
Reversible Programming Languages
Capturing Complexity Classes

Lars Kristiansen1,2(B)

1 Department of Informatics, University of Oslo, Oslo, Norway
2 Department of Mathematics, University of Oslo, Oslo, Norway

larsk@math.uio.no

Abstract. We argue that there is a link between implicit computational
complexity theory and the theory of reversible computation. We show
that the complexity classes ETIME and P can be captured by inherently
reversible programming languages.

1 Introduction

The title above is inspired by the title of a paper I co-authored with Paul Voda
more than 15 years ago: Programming languages capturing complexity classes
[10]. In that paper we related the computational power of fragments of pro-
gramming languages to complexity classes defined by imposing time and space
constraints on Turing machines. Around that time, I authored and co-authored
a number of related papers, e.g. [8,9,11], all of which were clearly inspired by
work in implicit computational complexity theory from the 1990s, e.g., Bellatoni
and Cook [2], Leivant [12,13] and, particularly, Jones [5,6].

Complexity classes like P, FP, NP, LOGSPACE, EXPTIME, and so on, are
defined by imposing explicit resource bounds on a particular machine model,
namely the Turing machine. E.g., FP is defined as the class of functions com-
putable in polynomial time on a deterministic Turing machine. The definition
puts constraints on the resources available to the Turing machines, but no con-
straints on the algorithms available to them. A Turing machine may compute a
function in the class by any imaginable algorithm as long as it works in poly-
nomial time. Implicit computational complexity theory studies classes of func-
tions (problems, languages) that are defined without imposing explicit resource
bounds on machine models, but rather by imposing linguistic constraints on
the way algorithms can be formulated. When we explicitly restrict our language
for formulating algorithms, that is, our programming language, then we may
implicitly restrict the computational resources needed to execute algorithms. If
we manage to find a restricted programming language that captures a complexity
class, then we will have a so-called implicit characterization. A seminal example
is Bellatoni and Cook’s [2] characterization of FP. They give a functional pro-
gramming language (which they call a function algebra). This language consists
of a few initial functions and two definition schemes (safe composition and safe
primitive recursion) which allow us to define new functions. These schemes put
c© Springer Nature Switzerland AG 2020
I. Lanese and M. Rawski (Eds.): RC 2020, LNCS 12227, pp. 111–127, 2020.
https://doi.org/10.1007/978-3-030-52482-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52482-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-52482-1_6

112 L. Kristiansen

rather severe syntactical restrictions on how we can define functions, but they do
not refer to polynomially bounded Turing machines or any other kind of resource
bounded computing machinery. It is not easy to write programs when we have
to stick to these schemes, even experienced programmers might find it hard to
multiply two numbers but, be that as it may, this is a programming language
that yields an implicit characterization of a complexity class. It turns out that a
function can be computed by a program written in Bellantoni & Cook’s language
if and only if it belongs to the complexity class FP.

There is an obvious link between implicit computational complexity and
reversible computing. A programming language based on natural reversible oper-
ations will impose restrictions on the way algorithms can be formulated, and
thus, also restrictions on the computational resources needed to execute algo-
rithms. Hence, the following question knocks at the door: Will it be possible find
reversible programming languages that capture some of the standard complexity
classes? The answer turns out to be YES. We will present a reversible language
that captures, or if you like, gives an implicit characterization of, the (maybe not
very well-known) complexity class ETIME. A few small modifications of this lan-
guage yield a reversible language that captures the very well-known complexity
class P.

Our languages are based on a couple of naturally reversible operations. To
increase, or decrease, a natural number by 1 modulo a base b is such an operation:
. . . 0, 1, 2, . . . , b − 2, b − 1, 0, 1, 2 The successor of b − 1 becomes 0, and then
b − 1 becomes the predecessor of 0. Thus, “increase” and “decrease” are the
reverse of each other. To move an element from the top of one stack to the top
of another stack is another such operation as we can simply move the element
back to the stack it came from.

This paper addresses students and researchers interested in programming
languages, reversible computations and computer science in general, they will
not necessarily be experts in computability or complexity theory. We will give
priority to readability over technical accuracy, but still this is a fairly technical
paper, and we will assume that the reader is faintly acquainted with Turing
machines and basic complexity theory (standard textbooks are Arora and Barac
[1], Jones [7] and Sipser [16]).

Implicit computational complexity theory is definitely a broader and richer
research area than our short discussion above may indicate. More on the subject
can be found in Dal Lago [3].

2 Reversible Bottomless Stack (RBS) Programs

An infinite sequence of natural numbers s1, s2, s3, . . . is a bottomless stack if
there exists k such that si = 0 for all i > k. We use 〈x1, . . . , xn, 0∗] to denote the
bottomless stack s1, s2, s3, . . . where si = xi when i ≤ n, and si = 0 when i > n.
We say that x1 is the top element of 〈x1, . . . , xn, 0∗]. Observe that 0 is the top
element of the stack 〈0∗]. Furthermore, observe that 〈0, 0∗] is the same stack as
〈0∗] (since 〈0, 0∗] and 〈0∗] denote the same sequence of natural numbers). We
will refer to 〈0∗] as the zero stack.

Reversible Programming Languages Capturing Complexity Classes 113

THE SYNTAX OF RBS

X ∈ Variable ::= X1 | X2 | X3 | . . .
com ∈ Command ::= X+ | X− | (X toX) | com; com

| loop X { com }

Fig. 1. The syntax of the language RBS. The variable X in the loop command is not
allowed to occur in the loop’s body.

The syntax of the imperative programming language RBS is given in Fig. 1.
Any element in the syntactic category Command will be called a program, and
we will use the word command and the word program interchangeably throughout
the paper. We will now explain the semantics of RBS.

An RBS program manipulates bottomless stacks, and each program variable
holds such a stack. The input to a program is a single natural number m. When
the execution of the program starts, the input m will be stored at the top of the
stack hold by X1, that is, we have X1 = 〈m, 0∗]. All other variables occurring in the
program hold the zero stack when the execution starts. A program is executed
in a base b which is determined by the input: we have b = max(m + 1, 2) if
X1 = 〈m, 0∗] when the execution starts. The execution base b is kept fixed during
the entire execution.

Let X and Y be program variables. We will now explain how the primitive
commands work. The command (X to Y) pops off the top element of the stack
held by X and pushes it onto the stack held by Y, that is

{X = 〈x1, . . . , xn, 0∗] ∧ Y = 〈y1, . . . , ym, 0∗]} (X to Y)
{X = 〈x2 . . . , xn, 0∗] ∧ Y = 〈x1, y1, . . . , ym, 0∗]}.

The command X+ increases the the top element of the stack held by X by
1 (mod b), that is

{X = 〈x1, . . . , xn, 0∗]} X+ {X = 〈x1 + 1 (mod b), x2 . . . , xn, 0∗]}.

The command X− decreases the the top element of the stack held by X by
1 (mod b), that is

{X = 〈x1, . . . , xn, 0∗]} X− {X = 〈x1 − 1 (mod b), x2 . . . , xn, 0∗]} .

Observe that we have

{X = 〈b − 1, x2 . . . , xn, 0∗]} X+ {X = 〈0, x2 . . . , xn, 0∗]}
and

{X = 〈0, x2 . . . , xn, 0∗]} X− {X = 〈b − 1, x2 . . . , xn, 0∗]}
when b is the base of the execution.

114 L. Kristiansen

The semantics of the command C1; C2 is as expected. This is the standard
composition of the commands C1 and C2, that is, first C1 is executed, then C2
is executed. The command loop X { C } executes the command C repeatedly k
times in a row where k is the top element of the stack held by X. Note that the
variable X is not allowed to occur in C and, moreover, the command loop X { C }
will not modify the stack held by X.

Example 1. Let C1 be the program loop X1 { X+2 }; (X2 to X1). We have

{X1 = 〈17, 0∗] ∧ X2 = 〈0∗]} C1 {X1 = 〈17, 17, 0∗] ∧ X2 = 〈0∗]}.

Let C2 be the program loop X1 { X+2 }; X+2 ; (X2 to X1). We have

{X1 = 〈17, 0∗] ∧ X2 = 〈0∗]} C2 {X1 = 〈0, 17, 0∗] ∧ X2 = 〈0∗]}
since the execution base is 18. All numbers stored on stacks during an execution
will be strictly less than the execution base, and thus, less than or equal to
max(m, 1) where m is the input. ��

Intuitively, it should be clear that RBS programs are reversible in a very strong
sense. RBS is an inherently reversible programming language in the terminology
of Matos [14]. If we like, we can of course state this insight more formally. The
next definition and the following theorem will be a step in that direction.

Definition 2. We define reverse command of C, written CR, inductively over
the structure C:

– (X+i)R = X−
i

– (X−
i)R = X+i

– (Xi to Xj)R = (Xj to Xi)
– (C1; C2)R = CR

2 ; C
R
1

– (loop Xi { C })R = loop Xi { CR }.
��

Theorem 3. Let C be a program, and let X1, . . . , Xn be the variables occurring
in C. Furthermore, let m be any natural number. We have

{X1 = 〈m, 0∗] ∧
n∧

i=2

Xi = 〈0∗]} C; CR {X1 = 〈m, 0∗] ∧
n∧

i=2

Xi = 〈0∗]}.

It is a nice, and maybe even challenging, exercise to write up a decent proof
Theorem 3, even if it should be pretty clear that the theorems holds. We will
offer a proof in the next section. The reader not interested in the details of the
proof, may skip that section.

We will now define the set of problems that can be decided by an RBS pro-
grams. To that end, we need to determine how an RBS program should accept,
and how an RBS program should reject, its input. Any reasonable convention will
do, and we will just pick a simple and convenient one.

Reversible Programming Languages Capturing Complexity Classes 115

EXAMPLE

Program: Comments:
(* X1 = 〈m, 0∗] *)

X1 to X9; (* the top elements of X9 is m *)

X+2 ; (* X1 = 〈0∗] and X2 = 〈1, 0∗] *)

loop X9 { (* repeat m times *)
X1 to X3;

X2 to X1; (* swap the top elements of X1 and X2 *)

X3 to X2 }

Fig. 2. The program accepts every even number and rejects every odd number.

Definition 4. An RBS program C accepts the natural number m if C executed
with input m terminates with 0 at the top of the stack hold by X1, otherwise, C
rejects m.

A problem is a set of natural numbers.1 An RBS program C decides the prob-
lem A if C accepts all m that belong to A and rejects all m that do not belong
to A. Let S denote class of problems decidable by an RBS program. ��

Let A be the set of even numbers. Then A is a problem. Figure 2 shows an
RBS program that decides A.

Now, any RBS program decides a problem, and S is obviously a well-defined
class of computable (decidable) problems. We have defined S by a reversible
programming language. We have not defined S by imposing resource bounds
on Turing machines or any other machine models. What can we say about the
computational complexity of the problems we find in S? May it be the case that
S equals a complexity class?

3 The Proof of Theorem3

This section is dedicated to a detailed proof of Theorem 3 (readers not interested
may jump ahead to Sect. 4). First, we need some terminology and notation: We
will say that a (bottomless) stack is a b-stack if every number stored on the
stack is strictly smaller than b. Furthermore, we will use V(C) to denote the set
of program variables occurring in the command C, and for any positive integer m
and any command C, we define the command Cm by C1 ≡ C and Cm+1 ≡ Cm; C.

Now, assume that C is an RBS command with V(C) ⊆ {X1, . . . , Xn}. Further-
more, assume that C is executed in base b and that α1, . . . , αn, β1, . . . , βn are
b-stacks. With these assumptions in mind, we make the following claim:

1 It is pretty standard in computability and complexity theory to define a problem as
a set of natural numbers.

116 L. Kristiansen

If {
n∧

�=1

X� = α�} C {
n∧

�=1

X� = β�} , then {
n∧

�=1

X� = β�} CR {
n∧

�=1

X� = α�}.

(claim)

Theorem 3 follows straightforwardly from this claim. So all we need to do is
to prove the claim.

We will of course carry out induction on the structure of the command C,
and our proof will split into the tree base cases (i) C ≡ X+i , (ii) C ≡ X−

i and (iii)
C ≡ (Xj to Xi) and the two inductive cases (iv) C ≡ C1; C2 and C ≡ loop Xi {C0}
(see Fig. 1).

Case (i). Assume

{
n∧

�=1

X� = α�} X+i {
n∧

�=1

X� = β�}.

Then we also have {Xi = αi} X+i {Xi = βi} where

αi = 〈m1,m2, . . . ,mk, 0∗] and βi = 〈m1 + 1 (mod b),m2, . . . ,mk, 0∗]

for some m1, . . . ,mk < b. We have (m1 + 1 (mod b)) − 1 (mod b) = m1 when
m1 < b. Thus we have {Xi = βi} X−

i {Xi = αi}. By Definition 2, we have
{Xi = βi} (X+i)R {Xi = αi}. Now, since neither X+i nor (X+i)R will modify any
stack held by a variable Xj where j 	= i, we also have

{
n∧

�=1

X� = β�} (X+i)R {
n∧

�=1

X� = α�}.

This concludes the proof of case (i). The proofs of the cases (ii) and (iii) are very
similar to the proof of case (i). We leave the details to the reader and proceed
with the inductive cases.

Case (iv). Assume

{
n∧

�=1

X� = α�} C1; C2 {
n∧

�=1

X� = β�}.

Then there exist b-stacks γ1, . . . , γn such that

{
n∧

�=1

X� = α�} C1 {
n∧

�=1

X� = γ�} and {
n∧

�=1

X� = γ�} C2 {
n∧

�=1

X� = β�}.

We apply our induction hypothesis both to C1 and to C2 and conclude

{
n∧

�=1

X� = γ�} CR
1 {

n∧

�=1

X� = α�} and {
n∧

�=1

X� = β�} CR
2 {

n∧

�=1

X� = γ�}.

Reversible Programming Languages Capturing Complexity Classes 117

It follows that

{
n∧

�=1

X� = β�} CR
2 ; C

R
1 {

n∧

�=1

X� = α�}.

Finally, as Definition 2 states that (C1; C2)R = CR
2 ; C

R
1 , we have

{
n∧

�=1

X� = β�} (C1; C2)R {
n∧

�=1

X� = α�}.

This completes the proof of case (iv).

Case (v). Assume

{
n∧

�=1

X� = α�} loop Xi { C0 } {
n∧

�=1

X� = β�} (*)

and let m be the top element of the stack αi.
If m = 0, we have

{
n∧

�=1

X� = α�} loop Xi { C0 } {
n∧

�=1

X� = α�}.

as the command C0 will not be executed at all. Thus, we also have

{
n∧

�=1

X� = α�} loop Xi { CR
0 } {

n∧

�=1

X� = α�}.

and by Definition 2, we have

{
n∧

�=1

X� = α�} (loop Xi { C0 })R {
n∧

�=1

X� = α�}.

This proves that the claim holds when m = 0. We are left to prove that the
claim holds when m > 0. Thus, in the remainder of this proof we assume that
m > 0.

First we prove

If {
n∧

�=1

X� = α�} Cm
0 {

n∧

�=1

X� = β�}, then {
n∧

�=1

X� = β�} (CR
0)m {

n∧

�=1

X� = α�}.

(†)
by a secondary induction on m.

Let m = 1. Then we have Cm
0 ≡ C0, and an application of our main induction

hypothesis to C0 yields (†). Let m > 1. Then we have

Cm
0 ≡ Cm−1

0 ; C0 and (CR
0)m ≡ CR

0 ; (CR
0)m−1

118 L. Kristiansen

and (†) holds by our induction hypothesis on m and case (iv) above. This con-
cludes the proof of (†).

We are now ready to complete our proof the claim. By (*), we have

{
n∧

�=1

X� = α�} Cm
0 {

n∧

�=1

X� = β�}.

By (†), we have

{
n∧

�=1

X� = β�} (CR
0)m {

n∧

�=1

X� = α�}.

Since Xi 	∈ V(C0), we have βi = αi, and thus, the top element of βi is the same
as the top element of αi, namely m. It follows that

{
n∧

�=1

X� = β�} loop Xi { CR
0 } {

n∧

�=1

X� = α�}.

Finally, as Definition 2 states that loop Xi { CR
0 } = (loop Xi { C0 })R, we have

{
n∧

�=1

X� = β�} (loop Xi { C0 })R {
n∧

�=1

X� = α�}.

This completes the proof of case (v).

4 Simulation of Turing Machines

4.1 A General Strategy

Let us first see how we can simulate a Turing machine in a standard way in a
standard high-level language. Thereafter we will discuss how we can simulate a
Turing machine in our rudimentary reversible language. In the standard language
we will of course be able to simulate any Turing machine, no matter how much
time and space resources the machine requires. In the reversible language we will
only be able to simulate those Turing machines that run in time O(2kn) (where
k is a constant and n is the length of the input).

We assume some familiarity with Turing machines. The reader is expected to
know that a Turing machine computes by writing symbols from a finite alphabet
a1, . . . , aA on an infinite tape which is divided into cells; know that one of the
cells is scanned by the machine’s head; know a there is a finite number of states
q1, . . . , qQ; and so on.

The input w will be available on the tape when a Turing machine M starts,
and the actions taken by M will be governed by a finite transition table. Each
entry of the table is a 5-tuple

ai, qk, aj ,D, q� (∗)

Reversible Programming Languages Capturing Complexity Classes 119

where ai, aj are alphabet symbols; qk, q� are states; and D is ether “left” or
“right”. Such a tuple is called a transition and tells M what to do when it scans
the symbol aj in state qk: in that case M should write the symbol aj , move
its head one position in the direction given by D, and then proceed in state
q�. We restrict our attention to deterministic Turing machines, and for each
alphabet symbol ai and each non-halting state qk, there will be one, and only
one, transition that starts with ai, qk. So a Turing machine knows exactly what
to do until it reaches one its halting states, and then it simply halts (if it halts
in a dedicated state qaccept, it accepts its input; if it halts in a dedicated state
qreject, it rejects its input). This entails that we can simulate a Turing machine
by a sequence of if-then statements embedded into a while-loop. We need one
if-then statement for each transition:

〈initiate the tape with the input w〉
while 〈M is not in a halting state〉 do
if 〈a1 is scanned in state q1〉 then 〈do what should be done〉;
if 〈a2 is scanned in state q1〉 then 〈do what should be done 〉;
...

...
if 〈aA is scanned in state qQ〉 then 〈do what should be done 〉
end-while.

Minimum one transition will be executed each time the loop’s body is executed,
and the running time of M (on input w) will more or less be the number of
times the body is executed. (It might happen that more than one transition is
executed when the loop’s body is executed once, but that will not cause any
trouble.) In order to simulate the actions taken by the transitions, we need a
representation of the computing machinery. We need to keep track of the current
state, we need to keep track of the symbols on the tape, and we need to identify
the scanned cell. The current state can simply be stored in a register STATE, but
how should we deal with the tape? The tape is divided into an infinite sequence
of cells

C1, C2, C2, . . . , Cs−1, Cs, Cs+1, . . .

where one of the cells Cs is scanned by the head. Only finitely many of these cells
will contain anything else than the blank symbol. Let us say that Ci contains
blank when i > B0. In order to simulate the machine it will obviously be sufficient
to store the symbols in the cells C1, C2, . . . , CB where B = max(B0, s) + 1. In
addition we need to keep track of the scanned cell Cs. A convenient way to deal
with the situation will be to use a stack STACKL, a register SCAN, another stack
STACKR, and store the tape content in the following way:

Cs−1 Cs+1

...
...

C1 Cs CB

STACKL SCAN STACKR

120 L. Kristiansen

Now we can mimic the movements of the head by pushing and popping alphabet
symbols in the obvious way, and the transition (*) can be implemented by a
program of the form

if SCAN = ai and STATE = qk then
{ SCAN:= aj; . . . push and pop . . . ; STATE:= q� }.

4.2 Can RBS Programs Simulate Turing Machines?

The input to an RBS program is a natural number, and we will thus discuss to
what extent an RBS program can simulate a Turing machine that takes a single
natural number as input.

We have seen that a program with only one while-loop can simulate a Turing
machine (and we will for sure need at least one while-loop in order to simulate
an arbitrary Turing machine). Now, while-loops are not available in RBS, and the
best we can do in order to simulate a Turing machine is to use a fixed number
of nested for-loops:

loop Y1 { loop Y2 { . . . loop Yk { 〈sequence of if-then statements〉 } . . . }}.

Since an RBS program cannot increase the numerical value of its input, the body
of each of these loops will be executed maximum max(m, 1) times where m is the
input to the RBS program (and to the Turing machine the program simulates).
Thus it is pretty clear that we cannot simulate a Turing machine if its running
time is not bounded by mk for some constant k. This corresponds to a bound
2k|m| where k is a constant and |m| is the length of the input m, that is, |m|
equals the number of symbols needed to represent the natural number m in
binary notation. In the following we will see that any Turing machine that uses
such an amount of computation time can be simulated by an RBS program.

It turns out that an RBS program can simulate the transitions of a Turing
machine M in essentially the same way as the high-level program sketched above,
given that the input to M is sufficiently large (on small inputs the simulation
might fail). Stacks are directly available in RBS, and thus an RBS program can
easily represent the tape and mimic the movements of the head. On the other
hand, assignment statements and if-then statements are not directly available.
This makes things a bit tricky. Let us first see how RBS programs to a certain
extent can simulate programs written in a non-reversible programming language
called LOOP−.

4.3 LOOP− Programs

The syntax of LOOP− is given in Fig. 3. Any element in the syntactic category
Command will be called a program. A LOOP− program manipulates natural
numbers, and each program variable holds a single natural number. The com-
mand X := k assigns the fixed number k to the variable X. The command X := Y
assigns the number hold by the variable Y to the variable X. The command

Reversible Programming Languages Capturing Complexity Classes 121

THE SYNTAX OF LOOP−

X ∈ Variable ::= X1 | X2 | X3 | . . .
k ∈ Constant ::= 0 | 1 | 2 | 3 | . . .

com ∈ Command ::= X:= k | X:=X | pred(X) | com; com

| loop X { com }

Fig. 3. The syntax of the language LOOP−. The variable X in the loop command is not
allowed to occur in the loop’s body.

pred(X) decreases the value hold by the variable X by 1 if the value is strictly
greater than 0; and leave the value hold by X unchanged if the value is 0. Fur-
thermore, the command C1; C2 is the standard composition of the commands C1
and C2, and the command loop X { C } executes the command C repeatedly k
times in a row where k in the number hold by X. Note that the variable X is not
allowed to occur in C and that the command loop X { C } does not modify the
value held by X.

An RBS program can represent a LOOP− variable X holding natural number k
by a variable X (we use the same variable name) holding the stack 〈k, 0∗]. The
command X := k can then be simulated by the program

(X to Z); X+; X+; . . . X+︸ ︷︷ ︸
increase k times

where Z is an auxiliary variable (Z works as a trash bin). Now, observe that this
will only work if the base of execution is strictly greater than k, but that will
good enough to us. The command X := Y can be simulated by the program

(X to Z); loop Y { X+ }
where Z is an auxiliary variable (Z works as a trash bin). Furthermore, the
command pred(X) can be simulated by a program that uses auxiliary variables
Y and Z (which represent natural numbers) and the simulations of the assignment
statements given above:

Z := 0; Y := X; loop Y { X := Z; Z+ }.

This shows how RBS programs can simulate all the primitive LOOP− commands.
It is easy to see that

– the RBS command C′
1; C

′
2 simulates the LOOP− command C1; C2 if C′

1 simulates
C1 and C′

2 simulates C2
– the RBS command loop X { C′ } simulates the LOOP− command loop X { C } if

C′ simulates C.

Hence, any LOOP− program can be simulated by an RBS program given that
the input is sufficiently large. On small inputs simulations might fail since the

122 L. Kristiansen

simulation of the assignment X := k only works if the execution base is strictly
greater than k.

The LOOP− language turns out to be more expressive than one might expect
at a first glance, and all sorts of conditional statements and if-then constructions
are available in the language. As an example, let us see how we can implement
the construction

if X = Y then C1 else C2.

We will need some axillary variables X′, Y′, Z, U which do not occur in any of the
commands C1 and C2. First we execute the program

X′ := X; Y′ := Y; loop X { pred(Y′) }; loop Y { pred(X′) }.

This program sets both X′ and Y′ to 0 if X and Y hold the same number. If X and
Y hold different numbers, one of the two variables X′, Y′ will be set to a number
strictly greater than 0. Then we execute the program

Z := 1; U := 1;
loop X′ { Z := 0 }; loop Y′ { Z := 0 };
loop Z { C1; U := 0 }; loop U { C2 }.

The composition of these two programs executes the program C1 exactly once
(and C2 will not be executed at all) if X and Y hold the same number. If X and
Y hold different numbers, C2 will be executed exactly once (and C1 will not be
executed at all). The reader should note that this implementation of if-then-else
construction does not contain any assignments of the form X := k where k > 1.

It is proved in Kristiansen [8] that LOOP− captures the complexity class
LINSPACE, that is, the set of problems decidable in space O(n) on a deter-
ministic Turing machine (n is the length of the input). Hence, the consider-
ations above indicate that LINSPACE ⊆ S. However, we are on our way to
proving a stronger result, namely that LINSPACE ⊆ S = ETIME. The equality
LINSPACE ?= ETIME is one of the many notorious open problems of complexity
theory. The general opinion is that the equality does not hold.

4.4 RBS Programs that Simulates Time-Bounded Turing Machines

We have seen that RBS programs (nearly) can simulate LOOP− programs. LOOP−

can assign constants to registers and perform if-then-else constructions. This
helps us to see how to an RBS program can simulate an arbitrary 2k|m| time
Turing machine M . Such a program may be of the form

〈initiate the tape with the input m〉;
Y1 := 〈the input m〉; Y2 := 〈the input m〉; . . . ; Yk := 〈the input m〉;
loop Y1 { loop Y2 { . . . loop Yk { T1; T2; . . . ; Tr } . . . }}.

We represent the symbols in M ’s alphabet a1, . . . aA by the numbers 1, . . . , A
and M ’s states q1, . . . qQ by the numbers 1, . . . , Q. We use two stacks to hold the

Reversible Programming Languages Capturing Complexity Classes 123

content of the tape, and we use registers STATE and SCAN to hold respectively
the current state and the scanned cell. Each Ts will take care of a transition
ai, qk, aj ,D, q� and be of the form

if SCAN = i and STATE = k then { SCAN := j; . . . push and pop . . . ; STATE := � }.

We are left with a minor problem: This will not work for small inputs. This
will only work if the base of execution b = max(m + 1, 2) is strictly greater
than max(A,Q). Only then will the simulating program be able to perform
the necessary assignments of constants to variables. In some sense we cannot
deal with this problem. An RBS program will not be able to simulate (in any
reasonable sense of the word) an arbitrary 2k|m| time Turing machine M on small
inputs, but still there will be an RBS program that decides the same problem as
M .

We have seen that it suffices to assign the constants 0 and 1 to variables
in order to implement the if-then-else construction in LOOP−. This entails that
the if-then-else construction will work on small inputs as the base of execution
always will be strictly greater than 1. Hence, if the problem A is decided by a
2k|m| time Turing machine M , there will also be an RBS program that decides
A. This program will be of the form

X := 〈the input m〉;
if X = 0 then 〈 give correct output for m = 0 〉
else { pred(X);
if X = 0 then 〈 give correct output for m = 1 〉
else { pred(X);
if X = 0 then 〈 give correct output for m = 2 〉
...
else {〈 the input is big enough, . . .

. . . simulate M , accept if M accepts, reject if M rejects 〉} . . . } }.

5 Main Results

5.1 A Characterization of ETIME

Definition 5. Let |m| denote the number of digits required to write the natural
number m in binary notation. For any natural number k, let ETIMEk be the
class of problems decidable in time O(2k|m|) on a deterministic Turing machine.
Let ETIME =

⋃
i∈N

ETIMEi. ��
Theorem 6. S = ETIME.

Proof. The proof of the inclusion S ⊆ ETIME should be straightforward to
anyone experienced with Turing machines. Assume A ∈ S (we will argue that
A ∈ ETIME). Then there is an RBS program C that decides A. Let m be the input
to C. Each loop in C will be executed maximum m + 1 times since the base of

124 L. Kristiansen

execution will be max(m+1, 2). Thus, there exist constants k0, k1 (not depending
on m) such that k0(m+1)k1 bounds the number of primitive commands executed
by C on input m. A Turing machine can simulate the execution of C on input m
with polynomial overhead. Thus there exist constants k2, k3 such that k2(m+1)k3

bounds the number of steps a Turing machine needs to decide if m is in A. There
exists k such that k2(m + 1)k3 < 2k|m|. Hence, A ∈ ETIME. This proves the
inclusion S ⊆ ETIME.

We turn to proof of the inclusion ETIME ⊆ S. Assume A ∈ ETIME (we will
argue that A ∈ S). Then there is a O(2k|m|) time Turing machine M that decides
A. Now, M will run in time 2k0|m| when k0 is sufficiently large. In the previous
section we saw that there will be an RBS program that decides the same problem
as M . Hence, A ∈ S. This proves the inclusion ETIME ⊆ S. ��

5.2 A Characterization of P

Would it not be nice if we could find a reversible language that captures a
complexity class that is a bit more attractive than ETIME? Now, P is for a
number of reasons, which the reader might be aware of, one of most popular and
important complexity classes. Luckily, it turns out that a few modifications of
RBS yield a characterization of P.

First we modify the way RBS programs receive input. The input will now be
a string over some alphabet. Any alphabet that contains at least two symbols
will do and, for convenience, we will stick to the alphabet {a, b}. The base of
execution will at program start be set to the length of the input. Otherwise,
nearly everything is kept as before: Every variable will still hold a bottomless
stack storing natural numbers. All commands available in the original version of
RBS will be available in the new version. A program will still accept its input by
terminating with 0 at the top of the stack held by X1, otherwise, the program
rejects its input. Moreover, all variables including X1, the variable that used to
import the input, hold the zero stack when the execution of a program starts.

Next we extend RBS by two commands with the syntax

case inp[X]=a: { com } and case inp[X]=b: { com }
where X is a variable and com is a command which does not contain X. These
commands make it possible for a program to access its input. The input is a
string α0α1, . . . , αb−1 where b is the execution base and αi ∈ {a, b}. Assume
that Xj holds a stack where top element is k. The command

case inp[Xj]=a: { C }
executes the command C if αk = a, otherwise, the command does nothing. The
command

case inp[Xj]=b: { C }
executes the command C if αk = b, otherwise, the command does nothing.

Reversible Programming Languages Capturing Complexity Classes 125

EXAMPLE

Program: Comments:
(* all stacks hold the zero stack *)

X−
2 (* the top element of X2 is b − 1 *)

loop X2 { (* repeat b − 1 times *)
case inp[X3]=b: (* X3 is a pointer into the input *)

{ X1 to X9; (* X1 holds the zero stack *)

X+1 (* top element of X1 is 1 *)

};
X+3 (* move pointer to the right *)
}; (* end of loop *)

case inp[X3]=a: (* top element of X3 is b − 1 *)

{ X1 to X9;X
+
1 }

Fig. 4. The program accepts any string that starts with a nonempty sequence of a’s and
ends with a single b (the input to a program should at least contain two symbols). The
program rejects any string that is not of this form. The program accepts by terminating
with X1 = 〈0∗] and rejects by terminating with X1 = 〈1, 0∗].

We still have a reversible language. The two new commands are reversible.
The variable Xj is not allowed to occur in C and will consequently not be modified
by C. Thus, for x ∈ {a, b}, we may extend Definition 2 by

(
case inp[Xj]=x: { C })R = case inp[Xj]=x: { CR }.

and Theorem 3 will still hold.
To avoid confusion we will use RBS′ to denote our new version of RBS. We

require that the input to an RBS′ program is of length at least 2 (so we exclude
the empty string and the one-symbol strings a and b). This is of course a bit
artificial, but it seems to be the most convenient way to deal with a few annoying
problems of technical nature. Accordingly, we also require that every string in a
language (see the definition below) is of length at least 2.

Definition 7. A language L is a set of strings over the alphabet {a, b}, more-
over, every string in L is of length at least 2.

An RBS′ program C decides the language L if C accepts every string that
belongs to L and rejects every string that does not belong to L. Let S ′ be class
of languages decidable by an RBS’ program.

Let |w| denote the length of the string w. For any natural number k, let Pk

be the class of languages decidable in time O(|w|k) on a deterministic Turing
machine. Let P =

⋃
i∈N

Pi. ��
Figure 4 shows an RBS′ program which decides the language given by the

regular expression a∗ab.

126 L. Kristiansen

The proof of the next theorem is very similar to the proof of Theorem6, and
the reader should be able to provide the details. Just recall that the execution
base of an RBS′ program is set to the length of the input. Hence, the number
of primitive instructions executed by an RBS′ program will be bounded by |w|k
where |w| is the length of the input w and k is a sufficiently large constant, and
moreover, an RBS′ program of the form

loop Y1 { loop Y2 { . . . loop Yk { 〈. . . a list of transitions . . .〉 } . . . }}.

will execute 〈. . . a list of transitions . . .〉 exactly |w|k times if each and one of
the variables Y1, . . . Yk holds a stack where the top element is |w|.
Theorem 8. S ′ = P.

6 Some Final Remarks

We have argued that there is a link between implicit computational complexity
theory and the theory of reversible computation, and we have showed that both
ETIME and P can be captured by inherently reversible programming languages.
In general, implicit characterizations are meant to shed light on the nature of
complexity classes and the many notoriously hard open problems involving such
classes. Implicit characterizations by reversible formalisms might yield some new
insights in this respect. It is beyond the scope of this paper to discuss or interpret
the theorems proved above any further, but one might start to wonder how
different aspects of reversibility relate to time complexity, space complexity and
nondeterminism.

The author is not aware of any work in reversible computing that is closely
related to the work presented above, but some work of Matos [14] is at least
faintly related. Matos characterizes the primitive recursive functions by an inher-
ently reversible loop-language.2 Paolini et al. [15] do also characterize the prim-
itive recursive functions by a reversible formalism. Their work is of a recursion-
theoretic nature and has a different flavor than ours, but it is possible that such
studies might lead to interesting characterizations of complexity classes.

We finish off this paper by suggesting a small research project. It should be
possible to extend RBS to an inherently reversible higher-order language. First-
order programs will be like the ones defined and explained above. Second-order
programs will manipulate stacks of stacks, third-order programs will manipulate
stacks of stacks of stacks, and so on. This will induce a hierarchy: the class of
problems decidable by a first-order RBS program, the class of problems decidable
by a second-order RBS program, . . . by a third-order RBS program, and so on. By
the same token, RBS′ will induce a hierarchy: the class of languages decidable by a
first-order RBS′ program, the class of languages decidable by a second-order RBS′

program, and so on. These two hierarchies should be compared to the alternating
time-space hierarchies studied in Goerdt [4], Jones [6], Kristiansen and Voda [10]
and many other papers.
2 The result is not stated very clearly in the paper. See the footnote at page 2066.

Reversible Programming Languages Capturing Complexity Classes 127

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Bellantoni, S.J., Cook, S.: A new recursion-theoretic characterizations of the poly-
time functions. Comput. Complex. 2, 97–110 (1992)

3. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010-2011. LNCS, vol. 7388, pp.
89–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31485-8 3

4. Goerdt, A.: Characterizing complexity classes by higher type primitive recursive
definitions. Theoret. Comput. Sci. 100, 45–66 (1992)

5. Jones, N.D.: LOGSPACE and PTIME characterized by programming languages.
Theoret. Comput. Sci. 228, 151–174 (1999)

6. Jones, N.D.: The expressive power of higher-order types or, life without CONS. J.
Funct. Program. 11, 55–94 (2001)

7. Jones, N.D.: Computability and Complexity from a Programming Perspective. The
MIT Press, Cambridge (1997)

8. Kristiansen, L.: Neat function algebraic characterizations of LOGSPACE and
LINSPACE. Comput. Complex. 14, 72–88 (2005)

9. Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative pro-
gramming languages. Theoret. Comput. Sci. 318, 139–161 (2004)

10. Kristiansen, L., Voda, P.J.: Programming languages capturing complexity classes.
Nord. J. Comput. 12, 89–115 (2005)

11. Kristiansen, L., Voda, P.J.: Complexity classes and fragments of C. Inf. Process.
Lett. 88, 213–218 (2003)

12. Leivant, D.: A foundational delineation of computational feasibility. In: Proceed-
ings Sixth Annual IEEE Symposium on Logic in Computer Science, pp. 39–47.
IEEE (1991)

13. Leivant, D.: Stratified functional programs and computational complexity. In:
POPL 1993: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 325–333. ACM, New York (1993)

14. Matos, A.B.: Linear programs in a simple reversible language. Theoret. Comput.
Sci. 290, 2063–2074 (2003)

15. Paolini, L., Piccolo, M., Roversi, L.: On a class of reversible primitive recursive
functions and its Turing-complete extensions. New Gener. Comput. 36, 233–256
(2018)

16. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

https://doi.org/10.1007/978-3-642-31485-8_3

	Reversible Programming Languages Capturing Complexity Classes
	1 Introduction
	2 Reversible Bottomless Stack (RBS) Programs
	3 The Proof of Theorem3
	4 Simulation of Turing Machines
	4.1 A General Strategy
	4.2 Can RBS Programs Simulate Turing Machines?
	4.3 LOOP- Programs
	4.4 RBS Programs that Simulates Time-Bounded Turing Machines

	5 Main Results
	5.1 A Characterization of ETIME
	5.2 A Characterization of P

	6 Some Final Remarks
	References

