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Foreword

International concern in scientific, industrial, and governmental communities over
traces of xenobiotics in foods and in both abiotic and biotic environments has
justified the present triumvirate of specialized publications in this field: compre-
hensive reviews, rapidly published research papers and progress reports, and
archival documentations These three international publications are integrated and
scheduled to provide the coherency essential for nonduplicative and current pro-
gress in a field as dynamic and complex as environmental contamination and
toxicology. This series is reserved exclusively for the diversified literature on
“toxic” chemicals in our food, our feeds, our homes, recreational and working
surroundings, our domestic animals, our wildlife, and ourselves. Tremendous
efforts worldwide have been mobilized to evaluate the nature, presence, magnitude,
fate, and toxicology of the chemicals loosed upon the Earth. Among the sequelae of
this broad new emphasis is an undeniable need for an articulated set of authoritative
publications, where one can find the latest important world literature produced by
these emerging areas of science together with documentation of pertinent ancillary
legislation.

Research directors and legislative or administrative advisers do not have the
time to scan the escalating number of technical publications that may contain
articles important to current responsibility. Rather, these individuals need the
background provided by detailed reviews and the assurance that the latest informa-
tion is made available to them, all with minimal literature searching. Similarly, the
scientist assigned or attracted to a new problem is required to glean all literature
pertinent to the task, to publish new developments or important new experimental
details quickly, to inform others of findings that might alter their own efforts, and
eventually to publish all his/her supporting data and conclusions for archival
purposes.

In the fields of environmental contamination and toxicology, the sum of these
concerns and responsibilities is decisively addressed by the uniform, encompassing,
and timely publication format of the Springer triumvirate:
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Reviews of Environmental Contamination and Toxicology [Vol. 1 through 97
(1962–1986) as Residue Reviews] for detailed review articles concerned with
any aspects of chemical contaminants, including pesticides, in the total environ-
ment with toxicological considerations and consequences.

Bulletin of Environmental Contamination and Toxicology (Vol. 1 in 1966) for
rapid publication of short reports of significant advances and discoveries in the
fields of air, soil, water, and food contamination and pollution as well as
methodology and other disciplines concerned with the introduction, presence,
and effects of toxicants in the total environment.

Archives of Environmental Contamination and Toxicology (Vol. 1 in 1973) for
important complete articles emphasizing and describing original experimental or
theoretical research work pertaining to the scientific aspects of chemical con-
taminants in the environment.

The individual editors of these three publications comprise the joint Coordinating
Board of Editors with referral within the board of manuscripts submitted to one
publication but deemed by major emphasis or length more suitable for one of the
others.

Coordinating Board of Editors
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Preface

The role of Reviews is to publish detailed scientific review articles on all aspects of
environmental contamination and associated (eco)toxicological consequences.
Such articles facilitate the often complex task of accessing and interpreting cogent
scientific data within the confines of one or more closely related research fields.

In the 50+ years since Reviews of Environmental Contamination and Toxicology
(formerly Residue Reviews) was first published, the number, scope, and complexity
of environmental pollution incidents have grown unabated. During this entire
period, the emphasis has been on publishing articles that address the presence
and toxicity of environmental contaminants. New research is published each year
on a myriad of environmental pollution issues facing people worldwide. This fact,
and the routine discovery and reporting of emerging contaminants and new envi-
ronmental contamination cases, creates an increasingly important function for
Reviews. The staggering volume of scientific literature demands remedy by which
data can be synthesized and made available to readers in an abridged form. Reviews
addresses this need and provides detailed reviews worldwide to key scientists and
science or policy administrators, whether employed by government, universities,
nongovernmental organizations, or the private sector.

There is a panoply of environmental issues and concerns on which many
scientists have focused their research in past years. The scope of this list is quite
broad, encompassing environmental events globally that affect marine and terres-
trial ecosystems; biotic and abiotic environments; impacts on plants, humans, and
wildlife; and pollutants, both chemical and radioactive; as well as the ravages
of environmental disease in virtually all environmental media (soil, water, air).
New or enhanced safety and environmental concerns have emerged in the last
decade to be added to incidents covered by the media, studied by scientists, and
addressed by governmental and private institutions. Among these are events so
striking that they are creating a paradigm shift. Two in particular are at the center
of ever increasing media as well as scientific attention: bioterrorism and global
warming. Unfortunately, these very worrisome issues are now superimposed on
the already extensive list of ongoing environmental challenges.
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The ultimate role of publishing scientific environmental research is to enhance
understanding of the environment in ways that allow the public to be better
informed or, in other words, to enable the public to have access to sufficient
information. Because the public gets most of its information on science and
technology from internet, TV news, and reports, the role for scientists as inter-
preters and brokers of scientific information to the public will grow rather than
diminish. Environmentalism is an important global political force, resulting in the
emergence of multinational consortia to control pollution and the evolution of the
environmental ethic. Will the new politics of the twenty-first century involve a
consortium of technologists and environmentalists, or a progressive confrontation?
These matters are of genuine concern to governmental agencies and legislative
bodies around the world.

For those who make the decisions about how our planet is managed, there is an
ongoing need for continual surveillance and intelligent controls to avoid endanger-
ing the environment, public health, and wildlife. Ensuring safety-in-use of the many
chemicals involved in our highly industrialized culture is a dynamic challenge,
because the old, established materials are continually being displaced by newly
developed molecules more acceptable to federal and state regulatory agencies,
public health officials, and environmentalists. New legislation that will deal in an
appropriate manner with this challenge is currently in the making or has been
implemented recently, such as the REACH legislation in Europe. These regulations
demand scientifically sound and documented dossiers on new chemicals.

Reviews publishes synoptic articles designed to treat the presence, fate, and, if
possible, the safety of xenobiotics in any segment of the environment. These
reviews can be either general or specific, but properly lie in the domains
of analytical chemistry and its methodology, biochemistry, human and animal
medicine, legislation, pharmacology, physiology, (eco)toxicology, and regulation.
Certain affairs in food technology concerned specifically with pesticide and other
food-additive problems may also be appropriate.

Because manuscripts are published in the order in which they are received in
final form, it may seem that some important aspects have been neglected at times.
However, these apparent omissions are recognized, and pertinent manuscripts are
likely in preparation or planned. The field is so very large and the interests in it are
so varied that the editor and the editorial board earnestly solicit authors and
suggestions of underrepresented topics to make this international book series yet
more useful and worthwhile.

Justification for the preparation of any review for this book series is that it deals
with some aspect of the many real problems arising from the presence of anthro-
pogenic chemicals in our surroundings. Thus, manuscripts may encompass case
studies from any country. Additionally, chemical contamination in any manner of
air, water, soil, or plant or animal life is within these objectives and their scope.

Manuscripts are often contributed by invitation. However, nominations for new
topics or topics in areas that are rapidly advancing are welcome. Preliminary
communication with the Editor-in-Chief is recommended before volunteered
review manuscripts are submitted. Reviews is registered in WebofScience™.
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Inclusion in the Science Citation Index serves to encourage scientists in academia
to contribute to the series. The impact factor in recent years has increased from 2.5
in 2009 to 7.0 in 2017. The Editor-in-Chief and the Editorial Board strive for a
further increase of the journal impact factor by actively inviting authors to submit
manuscripts.

Amsterdam, The Netherlands Pim de Voogt
August 2018
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1 Introduction

Freshwater Gammarids are common leaf-shredding detritivores, and they usually
feed on naturally conditioned organic material, in other words leaf litter that is
characterised by an increased palatability, due to the action and presence of micro-
organisms (Chaumot et al. 2015; Cummins 1974: Maltby et al. 2002). Gammarus
spp. are biologically omnivorous organisms, so they are involved in shredding leaf
litter and are also prone to cannibalism, predation behaviour (Kelly et al. 2002) and
coprophagy when juveniles (McCahon and Pascoe 1988). Gammarus spp. is a
keystone species (Woodward et al. 2008), and it plays an important role in the
decomposition of organic matter (Alonso et al. 2009; Bundschuh et al. 2013) and is
also a noteworthy prey for fish and birds (Andrén and Eriksson Wiklund 2013;
Blarer and Burkhardt-Holm 2016). Gammarids are considered to be fairly sensitive
to different contaminants (Ashauer et al. 2010; Bloor et al. 2005; Felten et al. 2008a;
Lahive et al. 2015; Kunz et al. 2010); in fact Amphipods have been reported to be
one of the most sensitive orders to metals and organic compounds (Wogram and
Liess 2001), which makes them representative test organisms for ecotoxicological
studies and valid sentinel species for assessing water quality status (Garcia-Galan
et al. 2017).

Since Gammarids play an important role in the breakdown of organic matter in
freshwater environments, it is understandable that their feeding behaviour is often
used as a sublethal endpoint, to investigate water quality status and the effects of
different contaminant types (Crane and Maltby 1991). Gammarid feeding activity
could be altered by the presence of contaminants in the water, which could poten-
tially alter their food source, influence the organism’s biological function and cause
abnormal behavioural responses. These types of feeding investigation have been
carried out as in situ (i.e. directly in the environment) and ex situ (i.e. in the
laboratory) studies (Bundschuh et al. 2011b; Dedourge-Geffard et al. 2009; Maltby
et al. 2002; Zubrod et al. 2015). It has been demonstrated that feeding assays using
Gammarids are representative of natural leaf decomposition in the environment
(Maltby et al. 2002) and could be used to assess the effects of chemical contaminants
and also understand the consequences of new-generation contaminants, such as
plastic debris in freshwater environments (Blarer and Burkhardt-Holm 2016;
Weber et al. 2018). Even though feeding behaviour studies have been carried out
for almost half a century, there is a lack of standardisation for both ex situ and in situ
methods. Without standardisation, there is a risk that the effects of a test substance
could be under- or overestimated during in situ and ex situ approaches, which could
reduce their usefulness in environmental biomonitoring programs. This paper aims
to review the literature on feeding as an endpoint for amphipod ecotoxicology, by
highlighting disparities in the published methodologies, and to help develop
standardised protocols. Peer-reviewed literature was accessed through search
engines, databases and library archives. In general, most feeding studies have
reported four main stages: (1) acclimation period, (2) food preparation, (3) exposure
and (4) end of the experiment and feeding rate calculation. The aforementioned four
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stages have been reviewed separately, and the variability of the published
methodologies has been considered, in order to draw attention to the current
discrepancies in the literature.

2 Acclimation Conditions

The first stage of an experiment (both in situ and ex situ) is the acclimation period
that should be used to acclimate the organisms to the experimental conditions.
However, the acclimation conditions are not always fully disclosed, and when
they are, they sometimes contradict the experimental conditions. The reproducibility
of an experiment is also highly dependent on many abiotic and biotic factors, which
are rarely taken into consideration for Gammarid feeding studies (Coulaud et al.
2011). In the following sections, different variables (duration, temperature, light/
dark cycles, type of water and organisms) that could impact the outcome of an
experiment have been reviewed separately and summarised in Table 1, in order to
emphasise the full range of variability within the literature. In some studies,
Gammarids are sourced from laboratory breeding programs (e.g. Blockwell et al.
1996; Bloor and Banks 2006a, b; McCahon and Pascoe 1988).

2.1 Duration

Acclimation periods vary depending on the study (see Table 1), for example, Agatz
et al. (2014) kept specimens of Gammarus pulex in the laboratory for 3 days prior to
the start of the experiment, whereas another study left Gammarus fossarum organ-
isms to acclimate for 21 days (Garcia-Galan et al. 2017). Typically the acclimation
period used for Gammarids appears to be between 5 and 7 days, but some studies
have selected longer intervals up to 35 days (see Table 1). Agatz and Brown (2014)
stated that a 1-day acclimation period helped to reduce the variability of their results
by just 1.6%, suggesting that a longer acclimation period could potentially have an
even greater impact on reducing the intraspecific variability and consequently
strengthen the statistics. Although experimental controls are incorporated into the
majority of experimental designs, it becomes difficult to compare published peer-
reviewed research when the test organisms have experienced anything between
3 and 35 days acclimation to laboratory conditions (Agatz et al. 2014; Garcia-
Galan et al. 2017) (see Table 1), even more so when the organisms are used as
water quality biomonitors for in situ experiments (see Table 1).

Feeding Behavioural Studies with Freshwater Gammarus spp.: The. . . 3
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2.2 Temperature

During the acclimation period, organisms need to be kept at a constant temperature
and with a precise light/dark cycle. Gammarids from temperate countries are usually
maintained at a temperature between 10 and 22�C (see Table 1). The temperature
adopted in an experimental design is often selected to reproduce seasonal conditions,
but unfortunately the literature does not always specify the selection criteria. Tem-
perature can have a significant impact on Gammarids and on amphipods in general
(Labaude et al. 2017). Foucreau et al. (2014) discovered that temperatures higher
than 15�C altered various physiological parameters in Gammarus pulex populations
in North France. Southern specimens consumed more oxygen at higher temperatures
and had a higher glycogen content, which means they have a higher energy supply.
Cold-acclimated organisms consumed more energy and oxygen when they are
exposed to higher temperatures, and they presented a lower heat tolerance
(Semsar-kazerouni and Verberk 2018). Interestingly, Alonso et al. (2009) acclimated
their organisms at 15�C for 4 days, after which time the organisms were transferred
to a 20�C room to acclimate for a further 4 days. Moving organisms from a low to a
high temperature could have potentially affected the experimental results (Alonso
et al. 2009). Furthermore, temperature plays an important role in the immune system
of crustaceans (Le Moullac and Haffner 2000). Therefore, it is difficult to compare
studies where the test animals have been acclimated at different temperatures, as this
could have influenced their energy stores or their immune systems, for example.
These differences could also be reflected in the organisms’ behavioural reactions,
which could be incorrectly interpreted as a result of exposure to specific contami-
nants. In fact, both Nilsson (1974) and Coulaud et al. (2011) reported an increased
feeding rate with an increased temperature. The extent of the feeding rate increase
was also dependent on leaf species (i.e. Alnus glutinosa or Fagus sylvatica) (Nilsson
1974). Acclimation temperature plays an even greater role in in situ experiments
where the chosen temperature should be as close as possible to real-life environ-
mental conditions. Interestingly, Coulaud et al. (2011) linked temperature and
feeding rate through a linear regression, in order to better understand the impact of
temperature on the Gammarids feeding. It was found that a small increase in mean
temperature (from 12 to 13�C) could enhance the feeding rate by 7.3%.

2.3 Light and Dark Cycles

The same principle could be applied to the different light/dark cycles used during the
acclimation period. The most commonly adopted light/dark cycle is 12:12 h (see
Table 1) that reflects typical equinox conditions. However, some studies acclimate
their organisms in total darkness, and in other studies, the adopted cycle is not
specified (see Table 1). Sometimes a seasonal cycle is selected, in order to replicate
the time of year when the organisms are collected from the wild, such as summer
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with a light/dark cycle of 16:8 h (Weber et al. 2018) or autumn with a cycle of
10:14 h (Garcia-Galan et al. 2017) (see Table 1). Adopting different light/dark cycles
could make the comparison between studies challenging, since light could influence
the organisms’ physiological processes and behaviour (Perrot-Minnot et al. 2013).

2.4 Media Selection

The type of media selected for an experiment is another factor that could have an
impact on the outcome of a study. Some researchers prefer to use an artificial
medium (see Table 1) that guarantees standardisation (Agatz et al. 2014; Maltby
et al. 2002), and in other studies, river water is sometimes used as a medium.
However, river water might be contaminated, and this could therefore interfere
with the organisms’ cleansing process during their acclimation period, which
makes it a peculiar choice of test media. Numerous studies have also used river
water or a mixture (Alonso et al. 2009; Blarer and Burkhardt-Holm 2016;
Bundschuh et al. 2009, 2017; De Castro-Català et al. 2017; Dedourge-Geffard
et al. 2009; Gergs and Rothhaupt 2008; Iltis et al. 2017; Maul et al. 2006; Zubrod
et al. 2015) (see Table 1). For example, Bundschuh et al. (2017) combined river
water with tap water, which also has limitations as the tap water could be contam-
inated (Magi et al. 2018). Potentially, any type of water could be contaminated,
which is why the authors recommend that researchers should report the chemical
breakdown (i.e. presence of contaminants) of their chosen water media along with
their study findings so that any contamination is transparent.

Gammarus pulex allocates up to 11% of its energy supply to osmotic regulation
(Sutcliffe 1984), and Gammarids have been proven to be acid-sensitive (Gammarus
fossarum; Felten and Guerold 2001; Gammarus pulex, Sutcliffe and Carrick 1973).
In fact, acidic conditions induce a range of physiological and behavioural alterations,
such as a reduction in the ventilation activity of Gammarus pulex (Felten et al.
2008b). These findings highlight the importance of measuring pH, as a shift in pH
might influence the outcome of an experiment and prevent comparisons between
studies. pH is rarely reported and presumably not measured in the environment
during the collection process, the acclimation period or the experiment. Along with
the chemical parameters of the acclimation media, the authors also recommend that
pH is another factor that should be measured during the acclimation period, to ensure
that accurate baseline data is recorded.

2.5 Characteristics of the Test Organism

Another important factor that plays a fundamental role in the reproducibility of a
feeding experiment is the organism itself. Organisms of different age and sex may
behave or respond differently to contaminants. For example, juveniles are more
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sensitive to contaminants than adult organisms (Adam et al. 2010), and their feeding
rate varies over time, making them more suitable for short-term feeding studies
(Agatz and Brown 2014). Agatz and Brown (2014) and Nilsson (1974) identified
that smaller specimens of Gammarus pulex have a higher feeding rate but higher
variability over time, in comparison to larger organisms.

However, other studies have reported that the feeding rate increases with organ-
ism size (Coulaud et al. 2011), but the adoption of different units of measurement
and a small size range might be contributing factors for those findings. It has been
suggested that using organisms with a specific body mass (given in dry weight)
could reduce experimental variability. For feeding studies, up to a 57% reduction in
variability has been documented for specific body mass studies compared to mixed
body mass studies (Agatz and Brown 2014). There is also a recommendation that
body length should be used as an indicator of dry weight and the correlation for
organisms between 2 and 16 mm (Graça et al. 1993b).

Alternatively, organisms might be divided into size groupings by applying
passive underwater separation techniques (Bundschuh et al. 2009, 2017; Zubrod
et al. 2017), by measuring the dorsal length of the Gammarids’ first thoracic segment
after the organisms are photographed (De Castro-Català et al. 2017), by considering
their wet weight (Blockwell et al. 1996; Danger et al. 2012; Weber et al. 2018) or by
using their dry weight at the end of an experiment (Agatz et al. 2014). There is no
agreed standard method on how to separate or select specimens of Gammarids for
this experimental technique, but the chosen method will ultimately determine the
unit of measurement for calculating the feeding rate, e.g. if wet weight is used, the
unit of measurement will be wet weight. The use of either dry or wet weight seems
straightforward, but it is only an estimate, and it lacks accuracy, as the dry weight
range is only known at the end of the study. Furthermore, wet weight does not
provide an accurate measurement due to the unknown volume of liquid in each
sample. Blotting the sample dry before weighing could help to remove a proportion
of the moisture, but it could potentially stress the organisms and consequently affect
the results; therefore, the authors recommend the use of dorsal length as the authors
believe it to be a more accurate way to measure the organisms. In in situ experiments,
the organisms are often divided by size before the start, but the weight is not taken
into consideration. This means that the amount of consumed food is usually related
to the number of living organisms at the end of the experiment (e.g. Coulaud et al.
2011; Dedourge-Geffard et al. 2009) (see Table 3).

Same-sex tests with organisms (female-only, Geffard et al. 2010, or male-only,
Crane and Maltby 1991; De Castro-Català et al. 2017; Forrow and Maltby 2000;
Kelly et al. 2002; Maltby et al. 2002; Naylor et al. 1989; Zubrod et al. 2015) (see
Table 1) of a specific size are often undertaken, although sex is not always specified,
which leads to female and male organisms being used indiscriminately (Agatz et al.
2014; Agatz and Brown 2014; Alonso et al. 2009; Arsuffi and Suberkropp 1989;
Bärlocher and Kendrick 1973a; Blarer and Burkhardt-Holm 2016; Blockwell et al.
1998; Bundschuh et al. 2009, 2011b, 2013, 2017; Dedourge-Geffard et al. 2009;
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Gergs and Rothhaupt 2008; Graça et al. 1993a, b; Hahn and Schulz 2007; Lahive
et al. 2015; Taylor et al. 1993; Weber et al. 2018; Xuereb et al. 2009; Zubrod et al.
2017) (see Table 1).

As a rule, and not only in feeding studies, gravid females and organisms affected
by the acanthocephalan parasite are usually excluded from experiments (Agatz et al.
2014; Alonso et al. 2009; Blarer and Burkhardt-Holm 2016; Bundschuh et al. 2011b,
2013; Forrow and Maltby 2000; Zubrod et al. 2015, 2017) unless they are specifi-
cally chosen for the purpose of the study (Agatz and Brown 2014; Pascoe et al.
1995). Alonso et al. (2009) developed a feeding study using the Multispecies
Freshwater Biomonitor, and neither length nor sex influenced the feeding activity
of either sex of Gammarus pulex. However, it is debatable whether these results
might only be applicable to the type of contaminant used in the investigation, as
some contaminants might affect male and female Gammarid feeding behaviour in
different ways.

3 Food Preparation

The food source selected for an experiment using Gammarids is important, but
especially so for feeding studies, both in the acclimation period and in the experi-
ment itself. Gammarids are shredder detritivores, and they usually feed on condi-
tioned organic material, in other words material that has been colonised by
microorganisms, such as leaf litter. In the natural environment, freshly abscised
leaves are colonised by fungi and then by bacteria (Baldy et al. 1995), which
facilitate the decomposition process and transform the material, making it more
palatable and accessible to the organisms (Bärlocher and Kendrick 1975; Cummins
1974; Gessner et al. 1999).

Gammarus spp. have displayed selective behaviour towards leaf species and their
conditioning level (Agatz and Brown 2014; Graça et al. 1993a, b, 2001) and the type
of fungi (Arsuffi and Suberkropp 1989). Interestingly, Graça et al. (2001) compared
food preferences of shredders from temperate (Gammarus pulex and Sericostoma
vittatum) and tropical (Nectopsyche argentata and Phylloicus priapulus) streams.
When provided with conditioned and/or unconditioned leaves from either a temper-
ate (Alnus glutinosa) or tropical (Hura crepitans) country, Gammarus pulex showed
a significant preference for the conditioned leaves compared to unconditioned leaves
of the same species. Leaves are characterised by different hardness, texture and more
importantly by dissimilar C:N ratios, which means the various leaf species provide
the organisms with differing energy supplies. A lower C:N ratio signifies a better
quality food, and conditioned material is usually characterised by a lower C:N ratio
compared to unconditioned material (Graça et al. 1993b). Some species such as alder
(Alnus spp.) are characterised by a lower C:N ratio and higher palatability compared
to others, such as horse chestnut (Aesculus spp.) (Agatz and Brown 2014), which
could lead to the organisms growing larger (Bärlocher and Kendrick 1973b).
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In feeding assays, there are several options when considering a food source. The
most common choice is to provide the Gammarids with conditioned organic mate-
rial. Depending on the study, the adopted leaf species may be different. The most
commonly used leaves are alder (Alnus spp.), elm (Ulmus spp.), horse chestnut
(Aesculus spp.), maple (Acer spp.), poplar (Populus spp.) and oak (Quercus spp.)
(see Table 2). In some cases, the Gammarids’ diet is enriched with Tubifex worms
(Coulaud et al. 2011; Dedourge-Geffard et al. 2009; Geffard et al. 2010; Xuereb
et al. 2009). Occasionally, they are provided with other types of food, such as
alimentary chips (Novo Crabs®, JBL GmbH & Co., Germany) (Foucreau et al.
2014), Chironomidae (Gergs and Rothhaupt 2008), Artemia salina’s eggs
(Blockwell et al. 1998; Pascoe et al. 1995; Taylor et al. 1993), industrial shrimp
food (Henry et al. 2017), fish food (Semsar-kazerouni and Verberk 2018) or ground
and tropical fish food mix (Blockwell et al. 1996).

During the acclimation period, organisms are normally fed ad libitum with
pre-prepared conditioned leaves (Blarer and Burkhardt-Holm 2016; Blockwell
et al. 1998; Bloor 2010; Bundschuh et al. 2011b; Crane and Maltby 1991;
Dedourge-Geffard et al. 2009; Geffard et al. 2010; Naylor et al. 1989; Newton
et al. 2018; Xuereb et al. 2009; Zubrod et al. 2015). The conditioning process can
vary, and the differences between the techniques can be found in Table 2.

In behavioural studies, food is supplied to the organism during the testing regime
and is usually the same food type as provided during the acclimation period. The
type of food used in a study could influence the feeding activity, especially if the
organisms are fed on leaves that are not palatable or with leaves that have dissimilar
energy budgets (e.g. Agatz and Brown 2014).

Sometimes leaves are collected at the beginning or during fall, specifically
handpicked senescent Alnus glutinosa leaves that are not decomposed (Bundschuh
et al. 2009, 2017), whereas in other studies, the leaves are specifically collected after
they had abscised (Hargeby and Petersen 1988). After collection the leaves are either
used straight away or stored for later use (see Table 2). Storage methods vary
throughout the literature, for example, Bundschuh et al. (2009, 2011a, b, 2013,
2017) froze their leaves at �20�C, but this methodology ultimately alters the
structure of the leaves (Burke et al. 1976). More commonly, the leaves are dried at
room temperature and stored in the dark until needed (e.g. Naylor et al. 1989) (see
Table 2). However, Gessner et al. (1999) highlighted that drying leaves in an oven or
at room temperature ultimately ruins the leaf tissue. In the natural environment,
leaves usually reach water bodies soon after abscission (Fisher 1977). Consequently,
storing leaves for later use does not mimic the natural chain of events, and storing
will ultimately disrupt their structure. Gessner and Schwoerbel (1989) demonstrated
that freezing or drying leaves increases mass loss in the first few days when in water,
and this accelerates the conditioning process, which is usually statistically delayed in
fresh leaves (Bärlocher 1992).

The conditioning process involves soaking the leaves in water and mixing them
with an unknown fungi species (Nilsson 1974) or by inoculating the leaves with a
specific fungi species (Naylor et al. 1989). In the first instance, river water might be
used in the laboratory to condition the leaves, and it is usually inoculated with
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organic material taken directly from the river as a natural source of fungi and bacteria
(e.g. Zubrod et al. 2015, 2017) (see Table 2). Leaves can also be directly conditioned
in situ by placing them in small nets/bags that are suspended in a river and retrieved
after a specific number of days (Alonso et al. 2009; De Castro-Català et al. 2017;
Forrow and Maltby 2000; Graça et al. 2001; Zubrod et al. 2015) (see Table 2).

Although river water might reproduce natural environmental conditions, it is
sometimes contaminated, and this might have an impact. When river water is
used, a chemical breakdown of the water should be undertaken and reported along
with the study findings, so that any contamination is transparent. It is especially
important to disclose if the river water is contaminated with the substance(s) under
investigation in the study. If the test substances are present in the river water, the
organism could be exposed to that concentration and also the experimental dose.
Therefore, the organisms’ response would not be a true reflection of the test
concentration(s) but instead the reported dose combined with the concentration
found in the river water. For example, contaminants might be absorbed onto the
leaf surface and passed onto the organisms, or they could be released into the media,
which might happen during the acclimation period and/or during the experiment
itself, resulting in a compromised feeding activity. Therefore, the observed findings
might be an indirect effect, due to the leaf quality and not as a direct result of the
contaminant being tested.

The conditioning process usually takes around 2 weeks, but there are clear
differences in the literature about this stage (see Table 2). The process ranges from
a few days (Alonso et al. 2009), to several weeks (Blarer and Burkhardt-Holm 2016),
and up to months (Danger et al. 2012) (see Table 2). When Gammarus spp. are
offered a choice between leaves that have been conditioned for different periods of
time, they prefer those that have been conditioned for the longest (Agatz and Brown
2014; Bird and Kaushik 1985). Consequently, experiments (in situ or ex situ) that
provide the organisms with leaves that have been conditioned for a short or longer
time period could potentially underestimate or overestimate the actual feeding
activity of Gammarus spp.

It has been demonstrated that conditioned leaf material is more palatable (Agatz
and Brown 2014; Graça et al. 1993b) and that different species of leaves (i.e. Acer
spp. and Ulmus spp.), depending on the conditioning stage, might be more or less
palatable compared to the others (Bird and Kaushik 1985). Consequently, it could be
argued that it is impossible to compare experiments where organisms have been fed
with organic material that has been conditioned for different periods of time.
Organisms fed on leaves that have been conditioned for 1 week will probably eat
less than those fed with the same leaves conditioned for 3 weeks, and leaf unpalat-
ability might be mistakenly attributed to contaminant exposure. It has also been
identified that Gammarus pulex fed with unconditioned leaves have a considerably
lower respiration rate (Graça et al. 1993b).

Depending on the methodology used, the conditioning process might take place
in different phases. There are studies where the leaves are provided to the organisms
directly after the conditioning process (Bärlocher and Kendrick 1973a; Bloor 2010;
Bundschuh et al. 2009; Forrow and Maltby 2000; Newton et al. 2018), whereas in
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some cases the leaves are redried and soaked in water before feeding them to the
organisms (Agatz et al. 2014; Blarer and Burkhardt-Holm 2016; Bundschuh et al.
2011b, 2013, 2017; Naylor et al. 1989), in order to prevent them from floating on the
surface. In this case, the drying process requires the use of an oven, but unsurpris-
ingly the time and temperature used vary between research groups. Bear in mind that
the same food might be provided during the acclimation period and also during the
experiment itself, unless the feeding experiment aims to study the feeding variation
when a food source is either contaminated or compromised. In these studies, a
specific contaminant or mixture of contaminants are usually incorporated during
the conditioning process (Bundschuh et al. 2009; Hahn and Schulz 2007). When the
conditioned leaves are oven-dried, they need to be resoaked in water before being
provided to the organisms, in order to avoid floatation (e.g. Bundschuh et al. 2017;
Zubrod et al. 2010). The water used to soften the leaves varies between research
groups, and the water could act as a new source of contamination, especially if it
differs from the one used during the original conditioning process.

4 Exposure and Feeding Rate Calculation

After the conditioning process and the acclimation period, the next step in a feeding
study is the exposure itself. During this time, the Gammarids are exposed directly
(i.e. the contaminant is in the water with the Gammarus spp.) (Zubrod et al. 2010) or
indirectly (i.e. the contaminant is added during the conditioning process)
(Bundschuh et al. 2009) to a contaminant, and their feeding behaviour is studied
and estimated (see Table 3). These experiments might have different goals: they
might be undertaken to either measure the changes in Gammarid feeding activity,
Gammarid feeding preferences, or to study the effects on their growth. Conse-
quently, the period of exposure could vary dramatically from a few hours
(Bundschuh et al. 2011a) to a week (Felten et al. 2008a) or even several weeks
(Weber et al. 2018), and sometimes fungal biomass analysis (estimated as ergos-
terol) and assimilation are incorporated, to strengthen the findings obtained from the
feeding rate (Bundschuh et al. 2009; Newton et al. 2018).

Occasionally in feeding studies, the organisms undergo a period of starvation
before the experiment is undertaken (De Castro-Català et al. 2017) (see Table 3). The
main purpose of this starvation phase is to ensure that the organisms are at the same
hunger state, but the duration of this phase varies in the literature. Once the
experiment starts, the Gammarids are commonly provided with a precise amount
of food, in other words the leaves provided have usually been dried, weighed and
conditioned. This latter step, as previously mentioned, could have been carried out
before the drying process or afterwards, so the final product could have different
characteristics depending on the study. In order to provide the organisms with the
same amount of food, the leaves are cut in small discs that range from a diameter of
0.7 to 4 cm depending on the research group (see Table 3). Before or after the
conditioning process, the leaf discs are oven-dried for a specific period of time,
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which is usually at the same temperature and for the same time period as used after
the exposure (see Table 3). Once the leaf discs have been weighed, they are usually
resoaked in water or conditioned, if that is still to be done, and provided to the
Gammarids during the experiment, after sometimes rinsing with water.

During and after the exposure, data are collected to calculate the feeding rate of
the organisms. The feeding rate equation is similar throughout the literature, but
variations can still be found. For example, the data might not have been collected in
the same way, even though the same equation might have been used. The most
common way to estimate the feeding rate is to compare leaf dry weight before and
after exposure to the amphipods, in relation to the duration of the experiment and the
weight of the organisms. Commonly, the dry weight of the leaves is adjusted with a
constant. This constant takes the loss in weight due to leaching and microbial
decomposition into consideration. It is often calculated as the ratio of the control
leaves final dry weight and their initial dry weight (e.g. Blarer and Burkhardt-Holm
2016) (see Table 3), but sometimes the equation might vary (e.g. Bundschuh et al.
2011b) (see Table 3). The control leaves are leaf discs that went through the same
conditioning process, and through the same experimental conditions as those fed to
the organisms, but they themselves were not.

The constant is not always positioned in the same place within the feeding rate
equation. Most commonly, it multiplies with the initial dry weight of the leaves
(e.g. Maltby et al. 2002) (see Table 3) as the initial dry weight might not be exact. A
small amount of leaf might have been lost due to leaching and microbial decompo-
sition during the conditioning process, for example. Sometimes it divides the final
dry weight of the leaves (Agatz et al. 2014) (see Table 3). A proportion of the leaf
might have been lost through leaching and the decomposition process, and not
through Gammarids consumption. Both constant positions are trying to adjust the
equation by compensating for the same problem, leaching and decomposition, but
mathematically the equations are dissimilar and the results might be different.

Weight is sometimes considered as wet weight (Danger et al. 2012) or as ash-free
dry weight (AFDW) (De Castro-Català et al. 2017) rather the normal dry weight (see
Table 3). Once the exposure is complete, the leaf discs are collected and dried. The
drying process is normally carried out in an oven and/or furnace (i.e. AFDW) at a
specific temperature for a specific duration, which was also used for leaf disc
preparation. As shown in Table 3, the temperature at which the leaves are dried
can be very different and so can the duration of the process.

On rare occasions, the feeding rate is calculated by measuring differences in the
leaf disc’s surface area, which instead of being weighed are photographed and later
analysed with a specific software (Coulaud et al. 2011; Hahn and Schulz 2007) (see
Table 3). Scanning the leaf surface might result in very accurate data when it is
calculated by pixel size or in mm2, for example. This calculation does not incorpo-
rate a leaching constant (leaf change correction factor), which takes into account the
loss of leaf weight due to the conditioning process. Differences in leaf surface could
potentially occur as it happens with the loss in weight method. The authors acknowl-
edge that it is still unclear if the choice of feeding equation and the different ways of
calculating the feeding rate are actually comparable and equivalent. Interestingly
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Coulaud et al. (2011) reported a relationship between the surface and the dry mass of
their leaf discs, in order to facilitate possible comparisons between studies with
different methodologies. Consequently, it is recommended that a leaf change cor-
rection factor should be calculated based on leaf surface loss, to take leaf condition-
ing changes into consideration and to make data from these different techniques
more comparable.

5 Conclusions

Feeding behaviour has been used to investigate the sublethal effects of a wide range
of contaminants over the years. As well as providing information on an organism
level, feeding studies could also be adapted to understand the possible effects on
entire populations, and therefore potential threats to a population could be trans-
posed, to understand the prospective repercussions on the ecosystem.

Throughout this review, it is noticeable that there are variations within the
adopted methodologies for the acclimation conditions, the leaf conditioning process
and the leaf species used. This review has also highlighted that several different
equations are used in the literature to quantify the feeding rate of Gammarids.

During the acclimation period, the organisms are kept at temperatures ranging
from 10 to 22�C, even though all of the species considered in this review are from
temperate countries. Temperature has been proven to have a significant impact on
Gammarids by affecting their physiological parameters and their immune system.
Temperature could ultimately have an impact on their feeding rate, which increases
when the temperature is raised. The authors recommend that a constant temperature
is maintained during the acclimation period and the experiment itself, in order to
have a reliable estimation of the feeding rate, independent of a temperature differ-
ence. Moreover, the acclimation and experimental temperature should reflect the
average conditions for the country where the experiment is being undertaken. In fact,
both Maltby et al. (2002) and Coulaud et al. (2011) demonstrated that temperature
has a major impact on feeding rate variability during in situ experiments. Conse-
quently, when an in situ experiment includes several different deployments in
different geographical areas, temperature should be measured in each location, so
that the impact of temperature on the feeding rate can be estimated. Furthermore, the
media in which the organisms are acclimated should always be aerated.

Similarly, the authors recommend that light/dark cycles aiming to reproduce
seasonal conditions should be avoided, in order to allow the reproducibility of a
study regardless of the time of the year. However, this is not the case for in situ
studies. The temperature and light/dark cycles during acclimation for in situ exper-
iments should best replicate the natural environment. Consequently natural light/
dark conditions and the air and water temperature should be measured, reported and
replicated.

Ex situ experiments should be standardised (e.g. using an artificial medium if
possible), meaning that the medium’s parameters (i.e. pH, conductivity, total
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hardness) should be measured and reported, and the medium should be screened
beforehand for contamination. If contamination is present, it is important to record
the concentrations of the specific contaminant to identify the background level, to
have a better understanding of the possible effects. This is especially noteworthy
when river water is used to acclimate the organisms, in particular for in situ
experiments where river water mimics natural environmental conditions for the
acclimation period. It is difficult to say how long the acclimation should last. The
authors recommend that further research is required to determine the impact of time
frame on acclimation periods and to determine if a longer acclimation period results
in stronger data with a lower level of variability.

Several different food types have been highlighted during this review, including
different leaf species and conditioning methods. Even though Gammarids are bio-
logically omnivorous organisms, a leaf-based diet is recommended in feeding
studies, both during the acclimation period and the exposure, and the same food
should be used for both (i.e. same leaf species and same preparation). Alnus spp. are
the most commonly used leaf material for freshwater Gammarid feeding studies. The
authors therefore recommend Alnus spp. as a standardised food source for ecotox-
icological assays. However, the distribution of Alnus spp. is not ubiquitous around
the world, and therefore it might be challenging for some researchers to source them
for their experiments. In such situations, industrial feed might be a better solution to
overcome the problem of non-standardisation. If leaf material is used, applying a
conditioning process is recommended, since conditioned material has been proven to
be more palatable and have a lower C:N, which translates to a better energy supply.
Moreover, it has also been demonstrated how leaf palatability increases when they
are conditioned for longer time periods. Consequently, a short conditioning period
(i.e. a few days) should be avoided, and organisms should be fed on leaves
conditioned for at least 10 days. However, this time period should be prolonged if
using fresh leaf material, since it has been reported that conditioning takes longer. In
ex situ experiments, conditioning should be conducted using an artificial media
inoculated with Cladosporium spp., which is the most common fungi species used
in the literature to condition leaves. This will ultimately reduce the likelihood of
contamination that might result from using river detritus as a source of fungi
inoculum for conditioning leaves.

On the other hand, for in situ studies, the conditioning process should ultimately
replicate, as accurately as possible, real-life environmental conditions and processes,
which means using river water, inoculum and Gammarids from the study site. As
previously mentioned, the composition of the water needs to be identified and also
the chemical parameters; the latter could then be replicated during the conditioning
process. For in situ experiments, the authors recommend conditioning the leaf
material directly in the river. For example, placing leaves in small net bags that are
submerged and secured in the river where the experiment would take place. This
would provide the Gammarids with the same type of food during the acclimation
period and exposure. However, conditioning takes time, so it should be undertaken
well in advance of the experiment.
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It is still unclear if conditioning should take place before or after the leaves are cut
into discs, dried in the oven and weighed. Consequently, the authors recommend that
further investigations need to be undertaken to compare if drying the leaf discs in the
oven should be undertaken before or after the conditioning process and if either of
these methodologies alter the feeding rate of Gammarids. Organisms are usually fed
ad libitum during the acclimation period. To further reduce the inner variability and
strengthen the data, the authors recommend incorporating a starvation period in the
experimental design. This starvation period should take place before the feeding
experiment, and its purpose is to synchronise the organisms’ hunger levels. The
authors also recommend that organisms of a comparable size range should be used in
experiments as it has been proven that Gammarids of different sizes have a different
feeding rate. Juveniles are more sensitive to contaminants, but their feeding rate is
characterised by a higher variability over time, which makes them more suitable for
short-term studies. On the other hand, because of their greater sensitivity, juveniles
are better for ecotoxicological studies by providing ecologically relevant risk assess-
ments for contaminants. Gammarus spp. has been widely adopted for ecotoxicolog-
ical studies, but the genus contains many different species, and even though very
similar, there are still differences in their sensitivities, meaning that the choice of one
species over the other should be carefully considered, depending on the contaminant
tested.

This is of particular interest for in situ experiments since the adopted species
would be dependent on the site, but also dependent on the season, which could
determine the availability of particular organism sizes. So in order to further reduce
inner variability and allow better estimation of the feeding rate, organisms should be
measured at the start of an experiment, possibly by photography and length mea-
surements, in order to have a pool of organisms of the same size and potentially the
same life stage. This is particularly noteworthy when growth is measured alongside
the organisms feeding rate.

The source of the organisms might also have an impact on the results. Organisms
collected in the wild could be better suited for in situ studies, as they could provide a
more realistic site-specific response. However, local site-related species may be
characterised by previous exposure histories that could ultimately influence their
feeding rate (e.g. they could potentially be acclimated to a certain level of pollution).
This is a problem that has to be taken into consideration both for in situ and ex situ
experiments. Perhaps laboratory-bred organisms should be used to reduce variability
even further, and it would provide a constant stock of Gammarids (Blockwell et al.
1996; Bloor and Banks 2006a, b; McCahon and Pascoe 1988). However, breeding
Gammarids is not always possible and it is highly species dependent. Long-term
culturing could also potentially lead to a higher or lower contaminant sensitivity and
a reduced genetic variability.

The last step of a feeding study involves the quantification of the feeding rate by
using an equation. As highlighted in this review (see Table 3), there are various
equations in the literature that are indiscriminately used to calculate the feeding rate.
However, some of these equations are mathematically different, and it raises the
question, are the equations and the feeding rates generated by them equal?
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The feeding rate can be estimated by using the leaf weight or surface area. The
equation that is most commonly adopted estimates the feeding rate by comparing
leaf dry weight before and after being provided to the Gammarids, divided by the
time (expressed in days) and the weight of the organisms. Usually the dry weight of
the leaf discs is adjusted with a constant. The authors recommend that the position of
the constant is dependent on when the leaves are conditioned and dried. If the leaves
are conditioned after being dried and weighed, the constant should multiply with the
initial dry weight, so that it takes into consideration that the leaf disc might have lost
more weight through being submerged in water during the experiment. However, if
the leaf discs are dried and weighed after being conditioned, the final dry weight
should be divided by the constant, because some of the leaf material might have been
lost through leaching and not through Gammarid feeding.

Another consideration is that the constant is not always calculated in the same
way, and this could ultimately alter the experimental results. Again, the authors
recommend that further research is required to understand the impact of the various
constant positions on the outcome of a study. Until then, the authors recommend that
the equation provided by Maltby et al. (2002) is adopted, as it is representative of
real-life environmental feeding.

When leaf area is used to calculate the feeding rate, the constant is not often
included in the equation. This means that the possible loss of leaf material due to the
leaching process is not taken into consideration. Leaf area is often used to calculate
the feeding rate for in situ experiments, so the authors recommend that if this method
is going to be used, a set of control leaves should also be established, in order to
calculate a leaching constant based on the difference in surface area.

It is clear that a standardised protocol is required, which would benefit the
scientific community and regulatory authorities and allow them to interpret and
compare published literature to understand the impact of various contaminants
(and mixtures) on the environment. This could be achieved by undertaking serial
experiments to clarify what impact these heterogeneities have on the final results.
There are methodologies such as Naylor et al. (1989) and Nilsson (1974) that have
been used many times, but unfortunately, there are still others that are the result of a
mixed methodology. The variability within feeding studies has already been
acknowledged, and the first steps towards standardisation have evolved (Agatz and
Brown 2014).

A standardised ex situ methodology would greatly benefit this field of research,
by not only allowing a more meaningful comparison between the peer-reviewed
literature, but also to better understand the impact that specific contaminants could
have on Gammarid populations and ecosystems. This could be enhanced further if ex
situ experiments are placed side by side with biomarker analysis and in situ studies.
In theory, in situ tests could provide a realistic and integrated understanding of real
environmental pollution. If standardised, in situ tests could be used by regulators to
critically evaluate the state of an ecosystem and the potential impact that a certain
contaminant or mixture could have on the environment. This is of particular interest
since the establishment of the Water Framework Directive (European Union 2000),
which outlines that all European water bodies should reach ‘good quality status’ by
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2015 and has since been extended. The establishment of a standardised suite of in
situ and ex situ feeding assays would provide a realistic monitoring tool and
environmental risk assessment, which would be of benefit to the scientific commu-
nity, and also decision makers.

6 Summary

Feeding behaviour of freshwater Gammarids has been used for several decades as a
sublethal toxicity endpoint. Feeding behaviour has been demonstrated to be an
effective endpoint, but there is not a standardised assay. This paper aims to review
the existing published literature to highlight the methodological discrepancies in
feeding behavioural studies (both in situ and ex situ). Key discrepancies in the
acclimation period are temperature, duration, media, light/dark cycles and the
characteristics of the test organisms. Interestingly, the food preparation method
and the choice of feeding rate equation are also diverse. Non-standardisation of
any of these factors could influence the outcome of the experiment and render a
comparison between studies difficult. There is an undeniable need for scientific
discussion and agreement on a standardised protocol for feeding behavioural studies,
to ensure that all future studies are directly comparable and to enhance the usefulness
of feeding assays as a biomonitoring tool to assess water quality.
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1 Introduction

Many chemicals of environmental concern are ionic or ionizable organic chemicals
(IOCs), including various pharmaceuticals, pesticides, surfactants, and ingredients
of personal care products, as well as metabolites and degradation products of the
above-named classes of chemicals (Franco et al. 2010). In principle, two different
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types of IOCs can be distinguished: permanently charged chemicals and ionizable
structures, for which speciation is pH-dependent (see also Fig. 1a–c). Examples for
chemicals with ionizable functional groups are carboxylic acids, primary, secondary,
and tertiary amines, and phenols (Fig. 1a). Sulfonates and perfluorinated acids are a
special type of ionizable chemicals, because their pKa values are extremely low and
the neutral species of these chemicals may be negligible (Fig. 1b). Typical examples
of permanently charged structures are quaternary ammonium and phosphonium
compounds and ionic liquids (Fig. 1c) (Ranke et al. 2007, 2009). Recently, the
focus has turned on quaternary phosphonium compounds as they were identified as
emerging environmental contaminants (Schlüsener et al. 2015). However, currently
used methods for the assessment of chemical persistence, bioaccumulation, toxicity,
and sorption in soil are not applicable to IOCs (Claßen et al. 2016; Tolls 2001),

Fig. 1 Examples of ionic and ionizable organic chemicals that differ in their degree of ionization
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because their sorption behavior is far more complex than the partitioning of neutral
organic chemicals. In general, relevant sorption of IOCs can be expected, if the
sorption phase exhibits charged functional groups, as many environmental sorbents
do. Possible environmental sorption phases of concern include soil components with
high ion exchange capacity (e.g., clay minerals and organic matter) and biological
matrices such as proteins and zwitterionic head groups of phospholipids. This
manuscript outlines physicochemical principles of ion sorption and reviews the
current scientific knowledge regarding bioaccumulation and toxicity of IOCs. Fur-
thermore, examples of experimental studies on ion sorption are presented and
existing modeling approaches for the sorption of IOCs are discussed.

2 Physicochemical Principles of Ion Sorption

For IOCs at least four different types of sorption processes are possible that are not
mutually exclusive (Fig. 2). Organic ions can bind to charged binding sites by ion
exchange (Vlachy et al. 2009). This sorption process is utilized for technical ion
exchangers and for solid phase extraction of charged analytes (Bäuerlein et al. 2011,
2012). Examples of natural ion exchange materials include soil organic matter,
which acts as a cation exchanger, as well as clay minerals and proteins (Jafvert
1990; Sassman and Lee 2005; Wilting et al. 1980). Another very important sorption
process for IOCs is sorption at neutral interfaces between two phases of very
different polarity. If the chemical has a charged hydrophilic head group and a
large hydrophobic moiety, the neutral part of the molecule can sorb to a nonpolar
phase, while the head group stays in the more polar phase (e.g., surfactants at the
interface of an oil–water mixture). IOCs can also partition as free ions into a bulk
organic phase but stay in the vicinity of the interface, while the (inorganic) counter
ions reside in the water phase (Westall et al. 1985). This process is limited by the

Fig. 2 Sorption processes of neutral and ionic chemicals
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involved charge separation and is dependent on the concentration of the ions present
in the solution, the distance, and the dielectric constant of the surrounding medium.
In principle, the flux of free ions and their steady-state at and across interfaces can be
calculated based on chemical and electrostatic gradients using the Nernst equation. A
special case is the sorption of IOCs into biological membranes that possess a positive
dipole potential which favors the sorption of anions (Benz 1988). Free ions can also
partition between uncharged bulk phases together with their counter ions (as free
separate ions) and as ion pairs, e.g., partitioning between water and an organic
solvent like octanol (Ingram et al. 2011; Jafvert et al. 1990; Zhao and Abraham
2005). In this case the free separate ions and the ion pairs (both will be in equilibrium
with each other) can distribute throughout the complete bulk phases because there is
no charge separation and therefore no electrostatic force that keeps them in the
vicinity of the interface. Significant partitioning of ion pairs is only expected if the
stability constant of the ion pair is already high in water, which is typically the case if
both ions are relatively hydrophobic (e.g., an alkylamine cation combined with an
alkylacid anion) (Schunk and Maurer 2005). In the environment, the formation of
ion pairs is probably of minor importance, because it is unlikely that a hydrophobic
counter ion is available at sufficiently high concentration for relevant ion-pair
formation (Hallén et al. 1985). The partitioning of free organic ions together with
inorganic counter ions from water to an organic phase is also expected to be rather
insignificant, because the counter ions are often small ions with a high surface charge
density (Ingram et al. 2011). These ions tend to stay in water rather than to form ion
pairs, because of favorable dipole–charge interactions with the water molecules
(Westall et al. 1990).

The partitioning of neutral organic chemicals is dominated by van der Waals
interactions and H-bond formations. In contrast, sorption of IOCs is often driven by
interactions of their charge with complementary charges in the environment (e.g.,
with ion exchangers and in electric fields) followed by H-bond interaction and
interactions with strong dipoles like water (Collins et al. 2007). The relative impor-
tance of charge–charge and charge–dipole interactions decreases, as the hydropho-
bicity of an ion increases (Lund et al. 2008). Whereas small inorganic ions usually
have high surface charge densities, the charge density of organic ions can vary
widely. In fact, hydrophobic ions that show strong sorption from water to an
uncharged organic phase typically have low charge densities at their surface (Lund
et al. 2008). Low surface charge densities of ions are either a result of delocalization
of the charge (see bis(fluorosulfonyl)imid, Fig. 3b) or the charge is hidden in the
center of a bulky molecule (e.g., tetraphenyl and quaternary ammonium ions,
Fig. 3a). Another factor that has to be considered is the hydration shell that forms
around a charged molecule and that may also alter the effective surface charge
density if it stays in place when the molecule interacts with charged sorption sites
(Hammer et al. 2018; Hühnerfuss 1989).

Another difference between neutral organic chemicals and IOCs in terms of
sorption behavior is that the sorption of ions can be highly influenced by pH value
and salt concentration of the surrounding medium (Sassman and Lee 2005; ter Laak
et al. 2006). The pH value can affect the sorption of ions by two different
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mechanisms: (1) the speciation of ionizable chemicals is pH-dependent and (2) the
conformation and charge status of the sorption phase can change when changing the
pH, e.g., the conformation and charge of proteins like human serum albumin is
highly pH-dependent (Peters 1995). The salt concentration can also influence sorp-
tion either by competing for the same sorption sites at an ion exchange sorbent
(Droge and Goss 2013b) or by their impact on ion-pair formation. Westall and
coworkers report that the partition constants of neutral ion pairs correlate well with
the partition constants of the corresponding neutral organic acids (Jafvert et al. 1990)
and for high pH and ionic strength, partitioning between water and octanol is
dominated by ion-pair partitioning rather than the partitioning of free ions
(Strathmann and Jafvert 1998; Westall et al. 1985). As a result, the octanol–water
partitioning of IOCs increases with salinity because of the increasing amount of
available partners for ion-pair formation (mass action law). Consequently, there
cannot be a single log Kow value for an IOC. Instead, the log Kow of an IOC must
always be an operationally defined value for a concrete concentration and compo-
sition of counter ions (typically the inorganic ions will prevail) present in the
aqueous phase. Yet another sorption mechanism that depends on the presence of
inorganic ions in the aqueous solution is “ion bridging” by which a multivalent
(inorganic) ion such as Ca2+ could connect an organic anion to a negatively charged
surface site (Chen et al. 2012; Figueroa et al. 2004; Haftka et al. 2015).

benzene, neutral hexyltriethylammonium, cationic tetraphenylphosphonium, cationic

A Molecules with low surface charge density

B Molecules with different surface charge densities

bis(fluorosulfonyl)imid, anionic phenol, neutral phenolate, anionic

surface charge density

<< 0.0 e/nm2

>> 0.0 e/nm2

0.0 e/nm2

Fig. 3 Surface charge densities of different neutral and ionic chemicals (calculated with
TURBOMOLE V6.5 2013)
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Sorption processes of ions are often nonlinear (i.e., concentration dependent).
Nonlinear binding isotherms of IOCs have been observed for the sorption to
technical ion exchangers (Liu et al. 2007; Wu et al. 2008) and to soil organic matter
(Droge and Goss 2012b). Nonlinear isotherms must occur, according to the mass
action law, for ion-pair sorption (Escher and Sigg 2004). However, they can also be a
result of the heterogenicity of the sorbent offering sorption sites with different
sorption energies and they will occur close to saturation for any sorbent (homoge-
neous or heterogeneous) with a limited amount of sorption sites (e.g., ion exchange
sorbent).

In context of the various conceivable sorption processes at charged interfaces it
is also instructive to discuss possible parallels to the sorption of metal ions. The
well-established Nica–Donnan concept (Benedetti et al. 1996; Milne et al. 2003)
describes sorption of metal ions to charged surfaces as the combination of
partitioning to an electrical double layer adjacent to the charged surface and sorption
to specific ion exchange sites. In principle this should also hold for IOCs at charged
surfaces. A quantitative description of these processes will, however, be much more
complex for IOCs than for metal ions. Metal ions are spherical and their charge will
equally distribute about their complete spherical surface. The resulting charge
density which is relevant for the interaction strength can thus be calculated rather
easily and it will have just one distinct value for the complete metal ion. In addition,
the interactions of a metal ion are dominated by the ionic interactions and the cavity
effect. Van der Waals and H-bond interactions are probably negligible in most cases.
This is completely different for IOCs. The charge is located at the functional group
of the molecule and in most cases not evenly distributed about the surface of the
whole molecule. However, the local charge densities on all parts of the molecule
need to be known (which in turn requires knowledge of the 3D structure of the
molecule) if a quantitative understanding of the sorption behavior is required. Next
to the cavity energy and the ionic interactions, van der Waals and H-bond interac-
tions play an important or even dominant role for IOCs. The Nica–Donnan model
may, however, readily be employed to explain differences in the competition of a
given organic cation with various metal cations for ion exchange sites and the
influence of pH (Chen et al. 2013; Iglesias et al. 2009).

3 Bioaccumulation and Biosorption of IOCs

Bioaccumulation of neutral organic chemicals is mainly driven by the total lipid
fraction of an organism and for some neutral chemicals (H-bond donor chemicals)
the protein fraction can also contribute to bioaccumulation (Endo et al. 2013). For
IOC, instead, several sorption phases may be relevant (Figs. 2 and 4).

Figure 4 shows the average composition of the human body (Goss et al. 2018).
Storage lipids (i.e., nonpolar lipids) that are typically the major sink for nonpolar
chemicals are assumed to be negligible as sorbing matrix for IOCs (Schmitt 2008).
Although it appears that the sorption of IOCs to storage lipids was never investigated
by experiment, this assumption is inferred from the weak sorption in octanol for
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ionized organic acids and bases as compared to their corresponding neutral form
(Escher and Schwarzenbach 1996; Jafvert et al. 1990; Johnson and Westall 1990).
However, phospholipids (i.e., polar lipids), the major constituent of cellular mem-
branes, can have high sorption capacities for IOCs (Austin et al. 1995; Avdeef et al.
1998; Escher et al. 2002; Escher and Schwarzenbach 1996; Escher et al. 2000;
Ottiger and Wunderli-Allenspach 1997; Smejtek et al. 1996; Thomae et al. 2007).
Experimental liposome–water partition constants up to 105 (Lwater/Lmembrane) and
higher can be found in the literature (Bittermann et al. 2014). High affinity to
biological membranes has also implications on the toxicity of IOCs, as it is directly
linked to baseline toxicity (for further discussion see below). However, phospho-
lipids constitute only about 0.7% of the total body weight (Goss et al. 2018). Hence,
they may not be dominating for the bioaccumulation of IOCs.

Another possible sorption phase for IOCs is the protein fraction of an organism.
The most relevant proteins for the in vivo distribution of IOCs are probably serum
proteins and structural proteins. Binding data to serum albumin, the main protein in
blood plasma, is often available from the literature, especially for pharmaceuticals
(Henneberger et al. 2016a; Kragh-Hansen 1981; Peters 1995). Hydrophobic acids
are well known to have high affinities for serum albumin (Bischel et al. 2011; Fanali
et al. 2012; Fasano et al. 2005), while cationic chemicals show strong binding to
other serum proteins like α1-acid glycoprotein (Kremer et al. 1988). Again, the
amount of serum proteins (0.4%) is small compared to the high quantities of
structural proteins (11%) (Goss et al. 2018). Structural proteins form the cytoskel-
eton of all cells and are present in high amounts in muscle tissue (mainly actin and
myosin), connective tissue (collagen), and skin, hair, and nails (keratin). For neutral
organic chemicals the partition constants to structural proteins are usually more than
one order of magnitude lower than partition constants to serum albumin (Endo et al.

Fig. 4 Sorption phases for neutral and ionic chemicals in vivo. The fractions of the different phases
are true to scale and based on the average human body composition published by (Goss et al. 2018)
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2012). For anionic chemicals the binding to structural proteins is much weaker
compared to serum albumin (partition constants can differ by more than three
order of magnitude), while cations seem to show similar sorption to serum albumin
and structural protein (Henneberger et al. 2016b). Because binding to proteins can
be very specific, other protein classes might be important for some IOCs. For
example, perfluorinated acids show high affinities for serum albumin and the
fatty-acid-binding protein in the liver, explaining the preferential accumulation of
perfluorinated chemicals in blood and liver (Luebker et al. 2002; Ng and
Hungerbühler 2014; Woodcroft et al. 2010; Zhang et al. 2013).

Even hydrophilic IOCs that mainly reside in the water phase of the body may still
be enriched within organisms due to an ion trap effect when internal and external pH
differ (see also Sect. 6).

Bioaccumulation is defined as a steady-state distribution. Hence, not only the
equilibrium sorption is important, but also the kinetics of uptake, metabolism, and
excretion of IOCs. Uptake and excretion are influenced by the membrane perme-
ability of the various chemical species (see below) but also the local pH (e.g., in the
gastrointestinal tract or of the gills) is important (Erickson et al. 2006). Hepatic
metabolism in fish has been investigated systematically for more than 50 ionic
species with an in vitro assay (Chen et al. 2016). For neutral chemicals such
information can be scaled up to the total organism and combined with physicochem-
ical properties for an assessment of the bioconcentration potential of a chemical
(Nichols et al. 2013). However, it is not yet clear how the necessary quantitative
in vitro to in vivo extrapolation (QIVIVE) would work for ionic species because
their sorption must be understood for the QIVIVE procedure.

In general, we can expect bioaccumulation in fish to be less of a concern for
IOCs than for neutral chemicals but a case by case assessment remains necessary.
Biomagnification in fish and trophic magnification in aquatic food webs have
already been reported for perfluorinated acids which are almost completely ionized
at environmental pH values (Kelly et al. 2009; Martin et al. 2003; Ng and
Hungerbühler 2014). The available literature on the bioaccumulation potential of
IOCs in fish has been reviewed by Armitage et al. (2017). In two more recent papers
from our own group the tissue specific sorption of anions in fish and terrestrial
organisms was assessed (Goss et al. 2018) and a screening of the bioaccumulation
potential of almost 2000 IOCs was performed (Bittermann et al. 2018). For air
breathing animals a general statement in terms of biomagnification is not possible. In
this case neither neutral nor ionic chemicals are efficiently excreted via an aqueous
phase and much will depend on the chemicals metabolism (Goss et al. 2018).

4 Sorption of IOCs in Soil/Sediment and to Polymers

Soils are known to have a distinct cation exchange capacity which should be relevant
for the sorption of organic cations. And indeed, there are a number of studies
revealing that the cation exchange capacity of both, clay and humic substances in
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soil, and complexation with metal oxides contributes significantly to the overall
sorption capacity. These studies have systematically investigated the influence of
competing inorganic cations that are naturally available in soils as well as the
influence of pH, different types of minerals, and the structure of the considered
cations (Droge and Goss 2012a, b, 2013b; Jolin et al. 2017; MacKay and Seremet
2008; MacKay and Vasudevan 2012; Pils and Laird 2007; Sassman and Lee 2005;
Tolls 2001). It was found that the ionic species contributes significantly to the total
sorption of ionizable organic bases, even if the fraction of the ionic species is not
dominating (Droge and Goss 2012b). For anionic organic species, sorption in soils
is less pronounced due to the rather small anion exchange capacity, but still not
negligible (Higgins and Luthy 2006; Rodriguez-Cruz et al. 2005; Tülp et al. 2009).
For zwitterions it was shown that both charged functions of the molecule can matter
so that the sorption process becomes even more complex (Carrasquillo et al. 2008;
Figueroa and MacKay 2005; MacKay and Seremet 2008).

The sorption of IOCs to different types of polymers has also been studied.
Finding a polymer that has a reasonably high sorption capacity for charged
chemicals is challenging, but it is the prerequisite for successful solid phase
microextraction (SPME) and passive sampling of IOCs (Bäuerlein et al. 2011).
Polyacrylate (PA) has been used for SPME of weak organic acids and bases
(Broeders et al. 2011; Escher et al. 2002; Haftka et al. 2013; Ohlenbusch et al.
2000). However, only the neutral species of these chemicals partitions to PA and
permanently charged IOCs can only be sampled, if the molecule has a large
hydrophobic tail (e.g., surfactants) (Chen et al. 2012; Rico-Rico et al. 2009).
Recently, C18 based materials have been reported to be suitable sorption materials
for IOCs (Henneberger et al. 2019; Peltenburg et al. 2015b; Vuckovic et al. 2009).
Peltenburg et al. have successfully used the so-called mixed-mode SPME fibers that
combine hydrophobic C18 and cation exchange groups for sampling of organic
bases (Peltenburg et al. 2013, 2015a, b, 2016). Ion exchange polymers were also
used as sorption materials for IOCs (Bäuerlein et al. 2011). In fact, ions of opposite
charge show high affinities for ion exchange polymers, but the material has to be
thoroughly calibrated, because sorption is nonlinear (i.e., concentration dependent)
and highly influenced by the concentration of other ions present in the solution
(Bäuerlein et al. 2012; Oemisch et al. 2014).

5 Modeling of Ion Sorption

In contrast to neutral chemicals, the modeling of organic ions´ sorption is still limited
to several specific modeling approaches mostly with small domains of applicability.
For neutral chemicals the octanol–water partition constant (Kow) is often used to
model sorption to biological phases. This approach has been extended to ionizable
chemicals as well. The simplest sorption model for ionizable chemicals is shown in
Eq. 1. In this equation, the pH-dependent distribution ratio between octanol and
water (Dow (pH)) for an ionizable chemical is calculated from the octanol–water
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partition constant of the neutral species (Kow,neutral), assuming that the neutral
fraction of the chemical ( fneutral) is dominating the sorption, because the ionized
fraction does not partition from water to the organic phase (Schmitt 2008).

Dow pHð Þ ¼ f neutral ∙Kow, neutral ð1Þ

This model works for ionizable chemicals, if the fraction of the ionic species
is small and if the ionic species is not very hydrophobic. If the ionic fraction of
the chemical ( fion) is contributing to the sorption, Eq. 2 is used to calculate Dow

(pH). For this calculation the octanol-–water partition constant of the ionic species
(Kow,ion) is required in addition.

Dow pHð Þ ¼ f neutral ∙Kow, neutral þ f ion ∙Kow, ion ð2Þ

In principle, Eq. 1 is not applicable to permanently charged ions (e.g., quaternary
ammonium compounds and ionic liquids, Fig. 1c) and compounds that show strong
dissociation (e.g., perfluorinated acids, Fig. 1b). Furthermore, for the calculation of
Dow (pH), it has to be considered that there is not a single value for Kow,ion. To keep
charge neutrality, the ionic species of the chemical is always sorbing to octanol
together with a counter ion (either as free ions or as ion pairs). Hence, Kow,ion must be
dependent on the concentration of the available counter ions (Johnson and Westall
1990; Westall et al. 1985). Given the complexity of the sorption processes (see Fig. 2
and corresponding discussion) to natural matrices like proteins, phospholipids,
humic matter, minerals, and others, it comes as no surprise that octanol, and
consequently Dow (pH), has little value as a surrogate for predicting sorption to
natural sorbents (Bittermann et al. 2016; Droge and Goss 2012b; Henneberger et al.
2016a).

As stated above, for charged environmental and biological phases, like soil
organic matter and proteins, ion sorption definitely needs to be taken into account.
Several models that explicitly consider the sorption of ions have been developed.
However, these models are often either lacking sufficient mechanistic background or
have a very limited domain of applicability. Polyparameter linear free energy
relationships (PP-LFERs) have been successfully used to model various sorption
processes of neutral organic chemicals (Endo and Goss 2014), including biological
phases such as proteins and lipids (Endo et al. 2011, 2012; Endo and Goss 2011;
Geisler et al. 2012). Abraham and coworkers have extended the original PP-LFER
approach by adding two new descriptors for ionic interactions (J+ and J�, Eq. 3)
(Abraham 2011; Abraham and Acree 2010a, b, c, d, 2015, 2016).

logK1=2 ¼ cþ e ∙Ei þ s ∙ Si þ a ∙Ai þ b ∙Bi þ v ∙Vi þ jþ ∙ Jþi þ j� ∙ J�i ð3Þ

In this equation the logarithmic partition constant of an ion between phase 1 and
2 (log K1/2) is calculated using two different sets of descriptors. The small letters
(e, s, a, b, v, j+, j�) represent the properties of the sorption system. The properties of
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the chemical are defined by the capital letters: E is the excess molar refraction,
S represents polar interactions, A the H-bond donor properties, B the H-bond
acceptor properties, and V is the molar volume of the chemical. J+ and J� charac-
terize the interactions that are connected to the positive or negative charge of the ion.
The equation was originally developed for solvents, but has been demonstrated to
give reasonable predictions for structural proteins as well (Henneberger et al.
2016b). Unfortunately, for ions this modeling approach appears rather empirical
with no clear mechanistic background. Furthermore, the required chemical descrip-
tors are not available for many ions and the influence of pH, competing ions, or ion
pairing cannot be considered. Various other attempts have been made to predict
sorption of ionic species in soils. These models appear to cover some aspects quite
well such as the relative influence of competing ions, the cation exchange capacity,
or some molecular structural entities within a class of compounds (Droge and Goss
2013a; Figueroa et al. 2004; Higgins and Luthy 2007; Jones et al. 2005; MacKay and
Vasudevan 2012; Sassman and Lee 2005). However, none of these models is able to
predict soil or sediments sorption coefficients for some standardized conditions (pH,
ionic strength, and composition) from molecular structure across a large number of
chemical classes. Sorption of ions to albumin was shown to depend on the 3D
geometry of the ions (Henneberger et al. 2016a). A 3D QSAR model was able to
cover and explain these effects (Linden et al. 2017), but this model is neither user
friendly nor able to cover a wider chemical domain. Much more successful was the
attempt to predict the sorption of both anions and cations to phospholipid mem-
branes (Bittermann et al. 2014, 2016; Timmer and Droge 2017). This can be done
with a commercial software, COSMOmic, that is based on quantum chemical
calculations and has a wide application domain due to its fundamental nature. For
235 molecules (among them 24 cations and 51 anions) the predictive error was 0.65
log units (Bittermann et al. 2014) and for 19 cationic amine surfactants in a separate
work the predictive error was even smaller (Timmer and Droge 2017).

6 Toxicity and Toxicokinetics of IOCs

6.1 Membrane Sorption and Narcosis

As stated above, the membrane sorption of ionic species from water is usually
smaller than that of their corresponding neutral species, but it is by no means
negligible. In general, anions show a stronger distribution to membranes than cations
because of the positive dipole potential in the interior of the membrane (Flewelling
and Hubbell 1986a, b). This is nicely illustrated by tetraphenylborate and
tetraphenylphosphonium which are almost identical with practically the same 3D
geometry and the same charge density but with opposite signs. However, their
membrane–water partition constants (Kmem/water) differ by several orders of magni-
tude with log Kmem/water ¼ 5.2 [Lwater/Lmem] for the tetraphenylborate anion and log
Kmem/water ¼ 1.2 for the tetraphenylphosphonium cation (Flewelling and Hubbell
1986a).
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Recent publications suggest that baseline toxicity or narcosis for organic ions
occurs at about the same critical membrane concentration of 100 mmol/Lmem as for
neutral chemicals (Baumer et al. 2017; Bittermann and Goss 2017; Bittner et al.
2018; Escher et al. 2017). Hence, narcotic effects can be predicted from the fraction
of the ionic and neutral species freely dissolved in water and their respective
liposome–water partition constants, which can be calculated (see above) in case of
lacking experimental values.

6.2 Membrane Permeability

The very hydrophobic inner part of biological membranes constitutes the major
energy barrier for the permeation of ions. This is even more pronounced for cations
than for anions due to the positive dipole potential in the membrane (Flewelling and
Hubbell 1986b). As a result, the membrane permeability of ionic species is orders of
magnitude smaller than that of the corresponding neutral species (Ebert et al. 2018).
This has a number of consequences for the toxicokinetics of permanent ions and
ionizable compounds.

If the membrane permeability of an ionic species is much smaller than that of its
corresponding neutral species, then the so-called ion trap effect will occur between
compartments that are separated by a membrane and possess different pH values. In
this case, equilibrium sorption between both compartments is reached, when the
neutral species has attained equal concentrations on both sides of the membrane.
However, if the pH is different this directly infers that the concentrations of the ionic
species on both sides of the membrane are different, due to the dissociation equilib-
rium. In the extreme case of an impermeable ionic species the effect can be
calculated by Eq. 4.

total internal conc:of chemical i
total external conc:of chemical i

¼ fraction of neutral species at external pH
fraction of neutral species at internal pH

ð4Þ

This can lead to an increased accumulation of acids in aquatic organisms if the
aquatic pH is acidic while the organisms maintain an internal pH around 7.4 as can
be exemplified as follows: the pesticide 2,4-D has a pKa of about 3.4 which means
that only 1% of the chemical is in its neutral form at an aqueous pH of 5.4. If the
freely dissolved concentration of the neutral species of 2,4-D in an exposure medium
at pH 5.4 is 1 mmol/l (i.e., the total freely dissolved 2,4-D concentration is 100
mmol/l), then the freely dissolved neutral concentration in an organism exposed to
this solution also is 1 mmol/l if equilibrium between organism and exposure medium
is obtained. If the internal pH of this organism is 7.4, then the neutral fraction is only
0.01% of the total concentration which means that in this case the total freely
dissolved internal concentration must be 10,000 mmol/l which is 100 times higher
than the total external freely dissolved concentration. Within an organism this effect
can lead to a preferred trapping of bases in acidic intracellular vesicles such as
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lysosomes (Gulde et al. 2018; Heikkinen et al. 2009). Such an increased freely
dissolved concentration in some parts of an organism can, of course, also result in
increased membrane concentration in adjacent membranes and thus an increased
toxic effect as compared to the aqueous exposure concentration (Neuwoehner and
Escher 2011). This might explain observed pH effects on toxicity that cannot be
explained otherwise (e.g., (Bittner et al. 2018; Boström and Berglund 2015;
Neuwoehner and Escher 2011)).

Some hydrophobic anions possess a membrane permeability that – although still
much smaller than that of their neutral corresponding species – can still be important.
At mitochondrial membranes that keep up a proton gradient for the generation of
ATP, acids with relatively permeable anionic species will act as proton shuttles and
destroy the natural proton gradient – an effect known as uncoupling (LeBlanc 1971;
McLaughlin and Dilger 1980). This toxic effect is observed for many chloro- and
nitrophenols, for example, and it is pH-dependent (Escher et al. 1999). In a recent
paper, a series of systematic measurements for the membrane permeability of a
diverse set of organic anions ranging over 10 orders of magnitude is presented which
is the first data set of that kind (Ebert et al. 2018). These anionic permeabilities nicely
correlate with the predicted hexadecane–water partition coefficient of the respective
anions which should provide a promising opportunity for predicting toxic effects by
uncoupling (Ebert et al. 2018).

Besides these effects on equilibrium sorption and toxicity there are also direct
kinetic effects: The total membrane permeability of an acid or base results from the
parallel transport of neutral and ionic species. Neutral species are usually limited in
their permeability by the aqueous boundary layer, which is always present adjacent
to both sides of a membrane. Ionic species are usually limited by the membrane itself
and not by the aqueous boundary layer (ABL). Thus, if both species travel in parallel
(i.e., speciation is about 50/50) and are quickly interchangeable by acid–base
reactions, then they can readily pass any combination of ABL and membrane. If
one species prevails, then the respective dominating permeability barrier becomes
more and more important (Avdeef 2012). The latter situation becomes extreme for
permanent ions. This means that cells (either in a cellular toxicity assay or as part of
an organism) may have to be exposed for quite a long time to some ions and
ionizable chemicals before they reach a steady-state internal concentration, provided
that the chemical is not taken up by active transport. In this case a toxicity assay that
is run for only 24 h might not show any effect (because the steady-state concentra-
tion is not yet reached within the cells) although the compound might eventually turn
out to be toxic if enough time for equilibration is provided. Fischer et al. (2018)
studied this situation for 7 ionizable chemicals and one permanently charged cation
and found delayed but still substantial cellular uptake after 24 h. This could be
explained by the high intrinsic permeability of the remaining neutral species of the
ionizable chemicals. For the permanently charged cation the authors concluded that
permeation as an ion pair or via ion channels or active transport must be responsible
for this finding. More experimental work in this direction is needed.

Organic ions may also pass membranes by active transport through transporter
proteins (König et al. 2013). While this is a well-studied topic in pharmaceutical
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sciences, there appears to be no generalizable quantitative information available on
these transport pathways. Active transport across membranes always competes with
passive (diffusive) transport. Hence it appears likely that active transport will
generally be more important for ionic species than for neutral ones because neutral
species have a much higher diffusive membrane permeability than ionic species. The
most likely effect of active transport is as a barrier against the uptake of ionized
chemicals. Efflux transporters imbedded in the apical membrane of epithelial cell
layers can effectively reduce the uptake of substrate chemicals. This has been
demonstrated in Fischer et al. (2013). Increased uptake of ionized chemicals by
influx transporters is rather unlikely to occur because these transporters would have
to be located in all membranes of the epithelial cell layers and the energy demand for
such a transport cascade would be high.

7 Conclusions

Much more experimental data for ionic sorption in well-defined environmentally
relevant scenarios are needed. “Well defined” means that not only the pH is
controlled in such experiments but also the availability of competing ions and/or
corresponding ions for ion-pair formation is reported and possible concentration
dependencies are investigated. In general, we are lacking experimental data for
zwitterions (glyphosate as a prominent example) and polyvalent ions. We are also
lacking systematically determined sorption data for all kinds of organic ions to
α-glycoprotein, a transport protein in blood that is known to be important for cations.
Existing sorption data for albumin have been measured for fatty-acid free albumin
which might not be representative for the albumin in vivo. Hence, additional data for
fatty-acid-loaded albumin would be of interest. Sorption experiments to soil have so
far focused on amine-cations and pharmaceuticals and need to be diversified.
Whenever new experimental data become available, they should be used to evalu-
ate/recalibrate existing predictive models and possibly develop new models. In any
case, it is clear that IOCs will demand sorption models that are much more complex
than anything that may have been useful for neutral organic chemicals in the past.
While empirical log Kow models have brought us a long way for neutral chemicals, a
good mechanistic concept will be required for any IOC sorption model with a
satisfying predictive power. Further investigation into the parallels with the sorption
of metal ions may be helpful.

8 Summary

This review first gives an overview on the principles that govern ionic sorption in
environmental systems which are more complex than the simple partition processes
of neutral chemicals. Our current knowledge on various topics such as
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bioaccumulation, sorption in soils, and nonspecific-toxicity reveals that ionic species
can actually be quite hydrophobic contrary to commonly held beliefs. Existing
models for the quantitative prediction of organic ions´ sorption in soils and biota
are quite restricted in their application range compared to neutral chemicals which is
due to the higher complexity of the various ionic sorption processes. In order to
further advance our understanding more high-quality sorption data are needed with a
focus on multivalent and zwitterionic ions in all partition systems as well as cations
in biological matrices.
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1 Introduction

The atmosphere plays a major role in contaminant cycle at the global scale. Atmo-
spheric contamination by particulate matter (PM)-bound metals is a great issue for
the public and for government agencies worldwide owing to their highly toxic nature
(Popoola et al. 2018; Zhang et al. 2017). Heavy metal(loid)s constitute an important
class of atmospheric pollutants primarily because of their toxic effects on living
beings with high persistence, specific gravities, densities, atomic weights, and
tendency to bioaccumulate (Murtaza et al. 2019; Natasha et al. 2018a; Shahid
et al. 2014, 2017a; Shakoor et al. 2015). Therefore, several previous studies empha-
sized the need of understanding the fate, behavior, chemistry, biochemistry, ecology,
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biology, and cellular and molecular biology of these heavy metal(loid)s in soil-plant-
human interaction (Rafiq et al. 2018; Shahid 2017; Shahid et al. 2018a, b; Shakoor
et al. 2019; Xiong et al. 2017).

Particulate matter has a high potential for adsorbing toxic heavy metal(loid)s and
making metal-PM complexes of various composition and sizes (Zhang et al. 2018a).
The presence of high levels of these metal-PMs in the atmosphere is confronting the
environmental quality and human/animal health worldwide (Uzu et al. 2011b; Xiong
et al. 2016a). Emission and presence of metal-PM in the atmosphere have gained
considerable attention as it has the capability to deteriorate atmospheric quality and
impacts human health (Ercilla-Montserrat et al. 2018; Jimoda 2012; Xiong et al.
2014b). Atmospheric contamination with these metal-PMs has increased consider-
ably during the last two decades due to rapid urbanization, economic development,
and industrialization. The situation is highly worsening in regions with intense
industrial activity (Douay et al. 2008; Pruvot et al. 2006; Schreck et al. 2014; Uzu
et al. 2011b).

These metal-PMs involve substantial contamination of different ecosystem
compartments: soils, plants, surface waters, and animals including humans
(Donisa et al. 2000; Li et al. 2017b; Wu et al. 2017; Xiong et al. 2014a). The
potential of these metal-PMs to transport over long range along with high persis-
tency has made the situation more complex and worsened. It is reported that metal-
PM can remain in the atmosphere for up to 30 days after their release from the source
(Tian et al. 2015). These metal-PMs can induce antagonistic effects on ecosystems
and human health many miles away from the source of origin (Dai et al. 2018;
Shahid et al. 2013).

Metal-PM can negatively affect human health via two major pathways including
the inhalation of atmospheric PM (Goix et al. 2014; Huang et al. 2018; Uzu et al.
2011b) or ingestion of the contaminated soil, dusts, or vegetables (Chuang et al.
2018; Guney et al. 2010; Xiong et al. 2014a). Especially in industrial areas, the
heavy metal(loid) concentrations in the atmosphere, soil, dust, water, and crop plant
tissues have been reported to be several times higher than their threshold levels
(Arshad et al. 2008; Ye et al. 2017). The size, composition, and shape of the PM
strongly affect their impact on both ecosystems (Schreck et al. 2012b; Uzu et al.
2011a, b) and human health (Schwartz and Neas 2000).

In the last decade, many studies focused on atmospheric contamination by
heavy metal(loid)s and associated health risks. A better understanding of sources,
emissions, fate, and associated health hazards can be a useful contribution to the
scientific literature. This review highlights the atmospheric contamination due to
metal-PM, their sources, speciation and transportation in the atmosphere, dry and
wet deposition on soil and plant, foliar uptake by plants, human inhalation, possible
human diseases, and the management strategies to control atmospheric
contamination.
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2 Atmospheric Contamination by PM-Bound Metal(loid)s

Heavy metal(loid)s in the environment are released both by natural processes and
anthropogenic activities (Foucault et al. 2013; Khalid et al. 2017a; Pierart et al. 2015;
Pourrut et al. 2011; Shahid et al. 2015). The major sources of metal-PM are smelters,
power plants, mining operations, and automobiles. Some studies categorized these
sources as stationary (petroleum refineries, industrial boilers, smelters, andmanufactur-
ing facilities) and mobile (automobiles) sources (Chan et al. 2016; Morawska et al.
1998, 2008; Shamshad et al. 2018). Open burning is also considered a major source of
heavy metal(loid) emission to the atmosphere (Wang et al. 2017; Ye et al. 2017).

2.1 Sources of PM-Bound Metal(loid)s

The recent advancements in industrial processes resulted in a release of a large
amount of fine and ultrafine metal-PM into the air due to the use of thinner filters
(Hu et al. 2018; Uzu et al. 2011a; Viswanath and Kim 2016; Xiao et al. 2018).
Cecchi et al. (2008b) reported that metal recycling processes in factories involve
several stages such as crushing, fusion, reduction, and refining. They reported that
each stage of metal recycling generates considerable amounts of undesirable
by-products such as PMs of Cu, Zn, As, Sb, Sn, Bi, and Ag. Uzu et al. (2011a)
reported that refining and furnaces are main sources of metal-PM production during
industrial processes. Indeed, during the recycling of Pb, Pb-acid batteries are melted
at very high temperature, thus releasing several metals such as Cu, As, Sn, and Sb.

The metal type and concentration attached with PM vary with the size of PM. For
example, it was reported that As, Cd, Pb, and V mainly attach with fine PM having a
diameter of less than 2.1 μm, whereas Ni, Co, Cr, and Ce occur mainly in coarse PM
with a diameter greater than 2.1 μm, while Sb, Mn, Cu, Zn, Pd, Pt, and Rh occur at
high levels in the medium range PM of 1.1–4.7 μm (Zereini et al. 2005). Similarly,
Uzu et al. (2011a) reported that Al and Na were mainly attached with PM1–2.5 while As
with PM2.5–10.

The release of metal-PM is more pronounced in developed countries with signif-
icant industrial development (Türtscher et al. 2017). For example, in Europe and
France, 4,800 and 108 tons of Pb, respectively, were released into the atmosphere in
2007 (Schreck et al. 2012a). The Pb was mainly released into the atmosphere as PM
from Pb production and acid battery recycling (Ettler et al. 2005; Uzu et al. 2011a).
Therefore, the fallouts of atmospheric PM represent the main source of Pb contam-
ination in the environment at the global scale (atmosphere and soil) (Donisa et al.
2000). Regardless of the strong decrease in vehicle and industrial Pb emissions in
the recent past (Glorennec et al. 2007), Pb-enriched PM is still released into the
environment, especially by Pb recycling facilities (Batonneau et al. 2004; Ohmsen
2001; Sobanska et al. 2000). Similarly, the release of other heavy metal(loid)s such
as As, Cd, and Cu into the atmosphere has also been reported.

The emission of heavy metal(loid)s and their attachment with PM vary with metal
type and size/composition of PM, as well as with the type of industry and industrial
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processes. For example, Uzu et al. (2011a) compared PM emission from three
different working places from a lead smelter: refining, furnace, and emission. They
reported that PM< 2.5 was mainly emitted from emission area, while PM2.5–100 was
mainly emitted from both refining and furnace areas. Using X-ray diffraction (XRD),
they also reported that different types of minerals of metal are emitted from different
working place origins (refining, furnace, and emission).

Goix et al. (2014) carried out the environmental scanning electron microscopy
(ESEM-EDX) analysis of atmospheric fallouts of a Pb recycling factory to under-
stand the variation in the attachment of heavy metal(loid)s with two size fractions of
PM (PM2.5 and PM10). They reported that numerous Pb-rich nanoballs were
observed in PM2.5 compared to the PM10.

Vehicle emission is considered as the main source of heavy metal(loid) introduc-
tion into the atmosphere (Duong and Lee 2011; Zheng et al. 2010). A study
conducted by Park and Kim (2005) showed that major contributors of the ambient
atmospheric contamination of the urban atmosphere are soil dust (13%), vehicle
exhaust (26%), and field burning (4%). Automobile emissions release toxic metals
into the atmosphere like Pb, Zn, and Cd (Viard et al. 2004). Similarly, the highest
airborne heavy metal(loid)s concentration was found in streets with heavy traffic in
Germany. Road traffic emissions are usually classified as exhaust and non-exhaust
emissions. The brake and asphalt wears are considered among the most important
sources of some metal(loid)s. Significant amounts of heavy metal(loid) particles such
as Zn, Cd, Co, Cr, Cu, Hg, Mo, Ni, and Pb are also associated with dust from tire
wear (Adamiec et al. 2016). Lough et al. (2005) calculated fine (2.5 μm) and coarse
(10 μm) PM contributions from vehicle emissions at tunnel entrances and exits.

2.2 Concentration Range of PM-Bound Metal(loid)s

Atmospheric contamination by fine metal-PM is considered a serious health risk for
people living in industrial areas and megalopolises (Goix et al. 2014; Juda-Rezler
et al. 2011; Xiong et al. 2014a; Zhang et al. 2018b). Several national, regional, and
international environmental and health organizations have reported threshold levels
of different heavy metal(loid)s in the atmosphere (Table 1). For example, the quality

Table 1 WHO guideline
values of heavy metal(loid)s
in the atmosphere (ng/m3)

Element WHOa EUb Average timing

Cadmium 5 5 Annual

Lead 500 500 Annual

Manganese 150 – Annual

Mercury 1,000 – Annual

Arsenic – 6 Annual

Ni – 20 Annual

PM2.5 – 25,000 Annual

PM10 – 40,000 Annual
a(WHO 2000a)
bThe European Union (Directive 1999/30/CE)
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standards for ambient atmosphere levels of Pb have been defined in Europe
(Directive 1999/30/CE). More recently, this Directive has been integrated into
2008/50/CE which recommends the annual limit values for Pb at 500 ng/m3. The
heavy metal(loids) such as As, Cd, Ni, and Hg are included in Directive 2004/107/
CE, which recommends the annual target values for Ni, Cd, and As at 20, 5, and
6 ng/m3, respectively, in the atmosphere.

However, numerous studies have reported high levels of metal-PM in the atmo-
sphere of urban areas characterized by high population densities, several folds higher
than the threshold levels (Lanzerstorfer 2018; Weerasundara et al. 2017). A sum-
mary of atmospheric heavy metal(loid) level (ng/m3) associated with particulate
matter of different fractions (PM10, PM7.5, PM2.5, PM1) is shown on Table 2. A
study conducted in Cantabria region, Spain (Fernández-Olmo et al. 2016), reported
high concentrations of metal-PM in the atmosphere: 9.24, 0.25, 354, 3.38, 0.55,
17.5, 20.2, and 4.86 ng/m3, respectively, for PMs of Pb, Cd, Zn, Ni, As, Mn, Cu, and
Cr. The mean value of PM of As was reported to be 0.534 ng/m3 in Łódź, Poland
(Krzemińska-Flowers et al. 2006); 230–2,230 ng/m3 in Islamabad, Pakistan (Shigeta
2000); 0.91 ng/m3 in the UK (Directive 2005); 7.77 ng/m3 in Tehran, Iran
(Hassanvand et al. 2015); and 5–20 ng/m3 in Cologne, Germany (Iffland et al.
1994). The reported atmospheric heavy metal(loid) concentrations in La Plata
City, Argentina, are Zn 273 � 227, Cd 0.41 � 0.42, Ni 3.2 � 3.5, Mg
1,472 � 967, Pb 64 � 62, Ca 5,343 � 3,614, Cu 30 � 27, Fe 1,183 � 838, Mn
26 � 20, and Cr 4.3 � 2.4 ng/m3 (Bilos et al. 2001).

The concentration of Cd-PM ranges between 0.05 and 0.2 ng/m3 in Northern
Europe, 0.06 and 0.12 ng/m3 in Southern Europe, and 0.2 and 0.5 ng/m3 in Central
Europe (Aas and Breivik 2005). Similarly, Cd atmospheric concentration ranged
from 6–360 ng/m3 in the USA and 10–53 ng/m3 in Japan (WHO 1987b). Momani
et al. (2000) showed the Zn, Cu, Pb, and Cd levels of 344, 170, 291, and 3.8 ng/m3,
respectively, in the atmosphere of Amman, Jordan.

The concentration of metal-PM in the atmosphere varies among different areas
such as urban, rural, and industrial areas. For example, the mean concentration of
Cu-PM in atmosphere ranges between 5 and 200 ng/m3 in rural and urban areas
(ATSDR 2002). The average concentration of Pb-PM in global urban and industrial
atmosphere is 0.2–0.6 μg/m3 and 0.5–1.0 μg/m3 (Shigeta 2000), respectively, while
global industrial, urban, and rural levels of As-PM in atmosphere are >1,000 ng/m3,
3–200 ng/m3, and 0.02–4 ng/m3 (Facts 2008), respectively. The varying atmospheric
concentration of Cd-PM has been reported between 1 and 3 ng/m3 in rural and urban
areas (Seemayer and Hadnagy 1992). The mean Cd-PM concentrations in industrial,
rural, and urban atmosphere are 15–150 ng/m3, 0.1–5 ng/m3, and 2–15 ng/m3

(Friberg et al. 1992).
In the city of Irbid, Jordan, the measured concentrations of metal-PM were

986 ng/m3 Fe, 111 ng/m3 Pb, 117 ng/m3 Cu, 23 ng/m3 Mn, 8 ng/m3 Ni, and
283 ng/m3 Zn in urban area, while the reported values for the metal-PM were
682 ng/m3, 21 ng/m3, 55 ng/m3, 17 ng/m3, 5 ng/m3, and 213 ng/m3 for Fe, Pb,
Cu, Mn, Ni, and Zn in rural areas (Gharaibeh et al. 2010). The highest level of
Pb-PM, 2,147 ng/m3, was recorded at an industrial station in Coimbatore, India
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(Mohanraj et al. 2004). The atmospheric concentration of metal-PM may vary over
different seasons (Li et al. 2017b; Zhang et al. 2016). For example, WHO (1987a)
reported airborne As concentration 450 ng/m3 in winter and 70 ng/m3 in summer for
the same geographic location.

The abovementioned studies showed that the atmospheric concentration of metal-
PM may rise beyond the toxic/threshold levels (reported by EU regulated levels,
WHO guidelines, or EPA’s RfCs) in different regions of the world. However, their
levels greatly vary in rural, urban, and industrial areas. In contrast to soil heavy
metal(loid) contamination, atmospheric contamination does not remain constant
and varies greatly with their intensity of emission from the source. Moreover, the
climatic conditions (wind, temperature, rainfall, etc.) also affect atmospheric level of
metal-PM. Therefore, it is of great importance to identify their possible sources of
emission from different natural and anthropogenic sources. Moreover, the atmo-
spheric contamination of metal-PM by different sources requires constant monitor-
ing compared to soil contamination.

2.3 Speciation of PM-Bound Metal(loid)s

Nowadays, metal speciation is highly topical, because the biogeochemical behavior
of a metal is highly dependent on its speciation in addition to total metal content
(Rafiq et al. 2017; Shahid et al. 2012a, b). Fine and coarse PMs are also reported to
contain different chemical forms of a metal (Anake et al. 2017; Helali et al. 2016;
Osán et al. 2010). Heavy metal(loid)s attached with atmospheric PM have different
species or fractions which show different bioavailability and potential risk to living
beings (Feng et al. 2009; Huang et al. 2018). Heavy metal(loid)s associated with PM
varies with the type of metal and particulate (Helali et al. 2016; Kang et al. 2017).
Various studies have been conducted for the assessment of heavy metal(loid)
speciation and their spatial and temporal variation with PM (Jia et al. 2018; Kang
et al. 2017; Pattanaik et al. 2016). Most of the heavy metal(loid)s are associated with
PM10 and PM2.5, which can penetrate the respiratory tract and pulmonary region
causing adverse health effects (Krzemińska-Flowers et al. 2006).

Donnelly (1993) reported that incineration of solid waste emits toxic heavy
metal(loid)s into the atmosphere like As, Pb, Cr, Cd, Hg, Ag, and Be. These
heavy metal(loid)s upon incineration are generally converted into their respective
oxides and chlorides and are therefore released into the atmosphere in oxide or
chloride forms along with fine PM. Goix et al. (2014) carried out Raman micro-
spectrometry of atmospheric fallouts of a Pb recycling factory. They reported that
xPbO.PbSO4, PbCO3, α-PbO, Na2SO4, PbSO4, and ZnSO4 were identified in both
PM2.5 and PM10 samples as major species. Similarly, Uzu et al. (2011a) reported Pb,
PbS, PbO, PbSO4, and PbO�PbSO4 as the major species of Pb from a lead recycling
factory. They reported that the differences observed in chemical composition and
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speciation can be due to industrial processes. In another study, using Raman
spectroscopy and XRD, Uzu et al. (2009) revealed minor variation in the speciation
in decreasing order of their abundance: PbS, PbSO4, PbSO4-PbO, a-PbO, and PbO.
Recently Liu et al. (2018b) showed source-specific speciation profiles of different
heavy metal(loid)s (Mn, Cr, V, Co, Cu, Ni, As, Zn, Sn, Cd, Ba, Sb, and Pb) from ten
anthropogenic sources in China.

Table 3 shows the speciation of heavy metal(loid)s associated with PM. Sanchez-
Rodas et al. (2017) showed that the percentage of Sb(V) in PM10 was 64–69% near a
traffic station in Granada, 73–77% at traffic stations of Cordoba, 85–86% from the
industrial station of Cordoba, and 84–88% for the fugitive emissions of the brass
industries. Uzu et al. (2011a) reported that CaCl2-exchangeable Pb ratio was rela-
tively low (<0.02%) compared to Cd (up to 18%) emitted from a Pb recycling
factory. It is well known that the metal speciation governs the biogeochemical
behavior of a metal. In fact, different metal species vary with respect to their
bioaccessibility and bioavailability. Voutsa and Samara (2002) reported the high
bioaccessible concentration of Cd (20%), Cu (42%), Ni (46%), Zn (41%), and Mn
(52%) in industrial and urban atmosphere of Greece. Similarly, study conducted by
Feng et al. (2009) indicated that about 91% of Cd, 85% of Pb, and 74% of As were in
bioavailable form and cause severe toxicity to exposed organisms. These findings
suggest that it is of great importance to assess the soluble fractions of all metals in
relation to their associated health risks. Moreover, the metal bioaccessibility and
associated health risks may be correlated with PM size. In fact, it is proposed that
metal extractability/bioaccessibility increases with decreasing size of PM (Uzu et al.
2011a). They identified three sources of PM directly affecting the workers near a
secondary Pb smelter for battery recycling: (1) ambient air from rotary furnaces;
(2) ambient air from refinery; and (3) channeled emissions which vacate gases and
fumes from the furnace to outside of the factory. They reported that Pb exchange-
ability and extractability were the highest for channeled emissions.

Table 3 Heavy metal(loid) species in atmosphere associated with PM

Metals Species in atmosphere
Association with
PM References

Ni NiS, NiFeO4, NiSO4.H2O PM10 (GALBREATH et al. 2003)

Pb PbO, PbCO3, PbS, PbSO4, PbO.
PbSO4

PM10, PM2.5 (Uzu et al. 2011a)

As As(III), As(V) PM10, PM2.5 (Gonzalez-Castanedo et al.
2015)

Cd CdSO4, CdS, PM10, PM2.5 (Uzu et al. 2011a)

Hg Hg(II)S PM2.5 (Kolker et al. 2013)

Zn ZnS, ZnSO4, ZnCO3, Zn(NO3)2 PM2.5 (Osán et al. 2010)

Cr Cr(III), Cr(VI) PM10 (Catrambone et al. 2013)

Cu CuSO4, CuO PM10 (Roy et al. 2015)
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2.4 Atmospheric Deposition of PM-Bound Metal(loid)s

Heavy metal(loid)-enriched PM can accumulate in different compartments of the
environment. Some of these metal-PMs distribute on a local scale within the range of
10 km. However, some metal-PMs are more persistent and can be distributed over
long distance up to a regional scale over hundreds of kilometers away from the
source (National Research Council 2000; Ouyang et al. 2018; Xu et al. 2017)
(Fig. 1). Transport of PM and metal-PM varies on a temporal and spatial scale
(Grantz et al. 2003b; Lü et al. 2018; Markus et al. 2016; Wang et al. 2018;
Weerasundara et al. 2017). The fine metal-PMs having low falling velocity are
easily transferred to different areas by the wind and possibly deposited at long
distances far away from the point of their emission through precipitation (Hoodaji
et al. 2012). These metal-PM then accumulate in different compartments of the
environment.

3 Soil Contamination Due to Atmospheric Deposition
of Metal-PM

The final removal of atmospheric contaminants is their deposition on the surface of
the earth. Due to increasing atmospheric contamination, numerous sites/soils around
the globe have been reported contaminated by heavy metal(loid)s (Nadal et al. 2004;
Rachwał et al. 2017b; Shahid et al. 2012c; Sharma et al. 2018; Weerasundara et al.

Fig. 1 Heavy metal(loid)-enriched particulate matter (metal-PM) released from various sources
into the atmosphere and deposition on different terrestrial ecosystems (soil, water, plant, and
animals/human)
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2018). Atmospheric contaminants are one of the major sources of heavy metal(loid)
deposition and accumulation in soil (Ahmed and Ishiga 2006). The deposition of
metal-PM on soil has become a global issue due to the rapid increase in industrial-
ization and urbanization.

Soil deposition of metal-PM is higher near industrial and mining areas. The
average concentration of heavy metal(loid)s in soils may exceed their background
levels due to the deposition of metal-PMs from the atmosphere (Hu et al. 2018;
Liang et al. 2017b; Pratte et al. 2018). Different authors reported heavy metal(loid)
concentrations in soil after atmospheric deposition of metal-PM (Table 4).

Deposition of metal-PM on soil can be wet or dry deposition (Gunawardena et al.
2013; Lynam et al. 2015). Wet and dry depositions are considered important
phenomena of atmosphere cleaning. Wet deposition represents the absorption into
droplets followed by precipitation of these droplets by rain (Lynam et al. 2015; Zhu
et al. 2016b). Wet deposition also takes places via impaction on the earth’s surface
(dew formation, fog, and mists) (Amodio et al. 2014). Wet deposition results in the
washout of both PM-bound metal(loid)s and vapor phase. Dry deposition represents
the uptake at the earth’s surface (water, soil, or vegetation) (Amodio et al. 2014). Dry
deposition of PM-bound metal(loid)s involves the removal of all the particles
suspended in the air. Dry deposition occurs with several mechanisms like intercep-
tion, sedimentation, turbulent diffusion, Brownian diffusion, diffusiophoresis,
inertial forces, thermophoresis, and electrical migration (Amodio et al. 2014;
Zufall et al. 1999). Deposition rates of atmospheric pollutants (including
PM-bound metal(loid)s) are governed by PM characteristics (size and shape),
surface properties (microscale roughness, friction velocity, and temperature), and
meteorological dynamics (relative humidity, wind velocity) (Amodio et al. 2014;
Zufall et al. 1999). Several previous studies have evaluated wet and dry deposition of
PM-bound metal(loid)s at global scale. For example, Pan and Wang (2015) evalu-
ated dry and wet depositions of PM-bound metal(loid)s at ten sites in Northern
China. They reported that atmospheric deposition of Cu, Pb, Zn, Cd, As, and Se
represents the same intensity as their accumulations/increases in the topsoil.

The flux of dry and wet depositions may vary with particle size, season, and area.
Pan and Wang (2015) reported that the dry deposition was more consistent with
spatial distribution of the total (dry plus wet) deposition flux compared to wet
deposition. They also reported that dry deposition dominated the total flux for the
majority of heavy metal(loid)s that exist as coarse particles (Pan and Wang 2015).
Azimi et al. (2003) carried out sampling and analysis of atmospheric deposition of
heavy metals (Al, Cd, Cr, Cu, Fe, Na, Pb, and Zn) at the University of Paris XII.
They reported that the prevalent deposition type was dry deposition which represents
80%, 60%, and 40% for Pb, Cu, and Cd, respectively. Ye et al. (2018) evaluated
atmospheric deposition based on insoluble/soluble fractions of five heavy metals
(Cr, Pb, Cu, Cd, and Zn) at Dinghushan (suburban) and Guangzhou (urban) sites.
They reported that the ratios of wet/dry deposition fluxes showed that wet deposition
mainly governed the heavy metal deposition compared to dry deposition. They
also reported that wet deposition fluxes significantly vary with seasonal variation
between winter and summer monsoon seasons in this region. Previously, Sakata and
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Asakura (2011) also revealed wet deposition as the dominant deposition mechanism
for atmospheric pollutants, especially in monsoon areas of Asia. This shows that the
ratios of wet/dry deposition fluxes may vary at different locations around the globe.
The possible reason of variation in the ratios of wet/dry deposition fluxes can be due
to differences in climatic conditions at different locations or the type/size of
metal-PM. However, the phenomenon needs more clarity/research for conclusive
elucidation.

The average deposition of Cr, Cd, and Pb on soil was 0.96 � 0.48, 0.28 � 0.25,
and 1.90 � 1.54 mg/m2/year in China (Zhu et al. 2016a). The reported values of
heavy metal(loid)s in agricultural topsoil after atmospheric deposition of metal-PM
are 20,458, 688.90, 18.93, 19.88, 83.47, 0.49, 61.48, and 17.54 mg/kg for Fe, Mn,
Ni, Cu, Zn, Cd, Pb, and As, respectively (Rachwał et al. 2017a). Zaborska et al.
(2017) studied the spatial variation in metal concentration and their deposition rate in
sediments of Svalbard. The study indicated the concentration of heavy metal(loid)s
as 5.7–45.8 for Pb, 13.4–54.4 for Cu, 0.1–0.90 for Cd, and 55.6–130.4 mg/kg for
Zn. It was then indicated that the area received these pollutants from North American
sources through different possible transfer mechanism of metal-PM.

Different types of conventional devices are used for wet, dry, and bulk deposition
sampling. The devices used for atmospheric deposition sampling can be distin-
guished into different categories based on deposition type: (1) dry deposition
sampling when there is no precipitation, (2) wet deposition sampling only during
rain, and (3) bulk deposition sampling for both the dry and wet depositions (Amodio
et al. 2014). Recently, Wu et al. (2018) used Dustmate for collecting the dry
deposition PM concentration and rain collectors for the assessment of wet deposi-
tions. Different types of devices used in atmospheric deposition sampling of
PM-bound metal(loid)s include wet-dry deposimeter sampler, HDPE bucket
sampler, HDPE funnel-bottle sampler, HDPE automatic wet-dry sampler, HDPE
automatic wet-only sampler, water surface sampler, PVC dry deposition sampler,
high- and low-volume samplers, etc. (Amodio et al. 2014). Previously, Aas et al.
(2009) investigated the field intercomparison of three types of samplers to determine
the atmospheric deposition at different locations in Europe. The study revealed that
the samplers used showed efficient performance at different locations. They pro-
posed that at industrial, rural, and urban locations, Bergerhoff samplers are necessary
to use.

Owing to the deposition of metal-PM, high concentrations of heavy metal(loid)s
were detected in the soil and sediments of mining area of Xikuangshan, China: 32.3,
399.98, 18.77, 17.86, 512.09, 40.46, 7.56, 45.43, and 273.67 mg/kg for Cr, Mn, Ni,
Cu, Zn, As, Cd, Pb, and Sb, respectively (Li et al. 2017a). They further reported that
windborne transport plays a significant role in the dispersal of the metal-PM. A
significant increase in annual dust (metal-PM) fall rate was measured in some areas
of India (Tiwari et al. 2008). Among heavy metals, the annual atmospheric deposi-
tion rate was Mn (387.3), Zn (336.6), Cr (124.4), Pb (71.0), Ni (51.2), Cu (39.8), and
Cd (6.93) g/h/year. The deposition of metal-PM was correlated with some meteoro-
logical factors such as wind velocity, humidity, and temperature (Tiwari et al. 2008).
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The deposition rate of metal-PM varies with the type of metal. For example,
Sharma et al. (2008) reported that the deposition rates of PMS of Cu, Zn, and Cd
were significantly higher during winter and summer seasons, while deposition rate of
Pb was higher in summer and rainy seasons. Pandey et al. (2008) investigated the
deposition of dust, Pb, Cd, Ni, Zn, Mn, and Cu at selected urban and suburban sites
of Varanasi, India, using a dust collector. Average fluxes of 2.88, 0.34, 2.96, 12.22,
22.27, and 2.89 g/h/year were measured for Pb, Cd, Cr, Ni, Zn, Mn, and Cu,
respectively. The result showed that the dust load was significantly higher in summer
and winter as compared to rainy season. Rohbock (1982) evaluated mass balances of
dry and wet deposition rates separately at 13 sites in Germany. They reported that
metals bound to large PM are deposited mainly via dry deposition, whereas metals
bound to submicron PM are deposited by wet deposition.

After falling on soil surface, the metal-PMs can have different fates in the soil.
This fate of metal-PM is controlled both by soil physicochemical properties as well
as the type, size, and composition of metal-PM. In most cases, the metal-PM is
sorbed on the upper soil surface. For example, Cecchi et al. (2008b) reported that the
soil in the vicinity of a Pb recycling plant was contaminated by Pb, Cu, As, Zn, Sb,
and Sn in the upper horizons.

Inside the soil, heavy metal(loid)s deposited by atmospheric deposition may
occur in different chemical forms. Speciation of atmospheric deposited metal may
vary with the type of metal and the soil characteristics (Jung 2008; Olaniran et al.
2013; Shahid et al. 2013). Cecchi et al. (2008b) reported that 40–60% Pb was mainly
found in the acid-soluble fraction (carbonates and phosphates) between 0 and 50 cm,
while 20–50% Pb was contained mainly in the form of iron oxides. Similarly,
Clemente et al. (2006) found 42% Pb in the same acid-soluble fraction near a
Pb-Zn mine area. It is reported that the heavy metal(loid) fraction deposited on
soil from the atmosphere is generally present in the soil solution (Shahid et al. 2013).
These metals deposited from atmosphere do not become the structural part of soil
constituents. Therefore, it is believed that the heavy metal(loid) contents introduced
to soil via atmospheric deposition or other human activities are more bioavailable
than those present in parent materials or minerals (Cecchi et al. 2008a). However,
this bioavailable/exchangeable fraction of atmospheric deposited metal may vary
with the type of soil and metal as well as the size of PM.

It is also observed that the size of PM attached to metal affects metal bioavail-
ability in soil. Uzu et al. (2009) carried out a microculture experiment with numerous
calcareous soils spiked with micronic and submicronic PM containing
1,650 � 20 mg/kg Pb. They reported a higher soil-plant transfer with the finest
PM. This shows that size and composition of PM emitted from industrial units must
be monitored for their possible environmental pollution and associated health risks.

In addition to direct atmospheric deposition of metal-PM on soil, these metal-
PMs may get attached on plant canopy and then fall on soil with plant litter. In this
case the speciation and fate of metal may vary greatly compared to direct fall of
metal-PM on soil. A study conducted by Shahid et al. (2013) indicated high metal
contamination of topsoil from the decaying of industrially contaminated popular
leaves (litter containing metal-PM). It was demonstrated that organic matter
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produced from the decomposition of plant litter could induce progressively a
transformation of inorganic metal components into more available organic metal
components. In this way, there can be a greater risk of soil-plant metal transfer.
However, there exists comparatively less data about the deposition of metal-PM-
contaminated plant litter on soil and its subsequent fate in soil. Further studies are
required to investigate the speciation, bioavailability, and uptake of metals released
from the decomposition of contaminated leaves.

4 Plant Contamination Due to Atmospheric Deposition
of Metal-PM

Besides the deposition on soil, metal-PM also falls on foliar organs of plants (Martin
et al. 2018; Pratte et al. 2018). Urban vegetation is considered an excellent biological
filter as they are efficient in adsorbing and reducing harmful UV rays, noise, and
atmospheric contamination (metal-PM) (Bottalico et al. 2016; Safari et al. 2018).
Dust deposition on a plant’s canopy is a continuous process that is controlled by
wind and gravity, which allows atmospheric dust back to the ground (González et al.
2014; Grantz et al. 2003a). Dust deposition and retention on leaf surface particularly
depend on the roughness of the surface and size of the PM (Fowler 2002; Liu et al.
2018a; Shahid et al. 2017b).

The forest canopy/ecosystem is highly sensitive to atmospheric PM due to the
large interaction surface area (leaf area index ¼ 3–10 m2/m2) (Bytnerowicz et al.
2007; Paoletti et al. 2010; Serengil et al. 2011; Sicard et al. 2016; Ulrich et al. 1995).
This interaction between plant canopy and metal-PM includes adsorption of PM,
assimilation, or release of PM by the canopy (Balestrini et al. 1998; Gandois et al.
2010). Several studies have evaluated the composition of atmospheric deposition on
plant canopy as well as the interaction (adsorption, assimilation, etc.) processes
occurring in the phyllosphere (Gandois et al. 2010; Hou et al. 2005). It is reported
that these interaction processes between metal-PM and forest canopy depend on
element-specific dynamics and the morphology of forest canopy. For example, the
speciation, composition, and size of metal-PM govern their environmental path-
ways, availability, and transport or immobilization in the ecosystem compartments
(Gandois et al. 2010).

Yang et al. (2005) investigated that most of the atmospheric pollutants are
removed by vegetative cover. They estimated that trees remove about 1,261 tons
of pollutants in 2002 from the atmosphere of central part of Beijing, China. In a city
of China, Chen et al. (2015) indicated that vegetation on greenbelts improved
atmospheric quality near footpaths by 7–15% and remarkably removed PM10. A
case study in Strasbourg, France, indicated that during 1 year of the study, trees in
the city removed almost 88 tons of total atmospheric pollutants from which 12 tons
of PM10 and 5 tons of PM2.5 were removed (Selmi et al. 2016). A study suggested
that trees can trap atmospheric pollutants up to about 7% of total air pollutant
concentration at Marylebone, London (Jeanjean et al. 2017).
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Bottalico et al. (2016) examined the potential of green urban forests to remove
atmospheric PM10 in the city of Florence. Annual removal of PM10 was estimated to
be 0.0204 t/ha by conifers, 0.0176 t/ha by evergreen broadleaves, 0.0152 t/ha by
deciduous broadleaves, and 0.0247 t/ha by remaining mixed forests. Nowak (1994)
concluded that plants in urban areas removed approximately 215,000 tons of PM10/y
in the USA.

Plants are commonly used as bioindicator to detect the presence of metals/heavy
metals in the atmosphere and soil (García-Florentino et al. 2018; Kłos et al. 2018;
Naderizadeh et al. 2016; Sawidis et al. 2011). Generally, most of the heavy metal
(loid)s present in the soil system are taken up by plants through their root system, but
plants are also capable to absorb heavy metal(loid)s through aerial organs directly
from the atmosphere (Shahid et al. 2017b). Less data is available on the absorption of
heavy metal(loid)s except for some essential metals like Fe, Cu, Mg, Zn, Ni, and Si
(Al-Khlaifat and Al-Khashman 2007; Hong et al. 2016; Kumar et al. 2016; Wang
et al. 2016). Moreover, majority of the studies on foliar heavy metal(loid) uptake are
not recent, and the atmosphere-plant transfer pathways and mechanisms reported
remained unclear (Little 1978; Salim et al. 1993a).

It is proposed that metal-PM deposits on adaxial and abaxial surfaces of the
leaves and is trapped in cuticle of the leaves (Mo et al. 2015; Shahid et al. 2017b). It
is also reported that the foliar entrance of metal-PM mainly depends on the size of
PM. Uzu et al. (2011b) used micro-X-ray fluorescence mappings and reported that
coarse Pb-rich spots were located in necrotic zones of lettuce leaves. These spots
were mainly concentrated at the base of the central nervure. Using scanning electron
microscopy coupled with energy dispersive X-ray, it was shown that fine particles
were mainly found beneath the leaf surface. Xiong et al. (2014a) carried out
SEM-EDX analysis of Pb-PM-exposed spinach and cabbage leaves and reported
that metals were found all over the leaf surfaces and the coverage rate for Pb-PM on
the leaf surface was about 2%.

In addition, fine PMs were found inside stomatal openings. Similarly, Schreck
et al. (2012b) reported that highest Pb concentration attached with fine PM (<1 μm)
was present on the surface and in necrotic zones of lettuce leaves. In ryegrass leaves,
they reported that highest Pb concentrations were found on the leaf surface as well as
plain tissue. This shows that foliar uptake and accumulation also vary with plant type
and PM size. Fewer studies have focused on the intra- and intercellular pathway of
heavy metal(loid) and PM movement after foliar uptake.

Studies have shown that plants growing near industries/smelters have high
concentrations of heavy metal(loid)s in their foliar tissues (Celik et al. 2005;
Gajbhiye et al. 2016b; Tomašević et al. 2004; Uzu et al. 2010) (Table 5). Birbaum
et al. (2010) reported that smaller particles can enter the leaves, while large particles
make aggregates and are trapped in the waxy cuticle layer (Fig. 2). Bondada et al.
(2004) reported that metals can pass through the waxy layer and eventually are
absorbed by the underlying cells of the leaves. Leaf structure plays the main role
in the adsorption of heavy metal(loid)s from the atmosphere. Uptake of heavy
metal(loid)s can occur through foliar surfaces of leaves such as stomata, aqueous
pores, ectodesmata, lenticels, and cuticular cracks (Fernández and Brown 2013;
Winner and Atkinson 1986).
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Table 5 Heavy metal(loid) concentration (mg/kg) in plants growing in natural conditions, after
foliar uptake of heavy metals

Metals Plant species Study area Conc. References

Pb Pongamia pinnata
Kigelia pinnata
Alstonia scholaris
Cassia siamea
Fagus sylvatica
Cedrus deodara
Nerium indicum
Alstonia scholaris
Ficus benghalensis
Polyalthia longifolia
Azadirachta indica
Inula viscosa

Power plant
Power plant
Power plant
Industrial area
Forest area
Industrial area
Industrial area
Highway, India
Highway, India
Highway, India
Highway, India
Highway, Palestine

11.9
12.6
11.9
3.34–16
9.2
2.8
1.97
0.467
0.539
3.259
3.389
7.25

(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016b)
(Türtscher et al. 2017)
(Liang et al. 2017a)
(Liang et al. 2017a)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Swaileh et al. 2004)

Fe Kigelia pinnata
Butea monosperma
Cassia siamea
Fagus sylvatica
Inula viscosa

Thermal power plant
Thermal power plant
Industrial area
Forest area
Highway, Palestine

1,294
1,669
648–2,911
115.8
730

(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016b)
(Türtscher et al. 2017)
(Swaileh et al. 2004)

Mn Butea monosperma
Mangifera indica
Fagus sylvatica
Inula viscosa

Thermal power plant
Thermal power plant
Forest area
Highway, Palestine

159
158
828
140

(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016a)
(Türtscher et al. 2017)
(Swaileh et al. 2004)

Cr Mangifera indica
Alstonia scholaris
Ficus benghalensis
Polyalthia longifolia
Azadirachta indica
Inula viscosa

Thermal power plant
Highway, India
Highway, India
Highway, India
Highway, India
Highway, Palestine

27.9
2.746
2.305
0.504
1.799
7.03

(Gajbhiye et al. 2016a)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Swaileh et al. 2004)

Cu Mangifera indica
Fagus sylvatica
Platanus acerifolia
Nerium indicum
Inula viscosa

Thermal power plant
Forest area
Industrial area
Industrial area
Highway, Palestine

27.5
11
6.37
6.86
10.6

(Gajbhiye et al. 2016a)
(Türtscher et al. 2017)
(Liang et al. 2017a)
(Liang et al. 2017a)
(Swaileh et al. 2004)

Cd Pongamia pinnata
Cassia siamea
Cedrus deodara
Pittosporum tobira
Alstonia scholaris
Ficus benghalensis
Polyalthia longifolia
Azadirachta indica
Inula viscosa

Thermal power plant
Industrial area
Industrial area
Industrial area
Highway, India
Highway, India
Highway, India
Highway, India
Highway, Palestine

14.5
6.5–12.1
0.105
0.109
0.065
0.008
0.987
0.768
0.1

(Gajbhiye et al. 2016a)
(Gajbhiye et al. 2016b)
(Liang et al. 2017a)
(Liang et al. 2017a)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Parekh et al. 2016)
(Swaileh et al. 2004)

Zn Fagus sylvatica
Pittosporum tobira
Osmanthus fragrans
Inula viscosa

Forest area
Industrial area
Industrial area
Highway, Palestine

35.2
38.6
28.8
47.6

(Türtscher et al. 2017)
(Liang et al. 2017a)
(Liang et al. 2017a)
(Swaileh et al. 2004)

Ni Fagus sylvatica
Inula viscosa

Forest area
Highway, Palestine

7.4
4.87

(Türtscher et al. 2017)
(Swaileh et al. 2004)
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Xiong et al. (2014a) showed that adsorption of heavy metal(loid)s is highly
dependent on the morphology and physiology of the leaves as well as on the species
of metals. Metals can penetrate through the cuticle layer of foliar organs and adopt
symplastic or apoplastic pathway to move between cells and thus can be released
into the phloem and are distributed throughout the plant (Shahid et al. 2017b; Xiong
et al. 2014a). It is anticipated that metals after foliar application can penetrate
through the cuticle into the intracellular spaces of the leaves from where they can
undergo phloem loading (Geiger 1975) and translocated throughout the plant.
Previous studies indicate the transport of foliar-applied metals into the roots. Leaves
absorb maximum metal and a little is transported to the roots <1% (Colle et al.
2009). Dollard (1986) reported the 0.1%, 0.1–0.3%, and <1% transfer of foliar-
applied lead to the root tissues, in radish, carrot, and broad beans. So far, less data is
reported on shoot to roots to transfer of metals.

Like root uptake, foliar metal uptake could also be in a dose- and time-dependent
manner. For example, Bondada et al. (2004) reported the linear relation between As
content in plant and the foliar-applied doses of arsenic over time. Likewise, a linear
relation was reported between the foliar Zn levels and the concentration inside the
plant (Deshpande et al. 2017). Hong et al. (2016) reported a significant increase of
the metal concentration inside the plant with higher levels of foliar-applied concen-
tration. Hence, it can be concluded that metal uptake by foliar organs and translo-
cation inside the plant can be through the following possible pathways:
(1) deposition on the foliar surface; (2) penetration into the plant through different
leaf structures such as cuticle, stomata, pores, etc.; (3) apoplastic or symplastic
movement; (4) phloem loading; and (5) translocation in the plant (Fig. 2). However,
more studies are needed to fully elaborate the uptake mechanisms and accumulation
patterns of heavy metal(loid)s through foliar surfaces.

Entering through 
stomata

Trapped in 
cuticle 

PM adsorb 
on leaf

Cuticle 

Open Stomata 

Plant leaf

Phloem loading of 
heavy metals 

Direction of 
flow

Heavy metals 
Translocated 

throughout the plant

Shoot-root 
movement of 
heavy metals

Mechanism of foliar uptake of atmospheric-
deposited heavy metals enriched particulate 

matter and their translocation inside the plant

Sieve tube element 

Companion cells 

Lateral sieve area

Sieve tube plate

Fig. 2 Mechanism of foliar uptake of heavy metal(loid)s and their translocation inside the plant
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5 Health Risks Associated with Metal(loid) Accumulation
by Vegetables via Foliar Deposition

Urban agriculture (gardening) is developing globally due to its perceived health
benefits and economic conditions. However, urban agriculture may sometimes
increase human exposure to metal(loid)s through ingestion of metal contaminated
vegetables, when grown on polluted urban sites (Bi et al. 2018; Szolnoki et al. 2013;
Xiong et al. 2014a). Recently, several studies have focused on the human health
risks associated with the use of contaminated vegetables/crops (Mombo et al. 2015;
Xiong et al. 2016b; Yang et al. 2016b).

After foliar deposition of metal-enriched PM, vegetables may absorb and accu-
mulate high levels of metals (Edelstein and Ben-Hur 2018; Li et al. 2018; Mombo
et al. 2016) (Tables 5 and 6). During the past recent years, some studies evaluated the
accumulation of heavy metal(loid)s in vegetables cultivated in areas with high
atmospheric deposition of metal-rich PM. For example, Schreck et al. (2012b)
reported 108, 107, 99, 122, and 171 mg/kg of Pb accumulation in lettuce shoot
after exposure to industrial atmospheric fallouts of a secondary lead recycling plant,
respectively for 1, 2, 3, 4, and 6 weeks. In another study, Schreck et al. (2012b)
evaluated the concentration of Pb, As, Sn, Sb, Cu, Zn, and Cd in three vegetables
(lettuce, ryegrass, and parsley) after exposure to atmospheric fallouts resulting from
the emissions of a battery recycling factory. They reported that the Pb content
reached about 100, 300, and 100 mg/kg DW in lettuce, ryegrass, and parsley,
respectively.

In another study (Schreck et al. 2014), these authors reported 700 mg/kg of Pb in
shot tissues of ryegrass, which was several times higher than the maximum allow-
able level set by the European Commission Regulation for leafy vegetables (0.3 mg/
kg FW). Similarly, Cd concentrations of 1.7, 0.8, and 1.6 mg/kg DW were found for
lettuce, parsley, and ryegrass, respectively, compared to limit values of 0.2 mg/kg of
fresh weight, which is about 4 mg/kg dry weight (Kabelitz and Sievers 2004). Under
foliar application of Pb-PM, 485 and 214 mg/kg of Pb were reported, respectively, in
spinach and cabbage (Xiong et al. 2014a). Similarly, Uzu et al. (2010) reported that
after 43 days of Pb-PM exposure, the thoroughly washed leaves of lettuce contained
335 � 50 mg/kg of Pb in shoot tissues.

Nevertheless, there exist rare data about health risk assessment due to the foliar
uptake of heavy metals. Xiong et al. (2014a) measured the gastric bioaccessibility of
metal(loid)s (Sb, Cd, Zn, and Pb) in spinach and cabbage after metal-PM atmo-
spheric/foliar application. They reported that the gastric bioaccessibility ranged
from 13.9 to 98% of these metal(loid)s. Similarly, Schreck et al. (2012b) reported
that Pb bioaccessibility is 45% for lettuce exposed for 1 month to foliar application
of Pb-PM. Therefore, it is proposed that the leaf morphology controls both the
metal(loid) uptake by plants and metal gastric bioaccessibility once exposed to
human digestion fluids (Uzu et al. 2011b).

During the recent past, health risk assessment has emerged as a key factor tomonitor
environmental pollutants and their associated health risks (Khalid et al. 2018;
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Tabassum et al. 2018). Risk assessment traces the pathway of exposure and also
estimates the probability and nature of possible toxic effects of a pollutant to humans
when exposed to that pollutant (Arslan et al. 2016; Diepens et al. 2016). Recently,
several research reports and studies used different kinds of risk assessment parameters/
tools to estimate the possible associated health risks (Antoniadis et al. 2019; Khalid
et al. 2018). In this study, we used the previously reported heavy metal(loid) concen-
trations in edible plant parts due to foliar deposition and uptake and estimated the values
of different risk assessment parameters such as hazard quotient (HQ), estimated daily
intake (EDI), maximum daily intake (MDI), lifetime cancer risk (ILTCR), total hazard
quotient (THQ), and hazard index (HI) both in adults and children (Tables 7, 8, 9, 10,
and 11). The parameters used to calculate these risk assessment factors are described in
detail in Tables 12 and 13.

The values of estimated daily intake (EDI) were determined using total heavy
metal(loid) concentration in edible parts of plants after foliar uptake (Khalid et al.
2017b).

EDI ¼ Cep � IR� Cf � EF� ED
BW� AT

The hazard quotient (HQ) was estimated using the ratio of average EDI to the oral
reference doses (RfD) of metals (Rehman et al. 2016).

HQ ¼ EDI
RfD

The incremental lifetime cancer risk (ILTCR) through ingestion of edible plant
parts contaminated with heavy metal(loid)s after foliar uptake was calculated as
described by Shahid et al. (2018b).

ILTCR ¼ EDI� CSF

The target hazard quotient (THQ) was calculated as follows.

THQ ¼ 10�3 � EF� ED� IR� Cf

RfD� BW� AT

To assess the overall potential for non-carcinogenic effects posed by more than
one heavy metal, a hazard index (HI) approach has been developed based on EPA’s
Guidelines for Health Risk Assessment of Chemical Mixtures (USEPA 1986). The
hazard index is equal to the sum of the THQs of all metals.

HI ¼
Xn

n¼1

THQð Þn
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Table 7 Health risk assessment in adults due to foliar deposition and uptake of heavy metal(loids)

Plants HQ EDI ILTCR THQ References

As

Lactuca sativa 0.58 0.0002 0.00026 0.0068 (Schreck et al. 2012b)

Petroselinum crispum 0.21 0.0001 0.00009 0.0025 (Schreck et al. 2012b)

Pb

Lactuca sativa 4.78 0.019 0.00016 0.056 (Schreck et al. 2012b)

Lactuca sativa 13.14 0.053 0.00045 0.155 (Uzu et al. 2010)

Petroselinum crispum 11.71 0.047 0.00040 0.138 (Schreck et al. 2012b)

Raphnus sativus 0.01 0.000 0.00000 0.000 (Salim et al. 1993b)

Pongamia pinnata 0.47 0.002 0.00002 0.005 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.36 0.001 0.00001 0.004 (Türtscher et al. 2017)

Ficus benghalensis 0.02 0.000 0.00000 0.000 (Parekh et al. 2016)

Cd

Azadirachta indica 0.13 0.001 0.0567 0.1093 (Parekh et al. 2016)

Brassica oleracea 9.29 0.009 0.0016 0.0031 (Xiong et al. 2014a)

Lactuca sativa 0.27 0.000 0.0008 0.0015 (Schreck et al. 2012b)

Petroselinum crispum 0.13 0.000 0.0104 0.0201 (Schreck et al. 2012b)

Raphnus sativus L. 1.71 0.002 0.3036 0.5856 (Salim et al. 1993b)

Spinacia oleracea 49.78 0.050 0.0139 0.0268 (Xiong et al. 2014a)

Pongamia pinnata 2.27 0.002 0.0000 0.0000 (Gajbhiye et al. 2016a)

Ficus benghalensis 0.00 0.000 0.0007 0.0014 (Parekh et al. 2016)

Ni

Fagus sylvatica 0.06 0.001 0.00098 0.000683 (Türtscher et al. 2017)

Cu

Raphnus sativus L. 0.10 0.004 0.0000 0.001139 (Salim et al. 1993b)

Lactuca sativa 0.03 0.001 0.0000 0.000314 (Schreck et al. 2012b)

Petroselinum crispum 0.02 0.001 0.0000 0.000203 (Schreck et al. 2012b)

Mangifera indica 0.11 0.004 0.0000 0.001269 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.04 0.002 0.0000 0.000508 (Türtscher et al. 2017)

Cr

Mangifera indica 0.003 0.004 2.188 0.0000343 (Gajbhiye et al. 2016a)

Ficus benghalensis 0.000 0.000 0.181 0.0000028 (Türtscher et al. 2017)

Azadirachta indica 0.000 0.000 0.141 0.0000022 (Parekh et al. 2016)

Mn

Mangifera indica 0.05 0.025 0.000 0.000583 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.26 0.130 0.000 0.003056 (Türtscher et al. 2017)

Zn

Spinacia oleracea 0.08 0.023 0.000 0.000887 (Xiong et al. 2014a)

Lactuca sativa 0.02 0.005 0.000 0.000194 (Schreck et al. 2012b)

Petroselinum crispum 0.01 0.004 0.000 0.000156 (Schreck et al. 2012b)

Brassica oleracea 0.04 0.011 0.000 0.000451 (Xiong et al. 2014a)

Fagus sylvatica 0.02 0.006 0.000 0.000217 (Türtscher et al. 2017)

(continued)
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The limit values of HQ, THQ, and HI are 1, while that of ILTCR is 10�4 (Briki
et al. 2017; Mansouri et al. 2015). Values below these limits represent that the
exposed population is unlikely to endure any toxic effect.

It is observed that the HQ, THQ, and ILTCR values for several heavy metal(loid)s
and vegetables exceeded their respective limit values (Tables 7 and 9). Tables 8 and
10 show the range (minimum and maximum values) of these risk assessment
parameters, respectively, in adults and children. It can be seen that the maximum
values of HQ were higher than limit value (10, 39, and 61, respectively for Pb, Cd,
and Sb in adults) (Table 8). Similarly, high ILTCR values have also been observed

Table 7 (continued)

Plants HQ EDI ILTCR THQ References

Fe

Spinacia oleracea 0.02 0.153 0.000 0.00018 (El-Aila et al. 2015)

Butea monosperma 0.03 0.262 0.000 0.000308 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.00 0.018 0.000 2.14E-05 (Türtscher et al. 2017)

Sb

Spinacia oleracea 2.16 0.001 0.000 0.025377 (Xiong et al. 2014a)

Brassica oleracea 78 0.031 0.000 0.920487 (Xiong et al. 2014a)

Table 8 Range (minimum
and maximum values) of HQ,
EDI, ILTCR, and THQ for
adults presented in Table 7

Metal Range HQ EDI ILTCR THQ

As Minimum 0.2 0.0001 0.000 0.002

Maximum 0.6 0.0002 0.000 0.007

Pb Minimum 0.0 0.000 0.000 0.0001

Maximum 10 0.041 0.000 0.120

Cd Minimum 0.0 0.000 0.000 0.0000

Maximum 39 0.039 0.236 0.455

Ni Minimum 0.0 0.001 0.001 0.0005

Maximum 0.0 0.001 0.001 0.0005

Cu Minimum 0.0 0.001 0.000 0.0002

Maximum 0.1 0.003 0.000 0.0010

Cr Minimum 0.0 0.000 0.000 0.0000

Maximum 0.0 0.003 0.002 0.0000

Mn Minimum 0.4 0.019 0.000 0.000

Maximum 0.2 0.101 0.000 0.002

Zn Minimum 0.3 0.003 0.000 0.0001

Maximum 0.3 0.018 0.000 0.0007

Fe Minimum 0.0 0.014 0.000 0.000

Maximum 0.0 0.203 0.000 0.000

Sb Minimum 1.7 0.001 0.000 0.020

Maximum 61 0.024 0.000 0.715
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Table 9 Health risk assessment in children due to foliar deposition and uptake of heavy
metal(loids)

Plants HQ EDI ILTCR THQ References

As

Lactuca sativa 1.12 0.0003 0.00050 0.013188 (Schreck et al. 2012b)

Petroselinum crispum 0.41 0.0001 0.00018 0.004796 (Schreck et al. 2012b)

Pb

Lactuca sativa 9.32 0.037 0.00032 0.109702 (Schreck et al. 2012b)

Lactuca sativa 25.60 0.102 0.00087 0.30123 (Uzu et al. 2010)

Petroselinum crispum 22.83 0.091 0.00078 0.268589 (Schreck et al. 2012b)

Raphnus sativus 0.01 0.000 0.00000 0.000169 (Salim et al. 1993b)

Pongamia pinnata 0.91 0.004 0.00003 0.0107 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.70 0.003 0.00002 0.008273 (Türtscher et al. 2017)

Ficus benghalensis 0.04 0.000 0.00000 0.000485 (Parekh et al. 2016)

Azadirachta indica 0.26 0.001 0.00001 0.003047 (Parekh et al. 2016)

Cd

Brassica oleracea 18.10 0.018 0.1104 0.212929 (Xiong et al. 2014a)

Lactuca sativa 0.52 0.001 0.0032 0.006115 (Schreck et al. 2012b)

Petroselinum crispum 0.24 0.000 0.0015 0.002877 (Schreck et al. 2012b)

Raphnus sativus L. 3.33 0.003 0.0203 0.039176 (Salim et al. 1993b)

Spinacia oleracea 97.01 0.097 0.5917 1.141256 (Xiong et al. 2014a)

Pongamia pinnata 4.43 0.004 0.0270 0.052153 (Gajbhiye et al. 2016a)

Ficus benghalensis 0.00 0.000 0.0000 2.88E-05 (Parekh et al. 2016)

Azadirachta indica 0.23 0.000 0.0014 0.002762 (Parekh et al. 2016)

Ni

Fagus sylvatica 0.11 0.002 0.00190 0.001331 (Türtscher et al. 2017)

Cu

Raphnus sativus L. 0.19 0.008 0.0000 0.002221 (Salim et al. 1993b)

Lactuca sativa 0.05 0.002 0.0000 0.000611 (Schreck et al. 2012b)

Petroselinum crispum 0.03 0.001 0.0000 0.000396 (Schreck et al. 2012b)

Mangifera indica 0.21 0.008 0.0000 0.002473 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.08 0.003 0.0000 0.000989 (Türtscher et al. 2017)

Cr

Mangifera indica 0.006 0.009 0.00426 0.000067 (Gajbhiye et al. 2016a)

Ficus benghalensis 0.000 0.001 0.00035 0.000006 (Türtscher et al. 2017)

Azadirachta indica 0.000 0.001 0.00028 0.000004 (Parekh et al. 2016)

Mn

Mangifera indica 0.10 0.048 0.000 0.001137 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.51 0.253 0.000 0.005956 (Türtscher et al. 2017)

Zn

Spinacia oleracea 0.15 0.044 0.000 0.001729 (Xiong et al. 2014a)

Lactuca sativa 0.03 0.010 0.000 0.000379 (Schreck et al. 2012b)

Petroselinum crispum 0.03 0.008 0.000 0.000305 (Schreck et al. 2012b)

Brassica oleracea 0.07 0.022 0.000 0.000879 (Xiong et al. 2014a)

Fagus sylvatica 0.04 0.011 0.000 0.000422 (Türtscher et al. 2017)

(continued)
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for Cd and Cr. The values of THQ and integrated risk (HI) were not higher than limit
values (1) for all metal(loid)s (Table 7, 9, and 11). The trends of HQ, ILTCR, and
THQ were almost the same for children, even with higher values (Table 10). This
shows that there can be high chances of heavy metal(loid) exposure and associated
toxicity in humans via the foliar transfer pathway. It is highly necessary to contin-
uously monitor the atmospheric contamination by heavy metal(loid)-enriched PM,
especially in areas of extensive industrial and mining activities as well as near
metropolises.

Table 9 (continued)

Plants HQ EDI ILTCR THQ References

Fe

Spinacia oleracea 0.03 0.298 0.000 0.00035 (El-Aila et al. 2015)

Butea monosperma 0.05 0.510 0.000 0.00060 (Gajbhiye et al. 2016a)

Fagus sylvatica 0.00 0.035 0.000 0.00004 (Türtscher et al. 2017)

Sb

Spinacia oleracea 4.20 0.002 0.000 0.049456 (Xiong et al. 2014a)

Brassica oleracea 152 0.061 0.000 1.793891 (Xiong et al. 2014a)

Table 10 Range (minimum
and maximum values) of HQ,
EDI, ILTCR, and THQ for
children presented in Table 9

Metal Range HQ EDI ILTCR THQ

As Minimum 0.4 0.000 0.000 0.005

Maximum 1.1 0.000 0.001 0.013

Pb Minimum 0.0 0.000 0.000 0.000

Maximum 25.6 0.102 0.001 0.301

Cd Minimum 0.0 0.000 0.000 0.000

Maximum 97.0 0.097 0.592 1.141

Ni Minimum 0.1 0.002 0.002 0.001

Maximum 0.1 0.002 0.002 0.001

Cu Minimum 0.0 0.001 0.000 0.000

Maximum 0.2 0.008 0.000 0.002

Cr Minimum 0.0 0.001 0.000 0.000

Maximum 0.0 0.009 0.004 0.000

Mn Minimum 0.1 0.048 0.000 0.001

Maximum 0.5 0.253 0.000 0.006

Zn Minimum 0.0 0.008 0.000 0.000

Maximum 0.1 0.044 0.000 0.002

Fe Minimum 0.0 0.035 0.000 0.000

Maximum 0.1 0.510 0.000 0.001

Sb Minimum 4.2 0.002 0.000 0.049

Maximum 152.5 0.061 0.000 1.794

90 M. Shahid et al.



6 Human Diseases Associated with Direct Inhalation
of Metal-PM from the Atmosphere

Ambient air pollution is considered an important source of human diseases (Brauer
et al. 2015; Mukherjee and Agrawal 2017). Although metal-PM ingestion is con-
sidered as a secondary exposure pathway in adults, it is the main route by which

Table 11 Hazard index (HI) of more than one metal(loid) for adult and children presented in
Tables 7 and 9

Plants Metals Adult Child Reference

Lactuca sativa As, Pb, Cd, Cu, Zn 0.065 0.127 (Schreck et al. 2012b)

Pongamia pinnata As, Cd 0.005 0.011 (Gajbhiye et al. 2016a)

Fagus sylvatica Pb, Ni, Cu, Cr, Zn 0.008 0.017 (Türtscher et al. 2017)

Ficus benghalensis Pb, Cd 0.001 0.003 (Parekh et al. 2016)

Petroselinum crispum As, Pb, Cd, Cu, Zn 0.161 0.313 (Schreck et al. 2012b)

Raphnus sativus Pb, Cd, Cu 0.587 1.144 (Salim et al. 1993b)

Mangifera indica Cu, Cr, Mn 0.002 0.004 (Gajbhiye et al. 2016a)

Brassica oleracea Cd, Zn, Sb 0.924 1.801 (Xiong et al. 2014a)

Spinacia oleracea Cd, Zn, Sb 0.053 0.103 (Xiong et al. 2014a)

Table 12 Oral reference doses (RfD) and upper tolerable daily intake limit (UL) for metals
(USEPA 2009)

Metals UL (mg/day) RfD (mg/kg/day) CSF (mg/kg/day)

Fe 0.45 � 102 7 � 10�1 1.5

Zn 0.4 � 102 3 � 10�1 0.0085

Cu 0.10 � 102 4 � 10�2 6.1

Pb 2.40 � 10�1 4 � 10�3
–

Cd 6.40 � 10�2 1 � 10�3 0.5

Mn 0.11 � 102 33 � 10�3 0.84

Cr 1.05 � 10�2 0.015 � 102 –

Ni 0.01 � 102 2 � 10�2
–

As – 3 � 10�4
–

Table 13 Different parameters and their values used to calculate the risk assessment factors

Abbreviation Parameters Value Reference

C metal (mg/kg) Concentration of metal in plant edible part – –

IR (g/day) Average ingestion rate of vegetable/crop 100.4 (USEPA 1997)

Cf Conversion factor 0.085 (Rehman et al. 2016)

EF (days/year) Exposure frequency 365 –

ED (years) Exposure duration (average life expectancy) 64.4 (WHO 2015)

AT (days) Average time of exposure 23,506 (Shahid et al. 2017c)

BW (kg) Average body weight 70 (WHO 2016)

Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar. . . 91



children are exposed to metals via ingestion of contaminated dust (Dimitriou and
Kassomenos 2017). After ingestion, metal-PM can induce a range of toxic effects in
humans depending on its characteristics (type, size, and composition) (Table 14;
Fig. 3). Various cardiovascular diseases are associated with direct inhalation of
airborne metal-PM (Croft et al. 2017; Kastury et al. 2017; Lawal 2017; McGuinn
et al. 2017; Yin et al. 2017).

Evidence indicated that metal-PM is directly related to cardiovascular diseases,
chronic diseases, and mortality such as chronic obstructive pulmonary disease,
pulmonary hypertension, myocardial infarction, asthma, and cancers (Delfino et al.
2004; Dominici et al. 2006; Peng et al. 2008; Pope et al. 2004). The World Health
Organization in 2012 has established that atmospheric pollution causes cardiovas-
cular diseases and respiratory and lung cancer eventually leading to premature death
at the rate of 72%, 14%, and 14%, respectively (WHO 2014). Yang et al. (2016a)
found that PM2.5 is significantly correlated with the number of daily outpatient visits
for cardiovascular diseases during high atmospheric pollution events in Taiwan.
In China, the estimated national burden of diseases due to ambient PM2.5 was about
1.1 million deaths in 2015 (Liu et al. 2018b).

Table 14 Human diseases associated with direct inhalation of heavy metal(loid)s from the
atmosphere

Metal Health risks
Lifetime risk (at air
conc. 1 μg/m3)

As Lung, bladder, liver, kidney, skin, and colon cancer; neurolog-
ical, vascular, and hematological lesions; cardiovascular dis-
eases; abdominal cramps; weight loss; decrease in peripheral
nerve conduction velocities; hyperkeratosis; warts; and
melanosis

1.5 � 10�3

Cd Kidney disorders, lung cancer, increased mortality rate,
genotoxic effects

1.8 � 10�3

Cr Chrome ulcers; acute irritative dermatitis and allergic eczema-
tous dermatitis; corrosive reactions on the nasal septum; toxic
effects on the liver, skin, kidneys, and blood-forming organ;
cardiovascular diseases; necrosis; respiratory organ and gastro-
intestinal tract cancer

4 � 10�2

Pb Nervous disorders, renal carcinogenicity, cell hyperplasia,
cytomegaly and cellular dysplasia, gene mutations, blood pres-
sure and cardiovascular effects, inhibits the activity of the
cytoplasmic enzyme δ-ALA, effects on heme biosynthesis

–

Ni Renal disorders, mucosal irritation, asthma, allergic dermatitis,
nasal carcinoma, laryngeal cancer, kidney cancer, prostate
cancer, lung cancer

3.8 � 10�4

Mn Neurotoxicity, respiratory tract illnesses rather, sexual
dysfunction

–

Hg Nervous system disorders, cognitive decrements and emotional
alterations, kidney failure, pink disease, toxic effect to the fetus
during pregnancy

–

Source (WHO 2000b)
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Metal-rich PM is classified as carcinogenic by the International Agency for
Research on Cancer (IARC 2013) as these metal-PMs are linked to lung cancer
(Møller and Loft 2010; Quezada-Maldonado et al. 2018; Raaschou-Nielsen et al.
2016; Santibáñez-Andrade et al. 2017) and ultimately lead toward mortality (Chang
and Xu 2017). Similarly, a high mortality rate due to PM2.5 was reported by
Badaloni et al. (2017). The WHO has estimated that more than two million prema-
ture deaths per year worldwide can be due to the toxic effects of outdoor/indoor
atmospheric pollution (WHO 2006).

After inhalation, metal-PM has been reported to deposit in different parts of the
body. The metal-PM deposition rates in the lungs are estimated to be 50%, with an
alveolar absorption rate of>90% of the deposited amount (Löndahl et al. 2014). The
most important mechanisms for deposition of inhalable PM < 10 in the respiratory
system are inertial impaction, gravitational settling, and diffusion. Coarse particles
(PM > 3 μm) mainly deposit by impaction due to abrupt changes in the direction of
the air flow that occur in the mouth (or nose) and the upper respiratory tract
(Darquenne and Prisk 2004). The PM less than 10 nm has high diffusion velocity
and deposit mainly in the head airways and tracheobronchial region (Schulz and
Brand 2000). For particles with diameters in the range 20–40 nm, the majority (up to
about 50%) deposit in the alveolar region during exercise (Löndahl et al. 2014).

Goix et al. (2014) assessed the toxicity and threat score of fine and ultrafine
metallic PM (emitted into the atmosphere) by performing complementary in vitro

Fig. 3 Human diseases due to ingestion of heavy metal(loid)-enriched particulate matter
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tests (cytotoxicity, human bioaccessibility, and oxidative potential). They classified
the toxicity of particles as CdCl2 > CdO > CuO > PbO > ZnO > PbSO4 > Sb2O3.
Several studies revealed elevated levels of heavy metal(loid)s in blood upon human
exposure to airborne dust/PM (Acton 2012; Li et al. 2015). Uzu et al. (2011a, b)
evaluated human Pb toxicity and bioaccessibility after its emissions from a Pb
recycling plant. They reported that the process Pb-PM displayed differences in
granulometry, metal content, and percentage of inhalable fraction depending on
their origin (refining, furnace, and emissions) and PM size (PM10, PM2.5, PM1,
and PM0.1). They reported that the finest Pb-PM1 induced the most significant
pro-inflammatory effect in human bronchial epithelial cells.

Heavy metal(loid)s are considered as highly harmful to the human even at low
levels of exposure. This is because of the fact that humans do not have an effective
tolerance or excretion mechanism for these metal(loid)s. Metal-PM generates ROS
(reactive oxygen species) in human beings and induces different associated diseases
(Valavanidis et al. 2005). When human beings are exposed to metal-PM, oxidative
stress rises pulmonary pathology through airway inflammation (Ghio et al. 2012).
Squadrito et al. (2001) found the induction of ROS when heavy metal(loid)-enriched
PM is deposited in the lungs after inhalation from the atmosphere. These ROS,
overproduced due to heavy metal(loid) toxicity, cause oxidative stress and deleteri-
ous effects at the deposition site (Fryzova et al. 2018). Apart from direct ROS
generation by the airborne PM, ROS can also be generated by interacting with the
cells on which PM is deposited such as epithelial cells of lungs and pulmonary
macrophages (Santibáñez-Andrade et al. 2017; Valavanidis et al. 2013).

One of the main toxic effects of heavy metal(loid)s deposition inside the human
body is induced by their ability to bind to biomembrane structures, modifying their
function. For example, Pb has been reported to react with thiol (SH) groups,
resulting in damage to glutathione (GSH) (Gurer-Orhan et al. 2004). Glutathione
is a cellular antioxidant and plays a key role to scavenge ROS by taking part in
bio-reductive reactions (Shahid et al. 2017a). In this way, GSH protects cells from
oxidative stress. Thus, metal-PM ingestion into the human body is linked with
oxidative stress, which is generally considered a secondary mechanism of metal-
PM toxicity (Cho et al. 2005; Uzu et al. 2011b). Numerous studies have confirmed
the association of metal-PM ingestion with oxidative stress by using both in vitro
biological assays (respiratory epithelial or macrophages cells) (Baulig et al. 2004)
and cellular assays (Dithiothreitol test) (Cho et al. 2005).

7 Management Strategies to Reduce Air Contamination
by Metal-PM

Keeping in view the health risks associated with the atmospheric contamination
and deposition of metal-PM on terrestrial ecosystem, it is highly necessary to
control and manage the atmospheric environment. The management of atmospheric
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environmental contamination requires a global as well as local approach due to its
small and global scale effects (Fig. 4).

In the USA, the Environmental Protection Agency has established many regula-
tory steps to reduce the emission of toxic pollutants into the atmosphere. These
include reducing toxic pollutant emission from industries, vehicles, and engines
through new stringent emission standards and cleaner burning of fuel and tending to
reduce indoor atmospheric contamination (USEPA 2017). The EPA forces indus-
tries to reduce the emissions of toxic pollutants and gases. According to EPA,
industries must install filters in their smokestacks to remove particles and scrubber
to remove oxides of different gases with water channels. Similarly, several devel-
oped countries and regions such as the European Union, Australia, Japan, and
Canada have established their guideline values for different types of atmospheric
pollutants (including metal-PM). The regulatory guidelines established by these
countries can be adopted, after necessary modifications if required, in other countries
throughout the globe to reduce the atmospheric emission of heavy metals. This
practice can be highly effective to reduce atmospheric contaminations by different
types of pollutants, especially in less-developed countries.

At the regional scale, national and local government agencies must strictly
implement the environmental protection and management rules and practices. Indus-
tries, especially in less-developed areas, should install pollution control devices to
remove toxic gaseous/solid pollutants by absorption, dispersing, filtering, and dilut-
ing them. Government laws, regulation, and licensing are effective ways to reduce
emissions from industry. The pollution control devices may include cyclones, pre-
cipitators, fabric filter bags, wet scrubbers, and gravity settlers.

Fig. 4 Socio-scientific management and remediation practices required at local, national, and
global level. �Reseau-Agriville: https://reseau-agriville.com/
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Similarly, automobile emission is also a major source of atmospheric contami-
nation. Many technology-based innovations to decrease atmospheric contamination
from automobiles include utilization of lead-free fuel and the use of hybrid and
electric vehicles. Use of electricity-powered buses in metropolitan of big cities (e.g.,
London, UK) is a step toward environmentally sustainable development.

In order to control the atmospheric metal-PM contamination, the monitoring and
environmental risk assessment/management tools/models can be used (Dore et al.
2014). For example, geographic information system (GIS) and global positioning
system (GPS) can be used for risk assessment/management tools/models related
to atmospheric metal-PM pollution. Similarly, the remote sensing, as well as the
meteorological and air pollution dispersion models (Regional heavy metal transport
model, Weather Research and Forecasting, The Air Pollution Model, Regional
Atmospheric Modeling System, and MM5 modeling system software), can also be
used for various aspects of atmospheric pollution (Cheng et al. 2007; Hurley et al.
2005; Stein et al. 2015). In addition, statistical models have also been used for heavy
metal(loid)s modeling (Peng et al. 2016).

Moreover, awareness among the community is always a key factor in controlling
the atmospheric contamination and remediating/minimizing the toxic health hazards.
Similarly, the education and publicity of controlling atmospheric contamination are
also very important. Public awareness activities such as pollution remediation and
awareness seminars at school/college/university and community level (farmers,
small-scale industrialists) can be highly effective. In addition, mass media, as well
as the government and nongovernment organizations (NGOs, social society), might
play their part in this facet.

8 Future Perspectives

• The majority of the studies describing the characterization and toxicity of metal-
PM in the ambient atmosphere provide information about quantitative levels for
PM10 fractions. There is very little data available for the submicronic fraction
(PM < 2.5). Therefore, more studies may be conducted for submicronic highly
reactive and toxic fractions of metal-PM. Moreover, the reference or threshold
levels for atmospheric heavy metal(loid)s (Cd, Pb, Ni, As, and Cr) are currently
based on coarse PM (the European Union, the World Health Organization, and
the Chinese “Ambient Air Quality Standards”).

• The natural background concentration of heavy metal(loid)s in energy sources
(coal, petrol, etc.) used in industry/vehicles is one of the major sources of metal-
PM emission to the atmosphere. It has been reported that the metal-PM concen-
tration in the atmosphere is closely related to energy consumption source.
Therefore, energy sources used in the industry/vehicles need further investigation
in relation to the atmospheric release of metal-PM.
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• The attachment of heavy metal(loid)s to PM occurs during their release from the
source (primary metal-PM), or they may get attached to PM in the atmosphere
after their release (secondary metal-PM). The interaction or the type of binding
between heavy metal(loid)s and PM (primary and secondary metal-PM) has not
yet been described in the literature. Moreover, the type of industrial processes,
source of energy used in these processes, as well as the meteorological factors
may also affect the interaction between heavy metal(loid)s and PM and thereby
their composition, speciation, and associated health risks. Attention may, there-
fore, be given to these factors and interactions of metals and PM.

• The long-distance travel, as well as the deposition and fate (adsorption/desorption
in the soil, uptake by plants, and deposition in lungs) of metal-PM in the
environment, is associated with composition and the size of metal-PM, meteoro-
logical conditions, physicochemical properties of soil/phyllosphere. Therefore,
the temporal and spatial distributions, as well as the effects of different factors,
need to be studied in detail.

• Total heavy metal(loid) or metal-PM concentrations in the environment (air, soil,
water) are commonly used as the main criteria for assessing the pollution condi-
tions and associated hazards. However, recent data show that the biogeochemical
behavior of metals in the environment is mainly governed by their chemical
speciation. The scarcity of data about metal speciation in the industrially emitted
PM is mainly due to the lack of analytical tools, both sensitive and specific to the
size of the particles. Therefore, more attention is required to establish tools to
assess chemical speciation of metal-PM as well as the relationship of chemical
speciation of heavy metal(loid)s in PM with their biogeochemical behavior in the
atmosphere-soil-plant-human system.

• Some studies also highlight that comparatively less attention is given to metal-
PM emitted from the industries compared to traffic emissions (urban areas). The
chemical speciation, composition, and the biogeochemical behavior of metal-PM
emitted from different sources (industry, automobiles, mining, etc.) may vary
greatly. Therefore, metal-PM emitted from different sources and the associated
health risks may be categorized accordingly.

• Contrary to European countries where human health is nowadays protected
thanks to European Commission Regulation (EC) No. 221/2002 and REACH
regulation (EU n�1907/2006) promoting a more secure use and release of chem-
ical substances in the atmosphere/environment, the less developed countries such
as subcontinent need to reinforce the global information and the restrictions for
(eco)toxic chemical substance release into the atmosphere in order to avoid and
reduce human exposure and sanitary impacts. Moreover, on the global scale,
available socio-scientific publications illustrate that ecological transitions are
necessary in various sectors in order to preserve human and environmental/
atmospheric health.

• There is also limited data regarding metal-PM uptake by vegetables and crops,
accumulation in edible plant parts, and the associated human health hazards.
Moreover, elicitor molecules such as silicon, salicylic acid, and methyl salicylate
have been well-reported to affect plant growth and defense mechanisms under
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different types of stress (Benhamou 1996; Tierranegra-García et al. 2011; Zia
et al. 2017). However, the role of these elicitor molecules toward metal foliar
uptake, toxicity, and detoxification is not yet well-established. Therefore, studies
may be performed to evaluate the effect of different elicitors toward foliar metal
uptake, its toxicity, and detoxification.

9 Summary

This review highlighted the fate and behavior of metal-PM in the ecosystems as well
as their associated health risks. Metal-PM is emitted to the atmosphere by various
natural and anthropogenic activities, the latter being the major source. During their
processing in factories, different chemical forms of heavy metal(loid)s may attach to
PM of varying sizes. The chemical form of a metal and the size of PM depend on the
source. The concentration of metal-PM in the atmosphere may vary among different
areas such as urban, rural, and industrial areas. In industrial areas, the concentration
of metal-PM in the atmosphere may reach up to several folds higher than the
permissible levels set by WHO as reported in various countries of Europe, Asia,
and America.

After release into the atmosphere, metal-PM can travel over a long distance
depending on their composition and size, in addition to meteorological and climatic
factors. Transport of metal-PM varies on a temporal and spatial scale. Atmospheric
metal-PM finally deposit to terrestrial ecosystems such as soil, water, buildings, and
plant canopy. In this way, these metal-PMs contaminate different parts of the
ecosystem by heavy metals.

In soil, metal-PM becomes the part of soil depending on the nature of soil or is
being uptake by plants. Heavy metal(loid)s deposited from the atmospheric are
considered relatively more available for plant uptake compared to those present/
adsorbed in the soil.

Deposition of metal-PM on aerial plant parts is considered an important source
of plant contamination. Although rarely discussed and explained, foliar heavy
metal(loid) deposition and uptake can be a major source of heavy metal(loid)
accumulation in plants (shoots). In addition, metal-PM can be inhaled directly by
humans and get deposited in different organs inside the body. After inhalation,
metal-PM can induce several toxic effects to humans. At cellular level, heavy
metal(loid)s can overproduce reactive oxygen species inside the human body, thus
leading to oxidative stress and toxicity to various micro- and macromolecules.
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1 Introduction

Freshwater environments host microbial biomass that can aggregate and attach to
submerged inorganic (like rock, gravel, sediment) or organic (like leaf litter, mac-
rophytes) substrates. These microbial assemblages, called “biofilms” (Watnick and
Kolter 2000), are composed of eukaryotic (e.g., microalgae, fungi, protozoa) and
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prokaryotic (e.g., bacteria, cyanobacteria) microorganisms (Battin et al. 2016) whose
form, distribution, and metabolism (i.e., autotrophy, heterotrophy, mixotrophy) are
highly dependent, among other factors, on nature of the substrate (Fig. 1), light
intensity, and availability of dissolved organic and inorganic nutrients (Sabater et al.
2006; Ylla et al. 2009). Autotrophic biofilms (or periphyton), which grow on inert
surfaces like cobbles exposed to light, are generally dominated by diatoms,
cyanobacteria, and green algae, whereas heterotrophic biofilms can be found
attached to sediments or organic substrates like leaf litter and are dominated by
bacteria and fungi. Biofilms are embedded within a self-produced matrix of extra-
cellular polymeric substances (EPS) that is made up of (exo)polysaccharides and a
variety of proteins, glycoproteins, and glycolipids together with high amounts of
extracellular DNA (Flemming et al. 2007) and even suspended particulate matter and
detritus from the surrounding environment (Flemming 1995). Biofilms are thus
characterized by high structural complexity allowing multiple interactions with
contaminants (Battin et al. 2003). In addition, due to their high metabolic activity
and their role in aquatic food webs, microbial biofilms are likely to influence
contaminant fate in aquatic ecosystems.

Here we review the distribution of contaminants within aquatic biofilms and the
role of these benthic microbial communities in contaminant fate. The contaminants
we cover are metals (e.g., copper, mercury, cadmium, etc.) and organic micro-
pollutants (e.g., pesticides, pharmaceuticals, and other man-made substances).

Diverse and ubiquitous contamination of lakes and rivers (e.g., Fent et al. 2006;
Pal et al. 2010; Murray et al. 2010) exposes aquatic microbial biofilms to a potential
accumulation of substances transported by the water flow (in a dissolved form or
bound to suspended organic and inorganic matter) and/or adsorbed onto benthic
substrates (sediment, leaf litter). Therefore, the kind of substrate where biofilms
develop has a huge influence on their mode of exposure to contaminants (in terms of
nature, quantity, bioavailability) as well as their role in subsequent contaminant

Fig. 1 Schematic representation of the theoretical distribution of aquatic microbial biofilm com-
munities according to the kind of immersed substrates under light conditions (adapted from Pesce
et al. 2017)
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transfers through aquatic food webs. However, investigations on this topic are
fragmentary (i.e., one substrate/one contaminant) and difficult to unify in a common
framework since they lack real representativeness for contaminant mixtures in
complex systems harboring diverse substrates and/or microbial communities.

By their complexity, microbial biofilms can have multiple interactions with
contaminants (Fig. 2) and therefore influence its fate in the environment. All
microbial biofilms have the ability to neutralize contaminants by sorption (i.e.,
passive sequestration through interaction with biological matter), accumulation
(i.e., increased active internalization in cells), and sequestration for metals (i.e.,
formation of insoluble precipitates through interaction with microbial metabolites)
(Barkay and Schaefer 2001) or microbial transformation for organic substances
(Edwards and Kjellerup 2013; Carles et al. 2017). All these interactions are suscep-
tible to occur either within the cells or extracellularly within the EPS matrix.
Microbial biofilms offer a diverse range of sorption sites including cationic and
anionic sites as well as lipophilic/hydrophobic regions, as contaminants can bind to
EPS, cellular membranes, cell walls, and more. In addition, enzymatic machinery
required for contaminant transformation can either be present intracellularly or be
excreted in the extracellular matrix. Metal distribution within microbial biofilms has
been investigated for the last 25 years, and work continues with ongoing analytical
developments. However, investigations into the sorption and/or accumulation of
organic contaminants in microbial biofilms still run into technical limits, such as the
large amount of biofilm needed to ensure reliable quantification of accumulated
contaminants according to analytical level of detection.

Biofilm matrix features a high degree of microheterogeneity, which enables
microbial biofilms to concurrently harbor a high diversity of contaminants
(Flemming 1995). For instance, the presence of uronic acids (such as

Fig. 2 Schematic representation of the interactions between contaminants and microbial biofilms
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D-glucuronic, D-galacturonic, and mannuronic acids) was found to facilitate the
sorption of various cationic metals (e.g., Pb2+, Cu2+) (Flemming 1995). Sorption
of organic contaminants is partly driven by hydrophobic interactions, and so octanol-
water partition coefficient (Kow) is often used to estimate the sorption capacity of
organic contaminants in microbial biofilms. However, other types of interactions
also occur (e.g., ionic, electrostatic, etc.) and thus need to be considered.

Microbial biofilms influence contaminant fate in aquatic ecosystems through their
contribution to biotransformation processes and trophic transfers. Indeed, both
phototrophic and heterotrophic biofilms are foundational to aquatic food webs.
Phototrophic biofilms generate biomass from light energy and carbon dioxide, thus
providing organic substrates and oxygen (Roeselers et al. 2008), while heterotrophic
biofilms are able to decompose various organic materials and thus play a key role in
nutrient fluxes in aquatic ecosystems (Romani and Sabater 2001; Battin et al. 2003).
Accordingly, while periphytic biofilms are at the base of “green” food webs
supported by primary production (Danger et al. 2008; Zou et al. 2016), biofilms
formed on organic substrates play a functionally pivotal role in “brown” food webs
based on allochthonous organic matter decomposition (Hall and Meyer 1998). The
spatial proximity between autotrophic and heterotrophic microorganisms also drives
carbon and nutrient cycling within periphytic biofilms where autotrophic biomass
and activity can stimulate the development and activity of heterotrophic microbial
communities (Romani et al. 2004). This same pattern has been observed in detritus-
based food webs where primary production can stimulate leaf litter decomposition
by microbial heterotrophs (Danger et al. 2013). In aquatic environments, “green”
and “brown” food webs thus tend to connect through complex interactions (Zou
et al. 2016). Biofilm assemblages play a key role in interconnecting between these
“green” and “brown” food webs that are foundational to ecosystem functioning
(Krumins et al. 2013; Zou et al. 2016) (Fig. 3). Whatever the substrate and food web
involved, these biofilm assemblages are consumed by various microbial predators
(e.g., amoeba, ciliate, rotifers; Neury-Ormanni et al. 2016) and meso-/macrofauna
(Alvarez and Peckarsky 2005; Guasch et al. 2016) or fish (Schneck et al. 2013),
which means that contaminants bioaccumulated in microbial biofilms are likely to be
transferred to higher trophic levels in the food web (Singh et al. 2006).

During the last decade, research on the role of microbial biofilms in contaminant
fate and transfer has mainly focused on metal accumulation in periphytic biofilms
(e.g., Ancion et al. 2010; Fabure et al. 2015; Pesce et al. 2018) and on the
degradation of organic contaminants in sediments (e.g., Pesce et al. 2009, 2013;
Trinh et al. 2012). Nevertheless, recent studies have highlighted the potential role of
periphytic and leaf litter biofilms in organic contaminant accumulation and trophic
transfer (e.g., Kohušová et al. 2011; Ruhí et al. 2016). Furthermore, the daughter
directive 2008/105/EU of the Water Framework Directive and Guidance Document
No. 25 both recognize the importance of monitoring and preserving the sediment
compartment to preserve aquatic ecosystems (European Commission 2010). How-
ever, scarce few studies have focused on contaminant accumulation in sediment
microbial communities.

Scientific literature on contaminant bioaccumulation in microbial biofilms remain
dispersed, insofar as most of the studies available are focusing on one type of
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contaminants (e.g., metals, pesticides, or pharmaceuticals) or on biofilm growing on
one type of substratum (either cobbles, sediments, or leaf litter). An overview of the
methods available to detect, identify, quantify, and localize contaminants accumu-
lated in biofilms growing on different types of substrata is clearly missing. Such a
methodological review is nevertheless helpful to identify conceptual and technolog-
ical limitations as well as to guide method development effort. Since analytical
methods are the first essential step to measure contaminant bioaccumulation in
microbial biofilms, an overview of those methods and its specificities is essential
to facilitate the accurate interpretation of bioaccumulation results.

In this context, the present review aims to provide a critical report of:

• The analytical methods currently on use for detecting and quantifying contami-
nants in microbial biofilms developing in different benthic substrata (Sect. 2)

• The current state of knowledge and the future challenges concerning the role of
biofilms in contaminant accumulation (Sects. 3 and 5) as well as in trophic
transfers in the aquatic food web (Sects. 4 and 5)

Fig. 3 Schematic representation of the role of biofilm communities in aquatic “green” and “brown”
food webs. Solid arrows indicate consumption, and dotted arrows indicate production (OM organic
matter, DOM dissolved organic matter, FPOM fine particle organic matter)
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2 Analytical Methods for Quantification of Contaminants
in Microbial Biofilms

A short overview of the current analytical methods used for quantification of metals
and organic micropollutants in microbial biofilms is available in Table 1.

2.1 Metals

Concurrent to analytical developments, studies dealing with bioaccumulation in
microbial biofilms have applied mainly to metal contaminants. Thus, in the early
1990s, methods such as atomic absorption spectrometry (AAS; Avery and Tobin
1993) or radiotracers (White and Gadd 1987; Avery et al. 1993) were developed in
order to quantify metal (e.g., Zn, Fe, Cu, or Cs) concentrations in microorganisms

Table 1 Current methods to estimate contaminant accumulation in microbial biofilms

Approaches to detect, identify, and quantify
contaminants in:

Approaches
for identifying
where
contaminants
are located
within
biofilms

Sediments/
leaf
material
colonized
by
microbial
biofilms

Periphytic
biofilms

The intracellular
compartment of
periphytic biofilm or
bound to EPS

Metals Sample
preparation

Aqua regia
digestion

Nitric
digestion

Chemical method (water,
EDTA washing) + physi-
cal separation
(centrifugation)

Incubation
with fluores-
cent probes for
CLSM

Analysis AAS, ICP-OES, ICP-MS Imaging tech-
niques
TEM-EDX,
STXM,
CLSM

Organics Sample
preparation

Solvent extraction Physical extraction (son-
ication and centrifuga-
tion) + solvent extraction

Incubation
with fluores-
cent probes for
CLSM

Analysis GC-MS, LC-MS-MS Imaging tech-
niques
STXM,
CLSM

AAS atomic absorption spectrometry, ICP inductively coupled plasma, OES optical emission
spectrometry, MS mass spectrometry, GC gas chromatography, LC liquid chromatography, EPS
extracellular polymeric substances, EDTA ethylenediaminetetraacetic acid, STXM scanning trans-
mission X-ray microscopy, TEM-EDX transmission electron microscopy coupled with energy-
dispersive X-ray spectroscopy, CLSM confocal laser scanning microscopy
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(typically cyanobacteria, algae, or fungi). The appropriate method was selected
according to different criteria, such as accuracy, sensitivity, amount of sample
available, and the need or not to identify the location of the contaminant in the
microorganism structure (White and Gadd 1995). The democratization of induc-
tively coupled plasma optical emission and inductively coupled plasma mass spec-
trometry (ICP-OES and ICP-MS) allowing high-sensitivity analysis of several
elements at the same time led to a large number of studies on Cu, Zn, Pb, and Cd
bioaccumulation in microbial biofilms (e.g., Meylan et al. 2003; Farag et al. 2007;
Bradac et al. 2009, 2010). The bulk of research on metal bioaccumulation in
microbial biofilms was conducted on periphytic biofilms collected in situ on rock
and/or gravel (e.g., Ancion et al. 2010) or on artificial substrates (low-density
polyethylene membranes (Fechner et al. 2012); glass discs (Ivorra et al. 1999);
glass slides (Morin et al. 2008)) beforehand immersed in the water column to
allow biofilm colonization. These artificial substrates were also used in microcosm
experiments to obtain enough biological material to combine metal analysis and
toxicity tests under controlled exposure conditions (Fechner et al. 2011; Kim et al.
2012; Lambert et al. 2012).

To assess total metal concentration in the microbial biomass, hot (100�C) con-
centrated nitric acid digestion (by using a heating plate or a microwave oven) is
commonly used to extract total metal content from samples that had previously
been oven-dried at 50�C or freeze-dried (e.g., Morin et al. 2008; Fechner et al.
2012). To better discriminate between intracellular and extracellular metal
bioaccumulation in microbial assemblage, biofilms are first flushed with a solution
of ethylenediaminetetraacetic acid (EDTA) at 4 mM during 10 min (e.g., Meylan
et al. 2004; Bradac et al. 2009; Arini et al. 2012; Fabure et al. 2015). This step
removes the metals adsorbed to cell membranes and a fraction of the inorganic
complexes in the biofilm structure (Meylan et al. 2003). The amount of intracellular
metal content in the microbial assemblage is then deduced by analyzing the two
fractions (raw and EDTA-washed) of a sample. To better identify metal (Al, Cu, Zn,
and Pb) site within the EPS matrix and better characterize the exposure of microbial
cells to metals, Aguilera et al. (2008) proposed subsequent extractions and centrifu-
gation steps to separate first the “colloidal fraction” (extracted with distilled water),
then the “capsular fraction” (extracted with NaCl at 80�C, ultrapure water at 30�C,
Dowex at 4�C, or crown ether at 4�C), and finally the cellular debris from microbial
biofilms. Metal content can then be quantified independently in each of the three
collected fractions to determine the amount of intracellular metal (in the cellular
debris) as well as the metal concentration in the EPS matrix (in the colloidal and
capsular fractions). The colloidal fraction includes carbohydrates and proteins that
are loosely bound to microorganisms, whereas the capsular fraction contains tightly
bound compounds. However, Aguilera et al. (2008) showed that no single extraction
method was able to extract all the potential EPS components with the same
efficiency.

There have been several developments to assess metal accumulation and distri-
bution in freshwater periphytic communities, but none in microbial communities
from sediment or from leaf litter. Indeed, studies dealing with metal contamination
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and microbial communities associated to these substrates are only based on total
analysis of the metal in the whole sediment (e.g., Farag et al. 2007; Kohušová et al.
2011) or leaf litter (e.g., Sridhar et al. 2008; Schaller et al. 2011), including attached
biofilms. The analytical procedures commonly used include a first step of extraction
with aqua region or nitric acid, for instance, on fresh or dried sediment/leaf litter.
Then, metal concentrations in the extracts are measured by conventional analytical
methods (ICP-OES, ICP-MS, or AAS). To date, and to the best of our knowledge, no
study has been conducted to separate and specifically assess metal concentrations in
microbial communities from sediment or leaf litter.

Besides traditional fractionation and extraction methods, imaging techniques
have been developed to investigate interactions between metals and biofilms and
to visualize metals within the biofilm structure. Analytical electron microscopy
techniques such as transmission electron microscopy (TEM), often coupled with
energy-dispersive X-ray spectrometry, have been used to identify metal
bioaccumulation in microbial biofilms, in particular in bioremediation studies in
which biofilms are used as a sink to accumulate metals from contaminated waters
(Mattila et al. 1997; Miller et al. 2012). For example, this technique allowed Vilchez
et al. (2011) to show that Cr(III) bioaccumulated in the EPS matrix of microbial
biofilms, while Pb(II) was detected in both the EPS matrix and the microbial biofilm
cells. In order to determine macromolecules and metals composition in EPS from
microbial biofilms, TEM can also be coupled to electron energy loss spectrometry,
which is a complex technique for measuring atomic composition and chemical
binding and speciation, even for lower elements (C, O). The main drawback of
TEM is that sample preparation often requires dehydration, creating artifacts such as
particle shrinkage or aggregation (Dynes et al. 2006a). Furthermore, the high energy
of TEM causes radiation damage in biological samples, which leads to spectral
distortions, making high-resolution mapping difficult (Hitchcock et al. 2008).

Other imaging techniques such as confocal laser scanning microscopy (CLSM)
and scanning transmission X-ray microscopy (STXM) are especially well suited for
biofilm studies as they can be applied to fully hydrated biological materials and
reduce radiation damage (see Neu et al. 2010 for a comparative review on those
techniques applied to biofilms). In CLSM, metal binding to specific fluorescent
probes allows detection and localization of those contaminants within biofilms (for
a description of the different probes available, see the review by Hao et al. 2013). In
particular, the metal-sensitive probe Newport Green has been successfully used
to investigate Ni and Zn bioaccumulation in river biofilm (Wuertz et al. 2000;
Lawrence et al. 2019). The combination of different probes can be particularly
useful to compare localization of various metals on microbial aggregates (Hao
et al. 2016). STXM, which uses near-edge X-ray absorption fine structure as the
contrast mechanism, provides spatially resolved quantitative information on the
distribution of elements, macromolecules, and redox states in the biofilm matrix
(Lawrence et al. 2003; Behrens et al. 2012). According to Lawrence et al. (2016),
STXM is “capable of mapping the biochemical composition of bacteria and biofilms
at the subcellular scale [. . .] as well as speciation of metals.” Comprehensive reviews
on STXM applied to biofilms have found that it holds relevancy for investigating
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metal (Cu, Fe, Mn, Ni) speciation in biofilm matrices (Neu et al. 2010; Behrens et al.
2012). Dynes et al. (2006a) used STXM to highlight the close association of Ni with
Mn-oxides and the role of EPS in the sequestration of metals in aquatic microbial
biofilms. This technique also allowed Lawrence et al. (2012, 2016) to follow the
dissolution and fate of Cu nanoparticles (Lawrence et al. 2012) and the fate and
speciation of Ce, TiO2, and Cu in river biofilms (Lawrence et al. 2016). Yang et al.
(2016) characterized the biotransformation of selenium oxyanions by biofilms
using STXM and X-ray fluorescence imaging (at higher energies than STXM).
Finally, STXM image sequences revealed that Fe localization (on the cell surface
or within the EPS matrix) was speciation-dependent in a monospecific biofilm of
Pseudomonas aeruginosa (Hunter et al. 2008). The main limitations of the STXM
techniques are their low sensitivity and limit of resolution (25–50 nm against 4 nm
for TEM techniques). Indeed, to our knowledge, very few STXM studies have been
conducted at environmentally relevant concentrations: one study reports results on
Mn, Fe, and Ni with water concentrations ranging from 0.01 to 0.02 mg Mn L�1,
0.02 to 0.06 mg Fe L�1, and 1 to 10 mg Ni L�1, respectively (Hitchcock et al. 2009).

The combination of different imaging techniques remains essential to determine
metal distribution in biofilms and better understand the interactions between metals,
cellular components, and extracellular material (van Hullebusch et al. 2003). In a
recent study, Lawrence et al. (2019) combined CLSM with different fluorescent
probes, scanning electron microscopy, and X-ray microprobe analyses to show that
Ni was mainly associated to EPS in biofilm and was four times more concentrated
around specific microcolonies than in the rest of the microbial community.

2.2 Organic Contaminants

In contrast to the substantial research on metal distributions within periphytic
biofilms, there is a dearth of studies dealing with the accumulation in microbial
assemblages of organic contaminants. These studies mainly focus on pesticides,
polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and
more recently pharmaceuticals, hormones, and parabens. And the few studies
published fail to detail analytical methods for the quantification of organic contam-
inants in the biofilm following both laboratory and in situ exposure (Schorer and
Eisele 1997; Headley et al. 1998; Lawrence et al. 2001; Writer et al. 2011; Kohušová
et al. 2011; Ruhí et al. 2016). Due to the high complexity of the biofilm matrix,
nonselective solvent extraction methods generate analytical interferences; therefore
biofilm contamination by organic contaminants is preferably estimated indirectly
from contamination in water (Wang et al. 2002; Proia et al. 2013a, b). To directly
measure the concentration of organic contaminants in periphytic biofilms, samples
are first collected from the surfaces of stones or artificial substrates and then freeze-
dried before analysis (Wang et al. 1999; Huerta et al. 2016). Organic contaminants
are commonly extracted from the whole biofilm matrix without fractionation to
avoid matrix destruction and cell lysis. However, Chaumet et al. (2019a) recently
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proposed a physical extraction method to separate the diffusible from the cell-bound
EPS and microorganism fractions to further measure pesticide concentrations accu-
mulated in each of these two fractions. Solvent extraction of organic contaminants
from dried biofilm is then performed by pressurized liquid extraction (Writer et al.
2011; Huerta et al. 2016), ultrasonic extraction (Headley et al. 2001), shaking
extraction (Wang et al. 1999; Du et al. 2015), or Soxhlet extraction (Schorer and
Eisele 1997). Organic extracts are sometimes purified by solid-phase extraction
(Coat et al. 2011; Writer et al. 2011; Du et al. 2012, 2015) or directly analyzed by
chromatographic techniques (Headley et al. 2001). Liquid or gas chromatography
coupled to mass spectrometry (LC-MS or GC-MS, depending on the compounds) is
preferred to achieve the requisite selectivity and sensitivity (Coat et al. 2011; Dobor
et al. 2012; Du et al. 2012; Huerta et al. 2016; Ruhí et al. 2016). As an example,
liquid chromatography with UV detection was not sufficiently sensitive for analysis
of N-methyl pyrrolidinone in biofilm extracts with a limit of quantification (LOQ) at
100 ng g�1, whereas LC-MS was able to reach a LOQ of 2 ng g�1 (Headley et al.
2001; Huerta et al. 2016). While current identification and quantification methods
generally include extraction and purification steps, Headley et al. (1995) proposed in
the 1990s a method based on the direct injection of a small biofilm sample using an
insertion probe. Subsequent detection and identification of contaminants and metab-
olites were performed by tandem mass spectrometry (MS-MS) (Headley et al. 1995).
Unfortunately, the absence of separation of biofilm components prior to sample
introduction in the ion source induced interferences that limit the detection of a wide
range of contaminants at low-level concentration.

As for metal detection (Sect. 2.1), imaging techniques, such as CLSM and STXM
(Neu et al. 2010), have been successfully used to investigate organic contaminant
bioaccumulation in biofilms (Lawrence et al. 2001, 2016; Dynes et al. 2006b). These
nondestructive imaging techniques were applied on hydrated biofilm samples and
allowed direct observation of contaminants localization in the complex structure
of preserved biofilms. Fluorescence was usually used to detect contaminant with
CLSM, either by investigating fluorescent contaminants (Wolfaardt et al. 1994) or
by using specific probes targeting the contaminant investigated (Lawrence et al.
2001). Contaminant identification by STXM was probe-independent and based on
comparison with suitable reference spectra (Neu et al. 2010). Thus, coupling CLSM
with monoclonal antibodies specific to atrazine, Lawrence et al. (2001) showed that
bioaccumulation of this pesticide in river biofilms resulted from atrazine sorption to
specific microcolonies. Using STXM, Dynes et al. (2006b) revealed differences in
bioaccumulation patterns of the antimicrobial chlorhexidine between pennate and
centric diatoms within a complex microbial biofilm. To our knowledge, STXM has
not been used for quantification of organic contaminant accumulation in biofilms;
however the optical density obtained by STXM reflected the amount of contaminant
and could therefore be used for relative comparison between samples (Dynes et al.
2006b). Up to now, these techniques have only been applied on complex microbial
biofilms exposed in laboratory at relatively higher concentrations of organic con-
taminants than those found in the aquatic environments.
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Only a few studies have reported on the evaluation of analytical method
performances such as recoveries and LOQ (Coogan et al. 2007; Huerta et al.
2016) or matrix effects (Headley et al. 2001; Ruhí et al. 2016). The relatively low
amounts of contaminants sorbed on biofilms (trace levels) and the limited biomass
collected (often <200 mg) mean that LOQ values are generally in the same order of
magnitude as the measured concentrations. As an example, Huerta et al. (2016)
reported LOQs from 0.07 to 6.7 ng g�1 for pharmaceuticals (in 200 mg of
phototrophic biofilms), whereas most of the values measured in biofilm samples
were between 1.8 and 22 ng g�1. Matrix effects due to the specificity of the analyzed
biofilm are also under-addressed. To illustrate, when Huerta et al. (2016) compared
analyses of biofilm extracts against the initial solvent mixture spiked with different
contaminants at the same concentration level, they observed either ion suppression
or ion enhancement depending on organic contaminant, thus demonstrating that
concentrations values in biofilm extracts can be biased (i.e., over- or underestimated)
due to matrix effects. For quantification purposes, matrix-matched calibration
together with added internal surrogates (ideally labeled compounds) is thus advo-
cated to compensate for these matrix effects (Huerta et al. 2016; Ruhí et al. 2016).

3 Contaminant Bioaccumulation in Microbial Biofilms
from Freshwater Ecosystems

Microbial biofilms can adsorb and accumulate both metals and organic contami-
nants. The nature of the contaminant, the surrounding environmental conditions, and
the type of biofilm have all been found to influence contaminant bioaccumulation
patterns. Note that bioaccumulation cannot be apprehended in the same way in
periphytic biofilms, which are easily detached from their growth substrate, nor in
biofilms strongly attached to leaf litter or fine detritus in sediments, which makes it
difficult to specifically quantify the contaminants accumulated in the microbial
biomass.

3.1 Contaminant Bioaccumulation in Periphytic Biofilms

Natural periphytic biofilms have been found to host a large variety of contaminants.
Current knowledge on bioaccumulation in periphyton is illustrated and discussed
here based on a meta-analysis of 24 published studies (Table S1). The data collected
gather field and laboratory experiments including simultaneous quantification of
contaminants in water and periphyton (Fig. 4) with biofilms sampled at various
stages of maturity. Most of this data comes from chronic exposures, but some pulsed
exposures are also included. To estimate uptake efficiency, bioconcentration factors
(BCFs) were used as a proxy and were calculated as the ratio between the concen-
tration measured in the biofilm and the dissolved concentration in the medium
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(Wang et al. 1999) (see Fig. 5 and Table S1 for details). BCF calculations rely on
accurate estimation of chemical concentrations in both surface water and biofilm and
are thus strongly influenced by LOQs – for instance, high LOQs in water could lead
to an overestimated BCF (Arnot and Gobas 2006).

In periphyton, the bioaccumulation of any type of contaminant results from a
dynamic process (Chaumet et al. 2019a, b). The concentration of a contaminant
within periphyton tends to an equilibrium between uptake, elimination, and
biotransformation and is also influenced by growth-related dilution effects. Contam-
inant uptake in biofilm depends strongly on the nature of the chemical
(metal vs. organic) and on the 3D architecture and composition of the biofilm.
First, contaminants enter EPS via passive diffusion and can then either be accumu-
lated/transformed in this extracellular matrix or taken up within the cells (by passive
diffusion and facilitated or active transport). The complex composition of the EPS
matrix of biofilms offers many adsorption sites for both polar and hydrophobic
contaminants (Schorer and Eisele 1997; Flemming and Wingender 2001). Biofilms
take up both metals and organic contaminants that can then be stored (extra- or
intracellularly) and/or transformed by the community. Periphytic biofilms can accu-
mulate very high concentrations of metals, particularly aluminum, iron, and zinc,
which can be found at up to 24–28 mg g�1 of dry biofilm (Fig. 4, Table S1).
Advanced analytical methods, including imaging techniques (see Sect. 2), have

Fig. 4 Concentration of contaminants in periphytic biofilms in μg g�1 of biofilms (dry weight)
(n ¼ 400), data from 24 published studies. Plain circles stand for observations from the field, stars
for observations from laboratory experiments. PAHs polycyclic aromatic hydrocarbons, PCBs
polychlorinated biphenyls, HCH hexachlorocyclohexane, TBEP tris(butoxyethyl)phosphate,
DCPU N-(3,4-dichlorophenyl) urea, DCPMU N-(3,4-dichlorophenyl)-N-(methyl) urea, DDTs
dichlorodiphenyltrichloroethane
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afforded a relatively precise mapping of metals in periphyton, which can be found in
different microenvironments of periphytic biofilms depending on the metal form/
speciation and the characteristics of the microenvironment. Precipitates can be found
in the biofilm matrix at the cell surfaces (Brown et al. 1998), while positively
charged metal ions can accumulate in negatively charged cell walls and EPS.
Metal speciation is also reported to influence the site of metal bioaccumulation
(bound to membrane vs. EPS; Hunter et al. 2008). Biofilms have also evolved
enzymatic mechanisms of metals reduction (Lloyd 2003) or metal sequestration
via thiol-rich polypeptides known as phytochelatins able to sequester excess intra-
cellular metals in a stable, detoxified form (e.g., Lavoie et al. 2012). Depending on
the metal and environmental conditions, they are able to store and concentrate large
amounts of metals that are potentially transferable to higher trophic levels.

As stated earlier, there is less data available on the bioaccumulation of organic
contaminants in periphytic biofilms. However, the pattern seems to be that these
contaminants tend to accumulate at lower final concentrations (Fig. 4), but some
more efficiently (i.e., with higher BCFs), than metals (Fig. 5, Table S1). These

Fig. 5 Bioconcentration factor, expressed as log(BCF), for periphytic biofilms (n¼ 304), data from
22 published studies. Plain circles stand for observations from the field, stars for observations from
laboratory experiments. PAHs polycyclic aromatic hydrocarbons, PCBs polychlorinated biphenyls,
HCH hexachlorocyclohexane, TBEP tris(butoxyethyl)phosphate, DCPU N-(3,4-dichlorophenyl)
urea, DCPMU N-(3,4-dichlorophenyl)-N-(methyl) urea, DDTs dichlorodiphenyltrichloroethane
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differences could be driven by differences in exposure concentrations; although
concentrations of organic contaminants in surface water were not often reported,
they were generally found at lower levels than for metals. Thus, in studies for which
concentrations in both biofilms and surface water were reported, all median
dissolved concentrations of metals were superior to 1 μg L�1 (except for mercury),
while the median dissolved concentrations for all the organic contaminants studied
were below 1 μg L�1. Organic contaminants tend to get adsorbed to the organic
matter trapped in the biofilm, EPS, and cell membrane due to their specific chemical
properties and high lipid content (Wolfaardt et al. 1998; DeLorenzo et al. 2001;
Métivier et al. 2013). The bioaccumulation of organic contaminants in biofilms is
driven by their hydrophobicity, which can be estimated by their partition coefficient
between octanol and water, called log Kow (Fig. 6). Log Kow correlates positively
with the log BCFs of organic contaminants (Pearson correlation coefficient; n ¼ 70;
r2 ¼ 0.42, p < 0.05), and models have been developed to predict contaminant
bioaccumulation in biofilms based on physical-chemical properties (Ruhí et al.
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2016). Besides their hydrophobicity, organic contaminants possess other specific
characteristics than can also help them bioaccumulate. For instance, the highest BCF
values were observed for halogenated contaminants such as hexachlorobenzenes
(BCF up to 147,000 L g�1), PCBs (BCF up to 56,000 L g�1), or per- and
polyfluoroalkylated substances (BCF up to 10,000 L g�1) (Fig. 5, Table S1),
suggesting that the compounds’ high electron affinity with living cells is also
strongly involved in its accumulation. Nevertheless, validation of this hypothesis
remains bottlenecked by technical limitations, as the quantification of intracellular
organic contaminants in microbial biofilms is not yet possible (Sect. 2.2).
Non-organochlorine pesticides and pharmaceuticals measured in periphytic biofilms
generally show lower BCFs (BCF < 3.6 L g�1) than metals and fluorinated or
organochlorine contaminants (e.g., DDT, dichlorodiphenyltrichloroethane; BCF up
to 78,550 L g�1). The lower concentration of these contaminants in periphytic
biofilms could also be explained by different biodegradation processes for different
substances. For instance, studies have shown that periphytic microbial communities
can partially transform and/or mineralize pesticides (e.g., the phenylurea herbicide
diuron (Pesce et al. 2009) and glyphosate (Carles et al. 2019)) and antibiotics (e.g.,
the sulfonamide antibiotics sulfamethazine and sulfamethoxazole (Vila-Costa et al.
2017)). Metabolites are thus sometimes found in biofilms (e.g., atrazine metabolites
(Lawrence et al. 2001) or glyphosate metabolites such as aminomethylphosphonic
acid (Carles et al. 2019)), but it is not always possible to discriminate those produced
through biodegradation by the biofilm itself from those that were already present
in the water column before being bioaccumulated. Additionally, the lower BCFs
observed for the non-organochlorine pesticides (i.e., glyphosate, diuron, and its
metabolites) could also be explained by higher exposure concentrations since
those values were applied in laboratory experiments (contrary to BCF values for
pharmaceuticals obtained in the field); further field study investigating pesticides
bioaccumulation in natural periphytic biofilms is therefore required to confirm those
first observations.

Each step of the bioaccumulation process is influenced by a number of factors
such as exposure duration and concentration, physical-chemical conditions, and
biofilm composition. Hydrology and geomorphology are also likely to influence
bioaccumulation especially by driving contaminants repartition between aquatic
compartments (surface water, particulate matter, sediment, periphytic biofilm).

In the dataset analyzed, exposure duration was not significantly correlated with
metal BCFs, which argues for fast adsorption of metals in the biofilm matrix. Among
the metals considered, aluminum had the highest uptake efficiency even at low
exposure concentrations (BCF up to 31,800 L g�1), irrespective of exposure duration
(1–35 days). Corcoll et al. (2012) hypothesized that the amount of Al accumulated
was thus “background” content for the biofilms studied. In contrast, Pb accumulation
above a certain exposure concentration (exceeding more than ten times the criteria
for chronic exposure concentration as defined by the US Environmental Protection
Agency) dropped strongly with log BCF < �1. Exposure concentrations influence
metal bioaccumulation; thus a positive correlation (Pearson correlation coefficient;
n¼ 238; r2¼ 0.28, p< 0.05) was found between metal concentration in biofilm and
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dissolved metal concentrations (Fig. 7). Nevertheless, our database, in line with
several studies, also highlighted that BCF in biofilms is not always positively
correlated with exposure concentrations. Indeed, logBCFs tend to decrease with
increasing dissolved metal concentration in particular in laboratory experiments
(Fig. S1) questioning the pertinence of using this parameter as a proxy of exposure.
Indeed, metal speciation, including complexation, in the dissolved fraction can
influence bioaccumulation (Meylan et al. 2004; Bradac et al. 2009, 2010; Dranguet
et al. 2017). Thus, Meylan et al. (2004) showed that Zn accumulation in periphytic
biofilm was mainly driven by dissolved Zn concentrations, while weakly complexed
Cu controlled its bioaccumulation in microbial biofilms. High amounts of suspended
metal-contaminated particulate matter can also get entrapped directly by the
biofilm matrix, thus driving further accumulation of large additional amounts of
metals (Morin et al. 2008). Therefore, metal BCF calculations based on dissolved
concentrations only may underestimate the correlation between exposure and
bioaccumulation values (intracellular content and BCF).

Discrepancies between exposure, measured as dissolved concentrations, and
bioaccumulation, measured as BCF, were also found for some organic contaminants.
A study on per- and polyfluoroalkylated substances by Munoz et al. (2016) found

Fig. 7 Metal concentration in biofilm (μg g�1) vs. dissolved concentrations of metals in surface
water (μg L�1). Data points circled in red are observations from laboratory experiments; all other
points are observations from field studies (n ¼ 238; data from 14 published studies)
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inverse correlations between exposure concentrations and BCFs along a gradient of
contamination concentrations in the Seine River. This divergence could also be the
consequence of a saturation of cellular binding sites at high exposure concentrations,
with a possible influence of competition between contaminants in mixtures. Indeed,
competitive sorption is likely to occur in the environment due to the co-occurrence
of multiple contaminants in surface waters. For instance, the accumulation rate of
the organosulfur fungicide isoprothiolane in two microalgae (Scenedesmus
quadricauda, Aulacoseira granulata) and one cyanobacterium (Microcystis
aeruginosa) decreased in presence of other pesticides (the herbicide p-nitrophenyl
2,4,6-trichlorophenyl ether and the insecticide O,O-dimethyl O-(3-methyl-4-
nitrophenyl) phosphorothioate) in the mixture (Guanzon et al. 1996). This phenom-
enon is more likely to occur in laboratory experiments in which biofilms are usually
exposed to higher concentrations than those found in the environment. Indeed, in our
dataset BCF calculated from laboratory experiments were generally lower than those
from field experiment (Figs. 5, 6 and S1).

The influence of environmental factors on metal accumulation in periphytic
biofilm has been reviewed by Guasch et al. (2010). In particular, metal speciation
is influenced by a range of physicochemical factors (including pH, salinity, and
nutrients), affecting their bioavailability (Meylan et al. 2003) and subsequent accu-
mulation and toxicity for microbes. Biofilm characteristics (community composi-
tion, biomass, organic matter content, EPS content) can also influence the
bioavailability and therefore the accumulation and toxicity of contaminants
(Berglund 2003; Berglund et al. 2005; Lambert et al. 2016; Pesce et al. 2018). In
river biofilms, the sorption of certain contaminants such as triazines or metals has
been attributed to specific bacterial colonies producing an EPS matrix with a unique
composition (Lünsdorf et al. 1997; Lawrence et al. 2001). A change in community
composition can modify lipid content and therefore influence the accumulation of
organic compounds such as PCBs according to their high log Kow value (Wang et al.
1999). Finally, toluene accumulation in a bacterial biofilm has been shown to
increase negatively charged carboxyl groups in EPS and might thus enhance biofilm
ability to accumulate cations such as metal ions (Schmitt et al. 1995).

Through their capacity to uptake contaminants from the surface water, periphytic
biofilms can also be viewed as passive samplers of contaminants in surface waters.
This has prompted the idea that identifying and quantifying the contaminants
accumulated within the biofilm could be a monitoring strategy for surveillance of
aquatic ecosystem contamination by both organic contaminants (e.g., PAHs;
Froehner et al. 2012) and metals (Leguay et al. 2016). However, following equilib-
rium partitioning theory, contaminants accumulated in biofilms are also likely to
diffuse back in the water when their dissolved concentration has dropped. Sorption
and desorption kinetics have been studied for some contaminants such as PCBs and
PAHs (Bertini 2016) and for a handful of pesticides (Headley et al. 1998) and
antibiotics (Wunder et al. 2011). Therefore, due to the dynamic processes involved
in contaminant accumulation in biofilms and the potential influence of many abiotic
and biological parameters, the use of bioaccumulation in biofilms as an indicator
of contamination has been challenged, in particular for organics (Bertini 2016).
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Further investigations are needed to better determine the timeframe integrated by
contaminant accumulation in biofilms as a function of chemical, biological, and
environmental properties.

3.2 Contaminant Bioaccumulation in Sediment or Leaf Litter
Microbial Communities

Up to now, data on in situ bioaccumulation of metals and organic contaminants in
submerged microbial communities associated with sediments, leaves, or drift par-
ticulate matter has always included both biotic accumulation and abiotic sorption on
the substratum. As stated earlier, this is partly due to the fact that microbial
communities cannot be easily detached from these substrates and that the microbial
biomass obtained is still very limited (and not sufficient for chemical analyses).

The distribution of organic contaminants in the different river compartments
(water, sediment, and leaf litter) is influenced by the hydrology and geomorphology
of the system as well as by the physical and chemical properties of the contaminant.
For instance, suspended and bed sediments in the San Joaquin River and its
tributaries (in one of the most productive agricultural regions of the USA) serve as
a sink for hydrophobic contaminants (e.g., PAHs, DDT), whereas water-soluble
herbicides (e.g., atrazine, simazine, dimethyl tetrachloroterephthalate) are mostly
present in the dissolved phase of the water column (Pereira et al. 1996). A similar
pattern of pesticide distribution has been observed in rivers in Europe (e.g.,
Fernandez et al. 1999) and Asia (e.g., Chen et al. 2006). Pesticide dissipation in
water can be enhanced or reduced by the presence of sediments and according to the
properties of pesticide molecules (Laabs et al. 2007). Sediments can also accumulate
pharmaceuticals. An extensive study in four Spanish rivers (Ebro, Llobregat, Júcar,
and Guadalquivir) highlighted the presence of endocrine disruptors accumulated in
sediments at concentrations up to 7 ng g�1 (Gorga et al. 2015). Similar levels of the
hormone β-estradiol were also quantified in sediments of the River Ouse
(UK) (Labadie and Hill 2007), whereas lower levels were reported in three rivers
in the Tianjin area (China) (Lei et al. 2009). Several antibiotics from urban sources
and aquaculture activities (e.g., sulfamethazine, sulfamethoxazole, norfloxacin,
among others) have been detected in the sediments of the Pearl River Estuary
(South China) at concentrations ranging from 1 to 8 ng g�1 (Liang et al. 2013).
While contaminant accumulation in sediments contributes to the removal of toxic
substances from the surface, this apparent remediation is only temporary since those
contaminants can later be remobilized following changes in redox conditions leading
to the redissolution from sediment and diffusion from pore water and/or during
intense hydrological events, as shown by Domagalski et al. (2010) for pyrethroid
insecticides in different rivers. Flash-flood events in the Ebro river basin were also
found to mobilize huge amounts of hexachlorobenzene, DDT, and PCBs largely
exceeding existing regulatory reference values established for sediments (Quesada
et al. 2014).
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Sediments are also recognized as an important sink of metals in freshwater
environments. Indeed, numerous studies have reported the accumulation of metal
contaminants in sediments from various kinds of ecosystems including streams (e.g.,
Rodrigues and Formoso 2006), estuaries, and large rivers (e.g., Hamzeh et al. 2016),
artificial reservoirs (e.g., García-Ordiales et al. 2016), and natural lakes (e.g., Gascón
Díez et al. 2017) all over the world, from Europe (e.g., Thevenon et al. 2011) to the
USA (e.g., Garvin et al. 2017), South America (e.g., Smolders et al. 2003), Asia
(e.g., Liao et al. 2017), and Africa (e.g., Kilunga et al. 2017). While anthropogenic
activities can explain part of this contamination, metals are also naturally present in
sediments as geogenic particulate components (Ho et al. 2013). The ubiquity of
metal contamination in freshwater sediments is illustrated in a report summarizing
the results of an extensive chemical survey (567 sampling stations) designed to
measure metal concentrations in sediments from various fluvial ecosystems dotted
across France (INERIS 2010). The reported median, average, and maximum con-
centrations (in mg kg�1 dry weight sediment) were, respectively, 7.3, 12.4, and
1,005 for As; 0.7, 10.2, and 7,285 for Cd; 36.0, 52.1, and 5,300 for Cr; 21.7, 48.5,
and 4,330 for Cu; 0.1, 1.2, and 200 for Hg; 19.0, 26.8, and 2,380 for Ni; 32.6, 122.0,
and 50,420 for Pb; and 130.0, 446.0, and 142,500 for Zn (INERIS 2010).

Comparatively, there has been less effort to investigate organic and inorganic
contaminant accumulation in submerged leaf litter. This could be explained by the
ephemeral presence of the substratum in the ecosystem but also by the fact that
studies addressing contamination gradients are mostly focused on downstream
contaminated sections where riparian vegetation is often poor. However, leaf litter
has been proven to adsorb metals (Sridhar et al. 2001) and a range of herbicide and
fungicide molecules (Passeport et al. 2013; Vallée et al. 2014; Rossi et al. 2018). The
sorption potential of these contaminants on leaf substrates may depend on their stage
of decomposition (e.g., Dimitrov et al. 2014 for the fungicide tebuconazole). Leaf
litter accumulated in rivers has comparatively similar (and/or greater) pesticide
adsorption capacities to sediments (Margoum et al. 2006; Passeport et al. 2011).
Vallée et al. (2014) revealed that straw has greater retention potential than sediments
and soils for three herbicides and three fungicides in constructed wetlands. These
results show the importance of organic carbon content and nature in the pesticides
sorption process. A tracer injection experiment was conducted in the field in a “wet”
forest buffer zone to test its potential for reducing loads of glyphosate, isoproturon,
metazachlor, azoxystrobin, epoxiconazole, and cyproconazole (Passeport et al.
2014). Results confirmed that leaf litter layer thickness was a key parameter that
influences the potential for delaying and reducing pesticide transfers and increasing
their degradation.

As observed for periphytic biofilms and discussed above, bioaccumulation of
organic contaminants in sediments, leaves, or drift particulate matter can be
influenced by substratum characteristics and/or environmental factors. A field
study in the Pearl River Estuary (South China) found that sediment total organic
carbon and water pH were the most important factors influencing the dynamics of
distribution of the antibiotics norfloxacin and erythromycin between water and
sediments, respectively (Liang et al. 2013). Different environmental parameters,
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including pH and temperature, were also shown to be important drivers of metal
accumulation in sediments (Lin and Chen 1998; Saeedi et al. 2011; Li et al. 2013), in
which the sorption, release, and transport of metals are important processes influenc-
ing the chemical quality of water bodies (Tao et al. 2005; Fan et al. 2007).

After sorption to sediments and leaf litter material, organic contaminants can be
partially or totally biodegraded by the attached microbial communities. Thus, two
species of aquatic hyphomycetes (Heliscus lugdunensis, Clavariopsis aquatica)
typically associated with submerged leaf litter were found to biotransform
1-naphthol (Augustin et al. 2006) or technical nonylphenol (Sole et al. 2008).
Recently, leaf-associated communities from sites downstream of agricultural areas
were shown to exhibit a greater potential to degrade the maize herbicide nicosulfuron
compared to those from upstream communities, and this was partly explained by the
pre-exposure history of these communities to the contaminant (Carles et al. 2017). In
these microbial communities, Carles et al. (2018) isolated an ascomycete fungus
(Plectosphaerella cucumerina AR1) capable of transforming nicosulfuron into its
two major metabolites (2-amino-4,6-dimethoxypyrimidine and 2-(aminosulfonyl)-
N,N-dimethyl-3-pyridinecarboxamide) in the presence of glucose. Microbial
biofilms from river sediments have also been shown to degrade nonylphenol
(Wang et al. 2014) and the herbicides diuron (Pesce et al. 2009) and isoproturon
(Trinh et al. 2012), among others.

3.3 Contaminant Distribution in Different Kinds of Biofilms
and Potential Contribution to Trophic Transfer
in Aquatic Ecosystems

Periphytic, sediment, and leaf litter biofilms can all act as both sink and source of
contaminants for the aquatic ecosystem. Only a few studies have set out to investi-
gate in situ the relationship between contaminant concentrations in periphytic
biofilms and in sediments in contaminated rivers, and the focus has been exclusively
on metals (Farag et al. 1998, 2007; Holding et al. 2003; Kohušová et al. 2011;
Ancion et al. 2013). Conceptually, any sound assessment of contaminant
bioaccumulation in microbial biofilms and its consequences on trophic transfers of
contaminants in aquatic ecosystems needs to account for the ecological dynamics
affecting each type of aquatic biofilm. Periphytic biofilms follow a several-stage life
cycle from colonization and co-adhesion to final detachment (due to biological
mechanisms and/or physical constraints), and so contaminant bioaccumulation in
these microbial communities can be viewed as transient. Bioaccumulation of con-
taminants on leaf litter is also transient (according to the leaf litter decay rates) and
seasonally specific as it depends on the availability of plant litter (e.g., litter fall
peaks in autumn in temperate rivers). In sediments, contaminants are accumulated in
microbial biofilms attached to sediment but also complexed with inert material. The
specific bioaccumulation of microbial biofilms in this accumulation cannot be,
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however, distinguished from the total accumulation in sediments because of
methodological difficulties in discriminating the biotic from the abiotic fraction of
sediments. Nevertheless, due to both physicochemical and biological characteristics,
sediments can store contaminants for much longer, and can thus be viewed as a more
stable compartment, even if disruptions (flood events, changes in pH or redox
potential, etc.) can trigger releases.

By taking up contaminants from the surface water, microbial biofilms help to
“clean” the water. But they can only completely degrade a few organic contaminants
(the in situ efficiency of this kind of process being still unknown), and so the
remaining bulk of accumulated contaminants (and/or their metabolites) will be either
resuspended in the water column in a dissolved or complexed form (e.g., following
biofilm detachment or sediment mobilization) or get transferred to higher trophic
levels.

4 Contaminant Transfer from Microbial Biofilms Through
Food Webs

In freshwater ecosystems, microbial biofilms are an important food resource (in both
the green and brown food webs; Fig. 3), even if potentially contaminated by metals
or organic contaminants. Microcosm and field studies conducted to investigate the
role and importance of these biofilm communities in contaminant trophic transfer
have revealed important differences in terms of contaminant fate through food webs.

4.1 Current Approaches Used to Follow Contaminants
Through Food Webs

Microcosm experiments are commonly used to reproduce simple food webs under
controlled conditions in order to limit any confounding factors likely to influence the
bioaccumulation process (e.g., temperature, nutrients, pH, ionic composition) and
explore the fate of the contaminants. These microcosm experiments typically consist
in exposing animals to a food source, namely, a single (often algal) microorganism
species or natural biofilms, spiked with a contaminant. For instance, simplified food
chains, i.e., from primary producers to consumers such as crustaceans, insects,
bivalves, and more rarely fish, have been reproduced in microcosm experiments to
determine the trophic transfer of metals or metallic nanoparticles (Croteau et al.
2005; Conley et al. 2009; Komjarova and Blust 2009; Prokes et al. 2012; Golding
et al. 2013; Kim et al. 2016). These microcosm studies usually contaminate the food
resource in an independent spiking process before introducing it into the microcosm.
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For instance, algae spiked with metals have been used to demonstrate trophic
transfers of a variety of metals to bivalves or crustaceans (Croteau et al. 2005;
Goulet et al. 2007; Komjarova and Blust 2009). Experimental studies can more
precisely gauge contaminant fates by spiking with labeled contaminants. Radioiso-
topes of metals have been used to label food sources and thus trace species-specific
bioaccumulation dynamics by monitoring the radioactivity in consumers after pulse-
chase feeding (Conley et al. 2009; Golding et al. 2013). Food-resource enrichment
by stable isotopes of metals makes an interesting alternative approach to determine
the relative contributions of food and water to metal contamination in grazers
(Komjarova and Blust 2009). Indeed, isotopic ratio measurements can be used in
microcosm experiments to characterize and model the physiological mechanisms
involved in the assimilation of metals by the consumers from the biofilm they
ingested (Croteau et al. 2005). To our knowledge, the trophic transfer of organic
contaminants from biofilms to higher-level organisms has not yet been studied in
microcosm experiments.

Microcosm experiments do provide accurate information on the dietary dynamics
of contaminants in simplified food chains, but they are often specific to a prey/
consumer pair, and consequently only partially reflect the environmental complexity
governing trophic transfers (e.g., multiple food sources, biofilm structure, nutrient
loads, and more). In addition, the choice of the microorganism(s) used as a contam-
inated food source and the spiking method remain challenging tasks. Indeed, metals
assimilation by consumers has been reported to be closely related to microbial
species and their respective ability to bioaccumulate metals, to metal distribution
in the microbial cells, and obviously to community structure (Goulet et al. 2007;
Conley et al. 2009; Komjarova and Blust 2009; Golding et al. 2013). On one hand,
the influence of community complexity is omitted when monospecific biofilms are
used as a food source. On the other hand, the acclimatization and exposure of a field-
collected biofilm to laboratory conditions are likely to provoke structural and
morphological changes in this complex food source (Fechner et al. 2011; Barral-
Fraga et al. 2016). In most food web experiments, microbial biofilms are contami-
nated prior to introduction in the microcosm (e.g., Conley et al. 2009; Komjarova
and Blust 2009; Xie et al. 2010; Kim et al. 2012; Li et al. 2012; Perrier et al. 2018;
Hudson et al. 2019); nevertheless a few studies, usually in complex mesocosms,
have also investigated the effect on trophic transfer of concomitant contamination of
food resource and media, thus mimicking field conditions (e.g., Pinder et al. 2011;
Cleveland et al. 2012; Kim et al. 2016; Friesen et al. 2017; Park et al. 2018).

One way to go beyond the limitations of microcosm experiments is to follow
contaminant fate directly in the field. Indeed, various studies have investigated the
bioaccumulation of metals or organic compounds in natural environments by
collecting a variety of organisms including – but not limited to – microbial biofilms
(Croteau et al. 2005; Vinot and Pihan 2005; Walters et al. 2008, 2015; Coat et al.
2011; Jardine et al. 2013; Ruhí et al. 2016). Understanding trophic enrichment with a
contaminant in the field first requires an accurate description of local food web
structures. Hence, stable carbon and nitrogen isotopes in biological tissues
and microbial biofilms are usually analyzed (Croteau et al. 2005; Walters et al.
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2008, 2015). Besides isotopic ratio measurements, lipid content assessment is
recommended for studies focused on hydrophobic contaminants such as PCBs
(Walters et al. 2008; Coat et al. 2011). Although using stable isotopes of C and N
offers interesting perspectives to learn prey and consumer trophic positions and thus
demonstrate trophic transfer through food webs, the technique does require sophis-
ticated and expensive equipment (Burns and Ryder 2001). Moreover, the results of
stable isotope measurements in microbial biofilms represent a “mean” of different
signatures (bacteria, algae), which could be a limiting factor for determining accurate
relationships between selective grazers and their specific food source within biofilm
communities.

4.2 Role of Microbial Biofilms in Contaminant Transfers
Through Aquatic Food Webs

The food web interactions of microbial biofilms concern insects, gastropods, fish,
and shrimps. Some of these grazers may exhibit food preferences and thus prefer-
entially consume specific microbial groups or taxa. For instance, the shrimp Paratya
australiensis was shown to specifically reduce diatom biomass in grazed biofilms,
indirectly enhancing the green algal growth (Burns 1997). Besides affecting the
composition of biofilms, grazers can also impact their 3D architecture (Robson and
Barmuta 1998). However, in return, grazers can be influenced by the nutritional
quality of the biofilm as well as its contaminant content. It is well known that
microbial biofilms are a primary food resource in aquatic ecosystems, yet few studies
have investigated contaminants transfers from microbial biofilms through aquatic
food webs and the resulting bioaccumulation through trophic transfer (e.g., Jardine
et al. 2013; Walters et al. 2015), or feedback-loop control of other ecosystem
components on contaminant concentrations in periphytic communities (Roessink
et al. 2010). In addition, most of these studies focused on the trophic transfer of
contaminants from periphytic biofilms to primary consumers and, more rarely, to
predators, which limits the assessment of biomagnification processes (i.e., increasing
contaminant concentrations with increasing trophic levels) through food webs
involving contaminated biofilms. The biomagnification factor (BMF), which is
calculated based on the assumption that contaminant concentration in a consumer
depends on contaminant concentration in its prey (sometimes corrected for trophic-
level difference between the consumer and its prey; Fisk et al. 2001), serves to
convey this process. A BMF > 1 corresponds to a magnification of contaminant
concentrations in consumers/predators. BMFs adjusted to trophic positions can be
calculated using the following equation:

BMFconsumer ið Þ ¼ Cconsumer ið Þ=Cdiet ið Þð Þ= δ15Nconsumer ið Þ=δ15Ndiet ið Þ� �� �
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where Cconsumer(i) is concentration of contaminant in the consumer, Cdiet(i) is
concentration of contaminant in the diet, δ15Nconsumer(i) is trophic level of con-
sumer, and δ15Ndiet(i) is trophic level of diet.

Both essential (e.g., Cu, Zn, Se) and nonessential (e.g., Hg, Cd, As) metals are
readily absorbed by primary producers and can be transferred from microbial
biofilms to higher trophic levels (i.e., macroinvertebrates and predators) where
they could exert adverse effects (Croteau et al. 2005; Magellan et al. 2014; Walters
et al. 2015; Hepp et al. 2017). For instance, the consumption of spiked biofilms was
reported to be a significant route of exposure to Cd for the amphipod Hyalella azteca
(Conley et al. 2009) and to Se for the insect Centroptilum triangulifer (Golding et al.
2013). However, biomagnification was only observed for Hg, Zn, and sometimes Se
(Farag et al. 2007; Conley et al. 2009; Jardine et al. 2012, 2013). Biomagnification of
methylmercury (MeHg) from microbial biofilms to primary consumers (Jardine et al.
2013) and to fish (Walters et al. 2015) is a relatively well-studied phenomenon, and
resulting MeHg BMFs ranging from 1 to 31 have been reported in different sites
(Jardine et al. 2013). Various studies have also highlighted the influence of envi-
ronmental parameters on Hg biomagnification throughout the food web (Jardine
et al. 2012, 2013). In particular, low pH led to an increase in Hg supply for primary
producers, which then also increased biomagnification at higher trophic levels (fish).
Due to biomagnification processes, even low levels of water contamination can lead
to high concentrations of toxic metals in wildlife. Walters et al. (2015) found that Se
and Hg concentrations in top-level organisms from a large food web (including
organic matter, benthic biofilm, invertebrates, and fish) regularly exceeded the
exposure risk thresholds for wildlife, thus revealing the ecosystem risks due to
trophic transfers of Hg and Se in aquatic food webs.

Organisms have evolved internal mechanisms for metals regulation that can
complicate efforts to map these trophic transfers. As essential metals are actively
regulated by freshwater organisms in order to maintain internal concentrations,
gauging the enrichment of essential metals between trophic levels is far from
straightforward and linked to species-specific biological needs. During exposure to
labeled algae in microcosms, Cu was found to mainly accumulate by dietary route in
the bivalve Corbicula fluminea, whereas it was preferentially absorbed by aqueous
route in the crustacean Daphnia magna (Croteau et al. 2005; Komjarova and Blust
2009). Species-specific differences in biomagnification were also found for Se,
which was biomagnified from contaminated periphytic biofilms to a primary con-
sumer: the mayfly Centroptilum triangulifer (Conley et al. 2009). In addition, after
assimilation of Se from contaminated biofilms, mayflies transferred about 46% of
their Se body burdens into their eggs, resulting in a reduction of fecundity at
environmentally relevant concentrations (Conley et al. 2009). Conversely, although
primary producers were found to be potential sources of Se contamination for their
direct consumers (i.e., mussels, shrimps, or macroinvertebrates), Se enrichment
through trophic levels was not significant in various field studies in the Mirgenbach
reservoir (France; Vinot and Pihan 2005), in the San Joaquin River (USA; Croteau
et al. 2005), or in the Colorado River (USA; Walters et al. 2015). These differences
may be at least partially explained by the high variability in Se concentrations among
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macroinvertebrate species, as observed in a field study by Walters et al. (2015). Zn is
another essential metal with toxicity at high concentrations that was also found to
transfer through the food web (Farag et al. 2007) and biomagnify in the mayfly
Centroptilum triangulifer (Kim et al. 2012). While Zn concentration in mayfly larvae
was 16–19-fold higher than in the labeled contaminated periphyton used as a food
resource, Zn concentration in adults was only threefold to eightfold higher than in
diet (Kim et al. 2012). Therefore, dietary bioaccumulation dynamics in biofilm
consumers depend on the species, its growth stage, and its subsequent physiological
abilities to assimilate and/or eliminate metals.

Moreover, there may be only very limited trophic transfer for metals or metallic
nanoparticles. For example, titanium nanoparticles were fairly highly accumulated in
sediment biofilm but barely transferred from biofilms to river snails and Chinese
muddy loaches, with BMFs of just 0.01–0.02 and 0.04–0.05, respectively (Kim et al.
2016), highlighting the low degree of bioaccumulation of TiO2 in these consumers.

Organic contaminants, and in particular persistent chemicals, are likely to be
transferred and/or biomagnified from microbial biofilms to higher trophic levels.
Concentrations of tris(2-butoxyethyl) phosphate (TBEP), a flame retardant quanti-
fied consistently across all food web compartments, were found to increase with
trophic levels (Ruhí et al. 2016). Indeed, in a Mediterranean river food web,
microbial biofilms accumulated the lowest amount of TBEP, whereas intermediate
concentrations of TBEP were found in the primary consumer Ancylus, and the
highest concentrations were found in the omnivore filter-feeding Hydropsyche and
the macroinvertebrate predator Phagocata (Ruhí et al. 2016). Similarly, concentra-
tions of the drug carbamazepine in a stream food web including biofilms, inverte-
brates, and vertebrates were correlated with trophic position (Du et al. 2014). PCB
concentrations were also significantly correlated with trophic level, as described in
Walters et al. (2008, 2011), with an average BMF close to 1.6. The hydrophobicity
of PCBs (i.e., their Kow value) strongly modulates their trophic transfer and
biomagnification (Walters et al. 2008, 2011). Whereas the influence of Kow on
biomagnification varies substantially across food webs, model predictions of stan-
dardized Kow-based BMFs remain consistent with field observations (Walters et al.
2011). Like metals, some organic contaminants were also found to be biomagnified
slightly (e.g., low increase of chlorpyrifos concentrations from biofilm to snail;
Lundqvist et al. 2012) or not (e.g., diclofenac, gemfibrozil (Ruhí et al. 2016);
diphenhydramine (Du et al. 2015)) through the food web.

Exposure scenarios and environmental conditions are also likely to influence
contaminant fate through food webs. For instance, TiO2 nanoparticles accumulated
much more in biofilm after sequential low-dose exposures than after a single high-
dose exposure (Kim et al. 2016). On one hand, environmental conditions may
influence contaminant uptake and dynamics in microbial biofilms and thus modulate
the amount available for further trophic transfer. On the other hand, microbial
biofilm quality as a food resource (e.g., C/N) is also likely to influence trophic
transfers of nutrients and contaminants. In addition, C/N ratio can also be modulated
by environmental factors (e.g., flow velocity; Coat et al. 2011), while dissolved
organic matter (DOM) concentrations in surrounding water can modify contaminant
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bioavailability for primary consumers and thus trophic transfers within the food web.
Lundqvist et al. (2012) showed that increasing DOM concentrations in water led to
increasing sorption of chlorpyrifos in biofilms. However, despite the resulting high
concentrations in biofilms, dietary uptake of chlorpyrifos by snails remained rela-
tively low, and the results showed that the combined presence of biofilms and of
medium- and high-DOM concentrations reduced the share of chlorpyrifos bioavail-
able for snails. Testing two other insecticides (carbofuran and lindane) exhibiting
lower hydrophobicity levels than chlorpyrifos on a low-to-high-DOM concentration
gradient, Lundqvist et al. (2012) also demonstrated that the accumulation of pesti-
cides by the snails was influenced by both DOM concentrations and pesticide
hydrophobicity.

Microbial biofilms are an important food resource in freshwater ecosystems,
and our literature analysis highlights their potential to accumulate contaminants
and modify their bioavailability, thus influencing their transfers through food
webs. However, the role of biofilms in dietary contaminant exposure has been
neglected for a long time, and the importance of biofilms in trophic transfers of
those potentially toxic substances is still understudied, leaving a critical lack of
knowledge, especially but not exclusively concerning biofilms attached to sediments
or organic substrates such as leaf litter.

5 Conclusions and Future Challenges

This literature review, which illustrates the dynamic interactions between contami-
nants and biofilms in aquatic ecosystems, underscores widely different levels of
knowledge according to the kind of substrate where the biofilm grows and the food
web pathway(s) to which it contributes. Accordingly, while studies on periphyton
show that biofilms are able to accumulate a wide range of metals and organic
contaminants, the role of biofilms in the distribution of contaminants among differ-
ent aquatic compartments (surface water, periphyton, sediments, leaf litter) and the
associated biota remains unclear and has not, to our knowledge, been quantified.
This is mainly due to the fact that we still lack methods to specifically assess and
measure contaminants in microbial communities of complex solid matrices such as
sediment or leaf litter. Moreover, even though several studies have attempted to
investigate chemical concentrations simultaneously in different aquatic compart-
ments (sediment, surface water, and biofilm; Kohušová et al. 2011), there is still a
lack of data on the role of microbial communities in contaminant accumulation
(or release) processes in sediments and organic substrates. This issue remains a
bottleneck, given the abovementioned methodological limitations. Field or micro-
cosm surveys including systematic characterization of the contamination in these
different aquatic compartments combined with laboratory experiments quantifying
sorption/desorption rates under various controlled conditions are now needed to
better estimate the role played by biofilms in contaminant fluxes within the aquatic
ecosystem and their food webs.
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Contaminant adsorption, storage or sequestration, transformation, and, finally,
release in the environment are still mainly investigated in periphyton studies using
metals and a few organics as model compounds. However, there is a gap of
knowledge on the transfer kinetics of contaminants in periphytic assemblages and
their resulting toxic effects (Chaumet et al. 2019a, b). To better understand the fate of
organic contaminants in periphyton, the development and validation of sensitive and
specific high-performance analytical methods combined with the measurement of
intracellular concentrations of organic contaminants, using novel partitioning
methods (Chaumet et al. 2019a), are the first technical challenges to overcome.

Microcosm experiments have brought valuable insights into contaminant transfer
from biofilms to consumers, but future research should now aim to push beyond
these relatively simple models and attempt to address the real-world complexity, i.e.,
both contaminant transfer from biofilm to upper trophic levels and ecological
interactions with other ecosystem components (Roessink et al. 2010), as well as
the influence of environmental factors such as temperature, organic matter, and
so on.

Future studies need to consider the potential effects of global change and specif-
ically how (1) shifts in water contamination patterns (i.e., land-use change, evolving
agricultural practices, antibiotic resistances), (2) climate change (i.e., global
warming, droughts, floods), and (3) the presence of invasive species (i.e. top-down
versus bottom-up effects) can affect contaminant bioaccumulation by biofilms and
consequences on trophic transfer – a challenge that also raises new questions
requiring further interdisciplinary research bridging environmental chemistry, eco-
toxicology, and ecology.

6 Summary

Freshwater environments host microbial biomass that can aggregate and attach to
different kinds of submerged substrates (rock, sediment, leaf litter). These microbial
assemblages, which are called biofilms, can accumulate the contaminants
transported by the water flow and/or adsorbed onto the substrates where they
develop. Furthermore, due to their high metabolic activity and their role in aquatic
food webs, microbial biofilms are also likely to influence contaminant fate in aquatic
ecosystems.

Here, by focusing on metals and organic micropollutants, we provide a critical
overview of the analytical methods currently in use for detecting and quantifying
these contaminants in microbial biofilms developing in different benthic substrata,
together with a look at the state of current knowledge and future challenges
concerning the role of biofilms in contaminant accumulation and trophic transfers
in the aquatic food web.
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From this literature review emerge the following issues:

• Concurrent to analytical developments, studies dealing with bioaccumulation in
microbial biofilms have been applied mainly to metal contaminants, and there is
still only limited knowledge on the accumulation of organic contaminants in these
microbial assemblages.

• A large variety of metals and organic contaminants has been found in natural
periphytic biofilms, which grow on inert surfaces like cobbles exposed to light. In
contrast, due to technical limitations, data on the bioaccumulation of contami-
nants in submerged microbial communities associated with sediments, leaves, or
drift particulate matter has always included both biotic accumulation and abiotic
sorption on the substratum.

• Microbial biofilms represent an important food resource in freshwater ecosys-
tems, yet their role in dietary contaminant exposure has been neglected for a long
time, and the importance of biofilms in trophic transfer of contaminants is still
understudied, leaving a critical lack of knowledge especially but not exclusively
concerning biofilms attached to sediments or organic substrates such as leaf litter.

These issues pose a set of challenges that need to be overcome in order to better:

• Characterize the accumulation of contaminants in sediment and organic-substrate
biofilms

• Evaluate the role played by biofilms in contaminants fluxes within aquatic
ecosystems and aquatic food webs

• Assess how different environmental pressures such as shifts in water contamina-
tion, climate change, or the presence of invasive species (i.e., top-down versus
bottom-up effects) may affect contaminant bioaccumulation in biofilms and the
resulting consequences in food webs
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Abstract Increasing production and utilization of cerium oxide nanoparticles
(CNPs) in recent years have raised wide concerns about their toxicity. Numerous
studies have been conducted to reveal the toxicity of CNPs, but the results are
sometimes contradictory. In this review, the most important factors in mediating
CNPs toxicity are discussed, including (1) the roles of physicochemical properties
(size, morphology, agglomeration condition, surface charge, coating and surface
valence state) on CNPs toxicity; (2) the phase transfer and transformation process of
CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive
dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2�,
and ferrous ions. The physicochemical properties play key roles in the interactions of
CNPs with organisms and consequently their environmental transformations, reac-
tivity and toxicity assessment. Also, the speciation transformations of CNPs caused
by reactions with (in)organic ligands in both environmental and biological systems
would further alter their fate, transport, and toxicity potential. Thus, the toxicity
mechanisms are proposed based on the physical damage of direct adsorption of
CNPs onto the cell membrane and chemical inhibition (including oxidative stress
and interaction of CNPs with biomacromolecules). Finally, the current knowledge
gaps and further research needs in identifying the toxicological risk factors of CNPs
under realistic environmental conditions are highlighted, which might improve pre-
dictions about their potential environmental influences. This review aims to provide
new insights into cost-effectiveness of control options and management practices to
prevent environmental risks from CNPs exposure.

Keywords Cerium oxide nanoparticles · Environmental transformation · Redox
reactions · Surface properties · Toxicity

Abbreviations

AA Acrylic acid
Alg Alginate
AS Artificial soil solution
ATP Adenosine triphosphate
CA Citric acid
C-CNPs Cubic cerium oxide nanoparticles
CEC Cation exchange capacity
CNPs Cerium oxide nanoparticles
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E Redox reactions
EDTA Ethylenediaminetetraacetic acid
EELS Electron energy loss spectroscopy
EH Redox potential
EV Valence band
FA Fulvic acid
GA Gum arabic
GSH Glutathione
HA Humic acid
HAADF-STEM High-angle annular dark-field scanning transmission electron

microscopy
HMT Hexamethylenetetramine
I-CNPs Irregularly shaped cerium oxide nanoparticles
IS Ionic strength
Kd Partitioning value
Kr Relating retention value
Ksp Solubility product
LB Luria broth
NOM Natural organic matter
O2

�- Superoxo species
O2

2� Peroxo species
O-CNPs Octahedral cerium oxide nanoparticles
�OH Hydroxy
P Phosphate
P-CNPs Polygonal cerium oxide nanoparticles
pe Electrochemical potential
PVP Polyvinylpyrrolidone
R-CNPs Rod cerium oxide nanoparticles
ROS Reactive oxygen species
S-CNPs Spherical cerium oxide nanoparticles
STXM X-ray scanning transmission microscopy
Vo

�� Oxygen vacancy
WWTPs Wastewater treatment plants
XANES X-ray absorption near-edge structure spectrum
XPS X-ray photoelectron spectrum

1 Introduction

Cerium, the most abundant of the rare earth elements, has attracted considerable
attention in the field of materials science and biological applications with its unique
electronic configuration of [Xe]4f15d16s2 (Montini et al. 2016). In combination with
oxygen in a nanoscale formulation, cerium oxide nanoparticles (CNPs) adopt a
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crystalline structure with an oxygen vacancy being created upon the loss of lattice
oxygen atoms (Esch et al. 2005; Fronzi et al. 2009; Tsai et al. 2008). The unique
excellent ability of cerium oxides to shuttle between Ce(III) (Ce2O3) and Ce
(IV) (CeO2) makes CNPs of particular interest to microelectronics or semiconductor
industries (Conesa 1995), mechanical polishers (Hoshino et al. 2001; Stanek et al.
2008), pharmacological agents (Pelletier et al. 2010), and fuel additives in diesel
(Johnson and Park 2012; Sajith et al. 2010). The wide production and application of
CNPs will inevitably lead to increasing concentrations in many natural and
engineered compartments such as surface waters (Conway et al. 2014; Zhao et al.
2017), soils (Layet et al. 2017; Liu and Cohen 2015), wastewater (Lazareva and
Keller 2014; Wang et al. 2018b), sewage sludge (Lazareva and Keller 2014; You
et al. 2017), and air (Hong et al. 2014; Johnson and Park 2012). However, there is
concern that CNPs may present hazards to ecological receptor species, due to their
small particle size and intensified reactivity by design (Antoine Thill et al. 2006a;
Nel et al. 2006). As early as 2001, a report about human health risks of cerium oxides
from diesel fuels warrants immediate attention to fully assess the ecological and
environmental effects of CNPs (Antoine Thill et al. 2006a; Liu et al. 2015).
Thereafter, extensive investigations into the toxicity of CNPs have been conducted
(Heckert et al. 2008; Pešić et al. 2015), which is a serious issue requiring high
precaution.

Thill et al. (2006) found that CNPs injured the outer membrane of E. coli cells and
posed a lethal effect. Moreover, CNPs could be one of the prooxidants changing the
intracellular redox status of cells (Miao et al. 2017; Pešić et al. 2015; Xu et al. 2018;
You et al. 2015), which provokes the loss of survival ability. Garcia et al. reported
the strong inhibitory action of CNPs on the anaerobic activated sludge from waste-
water treatment plants (WWTPs) and consequently a substantial inhibition in biogas
production (García et al. 2012). However, the study of Limbach et al. showed that
CNPs posed no effects on the heterotrophic microbial agglomerations from a
municipal WWTP (Limbach et al. 2008). Lethal toxicities of CNPs in Daphnia
magna and Cophixalus riparius have been demonstrated at 1 mg/L after exposure
for 96 h (Lee et al. 2009), while in other researches no acute toxicity was observed in
Daphnia magna at 10 mg/L after the same duration exposure (Gaiser et al. 2011) or
even up to 1,000 mg/L after a 48 h exposure (van Hoecke et al. 2009). The list of
studies revealing the effects of CNPs on the environment and potentially on humans
is long and has been extensively reviewed over the past years (Batley et al. 2013;
Collin et al. 2017; Ganguly et al. 2018; Milani et al. 2017; Petosa et al. 2010).
However, few papers have well identified and systematically summarized the critical
factors in relation to the physicochemical properties of CNPs leading to the existed
contradictory results.

Because of the susceptibility of CNPs to environmental transformation, factors
such as pH, redox potential (EH), as well as the quantity and composition of natural
organic matter (NOM) are likely to influence the transport and simultaneously
transformations of CNPs (Auffan et al. 2009; Collin et al. 2014; Liu et al. 2011).
Interactions and transformations of CNPs under different environmental scenarios
and toxicological media are well known to occur (Louie et al. 2014; Merrifield et al.
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2017; Römer et al. 2013). In the case of CNPs, the chemical transformations such as
Ce(IV) to Ce(III) cycling and associated soluble species are likely to be vital for
understanding their biological and environmental behaviors (Graham et al. 2014; Li
et al. 2012; Lópezmoreno et al. 2010; Thill et al. 2006). In particular, the redox
reactions between CNPs and redox-active ions or (in)organic ligands will strongly
impact their surface properties and consequently their transport, reactivity, and
toxicity in terrestrial and aquatic environments (Barton et al. 2014; Liu et al. 2015;
Rollin-Genetet et al. 2015; Safi et al. 2010). Furthermore, transformations mediated
by microorganisms and exposure media may alter the core of CNPs and their surface
functional groups, leading to altered surface composition, agglomeration state, and
toxicity potential (Barton et al. 2014; Dowding et al. 2013; Louie et al. 2014; Römer
et al. 2013). Therefore, it is necessary to systematically shed light on the distribution,
transformation and speciation of CNPs under different environmental exposure
conditions as well as the related ecosystem impacts.

Since mounting growth of commercial CNPs production will result in potentially
negative influences on ecosystems, the underlying mechanisms are urgently
required. In several reports on the toxicity of CNPs (Fang et al. 2010; Heckert
et al. 2008; Kuang et al. 2011; Pešić et al. 2015), the biological impact of CNPs
has been investigated at the cellular and molecular levels. At the cellular level, CNPs
were generally considered to be a prooxidant, resulting in the induction of oxidative
stress and cytotoxicity after cell internalization (Ma et al. 2016; Park et al. 2008b;
Pešić et al. 2015). At the molecular level, when CNPs enter the cytoplasm, they tend
to interact with biological components like protein and nucleates, which lead to key
enzyme inactivation and DNA damage (Collin et al. 2014; Liu et al. 2013; Marie
et al. 2014; Milani et al. 2012). Furthermore, considering the chemical process, the
redox property of ceria with transition between Ce(III) and Ce(IV) is of critical
importance to understand its potential toxicity mechanisms, for the transformation
between Ce(IV) and Ce(III) makes CNPs acting as quenchers or producers of
reactive oxygen species (ROS) (Thill et al. 2006; Zhang et al. 2011). Nevertheless,
the intrinsic physicochemical properties and further transformations of CNPs in the
exposure systems are ignored in drawing the general conclusions and perspectives
for the potential mechanisms on CNPs toxicity.

Accordingly, the aims of this review are to (1) highlight and discuss types of
physicochemical properties relating to the bioaccumulation and toxicity of CNPs;
(2) illustrate the distribution, translocation, and speciation of CNPs under different
environmental scenarios, with an emphasis on the bioaccumulation and toxicity
outcomes; (3) discuss the phase transformation of CNPs core during interacting
with environmental components as well as the results of such transformations on
toxicity; and (4) underline the potential physiological and biochemical impacts of
CNPs and propose the related mechanisms. Finally, important knowledge gaps that
need to be addressed to better understand the potential risk, safe production, and
handling of CNPs are raised.
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2 Physicochemical Properties of CNPs: Impact
on Biosorption and Toxicity

The toxicity of CNPs reported in the literatures is in conflict with either being lower
(Collin et al. 2017) or higher (Merrifield et al. 2017; Thill et al. 2006) even with the
same exposure scenarios. Differences are possibly linked to the various physico-
chemical properties (size, morphology, agglomeration, surface charge, coating, and
surface oxidation state) of CNPs, as schematically illustrated in Fig. 1, which can be
obtained by appropriate selection of synthesis methods and precursors. Physico-
chemical properties may mediate the colloidal dispersion and stability of CNPs,
transformation in the biological system, and pathway of cellular internalization
(Ganguly et al. 2018; Rogers et al. 2010; van Hoecke et al. 2009). In this connection,
the relationships between physicochemical properties and environmental effects of
CNPs are summarized in this section and listed in Table 1.

Fig. 1 Schematic diagram illustrating the physicochemical properties affecting the toxicity of
CNPs. In the charge section, CNPs with the intrinsic characteristic of positive, negative, and neutral
charge might be influenced by cations, anions, and also ligands under various environmental
conditions, which would result in the altered surface charge outcomes and biosorption (in green
ellipse) of CNPs. In the size section, the pH, ionic strength (IS), natural organic matter (NOM), and
even inorganic colloids or clays would impact the surface properties of CNPs, leading to the
variations of size, biosorption, and also surface reactivity of CNPs. In the coating part, the diverse

coatings ( , , , ) would influence the biosorption and surface reactivity of CNPs. The

illustrations in green ellipses are characteristics influenced by the respective physicochemical
properties and lead to the different toxic effects of CNPs
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2.1 Size

The various sizes of CNPs can be achieved by specific synthesis methods. For
example, wet chemical and microemulsion methods provide satisfactory control
over CNPs size, with the former yielding CNPs of small particle size (Das et al.
2012; Tarnuzzer et al. 2005). The latter one may produce dense and crystalline CNPs
with large particle size (>25 nm) (Zhang et al. 2011). However, the change of
particle size would affect the interactions at CNPs-biological interface. As exhibited
in Table 1, there exist numerous toxicity studies suggesting the significance of size in
toxicity and verifying that nanoscale is the prime cause in toxicity induction, since
smaller CNPs were found to be more toxic against algae (Rogers et al. 2010),
Caenorhabditis elegans (Roh et al. 2010), Brassica rapa (Ma et al. 2016), Cucurbita
pepo L. (Hawthorne et al. 2014), E. coli, and B. subtilis (Pelletier et al. 2010) than the
larger ones. Due to comparable size with the biomacromolecules (Hassan et al. 2016;
Limbach et al. 2005; van Hoecke et al. 2009), the intake of smaller CNPs occurs
easily, thus inducing the oxidative stress as well as physiological damage inside the
cellular environment (Ma et al. 2016; Park et al. 2008b; Pešić et al. 2015). On the
contrary, it was demonstrated that the size of CNPs did not show any measurable
correlation with algae and kidney bean plants’ (Phaseolus vulgaris) growth inhibi-
tion (Majumdar et al. 2016a, b; Pulidoreyes et al. 2015). Surprisingly, larger CNPs
were reported to show higher toxicity to eukaryotic cells than smaller ones (Schubert
et al. 2006), as reported by Dahle (2013). Similarly, Park et al. observed that 30 nm
CNPs displayed toxic effects toward BEAS-2B cells (Park et al. 2008b), while at the
same concentration, Fang et al. illustrated that 13 nm CNPs induced no cytotoxicity
in the same cell line (Fang et al. 2010). This phenomenon could be attributed to the
greater agglomeration tendency of the smaller-sized CNPs than the larger ones,
which sequestrated their reactions reactivity and thus toxicity in the individual
exposure medium (Dahle 2013; Hamidat et al. 2017; Kumar et al. 2014).

In another analysis, authors explored the effects of size on the conversion
between antioxidant and prooxidant activity of CNPs. The study found that at the
same concentration of 10 μM, 15–20 nm CNPs had excellent antioxidant ability and
thus an obvious protection effect, whereas CNPs (5–10 nm) behaved in the opposite
manner (Lu et al. 2016). In contrast, Auffan et al. detected that 7 nm CNPs induced
DNA damage in human dermal fibroblasts (Auffan et al. 2017a) and the formation of
ROS in human dermal fibroblasts was confirmed by Culcasi et al. under the same
conditions (Culcasi et al. 2012). Nevertheless, Karakoti et al. demonstrated the
antioxidant activity of 4 nm CNPs in human dermal fibroblasts (Karakoti et al.
2009). These conflicting findings illustrate that CNPs with only different sizes
perform differently, even at the same dosage in the same system.

Generally, to estimate the size effects of CNPs and to draw general conclusions,
different susceptibility, varying feeding habits, and metabolism among tested spe-
cies are vital factors that need to be taken into account. Importantly, when conclud-
ing the size effects of CNPs, factors including CNPs internalization, agglomeration,
and surface property need to be comprehensively considered. Also, subcellular
location and surface reactivity of CNPs controlled by their particle size can be
detrimental to cells, which are still less understood.
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2.2 Morphology

Recent developments in synthesizing NPs can enable preparation of CNPs with
kinds of morphologies including spheres, rods, cubes, wires, octahedrons, and
polygon (Chen and Stephen Inbaraj 2018; Dowding et al. 2013). More specifically,
by adopting hydrothermal synthesis methods, [Ce(NO3)3�4H2O] as a precursor
yielded coarse particles, whereas cerium(IV) salts [Ce(SO4)2�4H2O and Ce
(NH4)4(SO4)2�2H2O] produced fine powders (Hirano and Kato 1996). Commonly,
nanoparticle size and morphology are responsible for their transformation and
translocation in biological system, which is highly related to their toxicity and the
biological response (Gatoo et al. 2014; Tong et al. 2013; Zhang et al. 2017). It has
been widely accepted that CNPs with higher aspect ratios (including tube, belt, rod,
and wire vs polyhedron) lead to more severe cytotoxicity to cells (Forest et al. 2016;
Li et al. 2014; Lu et al. 2016). Forest et al. (2016) reported that rodlike CNPs could
increase the toxicity in macrophages from RAW264.7 cell line, while the cubic and
octahedral CNPs exhibited no such effects. Moreover, in cellular environment,
CNPs were reported to transform from sphere into urchin-shaped structures and
set in motion a series of events triggering cell lysis (Li et al. 2014). Nevertheless,
another study suggested that compared with nanorods, nanowire bundles and
nanocubes with sharp edges and corners in their crystal structure may induce more
mechanical damage to cell membrane (Ji et al. 2012). They could lead to misbalance
of the ionic concentration as well as redox state inside and outside the cell. Thereby,
it is speculated that the morphological biotransformation of CNPs is of key signif-
icance and more difficult to depict in their toxicological effects.

The important role of morphology in the intrinsic chemical reactivity of CNPs is
an additional factor that must be considered. Zhang et al. compared the uptake and
transformation of octahedral (O-CNPs), cubic (C-CNPs), rod (R-CNPs), and irreg-
ularly shaped CNPs (I-CNPs) in cucumber plants. They found that the reactivity of
CNPs decreased in the order of R-CNPs > I-CNPs > C-CNPs > O-CNPs, which
brought the efficient accumulation, translocation, and transformation of R-CNPs in
the plants (Zhang et al. 2017). Dowding et al. also proposed that CNPs with
morphologies of spherical (S-CNPs, 5–8 nm) and polygonal (P-CNPs, 8–10 nm)
did not take part in the decreased cell viability in 48 h, whereas S-CNPs are more
active than P-CNPs toward surface oxygen release (Dowding et al. 2013). Taken
together, the shape of CNPs determines their surface reactivity, thus impacting their
environmental behavior and also the organisms-CNPs interaction, which is believed
to underlie their toxicity effects in the chronic exposure environment (Thill et al.
2006; van Hoecke et al. 2009).

As a general rule, the smaller the size and the larger the aspect ratio of CNPs
would result in the greater chance for the cells to uptake. Additionally, CNPs with
specific morphology can mechanically damage cells because of their sharp edges and
redox reaction activity. Thus, the effect of size and morphology of CNPs on toxicity
does not seem to provide uniform results, since the agglomeration characteristics, the
properties of CNPs, the cell type, and also culture environment may lead to prom-
inent variation in the outcome of size- and morphology-dependent studies. The
observed inconsistency requires more systematic and in-depth investigation.
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2.3 Agglomeration

Nanoparticles properties in natural environments are expected to be altered by
complex factors, including pH, ionic strength (IS) or NOM and one of the critical
changes is agglomeration (Petosa et al. 2010). The formation of aggregates in the
solution is greatly favored for small NPs because of a high number of primary
particles at the same mass concentration, while larger ones maintained
unagglomerated or settled to the bottom (Ludwig et al. 2005). Detailed reviews
about agglomeration mechanisms can be found elsewhere (Batley et al. 2013; Collin
et al. 2017; Petosa et al. 2010). The deep understandings on agglomeration enable a
better assessment of NPs transport and ecological consequences through environ-
mental compartments.

There is growing evidence that notable agglomeration yields higher rates of
sedimentation and less mobility and surface area. It is also clear that NPs surface
area is predictably related to the surface reactivity and this relationship transfers well
to the most toxicity studies (Pelletier et al. 2010; Rogers et al. 2010; van Hoecke
et al. 2009). Therefore, in many past studies, CNPs with a greater agglomeration
state during the exposure experiment have a less inhibitory effect on the tested
organism (Limbach et al. 2005; Petosa et al. 2010; Xu et al. 2018; Zeyons et al.
2009). As a function of agglomeration state, the direct transport through the cell wall
of aquatic organisms and the phagocytosis process by membrane of human lung
fibroblasts may be prevented and the individual CNPs diffusion across the cell
membrane might also be reduced (Auffan et al. 2010; Ludwig et al. 2005). Addi-
tionally, heteroaggregation between CNPs and NOM or inorganic colloids in the
environment could hinder the direct contact between CNPs and bacteria (Thill et al.
2006; Collin et al. 2014; Zeyons et al. 2009), which mitigates the toxicity of CNPs.
In addition to the natural compositions, the biomacromolecule like polymeric or
humic substances secreted by both microorganisms and plants as a defense response
plays key roles in CNPs agglomeration, which is an exciting outcome to reduce the
ecological risk (Ma et al. 2015; Wang et al. 2018a; You et al. 2017). On the other
hand, heteroaggregation between CNPs and soft biogenic particles may increase
their bioavailability for filter feeders, which need further attention to provide clear
mechanisms.

Currently, agglomeration is demonstrated to reduce CNPs toxicity when the toxic
response is resulted from a surface area-mediated reaction. However, there still exist
challenges and limitations in delineating the influence of agglomeration on uptake
and subsequent toxicity, because it is a dynamic process influenced by chemical,
hydrodynamic, and biological conditions. Also, agglomeration may serve to pro-
mote the persistence of CNPs as it decreases the rate of dissolution and transforma-
tion, which may shift the exposure pathway to a different location compared to the
dispersed CNPs.
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2.4 Surface Charge

The surface charge contains significant information on the colloidal stability, trans-
port, and importantly the NPs interactions with biological system in the environ-
ment. In the previous in vitro studies, the surface charge of CNPs has been reported
to dictate CNPs cellular uptake and to control their cytotoxicity (Alpaslan et al.
2015; Asati et al. 2010; Nel et al. 2009). The toxicity of cationic CNPs in general
exhibited more toxic than their neutral or anionic counterparts. The overall charge of
the cell membrane is negative, and hence CNPs (positively charged or neutral in
nature) can be easily uptaken and get simply bound to the cell membrane through
electrostatic interaction, leading to the damage of cell membrane integrity and
resulting in the lysis of cells (Asati et al. 2010; Collin et al. 2014; He et al. 2012;
Spielman-Sun et al. 2017).

In addition to the cellular uptake, the subsequent subcellular localization of
surface-charged CNPs takes a key part in the cytotoxicity profile of CNPs. Asati
et al. found that CNPs (+) displayed significant toxicity as they entered the lyso-
somes of the cells, while minimal toxicity is observed when the CNPs (0) and CNPs
(�) localized in the cytoplasm or did not enter the cells (Asati et al. 2010). Similarly,
Spielman-Sun et al. concluded that the tissue localization and transformation of
CNPs within Triticum aestivum were significantly affected by their different surface
charge (Spielman-Sun et al. 2017). Further, risks associated with CNPs exposure
will be determined partially by the environmental processes. Collin et al. (Collin
et al. 2014) and He et al. (2012) proposed respectively to add humic acid (HA) and
phosphate (P) in the exposure media to attenuate the toxicity. Both HA and P could
adjust the positive surface charge density by conferring a net negative surface charge
and thus decrease CNPs accumulation and toxicity.

Overall, it is clear from the few studies that the roles of surface charge on CNPs
interactions with cell surface and subsequent toxicity must be considered. However,
to gain a deeper understanding, the key components mediating surface charge of
CNPs in environmental systems and their consequent localization in biological
substructure require more precise control of variables, which will contribute to
eliminate possible associated toxic effects.

2.5 Coating

The surface of any material is the prominent route of interaction with the cellular
environment. Therefore, studies have been conducted to develop coatings around
NPs with the aims of providing steric, electrostatic, or electrosteric repulsive forces
among particles to resist agglomeration and dissolution (Collin et al. 2017; Ganguly
et al. 2018; Levard et al. 2012). Various types of compounds including NOM,
carboxylic acid, polysaccharides, and polymers have been applied to functionalize
CNPs surface. Fulvic acid (FA) and HA are ubiquitous component of water and
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soils, which favor to stabilize dispersed NPs (Collin et al. 2014; Schwabe et al.
2013). Citric acid (CA) and acrylic acid (AA) are prevalent carboxylic acid serving
as capping or reducing agents (Barton et al. 2014; Ould-Moussa et al. 2014). Poly-
saccharides are common coatings including gum arabic (GA), dextran, and alginate
(Alg) (Schwabe et al. 2013; Spielman-Sun et al. 2017; Zhao et al. 2012a, b). Polymer
such as polyvinylpyrrolidone (PVP) has also been introduced to functionalize CNPs
surface (Taylor et al. 2016).

The nature of the coating plays an important part in various levels of toxicity, as
listed in Table 1. For instance, surface modification of CNPs with HA, CA, and AA
constitute a protection against toxic cellular effects by decreasing the potential
surface reactivity (Barton et al. 2015; Heckert et al. 2008) and reducing the ROS
generation (Marie et al. 2014), which both mitigated the toxicity (Barton et al. 2014;
Marie et al. 2014; Trujillo-Reyes et al. 2013). In respect to the surface
functionalization with FA and GA, though the plant growth and translocation factor
of CNPs exhibited no difference, the content of CNPs associated with root (bare >
FA > GA) was influenced (Schwabe et al. 2013). On the contrary, other studies
indicated that CA coating promoted the internalization of CNPs in cells and the
concentrations of dissolved Ce ions in water column, leading to greater toxicity than
the uncoated ones (Garaud et al. 2016; Ould-Moussa et al. 2014; Tella et al. 2015).
The conflicting results might be deemed from the different exposure system as well
as the inspected endpoints in the individual studies. Similar conclusions with higher
toxicity were drawn by Zhao et al. (2012a, b), Booth et al. (2015), and Dowding et al.
(2013) when CNPs were stabilized by Alg, poly-AA, and hexamethylenetetramine
(HMT), respectively. The different effects of various coatings have been generally
concluded as the hydrophobic coating imposed high levels of toxicity and vice versa
for hydrophilic coatings (Yin et al. 2005).

Several CNPs were synthesized by coating with biocompatible polymers such as
dextran (Alili et al. 2011; Barkam et al. 2015), oleic acid (Lee et al. 2013),
2-ethylhexanoic acid (Dowding et al. 2013), sodium bis(2-ethylhexyl)sulfosuccinate
(Chaudhury et al. 2013), and polyethylene glycol (PEG) (Cimini et al. 2012; Vincent
et al. 2009). As a result, the surface stability of CNPs can be greatly improved, which
is a vital aspect to be considered for biological applications and cytotoxicity. The
surface functionalization of CNPs for biocompatibility can protect CNPs from
interacting with ions and create more effective means in the presence of biological
environment. Alili et al. (2011) found that concentrations of dextran-coated CNPs
being nontoxic for normal (stromal) cells show a cytotoxic effect on squamous
tumor cells. Similarly, Cimini et al. (2012) reported that PEG-coated and anti-Aβ
antibody-conjugated antioxidant nanoparticles (Aβ-CNPs-PEG) specifically target
the Aβ aggregates, and concomitant rescue neuronal survival better than Aβ-CNPs,
by modulating the brain-derived neurotrophic factor signaling pathway.

Consequently, such hermetic coatings may define the surface of CNPs and in part
or significantly affect their behavior in the environment. But it is important to
consider that the various molecular weight and chemical structure of coating com-
pounds will change how well they stabilize the CNPs against agglomeration,
interaction, and ultimately toxicity in the environment.
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2.6 Surface Oxidation State and Oxygen Vacancy (Vo
��)

The surface oxidation state of CNPs can vary depending on synthesis methods and
conditions. Accordingly, the synthesis process conducted at high temperatures yields
CNPs with lower Ce3+/Ce4+ ratio and larger particle size (Chen and Stephen Inbaraj
2018). Different chemicals such as sodium hydroxide, ammonium hydroxide,
and hexamethylenetetramine used during synthesis could produce CNPs with
lower Ce3+/Ce4+ ratio (Dowding et al. 2013). Besides, the reaction of CNPs with
elements such as zirconium (Zr) and platinum (Pt) was shown to lead to an increase
in surface Ce3+/Ce4+ ratio (Zhang et al. 2006). Several trivalent metal ions such as
lanthanum, samarium, gadolinium, yttrium, and neodymium have been used as
dopants to increase oxygen vacancy concentration (Babu et al. 2009; Grulke et al.
2014; Patil et al. 2006; Shehata et al. 2014). With transforming between Ce(IV) and
Ce(III) and leaving Vo

�� in the lattice (shown in Fig. 1), CNPs easily form
nonstoichiometric compositions of CeO2–x, which makes CNPs acting as quenchers
or producers of ROS (Lu et al. 2016; Pulidoreyes et al. 2015). A correlation between
the size and lattice parameter of CNPs was established by Deshpande et al. (2005)
who claimed that the smaller the CNPs particle size, the higher the surface Ce(III)/Ce
(IV) ratio. In this regard, the ratio of Ce(III)/Ce(IV) at CNPs surface is the key to
understand their potential toxicity (Collin et al. 2017), as exhibited in Table 1.

As reported, the CNPs’ antioxidant and prooxidant properties are closely related
to the % surface Ce(III) values (Deshpande et al. 2005; Lu et al. 2016; Wu et al.
2018a, b). Lu et al. (2016) reported that at the same concentration of 10 μM, CNPs
(15–20 nm, 27.55% of Ce(III)) displayed an excellent antioxidant ability and thus an
obvious protection effect, whereas CNPs (5–10 nm, 30.74% of Ce(III)) behaved in
the opposite manner. Similarly, Pulidoreyes et al. (Pulidoreyes et al. 2015) found
that the % surface Ce(III) is the main driver of CNPs toxicity in the case of where
CNPs did not internalize in the alga. Through oxidative reactions, CNPs could
abiotically generate H2O2 (Xia et al. 2008; Zhao et al. 2012a, 2012b), while Ce
(III) was reported to be able to redox-cycle with H2O2 to form ROS such as hydroxyl
(�OH) (Seal 2008). A step forward understanding demonstrates that �OH and CNPs
can create a high amount of Ce(III), which could scavenge additional �OH, ultimately
strengthening the antioxidant activity of CNPs (Deshpande et al. 2005; Lee et al.
2013). However, when the quantity of Ce(III) reaches a certain level, CNPs convert
their antioxidant activity to oxidant activity (Lu et al. 2016), which can partially
explain the contradictory results in medicinal applications and toxicological
research. .Detailed information about the ROS generation is reviewed in Sect. 5.

As to the Vo
��, they are thought to make CNPs more effective at generating Ce(III)

than the equivalent bulk material and act as “active center” of various redox
reactions exhibited by CNPs (Lee et al. 2013). On the other side, Vo

�� can signifi-
cantly alter biological interactions and allocate oxygen moieties from biological
molecules, inhibiting a set of biological antioxidant effects and inducing toxicity
response (Gupta et al. 2016). Celardo et al. (2011) demonstrated that Vo

�� did not
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contribute to the biological properties of CNPs, but its effects on Ce(III) /Ce
(IV) redox reactions need to be further clarified.

Collectively, the various physicochemical properties tailored by synthesis
methods and tested organism types reflect the different environmental effects of
CNPs. Nevertheless, there is no consensus on which CNPs characteristic is primarily
responsible for the observed effects. Perhaps the dynamic and stochastic transfor-
mation of CNPs under environmental scenarios is more realistic in controlling
CNPs’ ecological processes and effects, as discussed next.

3 Phase Transformation of CNPs in Different
Environmental Scenarios: Impact on Bioaccumulation
and Toxicity

In the case of CNPs to readily chemically transform between Ce(IV) and Ce(III), the
physicochemical transformations that accompany engineered and/or incidental col-
loids/coatings, as well as pursuant reactions in different environmental scenarios,
strongly complicate the understanding and evaluating on risks in relation to the
release of CNPs in the environment (Barton et al. 2014; Dahle et al. 2015; Merrifield
et al. 2013, 2017). To correctly forecast the environmental and ecological risks, it is
necessary to increase the knowledge of the transformations of CNPs in various
environmental scenarios.

The Hard/Soft Acid/Base theory predicts the tendency of Ce to strongly bond
with hard base ligands like hydroxyl ions and P over hard acidic species such as
sulfates and hydrids. Generally, Ce(III) is more soluble than Ce(IV), for Ce(IV) is
known to undergo hydrolysis reaction to generate insoluble Ce(OH)4 (solubility
product of Ksp ¼ 2� 10�48), whereas Ksp of Ce(OH)3 is 1.6� 10�20 (Channei et al.
2017; Dahle et al. 2015). Nevertheless, Ce(III) could form the insoluble P compound
of CePO4 with Ksp of 1.0 � 10�23 (Xu et al. 2018). Some other common O-donor
organic (oxalate and tartrate) complex with Ce(III) to form products of
Ce2(C2O4)3�9H2O (Ksp: 3.2 � 10�26) and Ce2(C4H4O6)3 (Ksp: 1.0 � 10�19)
(Dahle et al. 2015). These resulting transformations of CNPs will impact their fate,
transport, and toxic properties. The physicochemical and biological conditions
favoring the formation of complex are reviewed in the following sections consider-
ing various environmental scenarios.

3.1 Speciation and Ecological Effect of CNPs in Aquatic
Environments

As Ce exhibit various possible redox states, the chemical stability of CNPs can vary
in aquatically environmental conditions, as schematically illustrated in Fig. 2.
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Pourbaix diagrams using thermodynamic data were introduced to dictate the speci-
ation of Ce in solution by the simultaneous indications of chemical (as a function of
pH) and electrochemical reactions (as a function of electrochemical potential (pe,
calculated as pe ¼ 16.9 EH (V) at 25�C)). As an example, in Channei et al. (2017),
the speciation diagrams for the simple system of Ce3+-H2O, Ce

4+-H2O, and EH-pH
diagrams for Ce-H2O were respectively displayed. It can be found that Ce(IV) on the
surface of CNPs is not in equilibrium with water in the section of water stability, so
the reduction of Ce(IV) to Ce(III) occurs spontaneously (Channei et al. 2017; Cui
et al. 2014). Therefore, the composition is shifted into the Ce3+ predominance
region. Then, Ce3+ hydrolyzes to Ce(OH)2+ and the end products of CeO2�2H2O

Fig. 2 Speciation and transformation of CNPs in the aquatic system. The three parts in the top
show the calculated speciation for Ce3+-H2O, Ce

4+-H2O, and Ce-H2O. Details about aqueous
speciation of each ion, polycomplex of specific valence, and Pourbaix diagram are given in Channei
et al. (2017). The other three parts illustrate the transformations of CNPs in environmental medium
with both organic and inorganic ligands in biological system. Detailed information is also given in
Sect. 4
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(s) and Ce(OH)4 (gel) as the pH progresses toward neutral. Ce(OH)2
+ and Ce(OH)3

are not formed since their predominance fields do not adjoin that of Ce3+ (Channei
et al. 2017). Correspondingly, the electrochemical potential required for redox
reactions (E) for Ce species is also given in Table 2. A more thorough description
of the stability fields for water can be found in Channei et al. (2017). It is clear from
these thermodynamic simulations that Ce speciation in waters will be more strongly
dependent on redox conditions than pH. Thus, the identity of these phases will have
to be examined experimentally.

The redox activity of CNPs is often associated with the hypothesis of their high
oxygen nonstoichiometry. A range of techniques such as UV-Vis spectroscopy,
X-ray photoelectron spectrum (XPS), X-ray absorption near-edge structure spectrum
(XANES), electron energy loss spectroscopy (EELS), X-ray scanning transmission
microscopy (STXM), and high-angle annular dark-field scanning transmission elec-
tron microscopy (HAADF-STEM) have been largely used to determine the redox
state of CNPs both in vivo and in vitro. In the studies of van Hoecke et al. (2009),
Thill et al. (2006), and Zhang et al. (2012), Ce in the CNPs is present as Ce(IV), and
no reduced Ce(III) was observed in OECD medium, Luria broth (LB) growth
medium, as well as individual exposure medium by using XANES. However,
once the species related to Ce(IV) have been hydrolyzed, the tendency of the
redox reaction (Table 2) is enhanced by high IS (Channei et al. 2017). For example,
the redox and crystallinity changes of CNPs in environmental and toxicological
media were illustrated by Merrifield et al. using HAADF-STEM and EELS (Merri-
field et al. 2017). They found that CNPs were changed to mixed Ce(IV, III) NPs at
high IS although the exact mechanism is not clear, whereas the presence of NOM
stabilized the oxidation state and increased crystallinity. Since the toxicity of CNPs

Table 2 Electrochemical potentials required for redox reactions (E) for Ce species corresponding
to speciation diagrams (Brookins 1983; Channei et al. 2017; Hayes et al. 2002; Yu et al. 2006)

No. Coupled redox reaction pH range E range

Reactions between Ce0 with Ce(III)

1 Ce3+ + 3e� ! Ce0 �2.0 to 8.4 2.32 (pH independent)

2 Ce(OH)2+ + H+ + 3e� ! Ce0 + H2O 8.4–9.1 �2.15 to 0.02 pH

3 Ce(OH)2
+ + 2H+ + 3e� ! Ce0 + 2H2O 9.1–9.7 �1.97 to 0.04 pH

4 Ce(OH)3 + 3H+ + 3e� ! Ce0 + 3H2O 9.7–14 �1.78 to 0.06 pH

Reactions between Ce3+ with Ce(IV)

5 Ce4+ + e� ! Ce3+ �2.0 to –0.76 1.74 (pH independent)

6 Ce(OH)3+ + H+ + e� ! Ce3+ + H2O �0.76 to 0.72 1.69–0.06 pH

7 Ce(OH)2
2+ + 2H+ + e� ! Ce3+ + 2H2O 0.72–1.5 1.74–0.12 pH

8 Ce(OH)3
+ + 3H+ + e� ! Ce3+ + 3H2O 1.5–2.6 1.83–0.18 pH

9 Ce(OH)4 + 4H+ + e� ! Ce3+ + 4H2O 2.6–8.4 1.98–0.24 pH

Reactions between Ce(III) with Ce(IV)

10 Ce(OH)4 + 3H+ + e� ! Ce(OH)2+ + 3H2O 8.4–9.1 1.48–0.18 pH

11 Ce(OH)4 + 2H+ + e� ! Ce(OH)2
+ + 2H2O 9.1–9.7 0.94–0.12 pH

12 Ce(OH)4 + H+ + e� ! Ce(OH)4 + H2O 9.7–14 0.37–0.06 pH
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is associated primarily with high EH of Ce(IV) and their ability to oxidize bio-
molecules (Plakhova et al. 2016), the results of Merrifield et al. (2017) and Wu et al.
(2018b) further confirmed the roles of NOM in controlling CNPs transformation to
alleviate toxicity.

Taking account of interactions with biomass, a measurable reduction of Ce(IV) to
Ce(III) has been observed with E.coli, activated sludge, nematodes, and plants (Thill
et al. 2006; Barton et al. 2014; Collin et al. 2014; Ganguly et al. 2018; Ma et al. 2015,
2017; Marie et al. 2014; Zhang et al. 2012), which linked to the occurrence of a
strong cytotoxicity. It was believed that the microreducing zones produced by
microbial metabolism and the reducing molecules, like amino acids, released by
the bacteria were able to cause the reduction of CNPs (Thill et al. 2006; Xu et al.
2018). Barton et al. indicated preferential accumulation of CNPs in biosolids where
reductive transformation occurred (Barton et al. 2015). Zhang et al. (2012) and Ma
et al. (2015) further demonstrated that the reducing substances like ascorbic acids,
and organic acids like citric acids, secreted by root in hydroponic studies are
necessary conditions for the reduction and dissolution of CNPs. To go a step further,
the formation of stable CeIII-organic complexes (Bayülken and Saraç 1996), CePO4

in the root (Zhang et al. 2012), Ce(CH3COO)3 in the shoot (Zhang et al. 2012), and
Ce2S3 in the anaerobic digestion (Barton et al. 2014) was determined. Specific
studies in relation to such transformations on toxicity are discussed in Sect. 4.

Inevitably, in the aquatic case, the oxidation and hydrolysis of Ce may lead to the
formation of an insoluble oxide surface coating on CNPs which may passivate the
surface. It is also likely that the biomass, NOM, reducing agents, and even clays play
vital roles in the stability of CNPs. Moreover, hard basic ligands are undoubtedly
important in predicting the environmental transformations of CNPs. However,
whether the formation of complex induces or reduces the toxicity of CNPs should
be addressed in detail.

3.2 Transfer and Transformation of CNPs in Terrestrial
System

Concerns about the possibility of NPs transport from the soils to agricultural crops
and ultimately bioaccumulation in the food chain or leaching to the groundwater are
in a state of developing. Thus, increasing efforts are dedicated to evaluating the
bioavailability (from the soil solution to the plant root) and transformation of CNPs
in the terrestrial system, as displayed in Fig. 3.

Zhang et al. demonstrated that the bioavailability of CNPs was positively linearly
correlated to the sum of exchangeable, reducible, and oxidizable fractions (i.e., Ce
bound to organic matter) of Ce in both loamy sand soil and silty loam soil (Zhang
et al. 2015). Cornelis et al. further investigated the primary mechanisms determining
CNPs bioavailability in soils by relating retention (Kr) values to the physicochemical
properties of 16 kinds of Australian soils (Cornelis et al. 2011). They found that the
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fraction of clay was the main physicochemical driver determining Kr values ahead of
the concentration of P or the pH of the soil (52% of the total sum of squares was
caused by the percentage of clay, 14% by P concentration, and 6% by pH) (Cornelis
et al. 2011). Layet et al. (2017) developed ISO-standardized RHIZOtest to compre-
hensively decipher the factors determining CNPs phytoavailability, and they
reported that the clay colloids reduced Ce uptake, which was consistent with
Cornelis et al. (2011). Surprisingly, this work combined with other studies provided
new evidence that NOM enhanced the phytoavailability of CNPs (Layet et al. 2017;
Majumdar et al. 2016a, b; Zhao et al. 2012a, b). The authors suggested that NOM
tended to coat CNPs, limiting their homo(hetero)aggregation and therefore rendering
CNPs more phytoavailable. Moreover, both CA and Alg coatings were observed to
facilitate CNPs phytoavailability relating to the increased mobility, whereas the
enhancing effects depend on soil type and NOM content (Layet et al. 2017; Zhao
et al. 2012a). This phenomenon could also explain the limited effects of CA coating
on the bioavailability of CNPs in Cornelis et al. (2011).

Another intriguing observation is that the disparity of roots and shoots with
regard to CNPs accumulation is controlled by the properties of soils. Recent studies
demonstrated that the presence of NOM and negatively charged colloids in soil
could complex with positively charged CNPs and reduce their mobility. As a result,
the upward transport of CNPs from roots to shoots will be limited in the kidney bean
plants, Raphanus sativus L., and corn plants (Majumdar et al. 2016a, b; Zhang et al.
2015; Zhao et al. 2012a). Additionally, the extent of CNPs translocation in soil

Fig. 3 Schematic
illustration for the transfer
and transformation of CNPs
in terrestrial system
controlled by the properties
and compositions of soils.
The bioavailability and
further toxicity of CNPs in
the terrestrial system were
reduced in the presence of
natural organic matter
(NOM), phosphate (PO4

3�),
or oxalate through surface
passivation and redox
reduction
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grown plants might depend significantly on the standard of water-soluble fraction
(Zhang et al. 2015). There have also been some progresses in assessing the
bioaccumulation and trophic transfer of CNPs within terrestrial and specifically
agricultural food chains. Findings showed that CNPs may be taken up by plants
and transferred to consumers along food chains, which may affect food safety
(Hawthorne et al. 2014; Ma et al. 2018; Majumdar et al. 2016a, b). Majumdar
et al. further suggested that the bioaccumulation and biomagnifications of Ce in
the mature stages of primary and secondary consumers (Mexican bean beetles and
spined soldier bugs) feeding on kidney bean plants exposed to CNPs were observed,
due to the higher content of ingestion than excretion (Majumdar et al. 2016a, b).

To reveal the favorable reaction path to make CNPs more bioavailable, the
chemical fate of CNPs in both soil and plants was evaluated. Arai and Dahle showed
that CNPs of 30 nm and 78 nm were strongly adsorbed (>98%) by soils (Arai and
Dahle 2017). Under the oxic condition,>90% of CNPs remained as Ce(IV)O2, and a
small portion of CePO4 were identified in XANES analysis. Interestingly, under
anoxic conditions, the reduction was more pronounced in small CNPs, which is
considered to be highly related to bioavailability. However, the greater concentration
of exchangeable Ce(III) in large CNPs facilitated the formation of Ce(III)P/oxalate
surface precipitates, suppressing the bioavailable and thus reducing cytotoxicity
(Arai and Dahle 2017). Upon uptake, both the geochemical modeling and XANES
analysis of the roots failed to correlate the CNPs phytoavailability with different Ce
speciation in the soil solution, since Ce is mainly present as Ce(IV)O2 inside the root
tissues (Layet et al. 2017; Ma et al. 2018; Zhao et al. 2012b). Nevertheless,
biotransformation of CNPs to Ce(III)P/carboxylate complexes has been observed
in root in hydroponic cucumber plants (Rui et al. 2015; Zhang et al. 2012). These
results further reveal the lower levels of bioavailability, transformation, and phyto-
toxicity of CNPs in soil than in aqueous media (Layet et al. 2017; Majumdar et al.
2016a, b; Zhang et al. 2015; Zhao et al. 2012a, b). Notably, in the trophic transfer
experiment, the reduction of Ce(IV) to Ce(III) did not occur in plants and snail faces,
and did only in the digestive gland of snail (Ma et al. 2018), which raises the
question whether this reduction creates potential risk to humans through the food
supply.

In short, though hydroponics studies provided valuable information about the
chemical fate and plant uptake of CNPs, the soil properties (porosity, pH, IS, NOM,
and mineral composition) played decisive roles in the bioavailability, migration,
chemical transformation, and their interactions at the nano-bio interface in soils.
Therefore, it is imperative to study the behavior of CNPs in the terrestrial system in
realistic conditions to determine if CNPs can be put in the food chain threatening the
ecosystems and human health.

3.3 Uptake and Toxicity of CNPs Through Air Exposure

As the increasing release of CNPs into the atmosphere through vehicles emissions
(Hong et al. 2014), plants could be exposed to unusual high concentrations of CNPs
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via aerial exposure. Thus, besides through the roots (aquatic and soil exposure), the
interactions between atmospheric CNPs and plants through the leaves (i.e., aerial/
rain deposition) were examined to provide more comprehensive and informative
picture on the actual influences of CNPs contamination toward plants.

Findings highly suggested that CNPs could be adsorbed on and further incorpo-
rated in leaves through both powder and suspension spraying (Birbaum et al. 2010;
Hong et al. 2014; Jie et al. 2016; Ma et al. 2018; Salehi et al. 2017). An effective
uptake and translocation of CNPs through leaves to the plants tissues was observed
in Lactuca sativa (Ma et al. 2018), cucumber (Hong et al. 2014; Ma et al. 2017), and
Phaseolus vulgaris L. (Salehi et al. 2017), while contradicted results of Birbaum
et al. in maize plants were reported (Birbaum et al. 2010). In Ma et al., no significant
difference in plant growth between the control and group treated with foliar exposure
was detected (Ma et al. 2018). However, Hong et al. revealed that low concentrations
of CNPs (40 and 160 mg/L) in contact with leaves could interfere the enzyme
activities, whereas high concentration (320 mg/L) caused toxicity (Hong et al.
2014; Jie et al. 2016). These results were further evidenced by Salehi et al. through
morphological, proteomic, and metabolomic data (Salehi et al. 2017). These marked
differences could be related to the influencing factors such as the plant species, size
and type of CNPs, as well as environmental conditions (e.g., wind, moisture).
Particularly, the exposure route of airborne was suggested to pose a more marked
effect toward bean than soil exposure (Salehi et al. 2017). Besides, when exposed
through foliage, the differences in particle size were less significant compared to
root-based exposure (Jie et al. 2016). These strong differences are because CNPs
might be modulated by hydroponic cultures or soil factors such as pH, root exudates,
and microorganisms (Thill et al. 2006; Xu et al. 2018). Then, the bioavailability,
influenced by adsorption-desorption and mobility processes in soil, would be lim-
ited, thus decreasing the root uptake (Cornelis et al. 2011).

In addition to the plants, the increased ambient air concentrations of CNPs could
also contribute to the exposure of animals and humans. Most studies on the health
effects of CNPs pay attention to the lung cells, since the most likely route of
exposure is through inhalation (Cassee et al. 2011). The uptake of 20–50 nm
CNPs by human lung 3T3 fibroblasts was examined in vitro, and results showed
that CNPs internalization occurred linearly with exposure time at concentrations as
low as 100 ng/g cells (Limbach et al. 2005). The tissue distribution of inhaled CNPs
in rats was determined in a 28-day exposure study. After 6 h exposure, CNPs were
translocated to the liver, kidney, spleen, brain, testis, and epididymis (Geraets et al.
2012). The biotransformation of CNPs in the vasculature of rat’s brain was
conducted by EELS, and the ratio of Ce3+/Ce4+ was not changed after 20 h (Hardas
et al. 2010). However, when the liver was tested by HRTEM after 90 days, CNPs
showed rounded edges and corners with the increased surface Ce3+ (Graham et al.
2015), which was described as the basis of the genotoxicity toward human fibro-
blasts (Auffan et al. 2009). The toxic effects of CNPs on human mesothelioma were
examined by measuring metabolic activity and cell proliferation, which showed that
the metabolic activity and DNA content reduced by approximately 50% after 3 days
of exposure (Brunner et al. 2006).
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It has been concluded that acute CNPs exposure from hours up to 1 day via the
inhalation route might induce cytotoxicity via oxidative stress and would lead to a
chronic inflammatory response, while the levels of exposure concentration are orders
of magnitude higher than the real condition in the environment (Yokel et al. 2014).
An inhalation study in mice exhibited that at an aerosol concentration of 2 mg/m3 for
7, 17, or 28 days, CNPs can induce pulmonary and extrapulmonary toxicity
(Aalapati et al. 2014). When a truly nanoscale aerosol exposure atmosphere was
used, inflammation of neutrophils after 24 h exposure was observed, while the
markers of pulmonary response returned to the control levels 84 days post-exposure
(Demokritou et al. 2013). Fall et al. (2007) also explored the biological influence of
engine emissions using a CNPs fuel additive compared to that of a reference fuel and
an organotypic culture of lung slices from rat. The authors demonstrated that the
biological impacts of CNPs fuel additive are very limited and there was no influence
of CNPs aerosol on lung tissue viability. Similarly, Park et al. (2008a) also con-
cluded that no effects were observed on the viability of the lung tissue slices when
exposed to a continuous flow of CNPs aerosol. However, with longer exposure
duration, accumulation can occur and lead to a dose that causes adverse health
effects. Regrettably, there is no data on the inhalation toxicity of chronic exposure
to CNPs under realistic conditions.

In summary, CNPs could penetrate the leaf surface through aerosol exposure,
while their translocation through the leaf tissue and adverse effects are contradictory
among studies under various test conditions. Besides, pulmonary exposure to high
concentrations of CNPs led to pulmonary inflammation and alveolar interstitial
fibrosis. Considering the risks that atmospheric CNPs could be directly stored in
or adsorbed by the fruit of plants, the skin or lung, studies are needed to determine
the chronic threat for environmental and human health through trophic transfer and
inhalation.

4 Chemical Transformation of CNPs Core and Associated
Effects on Toxicity

The formation of environmentally relevant Ce species described in Sect. 3 has been
investigated to partly evaluate the impact of such transformations on toxicity. In
some cases, these transformations may promote toxicity potential (e.g., dissolution
reactions that produce excessive ROS) (Seal 2008). In other cases, these trans-
formations have been shown to reduce effects (e.g., the formation of CePO4

decreased the cytotoxicity of CNPs toward wastewater biofilm (Xu et al. 2018)
and plants (Zhang et al. 2016). Some transformations can potentially limit CNPs
persistence in the environment (e.g., dissolution and redox reactions). Importantly,
many transformations are slow or irreversible and cannot necessarily be predicted
using thermodynamics. Thus, some main transformations are discussed in more
in-depth in the following sections.
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4.1 Reductive Dissolution of CNPs and Related Toxicity
Effects

It is generally accepted that CNPs have extremely low solubility, and the dissolved
Ce ions have little or even no impacts on its cytotoxicity. However, numbers of
researches have shown that CNPs undergo partial dissolution under specific condi-
tions (Dahle et al. 2015; Plakhova et al. 2016; Zhang et al. 2012). In addition,
toxicity of CNPs is largely associated with high redox potential (EH) of tetravalent
and trivalent Ce ions and their ability to oxidize biomolecules. Thus, the dissolution
of CNPs to form Ce ions is one of the main environmental risk issues.

Extensive data indicated that CNPs solubility is strongly dependent on pH
(Auffan et al. 2017b), as shown in Fig. 4a. As an example, CNPs dissolution was
lower than or close to detection limits (0.1 nM) at pH 7 and 9, but 3.1% (i.e., 29 μM)
CNPs dissolved at pH 4 in artificial soil solution (AS) (Cornelis et al. 2011).
Similarly, CNPs dissolution was reported to be significant at pH < 5 and
pH< 4.5 by Dahle et al. (Dahle et al. 2015) and Plakhova et al. (2016), respectively,
indicating the promoted dissolution by proton. According to the measurements of EH

values, the solubility-pH dependence could be associated with differing redox
conditions of pe-pH dependence (Fig. 4b) (Plakhova et al. 2016). Hence, the
different solubility behavior of CNPs at pH 1.5–4.5, pH 4.5–7, and pH > 7 can be
explained by the different redox conditions. It has also been concluded that CNPs
appeared to be more soluble in AS relative to 0.1 mMNaCl, possibly because of both
ionic Ce(III) and Ce(IV) forming pairs with inorganic oxyanions, thus enhancing
solubility (Cornelis et al. 2011). Through complexation, the presence of NOM like
arabic gum and organic ligands like ethylenediaminetetraacetic acid (EDTA) and
CA were found to enhance CNPs dissolution (Schwabe et al. 2014; Zhang et al.
2012) as demonstrated in Fig. 4c.

Cornelis et al. proposed that through geochemical modeling in PHREEQC, Ce
(IV) ion concentration was much higher than that in equilibrium with CNPs and Ce
(OH)4. Therefore, it is speculated that part of Ce which dissolved from CNPs may
occur as Ce(III) (Cornelis et al. 2011). The available Pourbaix diagrams shown in
Channei et al. verified that at pH < 7, the predominant cerium species in solution is
Ce(III) (Channei et al. 2017). Namely, the more thermodynamically probable solu-
bility mechanisms of CNPs are reductive dissolution, where Ce(IV) would be
reduced to a more stable soluble species of Ce(III) (Fig. 4a). This phenomenon
was highly consistent with the considerations of Zhang et al. that with the assistance
of reducing substances secreted by roots, CNPs might be first reduced and then
released as Ce(III) (Zhang et al. 2012). Based on the environmental data with pH
ranging from 2 to 7 in Fig. 4a, a reductive dissolution model was proposed by
Plakhova et al. (2016). The solubility process of CNPs can be depicted by the
following equation:
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Fig. 4 Panel (a) Concentration of dissolved Ce in medium against the pH value. The red circle is
related to the left and bottom axis, while other symbols representing CNPs with different size are
related to the right and top axis. The corresponding labels like NaClO4 indicate the medium used in
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Fig. 4 (continued) individual experiment. The slope –0.5 and –2 is correlated to the blue solid and
dotted line. Panel (b) The experimental redox potential data collected from pH 2 to 7 and the related
Ce3+ hydrolysis products. Columns 1, 2, and 3 represent the further hydrolysis products of released
Ce3+ in solution, with the qualitative analysis of CeOH2+ being the most and Ce(OH)3 being the
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CeO2 þ e� þ 4Hþ ! Ce3þ þ 2H2O ð1Þ

with logKCeO2/Ce
3+ ¼ log[Ce3+] + pe + 4pH. The total trivalent cerium concentration

in the solution was calculated as:

Ce IIIð Þ½ �total ¼ Ce3þ
� �þ CeOH2þ� �þ Ce OHð Þ2þ

� �þ Ce OHð Þ3
� � ð2Þ

Upon fitting the data obtained in acidic pH region, the equilibrium constant
for reductive dissolution and non-redox dissolution reaction was developed: log
KCeO2/Ce

3+ ¼ �25.8 � 0.3 and log Ksp ¼ �59.3 � 0.3 (Lee and Byrne 1992).
Reduction reactions of CNPs and the subsequent valence state transformations

from Ce(IV) to Ce(III) have been demonstrated to be toxic to organisms, as previ-
ously discussed. Reductive dissolution of CNPs is also an important step in the
biotransformation process, which may have been a more favorable reaction to make
Ce more bioavailability (Fig. 4d). Schwabe et al. declared that dissolved Ce(III)
contributed to uptake of CNPs in different plants (Schwabe et al. 2015). The species-
specific toxicity of CNPs to Lactuca plants cultured in hydroponic and agar media
was associated with the small amount of released Ce(III) ions (Cui et al. 2014; Zhang
et al. 2013). Zhang et al. also reported that smaller CNPs with higher reactive activity
released more Ce3+ ions in plant roots (Zhang et al. 2013), which was in line with the
toxicity observations listed in Sect. 2 and Table 1. Importantly, reducibility of CNPs
determines their activity in biochemical process (especially activation of ROS and
other free radicals like SO4

-� in living cells). Toxicity of Ce(IV) compounds is
attributed primarily to high EH of Ce4+ ions and their ability to oxidize biomolecules.
The standard EH of Ce(IV)/Ce(III) (+1.44 V) is much higher than the oxidation
potential of the most organic compounds (as an example, for the growth nutrient of
Dulbecco’s Modified Eagle’s Medium, this value ranges from �0.38 to +0.34 V).

Fig. 4 (continued) least. The logKx,1, logKx,2, and logKx,3 are their individual hydrolysis
constants. The corresponding slopes of red and blue solid line could be fitted using the linear
equations pe + 3.5pH¼ 27.5 (at 2� pH� 4.5) and pe + pH¼ 18 (4.5< pH� 7). Panel (c) Effects
of co-existing substance on CNPs dissolution. The red symbols represent the dissolution of CNPs in
ultrapure water. The symbols with different shapes and colors represent the influence of the
respective co-existing substance marked by the labels in the plot area on CNPs dissolution. Panel
(d) Concentration of dissolved Ce in medium from CNPs with various diameter against Ce
concentration in the leaves of wheat, pumpkin, and sunflower (related to the left and bottom axis)
and the root length of head lettuce, cucumber, wheat, and radish treated with Ce3+ ions (related to
the right and top axis) for 5 days. The Ce content accumulated in the leaf was determined by
ICP-MS. Data are cited from Arai and Dahle (2017), Auffan et al. (2017b), Cui et al. (2014), Lee
and Byrne (1992), Plakhova et al. (2016), Schwabe et al. (2014, 2015, 2015), Tella et al. (2015), Xu
et al. (2018), and Zhang et al. (2013)
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4.2 Reaction of Ce with Phosphate

Several researchers have also put forward that the thermodynamically favorable
reactions of Ce(IV) and Ce(III) with various (in)organic ligands should be consid-
ered, which might interfere with their intrinsic and toxic properties. The high binding
affinity of released or exchangeable Ce(III) to P groups has been observed in
different contexts, such as formation of cerium phosphate at CNPs surface (Singh
et al. 2011), in plants roots (Rui et al. 2015; Zhang et al. 2012), algal cells (van
Hoecke et al. 2009), and activated sludge (Barton et al. 2014). Cerium phosphate
nucleation on CNPs {111} surface was shown to preferentially affect their surface
properties (van Hoecke et al. 2009), redox reactivity (Singh et al. 2011), dissolution
rate (Dahle et al. 2015), and further partitioning and retention in soil (Cornelis et al.
2011).

Wang et al. exhibited that DNA, lipids, and various P species (including orthoP,
pyroP, sodium trip/trimetaP, and polyP) could tightly adsorb on CNPs surface
(Wang et al. 2018a). Li et al. and Jiang et al. also stated that Ce(III) could strip P
from lipid bilayer (Li et al. 2014) or react with P released from inside the yeast cells
(Jiang et al. 2010), while pretreatment of CNPs with P prevented their biotransfor-
mation and thus toxicity (Li et al. 2014). In plants, Ce(III) speciation mostly
exhibited as CePO4 in roots, since roots were completely immersed in the nutrient
solution and abundant in P (Rui et al. 2015; Zhang et al. 2012, 2017). As most of the
released Ce(III) was precipitated as insoluble CePO4 and immobilized in roots, only
a small part of Ce(III) may be transported to the other tissues, which directly reduced
the bioavailability of CNPs.

Following incubation with phosphate buffer (50 mM), the strong association of
Ce(III) with P at the surface of CNPs led to the changes of surface chemistry and thus
the redox behavior of CNPs (Singh et al. 2011). Moreover, the readily occurred
complexation of P with Ce(III) at the ceria-water interface induced the formation of
insoluble surface precipitates, which would effectively suppress the electron transfer
reaction and/or further ligand-promoted dissolution (Arai and Dahle 2017; Cornelis
et al. 2011). Dahle et al. also illustrated that the chelation of P with exchangeable Ce
(III) on CNPs surface in a binary model system could inhibit the dissolution of CNPs
(Dahle et al. 2015).

According to Cornelis et al. (2011), both sets of partitioning (Kd) values for Ce
(III) and Ce(IV) in soil were positively correlated with cation exchange capacity
(CEC). However, due to the low solubility of Ce(III)-P, Kd of Ce(III) was found to be
also correlated with the soluble (<0.45 μm) P concentration according to the
following equations (Cornelis et al. 2011):

log Kd,Ce IVð Þ ¼ 2:486þ 0:805x log CECð Þ r2 ¼ 0:55
� � ð3Þ

log Kd,Ce IIIð Þ ¼ 4:126þ 0:726x log CECð Þ þ 0:243x log P½ � r2 ¼ 0:64
� � ð4Þ
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Also, the presence of P notably lowered the retention (Kr) values of CNPs, since P
significantly decreased the charge of natural colloids. The multiple linear regression
that best described the variation in Kr values was (Cornelis et al. 2011):

log Kr,CNPs ¼ �3:96þ 0:038x clay%ð Þ � 0:4262x log P½ �
þ 0:3xpH r2 ¼ 0:72

� � ð5Þ

These three equations clearly indicated that the presence of P alters the chemical
stability and dispersion characteristics of CNPs in soils, which theoretically con-
firmed the interference of P with the reactivity, bioavailability, transformation, and
persistence of CNPs.

The researches mentioned above suggest that the solubility of CNPs is controlled
by reductive dissolution of Ce(IV)O2 and then followed by the complexation of
P. Notably, cerium-P formation would block the redox cycling between Ce(III)/Ce
(IV), showing a good relationship with the toxicity attenuation of CNPs. Therefore,
reaction process of ceria with P should be of consideration in protecting the
microbial and agricultural ecosystems, since P is ubiquitous in the biochemical
and biogeochemical systems.

4.3 Reaction of Ce with Sulfate/S22

Consistent with the properties of Class B soft metal cations (e.g., Ag, Zn, and Cu),
the affinity of Ce ions for electron-dense sulfur molecules makes them highly
reactive with both organic and inorganic sulfurs in natural environments. Ionic Ce
(IV) has been shown to successively associate with sulfate ion to form Ce(SO4)

2+,
Ce(SO4)2, and Ce(SO4)3

2� (Hardwick and Robertson 1951). The complexation
between SO4

2� with Ce(III) has also been previously proposed (Newton and Arcand
2002). Cornelis et al. reported that both ionic Ce(IV) and Ce(III) are expected to
form ion pairs with SO4

2�, which further enhances the solubility of CNPs (Cornelis
et al. 2011). However, considering the valence state of Ce(IV) and Ce(III) on CNPs
surface, whether SO4

2� can directly complex with exchangeable Ce and further
disturb their EH have not been well understood at a fundamental level.

Under reducing conditions, Ce2(SO4)3 would be further transformed to Ce2S3.
Barton et al. illustrated that according to the thermodynamics arguments, the likely
Ce(III) phase generated from CNPs would be Ce2S3 in anaerobic digesters (Barton
et al. 2014). At high free S-bearing gases (H2S, SO2, and CS2) concentrations,
sulfidation may directly occur by conversion of released Ce(III) to Ce2S3. Previous
study showed that the acute toxicity of Ag+ to microorganisms was reduced in the
presence of environmental relevant levels of sulfide (Bianchini et al. 2010). Thus,
considering the toxicity-related bioavailability and Ce(III) content, it is expected that
CNPs toxicity will be lowered in the presence of sulfide by forming relatively
insoluble Ce2S3.
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Importantly, Ce ions can also bind strongly with organosulfur compounds, with
the greatest affinity for thiol-containing ligands. For example, Rollin-Genetet et al.
and Han et al. concluded that Ce(IV) atoms present at the surface of CNPs could be
reduced to Ce(III) to form stable Ce(III)-disulfide complex following interactions
with thiol groups of cysteine (Han et al. 2010; Rollin-Genetet et al. 2015). Similarly,
the redox reaction between Ce(IV) and glutathione (GSH) oxidized thiol group to its
disulfide counterparts, leading to the formation of Ce(III)GSH (Han and Liu 2010).
Moreover, due to the oxidation-reduction potential of Ce(IV)/Ce(III), the formation
of Ce(III)-disulfide fluorescent complex would create an oxygen vacancy based on
the previously advocated mechanism. Thus, the disulfide bridge formation for thiol-
containing biomacromolecules could induce the toxicity of CNPs.

In short, CNPs and their released Ce species would undergo the process of
sulfidation. Notably, the sources of sulfur might be wide-ranging, from sulfate to
sulfur-bearing gas to organic species and even to metal sulfide minerals having a
lower stability than Ce2S3 (e.g., ZnS, FeS, CuS, and Ag2S). Thus, the process of
sulfidation in the life cycle of CNPs is of great importance to evaluate their ultimate
toxicity and environmental risk.

4.4 Reaction of Ce with Ferrous Ions

Several researchers have demonstrated the thermodynamically favorable reduction
of Ce(IV) (aq) by Fe(II) (aq), with the standard EH of Ce(IV)/Ce(III) being 1.44 V
and Fe(III)/Fe(II) being 0.77 V. The Gibbs free energy ranges from �118.5 to
�126.19 kJ/mol (Arai and Dahle 2017; Xu and Wang 2012). In Fe(II) solution,
the colloidal stability of CNPs was enhanced, due to the redox reactions between Fe
(II) and CNPs and thus highly increased zeta potential (Liu et al. 2015). Interfacial
redox reactions between CNPs and Fe(II) lead to the generation of six-line
ferrihydrite on the CNPs surface, while the dissolved Ce(III) is released from the
Ce(IV)O2 surface into the solution (Liu et al. 2015). The adsorption of Fe(II) and
precipitation of Fe(III)(hydr)oxides could make CNPs surface more hydrophilic,
which would be more stable in the aqueous phase (Azimi et al. 2013). The redox
reaction can be described as (Azimi et al. 2013; Liu et al. 2015):

Ce IVð ÞO2 þ Fe IIð Þ aqð Þ ! Ce IVð ÞO2 þ Ce3þ aqð Þ þ Fe IIIð Þ
� hydrð Þoxides e:g:, ferrihydriteð Þ ð6Þ

Interestingly, when Fe oxides were produced by air oxidation of Fe(II) solution,
further formed green rust played a catalytic role in the oxidation of Ce(III) to Ce
(IV) by O2, which was proved to be discrete nanocrystals of Ce(IV)O2(s) (Nedel
et al. 2010). This process can realize the continuously removal of Ce(III) from the
solution.
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Involved in the series redox reactions, the production of ROS is another issue of
consideration. Lu et al. reported that when continued to increase the concentration of
Fe(II) from 0.6 mM, greater amount of �OH was produced by CNPs in the presence
of H2O2 (Lu et al. 2016). Xu et al. also proposed the generation of �OH by the
reaction of Fe(II) and Ce(III) species with H2O2 in the bulk solution (Xu and Wang
2012). Consequently, CNPs exhibited prooxidant activity. Additionally, Ce(III) in
CNPs could transmit electrons to the iron oxide, leading to the dissolution and
dispersion of Fe(III) and Fe(II) (Wang et al. 2014). This process may further initiate
the decomposition of H2O2 and eventually produce �OH (Xu and Wang 2012).

Consequential alterations in the physicochemical properties of CNPs during the
redox reactions between CNPs and Fe(II) can further induce the toxicity of CNPs by
mediating surface charge, dissolution of Ce(III), and generation of ROS. Besides Fe
(II), other redox reactive elements (i.e., Mn2+) or contaminants (i.e., As, Cr, and U)
can also be adsorbed on and react with CNPs. These interactions need to be
considered when assessing the chemical fate and risk of CNPs in aquatic
environments.

5 Toxicity Mechanisms of CNPs Posed on the Organisms

There are several different mechanisms by which CNPs toxicants might inhibit the
growth rate of microorganism and plant in terms of cell division, since the very small
size of CNPs enables them to interact with biological systems at the subcellular scale
(membranes, proteins, or DNA molecules). Direct or physical inhibition involves
interaction of CNPs with cell itself or cytomembrane. Indirect or chemical inhibition
occurs when CNPs interact with the environment, which can be related to chemical
factors or reactions. A combination of these pathways may even be present, as
demonstrated in Fig. 5.

5.1 Physical Damage

As highlighted in the literature, the direct adsorption of CNPs onto the cell outer
membrane induces strong toxicity, and two mechanisms are probably involved.
Firstly, potential toxicity of CNPs could be caused by an interference of the adsorbed
CNPs shell with the nutrients reaching the cell surface and transport functions,
changing pH or EH in the external milieu (Rogers et al. 2010; Zeyons et al. 2009).
Secondly, upon contact with the cell membrane, the abrasive nature of CNPs was
reported to inflict non-specific physical damage. Indeed, when directly adsorbed
onto the outer cell membrane, CNPs may modify the viscosity of the membrane,
corrupt the specific ionic pumps, and thus strongly alter the transport exchanges of
the cell with the media, which interfere with the growth of both microorganisms and
plants (Rogers et al. 2010; Thill et al. 2006; van Hoecke et al. 2009; von Moos and
Slaveykova 2014).
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5.2 Chemical Inhibition

The chemical inhibition most likely to take parts in promoting toxicity of CNPs
includes the redox chemistry of cerium on the particles or in intracellular cells. The
redox chemistry directly leads to the generation of ROS, which is considered
damaging to cells, proteins, and DNA (Park et al. 2008b; Rogers et al. 2010; von
Moos and Slaveykova 2014; Xu et al. 2018).

5.2.1 ROS Formation on CNPs

The redox properties of CNPs may lead to the reduction of Ce(IV) to Ce(III), which
then directly induce ROS production inside CNPs’ crystal lattice or engage in the
ROS-generating Fenton reactions (Heckert et al. 2008; Huang and Fabris 2007; Li
et al. 2012; Preda et al. 2011; von Moos and Slaveykova 2014). For example, Preda
et al. confirmed that the interaction of O2 with the Vo

�� at CNPs surface resulted in the

Fig. 5 Illustrations of CNPs toxicity mechanisms via the physical damage (membrane rupture and
intracellular contents release) and chemical inhibition (ROS generation and reactions of CNPs with
bio-structures). ROS generation can be divided into three parts: (1) the extracellular ROS generation
(top) through direct redox reactions with biomembrane/biomolecules, dissolution, and the inherent
property of CNPs; (2) intracellular chemical reactivity (left) involves redox cycling between CNPs
or leached Ce ions and organic compounds yielding �OH, O2

�—, and 1O2 through Fenton and
per-oxidation reactions; (3) direct redox reactions between CNPs and subcellular structures or
biomolecules (including enzymes, protein and nucleic acids) (right) are also known to trigger
ROS generation through per-oxidation or electron transfer chain
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formation of peroxo (O2
2�) and superoxo (O2

�-) species (Preda et al. 2011). The
process can be further described as:

2Ce3þ,Vo
��� �þ O2 ! 2Ce4þ, O2

2�� � ð7Þ
2Ce3þ,Vo

��� �þ O2 ! Ce4þ, Ce3þ, O2
��� � ð8Þ

Under UV irradiation (365 nm), Li et al. showed that CNPs can generate O2
�– and

no �OHwas detected, since the EH for �OH generation (2.2 V at pH 5.6) is higher than
the valence band (EV) of CNPs (1.6 eV) (Li et al. 2012). However, Heckert et al.
proposed that in the presence of H2O2, Ce(III) on the surface of CNPs is presumed to
be an active site and produces �OH, behaving similarly to iron in a Fenton-like
reaction (Heckert et al. 2008). The redox evolution at CNPs surface and generation
of ROS species were therefore reported to pose oxidative damage to biomolecules in
the surrounding medium (Park et al. 2008b). According to the current understanding,
it is reasonable to say that the toxicity of CNPs is likely related to the catalytic
properties and ensuing redox reactions in aquatic or biological media. However, the
correlation successfully linking the physicochemical properties and ROS generation
of CNPs needs to be further explored, which would provide guidance for the design
of safe and environmentally benign CNPs.

5.2.2 ROS Generation in Intracellular Portions

At the nano-bio interface, physical interactions of CNPs with cellular structures can
also lead to the formation of �OH, O2

�–, or 1O2. The detections and observations of
these ROS species have been demonstrated for CNPs in E coil., wastewater biofilm,
Corophium volutator, RLE-6TN rat cells, and lettuce, for instance (Dogra et al.
2015; Dunnick et al. 2015; Thill et al. 2006; Xu et al. 2018; Zhao et al. 2017).
Consequently, these three types of ROS contribute to the major oxidative stress in
biological system (Li et al. 2012). Furthermore, in the intracellular part, the nega-
tively charged cell membrane, DNA and RNA attract metal cations to its polyanionic
surface and therefore favor the production of �OH by Fenton reactions (von Moos
and Slaveykova 2014). Generally, �OH is the major ROS generated in the CNPs
exposed organisms, mediating DNA damage and polysaccharide cleaving (Xu et al.
2018; Zhao et al. 2017).

Regarding the induction of ROS by CNPs in cells, there is no clear explanation to
date of the mechanisms involved. In the biotic system, a number of factors may
trigger the redox-type reactions and ultimately ROS generation, such as reactions of
CNPs with inorganic, organic, and liquid-phase ligands. Proposed mechanisms for
in vivo ROS production from CNPs is displayed in the equations below (Brunet et al.
2009; Li et al. 2012; von Moos and Slaveykova 2014; Zhao et al. 2012b):
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Ce IVð Þ þ Xred
2 ! Ce IIIð Þ þ Xox ð9Þ

Ce IIIð Þ þ O2 ! Ce IVð Þ þ O2
�� ð10Þ

2Hþ þ 2O2
�� ! 1O2 þ H2O2 ð11Þ

H2O2 þ Ce IIIð Þ ! Ce IVð Þ þ OH� þ �OH ð12Þ
LOOHþ Ce IIIð Þ ! Ce IVð Þ þ LO� þ �OH ð13Þ

where Xred
2 refers to physiologically relevant reductant, Xox is their oxidative state,

and LOOH is alkoxyl radicals from lipid peroxidation. Further studies focusing on
the site of catalysis by CNPs and untangling the molar ratio of the products might be
helpful to elucidate the mechanisms involved. Moreover, the systematic study on
subtle cellular alternations in the redox balance may also help to further fill the
knowledge gaps by illustrating the mechanisms of action of ROS at the molecular
level.

5.2.3 Distinct Types of Chemical Reactions

The chemical reactions of CNPs with biologically relevant molecules are of key
importance to reflect the lethal mechanisms of CNPs. Firstly, it was demonstrated
that CNPs led to biotic P complexation and resulted in organelle damage, because of
stripping of P from the surrounding lipid bilayer (Li et al. 2014). The ability of CNPs
to cleave the P ester bond in p-nitrophenyl P, adenosine triphosphate (ATP), and o-
phospho-L-tyrosine was also illustrated (Kuchma et al. 2010). Secondly, the favor-
able interactions between CNPs and the electroactive substances in biological
system lead to the toxicity of CNPs. For instance, the representative redox state of
disulfide bonds of biomolecules (the intracellular protein metallothioneins and
cysteine/disulfide redox control system) was reported to be oxidized and
decomposed (Han et al. 2010; Rollin-Genetet et al. 2015). Thirdly, the
biological activity of Ce(III) compounds is likely dictated by proximity of the
ionic radii of Ce3+ and Ca2+ ions (1.01 and 1.00 Å, respectively). Consequently,
Ca2+ might be partially replaced by Ce3+ in Ca2+-dependent proteins (Arai and Dahle
2017; Plakhova et al. 2016). As a result, the reduced Ce(III) in vivo leads to
disruption of cell signaling pathways, cellular homeostasis, and thus cell inactivation
(Horie et al. 2011).

6 Challenges and Perspectives

In this review, the latest knowledge about the physicochemical properties and
environmental transformations of CNPs when addressing their toxicity and environ-
mental risks are discussed and summarized. Although incipient surface chemistry of
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CNPs has a profound influence on their toxicity, environmental transformations
might decrease the effects of initial chemical conditions and render lower or higher
toxic. Though knowledge about how CNPs transformations influence their toxicity
are expanding, several research gaps and challenges important for better predicting
the environmental fate and effects of CNPs need to be addressed. Specially, several
critical research needs are generalized in Fig. 6.

6.1 Determining the Current States and Effects of CNPs
in the Environment

Advanced analysis of the physical and chemical characteristics of CNPs under
realistic environmental conditions will continue to be essential in discovering the
relationship between their morphology, size, composition and their aggregation,
reactive kinetics, and toxicity. Since the experimental model and related exposure
conditions could influence the environmental transformation, translocation, and thus
toxicity of CNPs (Ganguly et al. 2018; Rogers et al. 2010; van Hoecke et al. 2009),

Fig. 6 Suggestions for future research challenges and priorities of the environmental fates and
effects of CNPs. The questions in outer circle are urgently to be clarified to fill the knowledge gaps
in the inner circle
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researches are required to better track the rate and extent of CNPs transformations
under realistic conditions, especially for illustrating the co-occurred multiple trans-
formations. Completely understanding the diverse transformations of CNPs in the
environment requires the ability to recover the products from environmental or
biological matrices. Then, measuring the properties of these partially transformed
CNPs or characterizing them in vivo/in situ is necessary. Additionally, scarcely any
information is presently known about the toxicology under the relevant conditions
regarding long-term exposure to low CNPs doses, which is necessary for better
revealing the current effects of CNPs on the environment.

6.2 Identifying the Toxicological Risk Factors of CNPs

It has been widely known that ROS generation is closely related to the inhibition
effects of CNPs (Park et al. 2008b; Rogers et al. 2010; von Moos and Slaveykova
2014; Xu et al. 2018). However, the information about the quantitative relationships
between ROS formation and the toxicity effects of CNPs for rapid toxicological
screening prior to in vivo testing is lacking. On the other hand, the possibility of
changes in CNPs reactivity and biological molecules after their contacts has been
examined (Li et al. 2014; Rollin-Genetet et al. 2015); thus further studies on kinetics
and biochemical interactions of CNPs within organisms are imperative. These
studies should include research on CNPs transformation pathways, interactions
with cells, the receptors and signaling pathways involved, cytotoxicity, and surface
functionalization for an effective cellular phagocytosis or internalization. Then,
sufficient information to identify the toxicological risk factors including
genotoxicity, induction of cell transformation, and also how the various physico-
chemical properties or biochemical reactions affect CNPs toxicity is critical. In order
to clarify the risk factors mentioned above, nanoscale characterization techniques
should be introduced to a larger extent to identify CNPs at intracellular sites in
affected cells or tissues and to further establish the pertinent interaction mechanisms.

6.3 Characterizing and Identifying the Potentially Safe
Applications of CNPs in the Future

Another important research topic to be pursued is to reduce the toxicological profiles
of CNPs and maintain the functional properties of the core materials. According to
the existing data discussed above, the anti- and prooxidant activity of CNPs depends
on their physicochemical properties, reactive activity, and extent of cellular inter-
nalization. Thus, to avoid the environmental toxicity of CNPs, surface modification
and configuration should be considered in the synthesis process to hinder the
interactions between CNPs with biomolecules and other chemicals within
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organisms. It will be essential to introduce the structural and reactivity data derived
from material science and toxicology studies to the safer design of CNPs in the
future. Knowledge about the fundamental characteristics of CNPs and ceria-based
material, new characterization techniques, and powerful theoretical methods need to
be developed to help us predict the biocompatibility of CNPs regarding safe and
effective applications in nanotechnology. Moreover, research should be directed
toward finding ways to decrease CNPs toxicity (such as antioxidants provided by
dietary source and supplements, metal chelators, passivators).

7 Conclusion

In the present study, the important transformations of CNPs that need to be consid-
ered when addressing their environmental and ecological effects are discussed and
summarized. The surface properties are crucial in understanding the environmental
behavior of CNPs in relation to their stability against agglomeration, mobility,
reactivity, and toxicity. The phase transformations of CNPs metallic core with (in)
organic compounds in different environmental scenarios significantly influence their
fate, transport, interactions with organisms, and consequence of bioaccumulation
and toxicity. The roles of surface properties and environmental transformations of
CNPs in the likelihood of toxicity mechanisms are further explored based on the
physical damage and chemical inhibition. Finally, important questions and research
directions in terms of identifying the toxicological risk factors and safer applications
of CNPs are highlighted. Overall, the findings characterizing and predicting the
environmental transformations and risks from manufactured CNPs should increase
our awareness of CNPs pollution. With increased knowledge and ongoing study, we
are urged to find strategies for mitigating the toxicities associated with CNPs
exposure. More important, we should foresee a future with better-informed and,
hopefully, more cautions manipulation for safe design and application of CNPs.

8 Summary

Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent
years have raised wide concerns about their biotoxicity. Numerous studies have been
conducted to reveal the toxicity of CNPs, but the results are sometimes contradic-
tory. In this review, the most important factors in mediating CNPs toxicity are
discussed, including:

1. the roles of physicochemical properties (size, morphology, aggregation condi-
tion, surface charge, coating, and surface valence state) on CNPs toxicity;

2. the phase transfer and transformation process of CNPs in various aqueous,
terrestrial, and airborne environments;
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3. the reductive dissolution and chemical reactions of CNPs core with phosphate,
sulfate/S2-, and ferrous ions.

Physicochemical properties of CNPs play key roles in their environmental trans-
formations and consequently their interactions with organisms, reactivity, and tox-
icity assessment. Also, the speciation transformations of CNPs caused by reactions
with (in)organic ligands in both environmental and biological systems would further
alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms of
CNPs are proposed based on the physical damage of direct adsorption of CNPs onto
the cell membrane and chemical inhibition (including oxidative stress and interac-
tion of CNPs with biomacromolecules). Finally, the current knowledge gaps and
further research needs in identifying the toxicological risk factors of CNPs under
realistic environmental conditions are highlighted, which might improve predictions
about their potential environmental influences. This review aims to provide new
insights into cost-effectiveness of control options and management practices to
prevent environmental risks from CNPs exposure.
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fundamental mistakes in the Conclusion section on page 36. The sentences on the
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“The authors recommend that the position of the constant is dependent on when the
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merged in water during the experiment. However, if the leaf discs are dried and
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