q

Check for
updates

A Reversible Runtime Environment for
Parallel Programs

Takashi Ikeda and Shoji Yuen(®

Graduate School of Informatics, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
{tikeda,yuen}@sqlab. jp

Abstract. We present a reversible runtime environment for simple par-
allel programs and its experimental implementation. We aim at a light-
weight implementation of the backtrack reversibility by the state-saving
mechanism using stacks. We translate a program to a sequence of sim-
ple commands of an executable intermediate representation for reversible
stack machines. The parallel composition is implemented using the mul-
tiprocessing feature of Python. While executing the commands, the stack
machines collect the information for the backward execution in the aux-
iliary stacks for the update history of the variables and the history
of jumps. The commands for the backward execution is obtained by
reversing the commands for the forward execution by replacing each
command with the corresponding reversed command. In the purpose of
behaviour analysis with reversibility such as debugging, our runtime is
more portable than the source-to-source translation of a high-level pro-
gramming language.

Keywords: Reversible computation - Imparative parallel programs -
Stack machine - Python multiprocessing

1 Introduction

Reverse execution of programs has been investigated based on the reversible
computing recently. Undoing the effect of an execution of a program till returning
to the initial state is useful in analysing the finer-grained behavioural property
of the program. In general, the execution of a parallel program depends on the
environment such as the scheduler and I/O channels. Replaying the program
may not reach the same states as the previous run. This makes behavioural
analysis difficult to work out the cause of the defect for debugging.

Reversible programming languages such as Janus [4,7] and RFUN [6] are
designed for the reversed execution at the level of the design of programming
languages. For example, Janus needs the extra-control structure at the end of the
conditional branch in order to know which branch is executed to reverse the con-
ditional statement. For this approach, the state-saving mechanism is not needed

© Springer Nature Switzerland AG 2020
I. Lanese and M. Rawski (Eds.): RC 2020, LNCS 12227, pp. 272-279, 2020.
https://doi.org/10.1007/978-3-030-52482-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52482-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-52482-1_18

A Reversible Runtime Environment for Parallel Programs 273

since the computation is fully reversed. However, introducing parallel composi-
tion becomes difficult since the runtime environment is not directly described in
programs.

We present a reverse execution mechanism that the runtime collects the infor-
mation in stacks at a forward execution. At the reverse execution, the runtime
executes the program simply in the reversed order using the information stored
in the stacks. A source program is compiled to a sequence of simple commands
executed by the stack machine. Each process in the parallel composition is dis-
patched to each stack machine forked from the initial stack machine. We imple-
ment the backtrack reversibility with the multiprocessing feature of Python. In
the reverse execution, multiple stack machines are invoked, but they are con-
trolled by the stacks to follow back the forward execution.

The report is structured as follows. Section2 gives the syntax of the pro-
grams, Sect. 3 presents the stack machine design and Sect. 4 states the concluding
remarks.

2 Programming Language with Parallel Composition

Our parallel programming language is defined as follows where ()™ and ()*
denotes the repetition of one or more times and zero or more times respectively:

= DQR | DQ par {QY{Q})*R

= (var X;)*

= (remove X;)*

= (8;)"S

skip | X=F | if C then @ else Q fi | while C do Q od
c=X|n|EopF|(E)

..—B|C&&C|notC’| ()

wn=FE==F|E<E

UUQ@%@ZU@“U
i

The language is a simplified version of that in [2,3]. par denotes the parallel
composition of sequential procedures. For simplicity, we remove the nested block
structure and procedures. remove statements at the end of a program correspond
to the variables declared at the beginning of the program, where the order of
declarations is supposed to be reversed. For example, if variables are declared as
var X ; var Y, the variables are removed as remove Y ; remove X. This ensures
the correspondence between the variable and the entry of the symbol table.

3 Reversible Execution of Stack Machine Code

3.1 Reversible Stack Machine

For simplicity, a parallel program in this report is limited in the form that an
initial stack machine runs first followed by parallel blocks. For values, we consider

274 T. Ikeda and S. Yuen

the integers Z. A is the set of address A as the locations of commands in a stack
machine code. Here an address is a positive natural number. P is the set of stack
machine identifiers (SMid). An SMid is a natural number. We assume the initial
stack machine has the SMid of 0. Other stack machines have id’s in a row from
1 to N where N is the number of parallel blocks.

The stack machine configuration is (PC, PC’, w, p,§), where PC is the pro-
gram counter, PC’ holds the previous PC value, w € Z* is a local stack,
p € (A x P)* is a label stack, and { € (Z x P)* is a value stack. o is a symbol
table that maps a variable to its value. o(v) presents the value of v. For the local
stack w and z € Z, zw is the concatenation of z and w.

Each stack machine is identified by (p, N) with p is a process identifier and
N is a number of all parallel blocks in a program. The behaviour of a stack
machine SM, ny for command c is specified by i>(p7 ~) as follows:

nop: (PC,, PCl wy, p,8)s ~22) ny (PC, + 1, PCywy, p,€),
nop 0) does nothing but increasing the program counter.
PCy, PC) wp, p,)0

(ipush z)

——,N) (PCp + 1, PCy, 2wy, p,)0
ipush z) pushes an immediate value of z to the local stack.

(
ipush: (
(
(load v)

load: (PC,,PC!,w,,p,8)o
(
(
(

7 (p,N) (PCP +1, PCIH O'(U)wp7 p7£)0
load v) puts a value of v on the top of the local stack.

(store v)

PCp7 PC;/ﬂ ZWp, pvf)d — 7 (p,N) (PCp + 17 Pvawzn P <0'(v)7p>§)0[v>—>z]

store v) pops a value from the local stack and store the value z to the local
storage o after saving the previous value o(v) to the value stack along with the
process number.

store:

(a, PCp,wp, p,&)s ifz#0

(PC, +1,PCp,wp, p,€)s ifz=0

(jpc a) jumps to a when the stack top is 0. Otherwise, it moves to the next instruc-
tion by increasing the program counter.

. (jpc a)
jper (PC,, PCl, 2wy, p,€) s ———5 0 n)

s (jmp a)
Jmp: (PCP7PCZ/)7wP1p7§)0' L’(p,N) (a, PCy,wp, p, &)
(jmp a) jumps to a unconditionally.

op k
op: (PCP7PC;/)7Z122wP7p7 f)a L>(zuN) (PCP + 17PCpa°Pk(21722)wp7paf)a

where op, = +,0p, = X,0p; = —,0p, =<, 0p; ===.
z1 < z2 and z; == z5 are 1 when the relations hold and 0 otherwise.
(op k) applies the operation specified by k. Depending on k, it pops two or one
from the local stack and pushes the result on the local stack. When (op k) is a
relation, it pushes 1 when the relation holds and pushes 0 otherwise.
label: (PC,, PC),wp,p,&)s RN (PC, + 1, PCy,wp, (n+1— PCJ,p)p, &)
(label n) pushes the address for backward execution to the label stack where n is
the number of all instructions. label is the only instruction that uses PC,.
(xjmp 0)

rjmp: (PCy, PC),wp,{a, N +1—1i)p,&)s ——— () (a, PCp,wp, p,)
(rjmp 0) is a reverse jump that pops an address and a stack machine number from
the label stack and jump back to the address on that process with the number.

restore: (PC,, PC),wy, p, (2, N +1—)€), "0) (PC, + 1, PCy, 2w, , €) oforc)

(restore v) pops the value of v and the stack machine number from the value stack
on the specified stack machine.

alloc: (PCy, PCl,wp, p, &) ~o2s ny (PCy + 1, PClpy Wy, 9, €) ooy
(alloc v) adds v to the environment o and initialises v.

free: (PCp, PC,wy, 0,8) o w.N) (PC,+ 1, PCp,wp, p,€) o\ v

(free v) removes v from the environment o.

(free v)

A Reversible Runtime Environment for Parallel Programs 275

§y (n—k+1p) d (n—k+1,p)

label stack label stack

(a) Forward jump (b) Backward jump

Fig. 1. Reversing jump instructions

store and label collect the information in a forward execution. store
updates o and &. In &, it records the value is stored by p. But in the back-
ward execution, the process number is also reversed, and it stores N +1 —p
as the backward process number. label records from which address the control
reach this place.

rjmp and restore restore the information for a backward execution. rjmp
corresponds to label and pops the location from p and jump back to the location
where the forward execution came from. And restore puts back the previous
value from the value stack. In both cases, the stack machine must be identified
where the SMid is inverted since the order of the parallel blocks is reversed®.

Figure 1 shows the mechanism of label and rjmp. label is a destination of
jpc and jmp. If label is executed, it pushes the source address of that jump to
the label stack. In the backward execution, label is substituted by rjmp. By
popping the label stack, one of the stack machines executes rjmp and jumps
back to the source address.

alloc allocates a variable slot on the stack and updates the symbol table.
free removes a variable slot. o\v removes v from the domain of ¢. In current
target codes, alloc and free are executed only by the initial stack machine
with id 0.

3.2 Inverting Stack Machine Code

We do not present the detailed translation from a source program to the stack
machine code here. The translator is implemented using Javacc. In the transla-
tion, label is inserted at a target of jmp and jpc. The argument of label is the
length of the generated code. Since this is not known until the whole translation
is done, it can be specified by back-patching. par 0 and par 1 are inserted for a
parallel block.

From a forward stack machine code s, the backward code i(s) is obtained:

e s=¢
i) = {i(s’)inv(c) s=cs

! Since an address of command is uniquely assigned to a unique stack machine, it is
not essential to record p in p. Without p in p, another table is necessary.

276 T. Ikeda and S. Yuen

where inv,, for each command is defined as below where n is the :

inv((store v)) = (restore v), inv((jpc a)) = (label 0),
inv((jmp a)) = (label 0), inv((label n)) = (rjmp 0),
inv((par 0)) = (par 1), inv((par 1)) = (par 0),
inv({alloc v)) = (free v), inv({free v)) = (alloc v)
For other command ¢, inv({c n)) = (nop 0).

3.3 Execution from the Initial Stack Machine

Let s be the forward stack machine code. From the construction of a program,
s is partitioned to:

srso{par 0)s;(par 1)---(par 0)sy(par 1)sp

where M is the length of the code and SM g ny executes s1, so, and sp where
sy and sp are alloc and free for variables. sq is the sequential code for SMj to
initiase the variables followed by the parallel composition. SM, y) executes s,
in parallel for 1 <p < N.

Figure 2 shows the overview of executing a program. The code starts on the
initial stack machine S M. After reaching the parallel composition starting with
par 0, the N stack machines run in parallel. When all the executions of parallel
processes terminate, it passes the control to the initial stack machine, freeing the
variable at the end. The environment o, the label stack p, and the value stack &
are shared by all stack machines.

Let p and & be the label stack and the value stack. (Execs(PC, PC’,w), p, &)
is a configuration of code s with the initial SM. For the forward execution,
the initial configuration is (Execs(1,0,¢),¢,e) and the final configuration is
(Execs(M + 1, M,), pr,£r). The corresponding backward execution starts with
(Execi(5)(1,0,¢), pr,&r) and ends with (Execi(s) (M + 1, M,¢),¢,¢). While the
parallel blocks are executed, the configuration is in the form:

(Exec! (PCY1, PCY,w1)| - - - ||[Exec) (PCx, PCly,€), 0, p, €)

We define the execution of s as the transition relation between configurations
shown in Fig. 3. In the rules above, PC € s denotes that PC' points a code in
s. 8(PC) is the code pointed by PC' and loc(s;) is the address of s; in the stack
machine code.

— Init defines the behaviour before and after the parallel composition. £ is the
number of variables. SMj constructs the symbol table by s; and executes the
initial sequential code sg.

— Fork dispatches the development of the parallel blocks once it reaches the first
par 0. The program counter of stack machine SM; is set to loc(s;).

— Par defines the interleaving behaviour of the parallel composition.

— Merge goes back to the initial stack machine and sets the PC to loc(sy) once
all SM,, reaches par 0. The execution continues with Init.

A Reversible Runtime Environment for Parallel Programs 277

- label value
stack stack

Fommmmmmm—mmm-moo-- SMy p---------------- :

| |

! SMy SMo SMy !
Sfa’Ck - (=] ‘ il =] ‘ [— | =] ‘ — -
Machine s1s0 |4 S1 5l5 52 5| 5 SN 5 SF
code

Fig. 2. Execution by stack machines

s 1 ’
PC' € so, 51,57 (PC', PO 0! p1, €)1 "0 0) (PC2, PO, 2,€2),0

(Execs(PCY, PC™ wh), p', €'Y — (Execs(PC?, PC" w?), p?, &%)

[Init]

s(PCy) = (par 0)

<EX€CS(PCO,PC6.’LUU>,/)U,£U> —
(Exect(loc(sy), PCo,é€)]| - - - ||Exec (loc(sn), PCo,), 0, po, &o)

[Fork]

s(PC))
(PC;,PCI/},’LUW;),E)U —F)(p,N) (PC;27~,Pcfaw;:p,vf/)a’vpcp} € sp

[Par]
(Exect(PCy, PCY,wr)|| - ||[Exect(PCY, PCyt wp)]| - - - |ExecY (PCly, PCly, wy), 7, p, €)
— (Execl(PCy, PCY,wy)| -+ | Exect (PC2, PC2, w))]| - -- |Execy (PCy, PCYy, why), 0", o', ")
Nps(PCp) = (par 1
ps(PCp) = (p) Merge]

(Execy(PCy, PCY,wy)| - --

|Exec) (PCy, PCly, wi), 0, p, &) = (Execs(loc(sr),0,¢), 0, p, &)

Fig. 3. Execution for code s

In order to implement the operational semantics, it is necessary to scan the
whole stack machine code before executing the code to identify N, loc(s;) and
loc(sp).

4 Concluding Remarks

We present a reversible runtime environment for simple parallel programs and its
experimental implementation by Python. The reversibility mechanism is state-
saving and the environment performs the back-track reversibility. The runtime
environment is a set of reversible stack machines. The stack machines that exe-
cute the parallel blocks share the stacks for value-updates and jumps. Since
we focus on the reversibility of states, we do not precisely reverse the forward
computation. We replace the commands for computing values with nop in the

278 T. Ikeda and S. Yuen

backward code. This eases the concurrency control in the backward execution
since it has no effect for states. We regard this is enough for behavioural analysis
such as debugging. The approach of forward and backward executions is funda-
mentally similar to that of [2]. Our approach is finer-grained than [2]. This eases
the implementation with the existing runtime since the runtime is often less
controlled. As the result, in our approach a backward execution does not pre-
cisely undo the forward execution at the level of stack machine code. By sharing
the variable environment, the label stack, and the value stack, we manage the
consistency of variable updates among the stack machines running in parallel.

As related work, our stack machine is close to the basic architecture of [1] in
jumping mechanism although only a sequential execution is considered. The label
stack maintains the control of jumps across the parallel composition. [5] presents
the reversible semantics in the functional programming style at the abstract
machine level with communications and concurrency. [5] gives the operational
semantics for backward execution, while our approach translates the abstract
machine instructions for backwards within the single operational semantics. Our
language has no built-in communication mechanism.

For future work, we need to prove the correctness of our translation by strictly
formalising the behaviour of the concurrent execution of a program. The pro-
gramming language in Sect.2 limits the class of programs although the stack
machine operations have more capability. Adding the nested structure of blocks
and procedure is possible by extending the reference mechanism for variables.
Adding recursion with the parallel composition make the number of parallel
processes dynamic. We need to extend the numbering scheme for identifying the
sequential processes executed in parallel and how to choose the next available
process in the backward execution.

Acknowledgement. The authors thank Dr. I. Ulidowski and Dr. J. Hoey for the
valuable suggestions and discussion. This work was supported by JSPS KAKENHI
Grant Numbers JP17H01722 and JP17K19969.

A Runtime Environment by Python

The concrete examples and our implementation by Python are shown at https://
github.com/syuenl/RevRunTimeEnv.
A source program is compiled to the forward stack machine code.

% java Parser "source program"

The forward stack machine code is stored in code.txt. To run the code
forward,

% Python vm.py code.txt f v

Then, we get stack.txt,rstack.txt, and 1stack.txt as the stack for vari-
able values and the stack for labels?

2 The last v shows the verbose mode to show all the steps. No intermediate result is
shown when q is specified.

https://github.com/syuen1/RevRunTimeEnv
https://github.com/syuen1/RevRunTimeEnv

A Reversible Runtime Environment for Parallel Programs 279

To invert the forward code,

% Python inv.py code.txt invcode.txt
And run the backward code,

% Python vm.py invcode.txt b v

In the backward, vm.py reads the stack files. The result for the airline ticket
example is shown in the appendix.

A.1 Controlling Parallel Blocks

The runtime can be executed step-by-step choosing which parallel block is exe-
cuted in the next step in both directions. The execution of the parallel blocks is
controlled by the process that is running the initial stack machine. By entering
the process number, the program executes one step in the forward and backward
execution showing the stacks.

References

1. Axelsen, H.B., Gliick, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M. V., Voronkov, A. (eds.) CSR 2007.
LNCS, vol. 4649, pp. 56—69. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74510-59

2. Hoey, J., Ulidowski, I.: Reversible imperative parallel programs and debugging.
In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497, pp. 108-127.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2_7

3. Hoey, J., Ulidowski, 1., Yuen, S.: Reversing parallel programs with blocks and pro-
cedures. In: EXPRESS/SOS 2018, Beijing, China, 3 September 2018, EPTCS, vol.
276, pp. 69-86 (2018)

4. Levin, R.Y., Sherman, A.T.: A note on Bennett’s time-space tradeoff for reversible
computation. STAM J. Comput. 19(4), 673-677 (1990)

5. Lienhardt, M., Lanese, 1., Mezzina, C.A., Stefani, J.-B.: A reversible abstract
machine and its space overhead. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE
-2012. LNCS, vol. 7273, pp. 1-17. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30793-5-1

6. Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible
functional language RFUN. In: IFL 2015, Koblenz, Germany, 14-16 September 2015,
pp. 8:1-8:13. ACM (2015)

7. Yokoyama, T., Gliick, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM 2007, pp. 144-153. ACM (2007)

https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-030-21500-2_7
https://doi.org/10.1007/978-3-642-30793-5_1
https://doi.org/10.1007/978-3-642-30793-5_1

	A Reversible Runtime Environment for Parallel Programs
	1 Introduction
	2 Programming Language with Parallel Composition
	3 Reversible Execution of Stack Machine Code
	3.1 Reversible Stack Machine
	3.2 Inverting Stack Machine Code
	3.3 Execution from the Initial Stack Machine

	4 Concluding Remarks
	A Runtime Environment by Python
	A.1 Controlling Parallel Blocks

	References

