. Attackers use such social engineering techniques
that exploit users’ psychological vulnerabilities to lure users to download fake
AV software. These web pages are known to be major distribution paths for fake
AV software [7,15,27].

In this paper, we focus on new techniques that psychologically encourage
users to install fake AV software from the web. Attackers create web pages that
introduce fake information for handling specific cyber threats, such as malware
infection or visits to malicious web pages, and suggest fake AV software. We call
these web pages fake removal information advertisement (FRAD) sites, which
target users who have already suffered from security problems and which make
them victims of another one. For example, users who notice their malware infec-
tion try to search for removal information using the malware detection names
given by virus scanners, and they reach the FRAD sites from search results.
Believing the FRAD information, the users follow the instructions and inadver-
tently install the suggested fake AV software. Although it is well known that
attackers induce users to install fake AV software using scaring or attracting
messages–such as fake infection alerts or promises to speed up their machines–
little attention has been given to analyzing the FRAD sites.

Here, we propose a system that automatically crawls the web pages and
detects FRAD sites. Using the linguistic and visual features of the web pages,
we accurately identify FRAD sites with 98.8% true positives and only 3.3%
false positives. We used our system for a large-scale collection of FRAD sites
and found 2,913 distinct domain names of FRAD sites written in 31 languages.
The total user accesses to these FRAD sites was 73.5 million visits per month.
We observed that these FRAD sites are not adequately reported by existing
blacklists.

To reveal the ecosystem of FRAD sites, we performed a measurement study
using both passively collected statistical data on user accesses and actively
crawled data. We first investigated the incoming traffic to FRAD sites to deter-
mine what types of user behaviors are at risk of reaching FRAD sites. We found
that many users not only accessed these sites from search engines directly but
also reached FRAD sites from videos or messages posted on social media by
attackers’ accounts. To determine what kinds of attacks users encounter from
FRAD sites, we then analyzed the transferred web pages and downloaded files
from the FRAD sites. We confirmed that the FRAD sites led to 76 fake AV soft-
ware families by directly distributing installers and luring users to payment and
distribution sites. Also, we investigated search results for the names of specific
cyber threats, and we found that 82.6% of the top 10 search results were occu-
pied by FRAD sites. In other words, search results for information concerning
cyber threats are poisoned by FRAD sites, making it difficult for users to obtain
correct removal information. To the best of our knowledge, this is the first study
that has revealed the prevalence and ecosystem of FRAD sites.
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Fig. 1. Overview of fake AV software distribution via FRAD sites. Users that require
removal information for cyber threats access FRAD sites via a web search (e.g., search
engines or social media) ( 1 ). They click on download buttons on the FRAD sites and
are navigated to software distribution sites ( 2 ). They download fake AV software from
these sites ( 2 ’) or from the FRAD sites ( 3 ) directly. Then, they make the damage
even worse by installing the fake AV software ( 4 ).

In summary, our contributions are as follows:

– We propose a system to crawl the web and detect FRAD sites automati-
cally. By extracting linguistic and visual features from crawled web pages,
our system detected FRAD sites with 98.8% true positives and 3.3% false
positives.

– We performed a large-scale collection of FRAD sites on the web by leveraging
a search engine, which is the most common channel used to reach FRAD sites.
Using our system, we discovered 2,913 domain names of FRAD sites written
in 31 languages. We found that attackers widely deploy FRAD sites targeting
users in various countries to increase the number of page views.

– We conducted a comprehensive measurement study using both passively col-
lected statistics data and actively crawled data to reveal the ecosystem of
FRAD sites. Our measurement study also clarified the typical incoming chan-
nels employed by users to reach FRAD sites and the types of potential threats
directed from the FRAD sites. We also found that it is difficult for users who
need removal information for specific cyber threats to reach correct informa-
tion, because most of the search results concerning cyber threats are poisoned
by the FRAD sites.

2 Background

We first consider an attack technique for distributing fake AV software via FRAD
sites. The purpose of the FRAD sites is to deceive users who need ways to deal
with cyber threats, i.e., malicious acts that damage the users’ devices and steal
their sensitive information. Examples of cyber threats include malware infection,
fraudulent popup messages, and malicious browser extensions. Attackers post
multiple entries on FRAD sites that introduce fake threat removal guides, using
the names of specific cyber threats, such as malware detection names or the
domain names of malicious sites. For instance, there can be more than 15k
entries in a single FRAD site, and dozens of new entries are added to the FRAD
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site every day. When users notice that they have security issues by looking at
the results from legitimate virus scanners or from suspicious alert messages on
web pages, they search for information to remove them. Users who reach FRAD
sites and are deceived by false information install fake AV software, which makes
matters worse. We focus on such scams on the web in this paper.

Figure 1 shows an overview of the distribution of fake AV software via FRAD
sites. First, users who have security problems reach FRAD sites by searching for
the specific names of cyber threats they want to remove ( 1 ). Attackers leverage
search engine optimization (SEO) techniques that target specific names of cyber
threats to increase the web traffic to FRAD sites. Attackers also post fake videos
on YouTube that introduce ways to remove the threats, and they post similar
articles on Facebook and other social media to lure users to click on links to
FRAD sites. Forum and community sites where anyone can post messages are
also used by the attackers in the same manner. Thus, users not only visit FRAD
sites from results provided by search engines but also reach FRAD sites through
social-media postings and other web pages hit by the search results. The FRAD
sites contain detailed fake removal guides for individual threats as well as large
buttons or banners to direct users to fake AV software. The FRAD sites usually
display the logos of famous security vendors or third-party organizations (e.g.,
software certification companies) to make them look as if they are legitimate
web pages. Users who click on the buttons or banners are navigated to software
distribution sites ( 2 ). Most of the software distribution sites use domain names
containing the names of the fake AV software and disguise themselves as official
sites for legitimate AV software by displaying product information and purchase
menus. These sites are also reachable through search engines and even provide
customer support such as web chats or toll-free calls. On these web pages, users
follow the payment and download instructions and then obtain fake AV software
installers ( 2 ’). These installers can also be downloaded from the FRAD sites
directly ( 3 ). Users install the fake AV software and thus become victims of
other cyber threats ( 4 ).

Some social engineering techniques are already known, such as threatening
users using fake infection alerts or attracting them by the prospect of improving
computer performance. However, it has not been clarified whether attackers use
techniques for distributing fake AV software that exploit the weaknesses of users
who have already suffered from cyber threats.

3 Method

In this section, we introduce our system for collecting and detecting FRAD sites
on the Internet automatically. The system consists of two steps: web crawling
and classification.

3.1 Web Crawling

The implementation of a web crawler that collects and stores browser-level infor-
mation from web pages is the first step in our system. The requirement of the
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Table 1. List of terms for each category; used to check the term’s frequency in the
title, URL paths, domain names, and text content of a web page.

Category Example terms

way “how to”, “guide”, “solution”, “tips”, “report”, “instruction”

removal “remove”, “get rid of”, “uninstall”, “delete”, “fix”, “clean”, “kill”,
“block”, “repair”, “anti”, “entfernen”, “eliminar”, “verwijderen”,
“deinstallieren”, “desinstalar”, “supprimer”, “remuovere”, “usunac”

problem “virus”, “malware”, “spyware”, “trojan”, “backdoor”, “adware”,
“threat”, “infection”, “ransom”, “error”, “pop up”, “redirect”

device “computer”, “pc”, “windows”, “mac”, “browser”

crawler is to extract linguistic and image features from a web page rendered by a
web browser and to compose a feature vector for the result. To analyze the FRAD
sites in detail, we also need to capture the network traffic to and perform browser
interactions on the web page. To achieve this, we designed and implemented the
crawler using Scrapy1, which is a web crawling framework for Python, in order to
develop functions for monitoring and managing logged data. We used Selenium2

as the middleware for Scrapy to automate a real web browser. We used Google
Chrome as the default web browser for the crawler. To monitor network traffic
in detail, we used Chrome DevTools API3. This is necessary, because we collect
network-level information such as HTTP requests and responses that Selenium
API does not handle directly. The collected information–such as screenshots,
HTML source codes, and network traffic–are stored to MongoDB. We use those
kinds of information for the next step, classification.

3.2 Classification

In the second step, our system extracts features from the information collected
from the web pages and identifies FRAD sites using a supervised machine learn-
ing approach. In particular, the system analyzes term frequencies in web pages
and URLs, the presence of logo images on screenshots, and HTML structures,
such as the number of tags, and combines them into a feature vector. We explain
the detail of each feature below.

Term Frequencies. To capture the linguistic characteristics of FRAD sites,
frequencies of terms are used as a feature. To improve the SEO rank-
ing and ensure an easy web page topic for users to understand, FRAD
sites use terms meaning for the removal of cyber threats in the titles,
URL paths, domain names, and text content of their web pages. Examples

1 https://scrapy.org/.
2 https://selenium.dev/.
3 https://developer.chrome.com/extensions/devtools.

https://scrapy.org/
https://selenium.dev/
https://developer.chrome.com/extensions/devtools
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of such titles are “Remove Trojan.Zerocleare (Virus Removal Guide)” and
“Remove Magiballs.com (Free Guide).” The URL paths include forms such as
“/2019/12/27/how-to-remove-my-login-hub-virus-removal-guide/” and
“/uninstall-nvux-xyz-from-windows-7-8-8-1-10.” Examples of domain
names are uninstallmalwarefrompc[.]example and virusremovalguide[.
]example. The text content of the web page is written with a summary of the
cyber threat and specific removal information for it.

Our key insight is that the FRAD sites must include a phrase composed
of the following four categories of terms: way, removal, problem, and device.
Table 1 shows a list of example terms. As the feature vector, we use the number of
occurrences of each term category in the following four fields: the title, URL path,
domain name, and text content. The terms in the four categories are intended to
capture phrases such as “how to remove Trojan.Zerocleare virus from my PC.”
Because the FRAD sites are created in many languages, we leverage machine
translation services such as Cloud Translation API4 and Amazon Translate5. We
translate the title and text content of the crawled web pages into English and
then calculate the frequencies of the terms.

To create the list of terms, we extracted all terms that match each category
from the title, URL paths, domain names, and text content of 300 FRAD sites
that were randomly selected from our created dataset, as discussed below in
Sect. 4. Some domain names include non-English terms in the removal category,
such as “entfernen” in German and “eliminar” in Spanish. Because these domain
names are difficult to translate, we manually obtained such terms as much as
possible. To this end, we separated the domain names by “.” or “-” and used
word segmentation6 and then searched for the meaning of each extracted word.

Logo Images. We next consider features that specify logo images on the FRAD
sites. The FRAD sites include download buttons and software packages that may
be shared among multiple FRAD sites. The FRAD sites also display logos of
security vendors, operating system (OS) vendors or software certification com-
panies in order to pretend to be legitimate sites. These logos are copied from
vendors’ sites or used as image files modified from the original images. To find
such visual characteristics, our system uses an image matching approach on the
basis of our logo image database. Specifically, the system extracts images from
img tags and crops images for which the area matches a or button tag elements
from screenshots. It calculates the perceptual hash7 of these images and com-
pares them to the image database. If the target image is more than 85% similar
to the image in the database, the system determines it to be a logo image. Three
types of images are stored in the database: logos of security vendors or soft-
ware certification company (19 images), package images of fake AV software (33
images), and images of the download buttons (56 images). We extracted images

4 https://cloud.google.com/translate/.
5 https://aws.amazon.com/translate/.
6 http://www.grantjenks.com/docs/wordsegment/.
7 https://github.com/JohannesBuchner/imagehash.

/2019/12/27/how-to-remove-my-login-hub-virus-removal-guide/
/uninstall-nvux-xyz-from-windows-7-8-8-1-10
uninstallmalwarefrompc[.]example
virusremovalguide[.]example
virusremovalguide[.]example
https://cloud.google.com/translate/
https://aws.amazon.com/translate/
http://www.grantjenks.com/docs/wordsegment/
https://github.com/JohannesBuchner/imagehash
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belonging to the three types from the 300 FRAD sites used in the above. Our
system counts the number of images that match each type to create feature
vectors.

HTML Structure. Here, we explain the features extracted from the HTML
structure that we use for identifying FRAD sites. As with previous works that
identify specific types of malicious web pages [7,17], the numbers of a and iframe
tags are important indicators of FRAD sites. Also, FRAD sites often re-use web
page templates so that they have similar structures of HTML source codes. In
other words, the frequency of HTML tags and combinations of those numbers
characterize FRAD sites. To find such features, the system counts the number
of appearances of HTML tags. The HTML tags to be counted are the top 30
tags frequently used in the 300 FRAD sites mentioned above.

4 Data Collection

We explain the method used to collect FRAD sites in the wild in order to make
the dataset employed to evaluate our classification model. We first collected
the names of cyber threats. Then, we searched for and gathered candidates of
FRAD sites using the names of those cyber threats. Finally, we manually created
a labeled dataset for our evaluation experiment.

4.1 Collecting Cyber Threats

We collected the names of cyber threats to make search queries to find candidate
FRAD sites. As described in Sect. 2, FRAD sites prepare many entries that
introduce ways of removing specific cyber threats such as malware detection
names and malicious domain names. To collect such names efficiently, we crawled
the database pages of security vendors (e.g., Symantec Security Center8) and a
security community site (e.g., malwaretips[.]com) in October 2019. We collected
806 names of threats, including 500 malware detection names, 200 malicious
domain names, and 106 popup messages.

4.2 Web Search

We created search queries using the collected names of cyber threats and gath-
ered the URLs of web pages using a search engine. To collect FRAD sites effi-
ciently, we added “how to remove” to the name of the cyber threat to create
the search query, instead of searching only for the name of the threat. We found
that we can collect more FRAD sites by searching with “how to remove” in our
experiment described in Sect. 6.3. To collect search results systematically, we
used Microsoft Bing Web Search API9 and gathered 34k URLs. We chose one
URL for each domain name from among the gathered URLs. As a result, we
extracted 4,188 URLs with 4,188 unique domain names to crawl.
8 https://www.symantec.com/security-center/a-z.
9 https://azure.microsoft.com/en-us/services/cognitive-services/.

https://www.symantec.com/security-center/a-z
https://azure.microsoft.com/en-us/services/cognitive-services/
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4.3 Creating the Dataset

We crawled 4,188 web pages using our system and created a labeled dataset.
Since there is no existing URL blacklist that accurately identifies FRAD sites,
we manually labeled them by analyzing the crawled web pages and actually
accessed them as necessary. To efficiently conduct this process, we created a web
application that displays screenshots and buttons to choose labels (FRAD and
non-FRAD sites). This application extracts information about the crawled web
pages from our MongoDB database and generates the web pages for labeling.
We implemented it using Node.js and the Express10 framework. We labeled web
pages as FRAD sites if they satisfied following heuristic rules. If not, we labeled
the web pages as non-FRAD sites.

i. We check whether a web page introduces a removal guide for a specific cyber
threat. If so, we check rule ii.

ii. We check whether the web page has visual characteristics specific to FRAD
sites, as described in Sect. 3.2. Specifically, we check whether the web page
has an image of a fake AV software package or a logo of a security ven-
dor or a software certification company. We also check screenshots of the
removal instructions or download buttons, which are often shared with mul-
tiple FRAD sites. If the web page has these characteristics, we identify it as
an FRAD site. If not, we further check rule iii.

iii. We confirm that clicking a download button on the web page triggers a
download of a fake AV software installer or initiates a web transition to a
distribution or payment site for fake AV software. We performed this process
by manually accessing the web page and clicking the download button.

From the 15-h labeling process, we obtained 804 web pages of FRAD sites
with 804 unique domain names. To create a dataset, we randomly selected 800
web pages from these FRAD sites. We also randomly selected 800 web pages
from non-FRAD sites, which are the web pages remaining after excluding the
804 web pages of FRAD sites. Since we collected the non-FRAD sites using
the same search queries as for the FRAD sites, they often introduce removal
information for cyber threats, details of malware, or introductions to legitimate
AV software, just as FRAD sites do. Thus, it is a challenging task to identify
FRAD sites accurately from these similar web pages.

5 Evaluation

We next evaluated the detection capability of our system in terms of its capability
to classify web pages accurately as FRAD sites or non-FRAD sites. We also
conducted an experiment to discover unknown FRAD sites in the wild using the
trained classification model.

10 https://expressjs.com/.

https://expressjs.com/
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5.1 Detection Accuracy

We first evaluated the detection accuracy of our system using the balanced
dataset including 800 FRAD sites and 800 non-FRAD sites. We used a random
forest classifier as the machine learning algorithm for two-class classification,
because we can easily tune it due to the small number of hyper parameters
to be considered. We conducted a 10-fold cross validation to determine how
accurately our system performed classifications. We found that our system clas-
sified web pages with a 98.8% true positive (TP) rate (= TP

TP+FN ), where FN
= false negative, a 3.3% false positive (FP) rate (= FP

FP+TN ), and with 96.8%
precision (= TP

TP+FP ). The system identified 26 non-FRAD sites as FRAD sites
(FPs). Examples include articles from security vendors that introduce malware
information, ranking web pages for legitimate AV software, and blog entries that
describe correct removal instructions. Five FPs were security vendors’ web pages
that often appear in search results when searching for removal information for
cyber threats. We can therefore reduce FPs by placing the domain names of
major security vendors on a whitelist. Examples of false negatives include web
pages with domain names that do not include words such as “remove” or “mal-
ware.” Other false negatives do not contain visual features such as images of
fake AV software packages or logos of security vendors.

5.2 Detecting Unknown FRAD Sites

To collect unknown FRAD sites that have not been found in Sect. 5.1, we con-
ducted additional data collection and detection using our classification model,
which has high detection accuracy.

Additional Data Collection. We first describe additional data collection to
find more FRAD sites in the wild, such as non-English FRAD sites and FRAD
sites with content copied from other sites. In the process of creating the dataset
described in Sect. 4, we found many FRAD sites written in various languages.
Some of them were translated automatically according to the browser’s language
setting when the web pages were loaded. Some web pages were also written in
multiple languages to enable users to switch languages. In addition, we found
FRAD sites dedicated to certain languages. In such cases, the domain names con-
tain words in those languages (e.g., “entfernen” in entfernen-spyware[.]example
and “eliminar” in eliminarvirus[.]example), as described in Sect. 3.2. We also
found that FRAD sites are often copied from other FRAD sites and from legit-
imate sites that introduce specific malware removal information. These FRAD
sites not only use the names of cyber threats extracted from legitimate sites
but also copy page titles or entire articles from them. To find such FRAD sites,
we collected page titles from legitimate sites (malwaretips[.]com and malware-
fixes[.]com) and from the 804 FRAD sites we labeled, which include non-English
sites, and we searched for the titles using Bing API. Although it is difficult to
create search queries in multiple languages to collect non-English FRAD sites,
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we can gather them efficiently in this way. We gathered 16k page titles from
these web pages and collected 836,731 URLs (111,161 domain names) from these
search. We extracted up to three URLs from each domain name and crawled
them (120,577 URLs) using our system.

Detection Result. As a result of the classification of additionally crawled
web pages, we identified 6,130 URLs as FRAD sites. To find FPs, we manually
checked web pages classified as positive in the same way as described in Sect. 4.3.
Examples of FPs include the following. Some technical-support scam [14,21]
sites were falsely identified as FRAD sites, because they offered support for
malware removal and displayed noticeable phone numbers and web-chat support.
These FPs are not FRAD sites, however, because they did not lead users to fake
AV software but instead are actually malicious web pages themselves, which
are listed in VirusTotal11. Moreover, our system falsely detected pirate web
pages that introduce free downloads of fake AV software. Although such fake AV
software is useless and not very well-known, some web pages illegally offered such
software. Other FPs include software review and download sites, which distribute
fake AV software as well as legitimate software. We also found FPs similar to
those described in Sect. 5.1. By excluding these FPs, we finally determined 5,780
URLs (2,109 domain names) as FRAD sites. The precision of this classification
result was 94.3%. Although this precision is somewhat less than the results
obtained in Sect. 5.1, we accurately identified FRAD sites. The reason for this
decrease in detection capability is that we changed the search queries from “how
to remove” and the name of threats (used in Sect. 4.2) to page titles of known
FRAD sites, so that the types of web pages in the search results were somewhat
changed.

Summary of Collected FRAD Sites. Overall, in this paper we have identi-
fied 2,913 domain names, including the newly discovered 2,109 domain names, to
be FRAD sites. To confirm the FRAD sites already reported by security vendors,
we searched for all 2,913 domain names in VirusTotal. Of the total, 32.7% (952
domain names) of the domain names had URLs that had already been detected
by one or more vendors. We also found 21.5% (626/2,913) of the domain names
had URLs that are sources of detected files. Although some FRAD sites have
been detected by a small number of security vendors, most of the FRAD sites
we found in this paper have been unreported to date. These FRAD sites are
less likely to be filtered out from search results, even if they were reported as
malicious. Thus, most of these FRAD sites remain easily accessible to users and
remain threatening to them.

11 https://www.virustotal.com.

https://www.virustotal.com
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Fig. 2. Percentage of incoming traffic to FRAD sites from each channel.

6 Measurement Study

We measured the ecosystem and risk of FRAD sites using both passively collected
statistical data of user accesses and actively crawled data. In the experiment
described above, we found FRAD sites using our system and simply checked
the detection status for each of them on VirusTotal. Here, we analyze deeply the
2,913 domain names of FRAD sites that we found in Sect. 5 in terms of incoming
traffic to those FRAD sites, the distribution of fake AV software from those sites,
and poisoned search results that are occupied by FRAD sites.

6.1 Incoming Traffic to FRAD Sites

To find out what browsing behaviors of users are at risk of reaching FRAD
sites, we analyzed the incoming channels (i.e., 1 in Fig. 1 in Sect. 2) of the
FRAD sites that we found in Sect. 5. To this end, we need data on the history of
user accesses to and traffic volumes of those web pages. Thus, we leveraged the
statistical data provided by SimilarWeb12, which passively observes hundreds of
millions of global devices and covers over 220 countries and territories. Using
this approach, we collected statistical data from October to December in 2019
that we used in the measurement studies described below.

Overview of Incoming Traffic. We first show an overview of seven types of
incoming traffic to FRAD sites. We investigated 1,451 domain names of FRAD
sites for which data are available in SimilarWeb (out of 2,913 domain names
of the FRAD sites we discovered in this paper). Note that statistical data of
web pages with few user accesses are not provided. These FRAD sites have
12 https://www.similarweb.com/.

https://www.similarweb.com/
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Table 2. Search queries used by the users to reach FRAD sites.

Category Search query #

Cyber threats how to <remove><threat> 576

<remove><threat> 438

<threat> 849

is <threat> safe ? 27

what is <threat> 113

<error> 140

Download download <software> 421

crack <software> 101

Fake AV software <fake AV software> 66

Other <other> 1, 802

Total 4, 510

73.5 million visits per month in total. Figure 2 shows the percentage of traffic
to the FRAD sites from each incoming channel. The channels consist of seven
labels: Search (accessed from a search engine), Direct (directly accessed by enter-
ing URLs in a web browsers), Referral (accessed from other web pages), Social
media (accessed from Social Media), Paid search (accessed from keyword adver-
tisements on search engines), Display ad (accessed from advertisements on web
pages), and Mail (accessed from hyperlinks on email). Note that the incoming
traffic measured as Mail comes only from web mail. Incoming traffic from email
client software or other applications is measured as Direct. The mean values of
Search, Direct, Referral, and Social media were 76.7%, 16.5%, 1.7%, and 1.7%,
respectively. The value for each of the other three channels is less than 0.6%.
Paid search, Display ad, and Mail have few data for further investigation. Also,
we only know the amount of incoming traffic that we have shown here from
the data of Direct. Therefore, in the following, we analyzed the detail of three
channels: Search, Referral, and Social media.

Search. To find out how users reached FRAD sites via search engines, we
investigated the statistics of the search queries. We extracted the top 10 English
search queries (4,510 unique queries in total) for each FRAD site and cate-
gorized them. Table 2 shows the categories and the number of search queries.
We found that 47.5% (2,143/4,510) of the search queries were related to the
names of specific cyber threats. They included malware detection names (e.g.,
trojan:win32/bearfoos.a!ml), malicious domain names, and alert dialog messages
(e.g., “your computer is infected with dangerous viruses”). Among them, 12.8%
(576/4,510) are search queries combining “how to” with words meaning removal
(e.g., “remove”, “delete”) and the names of cyber threats. We found that 9.7%
(438/4,510) of the search queries combined words meaning removal with the
names of cyber threats. Users also searched for the names of cyber threats alone
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Table 3. Top 10 social media that led
to FRAD sites.

Social media # of FRAD sites

Youtube 160

Facebook 111

Reddit 58

Quora 35

Pinterest 22

Pocket 9

Twitter 7

Linkedin 6

Instagram 5

Table 4. Top 10 categories of referral web
pages to FRAD sites.

Category of referral web pages #

Computers electronics and technology 517

Games 29

News and media 25

Science and education 22

Business and consumer services 20

Arts and entertainment 19

Hobbies and leisure 8

Adult 8

Reference materials 7

E-commerce and shopping 6

(18.8%, 849/4,510) of for software or OS error messages (e.g., “MSVCP140.dll
missing”). Thus, many users reach FRAD sites by searching for cyber threats
and corresponding removal guides. The names of fake AV software were also
used as search queries to reach FRAD sites (66/1,802). We found that 11.6%
(522/4,510) of the search queries were used to search for downloads of software
such as office software or video games and guides of cracking them. Forty percent
(1,802/4,510) of the search queries were not included in these categories.

Social Media. We also analyzed incoming traffic from social media. We inves-
tigated 167 FRAD sites for which statistical data for queries incoming from
social media is available from SimilarWeb. Table 3 shows the top 10 social media
that led users to FRAD sites and the number of FRAD sites to which users
were redirected from each type of social media. Users visited 95.8% (160/167)
of FRAD sites from YouTube and 66.5% (111/167) of those from Facebook.
Attackers create social-media accounts for these FRAD sites and post videos or
messages to lure users to FRAD sites. These accounts pretended to be official
accounts that use the web-site names or domain names of FRAD sites. They
introduce removal information for cyber threats in the same way as entries for
FRAD sites, and they put hyperlinks leading to FRAD sites in the description
of their videos and messages. We found that some accounts post such instruction
videos on YouTube several times a day. These videos got as many as 700k views.
We also found that attackers created such accounts across multiple social media.
In summary, attackers not only optimize search results to lead users directly to
FRAD sites, but also they use various social media to increase user accesses to
FRAD sites.

Referrals. In addition, we investigated referral traffic that leads users to FRAD
sites. In other words, we analyzed the incoming traffic to FRAD sites when users
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accessed them from other web pages, excluding search engines and social media.
We found that users visited 891 web pages belonging to various categories before
reaching FRAD sites. Table 4 shows the top 10 SimilarWeb categories of these
referral web pages. The most common category of referral web page is Computers
Electronics and Technology, which includes forum and community sites such as
social.technet.microsoft[.]com., ubuntuforums[.]org, and discussions.apple[.]com.
In most cases, attackers abuse these sites, where anyone can post messages,
to impersonate good users who introduce removal information for cyber threats
with URLs of FRAD sites. The web pages categorized as Games (e.g., steamcom-
munity[.]com) were used in the same manner. Attackers also posted FRAD sites’
URLs in comment sections in articles in News and Media and other categories.
In short, attackers leverage popular web pages where they can post comments
and hyperlinks to lure users to visit FRAD sites.

6.2 Downloads and Page Transitions from FRAD Sites

To identify threats that occur when users access FRAD sites, we performed an
additional crawling experiment. While we simply found FRAD sites using our
system in Sect. 5, and we investigated users’ incoming traffic to them in Sect. 6.1,
the malicious activity derived from them was not revealed by these experiments.
Therefore, we actively crawled the FRAD sites and collected installers of fake AV
software and their respective distribution sites. To this end, we added a function
to the crawler of our system to enable it to detect a download button on an
FRAD site and click it. Then we analyzed the downloaded files and transferred
the web pages from those FRAD sites.

Collecting File Downloads and Web-Page Transitions. We first describe
the details of the new function that enables our crawler to interact with the
FRAD sites. The crawler crops images with areas that match the a tag and
img tag elements of FRAD sites. If the crawler finds a “download” string in the
images using optical character recognition, it clicks on that area. We used two
types of UserAgent with different OS (Windows 10 and macOS v10.14). This is
because FRAD sites change the fake AV software to be distributed according to
the UserAgent’s OS, typically Windows or Mac. To collect the URLs of FRAD
sites to crawl, we searched for the 2,913 domain names of FRAD sites using
Bing API and selected up to three URLs based on the search results for each
domain name. The reason for this is that web pages of FRAD sites with the
same domain names can lead to different destinations (e.g., different software
distribution sites) depending upon their URLs. To find more fake AV software,
we collected 8,099 URLs and crawled them twice with two types of UserAgent.
As a result, the crawler downloaded 4,548 files with 594 unique MD5 hash values
and reached 136 domain names (630 URLs) of web pages from FRAD sites. In
the following, we investigated the downloads of fake AV software originating
from the FRAD sites (i.e., 3 in Fig. 1 in Sect. 2), web pages transferred from
those sites (i.e., 2 in Fig. 1), and redirectors that relayed these downloads and
web page transitions.
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Fake AV Software Downloaded from FRAD Sites. We analyzed the files
that our crawler downloaded (see 3 in Fig. 1) to identify the installers of fake
AV software. First, we checked 594 files with unique MD5 hash values on Virus-
Total and found that 89 of those files had been detected. To specify fake AV
software families from the detected files, we manually analyzed and searched
them using their filenames and metadata (e.g., product name, legal copyright,
and file description) read by ExifTool13. We examined whether the 89 files were
related to malware removal, registry fix, or speed up based on the above infor-
mation and on the software distribution sites that we obtained from the search
results. We classified 84 files into 58 unique fake AV software families with differ-
ent software names. All 58 fake AV software families have software distribution
sites reachable from search engines. The software distribution sites profess to be
official sites for these fake AV software families. For example, these sites show
download and purchase menus and provide customer support such as web chats
or toll-free calls. The remaining five detected files were not fake AV software but
instead were malware that pretend to be installers of legitimate software, such
as music-production software and video games.

To find more fake AV software from the 505 undetected files, we compared
their filenames and metadata with those of the classified 58 fake AV software
families. As a result of determining files with the same strings as the fake AV
software, we additionally found 189 files to be fake AV software. Overall, we
found 278 files (31 dmg files and 247 exe files) of the 58 fake AV software families.

Web Pages Transferred from FRAD Sites. We also analyzed the web pages
of 136 domain names that our crawler reached after clicking on download buttons
(see 2 in Fig. 1). In the above measurements, we investigated fake AV software
directly downloaded from FRAD sites. However, FRAD sites also navigate users
to software distribution sites that lure them to purchase and download fake AV
software. To find such web pages, we analyzed the crawled data (e.g., screenshots
of web pages) and manually classified the malicious web pages. We first checked
the 136 domain names on VirusTotal and found that 57 domain names were
detected. We then specified the web pages that offered license purchases of known
fake AV software or were related to malware removal, registry fixes, and speed-
up from the web pages of the 57 detected domain names. We found that 34
domain names were related to distributions of fake AV software, including six
domain names of payment sites and 27 domain names of software distribution
sites. The payment sites required inputting credit card numbers and personal
information to purchase fake AV software. Out of the 27 domain names, we
found that 18 domain names were distribution sites for 18 new fake AV software
families in addition to the measurements described above, where we found 58
fake AV software families. Thus, we found 76 fake AV software families in total.
The detected domain names also included five domain names of FRAD sites that
we found in Sect. 5. That is, users may be transferred from one FRAD site to
another. We also found malicious web pages that distribute malicious Chrome
13 https://exiftool.org/.

https://exiftool.org/
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Table 5. The percentage of FRAD sites included in search results.

Threat name
<threat name>

remove
<threat name>

how to remove
<threat name>

Malware 69.4% 87.9% 87.9%

Domain name 88.5% 93.5% 88.0%

Extension 36.1% 85.1% 87.2%

Total 70.6% 89.7% 87.8%

extensions. We found 14 domain names associated with such threats and four
domain names related to distributions of other types of malware.

Redirectors. To reveal the network infrastructure related to the distribution
of fake AV software, we investigated the redirectors that relayed the above fake
AV software downloads and web page transitions. We analyzed the network
traffic that our crawler captured and extracted redirectors for which the effec-
tive second-level domains (e2LD; e.g., example.com is a e2LD of www.example.
com) are different from those of the source web pages (i.e., the FRAD sites) and
destination web pages. We found 169 domain names (38 e2LD names) as redirec-
tors of 1,048 URL redirections associated with fake AV software downloads and
web transitions to software distribution sites. Nine of these domain names were
known advertising domain names listed in EasyList14. In addition, we found a
small number of redirectors that were involved in many fake AV software distri-
butions. For example, we found that 76.4% of the URL redirections were asso-
ciated with just two domain names: safecart[.]com and revenuewire[.]net. These
two redirectors navigated to 17 and 14 fake AV software families, respectively.
The domain name safecart[.]com not only is a redirector but also is a payment
web page that prompts users for their credit card numbers. Some redirectors,
such as reimageplus[.]com and paretologic[.]com, which are software distribution
sites, navigated to other software distribution sites.

6.3 Search Poisoning

We conducted a further measurement experiment to analyze the percentage of
FRAD sites in the search results. In Sect. 6.1, we used statistical data to inves-
tigate search queries that users used to reach FRAD sites. Then, we determined
the risk of users reaching these FRAD sites by actually searching with those
search queries and analyzing the search results. When users search for specific
names of cyber threats to find removal information, many FRAD sites promi-
nently show up in search results. To confirm these poisoned search results, we
investigated 150 search queries, combining 50 cyber threats and three search
patterns. The three search patterns are those that users frequently use, as found

14 https://easylist.to/.

www.example.com
www.example.com
https://easylist.to/
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in the measurements in Sect. 6.1: “how to remove” and the name of a cyber
threat, “remove” and the name of a cyber threat, and only the name of a cyber
threat. We extracted the latest names of cyber threats from public lists: 20 mal-
ware detection names from Symantec Security Center and 20 malicious domain
names from malwaretips[.]com. Also, we randomly chose 10 malicious browser
extensions out of 14 browser extensions that we found in Sect. 6.2. We investi-
gated the top 10 search results for each search query, which are the top result
pages from popular search engines such as Google and Bing.

We collected 1,461 web pages from the top 10 search results for each of
the 150 search queries in total. By matching the 2,913 domain names of the
FRAD sites collected in Sect. 5.2, we found that 1,207 web pages (82.6%) were
FRAD sites. Table 5 shows the percentages of FRAD sites included in the search
results for each search query and the names of the cyber threats. When we
searched for the names of cyber threats with “how to remove” or “remove,”
the percentages of FRAD sites were 87.8% and 89.7%, respectively. The FRAD
sites were also included at a high rate in the results of searching only for the
names of cyber threats. In particular, 88.5% of search results for the domain
names were FRAD sites. Search results for malicious browser extensions did
not include many FRAD sites (36.1%), but there was less useful information
available for users to use to remove the threats or determine whether they are
malicious. We also found 22 YouTube web pages as search results, with videos
and descriptions that introduced FRAD sites. We found that 26.7% (40/150)
of the search queries returned search results for which the top 10 web pages
were all FRAD sites. In summary, we found that most of the search results were
occupied by FRAD sites when users searched for removal information for cyber
threats, making it difficult for users to reach correct information.

7 Discussion

Ethical Considerations. We followed research ethics principles and best prac-
tices to conduct this study [3]. We analyzed users’ behavior to visit FRAD sites
using anonymized statistical data on user accesses for this study. We purchased
a license to access data that is legally collected based on SimilarWeb’s privacy
policy. The information extracted from the web pages we crawled is publicly
available data. To reduce server load, our experiment that interacted with down-
load buttons was performed only once for each web page that we identified as
an FRAD site.

Limitation. Although our system can accurately identify FRAD sites, there
are some limitations. Since our system is specialized for collecting and detecting
FRAD sites, which are the important platforms used by attackers to distribute
fake AV software, detecting software distribution sites is out of scope for this
paper. We identified software distribution sites that pretended to be official sites
for legitimate AV software on the basis of detection results from VirusTotal
and manual analysis. We showed that we can visit various software distribu-
tion sites from FRAD sites by clicking on the FRAD sites. We also found that
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these software distribution sites share common network infrastructures, such as
ad networks and redirectors. Thus, further analyses focusing on the web pages
arriving from the FRAD sites collected by our system should support efficient
collections of software distribution sites.

We then discussed a technique that can be used to evade our classification of
FRAD sites. Developers of FRAD sites employ phrases related to the removal
information for threats in domain names, URLs, titles, and text contents. This
is because they use the topic of the web pages to attract or persuade users.
They also place logos of trusted companies to disguise FRAD sites as legitimate
sites. A possible evasion technique would be to remove these characteristics that
psychologically affect users. However, this also would reduce the interest of users
and the usefulness of the FRAD sites to the attackers. In addition, excluding
phrases related to malware removal lowers the SEO rankings of FRAD sites and
user accesses. Since our system relies on these characteristics to identify FRAD
sites, we can accurately detect high-risk FRAD sites that strongly affect the
users’ psychology.

Since our collection of FRAD sites depends on search engine results, we have
not collected all FRAD sites on the Internet. To efficiently collect FRAD sites,
we used the names of the cyber threats that are mainly used by attackers to
lure users and leverage search engines, which are the most common channel to
lead a user to FRAD sites. As a result, our analysis found that FRAD sites are
created in many languages and have a large amount of user access. Our system
is useful for continuously collecting FRAD sites to create URL blacklists and for
analyzing trends for this type of attack.

8 Related Work

We have reviewed related work that investigated the distribution infrastructure
for fake AV software and the social engineering techniques attackers use to trick
users. Using a combination of unsupervised, graph-based clustering, Cova et
al. analyzed the network infrastructure (e.g., domain registration information
and IP addresses) of fake AV software distributions to reveal their ecosystem
and attack campaigns [2]. Although they investigated the relationship of servers
hosting fake AV software, they did not discuss how users access these web pages.
Rajab et al. conducted a measurement study that discovered web pages related
to the distribution of fake AV software from data collected by Google [18]. They
showed the prevalence of fake AV software in malware distributions on the web.
Stone-Gross et al. proposed an economic model and estimated attackers’ revenue
by analyzing back-end servers that attackers used to support fake AV software
businesses [23]. They identified the incoming channels that users employ to reach
distribution sites, such as landing pages that exploit browsers to redirect users.
They also described the social engineering techniques used to install fake AV
software using web pages that display fake infection alerts. Although these stud-
ies analyzed the infrastructure and traditional distribution techniques for fake
AV software–such as drive-by downloads and fake infection alerts–new distribu-
tion tactics using FRAD sites have not been revealed. There is also related work
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that describes case studies of fake AV software distribution from social engineer-
ing aspects [1,4–6,8–10,13–16,19–21,25,27–29]. In most studies, they analyzed
fake infection alerts via advertisements that threaten or attract users to install
fake AV software. However, no previous study has focused on the FRAD sites or
analyzed attackers’ techniques that exploit the psychological weakness of users
who are suffering security problems.

9 Conclusion

We have proposed a system to crawl the web and automatically identify FRAD
sites that introduce fake removal information for cyber threats and lure users
to fake AV software. Using the proposed system, the first comprehensive mea-
surement study was conducted to disclose the ecosystem of distributing fake AV
software via FRAD sites. We have analyzed both passively collected statistical
data on user accesses and actively crawled data to clarify users’ risky behav-
ior that leads them to reach FRAD sites and which exposes them to attacks
navigated from FRAD sites. Our findings emphasize that it is very difficult for
users who are suffering from cyber threats to reach correct removal informa-
tion, because search results related to the specific cyber threats are poisoned
by FRAD sites. Our system is useful for search engine providers and security
vendors for excluding and blocking FRAD sites.
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Abstract. The security of application installers is often overlooked, but
the security risks associated to these pieces of code are not negligible.
Online public repositories have been one of the most popular ways for
end users to obtain software, but there is a lack of systematic security
evaluation of popular public repositories. In this paper, we bridge this
gap by analyzing five popular software repositories. We focus on their
software updating dynamics, as well as the presence of traces of vulnera-
ble and/or trojanized applications among the top-100 most downloaded
Windows programs on each of the evaluated repositories. We analyzed
2,935 unique programs collected in a period of 144 consecutive days. Our
results show that: (i) the repositories frequently exhibit rank changes due
to applications fast climbing toward the first positions; (ii) the reposi-
tories often update their payloads, which may cause the distribution of
distinct binaries for the same intended application (binaries for the same
applications may also be different in each repository); (iii) the installers
are composed by multiple components and often download payloads from
the Internet to complete their installation steps, posing new risks for
users (we demonstrate that some installers are vulnerable to content
tampering through man-in-the-middle attacks); (iv) the ever-changing
nature of repositories and installers makes them prone to abuse, as we
observed that 30% of all applications were reported malicious by at least
one AV.

Keywords: Installer · Downloader · Trojan

1 Introduction

Modern operating systems (OS) have been providing more resources to meet
users requirements over time. However, the unique needs of an heterogeneous
user population can only be fulfilled by third-party software. Whereas Linux-
based systems model for obtaining new applications often depends from official
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distribution repositories [24], MS-Windows based systems do not present any
centralized software repository, outsourcing to the users the responsibility for
downloading additional programs.

In this scenario, online software repositories have become the de-facto stan-
dard repository for most users. On the one hand, these repositories are a very
practical service, as they group multiple applications in a single place with rank-
ing and searching features. On the other hand, these repositories hardly check
binaries’ security, neither regarding vulnerabilities nor maliciousness, and their
providers often do not take full responsibility for the distributed software. There-
fore, the users themselves are responsible for the implications of installing soft-
ware downloaded from these repositories.

Actually, most users blindly trust the repositories, which makes them vulner-
able to exploitable code constructions (e.g., buffer overflows and/or man-in-the-
middle attacks) and/or Trojanization attacks, i.e., when malicious code is added
to legitimate applications. Trojanization is a common practice among attack-
ers to deceive users into installing their malicious payloads inconspicuously and,
when deployed on popular repositories, it might have a large-scale impact if
we consider the potential target population of trojanized downloads. Repository
Trojanization examples include the cases of the Arch Linux repository [9], the
Asus update system [38], and the Android platform [20].

This scenario becomes even worse if we consider that most software reposito-
ries are known for appending other components to their distributed applications
(e.g., adware), in a process named “bundling” [17]. Software bundling might end
up adding vulnerable components to previously safe applications. It might also
add tracking capabilities to initially privacy-respecting applications. It also opens
to attackers the opportunity of embedding malicious payloads in programs dis-
tributed through repositories. Recent cases include Sourceforge [34]—accused
of distributing malware via bundled binaries [18]—and malicious samples distri-
bution via application installers [28]. Despite all occurrences of trojanized soft-
ware in popular online software repositories, the academic literature dedicated to
investigate this phenomenon is limited, and the few existing work mostly target
the Android OS [1,4,37], rather than MS-Windows, whose few existing work are
still limited in coverage [13]. Therefore, to bridge this gap, we propose to investi-
gate the five more popular online software repositories (according to Alexa [2]),
aiming at shedding light on the occurrence of vulnerable constructions and Tro-
janized applications that actually may infect end users. To do so, we obtained
the 100 most-downloaded Windows programs on each of the five chosen reposi-
tories for a period of consecutive 144 days (from Feb/2019 until May/2019). We
submitted the resulting 2,935 distinct binaries to static and dynamic analysis
systems. We also developed a tool to automatically install those programs during
their run in the sandbox, which allowed us to observe interactions between the
monitored program and the OS.

Our results show that (i) the repositories are very dynamic, presenting fre-
quent rank changes, thus allowing applications to fast climb to the first rank
positions; (ii) the repositories often update their payloads, with distinct binaries



194 M. Botacin et al.

being distributed over time even for the same applications. We also observed dif-
ferences in the installers for the same applications distributed by distinct repos-
itories; (iii) the installers are very dynamic, presenting modular constructions
and often downloading payloads from the Internet to complement their instal-
lation steps. Whereas enabling flexibility, relying on the Internet also poses new
risks if security measures are not taken. In this sense, we demonstrate that some
installers are vulnerable to content tampering via man-in-the-middle attacks;
and finally (iv) all this dynamic characteristic of installers and repositories open
space for abuse, with 30% of all applications being reported as malicious by at
least one AV.

In summary, our contributions are as follows: (i) We characterize the way
in which online software repositories update their application’s rankings and
binary sharing among distinct installers regarding their interaction with OS
components to understand their implementation decisions, scope, and impact on
users’ devices; (ii) We present statistics about multiple aspects of the installers
distributed by popular repositories aiming to support further research work and
investigations; (iii) We investigate the interaction between application installers
and the OS and evaluate installer’s implementation choices; and (iv) We pinpoint
behaviors found in installers that are compatible with malicious actions deployed
by malware samples, and discuss best practices that could be adopted for the
next-generation of non-intrusive application installers.

This paper is organized as follows: In Sect. 2, we present the main charac-
teristics of online software repositories; In Sect. 3, we present the methodology
adopted to conduct the performed experiments; In Sect. 4, we present evalu-
ation results regarding the files distributed in online software repositories; In
Sect. 5, we discuss our findings, their implications, and open research questions;
In Sect. 6, we present related work to better position our developments; we draw
our conclusion in Sect. 7.

2 Online Software Repositories

Online software repositories are popular websites: Softpedia ranks first in the
Alexa’s Shareware website list [2], with million accesses and downloads everyday.
Google Chrome ranks third in this repository and accounts for 6M downloads.
Microsoft Skype, the 28th, was downloaded 3M times. Other repositories present
same magnitude data: Ubit ranks first in the CNET repository and was down-
loaded 24M times. Therefore, every action in these repositories has potential
to affect million users. In this scenario, every small percentage matters in the
long-tail.

Table 1 summarizes the diverse operation of the software repositories. It
shows who starts the procedure to include a software in the repository (e.g.,
according to user’s requests or to the website managers), who reviews the inclu-
sion request (e.g., website managers), if the rankings are sponsored or not (e.g.,
if applications can climb ranking positions if they pay for it), on which servers
the payloads are stored (e.g., internal repository’s servers or developer’s servers),
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Table 1. Repository Summary. Repositories are diverse in multiple aspects.

Repository Uploaded by Reviewed by Sponsored ranking Servers Security checks

FileHorse Users Site ✗ Internal/External ✓

Cnet Users Site ✓ External* ✓

FileHippo Site Site ✗ Internal ✓

SourceForge Users ✗ ✗ Internal ✓

Softpedia Users Site ✗ Internal/External ✓

and if the repository checks the distributed binaries (e.g., by performing some
type of AV scanning). For most repositories, the process for adding a new soft-
ware is started by the user filling some form. This will be further reviewed by
the website managers. All repositories advertise they assure the software qual-
ity, but no guideline is specified for any repository. FileHippo does not accept
user requests and its managers decide by themselves which application will be
included. In Sourceforge’s case, a project can be directly imported from Github.
Once a software is included, its download page mentions the software creator, but
they do not report who requested the software to be included. Most repositories
allow the software to become popular by themselves, according to the number of
downloads. CNET is a noticeable exception, allowing developers to sponsor their
applications and climb ranking positions. Therefore, the application ranked first
in the CNET repository is not necessarily the most popular application among
all.

Most payloads are stored on internal repository servers and some repositories
also allow users to directly get files from external sources (as an alternative link
option). In most cases, the links point to the software creator’s page. In CNET’s
case, they point to a CDN. Requests are performed along with tokens which
allow identifying the request origin. In our tests, on the one hand, direct links
always resulted in the download of the same updated binaries available in the
software creator’s page. On the other hand, internal links always served distinct
files than the official release (mostly outdated versions). All repositories claim
the provided files are security checked. Some of them are backed by popular
solutions, such as Avast (FileHippo) and Bitdefender (SourceForge). Despite
that, it is not clear to what extent analyses are performed.

3 Methodology

In this section, we describe our methodology for our experiments in collecting
and analyzing programs distributed via online software repositories.

Repository Selection and Programs Collection. We selected the five most
popular online software repositories according to Alexa score [2]: Softpedia [32],
Source Forge [34], CNet [10], File Hippo [11], and File Horse [12]. Our inten-
tion was to ensure a broad range of samples and, at the same time, to be able to
process all collected data on a daily basis. We developed an automated crawler
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(using Python’s Scrapy [29]) to collect programs distributed by the aforemen-
tioned repositories. Our crawler operates as follows: (i) it first traverses all appli-
cation ranking pages enumerating the available software and pages; (ii) it selects
the top 100 most downloaded apps in the ranking; (iii) it accesses each selected
application page and retrieves the download links; (iv) it downloads the file to
our storage. This process was repeated daily for the five selected repositories,
for a consecutive period of 144 days (from Feb/2019 until May/2019). Meta-
data from downloaded files were stored on a sqlite database, allowing further
queries, such as: (i) what binary hashes were associated to which repositories;
(ii) the binary’s ranking position on a given day; (iii) the amount of distinct
hashes collected under the same program’s name in a given repository, among
other information presented in Sect. 4.

Automated Application Installation and Analysis. Although some
installers enable unattended software installs, most of them requires users to
interact with GUIs to proceed with installing steps (Fig. 1). Therefore, to scale
analysis of thousand samples, we developed a “clicker”, i.e., an installing automa-
tion script that simulates user interaction with application installers. More
specifically, we developed an Autoit [5] script to click the Next and Finish
buttons displayed within graphical windows, allowing installers to proceed with-
out human interaction.

Fig. 1. Automated Installation Example. AutoIT scripts click on the next button
until the installation is complete.

We leverage static and dynamic analyses procedures [31] to identify whether
an installer was Trojanized with malicious payloads and/or was implemented
following bad development practices. To do so, we propose to match behaviors
identified in installers to those knowingly exhibited by malware and suspicious
software [16]. Our hypothesis is that benign software will exhibit none or few
suspicious behaviors. We conducted static analysis procedures based on basic
binary inspection—format and library identification, and samples submission
to VirusTotal [35], to verify if those binaries would be detected by some AV
installed on users’ devices. The dynamic analysis consisted of running the sam-
ples in a virtualized sandbox machine with a malware monitoring system [7]
to observe processes creation, filesystem operations, registry key changes, and
network traffic. All valid Windows binaries were uploaded to that sandbox, in
which each one was installed using our clicker.

Assumptions. The experimental setup described in this section is supported
by the following assumptions: (i) Our goal is not to provide an exhaustive anal-
ysis of all existing application installers, but a view on the most downloaded
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(and supposedly most installed) applications; (ii) Since not all websites will be
reachable and not all binaries will be available every day, our goal is to provide
a long-term view of the evaluated repositories dynamics, instead of a snapshot
of a certain day; and (iii) We understand that some installers’ operation might
be unsuccessful due to the sandbox execution and the clicker stimulation. Thus,
our goal is to provide an overview of common practices implemented by the
applications installers, avoiding focusing on particular cases.

4 Repositories Evaluation Results

In this section, we present the results obtained from the evaluation of the pro-
grams distributed by the five selected online software repositories. Our exper-
iment consisted of the following steps: (i) description of the collected dataset;
(ii) evaluation of the content distribution dynamics within the repositories; (iii)
drawing a landscape associating installers interaction with operating system
internals; (iv) comparing the behavior exhibited by installers of the same soft-
ware, but distributed by different repositories; (v) investigation for evidences of
software trojanization.

4.1 Dataset Description

During the 144 days of collection, we successfully downloaded 46,018 files from
the five online software repositories and built a dataset with 2,935 unique files,
related to 1,633 distinct programs (Table 2). From those programs, 13 were soft-
ware intended to remove other applications (uninstallers) and, due to that, they
were evaluated separately from the remainder of the dataset samples (considered
as “installers”).

The number of unique files is greater than that of unique applications because
the distributed files vary over time (among distinct repositories as well as within
the same repository), and the total number of downloaded files does not cor-
respond to the expected sum of each repository downloads. The reason is that

Table 2. Dataset overview. The num-
ber of unique files differs due to changes
in distribution over time.

Repository Programs (#) Unique Files (#)

FileHorse 82 314

Cnet 118 295

FileHippo 433 906

SourceForge 99 631

Softpedia 901 897

Total 1,633 2,935

Table 3. File sharing among reposito-
ries. They usually do not share files for the
same programs.

Repositories Sharing Rate (%)

(Cnet, FileHorse) 48.04

(FileHippo, FileHorse) 17.65

(Cnet, FileHippo) 15.69

(FileHippo, Source Forge) 07.84

(Cnet, Softpedia) 04.90

(Cnet, Source Forge) 03.92

(FileHorse, Softpedia) 00.98

(FileHippo, Softpedia) 00.98
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105 (3.6%) files were shared by two (95% of all shared files) or three (5% of
all shared files) repositories. In Table 3, we show that most repositories do not
share files among themselves even for the same programs, implying that they
distribute distinct program versions or installers.

Programs distributed by the repositories are packaged in multiple formats
(Table 4). Although Trojanization can be implemented via any packaging type,
we focused on binaries with Windows PE file format [25], since they are the
prevalent file format in our dataset, and are also self-contained installers, which
makes Trojanization easier for attackers. Most PE files present in our dataset
are 32-bits, still reflecting the long-term trend of developers that delay the
adoption of new programming techniques to native support 64-bit applications,
as reported in [36]. Interestingly, some installers are packed with UPX (2.6%)
and/or Armadillo (0.6%) so as to compress their payloads. Only 19.3% of the
PE installers were crypto-signed.

Table 4. File types distribution.
Self-contained PE files are the preva-
lent type of program installers.

Type Format Prevalence (%)

Java 0.67

ISO 1.04

Compressed 7-zip 0.37 RAR 0.30

File XZ 0.37 ZIP 20.47

Formats bzip2 0.37 gzip 1.34

Windows DOS 0.45 PE 65.63

Binaries .Net 0.67 PE+ 0.45

Other 7.87

Table 5. Binary file’s size distribution.
Small binaries are associated to download-
ers and large ones to droppers.

Interval (MB) Frequency Binaries (%)

[0.000, 0.400) 93 5.42

[0.400, 1.400) 128 7.46

[1.400, 5.000) 242 14.11

[5.000, 70.000) 619 36.08

[70.000, 150.400) 145 8.45

[150.400, 600.400) 105 6.12

[600.400, 888.000) 16 0.93

The variety of formats distributed by the software repositories affects the
installers’ file sizes, shown in Table 5. The differences in files sizes is impor-
tant due to storage issues and because they may reveal implementation strate-
gies behind the installer: smaller binaries usually only implement a client that
downloads the actual payload from the Internet (Type I installer); larger bina-
ries embed the payload themselves, dropping them at installation time (Type II
installer). Although the first approach enables content creators to keep distribut-
ing up-to-date versions of their software, it makes security checking harder, as
the distributed content changes very often. In terms of Trojanization, an attacker
who controls a Type-I installer might implement a downloader [27], whereas an
attacker who controls a Type-II installer might implement a dropper [16].

4.2 Repositories Dynamics

The chances that a malicious actor trojanizes a given repository and the impact
that it can cause are strongly tied to the repository’s operation dynamics, since
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more frequent repository updates make it harder to track newly added code.
In addition, if it is easier for newly added software to climb the top ranking
positions, their infection might become even more impacting. To delve into those
dynamics, we evaluated the samples crawled daily from the repositories.

In Fig. 2, we show the number of downloads from each repository along the
experiment’s period. Overall, all datasets grew almost linearly due to our daily
queries to the top-100 ranking positions. Variations were caused due to unreach-
able servers on a given day, or broken links/Web pages.
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Fig. 3. Daily Downloads. FileHippo’s
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In Fig. 3, it is possible to observe that the download of more than 80 unique
files (from the top-100) was only accomplished within FileHippo and CNET.
The daily number of collected programs was mostly constant, if we consider each
repository, with few days presenting peaks or valleys in the crawling process. The
observed variations were related to Website updates or unavailability.

Each repository distinguishes itself regarding the samples successfully down-
loaded, as in the addition of new samples. Figure 4 shows the number of new
unique samples (based on the binaries’ MD5 hash) added to the repositories
daily. We notice that FileHippo has many more new additions each day than
the other repositories (except for particular peaks in Softpedia, Sourceforge, and
CNET). This is caused by the frequent update of the distributed payloads, which
indicates that FileHippo is more volatile about the content of its distributed
installers (therefore may be riskier for users).

The observed strategy of payload replacement led us to hypothesize that
the top-100 programs may also change their ranking positions frequently. To
investigate this hypothesis, we measured the fraction of programs whose ranks
changed each day. Figure 5 shows the change ratio per repository (we did not
show FileHorse’s results due to its incipient rank changes of less than 1% in
most days), which confirms that almost all programs changed their position on
some days. Similar to the aformentioned new hashes’ case, we noticed that each
repository has distinct ranking dynamics.
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The ever-changing operation of software repositories is highlighted when we
limit our analyses to the most downloaded programs. Initially, we believed that
their ranking positions would hardly change, given their popularity. In practice,
we observed that ranking changes affect even the most downloaded programs,
occurring more frequently among the top-5 in all repositories. Understanding the
phenomenon of frequent rank changes is important because it shows how quick
a new (potentially malicious) software can reach the top of the ranking after its
release. It also allows us to evaluate the extent of potential damages according
to the number of affected users based on the popularity of programs. To explore
this possibility, we measured how many programs change their ranking position
at least once within a given repository, and how many positions on average they
scale up the rank. Figure 6 shows that most programs change their position at
least once (on average, only 12% finished the observed period in the same ranking
position). We observed in all repositories’ rankings that most programs scaled
up few positions. We also observed that more programs increased their ranking
instead of having it decreased. It happens due to the repository removing some
programs from the top lists to add newer software, thus creating a gap in the
former individual ranks while naturally allowing the latter to scale up some
positions.

Although most programs does not reach the top of rankings, some of them
scaled from the last pages to the first positions. We also observed that this
growth occurred in a short period of time (only 4 days for Google Chrome and
a month for other programs). The popularity of these programs raise concerns
about the potential harm that might be caused if one of them is Trojanized.
Highly popular programs, such as Google Chrome, were not expected to be low
in the rankings any time. However, in times of Google Chrome version releases,
(72.0.3626 in the period [14]), the ranks have to be updated with a new entry for
this program. The possibility of changes in the binaries distributed for the same
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application over time also raises security concerns, since Trojanized versions
of them could serve as a replacement to the legitimate ones. To evaluate this
hypothesis, we measured how many repositories implement this practice and how
frequent it is deployed by them. The rate of the software in each repository which
had their binaries changed at least once in the observed period indicates that
there is Trojanization opportunities for malicious actors: FileHorse (42.74%);
FileHippo (30.36%), Sourceforge (29.58%); CNET (11.41%); Softpedia (9.43%).
We consider these rates significant as they show that the repositories evolve not
only by adding new software entries over time but also by modifying existing
ones. The update of the distributed binaries is not homogeneous for all programs.
Figure 7 shows the frequency in which each one of the applications have their
distributed binaries updated during the observation period. We notice that while
most programs are updated only few times—probably due to software updates—
the remainder programs are updated very often. Some programs were updated
more than 50 times (considering distinct repositories), an update rate greater
than one time per week during the observation period. This constant updating
routine opens a significant attack opportunity window, since at the time of the
security analysis of previously distributed binaries is complete, the repository is
already distributing a novel, not-yet-analyzed software version.

Among the programs whose binaries were updated more frequently, we high-
light once again the importance of paying attention to the popular applications.
For instance, Skype changed six times in FileHippo and seven times in FileHorse
from February 13, 2019 to May 15, 2019. Those changes referred to updates either
in the software version or in its distributed installer (discussed next in Sect. 4.3).

4.3 Installers’ Dynamics

Repositories usually provide program installers, which perform numerous inter-
actions with the underlying OS. For instance, they are responsible for copying
contents to the correct directories, setting environment paths, adjusting Registry
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keys, loading drivers, installing additional services, and so on. The implemen-
tation strategies to accomplish those tasks is varied: installers may download
payloads and related configuration files from remote servers, or directly extract
them from embedded resources; their system configuration changes may affect
a single user or the whole system; they may rely on system libraries or install
their own ones; they may require privilege escalation or not. All of these actions
affect system security, thus we present an overview of which of them were found
in the evaluated installers, so as to draw a landscape of installers operations
and the associated security risks. From the 1,633 collected programs, we limited
our evaluation to the 993 unique binary samples packed as Windows executables
(PE file format) that were successfully installed in our sandbox (the unsuccessful
ones failed mostly due to corrupted files and/or missing environment variables).

Installers Modularity. We observed that installers present highly modular
constructions. 52.62% of them created at least one child process during the instal-
lation process (98% of these created only a single process, but we identified one
installer that created up to 15 child processes during its operation). Installers rely
on child processes for multiple tasks: (i) 13.4% of the installers create new pro-
cesses to relaunch the program installer with properly defined parameters, with
the main installer executable being responsible only for displaying the Graph-
ical User Interface (GUI), which allows users to specify what components will
be installed; (ii) 1% of the installers create new processes to launch external
tools to extract compressed objects (e.g., unzip); (iii) another 1% of installers
rely on child processes to launch downloaders; (iv) 1% use children to launch
post-installation procedures, such as opening a browser to display installation
messages; and (v) 1% make child processes execute cmd or powershell scripts
for them. The remaining modules invoked by installers were system processes
intended to perform generic tasks. A major motivation for installers launching
child process is to execute payloads extracted from the main installation binary.
This “dropping” strategy was identified in 25.3% of samples. Code 1.1 shows
two installers writing their payloads in executable files on disk. Their goal is to
distribute multiple components as a single file.

1 C:\ installer.exe|Write|C:\Users\Win7\AppData\Local\Temp

\{907 A1104 -E812 -4b5c -959B-E4DAB37A96AB }\ vsdrinst64.exe

2 C:\ installer.exe|Write|C:\Users\Win7\AppData\Local\Temp

\{907 A1104 -E812 -4b5c -959B-E4DAB37A96AB }\ Install.exe

Code 1.1. Dropper Installer. Some Installers drop embedded payloads to disk and
launch them as new processes.

Installers might also retrieve payloads from the Internet—10.8% of the evalu-
ated ones exhibited this behavior. On the one hand, downloading payloads from
Internet allows installers to retrieve them according to the installation environ-
ment (e.g., distinct OS versions), and to install updated versions of all software
components. On the other hand, it requires a machine connected to the Inter-
net at the moment of the intended program’s install, which makes the installer
less self-contained. Code 1.2 illustrates an installer requesting to download a pay-
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load from the Internet. This request was encoded to not reveal much information
about its content.

1 GET 200.143.247.9:80 (et1.zonealarm.com/V1?

2 TW9kdWxlPWluc3RhbGxlch98U2Vzc2lvbj0wYzNjNDA1OD )

Code 1.2. Downloader Installer. Some Installers perform (encoded) network
requests to retrieve payloads from Internet.

The exhibited behaviors of modularity (many child processes), downloader,
and dropper are also reflected in the installers’ written files (Table 6). The preva-
lent file types are libraries, which allow code reuse. Executables are the second
most popular ones, since they represent the programs being installed. Temporary
files are the third most popular extensions, mostly due to the objects dropped
during installation procedures: installers usually drop small pieces of data to files
to reconstruct global, complex structures, and the temporary files are used to
store binary blobs, raw text, and proprietary structures. We also identified that
VPX files—closed source files used by Avast and AVG antiviruses to store malware
definitions—are very popular within installers, being used to deploy signature
updates. Finally, we observed that some installers write SYS files, which allow
them to load kernel drivers and affect the system as a whole.

Table 6. Top-5 file extensions most written by installers.

Extension DLL EXE TMP VPX SYS

Files (#) 6,949 1,309 1,302 811 790

Network Usage. Payload downloading enables updated software versions
install (e.g., AVs with up-to-date signatures). However, download mechanisms
proper deployment may be challenging, resulting in security issues. For instance,
flawed cryptography (or the lack of support for encrypted connections) may
expose users to payload tampering via Man-In-The-Middle (MITM) attacks [26].
We identified 39 applications that download binaries via HTTP-only connec-
tions, as shown in Code 1.3. The list of installers that retrieve payloads via HTTP
includes popular programs, such as Avast, BitDefender, AVG, and Kaspersky
AVs. The AV’s choice for HTTP-only downloads has already been reported in
the past [22], but it seems to keep its standard practice status over time.

1 GET iavs9x.u.avast.com/iavs9x/

avast_free_antivirus_setup_online_x64.exe

2 GET download.bitdefender.com/windows/bp/all/avfree_64b.exe

3 GET iavs9x.avg.u.avcdn.net/avg/iavs9x/

avg_antivirus_free_setup_x64.exe

4 GET dm.kaspersky -labs.com/en/KAV /19.0.0.1088/ startup.exe

5 GET download.bullguard.com/BullGuard190AV_x64_190411.exe

Code 1.3. Unencrypted Download by Installers. The use of HTTP-only
connections may make users vulnerable.
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To test whether the installers were actually vulnerable to payload tampering,
we performed a MITM against them. Despite the unencrypted payload down-
loads, all popular installers, including AVs, were not vulnerable to payload tam-
pering, since they are able to realize payload changes through certificates and
checksum verification. Other programs, such as the BullGuard backup solution,
are vulnerable to this type of attack1: its installer downloaded our supplied pay-
load and executed it without any checks. This opens a significant infection vector
for the execution of any attacker-supplied code if the installer is executed in a
hostile network.

Installation Tracking. Installers also rely on Internet support to track pro-
grams’ installs. 4% of all installers sent clear tracking data back to their servers
during the installation step (Code 1.4). Additional tracking data might be sent
after the program runs for the first time (e.g., software that require users regis-
tration).

1 GET /v1/offer/campaignFilter /? bundleId=UT006&campaignId =5

b6352b3ce72513ae0a6beef

2 GET sos.adaware.com|/v1/offer/campaignFilter /? bundleId=

UT006&campaignId =5 b6352b3ce72513ae0a6beef

3 GET flow.lavasoft.com|/v1/event -stat?ProductID=IS&Type=

StubBundleStart

Code 1.4. Installation Tracking. Some installers sent back tracking information to
notify providers about the installation.

Application installers collect tracking data for many reasons, such as iden-
tifying software popularity by keeping track of the number of installations, and
displaying targeted ads campaigns. Unfortunately, most installers do not make
this user data collection explicit. For instance, the privacy terms for Code 1.4’s
program installer state that: “We collect some limited information that your
device and browser routinely make available whenever you visit a website or
interact with any online service.” “We collect this data to improve the overall
quality of the online experience, including product monitoring, product improve-
ment, and targeted advertising.” and that “We may also include offers from third
parties as part of the installation process for our Software”. Besides the claims
that the program collects a wide range of data, it is not clear what kind of data
is collected during website visits, software execution, and software installation.
Moreover, the installation step deserved a single line in the whole privacy term,
showing that the impact of software installation is often understated.

Installer’s Proxies. To access the Internet, some installers end up performing
intrusive system changes. We identified that 5% of all installers changed proxy
settings of the whole system. Code 1.5 shows an installer that enabled a proxy
by writing to a system’s Registry key. While some installers define new proxies,
others only remove previously defined proxy settings. Although it may happen

1 We contacted the vendor and disclosed all vulnerability’s details so the company
could fix it.
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with the solely purpose to ensure that the payloads are downloaded from a
proper source, it affects all further network requests.

1 214|2019 -2 -12 C:\Users\Win7\AppData\Local\Temp\BullGuard

Backup Setup.exe|SetValueKey|HKU\<userid >\ Software\

Microsoft\Windows\CurrentVersion\Internet Settings|

ProxyEnable |1

Code 1.5. Proxy Definition. Some installers change system-wide proxy settings.

Installers Persistence. Installers may change Registry keys to allow binaries
to be invoked upon a system reboot. We identified that 1% of them exhibit this
behavior. One reason for installers implement persistence is to set the installed
program as a background daemon. This task is often performed by security appli-
cations’ installers, such as AVs (Code 1.6). Another reason for the persistence
behavior is because it allows splitting the installation process in multiple steps.
This is required when the installation of some components requires rebooting
(e.g., to load kernel drivers). Whereas daemons are often set by writing to the
AutoRun Registry keys, multi-step installers often implement their own counters,
as exemplified in Code 1.7.

1 C:\Users\Win7\AppData\Local\Temp\7 zS4DEAD364\Stub.exe|

SetValueKey|HKU\<userid >\ Software\Microsoft\Windows\

CurrentVersion\RunOnce|PandaRunOnce|

Code 1.6. Persistence. Some installers set executable paths in the Registry to be
executed after a system reboot.

1 C:\Users\Win7\AppData\Local\Temp\ajAE1E.exe|SetValueKey|

HKLM\SOFTWARE\Wow6432Node\AVAST Software\Browser|

installer_run_count |1

Code 1.7. Multi-Step Installers. They control how many times they will run.

Affected System Scope. Installers may modify several other Registry keys.
In many cases, these modified keys affect the whole system instead of the single
user running the installer process. We identified that 56% of all installers affected
only the single user who is installing the program (HKCU keys), whereas the
remaining 44% also affected machine-wide Registry keys (HKLM).

Application Removal. Most installers do not implement proper cleanup rou-
tines after finishing the installation process. Only 33% of all installers dependent
on temporary files deleted them before ending their process.

Allowing software to be properly removed is as important as to properly
install the application. Unfortunately, not all installers provide adequate mech-
anisms to remove their installed objects: only 1% of them created an uninstaller
object able to be invoked in a standalone fashion, as shown in Code 1.8.
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1 C:\Users\Win7\AppData\Local\Temp \{907 A1104 -E812 -4b5c -959B-

E4DAB37A96AB }\ Install.exe|Create|C:\Users\Win7\AppData

\Local\Temp \{907 A1104 -E812 -4b5c -959B-E4DAB37A96AB }\

Uninst.exe

Code 1.8. Uninstaller Definition. Some Installers set uninstallers for the
applications.

Identifying whether installers defined an uninstalling routine or not has
proven to be a hard task: 1% of the tested programs define uninstalling rou-
tines based on specific parameters, as illustrated in Code 1.9.

1 C:\ Program Files (x86)\GUM5D5C.tmp\fmanUpdate.exe|

SetValueKey ||HKU\<userid >\ Software\fman\Update|

UninstallCmdLine |"C:\ Users\Win7\AppData\Local\fman\

Update\fmanUpdate.exe" /uninstall

Code 1.9. Parameter-Based Uninstallers. They define command line parameters
for software removal (difficult for users), instead of providing a self-contained
uninstaller.

4.4 Comparison of Installers Versions

We identified that distinct binaries have been distributed for the same appli-
cation over time and across repositories. Understanding the modifications that
these binaries underwent might provide important insights to improve installers
development and security.

Differences in Installers Within the Same Repository. We first evalu-
ated how the binaries available for the same program and distributed by the
same repositories change over time. We initially hypothesized that these bina-
ries could be subject to significant modifications. However, we discovered that
the modifications overall are more structural than behavioral, thus suggesting
that the differences occur more due to installers evolution than due to other code
insertion mechanisms.

In the cases when the installers were effectively modified to embed additional
applications, their most prevalent payloads referred to toolbars and browsers
add-ons. 1% of all binaries were versions of previous installers modified to include
the Google Toolbar, which is often embedded as part of third party extensions
within the main application (Code 1.10).

1 C:\ installer \3 rdPartyApp\GoogleToolBar\

GoogleToolbarInstaller_zh -TW.exe

Code 1.10. Google Toolbar. It is embedded as 3rd-party extensions of the main
app.
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In cases where the installers do not directly perform a toolbar installation,
they managed to change the native Internet Explorer configurations to dis-
play customized settings, which includes adding new bookmarks and cookies
(Code 1.11).

1 HKCU\Software\Microsoft\Internet Explorer\LinksBar\

ItemCache\ToolBar|Add

Code 1.11. IE Settings Modification. New bookmarks, cookies, and configurations
set in the browser.

Another 1% of all binaries were embedded with advertisement applications
instead of toolbars. These applications, known as adware (advertisement soft-
ware), often run in background and keep collecting users information to feed
targeted ads campaigns. Code 1.12 shows an adware running from a temporary
file dropped by the main installer.

1 C:\Users\Win7\AppData\Local\Temp\is -3ACQL.tmp\

Advertising_english .exe

Code 1.12. Adware. The advertisement software is dropped from a file created by
the main installer.

Differences in Installers Among the Repositories. The tracking capabil-
ities present in the installers are clearly revealed when we compare installers
for the same applications downloaded from distinct repositories. While we were
unable to identify any significant difference in the behaviors exhibited by the
binaries, we easily noticed their tracking capabilities. Code 1.13 illustrates an
excerpt of the installation trace for the same program, but using binaries down-
loaded from three distinct repositories. We notice that the UserId values consid-
ered in each installation is different for each binary. We executed many instal-
lation attempts and discovered that this number is not randomly generated,
but seems to be tied to each binary. We considered this an indication that the
installers are able to identify the origin of their installation.

1 C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client|

UserId |{C2CFE0D4 -A3A2 -4458-A73F -F16F10E4C0D7}

2 C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client|

UserId |{EA0CB74D -DB5D -40EE-A402 -47 A97F23904E}

3 C:\Setup.exe|SetValueKey|HKCU\Software\Microsoft\Client|

UserId |{E81A6607 -9EB3 -49BA-B354 -FA42817594BA}

Code 1.13. Tracking IDs of installers of distinct repositories. Each installer
presents a distinct tracking ID according the repository from which they were
downloaded.

4.5 Trojanization Evidences

The major problem associated with downloading software from third-party
repositories is that the downloaded binary may be a Trojanized version of the
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original software. This type of attack has been becoming popular to the point of
some installers explicitly warning users about this possibility, as shown in Fig. 8.

Fig. 8. Security Warning. Trojaniza-
tion has become popular to the point of
some installers warning users about this
possibility.
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Many samples were considered either as
malicious or as trojanized.

To verify if Trojanization cases occur in practice, we performed AV scans
on all downloaded binaries. We submitted all binaries to VirusTotal [35] and
normalized the retrieved labels using AVClass [30]. We discovered that 31%
of all binaries were detected by at least one AV. We further investigated the
nature of these detection occurrences by inspecting the assigned AV labels, whose
distribution is shown in Fig. 9.

The most prevalent detection label is “Trojan”, which means that malicious
code was inserted into application’s native code. This finding shows that, as
hypothesized, there is a real risk of application Trojanization in online software
repositories. Among the Trojanized programs, we were able to identify 20 dis-
tinct families of the Artemis malware [33], thus showing that the attackers have
been embedding real, harmful malware to the online repositories’ distributed
programs. Some AVs also detected the adware software embedded in part of the
programs as malicious. This type of detection happens because the AV under-
stands that the embodiment of advertising software to the original application
implies on privacy leak risks to the user. A smaller part of the samples was
detected as malicious due to their innate nature—12 installers were detected as
downloaders and two as droppers, since the AVs were unable to distinguish their
“legitimate” operation from the same behavior exhibited by malware classified
as downloaders or droppers.

The detection of Trojanized apps is not uniform among the AVs, as shown
in Fig. 10. Whereas some AVs detected only 3% of all samples reported as Tro-
janized by at least one AV, other AVs detected more than 60% of all reported
samples. This shows that the AVs employ very distinct criteria for detecting
Trojanization (e.g., adware inclusion is considered malicious for some but not
for others). This highlights the need of checking multiple AVs in addition to the
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ones considered in the repository pages, as this AV might have a very lax detec-
tion criteria. The detection is also not uniform among the repositories, as shown
in Fig. 11. Whereas some repositories accounted for less than 10% of all detected
malicious files in the period, CNET accounted for 50% of all samples. Despite
that, we cannot claim that the CNET repository is more insecure than the oth-
ers, as most detection occurrences are due to the repeated upload of the same
flagged file. This shows that the evaluation of software repositories should also
consider the frequency of upload of malicious files in addition to their occurrence.

5 Discussion

In this section, we revisit and discuss our findings to pinpoint existing gaps
in the security of online software repositories and some possible and concrete
improvement actions.

Paying Attention to Popular Applications. Although the software reposi-
tories may contain thousands of distinct applications, some of them gather more
attention than others. Popular applications may be downloaded million times
each month, thus presenting a huge potential of damage if they have been Tro-
janized. Our study showed that some programs are really popular, being present
in the top download application rankings of multiple repositories simultaneously.
In addition, in some cases, popular applications might quickly achieve the top
ranking positions after a short period of time, which shows that the hypothesized
popularity and usage broadness occurs in practice. In this scenario, it is essen-
tial for the repository administrators (and all security-related players) to pay
attention to these programs to prevent trojanization cases, and counter them
when they happen. In this sense, we consider that the recent decision of Google
of extending its bug bounty program from its own applications to all other ones
present in Google Play that have more than 100M installs [6] as a correct and
very necessary move. Moreover, we consider that all other good security prac-
tices, such as fuzzy testing and audits, should be extended as well. Unfortunately,
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we are not aware of any kind of similar action regarding the samples provided
by popular online Windows application repositories.

Reproducibility of Studies Leveraging Software Repositories. Many
studies rely on software repositories as a source of binaries for their evaluation,
either to measure bug prevalence in the software engineering context [15,40], or
as a direct source of goodware for balancing malware analysis datasets and/or
machine learning training. These studies may be strongly impacted by our find-
ings, since we showed that software repositories are very dynamic. In this sce-
nario, a study conducted with the top applications of one repository might result
in completely different conclusions when applied to other repositories. The same
effect may happen even within the same repository if the software is collected on
different days, as ranks and binary versions change over time. Therefore, repro-
ducibility should be a concern for all researchers whose works rely on software
repositories. Researchers need to find ways to make samples and other informa-
tion available and reproducible, as only stating that the most popular samples
from a given repositories were used in their study is not enough information to
reproduce their experiments and obtained results in this ever-changing context.

Repositories as Source of Goodware. Binaries downloaded from software
repositories are often used for malware classification and/or ground-truth [39].
Our findings also present strong implications to these cases. We showed that
Trojanization might affect all repositories, thus even programs downloaded from
“official” or popular repositories must be checked by antivirus solutions before
being considered clean. Otherwise, the researcher could wrongly consider existing
malicious behaviors embedded in the Trojanized application as ground-truth for
benign applications. Even worse, one could mistakenly make a machine learn-
ing algorithm to learn a set of malicious behaviors as legitimate. Therefore,
researchers should not blindly trust software repositories.

Other Repositories Issues. This work investigated the overall impact of using
software repositories. Our results can be applied to both end-users downloading
applications from these repositories as well as for researchers leveraging these
applications as ground-truth for their experiments. However, software reposito-
ries present a myriad of applications that deserve special attention. Our goal in
this work was not to exhaust the subject, but to give a first step towards a better
understanding of characteristics of online repositories. We pinpoint that other
repositories aspects might be addressed as future work. In particular, we under-
stand that uninstallers might also be studied, in addition to the installers, since
traces of previous applications can also significantly affect systems operations,
either regarding continuous privacy leaks or performance degradation.

Limitations and Future Work. Software Repositories are very diverse and
popular. Therefore, other repositories than the ones presented here should be
studied to present a broader overview of security issues. This additional investi-
gation might raise new hypothesis, such as if less popular repositories are more
prone to be Trojanized than the ones here presented. The data collected in our
experiments was not enough to cluster the tools used to trojanize the apps in
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classes. We expect that this task could be done via larger-scale experiments using
multiple repositories.

6 Related Work

We here present related work to better position our contributions.

Trojanization is an effective and efficient approach to deliver malicious pay-
loads, and its occurrence in practice presents large-scale implications. Code Tro-
janization has already been reported in practice in the repository of the Arch
Linux distribution [9], in the Asus update platform [38], and even in the Android
platform [20]. In the context of this research, we investigate occurrences simi-
lar to ones reported for SourceForge, accused of distributing malware among
other applications [18]. We believe that Trojanization might become a prevalent
problem in future years. Currently, Trojanization occurrence has been already
reported even for hardware devices [8].

Software Repositories are very popular among many users as they allow gath-
ering new software pieces in an easy way. Thus, they were studied by many
researchers in the software engineering literature [15,40]. These work, however,
are more focused on source-code analysis rather than on the binaries distributed
to end-users. This type of research was only made popular in recent years due
the emergence of application stores for mobile devices, as observed in the rise of
many studies targeting the Android platform [1,4,37]. These research work iden-
tified phenomena such as the same app being distributed in different packages
according the repository [3]. In this work, we extend this type of phenomenon
observation to the scenario of online repositories for Windows binaries, whose
few existing research work are still limited in coverage (e.g., evaluating less than
thousand samples collected on a single day [13]).

Installers & Uninstallers are critical pieces of software for system operation
as they perform extensive changes on the system’s state. For instance, remaining
registry entries after a software removal may cause systems to slowdown [19].
Unfortunately, there are currently a limited number of research work in the
literature dedicated to investigate their impact, with most developments focusing
on how to perform remote apps installation [41]. The closest work to ours are
related to the investigation of the application installation logs on the Android
platform [23] and the detection of piracy signs on application installers [21].
We extend these initiatives to investigate the occurrence of Trojanization on
application installers.

7 Conclusions

In this paper, we investigated the occurrence of application Trojanization in the
binaries distributed by popular Internet software repositories. We crawled the
top-100 most downloaded Windows applications of five repositories for 144 days,
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which allowed us to characterize the dynamic of these repositories’ operations.
We also investigated the characteristics of the downloaded installers by running
them in a sandbox solution instrumented with a clicker for automatic applica-
tion installation, which allowed us to characterize installer’s interactions with the
operating systems. Our results show that: (i) the repositories are very dynamic,
presenting frequent rank changes, thus allowing applications to fast climb to the
first rank positions; (ii) the repositories often update their payloads, with distinct
binaries being distributed for the same applications. There are also differences
in the binaries for the same applications distributed by distinct repositories;
(iii) the installers are very dynamic, presenting modular constructions and often
downloading payloads from the Internet to complement their installation steps.
Whereas enabling flexibility, this also poses new risks if security measures are
not taken. We demonstrate that some installers are vulnerable to content tam-
pering via man-in-the-middle attacks; and (iv) all this dynamic characteristic
of installers and repositories open space for abuse, with 30% of all applications
being reported as compromised by at least one AV solution. Our results shed
light on some drawbacks of relying on software repositories, both by end-users
installing these programs in their computers, as well for researchers leveraging
these software repositories as ground-truth for their experiments. We also hope
that our analysis could motivate other researchers to investigate other software
repositories issues and help the community to understand their impact.
Reproducibility. all code developed to support this research work is available
at https://github.com/marcusbotacin/Application.Installers.Overview.
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Abstract. N-Variant Execution (NVX) systems utilize artificial diver-
sity techniques to enhance software security. The general idea is to run
multiple different variants of the same program alongside each other while
monitoring their diverging behavior on a malicious input. Existing NVX
systems execute diversified program variants on a single host. This means
the level of inter-variant diversity will be limited to what a single plat-
form can offer, without costly emulation. This paper presents DMON,
a novel distributed NVX design that executes native program variants
across multiple heterogeneous hosts. Our approach greatly increases the
level of diversity between the simultaneously running variants that can be
supported, encompassing different ISAs and ABIs. Our evaluation shows
that DMON can provide comparable performance to traditional, non-
distributed NVX systems, while enhancing security.

1 Introduction

Memory errors are a continuous source of software vulnerabilities for C and
C++ programs. Attackers and defenders are engaged in an arms race in which
the latter keep developing sophisticated defenses while their adversaries create
new exploits that bypass these defenses [46]. At present, adversaries rely on
intimate knowledge of the target environment to mount code-reuse [7,42,43] or
data-oriented attacks [9,22,23] that allow them to take control of the target or
leak its sensitive data. While memory safety techniques protect against these
threats, many of these techniques have not seen widespread deployment due to
performance [34,35] and compatibility problems [44]. Instead, defenders resort to
mitigations that have a more reasonable performance impact, e.g., control-flow
integrity (CFI) techniques [1,6], automated software diversity techniques [28], or
a combination thereof. However, both classes of defenses have a history of known
weaknesses: CFI defenses often still leave some leeway to mount control-flow
hijacking attacks [11,14,48]. Software diversity techniques have been bypassed
using brute-forcing and information leakage attacks, including attacks enabled
by micro-architectural side channels [4,18,24,43].
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N-Variant eXecution (NVX) systems amplify the effectiveness of software
diversity techniques and increase resilience [3,5,12,20,21,25–27,31,32,36,39,50,
52–55]. An NVX system runs multiple diversified variants of the same pro-
gram in parallel on the same inputs while monitoring the variants’ behavior
for divergences. With the right selection of diversity techniques, NVX can make
exploitation substantially harder (and, in some cases, provably impossible) as
it forces adversaries to simultaneously compromise multiple program variants
without causing observable changes in their behavior. Existing NVX systems
have been particularly effective at stopping attacks that rely on knowledge of
the target’s absolute virtual address space layout [5,12,52], as well as attacks
that attempt to acquire that knowledge through information leakage [31]. How-
ever, these systems are not resilient to Position-Independent Return-Oriented
Programming (PIROP) attacks [16] and certain Data-Oriented Programming
(DOP) attacks [23], which build on knowledge of the program’s internal geom-
etry (e.g., relative data/instruction layouts) and/or data representation. The
main reason is that in previous NVX systems all the variants run on the same
machine. Thus, the amount of diversity that such systems can achieve is limited
to what a single platform can offer, without using costly emulation.

In this paper, we present DMON, an NVX system that leverages the diversity
that naturally exists across different platforms, thereby increasing resilience to
memory exploits. DMON runs each program variant natively on its own dedi-
cated machine and monitors divergent behavior between these distributed vari-
ants by cross-checking them at the system call boundary via a network. To
bypass DMON, adversaries would need to develop exploits that work simulta-
neously against the two or more different Instruction Set Architectures (ISAs)
and Application Binary Interfaces (ABIs) for which the program variants are
compiled.

Our contributions are as follows:

– We present DMON, the first system that combines ISA and ABI heterogene-
ity with N-Variant Execution. DMON distributes the execution of a set of
variants over a heterogeneous set of physical machines.

– We redefine semantic equivalence of system calls in the context of heteroge-
neous platforms. Based on this definition, we propose Platform-Independent
State Canonicalization (PISC), a novel technique that translates system call
states in different platforms into platform-independent states.

– We present ways to reduce the performance overheads associated with a dis-
tributed NVX system. Our results show that with the proposed performance
optimizations, DMON performs on par with traditional ptrace-based NVX
systems while providing stronger security guarantees.

– We evaluate DMON’s security on several server applications and show
that DMON makes code-reuse attacks substantially more difficult, and that
DMON naturally provides a high degree of structure layout diversity which
raises the bar for attacks that rely on consistent structure layout.
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2 Background

Researchers in the information security [3,5,12,26,31,36,39,50,52–55] and soft-
ware reliability communities [20,21,25,27,32,38] have presented over a dozen
different NVX systems since 2006. Although serving different purposes, they do
have some essential similarities. All systems have the same high-level architec-
ture; two or more software variants execute simultaneously on the same physical
machine, while a monitoring component (on that same machine) compares the
variants’ overall behavior, provides them with identical inputs, and demulti-
plexes their outputs. Most monitors force the variants to execute in lock-step at
the granularity of system calls. Thus, the variants are suspended at every system
call entry and exit, and do not proceed until the system call numbers and argu-
ments have been cross-checked across all variants. In addition, the majority of
existing NVX systems cross-check behavior and replicate I/O by intercepting the
variants’ system calls. Most early systems used a dedicated monitoring process
that attaches to the variants and intercepts their system calls using the ptrace
API [5,20,32,39,53]. To avoid the high run-time performance overhead incurred
by context switching between a variant process and the monitor process, several
teams explored alternative designs that use binary rewriting [21], virtualization
features [26], or kernel modules [12,31,52,54] to intercept and cross-check system
calls more efficiently, within the variants’ processes and address spaces.

2.1 System Calls and I/O Replication

Most NVX systems monitor behavior and replicate I/O at the system call inter-
face. This design lets the system monitor all behavior that can affect the integrity
of the OS or other processes, as well as all communication between the variants
and external entities. The monitoring and replication must be transparent to the
program variants and to the end-user, i.e., no observable functional differences
between native execution of a single variant and NVX of multiple variants. To
provide this guarantee, most NVX systems designate one variant as the leader,
while the others become followers. Whenever the variants attempt an I/O oper-
ation, the NVX systems ensure that only the leader variant actually completes
the operation, while the followers skip the operation and wait until they receive
the I/O results from the monitor.

2.2 ISA and ABI Heterogeneity

An underlying assumption of most NVX systems is that the program variants will
behave identically at the system call level when they receive equivalent, benign
inputs. This assumption no longer holds in our setting, where variants run on
processors with different Instruction Set Architectures (ISAs). Differences in the
endianness, register and pointer width, and the available system calls could lead
to observable (yet benign) differences in the variants’ behavior, which would all
cause false alarms in a traditional NVX system. In addition, the Application
Binary Interface (ABI) documents rules such as sizes of primitive data types,
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struct packing, calling conventions, etc. Many of these conventions also affect the
program behavior as observed from the system call interface. Therefore, we had
to carefully design DMON to tolerate divergences arising from the heterogeneous
ISA and ABI setting.

3 Threat Model

Throughout the rest of the paper, we will make the following assumptions about
the host system and the attacker. Our assumptions are consistent with related
work in this area [52].

Host Defenses. We assume that the standard set of mitigations are in place
on any of the physical machines DMON and the variants run on. Specifically, we
assume that Data Execution Prevention (DEP) is used, which therefore rules out
direct code-injection attacks. Likewise, we assume that all of the host systems
have Address Space Layout Randomization (ASLR) enabled. ASLR randomizes
the base addresses of the main program executable and shared libraries, as well
as the heap, stack, and any other mapped memory regions.

Remote Attacker. We assume that the attacker does not have direct physical
access to any of the machines DMON (or the variants) run on. The attacker can
only communicate with the protected application running on the leader machine
via a remote communication channel such as a network socket. The followers
are connected to the leader through a secure private network connection. The
adversary can, therefore, not communicate with the follower variants. We also
consider attacks on this private connection to be outside the scope of this paper.
Because the attacker is remote, we also assume that any run-time secrets embed-
ded into the variants (e.g., randomized base addresses) are not known a priori.
The goal of the attacker in this scenario is to take control of the leader variant,
e.g., by exploiting a memory-corruption vulnerability. We assume that the pro-
tected application has an arbitrary memory read/write vulnerability that the
attacker knows how to trigger.

4 DMON Design

DMON orchestrates and supervises the execution of a set of diversified program
variants running natively on machines that differ in their instruction set archi-
tecture. Like most other NVX systems, DMON uses a leader/follower-model for
I/O replication. The designated leader variant is the only variant allowed to
perform externally observable I/O operations such as sending or receiving data
from a network socket. DMON forces follower variants to skip these I/O oper-
ations and instead provides them with the leader’s I/O results, thus emulating
the original operation unbeknownst to the follower.

Similar to other security-focused NVX systems such as ReMon [52] and
MvArmor [26], DMON executes all security sensitive system calls in lock step.
Whenever the variants attempt to execute a sensitive system call, DMON ensures
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Fig. 1. DMON’s basic components and interactions.

that the variants can neither enter the system call routine, nor exit from it until
DMON has ensured that all variants have reached equivalent states. We distin-
guish between the following components of a running DMON system:

1. Leader Variant. Only the designated leader variant is allowed to perform
externally observable I/O. As in any other NVX system, DMON requires that
there is exactly one leader variant.

2. Follower Variants. Follower variants skip externally observable I/O opera-
tions and use the leader’s I/O results instead.

3. Monitors. DMON uses two types of monitors: the (single) L-MON monitor
supervises the leader variant, while every follower variant is supervised by its
own F-MON monitor.

4. RC-COM. A reliable communication component used to exchange system
call metadata between the monitors. Separating the communication logic into
its own layer lets the monitors communicate over a variety of channels.

These components interact whenever the variants execute system calls, as
shown in Fig. 1. Whenever a leader or follower variant attempts to enter or exit
from a system call ( 1 ), the corresponding L-MON or F-MON interrupts and
suspends the variant, reads the call number of the interrupted system call, and
invokes a specialized handler routine within the monitor process ( 2 ), which
implements the cross-checking and replication logic for that system call.

The monitors use cross-checking handlers when they interrupt variants upon
entering a system call. In F-MON, the cross-checking handler gathers informa-
tion about the variant’s state, sends this information to L-MON ( 3 ), and waits
for L-MON to confirm that the follower variant is in a state equivalent to the
leader variant ( 4 ). In L-MON, the cross-checking handler waits for incoming
state information from F-MON, compares that state information with the leader
variant’s state, and informs F-MON about the results of the comparison.

The state information consists of system call numbers and arguments, with
the latter often consisting of pointers to complex data structures (e.g., I/O vec-
tors). The cross-checking handlers serialize these corresponding data structures
and append the serialized data to the state information, thereby allowing L-
MON to check the variant states for deep equivalence (two data structures are
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deeply equivalent when the raw data they contain is identical, even though the
data or the data structures may be stored at different addresses). If the variant
states do not match, DMON takes that as a sign of potential compromise and
aborts execution to protect the host system.

Naive cross-checking of these variant states triggers false alarms for divergent
behavior because the system call interfaces, calling conventions, etc. differ across
platforms. DMON transforms system call states to platform-independent states
before comparing them, to avoid alarms for the expected platform differences
(see Sect. 4.1). If the states match, the cross-checking handler allows the leader
variant to proceed and to enter the kernel-space system call routine. The follower
variants can also proceed, but may (optionally) see their system call number
replaced by that of the sys getpid routine in case they attempt to perform an
externally observable I/O operation. This mechanism for skipping system calls
was also used in prior work [39]. The monitors use replication handlers when
they interrupt variants that return from a system call. Replication handlers for
I/O system calls broadcast the system call results from the leader variant to the
followers. Replication handlers for other system calls are generally no-ops.

4.1 Platform-Independent State Canonicalization

In traditional NVX systems, all program variants are compiled for the same tar-
get architecture and execute on a single machine. In DMON, on the other hand,
individual variants run on different physical machines and thus the variants may
target different ISAs/ABIs. Heterogeneous platforms expose different system call
interfaces. Without awareness of this heterogeneity, cross-checking at this inter-
face leads to false alarms, where the NVX system detects divergence despite the
program behavior being equivalent. We find that the root cause of this type of
false alarm is the lack of understanding of semantic equivalence of system calls
in the presence of heterogeneous platforms. To broaden this understanding, we
define semantic equivalence of system calls as follows:

Definition 1. The functionality of a syscall is a transformation of one user-
observable system state to the other, which constitutes observable behavior. We
do not consider behavior observable if it is only visible through side-channels.

Definition 2. Given a syscall (c,p), where c is a vector of configuration param-
eters and p is a vector of data parameters, a unique c on platform A determines
the functionality of the system call, which we denote as F (p). c includes the
system call number, as well as any flags, modes, etc. that the syscall accepts as
parameters to configure its behavior.

Definition 3. F (p) and F ′(p′) are semantically equivalent iff F and F ′ are
mapped to the same system call functionality and parameters p and p′ are iden-
tical in a serialized form.

Based on the definition of semantic equivalence, we introduce a technique
called platform-independent state canonicalization (PISC), which marshalls
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syscall states into a canonical syscall state. To do so, DMON internally main-
tains a canonical representation of system call functionalities and serialization
rules. By cross-checking this canonical state, DMON eliminates false positive
detections that stem from ABI/ISA heterogeneity.

Semantically equivalent system calls must be mapped to the same canonical
system call state. To preserve this property, we define a set of rules that DMON
should follow to perform platform-independent state canonicalization (PISC).

Rule 1 - Configuration Constant Canonicalization. According to our definition
of semantic equivalence, the configuration parameters of a system call (c) include
the system call number, syscall flags and modes, the union of which determines
the system call functionality. These constant values can be different across ABIs
and platforms. For example, the sys read system call has system call number
0 on x86-64 platforms and 3 on i386 platforms. Directly comparing these con-
stants, as traditional NVX systems do, will cause a false alarm even if they are
“semantically” equivalent.

Rule 1 resolves this issue, by translating these configuration parameters to a
canonical representation before comparing them. PISC compiles this rule auto-
matically by reading the system call tables on the fly and replace system call
numbers, with their corresponding system call name before comparison. For
flags, modes and any other configuration constant defined as a macro inside
glibc, PISC follows the same principle. This is a fully automated procedure and
thus allows DMON to seamlessly extend to additional platforms.

Rule 2 - Struct Layout Canonicalization. Data parameters p of a system call
may include some struct type parameters. Determining equivalence of struct
type parameters is challenging because C structs are not necessarily bit-for-bit
identical across ABIs, even when the arguments are semantically equivalent;
different platforms define different packing (i.e., padding) and alignment rules
for a data structure. To allow for bitwise comparisons of such structs, PISC
canonicalizes structs to an internal “shadow” type that uses fixed size fields and
is carefully constructed so it has the same layout across platforms. Again, this
procedure is completely automated and thus extensible to new architectures.

Rule 3 - Implicit Parameter Canonicalization. Beyond differences in the syscall
numbers for the same system call, heterogeneous-ISA variants may use similar
yet different system calls for the same functionality, because not all system calls
are available on every platform. According to our definition of semantic equiva-
lence of system calls, such similar system calls represent an equivalent function-
ality F . Checking equivalence of the data parameters p in this case serves as a
key to determine semantic equivalence of these system calls.

x86-64 kernels, for example, implement both sys open and sys openat.
ARMv8 kernels, on the other hand, do not implement sys open. ARMv8 vari-
ants therefore always use sys openat to open a file. sys openat is similar to
sys open, but has an additional argument that can hold the file descriptor of
a directory. If the pathname argument of the sys openat is relative, then it is
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interpreted relative to the directory specified in the additional argument. In this
concrete example, PISC maps sys open and sys openat to the same system call
functionality and it fully resolves equivalence of the data parameters including
the directory paths that the variants are trying to access.

4.2 Distributed Monitor Design

Prior work often used a central monitor process which simultaneously supervised
all of the variants [5,39,53]. Subsequent research showed that this centralized
model was overly focused on simplicity and security at the expense of perfor-
mance, and suggested various designs in which each variant was supervised by a
dedicated monitor instance [21,26,31,52,54,55]. This dedicated monitor instance
could be loaded directly into the variants’ address spaces, thereby trading off the
isolation between the variants and the monitor for reduced variant-monitor com-
munication overhead. DMON combines elements of both designs. Since we run
ISA-heterogeneous variants on different machines, we cannot use a central mon-
itor that attaches locally to all variants. Instead, we use a dedicated monitor for
each variant and run the monitor on the same machine as the variant it super-
vises. Our design does, however, enforce strict isolation between the variant and
its monitor by running the monitor as a separate process that attaches to the
variant using the ptrace API.

4.3 Inter-Monitor Communication

F-MON and L-MON communicate whenever the variants execute a system call.
This exchange may include system call numbers, serialized system call argu-
ments, system call results, or instructions on how to proceed from a system
call entry point (see Sect. 4). In many cases, particularly when the system call
being executed is deemed security-sensitive, communication must happen syn-
chronously. For instance, L-MON cannot allow the leader variant to proceed
past a system call entry point until all instances of F-MON have serialized the
state of their corresponding variant, and until they have sent this state to L-
MON. F-MON needs to wait even longer as it cannot allow the follower variants
to proceed until L-MON has compared the variant states and it has received
L-MON’s confirmation that the states match. To achieve good performance,
DMON therefore requires a reliable inter-monitor communication channel with
minimal latency and high bandwidth. We experimented with various designs
of this communication channel and implemented them in our RC-COM, which
exposes the inter-monitor communication API to our monitors.

Network Protocol Choice. The most obvious protocol that meets our relia-
bility demands is TCP, which we used as the basis for our first implementation
of RC-COM. However, even with extensive tuning, our TCP-based implementa-
tion had poor throughput and high latency. As an alternative, we therefore used
ENet, a lightweight UDP-based protocol that also offers reliable in-order and
error-free data transfer [17]. Besides the networking hardware, the operating
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system also affects the communication bandwidth and latency. When a net-
work adapter receives a packet, for example, the OS first stores the packet in a
kernel-space buffer, before copying it into the receiving application’s memory and
transferring control to the application. Remote Direct Memory Access (RDMA)
avoids these extra copy operations by allowing two communicating peers to read
or write directly from or to the other peer’s application memory, thus bypassing
the kernel’s networking stack. We implemented an RDMA-based version of our
RC-COM using Mellanox ConnectX 100 gigabit Ethernet interfaces [33] and the
Mellanox Messaging Accelerator user-space networking library [29].

4.4 Optimizations

To further improve DMON’s performance, we implemented several optimizations
that reduce the number of the data packets exchanged by our monitors.

Permissive Filesystem Access. Traditional NVX systems allow one variant
to perform all I/O operations and then replicate the results to the other variants.
Even though this replication mechanism seamlessly provides identical inputs to
all variants, it is not always necessary. Specifically, there is no need to replicate
read accesses to read-only files that were identical on all physical machines when
DMON started, as long as the files have not been modified while DMON was
running. We refer to such files as static files and designed the replication handlers
for read-only operations such as sys read and sys fstat so that all variants may
(optionally) read static files directly from their local file system, thus bypassing
the I/O replication. For this optional optimization, DMON requires that the
application’s root directory has the same path name on all machines as well as
identical content including sub-directories with the exception of executables and
shared libraries.

Asynchronous Cross-Checking. Our basic approach described in Sect. 4 adds
considerable overhead to every system call invocation as every cross-check hap-
pens synchronously and requires at least two network round-trips; one for F-
MONs to send the system call states of their supervised variants to L-MON,
and one for L-MON to instruct F-MONs on how to proceed (abort or continue
execution of the variant). We developed a technique which we call asynchronous
cross-checking to reduce this overhead. Inspired by previous work [26,52], the
idea is to classify system calls into three categories—highly sensitive, moderately
sensitive, and non-sensitive—based on the system call number and/or arguments.
With asynchronous cross-checking, highly sensitive system calls still execute in
lock-step, as before. When F-MON deems a system call moderately sensitive,
however, it still sends the system call state information to L-MON, but then
immediately resumes execution of the supervised variant without waiting for a
reply from L-MON. L-MON eventually receives the state information and may
detect a divergence. In that case, L-MON will instruct F-MONs to abort execu-
tion through a separate error channel that is used only for this specific purpose.
Non-sensitive system calls can execute without any cross-checking.
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5 Implementation

We implemented DMON for GNU/Linux. DMON runs natively on the x86-64
and ARMv8 architectures. DMON also has partial support for ARMv7 and i386.
Currently, our prototype has 35k lines of C and C++ code and supports variants
compiled with the stock versions of gcc and Clang. We do, however, require
the variants to link against our patched C library (see Virtual System Calls
below for details). DMON currently supports 100 system calls. Adding support
for additional system calls generally requires a trivial amount of engineering
effort (typically less than 10 lines of code), as DMON defines helper macros to
replicate and cross-check most types of system call arguments (see Sect. 4.1). Our
helper macros resemble those used in ReMon [52], but differ from them as they
automatically apply PISC, thus making our macros fully portable. The type of
cross-checking depends on the security-sensitivity of the call (see Sect. 4.4).

DMON always cross-checks highly sensitive system calls in lock-step. Mod-
erately sensitive calls are checked asynchronously. Non-sensitive calls are not
checked at all. The type of replication depends on the kind of results the sys-
tem call returns. DMON enforces replication for all I/O operations that are not
reads from static files (see Sect. 4.4), and for all system calls that return mutable
program state. Read operations from static files execute without replication if
the permissive filesystem access optimization is enabled. System calls that must
be executed by all variants are not subject to any replication.

Virtual System Calls. On most architectures, Linux loads a Virtual Dynamic
Shared Object (VDSO) or vsyscall page into the address spaces of all user-space
programs. These executable code pages expose virtual system calls, which allow
the program to execute certain system calls (e.g., sys gettimeofday) without
switching into kernel space. Most NVX systems either hide, replace, or disable
the VDSO and vsyscall page because virtual system calls are invisible to the
monitor. For our prototype, we patched the C library our variants link against
so that virtual system calls are disabled.

6 Security Analysis

Scope. NVX systems can prevent usage of absolute code addresses by adopting
Address Space Partitioning (ASP) [12,31,50] that lays out the variants’ code sec-
tions to have non-overlapping/disjoint virtual addresses. In this Section, we focus
on evaluating the additional security DMON can provide through ISA/ABI-
heterogeneity. Specifically, we show the extent to which ISA/ABI-heterogeneity
prevents concrete code-reuse and data-only attacks that cannot be easily stopped
using existing NVX systems.

Analysis Targets and Configurations. We used four popular server applications—
Nginx 1.14.2, Lighttpd 1.4.52, Redis 5.0.1, and ProFTPD 1.3.0—as our analy-
sis targets, which is in line with previous work on security-oriented NVX sys-
tems [26,31,52,54]. We evaluated the security of a heterogeneous configuration
with one program variant compiled for Intel x86-64 and one for ARMv7.
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6.1 Code Layout Diversity

Existing NVX systems that deploy address space partitioning (ASP) can be
bypassed using attacks that rely on partial overwrites of code pointers such as
return addresses or function pointers [13,16]. The basic idea is to force the pro-
gram to produce a (number of) legal code pointer(s) at memory locations that
the attacker can overwrite. The attacker then overwrites the least significant bits
or adds arbitrary offsets to each of these code pointers, and thereby diverts the
execution of the program to a series of attacker-chosen gadgets (i.e., instruction
sequences ending with indirect branches, such as return instructions). In the
PIROP attack, for example, Goktas et al. exploited a vulnerability in the Aster-
isk communication server that allowed them to produce legal return addresses
at an attacker-controlled position on the stack [16]. They then overwrote the
least significant byte of each of these return addresses to build a PIROP gadget
chain, which they then invoked by exploiting another vulnerability.

These attacks can in principal bypass existing NVX systems because they do
not require any information leakage (which the NVX system would detect), and
because the same partial pointer overwrites can achieve the same results in each
variant. In this section, we show that DMON makes these position-independent
code-reuse attacks far more challenging because ISA/ABI-heterogeneity sub-
stantially reduces the number of position-independent gadgets available to the
attacker.

Position-Independent Gadget Availability. Position-independent gadgets are
instruction sequences that can be reliably invoked by patching legal code point-
ers. We consider two ways to patch legal code pointers. First, an attacker could
overwrite an offset variable that is later added to a code pointer in a pointer
arithmetic operation. This primitive allows attackers to reliably invoke any gad-
get, as long as the internal layout of the target binary is known. Second, the
attacker could overwrite the least significant bits of a code pointer directly using
a memory write vulnerability. This primitive is far less potent than the former,
as it allows the attacker to overwrite only the 8 least significant bits (i.e., one
byte). Overwriting more than one byte is not possible unless the attacker knows
the base address of the target binary because the ASP scheme randomizes all
but the 12 least significant bits of each base address.

We compiled a list of the position-independent gadgets in both our x86-64 and
ARMv7 binaries as follows. We first collected the addresses of (i) all instructions
that immediately follow call instructions, and (ii) all address-taken functions in
the program. The former is an approximation of the set of legal return addresses
that could exist in the program’s address space at any given point during its
execution. The latter is the set of other code pointers that could be found in
the program’s memory. Combined, this list approximates the set of pointers
that could potentially be patched by attackers to construct position-independent
code-reuse payloads. We then used Ropper to generate lists of regular ROP
gadgets consisting of 15 instructions or less [40]. This, again, is consistent with
related work [16]. Next, we combined the two lists for each binary as follows. For
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Fig. 2. Number of position-independent code-reuse gadgets.

every code pointer in the first list, we calculated the (i) addresses of all gadgets
relative to the pointer, and (ii) absolute addresses of gadgets that only differ
from the code pointer in their 8 least significant bits. The former is the set of
gadgets reachable through offset overwrites, while the latter is the set of gadgets
reachable through partial pointer overwrites.

Next, we correlated the position-independent gadgets found for the x86-
64 binary with those found for ARMv7. For each x86-64 gadget, we checked
whether there is an ARMv7 gadget that can be reached using the same offset
overwrite/partial pointer overwrite. We then eliminated gadgets whose absolute
address or offset from the source code pointer is not 4-byte aligned, since code
pointers patched in either way would be unaligned on ARMv7 and would trigger
an unaligned instruction exception when the gadget is invoked. We collected 2553
code pointers from Nginx, 1988 code pointers from Lighttpd, 1732 code pointers
from Redis, and 4514 code pointers from ProFTPD. Figure 2 shows how many
gadgets can be reached on average from each code pointer by offset overwrite
and partial pointer overwrite attacks. In a traditional NVX system where all
variants are compiled for Intel x86-64, all of the gadgets identified in the x86-64
binary would survive. In contrast, in all four of our target programs, and for
both code pointer patching strategies, less than 3.3% of the gadgets survive in
an NVX configuration with a x86-64 variant and an ARMv7 variant.

Position-Independent Gadget Semantics. The final step of an exploit is often
to call a security-sensitive function or a system call with attacker-specified
arguments (e.g., execve with “/bin/sh” as argument for a shell). The ABI-
heterogeneity provided by DMON imposes another constraint on chaining gad-
gets to build such an exploit. Because different architectures have different calling
conventions for system calls and subroutines, as shown in Table 1, the attacker
should chain a sequence of gadgets that prepare the same set of arguments, but
in a different way for each architecture. For example, in an ARMv7 variant, the
attacker must use r7 to prepare a system call number, whereas in a x86-64 variant
the same attacker must use rax. To show the difficulty of constructing a code-
reuse attack that performs one or more system calls and/or subroutine calls, we
analyzed the semantics of position-independent gadgets surviving under DMON.
Specifically, we looked for gadgets that read a value from memory and write that
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value into the system call number register, or the registers for one of the first
three arguments of a system or function call. As shown in Fig. 2, only a small
fraction of the position-independent gadgets have suitable semantics for argu-
ment preparation (see 3rd to 6th bars in the figure). More interestingly, system
call number preparation gadgets are rare compared to other argument prepara-
tion gadgets. In a standalone ARMv7 binary of Nginx, Redis, and ProFTPD,
we could not find a single partial-pointer-overwrite based position-independent
gadget which can load a system call number. Obviously then, we also could not
find such gadgets among those that survive across architectures.

Table 1. Comparison of function and syscall conven-
tions.

arch/ABI syscall# arg1 arg2 arg3 arg4 arg5 arg6 arg7 result

x86-64 – rdi rsi rdx rcx r8 r9 – rax

arm/EABI – r0 r1 r2 r3 Stack Stack Stack r0-r3

x86-64 rax rdi rsi rdx r10 r8 r9 – rax

arm/EABI r7 r0 r1 r2 r3 r4 r5 r6 r0

Table 2. Number of diversified
data structures.

Artificial DMON Total

Nginx 1.14.2 53 335 365

Lighttpd 1.4.52 15 95 116

Redis 5.0.1 57 158 209

ProFTPD 1.3.0 23 72 84

6.2 Structure Layout Diversity

Apart from code layout diversity we achieve from ISA-heterogeneity, DMON
naturally provides data structure layout diversity. Due to differences in sizes
of pointers and primitive data types, as well as differences in struct packing
and alignment, data structures rarely have the same sizes and layouts across
platforms. Diversifying structure layouts greatly raises the bar for attacks that
require knowledge about data structure definitions including certain types of
data-only attacks that rely on deterministic placement of structure fields [15,23].

Previous NVX systems could achieve structure layout diversity by artificially
reorganizing structures at compile time. However, in practice, only a limited num-
ber of structs can be diversified at compile time. Specifically, it is not safe to
diversify (i) structures used as arguments or return types of external library func-
tions, (ii) structures with an initialization list, (iii) structs cast to different types,
etc. [10,30]. We implemented existing type-based structure layout randomization
techniques [10,30], and we examined struct layouts in a set of server applications
to show how much structure layout diversity DMON can naturally achieve, com-
pared to the number of structures that can be artificially diversified. As shown in
Table 2, our heterogeneous NVX system provides a much higher degree of struc-
ture layout diversity than one can achieve using a compiler-based technique.

Case Study: ProFTPD SSL Private Key Leak. Hu et al. demonstrated an infor-
mation disclosure attack on ProFTPD, in which the attacker locates a base
pointer to an SSL context data structure, and then uses Data-Oriented Pro-
gramming (DOP) gadgets to traverse through the context and 6 other data
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structures, ultimately reaching a private key, which is then leaked to a remote
attacker [23]. DMON can prevent this attack because the layouts of the 6 data
structures differ across architectures. We examined the relevant data structures
in ARMv7 and x86-64 binaries of ProFTPD and found that 4 of the 6 pointer
fields that need to be dereferenced in this attack are located at different offsets
in the two binaries. A DOP exploit that traverses through the structs therefore
cannot simultaneously reach and leak the private key on both platforms without
triggering a divergence in DMON.

7 Performance Evaluation

We conducted an extensive performance evaluation of DMON using handwrit-
ten microbenchmarks (see Sect. 7.1), as well as popular high-performance server
applications (see Sect. 7.2). We tried two different configurations:
The low-end configuration had an ARMv8 variant running on a Raspberry Pi
3 Model B board with a quad-core 1.2GHz Broadcom BCM2837 64-bit CPU and
1GB of RAM, running the 64-bit ARM Debian 9 distribution of GNU/Linux, as
well as an x86-64 variant running on a desktop machine with a quad-core Intel
i5-6500 CPU and 16 GB of RAM, running the x86-64 version of Ubuntu 16.04.5
LTS. The machines were connected through a private 100 megabit Ethernet
connection with approximately 0.5 ms latency.

The high-end configuration had an x86-64 variant running on a desktop
machine with an octa-core Intel i9-9900K CPU and 32 GB of RAM, and an
x86-64 variant running on a machine with a quad-core Intel i5-6500 CPU and
16 GB of RAM. Both machines ran the x86-64 version of Ubuntu 16.04.5 LTS
and were connected using a private 100 gigabit connection between two Mel-
lanox ConnectX Ethernet interface cards. These RDMA-capable cards support
the Mellanox Messaging Accelerator, a user-space networking library with low
latency.

In both configurations, we ran the leader variant on the slower machine. We
evaluated two implementations of RC-COM (see Sect. 4.3) for the low-end con-
figuration. The first implementation, which appears as KTCP in the graphs,
uses standard TCP/IP. The second implementation uses the ENet protocol. For
the high-end configuration, we additionally evaluated an implementation that
leverages the Mellanox Messaging Accelerator. This implementation appears as
UTCP (short for user-space TCP) in the graphs. We could not test this UTCP
implementation for low-end configuration as it was not supported by our ARMv8
board. Finally, we evaluated the impact of our replication and cross-checking
optimizations described in Sect. 4.4. Our Asynchronous Cross-Checking and Per-
missive Filesystem Access optimizations appear as ACC and PFA respectively
in the graphs.

7.1 Microbenchmarks

To measure the overhead introduced by DMON, we designed microbenchmarks
to test our optimizations (see Sect. 5). We used the following system calls:
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1. sys read(STATIC FILE FD, buf, 512) is treated as a moderately sen-
sitive system call. As such, this microbenchmark benefits from our asyn-
chronous cross-checking optimization and skips replication if all optimizations
are enabled (see Sect. 4.4).

2. sys getcwd(buf, 512) The results of this system call do not need to be
replicated, as long as the current working directory is either the application’s
root directory, or one of its subdirectories (see Sect. 4.4).

3. sys sched yield() is a representative of system calls that require neither
cross-checking nor replication.

Figure 3(a) shows the execution time under DMON’s hign-end configuration
relative to the native execution time. We used our UTCP implementation of
RC-COM for all experiments, but did run separate tests with and without our
permissive file access (PFA) and asynchronous cross-checking (ACC) optimiza-
tions. We also measured the execution time without cross-checking and replica-
tion (PTRACE). This experiment shows that the ptrace API is the main perfor-
mance bottleneck in our system. Prior work illustrates that replacing ptrace-
based monitoring by in-process alternatives allows for a much wider range of
security-performance trade-offs [26,52].

(a) Fully distributed ptrace-based NVX

(b) Proof of concept distributed in-process NVX
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Fig. 3. Microbenchmarks for high-end configuration

The results show that the overhead can be attributed to the network com-
munication of our replication and cross-checking mechanisms, and the context
switching caused by ptrace. PFA reduces the overhead of read from 48.95× to
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42.47×, but does not affect the other benchmarks. ACC further decreases over-
head of read and getcwd, from 42.47× to 37.04× and from 45.01× to 39.39×
respectively. sched yield’s performance is unaffected, since DMON does not
perform any cross-checking for this system call. Finally, the rightmost columns
in Fig. 3(a) indicate that the context switching overhead of ptrace is by far
the biggest contributor to DMON’s overhead. We hypothesized that monitoring
non-sensitive system calls in-process, as was done in prior work [21,38,52], would
substantially reduce the context switching overhead, and set up an experiment
to confirm this hypothesis. Specifically, we implemented a distributed in-process
NVX system using the syscall intercept [45], and evaluated it on the same
microbenchmarks we used for the ptrace-based prototype. Our in-process pro-
totype implements the optimizations described in Sect. 4.4, but only supports a
small set of system calls. Figure 3(b) shows that in-process monitoring reduces
the per-system call overhead from 32.86–37.90× to only 6–10% with all opti-
mizations enabled.

(a) Low-end configuration

(b) High-end configuration
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Fig. 4. Server benchmarks in two configurations

7.2 Server Benchmarks

We evaluated DMON on 3 popular server applications—Nginx 1.14.2, Lighttpd
1.4.52 and Redis 5.0.1—that were also used to evaluate prior work [21,26,31,52].
For each of our experiments, we connected a benchmarking client to the leader
machine through a 100 megabit Ethernet connection (for our low-end configura-
tion) or a 1 gigabit Ethernet connection (for the high-end configuration). Figure 4
shows our results. We used the wrk client to evaluate Nginx and Lighttpd, and
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the redis-benchmark utility to evaluate Redis. We configured wrk to repeatedly
request the same static 4KB web page for 10 s using 10 parallel connections, and
redis-benchmark to simulate 50 clients issuing 100,000 requests in total. Run-
ning redis-benchmark under DMON’s slowest configurations would take over a
day, so we skipped them and denote it as N/A in Fig. 4. The latency on the 100
megabit link was just under 0.5 ms, whereas the latency on the 1 gigabit link
was under 0.1 ms. With all of DMON’s optimizations enabled, the performance
overheads ranged between 7.03× and 21.71× for the low-end configuration, and
between 4.52× and 6.65× for the high-end configuration.

7.3 Comparison with Other NVX Systems

We compared the performance of DMON with traditional NVX systems. Thanks
to our inter-monitor communication optimizations, DMON achieves similar (or
better) performance than traditional single-host NVX systems with ptrace-
based monitors. Specifically, GHUMVEE (the state of the art ptrace-based
NVX system) was tested on the same server applications (albeit slightly older
versions), and in highly similar conditions, with a 1 gigabit link that had less than
0.1 ms of latency. GHUMVEE’s overhead on Lighttpd was 7.0× on a saturated
server (vs 5.43× for DMON), and 12.48× for Redis (vs 6.65× for DMON) [52].
Delegating the monitoring of non-sensitive system calls to an in-process monitor
would substantially reduce the overhead, as was shown in prior work [21,38,52],
as well as in Sect. 7.1. We summarize our findings in Table 3. DMON (IP) refers
to our PoC distributed in-process prototype and DMON (CP) refers to our dis-
tributed ptrace-based implementation. As GHUMVEE was not evaluated on
microbenchmarks, and DMON (IP) currently does not support server applica-
tions, these numbers are shown as N/A in the table.

Table 3. Comparison with other NVX systems.

NVX system Monitor type Distributed Overhead

System call Server apps

GHUMVEE [52] CP No N/A 7.0–12.48×
DMON (CP) CP Yes 32.86–37.90× 4.52–6.65×
Varan [21] IP No 36–139% 11–37%

DMON (IP) IP Yes 6–61% N/A

8 Discussion

Performance Improvements. While developing DMON, we identified a promising
path to substantially improve our monitoring performance. We could replace
our ptrace-based monitoring mechanism with an in-process alternative based
on API call interception [21], or hardware-based virtualization extensions [26].
Securing an in-process monitoring design is challenging, however.
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Leveraging Hardware Features. A potential advantage of running variants on
different architectures is that the NVX system could leverage hardware security
features available on one platform to protect software running on other platforms.
A hypothetical configuration in which DMON runs one variant on an ARMv8.5-
A CPU and one variant on an Intel x86-64 CPU could be used to bring the
benefits of memory tagging to Intel x86-64 software.

Micro-Architectural Attacks. While our primary focus was on defending against
memory exploits, we believe DMON might also be able to stop certain micro-
architectural attacks. Rowhammer attacks in particular would become exceed-
ingly hard to launch against DMON [19,41,49]. To build reliable Rowhammer
attacks, the attacker needs to know exactly how the memory controller translates
physical memory addresses into DRAM addresses [37,47]. Translation schemes
differ greatly across platforms, however, which makes Rowhammer attack pay-
loads non-portable.

9 Related Work

N-Variant eXecution. Inspired by Chen and Avizienis’ seminal work on N-
Version Programming [2,8], Berger and Zorn proposed a system for probabilis-
tic memory safety that could simultaneously execute identical variants with
differently seeded randomizing memory allocators [3]. This system only sup-
ported trivial applications, however. Cox et al.’s N-Variant Systems monitored a
much wider array of system calls, thus supporting variants of complex applica-
tions [12]. Subsequent publications explored consistent delivery of asynchronous
signals [5,39], dealing with shared memory [5], thread synchronization [51], or
address-dependent behavior [53], and new schemes for generating software vari-
ants [26,31,50,54]. Other researchers suggested to use NVX systems for live
patch testing [20,21,25,27,32,38].

10 Conclusion

We presented DMON, a novel, distributed N-Variant Execution system that
leverages diversity in ISAs and ABIs to protect against memory corruption
attacks. To bypass DMON, attackers must provide exploits that simultaneously
work on different platforms. DMON’s heterogeneous platform setting naturally
provides code layout diversity which greatly raises the bar for code-reuse attacks,
and it naturally provides a higher level of structure layout diversity than what
existing compiler-based techniques can provide. To avoid benign divergences
caused by expected cross-platform differences, we propose PISC, a technique that
transforms system call states into platform-independent states. Also, we intro-
duce new optimization strategies to alleviate performance issues that are unique
to the distributed NVX setting. Our performance evaluation shows that the
proposed optimizations, combined with an optimized network protocol, greatly
reduce the performance overhead without sacrificing DMON’s security.
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Abstract. Being able to timely detect new kinds of attacks in highly
distributed, heterogeneous and evolving networks without generating too
many false alarms is especially challenging. Many researchers proposed
various anomaly detection techniques to identify events that are incon-
sistent with past observations. While supervised learning is often used
to that end, security experts generally do not have labeled datasets and
labeling their data would be excessively expensive. Unsupervised learn-
ing, that does not require labeled data should then be used preferably,
even if these approaches have led to less relevant results. We introduce
in this paper a unified and unique graph representation called security
objects’ graphs. This representation mixes and links events of different
kinds and allows a rich description of the activities to be analyzed. To
detect anomalies in these graphs, we propose an unsupervised learn-
ing approach based on auto-encoder. Our hypothesis is that as security
objects’ graphs bring a rich vision of the normal situation, an auto-
encoder is able to build a relevant model of this situation. To validate
this hypothesis, we apply our approach to the CICIDS2017 dataset and
show that although our approach is unsupervised, its detection results
are as good, and even better than those obtained by many supervised
approaches.

1 Introduction

Security Operational Centers (SOC) ensure the collection, correlation, and anal-
ysis of security events on the perimeter of the organization they are protecting.
The SOC must detect and analyze internal and external attacks and respond
to intrusions into the information system. This mission is hard because security
analysts must supervise numerous highly-distributed and heterogeneous systems
using multiple communications protocols that are evolving in time. Furthermore,
external threats are increasingly complex and silent.

One of the tracks commonly taken to improve the situation is the detection
of anomalies. The term anomaly has several definitions. Generally speaking,
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Barnett and Lewis [27] define an anomaly as “observation (or a sub-set of obser-
vations) which appears to be inconsistent with the remainder of that set of data”.
In the security field, the NIST defined anomaly-based detection as “the process
of comparing definitions of what activity is considered normal against observed
events to identify significant deviation” [30].

Nowadays, learning is often used for anomaly detection.Current anomaly
detection techniques often build on supervised learning, which needs labeled
data during the learning phase. However, security experts often do not have
such labeled datasets of their own logs events and labeling data is very expen-
sive [3]. Unfortunately, unsupervised techniques, which do not require labeled
data, are not as good as supervised techniques. Nevertheless, a specific tech-
nique of unsupervised anomaly detection called “novelty detection” can be used.
This technique is typically used when the quantity of available abnormal data
is insufficient to construct explicit models for non-normal classes [26]. This app-
roach is also known as “one-class classification”. A model is built to describe the
normal data injected during the training phase.

In this paper, we propose a unified graph representation of heterogeneous
types of network logs. The graph we propose integrates heterogeneous infor-
mation found in the events of various types of log files at our disposal: TCP,
DNS, HTTP, information relative to transferred files, etc. A graph structure is
well adapted to encode logical links between all these various types of events.
By logical link, we mean common values for given fields in given events, such
as those relating to network addresses. Structuring in a single graph heteroge-
neous information coming from various log files allows the construction of a rich
vision of the normal situation from which a machine learning algorithm will be
able to build a relevant model of this situation. This model will then allow the
identification of abnormal situations.

We also propose a process to efficiently encode this unified graph so that an
auto-encoder can learn the normal situation and then detect abnormal activities.
The learning phase requires normal traffic data but does not need a labeled
dataset. We use CICIDS2017 dataset [31] to evaluate the ability of the learned
model to detect anomalies.

Our contributions are, therefore:

– The definition of a security objects’ graph built from security events of various
types. We mix all this heterogeneous information in a single and unified graph
structure.

– A way to efficiently encode this graph into values suited to a machine learning
algorithm (e.g., an auto-encoder).

– An auto-encoder that detects anomalies on graph structured data.
– Experimental results on the CICIDS2017 dataset composed of millions of

log events that show that, while being unsupervised, our approach brings a
significant improvement over supervised baseline algorithms.

This paper is organized as follows: our global approach, named sec2graph, is
presented in Sect. 2. Anomaly detection results and comparative analysis with
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other methods are discussed in Sect. 3 and 4. Related work about the use of auto-
encoders and the use of graph modeling for anomaly detection are reviewed in
Sect. 5. Finally, conclusions are presented in Sect. 6.

2 The Sec2graph Approach

Sec2graph detects abnormal patterns in network traffic. Network event logs are
used as an input for the whole process. The three key steps of sec2graph are
presented in Fig. 1.

Fig. 1. Overview of the sec2graph workflow

Section 2.1 explains how we build a graph of security objects from the net-
work events; Sect. 2.2 explains how we encode this graph into vectors able to be
handled by an auto-encoder; Sect. 2.3 explains how anomalies can be detected
by the auto-encoder.

2.1 Building Security Object Graphs from Network Events

In this section, we formally define the graphs we introduce in this paper, and
explain how we build them from logs.

A log file can be described as a sequence of n ordered events {e1, e2, ..., en}
where ei is an event resulting from the observation of activity in the network.
Each event is made of several fields that differ depending on the semantic of
the event itself. Some of these fields are particularly relevant to identify links
between events. For each type of event, we identify the most relevant fields to
create one or several Security Objects (SOs). A SO is thus a set of attributes,
each attribute corresponding to a particular event field.

For example, a network connection leads to four SOs: a source IP Address
SO, a destination IP Address SO, a Destination Port SO and a last SO, the
NetworkConnection itself that regroups attributes corresponding to the fields
we identified as less important to create relations between events. For instance,
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the payload size attribute is captured as a mere attribute of the Network
Connection object since there is no reason to believe that two events, having
the same payload size, are linked. By contrast, two events for which the same
IP addresses appear can be linked with high probability.

For each type of event, we designed a translation into a set of SOs. To keep
track of each type of events, links are created between security objects that
represent this type. The different type of events considered are network connec-
tion, application events (e.g., dns, dhcp, dce/rpc, ftp, http, kerberos, ssh, snmp,
smtp,etc.), and information about transferred files and x509 certificates. All of
these events are important in the context of intrusion detection because they may
contain evidence of compromise. For example, network connection events indi-
cate which devices are communicating and how. This can be useful for detecting
port scans, or communications that violate internal security policies. Application
events allow the capture of protocol-specific characteristics such as the versions
used, thus revealing vulnerabilities. Finally, information about file transfers can
be useful as they are a common way to spread viruses, for example by sending
executable files.

Fig. 2. Complete security objects and relations model representation

The graph model in Fig. 2 shows the different types of SOs (nodes of the
graphs) and their semantic links (edges of the graphs). For clarity reason, we
have not represented the attributes of the SOs on this figure. Our model is
suited to the pieces of information that are representative of network events.
It can also evolve easily according to the needs of the analysts. For instance,
the X509 object which corresponds to the certificate used during an SSL/TLS
session was integrated in a second phase in accordance with the evolution of
network communications that are increasingly encrypted.
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More formally, our graphs are directed graphs G = (SO,E) with SO being
the set of nodes and E being the set of edges. Let l ∈ E be a link between two
nodes a and b. l is defined by the triple (a, b, ltype). ltype corresponds to the type
of the link. For example, for a network connection event, a NetworkConnection
SO is created and linked to an IPAddress SO: this link is of type has src address.
Figure 2 shows the different types of links between SOs. The semantic of these
links is derived from the CybOX model [8].

To build the graph, we take as an input a set of network events coming
from various log files. From each event, and according to it type, we extract
the SOs and the links between them. In other words, we first build a sub-graph
representing this event. We then take each SO of the sub-graph. If this SO
already exists in the global graph (for instance, a same IPAddress was already
identified in a previous event), we replace the SO in the new sub-graph by the
SO that already exists in the global graph. Therefore, if an event contains an
SO that was already found in a previous event, the sub-graph that represents it
will be linked to the graph through this SO.

As an example, let’s consider three log events extracted from the Zeek [24]
analysis of the CICIDS2017 dataset [31]. The three log events represent the
same FTP connection analyzes by different modules of the Intrusion Detection
System. The first event e1 is a report on the TCP network connection from
the IP address 192.168.10.15 to the IP address 192.168.10.50 on port 21.
The second event e2 gives the details of the FTP reply. The third event e3
corresponds to file transfer details. A graph for each of these three events is
represented on the left hand of Fig. 3. We represent the global graph composed
of six SOs and obtained from the three previously described sub-graphs on the
right hand of the figure: the first event is colored in blue surrounded by a solid
line (e1), the second is in red surrounded by a dotted line (e2) and the third is
in yellow surrounded by a small dotted line (e3). e1 and e2 shares a reference
to the same NetworkConnection SO (same uid value) and e2 and e3 share the
same FileTransfer SO (same fluid value). By combining the different log files,
the graph makes possible to deduce relationships within different log events and
thus to learn more complex patterns.

2.2 Encoding the Graph for Machine Learning

The second step of sec2graph transforms the graph we computed in a structure
that can be processed efficiently by a machine learning algorithm. To the best
of our knowledge, there does not exist a method to encode multi-attributes
and heterogeneous graphs that would be considered as generically efficient. For
example, an adjacency matrix is inefficient for large graphs. It also carries no
information on nodes and edges. In our case, the encoding method must encode
both the structure of the graph (i.e., the relations between the nodes) and the
specific information associated with the nodes and the edges. Moreover, the
result of the encoding should be of reasonable size while it should contain enough
information to detect anomalies. Since there does not exist a single best method
to encode our graph, we had to design one tailored to our specific case. ion on
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Fig. 3. (left) Building of sub-graphs from three events, (right) Complete graph issued
from three events

a new port. When a collection of similar data instances behave anomalously
with respect to the entire dataset, the group of data instances is considered
as a collective anomaly. For example, a deny of service can be considered as a
collective anomaly. Contextual anomalies or conditional anomalies, are events
considered as anomalous depending on the context in which they are found, for
example, specific attack on vulnerable version of services or vulnerable network
device.

We are looking for anomalies. A given SO can be linked to several events,
normal or abnormal. An edge, on the other hand, is only related to the event that
led to its construction. Therefore, the anomaly is not carried by the node (an IP
address or a port are not abnormal per se) but by the edges that link the SOs
together. Consequently, we have chosen to encode our graph by encoding each
of its edges. To preserve the context of the event related to this edge, we have
chosen the following pieces of information to encode an edge: the type of the edge,
information about the source node and the destination node, information about
the neighborhood of the source node and information about the neighborhood
of the destination node. It should be mentioned that, by construction, a security
event cannot be represented by a sub-graph with a diameter greater than three.
Indeed, the translation method that we defined to convert events to sub-graph
never produces a sub-graph that has a path between two nodes made of more
than three edges.

In our graph, there are different kinds of attributes with categorical (version
numbers, protocol types, etc.) or continuous (essentially size or duration) values.
Anomaly detection requires to encode these two types of attributes in a unified
way (see Sect. 2.3). Therefore, categories must be determined for each attribute,
even for continuous ones.
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Determining Categories. For each categorical attribute, we count the num-
ber of occurrences of each category, for example, the number of times the value
‘tcp’ appears for the attribute ‘protocol’. For single-value attributes such as
port value, the number of occurrences is by construction always equal to one,
since we create only one Port SO for this port number. In this type of cases,
single-value attributes are distinguished by counting the number of edges of the
node carrying this single value attribute. In both cases, we sort them in descend-
ing order and keep the N most represented categories that account cumulatively
for 90% of the total number of occurrences or number of edges. If more than 20
categories remain, we only keep the 20 most represented categories. It should be
noted that we choose the value 20 according to an analysis we performed on the
CICIDS2017 dataset [31] that showed that considering more than 20 categories
for an attribute does not improve detection.

To translate continuous attributes into categories, considering intervals (e.g.
[0:10[, [10:20[, etc.) is not an option because this would not take into account the
statistical distribution of values and would not be useful for the auto-encoder.
Therefore, we categorize the continuous data according to the distribution of
the attribute values since our data samples do not necessarily follow a usual
probability law, but a law whose density function is a mixed density. To do that,
we use the classical Gaussian Mixture Model (GMM), assuming that the values
of the attributes follow a mixture of a finite number of Gaussian distributions.
It has been shown that GMM gives a good approximation of densities [15].
Furthermore, this technique has already been used for anomaly detection [7].

Two methods exist to infer the Gaussian equation and classify the data. The
first one, the expectation-maximization algorithm (EM), is the fastest algorithm
for learning mixture models but it requires to define the number of Gaussian
components to infer [10]. The second one uses the variational inference algo-
rithm [5]. It does not require to define the number of components but it requires
hyperparameters that might need experimental tuning via cross-validation. We
choose the first technique to control the number of Gaussian and hence control
the number of dimensions of our vector as we will associate one dimension to one
component. The number of Gaussian distributions is determined by the classi-
cal Bayes Information Criterion (BIC). This consists of successively calculating
mixtures of Gaussian in increasing numbers and choose the one with the lowest
BIC. In practice, we do not mix more than eight Gaussian, because we found in
our data set that the BIC is never smaller. The result is a mixture of no more
than eight Gaussian, which brings us down to a case with no more than eight
categories.

Encoding Attributes Using Categories. Once we have determined all the
categories for our dataset, we can encode the nodes as a binary vector. We
proceed as follows.

To fit the auto-encoder, all entries need to be the same size. For each node and
each attribute, we distinguish three cases: either the node has the attribute and
its value corresponds to one of the categories of the attribute, or the node has the
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attribute but its value does not correspond to one of the categories, or the node
does not have the attribute given its type (for instance, it is an IPAddress node
and therefore does not have the port value attribute). The one-hot-encoding
technique is used. For each node of the graph, we build a binary vector x of
size N +1, N corresponding to the number of categories. Each bit of this vector
corresponds to a given category and is thus set to one if the attribute value of the
nodes is of this category. It is set to zero otherwise. One last bit with the value
0 is added to this vector to represent the category “other”. In the second case,
each bit is assigned the value 0 and one last bit is added to ’1’ for the “other”
category. Finally, in the last case, i.e., if the encoded attributes are not related
to the type of the node, all the bits are assigned the value 0. This method makes
it possible to encode uniformly all the nodes whatever there type. We build a
vector for each attribute then we concatenate all these vectors into a binary
vector corresponding to the encoding of our node.

Encoding the Structure of the Graph. The encoding of the attributes
presented above is relative to the information contained in the nodes’ attributes.
Our representation also takes into account the structure of the graph and the
types of the edges. To this end, we encode an edge as a vector resulting of the
concatenation of information on (a) the type of this edge, (b) the attributes of
its source node, (c) the attributes of its destination node, (d) information about
the neighborhood of its source node and (e) information about the neighborhood
of its destination:

– (a): there are 18 types of edges. For each edge, we encode its type using the
same one-hot encoding technique that we use to encode the node’s attributes.

– (b) and (c): We encode the attributes of the source node and destination node
as previously described.

– (d) and (e): for each source node and destination node, we select randomly
10.000 neighbors and compute the mean of their encoding vector. We choose
10.000 nodes because this allows us to reduce the computational complexity
and we have determined that the mean does not change significantly above
this threshold.

Considering that a l edge between s and d is of type ltype, as well as that the
s node has N(s) neighbors and the d node has N(d) neighbors, we randomly
select 10,000 nodes in N(s) and N(d) to constitute a representative sample of the
neighborhood N(s)sample and N(d)sample. It should be noted that we already
have the encoding of each of these nodes in the form of a binary vector each
having the same size.

We define mean(−→encN(s)sample
) and mean(−→encN(d)sample

) as the bit-wise aver-
age of the vectors encoding each node of N(s)sample and N(d)sample respectively.
It should be noted that, at this point, the vector is made of continuous values
between 1 and 0 for the encoding of the neighbors. We thus obtain a compact
representation of the neighborhood of the node that is sufficient for the pro-
cessing of the graph and to detect anomalies. In this compact representation,
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each element of each vector takes a value between 0 and 1, but each element
corresponds to a category of a certain attribute. Therefore, this vector of val-
ues between 0 and 1 gives an idea of the distribution of the categories in the
considered neighborhood.

2.3 Novelty Detection with an Auto-Encoder

We use an auto-encoder for novelty detection as already proposed by [2,4,6,22,
29] in the security field where novelty is viewed as an anomaly that may be
generated by an attack. An auto-encoder [19] learns a representation (encoding)
of a set of pieces of data, typically for dimensional reduction. To do so, it learns
a function that sets the outputs of the network to be equal to its inputs. It
is made of two parts : an encoder and a decoder. The encoder compresses the
input data into a low-dimensional representation, and the decoder generates a
representation that is as close as possible to its original input from the reduced
encoding.

The inputs to our auto-encoder consist of the vectors whose construction was
explained in Sect. 2.2. Recall that these vectors encode the following informa-
tion: edge type, source node attributes, destination node attributes, source node
neighborhood attributes, and destination node neighborhood attributes. The
first three pieces of information are encoded by binary vectors while the last two
are encoded by vectors whose components are continuous values between 0 and 1
(see 2.2). In a similar case, Bastos et al. [9] showed that it was desirable to have
a single encoding function (which makes it possible to take into account possible
correlations between the different types of encoding) and a decoding function
specific to each type of information (binary vs. between 0 and 1) or specific to
each piece of information.

Our auto-encoder, therefore, has five outputs and uses two types of loss
functions: binary cross-entropy, that is suited to binary values, and mean-square
error, that is suited to continuous values. The result is made of five error values
between 0 and 1. To determine whether there is an anomaly, we calculate an
overall error which is the sum of these five errors and raise an anomaly alert if
it reaches a certain threshold. This threshold is set experimentally (see 3.2). Of
course, the lower it is, the more alerts we have and the greater the risk of false
positives. The analyst sets the threshold value according to his or her monitoring
context by lowering the value if it is more important for the analyst not to miss
any attacks than to have a large number of false positives.

3 Implementation and Experimental Results

This section details our implementation choices, experiments, and analysis. We
first describe the technologies used, the dataset and the evaluation criteria in
Sect. 3.1. We then carefully choose a threshold value in Sect. 3.2. Finally, we
dive into the results obtained by deploying the sec2graph approach compared to
other approaches based on anomaly detection in Sect. 3.3.
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3.1 Experimental Setup

Dataset. We choose to use the CICIDS2017 dataset [31] that is made of five
pcap and csv files encompassing more than two million network sessions. This
dataset was generated at the Canadian Cybersecurity Institute at the University
of New Brunswick and contains five days (Monday to Friday) of mixed traffic,
benign and attacks such as DoS, DDoS, BruteForce, XSS, SQL injection, infil-
tration, port scan, and botnet activities.

Normal traffic was generated using the CIC-B-Profile [31] system, that can
reproduce the behavior of 25 users using various protocols (FTP, SSH, HTTP,
HTTPS and SMTP). Attacks were executed using classic tools such as Metas-
ploit and Nmap. This dataset is labeled, i.e., we know when attacks occur and
when the traffic is normal. For example, the traffic captured on Monday is
entirely normal. According to [13], the CICIDS2017 dataset is the most recent
one that models a complete network configuration with components such as fire-
walls, routers, modems, and a variety of operating systems such as Windows,
Ubuntu Linux or Macintosh and that has been used in several studies. The pro-
tocols in the capture (e.g., HTTP, HTTPS, FTP, SSH) are representative of
protocols used in a real network and a variety of common attacks are covered.
The data set is also labeled, allowing us to quantify the effectiveness of our
method. To generate log files from the capture files, we used the Zeek IDS tool
(formerly Bro) that can generate network and application logs such as connec-
tions, http communications or file transfers. The default configuration for the
Zeek IDS was applied.

Implementation Details and Configuration. We chose the Python lan-
guage and we use a Gremlin API [28] for the construction of the graph from the
events logs and the manipulation of this graph. Indeed, the gremlin language
is particularly well adapted to the construction and manipulation of graphs.
Besides, we used the Python language for the implementation of the auto-encoder
based on the Keras library.

We used a Janusgraph database with an external index backend, Elastic-
search, and a Cassandra storage backend to store the graph data. We choose
these technologies for scalability as they are adapted to large graph databases.
Experiments were performed on a Debian 9 machine with 64 GB RAM.

The structure of our auto-encoder is depicted in Fig. 4. The sizes of both the
input layer and the output layers (18 + 4 * 360 = 1458 neurons) come from the
sizes of our vectors (recall that the output should be equal to the output). The
auto-encoder counts five hidden layers: the diversity of the SOs in the graph
leads to very diverse encoding and thus this number of hidden layers is suited
for learning complex relations between the different bits of the vectors. The
intermediate layer between the encoder and the decoder has a size of 80: the
input vectors are indeed sparse, thus we choose a little number of neurons for this
layer. The number of neurons in each layer and the number of hidden layers was
determined by experimentation, trying different values looking for a minimum
value for the reconstruction error. We choose a number of epochs (the number of
iteration of the forward and backpropagation phase) of 20 as experiments show
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Fig. 4. Structure of the auto-encoder

that the reconstruction error did not decrease significantly for a larger number
of epochs. We choose the Adam optimizer with a learning rate of 0.001 to back-
propagate the reconstruction error as it is well-adapted when more than one
hidden layer is used.

To train our auto-encoder, we used during a first phase (learning phase), the
data captured on Monday as it is entirely normal. This data is split in a training
set and a validation set with a validation split of 0.1. This allows to validate the
model on unseen data and thus prevent overfitting. Depending on the various
parameters we have, the learning phases took about an hour. In the second phase
(anomaly detection phase), we used the whole dataset (Monday to Friday) to
evaluate the detection capacity of our approach.

Evaluation Criteria. Our approach seeks to identify anomalies related to
links between objects. Classical approaches seek to identify anomalies relating
to events. Although our ultimate goal remains to present the anomalous edges
to the analyst, in this section, to compare ourselves to the classical approaches,
we determine from the anomalous edges we find in the graph the events that
gave birth to them. We consider as abnormal any event whose representation
contains at least one abnormal edge.

All the results presented in this section are related to events. These are
processed in one-hour shifts. For each time slot, we build a graph, then the
vectors to enter into the auto-encoder and finally we evaluate the novelty of
each vector.

In addition to the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN), we evaluate our results through the fol-
lowing standard metrics: Precision, Recall, F1-score, False Positive Rate (FPR)
and Accuracy. The Precision gives the ratio of real anomalous events among
all the events declared as anomalous. The Recall gives the proportion of events
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correctly detected as anomalous among all the really anomalous events. The
F1-Score is the harmonic mean of the Precision and Recall. The FPR is the
proportion of events for which an anomaly has wrongly been emitted and the
accuracy is the number of events correctly classified (as anomaly or as normal
events) divided by the total number of events. Formally, these criteria can be
defined as follows:

Precision =
TP

TP + FP
;Recall =

TP

TP + FN
;FPR =

FP

FP + TN
;

Accuracy =
TP + TN

TP + FN + TN + FP
;F1score =

2 ∗ Precision ∗ Recall

Precision + Recall

3.2 Defining an Optimal Threshold for Detection

In this section, we present the experiments conducted to determine the threshold
value to be used. As noted above, the analyst sets this threshold value according
to his or her supervisory context, lowering the threshold value if it is more
important for the analyst not to miss any attacks than to have to eliminate a
large number of false positives.

We determine the value of the threshold as follows: first, we consider all the
events of Monday, a day without attacks. With this data, we determine the rate
of false positives according to the detection threshold. We obviously want the
lowest possible false-positive rate. The curve in Fig. 5 shows the evolution of
the FPR as a function of the detection threshold. A threshold of 0.003 gives us
an FPR of 0.031. In the figure, for threshold values on the right of the value
of 0.003, the FPR decreases weakly, while for threshold values on the left, it
strongly increases.

Fig. 5. False Positive Rate (FPR) according to the value of the detection threshold on
Monday data (normal events).

We conclude that a threshold higher than 0.003 should be retained. To deter-
mine the value of this threshold more precisely, we need to consider the different
types of attacks in our dataset and determine the value that allows the most
efficient detection of these attacks. For this purpose, we consider the time slots
during which each attack occurs. For example, the FTP Patator attack takes
place on Tuesday from 9:20 to 10:20, so we consider the data between 9:00 and
11:00. During these time slots in which the attacks take place, we want the max-
imum number of events belonging to the attacks to be detected as anomalies
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while keeping the number of false positives as low as possible. In other words,
we naturally want to maximize precision and recall. Figure 6 gives the values of
recall and precision as a function of the detection threshold for the different types
of attacks in the CICIDS2017 dataset. We varied this threshold over the entire
range for which this variation has a significant impact on recall and precision.

Fig. 6. Values of Recall (top figure) and Precision (bottom figure) for the range of
variation of the threshold leading to a significant evolution of these values.

On the diagram at the top of the figure, it can be seen that a quasi-optimal
recall can be obtained (between 0.993 and 1) for a threshold value of 0.003. On
the diagram of the bottom of the figure, we also see that for this threshold value,
the precision is between 0.675 and 0.967, except for the Heartbleed attack (0.012)
and the infiltration attack (0.287). However, increasing the threshold further
does not significantly increase the precision, but does significantly decrease the
recall for infiltration and botnet. We, therefore, conclude that we can retain a
threshold value of 0.003.

The two cases of low precision, i.e., Heartbleed and infiltration can be
explained differently. In the case of Heartbleed, the low precision is explained by
the silent nature of this attack. Indeed, if we detect 100% of the events related
to the attack for a threshold of 0.003, this represents only eight network connec-
tions compared to almost 93.000 network connections that took place during the
attack. While the FPR is consistent with other slots in our dataset, the 93.000
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normal network connections lead to 681 false positives and thus decrease the
precision. In the case of the infiltration attack, the low accuracy is explained by
an abnormally large number of false positives. The infiltration attack is indeed
followed by a portscan performed by the victim of the infiltration. The pertur-
bation being massive, it impacts the neighborhood of the events linked to the
scan. This leads to considering a large amount of this neighborhood abnormal,
even for normal events, leading to a high rate of false positive.

3.3 Comparison with Other Anomaly Detection Algorithms on the
Same Dataset

To compare our results with the state of the art, we have taken the results of three
studies on attack detection that use the same dataset as we do, the CICIDS2017

Table 1. Comparison of False Positive Rate (FPR), Recall, Precision, Accuracy, and
F1-score results (in %) for supervised and semi-supervised approaches of literature and
sec2graph. The values in brackets are worse than those obtained with sec2graph. The
rank indicates the ranking of sec2graph in relation to other approaches.

Evaluation criteria FPR Recall Precision Accuracy F1-score

Better if Smaller Greater Greater Greater Greater

Algorithm

KNN [31] – (96) 96 – 96

RF [31] – (97) 98 – 97

ID3 [31] – (98) 98 – 98

Adaboost [31] – (84) (77) – (77)

MLP [31] – (83) (77) – (76)

NaiveBayes [31] – (84) (88) – (84)

QDA [31] – (88) 97 – (92)

DecisionTree + Rules [1] 1.145 (94.475) – (96.665) –

WISARD [1] 2.865 (48.175) – (72.655) –

Forest PA [1] (3.550) (92.920) – (94.685) –

J48consolidated [1] (6.645) (92.020) – (92.688) –

LIBSVM (5.130) (54.595) – (74.733) –

FURIA [1] (3.165) (90.500) – (93.668) –

REP Tree [1] (4.835) (91.640) – (93.403) –

NaiveBayes [1] (33.455) (82.510) – (74.528) –

Jrip [1] (4.470) (93.400) – (94.465) –

J48 [1] (5.040) (91.990) – (93.475) –

SU-IDS (0.5% supervised) [22] (5) (93.68) – (93.68)

Mean result 6,50 86,34 90,14 88.88 88,57

sec2graph (threshold 0.003) 3.125 99.910 88.872 97.481 94.069

Rank 3/11 1/18 5/7 1/11 4/7
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dataset1. These studies are the only three that present results according to all
or part of the criteria we have defined above and the comparison is therefore
possible.

Sharafaldin et al. [31] compares the results of seven supervised classi-
cal machine learning algorithms applied on this dataset: K-Nearest Neighbors
(KNN), Random Forest (RF), ID3, Adaboost, Multilayer perceptron (MLP),
Naive-Bayes (NB) and Quadratic Discriminant Analysis (QDA), that are all
supervised machine learning algorithms. Ahmim et al. [1] compare the results of
twelve classical or more recent classification algorithms: DecisionTree and rules,
WISARD, Forest PA, J48 consolidated, LibSVM, FURIA, REP Tree, Naive-
Bayes, Jrip, J48, MLP, and RandomForest. Since the latter two algorithms were
used in both studies, only the best results were retained in the comparison. Min
et al. [22] propose a semi-supervised method SU-IDS based on an auto-encoder
and a classification method. The SU-IDS experiments were carried out with a
variable number (from 0.5% to 100%) of labeled data. To compare our proposal
to a method close to an unsupervised model, we have chosen to use the results
of the tests carried out on a sample with 0.1% of labeled data.

All these algorithms were tested starting from a dataset containing 80 fea-
tures selected according to their relevance for the detection of attacks using
the CICFlowMeter tool [31]. In the case of the first seven algorithms listed
above, the authors trained their algorithms on a specifically chosen subset of the
80 attributes using a Random Forest Regressor. These attributes were chosen
because they were most likely to help detect the attacks in the dataset and thus
improved the performance of the algorithms for these specific types of attacks. In
our case, we used all the features contained in Zeek event logs without making a
prior selection according to their relevance for observing attacks. Our objective
is to measure the ability of the auto-encoder to choose the most relevant features
to represent a normal behavior in our dataset without targeting specific types
of attack.

Table 1 provides a comparison of the classical learning machine algorithms
listed above against our approach sec2graph with the optimal value previously
determined for the detection threshold. Results of the different algorithms come
directly from the original papers and parameters of the algorithms can be
assumed to have been optimized to produce the best possible results.

The values in this table show that, although being an unsupervised approach,
sec2graph achieves performances at worst slightly below the average of those
obtained by the supervised approaches it is compared to. Given the strategy we
have adopted to set the detection threshold, we achieve the best performance
in terms of recall, with 99.91% of attack events correctly marked as abnormal
(all attacks tested generate marked events). Nevertheless, sec2graph’s ranking
remains close to the average in terms of precision, which means that the analyst

1 Another study was published very recently [11] that deals with the 2018 version of
the CICIDS data. These data are richer in terms of protocols but different in terms
of attacks. While we cannot compare our proposal to this study, we have a work in
progress in this direction.
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will not be drowned by false positives: 88.872% of alerts are indeed true positives.
Moreover, we did not select attributes according to the type of attacks we want
to detect, allowing us to adapt to new kinds of attacks.

4 Discussion

While CICIDS2017 is arguably one of the most realistic and reasonably large
datasets, it contains numerous attacks that impact the total volume of network
communications. We trained our model only with the normal traffic on Monday
because the dataset on other days contains far too many attack sessions. While
the hypothesis of a learning dataset without attacks is strong, it is realistic to
think that attacks can be very limited in some real-life network traffic samples.
Auto-encoders also learn a general model, not taking into account particular
cases such as these attacks. Future work on a learning dataset with a low attack
proportion would allow to validate this hypothesis.

As discussed in Sect. 3.2, some attacks such as Infiltration are well detected
but also induce many false positives. Indeed, in this very case, nodes identified
as abnormal impact the calculation on their normal neighboring nodes, making
them look abnormal. Refining the method to calculate the reconstruction error
could reduce this effect. More generally, incorrectly labelling 3% of all the events
as abnormal (see FPR in Table 1 is way too high. However, the graph approach
allows the analyst to take into account a large number of events at once. More-
over, the use of an auto-encoder allows a better interpretation of the results.
During our analysis, we defined a reconstruction error corresponding to the sum
of the reconstruction errors, but it is possible to obtain the detail of the values
expected by the model and thus better interpret the results.

We tested our algorithm on data where normal traffic does not evolve while
in a real environment network activities, devices and behaviors change over time.
Since auto-encoders allow for iterative learning, it is possible to use new data
to evolve the model and learn new behaviors. This can be used to eliminate
recurring false positives or to track the evolution of network activities.

To cope with new type of data or new networks, changing the number of layers
and neurons of the auto-encoder is needed. Thus, we cannot directly transfer the
learning result to a new context. However, study of the FPR (see Sect. 3.2) allows
to adjust the parameters and choose a threshold for reconstruction error. Diverse
network communications and complexity require a larger number of neurons for
learning while a simple network on which actions are not very diversified requires
to decrease the number of neurons to avoid overfitting.

5 Related Work

In this section, we position our work in relation to similar approaches in the lit-
erature. To our best knowledge, at the time of writing, none of these approaches
has sought to detect anomalies on graphs using auto-encoders. Here, we position
our work, firstly with respect to pieces of work that relied on graphs for anomaly
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detection, and secondly with respect to pieces of work that used auto-encoders
for anomaly detection.

5.1 Using Graph Structures for Anomaly Detection

In the field of intrusion anomaly, graph structures have often been used. Her-
cule [25] represents inter-log similarities within a graph of log events. In this
representation, a node represents a log event and an edge represents a prede-
fined similarity relationship between two logs events. Clustering techniques are
then applied to the graph to identify the set of events related to a given attack.
Strictly speaking, there is no anomaly detection but the identification of infor-
mation related to a known attack occurrence identified thanks to a compromise
indicator. Experiments on APT attacks shows that the system performs well in
this task (accuracy of 88% on average), and once the events related to the attack
have been identified, it allows forensic analysis of the attack.

Other work relates to forensic analysis and exploits graph structures. For
example, King and Chen [16], as well as Goel et al. [14], propose to reconstruct
a chain of events in a dependency graph to explain an attack. In [21], Milajerdi et
al. use audit logs to reconstruct the history of attacks using traces from common
Advanced Persistent Threat (APT) attacks. Kobayashi et al. [17] use syslog
events to infer causality between security system events. These proposals are
however limited since they only consider one type of event format. Xu et al. [32]
represent, as a graph, the causal dependency among system events.

Other works use graphs to detect attacks and more precisely to detect bot-
nets [12,18,23]. They use network-related data to build topological graphs with
nodes representing hosts and links representing network communication between
them. They then use clustering, PageRank algorithm or statistical-based mining
techniques on graphs to identify abnormal network traffic based. While having
similar objective, we do not limit to botnet detection. Furthermore, in addition
to the fact that we process our graphs with an auto-encoder for anomaly detec-
tion, our dataset is richer since not limited to netflow data. This rich data also
allows us to take into account the global context in which the attacks occur.

Finally, Log2vec [20] detects user’s malicious behavior based on a clustering
algorithm applied to relations among user’s operations. Log2vec represents user’s
actions with small graphs and embeds them in a vector by using a random-based
walk algorithm. By contrast, we represent all network events in one big graph
and detect anomalies that occur on multiple devices by multiple attackers.

5.2 Using Auto-Encoders for Anomaly Detection

Several pieces of work already used auto-encoders for anomaly detection [2,4,6,
22,29], among which only [6,29] proposes unsupervised approaches.

The authors of [6] use two types of auto-encoders namely, stochastic denois-
ing auto-encoder and deep auto-encoder, to detect anomaly in the NSL-KDD
dataset. The experiments conducted by the authors show that their model
achieves an F1-score score respectively of 89.5% and 89,3%, a recall of 87.9%
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and 83.1% and a precision of 91.2% and 96.5%. However, the dataset used con-
tains redundant data that can distort the results obtained by learning machine
algorithms. In our study, we used the CICIDS2017 dataset that addresses the
problems posed by the NSL-KDD dataset and we were able to obtain better
results thanks to our graph representation of SOs.

The authors of [22] propose to remedy the problems of data with little or no
security label by proposing an unsupervised and semi-supervised approach. The
idea is to use an auto-encoder in association with a classification algorithm for
the semi-supervised approach. The latter is then trained on a restricted portion
of labeled data. In the unsupervised approach, the auto-encoder is used alone.
The study was carried out on the NSL-KDD and CICIDS2017 datasets. The
results are good only in the semi-supervised approach, even if the unsupervised
approach seems to isolate some attacks. In our work, on the CICIDS2017 data
and with an unsupervised approach, we obtain better detection results, especially
for false positives. Our graph approach handles heterogeneous types of events
and links between these events, allowing us to detect anomalies without using a
supervised algorithm.

In [29], the authors propose to use an auto-encoder to detect intrusion on IoT
radio networks. The approach is based on the monitoring of the communication
activities generated by the connected objects. The radio-activities patterns are
then encoded in features specific to the IoT domain and normal activities are
then learned with the auto-encoder to detect anomalies in a second phase. Simi-
larly, Kitsune [33] is an auto-encoder-based NIDS capable of extracting features
and creating a dynamically unsupervised learning model that has been tested for
IoT devices. These methods are specific to the considered context but proposes,
as in our case, an unsupervised intrusion detection system to detect anomalies
with the help of an auto-encoder.

The other studies mentioned at the beginning of this paragraph [2,4] add
a supervised layer to the unsupervised output of the auto-encoder. The gen-
eral idea is to use the auto-encoder to identify normal traffic almost certainly.
Traffic that is not considered normal by the auto-encoder is then provided to
a supervised classification device, trained on data labeled to identify attacks.
We differ from this work since we refuse to label data, contenting ourselves with
learning attack-free data. Indeed, in a production environment, the data is much
too voluminous to be possible to label them. Moreover, the experimental results
obtained by these other studies are based on data that are different from ours.
It is therefore difficult if not impossible to compare these experimental results
with ours.

6 Conclusion and Future Work

We proposed in this paper a graph representation of security events that under-
lines the relationship between them. We also proposed an unsupervised technique
built on an auto-encoder to efficiently detect anomalies on this graph represen-
tation. This approach can be applied to any data set without prior data labeling.
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Using the CICIDS2017 dataset, we have shown that the use of graph structures
to represent security data coupled with an auto-encoder gives results that are as
good as or better than the supervised machine learning methods.

We are currently conducting new experiments with a wider neighborhood in
the encoding of the graph to evaluate the potential improvement of intrusion
detection and reduction of the number of false positives. To further improve
our detection results, we plan to use another kind of auto-encoder (LSTM auto-
encoder) to take temporal links between events into account in addition to logical
links that we already take into account. As these improvements should lead to
an increased duration of this learning phase, we will investigate a reduction
of the size of the encoding of the nodes by using entity embedding instead of
one-hot encoding. Another area for improvement is related to the usability and
interpretability of results by a security analyst. Here, the idea is to present to
the analyst a graphical view of the detected anomalies, based on the SOs graphs
that we have defined. We want to provide to the analyst the subsets of the edges
of this graph that have been detected as abnormal, as well as of course the SOs
linked by these edges. We believe that this would help the analyst eliminating
false positives or reconstructing global attack scenarios.
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9. Bastos, I.L., Melo, V.H., Gonçalves, G.R., Schwartz, W.R.: Mora: A generative
approach to extract spatiotemporal information applied to gesture recognition.
In: 15th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS) (2018)



Network Novelty Detection on Graph Structured Data 257

10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22
(1977)

11. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber
security intrusion detection: approaches, datasets, and comparative study. J. Inf.
Secur. Appl. 50, 102419 (2020)

12. François, J., Wang, S., State, R., Engel, T.: BotTrack: tracking botnets using Net-
Flow and PageRank. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A.,
Scoglio, C. (eds.) NETWORKING 2011. LNCS, vol. 6640, pp. 1–14. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-20757-0 1

13. Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation frame-
work for intrusion detection dataset. In: International Conference on Information
Science and Security (ICISS) (2016)

14. Goel, A., Po, K., Farhadi, K., Li, Z., De Lara, E.: The taser intrusion recovery
system. In: ACM SIGOPS Operating Systems Review (2005)

15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

16. King, S.T., Chen, P.M.: Backtracking intrusions. In: ACM SIGOPS Operating
Systems Review (2003)

17. Kobayashi, S., Otomo, K., Fukuda, K., Esaki, H.: Mining causality of network
events in log data. IEEE Trans. Netw. Serv. Manag. 15(1), 53–67 (2017)

18. Lagraa, S., François, J., Lahmadi, A., Miner, M., Hammerschmidt, C., State, R.:
Botgm: unsupervised graph mining to detect botnets in traffic flows. In: 1st Cyber
Security in Networking Conference (CSNet) (2017)
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Abstract. Recent works on Control-Flow Integrity (CFI) have mainly
focused on Context-Sensitive CFI policies to provide higher security
guarantees. They utilize a debugging hardware feature in modern Intel
CPUs, Processor Trace (PT), to efficiently collect runtime contextual
information. These PT-based CFI mechanisms offload the processing of
the collected PT trace and CFI enforcement onto idle cores. However,
a processor does not always have idle cores due to the commonly-used
multi-threaded applications such as web browsers. In fact, dedicating
one or more cores for CFI enforcement reduces the number of available
cores for running user programs. Our evaluation with a state-of-the-art
CFI mechanism (µCFI) shows that the performance overhead of a CFI
mechanism can substantially increase (up to 652% on a single-core pro-
cessor) when there is no idle core for CFI enforcement. To improve the
performance of µCFI, we propose to leverage a hardware monitor that
unlike PT does not incur trace processing overhead. We show that the
hardware monitor can be used to efficiently collect program traces (<1%
overhead) in their original forms and apply µCFI. We prototype the
hardware-monitor based µCFI on a single-core RISC-V processor. Our
analysis show that hardware-monitor based µCFI incurs, on average,
43% (up to 277%) performance overhead.

Keywords: CFI · Hardware monitor · Processor trace

1 Introduction and Motivation

With the introduction of Data Execution Prevention (DEP) [8], attackers
changed their focus from code injection to code-reuse attacks such as Return-
Oriented Programming (ROP) [35] and Jump-Oriented Programming (JOP)
[12]. Control-Flow Integrity (CFI) [7] is a security defense that aims to prevent
these attacks by drastically reducing the allowed code targets for each Indirect
Control-Flow Transfers (ICTs). Most CFI mechanisms consist of two phases [10]:
an analysis phase and an enforcement phase. The analysis phase generates a stat-
ically constructed Control-Flow Graph (CFG), which approximates the allowed
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code targets for each control-flow transfer. The enforcement phase ensures that
all the executed control-flow transfers follow valid paths in the CFG.

The success of a CFI mechanism mainly relies on two metrics: performance
and security. Recent works focus on context-sensitive CFI [20,24,27,28] to
provide stronger security guarantees than traditional context-insensitive CFI
[42,43]. Context-sensitive CFI mechanisms refine the CFG with additional con-
textual information. Unfortunately, introducing contextual information requires
additional processing time during the enforcement phase; thus, it increases the
overall performance overhead of the CFI mechanisms [20,21].

For efficient context-sensitive CFI enforcement, researchers have repurposed
an already deployed hardware feature in modern Intel CPUs, Processor Trace
(PT) [34]. PT has been designed for offline debugging and failure diagnosis
by capturing runtime target and timing information of ICT instructions (ret
and indirect jmp/call) [32]. Although several works [15,26,38] used PT in its
intended direction, recent works leveraged PT to efficiently collect contextual
information for online CFI enforcement [20,21,24,29].

Using PT for CFI enforcement is practical since it already exists in the com-
modity hardware. However, PT is not an optimal hardware feature for CFI
enforcement. Although PT efficiently collects traces (<3% overhead [29]) in the
form of encoded packets at the hardware level, the decoding of these packets
(trace processing) performed with a software-level decoder is significantly slower
than the trace collection [21,24,29]. Unfortunately, any PT-based CFI mech-
anism requires this inefficient trace processing prior to validating ICT targets
at enforcement phase. To avoid the additional performance overhead, existing
PT-based CFI mechanisms [20,21,24,29] offload the trace processing and ICT
validation onto idle cores1. However, commonly used applications (such as web
browsers/servers and games) are multi-threaded; thus, the processor will not
always have idle cores available for CFI enforcement. In fact, dedicating one
or more cores for CFI enforcement reduces the number of available cores for
running user applications.

In Fig. 1, we show the performance impact of the number of cores on CFI
enforcement by using a state-of-the-art PT-based approach (µCFI [24]) for
SPEC2006 benchmark suite [23]. The details of the experimental setup are pro-
vided in Sect. 4. We evaluate PT-based µCFI using four configurations: single-
core (1-Core), two-core (2-Core), three-core (3-Core), and eight-core (8-Core). 8-
Core and 3-Core configurations incur similar performance overheads since µCFI
enforcement uses two additional idle cores (one for ICT validation and one for
trace processing). 2-Core and 1-Core results clearly show that PT-based µCFI
significantly impacts the performance of benchmarks if the processor does not
have any idle cores. On average, the performance overhead of µCFI increases
from 23% to 42% from 3-Core to 1-Core. Note that the benchmarks generat-
ing more packets show higher degradation in performance since trace processing
requires more CPU time for these benchmarks. In the worst case, µCFI incurs

1 Throughout the paper, a “core” refers to a logical core.
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652% overhead on 1-Core for h264ref, which is significantly higher than 3-Core
overhead (372%).

Based on the insights gained from our measurements, efficient context-
sensitive CFI policies should be enforced through a hardware feature which effi-
ciently collects contextual information without requiring trace processing. We
show that a programmable hardware monitor (PHMon [19]) with fine-grained
configuration capabilities can be used to efficiently implement a state-of-the-art
context-sensitive CFI mechanism (µCFI [24]) to defend against forward-edge
attacks. PHMon incurs only 1% trace collection overhead when collecting the
contextual information. Moreover, PHMon does not require trace processing
during CFI enforcement as opposed to PT. In addition, we integrate a hardware-
based shadow stack [19] into PHMon-based µCFI to protect backward-edges as
well.

Fig. 1. Performance overhead (left y-axis) of PT-based µCFI for varying number of
cores and the packet count (right y-axis) for various SPEC2006 benchmarks. (The
depicted performance overhead of some of the benchmarks differs from those reported
in the original work [24]. Section 4.1 provides an explanation for this performance
variation.)

To evaluate our work, we implement a prototype of PHMon-based µCFI
interfaced with the RISC-V Rocket core [9] on an FPGA. We choose the RISC-
V Rocket core since its open-source nature allows us to evaluate our mechanism
using an actual implementation rather than merely a simulation. In summary,
we make the following contributions:

– We show that the performance impact of the trace processing on CFI becomes
substantial if a processor does not have idle cores dedicated to software-level
decoding. According to our measurements, a state-of-the-art CFI mechanism
(µCFI) incurs up to 652% overhead on a single-core processor.

– Based on the insights gained from our measurements, we propose to imple-
ment µCFI through a hardware monitor (PHMon [19]), which unlike PT does
not incur trace processing overhead.
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– We evaluate PHMon-based µCFI on a single-core RISC-V processor. We
demonstrate that PHMon can efficiently collect traces in their original forms
with only 1% trace collection overhead on average. PHMon-based µCFI incurs
43% performance overhead, on average, to secure forward-edges.

– We show that PHMon-based µCFI is compatible with backward-edge CFI
solutions by integrating a shadow stack based on a prior work [19]. Integrating
shadow stack minimally affects the performance overhead (<1% additional
overhead) and allows us to secure both forward and backward edges.

The rest of the paper is organized as follows. Section 2 provides background.
Section 3 describes our design and implementation. Section 4 provides our evalu-
ation. We discuss our implementation choices in Sect. 5 and present related work
in Sect. 6. Finally, Sect. 7 concludes our work.

2 Background

In this section, we provide the background on Intel PT [32], PHMon [19], and
µCFI [24].

2.1 Intel PT

PT is a debugging hardware feature in modern Intel CPUs [34]. PT collects
Change of Flow Instructions (CoFIs) that cannot be derived statically. Specifi-
cally, PT generates three types of packets while encoding the CoFIs: (1) TNT
packets to record 1-bit taken or non-taken information for each conditional
branch (i.e., jcc), (2) TIP packets to record the target addresses of indirect
branches (i.e., indirect jmp/call and ret), and (3) FUP packets for the source
addresses of signals and interrupts. PT uses an efficient encoding mechanism
while collecting the traces of a program. A software decoder can reconstruct
the control-flow of the program using the program binary and the PT packets
recorded during the execution. To reduce the number of generated packets, PT
can be configured to specify the address range, privilege level, and CR3 (page
table pointer) value to be monitored.

2.2 PHMon

PHMon [19] is a parallel decoupled monitor interfaced with the RISC-V Rocket
processor [9] via Rocket Custom Coprocessor (RoCC). A user can configure
PHMon through its software API and monitor the execution of processes. In
Fig. 2, we present a simplified overview of PHMon. As the processor executes
instructions, PHMon receives the architectural state of the processor for the
monitored program in the form of a commit log from the writeback stage of the
pipeline. The commit log includes the instruction (inst), the PC (pc src), the
next PC (pc dst), memory/register address used in the instruction (addr), and
the data accessed by the instruction (data). Note that unlike PT, PHMon col-
lects these fields in their original forms and does not require software-decoding.
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The incoming commit log is then provided to the Matching Units (MUs).
Each MU applies a set of distinct monitoring rules defined via the software
interface of PHMon. The MU checks the commit log to detect the matches based
on these rules. For instance, a user can set an MU to detect specific instructions
(e.g., ret, jalr) or instructions at specific PC values. Upon detecting a match,
an MU sends a matching packet to the Action Unit (AU). The AU consists
of a queue, Config Units (CFUs), an Arithmetic and Logical Unit (ALU), a
local Register File, and a Control Unit. The AU stores the incoming matching
packets in the queue. Each MU is associated with a CFU, where the user-defined
instructions are stored for the corresponding match. The AU executes these user-
defined instructions through either hardware operations (i.e., ALU or memory
read/write operations) or an interrupt handled by the Operating System (OS)
running on the RISC-V core.

2.3 µCFI

Although context-sensitive CFI policies significantly reduce the allowed code
targets for each ICT, most of them [20,27,40] are unable to provide a unique
valid target for each ICT. As an example, we provide a code snippet (inspired by
the original work [24]) in Listing 1.1. In this example, the value of the function
pointer (func ptr) is specified by a variable uid that indexes into the array
func ptr arr. Since the index value (uid) is non-constant and resolves at run-
time, most context-sensitive CFI policies identify all array elements (A, B, and C)
as valid targets. On the contrary, µCFI [24] (a state-of-the-art context-sensitive
CFI) ensures that each ICT instruction has one Unique Code Target (UCT) at
each step of the program execution. µCFI achieves the UCT property by identi-
fying constraining data (c-data) from the program source code and using c-data
as context when enforcing CFI. c-data refers to any non-constant operand (uid

Fig. 2. A simplified overview of the PHMon [19] architecture: PHMon receives
a commit log from a processor. It processes the commit log based on the user-defined
rules and performs the follow-up operations such as an interrupt.
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in the example) of a sensitive instruction, where an instruction is considered sen-
sitive if it is involved in a function pointer calculation (line 3–4 in the example).
For efficient CFI enforcement, µCFI uses PT when collecting c-data and ICT
targets.

1 void A() ; void B() ; void C() ;
2 void handleReq ( int uid ) {
3 void (∗ f u n c p t r a r r [ 3 ] ) ( ) = {&A, &B, &C} ;
4 void (∗ f unc p t r ) ( ) = f un c p t r a r r [ uid ] ;
5 (∗ f unc p t r ) ( ) ;
6 }

Listing 1.1. Code snippet for describing µCFI.

In Fig. 3, we present the overview of µCFI enforcement using PT (PT-based
µCFI). µCFI consists of a compiler (µCFI-compiler) and a dynamic monitor
(µCFI-monitor). The µCFI-compiler instruments the program source to iden-
tify c-data and generates an instrumented binary. During the execution of the
instrumented binary, PT writes the encoded traces into its trace buffer. When
the trace buffer reaches capacity, the kernel driver (PT-Driver) copies the trace
buffer into a kernel buffer. µCFI-monitor obtains the encoded PT trace of the
instrumented program from the kernel buffer by signaling PT-Driver, decodes
the PT trace in its trace decoder unit, and validates the ICT targets in the
points-to analyzer unit.

Fig. 3. µCFI [24] design overview: µCFI consists of two components: a compiler
(µCFI-compiler) that instruments the program to identify c-data, and a runtime mon-
itor (µCFI-monitor) to validate ICTs.
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To guarantee the protection of forward-edges, µCFI-monitor requires collect-
ing c-data, the target of indirect calls2, and the target of sensitive rets from
the instrumented program. Note that µCFI-monitor requires the target value of
some of the returns (only sensitive ones) for forward-edge protection since they
are involved in the function pointer calculation. More specifically, a return is
“sensitive” if its corresponding function contains at least one sensitive instruc-
tion. For backward-edge protection, the µCFI-compiler instruments the program
to implement a software-based shadow stack based on a prior work [16].

3 PHMon-Based µCFI

PHMon-based µCFI is a hardware-assisted context-sensitive CFI enforcement.
There are two main advantages of leveraging PHMon when enforcing µCFI. First,
PHMon collects the program traces in their original forms. Therefore, it does
not introduce trace processing overhead when enforcing CFI. Second, PHMon
offers a variety of configuration capabilities. This feature allows PHMon to easily
collect both contextual data and ICT targets.

3.1 Design

In Fig. 4, we show the overview of µCFI enforcement using PHMon (PHMon-
based µCFI). First, we explain how we leverage PHMon to protect forward-
edges. As a first step, we compile a program with a modified version of the
µCFI-compiler (detailed in Sect. 3.2) and generate the instrumented binary. Prior
to the execution of this binary, PHMon is programmed to collect the required
information (i.e., c-data, the target of indirect calls, and the target of sensitive
returns) for µCFI enforcement. While the processor executes the binary, PHMon
collects the commit log through RoCC. Then, PHMon applies the user-defined
monitoring rules to the commit log to determine if the commit log includes
any information for µCFI enforcement. PHMon writes the collected information
from the binary into a trace buffer depicted as µCFI Region in Fig. 4. Whenever
the trace buffer becomes full, PHMon raises an interrupt. Our kernel module
(PHMon-Driver) copies the collected trace buffer to a kernel buffer and informs
the OS such that the OS can resume the execution of the instrumented binary.
The PHMon-Driver is also in charge of providing the collected traces to the µCFI-
monitor as the µCFI-monitor performs the enforcement of the ICT instructions.

We protect backward-edges by implementing a shadow stack. Delshadtehrani
et al. [19] already showed that PHMon can be used to implement a shadow
stack (PHMon-based shadow stack). Instead of implementing a software-only
shadow stack like PT-based µCFI, we implement PHMon-based shadow stack
in our prototype for completeness. We program PHMon to validate the return
targets by monitoring call/ret instructions (details provided in Sect. 3.2). In

2 Since the current µCFI implementation does not protect indirect jmps, µCFI-
compiler converts each indirect jmp to a conditional branch.
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case of a call instruction, PHMon stores the new return address in a shared
memory space (Shadow Stack in Fig. 4). Whenever the function returns, PHMon
compares the return address with the one stored in the Shadow Stack to validate
the return target.

Fig. 4. Design Overview of PHMon-based µCFI: PHMon writes the collected
program traces into µCFI Region and Shadow Stack in memory for forward-edge pro-
tection and backward-edge protection, respectively. µCFI-monitor fetches the traces
via PHMon-Driver and enforces CFI.

One of the main differences between protecting forward and backward edges
is the enforcement mechanism. For forward-edge protection, PT-based µCFI
stores the collected packets in trace buffers and provides the buffer content to
the software monitor by raising an interrupt. We keep our PHMon-based µCFI
implementation similar to PT-based µCFI to fairly represent the architectural
benefit of using PHMon. Specifically, PHMon stores the necessary information
in a memory buffer and provides this information to the software monitor by
triggering an interrupt. Here, we use PHMon as a trace collection mechanism
(similar to PT) by leaving the ICT validation to the software monitor. For a
shadow stack, PHMon validates the ICT targets at the hardware level by using
a sequence of ALU instructions. Therefore, PHMon validates the ICT targets
without requiring a software monitor. Note that we implement the shadow stack
to show that our PHMon-based protection mechanism for forward edges is com-
patible with a backward-edge protection mechanism. The performance benefit
of this work arises from the forward-edge protection mechanism.

3.2 Implementation

To enforce µCFI using PHMon, we applied changes to both the µCFI-compiler
and µCFI-monitor. We used the same front-end IR-level instrumentation (LLVM
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3.6) used by the original µCFI-compiler [2]. This front-end instrumentation is
in charge of identifying c-data. We used our RISC-V back-end instrumenta-
tion to collect c-data, indirect call targets, and sensitive return targets (detailed
later in this section) using PHMon. At the release of LLVM 3.6, RISC-V was
not a supported architecture. Therefore, we used a newer version (LLVM 7.0)
for the back-end instrumentation. We removed the code that implements the
trace decoder unit (color-coded with red in Fig. 3) from the µCFI-monitor since
PHMon does not perform any encoding while collecting the traces from the
binary. We applied the necessary changes to allow the µCFI monitor to commu-
nicate with the PHMon-Driver. We used LLVM 7.0 to cross-compile the µCFI-
monitor [3] for RISC-V. Overall, we aim to minimize the software-level imple-
mentation differences between PT-based µCFI and PHMon-based µCFI, so that
we can fairly represent the architectural benefit of using PHMon.

We slightly modified the Linux kernel to support PHMon-based µCFI. Since
the frequent suspension of the protected program increases the performance
overhead, µCFI suspends the protected program only at security-sensitive sys-
tem calls to validate the target of the collected ICTs. Similar to many prior
works [13,20,24,40], we modify our kernel to suspend the execution of the pro-
tected program at the following security-sensitive system calls: mmap, mremap,
remap file pages, mprotect, execve, execveat, sendmsg, sendmmsg, sendto,
and write.

As we explained in Sect. 2.2, PHMon maintains the incoming match packets
in a queue prior to executing the user-defined instructions stored in the CFU.
When the queue gets full, an obvious option for PHMon [19] is to stall the
fetch stage of the Rocket core’s pipeline until PHMon processes all the packets
waiting in the queue. However, this is not the proper way of handling the queue
problem for PHMon-based µCFI since match packets frequently require an action
that should be processed by the processor, i.e., interrupt. Instead of stalling the
processor, we modified PHMon to raise an interrupt handled by the OS whenever
the queue becomes full. We then perform busy-waiting in the interrupt handler
until all the match packets in the queue are processed. To provide full protection
against control-flow attacks, in addition to leveraging PHMon for forward-edge
protection (PHMon-based µCFI), we also use it for backward-edge protection
(PHMon-based shadow stack). In total, we program 5 MUs to simultaneously
implement PHMon-based µCFI and PHMon-based shadow stack. In the rest of
this section, we explain about programming PHMon for forward-edge as well as
backward-edge protection.

Programming PHMon for Forward-Edge Protection: For µCFI forward-
edge protection, we use three MUs: one MU for indirect calls, one MU for sen-
sitive returns, and one MU for c-data collection. We use two registers from the
Register File of PHMon to store the base address and the current pointer of
µCFI Region.

Indirect Calls: To collect indirect call targets with PHMon, we replace each
indirect call in the program with an indirect jump to a special function (ICF as
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shown in Listing 1.2). The ICF loads the indirect call target into a temporary
register (t1) from a fixed memory address, and jumps to the target address stored
in t1. To obtain the target address during the instrumented binary execution,
we use one MU which compares the pc src of the collected commit log with the
PC value of the load instruction (0x104b4 in Listing 1.2) in the ICF. This PC
value can be statically obtained by disassembling the binary. Whenever PHMon
detects a match, it writes the content of data field of the commit log (this field
holds the t1 value) to the trace buffer allocated for µCFI.

Sensitive Returns: As explained in Sect. 2, the target address of each sensitive
return is required by the µCFI-monitor for forward-edge protection. To obtain
the target values for sensitive returns, we insert a mv t1,ra instruction before
each sensitive return instruction in the application. This instruction copies the
return address value to the temporary register t1. PHMon can then simply
collect the value of t1. To do this, we use one MU to detect the execution of
the mv t1,ra instruction. Whenever the inst value in the incoming commit log
matches with the machine code of the mv t1,ra, PHMon writes the content of
data field of the commit log (t1 in this case) into the trace buffer allocated for
µCFI.

c-data Collection: To collect c-data, we instrument the program to call a
special write cdata function as shown in Listing 1.3. The program calls the
write cdata function to send c-data to the µCFI-monitor. The write cdata
loads the value of c-data into a temporary register (t1) from a fixed mem-
ory address, and immediately returns. We program one MU to monitor the
ld instruction in the write cdata. The MU compares the pc src value of
the incoming commit logs with the PC value of the ld instruction (0x104bc
in Listing 1.3). Whenever PHMon detects a match, PHMon writes the con-
tent of data field (t1 in this case) into the trace buffer allocated for µCFI.

1 #load i n d i r e c t c a l l t a r g e t to t1
2 <ICF>:
3 104b4 : ld t1 ,−728(gp )
4 104b8 : j r t1

Listing 1.2. RISC-V assembly code of the
function ICF

1 #load c−data value in to t1
2 <write cdata>:
3 104bc : ld t1 ,−720(gp )
4 104 c0 : r e t

Listing 1.3. RISC-V assembly code of the
function write cdata

Programming PHMon for Backward-Edge Protection: We implement a
shadow stack (similar to original work [19]) using PHMon to demonstrate the
compatibility of PHMon-based µCFI with backward-edge CFI mechanisms. We
use one MU to monitor calls and one MU to monitor returns. We use two registers
from the Register File of PHMon to store the base address of the Shadow Stack
and the Shadow Stack pointer. We program PHMon to write the original return
addresses into a trace buffer (Shadow Stack in Fig. 4) when a call instruction is
executed. Upon a return instruction, PHMon pops a value from the shadow stack
and compares it with the current return value. PHMon performs the comparison
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directly on hardware using its ALU unit. In case of a mismatch, PHMon raises
an interrupt and the OS terminates the process.

Table 1. Microarchitectural details of Intel processor, Rocket core and PHMon.

Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz

Pipeline Out-of-order

L1 instruction cache 32 KB, 8-way set-associative

L1 data cache 32 KB, 8-way set-associative

L2 cache 256 KB, 4-way set-associative

L3 cache 12 MB, 16-way set-associative

Rocket Core @ 25 MHz

Pipeline 6-stage, in-order

L1 I cache 16 KB, 4-way set-associative

L1 D cache 16 KB, 4-way set-associative

Register file 31 entries, 64-bit

PHMon

MUs 5

Local Register File 6 entries, 64-bit

Match Queue 1,024 entries, 129-bit

Action Config Table 16 entries

4 Evaluation

We evaluated our PHMon-based µCFI system to answer the following questions:

(1) What is the execution time overhead of our source code instrumentation
to leverage PHMon?
(2) How much overhead does PHMon incur to collect the program traces?
(3) How much overhead does PHMon-based µCFI incur when protecting
forward edges only?
(4) What is the performance degradation of integrating a backward-edge CFI
mechanism into PHMon-based µCFI?

4.1 Evaluation Framework

To evaluate the performance of PT-based µCFI for systems with varying core
numbers, we used an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz machine run-
ning Ubuntu 16.04. The microarchitectural details are provided in Table 1. We
run PT-based µCFI on four different configurations; 1-Core, 2-Core, 3-Core, and
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8-Core. As discussed in Sect. 1, in Fig. 1, we reported the performance overhead
of µCFI for these four configurations. In addition, we reported the packet count
collected by PT for enforcing µCFI. We used the open-source µCFI-monitor
[3], µCFI-compiler [2], and µCFI-kernel [4]3 repositories. By using these three
repositories with no modifications, we successfully reproduced the results (within
1% standard deviation) reported in the original work [24] on an 8-Core proces-
sor. However, we observed that µCFI-kernel does not suspend the execution of
the protected program for three of the security-sensitive system calls (mremap,
remap file pages, and write) reported in the paper [24]. Hence, we modified
µCFI-kernel to include these missing system calls. This modification lead to
higher performance overhead of some benchmarks (i.e., +9% for sjeng, +84%
for astar, and +234% for h264ref) compared to the overheads reported in the
original work [24]. In our analysis, we ran each benchmark three times and cal-
culated the average (geometric mean) overhead. The standard deviation in our
measurements is less than 1%. We also provide the error bars for each benchmark
in Fig. 1.

To measure the PHMon-based µCFI performance overhead, we compared
PHMon-based µCFI with the baseline implementation of the Rocket proces-
sor. The microarchitectural parameters of Rocket core and PHMon are listed in
Table 1. For both experiments, Rocket core includes a 16K L1 instruction cache
and a 16K L1 data cache without an L2 or an L3 cache4. Due to the limitation
of our FPGA-base evaluation platform, we could run Rocket core with maxi-
mum frequency of 25 MHz for both experiments. We modified the open-source
PHMon architecture [1] interfaced with the 6-stage in-order RISC-V Rocket
processor [9] via RoCC interface. PHMon-based µCFI is prototyped on a Xilinx
Zynq Zedboard [33], running a modified version of RISC-V Linux (v4.20) kernel.
For both experiments, i.e., the baseline and PHMon-based µCFI, we setup the
Rocket processor with the same configurations including a 16K L1 instruction
and data cache. We performed each experiment three times and calculated the
average value. All standard deviations were below 1%. To show the stability of
our measurements, we include the error bars as well (both in Fig. 5 and 6).

During development, we observed that the µCFI-monitor validates the traces
much slower than PHMon’s trace collection speed. Hence, the collected traces
accumulated in the kernel. Due to the limited available memory in our evaluation
framework, the accumulated traces eventually resulted in an out of memory
situation for some of the benchmarks. To circumvent this issue when we reach
the memory limit, PHMon-Driver suspends the protected program until all the
collected traces are processed by the µCFI-monitor. Note that this increases the
duration that we suspend the process and potentially increases the performance
overhead of PHMon-based µCFI. In an evaluation framework with more available
memory, PHMon-based µCFI could outperform our current prototype.

3 µCFI-kernel is the modified Linux kernel which supports µCFI.
4 At time of our evaluation, Rocket core was not supporting L2 and L3 cache.
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4.2 Evaluation Benchmarks

We calculated the runtime overhead of PT-based µCFI (Fig. 1) for C/C++
applications using the ‘test’ workload of SPEC2006 benchmark suite [23]. We
could not obtain results (similar to original work [24]) for gcc, dealII, povray,
omnetpp and xalancbmk since PT loses packets at the hardware level, which
manifests as a segmentation fault in the µCFI-monitor. Additionally, in our eval-
uation framework, soplex caused a segmentation fault in the µCFI-monitor. We
did not include perlbench in our evaluation since this benchmark frequently
uses the fork system call. The heavy usage of fork puts more pressure on a
single-core compared to an 8-Core; hence, using this benchmark in our evalua-
tion framework misrepresents the performance impact of the trace processing for
µCFI enforcement. Note that we represent the dniwog input as a separate data
point for gobmk since its packet number is drastically higher than the remaining
data points.

To evaluate PHMon-based µCFI on a Rocket processor, we used 8 out of
12 benchmarks which successfully run with PT-based µCFI. Unfortunately, we
could not run lbm, namd, and gobmk with a PHMon-based µCFI due to RISC-V
cross-compilation errors using LLVM 7.0. We could not run mcf and perlbench
due to the limited memory on our FPGA. Similarly, sjeng was also too large
for our FPGA. However, by reducing the value of TTSize (which controls the
size of one of the hashtables in sjeng) to 3000 in sjeng’s source code, we were
able to run it with PHMon-based µCFI. For a fair evaluation, we also report the
overhead of PT-based µCFI for sjeng using TTSize=3000 in Fig. 6.

4.3 Evaluation Results

Figure 5 depicts the performance impact of the source code instrumentation to
collect program traces (instrumentation overhead) using PHMon. We measured
the instrumentation overhead of the benchmarks by comparing the execution
time of a baseline program with the instrumented program for µCFI enforce-
ment. Our results demonstrate that the code instrumentation (Instru in Fig. 5),
including our RISC-V back-end passes to transfer c-data and ICT targets to the
µCFI-monitor, incurs very low performance overhead (1.7% on average). Note
that the instrumentation overhead is higher (peak 5%) for the benchmarks gen-
erating more packets such as sjeng, astar, and h264ref.

To demonstrate that PHMon can efficiently collect contextual information,
we measured the trace collection overhead of PHMon (TC in Fig. 5). To do this, we
ran the instrumented benchmarks under the monitoring of PHMon without µCFI
enforcement. Whenever the trace buffer of PHMon became full, PHMon triggered
an interrupt and returned from the interrupt handler without processing the
trace buffers. Note that Instru+TC overhead also includes the instrumentation
overhead. Our results show that PHMon can efficiently collect program traces
(<1% overhead on average and 4% peak). Note that PHMon’s trace collection
overhead is maximum of 4% even for benchmarks generating more packets such
as sjeng, astar, and h264ref.
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Fig. 5. Performance overhead (left y-axis) of the instrumented binary (Instru) and
trace collection (TC) overhead of PHMon. We use the right y-axis to show the packet
count for each benchmark.

Fig. 6. Performance overhead of PHMon-based µCFI, PHMon-based µCFI + Shadow
Stack, and PT-based µCFI. We use the right y-axis for providing the packet count for
each benchmark.

Using Fig. 6, we first depict the performance overhead of PHMon-based µCFI
and PT-based µCFI when protecting only the forward-edges. Both PHMon-
based and PT-based µCFI perform efficiently for benchmarks such as milc,
sphinx3, hmmer, bzip2, and libquantum that generate fewer packets. PHMon-
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based µCFI introduces 88%, 146%, and 274% overhead for packet-intensive
sjeng, astar, and h264ref benchmarks, respectively. For these benchmarks,
PT-based µCFI results in 131%, 207%, and 652% performance overhead, respec-
tively. Since PHMon-based µCFI does not incur trace processing overhead, its
performance bottleneck mainly arises from the ICT validation performed by
the µCFI-monitor. For PT-based µCFI, there is an additional trace processing
overhead prior to ICT validation.

In Fig. 6, we also show the full PHMon-based CFI protection overhead. The
full protection secures forward-edges and backward-edges with PHMon-based
µCFI and PHMon-based shadow stack, respectively. Adding the shadow stack
increases the performance overhead of PHMon-based µCFI by less than 1% on
average (peak 3%) and allows us to fully protect the programs against control-
flow hijacking attacks.

The original work [19] reports the power and area overhead of PHMon with
varying number of MUs. Based on those results, PHMon-based µCFI using three
MUs incurs 6.5% power and 15.1% area overhead. The full protection requires
five MUs, which results in 9.2% power and 18.4% area overhead.

5 Discussion

In this section, we discuss some of our design choices when implementing µCFI
using PHMon. We specifically discuss aspects of our source code instrumentation
(Sect. 3.2) to protect forward-edges.

When enforcing µCFI using PHMon, we aim to minimize the software-level
implementation differences with the original PT-based µCFI work so that we can
fairly represent the architectural benefit of using PHMon. Therefore, similar to
PT-based µCFI, we collected indirect call targets by redirecting the control-flow
to the special function (ICF as shown in Listing 1.2). We initially aimed to replace
indirect calls with direct calls to ICF similar to PT-based µCFI targeting x86 64.
Unfortunately, direct calls in RISC-V can target a limited range (±1 MiB) since
the offset is encoded into the operand of the instruction and that operand is only
20 bits. Therefore, we could not replace each indirect call with a direct call in
RISC-V, especially for benchmarks with bigger code size, and had to use indirect
jumps instead. Unfortunately, we do not provide additional checks to ensure that
these indirect jumps are not subverted by an attacker at run-time. However,
we could easily avoid these indirect jumps in the binary by instrumenting the
code with “custom” instructions. The RISC-V ISA allows adding a custom ISA
extension. We could insert a custom instruction that stores the target address
of an indirect call in a register before each indirect call instruction. This way,
we could obtain indirect call targets without redirecting indirect calls to the
ICF using indirect jumps. We redirect indirect calls to ICF using indirect jumps
instead of inserting custom instructions to have a similar implementation with
PT-based µCFI.

We collect c-data by monitoring the ld instruction at a fixed address (see
Listing 1.3). We obtain the PC value of ld instruction using a static analy-
sis. Our design choice aligns with PT-based µCFI which generates packets only
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for fixed addresses. To minimize the software-level implementation differences,
we implement PHMon-based µCFI in a similar way. Unfortunately, this design
choice can result in some portability issues. For instance, it can cause problems
with randomization mechanisms like ASLR. In fact, this issue could also easily
be addressed by inserting a custom instruction that will help us store the con-
straining data in a register. This way, we could program PHMon to monitor the
custom instruction rather than a specific program counter. Since the instruction
machine code is the same regardless of the program layout, µCFI enforcement
would be more portable than our current implementation.

We insert mv t1,ra instruction before each sensitive return to collect the
return value using PHMon. We choose the mv t1,ra instruction since none of the
SPEC2006 benchmarks contains it when compiled without our back-end pass.
We acknowledge that the proper way to collect sensitive return values would
be to insert a custom instruction before each sensitive return. For instance, the
custom instruction could store the return value in a register. We could program
PHMon to monitor this custom instruction and write the content of the register
value into memory. This way, we could ensure that the original program does
not contain the inserted instruction unless it enforces µCFI.

6 Related Work

Our PHMon-based µCFI approach is closely related to works which use hard-
ware support for CFI enforcement. We divide these hardware mechanisms into
two categories: the ones already deployed in modern processors, and the new
hardware designs proposed for future deployment.

6.1 Reusing Deployed Hardware Features

CFI mechanisms that rely on existing hardware features are practical since
they can be readily deployed on commodity hardware. Unfortunately, existing
hardware features have several drawbacks since the hardware features are not
designed with security in mind. Specifically, CFIMon [42] utilizes Branch Trace
Store (BTS) [34] to enforce CFI. However, BTS incurs high performance over-
heads (20×–40×) [40]. To reduce the overhead, several works [13,31,40] use Last
Branch Record (LBR) [34] for CFI enforcement. LBR can record the last N exe-
cuted branches where N can be 4, 8, 16, or 32 depending on the processor model.
For instance, kBouncer [31] aims to protect backward-edges from ROP attacks
using LBR. kBouncer checks the control flow of the program whenever the pro-
gram makes a security sensitive system call. ROPecker [13] extended kBouncer’s
approach by emulating the potential program execution with the help of a stat-
ically generated ROP gadget database. The key idea is to detect ROP gadgets
which can possibly be stitched together towards a malicious purpose. Due to
LBR’s branch recording capacity, kBouncer and ROPecker are shown to be vul-
nerable to history flushing attacks [11]. This attack initially cleanses any evidence
of the ROP attack in the short-term history and then creates a view of history
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that the defense will not classify as an attack. Another LBR-based CFI mecha-
nism (PathArmor [40]) raises the bar for history flushing attacks thanks to its
context-sensitive CFI policy. PathArmor uses LBR to record the last 16 indirect
branches and direct calls as the context. Unfortunately, PathArmor checks less
than 0.1% of total returns on NGINX [21] for backward-edge protection because
of the LBR’s limited trace recording capability.

CFIGuard [41] overcomes the limited size of LBR by combining it with the
Performance Monitoring Unit. CFIGuard raises an interrupt whenever LBR
buffer is full. However, triggering an interrupt every 16 branches can significantly
increase the performance overhead, especially for CPU-intensive applications.
OS-CFI [28] implements an origin sensitive context-sensitive CFI mechanism to
reduce the attack surface for C-style indirect calls and C++ virtual calls. For
the former, the origin is the most recently updated code location. For the latter,
the origin refers to code location where receiving object’s constructor is called.
OS-CFI uses Intel MPX for efficiently storing and retrieving the origin of the
code pointers. OS-CFI uses inline reference monitors to collect and maintain the
contextual information. Since these monitors extensively use memory to store
the temporary data for searching hash table, they are vulnerable to race condi-
tions for a short interval. To protect the integrity of inline reference monitors,
OS-CFI utilizes the transactional memory (Intel TSX). LMP [25] uses MPX for
protecting backward-edges by implementing a shadow stack via program source
instrumentation. Unfortunately, Intel MPX is not adopted by industry widely
due to the considerable performance overhead and compatibility issues [30]. MPX
is not available on future Intel processors [5].

Several researchers also leverage Intel PT for CFI enforcement. PT can record
higher number of indirect branches than LBR, which allows researchers to enforce
more precise CFI mechanisms. For instance, PT-CFI [22] enforces backward-edge
CFI by implementing a shadow stack for the COTS binaries based on the PT
traces. Griffin [21] implements three different CFI policies over unmodified bina-
ries and shows the tradeoff between precision and performance. Also, Griffin
shows the performance impact of the number of kernel threads on the speed of
buffer trace processing and CFI enforcement, which goes up from ∼%8 to ∼%19
on NGINX as we increase the number of threads from one to six. FlowGuard
[29] attempts to minimize the performance overhead of PT with its fuzzing-
assisted approach. The key idea is to collect program traces prior to the program
execution by using a fuzzer and minimize the overhead of expensive software-
level decoding of PT. Dynamic analysis-based approaches [20,24] increase the
precision of CFI by obtaining additional information from the program at run-
time, but at the expense of introducing higher performance overhead. More
specifically, PITTYPAT [20] implements a path-sensitive CFI policy, which ver-
ifies the whole executed control path of the program. µCFI uses constraining
data to provide unique code target for each ICT.

PHMon-based µCFI enforces CFI without weakening any security guaran-
tees. As opposed to PT-based µCFI, PHMon-based µCFI can collect the orig-
inal form of the data and does not require software-level decoding of collected
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information when validating control-flows. Also, PHMon-based µCFI is not vul-
nerable to history flushing attacks as opposed to LBR-based CFI mechanisms.

6.2 New Hardware Designs

Several works propose new hardware designs to enforce CFI. For instance,
HAFIX [17] proposes a fine-grained backward-edge CFI system which confines
function returns to active call sites. It assigns unique labels to each function
by instrumenting the program source with compiler support and enforces the
CFI policy directly on hardware for efficiency. Unfortunately, recent work shows
that HAFIX is vulnerable to Back-Call-Site attack [39] and cannot fully protect
backward-edges. Also, it is vulnerable to any forward-edge attacks. HCFI [14]
can fully protect backward-edges by implementing a shadow stack. Additionally,
it implements the forward-edge CFI policy discussed by Abadi et al. [7]. Simi-
lar to HAFIX, HCFI also modifies the ISA and introduces new instructions to
provide CFI capability to the core. Sullivan et al. [37] enhance HAFIX by sup-
porting forward edge protection. Although both Sullivan et al. [37] and HCFI
implement efficient forward-edge CFI policies directly on hardware, unlike µCFI,
they are still unable to provide a unique target for each ICT and cannot fully
protect against forward edge attacks. Intel announced its hardware support for
CFI in the form of CET [6]. CET offers strong backward-edge protection with
a shadow stack. Unfortunately, the forward-edge policy protection (i.e., Indirect
branch tracking) is coarse-grained and vulnerable to advanced attacks such as
JOP [12] and COOP [36]. Nile [18] and PHMon [19] offer full protection against
backward-edge attacks by implementing a shadow stack with less than 2% perfor-
mance overhead. However, these two works cannot protect against forward-edge
attacks. This work complements PHMon by offering forward-edge protection.

7 Conclusion

In this work, we show that the hardware features originally designed for debug-
ging on Intel processors are not efficient when used for enforcing CFI. Specifically,
Intel PT-based CFI mechanisms put high pressure onto idle cores in processor
since they require expensive software-level decoding prior to ICT enforcement.
All of these PT-based mechanisms assume that idle cores are readily available
for CFI enforcement, which is not necessarily the case considering the multi-
threaded nature of common applications. We evaluate the performance impact
of the trace processing on PT-based CFI enforcement and show that a state-
of-the-art CFI mechanism (µCFI) incurs up to 652% overhead on a single-core
compared to 372% overhead on a 3-Core processor. When enforcing CFI, we
leverage a programmable hardware monitor (PHMon) which does not intro-
duce trace processing overhead unlike PT. Our PHMon-based µCFI mechanism
incurs 43% performance overhead, on average, to secure forward edges. We also
integrate a hardware-based shadow stack to fully secure the program including
backward-edges. Adding the shadow stack increases the performance overhead
of PHMon-based µCFI by less than 1% on average.
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