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Preface

This volume contains the papers presented at the 12th Conference on Reversible
Computation (RC 2020), held during July 9–10, 2020, online due to the COVID-19
pandemic, while initially expected to take place virtually in Oslo, Norway, hosted by
the Institute for Informatics, University of Oslo.

The RC conference brings together researchers from computer science, mathemat-
ics, engineering, and physics to discuss new developments and directions for future
research in the emerging area of Reversible Computation. This includes, for example,
reversible formal models, reversible programming languages, reversible circuits, and
quantum computing.

The conference received 23 submissions with authors from 16 countries. All papers
were reviewed by at least three members of the Program Committee. After careful
deliberations, the Program Committee selected 17 papers for presentation. In addition
to these papers, this volume contains the abstracts of the two invited talks: “Problems
and Prospects for Bidirectional Transformations” by Perdita Stevens (University of
Edinburgh, UK) and “Inverse Problems, Constraint Satisfaction, Reversible Logic,
Invertible Logic and Grover Quantum Oracles for Practical Problems” by Marek
Perkowski (Portland State University, USA).

Of course the COVID-19 pandemic had a strong impact on the conference, as well
as on research and the society in general. This was the first edition of RC to be held
online, similar to other conference scheduled for this time. This is of course a difficulty,
since in-person presence makes interaction much easier, but also a challenge and an
occasion. Indeed, an online conference stimulates larger participation, in particular
from persons whose budget or constraints may not allow in-person participation, not
even under normal circumstances.

The conference would not be possible without the enthusiasm of the members of the
Program Committee; their professionalism and their helpfulness was exemplary. For
the work of the Program Committee and the compilation of the proceedings, the
extremely useful EasyChair conference managment system was employed. Finally, we
would like to thank all the authors for their submissions, their willingness to continue
improving their papers, and their wonderful presentations during RC 2020.

April 2020 Ivan Lanese
Mariusz Rawski



Organization

Program Committee

Gerhard Dueck University of New Brunswick, Canada
Robert Glück University of Copenhagen, Denmark
Jarkko Kari University of Turku, Finland
Jean Krivine CNRS, France
Ivan Lanese University of Bologna, Italy, and INRIA, France
Martin Lukac Nazarbayev University, Kazakhstan
Kazutaka Matsuda Tohoku University, Japan
Claudio Antares Mezzina Università di Urbino, Italy
Lukasz Mikulski Nicolaus Copernicus University, Poland
Torben Ægidius Mogensen University of Copenhagen, Denmark
Claudio Moraga TU Dortmund, Germany
Iain Phillips Imperial College London, UK
Krzysztof Podlaski University of Lodz, Poland
Mariusz Rawski Warsaw University of Technology, Poland
Markus Schordan Lawrence Livermore National Laboratory, USA
Peter Selinger Dalhousie University, Canada
Mathias Soeken École Polytechnique Fédérale de Lausanne,

Switzerland
Milena Stankovic University of Nis, Serbia
Himanshu Thapliyal University of Kentucky, USA
Irek Ulidowski University of Leicester, UK
German Vidal MiST, VRAIN, Universitat Politecnica de Valencia,

Spain
Robert Wille Johannes Kepler University Linz, Austria
Tetsuo Yokoyama Nanzan University, Japan

Additional Reviewers

Gogolinska, Anna
Hoey, James
Kirkeby, Maja
Mróz, Andrzej
Varacca, Daniele



Abstracts of Invited Talks



Problems and Prospects For Bidirectional
Transformations

Perdita Stevens

School of Informatics, University of Edinburgh

Abstract. Bidirectional transformations maintain consistency between two, or
more, sources of information. These information sources can be code, docu-
ments, database views, etc.: the general term “model” covers them all. I will
explain why I think bidirectional transformations have the potential to transform
software development and help solve the “capacity crisis”, in which the demand
for software engineering outstrips the supply of people able to do it. In order to
bring this to fruition we need to solve many problems; for example I have
recently been working on how to manage networks of many models, not just
two. It turns out that reversibility – whose relationship with bidirectionality is, in
general, not as obvious as we might think at first sight – is relevant to some
outstanding problems. I will describe progress and indicate some possible
directions for future work.



Inverse Problems, Constraint Satisfaction,
Reversible Logic, Invertible Logic and Grover

Quantum Oracles for Practical Problems

Marek Perkowski

Department of Electrical and Computer Engineering, Portland State University,
Portland, OR 97207, USA
mperkows@ee.pdx.edu

Abstract. It is well-known that the “Unsorted Database” quantum algorithm by
Grover gives quadratic speedup to several important combinatorial and enu-
merative problems, such as: SAT, Graph Coloring, Maximum Cliques, Trav-
elling Salesman and many others. Recently, quantum programming languages
such as Quipper start to be used to design, verify and simulate practical quantum
algorithms for important problems in Quantum Machine Learning. So far,
however, no methodologies have been created to program Grover Oracles for
particular classes of problems. In contrast, such methodologies have been
already created for classical Constraint Satisfaction Problems. The goal of this
invited talk is to show results of some initial research towards creating sys-
tematic methodologies to program quantum computers that solve search prob-
lems in Artificial Intelligence, Logic Design and Machine Learning. Our
methods are based on unified oracle blocks for such problem representations as
set partition algebra, cube calculus and optimal mappings. For instance, several
important problems in CAD and Machine Learning can be solved using only
two basic operations on set partitions;P1 � P2 andP1 P2. Moreover, building
oracles is the fundamental concept in the new approach to solve CSP proposed
here and based on Invertible Logic introduced recently by Supriyo Datta and his
team.



Contents

Invited Talks

Inverse Problems, Constraint Satisfaction, Reversible Logic, Invertible
Logic and Grover Quantum Oracles for Practical Problems . . . . . . . . . . . . . 3

Marek Perkowski

Foundations

Reversible Occurrence Nets and Causal Reversible Prime
Event Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Hernán Melgratti, Claudio Antares Mezzina, Iain Phillips,
G. Michele Pinna, and Irek Ulidowski

Involutory Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Keisuke Nakano

Event Structures for the Reversible Early Internal p-Calculus . . . . . . . . . . . . 71
Eva Graversen, Iain Phillips, and Nobuko Yoshida

Programming Languages

Hermes: A Language for Light-Weight Encryption . . . . . . . . . . . . . . . . . . . 93
Torben Ægidius Mogensen

Reversible Programming Languages Capturing Complexity Classes . . . . . . . . 111
Lars Kristiansen

On the Expressivity of Total Reversible Programming Languages . . . . . . . . . 128
Armando B. Matos, Luca Paolini, and Luca Roversi

Toward a Curry-Howard Equivalence for Linear, Reversible Computation:
Work-in-Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Kostia Chardonnet, Alexis Saurin, and Benoît Valiron

A Tutorial Introduction to Quantum Circuit Programming in Dependently
Typed Proto-Quipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

Fractional Types: Expressive and Safe Space Management
for Ancilla Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Chao-Hong Chen, Vikraman Choudhury, Jacques Carette,
and Amr Sabry



Circuit Synthesis

Quantum CNOT Circuits Synthesis for NISQ Architectures
Using the Syndrome Decoding Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron,
Simon Martiel, and Cyril Allouche

Maximality of Reversible Gate Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Tim Boykett

Search-Based Transformation Synthesis for 3-Valued Reversible Circuits . . . . 218
D. Michael Miller and Gerhard W. Dueck

Tools and Applications

ReverCSP: Time-Travelling in CSP Computations. . . . . . . . . . . . . . . . . . . . 239
Carlos Galindo, Naoki Nishida, Josep Silva, and Salvador Tamarit

Reversible Computations in Logic Programming . . . . . . . . . . . . . . . . . . . . . 246
Germán Vidal

Towards a Formal Account for Software Transactional Memory . . . . . . . . . . 255
Doriana Medić, Claudio Antares Mezzina, Iain Phillips,
and Nobuko Yoshida

Encoding Reversing Petri Nets in Answer Set Programming. . . . . . . . . . . . . 264
Yannis Dimopoulos, Eleftheria Kouppari, Anna Philippou,
and Kyriaki Psara

A Reversible Runtime Environment for Parallel Programs . . . . . . . . . . . . . . 272
Takashi Ikeda and Shoji Yuen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

xii Contents



Invited Talks



Inverse Problems, Constraint Satisfaction,
Reversible Logic, Invertible Logic and Grover

Quantum Oracles for Practical Problems

Marek Perkowski(&)

Department of Electrical and Computer Engineering, Portland State University,
Portland, OR 97207, USA
mperkows@ee.pdx.edu

Abstract. It is well-known that the “Unsorted Database” quantum algorithm by
Grover gives quadratic speedup to several important combinatorial and enu-
merative problems, such as: SAT, Graph Coloring, Maximum Cliques, Travel-
ling Salesman and many others. Recently, quantum programming languages such
as Quipper start to be used to design, verify and simulate practical quantum
algorithms for important problems in Quantum Machine Learning. So far,
however, no methodologies have been created to program Grover Oracles for
particular classes of problems. In contrast, such methodologies have been already
created for classical Constraint Satisfaction Problems. The goal of this invited
talk is to show results of some initial research towards creating systematic
methodologies to program quantum computers that solve search problems in
Artificial Intelligence, Logic Design and Machine Learning. Our methods are
based on unified oracle blocks for such problem representations as set partition
algebra, cube calculus and optimal mappings. For instance, several important
problems in CAD and Machine Learning can be solved using only two basic
operations on set partitions; P1 � P2 and P1 � P2. Moreover, building oracles
is the fundamental concept in the new approach to solve CSP proposed here and
based on Invertible Logic introduced recently by Supriyo Datta and his team.

Keywords: Inverse problems � Oracles � Grover algorithm � Invertible logic

1 Introduction

There are two important and large classes of problems: Constraint Satisfaction Prob-
lems (CSP) and optimization problems. CSP problems are specified just by a set of
constraints that the solution has to satisfy. To solve a CSP problem we want to find a
solution that satisfies all the constraints (like for a robot passing a labyrinth without
bouncing any wall). In optimization problems we want to find the solution that opti-
mizes some cost function (like a robot driving from room A to room B in the labyrinth
using minimum energy from its battery). Mathematical problem formulations such as
Graph Coloring or Shortest Path are abstractions of many problems from real life.
Mathematical optimization problems can be reduced to repeated applications of con-
straint satisfaction problems. Every next problem in the sequence is solved with added
and modified constraints.

© Springer Nature Switzerland AG 2020
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For instance, the Node Coloring Problem in a graph can be formulated as a problem
of coloring nodes with some restricted number of colors such that every two nodes ni
and nj that share the same edge eij = (ni, nj) obtain different colors. The chromatic
number of the graph is the minimum number of colors used to color this graph. When
we want to find the chromatic number of the graph (and the respective actual coloring)
we can proceed as follows. We set some number K for which a correct coloring exists,
this can be the number of nodes in the worst case. Next we exactly solve the constraint
satisfaction problem for this graph, assuming that the graph is K-colorable. When we
are able to color the graph with K colors, we guess that we can color the graph with K-1
colors. If we were able to do this, then we repeat coloring again as a new constraint
satisfaction problem with K-2 colors, and so on. If we were not able to color the graph
with K-2 colors but we were able to color it with K-1 colors then K-1 is the chromatic
number of the graph. This simple principle of “reducing optimization problem to the
repeated constraint satisfaction problem with some changed constraints” is applicable
to very many, if not all, optimization problems. The key idea here is to formulate the
problem as the Constraint Satisfaction Problem and next to generate the Oracle for this
problem. If this oracle is realized in hardware as a circuit built especially for every
problem instance, the solution can be very fast. Oracle can be realized as a quantum
reversible circuit and used in Grover Algorithm. Here we will show that the oracle can
be also built in standard binary logic or in the recently proposed Invertible Logic
[5, 17]. To exercise Oracle in classical and quantum logic we need also a Generator that
creates combinations to be verified by the Oracle. We call that the Oracle is exercised
by the Generator.

This paper presents the universality and power of systematic creation of oracles that
are next mapped to one of the three types of oracles: classical, quantum and invertible.
Section 2 formulates the general idea of formulating oracles for CSP problems, used to
solve both the decision and optimization problems. Section 3 presents how to solve this
class of problems using classical Boolean logic. The oracle model introduced in this
section is universal for quantum and Invertible Logic circuits. Section 4 explains
briefly Grover Algorithm and reversible oracles for it. We illustrate how to modify the
oracle in a succession of Grover Algorithm runs. Section 5 discusses how to modify or
design the oracles realized in Invertible logic for this class of problems. In Sect. 6 we
present how the logic programming language Prolog is used to design and verify
oracles and especially the Invertible Logic oracles. Section 7 gives conclusions on this
new approach to solve a large class of practical problems.

2 Classical Grover Oracles Versus Invertible Logic Oracles

Because optimization problems are reducible to CSP, let us concentrate on the Con-
straint Satisfaction Problem, which has by itself very many applications in logic design,
logic, cryptography, robotics, Machine Learning and control. There is also some evi-
dence that animals, and even bacteria, solve the constraint satisfaction problems by
blind probabilistic mechanisms just to survive [29]. Let us present some simple CSP
examples.

4 M. Perkowski



Graph coloring is a simple constraint satisfaction problem formulated as follows:
Given is graph G with N nodes and E edges, edges being pairs of nodes eij = (ni,

nj). Nodes are colored with function COLOR: N ! C where C is a set with
K elements called colors. COLOR(n1) = red means coloring node n1 with
color red. For every edge eij = (ni, nj) the constraint COLOR(ni) 6¼ COLOR
(nj) which means that every two adjacent (neighbor) nodes have different
colors. Correct coloring is one that the constraint is satisfied for every edge.

Find a solution to the following problem:
Is it possible to correctly color graph G with K colors? If yes, graph G is K-

colorable, its chromatic number is K or less. The CSP algorithm constructively
demonstrates the correct coloring and the user can easily verify the correctness of the
coloring found. Note, that the above formulation is a decision version of graph col-
oring, not the optimization version. The answer is of type Yes/No.

Another CSP problem is Satisfiability or SAT Problem. Given is a formula F in
some logic (possibly Boolean logic) and we ask “is this formula satisfiable?” Which
means, “can we find a specific value for every variable that the formula F = 1?”. For
instance, formula F(a, b) = (a + b) * (a′ + b) * (a + b′) * (a′ + b′) in Boolean logic is
not satisfiable. But this formula is 3-satisfiable, which means that when we remove any
single one of the four OR-terms from the product F(a, b) above, the formula would be
satisfiable. For instance, formula F1(a, b) = (a + b) * (a′ + b) * (a + b′) = (a + bb′)
(a′ + b) = a(a′ + b) = ab, thus for a = 1 and b = 1 the formula is satisfied. This fun-
damental problem has hundreds applications in real life engineering problems that can
be reduced to it. Problems such as optimizing digital designs, and also practical life
problems such as finding the best escape routes from some territory after Nuclear Plant
disaster.

SAT Problem can be also reduced to CSP. Similarly, CSP problems can be reduced
to SAT. One more problem of CSP type is a crypto arithmetic problem: SEND +
MORE = MONEY in which we have to substitute digits 0–9 for letters S, E, N, D, M,
O, R, Y in an unique mapping (a mapping function) such that the symbolic equation
above is converted to a valid arithmetic addition on digits. This toy problem is a
simplification of similar problems in cryptography, a research area with huge military
and security impacts. The same way as the SAT Problem, graph coloring, or any CSP
problem, this problem can be solved using an oracle, in our case a hardware oracle. For
this kind of problems, the oracle is built from logic gates AND, OR, NOT, logic blocks
such as predicates (A = B) or (A > C) and arithmetic blocks such as adders and
multipliers.

Building oracles in reversible logic is the fundament of quantum Grover algorithm.
The oracle is problem-dependent and even problem-instance dependent. Quantum
algorithms are circuits from quantum gates. A quantum oracle is the heart of Grover
circuit, other gates in this circuit are always the same, easy and well-known. Practically,
applying Grover Algorithm to a new problem means to design an oracle for the
constraint satisfaction problem to be solved. When we know how to build the oracle in
Boolean Logic and using standard arithmetic, we can convert the Boolean circuit of the
oracle to a quantum oracle in reversible logic just by a conversion of Boolean gates and
blocks to equivalent reversible logic gates such as Toffoli, Fredkin and Feynman and
“reversible blocks” such as a quantum adder.

Inverse Problems, Constraint Satisfaction, Reversible Logic, Invertible Logic 5



Reversible functions are mathematical functions which are one-to-one mappings of
input vectors to output vectors and vice versa. If a function to be mapped is not
reversible, which is frequently the case in oracles, it can be mapped to reversible gates
and blocks but it requires ancilla qubits. Most Boolean Functions (single or multiple-
output) are not reversible, but building quantum oracles we want to realize them with
quantum gates that are reversible. This means that we need to add ancilla qubits
initialized to 0 or 1, to be able to perform this mapping. Therefore, what we call
“reversible gates” and “reversible blocks” are not reversible functions in mathematical
sense because many of them require ancilla qubits. Thus they may correspond to
mathematical Boolean functions that are not reversible, but allow the designer familiar
with classical digital design of combinational circuit to use immediately his knowledge
to build optimized and tricky quantum oracles [11, 15].

Let us make a strong point here, that the very idea of hardware oracle is much more
than a Grover Oracle and quantum circuits. One can build a Boolean circuit of the
oracle in FPGA [2, 26, 44] and find as the solution to this hardware oracle the input
vectors which lead to satisfaction F = 1 observed on oracle’s output. Oracles are thus
hardware devices to solve the inverse function problem that is known in many areas of
mathematics and practical applications. Very little is published about using oracles in
hardware with logic circuits that are different than quantum reversible oracles. Grover
Algorithm [9] uses oracles built from various quantum reversible gates, plus blocks
such as quantum adders or quantum comparators built from quantum gates. Grover
algorithm gives a quadratic speedup over classical exhaustive search algorithms for the
same problem. Although other quantum algorithms such as the Shor Algorithm [19]
give exponential speedup, Grover Algorithm is very important because very many
problems of big practical importance can be reformulated for Grover, and not that many
problems can be reduced to Shor Algorithm. Several publications of various authors
found solutions to important problems based on Grover Algorithm but the authors
usually do not build these oracles from gates so that they cannot evaluate their practical
complexity. They just show that this can be done by formulating for instance circuits as
unitary matrices. In contrast, work of our PSU team designs the oracles in detail,
bottom-up and using practical and experimentally verified “truly quantum gates” [23]
or “quantum reversible” gates and blocks [3, 8, 11, 12, 15, 16, 21–24, 29, 32, 45].

When one realizes that the fundamental, most important idea in Grover Algorithm
is to find the inverse function, one can realize that quantum is not the only technology
in which we can build efficient oracles and obtain speedup of algorithms when com-
pared to classical circuits, classical algorithms or parallel algorithms. One naive method
would be to build the oracle in classical Boolean logic with standard Boolean gates and
logical/arithmetical blocks. Next this oracle could be exercised (exhaustively or ran-
domly) from input to output. Whenever the output equal value 1 is found, the state of
the binary input vector gives the solution to the constraint satisfaction problem
described by the oracle. Although this method was used in several designs [2, 26, 44],
it is harmed by the very slow speed when solving problems of practical size, like those
SAT problems encountered in industrial CAD applications. This is because for the
Boolean function of n variables in the worst case the oracle needs to be evaluated 2n

times (for each of its minterms representing the Boolean function that corresponds to
this oracle). Minterms for a Boolean function of n variables are products of all n literals

6 M. Perkowski



of this function. True minterms are those for which value of the function is 1. Circuits
with quantum oracles are better that classical Boolean circuits because they operate
using quantum parallelism and quantum superposition - on all vectors being potential
solutions at the same time (all minterms). Thus quantum oracle iterated sufficiently
many times as part of the “Grover Loop” highly increases the probability of finding one
of the solutions in a single measurement of all input qubits together with the output
qubit of the Boolean function realized in the oracle. Grover Algorithm implemented in
quantum circuits gives a quadratic speedup when compared to exhaustive classical
circuit (algorithm) for the same problem.

Recently a new and very powerful concept was found in the area of recursive Deep
Neural Networks (DNN) and this is the idea of Invertible Logic [5, 6, 17, 18, 20, 27].
This logic can be realized with magnetic spins [6], but it can be also emulated using
FPGAs (sacrifying speed, FPGAs used mainly for verification). So far very few
applications of this idea were published and they are reduced to adders, multipliers,
number factorization [14] and one class of neural networks [10]. In contrast, here we
present a unified methodology to solve CSP and optimization problems by building and
exercising oracles that can be realized very similarly in Quantum and Invertible Logic.

Let us compare three types of logic realized in circuits:

1. Classical Boolean combinational logic
2. Reversible (permutative) logic as used in quantum oracles
3. Invertible Logic of Supriyo Datta et al.

Classical Boolean logic propagates signals from inputs to outputs. In inverse
problems we want to find the input vectors with the given output value (like F = 1
here). Thus if we want to find solutions to non-trivial inverse problems about which we
have no additional information (the proverbial “Unsorted Database” in Grover case) we
have to go through all or many input combinations before we find the input vector for
which F = 1. Creating the binary input vectors, the solution candidates for this pro-
cedure can be done with a sequential counter or with a random number generator
(RNG) such as LFSR on the input to the oracle circuit.

For a motivating example, let us assume that the oracle circuit of function F2 is just
a tree of two-input AND gates with 64 inputs in total, but the function (or its circuit) is
not known to the observer. To find this function, the oracle in classical logic would be
evaluated 264 number of times, which is an astronomical number. Grover Algorithm
would evaluate the oracle “only” 2^ (64/2) = 232 times which may be also not practical.
However, in Invertible logic in which one propagates the signals from output to inputs,
the Invertible Logic method would need only one evaluation of the oracle realized with
invertible gates. The main principle is that the Invertible Logic Gates can propagate
signals in any direction. In Invertible Logic a two-input C = AND(A, B) gate with
output fixed to C = 1 creates the input value “1” on both its inputs: A = 1, B = 1.
Therefore in we start from output F2 = 1 in the above 64-input tree of AND gates,
value 1 will be propagated from the function F2 output to previous levels of the tree
and ultimately will create values 1 on all 64 inputs without backtracking and in one
value propagation process. If one gives value 0 to the output of two-input AND
invertible gate, on inputs the sequence (A, B) = (0, 0), (0, 1) and (1, 0) appears in
random order, because the values (A, B) = (0, 0), (0, 1), (1, 0) all create a 0 on the

Inverse Problems, Constraint Satisfaction, Reversible Logic, Invertible Logic 7



output of classical AND gate. Thus if one gives value 0 on the function F2 output in
this example, the circuit realized in Invertible Logic will create sequentially (randomly
and with repetitions) all 264 − 1 primary input that produce F2 = 0. Concluding,
Invertible Logic allows to find solutions to all kinds of CSP problems and for some of
them it can find a solution faster than the quantum algorithm of Grover. Active research
is on technologies in which this logic can be practically realized [1, 4–6, 17, 20, 25].
Next section will relate classical Boolean Oracles, Quantum and Invertible Logic
oracles, and how to design them in an uniform way, methodologically and efficiently.

3 Classical Boolean Oracles

3.1 Cryptoarithmetic Example and Discussion of TWO + TWO = FOUR
Oracle

Our first larger example is to build classical Boolean Logic Oracle [2, 44]. To evaluate
the standard FPGA realization of a classical Boolean Logic Oracle we used the crypto-
arithmetic problem TWO + TWO = FOUR. Each letter of this symbolic equation can
be substituted with values 0–9. The purpose of our oracle is to find all possible
solutions to this problem. In other words, we look for all binary input combinations to
this oracle that satisfy all partial constraints. The research problems are: (1) is how to
build such oracle, (2) how to exercise this oracle from a Generator, (3) how to build the
Generator, (4) How to select the best overall design of the Generator-Verifier system
that would minimize the cost and maximize the speed.

Let us discuss few strategies how to solve this problem. Mathematically this
problem can be formulated as follows. Given are sets L = {T, W, O, F, U, R} and
D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Find a mapping L ! D such that 8 l1, l2 2 L [MAP(l1)
6¼ MAP(l2)] and all arithmetic constraints of addition TWO + TWO = FOUR are
satisfied. The naive solution dictated directly by the problem formulation is this. We
create a tree [49] with all 10 combinations for node with letter T in first tree level, next
for every node of the second level we create all 10 combinations for letter W, next the
same is done for letter O and so on. The tree will have 6 levels and the branching factor
for every level is 10. Thus we will have to check 106 = 1,000,000 cases for arithmetic
correctness in the Oracle. A better idea is to observe that in standard notation for
addition formulas the value of F cannot be a 0. Moreover, it is obvious that it must be a
1. Therefore we have now not 6 letters but only 5 letters T, W, O, F, U, R for
substitutions. We also know that F = 1, so now our tree will have 5 levels, with
branching factor 9 where we select for every letter one of {0, 2, 3, 4, 5, 6, 7, 8, 9}. This
leads to 59,049 cases of leafs of the tree, they are the mappings to be verified with use
of arithmetic constraints in the Oracle. This simple common sense trick gave us a big
gain in the size of the solution space, from = 1,000,000 to 59,049. Next observation is
that while in the first level we branch for 9 letters, in the next level we should branch
for 8, next for 7, etc. So in total the number of leaves of the tree will be
9�8�7�6�5�4�3�2 = 15,120. Further reduction. In this case the trick was trivial, but in
general it can be much more sophisticated. Our design goal for any type of oracle is to
reformulate the problem in order to build a better generator and a better Oracle to
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decrease the size of the solution space as much as possible. After this redesign, the tree
would still generate solutions with more than one digit assignment for letters, a large
redundancy. Thus, instead of generating Cartesian Product {0, 2, 3, 4, 5, 6, 7, 8,
9}5 = {0, 2, 3, 4, 5, 6, 7, 8, 9} � {0, 2, 3, 4, 5, 6, 7, 8, 9} � {0, 2, 3, 4, 5, 6, 7, 8,
9} � {0, 2, 3, 4, 5, 6, 7, 8, 9} � {0, 2, 3, 4, 5, 6, 7, 8, 9} we generate combinations
without repetitions of five out of nine, which is 9!/(9 − 5)! = 15,120. A more
sophisticated reasoning can lead in this particular problem to finding a solution without
much search that can be done “by hand”. This reasoning leads for instance to solution
734 + 734 = 1468, which means T = 7, O = 4, W = 6, R = 8. If we want however to
create a general method for solving ALL this kind of puzzles, we reason differently.
Our goal is to create a generator for the binary oracle that will create systematically all
possible “combinations without repetitions of five out of nine” for letters T, W, O, U, R.
(Pay attention that F is already mapped to 1 so it does not appear in the set of letters).
As usually, the entire problem is solved by the Generator and the Oracle (Verifier). In
this case the Selector and the Permuter (plus generator of carries C1 and C2) are the
Generator Part and the Arithmetic Checker is the Oracle (combinational circuit).
Observe that in general the boundary between generation and verification is not fixed
and some parts can be shifted from generator to verifier, the trick that is used in
quantum oracles and Invertible Logic Oracles.

The purpose of the oracle is to select a value for every letter from set {T, W, O, U,
R}. In numerical terms, this means we verify all candidates that are “five out of nine
combinations without repetitions” of digits 0, 2, 3, 4, 5, 6, 7, 8, 9 assigned to vector <T,
W, O, U, R>. All candidates for mapping are like this: <T, W, O, U, R> = <0, 2, 3, 4,
5>, <T, W, O, U, R> = <0, 2, 3, 5, 4> ,…, <T, W, O, U, R> = <5, 6, 7, 8, 9>. The
generation of all candidate solutions for the Oracle can be done by selecting subset of
five letters (binary codes of letters) out of nine and then doing all their permutations.
There is still a problem remaining how to generate the set of all solutions based on
combinations of five out of nine without repetitions. This must be done in the most
efficient way, possibly with one solution candidate at every clock cycle of the counter
(Generator), a requirement of optimality formulated in [26]. Schematic of our oracle is
shown in Fig. 1. There are three major blocks in our oracle: the Selector, the

b)

a) +
T W O
T W O

F O U R

Fig. 1. (a) Schematics of the TWO + TWO = FOUR Generator (Selector and Permuter) and
Oracle (Arithmetic Checker). Additional blocks Memory and HexDisplay are also shown from
FPGA realization. The answers for the problem are displayed on a LCD display. (b) The
representation of the TWO + TWO = FOUR problem that helps to create equations for the
oracle of this problem.

Inverse Problems, Constraint Satisfaction, Reversible Logic, Invertible Logic 9



Permuter, and the Arithmetic Checker (Oracle). In the practical FPGA design, there
are also smaller circuits in order to store and display the combinations: the RAM
(memory) module, the RAM counter, and the LCD display module. This
generator/oracle combination is an improved, optimized version of our previous oracle-
based designs for this and similar problems (SEND + MORE = MONEY). Opti-
mization is the result of a redesign aimed at reducing the size of the space of all
potential solutions. This limits the search, as explained in our “methodology” in
Sect. 3.2. The space reduction explained here is equally applicable to quantum and
Invertible Logic oracles.

To follow the above presented idea, the Selector from Fig. 1 is decomposed to two
blocks: the (sequential) Counter and the (combinational) Multiplexers. The counter
gives its outputs to the multiplexers (see Fig. 4). The Counter block of the Selector
simply counts up in the given modulo. The Counter block is decomposed to five Small
Counters (shown schematically as rectangles at the top of Fig. 4). Each of the small
counters has three outputs. In the problem of TWO + TWO = FOUR, since there are
five unique letters, the counter counts modulo 5 and the largest vector for every Small
Counter is 4 (selection states are 000, 001, 010, 011, and 100). Figure 2 shows the
beginning of the sample count sequence generated by the Counter to be used by the
Multiplexers inside the Selector block.

The outputs of each Small Counter (Fig. 5) are then directly connected to control
the corresponding multiplexer located at the bottom of Fig. 4. Each multiplexer has
only five data inputs coming from top of the counter. The particular inputs to every
multiplexer are selected for it in different way. The multiplexers are controlled with
three bits each, coming from the left of MUX schematics. These signals come from
respective Small Counters from the top. Figure 3 shows initial steps of the resulting
output sequence generated by the entire Selector circuit.

Fig. 2. Sample count sequence for the selector counter. In the actual circuit, the output signal is
3 bits, so that a value of 2 (in T = 6) is actually 010. Thus in time T = 6 the sequence generated
on output of selector has 5 * 3 = 15 bits and is 010 000 000 000 000.
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The purpose of the Permuter (Fig. 6) is to permute in all possible ways the values
given by the Selector from Fig. 4. This allows for all possible number to letter com-
binations to be tested (as the selector does not repeat any set of numbers). Much like we
discussed for the Selector, in Permuter there are the Counter1 and Multiplexer1
blocks. (This follows a general principle of designing advanced Generators). The
Counter1 consists of 5 normal counters which select which of the inputs to use. The
Multiplexer1 contains the inputs of each of the numbers selected (from Selector). It
then goes through a 4C5, 3C4, and 2C3 to gradually lessen the input for each further
multiplexer. Figure 7 explains how signals C2, C1, C0 that control MUXes to select
input data in Fig. 6 are generated. Recall that C3 = F so C3 is not used as input
variable in the oracle. Figure 8 shows part of the sequence generated by the Permuter.

Fig. 3. Sample beginning of the sequence of combinations of five out of nine without
repetitions, generated by the Selector circuit. Each digit has 4 bits. For instance, 9 = 1001,
5 = 0101, 0 = 0000. Thus the output of the Selector has 5 * 4 = 20 bits, as shown on bottom of
Fig. 4.

Fig. 4. Schematics of Selector composed of the Counter and Multiplexers circuits. The first
from left MUX selects between values 5, 4, 3, 2, 0. The second from left MUX selects between
values 6, 5, 4, 3, 2. The third from left MUX selects between values 7, 6, 5, 4, 3. The fourth from
left MUX selects between values 8, 7, 6, 5, 4. The right MUX selects between values 9, 8, 7, 6, 5.
The binary sequence on output of the selector has 5 * 4 = 20 bits. Above the sequence 0100
0110 0111 1000 1001 = 4 6 7 8 9 is shown.
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Fig. 5. A single Small Counter out of five shown on top of Fig. 4. It counts in code 000, 001,
010, 011, 100. Its three-bit output out3 goes to respective multiplexer in block Multiplexers.

Fig. 6. Internals of the Permuter block. This circuit generates all permutations of data received
on inputs. The inputs on top come from the Selector. The outputs at the bottom go to the
Arithmetic Checker block from Fig. 10. Each of the five MUXes has 5 data inputs, 4 bits each.
These MUXes are controlled but the 3-bit control C2, C1, C0. On bottom we see 5 small
rectangles which represent counters, 4 bits each. At the left of Fig. 6 we see the encoded controls
C2, C1, C0 and the corresponding actions of this Permuter that is the so-called “Generalized
Register” type of “Micro-controlled Processor”. Above we show the case of controlling MUXes
with C2C1C0 = 000.

12 M. Perkowski



The purpose of the Arithmetic Checker is to check the arithmetic validity of the
solution proposed by the Generator using the outputs of the Permuter. The arithmetic
checker was designed just by converting arithmetic equations derived from the
TWO + TWO = FOUR problem. Figure 9 shows the derived equations.

Fig. 7. Explanation of the Finite State Machine Master to generate control variables C2, C1, C0.
C1 and C0 are also used as inputs to Oracle.

Fig. 8. Part of the sequence of all permutations of set {1, 2, 3, 4, 5} generated by the Permuter.

Fig. 9. Equations derived from the TWO + TWO = FOUR problem.
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The equations shown in Fig. 9 come from each column for the TWO + TWO =
FOUR problem (Fig. 1b). In this problem, it is assumed that F has to equal 1, not 0.
This is because if the value was 0, there is no need for a letter. It is also noticed that
carry positions were added, similar to the handwritten method of addition. The
Arithmetic Checker (Fig. 10) strictly follows the equations, by replacing the ‘+’, ‘*’,
and ‘=’ operators with their respective arithmetic and predicate blocks.

The RAM Module. Although when the circuits described above can make a complete
oracle, there is no way for a user to know what the successful combinations are. In
order to show what the combinations are, there first needs to be any type of memory to
store the successful combinations. This is done on the FPGA by utilizing its RAM
(Random Access Memory). The circuit used for the RAM of the FPGA is based on the
concept of vectors. In a vector, information can be inserted, as well as removed
according to a reference number. The circuit first stores the successful combinations
(combinations with an Arithmetic Checker output of 1) into the vector. In the post-
processing stage, the combinations in the vector can be displayed to the user by the
RAM Counter.

Fig. 10. Complete Arithmetic Checker Oracle circuit. The inputs are binary encodings of letters
T, W, O, F, U, R, the constants 1, 2 and 10 and intermediate binary variables C1 and C2 (not
discussed in more detail). This oracle is far from minimal logical design but it explains the
general method to create oracles from arithmetic/Boolean equations. It can be optimized using
methods from logic synthesis and digital design.

Fig. 11. Concept of a vector used for memory in the TWO + TWO = FOUR oracle.
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The RAM Counter. In order to cycle through all of the solutions to the problem, a
counter is required. The counter used to do the task is very similar to a normal counter,
incrementing its value by 1, but it has an adjustable limit. This limit is imposed on the
counter such that the counter won’t go to empty cells in the vector, leaving the counter
only counting the solutions.

The LCD Display. The LCD Display is required in order to display the solutions.
Without it, the user will not be able to see what the calculated answers are. The circuit
for the LCD is fairly simple; the output from the RAM is displayed on the LCD. Only
the initialization of special ports (to turn on the backlight and other functions) is
required.

3.2 Experimental Results for the TWO + TWO = FOUR Problem

The experiment of the “TWO + TWO = FOUR Problem” is a comparison between two
methods: a hardware optimized implementation of the oracle, and a software imple-
mentation of an arbitrary oracle. The hardware implementation is run on a Terasic DE2-
115 board, while the software implementation is run on a laptop with an Intel Core i5
CPU clocked at 2.40 GHz. These methods are compared for speed, or in this case, the
time it takes to find all solutions for the same given problem. Counters are implemented
in both the hardware and software oracles, yielding for more accurate results. The
answers of the hardware program are verified by the software program. The solutions
are: 938 + 938 = 1876, 928 + 928 = 1856, 867 + 867 = 1734, 846 + 846 = 1692,
836 + 836 = 1672, 765 + 765 = 1530, 734 + 734 = 1468. Since the Selector,
Permuter, and Arithmetic Checker operate under one clock pulse, theoretically stating,
without glitches in the circuit, it would take n clock pulses to go through n combinations.
The circuit has to go through 9C5 combinations, and from that number of combinations,
it has to go through 5P5 permutations. Solving it would figure out how many clock
pulses it would take in order to complete. Let us derive the number of clock pulses
required to solve the problem: 9C5ð Þ 5P5ð Þ ¼ 126ð Þ 120ð Þ ¼ 15; 120. The number of
clock pulses is then converted into time. 1 MHz is equivalent to 1000 kHz. Since the
clock on the DE2-115 is 50 MHz, it is equivalent to 50(1000) = 50,000 kHz. There is a
formula of 1/(KHz) which converts Kilohertz to milliseconds. Substituting 50,000 into
the equation, 1/50,000 is the result, the number of milliseconds per cycle. The number of
cycles, 15120, is multiplied to the factor, receiving 0.3024 as an answer, stating that the
computational time is 0.3024 ms. Theoretical predictions were perfectly verified in
experiments [2].

Table 1. Comparison of an oracle for hardware and software in terms of computational time for
TWO + TWO = FOUR.

Hardware (predicated) in
milliseconds

Hardware (actual) in
milliseconds

Software in
milliseconds

Trial 1 0.3024 0.3024 1105886
Trial 2 0.3024 0.3024 1136322
Trial 3 0.3024 0.3024 1136897
Average 0.3024 0.3024 1126368
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From the data shown in Table 1, it can be concluded that the software computa-
tional speed was significantly slower than that of both hardware times. Also, the
hardware computational times were equivalent, therefore showing no signs of error in
calculation. In the average computational time comparison, the software took
1126368 ms to calculate, while the hardware only took a small fraction of 0.3024 ms.
Thus, from the data, the hardware has around 3724762 speed up time.

In conclusion of the TWO + TWO = FOUR experiment, the hardware imple-
mentation of the oracle performed significantly faster than the software implementation
in terms of computational time. For all trials tested, the hardware performed over three
million times faster than the software equivalent. The results of the predicted hardware
time and the actual hardware time were the same. Each trial always took exactly
0.3024 ms to calculate. This is because the circuits implemented in the FPGA operate
on every clock pulse, and it is very rare for the clock pulse to have a glitch. Thus, the
computational time of the FPGA can be proven by hand. There were no sources of
error while taking data, as the timers were implemented on the respective systems.
However, there can be lots of improvements to the experiment that could be made. First
of all, the software tested is for an arbitrary amount of problems, meaning that it is very
inefficient. Therefore, in order to have more accurate data, a specific oracle for the
TWO + TWO = FOUR problem needs to be made. Also, the clocks of both systems
are different (50 MHz on the FPGA versus 2.4 GHz on the computer). If one were to
measure the ratio of FPGA speed-up, the clocks would have to be equivalent.

We can observe that this problem can be solved differently without creating carry
variables C1, C2, C3 in Fig. 9. In the second variant the decimal adder can be designed
with binary-encoded digits and with internal binary carry signals that are not consid-
ered as input variables to the oracle. The oracle is not created as in Fig. 10 based on
equations from Fig. 9, but is just the adder with two inputs (T1, W1, O1) and (T2, W2,
O2) and outputs (F, O3, U, R). This adder realizes equation (T1, W1, O1) + (T2, W2,
O2) = (F, O3, U, R). But now in this second variant additional constraints are needed:
T1 = T2, W1 = W2, O1 = O2 = O3. This is a common tradeoff when designing
Generator-Oracle systems. While we call the first variant of oracle as shown here the
“Oracle with Control of Intermediate Signals”, the second type of the oracle we call the
“Oracle without Control of Intermediate Signals”, in this case carries C1, C2 and C3 are
these intermediate signals. Observe that in this variant we do not use sequential gen-
erator. All knowledge is in combinational oracle, which makes it a good candidate for
Grover oracle and for Invertible Logic Oracle. Both oracle types can have some
advantages and disadvantages, depending on the problem. These two design types of
oracles illustrate again the tradeoff that we deal with when designing efficient oracles.

3.3 Concluding on Boolean Oracles and Their Relation to Quantum
Oracles and Invertible Logic Oracles

Boolean Oracles realized in FPGAs are useful for problems for which the designer has
no information and no heuristics to solve the problem. There exists also no other than
exhaustive algorithm for these types of problems (in some problems dynamic pro-
gramming may be better, so there is in these cases no reason to create our type of
“unsorted database” approach based on generators and oracles). Under these conditions
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classical hardware oracles are better than software programs for small problems.
However, in case of large problems these oracles cannot be used because of the size of
hardware to exercise systematically and exhaustively all possible input combinations.
In software some efficient search algorithm can be used that will execute cuts in tree
branches early and can backtrack efficiently. For problems that have many solutions,
good design of the oracle plus good design of the generator help to solve problems [2]
that are difficult to solve otherwise, but still not too large in size. Tricks as those
illustrated in Sect. 3.1 are therefore used. Other good solution that may be helpful for
some problems is to design generators as special counters that count in advanced codes
that correspond to depth-first or breadth-first searches. Any sequences of binary vectors
can be simply created by adding large ROMs at outputs of standard counters. Con-
cluding, there is some combination of the problem size and problem type for which
hardware oracles based on classical logic are practical, realistic solutions. They may be
realized in ASIC, FPGA or any new nano-technology such as memristors.

Please note that designing classical generator/oracle systems is fundamental to our
general methodology. This is because the oracle concept is the base of our “CSP
methodology of problem-solving in hardware”. It is only a technical aspect to translate
Boolean oracles to reversible logic used in quantum computing or to invertible logic
used in magnetic spins. These are the two technologies that will prove useful to solve
these problems in future when the number of reliable qubits in quantum computers will
increase, and when larger Invertible Logic circuits with magnetic spins will be built. At
this time the ideas presented in this paper will become useful not only to better solve
toy problems as used for illustration here, but also to solve quickly practical problems
of large size.

The theoretical base to create quantum and Invertible Logic oracles already exists.
Actually, the literature presents many solutions to reversible/quantum arithmetic blocks
such as adders, multipliers, shifters, code converters, comparators and others. Thus
converting classical logic/arithmetic blocks to reversible blocks for Grover or other
Quantum Algorithm can be automated. General Boolean functions that can appear in
some oracles are more difficult to convert because in quantum the EXOR-based circuits
are better while in classical design the OR-based circuits are better. However, there are
many methods to convert SOP-based logic to EXOR-based logic such as Exclusive-Or-
Sum-of-Products (ESOP) [13]. Observe also that converting combinational Boolean
circuit to Invertible Logic is theoretically trivial because Hamiltonians are known for
every two-input binary gate ([4] and many papers by Biamonte), and Hamiltonians are
also known for many other gates and blocks such as adders and multipliers. There exist
also methods to realize arbitrary Hamiltonians built from smaller Hamiltonians.

3.4 General Methodology for Oracle Design

While designing a binary oracle the designer has to ask himself first – “what is the
problem type that I want to solve?” Knowledge of these problem types and blocks used
to solve them is very helpful. Let us explain the essence of this question. For any
realization of the oracle, especially quantum and classical, we need some generator that
would create a set of input vectors to exercise the oracle. In Grover Algorithm the
vector of Hadamard gates serves as this generator of all possible binary strings being
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solution candidates. We want to reduce the size of the input vectors in order to reduce
(often dramatically) the size of the entire solution space and the cost and operation time
of the oracle. Knowing the type of the problem helps to find good encoding of data and
as the result helps to reduce the cost and increase the speed. Below we discuss this
problem.

Observe that starting from |0〉 the Hadamard gate creates superposition of |0〉 and
|1〉. Two Hadamard gates working in parallel create a superposition of |00〉, |01〉, |10〉
and |11〉, in another variant of Dirac’s notation |0〉, |1〉, |2〉 and |3〉. Therefore
n Hadamard gates working in parallel generate all binary numbers from 0 to 2n−1. We
can see that the parallel vector of Hadamard gates is a “quantum generator” of all
numbers from 0 to 2n−1. But also, assuming that the individual bits of these numbers
represent presence or absence of an item in the set of n elements, these numbers
represent all possible subsets of the set with n elements. For two-element set, like this: |
00〉 = empty set {}, |10〉 = {a}, |01〉 = {b}, |11〉 = {a, b}. Therefore, as also known
from Grover and quantum algorithms, the vector of Hadamard gates is a quantum
generator of all subsets of a set. This is used in Grover Oracles and also in other
quantum algorithms such as Bernstein–Vazirani. This property of Hadamard operator
leads to natural design of oracles in which we look for a solution being a subset of the
set [2, 49]. For instance, when the designer wants to find the best partition of a set to
two subsets X and Y, every binary vector represents a subset of bits with value 1 as
subset X and a subset of elements with value 0 as subset Y. The oracle evaluates if this
separation to two subsets satisfies all constraints. The same method can be used to
design oracles which look for a mapping from a set to a set. Several algebraic systems,
such as the “Partition Calculus” [12, 15, 16, 47] and “Cube Calculus” [46] are based
hierarchically on set operations and relations. Therefore these algebraic systems can use
the natural Hadamard-based encoding of solution candidates that are verified by con-
straints [21, 22, 30]. For instance, several important problems in CAD and Machine
Learning can be solved using only two basic operations on set partitions from Partition
Calculus; operator P1 � P2 which finds the product of partitions, and relation (predi-
cate) P1 � P2. These problems include Ashenhurst-Curtis Decomposition [12], Bi-
Decomposition, State Minimization, Concurrent State Minimization and Encoding,
ROM-based design and other.

In addition to algebraic models, it is important how the variables (symbols) are
encoded in various binary codes. Some problems may require other than standard
methods of information encoding, for instance using “one-hot encoding” or “ther-
mometer encoding” of numbers (data). Therefore, the first question is this: “what is my
problem type and how should I encode the data”. As an example, when we solve the
graph theory problems we may encode nodes while treating edges as pairs of nodes. Or
we can encode edges as bits in a set-theoretical representation with as many qubits as
edges in our graph. We can also encode a graph as a binary incidence matrix. Per-
mutation problems such as Traveling Salesman or Generalized Traveling Salesman
would require to deal with permutations. Few standard ways of dealing with permu-
tations have been created [8, 15, 31]. One method is to treat the binary input vector of
numbers as a single permutation of natural numbers with k successive bits for a number
and to use constraints that will not allow the repeated numbers to be considered as
solution candidates [31]. Other method to solve permutation problems with oracles is to

18 M. Perkowski



create inside the oracle, just at its input, a large encoder that converts the set of all
subsets to the set of all permutations [15]. As done usually in AI and ML, the problem
is solved by a combination of a “generator” and “verifier”. A simple generator creates
too many candidates so that most of them are next disqualified by the “verifier” (all the
constraints in the oracle). A more advanced generator creates only reasonable candi-
dates that would require less constraints checking, but creating such a generator may be
more difficult. The most natural generator in quantum is the “generator of all subsets of
a set”. Observe that in the case of quantum oracles the “initial counter” coming from
vector of Hadamards generates always a set of subsets, which may be converted by a
special circuit to another type of combinational objects similarly as it was done in
Sect. 3.1 [49].

The proposed methodology for designing oracles and especially Grover Oracles is
the following:

1. We ask ourselves – “what kind of problem are we solving?”. Is this a “subset of set”
problem, a mapping problem, a “combination with repetitions” problem, a per-
mutation problem, a spectral transform problem [11], etc.? The answers to this
problem and the respective data encoding have huge influence on the final oracle
design (as illustrated in cryptoarithmetic puzzles).

2. Next question – how the data for this problem should be encoded? Can we use one
of the well-known encoding methods like natural number encoding, one-hot-
encoding, thermometer encoding, Gray Code Encoding, etc.? Answers to question 1
and question 2 are related.

3. Next question, assuming the type of problem and the type of encoding, we ask
“what are the blocks to be designed for the oracle and how they are combined?”.
There can be standard blocks such as shifters, arithmetic operators or predicates.
Comparators and combinational counters, such as variants of “counter of ones” are
often used. Some blocks must be designed from scratch and then in case of quantum
oracles the methods of logic synthesis for reversible circuits should be used [13]. In
case of quantum circuits these blocks can be designed on the level of binary
reversible logic [13] or, better, on the level of truly quantum primitives such as
Control-V and Control-V+, Pauli rotations, etc. [23, 39, 41].

4. The blocks are taken from library of standard or quantum blocks. In case of non-
standard reversible blocks they are designed using methods from “reversible logic
synthesis”. Next the blocks are combined to larger blocks and subsystems. The final
output AND-gate (Multi-input Toffoli gate in quantum case) is added to combine
together binary answers from all partial constraints.

5. If an optimization problem is solved (see Sect. 4) we have to create a part of the
oracle that is modified in every repeated CSP problem solved by calling the suc-
cessive Grover algorithm. The same is true for our Invertible Logic oracle-based
method of problem-solving.
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4 Grover Quantum Oracles

4.1 Minimum Set of Support Problem

As an example of bottom-up systematic design of Grover Oracle for optimization
problem, we present here a new approach to find the minimum set of support for binary
switching functions. Next, the essential part of this algorithm, “POS ! SOP con-
vertion for unate functions” is sped up by Grover quantum search algorithm that brings
a quadratic speedup. We present below in detail how to build the Grover oracle. Our
quantum algorithm can be easily adapted to solve other important but similar problems.
There is a large body of literature on the Minimum Set of Support Problem, because
this problem finds many important applications such as: minimization of Boolean
functions (SOP, POS, PLA, FPGA, etc.) [34, 37], Ashenhurst-Curtis Decomposition
and other functional decomposition methods for binary and multi-valued functions [35]
and information systems [33], cryptography, data mining and Machine Learning, large
databases, rule and expert systems [36], index generation functions [38], comple-
mentation of Boolean Functions, rough set problems, minimizing Petrick functions
(prime covering in SOP), etc. This problem is also known as the “attribute reduction
problem” and “unate covering problem”.

A. What is the problem?

Given a Boolean function f: {0, 1}n ! {0, 1, x} of n variables (the function is
completely specified, or mostly likely, incompletely specified in case of ML problems)
the minimum set of support is the minimum number of variables required to express the
function as an equation or set of rules. This method is useful to reduce the unneces-
sarily large representation of functions (for instance using ON and OFF sets for binary
functions) to all representations that include minimum numbers of variables. Using the
minimum set of support variables simplifies the logic synthesis or Machine Learning
methods. Several methods have been proposed for reduction of features (variables,
attributes) in Machine Learning and knowing all the minimal sets of attributes has an
importance in those applications where learned rules on less features are easier to
understand and do not lead to overfitting.

B. Classical approach to find Minimum Set of Support for Boolean function

The new procedure for finding Minimum set of support is as follows:

1. List all the OFF-minterms row-wise and ON-minterms column-wise in a rectangular
table and perform bitwise Exclusive-OR operation between all possible pairs of
binary strings of OFF-minterms with ON-minterms. Write the resultant binary
strings as the Boolean OR of the corresponding variables. In every intersection of
row and column we have the sum of variables which separate the given ON-
minterm from the column and the respective OFF-minterm from the row.

2. After completing the entire table, create a POS formula being the AND of all OR
terms from the intersection cells in point-1 above.

3. Convert the above POS formula to an equivalent minimal SOP formula. This can be
done, for instance, by a step-by-step Boolean Multiplication together with
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absorption of products created in every step. In the final SOP formula each product
corresponds to a minimum set of support of variables. This step is solved using
Grover Algorithm.

Comment 1. There are several methods how to convert POS to SOP. The case here
is simpler as our POS is a unate function. All these methods can be used at this step to
create a quantum oracle, but our interest in this paper is restricted to unate functions.

Comment 2. The user may verify the correctness of results of this algorithm by
folding Karnaugh maps with respect to all combinations of variables that are not
present in every minimum set of support. For instance, for a function of five variables f
(a, b, c, d, e) the correctness of the minimum set of support {a, b} is verified by
sequentially folding according to variables c, d and e, without encountering contra-
dictions and thus creating function f1(a, b) = f(a, b, c, d, e).

A useful pre-processing method is to simplify initial POS (in point 2) by using
repeatedly the Boolean laws; A � A = A; A � (A + B) = A and (A + B) � (A + B +
C) = A + B. Therefore, we start the simplification from the shortest OR terms and we
remove the OR terms containing them. The minimum set of support problem is an NP
problem [34], thus all exact algorithms for classical computers can be applied only to
relatively small problems. For larger problems, the classical algorithms are heuristic
and take large time and space complexity to find only some minima or approximate
minima. In this section, we illustrate our methodology by presenting a hybrid
classical/quantum algorithm to solve exactly the minimum set of support problem for
k-valued switching functions. It provides a quadratic speedup with respective to its
classical counterpart algorithm for the stage of POS to SOP exact conversion of a unate
Boolean function.

4.2 Example of Finding the Minimum Set of Support for a Binary
Function

We illustrate our algorithm from Sect. 4.1.B step by step.
Consider a Boolean function represented in a Karnaugh map as shown in Fig. 12.

ab\cd 00 01 11 10

00 x x 1 x

01 1 x x 1

11 x x 0 x

10 0 x x 0

Fig. 12. The Karnaugh map of an incompletely specified Boolean function.
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Step 1. The possible values of the Boolean function are 0 (OFF) and 1 (ON). The
cells on the intersection of OFF-minterms and ON-minterms are created by bitwise
EXOR. For instance, bitwise EXORing of OFF-minterm 1111 with ON-minterm 0011
the binary string 1100 is obtained which is written as a + b.

Step 2. A POS formula is created being the AND of all the terms from cells in
Fig. 13, which becomes the product of sums as represented as below, � (a + b) � (a +
c + d) � (a + d) � (a + c + d) � (a + b) � (a + b + c) � (a + d) � (a + b + c) � (a + b)

Step 3. Using laws from the algorithm, the expression gets reduced to (a + b) �
(a + d). Transforming this POS to a minimum SOP is in general a difficult problem. In
this particular didactic case, the transformation is trivial and based on Boolean algebra
(a + b) � (a + d) � a + ab + ad + bd � a + bd

We found in the last formula that the Boolean function from Fig. 12 depends on
only a single variable {a} or it depends on two variables {b, d}. The function has
exactly two minimum sets of support – {a} and {b, d}. For large functions the above
“POS to minimum SOP” transformation is a complicated NP problem and thus we
apply Grover Algorithm to solve this step.

4.3 Grover Algorithm

Grover algorithm is one of the few most famous quantum algorithms. Grover algorithm
performs searching on a “black box,” an unsorted database, in order to find an element
that satisfies the oracle [9]. The oracle is built specifically for the given problem
instance. The idea of Grover’s algorithm is to place the qubits representing entire
search space of size N in a superposition state. Then the phase of the states marked by
oracle is inverted, followed by an inversion about the mean operation, which is also
known as the diffusion operation. Diffusion operation amplifies the amplitude of the
marked states to increase probability that this state will be a result of measurement
performed on a vector of input qubits. Oracle followed by diffusion is called the Grover
Loop. After O

ffiffiffiffi

N
p

iterations of Grover Loop, the probability of measuring the target
solution approaches to 1 (in case of a single solution) [9, 39, 40].

OFF\ON 0011 0100 0110

1111 a+b a+c+d a+d 

1000 a+c+d a+b a+b+c

1010 a+d a+b+c a+b

Fig. 13. Illustration of the method to find all separating variables for every pair of true and false
minterms of a Boolean function from Fig. 9. True minterm 1111 and false minterm 0011 are
separated with variable a or variable b, this is the formula a + b seen at the intersection of row
1111 and column 0011.
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4.4 Oracle for Minimum Set of Support

A. Oracle circuit for Grover Algorithm

To build a Grover’s algorithm to find the minimum set of support for function from
Fig. 12 an Oracle for this specific problem is built in such a way that it checks if the
input satisfies the following three constraints: (A) that the POS is satisfied, (B) that it is
a new solution and not one found already previously, (C) that the number of variables
in solution is equal to a constant Threshold given on the input. The first thing to build
the Grover oracle is to encode the input and output of the problem in binary. For our
oracle, the search space is a collection of all potential solutions. Potential solutions are
all subsets of the set variables {a, b, c, d}. Some of these subsets are the searched
Minimum Sets of Support for this function.

The block diagram of the proposed quantum oracle is shown in Fig. 14. It consists
of three major blocks; (A), (B) and (C). The inverse circuit corresponds to blocks (A),
(B) and (C) in reverse order must be designed respectively, to restore all the modified
qubits to their original values. This is done in the “Mirror Part” of the oracle composed
from mirror of C, followed by mirror of B and followed by mirror of A. This mirror
part is not shown in Fig. 14 due to space limitations. Qubit |k〉 is the solution of the
oracle. It marks that all constraints of the oracle (A), (B) and (C) are satisfied.

Fig. 14. Part of Oracle to find all Minimum Sets of Support for the binary function from Fig. 12
with the minimum set of support {{a}, {b, d}}. POS = (a + b) � (a + d) = 1 ⊕ (a′b′)′ � (a′d′)′ is
realized in Block (A). The Hadamard gates at top left do not belong to the oracle and are explained
in point 2 of the algorithm. They are drawn here for didactic reasons as they serve as a generator of
all subsets of set {a, b, c, d} by creating the superposition of all numbers from 0 to 15.
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Block (A) is a Boolean satisfiability function in POS form. Qubit |i〉 is initialized to
|1〉 to realize POS (a + b) � (a + d) based on DeMorgan theorem from Toffoli gates and
inverters. This qubit recognizes every solution of this POS from the superposition of
inputs. It is given as one of three AND-ed inputs to the far right Toffoli gate that creates
the solution to the entire oracle. Block (B) does not exist in the first run of Grover and
will be discussed later on. This block represents modification of constraints in subse-
quent runs of Grover Algorithm typical for the optimization problems, which we
already discussed.

Block (C) contains three counters and the equality comparator. The three counters
count together the number of input variables required to satisfy the POS function. Each
counter adds a 1 if the corresponding variable controlling it has value 1. The Com-
parator X = Y compares the output from the counters with the threshold value given as
a constant values |n1〉 and |n2〉 of Threshold on input to Grover Algorithm. Then a
Toffoli gate is applied on ancilla qubit |k〉 controlled by |i〉, |1〉 and |j〉. If the conditions
are met, ancilla bit k will be flipped. It changes the solution phase so that the solutions
that satisfy both conditions can be marked.

B. Finding all solutions to the minimum set of support problem

In this section we will explain how the Grover Algorithm is used multiple times
with modified oracles to find all exact minimum solutions to our problem. The first run
of the Grover uses the oracle without block (B). Qubit |i〉 gives all solutions that satisfy
POS (a + b) � (a + d). In general, we start from the lowest bound of the solution cost
and we go up. In this case, we optimistically assume that there exists a single variable
that satisfies the POS. Thus the value of Threshold is set to 1 and all solutions with
single input variables are checked with counters and the comparator. The solution a is
found. Now block (B) is compiled to the oracle by the pre-processing standard com-
puter that controls the quantum computer. Block (B) includes now the representation of
the first solution a which is subtracted (inhibition operator X � Y′ realized as part of the
large Toffoli gate at right). Therefore, all possible solution sets that include variable
a are being excluded. These are all products of literals included in cube a. No solution
with one variable is found by subsequent runs of Grover with this modified oracle.
Now we look for solutions with two variables. We set the value of Threshold to value
2. A new solution bd is found. It is next added to the ESOP realized in the output qubit
from block (B), marking the solution bd as already used. So now the block (B) is
a ⊕ bd as shown in Fig. 10. (Let us remind that in our encoding solution a is repre-
sented as 1000 and solution bd as 0101, so that solutions are disjoint minterms for
which OR-ing is the same as EXOR-ing, based on the rule A + B = A ⊕ B ⊕ AB.
Therefore, the logic sum of all previous solutions in block B can be stored as their
EXOR). This method of creating a sequence of oracles is general and we applied it to
design sequences of Grover oracles for various problems.

With the full oracle as in Fig. 11 the Grover algorithm finds no more solutions. But it
is still unclear if there are solutions with three or four variables? In this case, because of
properties of unate symmetric functions all solutions with three variables are cancelled
by solution a (1101, 1110, 1011) or cancelled by solution bd (0111, 1101). So there are
no other solutions. In general, one has to keep increasing the value of threshold if he
attempts to find all minimum sets of support. To confirm that there are no any solutions
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besides those that we already found, the oracle can be also run by Grover with blocks
(A) and (B) but without (C). Our hybrid Algorithm finds that there is no solution to this
function, thus no more solutions exist at all. Every binary vector |a, b, c, d〉 of a solution
can be verified on block (A) of the oracle run outside of the Grover Algorithm. In one
more variant of our approach, the number of remaining solutions can be found using the
Quantum Counting Algorithm that returns the number of values 1 in the function.

4.5 Remarks on This Design

As an example of the methodology proposed in Sects. 2, 3 and 4 of this paper we
presented a hybrid algorithm in which pre-processing, i.e. creating the POS formula, is
done in a standard computer. Only solving of the NP problem of “POS ! SOP
conversion for a positive unate function and with finding all prime implicants” is
solved by our hybrid algorithm based on a sequence of calls of Grover with modified
oracles. We presented the detailed design of the oracle from reversible gates and
blocks. More details of the blocks used here and a discussion can be found in [12].
Other typical blocks are presented in other cited here papers of the PSU team. This
Sect. 4 illustrated some elements of our methodology: (1) selection of encoding,
(2) problem representation, (3) combining of constraints, (4) hybrid design and role of
the standard computer that supervises the quantum computer, (5) repetition of Grover
with modified oracles to solve the optimization problem.

Very similar Grover oracles can be built for other fundamental CAD problems:
function complementation, binate covering, unate covering, and prime implicant
generation for SOP minimization. Moreover, these problems can be solved by our
approach for multiple-valued functions as well. The method presented in this section is
very similar when applied to binary or multiple-valued functions from ML [30], and
their quantum component is exactly the same. Similarly to the oracle example from
Sect. 3, this oracle can be also converted to Invertible Logic Oracle and solved with
Invertible Logic methods explained in Sect. 5. All these oracles can be simulated with
the logic programming CSP software outlined in Sect. 6.

5 Invertible Logic Oracles

First, to convince the reader about power of invertible logic let us give few more simple
examples.

1. A circuit is a tree of three AND gates as in Fig. 15. Because for the 2-input-AND
gate for the value 1 on output is the combination (1, 1) on inputs, the backward
(output to input) propagation of signals is represented as in Fig. 15 and the oracle
requires only one evaluation. Classical circuit would require in the worst case
24 = 16 evaluations and the quantum Grover oracle would require (16)^(1/2) = 4
evaluations because of its quadratic speedup.
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2. A circuit is a tree of Boolean Gates F2 = (ab) ⊕ (cd) as in Fig. 16. The snapshots
show the propagation of signals backward with fast finding of one solution. EXOR
is a better combining gate than the OR gate, because for output 1 it has only two not
three input combinations (0, 1) and (1, 0).

3. Suppose we have a graph with three nodes as in Fig. 17. In Fig. 17a the graph is 1-
colorable, the graphs from Figs. 17b and 17c are 2-colorable and the graph from
Fig. 17d has a chromatic number of 3. The oracle for the graph from Fig. 17d in
ternary-input binary-output logic is shown in Fig. 17e. Here outputs of all three
inequality comparators are equal 1, which means that all partial constraints are
satisfied. Let us analyze how Invertible Logic works. Let us say the top comparator
is satisfied by coloring node 1 with color a and node 2 with color b. Now color b is
propagated to upper input of the middle comparator. If this comparator selects color
a on its second input, it will propagate 1 to output. But the bottom comparator will
be not satisfied as it will have color a on both inputs. Thus if the middle comparator
will select color c on lower input it will produce output 1 but also the bottom
comparator will be satisfied as it will get various colors a and c on its inputs. The
coloring with only colors a and b is not possible, which is illustrated for one
coloring case in Fig. 17d. The inequality comparator for edge (1, 2) produces a zero
on output, but inequality comparators for edges (1, 3) and (2, 3) produce a 1 on their
outputs so the circuit is not satisfiable (not 3-satisfiable) but the circuit is 2-
satisfiable. This example shows the close relation between the graph coloring, SAT
and MAX-SAT problems. Similarly, every oracle can be in theory transformed to a
SAT problem, because oracle is a Boolean function and every Boolean function can
be realized in a POS (CNF) form.

Fig. 15. Propagation from output to inputs in a single oracle evaluation for function a � b � c � d

Fig. 16. Propagation from output to inputs in a single oracle evaluation for function
a � b ⊕ c � d (only some solutions shown)
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Now that we appreciate the power of Invertible Logic, let us observe that every
oracle is basically a kind of SAT-solver that solves a non-standard type of SAT using
Boolean gates and blocks, and not only the classical POS-SAT formula. Thus every
classical logic oracle [2, 26] or every reversible logic oracle [3, 8, 11, 12, 15, 16, 21,
22, 24, 28, 30, 31] can be easily converted to the Invertible Logic oracle and simulated
in software, emulated and verified using an FPGA. Most importantly, Invertible Logic
Oracle can be realized using the real hardware nano-technology such as magnetic spins.
The only question that remains when we want to use standard FPGA or one of nano-
technologies is this: “how to design the inside of logic gates and blocks that externally
are standard Boolean circuits?” Several methods have been proposed [1, 4–7, 10, 14,
17, 18, 20, 43].

Any hardware realization of an Oracle is in essence a Boolean Function (it can be
extended to multi-valued functions), so the theory of such functions, as well as their
synthesis methods, can and should be used to build oracles. For instance, oracles from
[8] make use of the theory of symmetric Boolean problems, because of symmetries
found in problem data such as 3 Missionaires and 3 Cannibals from the known puzzle.

In addition, internally the blocks of Invertible Logic oracles are like neural nets or
other systems based on Hamiltonian Dynamics. Therefore, when the entire circuit is
built from blocks, the blocks are externally Boolean (or multi-valued) but their internal
design is based on methods typical for Neural Networks design and Adiabatic Quantum
Computing design. Theoretically, every oracle can be built from AND gates and
Inverter gates, or from some larger set of gates and blocks, but a better method is to
create new types of blocks corresponding to relations that can be satisfied (1) or not
satisfied (0), based on their characteristic functions. For instance, in case of the graph
coloring problem we can create a network of comparators of inequality, one comparator
for every edge of the graph. The inputs to these comparators are encoded data for colors
of their corresponding nodes. Finally, a large AND gate is used to combine answers
from partial constraints on all edges of the graph (the inequality comparators). How-
ever, another approach would be to create a relation for every node of the graph that

Fig. 17. Graph Coloring in network of constraints realized in Invertible Logic, (a) one-colorable
graph, (b) two-colorable graph, (c) two-colorable graph, (d) three-colorable graph, (e) good
coloring of graph from d with colors a, b and c, (f) bad coloring of graph from d with two colors,
constraint for nodes 1 and 2 is not satisfied because these neighbor nodes have the same color a.
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would operate on this principle – “If my color is different from all colors of my
neighbors I will keep my color. If my color is in a disagreement with any color of my
neighbor, I will change my color randomly”. A Hamiltonian can be calculated for such
rules. Thus the number of blocks in the oracle is the number of nodes. When all nodes
are happy with colors of their neighbor nodes the minimum energy is reached and thus
the solution to the graph coloring problem with K colors is found. In case that we want
to solve the optimization variant of graph coloring, the successful oracle for K1 colors
is repeated with a smaller number of colors K1 < K (see Sect. 2 and [12, 31]). This
means in a special case that the oracle blocks for constraint COLOR(ni) � K are
replaced in the repeated oracle with blocks COLOR(ni) � K − 1.

How to design the internals of the blocks? In case of Invertible Logic analog circuit
design methods are used when building gates with nano-magnets. Hamiltonian design
methods and stochastic system based methods are used when emulating with FPGAs.
A standard approach is to follow this line of transformations:

Circuit TruthTable CharacteristicFunction Linear Programming
Hamiltonian Invertible Logic Block

Many problems require arithmetic, so how are the arithmetic operators imple-
mented? Even the AND gate implemented as a Hopfield Network internally needs
arithmetic – adders and constant multipliers - as well as some non-linear threshold or
similar operators typically used in Neural Nets. Various number systems can be used to
design the Hamiltonian-based internals of relations that specify the problem. For
example such number systems as SNR – Stochastic Number Systems [1, 20] or Fre-
quency Number Representation [43].

6 Prolog Oracle Simulator

Currently, simulating a correctness of a quantum circuit and in particular a Grover-
based algorithm with a complex oracle is difficult because of the small number of
qubits that can be used by the contemporary quantum circuit simulators [12, 41].
However, the designer of an oracle of any kind (Boolean, Quantum or Invertible) wants
usually to verify correctness of his design and the density of solutions in the solution
space. In quantum case this is because the entire Grover Algorithm is known to be
correct and the non-oracle components of Grover Algorithm hardware are easy. This is
also true for other quantum algorithms such as Shor, Bernstein-Vazirani or Quantum
Walk. Let us observe that we do not need a quantum simulator to achieve this
“quantum circuit built from permutative gates” verification goal. Instead of simulating
the oracle being a part of Grover Loop inside the iterated Grover Algorithm it is often
sufficient just to simulate the oracle itself as an invertible logic circuit, even before
converting to reversible logic with ancillae qubits (reversible gates are described by
permutative matrices). Simulation of oracles can be done in hardware description
languages such as VHDL or System Verilog, but it is better to use a logic programming
languages such as Prolog, because of their natural capability to simulate CSP systems
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based on mechanisms such as backtracking and matching. While Verilog cannot
simulate directly the Invertible Logic circuits, Prolog and CSP Languages can do this.

A program in Prolog [42] can easily simulate an oracle just be defining all gates and
blocks as their truth tables (characteristic functions) or as blocks (sub-systems) com-
posed hierarchically from lower level gates and blocks. Next, oracles built from these
blocks can be exercised from inputs to outputs, from outputs to inputs or in any
possible direction by fixing subsets of inputs and outputs and finding values of all
remaining signals such that all constraints (relations) are satisfied. The designer can
create variants such as the “Oracle with Control of Intermediate Signals”, and the
“Oracle without Control of Intermediate Signals” and set intermediate signals to some
heuristically assumed values.

The Prolog simulator is composed from two types of blocks: the Oracle and the
Generator [42]. Generator creates inputs to Oracle in case of classical input-to-output
simulation. In case of output-to-input simulation the “hidden generator” creates
combinations of inputs/outputs for individual gates but the simulations start from
outputs assigned to constant values. For instance, an adder with two-bit arguments
input1 and input2 and result output is defined as adder[input1, input2, output]. It
works as follows: adder[1, 2, X] produces X = 3. But also: adder[X, 2, 3] produces
X = 1. In addition, adder[X, Y, 3] will give: X = 0, Y = 3, next will produce X = 1,
Y = 2, next X = 2, Y = 1, next X = 3, Y = 0. The order of generating the pairs of
inputs X and Y will depend on the “Generator”.

Therefore, if the user just describes the oracle as a composition of any type of gates,
classical or invertible, or reversible, or Hamiltonian gates and blocks, our simulator in
Prolog would be able to verify correctness of his/her design. Moreover, various
directions of simulating gates, blocks or subsystems are possible that can help the
designer when he considers various architectures for complex oracles. Also, in some
problems we do not know how many solutions a given problem instance has. In case
that we want to find ALL solutions to our problem we use the Quantum Counting
algorithm [28] in addition to Grover Algorithm. If we want to verify the correctness of
our entire quantum algorithm composed of Quantum Counting Algorithm and Grover
Algorithm, it is useful to know how many solutions our problem instance has (how
many “true minterms” or “minterms with value 1” the oracle function has). Again, the
Prolog simulator helps in this respect. Therefore, the Prolog simulator becomes a
universal simulator of oracles, regardless if we want to use these oracles for classical
Boolean logic as in Sect. 3, for reversible logic in Grover Algorithm as in Sect. 4, or
for Invertible Logic as in Sect. 5. Prolog Simulator can be also used to verify any
reversible logic circuits (with Ancillae) used in quantum algorithms such as Shor
Algorithm and similar, as well as several Quantum Random Walk Algorithms.

7 Conclusions

Solving optimization problems can be reduced to the repeated solving of decision
problems such as CSP with oracles modified at every CSP round. CSP problems can be
solved by exercising oracles. These oracles can be exercised from inputs to output
sequentially as in classical Boolean logic. In quantum they are exercised in parallel
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thanks to superposition and quantum parallelism used in the Grover Algorithm. Based
on an observation that both these formerly known approaches solve the inverse
function and that the Invertible Logic can be used to solve the inverse functions, in this
paper we propose a general methodology to solve optimization and CSP problems
based on designing oracles bottom–up from a hierarchy of blocks. These oracles can be
exercised in Prolog from outputs to inputs. Next, as the first method, these oracles can
be converted to reversible logic and used in Grover Algorithm (with adding ancillae
qubits). As the second method, these classical logic oracles can be converted to
Invertible Logic [5, 6, 17, 18, 20, 27] and realized with nano-magnetic spins. As the
third method, Invertible Logic oracles can be emulated using standard FPGAs using
stochastic number representations. Various number systems, radices and operators can
be used to operate on numbers and encoded symbolic data in these oracles [1, 7]. Please
observe that there are many systems to represent numbers and arithmetic operators
executed on them [1, 2, 5, 20]. Some of these number systems may be better when used
inside the gates and blocks of invertible logic. This is an area of current research. (It is
very likely that some day FPGAs based on magnetic spin technology will be invented
and fabricated). As the fourth method, the oracles can be exercised sequentially (but
only from input to output) in standard Boolean Logic and realized in standard FPGAs.
Finally, as the fifth method a complete quantum circuit can be built for a quantum
neural network built as a composition of small quantum networks. The top network is
an oracle, the small networks are gates and blocks.

Concluding, the very general “oracle-based” methodology for solving CSP and
optimization problems outlined in this paper can be applied to many important prob-
lems from Design Automation, Logistics, Optimization, Control, Artificial Intelligence,
Machine Learning and Robotics. The methodology will become even more practical
with the appearance of: (1) quantum computers that will have more qubits, (2) mag-
netic spin technologies with higher number os gates, (3) standard FPGAs with very-
high-quality hardware random number generators. It is also an open problem how well
these quantum oracles will work in Noisy Intermediate Scale Quantum (NISQ) com-
puters [48] without error correction.

References

1. Ardakani, A., Leduc-Primeau, F., Onizawa, N., Hanyu, T., Gross, W.J.: VLSI implemen-
tation of deep neural network using integral stochastic computing. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 25(10), 2588–2599 (2017)

2. Cheng, A., Tsai, E., Perkowski, M.: Methodology to create hardware oracles for solving
constraint satisfaction problems. In: 22nd International Workshop on Post-Binary ULSI
Systems, pp. 36–43. Toyama International Conference Center, Toyama (2013)

3. Dhawan, S., Perkowski, M.: Comparison of influence of two data-encoding methods for
grover algorithm on quantum costs. In: ISMVL, pp. 176–181 (2011). https://doi.org/10.
1109/ismvl.2011.29

4. Biamonte, J.D.: Non-perturbative k-body to two-body commuting conversion Hamiltonians
and embedding problem instances into Ising spins. Phys. Rev. A 77, 052331 (2008)

5. Camsari, K., Faria, R., Sutton, B., Datta, S.: Stochastic p-bits for invertible logic. Phys. Rev.
X 7, 031014 (2017)

30 M. Perkowski

https://doi.org/10.1109/ismvl.2011.29
https://doi.org/10.1109/ismvl.2011.29


6. Debashis, P., Faria, R., Camsari, K.Y., Appenzeller, J., Datta, S., Chen, Z.: Experimental
demonstration of nanomagnet networks as hardware for Ising computing. In: IEEE
International Electron Devices Meeting (IEDM), pp. 34.3.1–34.3.4 (2016)

7. Gaines, B.R.: Stochastic computing systems. In: Tou, J.T. (ed.) Advances in Information
Systems Science. Advances in Information Systems Science, pp. 37–172. Springer, Boston
(1969). https://doi.org/10.1007/978-1-4899-5841-9_2

8. Gao, P., Li, Y., Perkowski, M., Song, X.: Realization of quantum oracles using symmetries
of Boolean functions. Quantum Inf. Comput. 20(5&6), 0417–0446 (2020)

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

10. Hinton, G.E., Sejnowski, T.J., Ackley, D.H.: Boltzmann machines: constraint satisfaction
networks that learn. Department of Computer Science, Carnegie-Mellon University,
Technical report CMUCS-84-119 (1984)

11. Lee, B., Perkowski, M.: Quantum machine learning based on minimizing Kronecker-Reed-
Muller forms and Grover search algorithm with hybrid oracles. In: 2016 Euromicro
Conference on Digital System Design (DSD), pp. 413–422 (2016)

12. Li, Y., Tsai, Y., Perkowski, M., Song, X.: Grover-based Ashenhurst-Curtis decomposition
using quantum language quipper. Quantum Inf. Comput. 19(1&2), 0035–0066 (2019)

13. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive sums-of-products.
In: RM 2001 Workshop (2001)

14. Monaco, J.V., Vindiola, M.M.: Factoring integers with a brain-inspired computer. IEEE
Trans. Circuits Syst. I Regul. Pap. 65(3), 1051–1062 (2018)

15. Perkowski, M.: Methodology to design oracles for Grover algorithm, poster presentation. In:
Workshop on Design Automation for Quantum Computers, IEEE 2017 International
Conference On Computer Aided Design, Marriott Hotel, Irvine, CA (2017)

16. Luba, T., Selvaraj, H.: A general approach to Boolean function decomposition and its
application in FPGA based synthesis. VLSI Des. 3(3–4), 289–300 (1995)

17. Pervaiz, A.Z., Ghantasala, L.A., Camsari, K., Datta, S.: Hardware emulation of stochastic p-
bits for invertible logic. Sci. Rep. 7 (2017). Article No. 10994

18. Pervaiz, A.Z., Sutton, B.M., Ghantasala, L.A., Camsari, K.Y.: Weighted p-bits for FPGA
implementation of probabilistic circuits. arXiv e-prints (2017)

19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

20. Smithson, S.C., Onizawa, N., Meyer, B.H., Gross, W.J., Hanyu, T.: Efficient CMOS
invertible logic using stochastic computing. IEEE Trans. Circuits Syst. I Regul. Pap. 66(6),
2263–2274 (2019)

21. Tsai, E., Perkowski, M.: A quantum algorithm for automata encoding. Facta Universitatis.
Ser. Electron. Energ. 33, 169–215 (2020)

22. Tsai, E., Perkowski, M.: Towards the Development of Quantum Design Automation Tools:
A Methodology for Construction of Oracles to Solve Constraint Satisfaction Problems using
Grover’s Algorithm (2020, Submitted)

23. Tsai, E., Perkowski, M.: Realization of Arbitrary Symmetric Functions in Quantum Logic
Using Two-Qubit Gate (2020, Submitted)

24. Wang, Y., Perkowski, M.: Improved complexity of quantum oracles for ternary Grover
algorithm for graph coloring. In: ISMVL, pp. 294–301 (2011). https://doi.org/10.1109/ismvl.
2011.42

25. Whitfield, J.D., Faccin, M., Biamonte, J.D.: Ground-state spin logic. Europhys. Lett. 99(5),
57004 (2012)

26. Butler, J.T., Sasao, T.: Combinational computing. One object per clock. In: Reed-Muller
Symposium, Toyama, Japan (2013)

Inverse Problems, Constraint Satisfaction, Reversible Logic, Invertible Logic 31

https://doi.org/10.1007/978-1-4899-5841-9_2
https://doi.org/10.1109/ismvl.2011.42
https://doi.org/10.1109/ismvl.2011.42


27. Sutton, B., Camsari, K.Y., Behin-Aein, B., Datta, S.: Intrinsic optimization using stochastic
nanomagnets. Sci. Rep. 7(1), 1–9 (2017)

28. Brassard, G., HØyer, P., Tapp, A.: Quantum counting. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 820–831. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055105

29. Venkatachalapathy, R.: Systems isomorphisms in stochastic dynamic systems. PSU,
Systems Science, Ph.D. Dissertation (2019)

30. Sivakumar, S., Li, Y., Perkowski, M.: Grover Algorithm for Minimum Set of Support
Problem of Multi-Valued Functions (2020, Submitted)

31. Zhang, W.: Quantum Algorithms for Two-Arm robot and generalization to Travelling
Salesman Problem (2020, in Preparation)

32. Hou, W., Perkowski, M.: Quantum Algorithm for Knapsack problem (2020, Submitted)
33. Rawski, M., Jóźwiak, L., Luba, T.: Functional decomposition with an efficient input support

selection for sub-functions based on information relationship measures. J. Syst. Architect.
47, 137–155 (2001)

34. Konieczny, P.A., Jóźwiak, L.: Minimal input support problem and algorithms to solve it, vol.
95-E-289. Eindhoven University of Technology Report E, Faculty of Electrical Engineering,
Eindhoven, 01 January 1995

35. Mishchenko, A., Files, C., Perkowski, M., Steinbach, B., Dorotska, C.: Implicit algorithms
for multi-valued input support manipulation. In: 4th International Workshop on Boolean
Problems (2000)

36. Kiran, R.U., Reddy, P.K.: An improved multiple minimum support based approach to mine
rare association rules. IEEE (2009). 978-1-4244-2765-9/09

37. Łuba, T., Rybnik, J.: Algorithmic approach to discernibility function with respect to
attributes and objects reduction. Found. Comput. Decis. Sci. 18(3–4), 241–258 (1993)

38. Sasao, T., Fumishi, I., Iguchi,Y.:On an exactminimization of variables for incompletely specified
index generation functions using SAT. Note Multiple-Valued Logic Jpn. 38, 1–8 (2015)

39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000)

40. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr.
Phys. 46, 493 (1998)

41. Cross, A.: The IBM Q experience and QISKit open-source quantum computing software.
APS March Meeting (2018). Abstract id L58.003. Bibcode 2018 APS .. MARL58003C

42. Al-Bayaty, A., Perkowski, M.: Simulating Boolean, Quantum and Invertible Logic Oracles
using a Prolog-based system. Report PSU (2020, in Preparation)

43. Taha, M.M.A., Perkowski, M.: Realization of arithmetic operators based on stochastic
number frequency signal representation. In: ISMVL 2018, pp. 215–220 (2018)

44. Cheng, A.: Designing FPGA Oracles for Cryptography Problems. PSU report (2013)
45. Li, Y.: Quantum Oracles for Graph Coloring and Maximum Clique. PSU report in

preparation (2020)
46. Perkowski, M., Foote, D., Chen, Q., Al-Rabadi, A., Jozwiak, L.: Learning hardware using

multiple-valued logic – Part 2: cube calculus and architecture. IEEE Micro Chips Syst.
Softw. Appl. 22(3), 52–61 (2002)

47. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
48. Preskill, J.: Quantum computing in the NISQ era and beyond. arXiv:1801.00862v3 [quant-

ph], 31 July 2018
49. Perkowski, M., Liu, J., Brown, J.: Quick software prototyping: CAD design of digital CAD

algorithms. In: Zobrist, G. (ed.) Progress in Computer Aided VLSI Design, vol. 1, pp. 353–
401. Ablex Publishing Corp, New York (1989)

32 M. Perkowski

https://doi.org/10.1007/BFb0055105
http://arxiv.org/abs/1801.00862v3


Foundations



Reversible Occurrence Nets and Causal
Reversible Prime Event Structures

Hernán Melgratti1, Claudio Antares Mezzina2, Iain Phillips3,
G. Michele Pinna4(B), and Irek Ulidowski5

1 ICC - Universidad de Buenos Aires - Conicet, Buenos Aires, Argentina
2 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
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Abstract. One of the well-known results in concurrency theory con-
cerns the relationship between event structures and occurrence nets: an
occurrence net can be associated with a prime event structure, and vice
versa. More generally, the relationships between various forms of event
structures and suitable forms of nets have been long established. Good
examples are the close relationship between inhibitor event structures
and inhibitor occurrence nets, or between asymmetric event structures
and asymmetric occurrence nets. Several forms of event structures suited
for the modelling of reversible computation have recently been developed;
also a method for reversing occurrence nets has been proposed. This
paper bridges the gap between reversible event structures and reversible
nets. We introduce the notion of reversible occurrence net, which is a gen-
eralisation of the notion of reversible unfolding. We show that reversible
occurrence nets correspond precisely to a subclass of reversible prime
event structures, the causal reversible prime event structures.
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1 Introduction
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systems. The ingredients of an event structure are a set of events and a number of
relations that are used to express which events can be part of a configuration (the
snapshot of a concurrent system), modelling a consistency predicate, and how
events can be added to reach another configuration, modelling the dependencies
among the events. On the net side, the ingredients boil down to constraints on
how transitions may be executed, and usually have a structural flavour.

Since the introduction of event structures there has been a flourish of inves-
tigations into the possible relations among events, giving rise to a number of
different definitions of event structures. We first mention the classical prime
event structures [29] where the dependency between events, called causality, is
given by a partial order and the consistency is determined by a conflict relation.
Flow event structures [6] drop the requirement that the dependency should be a
partial order, and bundle event structures [18] are able to represent OR-causality
by allowing each event to be caused by a member of a bundle of events. Asym-
metric event structures [3] introduce the notion of weak causality that can model
asymmetric conflicts. Inhibitor event structures [2] are able to faithfully capture
the dependencies among events which arise in the presence of read and inhibitor
arcs. In [4] event structures, where the causality relation may be circular, are
investigated, and in [1] the notion of dynamic causality is considered. Finally,
we mention the quite general approach presented in [27], where there is a unique
relation, akin to a deduction relation. To each of the aforementioned event struc-
tures a particular class of nets corresponds. To prime event structures we have
occurrence nets, to flow event structures we have flow nets, to bundle event
structures we have unravel nets [7], to asymmetric and inhibitor event struc-
tures we have contextual nets [2,3], to event structures with circular causality
we have lending nets [4], to those with dynamic causality we have inhibitor
unravel nets [8] and finally to the ones presented in [27] 1-occurrence nets are
associated.

Recently a new type of event structure tailored to model reversible compu-
tation has been proposed [24,26]. In particular, in [24], reversible prime event
structures have been introduced. In this kind of event structure two relations
are added: the reverse causality relation and the prevention relation. The first
one is a standard dependency relation: in order to reverse an event some other
events must be present. The second relation, on the contrary, identifies those
events whose presence prevents the event being reversed. This kind of event
structure is able to model both causal-consistent reversibility [9,15,23] and
out-of-causal-order reversibility [13,25]. Causal-consistent reversibility relates
reversibility with causality: an event can be undone provided that all of its
effects have been undone first. This allows the system to get back to a past
state, which was possible to reach by just the normal (forward) computation.
This notion of reversibility is natural in reliable distributed systems since when
an error occurs the system tries to go back to a past consistent state. Examples
of application of causal-consistent reversibility to model reliable systems include
transactions [10,14] and rollback protocols [28]. Also, there are applications in
program analysis and debugging [12,17]. The out-of-causal-order reversibility
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does not preserve causes, and this feature makes it suitable to model biochemical
reactions where, for example, a bond can be undone ‘out-of-order’ thus leading
to a new state that was not present before.

Reversibility in Petri nets has been studied in [19,22] with two different
approaches. In [22] reversibility in an acyclic Petri net is obtained by adding a
new kind of tokens, called bonds, that keep track of the execution history. Bonds
are rich enough to permit modelling of both the causal-consistent and out-of-
causal order reversibility. In [19] a notion of unfolding of a P/T (place/transition)
net, where all the transitions can be reversed, has been proposed. By resorting
to standard notions of the Petri net theory [19] provides a causal-consistent
reversible semantics for P/T nets. This exploits the well-known unfolding of
P/T nets into occurrence nets [29], and is done by adding for each transition
its reversible counterpart. We also note that a problem of making a Petri net
reversible (meaning every computation is able to reach back to the initial state)
has been solved by showing how to add a minimal number of additional transi-
tions [5].

In this paper we study what kind of nets can be associated with reversible
prime event structures. To this aim we introduce reversible occurrence nets,
which are occurrence nets enriched with additional transitions (called reversing
transitions) that undo the effects of executing the ordinary transitions.

Each reversing transition (event in the occurrence net dialect) is associated
with a unique transition that produces the effects that the reversing transi-
tion undoes. A reversing event associated with an event e can be executed in
a reversible occurrence net only when all the events caused by e have been
previously reversed. If this is not possible then the reversing event cannot be
executed. This means that some events in a reversible event structure may pre-
vent the occurrence of a reversing event. A reversible occurrence net where the
reversing events have been removed is just an occurrence net. This discussion
suggests a natural way of relating reversible occurrence nets and reversible prime
event structures: the causality relation is the one induced by the occurrence net
while the prevention relation is induced by the inverse of causality: a reversing
event associated with e is prevented by any event that causally depends on e. In
this way we associate a reversible occurrence net with a causal reversible prime
event structure [24,26], which is a subclass of reversible prime event structures.

We also show how to obtain a reversible occurrence net from a causal
reversible prime event structure. The ingredients that are used are just the
causality relation and the set of reversible events. We prove that the two for-
malisms have the same configurations. Hence, this gives us the precise correspon-
dence between causal reversible prime event structures and reversible occurrence
nets. We do not consider non-causal reversible prime event structures here; how-
ever, we hint at how this can be done in Sect. 5.

Structure of the Paper. Section 2 reviews some preliminary notions for nets and
event structures, including reversible prime event structures. Section 3 recalls the
well-known relationship between prime event structures and occurrence nets. The
core of the paper is Sect. 4 where we first introduce reversible occurrence nets
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and then we show how to obtain a reversible occurrence net from an occurrence
net. We then show how to associate a causal reversible prime event structure
with a reversible occurrence net, and vice versa. Section 5 concludes the paper.

2 Preliminaries

We denote with N the set of natural numbers. Let A be a set, a multiset of A is a
function m : A → N. The set of multisets of A is denoted by μA. We assume the
usual operations on multisets such as union + and difference −, and k ·m stands
for the scalar multiplication of m by k, i.e., (k · m)(a) = k · m(a) for all a ∈ A.
We write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. For m ∈ μA, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a ∈ m to denote that
m(a) �= 0, and often confuse the multiset m with the set {a ∈ A | m(a) �= 0}.
Furthermore we use the standard set operations like ∩, ∪ or \. Given a set A and
a relation < ⊆ A×A, we say that < is an irreflexive partial order whenever it is
irreflexive and transitive. We shall write ≤ for the reflexive closure of a partial
order <.

2.1 Petri Nets

We review the notion of Petri net along with some auxiliary notions.

Definition 1. A Petri net is a 4-tuple N = 〈S, T, F,m〉, where S is a set of
places and T is a set of transitions (with S ∩ T = ∅), F ⊆ (S × T ) ∪ (T × S) is
the flow relation, and m ∈ μS is called the initial marking.

Given a net N = 〈S, T, F,m〉 and x ∈ S ∪ T , we define the following sets:
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}, which can be viewed as multisets.
If x ∈ S then •x ∈ μT and x• ∈ μT ; analogously, if x ∈ T then •x ∈ μS and
x• ∈ μS. A multiset of transitions A ∈ μT , called step, is enabled at a marking
m ∈ μS, denoted by m [A〉 , whenever •A ⊆ m, where •A =

∑
x∈[[A]] A(x) · •x.

A step A enabled at a marking m can fire and its firing produces the marking
m′ = m − •A + A•, where A• =

∑
x∈[[A]] A(x) · x•. The firing of A at a

marking m is denoted by m [A〉m′. We assume that each transition t of a net N
is such that •t �= ∅, meaning that no transition may fire spontaneously. Given
a generic marking m (not necessarily the initial one), a (step) firing sequence
(shortened as fs) of N = 〈S, T, F,m〉 starting at m is defined as: (i) m is a
firing sequence (of length 0), and (ii) if m [A1〉m1 · · · mn−1 [An〉mn is a firing
sequence and mn [A〉m′, then also m [A1〉m1 · · · mn−1 [An〉mn [A〉m′ is a firing
sequence. Let us note that each step A such that |A| = n can be written as
A1 + · · · + An where for each 1 ≤ i ≤ n it holds that Ai = [[Ai]] and |Ai| = 1,
and m [A〉m′ then, for each decomposition of A in A1 + · · · + An, we have that
m [A1〉m1 . . . mn−1 [An〉mn = m′. When A is a singleton, i.e. A = {t}, we write
m [t〉m′. The set of firing sequences of a net N starting at a marking m is
denoted by RN

m and it is ranged over by σ. Given an fs σ = m [A1〉σ′ [An〉mn,
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we denote with start(σ) the marking m, with lead(σ) the marking mn and
with tail(σ) the fs σ′ [An〉mn. tail(σ) is defined only when σ has length greater
than 0. Given a net N = 〈S, T, F,m〉, a marking m is reachable iff there exists
an fs σ ∈ RN

m such that lead(σ) is m. The set of reachable markings of N is
MN = {lead(σ) | σ ∈ RN

m }. Given an fs σ = m [A1〉m1 · · · mn−1 [An〉m′, we
write Xσ =

∑n
i=1 Ai for the multiset of transitions associated to fs. We call Xσ

a state of the net and write St(N) = {Xσ ∈ μT | σ ∈ RN
m } for the set of states

of N .

Definition 2. A net N = 〈S, T, F,m〉 is said to be safe if each marking m ∈ MN

is such that m = [[m]].

In this paper we consider safe nets N = 〈S, T, F,m〉 where each transition can
be fired, i.e. ∀t ∈ T ∃m ∈ MN . m [t〉 , and every place is reachable (i.e., marked
in at least one reachable marking).

2.2 Prime Event Structures

We now recall the notion of prime event structure [29].

Definition 3. A prime event structure (pes) is a triple P = (E,<,#), where

– E is a countable set of events,
– < ⊆ E × E is an irreflexive partial order called the causality relation, such

that ∀e ∈ E. {e′ ∈ E | e′ < e} is finite, and
– # ⊆ E × E is the conflict relation, which is irreflexive, symmetric and

hereditary with respect to <: if e # e′ < e′′, then e # e′′ for all e, e′, e′′ ∈ E.

Intuitively, e < e′ models that e′ can occur only after e, while e # e′ indicates
that e and e′ are mutually exclusive. Given an event e ∈ E, �e� denotes the
set {e′ ∈ E | e′ ≤ e}. A set of events X ⊆ E is left-closed if ∀e ∈ X.�e� ⊆ X.
Given a set X ⊆ E of events, we say that X is conflict free, written CF(X),
iff for all e, e′ ∈ X it holds that e �= e′ ⇒ ¬(e # e′). Given X ⊆ E such
that CF(X) and Y ⊆ X, then also CF(Y ). When adding reversibility to peses,
conflict heredity may not hold. Therefore, we rely on a weaker form of pes by
following the approach in [24].

Definition 4. A pre-pes (ppes) is a triple P = (E,<,#), where

– E is a set of events,
– # ⊆ E × E is an irreflexive and symmetric relation,
– < ⊆ E ×E is an irreflexive partial order such that for every e ∈ E. {e′ ∈ E |

e′ < e} is finite and conflict free, and
– ∀e, e′ ∈ E. if e < e′ then not e # e′.

A ppes is a prime event structure in which conflict heredity does not hold, and
since every pes is also a ppes the notions and results stated below for ppeses
also apply to peses.
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Definition 5. Let P = (E,<,#) be a ppes and X ⊆ E such that CF(X). For
A ⊆ E, we say that A is enabled at X if A∩X = ∅ and CF(X ∪A), and ∀e ∈ A.
if e′ < e then e′ ∈ X. If A is enabled at X, then X can reach Y = X ∪ A, and
is written as X

A−→ Y .

Definition 6. Let P = (E,<,#) be a ppes and X ⊆ E such that CF(X). X
is a forwards reachable configuration if there exists a sequence A1, . . . , An, such
that Xi

Ai−→ Xi+1 for all i, and X1 = ∅ and Xn+1 = X. We write Confppes(P )
for the set of all (forwards reachable) configurations of P .

When a ppes is a pes we shall write Confpes(P ) instead of Confppes(P ), with
Confpes(P ) = Confppes(P ) holding. A pes can be obtained from a ppes.

Definition 7. Let P = (E,<,#) be a ppes. Then hc(P ) = (E,<, �) is the
hereditary closure of P , where � is derived by using the following rules

e # e′

e � e′
e � e′ e′ < e′′

e � e′′
e′ � e

e � e′

The following proposition relates ppes to pes [24].

Proposition 1. Let P = (E,<,#) be a ppes. Then

– hc(P ) = (E,≤, �) is a pes,
– if P is a pes, then hc(P ) = P , and
– Confppes(P ) = Confpes(hc(P )).

2.3 Reversible Prime Event Structures

We now focus on the notion of reversible prime event structure. The definitions
and the results in this subsection are drawn from [24]. In reversible event struc-
tures some events are categorised as reversible. In addition to the usual causality
and conflict relations, reversible event structures incorporate two new ones that
relate events and those representing the actual undoing of the reversible events.
The undoing of events is represented by removing them (from a configuration),
which is achieved by executing the appropriate reversing events.

Definition 8. A reversible prime event structure (rpes) is the tuple P = (E,U,
<,#,≺, �) where (E,<,#) is a ppes, U ⊆ E are the reversible/undoable events
(with reverse events being denoted by U = {u | u ∈ U} and disjoint from E, i.e.,
U ∩ E = ∅) and

– � ⊆ E × U is the prevention relation,
– ≺ ⊆ E ×U is the reverse causality relation and it is such that u ≺ u for each

u ∈ U and {e ∈ E | e ≺ u} is finite and conflict-free for every u ∈ U ,
– if e ≺ u then not e � u,
– the sustained causation � is a transitive relation defined such that e � e′ if

e < e′ and e ∈ U , then e′ � e, and
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– # is hereditary with respect to �: if e # e′ � e′′, then e # e′′.

The ingredients of an rpes partly overlap with those of a pes: there is a causal-
ity relation (<) and a conflict one (#) and the two are related by the sus-
tained causation relation �. The new ingredients are the prevention relation
and the reverse causality relation. The prevention relation states that certain
events should be absent when trying to reverse an event, e.g., e � u states that
e should be absent when reversing u. The reverse causality relation e ≺ u says
that u can be executed only when e is present.

Example 1. Let P = (E,U,<,#,≺, �) where E = U = {a, b, c}, a < b and a ≺ a,
b ≺ b, c ≺ c, c ≺ a with b � a and no conflict. Then a � b because a < b and
b � a. P states that b causally depends on a and that c is concurrent w.r.t. both
a and b. Note that every event is reversible in P because U = E. As expected,
the reverse causality relation ≺ is defined such that every reverse event requires
the presence of the corresponding reversible event, i.e., e ≺ e for all e ∈ E.
Additionally, it also requires c ≺ a, i.e., a can be reversed only when c is present.
The prevention relation states that a cannot be reversed when b is present, i.e.,
b � a.

Definition 9. Let P = (E,U,<,#,≺, �) be an rpes and X ⊆ yE be a set of
events such that CF(X). For A ⊆ E and B ⊆ U , we say that A ∪ B is enabled
at X if

– A ∩ X = ∅, B ⊆ X and CF(X ∪ A),
– ∀e ∈ A, e′ ∈ E. if e′ < e then e′ ∈ X \ B,
– ∀e ∈ B, e′ ∈ E. if e′ ≺ e then e′ ∈ X \ (B \ {e}),
– ∀e ∈ B, e′ ∈ E. if e′ � e then e′ �∈ X ∪ A.

If A ∪ B is enabled at X then X
A∪B−→ Y where Y = (X \ B) ∪ A.

Example 2. Consider the rpes in Example 1. We have, e.g., ∅ {a,c}−→ {a, c} {a}−→
{c} and ∅ {a}−→ {a} {b}−→ {a, b} {c,b}−→ {a, c} {b}−→ {a, b, c}. While ∅ {a}−→ {a}
holds, ∅ {a}−→ {a} {a}−→ {} does not hold; this is because a ≺ a and c ≺ a
require that a and c are in the configuration ({a}) for {a} to be enabled. Also

∅ {a,c}−→ {a, c} {b}−→ {a, c, b} holds but {a, c, b} {a}−→ {b, c} does not hold since,
given b � a, the presence of b prevents the execution of a.

Reachable configurations are sets of events that can be reached from the empty
set by performing events or undoing previously performed events.

Definition 10. Let P = (E,U,<,#,≺, �) be an rpes and let X ⊆ E be a set of
events such that CF(X). We say that X is a (reachable) configuration if there
exist two sequences of sets Ai and Bi, for i = 1, . . . , n, such that

– Ai ⊆ E and Bi ⊆ U for all i, and

– Xi

Ai∪Bi−→ Xi+1 for all i with X1 = ∅ and Xn+1 = X.
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The set of configurations of P is denoted by Confrpes(P).

Example 3. The set of configurations of P defined in Example 1 is Confrpes(P) =
{∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}} as illustrated by the sequences shown in
Example 2.

As discussed in Sect. 1, rpeses accommodate different flavours of reversibility.
Henceforth, we focus on causal-consistent reversibility [9,16], which is one of
the most common models of reversibility in distributed systems, in which an
event can be reversed only when all the events it has caused have already been
reversed. In the setting of rpeses we consider these two forms of causal-consistent
reversibility.

Definition 11. Let P = (E,U,<,#,≺, �) be an rpes. Then P is cause-
respecting if for any e, e′ ∈ E, if e < e′ then e � e′. P is causal if for any
e ∈ E and u ∈ U the following holds: e ≺ u iff e = u, and e � u iff u < e.

Example 4. The rpes P in Example 1 is a cause-respecting rpes. However P is
not causal because of c ≺ a, which means that c has to be present for a to be
reversed even if c does not causally depend on a. If we remove c ≺ a then we
obtain a causal rpes.

Example 5. An example of out-of-causal order reversibility can be obtained from
the definition of the rpes P in Example 1 by replacing b � a by a � b. Then, we

have ∅ {a}−→ {a} {b,c}−→ {a, b, c} {a}−→ {b, c}. Note that a can be reversed even in
the presence of the event b, which causally depends on a.

Cause-respecting and causal rpeses enjoy the following useful properties [24].

Proposition 2. Let P = (E,U,<,#,≺, �) be an rpes. Let X be a left-closed
and conflict-free set of events in E and let A,B ⊆ U . Then

– if P is cause-respecting and X
A∪B−→ X ′, then X ′ is also left-closed,

– if P is cause-respecting and X
B−→ X ′, then X ′ B−→ X,

– if P is causal and X
A∪B−→ X ′, then X ′ B∪A−→ X.

Example 6. The above properties do not hold when an rpes is not cause-
respecting or not causal. Consider the rpes in Example 5. We have that

{a, b, c} {a}−→ {b, c} but {b, c} is not left-closed.

A particular rôle will be played by the configurations that can be reached
without executing any reversible event.

Definition 12. Let P = (E,U,<,#,≺, �) be an rpes and X ∈ Confrpes(P) be a
configuration. X is forwards reachable if there exists a sequence of sets Ai ⊆ E,
for i = 1, . . . , n, such that Xi

Ai−→ Xi+1 for all i, with X1 = ∅ and Xn+1 = X.

The set {b, c} in Example 6 is a reachable configuration which is not forwards
reachable. The configurations of a cause-respecting rpes are forwards reachable
(see [24]).

Proposition 3. Let P = (E,U,<,#,≺, �) be a cause-respecting rpes, and let
X be a configuration of P. Then X is forwards reachable.
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3 Occurrence Nets and Prime Event Structures

We review the notion of occurrence nets [21,29]. Given a net N = 〈S, T, F,m〉,
we write <N for the transitive closure of F , and ≤N for the reflexive closure
of <N . We say N is acyclic if ≤N is a partial order. For occurrence nets, we
adopt the usual convention and refer to places and transitions respectively as
conditions and events, and correspondingly use B and E for the sets of conditions
and events [29]. We will often confuse conditions with places and events with
transitions.

Definition 13. An occurrence net (on) C = 〈B,E, F, c〉 is an acyclic, safe net
satisfying the following restrictions:

– ∀b ∈ B. •b is either empty or a singleton, and ∀b ∈ c. •b = ∅,
– ∀b ∈ B. ∃b′ ∈ c such that b′ ≤C b,
– for all e ∈ E the set �e� = {e′ ∈ E | e′ ≤C e} is finite, and
– # ⊆ E × E defined as e #0 e′ iff e, e′ ∈ E, e �= e′ and •e ∩ •e′ �= ∅, x # x′

iff ∃y, y′ ∈ E such that y #0 y′ and y ≤C x and y′ ≤C x′, is an irreflexive
and symmetric relation.

The intuition behind occurrence nets is the following: each condition b represents
the occurrence of a token, which is produced by the unique event in •b, unless
b belongs to the initial marking, and it is used by only one transition (hence if
e, e′ ∈ b•, then e # e′). On an occurrence net C it is natural to define a notion
of causality among elements of the net: we say that x is causally dependent on
y iff y ≤C x. Occurrence nets are often the result of the unfolding of a (safe)
net. In this perspective an occurrence net is meant to describe precisely the
non-sequential semantics of a net (a semantics where concurrency is faithfully
represented), and each reachable marking of the occurrence net corresponds to a
reachable marking in the net to be unfolded. Here we focus purely on occurrence
nets and not on the nets they are unfoldings of.

Definition 14. Let C = 〈B,E, F, c〉 be a on and X ⊆ E be a set of events.
Then X is a configuration of C whenever CF(X) and ∀e ∈ X. �e� ⊆ X. The set
of configurations of the occurrence net C is denoted by Confon(C).

Given an occurrence net C = 〈B,E, F, c〉 and a state X ∈ St(C), it is easy
to see that it is conflict free, i.e. ∀e, e′ ∈ X. e �= e′ ⇒ ¬(e # e′), and left closed,
i.e. ∀e ∈ X. {e′ ∈ E | e′ ≤C e} ⊆ X.

The following propositions make clear the relations between prime event
structures, occurrence nets, states of the occurrence nets and configurations of
the prime event structures. Proofs are standard and can be found in papers
investigating prime event structures and occurrence nets.

Proposition 4. Let C = 〈B,E, F, c〉 be an occurrence net and X ∈ St(C). Then
X ∈ Confon(C).

Occurrence nets and prime event structures are connected as follows [29].
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b3 b4 b5

b2 b4 b2 b3

b2 b2 b3

b1 b3

b1
b1 b1

e1 e2 e1 e2

e1

e2

e1 e2

e3 e4

C1 C2 C3 C4

Fig. 1. Some occurrence nets

Proposition 5. Let C = 〈B,E, F, c〉 be an occurrence net. Then P(C) =
(E,≤C , #) is a pes, and Confon(C) = Confpes(P(C)).

Example 7. Figure 1 illustrates some (finite) occurrence nets (nets are depicted
as usual). We can associate peses to them as follows. The net C1 has two con-
current events, which are neither causally ordered nor in conflict; hence < and
# are empty. The events e1 and e2 in C2 are in conflict, i.e., e1 # e2, while they
are causally ordered in C3, namely e1 < e2, but not in conflict. Finally, in C4 we
have e1 < e3 and e2 < e4 and e1 # e2. Additionally, conflict inheritance give us
e1 # e4, e2 # e3 and e3 # e4.

Conversely, every pes can be associated with an occurrence net. With #(A)
we denote the set of events A such that ∀e, e′ ∈ A. e �= e′ ⇒ e # e′.

Proposition 6. Let P = (E,<,#) be a pes and let ⊥ �∈ E be a new symbol.
Then E(P ) = 〈B,E, F, c〉 defined as follows

– B = {(a,A) | a ∈ E ∪ {⊥} ∧ A ⊆ E ∧ #(A) ∧ (a �= ⊥ ⇒ ∀e ∈ A. a < e)},
– F = {(b, e) | b = (a,A) ∧ e ∈ A} ∪ {(e, b) | b = (e,A)}, and
– c = {(a,A) | (a,A) ∈ B ∧ a = ⊥}.
is an occurrence net, and Confpes(P ) = Confon(E(P )).

4 Reversible Occurrence Nets and Causal Reversible
Prime Event Structures

We now introduce the notion of reversible occurrence nets. A similar notion has
been proposed in [19] for adding causal-consistent reversibility to Petri nets by
making reversible every event in the unfolding of the net. In this work we deal
with a generalised version of reversible occurrence nets in which transitions may
be irreversible, i.e., we do not require every transition of a net to be undoable.
The intuition behind reversible occurrence nets is the following: we add special
transitions (events in the classical occurrence net terminology) to an occurrence
net which, when executed, undo the execution of other (standard) transitions.
When we remove these special transitions from a reversible causal net we obtain
a standard occurrence net.
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Definition 15. A reversible occurrence net (ron) is a tuple R = 〈B,E,U, F, c〉
where 〈B,E, F, c〉 is a safe net such that

– U ⊆ E and ∀u ∈ U . ∃! e ∈ E \ U such that •u = e• and u• = •e,
– ∀e, e′ ∈ E. •e = •e′ ∧ e• = e′• ⇒ e = e′,
–

⋃
e∈E( •e ∪ e•) = B, and

– CE\U = 〈B,E \ U,F ′, c〉 is an occurrence net, where F ′ is the restriction of
F to the transitions in E \ U .

The events in U are the reversing ones and we often say that a reversible occur-
rence net R is reversible with respect to U . We write E for the set of events
E \ U and CE instead of CE\U . The first condition in Definition 15 implies that
each reversing event u ∈ U is associated with a unique event e that causes the
effects that u is intended to undo; hence e here is a reversible event. Moreover,
the second condition ensures that there is an injective mapping h : U → E that
associates each event u ∈ U with a different event e ∈ E such that •e = u• and
e• = •u, in other words, each reversible event has exactly one reversing event.
The third requirement guarantees that all conditions (places) of the net appear
at least in the pre or the postset of some event (transition), i.e., there are no
isolated conditions. The last condition ensures that the net obtained by deleting
all reversing events is an occurrence net.

Example 8. We present some reversible occurrence nets in Fig. 2. The reversing
events are drawn in red, and their names are underlined. The events e1 and e2
in R1 are both reversible, while e1 is the only reversible event in R2. In R3 the
events e1, e3 and e4 are the reversible ones.

We prove that the set of reachable markings of a reversible occurrence net is
not influenced by performing reversing events.

b4 b5

b2 b4 b2 b3

b2 b3

b1 b3 b1

b1

e1 e2e1 e2 e1e1 e2

e1 e2e1

e3e3 e4 e4

R1 R2 R3

Fig. 2. Some reversible occurrence nets
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Proposition 7. Let R = 〈B,E,U, F, c〉 be an ron. Then MR = MCE
.

Proof. One direction is trivial, namely MCE
⊆ MR. For the other direction, we

first observe that ¬(c [e〉 ) holds for all e ∈ U . This is because CE is an occurrence
net, and this implies that ∀b ∈ c. •b is either ∅ or it contains elements in Er,
and ∀e ∈ U . •e ∩ b• = ∅. Now we show that if an event u ∈ U is executed
then the corresponding event h(u) has been executed before. W.l.o.g. we assume
that all the events executed before u are the events in E \ U . Consider the fs
σ [u〉σ′, then we have lead(σ) [u〉 , which means that •u ⊆ lead(σ), but the
conditions •u have been produced by the execution of a unique event, namely
h(u). Now we prove that σ [u〉m can be reached without executing both u and
h(u). Consider the marking lead(σ), as σ [u〉 we know that h(u)• ⊆ lead(σ).
Now σ can be rewritten as σ′′ [h(u)〉σ′′′ and h(u) is concurrent with all the
events in σ′′′, which means that σ can be rewritten as σ̂ [h(u)〉 lead(σ). Now we
have m = lead(σ̂) which implies that each reachable marking can be reached
executing the events in E \ U only, hence MR ⊆ MCE

.

A consequence of the above proposition is the following corollary, which
establishes that each marking can be reached by using just forward events.

Corollary 1. Let C = 〈B,E,U, F, c〉 be an ron and σ be an fs. Then, there
exists an fs σ′ such that Xσ′ ⊆ E and lead(σ) = lead(σ′).

Definition 16. Let R = 〈B,E,U, F, c〉 be an ron, and X ⊆ E be a set
of forward events. Then, X is a configuration of R whenever CF(X) and
∀e ∈ X. �e� ∩ E ⊆ X. The set of configurations of R is usually denoted with
Confron(R).

A configuration of a reversible occurrence net R with respect to U is a subset of
E\U ; consequently, the reversing events (i.e., the ones in U) that may have been
executed to reach a particular marking are not considered as part of the con-
figuration. Observe that, differently from occurrence nets, St(R) �= Confron(R)
because the former may contain also reversing events. However, as a consequence
of Corollary 1, there is no loss of information.

Proposition 8. Let R = 〈B,E,U, F, c〉 be an ron. Then X ∈ Confron(R) iff
X ∈ Confon(CE).

We show how to construct a reversible occurrence net from an occurrence net,
once we have identified the events to be reversed.

Definition 17. Let C = 〈B,E, F, c〉 be an occurrence net and U ⊆ E be the set
of reversible events. Define R(C) = 〈B, Ê, U × {r}, F̂ , c〉 be the net where Ê and
F̂ are defined as follows:

– Ê = E × {f} ∪ U × {r}, and
– F̂ = {(b, (e, f)) | (b, e) ∈ F} ∪ {((e, f), b) | (e, b) ∈ F} ∪

{(b, (e, r)) | (e, b) ∈ F} ∪ {((e, r), b) | (b, e) ∈ F}.
The mapping h : U × {r} → E × {f} is defined as h(e, r) = (e, f).
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The construction above simply adds as many events (transitions) as those to
be reversed. The preset of each added event is the postset of the corresponding
event to be reversed, and its postset is defined as the preset of the event to be
reversed. The events in U × {r} are the reversing events.

Proposition 9. Let C = 〈B,E, F, c〉 be an occurrence net, U ⊆ E be the set of
reversible events, and R(C) = 〈B, Ê, U × {r}, F̂ , c〉 be the net in Definition 17.
Then, R(C) is a reversible occurrence net with respect to U × {r}.
Proof. We just have to prove that R(C) is a safe net; the other conditions are
satisfied by construction. First we observe that if b �∈ c and •b is not a singleton
in R(C) then •b contains at most one event of the form (e, f), and it contains
at least one of the form (e′, r), and these are originated by the events in b• in
C. In the case b ∈ c and •b is not empty, then again •b contains only events of
the form (e′, r), and these are originated by the events in b• in C. Assume it is
not, and assume that b ∈ B is the condition which receives a token when it is
already marked. As C is an occurrence net, if the condition is marked then the
event e ∈ E such that b ∈ e• has been executed and none of the events e′ ∈ E
such that e′ ∈ b• (if any) have yet been executed. Thus in R(C) the event (e, f)
has been executed and none of the events (e′, f) ∈ b• has been executed yet. To
be marked again an event of the form (e′′, r) ∈ •b should have occurred, but this
is impossible as none of the events (e′, f) ∈ b• have been executed, and among
these also (e′′, f), contradicting the fact that the condition b is marked again.

Example 9. Consider the occurrence net C1 in Fig. 1, and assume that both
events are reversible. The net R1 in Fig. 2 is R(C1) (after renaming events with
the convention that (e, f) is named as e and (e, r) as e). The ron R3 in Fig. 2 is
R(C4), with C4 in Fig. 1 and the set of reversible events U = {e1, e2, e4}.

From ron to rpes: As is usually done for occurrence nets, we now associate each
reversible occurrence net with a reversible prime event structure. Given an ron
R = 〈B,E,U, F, c〉, we denote the set of events {e′ | e <R e′} by �e�. Observe
that this set is not necessarily conflict-free.

Proposition 10. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net with
respect to U , then Cr(R) = (E′, U ′, <,#,≺, �) is its associated rpes, where

– E′ = E and U ′ = h(U),
– < is <CE

, and # is the conflict relation defined on the occurrence net CE,
– e � e′ whenever e ∈ �e′�, e ≺ e′ whenever e = e′, and �=<.

Proof. First of all it is quite clear that (E′, <,#) is a ppes (if we close < reflex-
ively we get indeed a pes), as it is obtained by CE . The relation ≺ ⊆ E′ × U ′

satisfies the requirement that e ≺ e and that {e′ | e′ ≺ e} is finite for each e ∈ U ′

as it contains just e. If e ≺ e then not e � e as e �∈ �e�. The sustained causation
relation � coincides with the relation < and so the conflict relation is inherited
along this relation. Furthermore, for e ∈ U ′, if e < e′ for some e′, then we have
that e′ � e, as required. We can then conclude that Cr(R) is an rpes.
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Example 10. Consider the reversible occurrence net R3 in Fig. 2. The associated
rpes has the events {e1, e2, e3, e4} and the reversible events {e1, e3, e4}. The
causality relation of the associated ppes is e1 < e3, e2 < e4, the conflict relation
is generated by e1#e2, and it is inherited along �, which coincides with <. The
reverse causality stipulates that e1 ≺ e1, e3 ≺ e3 and e4 ≺ e4 and finally e3 � e1,
as to be allowed to undo e1 it is necessary to undo e3 first.

The following result states that the rpes associated to a reversible occurrence
net is causal, hence cause-respecting.

Proposition 11. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net with
respect to U and Cr(R) = (E′, U ′, <,#,≺, �) be the associated rpes. Then Cr(R)
is a causal rpes.

Proof. Easy inspection of the construction in Proposition 10. The sustained
causality � clearly coincides with <. If e ≺ e′ then e′ = e and by construc-
tion if e � e′ then e′ < e as e ∈ �e′�.
We show that each configuration of an ron is a configuration of the correspond-
ing rpes, and vice versa.

Theorem 1. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net with respect
to U and Cr(R) = (E′, U ′, <,#,≺, �) be the associated rpes. Then X ⊆ E′ is a
configuration of R iff X is a configuration of Cr(R).

Proof. As Cr(R) is a cause-respecting and causal rpes we have that each config-
uration is forward reachable, and the forward reachable configurations are pre-
cisely those conflict-free and left-closed of the ppes Cr(R) = (E′, <,#), which
correspond to the configurations of the occurrence net RE .

We stress that a reversing event in a reversible occurrence net is enabled at
a marking when the conditions in the postset of the event to be reversed are
marked. This may happen only when all the events that causally depend on the
event to be reversed have either been executed and reversed or have not been
executed at all. Thus every ron enjoys causally consistent reversibility [9,15],
and consequently cannot implement the so called out-of-causal order reversibil-
ity [13]. In contrast, rpeses are able to model out-of-causal order reversibility
(as illustrated in Example 5).

Proposition 12 below formalises what are called mixed-reverse transitions
in [11], namely a correspondence between the steps in a reversible occurrence
net and the sequences of reachable configurations of the associated rpes. We
now introduce some auxiliary notation. Let R = 〈B,E,U, F, c〉 be an ron, and
X ⊆ E be a configuration of R, we write mark(X) to denote the marking reached
after executing the events in X; this marking can be expressed as (c∪X•)\ •X.

Proposition 12. Let R = 〈B,E,U, F, c〉 be a reversible occurrence net and
Cr(R) = (E′, U ′, <,#,≺, �) be its associated rpes. Let X ∈ Confron(R) and
A ⊆ E be a set of events such that mark(X) [A〉 . Then Â ∪ B is enabled at X in
Cr(R), where Â = {e ∈ A | e �∈ U} and B = {e ∈ A | e ∈ U}.



Reversible Occurrence Nets and Causal Reversible Prime Event Structures 49

Proof. By Theorem 1 we know that X ∈ Confrpes(Cr(R)). We have to check that
Â ∪ B is enabled at X. As mark(X) [A〉 we know that •A ⊆ mark(X), hence
A ∩ X should be equal to ∅. Furthermore for any e ∈ A ∩ U , as mark(X) [{e}〉 ,
we have that h(e) ∈ X (otherwise the conditions enabling e would not have
been produced), and then we have that B = {h(e) | e ∈ B} ⊆ X. Finally, as
mark(X) [A〉 , we have that CF(X ∪ Â) holds. Consider now e ∈ Â, and e′ < e.
Clearly e′ ∈ X \ B. Assume the contrary, then e′ ∈ B and there exists an
e′ ∈ A ∩ U such that h(e′) = e′, but then we have that ¬mark(X) [A〉 . Consider
now e ∈ B (which means that e ∈ A ∩ U) and e′ ≺ e. As Cr(R) is a causal rpes,
we know that e′ = e and e ∈ X \(B\{e}). Take now e ∈ B and e′ �e. This means
that e′ ∈ �e� which implies that e �∈ X, and also that e �∈ Â. By Definition 9 we
can conclude that Â ∪ B is enabled at X. Finally we observe that mark(Y ) = c′

where mark(X) [A〉 c′ and X
Â∪B−→ Y .

From rpes to ron: Correspondingly to what is usually done when relating nets
to event structures, we show that if we focus on causal rpeses then we can relate
them to reversible occurrence nets. The construction is indeed quite standard
(see [4,29] among many others), but we do need a further observation on causal
rpes.

Proposition 13. Let P = (E,U,<,#,≺, �) be a causal rpes. Then, # is inher-
ited along <, i.e. e # e′ < e′′ ⇒ e # e′′.

Proof. In general we have that, given an rpes, (E,�,#) is a pes [24]. But in a
causal rpes we have that � is indeed the transitive closure of <.

A consequence of this proposition is that the conflict relation is fully charac-
terized by the causality relation.

The same intuition underlying the introduction of reversible occurrence net
can be used in associating a net to a causal rpes like the one used to associate
an occurrence net to a pes.

Definition 18. Let P = (E,U,<,#,≺, �) be a causal rpes, and ⊥ �∈ E be a
new symbol. Define Er(P) as the Petri net 〈B, Ê, F, c〉 where

– B = {(a,A) | a ∈ E ∪ {⊥} ∧ A ⊆ E ∧ #(A) ∧ a �= ⊥ ⇒ ∀e ∈ A. a � e},
– Ê = E × {f} ∪ U × {r},
– F = {(b, (e, f)) | b = (a,A) ∧ e ∈ A} ∪ {((e, f), b) | b = (e,A)} ∪

{(b, (e, r)) | b = (e,A)} ∪ {((e, r), b) | b = (a,A) ∧ e ∈ A}, and
– c = {(a,A) | (a,A) ∈ B ∧ a = ⊥}.
In essence the construction above takes the pes associated to an rpes and con-
structs the associated occurrence net, which is then enriched with the reversing
events (transitions). The result is a reversible occurrence net.

Proposition 14. Let P = (E,U,<,#,≺, �) be a causal rpes. Then Er(P) =
〈B, Ê, U × {r}, F, c〉 as defined in Definition 18 is a reversible occurrence net
with respect to U × {r}.
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Proof. By construction Er(P)E×{f} is a occurrence net. The other requirements
can be easily checked. For each (e, r) there exists a unique event (e, f), and if two
events share the same preset and postset they are clearly the same event. Each
condition b ∈ B is clearly related to an event in E ×{f} hence in Ê \ (E′ ×{r}).

Theorem 2. Let P be a causal rpes. Then X ′ is a configuration of Er(P) iff X
is a configuration of P, where X ′ = {(e, f) | e ∈ X}.
Proof. Let P = (E,U,<,#,≺, �). Consider X ∈ Confrpes(P). As P is a cause-
respecting and causal rpes we have that X is forward reachable, hence X is a
configuration of the ppes (E,<,#), which we denote with P , and then X ′ =
{(e, f) | e ∈ X} is a configuration also of the occurrence net associated to this
event structure as, by Proposition 1, we have that Confppes(P ) = Confpes(hc(P )).
For the converse it is enough to observe that, up to renaming of events, Cr(Er(P))
is indeed P.

Clearly, if we start from a reversible occurrence net, we get an rpes from
which a reversible occurrence net can be obtained having the same states (up to
renaming of events).

Corollary 2. Let R be a ron. Then St(Er(Cr(R))) = St(R).

Example 11. Consider the rpes with four events {e1, e2, e3, e4} such that e1 <
e3 and e2 < e4, e1 is in conflict with e2 and this conflict is inherited along
<. Furthermore, let e1 and e3 be reversible, and e3 � e1. The construction in
Definition 18 gives the net below.

(⊥, {e2})

(⊥, {e1, e2})

(⊥, {e1})
(e1, ∅)

(e2, ∅)

(e1, {e3})

(e2, {e4}) (⊥, {e4})

(⊥, {e3})

(e3, ∅)

(e4, ∅)(⊥, {e1, e4})

(⊥, {e2, e3})

(⊥, {e3, e4})

e1

e1

e2

e3

e3

e4

5 Conclusions and Future Work

The constructions we have proposed to associate a reversible occurrence net to a
causal reversible prime event structure, and vice versa, are certainly driven by the
classical ones (see [29]) for relating occurrence nets and prime event structures.
The consequence of this approach is that the causality relation, either the one
given in an rpes or the one induced by the flow relation in the occurrence net
obtained ignoring the reversing events, is the one driving the construction. One
of the other two relations of an rpes is substantially ignored (and we obtain from
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a ron a causal rpes where the reverse causality relation just says that an event
can be reversed only after it has occurred) whereas the second (prevention) is
tightly related to the causality relation: b is caused by a precisely when b prevents
undoing of a. The notion of reversible occurrence net we have proposed suggests
this construction, so the problem of finding which kind of net would correspond
to, for example, a cause-respecting or even an arbitrary rpes remains open and
certainly deserves to be investigated. It is however interesting to observe that
the construction in Definition 18 gives a reversible occurrence net even when
the rpes one started with is not a causal rpes. Consider the rpes with two
events {e1, e2} such that e1 < e2 and where the conflict and the prevention
relations are empty. The only reversible event is e1 and e1 ≺ e1. The set {e2}
is a reachable configuration: we can remove e1 from a reachable configuration
{e1, e2} by performing the event e1. This is an example of out-of-causal order
computation. Given this rpes, our construction produces the following ron,
which does not have {e2} among its configurations.

(⊥, {e1})
(e1, ∅) (e1, {e2}

(⊥, {e2}) (e2, ∅)

e1

e2

e1

The constructions we have proposed are somehow the more adherent to what
is usually done, based on the interpretation that causality implies that the event
causing some other event somehow produces something that is used by the latter.
This is not the only interpretation of what causality could mean. In fact, causality
is often confused with the observation that two causally related events appear
ordered in the same way in each possible execution, and when we talk about
ordered execution, it should be stressed that this can be achieved in several
ways, for instance using inhibitor arcs. Consider the net C:

b1 b2

b3 b4

e1

e2

C

b1 b2

b3 b4

e1

e1

e2

C ′

b1 b2

b3 b4

e1

e1

e2

C ′′

Here the event e2 can be executed only after the event e1 has been exe-
cuted. However, e1 does not produce a token (resource) that must be used by
e2. If we simply make the event e1 reversible but do nothing to prevent revers-
ing of e1 before e2 is reversed, then we would obtain the net C ′. We could do
better in C ′′ where we model prevention using so-called read arcs [20]. Hence,
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using inhibitor or read arcs seem feasible ways forward to capture more precisely
the new relations of rpeses, including prevention. A similar approach has been
already pursued in [8] to model so-called modifiers that are able to change the
causality pattern of an event. This suggests that, for arbitrary rpeses, we need to
find relations different from the flow relation to capture faithfully (forward and
reverse) causal and prevention dependencies. This will be the subject of future
research.

Acknowledgments. The authors would like to thank the reviewers for useful com-
ments and suggestions.
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Abstract. An involutory function, also called involution, is a function f
that is its own inverse, i.e., f(f(x)) = x holds whenever f(x) is defined.
This paper presents a computational model of involution as a variant
of Turing machines, called an involutory Turing machine. The compu-
tational model is shown to be complete in the sense that not only does
an involutory Turing machine always compute an involution but also
every involutory computable function can be computed by an involutory
Turing machine. As any involution is injective (hence reversible), any
involutory Turing machine forms a standard reversible Turing machine
that is backward deterministic. Furthermore, the existence of a universal
involutory Turing machine is shown under an appropriate redefinition of
universality given by Axelsen and Glück for reversible Turing machines.
This work is motivated by characterizing bidirectional transformation
languages.

Keywords: Involution · Reversible Turing machine · Universal Turing
machine · Bidirectional transformation language · Time-symmetric
machine

1 Introduction

An involutory function, also called involution, is a function that is its own inverse,
i.e., f(f(x)) = x holds whenever f(x) is defined. In mathematics, because of their
symmetric behavior, involutions have been used for solving functional equations
and proving theorems, e.g., Zagier’s one-sentence proof for Fermat’s theorem
on sums of two squares [12]. Even in computer science, involutions appear in
cryptographic systems such as one-time pad and RC4.

This paper presents a computational model for involution as a variant of
Turing machines with function semantics, where input and output words are
specified by tapes of initial and final configurations, respectively. The idea to
have such a model for involution is to impose a restriction on a standard Turing
machine so that the reversed run of every valid run is valid. The restriction can
be simply described by associating one transition rule with another according to
a certain involution over states. We call it an involutory Turing machine. It is
easy to find that an involutory Turing machine always computes an involution
under the restriction.

c© Springer Nature Switzerland AG 2020
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The present paper takes a further step. The involutory Turing machine is
shown to be a ‘complete’ computational model for involution: any involutory
computable function can be defined by an involutory Turing machine. That is,
for a given non-involutory Turing machine that computes an involution, there
exists an equivalent involutory Turing machine.

This work is inspired by Axelsen and Glück’s work [1,2] where the expres-
siveness of reversible Turing machines is discussed. A reversible Turing machine
is defined as a backward-deterministic Turing machine and hence computes only
an injective function. They have shown that any injective computable function
can be defined by a reversible Turing machine as we will show for involutory
Turing machines. As an involutory function is a special kind of injective func-
tion, an involutory Turing machine can be regarded as a special reversible Turing
machine.

Furthermore, this paper addresses the universality of involutory Turing
machines as done by Axelsen and Glück [2] for reversible Turing machines. A
standard Turing machine is said to be universal if it can simulate any Tur-
ing machine on arbitrary input, and it is known that there is a universal Turing
machine. As for involutory Turing machines, there is no universal machine under
the same definition of universality because the simulating function is not invo-
lutory. Therefore, we adopt an alternative definition of universality which has
been introduced by Axelsen and Glück for reversible Turing machines. In their
definition, the universal machine is allowed to preserve a given machine descrip-
tion as part of the output. We will show the existence of a universal involutory
Turing machine under this redefinition.

In summary, the main contributions of this paper are as follows.

– An involutory Turing machine is proposed as a multi-tape Turing machine
with restrictive transition rules and tape permutation. An involutory Turing
machine always computes an involution.

– An involutory Turing machine is shown to be complete, i.e., every computable
involution is defined by an involutory Turing machine.

– It is shown that for every k-tape involutory Turing machine, there exists a
2-tape involutory Turing machine that computes an isomorphic function.

– It is shown that there exists a universal involutory Turing machine in terms
of an appropriate definition of universality.

In addition to the above, our design choice, limitations, and applications of invo-
lutory Turing machines will be discussed in Sect. 6. In particular, an application
to bidirectional transformation will shed a light on a practical aspect of our
computational model for involution.

The restriction imposed on Turing machines to be involutory coincides with
time symmetry introduced by Gajardo et al. [5] for cellular automata to describe
a corresponding physical notion. One might call our model a time-symmetric
Turing machine in this sense. More detail is discussed as one of the related work
in Sect. 7.
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2 Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N, the set {1, . . . , n} is
denoted by [n], in particular, [0] = ∅. The set of all words over an alpha-
bet (that is a finite set of symbols) Σ is denoted by Σ∗. For convenience,
we assume that a nested tuple of words can be regarded as a flattened one,
e.g., ((w1, w2), w3) and (w1, (w2, w3)) may be identified with (w1, w2, w3) for
w1, w2, w3 ∈ Σ∗.

For a (binary) relation R ⊆ A × B, a R b stands for (a, b) ∈ R. The identity
relation IdA ⊆ A × A is {(a, a) | a ∈ A}. The composition of two relations
R ⊆ A × B and S ⊆ B × C, denoted by S ◦ R, is given as {(a, c) | ∃b ∈ B, a R b
∧ b S c}. For a relation R ⊆ A × B over two sets A and B, the inverse relation
R−1 ⊆ B × A is defined by {(b, a) | a R b}. A relation R ⊆ A × A is said to
be symmetric if R−1 = R. A relation R ⊆ A × B is said to be functional if
a R b1 and a R b2 imply b1 = b2 for any a ∈ A and b1, b2 ∈ B. A functional
relation R ⊆ A × B, written by R : A → B, is simply called a (partial) function
and R(a) with a ∈ A stands for b ∈ B such that a R b if exists. A function
R : A → B is said to be total if R(a) ∈ B is defined for any a ∈ A. A function
R : A → B is said to be injective if R−1 is functional. For any injective function
R : A → B it is easy to see that R−1 ◦ R ⊆ IdA and R ◦ R−1 ⊆ IdB hold.
A function R : A → B is said to be bijective if both R and R−1 are total and
injective. A function R : A → A is called an involutory if R is symmetric. An
involutory function is also called involution.

A permutation on [k] is a bijective function over [k] for a fixed integer
k ∈ N. A permutation can be expressed as the product of disjoint cycles, e.g.,
(1 5 4)(3 7) denotes a permutation π such that π(1) = 5, π(5) = 4, π(4) = 1,
π(3) = 7, π(7) = 3, and π(i) = i for any other i. The inversion of a permutation
is obtained by reversing every cycle, e.g., ((1 5 4)(3 7))−1 = (4 5 1)(7 3).

3 The Turing Machine and Its Known Variants

The Turing machine is one of the best-known computational models which can
implement any computable function. A Turing machine manipulates symbols on
a doubly-infinite tape of cells according to an internal state and a fixed transition
relation. We use a triplet format [2] to represent the transition relation without
loss of generality. Although it is well known that they are equivalent to single-
tape Turing machines in power [10], we consider multi-tape Turing machines to
make it easy to investigate various properties of involutory Turing machines.
Moreover, our model of multi-tape Turing machines has a single instruction for
permuting the order of tapes. This feature does not change the expressive power
of Turing machines. As its byproduct, we can limit any other instruction only
to the first tape. To apply an instruction to the other tape, we permute tapes so
as for the tape to be the first before the instruction (and permute them back if
needed).
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Definition 3.1 (k-tape Turing machine). A k-tape Turing machine T is a
tuple (Q,Σ, qini, qfin,Δ) where Q is a finite set of states, Σ is a tape alphabet not
containing the special blank symbol 	, qini ∈ Q is the initial state, qfin ∈ Q is
the final state, and Δ = Δrw 
 Δ↔ 
 Δ� is a ternary relation defining a set of
transition rules where:

Δrw ⊆ (Q \ {qfin}) × (Σ� × Σ�) × (Q \ {qini}) (symbol rules)

Δ↔ ⊆ (Q \ {qfin}) × {�, �,�} × (Q \ {qini}) (move rules)

Δ� ⊆ (Q \ {qfin}) × Πk × (Q \ {qini}) (permutation rules)

where Σ� stands for Σ 
{	} and Πk is the set of all permutations over [k]. For
q, q′ ∈ Q, a symbol rule in Δrw has the form (q, s⇒s′, q′) with s, s′ ∈ Σ�; a move
rule in Δ↔ has the form (q, d, q′) with d ∈ {�, �,�}; a permutation rule in Δ�

has the form (q, π, q′) with permutation π ∈ Πk. A permutation rule is said to
be involutory if π is involutory.

As presented in [2], symbol rules and move rules are independently given for
the convenience of further discussion. Although these two kinds of actions are
caused by a single rule in standard Turing machines [10], the separation of rules
does not change the expressiveness of functions. It is easy to simulate a transition
rule in a standard Turing machine by two transition rules and extra states in
the present model. Moreover, the present model introduces permutation rules
(q, π, q′), which permute k tapes without moving their heads in the order given
by a permutation π. Again, they do not change the expressiveness because the
operation can be simulated by a standard Turing machine with maintaining the
left and right ends at the used cells for every tape to copy them to each other.

The configuration of a k-tape Turing machine is specified by the current
internal state and k tapes with their tape head. The status of a tape with its
head is represented by 〈l, s, r〉 ∈ Σω

� ×Σ� ×Σω
� where s is the symbol at its head

position and l and r are the left and right tapes of the head. Note that Σω
� is

the set of infinite words going infinitely to the right. Accordingly, l is ‘mirrored’
where its first symbol is the immediate left one of the head.

Definition 3.2 (Configuration). The configuration of a k-tape Turing
machine T = (Q,Σ, qini, qfin,Δ) is a tuple (q, (〈l1, s1, r1〉, . . . , 〈lk, sk, rk〉)) where
q ∈ Q is an internal state, li, ri ∈ Σω

� for each i ∈ [k] are the left and right of
the i-th tape head and include only finite non-blank symbols, and si ∈ Σ� for
each i ∈ [k] is the symbol at the i-th tape head. The set of all configurations of
T is written by CT .

Definition 3.3 (Computation step). Let T = (Q,Σ, qini, qfin,Δ) be a k-tape
Turing machine. Then a single computation step is defined as a relation �T over
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CT such that

(q, (〈l, s, r〉, . . . )) �T (q′, (〈l, s′, r〉, . . . )) when (q, s⇒s′, q′) ∈ Δ

(q, (〈s′l, s, r〉, . . . )) �T (q′, (〈l, s′, sr〉, . . . )) when (q,�, q′) ∈ Δ

(q, (〈l, s, r〉, . . . )) �T (q′, (〈l, s, r〉, . . . )) when (q, �, q′) ∈ Δ

(q, (〈l, s, s′r〉, . . . )) �T (q′, (〈sl, s′, r〉, . . . )) when (q,�, q′) ∈ Δ

(q, (t1, . . . , tk)) �T (q′, (tπ(1), . . . , tπ(k))) when (q, π, q′) ∈ Δ.

The reflexive transitive closure of �T is denoted by �∗
T .

The semantics of a k-tape Turing machine T is given by a relation over k
words based on �∗

T as below. We follow the style of Axelsen and Glück called a
function semantics where an input and an output word are in the tape at the
initial and the final configuration of a run, respectively, rather than the usual
style with input and output tapes. This view makes it easier to capture the
functional behavior of Turing machines. In the rest of the paper, a finite word
w ∈ Σ∗ is used to represent an infinite word w	ω ∈ Σω

� ; thereby ε denotes 	ω.

Definition 3.4 (Function semantics of Turing machines). Let T =
(Q,Σ, qini, qfin,Δ) be a k-tape Turing machine. The semantics of T , denoted
by �T �, is given by the relation

�T � = {((w1, . . . , wk), (w′
1, . . . , w

′
k)) ∈ (Σ∗)k × (Σ∗)k

| (qini, (〈ε,	, w1〉, . . . , 〈ε,	, wk〉)) �∗
T (qfin, (〈ε,	, w′

1〉, . . . , 〈ε,	, w′
k〉))}.

Recall that we may write �T �(w1, . . . , wk) = (w′
1, . . . , w

′
k) if �T � is functional.

In the rest of the paper, for every Turing machine T it is assumed that for any
sequence (qini, (〈l1, s1, r1〉, . . . , 〈lk, sk, rk〉)) �∗

T (qfin, (〈l′1, s′
1, r

′
1〉, . . . , 〈l′k, s′

k, r′
k〉))

of computation steps, we have (l1, s1) = · · · = (lk, sk) = (ε,	) if and only if
(l′1, s

′
1) = · · · = (l′k, s′

k) = (ε,	). We call it the tidiness assumption.
Here are two examples of Turing machines. It is easy to see that they naturally

conform to the tidiness assumption. Moreover, both examples are reversible as
seen later.

Example 3.5. Let π be a permutation on [k]. The k-tape Turing machine
Perm(π) = ({qini, qfin}, Σ, qini, qfin, {(qini, π, qfin)}) computes a function which
permutes its arguments in accordance with π.

Example 3.6. The 1-tape Turing machine Tbnot = ({qini, qbnot, qdone, qback, qfin},
{0, 1}, qini, qfin,Δ) with

Δ = {(qini,	⇒	, qnext),
(qnext,�, qbnot), (qbnot, 0⇒1, qnext), (qbnot, 1⇒0, qnext), (qbnot,	⇒	, qback),
(qback,�, qdone), (qdone, 0⇒0, qback), (qdone, 1⇒1, qback), (qdone,	⇒	, qfin)}

computes a bitwise negation.
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Definition 3.4 implies that the semantics of a Turing machine returns a tuple
that consists of the same number of words as a given input. However, when the
function either accepts (returns) only empty word for some specific arguments,
we may regard it as a function whose input (output) tuple consists of fewer words.
The next example Dup(1) illustrates the case where a 2-tape Turing machine
computes a function that takes a single word and returns a pair of words.

Example 3.7. A 2-tape Turing machine Dup(1) = (Q,Σ, qini, qfin,Δ) with

Q = {qini, qskip, qcheck, qback, qget, qput, qdone, qfin} ∪
⋃

a∈Σ

{ qg〈a〉, qp〈a〉 }

Δ = { (qini,	⇒	, qskip), (qskip,�, qcheck), (qcheck,	⇒	, qback),
(qback,�, qget), (qput,�, qdone), (qdone, (1 2), qback), (qget,	⇒	, qfin), }∪
⋃

a∈Σ

{ (qcheck, a⇒a, qskip), (qget, a⇒a, qg〈a〉),

(qg〈a〉, (1 2), qp〈a〉), (qp〈a〉,	⇒a, qput)}

computes a duplicate function, i.e., �Dup(1)�(w) = (w,w) for any w ∈ Σ∗. Sim-
ilarly, we can define a 2k-tape Turing machine such that �Dup(k)�(w1, . . . , wk)
= (w1, . . . , wk, w1, . . . , wk) for any w1, . . . , wk ∈ Σ∗.

Definition 3.8 (Forward/backward determinism). Let T = (Q,Σ, qini, qfin,
Δ) be a k-tape Turing machine. Then T is forward deterministic if, for any
distinct pair (q, a1, q1), (q, a2, q2) ∈ Δ of transition rules, we have a1 = s1⇒s′

1

and a2 = s2⇒s′
2 with some s1, s

′
1, s2, s

′
2 ∈ Σ� and s1 �= s2. The Turing machine

T is backward deterministic if, for any distinct pair (q1, a1, q), (q2, a2, q) ∈ Δ of
transition rules, we have a1 = s1⇒s′

1 and a2 = s2⇒s′
2 with some s1, s

′
1, s2, s

′
2 ∈ Σ�

and s′
1 �= s′

2.

The forward (backward) deterministic Turing machine has no pair of move
rules which have the same source (target) state. With regard to a configuration
step C1 �T C2, C1 uniquely determines C2 if T is forward deterministic while C2

uniquely determines C1 if T is backward deterministic. The definition of forward
and backward determinism is exactly the same as local forward and backward
determinism in [2].

Definition 3.9 (Reversible Turing machine). A k-tape Turing machine T
is reversible if T is forward and backward deterministic.

Given an involutory function ϕ over a set Q of states such ϕ(qini) = qfin (hence,
ϕ(qfin) = qini), let us define a function ϕ̃ which ‘flips’ transition rules in terms of
ϕ. This function plays important roles to recognize properties of reversible and
involutory Turing machines. The function ϕ̃ is defined as a bijective function
over transition rules by

ϕ̃((q, (a1, a2, . . . , ak), q′)) = (ϕ(q′), (a−1
1 , a−1

2 , . . . , a−1
k ), ϕ(q))
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where (s⇒s′)−1 = s′⇒s, (�)−1 = �, (�)−1 = �, (�)−1 = �, and (π)−1 =
(π−1). The function ϕ̃ is naturally extended for a set of transition rules and
a Turing machine. For a set Δ of transition rules, ϕ̃(Δ) represents {ϕ̃(r) |
r ∈ Δ}. For a k-tape Turing machine T = (Q,Σ, qini, qfin,Δ), ϕ̃(T ) represents
(Q,Σ, qfin, qini, ϕ̃(Δ)). For a k-tape Turing machine T , ϕ̃(T ) is forward (back-
ward) deterministic if T is backward (forward) deterministic. It is easy to see that
the function ϕ̃ is involutory for any involutory function ϕ, that is, ϕ̃(ϕ̃(x)) = x
for any transition rule, any set of transition rules, and any Turing machine x as
long as ϕ̃(x) is defined.

Let the function ϕ̃ be extended for a configuration of a Turing machine as well
so that ϕ̃((q, (t1, . . . , tk))) = (ϕ(q), (t1, . . . , tk)). Then the following proposition
holds straightforwardly.

Proposition 3.10. Let T be a k-tape Turing machine and ϕ be an involution
over a set of states in T . Then, for any a computation step C1 �T C2, we have
ϕ̃(C2) �ϕ̃(T ) ϕ̃(C1).

The simplest function ι as such ϕ is given as ι(qini) = qfin, ι(qfin) = qini,
and ι(q) = q for q ∈ Q \ {qini, qfin}. Let us write T−1 for ι̃(T ). Then, for a given
reversible Turing machine T , T−1 gives an inversion of T as shown by Bennett [3]
and reformulated by Axelsen and Glück [2].

Theorem 3.11 (Semantics of reversible Turing machines). Given a k-
tape reversible Turing machine T , �T−1

� = �T �
−1 holds.

Proof. For simplicity of the proof, only the case of k = 1 is shown. The proof
can be easily generalized to the other cases. Let T = (Q,Σ, qini, qfin,Δ) be a
1-tape reversible Turing machine. The equation �T−1

�(w) = v holds if and
only if (qfin, 〈ε,	, w〉) �∗

T−1 (qini, 〈ε,	, v〉) by definition. From Proposition 3.10,
(qini, 〈ε,	, v〉) �∗

T (qfin, 〈ε,	, w〉) holds, which implies �T �(v) = w, i.e., �T �
−1(w)

= v. �	
A reversible Turing machine is a complete model in the sense that every

injective computable function can be defined by a reversible Turing machine,
which has been proved by Axelsen and Glück. Even though our computational
model slightly differs from their one in that it has tape permutation rules, their
proof of the statement works in our setting because our k-tape Turing machine
can simulate theirs with k tapes and vice versa.

Theorem 3.12 (Expressiveness of reversible Turing machines [2]). The
reversible Turing machines can compute exactly all injective computable func-
tions. That is, given a k-tape Turing machine T such that �T � is injective, there
is a k-tape reversible Turing machine T ′ such that �T ′

� = �T �.

The Turing machines Perm(π) given in Example 3.5, Tbnot given in
Example 3.6, and Dup(k) given in Example 3.7 are all reversible. In particu-
lar, the inverse Dup(k)−1 computes a partial function that checks equivalence
between the first k words and the last k words and returns the k words if the
check succeeds.
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Definition 3.13 (Concatenation of Turing machines). Let T1 = (Q1, Σ,
qini,1, qfin,1,Δ1) and T2 = (Q2, Σ, qini,2, qfin,2,Δ2) be k-tape Turing machines
where Q1 ∩ Q2 = ∅ without loss of generality. The concatenation of T1 and
T2, denoted by T2 ◦ T1, is a k-tape Turing machine (Q1 
 Q2, Σ, qini,1, qfin,2,Δ1 

Δ2 
 {(qfin,1, �, qini,2)}).

In the case where Q1 and Q2 are not disjoint, every state in either should be
renamed before the concatenation. The reversibility of Turing machines is closed
under concatenation as stated below. The proof is straightforward.

Proposition 3.14 (Concatenation of reversible Turing machines). If T1

and T2 are reversible Turing machines, so is T2 ◦ T1.

The semantics of concatenation of two reversible Turing machines is equiv-
alent to the function composition of their semantics as shown in the following
theorem. Note that Turing machines to be concatenated are assumed tidy. The
Turing machine obtained by the concatenation is also tidy.

Theorem 3.15 (Semantics of concatenation of reversible Turing
machines). For two k-tape reversible Turing machines T1 and T2, we have
�T2 ◦ T1� = �T2� ◦ �T1�.

Proof. For simplicity of the proof, only the case of k = 1 is shown. The proof
can be easily generalized to the other cases. Let T1 = (Q1, Σ, qini,1, qfin,1,Δ1) and
T2 = (Q2, Σ, qini,2, qfin,2,Δ2) be k-tape Turing machines. When �T �(w1) = w2,
we show that there exists w such that �T1�(w1) = w and �T2�(w) = w2. By
the construction of T = T2 ◦ T1, there exists a sequence of computation steps
(qini,1, 〈ε,	, w〉) �∗

T (qfin,2, 〈ε,	, v〉). Because of the construction of transition
rules of T , the sequence contains exactly one computation step induced by the
rule (qfin,1, �, qini,2) which bridges Q1 and Q2. Hence, the sequence has the form
(qini,1, 〈ε,	, w〉) �∗

T (qfin,1, 〈l, s, w′〉) �T (qini,2, 〈l, s, w′〉) �∗
T (qfin,2, 〈ε,	, v〉). The

tidiness assumption and determinism (coming from reversibility) of T1 and T2

result in l = ε, s = 	, �T1�(w1) = w′, and �T2�(w′) = w2. �	
The k-tape Turing machine T can be seen as the m-tape Turing machine

when k ≤ m by leaving all (k + 1)-th through m-th tapes and their heads
unchanged. We write Extk�m(T ) for the extended Turing machine.

Proposition 3.16 (Extended Turing machines). Let T be a k-tape Turing
machine with k ≤ m. Then we have �Extk�m(T )�(w1, . . . , wk, wk+1, . . . , wm) =
(�T �(w1, . . . , wk), wk+1, . . . , wm) for any words w1, . . . , wk, wk+1, . . . , wm when-
ever the right-hand side is defined. If T is reversible, so is Extk�m(T ). Further-
more, (Extk�m(T ))−1 = Extk�m(T−1) holds.

4 Involutory Turing Machine

Involutory Turing machines are introduced and investigated in this section. As
reversible Turing machines exactly characterize all injective computable func-
tions, involutory Turing machines exactly characterize all involutory computable
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functions. As every involutory function is injective, an involutory Turing machine
is defined as a special kind of reversible Turing machine. The tape reduction on
the involutory Turing machines is also addressed in this section.

Definition 4.1 (Involutory Turing machine). Let T = (Q,Σ, qini, qfin,Δ)
be a k-tape Turing machine and ϕ be an involutory function over Q such that
ϕ(qini) = qfin (hence ϕ(qfin) = qini). Then T is involutory if T is reversible, ϕ̃(T ) =
T holds, and every permutation rule is involutory. The function ϕ is called a state
involution of T .

Theorem 4.2 (Semantics of involutory Turing machine). If T is an invo-
lutory Turing machine T , then �T � is involutory.

Proof. Let T = (Q,Σ, qini, qfin,Δ) be an involutory Turing machine with state
involution ϕ. We show that �T �(w) = v implies �T �(v) = w. Assume �T �(w) = v.
By definition, we have (qini, 〈ε,	, w〉) �∗

T (qfin, 〈ε,	, v〉). Since T is involutory,
that is, ϕ̃(T ) = T , we have (qini, 〈ε,	, v〉) �∗

T (qfin, 〈ε,	, w〉) by Proposition 3.10.
�	

Example 4.3. The Turing machine Perm(π) in Example 3.5 is involutory when-
ever π is involutory.

The Turing machine Tbnot in Example 3.6 is not involutory, although its
semantics is involutory. We will see later that there exists an involutory Tur-
ing machine equivalent to a given Turing machine whenever its semantics is
involutory.

The class of involutory Turing machines have one of the typical and trivial
properties of involution, that is closed under conjugation, i.e., for any injective
function g, g−1◦f ◦g is involutory whenever so is f . In terms of Turing machines,
the property is described by the following statement.

Lemma 4.4 (Closed under conjugation). Let T be a k-tape involutory Tur-
ing machine. For any k-tape reversible Turing machine Tr, the k-tape reversible
Turing machine T−1

r ◦ T ◦ Tr is involutory.

Proof. Let T = (Q,Σ, qini, qfin,Δ) be a k-tape involutory Turing machine with
state involution ϕ, and Tr = (Qr, Σr, qini,r, qfin,r,Δr) be a k-tape reversible Tur-
ing machine. We assume that every state qr of T−1

r is renamed to q̄r and let
Q̄r = {q̄r | qr ∈ Qr}. Since the k-tape Turing machine Tc = T−1

r ◦ T ◦ Tr is
reversible from Proposition 3.14, it suffices to show the existence of a state invo-
lution of Tc. The state involution ϕc : Qc → Qc with Qc = Q̄r 
 Q 
 Qr can be
defined by ϕc(q̄r) = qr for q̄r ∈ Q̄r, ϕc(q) = ϕ(q) for q ∈ Q, and ϕc(qr) = q̄r for
qr ∈ Qr. �	

For an injective function f , a function g(x, y) = (f(y), f−1(x)) is involutory
because g(g(x, y)) = (f(f−1(x)), f−1(f(y))) = (x, y) holds as long as g(x, y) is
defined. Similarly, a 2-tape involutory Turing machine can be constructed from
a 1-tape reversible Turing machine. The following lemma shows a more general
statement.
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Lemma 4.5. (k-tape reversible to 2k-tape involutory Turing machine).
Given a k-tape reversible Turing machine T , there exists a 2k-tape
involutory Turing machine T ′ such that �T ′

�(w1, . . . , wk, v1, . . . , vk) =
(�T �

−1(v1, . . . , vk), �T �(w1, . . . , wk)) for any input words w1, . . . , wk, v1, . . . , vk

of T .

Proof. Let T = (Q,Σ, qini, qfin,Δ) be a k-tape reversible Turing machine. The
corresponding 2k-tape Turing machine T ′ is constructed as

Extk�2k(T )−1 ◦ Perm(π) ◦ Extk�2k(T )

where π is an involutory permutation on [2k] such that π(i) = k + i and
π(k + i) = i hold for any i ∈ [k]. The Turing machine T ′ is involutory by
Lemma 4.4 since Perm(π) in the middle is involutory.

As for the semantics of T ′, we can check the present statement by

�T ′
�(w1, . . . , wk, v1, . . . , vk)

= �Extk�2k(T )−1 ◦ Perm(π) ◦ Extk�2k(T )�(w1, . . . , wk, v1, . . . , vk)

= �Extk�2k(T )−1
�(�Perm(π)�(�Extk�2k(T )�(w1, . . . , wk, v1, . . . , vk)))

= �Extk�2k(T )−1
�(�Perm(π)�(�T �(w1, . . . , wk), v1, . . . , vk))

= �Extk�2k(T )−1
�(v1, . . . , vk, �T �(w1, . . . , wk))

= (�T �
−1(v1, . . . , vk), �T �(w1, . . . , wk)).

�	
Now we show one of the main theorems which states any involutory com-

putable function can be implemented by an involutory Turing machine. For any
non-involutory Turing machine, an equivalent involutory Turing machine can
be constructed whenever its semantics is involutory. Recall that in our function
semantics of Turing machines a function some of whose arguments and results
are always empty words is regarded as that with fewer arguments and results
as mentioned in the previous section. In the following statement, for a given
k-tape non-involutory Turing machine, a 2k-tape involutory Turing machine is
constructed whose semantics function has k arguments and k outputs that are
always empty.

Theorem 4.6 (Expressiveness of involutory Turing machines). The
involutory Turing machines can compute any involutory computable function.
More specifically, given a k-tape Turing machine T such that �T � is involutory,
there is a 2k-tape involutory Turing machine T ′ such that �T ′

� = �T �.

Proof. Let T be a k-tape Turing machine which computes an involution. Since
an involution is injective, there exists a k-tape reversible Turing machine Tr

such that �Tr� = �T � by Theorem 3.12. Thus we have a 2k-tape involutory
Turing machine Ti such that �Ti�(w1, . . . , wk, v1, . . . , vk) = (�Tr�

−1(w1, . . . , wk),
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�Tr�(v1, . . . , vk)) by Lemma 4.5. Consider a 2k-tape Turing machine given by
T ′ = Dup(k)−1 ◦ Ti ◦ Dup(k) which is involutory by Lemma 4.4. Then,

�T ′
�(w1, . . . , wk)

= �Dup(k)�−1(�Ti�(�Dup(k)�(w1, . . . , wk)))

= �Dup(k)�−1(�Ti�(w1, . . . , wk, w1, . . . , wk))

= �Dup(k)�−1(�Tr�
−1(w1, . . . , wk), �Tr�(w1, . . . , wk))

holds where Theorem 3.11 and Theorem 3.15 are used. Since �Tr� = �T � is invo-
lutory, two k-tuples of the argument of �Dup(k)�−1 are equal. By the definition
of �Dup(k)�−1, we have �T ′

�(w1, . . . , wk) = �T �(w1, . . . , wk). �	
How expressive are multi-tape involutory Turing machines compared to those

equipped with fewer tapes? It is well known that a multi-tape Turing machine
can be simulated by a single-tape Turing machine with an injective encoding
from a tuple of words to a single word. The simulation is called a tape reduction,
which is also possible for reversible Turing machines [1,2]. Concerning involutory
Turing machines, any multi-tape involutory Turing machine can be simulated
by a 2-tape involutory Turing machine whose semantics is a function over words
that encode a tuple of words (where one of the tapes is always the empty word
in the initial and final configuration).

Theorem 4.7 (k-tape to 2-tape involutory Turing machine). Given a
k-tape involutory Turing machine T = (Q,Σ, qini, qfin,Δ), there exists a 2-tape
involutory Turing machine T ′ such that

�T �(v1, . . . , vk) = (w1, . . . , wk) iff �T ′
�(enc(v1, . . . , vk)) = enc(w1, . . . , wk)

for any v1, . . . , vk, w1, . . . , wk ∈ Σ∗ where enc : (Σ∗)k → (Σ 
 {#})∗ is a simple
encoding function for tuples with a separator # �∈ Σ defined by enc(x1, . . . ,
xk) = x1 # . . . # xk.

Proof. Consider a function f : (Σ
{#})∗ → (Σ
{#})∗ such that f(enc(v1, . . . ,
vk)) = enc(w1, . . . , wk) if and only if �T �(v1, . . . , vk) = (w1, . . . , wk) for any
v1, . . . , vk, w1, . . . , wk ∈ Σ∗. The function f is obviously computable. Since f
is injective, there exists a 1-tape reversible Turing machine Tr whose semantics
is equivalent to f . Furthermore, since �T � is involutory from Theorem 4.2, f is
also involutory. By Theorem 4.6, there exists a 2-tape involutory Turing machine
which concludes the statement of this theorem. �	

A tape reduction to a single-tape involutory Turing machine will be discussed
in Sect. 6.

5 Universality of Involutory Turing Machine

A standard Turing machine is said to be universal if it simulates an arbitrary
Turing machine. More exactly, a universal Turing machine takes a pair of words:
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one is a Gödel number � T � (as a word) representing a Turing machine T and
another is an input word of T . It returns the output word �T �(x). The Gödel
numbering � − � is an injective computable function that generates a word rep-
resentation for a Turing machine. The notion of universality is called classical
universality here to distinguish with another universality introduced later. For
simplicity, only 1-tape Turing machines are considered which are to be simu-
lated by a universal Turing machine. The results can be easily generalized to
multi-tape Turing machines.

Definition 5.1 (Classical universality). A Turing machine U is said to be
classically universal if �U�(� T �, x) = �T �(x) holds for any Turing machine T
and its input word x of T .

No involutory Turing machine is classically universal since the function �U�

in the definition above is obviously not involutory. Because the function is not
even injective, no universal reversible Turing machine exists. Axelsen and Glück
relaxed the definition of universality in a natural way; they showed that there
exists a universal reversible Turing machine under the definition. We follow their
definition for the universality of involutory Turing machines.

Definition 5.2 (Universality). An involutory Turing machine U is said to be
ITM-universal if �U�(� T �, x) = (� T �, �T �(x)) holds for any involutory Turing
machine T and its input word x of T .

The existence of an ITM-universal involutory Turing machine is eas-
ily obtained by the completeness of involutory Turing machines shown in
Theorem 4.6.

Theorem 5.3. There exists an ITM-universal involutory Turing machine.

Proof. Let f be a function equivalent to the semantics of an involutory Tur-
ing machine to be ITM-universal given in Definition 5.2, i.e., f(� T �, x) =
(� T �, �T �(x)) for any involutory Turing machine T and its input words of T .
What we must show is that there exists an involutory Turing machine whose
semantics is equivalent to f . Note that f is computable. By Theorem 4.6,
it suffices to show that f is involutory. This is verified by f(f(� T �, x)) =
f(� T �, �T �(x)) = (� T �, �T �(�T �(x))) = (� T �, x) where the last equality comes
from Theorem 4.2. �	

Theorem 5.3 only shows the existence of an ITM-universal involutory Turing
machine. The proof of the theorem relies on Theorem 3.12 (via Theorem 4.6)
which requires an impractical generate-and-test inversion method [2, Lemma 3].
This kind of problem has already been recognized in proving the existence of uni-
versal reversible Turing machines by Axelsen and Glück [2]. They gave a solution
to that by constructing a universal reversible Turing machine from a classically
universal Turing machine. We employ their idea for the direct construction of an
ITM-universal involutory Turing machine. Since their construction gives a non-
involutory Turing machine, we shall show a different construction using Landauer
embedding and Bennett’s trick for a classically universal Turing machine.
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Proposition 5.4 (Landauer embedding [2,8]). Let T = (Q,Σ, qini, qfin,Δ)
be a k-tape Turing machine. Then, there exists a (k + 1)-tape reversible Turing
machine Lan(T ) such that �Lan(T )�(w1, . . . , wk, ε) = (�T �(w1, . . . , wk), trace(T,
w1, . . . , wk)) where trace is a function encoding a history of applied rules on the
corresponding run into Σ∗.

As mentioned in [2], Bennett’s trick gives an input-preserving reversible Tur-
ing machine for an arbitrary Turing machine.

Proposition 5.5 (Bennett’s trick [3]). Let T be a k-tape Turing machine.
Then, there exists a (2k + 1)-tape reversible Turing machine Ben(T ) such that
�Ben(T )�(w1, . . . , wk) = (w1, . . . , wk, �T �(w1, . . . , wk)).

For the proposition above, a similar proof to that of [2, Lemma 6] does work by
Ben(T ) = Perm(π−1)◦Extk+1�2k+1(Lan(T )−1)◦Perm(π)◦Ext2k�2k+1(Dup(k))◦
Perm(π−1) ◦ Extk+1�2k+1(Lan(T )) with permutation π = (k + 1 . . . 2k + 1).

Theorem 5.6 (Universal Turing machine to ITM-universal involutory
Turing machine). Let U be a classically universal Turing machine, i.e.,
�U�(� T �, x) = �T �(x) for any Turing machine T . Then, an involutory Turing
machine U ′ defined by U ′ = Ben(U)−1 ◦Perm((2 3))◦Ben(U) is ITM-universal.

Proof By Proposition 5.4 and Proposition 5.5, we obtain �Ben(U)�(� T �, x) =
(� T �, x, �T �(x)) for any Turing machine � T � and its input x. Let T be a invo-
lutory Turing machine, i.e., �T �(�T �(x)) = x by Theorem 4.2. Thus we have

�U ′
�(� T �, x) = �Ben(U)�−1(�Perm((2 3))�(�Ben(U)�(� T �, x)))

= �Ben(U)�−1(�Perm((2 3))�(� T �, x, �T �(x)))

= �Ben(U)�−1(� T �, �T �(x), x)

= �Ben(U)�−1(� T �, �T �(x), �T �(�T �(x)))
= (� T �, �T �(x))

which indicates the ITM-universality of U ′. �	

6 Discussion

This section describes the design choice of permutation rules and the limitation
of tape reduction for our involutory Turing machines. The applications of our
computational model will also be discussed.

Design Choice. One may feel it unusual for the definition of a multi-tape Turing
machine to have tape permutation rules. A k-tape Turing machine is typically
defined by specifying a set of transition rules as
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Δ ⊆ (Q \ {qfin}) × ((Σ� × Σ�) ∪ {�, �,�})k × (Q \ {qini}).

The typical definition forces one to rewrite or move at all tapes simultane-
ously1. An involutory Turing machine could be defined on this model with the
same restriction ϕ̃(Δ) = Δ as ours. It is easy to see that the model always com-
putes an involution by a similar proof to that of Theorem 4.2. However, it is not
easy to show the expressiveness like Theorem 4.6 for the model without permuta-
tion rules. Although the author believes but cannot prove that the expressiveness
does not hold without permutation rules, the readers may surmise it intuitively
by trying to define a 2-tape Turing machine Perm((1 2)) that swaps an input
pair. The simplest way to do this is first to swap each from left to right and
then return the head back to the left end. Note that it does not conform to the
restriction above to be involutory. The reversed run is no longer valid for any
renaming states. There might exist a tricky way to implement the swap function
without permutation rules. The author speculates that it is impossible, though.

Limitation of Tape Reduction. Theorem 4.7 states that any k-tape involutory
Turing machine can be simulated by a 2-tape involutory Turing machine. A nat-
ural question is whether it is possible by a 1-tape involutory Turing machine.
Again, the author believes it is impossible. Consider a 1-tape Turing machine
Tbnot in Example 3.6, which is not involutory but whose semantics is involutory.
By Theorem 4.6, there exists a 2-tape involutory Turing machine equivalent to
Tbnot . It is found hard to define a 1-tape involutory Turing machine for a similar
reason to the observation above on defining the swap function without permu-
tation rules. The author speculates the reduction to a single tape is impossible
in general but leaves the proof for future work as well.

Application to Bidirectional Transformation. This work is originally motivated
by characterizing programming languages for bidirectional transformation, which
enables us to synchronize multiple data and maintain their consistency. A typical
bidirectional transformation is specified by a pair of forward (get : S → V ) and
backward (put : S × V → S) transformations over sources S and views V where
two functions are required to be consistent in some sense. More specifically,
the following three laws are to be satisfied for the consistency (called very-well-
behavedness in [4]):

put(s, get(s)) = s get(put(s, v)) = v put(put(s, v), v′) = put(s, v′)

for any s ∈ S and v, v′ ∈ V . Some bidirectional programming languages
impose a syntactic restriction to programmers so that it conforms to the con-
sistency. However, due to the restriction, it is hard to characterize how pow-
erful each programming language is. As expressiveness of general programming
languages can be characterized by Turing machines, we need a computational

1 The union symbol ∪ may be replaced with × so that a read/write and a move action
may happen at the same time. However, this makes it hard to give the inverse of a
pair of actions, which is often required in the present work.
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model to characterize all pairs of computable functions get and put that satisfy
consistency.

An involutory Turing machine gives a partial solution to this problem because
of its expressiveness. Consistency implies that a function f : S × V → S × V
defined by f(s, v) = (put(s, v), get(s)) is involutory, that is, f(f(s, v)) = (s, v)
holds. Thereby any correct bidirectional program can be computed by a 2-
tape involutory Turing machine under some encoding. Conversely, a 2-tape
involutory Turing machine does not always specify a correct bidirectional pro-
gram. The author believes that there exists a computational model given by an
appropriately-restricted involutory Turing machine, which exactly covers all con-
sistent bidirectional transformations. The present work will be a good starting
point to characterize bidirectional programming languages.

Program Inversion. A program inverter pinv is a function that takes the Gödel
number of a Turing machine T and returns that of a Turing machine whose
semantics is the inverse of �T �. i.e., pinv(� T �) = � T �−1 holds. Axelsen and
Glück have shown that there exists a 2-tape reversible Turing machine that
computes pinv . They employ the result as a lemma to construct a universal
reversible Turing machine from a classically universal Turing machine. Although
we do not need such a lemma for the construction of a universal involutory Turing
machine, the same statement also holds for the involutory Turing machine.

Theorem 6.1 (Program inverter as an involutory Turing machine).
There exists a 2-tape involutory Turing machine T which computes a program
inverter for reversible Turing machines, that is, �T �(� R �) = � R−1 � holds for
any reversible Turing machine R.

Proof. There exists a 1-tape reversible Turing machine Tr such that �Tr�(� R �) =
� R−1 � by [2, Lemma 15]. Since �Tr� is involutory, there exists a 2-tape involutory
Turing machine whose semantics is equivalent to �Tr� by Theorem 4.6. �	

7 Related Work

This work is strongly inspired by Axelsen and Glück’s [2]. They showed that
(1) any injective computable function can be implemented by a reversible Tur-
ing machine, (2) the number of tapes of a reversible Turing machine can be
reduced with preserving its semantics, (3) there exists a universal reversible Tur-
ing machine, and (4) a universal reversible Turing machine can be constructed
from a universal Turing machine. In the present paper, we have addressed these
properties for involutory Turing machines instead of reversible Turing machines.
Regarding (1), (3), and (4), similar results have been obtained. Interestingly,
their proofs are rather different from those of the corresponding theorems for
reversible Turing machines. Regarding (2), we failed to find an equivalent single-
tape involutory Turing machine for an arbitrary multi-tape involutory Turing
machine. This might be an inherent limitation of involutory Turing machines as
we have discussed in Sect. 6.
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An involutory Turing machine may remind some readers of a symmetric Tur-
ing machine introduced by Lewis and Papadimitriou [9], where its computation
step is symmetric. A symmetric Turing machine can be considered as a variant of
an involutory Turing machine whose state involution is the identity function by
ignoring the requirement of ϕ(qini) = qfin and ϕ(qfin) = qini

2. However, symmetric
Turing machines give a computational model completely different from involu-
tory Turing machines. A symmetric Turing machine defines an undirected graph
specified by its configurations and computation steps; its run is a path from
the initial one to the final one. This model has been introduced to specify the
computational complexity of the undirected st-connectivity (USTCON) problem
and is known to be at least as powerful as a deterministic Turing machine.

Gajardo, Kari, and Moreira [5] introduced time symmetry for cellular
automata to import a notion in physical theories where forward and backward
time directions cannot be distinguished. The time symmetry is specified by an
involution which connects the corresponding states and transitions as involutory
Turing machines do. Kutrib and Worsch [7] later ported the notion of time sym-
metry into finite automata and pushdown automata. Involutory Turing machines
may be called time-symmetric Turing machines along this line. Nevertheless,
our computational model should be called an involutory Turing machine in the
present paper owing to our purpose to characterize all computable involutions
unlike the previous time-symmetric machines: Gajardo et al.’s time-symmetric
cellular automata compute a composition of two involutions but not a single
involution. Although it would be worthwhile to investigate the time symmetry
and other related properties of involutory Turing machines, they are left for
future work.

8 Conclusion

A computational model for involution has been presented. The model is a variant
of a multi-tape Turing machine, called an involutory Turing machine, which
imposes a restriction on state transition rules so that the reversed run of every
valid run should be valid. The model has been shown to be expressive enough
in the sense that not only does an involutory Turing machine always compute
an involution but also any involution can be computed by an involutory Turing
machine. It has also been shown that there exists a universal involutory Turing
machine that can simulate an arbitrary involutory Turing machine.

This work naturally introduces a notion of i-Turing completeness, i.e., a pro-
gramming language L is said to be i-Turing complete if every program in L
defines an involution and every involutory Turing machine can be simulated by
a program in L. A similar notion called r-Turing completeness [1,2] has been
employed for characterizing reversible programming languages [6,11]. As dis-

2 Although the definition of a symmetric Turing machine in [9] differs from ours in
another point that it allows transition rules to view the next cell of the head, this
cannot change its expressiveness as mentioned in the paper.
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cussed in Sect. 6, i-Turing completeness or its variant will be used to characterize
bidirectional programming languages in the future.
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Abstract. The π-calculus is a widely used process calculus, which mod-
els communications between processes and allows the passing of commu-
nication links. Various operational semantics of the π-calculus have been
proposed, which can be classified according to whether transitions are
unlabelled (so-called reductions) or labelled. With labelled transitions,
we can distinguish early and late semantics. The early version allows a
process to receive names it already knows from the environment, while
the late semantics and reduction semantics do not. All existing reversible
versions of the π-calculus use reduction or late semantics, despite the
early semantics of the (forward-only) π-calculus being more widely used
than the late. We define πIH, the first reversible early π-calculus, and
give it a denotational semantics in terms of reversible bundle event struc-
tures. The new calculus is a reversible form of the internal π-calculus,
which is a subset of the π-calculus where every link sent by an output is
private, yielding greater symmetry between inputs and outputs.

1 Introduction

The π-calculus [18] is a widely used process calculus, which models communica-
tions between processes using input and output actions, and allows the passing
of communication links. Various operational semantics of the π-calculus have
been proposed, which can be classified according to whether transitions are
unlabelled or labelled. Unlabelled transitions (so-called reductions) represent
completed interactions. As observed in [25] they give us the internal behaviour
of complete systems, whereas to reason compositionally about the behaviour of
a system in terms of its components we need labelled transitions. With labelled
transitions, we can distinguish early and late semantics [19], with the difference
being that early semantics allows a process to receive (free) names it already
knows from the environment, while the late does not. This creates additional
causation in the early case between those inputs and previous output actions
making bound names free. All existing reversible versions of the π-calculus use
reduction semantics [14,26] or late semantics [7,17]. However the early seman-
tics of the (forward-only) π-calculus is more widely used than the late, partly
because it has a sound correspondence with contextual congruences [13,20].

We define πIH, the first reversible early π-calculus, and give it a denotational
semantics in terms of reversible event structures. The new calculus is a reversible
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form of the internal π-calculus, or πI-calculus [24], which is a subset of the
π-calculus where every link sent by an output is bound (private), yielding greater
symmetry between inputs and outputs. It has been shown that the asynchronous
π-calculus can be encoded in the asynchronous form of the πI-calculus [2].

The π-calculus has two forms of causation. Structural causation, as one would
find in CCS, comes directly from the structure of the process, e.g. in a(b).c(d)
the action a(b) must happen before c(d). Link causation, on the other hand,
comes from one action making a name available for others to use, e.g. in the
process a(x)|b(c), the event a(c) will be caused by b(c) making c a free name.
Note that link causation as in this example is present in the early form of the
πI-calculus though not the late, since it is created by the process receiving one
of its free names. Restricting ourselves to the πI-calculus, rather than the full
π-calculus lets us focus on the link causation created by early semantics, since
it removes the other forms of link causation present in the π-calculus.

We base πIH on the work of Hildebrandt et al. [12], which used extrusion his-
tories and locations to define a stable non-interleaving early operational seman-
tics for the π-calculus. We extend the extrusion histories so that they contain
enough information to reverse the πI-calculus, storing not only extrusions but
also communications. Allowing processes to evolve, while moving past actions
to a history separate from the process, is called dynamic reversibility [9]. By
contrast, static reversibility, as in CCSK [21], lets processes keep their structure
during the computation, and annotations are used to keep track of the current
state and how actions may be reversed.

Event structures are a model of concurrency which describe causation, con-
flict and concurrency between events. They are ‘truly concurrent’ in that they
do not reduce concurrency of events to the different possible interleavings. They
have been used to model forward-only process calculi [3,6,27], including the
πI-calculus [5]. Describing reversible processes as event structures is useful
because it gives us a simple representation of the causal relationships between
actions and gives us equivalences between processes which generate isomorphic
event structures. True concurrency in semantics is particularly important in
reversible process calculi, as the order actions can reverse in depends on their
causal relations [22].

Event structure semantics of dynamically reversible process calculi have the
added complexity of the histories and the actions in the process being separated,
obscuring the structural causation. This was an issue for Cristescu et al. [8], who
used rigid families [4], related to event structures, to describe the semantics of
Rπ [7]. Their semantics require a process to first reverse all actions to find the
original process, map this process to a rigid family, and then apply each of the
reversed memories in order to reach the current state of the process. Aubert
and Cristescu [1] used a similar approach to describe the semantics of a subset
of RCCS processes as configuration structures. We use a different tactic of first
mapping to a statically reversible calculus, πIK, and then obtaining the event
structure. This means that while we do have to reconstruct the original structure
of the process, we avoid redoing the actions in the event structure.
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Our πIK is inspired by CCSK and the statically reversible π-calculus of [17],
which use communication keys to denote past actions. To keep track of link causa-
tion, keys are used in a number of different ways in [17]. In our case we can handle
link causation by using keys purely to annotate the action which was performed
using the key, and any names which were substituted during that action.

Although our two reversible variants of the πI-calculus have very different
syntax and originate from different ideas, we show an operational correspon-
dence between them in Theorem 4.6. We do this despite the extrusion histories
containing more information than the keys, since they remember what bound
names were before being substituted. The mapping from πIH to πIK bears some
resemblance to the one presented from RCCS to CCSK in [16], though with some
important differences. πIH uses centralised extrusion histories more similar to
rhoπ [15] while RCCS uses distributed memories. Additionally, unlike CCS, πI
has substitution as part of its transitions and memories are handled differently
by πIK and πIH, and our mapping has to take this into account.

We describe denotational structural event structure semantics of πIK, partly
inspired by [5,6], using reversible bundle event structures [10]. Reversible event
structures [23] allow their events to reverse and include relations describing when
events can reverse. Bundle event structures are more expressive than prime event
structures, since they allow an event to have multiple possible conflicting causes.
This allows us to model parallel composition without having a single action
correspond to multiple events. While it would be possible to model πIK using
reversible prime event structures, using bundle event structures not only gives
us fewer events, it also lays the foundation for adding rollback to πIK and πIH,
similarly to [10], which cannot be done using reversible prime event structures.

The structure of the paper is as follows: Sect. 2 describes πIH; Sect. 3
describes πIK; Sect. 4 describes the mapping from πIH to πIK; Sect. 5 recalls
labelled reversible bundle event structures; and Sect. 6 gives event structure
semantics of πIK. Proofs of the results presented in this paper can be found
in the technical report [11].

2 πI-Calculus Reversible Semantics with Extrusion
Histories

Stable non-interleaving, early operational semantics of the π-calculus were
defined by Hildebrandt et al. in [12], using locations and extrusion histories
to keep track of link causation. We will in this section use a similar approach to
define a reversible variant of the πI-calculus, πIH, using the locations and histo-
ries to keep track of not just causation, but also past actions. The πI-calculus is
a restricted variant of the π-calculus wherein output on a channel a, a(b), binds
the name being sent, b, corresponding to the π-calculus process (νb)a〈b〉.P . This
creates greater symmetry with the input a(x), where the variable x is also bound.
The syntax of πIH processes is:

P :: =
∑

i∈I

αi.Pi | P0|P1 | (νx)P α:: = a(b) | a(b)
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The forward semantics of πIH can be seen in Table 1 and the reverse semantics
can be seen in Table 2. We associate each transition with an action μ:: = α | τ
and a location u (Definition 2.1), describing where the action came from and
what changes are made to the process as a result of the action. We store these
location and action pairs in extrusion and communication histories associated
with processes, so (H,H,H) �P means that if (μ, u) is an action and location
pair in the output history H then μ is an output action, which P previously
performed at location u. Similarly H contains pairs of input actions and locations
and H contains triples of two communicating actions and the location associated
with their communication. We use H as shorthand for (H,H,H).

Definition 2.1 (Location [12]). A location u of an action μ is one of the
following:

1. l[P ][P ′] if μ is an input or output, where l ∈ {0, 1}∗ describes the path taken
through parallel compositions to get to μ’s origin, P is the subprocess reached
by following the path before μ has been performed, and P ′ is the result of
performing μ in P .

2. l 〈0l0[P0][P ′
0], 1l1[P1][P ′

1]〉 if μ = τ , where l0l0[P0][P ′
0] and l1l1[P1][P ′

1] are the
locations of the two actions communicating.

The path l can be empty if the action did not go through any parallel compositions.

We also use the operations on extrusion histories from Definition 2.2. These
(1) add a branch to the path in every location, (2) isolate the extrusions whose
locations begin with a specific branch, (3) isolate the extrusions whose locations
begin with a specific branch and then remove the first branch from the locations,
and (4) add a pair to the history it belongs in.

Definition 2.2 (Operations on extrusion histories [12]). Given an extru-
sion history (H,H,H), for H∗ ∈ {H,H,H} we have the following operations
for i ∈ {0, 1}:
1. iH∗ = {(μ, iu) | (μ, u) ∈ H∗}
2. [i]H∗ = {(μ, iu) | (μ, iu) ∈ H∗}
3. [̌i]H∗ = {(μ, u) | (μ, iu) ∈ H∗}

4. H + (μ, u) =

⎧
⎪⎨

⎪⎩

(H ∪ {L},H,H) if (μ, u) = (a(n), u)
(H,H ∪ {L},H) if (μ, u) = (a(x), u)
(H,H,H ∪ {L}) if (μ, u) = (a(x), a(n), l〈u0, u1〉)

The forwards semantics of πIH have six rules. In [OUT] the action is an
output, the location is the process before and after doing the output, and they
are added to the output history. The equivalent reverse rule, [OUT−1], similarly
removes the pair from the history and transforms the process from the second
part of the location back to the first. The input rule [IN] works similarly, but
performs a substitution on the received name and adds the pair to the input
history instead. In [PARi] we isolate the parts of the histories whose locations
start with i and use those to perform an action in Pi, getting H′

i �P ′
i . It then
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Table 1. Semantics of πIH (forwards rules)

u = [
∑

i∈I
αi.Pi][Pj ] αj = a(n) j ∈ I

H �
∑

i∈I

αi.Pi
αj−−→
u

(H ∪ {(a(n), u)}, H, H) �Pj

[OUT]

u = [
∑

i∈I
αi.Pi][Pj ] P ′

j = Pj [x := n] αj = a(x) j ∈ I

H � ∑

i∈I
αi.Pi

a(n)−−−→
u

(H, H ∪ {(a(n), u)}, H) �P ′
j

[IN]

([̌i]H, [̌i]H, [̌i]H) �Pi
μ−→
u

H′
i �P ′

i P ′
1−i = P1−i if μ = a(n) then n /∈ fn(P1−i)

H �P0|P1
μ−→
iu

((H \ [i]H) ∪ iH′
i, (H \ [i]H) ∪ iH′

i, (H \ [i]H) ∪ iH′
i) �P ′

0|P ′
1

[PARi]

([̌i]H, [̌i]H, [̌i]H) �Pi
αi−−→
vi

H′
i �P ′

i αi = a(n) αj = a(n)

([ǰ]H, [ǰ]H, [ǰ]H) �Pj
αi−−→
vj

H′
j �P ′

j j = 1 − i n /∈ fn(Pj)

H �P0|P1
τ−−−−−−→

(0v0,1v1)
(H, H, H ∪ {((α0, α1, 〈0v0, 1v1〉)}) �(νn)(P ′

0|P ′
1)

[COMi]

H �P
μ−→
u

H′ �P ′ x /∈ n(μ)

H �(νx)P
μ−→
u

H′ �(νx)P ′
[SCOPE]

P ≡ P ′ H �P ′ μ−→
u

H′ �Q′ Q′ ≡ Q

H �P
μ−→
u

H′ �Q
[STR]

replaces the part of the histories parts of the histories whose locations start with
i with H′

i when propagating the action through the parallel. A communication in
[COMi] adds memory of the communication to the history. The rules [SCOPE]
and [STR] are standard and self-explanatory.

The reverse rules use the extrusion histories to find a location l[P ][P ′] such
that the current state of the subprocess at l is P ′, and change it to P .

In these semantics structural congruence, consisting only of α-conversion
together with !P ≡ !P |P and (ν a)(νb)P ≡ (ν b)(ν a)P , is primarily used to
create and remove extra copies of a replicated process when reversing the action
that happened before the replication. Since we use locations in our extrusion
histories, we try to avoid using structural congruence any more than necessary.
However, not using it for parallel composition would mean that we would need

some other way of preventing traces such as H �!P
μ−→
u

μ

u
H �!P |P , which allows

a process to reach a state it could not reach via a parabolic trace. Using structural
congruence for replication does not cause any problems for the locations, as we
can tell past actions originating in each copy of P apart by the path in their
location, with actions from the ith copy having a path of i 0s followed by a 1.
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Table 2. Semantics of reversible πIH (reverse rules)

u = [
∑

i∈I
αi.Pi][Pj ] αj = a(n) j ∈ I (a(n), u) ∈ H

H � Pj

αj

u (H \ {(a(n), u)} , H, H) � ∑
i∈I αi.Pi

[OUT−1]

u = [
∑

i∈I
αi.Pi][Pj ] P ′

j = Pj [x := n] αj = a(x) j ∈ I (a(n), u) ∈ H

H � P ′
j

a(n)

u (H, H \ {(a(n), u)} , H) � ∑

i∈I
αi.Pi

[IN−1]

([̌i]H, [̌i]H, [̌i]H) � Pi

α

u H′
i � P ′

i P ′
1−i = P1−i if α = a(n) then n /∈ fn(P1−i)

H � P0|P1

α

iu ((H \ [i]H) ∪ iH′
i, (H \ [i]H) ∪ iH′

i, (H \ [i]H) ∪ iH′
i) � P ′

0|P ′
1

[PAR−1
i ]

([̌i]H ∪ {(a(n), vi)}, [̌i]H, [̌i]H) � Pi

a(n)

vi H′
i � P ′

i αi = a(n) αj = a(n)

([ǰ]H, [ǰ]H ∪ {(a(n), vj)}, [ǰ]H) � Pj

a(n)

vj H′
j � P ′

j j = 1 − i n /∈ fn(Pj)

H �(νn)(P0|P1)

τ

(0v0,1v1) (H, H, H \ {((α0, α1, 〈0v0, 1v1〉)} �P ′
0|P ′

1

[COM−1
i ]

H � P

μ

u H′ � P ′ x /∈ n(α)

H � (νx)P

μ

u H′ � (νx)P ′
[SCOPE−1]

P ≡ P ′ H � P ′
α

u H′ � Q′ Q′ ≡ Q

H � P

α

u H′ � Q

[STR−1]

Example 2.3. Consider the process (a(x).x(d)|a(c))|b(y). If we start with empty
histories, each transition adds actions and locations:

(∅, ∅, ∅) �(a(x).x(d)|a(c))|b(y) τ−−−−−−−−−−−−−−−−−−→
0〈0[a(x).x(d)][c(d)],1[a(c)][0]〉

(∅, ∅, {(a(c), a(c), 0 〈0[a(x).x(d)][c(d)], 1[a(c)][0]〉}) �(νc)(c(d)|0)|b(y)
c(d)−−−−−−→

00[c(d)][0]

({(c(d), 00[c(d)][0])}, ∅, {(a(c), a(c), 0 〈0[a(x).x(d)][c(d)], 1[a(c)][0]〉}) �(νc)(0|0)|b(y)
b(d)−−−−−→

1[b(y)][0]

({(c(b), 00[c(b)][0])}, {(b(d), 1[b(y)][0])}, {(a(c), a(c), 0 〈0[a(x).x(d)][c(d)], 1[a(c)][0]〉}) �(0|0)|0

We show that our forwards and reverse transitions correspond.

Proposition 2.4 (Loop).

1. Given a πIH process P and an extrusion history H, if H �P
α−→
u

H′ �Q, then

H′ �Q
α

u H �P .
2. Given a forwards-reachable πIH process P and an extrusion history H, if

H �P
α

u H′ �Q, then H′ �Q
α−→
u

H �P .

3 πI-Calculus Reversible Semantics with Annotations

In order to define event structure semantics of πIH, we first map from πIH
to a statically reversible variant of πI-calculus, called πIK. πIK is based on
previous statically reversible calculi πK [17] and CCSK [21]. Both of these use
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communication keys to denote past actions and which other actions they have

interacted with, so a(x)|a(b)
τ [n]−−→ a(b)[n]|a(b)[n] means a communication with

the key n has taken place between the two actions. We apply this idea to define
early semantics of πIK, which has the following syntax:

P :: = α.P | α[n].P | P0 + P1 | P0|P1 | (νx)P α:: = a(b) | a(b)
The primary difference between applying communication keys to CCS and

the πI-calculus is the need to deal with substitution. We need to keep track
of not only which actions have communicated with each other, but also which
names were substituted when. We do this by giving the substituted names a
key, a[n], but otherwise treating them the same as those without the key, except
when undoing the input associated with n.

Table 3. πIK forward semantics

std(P ) P ′ = P [x := b[n]]

a(x).P
a(b)[n]−−−−−→ a(b)[n].P ′

std(P )

a(b).P
a(b)[n]−−−−−→ a(b)[n].P

P
μ[m]−−−→ P ′ m 	= n if μ = a(x) then x /∈ n(α)

α[n].P
μ[m]−−−→ α[n].P ′

P0
μ[n]−−−→ P ′

0 std(P1)

P0 + P1
μ[n]−−−→ P ′

0 + P1

P0
μ[n]−−−→ P ′

0 fsh[n](P1) if μ = a(b) then b /∈ fn(P1)

P0|P1
μ[n]−−−→ P ′

0|P1

P0
a(b)[n]−−−−−→ P ′

0 P1
a(b)[n]−−−−−→ P ′

1

P0|P1
τ [n]−−−→ (νb)(P ′

0|P ′
1)

P
μ[m]−−−→ P ′ a /∈ n(μ)

(νa)P
μ[m]−−−→ (νa)P ′

P ≡ Q
μ[n]−−−→ Q′ ≡ P ′

P
μ[n]−−−→ P ′

Table 4. πIK reverse semantics

std(P ) x /∈ n(P ) P ′ = P [b[m] := x]

a(b)[m].P
a(b)[m]

a(x).P ′

std(P )

a(b)[n].P
a(b)[n]

a(b).P

P
μ[m]

P ′ m 	= n

α[n].P
μ[m]

α[n].P ′

P0

μ[n]

P ′
0 std(P1)

P0 + P1

μ[n]

P ′
0 + P1

P0

μ[n]

P ′
0 fsh[n](P1) if μ = a(b) then b /∈ fn(P1)

P0|P1

μ[n]

P ′
0|P1

P0

a(b)[n]

P ′
0 P1

a(b)[n]

P ′
1

(νb)(P0|P1)
τ [n]

P ′
0|P ′

1

P
μ[m]

P ′ a /∈ n(μ)

(νa)P
μ[m]

(νa)P ′

P ≡ Q
μ[n]

Q′ ≡ P ′

P
μ[n]

P ′

Table 3 shows the forward semantics of πIK. The reverse semantics can be
seen in Table 4. We use α to range over input and output actions and μ over
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input, output, and τ . We use std(P ) denote that P is a standard process, meaning
it does not contain any past actions (actions annotated with a key), and fsh[n](P )
to denote that a key n is fresh for P . Names in past actions are always free. Our
semantics very much resemble those of CCSK, with the exceptions of substitution
and ensuring that any name being output does not appear elsewhere in the
process. The semantics use structural congruence as defined in Table 5.

Table 5. Structural congruence

P |0 ≡ P P0|P1 ≡ P1|P0 P0|(P1|P2) ≡ (P0|P1)|P2

P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2

!P ≡ !P |P (νx)(νy)P ≡ (νy)(νx)P (νa)(P0|P1) ≡ ((νa)P0|P1) if a /∈ n(P1)

We again show a correspondence between forward and reverse transitions.

Proposition 3.1 (Loop).

1. Given a process P , if P
μ[n]−−→ Q then Q

μ[n]

P .

2. Given a forwards reachable process P , if P
μ[n]

Q then Q
μ[n]−−→ P .

4 Mapping from πIH to πIK

We will now define a mapping from πIH to πIK and show that we have an
operational correspondence in Theorem 4.6. The extrusion histories store more
information than the keys, as they keep track of which names were substituted,
as illustrated by Example 4.1. This means we lose some information in our
mapping, but not information we need.

Example 4.1. Consider the processes (∅, {(a(b), [a(x)][0])}, ∅) � 0 and a(b)[n].
These are the result of a(x) receiving b in the two different semantics. We can
see that the extrusion history remembers that the input name was x before b was
received, but the keys do not remember, and when reversing the action could
use any name as the input name. This does not make a great deal of difference,
as after reversing a(b), the process with the extrusion history can also α-convert
x to any name.

Since we intend to define a mapping from processes with extrusion histories
to processes with keys, we first describe how to add keys to substituted names
in a process in Definition 4.2. We have a function, S, which takes a process,
P1, in which we wish to add the key [n] to all those names which were x in a
previous state of the process, P2, before being substituted for some other name
in an input action with the key [n].
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Definition 4.2 (Substituting in πIK-process to correspond with pro-
cesses with extrusion histories). Given a πIK process P1, a πI-calculus pro-
cess without keys, P2, a key n, and a name x, we can add the key n to any names
which x has been substituted with, by applying S(P1, P2, [n], x), defined as:

1. S (0, 0, [n], x) = 0

2. S

(
∑

i∈I

Pi1,
∑

i∈I

Pi2, [n], x
)

=
∑

i∈I

S (Pi1, Pi2, [n], x)

3. S (P1|Q1, P2|Q2, [n], x) = S (P1, P2, [n], x) |S (Q1, Q2, [n], x)
4. S ((νa)P1, (νb)P2, [n], x) = P ′

1 where:
if x = b then P ′

1 = P1 and otherwise P ′
1 = (νa)S (P1, P2, [n], x).

5. S (α1.P1, α2.P2, [n], x) = α′
1.P

′
1 where:

if α2 ∈ {x(c), x(c)} then α′
1 = α1[n] and otherwise α′

1 = α1;
if α2 ∈ {c(x), c(x)} then P ′

1 = P1 and otherwise P ′
1 = S (P1, P2, [n], x).

6. S (α1[m].P1, α2.P2, [n], x) = α′
1[m].P ′

1 where:
if α2 ∈ {x(c), x(c)} then α′

1 = α1[n] and otherwise α′
1 = α1;

if α2 ∈ {c(x), c(x)} then P ′
1 = P1 and otherwise P ′

1 = S (P1, P2, [n], x).
7. S (!P1, !P2, [n], x) = !S (P1, P2, [n], x)
8. S (P1|P ′

1, !P2, [n], x) = S (P1, !P2, [n], x) |S (P ′
1, P2, [n], x)

9. S (!P1, P2|P ′
2, [n], x) = S (!P1, P2, [n], x) |S (P1, P

′
2, [n], x)

where a(b)[n] = a[n](b) and a(b)[n] = a[n](b)

Being able to annotate our names with keys, we can define a mapping, E,
from extrusion histories to keys in Definition 4.4. E iterates over the extrusions,
having one process which builds πIK-process, and another that keeps track of
which state of the original πIH process has been reached. When turning an
extrusion into a keyed action, we use the locations as key and also give each
extrusion an extra copy of its location to use for determining where the action
came from. This way we can use one copy to iteratively go through the process,
removing splits from the path as we go through them, while still having another
intact copy of the location to use as the final key. In E(H �P, P ′), H is a history
of extrusions which need to be turned into keyed actions, P is the process these
keyed actions should be added to, and P ′ is the state the process would have
reached, had the added extrusions been reversed instead of turned into keyed
actions.

If E encounters a parallel composition in P (case 2), it splits its extrusion
histories in three. One part, Hshared contains the locations which have an empty
path, and therefore belong to actions from before the processes split. Another
part contains the locations beginning with 0, and goes to the first part of the
process. And finally the third part contains the locations beginning with 1, and
goes to the second part of the process.

E can add an action – and the choices not picked when that action was
performed – to P (cases 3, 4) when the associated location has an empty path
and has P ′ as its result process. When turning an input memory from the history
into a past input action in the process (case 4), we use S (Definition 4.2) to add
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keys to the substituted names. When E encounters a restriction (case 5), it moves
a memory that can be used inside the restriction inside. It does this iteratively
until there are no such memories left in the extrusion histories. We apply E to
a process in Example 4.5.

Definition 4.3. The function lcopy gives each member of an extrusion history
an extra copy of its location:

lcopy(H∗) = {(μ, u, u) | (μ, u) ∈ H∗}
lcopy(H,H,H) = (lcopy(H), lcopy(H), lcopy(H))

Definition 4.4. Given a πIH process, H �P , we can create an equivalent πIK
process, E(lcopy(H) �P, P ) = P ′ defined as

1. E((∅, ∅, ∅) �P, P ′) = P
2. E(H �P0|P1, P ′

0|P ′
1) = E(Hshared �P ′′

0 |P ′′
1 , P ′′′

0 |P ′′′
1 ) where:

Hshared = ({(α, u, u′) | (α, u, u′) ∈ H and u 	= iu′′}, {(α, u, u′) |
(α, u, u′) ∈ Hand u 	= iu′′}, ∅)

P ′′
0 = E((H0, H0, H0) �P0, P ′

0) where:

H0 = {(a(b), u0, u′
0) | (a(b), 0u0, u′

0) ∈ H or (a(b), α1, 〈0u0, 1u1〉 , u′
0) ∈ H}

H0 = {(a(b), u0, u′
0) | (a(b), 0u0, u′

0) ∈ H or (a(b), α1, 〈0u0, 1u1〉 , u′
0) ∈ H}

H0 = {(α, α′, u, u′) | (α, α′, 0u, u′) ∈ H}

P ′′
1 = E((H1, H1, H1) �P1, P ′

1)) where:

H1 = {(a(b), u1, u′
1) | (a(b), 1u1, u′

1) ∈ H or (α0, a(b), 〈0u0, 1u1〉 , u′
1) ∈ H}

H1 = {(a(b), u1, u′
1) | (a(b), 1u1, u′

1) ∈ H or (α0, a(b), 〈0u0, 1u1〉 , u′
1) ∈ H}

H1 = {(α, α′, u, u′) | (α, α′, 1u, u′) ∈ H}

Hi �P ′
i

αi,0

ui,0
. . .

αi,n

ui,n
(∅, ∅, ∅) �P ′′′

i for i ∈ {0, 1}

3. E((H ∪ {(a(b), [Q][P ′], u)}, H, H) �P, P ′) = E(H �a(b) [u] .P +
∑

i∈I\{j}
αi.Pi, Q)

ifQ =
∑

i∈I αi.Pi, a(b) = αj , and P ′ = Pj

4. E((H, H ∪ {(a(b), [Q][P ′], u)}, H) �P, P ′) =
E(H �a(b) [u] .S(P, Pj , [u], x) +

∑

i∈I\{j}
αi.Pi, Q)

ifQ =
∑

i∈I αi.Pi, a(x) = αj , and P ′ = Pj [x := b]
5. E(H �(νx)P, (νx)P ′) = E(H − (α, u, u′) �P ′′, (νx)Q′)

whereP ′′ = (νx)E((∅, ∅, ∅) + (α, u, u′) �P, P ′)

if(α, u, u′) ∈ H ∪ H and (∅, ∅, ∅) + (α, u, u) �P
α

u (∅, ∅, ∅) �Q′

6. E(H �!P, !P ′) = E(H �!P |P, !P ′|P ′) if there exists (α, u, u′) ∈ H ∪ H ∪ H such that
u 	= [Q][Q′].
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Example 4.5. We will now apply E to the process

({(b(c), u2)}, ∅, {(b(a), b(a), 〈0u0, 1u1〉)}) �a(x) | 0

with locations u0 = [b(y).y(x)][a(x)], u1 = [b(a)][0], and u2 = [b(c).(b(y).y(x) |
b(a)][b(y).y(x) | b(a)]. We perform

E(lcopy(({(b(c), u2)}, ∅, {(b(a), b(a), 〈0u0, 1u1〉)})) � a(x) | 0, a(x) | 0)

Since we are at a parallel, we use Case 2 of Definition 4.4 to split the extru-
sion histories into three to get E(({(b(c), u2, u2)}, ∅, ∅) � P0 | P1, b(y).y(x) |
b(a)) where P0 = E((∅, {(b(a), u0, 〈0u0, 1u1〉)}, ∅) � a(x), a(x)) and P1 =
E(({(b(a), u1, 〈0u0, 1u1〉)}, ∅, ∅) �0, 0).

To find P0, we look at u0, and find that it has a(x) as its result, mean-
ing we can apply Case 4 to obtain E((∅, ∅, ∅) � b(a)[〈0u0, 1u1〉].S(a(x), y(x),
[〈0u0, 1u1〉], y), b(y).y(x)). And by applying Case 5 of Definition 4.2, S(a(x), y(x),
[〈0u0, 1u1〉], y) = a[〈0u0,1u1〉](x). Since we have no more extrusions to add, we
apply Case 1 to get our process P0 = b(a)[〈0u0, 1u1〉].a[〈0u0,1u1〉](x).

To find P1, we similarly look at u1 and find that we can apply Case 3. This
gives us P1 = b(a)[〈0u0, 1u1〉].0.

We can then apply Case 3 to E(({(b(c), u2, u2)}, ∅, ∅) � P0 | P1, b(y).y(x) |
b(a)). This gives us our final process,

b(c)[k′].b(a)[k].a[k](x) | b(a)[k].0

where k = 〈0u0, 1u1〉 and k′ = u2

We can then show, in Theorem 4.6, that we have an operational correspondence
between our two calculi and E preserves transitions. Item 1 states that every
transition in πIH corresponds to one in πIK process generated by E, and Item
2 vice versa.

Theorem 4.6. Given a reachable πIH process, H �P , and an action, μ,

1. if there exists a location u such that H � P
μ

u
H′ � P ′ then there exists a

key, m, such that E(lcopy(H) �P, P )
μ[m]

E(lcopy(H′) �P ′, P ′);

2. if there exists a key, m, such that E(lcopy(H) � P, P )
μ[m]

P ′′, then there

exists a location, u, and a πIH process, H′ �P ′, such that H �P
μ

u
H′ �P ′

and P ′′ ≡ E(lcopy(H′) �P ′, P ′).

5 Bundle Event Structures

In this section we will recall the definition of labelled reversible bundle event
structures (LRBESs), which we intend to use later to define the event structure
semantics of πIK and through that πIH. We also describe some operations on
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LRBESs, which our semantics will make use of. This section is primarily a review
of definitions from [10]. We use bundle event structures, rather than the more
common prime event structures, because LRBESs yield more compact event
structures with fewer events and simplifies parallel composition.

An LRBES consists of a set of events, E, a subset of which, F , are reversible,
and three relations on them. The bundle relation, 
→, says that if X 
→ e then
one of the events of X must have happened before e can and all events in X are
in conflict with each other. The conflict relation, �, says that if e � e′ then e and
e′ cannot occur in the same configuration. The prevention relation, �, says that
if e� e′ then e′ cannot reverse after e has happened. Since the event structure is
labelled, we also have a set of labels Act, and a labelling function λ from events
to labels. We use e to denote e being reversed, and e∗ to denote either e or e.

Definition 5.1 (Labelled Reversible Bundle Event Structure [10]). A
labelled reversible bundle event structure is a 7-tuple E = (E,F, 
→, �,�, λ,Act)
where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the bundle set, 
→ ⊆ 2E × (E ∪F ), satisfies X 
→ e∗ ⇒ ∀e1, e2 ∈ X.e1 �= e2 ⇒

e1 � e2 and for all e ∈ F , {e} 
→ e;
4. the conflict relation, � ⊆ E × E, is symmetric and irreflexive;
5. � ⊆ E × F is the prevention relation.
6. λ : E → Act is a labelling function.

An event in an LRBES can have multiple possible causes as defined in
Definition 5.2. A possible cause X of an event e is a conflict-free set of events
which contains a member of each bundle associated with e and contains possible
causes of all events in X.

Definition 5.2 (Possible Cause). Given an LRBES, E = (E, F, �→, �, �, λ,Act) and

an event e ∈ E, X ⊆ E is a possible cause of e if

– e /∈ X, Xis finite, whenever X ′ �→ e we have X ′ ∩ X �= ∅;
– for any e′, e′′ ∈ {e} ∪ X, we have e′ �� e′′ (X ∪ {e} is conflict-free);

– for all e′ ∈ X, there exists X ′′ ⊆ X, such that X ′′ is a possible cause of e′;
– there does not exist any X ′′′ ⊂ X, such that X ′′′ is a possible cause of e.

Since we want to compare the event structures generated by a process to the
operational semantics, we need a notion of transitions on event structures. For
this purpose we use configuration systems (CSs), which event structures can be
translated into.

Definition 5.3 (Configuration system [23]). A configuration system (CS)
is a quadruple C = (E,F,C,→) where E is a set of events, F ⊆ E is a set of
reversible events, C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is
a labelled transition relation such that if X

A∪B−−−→ Y then:

– X,Y ∈ C, A ∩ X = ∅; B ⊆ X ∩ F ; and Y = (X \ B) ∪ A;



Event Structures for the Reversible Early Internal π-Calculus 83

– for all A′ ⊆ A and B′ ⊆ B, we have X
A′∪B′
−−−−→ Z

(A\A′)∪(B\B′)−−−−−−−−−−→ Y , meaning
Z = (X \ B′) ∪ A′ ∈ C.

Definition 5.4 (From LRBES to CS [10]). We define a mapping Cbr from
LRBESs to CSs as: Cbr((E,F, 
→, �,�, λ,Act)) = (E,F,C,→) where:

1. X ∈ C if X is conflict-free;
2. For X,Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X

A∪B−−−→ Y if:
(a) Y = (X \ B) ∪ A; X ∩ A = ∅; B ⊆ X; and X ∪ A conflict-free;
(b) for all e ∈ B, if e′ � e then e′ /∈ X ∪ A;
(c) for all e ∈ A and X ′ ⊆ E, if X ′ 
→ e then X ′ ∩ (X \ B) �= ∅;
(d) for all e ∈ B and X ′ ⊆ E, if X ′ 
→ e then X ′ ∩ (X \ (B \ {e})) �= ∅.

For our semantics we need to define a prefix, restriction, parallel composition,
and choice. Causal prefixing takes a label, μ, an event, e, and an LRBES, E ,
and adds e to E with the label μ and associating every other event in E with a
bundle containing only e. Restriction removes a set of events from an LRBES.

Definition 5.5 (Causal Prefixes [10]). Given an LRBES E, a label μ, and an
event e, (μ)(e).E = (E′, F ′, 
→′, �′,�′, λ′,Act′) where:

1. E′ = E ∪ e
2. F ′ = F ∪ e
3. 
→′ = 
→ ∪({{e}} × (E ∪ {e}))
4. �′ = �

5. �′ = � ∪ (E × {e})

6. λ′ = λ[e 
→ μ]

7. Act′ = Act ∪ {μ}

Removing a set of labels L from an LRBES removes not just events with
labels in A but also events dependent on events with labels in L.

Definition 5.6 (Removing labels and their dependants). Given an event
structure E = (E,F, 
→, �,�, λ,Act) and a set of labels L ⊆ Act, we define
ρE(L) = X as the maximum subset of E such that

1. if e ∈ X then λ(e) /∈ L;
2. if e ∈ X then there exists a possible cause of e, x, such that x ⊆ X.

A choice between LRBESs puts all the events of one event structure in conflict
with the events of the others.

Definition 5.7 (Choice [10]). Given LRBESs E0, E1, . . . , En, the choice
between them is

∑

0≤i≤n

Ei = (E,F, 
→, �,�, λ,Act) where:

1. E =
⋃

0≤i≤n

{i} × Ei

2. F =
⋃

0≤i≤n

{i} × Fi

3. X 
→ e∗ if e = (i, ei), Xi 
→i e∗
i , and

X = {i} × Xi

4. (i, e) � (j, e′) if i �= j or e �i e′

5. (i, e) � (j, e′) if i �= j or e �i e′

6. λ(j, e) = λj(e)
7. Act =

⋃

0≤i≤n

Acti
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Definition 5.8 (Restriction [10]). Given an LRBES, E = (E, F, �→, �, �, λ,Act),

restricting E to E′ ⊆ E creates E � E′ = (E′, F ′, �→′, �′, �′, λ′,Act′) where:

1. F ′ = F ∩ E′;
2. �→′ = �→ ∩(P(E′) × (E′ ∪ F ′));
3. �′ = � ∩(E′ × E′);

4. �′ = � ∩ (E′ × F ′);
5. λ′ = λ �E′ ;

6. Act = ran(λ′).

For parallel composition we construct a product of event structures, which
consists of events corresponding to synchronisations between the two event struc-
tures. The possible causes of an event (e0, e1) contain a possible cause of e0 and
a possible cause of e1.

Definition 5.9 (Parallel [10]). Given two LRBESs E0 = (E0, F0, �→0, �0, �0, λ0,Act0)
and E1 = (E1, F1, �→1, �1, �1, λ1,Act1), their parallel composition E0 × E1 =
(E, F, �→, �, �, λ,Act) with projections π0 and π1 where:

1. E = E0 ×∗ E1 = {(e, ∗) | e ∈ E0} ∪ {(∗, e) | e ∈ E1} ∪ {(e, e′) | e ∈ E0 and e′ ∈ E1};
2. F = F0 ×∗ F1 = {(e, ∗) | e ∈ F0} ∪ {(∗, e) | e ∈ F1} ∪ {(e, e′) | e ∈ F0 and e′ ∈ F1};
3. for i ∈ {0, 1} we have (e0, e1) ∈ E, πi((e0, e1)) = ei;
4. for any e∗ ∈ E ∪ F , X ⊆ E, X �→ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such

that Xi �→ πi(e)
∗ and X = {e′ ∈ E | πi(e

′) ∈ Xi};
5. for any e, e′ ∈ E, e � e′ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e

′), or
πi(e) = πi(e

′) �= ⊥ and π1−i(e) �= π1−i(e
′);

6. for any e ∈ E, e′ ∈ F , e � e′ iff there exists i ∈ {0, 1} such that πi(e) �i πi(e
′).

7. λ(e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ0(e0) if e = (e0, ∗)
λ1(e1) if e = (∗, e1)

τ if e = (e0, e1) and either λ0(e0) = a(x) and λ1(e1) = a(x)

or λ0(e0) = a(x) and λ1(e1) = a(x)

0 otherwise
8. Act = {τ} ∪ Act0 ∪ Act1

6 Event Structure Semantics of πIK

In this section we define event structure semantics of πIK using the LRBESs and
operations defined in Sect. 5. Theorems 6.3 and 6.4 give us an operational corre-
spondence between a πIK process and the generated event structure. Together
with Theorem 4.6, this gives us a correspondence between a πIH process and
the event structure it generates by going via a πIK process.

As we want to ensure that all free and bound names in our process are dis-
tinct, we modify our syntax for replication, assigning each replication an infinite
set, x, of names to substitute into the place of bound names in each created copy
of the process, so that

!xP ≡ !x\{x0,...,xk}P |P{x0,...,xk/a0,...,ak
} if {x0, . . . , xk} ⊆ x

and bn(P ) = {a0, . . . , ak}
Before proceeding to the semantics we also define the standard bound names

of a process P , sbn(P ), meaning the names that would be bound in P if every
action was reversed, in Definition 6.1.



Event Structures for the Reversible Early Internal π-Calculus 85

Definition 6.1. The standard bound names of a process P , sbn(P ), are defined
as:

sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(P0|P1) = sbn(P0) ∪ sbn(P1) sbn(P0 + P1) = sbn(P0) ∪ sbn(P1)
sbn(νx)P ′ = {x} ∪ sbn(P ′) sbn(!xP ) = x

We can now define the event structure semantics in Table 6. We do this
using rules of the form {[P ]}(N ,l) = 〈E , Init, k〉 where l is the level of unfolding
of replication, E is an LRBES, Init is the initial configuration, N ⊇ n(P ) is a
set of names, which any input in the process could receive, and k : Init → K is
a function assigning communication keys to the past actions, which we use in
parallel composition to determine which synchronisations of past actions to put
in Init. We define {[P ]}N = supl∈N {[P ]}(N ,l).

The denotational semantics in Table 6 make use of the LRBES operators
defined in Sect. 5. The choice and output cases are straightforward uses of the
choice and causal prefix operators. The input creates a case for prefixing an
input of each name in N and a choice between the cases. We have two cases
for restriction, one for restriction originating from a past communication and
another for restriction originating from the original process. If the restriction
does not originate from the original process, then we ignore it, otherwise we
remove events which would use the restricted channel and their causes. The
parallel composition uses the parallel operator, but additionally needs to consider
link causation caused by the early semantics. Each event labelled with an input
of a name in standard bound names gets a bundle consisting of the event labelled
with the output on that name. And each output event is prevented from reversing
by the input names receiving that name. This way, inputs on extruded names
are caused by the output that made the name free. Replication substitutes the
names and counts down the level of replication.

Note that the only difference between a future and a past action is that
the event corresponding to a past action is put in the initial state and given a
communication key.

Example 6.2. Consider the process a(b)[n] | a(b)[n]. Our event structure semantics

generate an LRBES {[a(x)[n] | a(b[n])]}{a,b,x} = 〈(E, F, �→, �, �, λ,Act), Init, k〉 where:

E = F = {a(b), a(a), a(x), a(b), τ} λ(e) = e

{a(b)} �→ a(b) Act = {a(b), a(a), a(x), a(b), τ}
a(b) � a(a), a(b) � a(x), a(a) � a(x), Init = {τ}
a(b) � τ, a(a) � τ, a(x) � τ, a(b) � τ k(τ) = n

a(b) � a(b)

From this we see that (1) receiving b is causally dependent on sending b, (2) all the

possible inputs on a are in conflict with one another, (3) the synchronisation between

the input and the output is in conflict with either happening on their own, and (4) since

the two past actions have the same key, the initial state contains their synchronisation.
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Table 6. Denotational event structure semantics of πIK

{[0]}(N ,l) = 〈(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅〉

{[P0 + P1]}(N ,l) = 〈E0 + E1, {0} × Init0 ∪ {1} × Init1, k((i, e)) = ki(e)〉 where

{[Pi]} = 〈Ei, Initi, ki〉 for i ∈ {0, 1}

{[a(n).P ]}(N ,l) = 〈a(n)(e).EP , InitP , kP 〉 for some fresh e /∈ E where

{[P ]}(N ,l) = 〈EP , InitP , kP 〉

{[a(x).P ]}(N ,l) =

〈
∑

n∈(N\sbn(P ))
a(n)(e).EPn ,

⋃

n∈(N\sbn(P ))
{n} × InitPn , (n, e) �→ kPn (e)

〉

for some fresh en /∈ En where

{[P [x := n]]}(N ,l) =
〈EPn , InitPn , kPn

〉

{[a(n)[m].P ]}(N ,l) = 〈a(n)(e).EP , InitP ∪ {e}, kP [e �→ m]〉 for some fresh e /∈ E where

{[P ]}(N ,l) = 〈EP , InitP , kP 〉

{[a(b)[m].P ]}(N ,l) =

〈
∑

n∈(N\sbn(P ))
a(n)(en).EPn , (

⋃

n∈(N\sbn(P ))
{n} × InitPn ) ∪ {(b, eb)}, k

〉

for some fresh en /∈ En where

{[P [b[m] := n]]}(N ,l) =
〈EPn , InitPn , kPn

〉

k((n, e)) =

{
m if e = eb and n = b

kPn (e) otherwise

{[(νa)P ]}(N ,l) = 〈E � Eα, Init ∩ Eα, k � Eα)〉 where:

{[P ]}(N ,l) = 〈E, Init, k〉
Eα = ρ({α | a ∈ n(α)}
if whenever there exist past actions b(a)[m] and b(a)[m] in P then

they are guarded by a restriction (νa) in P

{[(νa)P ]}(N ,l) = 〈E, Init, k〉 where:

{[P ]}(N ,l) = 〈E, Init, k〉
if there exist past actions b(a)[m] and b(a)[m] in P which

are not guarded by a restriction (νa) in P

{[P0|P1]}(N ,l) = 〈(E, F, �→, �, �, λ, Act) � {e | λ(e) �= 0}, Init, k〉 where

for i ∈ {0, 1}, {[Pi]}l = 〈Ei, Initi, ki〉
(E0, F0, �→0, �0, �0) × (E0, F0, �→0, �0, �0) = (E, F, �→′, �, �′)
Init = {(e0, ∗)|e0 ∈ Init0 and �e1 ∈ Init1.k1(e1) = k0(e0)}∪
{(∗, e1)|e1 ∈ Init1 and �e0 ∈ Init0.k1(e1) = k0(e0)}∪
{(e0, e1)|e0 ∈ Init0 and e1 ∈ Init1 and k1(e1) = k0(e0)}
X �→ e if X �→′ e or there exists x ∈ no(λ(e)) such that

X = {e′ | ∃a.λ(e′) = a(x)} and x ∈ sbn(P )

e � e′ if either e �′ e′ or there exists x ∈ no(λ(e)) and a such that λ(e′) = a(x)

k(e) =

⎧
⎪⎪⎨

⎪⎪⎩

k0(e0) if e = (e0, ∗)
k1(e1) if e = (∗, e1)

k0(e0) if e = (e0, e1)

{[!xP ]}(N ,0) = 〈(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅〉

{[!xP ]}(N ,l) =
{
[!x\{x0,...,xk}P |P{x0,...,xk/a0,...,ak

}
]
}(N ,l−1) if {x0, . . . , xk} ⊆ x

and bn(P ) = {a0, . . . , ak}

We show in Theorems 6.3 and 6.4 that given a process P with a conflict-free

initial state, including any reachable process, performing a transition P
μ[m]−−−→ P ′

does not affect the event structure, as {[P ]}N and {[P ′]}N are isomorphic. It also
means we have an event e labelled μ such that e is available in P ’s initial state,
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and P ′’s initial state is P ’s initial state with e added. A similar event can be
removed to correspond to a reverse action.

Theorem 6.3. Let P be a forwards reachable process wherein all bound and
free names are different and let N ⊇ n(P ) be a set of names. If (1) {[P ]}N =
〈E , Init, k〉 where E = (E,F, 
→, �,�, λ,Act), and Init is conflict-free, and (2)

there exists a transition P
μ[m]−−−→ P ′ such that {[P ′]}N =

〈E ′, Init′, k′〉, then there

exists an isomorphism f : E → E ′ and a transition in Cbr(E), Init
{e}−−→ X, such

that λ(e) = μ, f ◦ k′ = k[e 
→ m], and f(X) = Init′.

Theorem 6.4. Let P be a forwards reachable process wherein all bound and
free names are different and let N ⊇ n(P ) be a set of names. If (1) {[P ]}N =
〈E , Init, k〉 where E = (E,F, 
→, �,�, λ,Act), and (2) there exists a transition

Init
{e}−−→ X in Cbr(E), then there exists a transition P

μ[m]−−−→ P ′ such that
{[P ′]}N =

〈E ′, Init′, k′〉 and an isomorphism f : E → E ′ such that λ(e) = μ,
f ◦ k′ = k[e 
→ m], and f(X) = Init′.

By Theorems 4.6, 6.3, and 6.4 we can combine the event structure semantics
of πIK and mapping E (Definition 4.4) and get an operational correspondence
between H �P and the event structure {[E(lcopy(H) �P, P )]}n(E(lcopy(H)
P,P )).

7 Conclusion and Future Work

All existing reversible versions of the π-calculus use reduction semantics [14,26]
or late semantics [7,17], despite the early semantics being used more widely than
the late in the forward-only setting. We have introduced πIH, the first reversible
early π-calculus. It is a reversible form of the internal π-calculus, where names
being sent in output actions are always bound. As well as structural causation,
as in CCS, the early form of the internal π-calculus also has a form of link
causation created by the semantics being early, which is not present in other
reversible π-calculi. In πIH past actions are tracked by using extrusion histories
adapted from [12], which move past actions and their locations into separate
histories for dynamic reversibility. We mediate the event structure semantics
of πIH via a statically reversible version of the internal π-calculus, πIK, which
keeps the structure of the process intact but annotates past actions with keys,
similarly to πK [17] and CCSK [21]. We showed that a process πIH with extrusion
histories can be mapped to a πIK process with keys, creating an operational
correspondence (Theorem 4.6).

The event structure semantics of πIK, and by extension πIH, are defined
inductively on the syntax of the process. We use labelled reversible bundle event
structures [10], rather than prime event structures, to get a more compact rep-
resentation where each action in the calculus has only one corresponding event.
While causation in the internal π-calculus is simpler that in the full π-calculus,
our early semantics means that we still have to handle link causation, in the
form of an input receiving a free name being caused by a previous output of
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that free name. We show an operational correspondence between πIK processes
and their event structure representations in Theorems 6.3 and 6.4. Cristescu
et al. [8] have used rigid families [4], related to event structures, to describe the
semantics of Rπ [7]. However, unlike our denotational event structure semantics,
their semantics require one to reverse every action in the process before applying
the mapping to a rigid family, and then redo every reversed action in the rigid
family. Our approach of using a static calculus as an intermediate step means
we get the current state of the event structure immediately, and do not need to
redo the past steps.

Future Work: We could expand the event structure semantics of πIK to πK. This
would entail significantly more link causation, but would give us event structure
semantics of a full π-calculus. Another possibility is to expand πIH to get a full
reversible early π-calculus.
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Abstract. Hermes is a domain-specific language for writing light-weight
encryption algorithms: It is reversible, so it is not necessary to write sepa-
rate encryption and decryption procedures, and it avoids several types of
side-channel attacks, both by ensuring no secret values are left in memory
and by ensuring that operations on secret data spend time independent
of the value of this data, thus preventing timing-based attacks. We show
a complete formal specification of Hermes, argue absence of timing-based
attacks (under reasonable assumptions), and compare implementations
of well-known light-weight encryption algorithms in Hermes and C.

1 Introduction

Recent work [12] have investigated using the reversible language Janus [5,19] for
writing encryption algorithms. Janus is a structured imperative language where
all statements are reversible. A requirement for reversibility is that no informa-
tion is ever discarded: No variable is destructively overwritten in such a way
that the original value is lost. Instead, it must be updated in a reversible man-
ner or swapped with another variable. Since encryption is by nature reversible,
it seems natural to write these in a reversible programming language. Addi-
tionally, reversible languages requires that all intermediate variables are cleared
to 0 before they are discarded, which ensures that no information that could
potentially be used for side-channel attacks is left in memory. But non-cleared
variables is not the only side-channel attack used against encryption: If the time
used to encrypt data can depend on the values of the data and the encryption
key, attackers can gain (some) information about the data or the key simply by
measuring the time used for encryption. Janus has control structures the tim-
ing of which depend on the values of variables, so it does not protect against
timing-based attacks.

So we propose a new reversible language, Hermes, specifically designed to
address these concerns. Although somewhat inspired by Janus, Hermes has some
significant differences, as we shall see below. An early version of the Hermes
language was presented in [7]. Experiments using this language have indicated a
need for a type system that separates secret and public data. In the early version,
the (informally specified) type system distinguishes constants, loop variables,
and all else, with constants and loop variables being considered non-secret and
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all else being secret. This early language is, however, too restrictive in many
cases and too permissive in other cases:

– Loop bounds and array sizes were constants, so algorithms with variable-size
keys or data would have to have a procedure for each size.

– Loop counters could in the early version of Hermes only be updated by con-
stant values, which may also be too restrictive.

– Procedure parameters are not distinguished by secrecy, so loop counters could
not be passed as parameters. By classifying parameters as public or secret,
loop counters can now be passed as public parameters.

– Any value was allowed as index to an array, but since timing can depend on
the index value (due to caching), this is a potential side channel. By limiting
array indices to public values, this can be avoided.

So we propose a new version of Hermes that uses public and secret types, with
strong restrictions on operations on secret values. Constants and loop counters
are public, all other variables are by default secret, but can be declared public.
The type system not only tracks flow of information similar to binding-time
analysis [3], trust analysis [8], and information flow analysis [11] but also imposes
restrictions to ensure reversibility and (under reasonable assumptions) avoid
timing-based side-channel attacks.

Program → Procedure+

Procedure → id ( Args ) Stat

Args → Type id | Type id[] | Args , Args

Type → secret IntType | public IntType

Stat → ;
| Lval update Exp ;
| Lval <->Lval | if ( Exp ) Lval <->Lval
| for ( id =Exp ; Exp ) Stat
| call id ( Lvals); | uncall id ( Lvals);
| { Decls1 Stat∗}

Exp → Lval | numConst | size id
| Exp binOp Exp | unOp Exp

Lval → id | id [ Exp ]

Lvals → Lval | Lval , Lvals

V arSpec → id | id [ Exp ]

Decls →
| Type V arSpec ; Decls
| const id = numConst ; Decls

Fig. 1. Core syntax of Hermes
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2 Hermes Syntax

The core syntax of Hermes is shown in Fig. 1. The grammar uses tokens specified
in boldface. These are described below.

id denotes identifiers. An identifier starts with a letter and can contain letters,
digits, and underscores.

numConst denotes decimal or hexadecimal integers using C-style notation.
IntType denotes names of integer types. These can be u8, u16, u32, and u64,

representing unsigned integers of 8, 16, 32 or 64 bits.
unOp denotes an unary operator on numbers. This can be bitwise negation ( ~).
binOp denotes an unary operator on numbers. This can be one of +, -, *, /, %, &,

|, ^ , ==, !=, <, >, <=, >=, <<, and >>. All arithmetic is modulo 264. Comparison
operators return 264−1 (all ones) when the comparison is true and 0 when
the comparison is false. Note that this is different from their behaviour in
C, where they return 1 and 0, respectively. &, |, and ^ are bitwise logical
operators.

update denotes an update operator. This can be one of +=, -=, ^ =, <<=, and
>>=. The first three operators have the same meaning as in C. <<= is a left
rotate. The rotation amount is modulo the size of the L-value being rotated,
so if, for example, x is an 8-bit variable, x <<= 13; will rotate x left by 5 bits.
>>= is a right rotate using similar rules. Note that the meaning of <<= and
>>= differ from their meaning in C, where they represent shift-updates.

3 The Type System of Hermes

Values in Hermes are all 64 bit unsigned integers, and they can be secret or
public. Scalar and array variables additionally impose a number size (8, 16, 32
or 64 bits). A constant just has the type constant, which is implicitly a 64-bit
number. So we have:

V alType → secret | public
V arType → constant | V alTypeSize | V alTypeSize[]
Size → 8 | 16 | 32 | 64

We use t with optional subscript to denote a value type, τ with optional subscript
to denote a variable type, and z with optional subscript to denote a size. So tz

denotes the special case of variable types where the variable is a scalar non-
constant. We define a partial order � as the reflexive extension of public �

secret and a least upper bound operator � induced by this partial order. We
use this to make the result secret when secret and public values are mixed.

3.1 L-Values and Expressions

Variable environments, denoted by ρ with optional subscript, bind identifiers
(denoted by x with optional subscript) to variable types. Environments are func-
tions, so ρ(x) is the variable type that x is bound to in ρ. We update environments
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using the notation ρ[x �→ τ ], which creates a new environment that is identical
to ρ, except that x is bound to τ .

Sequents for typing expressions, denoted by e with optional subscript, are
of the form ρ �E e : V alType, and sequents for typing L-values (denoted by l
with optional subscript) are of the form ρ �L l : V arType. In order to make
updates, swaps, and parameter passing reversible, we must impose restrictions
to avoid aliasing and similar clashes. To do this, we introduce functions that
find variables in expressions or parts of expressions. V () finds the variables in an
expression or L-value, R() finds the root variable of an L-value, and V ()I finds
the variables in index expressions in an L-value.

V (n) = ∅ V (x) = {x}
V (x[e]) = {x} ∪ V (e) V (¬e) = V (e)
V (e1 	 e2) = V (e1) ∪ V (e2) V (size x) = ∅

R(x) = x VI(x) = ∅
R(x[e]) = x VI(x[e]) = V (e)

Note that V () does not include variables in size-expressions, as these are harm-
less in terms of aliasing.

We specify rules for L-values and expressions in Fig. 2.
For L-values, the rule for variables says that a variable has the type speci-

fied by the environment. The rule for array access says that the array variable
must have an array type and the index expression must be public. This ensures
that timing of memory accesses (which can depend on the address, but not the
accessed value) does not leak secret information. The rules for constants state
that a constant is public. n denotes an integer constant. The rule for non-constant
L-values say that the L-value must be a scalar and that the expression type is
the value type part of the type of the L-value. The rule for an unary operator ¬
just say that the result has the same type as its argument. The rules for a binary
operator 	 is more complex. If any of the arguments are secret, the result is also
secret. Additionally, some potentially time-variant operations are not allowed on
secret values. We assume a set TV of time-variant operators is given. This will
typically contain division and modulo operators, but can also contain multipli-
cation if the target architecture does not have a constant-time multiplication
instruction. The last rule states that the size of an array is a public value.

3.2 Statements and Local Declarations

A seqent for a statement s is of the form Γ, ρ �S s and states that given a
procedure environment Γ and variable environment ρ, the statement s is well
typed. A procedure environment binds procedure names to lists of variable types.
The type rules for statements are shown in Fig. 3.

The first rule says that the empty statement is well typed. To ensure
reversibility, the rule for updates (where ⊕= denotes an update operator) says
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ρ �L x : ρ(x) (Variable)
ρ(x) = tz[] ρ �E e : public

ρ �L x[e] : tz
(ArrayAccess)

ρ �E n : public (Constant1)
ρ �L l : constant
ρ �E l : public (Constant2)

ρ �L l : tz

ρ �E l : t
(L-val) ρ �E e : t

ρ �E ¬ e : t
(UnOp)

ρ �E e1 : t1 ρ �E e2 : t2 t1 � t2 = public
ρ �E e1 � e2 : public (BinOp1)

ρ �E e1 : t1 ρ �E e2 : t2 t1 � t2 = secret � /∈ TV
ρ �E e1 � e2 : secret (BinOp2)

ρ(x) = tz[]
ρ �E sizex : public (Size)

Fig. 2. Type rules for L-values and expressions

that the root variable of the L-val must not occur in the expression. Further-
more, if the expression is secret, the L-Val must also be secret. The rule for a
swap states that the two L-values must have exactly the same type, and that
the root variable of one side can not occur in index expressions on the other
side. The rule for conditional swap additionally requires that the root variables
of the L-values do not occur in the condition and that the condition is no more
secret than the L-values. The rule for loops state that the loop bounds must be
public, and that the loop variable is implicitly declared to be a public 64-bit
variable local to the loop body. The rules for procedure calls state that the types
of the argument L-values must match those found in the procedure environment.
Furthermore, to avoid aliasing and ensure reversibility, the root variable of one
argument can not occur in another argument. The rule for blocks states that all
statements in the block must be well typed in the environment that is extended
by the local declarations. Static scoping is used. The bottom of Fig. 3 show the
rules for extending environments.

Sequents for declarations are of the form ρ �D d � ρ1, and state that the
declaration d extends the environment ρ to ρ1. The first rule state that an empty
declaration does not change the environment. The rule for constant declarations
extends the environment with the constant name bound to constant. The rules
for variable declarations are straightforward. The rules for array declarations
require that the expression that determines the size of an array must be public,
and that the array variable can not shadow any variable used in this expression.

3.3 Procedures and Programs

The rules for declarations of procedures and programs are shown in Fig. 4. A
sequent of the form � pgm states that pgm is a valid program. �P p � Γ states
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Fig. 3. Type rules for statements and declarations

that a procedure p generates a procedure environment Γ , Γ �P p states that,
given the procedure environment Γ , the procedure p is valid, and �A a � V/τ
states that the argument list a generates the variable list V and the type list τ .
We use � to append two (variable or type) lists and ∩ to represent the set of
elements common to two lists.

The rule for programs first builds a procedure environment, ensuring that no
procedure is declared twice, and then checks that all procedures are well typed in
this procedure environment. Procedures can all call each other. The Procedure1
rule builds a procedure environment for a single procedure, and Procedure2
checks that a single procedure is well typed. Both use rules for building a list of
argument names and types, ensuring no name occurs twice.



Hermes: A Language for Light-Weight Encryption 99

Fig. 4. Type rules for procedures and programs

4 Run-Time Semantics of Hermes

The run-time semantics of Hermes does not distinguish secret and public values
– type checking ensures that no secrets leak into public variables – so values in
Hermes are just sized numbers. Expressions all evaluate to 64 bit numbers, which
are only truncated when used to update variables or array elements, which can
be 8, 16, 32, or 64 bits in size. An array has an element size, a vector size, and a
vector of elements of the vector size. The sizes of scalar variables and the element
sizes of array are known at compile time, but for specification convenience they
are part of the run-time environments. A compiler can check sizes at compile
time, so the run-time environments bind names (or offsets) to locations only.
Similarly, named constants can be eliminated at compile time, so they do not
need to be part of the run-time environments.

Environments (η) bind constants to their value and variables to their integer
sizes (8, 16, 32, or 64) and locations.

Stores (σ) bind locations to values. The value of a scalar variable is an 8, 16, 32,
or 64 bit integer, and the value of an array is a record (struct) of its vector
size and its vector. The elements of the vector are locations holding 8, 16, 32,
or 64 bit integers, according to the integer size of the array.

We use the same notation for environments as in the type semantics, but we
also use the update notation as a pattern: If η1 is known, we use the notation
η2[x �→ v] = η1 to say that η2 is equal to η1 with the latest binding of x removed.
This means that earlier bindings of x are retained in the environment and can be
retrieved. The environments are stack-like: Bindings are removed in the opposite
order in which they are created. Stores, on the other hand, do not need to retain
older bindings of locations, so when a new value is bound to a location, the old
value can be forgotten. We use the notation σ[λ := v] when updating stores.
While this is not immediately evident from the semantic rules, there is only
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be one store in use at any given time, and locations are disposed of in the
opposite order of their creation, so the store acts like and can be implemented
as a global stack, allocating new zero-initialised locations on the top of the stack
and removing them in the opposite order of their allocation.

We use a family of functions newlocationz where z an integer size (8, 16, 32,
or 64) that takes a store σ returns a new store σ1 and location λ of size z such
that λ is bound to zero in σ1, and the dual function disposelocationz that takes a
storeσ1 and a location λ and returns a store σ obtained by removing (unstacking)
λ from σ1, after checking that the contents of λ in σ1 is 0. If not, the result is
undefined. If (σ1, λ) = newlocationz(σ), then σ = disposelocationz(σ1λ).

We also use a family of functions newarrayz that each take a store σ and a
vector size vs and returns a new store σ1 and a location λ that in the new store is
bound to two fields: σ1(λ) = (vs, ve), where vs is the vector size at this location,
and ve is a vector of new locations for the elements of the vector, all of which
are bound to zero in the new store. We use array notation to access elements of
a vector. newarrayz also have duals, disposearrayz, that each take a store σ1,
a vector size vs, and a location λ and returns a new store σ where the array at
λ has been removed (unstacked). It checks that the vector size at the location
matches vs, and that all vector elements are locations with zero as content. If
either of these is not true, the result is undefined. If (σ1, λ) = newarrayz(σ, vs),
then σ = disposearrayz(σ1, vs, λ).

Fig. 5. Semantic rules for L-values and expressions

4.1 L-Values and Expressions

Figure 5 shows the evaluation rules for L-values and expressions. L-values eval-
uate to locations, and expressions to 64-bit integers. Sequents for L-values are
of the form σ, η |=L l @ (z, λ) and state that the L-value l is stored at location
λ which is of size z. We use a special case for constants: When λ = null, l is a
constant equal to z. null is a null location where no values are stored.
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Fig. 6. Inverting statements

Sequents of the form σ, η |=E e → v, state that e evaluates to v.
We use a function I that binds operator symbols to the functions they rep-

resent. So I(+) is a function that takes a pair of integers and returns their sum
(modulo 264) and I(~) is a function that takes a single 64-bit integer and returns
its bitwise negation. I takes a pair of an update operator and an integer size and
returns a function that takes two integers of this size and returns a third inte-
ger of this size. Note that the actual updating is not done by this function. For
example, I(<<=,8) is a function that takes two 8-bit integers and returns the first
rotated left by the second modulo 8. So I(<<=,8)(129,18) =I(<<=,8)(129,2) = 6.
I is defined outside the semantic rules. Recall that comparison operators return
0 when the relation is false and 264−1 when the relation is true.

The rule for variables and constants says that the size and location of a scalar
variable or constant is found in the environment. The rule for array elements
states that the location of the variable is bound in the store to a pair of vector
size and vector elements, that the index expression must evaluate to a value
less than the vector size, and that the location of the array element is found in
the vector of elements. The type system guarantees that the location is not null
and that it is bound to a pair, but it does not ensure that the index is within
bounds, so this is checked at runtime. If the index it out of bounds, the effect is
undefined.

The two first rules for expressions handle constants. The first handles simple
number constants, which evaluate to themselves, and the second handles named
constants that are bound to pairs of values and null locations. The rule for
L-values finds the location of the L-value and gets its contents from the store,
and then extends the value to 64 bits. For this, we use a postfix operator ↑z
that extends a z-bit value to 64 bits. The rules for unary and binary operators
evaluate the operand(s) and then applies the semantic operator to the value(s)
of the operand(s). Finally, the rule for size finds the size of the array in the
store. The type system ensures that the location is not null and that it is bound
to a pair.

4.2 Statements

To handle uncall in the semantics for statements, we need to “run” statements
backwards. To this end, we use the function I in Fig. 6 to invert statements:
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In a type-correct program, the effect of first executing s and then I(s) is, if s
terminates without error, a null effect: The store is in the same state as before
s was executed. Proving this is tedious, but relatively uncomplicated. The main
complications are declarations and that some statements are only reversible if
the aliasing constraint in th etype system hold. We do, however, not at the time
have a complete proof written down.

Statements transform stores into stores, while keeping the environment
unchanged. Sequents for running statements are of the form Δ, η |=S s : σ0 � σ1

and state that, given a procedure environment Δ and a variable environment η,
a statement s reversibly transforms a store σ0 to a store σ1.

The rules for statements are shown in Fig. 7. The rule for the empty statement
states that it does not change the store. The rule for updates finds the value v
of the L-value and the value w of the expression. It then truncates w to s bits
(using the ↓s operator), performs the operation (restricted to s bits) between
the two values, and stores the result in the location of the L-value.

The rule for swap finds the values of the two L-values in the store and updates
the store with these swapped. There are two rules for conditional swap: The first
rule states that if the condition evaluates to 0 (false), there is no change in the
store. The other rule states that if the condition evaluates to a non-zero (true)
value, the effect on the store is like an unconditional swap. Note that this does
not imply that the condition is evaluated twice if it is non-zero, nor that the
timing differs. It is up to the implementation to ensure invariant timing.

The rule for loops first evaluate the loop bounds, allocates a new location
in the store, and stores the first bound at the location, applies helper rules |=F

using an environment where the loop counter is bound to the location, and then
disposes of the location in the resulting store. There are two helper rules: One
for when the loop counter is equal to the second bound, and one where it does
not. Both use the location and the value of the second bound.

The rule for call finds the sized locations of the arguments, looks the pro-
cedure up in the procedure environment to get the list of parameter names
and the body of the procedure. It then creates a new environment that binds
the parameter names to the argument locations and executes the body in this
environment. This implements call-by-reference parameter passing. The rule for
uncall is similar, but it is the inverse of the body that is executed. The type
system guarantees that the sizes of the given parameters are the same as the
sizes of the declared parameters.

The rule for blocks uses the declarations to extend the environment and store,
executes the body, and uses the declarations to restrict the store.

4.3 Declarations

The rules for declarations is shown in Fig. 8. There are two kinds of sequents for
declarations: η0, σ0 |=D d � η1, σ1 says that the declaration d extends η0 and
σ0 to η1 and σ1. Conversely, η0, σ0 |=inv

D d � η1, σ1 says that “undoing” the
declaration d restricts η0 to η1 and σ0 to σ1.
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Fig. 7. Semantic rules for statements

The first two rules say that the empty declaration has no effect. The next two
rules state that a constant declaration extends the environment but leaves the
store unchanged. Recall that constants are stored in the environment by using
a null location. The rules for variable and array declarations do not distinguish
secret and public values. In the forwards direction, a new location (bound to
zero) is created for the variable and the variable is bound to the location. In
the backwards direction, disposelocationz verifies that the location is bound
to zero before it is removed from the store. In the forwards direction, a new
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Fig. 8. Semantic rules for declarations

zeroed array is created in the store and the variable is bound to its location in
the environment. In the backwards direction is it verified that the expression
evaluates to the array size, and disposearrayz checks that the elements of the
array are all bound to 0 in the store and removes the array from the store. Note
that the rules for undeclaring things treat the declarations in reverse order.

4.4 Procedures and Programs

The rules for procedures and programs are shown in Fig. 9. There is no main
function and no input/output in Hermes, so it is assumed that procedures are
called from outside Hermes. Therefore, the semantics of a program is just cre-
ating a procedure environment Δ. The external program can call (or uncall) a
procedure in this environment by providing a store and a list of locations for the
procedure parameters. The rule for procedures creates a procedure environment
for a single procedure. This binds the procedure name to a list of (name, integer
size) pairs and the body of the procedure. The environments are combined using
� in the rule for programs. Additional rules describe external calls to Hermes.
These are very like the rules for calls in statements, except that the locations
are given directly instead of being derived from a list of L-values.
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Fig. 9. Semantic rules for procedures and programs

5 Code Examples

In the examples, we use some syntactic sugar that the Hermes compiler
expands into the core syntax during parsing. The statements Lval++;, Lval--;,
and if (Exp)LvalupdateExp; are expanded to Lval += 1;, Lval -= 1;, and
Lvalupdate (Exp != 0) & (Exp);, respectively. The latter works because 0 is
a neutral element for all the update operators used in Hermes. A declaration
that specifies a number of variables and arrays of the same type is expanded to
a sequence of individual declarations, and if secret or public is omitted from
a declaration, secret is assumed. For example, the declarations public u32
x, a[n]; u64 z; is just a shorter way to write the equivalent public u32 x;
public u32 a[n]; secret u64 z;. Operator precedences can be overridden by
parentheses.

Figure 10 (top) shows Hermes code for the TEA encryption algorithm [14], a
simple cypher used mainly for teaching. Only the encryption function is shown –
decryption is done by uncalling the encryption function. The sizes of v and k are
2 and 4, respectively. Compare to the equivalent program in C [17] at the bottom
of Fig. 10. Apart from using updates and swaps, the main difference is that the C
version requires an explicit decryption function, which is not needed in Hermes.
Also, the local variables are in Hermes cleared to 0 by “uncomputation”, where
the C version leaves these uncleared.

Figure 11 shows Hermes and C code for the central part of RC5 [9], another
simple algorithm. The Hermes program shows size s being used as a loop
bound, which makes the procedure independent of the size of the expanded
key. Since C does not have a rotate operator, the C version [15] uses a macro for
this. And since C does not have a swap operator, the central loop is unrolled so
one iteration in the C version correspond to two iterations in the Hermes ver-
sion. Again, C needs an explicit decryption function (not shown), which is not
required in Hermes. Key expansion in RC5 (not shown) is not reversible, so to
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encrypt (u32 v [ ] , u32 k [ ] )
{

u32 v0 , v1 , k0 , k1 , k2 , k3 ;
public u32 sum;
const delta = 0x9E3779B9 ; /∗ key schedule constant ∗/
v0 <−> v [ 0 ] ; v1 <−> v [ 1 ] ; /∗ se t up ∗/
k0 += k [ 0 ] ; k1 += k [ 1 ] ; k2 += k [ 2 ] ; k3 += k [ 3 ] ; /∗ cache key ∗/
for ( i=0; 32) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1 ) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3 ) ;
i++;

} /∗ end cycle , now clear l oca l var iab l e s ∗/
k0 −= k [ 0 ] ; k1 −= k [ 1 ] ; k2 −= k [ 2 ] ; k3 −= k [ 3 ] ; sum −= 0xC6EF3720 ;
v [ 0 ] <−> v0 ; v [ 1 ] <−> v1 ; /∗ return coded values ∗/

}

void encrypt ( uint32 t v [ 2 ] , uint32 t k [ 4 ] ) {
uint32 t v0=v [ 0 ] , v1=v [ 1 ] , sum=0, i ; /∗ se t up ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [ 0 ] , k1=k [ 1 ] , k2=k [ 2 ] , k3=k [ 3 ] ; /∗ cache key ∗/
for ( i=0; i <32; i++) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1 ) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3 ) ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}
void decrypt ( uint32 t v [ 2 ] , uint32 t k [ 4 ] ) {

uint32 t v0=v [ 0 ] , v1=v [ 1 ] , sum=0xC6EF3720, i ; /∗ sum=32∗de l ta ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [ 0 ] , k1=k [ 1 ] , k2=k [ 2 ] , k3=k [ 3 ] ; /∗ cache key ∗/
for ( i=0; i <32; i++) { /∗ basic cyc le s ta r t ∗/

v1 −= ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3 ) ;
v0 −= ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1 ) ;
sum −= delta ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}

Fig. 10. TEA in Hermes (top) and C (bottom)

implement this in Hermes requires storing additional values i “garbage” array.
Th garbage array is reset to zeroes when the expanded key (after calling the
central procedure) is uncomputed by uncalling the key expansion procedure.

Figure 12 shows Hermes code for speck128 [1,18] (a cypher used by NSA).
Again, only encoding is shown. The main thing to note is that the R procedure
are found in two copies, one (Rs) where the k parameter is secret, and one (Rp)
where it is public. This is because two of the calls pass a public loop counter
to k, while the other two calls pass part of a secret key to k. An extension
to the type system that avoids this codeduplication is being investigated. Some
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rc5 (u32 ct [ ] , u32 S [ ] )
{

u32 A, B;
A <−> ct [ 0 ] ; B <−> ct [ 1 ] ;
A += S [ 0 ] ; B += S [ 1 ] ;
for ( i=2; s i z e S) {
A ˆ= B; A <<= B; A += S[ i ] ;
B <−> A;
i++;

}
ct [ 0 ] <−> A; ct [ 1 ] <−> B;
}

#define ROL(x , r ) ((x<<r ) | ( x>>(64−r ) ) )

void RC5ENCRYPT(WORD ∗pt , WORD ∗ct )
{

WORD i , A=pt [0]+S [ 0 ] , B=pt [1]+S [ 1 ] ;

for ( i = 1; i <= 12; i++)
{

A = ROL(A ˆ B, B) + S[2∗ i ] ;
B = ROL(B ˆ A, A) + S[2∗ i + 1 ] ;

}
ct [ 0 ] = A; ct [ 1 ] = B;

}

Fig. 11. RC5 core in Hermes (left) and C (right)

speck128 (u64 ct [ ] , u64 K[ ] )
{

u64 y , x , b , a ;
y <−> ct [ 0 ] ; x <−> ct [ 1 ] ; b += K[ 0 ] ; a += K[ 1 ] ;

c a l l Rs(x , y , b ) ;
for ( i=0; 32) {

ca l l Rp(a , b , i ) ; i++;
ca l l Rs(x , y , b ) ;

}
for ( i=32; 0) { /∗ restore a and b ∗/

i−−; uncall Rp(a , b , i ) ;
}
y <−> ct [ 0 ] ; x <−> ct [ 1 ] ; b −= K[ 0 ] ; a −= K[ 1 ] ;

}
Rs(u64 x , u64 y , secret u64 k)
{ x >>= 8; x += y ; x ˆ= k ; y <<= 3; y ˆ= x ; }
Rp(u64 x , u64 y , public u64 k)
{ x >>= 8; x += y ; x ˆ= k ; y <<= 3; y ˆ= x ; }

Fig. 12. Speck128 in Hermes

uncomputation is needed to restore a and b to 0. This is not found in the standard
C implementation, where these are left uncleared.

We have implemented several other encryption algorithms in Hermes, includ-
ing Red Pike [16] (a cypher used by GCHQ) and Blowfish [10] (designed as a
replacement for DES). With the exception of key expansion, this was relatively
straight forward.

6 Conclusion and Future Work

We have presented a language Hermes for writing light-weight encryption func-
tions. Hermes ensures reversibility, so decryption can be done by executing
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encryption procedures backwards, and can (given a suitable implementation)
protect against certain forms of side-channel attacks, such as timing based
attacks and leaks to memory. Hermes has a formal semantics for both the type
system and runtime behavior. These semantics can be used to prove both that
secret information does not leak into publica variables and that type-correct
programs are, indeed, reversible, but we do not have complete proofs for this
at the moment, mainly because we expect Hermes to evolve over time, so we
have postponed proofs until Hermes settles to a more stable form. The seman-
tic rules do not specify what happens if a condition in a rule fails, for example
when an array bound is exceeded. For the type rules, the obvious behaviour is
an error message. For the run-time semantics, it is less clear. Run-time error
messages can be helpful in locating errors, but they can potentially leak infor-
mation about secret values. So it might be better to continue execution with
some default behaviour.

We have in Standard ML made a reference interpreter for Hermes which
closely follows the semantic rules. The interpreter does not guarantee time-
invariant operations, and it reports errors when run-time errors are detected.
We also have an implementation of Hermes in WebAssembly [2]. We are working
on extending this to target CT-Wasm [13], a variant of WebAssembly that has
a public/secret type system similar to the one used here. Targeting CT-Wasm
should preserve the safety features of Hermes. Note that the aliasing restrictions
in Hermes make call-by-reference indistinguishable from call-by-value-return, so
this can be used as an optimisation when WebAssembly, as planned, supports
multiple return values.

We are currently working on implementing the Advanced Encryption Stan-
dared (AES) in Hermes. An issue with AES is that it uses secret information
as array indexes, which the current Hermes does not allow, so to implement it
may require a relaxation of this restriction, for example by ensuring the array is
fully cached, so access time is independent of the index. We are also considering
other extensions to Hermes, including sized boolean types (with values 0 and
2z−1) and read-only parameters to procedures. The latter will avoid the need
of duplicating the R procedure in Fig. 12. We are also considering additional
control structures, but will only add them by need. A more precise alias analy-
sis could relax some of the restrictions on parameter passing, but we have not
found any examples where this matters. At the moment, index checks and checks
that variables and arrays are zeroed before being disposed are done at run time.
Static verification of these would be beneficial, for efficiency and safety both.

Some side-channel attacks (such as Spectre [4]) target speculative execution.
By partially evaluating [3,6] Hermes programs with all public values (typically
key and block lengths) considered static will leave a straight-line unconditional
sequence of operations only involving secret values and constants, thus avoiding
speculative execution. This has the added benefit that it is easier to eliminate
index checks and checks for variables being zero at the end of blocks.

Public-key cyphers are not trivially reversible – that would defeat the pur-
pose – so implementing these in Hermes it not obvious. A possibility is to let
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the encryption function return not only the cypher text, but also additional
“garbage” information that must be discarded before transmitting the cypher
text. Similarly, decryption also produces garbage in addition to the original text.
As such, the reversibility of Hermes is not exploited, but is rather a hindrance.
The safety features still apply, though.

We thank our colleagues Ken Friis Larsen and Michael Kirkedal for co-super-
vising some student projects about Hermes and for fruitful discussions, and we
thank the students who worked on these projects.
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Abstract. We argue that there is a link between implicit computational
complexity theory and the theory of reversible computation. We show
that the complexity classes ETIME and P can be captured by inherently
reversible programming languages.

1 Introduction

The title above is inspired by the title of a paper I co-authored with Paul Voda
more than 15 years ago: Programming languages capturing complexity classes
[10]. In that paper we related the computational power of fragments of pro-
gramming languages to complexity classes defined by imposing time and space
constraints on Turing machines. Around that time, I authored and co-authored
a number of related papers, e.g. [8,9,11], all of which were clearly inspired by
work in implicit computational complexity theory from the 1990s, e.g., Bellatoni
and Cook [2], Leivant [12,13] and, particularly, Jones [5,6].

Complexity classes like P, FP, NP, LOGSPACE, EXPTIME, and so on, are
defined by imposing explicit resource bounds on a particular machine model,
namely the Turing machine. E.g., FP is defined as the class of functions com-
putable in polynomial time on a deterministic Turing machine. The definition
puts constraints on the resources available to the Turing machines, but no con-
straints on the algorithms available to them. A Turing machine may compute a
function in the class by any imaginable algorithm as long as it works in poly-
nomial time. Implicit computational complexity theory studies classes of func-
tions (problems, languages) that are defined without imposing explicit resource
bounds on machine models, but rather by imposing linguistic constraints on
the way algorithms can be formulated. When we explicitly restrict our language
for formulating algorithms, that is, our programming language, then we may
implicitly restrict the computational resources needed to execute algorithms. If
we manage to find a restricted programming language that captures a complexity
class, then we will have a so-called implicit characterization. A seminal example
is Bellatoni and Cook’s [2] characterization of FP. They give a functional pro-
gramming language (which they call a function algebra). This language consists
of a few initial functions and two definition schemes (safe composition and safe
primitive recursion) which allow us to define new functions. These schemes put
c© Springer Nature Switzerland AG 2020
I. Lanese and M. Rawski (Eds.): RC 2020, LNCS 12227, pp. 111–127, 2020.
https://doi.org/10.1007/978-3-030-52482-1_6
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rather severe syntactical restrictions on how we can define functions, but they do
not refer to polynomially bounded Turing machines or any other kind of resource
bounded computing machinery. It is not easy to write programs when we have
to stick to these schemes, even experienced programmers might find it hard to
multiply two numbers but, be that as it may, this is a programming language
that yields an implicit characterization of a complexity class. It turns out that a
function can be computed by a program written in Bellantoni & Cook’s language
if and only if it belongs to the complexity class FP.

There is an obvious link between implicit computational complexity and
reversible computing. A programming language based on natural reversible oper-
ations will impose restrictions on the way algorithms can be formulated, and
thus, also restrictions on the computational resources needed to execute algo-
rithms. Hence, the following question knocks at the door: Will it be possible find
reversible programming languages that capture some of the standard complexity
classes? The answer turns out to be YES. We will present a reversible language
that captures, or if you like, gives an implicit characterization of, the (maybe not
very well-known) complexity class ETIME. A few small modifications of this lan-
guage yield a reversible language that captures the very well-known complexity
class P.

Our languages are based on a couple of naturally reversible operations. To
increase, or decrease, a natural number by 1 modulo a base b is such an operation:
. . . 0, 1, 2, . . . , b − 2, b − 1, 0, 1, 2 . . .. The successor of b − 1 becomes 0, and then
b − 1 becomes the predecessor of 0. Thus, “increase” and “decrease” are the
reverse of each other. To move an element from the top of one stack to the top
of another stack is another such operation as we can simply move the element
back to the stack it came from.

This paper addresses students and researchers interested in programming
languages, reversible computations and computer science in general, they will
not necessarily be experts in computability or complexity theory. We will give
priority to readability over technical accuracy, but still this is a fairly technical
paper, and we will assume that the reader is faintly acquainted with Turing
machines and basic complexity theory (standard textbooks are Arora and Barac
[1], Jones [7] and Sipser [16]).

Implicit computational complexity theory is definitely a broader and richer
research area than our short discussion above may indicate. More on the subject
can be found in Dal Lago [3].

2 Reversible Bottomless Stack (RBS) Programs

An infinite sequence of natural numbers s1, s2, s3, . . . is a bottomless stack if
there exists k such that si = 0 for all i > k. We use 〈x1, . . . , xn, 0∗] to denote the
bottomless stack s1, s2, s3, . . . where si = xi when i ≤ n, and si = 0 when i > n.
We say that x1 is the top element of 〈x1, . . . , xn, 0∗]. Observe that 0 is the top
element of the stack 〈0∗]. Furthermore, observe that 〈0, 0∗] is the same stack as
〈0∗] (since 〈0, 0∗] and 〈0∗] denote the same sequence of natural numbers). We
will refer to 〈0∗] as the zero stack.
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THE SYNTAX OF RBS

X ∈ Variable ::= X1 | X2 | X3 | . . .
com ∈ Command ::= X+ | X− | (X toX) | com; com

| loop X { com }

Fig. 1. The syntax of the language RBS. The variable X in the loop command is not
allowed to occur in the loop’s body.

The syntax of the imperative programming language RBS is given in Fig. 1.
Any element in the syntactic category Command will be called a program, and
we will use the word command and the word program interchangeably throughout
the paper. We will now explain the semantics of RBS.

An RBS program manipulates bottomless stacks, and each program variable
holds such a stack. The input to a program is a single natural number m. When
the execution of the program starts, the input m will be stored at the top of the
stack hold by X1, that is, we have X1 = 〈m, 0∗]. All other variables occurring in the
program hold the zero stack when the execution starts. A program is executed
in a base b which is determined by the input: we have b = max(m + 1, 2) if
X1 = 〈m, 0∗] when the execution starts. The execution base b is kept fixed during
the entire execution.

Let X and Y be program variables. We will now explain how the primitive
commands work. The command (X to Y) pops off the top element of the stack
held by X and pushes it onto the stack held by Y, that is

{X = 〈x1, . . . , xn, 0∗] ∧ Y = 〈y1, . . . , ym, 0∗]} (X to Y)
{X = 〈x2 . . . , xn, 0∗] ∧ Y = 〈x1, y1, . . . , ym, 0∗]}.

The command X+ increases the the top element of the stack held by X by
1 (mod b), that is

{X = 〈x1, . . . , xn, 0∗]} X+ {X = 〈x1 + 1 (mod b), x2 . . . , xn, 0∗]}.

The command X− decreases the the top element of the stack held by X by
1 (mod b), that is

{X = 〈x1, . . . , xn, 0∗]} X− {X = 〈x1 − 1 (mod b), x2 . . . , xn, 0∗]} .

Observe that we have

{X = 〈b − 1, x2 . . . , xn, 0∗]} X+ {X = 〈0, x2 . . . , xn, 0∗]}
and

{X = 〈0, x2 . . . , xn, 0∗]} X− {X = 〈b − 1, x2 . . . , xn, 0∗]}
when b is the base of the execution.
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The semantics of the command C1; C2 is as expected. This is the standard
composition of the commands C1 and C2, that is, first C1 is executed, then C2
is executed. The command loop X { C } executes the command C repeatedly k
times in a row where k is the top element of the stack held by X. Note that the
variable X is not allowed to occur in C and, moreover, the command loop X { C }
will not modify the stack held by X.

Example 1. Let C1 be the program loop X1 { X+2 }; (X2 to X1). We have

{X1 = 〈17, 0∗] ∧ X2 = 〈0∗]} C1 {X1 = 〈17, 17, 0∗] ∧ X2 = 〈0∗]}.

Let C2 be the program loop X1 { X+2 }; X+2 ; (X2 to X1). We have

{X1 = 〈17, 0∗] ∧ X2 = 〈0∗]} C2 {X1 = 〈0, 17, 0∗] ∧ X2 = 〈0∗]}
since the execution base is 18. All numbers stored on stacks during an execution
will be strictly less than the execution base, and thus, less than or equal to
max(m, 1) where m is the input. ��

Intuitively, it should be clear that RBS programs are reversible in a very strong
sense. RBS is an inherently reversible programming language in the terminology
of Matos [14]. If we like, we can of course state this insight more formally. The
next definition and the following theorem will be a step in that direction.

Definition 2. We define reverse command of C, written CR, inductively over
the structure C:

– (X+i )R = X−
i

– (X−
i )R = X+i

– (Xi to Xj)R = (Xj to Xi)
– (C1; C2)R = CR

2 ; C
R
1

– (loop Xi { C })R = loop Xi { CR }.
��

Theorem 3. Let C be a program, and let X1, . . . , Xn be the variables occurring
in C. Furthermore, let m be any natural number. We have

{X1 = 〈m, 0∗] ∧
n∧

i=2

Xi = 〈0∗]} C; CR {X1 = 〈m, 0∗] ∧
n∧

i=2

Xi = 〈0∗]}.

It is a nice, and maybe even challenging, exercise to write up a decent proof
Theorem 3, even if it should be pretty clear that the theorems holds. We will
offer a proof in the next section. The reader not interested in the details of the
proof, may skip that section.

We will now define the set of problems that can be decided by an RBS pro-
grams. To that end, we need to determine how an RBS program should accept,
and how an RBS program should reject, its input. Any reasonable convention will
do, and we will just pick a simple and convenient one.
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EXAMPLE

Program: Comments:
(* X1 = 〈m, 0∗] *)

X1 to X9; (* the top elements of X9 is m *)

X+2 ; (* X1 = 〈0∗] and X2 = 〈1, 0∗] *)

loop X9 { (* repeat m times *)
X1 to X3;

X2 to X1; (* swap the top elements of X1 and X2 *)

X3 to X2 }

Fig. 2. The program accepts every even number and rejects every odd number.

Definition 4. An RBS program C accepts the natural number m if C executed
with input m terminates with 0 at the top of the stack hold by X1, otherwise, C
rejects m.

A problem is a set of natural numbers.1 An RBS program C decides the prob-
lem A if C accepts all m that belong to A and rejects all m that do not belong
to A. Let S denote class of problems decidable by an RBS program. ��

Let A be the set of even numbers. Then A is a problem. Figure 2 shows an
RBS program that decides A.

Now, any RBS program decides a problem, and S is obviously a well-defined
class of computable (decidable) problems. We have defined S by a reversible
programming language. We have not defined S by imposing resource bounds
on Turing machines or any other machine models. What can we say about the
computational complexity of the problems we find in S? May it be the case that
S equals a complexity class?

3 The Proof of Theorem3

This section is dedicated to a detailed proof of Theorem 3 (readers not interested
may jump ahead to Sect. 4). First, we need some terminology and notation: We
will say that a (bottomless) stack is a b-stack if every number stored on the
stack is strictly smaller than b. Furthermore, we will use V(C) to denote the set
of program variables occurring in the command C, and for any positive integer m
and any command C, we define the command Cm by C1 ≡ C and Cm+1 ≡ Cm; C.

Now, assume that C is an RBS command with V(C) ⊆ {X1, . . . , Xn}. Further-
more, assume that C is executed in base b and that α1, . . . , αn, β1, . . . , βn are
b-stacks. With these assumptions in mind, we make the following claim:

1 It is pretty standard in computability and complexity theory to define a problem as
a set of natural numbers.
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If {
n∧

�=1

X� = α�} C {
n∧

�=1

X� = β�} , then {
n∧

�=1

X� = β�} CR {
n∧

�=1

X� = α�}.

(claim)

Theorem 3 follows straightforwardly from this claim. So all we need to do is
to prove the claim.

We will of course carry out induction on the structure of the command C,
and our proof will split into the tree base cases (i) C ≡ X+i , (ii) C ≡ X−

i and (iii)
C ≡ (Xj to Xi) and the two inductive cases (iv) C ≡ C1; C2 and C ≡ loop Xi {C0}
(see Fig. 1).

Case (i). Assume

{
n∧

�=1

X� = α�} X+i {
n∧

�=1

X� = β�}.

Then we also have {Xi = αi} X+i {Xi = βi} where

αi = 〈m1,m2, . . . ,mk, 0∗] and βi = 〈m1 + 1 (mod b),m2, . . . ,mk, 0∗]

for some m1, . . . ,mk < b. We have (m1 + 1 (mod b)) − 1 (mod b) = m1 when
m1 < b. Thus we have {Xi = βi} X−

i {Xi = αi}. By Definition 2, we have
{Xi = βi} (X+i )R {Xi = αi}. Now, since neither X+i nor (X+i )R will modify any
stack held by a variable Xj where j 	= i, we also have

{
n∧

�=1

X� = β�} (X+i )R {
n∧

�=1

X� = α�}.

This concludes the proof of case (i). The proofs of the cases (ii) and (iii) are very
similar to the proof of case (i). We leave the details to the reader and proceed
with the inductive cases.

Case (iv). Assume

{
n∧

�=1

X� = α�} C1; C2 {
n∧

�=1

X� = β�}.

Then there exist b-stacks γ1, . . . , γn such that

{
n∧

�=1

X� = α�} C1 {
n∧

�=1

X� = γ�} and {
n∧

�=1

X� = γ�} C2 {
n∧

�=1

X� = β�}.

We apply our induction hypothesis both to C1 and to C2 and conclude

{
n∧

�=1

X� = γ�} CR
1 {

n∧

�=1

X� = α�} and {
n∧

�=1

X� = β�} CR
2 {

n∧

�=1

X� = γ�}.
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It follows that

{
n∧

�=1

X� = β�} CR
2 ; C

R
1 {

n∧

�=1

X� = α�}.

Finally, as Definition 2 states that (C1; C2)R = CR
2 ; C

R
1 , we have

{
n∧

�=1

X� = β�} (C1; C2)R {
n∧

�=1

X� = α�}.

This completes the proof of case (iv).

Case (v). Assume

{
n∧

�=1

X� = α�} loop Xi { C0 } {
n∧

�=1

X� = β�} (*)

and let m be the top element of the stack αi.
If m = 0, we have

{
n∧

�=1

X� = α�} loop Xi { C0 } {
n∧

�=1

X� = α�}.

as the command C0 will not be executed at all. Thus, we also have

{
n∧

�=1

X� = α�} loop Xi { CR
0 } {

n∧

�=1

X� = α�}.

and by Definition 2, we have

{
n∧

�=1

X� = α�} (loop Xi { C0 })R {
n∧

�=1

X� = α�}.

This proves that the claim holds when m = 0. We are left to prove that the
claim holds when m > 0. Thus, in the remainder of this proof we assume that
m > 0.

First we prove

If {
n∧

�=1

X� = α�} Cm
0 {

n∧

�=1

X� = β�}, then {
n∧

�=1

X� = β�} (CR
0 )m {

n∧

�=1

X� = α�}.

(†)
by a secondary induction on m.

Let m = 1. Then we have Cm
0 ≡ C0, and an application of our main induction

hypothesis to C0 yields (†). Let m > 1. Then we have

Cm
0 ≡ Cm−1

0 ; C0 and (CR
0 )m ≡ CR

0 ; (CR
0 )m−1
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and (†) holds by our induction hypothesis on m and case (iv) above. This con-
cludes the proof of (†).

We are now ready to complete our proof the claim. By (*), we have

{
n∧

�=1

X� = α�} Cm
0 {

n∧

�=1

X� = β�}.

By (†), we have

{
n∧

�=1

X� = β�} (CR
0 )m {

n∧

�=1

X� = α�}.

Since Xi 	∈ V(C0), we have βi = αi, and thus, the top element of βi is the same
as the top element of αi, namely m. It follows that

{
n∧

�=1

X� = β�} loop Xi { CR
0 } {

n∧

�=1

X� = α�}.

Finally, as Definition 2 states that loop Xi { CR
0 } = (loop Xi { C0 })R, we have

{
n∧

�=1

X� = β�} (loop Xi { C0 } )R {
n∧

�=1

X� = α�}.

This completes the proof of case (v).

4 Simulation of Turing Machines

4.1 A General Strategy

Let us first see how we can simulate a Turing machine in a standard way in a
standard high-level language. Thereafter we will discuss how we can simulate a
Turing machine in our rudimentary reversible language. In the standard language
we will of course be able to simulate any Turing machine, no matter how much
time and space resources the machine requires. In the reversible language we will
only be able to simulate those Turing machines that run in time O(2kn) (where
k is a constant and n is the length of the input).

We assume some familiarity with Turing machines. The reader is expected to
know that a Turing machine computes by writing symbols from a finite alphabet
a1, . . . , aA on an infinite tape which is divided into cells; know that one of the
cells is scanned by the machine’s head; know a there is a finite number of states
q1, . . . , qQ; and so on.

The input w will be available on the tape when a Turing machine M starts,
and the actions taken by M will be governed by a finite transition table. Each
entry of the table is a 5-tuple

ai, qk, aj ,D, q� (∗)
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where ai, aj are alphabet symbols; qk, q� are states; and D is ether “left” or
“right”. Such a tuple is called a transition and tells M what to do when it scans
the symbol aj in state qk: in that case M should write the symbol aj , move
its head one position in the direction given by D, and then proceed in state
q�. We restrict our attention to deterministic Turing machines, and for each
alphabet symbol ai and each non-halting state qk, there will be one, and only
one, transition that starts with ai, qk. So a Turing machine knows exactly what
to do until it reaches one its halting states, and then it simply halts (if it halts
in a dedicated state qaccept, it accepts its input; if it halts in a dedicated state
qreject, it rejects its input). This entails that we can simulate a Turing machine
by a sequence of if-then statements embedded into a while-loop. We need one
if-then statement for each transition:

〈initiate the tape with the input w〉
while 〈M is not in a halting state〉 do
if 〈a1 is scanned in state q1〉 then 〈do what should be done〉;
if 〈a2 is scanned in state q1〉 then 〈do what should be done 〉;
...

...
if 〈aA is scanned in state qQ〉 then 〈do what should be done 〉
end-while.

Minimum one transition will be executed each time the loop’s body is executed,
and the running time of M (on input w) will more or less be the number of
times the body is executed. (It might happen that more than one transition is
executed when the loop’s body is executed once, but that will not cause any
trouble.) In order to simulate the actions taken by the transitions, we need a
representation of the computing machinery. We need to keep track of the current
state, we need to keep track of the symbols on the tape, and we need to identify
the scanned cell. The current state can simply be stored in a register STATE, but
how should we deal with the tape? The tape is divided into an infinite sequence
of cells

C1, C2, C2, . . . , Cs−1, Cs, Cs+1, . . .

where one of the cells Cs is scanned by the head. Only finitely many of these cells
will contain anything else than the blank symbol. Let us say that Ci contains
blank when i > B0. In order to simulate the machine it will obviously be sufficient
to store the symbols in the cells C1, C2, . . . , CB where B = max(B0, s) + 1. In
addition we need to keep track of the scanned cell Cs. A convenient way to deal
with the situation will be to use a stack STACKL, a register SCAN, another stack
STACKR, and store the tape content in the following way:

Cs−1 Cs+1

...
...

C1 Cs CB

STACKL SCAN STACKR
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Now we can mimic the movements of the head by pushing and popping alphabet
symbols in the obvious way, and the transition (*) can be implemented by a
program of the form

if SCAN = ai and STATE = qk then
{ SCAN:= aj; . . . push and pop . . . ; STATE:= q� }.

4.2 Can RBS Programs Simulate Turing Machines?

The input to an RBS program is a natural number, and we will thus discuss to
what extent an RBS program can simulate a Turing machine that takes a single
natural number as input.

We have seen that a program with only one while-loop can simulate a Turing
machine (and we will for sure need at least one while-loop in order to simulate
an arbitrary Turing machine). Now, while-loops are not available in RBS, and the
best we can do in order to simulate a Turing machine is to use a fixed number
of nested for-loops:

loop Y1 { loop Y2 { . . . loop Yk { 〈sequence of if-then statements〉 } . . . }}.

Since an RBS program cannot increase the numerical value of its input, the body
of each of these loops will be executed maximum max(m, 1) times where m is the
input to the RBS program (and to the Turing machine the program simulates).
Thus it is pretty clear that we cannot simulate a Turing machine if its running
time is not bounded by mk for some constant k. This corresponds to a bound
2k|m| where k is a constant and |m| is the length of the input m, that is, |m|
equals the number of symbols needed to represent the natural number m in
binary notation. In the following we will see that any Turing machine that uses
such an amount of computation time can be simulated by an RBS program.

It turns out that an RBS program can simulate the transitions of a Turing
machine M in essentially the same way as the high-level program sketched above,
given that the input to M is sufficiently large (on small inputs the simulation
might fail). Stacks are directly available in RBS, and thus an RBS program can
easily represent the tape and mimic the movements of the head. On the other
hand, assignment statements and if-then statements are not directly available.
This makes things a bit tricky. Let us first see how RBS programs to a certain
extent can simulate programs written in a non-reversible programming language
called LOOP−.

4.3 LOOP− Programs

The syntax of LOOP− is given in Fig. 3. Any element in the syntactic category
Command will be called a program. A LOOP− program manipulates natural
numbers, and each program variable holds a single natural number. The com-
mand X := k assigns the fixed number k to the variable X. The command X := Y
assigns the number hold by the variable Y to the variable X. The command
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THE SYNTAX OF LOOP−

X ∈ Variable ::= X1 | X2 | X3 | . . .
k ∈ Constant ::= 0 | 1 | 2 | 3 | . . .

com ∈ Command ::= X:= k | X:=X | pred(X) | com; com

| loop X { com }

Fig. 3. The syntax of the language LOOP−. The variable X in the loop command is not
allowed to occur in the loop’s body.

pred(X) decreases the value hold by the variable X by 1 if the value is strictly
greater than 0; and leave the value hold by X unchanged if the value is 0. Fur-
thermore, the command C1; C2 is the standard composition of the commands C1
and C2, and the command loop X { C } executes the command C repeatedly k
times in a row where k in the number hold by X. Note that the variable X is not
allowed to occur in C and that the command loop X { C } does not modify the
value held by X.

An RBS program can represent a LOOP− variable X holding natural number k
by a variable X (we use the same variable name) holding the stack 〈k, 0∗]. The
command X := k can then be simulated by the program

(X to Z); X+; X+; . . . X+︸ ︷︷ ︸
increase k times

where Z is an auxiliary variable (Z works as a trash bin). Now, observe that this
will only work if the base of execution is strictly greater than k, but that will
good enough to us. The command X := Y can be simulated by the program

(X to Z); loop Y { X+ }
where Z is an auxiliary variable (Z works as a trash bin). Furthermore, the
command pred(X) can be simulated by a program that uses auxiliary variables
Y and Z (which represent natural numbers) and the simulations of the assignment
statements given above:

Z := 0; Y := X; loop Y { X := Z; Z+ }.

This shows how RBS programs can simulate all the primitive LOOP− commands.
It is easy to see that

– the RBS command C′
1; C

′
2 simulates the LOOP− command C1; C2 if C′

1 simulates
C1 and C′

2 simulates C2
– the RBS command loop X { C′ } simulates the LOOP− command loop X { C } if

C′ simulates C.

Hence, any LOOP− program can be simulated by an RBS program given that
the input is sufficiently large. On small inputs simulations might fail since the
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simulation of the assignment X := k only works if the execution base is strictly
greater than k.

The LOOP− language turns out to be more expressive than one might expect
at a first glance, and all sorts of conditional statements and if-then constructions
are available in the language. As an example, let us see how we can implement
the construction

if X = Y then C1 else C2.

We will need some axillary variables X′, Y′, Z, U which do not occur in any of the
commands C1 and C2. First we execute the program

X′ := X; Y′ := Y; loop X { pred(Y′) }; loop Y { pred(X′) }.

This program sets both X′ and Y′ to 0 if X and Y hold the same number. If X and
Y hold different numbers, one of the two variables X′, Y′ will be set to a number
strictly greater than 0. Then we execute the program

Z := 1; U := 1;
loop X′ { Z := 0 }; loop Y′ { Z := 0 };
loop Z { C1; U := 0 }; loop U { C2 }.

The composition of these two programs executes the program C1 exactly once
(and C2 will not be executed at all) if X and Y hold the same number. If X and
Y hold different numbers, C2 will be executed exactly once (and C1 will not be
executed at all). The reader should note that this implementation of if-then-else
construction does not contain any assignments of the form X := k where k > 1.

It is proved in Kristiansen [8] that LOOP− captures the complexity class
LINSPACE, that is, the set of problems decidable in space O(n) on a deter-
ministic Turing machine (n is the length of the input). Hence, the consider-
ations above indicate that LINSPACE ⊆ S. However, we are on our way to
proving a stronger result, namely that LINSPACE ⊆ S = ETIME. The equality
LINSPACE ?= ETIME is one of the many notorious open problems of complexity
theory. The general opinion is that the equality does not hold.

4.4 RBS Programs that Simulates Time-Bounded Turing Machines

We have seen that RBS programs (nearly) can simulate LOOP− programs. LOOP−

can assign constants to registers and perform if-then-else constructions. This
helps us to see how to an RBS program can simulate an arbitrary 2k|m| time
Turing machine M . Such a program may be of the form

〈initiate the tape with the input m〉;
Y1 := 〈the input m〉; Y2 := 〈the input m〉; . . . ; Yk := 〈the input m〉;
loop Y1 { loop Y2 { . . . loop Yk { T1; T2; . . . ; Tr } . . . }}.

We represent the symbols in M ’s alphabet a1, . . . aA by the numbers 1, . . . , A
and M ’s states q1, . . . qQ by the numbers 1, . . . , Q. We use two stacks to hold the
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content of the tape, and we use registers STATE and SCAN to hold respectively
the current state and the scanned cell. Each Ts will take care of a transition
ai, qk, aj ,D, q� and be of the form

if SCAN = i and STATE = k then { SCAN := j; . . . push and pop . . . ; STATE := � }.

We are left with a minor problem: This will not work for small inputs. This
will only work if the base of execution b = max(m + 1, 2) is strictly greater
than max(A,Q). Only then will the simulating program be able to perform
the necessary assignments of constants to variables. In some sense we cannot
deal with this problem. An RBS program will not be able to simulate (in any
reasonable sense of the word) an arbitrary 2k|m| time Turing machine M on small
inputs, but still there will be an RBS program that decides the same problem as
M .

We have seen that it suffices to assign the constants 0 and 1 to variables
in order to implement the if-then-else construction in LOOP−. This entails that
the if-then-else construction will work on small inputs as the base of execution
always will be strictly greater than 1. Hence, if the problem A is decided by a
2k|m| time Turing machine M , there will also be an RBS program that decides
A. This program will be of the form

X := 〈the input m〉;
if X = 0 then 〈 give correct output for m = 0 〉
else { pred(X);
if X = 0 then 〈 give correct output for m = 1 〉
else { pred(X);
if X = 0 then 〈 give correct output for m = 2 〉
...
else {〈 the input is big enough, . . .

. . . simulate M , accept if M accepts, reject if M rejects 〉} . . . } }.

5 Main Results

5.1 A Characterization of ETIME

Definition 5. Let |m| denote the number of digits required to write the natural
number m in binary notation. For any natural number k, let ETIMEk be the
class of problems decidable in time O(2k|m|) on a deterministic Turing machine.
Let ETIME =

⋃
i∈N

ETIMEi. ��
Theorem 6. S = ETIME.

Proof. The proof of the inclusion S ⊆ ETIME should be straightforward to
anyone experienced with Turing machines. Assume A ∈ S (we will argue that
A ∈ ETIME). Then there is an RBS program C that decides A. Let m be the input
to C. Each loop in C will be executed maximum m + 1 times since the base of
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execution will be max(m+1, 2). Thus, there exist constants k0, k1 (not depending
on m) such that k0(m+1)k1 bounds the number of primitive commands executed
by C on input m. A Turing machine can simulate the execution of C on input m
with polynomial overhead. Thus there exist constants k2, k3 such that k2(m+1)k3

bounds the number of steps a Turing machine needs to decide if m is in A. There
exists k such that k2(m + 1)k3 < 2k|m|. Hence, A ∈ ETIME. This proves the
inclusion S ⊆ ETIME.

We turn to proof of the inclusion ETIME ⊆ S. Assume A ∈ ETIME (we will
argue that A ∈ S). Then there is a O(2k|m|) time Turing machine M that decides
A. Now, M will run in time 2k0|m| when k0 is sufficiently large. In the previous
section we saw that there will be an RBS program that decides the same problem
as M . Hence, A ∈ S. This proves the inclusion ETIME ⊆ S. ��

5.2 A Characterization of P

Would it not be nice if we could find a reversible language that captures a
complexity class that is a bit more attractive than ETIME? Now, P is for a
number of reasons, which the reader might be aware of, one of most popular and
important complexity classes. Luckily, it turns out that a few modifications of
RBS yield a characterization of P.

First we modify the way RBS programs receive input. The input will now be
a string over some alphabet. Any alphabet that contains at least two symbols
will do and, for convenience, we will stick to the alphabet {a, b}. The base of
execution will at program start be set to the length of the input. Otherwise,
nearly everything is kept as before: Every variable will still hold a bottomless
stack storing natural numbers. All commands available in the original version of
RBS will be available in the new version. A program will still accept its input by
terminating with 0 at the top of the stack held by X1, otherwise, the program
rejects its input. Moreover, all variables including X1, the variable that used to
import the input, hold the zero stack when the execution of a program starts.

Next we extend RBS by two commands with the syntax

case inp[X]=a: { com } and case inp[X]=b: { com }
where X is a variable and com is a command which does not contain X. These
commands make it possible for a program to access its input. The input is a
string α0α1, . . . , αb−1 where b is the execution base and αi ∈ {a, b}. Assume
that Xj holds a stack where top element is k. The command

case inp[Xj]=a: { C }
executes the command C if αk = a, otherwise, the command does nothing. The
command

case inp[Xj]=b: { C }
executes the command C if αk = b, otherwise, the command does nothing.
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EXAMPLE

Program: Comments:
(* all stacks hold the zero stack *)

X−
2 (* the top element of X2 is b − 1 *)

loop X2 { (* repeat b − 1 times *)
case inp[X3]=b: (* X3 is a pointer into the input *)

{ X1 to X9; (* X1 holds the zero stack *)

X+1 (* top element of X1 is 1 *)

};
X+3 (* move pointer to the right *)
}; (* end of loop *)

case inp[X3]=a: (* top element of X3 is b − 1 *)

{ X1 to X9;X
+
1 }

Fig. 4. The program accepts any string that starts with a nonempty sequence of a’s and
ends with a single b (the input to a program should at least contain two symbols). The
program rejects any string that is not of this form. The program accepts by terminating
with X1 = 〈0∗] and rejects by terminating with X1 = 〈1, 0∗].

We still have a reversible language. The two new commands are reversible.
The variable Xj is not allowed to occur in C and will consequently not be modified
by C. Thus, for x ∈ {a, b}, we may extend Definition 2 by

(
case inp[Xj]=x: { C } )R = case inp[Xj]=x: { CR }.

and Theorem 3 will still hold.
To avoid confusion we will use RBS′ to denote our new version of RBS. We

require that the input to an RBS′ program is of length at least 2 (so we exclude
the empty string and the one-symbol strings a and b). This is of course a bit
artificial, but it seems to be the most convenient way to deal with a few annoying
problems of technical nature. Accordingly, we also require that every string in a
language (see the definition below) is of length at least 2.

Definition 7. A language L is a set of strings over the alphabet {a, b}, more-
over, every string in L is of length at least 2.

An RBS′ program C decides the language L if C accepts every string that
belongs to L and rejects every string that does not belong to L. Let S ′ be class
of languages decidable by an RBS’ program.

Let |w| denote the length of the string w. For any natural number k, let Pk

be the class of languages decidable in time O(|w|k) on a deterministic Turing
machine. Let P =

⋃
i∈N

Pi. ��
Figure 4 shows an RBS′ program which decides the language given by the

regular expression a∗ab.
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The proof of the next theorem is very similar to the proof of Theorem6, and
the reader should be able to provide the details. Just recall that the execution
base of an RBS′ program is set to the length of the input. Hence, the number
of primitive instructions executed by an RBS′ program will be bounded by |w|k
where |w| is the length of the input w and k is a sufficiently large constant, and
moreover, an RBS′ program of the form

loop Y1 { loop Y2 { . . . loop Yk { 〈. . . a list of transitions . . .〉 } . . . }}.

will execute 〈. . . a list of transitions . . .〉 exactly |w|k times if each and one of
the variables Y1, . . . Yk holds a stack where the top element is |w|.
Theorem 8. S ′ = P.

6 Some Final Remarks

We have argued that there is a link between implicit computational complexity
theory and the theory of reversible computation, and we have showed that both
ETIME and P can be captured by inherently reversible programming languages.
In general, implicit characterizations are meant to shed light on the nature of
complexity classes and the many notoriously hard open problems involving such
classes. Implicit characterizations by reversible formalisms might yield some new
insights in this respect. It is beyond the scope of this paper to discuss or interpret
the theorems proved above any further, but one might start to wonder how
different aspects of reversibility relate to time complexity, space complexity and
nondeterminism.

The author is not aware of any work in reversible computing that is closely
related to the work presented above, but some work of Matos [14] is at least
faintly related. Matos characterizes the primitive recursive functions by an inher-
ently reversible loop-language.2 Paolini et al. [15] do also characterize the prim-
itive recursive functions by a reversible formalism. Their work is of a recursion-
theoretic nature and has a different flavor than ours, but it is possible that such
studies might lead to interesting characterizations of complexity classes.

We finish off this paper by suggesting a small research project. It should be
possible to extend RBS to an inherently reversible higher-order language. First-
order programs will be like the ones defined and explained above. Second-order
programs will manipulate stacks of stacks, third-order programs will manipulate
stacks of stacks of stacks, and so on. This will induce a hierarchy: the class of
problems decidable by a first-order RBS program, the class of problems decidable
by a second-order RBS program, . . . by a third-order RBS program, and so on. By
the same token, RBS′ will induce a hierarchy: the class of languages decidable by a
first-order RBS′ program, the class of languages decidable by a second-order RBS′

program, and so on. These two hierarchies should be compared to the alternating
time-space hierarchies studied in Goerdt [4], Jones [6], Kristiansen and Voda [10]
and many other papers.
2 The result is not stated very clearly in the paper. See the footnote at page 2066.
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Abstract. SRL is a reversible programming language conceived as a
restriction of imperative programming languages. Each SRL program
that mentions n registers defines a bijection on n-tuples of integers.
Despite its simplicity, SRL is strong enough to grasp a wide class of
computable bijections and to rise non-trivial programming issues. We
advance in the study of its expressivity. We show how to choose among
alternative program-branches by checking if a given value is positive or
negative. So, we answer some longstanding questions that the literature
poses. In particular, we prove that SRL is primitive recursive complete
and that its program equivalence is undecidable.

Keywords: Reversible programming languages · Imperative
programming languages · Primitive recursive functions · Decidability

1 Introduction

Reversible computing is an unconventional form of computing that identifies an
interesting restriction of the classical digital computing model which, perhaps
surprisingly, still is Turing-complete [3]. Classical computation is deterministic
in a forward manner, i.e. each state is followed by a unique state. The reversible
computation is a classic computation which is also required to be backward-
deterministic: every state has a unique predecessor state.

The research interest for reversible computing is emerged in a plethora of
situations (see [25] for a survey). Inside the classical computing, often we come
across this subject inadvertently and accidentally. Think about lossless com-
pression, cryptographic procedures, view-update problem, and so on. However,
the interest for the reversible paradigm in the classical computing is far broader
than that, because it is linked to the ubiquitous backtracking mechanism. Albeit
specific researches on these classic arguments have been developed, the quest for
an overall theory of reversible computing has been initially motivated from a
different search: the interest for thermodynamic issues of the computation. This
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research goal can potentially contribute to decrease energy consumption, sys-
tems overheat and, battery stockpiling in portable systems. Furthermore, we
like to remind that the reversible computation is intimately linked to emerging
computing models, like, for example, the quantum computing paradigm.

The literature proposes several reversible languages (see [25] for a survey). We
focus our attention on SRL and its variants, namely a family of total reversible
programming languages introduced in [10]. These languages have been conceived
as a restriction of the LOOP language defined in [14,15]. The LOOP language
identifies a sub-class of programs that exist inside WHILE programming lan-
guages and which correspond the class of primitive recursive functions, crucial
in recursion theory. The distinguishing difference between SRL languages and
LOOP, or WHILE ones, is that their registers store both positive and negative
integers (like standard programming languages) and not only natural numbers.
The three instructions common to every variant of SRL are the increment (viz.
incr), the decrement (viz. decr) and the iteration (viz. forr(P ), where P is
a subprogram that cannot modify the content of register r). Registers contain
values in Z and a program that mentions n registers defines a bijection Z

n → Z
n.

For each program P of SRL, we can build the program P−1 that reverses the
behavior of P in an effective way. I.e., executing P−1 just after P is equivalent
to the identity. Patently, increment and decrement are mutual inverses. On the
other hand, forr(P ) iterates n times the execution of P , whenever n ≥ 0, and
iterates n times the execution of the inverse of P whenever n ≤ 0; so, it can be
used to invert itself.

Despite the instruction set of SRL is quite limited, its operational semantics
is unexpectedly complex. The literature [10,12,13,18,21] leaves many questions
open, mainly concerning the relation between SRL and the class of computable
bijections1, which form a core of computable functions [10,19,20,22–24].

We aim at answering some of those questions.

1. Is the program equivalence of SRL decidable?
2. Is it decidable if a program of SRL behaves as the identity?
3. Is it possible to decide whether a given program is an inverse of a second one?
4. Is SRL primitive-recursive complete?
5. Is SRL sufficiently expressive to represent RPP [21] or RPRF [18,20]?

Patently, these questions are correlated in many ways. Quite trivially 1, 2 and 3
are equivalent. Also 4 and 5 are because RPP and RPRF are primitive-recursive
correct and complete. A positive answer to 4 would imply a positive answer to
5 and a negative one to 1 because the equivalence between primitive-recursive
functions is undecidable [26, Ch. 3].

In this work we answer to all of them by solving the open problem in [21]:
“It is an open problem if the conditional instruction of RPP can be implemented
in SRL.” Encoding a conditional behavior as a program of SRL allows to com-
pile programs of RPP and RPRF in SRL, so answering question 5. Since RPP is

1 We remark that, traditionally, computable bijections are studied on natural numbers,
while in this setting, studies extend them, w.l.o.g., to the whole set of integers.
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primitive-recursive complete [21], then SRL is, answering question 4. So, the pro-
gram equivalence for SRL is undecidable because that one of primitive recursive
functions is [26, Ch.3]. This answers questions 1, 2 and 3.

Contents. Section 2 introduces SRL and some useful notations. Section 3 intro-
duces the representation of truth values. Section 4 shows how to test numbers
and zero. Section 5 shows how RPP can be represented in SRL. Conclusions are
in Sect. 6.

2 The Language SRL

SRL is a reversible programming language [10,11,25] that Armando Matos distills
from a variant of Meyer and Ritchie’s LOOP language [14,15]. Specifically, SRL
restricts a FOR language that, in its turn, is a total restriction of any WHILE
programming language (a.k.a. IMP) [5,9,26]. A FOR language is in [17] which
revisits results in [14,15] about the relation between programming and primitive
recursive functions.

The choice of letting SRL-languages to operate on all integers eases the design
of a reversible language because Z, endowed with sum, is a group while N is not.
Therefore, the registers that a program of SRL uses store values of Z. Each
program P defines a bijection Z

n → Z
n, where n ≥ 1 is an upper bound to the

number of registers that occur in P . As a terminology, we take “mentioned” and
“used” as synonymous of “occur” in a sentence like “registers that occur in P”.
The inverse of P is P−1, i.e. the inverse bijection that P represents. We shall
explain how to get P−1 from P in a few.

The minimal dialect of SRL languages we focus on is as follows:

Definition 1. Let r be a meta-variable denoting register names that we range
over by lowercase letters, possibly with subscripts and superscripts. Valid SRL-
programs are the programs generated by the following grammar:

P ::= incr | decr | for r(P ) |P ;P (1)

that, additionally, satisfy the following linear constraint: for r(P ) is part of a
valid program iff r is not used in P as argument of inc or dec .

The operational semantics of SRL says that (i) incx increments the content
of the register x by 1; (ii) decx decrements the content of the register x by 1;
(iii) P0;P1 is the sequential composition of 2 programs that we execute from left
to right; and, (iv) if n ∈ Z is the initial content of the register r then, for r(P )
executes, either P ; . . . ;P

︸ ︷︷ ︸

n

whenever n ≥ 0, or P−1; . . . ;P−1

︸ ︷︷ ︸

|n|

whenever n ≤ 0,

where |n| is the absolute value of n. We notice that executing for r(P ) cannot
alter the value in r because of the linear constraint on the syntax.

The inverse of an SRL-program is obtained by transforming incx, decx, P0;P1

and for r(P ) in decx, incx, P1
−1;P0

−1 and for r(P−1), respectively. More on SRL,
its extensions, as well as results about it, is in [10,11,21,25].
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For the sake of simplicity, the following notation concisely and formally allows
to see SRL programs as bijective functions.

Notation 1 (Register names). Without loss of generality, we shall only con-
sider SRL-programs whose registers’ names are a single letter, typically r, indexed
by means of different natural numbers. Also, we assume that, if a program men-
tions n ∈ N registers, then r0, . . . , rn−1 are their names.

We use vectors of integers to denote the contents of all registers as a whole,
both for input and output. If a vector contains n integers then, we say that n is
its size and we index such integers from 0 to n − 1. The idea is that the content
of the register ri is in position i of the vector. As for quantum computing [16],
we represent such vectors as column arrays written downwards.

Notation 2. Let P be a SRL program that respects Notation 1. Let n ∈ N be
an upper bound of the indexes of the registers that P uses. Let |vin〉 and |vout〉
denote (column) vectors of size n. Then, |vin〉P |vout〉 denotes that P sets the
content of its register with the values in |vout〉 , starting from registers set to the
values in |vin〉 . Slightly abusing our notation:

|v1〉P1 |v2〉 · · · |vk〉Pk |vk+1〉
is the computation of P1; . . . ;Pn applied to |v1〉 with the value of the registers’
intermediate contents made explicitly.

We conclude with simple examples of SRL programs that use ancillary reg-
isters. Specifically, a register is said to be a “zero-ancilla” whenever we assume
that its initial value is 0; when its initial value is different, we are just not
interested in the behaviour of the program.

Lemma 1 (Integer-Negation). If r1 is used as a zero-ancilla then:

for r0(dec r1); for r1(inc r0); for r1(inc r0); for r0(dec r1); (2)

inverts the sign of the value in r0.

Proof. Let a ∈ Z. It is easy to see that:

a
0 for r0(dec r1);

a
−a for r1(inc r0);

0
−a for r1(inc r0);

−a
−a for r0(dec r1);

−a
0 .

��
We remark that (2) resets the zero-ancilla to zero, so that it can be reused for as
many applications of (2) as we need. So, we can use the macro neg ri as a name
of (2), hiding an additional zero-initialized ancillary register.

Lemma 2 (Swap). If r2 is used as a zero-ancilla then:

for r0(inc r2); for r2(dec r0); for r1(inc r0);
for r0(dec r1); for r2(inc r1); for r1(dec r2); (3)

swaps the content of r0 and r1, and leaves the zero-ancilla clean.
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Proof. Let a, b ∈ Z. It is easy to see that:

a
b
0

for r0(inc r2);
a
b
a

for r2(dec r0);
0
b
a

for r1(inc r0);
b
b
a

for r0(dec r1);
b
0
a

for r2(inc r1);
b
a
a

for r1(dec r2);
b
a
0

.

��
We shall use the macro:

swap(ri, rj) (4)

as a name of (3) which mentions two distinct registers ri and rj and which hides
an additional zero-initialized ancillary register. Remarkably, that unique silent
zero-ancilla can be used by all swaps and negations that possibly occur in a
program. For completeness, we recall that swap and negation, analogous to the
ones here above, are taken as primitive operations in variants of SRL [10,11].

3 Representing Truth Values

In order to represent truth values in SRL, we conventionally use a pair of registers.

Definition 2 (Truth values). A pair of registers is called truth-pair whenever
one register contains 0 and the other contains 1. If 1 is in the first register, then
the truth-pair encodes true. Otherwise, 1 is in the second register and the truth-
pair encodes false.

Definition 2 recalls the representation of qbits in quantum computing [16] and,
indeed, it has been inspired by the quantum programming languages designed
in [22,23]. Definition 2 relies on some observations:

1. “for ”, natively included in SRL, works as a basic conditional operator. If r
contains 1, then for r(P ) executes P once. Furthermore, the program:

for r0(P ); for r1(Q)

simulates an “if-then-else” whenever r0, r1 is a truth-pair which drives the
mutually exclusive selection between P and Q.

2. It is easy to negate a truth-value by means of swap(ri, rj), as defined in (3),
which, we recall, uses a silent additional ancilla.

A first application of truth-pairs is to check the parity of a register’s content.

Lemma 3 (isEven). Given the truth-pair r1, r2 set to true, for r0(swap(r1, r2))
decides the parity of the number in r0. It leaves r1, r2 set true iff the content of
r0 is even.
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Proof. Let n ∈ Z. Then:

n
1
0

for r0(swap(r1, r2));
n

beven
bodd

, (5)

where both beven is 1 (bodd is zero) if and only if n is even and bodd is 1 (beven is
zero) if and only if n is odd. ��
We observe that a truth-pair can drive for r1(P ); for r2(Q) to simulate an “if-then-
else” that chooses between P and Q. Once chosen, we can set the truth-pair back
to its initial content by applying the inverse of (5), i.e. Bennet’s trick [1–3], in
accordance with programming strategy widely used in [21]. In principle, Bennet’s
trick allows to reuse the truth-pair for a further parity test.

Lemma 3 justifies the use of the macro isEven(ri, rj , rk) as a name for (5), pro-
vided that ri, rj , rk are distinct registers and that rj , rk form a truth-pair. If the
content of ri is even the truth-value contained in rj , rk is not changed, otherwise
it is logically negated. We also note that the inverse of (5) is for ri(swap(rj , rk)),
because the swap is commutative on its arguments.

An Euclidean division by 2 on positive numbers, relying on Lemma 3, divides
the dividend, an integer, by the divisor, yielding a quotient and a remainder
smaller than the divisor.

Lemma 4 (Halve). Let r1, r2 be a truth-pair initialized to true. Let r3 be a
zero-ancilla. Then:

for r0(swap(r1, r2); for r1(inc r3)) (6)

halves the content of r0, leaves the quotient of the integer division by 2, which
is decremented by one in the case r0 contains a negative odd number, in r3 and,
finally, lives the remainder in r2.

Proof. Let n ≥ 0. Then:

n
1
0
0

for r0(swap(r1, r2); for r1(inc r3));
n

beven
bodd
n/2

where beven and bodd flag the parity of the value in r0 in accordance with
Lemma 3. In particular, r1, r2 contain 1, 0, respectively, iff the remainder of
the division is zero. Otherwise, r1, r2 contain 0, 1, respectively. If n < 0, then:

n
1
0
0

for r0(swap(r1, r2); for r1(inc r3));
n

beven
bodd

n/2 − bodd

where beven and bodd flag the parity of the value in r0 in accordance with
Lemma 3. ��
Lemma 4 justifies the use of the macro halve(ri)(rj)(rk)(rh) as a name for (6)
in order to halve the value in ri, whenever ri, rj , rk and rh are pairwise distinct.
Clearly, halve silently assumes the use of an additional zero-ancilla.
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4 Testing SRL-Registers

We here discuss how to check if an integer number is smaller than −1 in order
to leave the answer in a truth-pair. The test is crucial to answer longstanding
questions about the expressivity of SRL, firstly posed in [10] and reiterated in
other papers [12,13,18,20,21].

The Fundamental Theorem of Arithmetic is the starting point [4, p. 23]:

“. . . Any integer not zero can be expressed as a unit (±1) times a product
of positive primes. This expression is unique except for the order on which
the primes factors occur. . . . ”

Technically, every integer n 	= 0 has prime-decomposition (±1)2kp1p2 · · · pm,
unique up to the order of its factors. For every k,m ≥ 0 and 1 ≤ i ≤ m, the
factor pi is a prime, positive and odd number not smaller than 3. The odd-core
of n, decomposed as (±1)2kp1p2 · · · pm, is (±1)p1p2 · · · pm. For instance, 21 is
prime-decomposed as either (1) · 20 · 3 · 7 or (1) · 20 · 7 · 3 with odd-core 21, and
−90 is prime-decomposed in (−1) · 21 · 3 · 3 · 5 with odd-core −45.

Proposition 1. Let n 	= 0 be an integer and let (±1)2kp1p2 · · · pm be the prime-
decomposition of n, for some k,m ≥ 0.

1. k ≤ |n|, where |n| is the absolute value of n.
2. For each h ≤ k, the division of n by 2h returns (±1)2k−hp1p2 · · · pm as quo-

tient and 0 as remainder.
3. The division of n by 2k returns an odd number. So, dividing n by 2k+1 has 1

as its remainder.

Proof. Trivial. ��
Crucially, for each j ∈ N, if we divide 0 by 2j , then 0 is both remainder and

quotient. Therefore, given an integer N and an integer M greater than N , we
can show that a program of SRL exists which iteratively divides N by 2 for M
times. If N is 0, the only reminder we can obtain is 0. Otherwise, a remainder
equal to 1 necessarily shows up.

Theorem 3 here below defines the program. It assumes the existence of two
occurrences of N . One is the dividend, the other drives the iteration. We remark
that producing a copy of a given N costs just a single zero-ancilla more.

Theorem 3 (isLessThanOne). Let r2, r3 and r5, r6 be truth-pairs initialized
to true and let r4 be a zero-ancilla. Let both r0 and r1 contain the value N . Then:

for r0
⎛

⎜

⎜

⎜

⎜

⎝

for r5(for r1( swap(r2, r3); for r2(inc r4) )); /* SP0 */
for r3(swap(r5, r6)); /* SP1 */
for r5( for r4(dec r1); for r1(dec r4) ); /* SP2 */
for r6

(

for r1( for r2(dec r4); swap(r2, r3) );
for r1(inc r4); for r4(inc r1)

)

/* SP3 */

⎞

⎟

⎟

⎟

⎟

⎠

(7)

leaves true in the truth-pair r5, r6 if and only if N is strictly lower than 1.
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Proof. Both r0, r1 contain N because r0 iterates as many times as required, and
r1 is the dividend. Some remarks are worth doing.

– The comments /* SP0 */. . . name the part of program to their left that begins
with “for ”.

– We can think of r1, r2, r3, r4 as the arguments of halve, i.e. we could rewrite
SP0 as for r5( halve(r1, r2, r3, r4) ). So, Lemma 4, implies that SP0 halves r1,
leaving the quotient in r4 and the remainder in r3.

– Only swap-operations modify truth pairs.
– It would be sufficient to initialize r0 with any number greater than the expo-

nent of 2 in the prime-decomposition of N .
– Making explicit the statement requirements,

Register-Name | r0 r1 r2 r3 r4 r5 r6
Content | N N 1 0 0 1 0

sums up the input for SRL program (7).

The behaviour of the SRL program (7) can described by considering three cases:
N = 0, N > 0 and N < 0.

– Let N = 0. Then (7) does nothing and result is immediate. We remark that
the result does not change if we arbitrarily modify the value in r0.

– Let N ≥ 1. The outermost “for r0” iterates its body as many times as N and
the computation proceeds as discussed in the following.
1. Let us consider SP0. If the truth-pair r5, r6 contains true, the program (7)

executes halve(r1, r2, r3, r4) once. Lemma 4 implies that the value of r1
does not change, that the remainder is stored in the truth-pair r2, r3 and
that the result of dividing r1 by 2 is in r4. Otherwise, the truth-pair r5, r6
contains false and nothing is done.

2. Let us consider SP1. We observe that only SP1 can modify r5, r6. If the
truth-pair r2, r3 contains true, i.e. r1 has even value in it, then nothing
is done. Otherwise, the truth-pair r2, r3 contains false, i.e. r1 contains an
odd number. Then, SP1 yields the global result by setting the truth-pair
r5, r6 to false.

3. Let us consider SP2 which, we remark, is crucial that the program (7)
executes at most once. Let the truth-pair r5, r6 contain true. We both
subtract from r1 half of its value, which is in r4 after we execute SP0, and
we reset r4 to zero. This sets r1, r2, r3 and r4 for the next halve-iteration.
If the truth-pair r5, r6 contains false, then nothing is done.

4. Let us consider SP3. If the truth-pair r5, r6 contains true, then nothing
is done. Globally, this means that the body of SP3 cannot run until r1 is
possibly set with an odd value. If the truth-pair r5, r6 contains false, then
we must consider two cases in order to ensure that SP3 leaves the value
false in the truth-pair r2, r3.

• Let r1 contain an odd value n after executing SP1, which sets r5, r6
to false, and which is followed by SP2 that, doing nothing, leaves
register’s contents unchanged. Since for r1(for r2(dec r4); swap(r2, r3))
is the inverse of halve(r1, r2, r3, r4), then:
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N
n
0
1

n/2
0
1

for r1(for r2(dec r4); swap(r2, r3));
︸ ︷︷ ︸

halve(r1,r2,r3,r4)−1

N
n
1
0
0
0
1

for r1(inc r4);

N
n
1
0
n
0
1

for r4(inc r1)

N
2n
1
0
n
0
1

.

To sum up, (i) the truth-pair r2, r3 is restored to true, (ii) the contents
of r1 and r4 are now both even. Specifically, r1 contains an even value
and r4 doubles that value.

• Let r1 contain an even value n. This sub-case can only occur when
the preceding sub-case, with r1 initially set to an odd value n, has
already occurred once. Moreover, both SP0, SP1 and SP2 cannot not
change the content of the registers anymore, because r5, r6 contain
the false and r1 is doubled by every iteration in order to permanently
maintain true in the pair r2, r3. Then:
N
n
1
0

n/2
0
1

for r1(for r2(dec r4); swap(r2, r3));
︸ ︷︷ ︸

halve(r1,r2,r3,r4)−1

N
n
1
0
0
0
1

for r1(inc r4);

N
n
1
0
n
0
1

for r4(inc r1)

N
2n
1
0
n
0
1

.

To sum up, (i) the truth-pair r2, r3 remains true, (ii) the contents of
r1 and r4 are both even. Specifically, r1 contains an even value and
r4 doubles that value.

– Let N ≤ −1. By definition, for r0(P ) executes P−1 as many times as n0 if n0

is the value of r0. We have to check that (7) doubles the content of r1 before
checking its parity. Hence, r1 can never be read off with an odd number in
it. Thus, (7) simply checks the parity of r1 and doubles r1, at every of its
iterations, according to the following details:

• Let us consider SP3. The body of the outermost “for ” of SP3 never exe-
cutes, for the truth-pair r5, r6 contains true all along the execution.

• Let us call BSP2 the body for r4(dec r1); for r1(dec r4) of SP2. Then, every
iteration of (7) executes BSP2. Since N is negative and r5 contains 1, we
have to consider B−1

SP2, i.e. for r1(inc r4); for r4(inc r1). Moreover, since r1
contains a negative number, we remark that the outermost occurrence
of “for ” in B−1

SP2 further inverts its body. Since N ≤ −1, we consider a
generic negative number n. Thus:

N
n < 0

1
0
0
1
0

for r1(dec r4);

N
n
1
0

−n
1
0

for r4(dec r1)

N
n + n

1
0

−n
1
0

,

where both n and n + n are negative, so −n is positive.
• Let us consider SP1. Since the truth-pair r2, r3 is never changed from its

initial value true, the body of the outermost occurrence of “for ” in SP1
is always skipped.
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• Let us consider SP0 and let name for r5(for r1( swap(r2, r3); for r2(inc r4) )),
i.e. the body of SP0, as BSP0. Every iteration of (7) executes BSP0 because
the initial true value in the truth-pair r5, r6 never changes. Since N is
negative, we consider B−1

SP0, i.e. for r5(for r1( for r2(dec r4); swap(r2, r3); )).
Nevertheless, also r1 contains a negative number, thus the body of for (r1)
is subject to a further inversion that annihilates the first one. Since N ≤
−1, we consider a generic negative number n. Thus:

N
2n
1
0

−n
1
0

for r5(for r1( swap(r2, r3); for r2(inc r4)))

N
2n
1
0
0
1
0

.

Summing up, in the case N ≤ −1 each iteration executes two steps: (i) SP2
copies the content of r1 in r4 and doubles r1; (ii) SP0 resets r4 to zero and
leaves all other registers unchanged. ��
Concluding observations and remarks on (7) follow.
We can drop the constraint that both r0 and r1 contain the same value by

letting r1 be a zero-ancilla and starting (7) with for r0(inc r1), to recover the
current assumptions of Theorem 3. Therefore:

isLessThanOne(rj0 , rj1 , rj2 , rj3 , rj4 , rj5 , rj6) (8)

can be a name for the program (7) that we assume to apply to distinct registers
such that: (i) rj2 , rj3 and rj5 , rj6 are truth-pairs with initial value set true, and
(ii) rj1 , rj4 are variables with initial value set 0. Under these assumptions, after
executing isLessThanOne(rj0 , rj1 , rj2 , rj3 , rj4 , rj5 , rj6), the truth-pair rj5 , rj6 still
contains true if and only if rj0 was containing either zero or a negative integer.

Using one more additional zero-ancilla would allow to further simplify (7)
in the minimal version of SRL that we program with in this work: all
the explicit uses of the swap-macros would disappear. In accordance with
Theorem 3, isLessThanOne always returns the content of rj0 unchanged. Yet, in
accordance with Theorem 3, isLessThanOne always returns the truth-pair rj2 , rj3
clean. Therefore, w.l.o.g., it is possible to use it silently. On the other hand, the
truth-pair rj5 , rj6 is used for the result and so it cannot be used silently. Worst,
the registers rj1 , rj4 are left “dirty”, i.e. containing useless values for our goal.
It is an open question if a program, equivalent to (7), exists that stops with all
ancillary variables, but the truth-pair r5, r6 that contains the result, clean, i.e.
with their starting values in them.

The program (7) of Theorem 3 and its sub-procedures, have been checked
by using the Haskell meta-interpreter in [11, page 86]. The main drawback of
isLessThanOne is that the value of r1 grows exponentially. More precisely, let N
be an integer different from zero and (±1)2kp1p2 · · · pm its prime-decomposition
with odd-core d = p1p2 · · · pm. If N is positive, then the above program leaves
the value d ∗ 2N−k in r1. If N is negative, then value is N ∗ 2N . We leave the
problem of eliminating the exponential blow up as open.
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5 Expressivity

We here prove that SRL can represent all Primitive Recursive functions (PR). We
begin by recalling what Reversible Primitive Permutations (RPP) are. Second,
we show that SRL can represent every element of RPP. Since RPP can express
all PR [21], then SRL enjoys the same property.

By analogy with PR, we build RPP by means of composition schemes that we
apply to base functions. RPP contains total reversible endofunctions on tuples
of integers, i.e. elements of Zn for some n ∈ N.

Definition 3 (Reversible Primitive Permutations [21]). Reversible Prim-
itive Permutations (RPP) is a sub-class of endofunctions on Z

n for some n ∈ N.
In order to identify the endofunctions of RPP specifically defined on Z

k, for some
given k, we write RPPk with the following meaning:

– RPP1 includes the identity function I, the successor function S that increments
an integer, the predecessor function P that decrements an integer, the negation
function N that inverts the sign of an integer;

– RPP2 includes the transposition χ that exchanges two integers;
– If f, g ∈ RPPk then, their series-composition (f � g) belongs to RPPk. It is the

function that sequentially applies f and g to the k-tuple of integers provided
as input (i.e., it is the programming composition that applies functions from
left to right);

– If f ∈ RPPj and g ∈ RPPk, for some j, k ∈ N, then the parallel composition
(f ‖ g) belongs to RPPj+k. It is the function that applies f on the first j
arguments and, in parallel, applies g on the other ones;

– If f ∈ RPPk, then the finite iteration It [f ] belongs to RPPk+1 and it is the
function defined as:

It [f ] (x1, . . . , xk, z) := ((

|z|
︷ ︸︸ ︷

f � . . . � f) ‖ I) (x1, . . . , xk, z);

– Let f, g, h ∈ RPPk. The selection If [f, g, h] belongs to RPPk+1 and it is the
function defined as:

If [f, g, h] (〈x1, . . . , xk, z) :=

⎧

⎪
⎨

⎪
⎩

(f ‖ I) (〈x1, . . . , xk, z) if z > 0 ,

(g ‖ I) (〈x1, . . . , xk, z) if z = 0 ,

(h ‖ I) (〈x1, . . . , xk, z) if z < 0 .

Summing up, RPP [21] is a quite simple language that simplifies the reversible
language presented in [18]. We recall from [21] that no reversible programming
language can represent all and only the total reversible functions and that an
algorithm exists, which is linear both in time and space, able to generate the
inverse of every element in RPP.

Many notions of definability exist. Good references are [17,20,21], for exam-
ple. Typically, they deal with classes of functions that yield single value as result.
However, SRL-programs and RPP functions return tuples. In order to relate SRL
and RPP to classes of single-value return functions we introduce what definability
means in our context:
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Definition 4 (Definability). Let f be an endofunction on Z
k. The function f

is definable whenever there is a program P that involves k+h registers, for some
h ∈ N, such that: if the first k registers are initialized to v0, . . . , vk−1 and the
others are initialized to zero, then the application of P sets the first k registers
to f(v0, . . . , vk−1). Moreover, f is r-definable whenever P ends by also resetting
the last h registers to zero.

Clearly, a reversible programming language like SRL can r-define reversible func-
tions only. Also, from the definition here above, it follows that the definition of
SRL and RPP can be strengthened to explicitly construct the inverse of any of
their elements. We mean that, if P is a program of SRL, for example, it is easy
to see that P r-defines f iff P−1 r-defines f−1.

Theorem 4 (RPP-definability). If f ∈ RPP, then there is an SRL-program
P that r-defines it.

Proof. By induction, if f ∈ RPPk, then we prove that there is a program P P ∗

that r-defines f and uses k + h registers, for some h ∈ N.

– If f is either an identity, a successor or a predecessor, then it can be easily r-
defined with no additional register. If f is a negation, then it can be r-defined
by using the procedure of Lemma 1, by using one additional register. If f is
a transposition, then it can be r-defined by using the procedure of Lemma 2
with a one additional register.

– Let f = f1 � f2 ∈ RPPk. By induction, there is Pi that r-defines fi by using
the registers r0, . . . , rk+hi−1 (1 ≤ i ≤ 2). Then P1;P2 r-defines f by using
h = max{h1, h2} additional registers (reset to zero by both P1 and P2).

– Let f = (f1 ‖ f2) such that fi ∈ RPPki (1 ≤ i ≤ 2) and k1 + k2 = k. By
induction, there is Pi that r-defines fi by using the registers r0, . . . , rki+hi−1.
Let P ∗

1 be the program P1 where rk1 , . . . , rk1+h1−1 (viz. its h additional reg-
isters) are simultaneously renamed rk, . . . , rk+h1−1. Let P ∗

2 be the program
P2 where r0, . . . , rk2+h2−1 are simultaneously renamed rk1 , . . . , rk1+k2+h2−1.
Then f is r-defined by P ∗

1 ;P ∗
2 with max{h1, h2} additional registers.

– Let f = It [f ′] where f ′ ∈ RPPk′
(k = k′ + 1). By induction, there is P ′ using

the registers r0, . . . , rk′−1, . . . , rk′+h′−1 that r-defines f ′ with h′ additional
registers. The register rk is expected to drive the execution of It [f ], thus
we denote P ∗ the program P ′ where each register with index ri (i ≥ k) are
renamed ri+1.
We use isLessThanOne in (8) in order to check the content of rk using 8 + 1
registers, the distinguished one being a zero-ancilla that occurrences of swap
in (4) relies on. In this work we do not focus on minimizing the number of
additional variables. We are looking for a program that receives the input
in the first k registers and it uses h′ + 8 + 1 additional zero-ancillae. Thus
r1, . . . , rk′+h′ (except rk) are used by P∗, while rk, rk+h′+1, . . . , rk+h′+7 are
the eight registers that supply the input of isLessThanOne and rk+h′+8 is
sometimes used to reverse a procedure.



140 A. B. Matos et al.

We r-define It [f ′] by means of the following program (named PIt[f ′]):

inc rk+h′+1; inc rk+h′+5; (9)
inc rk; isLessThanOne(rk, rk+h′+1, . . . , rk+h′+6); dec rk; (10)
for rk+h′+6(for rk(P∗)); (11)
for rk+h′+5(dec rk+h′+8; for rk+h′+8(for rk(P∗)); inc rk+h′+8) (12)

inc rk;
(

isLessThanOne(rk, rk+h′+1, . . . , rk+h′+6)
)−1; dec rk; (13)

dec rk+h′+5; dec rk+h′+1; (14)

Line (9) initializes the truth-pairs rk+h′+2, rk+h′+3 and rk+h′+5, rk+h′+6 to
true. I.e., it prepares the execution of isLessThanOne in accordance with the
requirements of Theorem 3. Line (10) increments the content of rk before
testing it. It results that the truth-pair rk+h′+5, rk+h′+6 is left to true if
and only if the content of rk is strictly less than zero. Finally, it restores rk
to its initial value. Let n be the content of rk. Line (11), if n is positive,
then rk+h′+5, rk+h′+6 is false and P∗ is executed n times. Otherwise, rk+h′+6

contains 0 and nothing is done. Line (12), if n is strictly negative, then rk+h′+5

contains 1 and P∗ is executed |n| times because rk+h′+8 is set to −1 so that
for rk+h′+8 ensures the inversion of the application of P∗, which, in its turn,
was inverted by the negative value n. Lines (13) and (14) reset all additional
registers to zero, implementing Bennet’s trick locally to this procedure.
Albeit the execution of It [f ′] amounts to a non predetermined number of
sequential compositions of f ′, we emphasize that the number of ancillae that
the translation PIt[f ′] requires is bounded because (i) the number of ancillae
that P ′ contain is, in its turn, bounded (by induction), and (ii) P ′ r-defines
f ′, meaning that P ′ leaves its ancillae clean at the end of each iteration,
whatever number of compositions are involved.

– Let f = If [f1, f0, f2] such that f1, f0, f2 ∈ RPPk. This case is simpler than
the preceding one. We need to adapt the construction in Theorem 3’s proof
in order to write two programs that check if the given argument is bigger, or
lesser, than one and that leave their answer in a truth-pair. We notice that
two nested for are necessary to trigger the application of g, because we have
to check that the value driving the selection is neither bigger, nor lesser than
one. ��
Since all primitive recursive functions are definable in RPP by [21, Th. 5],

Theorem 4 immediately implies that SRL can express every element of PR. There-
fore, we answer the open questions that we recall in the introduction.

6 Conclusions

Many essential reversible programming languages appear in the literature. A
survey is in [25], albeit we should add many recent proposals as, for instance,
R-WHILE [6], R-CORE [7], RPRF [18], RPP [21], RFUN [8]. Some comparative
discussion is useful to frame the relevance of the presented result.
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SRL has been conceived by distilling the reversible core of the language LOOP
[14,15]. For this reason SRL enjoys two main characterizing features, up to some
details. First, it allows to program total procedures only. Second, it is also a
(reversible) core of a standard imperative programming language.

Almost all reversible programming languages are conceived to be Turing-
complete, so the first feature distinguishes SRL from them. We do not consider
this feature, that it shares with RPRF and RPP, as a limitation. The relevance
of studying classes of total functions only is unquestionable, since results about
Primitive Recursive Functions (see [17] as instance) like Kleene Normalization
Theorem, Grzegorczyk Hierarchies, and so on. Turing-complete languages are
not immediately suitable for such kinds of investigations until the identification
of a minimal total core of programs/functions in them. Thanks to its conciseness
and expressive power, that we studied in this paper, we consider SRL as the best
candidate for theoretical investigations in analogy with that done on primitive
recursive functions.

Let us consider the second feature. Janus has been the first reversible pro-
gramming language distilled from an imperative structured programming lan-
guage. Many interesting extensions and paradigmatic languages stem from it,
in particular the recent R-WHILE and R-CORE. Their primitives are based on
iterators that may not terminate (roughly while-iterators) and which are some-
what stretched to behave reversibly, by incorporating some form of “assertion”.
Quite interestingly, the introduction of R-CORE relies on the observation that a
possibly non terminating iterator of R-WHILE can encode the conditional. How-
ever, these languages neglect the very standard imperative total iterator for . It
is worth to emphasize that modifying the semantics of “for ” (in SRL) by not
inverting its body when applied to negative numbers, in analogy with the iter-
ator in RPP, we obtain a version of SRL straightforwardly included in the core
of standard imperative programming languages. Furthermore, our expressivity
results still hold for such a variant of SRL. On the other hand, we wonder if all
the reversible while-iterators have to be extended with some exiting-test, that
are not standard in classical languages. We leave this as a further open question.
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Abstract. In this paper, we present a linear and reversible language
with inductive and coinductive types, together with a Curry-Howard
correspondence with the logic : linear logic extended with least
and greatest fixed points allowing inductive and coinductive statements.
Linear, reversible computation makes an important sub-class of quantum
computation without measurement. In the latter, the notion of purely
quantum recursive type is not yet well understood. Moreover, models
for reasoning about quantum algorithms only provide complex types for
classical datatypes: there are usually no types for purely quantum objects
beside tensors of quantum bits. This work is a first step towards under-
standing purely quantum recursive types.

Keywords: Reversible computation · Linear logic · Curry-Howard

1 Introduction

Computation and logic are two faces of the same coin. For instance, consider a

Fig. 1. Modus-Ponens

proof s of A → B and a proof t of A. With the log-
ical rule Modus-Ponens one can construct a proof of
B: Fig. 1 features a graphical presentation of the cor-
responding proof. Horizontal lines stand for deduction
steps—they separate conclusions (below) and hypothe-
ses (above). These deduction steps can be stacked verti-
cally up to axioms in order to describe complete proofs.
In Fig. 1 the proofs of A and A → B are symbolized with vertical ellipses. The
ellipsis annotated with s indicates that s is a complete proof of A → B while t
stands for a complete proof of A.

This connection is known as the Curry-Howard correspondence [4,8]. In this
general framework, types correspond to formulas and programs to proofs, while
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program evaluation is mirrored with proof simplification (the so-called cut-
elimination). The Curry-Howard correspondence formalizes the fact that the
proof s of A → B can be regarded as a function—parametrized by an argu-
ment of type A—that produces a proof of B whenever it is fed with a proof
of A. Therefore, the computational interpretation of Modus-Ponens corresponds
to the application of an argument (i.e. t) of type A to a function (i.e. s) of
type A → B. When computing the corresponding program, one substitutes the
parameter of the function with t and get a result of type B. On the logical side,
this corresponds to substituting every axiom introducing A in the proof s with
the full proof t of A. This yields a direct proof of B without any invocation of
the “lemma” A → B.

Paving the way toward the verification of critical softwares, the Curry-
Howard correspondence provides a versatile framework. It has been used to mir-
ror first and second-order logics with dependent-type systems [3,10], separation
logics with memory-aware type systems [9,13], resource-sensitive logics with dif-
ferential privacy [6], logics with monads with reasoning on side-effects [11,17],
etc.

This paper is concerned with the case of reversible computation, a sub-class
of pure quantum computation. In general quantum computation, one has access
to a co-processor holding a “quantum” memory. This memory consists of “quan-
tum” bits having a peculiar property: their state cannot be duplicated, and
the operations one can perform on them are unitary, reversible operations. The
co-processor comes with an interface to which one can send instructions to allo-
cate, update or read quantum registers. Quantum memories can be used to solve
classical problems faster than with purely conventional means. Quantum pro-
gramming languages are nowadays pervasive [5] and several formal approaches
based on logical systems have been proposed to relate to this model of computa-
tion [12,14,16]. However, all of these languages rely on a purely classical control-
flow: quantum computation is reduced to describing a list of instructions—a
quantum circuit—to be sent to the co-processor. In particular, in this model
operations performed on the quantum memory only act on quantum bits and
tensors thereof, while the classical computer enjoys the manipulation of any kind
of data with the help of rich type systems.

This extended abstract aims at proposing a type system featuring inductive
and coinductive types for a purely reversible language, first step towards a rich
quantum type system. We base our study on the approach presented in [15]. In
this model, reversible computation is restricted to two main types: the tensor,
written a ⊗ b and the co-product, written a ⊕ b. The former corresponds to
the type of all pairs of elements of type a and elements of type b, while the
latter represents the disjoint union of all elements of type a and elements of
type b. For instance, a bit can be typed with 1⊕ 1, where 1 is a type with only
one element. The language in [15] offers the possibility to code isos—reversible
maps—with pattern matching. An iso is for instance the swap operation, typed
with a ⊗ b ↔ b ⊗ a. The language also permits higher-order operations on isos,
so that an iso can be parametrized by another iso, and is extended with lists
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Fig. 2. Rules for .

(denoted with [a]). For instance, one can type a map operation acting on all
the elements of a list with (a ↔ b) → ([a] ↔ [b]). However, if [15] hints at an
extension toward pure quantum computation, the type system is not formally
connected to any logical system.

The main contribution of this work is a Curry-Howard correspondence for a
purely reversible typed language in the style of [15]. We capitalize on the logic

[1,2]: an extension of the additive and multiplicative fragment of linear
logic with least and greatest fixed points allowing inductive and coinductive
statements. This logic contains both a tensor and a co-product, and its strict
linearity makes it a good fit for a reversible type system.

2 Background on

The logic [1,2] is an extension of the additive and multiplicative frag-
ment of linear logic [7]. The syntax of linear logic is extended with the formulas
μX.A and its dual νX.A (where X is a type variable occuring in A), which can
be understood at the least and greatest fixed points of the operator X �→ A.
These permit inductive and coinductive statements. We are only interested in a
fragment of which contains the tensor, the plus, the unit and the μ and
ν connectives. Note that our system only deals with closed formulas. Our syntax
of formulas is A,B :: = 1 | X | A ⊗ B | A ⊕ B | μX.A | νX.A. The
derivation rules are shown in Fig. 2. They defined a binary relation Δ � Γ on set
of formulas defined inductively. For each rule the assumptions are above the line
while the conclusion is under. In the rules, the comma stands for the disjoint
union: observe that each formula has to be used exactly once and cannot be
duplicated or erased. In one can for instance define the type of natural
numbers as μX.1 ⊕ X, of lists of type A as μX.1 ⊕ (A ⊗ X) and of streams of
type A as νX.A ⊗ X.

We consider proofs to be potentially non-well-founded derivation trees: they
are not necessarily finite as we can for instance consider the formula μX.X
and apply the rule μR an infinite number of times. Among non well-founded
proof-objects we distinguish the regular derivation trees that we call circular
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Fig. 3. Circular representation of
proofs.

Fig. 4. Degenerated proof.

pre-proofs. These trees can then be represented in a compact manner, see Fig. 3.
One problem with such a proof-system is to determine whether or not infinite
derivations are indeed proofs. Indeed, if every infinite derivation is accepted as
a proof, it would be possible to prove any formula F, as shown in Fig. 4.

To answer this problem, comes with a validity criterion for deriva-
tions. It roughly says that a derivation is valid if, in every infinite branch of the
derivation, there exists an infinite number of rules μL or an infinite number of
rules νR. The intuition is that since μX.A formulas represent least fixed points,
their objects are finite. An infinite number of rule μR would mean producing
an infinite object, which is not possible. On the other hand, we can explore an
arbitrarily large object as input with the rule μL. For the other case, since νX.A
formulas represent greatest fixed points, their object are infinite. We therefore
want to ensure that we can produce infinite objects: hence the infinite number
of rules νR. This criterion can be understood in a more operational way as a
requirement for productivity.

3 Our Language

Our language is based on the one presented in [15]. We build on the reversible
part of the paper by extending the language to support both a more general
rewriting system and inductive and coinductive types. The language is defined
by layers. Terms and types are presented in Table 1, while typing derivations,
based on ,can be found in Tables 2 and 3. The language consists of the
following pieces.

Basic Type. They are first-order and typed with base types. The constructors
injl and injr represent the choice between either the left or right-hand side
of a type of the form A ⊕ B; the constructor 〈, 〉 builds pairs of elements (with
the corresponding type constructor ⊗); fold and pack respectively represent
inductive and coinductive structure for the types μX.A and νX.A. A value can
serve both as a result and as a pattern in the clause of an iso. Generalized
patterns are used as special patterns: vg : A can match any value of type A.
Terms are expressions at “surface-level”: applying an iso always gives a term,
whereas it is an expression only when the argument is a generalized pattern.
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Table 1. Terms and types

(Base types) A, B ::= 1 | A ⊕ B | A ⊗ B | μX.A | νX.A

(Isos, first-order) α ::= A ↔ B

(Isos, higher-order) T ::= α1 → · · · → αn → α

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉 |
fold v | pack v

(Generalized pattern) vg ::= () | x | 〈vg, vg〉 | ω vg | let vg = vg in vg |
fold vg | pack vg

(Expressions) e ::= vg | injr e | injl e | 〈e, e〉 |
fold e | pack e | let vg = vg in e

(Isos) ω ::= {e1 ↔ e′
1 | . . . | en ↔ e′

n} | λf.ω |
μf.ω | f | ω1 ω2 | inv ω

(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |
fold t | pack t | ω t | let vg = vg in t

First-Order Isos. An iso of type α acts on terms of base types. An iso
is a function of type A ↔ B, defined as a set of clauses of the form
{e1 ↔ e′

1 | . . . | en ↔ e′
n}. The tokens ei and e′

i in the clauses are
expressions. Compared to the original language in [15], we allow general expres-
sions both on the left and on the right of a clause. In order to apply an iso to
a term, the iso must be of type A ↔ B and the term of type A. In the typing
rules of isos, the OD predicate (taken from [15] and not described in this paper)
syntactically enforces the exhaustivity and non-overlapping conditions that the
left-hand-side and right-hand-side of clauses should satisfy. Exhaustivity for an
iso {e1 ↔ e′

1 | . . . | en ↔ e′
n} of type A ↔ B means that the expressions on

the left (resp. on the right) of the clauses describe all possible values for the type
A (resp. the type B). Non-overlapping means that two expressions cannot match
the same value. For instance, the left and right injections injl e and injr e′ are
non-overlapping while a pattern vg is always exhaustive.

Higher-Order Isos. An iso of type T manipulate other isos as basic blocks.
Since isos represent closed computations, iso-variable are non-linear and can be
duplicated at will while term-variable are linear. The constructions λf.ω and
ω1 ω2 represent respectively the abstraction of a function and the application of
an iso to another. The construction μg.ω represents the creation of a recursive
function, rewritten as ω[g := μg.ω] by the operational semantics. The typing rule
for μg.ω has a productivity criterion. Indeed, since isos can be non-terminating
(because of coinduction), productivity is important to ensure that we work with
total functions. These checks are crucial to make sure that our isos are indeed
bijections in the mathematical sense. The construction inv ω corresponds to the
inversion of the iso ω. If ω is of type A ↔ B then inv ω is of type B ↔ A.

Finally, our language is equipped with a rewrite system (→) on terms. The
evaluation of an iso applied to an argument works with pattern-matching. The
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Table 2. Typing of terms and expressions

∅; Ψ 	e () : 1 x : A; Ψ 	e x : A

Δ; Ψ 	e t : A

Δ; Ψ 	e injl t : A ⊕ B

Δ; Ψ 	e t : B

Δ; Ψ 	e injr t : A ⊕ B

Δ1; Ψ 	e t1 : A Δ2; Ψ 	e t2 : B

Δ1, Δ2; Ψ 	e 〈t1, t2〉 : A ⊗ B

Δ; Ψ 	 t : A[X ← νX.A]

Δ; Ψ 	 pack t : νX.A

Ψ 	ω ω : A ↔ B Δ; Ψ 	e t : A

Δ; Ψ 	e ω t : B

Δ; Ψ 	e t : A[X ← μX.A]

Δ; Ψ 	e fold t : μX.A

Γ ; Ψ	e vg1 : A Δ1; Ψ 	e vg2 : A Γ, Δ2; Ψ 	e t : B

Δ1, Δ2; Ψ 	e let vg1 = vg2 in t : B

Table 3. Typing of isos

Δ1; Ψ 	e e1 : A . . . Δn; Ψ 	e en : A ODA{e1, . . . , en}
Δ1; Ψ 	e e′

1 : B . . . Δn; Ψ 	e e′
n : B ODB{e′

1, . . . , e
′
n}

Ψ 	ω {e1 ↔ e′
1 | . . . | en ↔ e′

n} : A ↔ B.

Ψ, f : α 	ω ω : T

Ψ 	ω λf.ω : α → T Ψ, f : α 	ω f : α

Ψ 	ω ω1 : α → T Ψ 	ω ω2 : α

Ψ 	ω ω1ω2 : T

Ψ 	ω ω : T ⊥

Ψ 	ω inv ω : T
Ψ, f : α 	ω ω : α1 → · · · → αn → α μf.ω is productive

Ψ 	ω μf.ω : α1 → · · · → αn → α

non-overlapping and exhaustivity conditions guarantee subject-reduction (see
Proposition 3.1).

Example 3.1. Encoding of the isomorphism map in our language, where [ ] is
the empty list and :: is the list construction. The iso map is of type (A ↔ B) →
([A] ↔ [B]) where [A] is the type of lists of type A. This iso takes an iso of type
A ↔ B as argument and apply it to each element of the list given as argument:

λf.μg.

{
[ ] ↔ [ ]
h :: t ↔ (f h) :: (g t)

}
: (A ↔ B) → [A] ↔ [B]).

Example 3.2. We can define the iso of type : A ⊕ (B ⊕ C) ↔ C ⊕ (A ⊕ B) as

⎧⎨
⎩

injl a ↔ injr injl a
injr injl b ↔ injr injr b
injr injr c ↔ injl c

⎫⎬
⎭.

Remark 3.1. In our two examples, the left and right-hand side of the ↔ on each
function respect both the criteria of exhaustivity—every-value of each type is
being covered by at least one expression—and non-overlapping—no two expres-
sions cover the same value. Both isos are therefore bijections.
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Property 3.1. The language features subject reduction: If � t : A and t → t′

then we have � t′ : A. Moreover, it enjoys confluence: Let →∗ be the reflexive,
transitive closure of →. If t →∗ t1 and t →∗ t2 then there exists t3 such that
t1 →∗ t3 and t2 →∗ t3. 
�

We conjecture that well-typed isos are indeed isomorphisms:

Conjecture 3.1. For all ω : A ↔ B, v : A and u : B then ((inv ω) ◦ω) v →∗ v
and (ω ◦ inv ω) u →∗ u.

4 Towards Curry-Howard

An iso � ω : A ↔ B corresponds to both a computation sending a value of type
A to a result of type B and a computation sending a value of type B to a result
of type A. We can mechanically translate such an iso to a pair of derivations
π, π⊥ in , where π is a proof of A � B and π⊥ is a proof of B � A. This
mechanical translation constructs circular pre-proofs, as discussed in Sect. 2. We
however still need to show that the obtained derivations respect the validity
criterion for circular proof.

Once proven, we would obtain a static correspondence between programs
and proofs. We would however still need to show that this entails a dynamic
correspondence between the evaluation procedure of our language and the cut-
elimination procedure of . For that, we would need to make sure that the
proofs we obtain are indeed isomorphisms, meaning that if we cut the aforemen-
tioned proofs π and π⊥, performing the cut-elimination procedure would give
either the identity on A or the identity on B.

Conjecture 4.1. Validity of proofs. If � ω : A ↔ B then the deriva-
tions π : A � B and π⊥ : B � A of ω are valid.
Isomorphism of Proofs. Provided that the above holds, we moreover have

A � A
id �

π⊥
B � A

π
A � B

A � A
cut

π
A � B

π⊥
B � A

B � B
cut � B � B

id

Simulation of Evaluation. Provided that t is a value and v is a normal form,
if ω t →∗ v, if π is the proof corresponding to ω t, and if π′ is the proof corre-
sponding to v, then π →∗ π′ with the cut-elimination procedure.

Example 4.1. Consider the iso that, given an iso f and a list [x1, x2, . . . , xn]
returns the list [f x1, (inv f) x2, f x3, (inv f) x4, . . . ] written as:

μg.λf.

{
[ ] ↔ [ ]
h :: t ↔ (f h) :: ((g (inv f) )t)

}
: (A ↔ A) → ([A] ↔ [A]) (1)

We define the two mutually recursive proofs π1 and π2 by π1 = Π(ψf , π2) and
π2 = Π(ψf⊥ , π1) where ψf and ψf⊥ correspond to the isos f and inv f . The
proof associated with the iso in Eq. (1) is π1. The proof Π(φ1, φ2) is shown in
Fig. 5.
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Fig. 5. Proof corresponding to Example 4.1.

5 Conclusion

We presented a higher-order, linear, reversible language with inductive and coin-
ductive types together with an interpretation of programs into derivations in the
logic . This work is still in progress: A number of proofs still need to be
completed. After completing the proofs of our current conjectures, we want to
extend our language to linear combinations of terms in order to study purely
quantum recursive types and generalized quantum loops: in [15], lists are the only
recursive type which is captured and recursion is terminating. The logic
would help providing a finer understanding of termination and non-termination.
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Abstract. We introduce dependently typed Proto-Quipper, or Proto-
Quipper-D for short, an experimental quantum circuit programming lan-
guage with linear dependent types. We give several examples to illustrate
how linear dependent types can help in the construction of correct quan-
tum circuits. Specifically, we show how dependent types enable program-
ming families of circuits, and how dependent types solve the problem of
type-safe uncomputation of garbage qubits. We also discuss other lan-
guage features along the way.

Keywords: Quantum programming languages · Linear dependent
types · Proto-Quipper-D

1 Introduction

Quantum computers can in principle outperform conventional computers at cer-
tain crucial tasks that underlie modern computing infrastructures. Experimental
quantum computing is in its early stages and existing devices are not yet suitable
for practical computing. However, several groups of researchers, in both academia
and industry, are now building quantum computers (see, e.g., [2,11,17]). Quan-
tum computing also raises many challenging questions for the programming lan-
guage community [18]: How should we design programming languages for quan-
tum computation? How should we compile and optimize quantum programs?
How should we test and verify quantum programs? How should we understand
the semantics of quantum programming languages?

In this paper, we focus on quantum circuit programming using the linear
dependently typed functional language Proto-Quipper-D.

The no-cloning property of quantum mechanics states that one cannot in
general copy the state of a qubit. Many existing quantum programming lan-
guages, such as Quipper [9,10], QISKit [22], Q# [27], Cirq [5], or ProjectQ [26],
do not enforce this property. As a result, programmers have to ensure that refer-
ences to qubits within a program are not duplicated or discarded. Linear types
c© Springer Nature Switzerland AG 2020
I. Lanese and M. Rawski (Eds.): RC 2020, LNCS 12227, pp. 153–168, 2020.
https://doi.org/10.1007/978-3-030-52482-1_9
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have been used for resource aware programming [7,28] and it is now well-known
that they can be used to enforce no-cloning [25]. A variety of programming lan-
guages use linear types for quantum circuit programming, e.g., Proto-Quipper-S
[24], Proto-Quipper-M [23], and QWire [20]. All well-typed programs in these
languages satisfy the no-cloning property.

Dependent types [15] have been one of the main focuses in programming
language and type system research in the past decades. Dependent types make
it possible to express program invariants and constraints using types [1,3,6].
In the context of quantum circuit programming, dependent types are useful
for expressing parameterized families of circuits. For example, one can define
a function that inputs a size and outputs a circuit of the corresponding size.
Because the type of the output circuit is indexed by the size argument, errors
due to an attempt to compose mismatched circuits are detected at compile time.
Another important application of dependent types is the type-safe management
of garbage qubits, which we discuss in Sect. 4.

We introduce an experimental quantum circuit programming language called
dependently typed Proto-Quipper, or Proto-Quipper-D for short. Following
Quipper, Proto-Quipper-D is a functional language with quantum data types
and aims to provide high-level abstractions for constructing quantum circuits.
Like its predecessors Proto-Quipper-S and Proto-Quipper-M, the Proto-Quipper-
D language relies on linear types to enforce no-cloning. Proto-Quipper-D addi-
tionally features the use of linear dependent types to facilitate the type-safe
construction of circuit families [21]. This paper provides a practical introduction
to programming in Proto-Quipper-D.

The paper is structured around several programming examples that showcase
the use of linear dependent types in Proto-Quipper-D.

– We give an introduction to dependent types by showing how to use them to
prove basic properties of addition in Sect. 2.

– We show how to program with families of quantum circuits in Sect. 3.
– We give a new application of existential dependent types and show how it
simplifies the construction of certain reversible quantum circuits in Sect. 4.

An implementation of Proto-Quipper-D is available at: https://gitlab.com/
frank-peng-fu/dpq-remake.

2 An Introduction to Dependent Types

Proto-Quipper-D supports programming by recursion and pattern matching. For
example, the following is a program that defines the addition of Peano numbers.

data Nat = Z | S Nat

add : !(Nat -> Nat -> Nat)
add n m =

case n of
Z -> m
S n’ -> S (add n’ m)

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake
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In the above program, we use the keyword data to define an algebraic data
type in the style of Haskell 98 [13]. The type checker will analyze the data type
declaration and determine that Nat is a parameter type (or non-linear type).
In Proto-Quipper-D, parameter types are types that can be freely duplicated
and discarded. The addition function has type !(Nat -> Nat -> Nat). The
exclamation mark (pronounced “bang”) in front of a function type makes that
type a parameter type. This means that addition is a reusable function, i.e., it can
be used multiple times. The type of a non-reusable function would be of the form
a -> b and in particular would not be prefixed by a !. In contrast to a reusable
function, a non-reusable function must be used exactly once. This guarantees
that any quantum data embedded in the function does not get inadvertently
duplicated or discarded. Proto-Quipper-D requires all top-level declarations to
have parameter types, making them reusable.

With dependent types, we can even encode properties of programs in types.
In Proto-Quipper-D, dependent function types are of the form (x : A) -> B,
where the type B may optionally mention the variable x. We can think of this
dependent function type as the universal quantification ∀x : A .B of predicate
logic. Dependent types therefore allow us to represent properties of programs
as types. For example, the following programs correspond to proofs of basic
properties of addition.

addS : ! (p : Nat -> Type) -> (n m : Nat) ->

p (add n (S m)) -> p (add (S n) m)

addS p n m h =

case n of

Z -> h

S n’ -> addS (λ y -> p (S y)) n’ m h

addZ : ! (p : Nat -> Type) -> (n : Nat) -> p (add n Z) -> p n

addZ p n h = case n of

Z -> h

S n’ -> addZ (λ y -> p (S y)) n’ h

The type of addS expresses the theorem that for all natural numbers n and m,
we have n + Sm = Sn + m. However, rather than using an equality symbol, we
use the so-called Leibniz equality. Leibniz defined two things to be equal if they
have exactly the same properties. Therefore, the type of addS states that for any
property p : Nat -> Type of natural numbers, and for all natural numbers n,
m, if add n (S m) has the property p, then add (S n) m has the property p.
Similarly, the type of addZ expresses the fact that n + Z = n.

Note how the types of dependent type theory play a dual role: on the one
hand, they can be read as types specifying the inputs and outputs of functional
programs; on the other hand, they can be read as logical statements. This is the
so-called propositions-as-types paradigm [8]. For example, the last arrow “->” in
the type of addS can be interpreted both as a function type and as the logical
implication symbol. This works because a proof of an implication is actually
a function that transforms evidence for the hypothesis into evidence for the
conclusion.
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Indeed, not only does the type of the function addS corresponds to a theorem,
but the actual code of addS corresponds to its proof. For example, in the branch
when n is Z, the variable h has type p (add Z (S m)), which equals p (S m)
by the definition of add. This branch is expecting an expression of type p (add
(S Z) m), which equals p (S m) by definition of add, so the type-checking of h
succeeds.

In practice, we can sometimes use the above equality proofs to convert one
type to another. We will give examples of this in Sect. 3.2. However, we emphasize
that Proto-Quipper-D is designed for quantum circuit programming, not general
theorem proving like languages such as Coq and Agda. The only kind of primitive
propositions we can have are equalities, and the support of dependent data types
is limited to simple types, as discussed in Sect. 3.1.

3 Programming Quantum Circuits

We use the keyword object to introduce simple linear objects such as bits and
qubits, representing primitive wires in circuits. We use the keyword gate to
introduce a primitive gate. As far as Proto-Quipper-D is concerned, gates are
uninterpreted; they simply represent basic boxes that can be combined into
circuits. Each primitive gate has a type specifying its inputs and outputs.

object Qubit
object Bit

gate H : Qubit -> Qubit
gate CNot : Qubit -> Qubit -> Qubit * Qubit
gate Meas : Qubit -> Bit
gate Discard : Bit -> Unit
gate Init0 : Unit -> Qubit
gate C_X : Qubit -> Bit -> Qubit * Bit
gate C_Z : Qubit -> Bit -> Qubit * Bit

The above code declares primitive types Qubit and Bit and a number of gates.
For example, the gate H is a reusable linear function of type !(Qubit -> Qubit),
which, by convention, represents the Hadamard gate. Note that the type checker
automatically adds the ! to gate declarations, so it is not necessary to do so
manually. The type expression Qubit * Qubit denotes the tensor product of
two qubits, and thus, the controlled-not gate CNot has two inputs and two out-
puts (where, by convention, the first input is the target and the second is the
control). By linearity, the arguments of the CNot can only be used once. Thus,
an expression such as CNot x x will be rejected by the type checker because
the argument x is used twice. The gate Meas corresponds to a measurement,
turning a qubit into a classical bit. The type Unit represents the unit of the
tensor product, i.e., a bundle of zero wires. Thus, the gate Discard can be used
to discard a classical bit, and the gate Init0 can be used to initialize a qubit
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(by convention, in state |0〉). We also introduce two classically-controlled gates
C X and C Z.

The following program produces a circuit that generates a Bell state:

0

0

H

bell00 : !(Unit -> Qubit * Qubit)
bell00 u =

let x = Init0 ()
y = Init0 ()
x’ = H x
(y, x’) = CNot y x’

in (y, x’)

The initialization gate Init0 inputs a unit, denoted by (), and outputs a qubit.
If we want to display the circuit generated by the function bell00, we can use
Proto-Quipper’s box function:

bell00Box : Circ(Unit, Qubit * Qubit)
bell00Box = box Unit bell00

The box function inputs a circuit-generating function such as bell00 and pro-
duces a completed circuit of type Circ(Unit, Qubit * Qubit). In the Proto-
Quipper-D interactive shell, we can then type :d bell00Box to display the cir-
cuit.

The following program implements quantum teleportation.

0

0

H

H

Meas

Meas

C_X C_Z

bellMeas : !(Qubit -> Qubit -> Bit * Bit)
bellMeas x y =

let (x’, y’) = CNot x y
y’’ = H y’

in (Meas x’, Meas y’’)

tele : !(Qubit -> Qubit)
tele phi =

let (bob, alice) = bell00 ()
(a’, phi’) = bellMeas alice phi
(bob’, a’’) = C_X bob a’
(r, phi’’) = C_Z bob’ phi’
u = Discard phi’’
u = Discard a’’

in r
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3.1 Simple Types

Following Quipper, Proto-Quipper-D makes a distinction between parameters
and states. Parameters are values that are known at circuit generation time,
while states are only known at circuit execution time. For example, the type Nat
represents a parameter, while the type Qubit represents a state.

In Proto-Quipper-D, we use the concept of simple types to describe states. As
discussed earlier, simple types can be introduced using the keyword object. In
practice, it is more common to create simple types by composing existing ones.
For example, Qubit * Qubit is also a simple type. For this reason, we call the
tensor product a simple type constructor. In Proto-Quipper-D, the programmer
can also define families of new simple types using the simple keyword. For
example, the following defines a type family Vec, and Vec Qubit n is a simple
type.

simple Vec a : Nat -> Type where
Vec a Z = VNil
Vec a (S n) = VCons a (Vec a n)

The expression Nat -> Type is a kind expression. It means that Vec a n is a
type whenever n is a natural number. The two clauses after the simple keyword
are the definition of the type Vec a n. The first clause says that an element of
the type Vec a Z can be constructed by the constructor VNil. The second clause
says that an element of the type Vec a (S n) can be constructed by applying
the constructor VCons to a term of type a and a term of type Vec a n. Therefore,
Vec a n represents a vector of n elements of type a.

The type Vec a n is an example of dependent data type, where the data type
Vec a n depends on some term n of type Nat. In the interpreter, we can query
the types of VNil and VCons (by typing :t VNil). They have the following types.

VNil : forall (a : Type) -> Vec a Z
VCons : forall (a : Type) -> forall (n : Nat) ->

a -> Vec a n -> Vec a (S n)

In Proto-Quipper-D, all data constructors are reusable, so there is no need for
them to have an explicit bang-type. The leading forall keyword means that
programmers do not need to supply that argument when calling the function.
We call such quantification irrelevant quantification. For example, when using
VCons, we only need to give it two arguments, one of type a and one of type Vec
a n.

The simple data type declaration is currently the only way to introduce
dependent data types in Proto-Quipper-D. Semantically, simple types corre-
sponds to states. Syntactically, a simple type can uniquely determine the size
and the constructors of its data. The type checker will check whether a simple
data type declaration is well-defined. Note that not all dependent data types
are simple types. For example, the following declaration will not pass the type
checker.
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simple ColorVec a : Nat -> Type where
ColorVec a Z = CNil
ColorVec a (S n) = VConsBlue a (ColorVec a n)
ColorVec a (S n) = VConsRed a (ColorVec a n)

The ColorVec data type is ambiguous when the parameter is S n, as the con-
structor in this case can be either VConsBlue or VConsRed.

In general, checking whether a simple type is well-defined is equivalent to
deciding whether a general recursive function is well-defined and terminating,
which is undecidable. Currently, Proto-Quipper-D checks whether a simple data
type declaration is well-defined using the same criterion as checking primitive
recursion [14].

3.2 Using Leibniz Equality

Suppose we want to define a function that reverses the order of the components
in a vector. One way to do this is to use an accumulator: we traverse the vector
while prepending each element to the accumulator. This can be expressed by the
reverse aux function defined below.

reverse_aux : ! (a : Type) -> (n m : Nat) ->
Vec a n -> Vec a m -> Vec a (add n m)

reverse_aux a n m v1 v2 =
case n of

Z -> let VNil = v1 in v2
S n’ ->

let VCons q qs = v1 in
let ih = reverse_aux a n’ (S m) qs (VCons q v2) in
addS (Vec a) n’ m ih

Note that the type of reverse aux indicates that the length of the output vector
is the sum of the lengths of the input vectors. In the definition for reverse aux,
we use v1 and v2 exactly once in each branch, which respects linearity. In the sec-
ond branch of reverse aux, the type checker expects an expression of type Vec
a (add (S n’) m), but the expression ih, obtained from the recursive call, has
type Vec a (add n’ (S m)). We therefore use the theorem addS from Sect. 2
to convert the type to Vec a (add (S n’) m). We can then use reverse aux
to define the reverse vec function, which requires a similar type conversion.

reverse_vec : ! (a : Type) -> (n : Nat) -> Vec a n -> Vec a n
reverse_vec a n v = addZ (Vec a) n (reverse_aux a n Z v VNil)

3.3 Families of Quantum Circuits

We can use simple data types such as vectors to define functions that correspond
to families of circuits. As an example, we consider the well-known quantum
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Fourier transform [19]. The quantum Fourier transform is the map defined by

|a1, . . . , an〉 �→ (|0〉 + e2πi0.a1a2...an |1〉) . . . (|0〉 + e2πi0.an−1an |1〉)(|0〉 + e2πi0.an |1〉)
2n/2

.

where 0.a1...an is the binary fraction a1/2 + a2/4 + ... + an/2n. Circuits for the
quantum Fourier transform can be constructed using the Hadamard gate H and
the controlled rotation gates R(k) defined by

R(k) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2k

⎞
⎟⎟⎠ .

The family of gates R(k) can be declared in Proto-Quipper-D as follows:

gate R Nat : Qubit -> Qubit -> Qubit * Qubit

Applying the Hadamard gate to the first qubit produces the following state

H1|a1, . . . , an〉 = 1√
2
(|0〉 + e2πi0.a1 |1〉) ⊗ |a2, . . . , an〉,

where the subscript on the gate indicates the qubit on which the gate acts. We
then apply a sequence of controlled rotations using the the first qubit as the
target. This yields

R(n)1,n . . . R(2)1,2H1|a1, . . . , an〉 =
1

21/2
(|0〉 + e2πi0.a1a2...an |1〉) ⊗ |a2, . . . , an〉,

where the subscripts i and j in R(k)i,j indicate the target and control qubit,
respectively. When n = 5, the above sequence of gates corresponds to the fol-
lowing circuit.

H R(2) R(3) R(4) R(5)

To construct such a circuit in Proto-Quipper-D, we first define the rotate
function, which will produce a cascade of rotations with a single target. The
rotations in the above circuit are then generated by oneRotation 4.

rotate : ! forall (y : Nat) -> Nat ->

Qubit -> Vec Qubit y -> Qubit * Vec Qubit y

rotate k q v =

case v of

VNil -> (q, VNil)

VCons x xs ->

let (q’, x’) = R k q x

(q’’, xs ’) = rotate (S k) q’ xs

in (q’’, VCons x’ xs ’)
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oneRotation : ! (n : Nat) ->

Circ(Qubit * Vec Qubit n, Qubit * Vec Qubit n)

oneRotation n =

box (Qubit * Vec Qubit n)

(λ x -> let (q, v) = x in rotate 2 (H q) v)

The rotate function uses the input vector v for controls and recursively applies
the rotation gate R to the target qubit q, updating the rotation angle at each
step. To program the full quantum Fourier transform, we apply the Hadamard
and controlled rotations recursively to the rest of input qubits.

qft : ! forall (n : Nat) -> Vec Qubit n -> Vec Qubit n
qft v =

case v of
VNil -> VNil
VCons q qs ->

let q’ = H q
(q’’, qs’) = rotate 2 q’ qs
qs’’ = qft qs’

in VCons q’’ qs’’

qftBox : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)
qftBox n = box (Vec Qubit n) qft

For example, qftBox 5 generates the following circuit.
H R(2) R(3) R(4) R(5)

H R(2) R(3) R(4)

H R(2) R(3)

H R(2)

H

The input qubits of the circuit above use a big-endian ordering. We can
convert to little-endian ordering by reversing the input vector.
qftBoxLittle : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)

qftBoxLittle n = box (Vec Qubit n) (λ v -> qft (reverse_vec Qubit n v))

Then qftBoxLittle 5 generates the following circuit.

H R(2) R(3) R(4) R(5)

H R(2) R(3) R(4)

H R(2) R(3)

H R(2)

H

3.4 Type Classes for Simple Types and Parameter Types

Proto-Quipper-D is equipped with a type class mechanism that allows the user
to define type classes and instances [29]. In addition, Proto-Quipper-D has two
built-in type classes called Simple and Parameter, which are useful for pro-
gramming with simple types and parameter types, respectively. The user cannot
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directly define instances for these two classes. Instead, instances for Simple and
Parameter are automatically generated from data type declarations.

When a simple data type is defined, the type checker automatically makes
the type an instance of the Simple class and, if appropriate, of the Parameter
class. Similarly, when algebraic data types such as List and Nat are defined, the
type checker makes instances of the Parameter class when possible. For example,
consider the following programs.

data List a = Nil | Cons a (List a)

kill : ! forall a -> (Parameter a) => a -> Unit
kill x = ()

test1 : !(List Nat -> Unit)
test1 x = kill x

test2 : !(List Qubit -> Unit)
test2 x = kill x

The argument of the function kill must be a parameter. The expression test1
is well-typed, because List Nat is a member of the Parameter class. But test2
fails to type-check because List Qubit is not a member of the Parameter class.

Simple types are useful for describing the types of certain operations that
require a circuit, rather than a family of circuits. Examples are boxing, unboxing,
and reversing a circuit:

box : (a : Type) -> forall (b : Type) ->
(Simple a, Simple b) => !(a -> b) -> Circ(a, b)

unbox : forall (a b : Type) ->
(Simple a, Simple b) => Circ(a, b) -> !(a -> b)

reverse : forall (a b : Type) ->
(Simple a, Simple b) => Circ(a, b) -> Circ(b, a)

The type of box implies that only functions of simple type can be turned into
boxed circuits. The following program will not type-check because List Qubit
is not a simple type.

boxId : Circ(List Qubit , List Qubit)
boxId = box (List Qubit) (λ x -> x)

With the built-in function reverse, we can now compute the inverse of qftBox.

boxQftRev : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)
boxQftRev n = reverse (qftBox n)
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By definition, the family of circuits represented by boxQftRev is obtained by
taking the inverse of every member of the family of circuits represented qftBox.
For example, boxQftRev 5 generates the following circuit.

H

R*(2) H

R*(3) R*(2) H

R*(4) R*(3) R*(2) H

R*(5) R*(4) R*(3) R*(2) H

4 Type-Safe Management of Garbage Qubits

In quantum computing, it is often necessary to provide classical oracles to
a quantum algorithm. These oracles are reversible implementations of classi-
cal boolean functions. Consider the example of the single bit full adder. If
the inputs are a, b and carryIn, then the boolean expression xor (xor a b)
carryIn calculates the sum of a, b and carryIn while the boolean expres-
sion (a && b) || (a && carryIn) || (b && carryIn) calculates the output
carry.

We can implement the single bit adder as a reversible quantum circuit. Sup-
pose that the boolean operations xor, ||, and && are given as reversible circuits
of type !(Qubit -> Qubit -> Qubit * Qubit). Here, the first qubit in the
output of each function is the result of the operation, whereas the second qubit
is a “garbage” qubit that cannot be discarded since this would violate linearity.
As a result, the following naive implementation of the adder generates 7 garbage
qubits and has a 9-tuple of qubits as its return type.

adder : ! (Qubit -> Qubit -> Qubit ->
Qubit * Qubit * Qubit * Qubit * Qubit *

Qubit * Qubit * Qubit * Qubit)
adder a b carryIn =

let (a1, a2, a3) = copy3 a
(b1, b2, b3) = copy3 b
(carryIn1, carryIn2, carryIn3) = copy3 carryIn
(g1, r) = xor a1 b1
(g2, s) = xor carryIn1 r
(g3, c1) = a2 && b2
(g4, c2) = a3 && carryIn2
(g5, c3) = b3 && carryIn3
(g6, c4) = c1 || c2
(g7, carryOut) = c4 || c3

in (s, carryOut, g1, g2, g3, g4, g5, g6, g7)

Due to linearity, the copying of a classical qubit must be explicit. In the code
above, copy3 is a function that produces three copies of a qubit that is in a
classical state, i.e., copy3 corresponds to the following circuit.
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0

0

The above implementation of the adder is hard to read and awkward to
compose with other circuits, because its type keeps track of all the garbage
qubits produced throughout the computation. In Proto-Quipper-D, we solve this
problem using monads [12], existential dependent types, and existential circuit
boxing.

Instead of using the type !(Qubit -> Qubit -> Qubit * Qubit), we give
xor, ||, and && the type !(Qubit -> Qubit -> WithGarbage Qubit), where
WithGarbage is a monad that will take care of the garbage qubits. The idiomatic
implementation of the full adder in Proto-Quipper-D is the following.

adder : !(Qubit -> Qubit -> Qubit -> WithGarbage (Qubit * Qubit))

adder a b carryIn = do

let (a1, a2, a3) = copy3 a

(b1, b2, b3) = copy3 b

(carryIn1, carryIn2, carryIn3) = copy3 carryIn

s <- [| xor (xor a1 b1) (pure carryIn1)|]

carryOut <- [|[|(a2 && b2) || (a3 && carryIn2)|] || (b3 && carryIn3)|]

return (s, carryOut)

Proto-Quipper-D implements idiom brackets [16] of the form [| f a b c |].
This expression will be translated to join (ap (ap (ap (pure f) a) b) c),
where ap, pure and join have the following types.

ap : ! forall (a b : Type) -> forall (m : Type -> Type) ->
(Monad m) => m (a -> b) -> m a -> m b

pure : ! forall (m : Type -> Type) ->
(Monad m) => forall (a : Type) -> a -> m a

join : ! forall (a : Type) -> forall (m : Type -> Type) ->
(Monad m) => m (m a) -> m a

We now briefly discuss the definition of the WithGarbage monad.

data WithGarbage a = WG ((n : Nat) * Vec Qubit n) a

instance Monad WithGarbage where
return x = WG (Z, VNil) x
bind wg f = let WG ng r = wg

(n, g) = ng
WG mg’ r’ = f r
(m, g’) = mg’

in WG (add n m, append g g’) r’

The type (x : A) * B is an existential dependent type, corresponding to the
existential quantification ∃x : A .B of predicate logic. Just as for dependent
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function types, the type B may optionally mention the variable x. The elements
of the type (n : Nat) * Vec Qubit n are pairs (n, v), where n : Nat and v
: Vec Qubit n. Thus, WithGarbage a contains a vector of qubits of a unknown
length and a value of type a. In the definition of the WithGarbage monad,
the return function does not generate any garbage qubits. The bind function
combines the garbage qubits from the two computations wg and f. Note that it
uses the append function to concatenate two vectors.

The standard way to dispose of a qubit (and turn it into garbage) is via the
following dispose method.

class Disposable a where
dispose : a -> WithGarbage Unit

instance Disposable Qubit where
dispose q = WG (1, VCons q VNil) ()

So for example, we can implement xor as follows. Note that the implemented
circuit is not optimal, but it serves to illustrate the point.

xor : !(Qubit -> Qubit -> WithGarbage Qubit)
xor x y =

do let z = Init0 ()
(z’, x’) = CNot z x
(z’’, y’) = CNot z’ y

dispose x’
dispose y’
return z’’

Using the WithGarbage monad, we can program almost as if the extra
garbage qubits do not exist. Next, we need a type-safe way to uncompute the
garbage qubits. We achieve this with the function with computed below, which
takes a garbage-producing function and turns it into a function that produces no
garbage. The implementation of with computed relies on the following built-in
function:

existsBox : (a : Type) -> forall (b : Type) ->
(Simple a, Parameter b) => (p : b -> Type) ->
!(a -> (n : b) * p n) ->
(n : b) * ((Simple (p n)) => Circ(a, p n))

Intuitively, the existsBox construct is used to box an existential function. It
takes a circuit generating function of type !(a -> (n : b) * p n) as input
and turns it into an existential circuit of the type (n : b) * Circ(a, p n).
Using existsBox, we can define with computed:
with_computed : ! forall d -> (a b c : Type) ->

(Simple a, Simple b) =>

!(a -> WithGarbage b) ->

!(c * b -> d * b) -> (c * a -> d * a)
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with_computed a b c f g input =

let (y, x) = input

(_,circ) = existsBox a (λx->Vec Qubit x*b) (λz->unGarbage (f z))

h’ = unbox circ

(v, r) = h’ x

circ_rev = unbox (reverse circ)

(d, r’) = g (y, r)

res = circ_rev (v, r’)

in (d, res)

The with computed function inputs a function f : a -> WithGarbage b and
a second function g : c * b -> d * b, and produces a garbage-free circuit c
* a -> d * a corresponding to the following diagram. Of course each wire may
correspond to multiple qubits, as specified in its type.

c d

b ba a

garbagef f−1

g

Note that this construction is type-safe, because it guarantees that there will be
no uncollected garbage, regardless of how much garbage the function f actually
produces. However, Proto-Quipper-D does not guarantee the semantic correct-
ness of the resulting circuit; it could happen that a qubit that is supposed to
be returned in state |0〉 is returned in some other state. Since semantic correct-
ness is in general undecidable, Proto-Quipper-D makes no attempt to prove it.
Consequently, a failure of semantic correctness is considered to be a program-
ming error, rather than a type error. However, the syntactic correctness of the
generated circuits is guaranteed by the type system.

Using the with computed function and a few helper functions, we can obtain
the following reversible version of adder.

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

5 Case Studies

Beyond the simple examples that were considered in this tutorial, we have con-
ducted two nontrivial programming case studies using Proto-Quipper-D. The
first one is an implementation of the binary welded tree algorithm [4], which fea-
tures the use of the dependent vector data type. The second is a boolean oracle
for determining the winner of a completed game of Hex, which features the use
the of WithGarbage and State monads. Both implementations are distributed
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with Proto-Quipper-D, in test/BWT.dpq and test/Hex3.dpq, respectively. The
largest oracle contains 457,383 gates. For this oracle, type checking is nearly
instantaneous (it takes less than 1 second), and circuit generation takes about
2.5min on a 3.5 GHz CPU (4 cores), 16 GB memory desktop machine.

6 Conclusion

In this tutorial, we introduced the quantum programming language Proto-Quip-
per-D through a series of examples. Proto-Quipper-D is an experimental lan-
guage and is currently under active development. Due to space constraints, we
did not discuss all of the features of Proto-Quipper-D. Our goal was to high-
light the use of linear and dependent types in quantum circuit programming. All
the programs in the tutorial are available in test/Tutorial.dpq of the Proto-
Quipper-D distribution.

Acknowledgements. This work was supported by the Air Force Office of Scientific
Research under award number FA9550-15-1-0331. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the U.S. Department of Defense.

References

1. Agda Documentation. https://agda.readthedocs.io/en/v2.6.0.1/. Accessed 01 Feb
2020

2. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574, 505–510 (2019). (84 authors)

3. Bove, A., Dybjer, P.: Dependent types at work. In: Bove, A., Barbosa, L.S., Pardo,
A., Pinto, J.S. (eds.) LerNet 2008. LNCS, vol. 5520, pp. 57–99. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03153-3 2

4. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Expo-
nential algorithmic speedup by a quantum walk. In: Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, pp. 59–68 (2003)

5. Circ. https://cirq.readthedocs.io/en/stable/. Accessed 01 Feb 2020
6. Coq Documentation. https://coq.inria.fr/documentation/. Accessed 01 Feb 2020
7. Girard, J.Y.: Linear Logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
8. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press,

Cambridge (1989)
9. Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: An introduc-

tion to quantum programming in Quipper. In: Dueck, G.W., Miller, D.M. (eds.)
RC 2013. LNCS, vol. 7948, pp. 110–124. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38986-3 10

10. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: Proceedings of the 34th Annual ACM
SIGPLAN Conference on Programming Language Design and Implementation, vol.
48(6), pp. 333–342. ACM (2013)

11. IBM Quantum Experience. https://quantum-computing.ibm.com. Accessed 01 Feb
2020

https://agda.readthedocs.io/en/v2.6.0.1/
https://doi.org/10.1007/978-3-642-03153-3_2
https://cirq.readthedocs.io/en/stable/
https://coq.inria.fr/documentation/
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-3-642-38986-3_10
https://quantum-computing.ibm.com


168 P. Fu et al.

12. Jones, M.P.: Functional programming with overloading and higher-order polymor-
phism. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 97–136.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59451-5 4

13. Peyton Jones, S.: Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

14. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1968)
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Abstract. In reversible computing, the management of space is subject
to two broad classes of constraints. First, as with general-purpose com-
putation, every allocation must be paired with a matching de-allocation.
Second, space can only be safely de-allocated if its contents are restored
to their initial value from allocation time. Generally speaking, the state of
the art provides limited partial solutions, either leaving both constraints
to programmers’ assertions or imposing a stack discipline to address
the first constraint and leaving the second constraint to programmers’
assertions.

We propose a novel approach based on the idea of fractional types. As
a simple intuitive example, allocation of a new boolean value initialized
to false also creates a value 1/false that can be thought of as a garbage
collection (GC) process specialized to reclaim, and only reclaim, storage
containing the value false. This GC process is a first-class entity that can
be manipulated, decomposed into smaller processes and combined with
other GC processes.

We formalize this idea in the context of a reversible language founded
on type isomorphisms, prove its fundamental correctness properties, and
illustrate its expressiveness using a wide variety of examples. The devel-
opment is backed by a fully-formalized Agda implementation (https://
github.com/DreamLinuxer/FracAncilla).

Keywords: Reversible computing · Monoidal categories · Type
isomorphisms · Pointed types · Program extraction · Agda

1 Introduction

We solve the ancilla problem in reversible computation using a novel concept:
fractional types. In the next section, we introduce the problem of ancilla manage-
ment, motivate its importance, and explain the limitations of current approaches.

Although the concept of fractional types could potentially be integrated with
general-purpose languages, its natural technical definition exploits symmetries
present in the categorical model of type isomorphisms. To that end, we first
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review in Sect. 3 our previous work [7,8,13,14] on a reversible programming
language built using type isomorphisms. In Sect. 4, we introduce a simple version
of fractional types that allows allocation and de-allocation of ancilla bits in
patterns beyond the scoped model but, like existing stack-based solutions, still
requires a runtime check to verify the safety of de-allocation. In Sect. 5 we show
how to remove this runtime check, by lifting programs to a richer type system
with pointed types, expressing the proofs of safety in that setting, and then,
from the proofs, extracting programs with guaranteed safe de-allocations and no
runtime checks. The last section concludes with a summary of our results.

2 Ancilla Bits: Review and a Type-Based Approach

Restricting a reversible circuit to use no ancilla bits is like restricting a Tur-
ing machine to use no memory other than the n bits used to represent the
input [1]. Since such a restriction disallows countless computations for trivial
reasons, reversible models of computation have, since their inception, included
management for scratch storage in the form of ancilla bits [25] with the funda-
mental restriction that such bits must be returned to their initial states before
being safely reused or de-allocated.

2.1 Review

Reversible programming languages adopt different approaches to the manage-
ment of ancilla bits, which we review below.

Quipper [12]. The language provides a scoped mechanism to manage ancilla bits
via:

with_ancilla :: (Qubit -> Circ a) -> Circ a

The operator takes a block of gates parameterized by an ancilla value, allocates
a new ancilla value of type Qubit initialized to |0〉, and runs the given block of
gates. At the end of its execution, the block is expected to return the ancilla
value to the state |0〉 at which point it is de-allocated. The expectation that the
ancilla value is in the state |0〉 is enforced via a runtime check.

Quipper also provides primitives qinit and qterm, which allow programmers
to manage ancilla bits manually without scoping constraints. This management is
not supported by the type system, however. For example, the following statically-
valid expression allocates an ancilla bit using qinit but neither it nor its caller
are required by the type system to de-allocate it:

ex :: Qubit -> Circ (Qubit,Qubit)
ex x = do

y <- qinit 0
y <- qnot y ‘controlled‘ x
x <- qnot x ‘controlled‘ y
return (x,y)
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rFun [23,26]. This language similarly allows expressions to freely allocate con-
stant values:

data Bool = True | False

ex :: Bool <-> (Bool,Bool)
ex b = (b , False)

Using such expressions, it is possible to define expressions that behave like qinit
and qterm in Quipper:

initF :: () <-> Bool
initF () = False

termF :: Bool <-> ()
termF False = ()

At run-time termF might fail with an incomplete pattern-matching exception
but, statically, the type system neither enforces that termF is called nor that it
is called with only the value False.

Ricercar [24]. This language uses a scoped way to manage ancilla bits. The
expression αx.A allocates an ancilla wire x for the gate A requiring that x is set
to 0 after the evaluation of A.

Janus [27]. This is a reversible imperative programming language that is not
based on the circuit model but as Rose [20] explains, its treatment is essentially
similar to above:

All variables in original Janus are global, but in the University of
Copenhagen interpreter you can allocate local variables with the local
statement. The inverse of the local statement is the delocal statement,
which performs deallocation. When inverted, the deallocation becomes
the allocation and vice versa. In order to invert deallocation, the value
of the variable at deallocation time must be known, so the syntax is
delocal <variable> = <value>. Again the onus is on the programmer
to ensure that the equality actually holds.

2.2 A Type-Based Approach

The approaches above are pragmatic but limited in two ways: non-scoped
approaches do not enforce de-allocation and scoped ones do not enforce that
the de-allocated bit has the correct value. To understand these points more
vividly, consider the following analogy: allocating an ancilla bit by creating a
new wire in the circuit is like borrowing some money from a global external
entity (the memory manager); the computation has access to a new resource
temporarily. De-allocating the ancilla bit is like returning the borrowed money
to the global entity; the computation no longer has access to that resource. It
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would however be unreasonably restrictive to insist that the person (function)
borrowing the money must be the same person (function) returning it. Indeed, as
far as reversible computation is concerned, the only important invariant is that
information is conserved, i.e., that money is conserved. The identities of bits are
not observable as they are all interchangeable in the same way that particular
bills with different serial numbers are interchangeable in financial transactions.
Thus the only invariant is that the net flow of money between the computation
and the global entity is zero. This observation allows us to go even further than
just switching the identities of borrowers. It is even possible for one person to
borrow $10, and have three different persons collectively collaborate to pay back
the debt with one person paying $5, another $2, and a third $3, or the opposite
situation of gradually borrowing $10 and returning it all at once.

Computationally, this extra generality is not a gratuitous concern: since scope
is a static property of programs, it does not allow the flexibility of heap alloca-
tion in which the lifetime of resources is dynamically determined. Furthermore,
limiting ancilla bits to static scope does not help in solving the fundamental
problem of ensuring that their value is properly restored to their initial value
before de-allocation.

We demonstrate that both problems can be solved with a typing discipline.
The main idea is simple: we introduce a type representing “processes specialized
to garbage-collect specific values.” The infrastructure of reversible computing
will ensure that the information inherent in this process will never be duplicated
or erased, enforcing that proper, safe, de-allocation must happen in a complete
program. Furthermore, since reversible computation focuses on conservation of
information rather than syntactic entities, this approach will permit fascinating
mechanisms in which allocations and de-allocations can be sliced and diced,
decomposed and recomposed, run forwards and backwards, in arbitrary ways as
long as the net balance is 0.

3 Preliminaries: Π

The syntax of the language Π [8] consists of several sorts:

Value types τ ::= 0 | 1 | τ + τ | τ × τ
Values v ::= tt | inj 1(v) | inj 2(v) | (v, v)
Program types τ ↔ τ
Programs c ::= (See Fig. 1)

Focusing on finite types, the building blocks of the type theory are: the empty
type (0), the unit type (1, where tt : 1 is the only inhabitant), the sum type (+),
and the product (×) type. One may view each type τ as a collection of physical
wires that can transmit |τ | distinct values where |τ | is a natural number that
indicates the size of a type, computed as: |0| = 0; |1| = 1; |τ1 + τ2| = |τ1| + |τ2|;
and |τ1 × τ2| = |τ1| ∗ |τ2|. Thus the type B = 1+1 corresponds to a wire that can
transmit one of two values, i.e., bits, with the convention that inj 1(tt) represents
F and inj 2(tt) represents T. The type B × B × B corresponds to a collection of
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Fig. 1. Π-terms and combinators.

wires that can transmit three bits. From that perspective, a type isomorphism
between types τ1 and τ2 (such that |τ1| = |τ2| = n) models a reversible combi-
national circuit that permutes the n different values. These type isomorphisms
are collected in Fig. 1. It is known that these type isomorphisms are sound and
complete for all permutations on finite types [9,10] and hence that they are
complete for expressing combinational circuits [11,13,25]. Algebraically, these
types and combinators form a commutative semiring (up to type isomorphism).
Logically they form a superstructural logic capturing space-time tradeoffs [21].
Categorically, they form a distributive bimonoidal category [17].

Below, we show code, in our Agda formalization, that defines types corre-
sponding to bits (booleans), two-bits, and three-bits. We then define an opera-
tor ctrl that builds a controlled version of a given combinator c. This controlled
version takes an additional “control” bit and only applies c if the control bit is
true. The code then iterates the control operation several times starting from
boolean negation building up to Toffoli.
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Although austere, this combinator-based language has the advantage of being
more amenable to formal analysis for at least two reasons: (i) it is conceptually
simple and small, and (ii) it has direct and evident connections to type theory
and category theory. Indeed our solution for managing ancillae is inspired by the
construction of compact closed categories [2,3,15]. These categories extend the
monoidal categories [4,5,18] which are used to model many resource-aware (e.g.,
based on linear types) programming languages [6,16] (including Π) with a new
type constructor that creates duals or inverses to existing types. This dual will
be our fractional type.

4 First-Class Garbage Collectors

The main idea is to extend the Π terms with two combinators η and ε witness-
ing the isomorphism A ∗ 1/A = 1. The names and types of these operations are
inspired by compact closed categories which are extensions of the monoidal cat-
egories that model Π. Intuitively, η allows one, from “no information,” to create
a pair of a value of type A and a value of type 1/A. We interpret the latter value
as a GC process specialized to collect the created value. Dually, ε applies the
GC process to the appropriate value annihilating both.1

To make this idea work, several technical issues need to be dealt with. Most
notably, we must exclude the empty type from this creation and annihilation
process. Otherwise, we would be able to prove that:

1 = 0 × 1/0 by η
= 0 by absorbr

1 Another interesting interpretation is that these operations correspond to creation
and annihilation of entangled particle/antiparticle pairs in quantum physics [19].
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The second important issue is to ensure that the GC process is specialized to
collect a particular value. We therefore exploit ideas from dependent type theory
to treat individual values as singleton types. More precisely, we extend the syntax
of core Π in Sect. 3 as follows:

Value types τ ::= · · · | 1/v
Values v ::= · · · | �
Program types τ ↔ τ
Programs c ::= · · · | ηv:τ : 1 ↔ (τ × 1/v) | εv:τ : (τ × 1/v) ↔ 1

For now, the core Π language is simply extended with a new type 1/v which
represents a GC process specialized to collect the value v. Since all relevant
information is present in the type, at runtime, this GC process is represented
using a trivial value denoted by �. The combinators η and ε are parameterized
by the value v (and its type τ) which serves two purposes. First it guarantees
that the combinators operate on non-empty types, and second it fixes the type
of the GC process. At this point, however, although the language guarantees
that the GC process can only collect a particular value, the type system does
not track the value created by η, nor does it predict the value that reaches ε.
In other words, it is possible to write programs in which ε expects one value
but is instead applied to another value. In this section, we will deal with such
situations by including a runtime check in the formal semantics, and show how
to remove it, via a safety proof, in the next section.

Our Agda formalization clarifies our semantics, with the new type as:

The new combinators are defined as follows:

The most relevant excerpt of the formal semantics is given below:

The interpreter either returns a proper value (just . . .) or throws an exception
nothing. The semantics of the core Π combinators performs the appropriate
isomorphism and returns a proper value. At η, the v that parameterizes the
combinator is used to create a new value v and a GC process specialized to collect
it. By the time evaluation reaches ε, the value created by η may have undergone
arbitrary transformations and is not guaranteed to be the value expected by the
GC process. A runtime check is performed: if the value is the expected one, it
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is annihilated together with the GC process; otherwise an exception is thrown
which is demonstrated in the following example which returns normally if given
F and otherwise throws an exception:

Changing the value used to instantiate η will force a corresponding change for ε:

For future reference, we will call this language Π/D for the fractional extension
of Π with a dynamic check. We illustrate the expressiveness of the language with
two small examples. The Agda code for the examples is written in a style that
reveals the intermediate steps for expository purposes.

The first circuit has one input and one output. Immediately after receiving
the input, the circuit generates an ancilla wire and its corresponding GC process
(first two steps in the Agda definition). The original input and the ancilla wire
interact using two CNOT gates, after which the ancilla wire is redirected to the
output (next three steps in the Agda code). Finally the original input is GC’ed
(last two steps in the Agda code). The entire circuit is extensionally equivalent
to the identity function but it does highlight an important functionality beyond
scoped ancilla management: the allocated ancilla bit is redirected to the output
and a completely different bit (with the proper default value) is collected instead.
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The second example illustrates the manipulation of GC processes. A pro-
cess for collecting a pair of values can be decomposed into two processes each
collecting one of the values (and vice-versa):

5 Dependently-Typed Garbage Collectors

By lifting the scoping restriction, the development in the previous sections is
already more general than the state of the art in ancilla management. It still
shares the same limitation of needing a runtime check to ensure ancilla values are
properly restored to their allocation value [12,24]. We now address this limitation
using a combination of pointed types, singleton types, monads, and comonads.

5.1 Lifting Evaluation to the Type System

Before giving all the (rather involved) technical details, we highlight the main
idea using the toy language below:
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The toy language has two types (natural numbers and booleans) and two
functions square and isZero and their compositions. Say we wanted to prove that
compose isZero square always returns false when applied to a non-zero natural
number. We can certainly do this proof in Agda (i.e., in the meta-language of
our formalization) but we would like to do the proof within the toy language
itself. The most important reason is that it can then be used within the language
to optimize programs (or, for the case of Π/D, to remove a runtime check).

The strategy we adopt is to create a lifted version of the toy language with
pointed types [22], i.e., types paired with a value of the type. In the lifted lan-
guage, the evaluation function has an interesting type: it keeps track of the result
of evaluation within the type:

This allows various properties of compose isZero square to be derived within
the extended type system. For example:

The first two tests show that the type system can track exact concrete values.
More interestingly, test3 shows a property that holds for all natural numbers n;
its proof uses “symbolic” evaluation within the type system. In more detail, from
the definition of eval, we see that eval square (suc n) produces (suc n) * (suc n); by
definition of multiplication, this is an expression with a leading suc constructor
which is enough to determine that evaluating isZero on it yields false. This form
of partial evaluation is quite expressive, and sufficient to allow to keep track of
ancilla values throughout complex programs.

After proving properties about a program in T•, we can extract a T program
that still satisfies those properties.
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Note that, since the property of test3 holds for all N, it does not matter which
value we use to instantiate it. And it indeed satisfies the property:

However, there are no such guarantees in the case not covered by the prop-
erty:

5.2 Pointed and Singleton Types: Π/•
We now use the above idea to create a version of the Π language, which we call
Π/•, in which all types are pointed, i.e., for each type t some value v of type t is
“in focus” t#v. As the goal of the language is to keep track of fractional types, it
is sufficient to inherit the multiplicative structure of Π. We also need a special
kind of pointed type that includes just one value, a singleton type. The singleton
types will allow the type system to track the flow of one particular value (the
ancilla value), which is exactly what is needed to prove the safety of deallocation.
We present the relevant definitions from our formalization and explain each:

Given a set A with an element v, the singleton set containing v is the subset of
A whose elements are equal to v. In Agda’s type theory, this is encoded using the
Singleton type. For a given type A, and a value v of type A, the type Singleton A v
is inhabited by a choice of point • in A, along with a proof that v is equal to •.
In other words, it is possible to refer to a singleton value v using several distinct
syntactic expressions that all evaluate to v. Put differently, any claim that a value
belongs to the singleton type must come with a proof that this value is equal
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to v. The reciprocal type Recip A v consumes exactly this singleton value. The
universe of pointed types •U contains plain Π types together with a selection of
a value in focus; products of pointed types; singleton types; and reciprocal types.
Note that the actual value in focus for reciprocals, i.e., the runtime value of a
GC process, is a function that disregards its argument returning the constant
value of the unit type. As we show, this is safe, as the type system prevents
the GC process being applied to anything but the particular singleton value in
question.

The combinators in the lifted language Π/• consist of all the combinators
in the core Π language together with their multiplicative structure. The types
for η and ε are now specialized to guarantee safety of de-allocation as follows.
When applying η at a pointed type, the current witness value is put in focus in
a singleton type and a GC process for that particular singleton type is created.
To apply this process using ε the very same singleton value must be the current
one.

The mediation between general pointed types and singleton types is done via
return and extract, which form a dual monad/comonad pair, from which many
structural properties can be derived: specifically a pair of singleton types is a
singleton of the pair of underlying types, and a singleton of a singleton is the
same singleton.

Proposition 1. �·� is both an idempotent strong monad and an idempotent
costrong comonad over pointed types.

Proof. The main insight needed is to define the functor •Singu, the tensor/
cotensor, and the join/cojoin (duplicate):
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Like for the toy language, evaluation is reflected in the type system, and in
this case we have the additional property that evaluation is reversible:

The type of evaluation now states that given a combinator mapping pointed
type T1 to pointed type T2 where Ti consists of an underlying type ti and value
vi, evaluation succeeds if applying the combinator to v1 produces v2. In other
words, the result of evaluation is completely determined by the type system:

To summarize, if a combinator expects a singleton type, then it would only
typecheck in the lifted language, if it is given the unique value it expects. A
particularly intriguing instance of that situation is the following program:

The program takes a value of type •1/ (•1/ A). This would be a GC process
specialized to collect another GC process! By collecting this process, the cor-
responding singleton value is “rematerialized.” At runtime, there would be no
information other than the functions that ignore their argument but the type
system provides enough guarantees to ensure that this process is well-defined
and safe.
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5.3 Extraction of Safe Programs

By lifting programs and their evaluation to the type level, we can naturally
leverage the typechecking process to verify properties of interest, including the
safe de-allocation of ancillae. One “could” just forget about Π/D and instead
use Π/• as the programming language for ancilla management. Indeed the dual
nature of proofs and programs is more and more exploited in languages like the
one used to formalize this paper (Agda).

However, it is also often the case that constructive proofs are further pro-
cessed to extract native efficient programs that eschew the overhead of main-
taining information needed just for proof invariants. In our case, the question is
whether we can extract from a Π/• program, a program in Π/D that uses a sim-
pler type system, a simpler runtime representation, and yet is guaranteed to be
safe and hence can run without the runtime checks associated with de-allocation
sites. In this section, we show that this indeed the case.

We demonstrate this by constructing an extraction map from the syntax of
Π/• to Π/D. This is fully implemented in the underlying Agda formalization,
but we present the most significant highlights. There are three important func-
tions whose signatures are given below:

The function ExtU maps a Π/• type to a Π/D type and a value in the type. The
function Ext◦−◦ maps a Π/• combinator to a Π/D combinator, whose types are
fixed by ExtU. And finally, the function Ext≡ asserts that the extracted code
cannot throw an exception (it must return a just value).

Each of these functions has one or two enlightening cases which we explain
below. In Π/D the fractional type expresses that it expects a particular value
but lacks any mechanisms to enforce this requirement. Thus we have no choice
when mapping a fractional type from Π/• to Π/D but to use the 1/ v type with
the trivial value:

When mapping Π/• combinators to Π/D combinators, the main interesting
cases are for η and ε. In each of those, we use the values from the pointed type as
choices for the ancilla value, and the expectation for the GC process respectively:

Finally we can prove the correctness of extraction. The punchline is in the
following case:
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Here, the singleton type in Π/• guarantees that the runtime check cannot fail!

5.4 Example

This new language not only allows us to verify circuits but also allows us to merge
verification with programming. To clarify this idea, we show how to implement
a 4-bit Toffoli gate using proper ancilla management while at the same time
proving its correctness.

We start with verification of the Toffoli gate implementation we have in
Sect. 3 in Π/• using pattern matching:

Since we use the same implementation in all the cases, it does not matter which
value we use to instantiate extraction:

Using this as the building block, we can use Toffoli’s construction [25] to con-
struct a 4-bit Toffoli gate using an additional ancilla bit:

a
b
c

F

Toffoli

d
F

Toffoli

Toffoli
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The code is written in a conventional Π/D style except for the pervasive
lifting to pointed types:

With this construction however, we can verify that the circuit satisfies the spec-
ification of 4-bit Toffoli gate and the ancilla bit is correctly garbage collected
without pattern matching. And using the extraction mechanism, we obtain a
fully verified 4-bit Toffoli gate in Π/D:

Note that, the type above has shown that our implementation is independent of
any input, so it does not matter which value we use to instantiate the extraction:

6 Conclusion

We have introduced, in the context of reversible languages, the concept of frac-
tional types as descriptions of specialized GC processes. Although the basic
idea is rather simple and intuitive, the technical details needed to reason about
individual values are somewhat intricate. The use of fractional types, however,
enables a complete elegant type-based solution to the management of ancilla
values in reversible programming languages.
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Abstract. Current proposals for quantum compilers involve the synthe-
sis and optimization of linear reversible circuits and among them CNOT
circuits. This class of circuits represents a significant part of the cost of
running an entire quantum circuit and therefore we aim at reducing the
size of CNOT circuits. In this paper we present a new algorithm for the
synthesis of CNOT circuits based on the solution of the syndrome decod-
ing problem. Our method addresses the case of ideal hardware with an
all-to-all qubit connectivity and the case of near-term quantum devices
with restricted connectivity. Benchmarks show that our algorithm out-
performs existing algorithms in both cases of partial and full connectivity.

Keywords: Quantum circuit synthesis · CNOT circuits · Syndrome
decoding · Reversible computation · Noisy Intermediate Scaled
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1 Introduction

Quantum compilers transform a quantum algorithm into an optimized sequence
of instructions (elementary gates) directly executable by the hardware. The most
common universal set of gates for this task is the Clifford+T gate set, used
in many quantum architectures [7]. With this setup two resources have to be
optimized in priority: the T gate and the CNOT gate. The T gate is considered
to be the most costly gate to implement and many efforts have been made
to reduce their number in quantum circuits [1,13,18]. Yet, when implementing
complex quantum algorithms, e.g, reversible functions, it is estimated that the
total number of CNOT gates increases much more rapidly with the number of
qubits than the number of T gates, and it is likely that the CNOT cost will not
be negligible on medium sized registers [13,21].
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Circuits consisting solely of CNOT gates, also called linear reversible circuits,
represent a class of quantum circuits playing a fundamental role in quantum
compilation. They are part of the so-called Clifford circuits and the CNOT+T
circuits, two classes of circuits that have shown crucial utility in the design of effi-
cient quantum compilers [1,13] and error correcting codes [6,12]. For instance the
Tpar optimizer [1] takes a Clifford+T circuit as input and decomposes it into a
series of CNOT+T circuits separated by Hadamard gates. Then each CNOT+T
circuit is optimized and re-synthesized by successive syntheses of CNOT circuits
and applications of T gates.

Hence the synthesis of CNOT circuits naturally occurs in general quantum
compilers and giving efficient algorithms for optimizing CNOT circuits will then
be of uttermost importance.

With the current near term quantum devices, also called Noisy Intermediate
Scaled Quantum Computers (NISQ) [26], the synthesis of circuits is subject to
constraints on the elementary operations available. In this situation, a physi-
cal qubit on the hardware can only interact with its neighbors, restricting the
2-qubit gates —such as CNOT— one can apply. Taking into account these con-
straints is a crucial and difficult task for the design of quantum algorithms and
the optimization of the corresponding quantum circuits. In particular, in the
literature several works present post-processing techniques to convert with min-
imum overhead a circuit designed for an ideal hardware to a circuit designed for
a specific architecture [8].

Contribution and Outline of the Paper. In this paper we focus on the
size optimization of linear reversible circuits. We present a new method for the
synthesis of CNOT circuits relying on solving a well-known cryptographic prob-
lem: the syndrome decoding problem. Our algorithm transforms the synthesis
problem into a series of syndrome decoding problems and we propose several
methods to solve this particular subproblem. This method, initially designed for
a full qubit connectivity, is robust enough to be extended to partial connectivity.

The outline of the paper is the following: in Sect. 2 we present the basic
notions and the state of the art in the synthesis of linear reversible circuits. We
first present our algorithm in the case of an all-to-all connectivity in Sect. 3.
Then we extend it to the case of restricted connectivity in Sect. 4. Benchmarks
are given at the end of Sects. 3 and 4.

2 Background and State of the Art

Synthesis of a Linear Reversible Function. Let F2 be the Galois field of
two elements. A linear reversible function f on n qubits applies a linear Boolean
function on the inputs to each qubit. Given x ∈ F

n
2 as inputs, the output of qubit

i is

fi(x) = αi · x = αi
1x1 ⊕ αi

2x2 ⊕ ... ⊕ αi
nxn
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where ⊕ is the bitwise XOR operation and the αi’s are Boolean vectors also
called parities. The action of f can be represented as an n × n binary matrix A
with A[i, :] = αi (using Matlab notation for row selection) and f(x) = Ax. In
other words each row of A corresponds to the parity held by the corresponding
qubit after application of A. By reversibility of f , A is also invertible in F2. The
application of two successive operators A and B is equivalent to the application
of the operator product BA.

We are interested in synthesizing general linear reversible Boolean functions
into reversible circuits i.e series of elementary reversible gates that can be exe-
cuted on a suitable hardware. To that end we use the CNOT gate, it performs
the following 2-qubit operation:

CNOT(x1, x2) = (x1, x1 ⊕ x2).

where x1, resp. x2, is the parity held by the control qubit, resp. the target qubit.
If applied after an operator A, the total operator (A + CNOT) is given from A
by adding the row of the control qubit to the row of the target qubit. Such row
operations are enough to reduce any invertible Boolean matrix to the identity
matrix, so the CNOT gate can be solely used to implement any linear reversible
operator. Overall, a CNOT-based circuit can be simulated polynomially: starting
from A = I the identity operator, we read sequentially the gates in the circuit
and apply the corresponding row operation to A.

We use the size of the circuit, i.e, the number of CNOT gates in it, to eval-
uate the quality of our synthesis. The size of the circuit gives the total number
of instructions the hardware has to perform during its execution. Due to the
presence of noise when executing every logical gate, it is of interest to have the
shortest circuit possible.

Connectivity Constraints. At the current time, for superconducting tech-
nologies, full connectivity between the qubits cannot be achieved. The connec-
tions between the qubits are given by a connectivity graph, i.e, an undirected,
unweighted graph where 2-qubit operations, such as the CNOT gate, can be per-
formed only between neighbors in the graph. Examples of connectivity graphs
from current physical architectures are given on Fig. 1.

LU Decomposition. Given the matrix representation A of a generic linear
reversible operator, we can always perform an LU decomposition [11] such that
there exists an upper (resp. lower) triangular matrix U (resp. L) and a per-
mutation matrix P such that A = PLU . The invertibility of A ensures that
the diagonal elements of L and U are all equal to 1. In the remainder of this
paper, the term “triangular operator” stands for an operator whose correspond-
ing matrix is either upper or lower triangular. The LU decomposition is at the
core of our synthesis of general linear reversible Boolean operators: synthesizing
U , L, P and concatenating the circuits gives an implementation of A.
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Fig. 1. Example of qubit connectivity graphs from existing architectures

State of the Art. In the unrestricted case the best algorithm reaching an
asymptotic optimum is [23, Algo. 1] and produces circuits of size O(n2/ log2(n)).
This algorithm is for instance used in the Tpar and Gray-Synth algorithms [1,2]
so any improvement over [23, Algo. 1] will also improve any quantum compiler
that relies on it. In the restricted case the first proposed approach has been
to transform the circuits given by an unrestricted algorithm with swap inser-
tion algorithms to match the connectivity constraints [20,24,28]. To produce
more efficient circuits, two concomitant papers proposed a modification of the
Gaussian elimination algorithm [17,22]. They synthesize the operator column
by column similarly to the Gaussian Elimination algorithm but they use Steiner
trees to compute the shortest sequence of CNOT gates for the synthesis of one
column. In [17] the authors compare their method based on Steiner trees against
two compilers: Rigetti Computing’s QuilC and Cambridge Quantum Comput-
ing’s t|ket〉 that both produced state of the art results on benchmarks published
by IBM [9]. The benchmarks show a consequent savings in the total number of
CNOT gates in favor of the Steiner tree method, so we consider that the work
in [17] is state-of-the-art and we will compare solely to their algorithm.

3 Algorithm for an All-to-All Connectivity

In this section we present our algorithm in the case of a complete connectivity
between the qubits. We focus on the synthesis of a lower triangular operator
L ∈ Fn×n

2 . What follows can be straightforwardly extended to the case of upper
triangular operators and to general operators using the LU decomposition. With
an all-to-all connectivity one can avoid to apply the permutation P by doing a
post-processing of the circuit that would transfer the permutation operation
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directly at the end of the total circuit. This can be done without any overhead
in the number of gates.

A circuit implementing L can solely consist of “oriented” CNOTs, whose
controlled qubit i and target qubit j satisfy i < j. The circuit given by the
Gaussian elimination algorithm is an example. For this particular kind of circuits,
a CNOT applied to a qubit k does not have any influence on the operations
performed on the first k − 1 qubits: removing such a CNOT will not modify the
result of the synthesis of the first k − 1 parities. We use this property to design
a new algorithm where we synthesize L parity by parity and where we reuse all
the information acquired during the synthesis of the first k parities to synthesize
parity k + 1.

Given Ln−1 = L[1:n − 1, 1:n − 1] (again using Matlab notation), a circuit C
implementing the operator

(
Ln−1 0

0 1

)
and considering that we want to synthesize

the operator L =
(

Ln−1 0
s 1

)
the core of our algorithm consists in adding a sequence

of CNOTs to C such that we also synthesize the parity s of the n-th qubit. During
the execution of C, applying a CNOT i → n will add the parity currently held by
qubit i to the parity of qubit n without impacting the synthesis of the first n−1
parities. In other words, if we store in memory all the parities that appeared on
all n−1 qubits during the execution of the circuit C, we want to find the smallest
subset of parities such that their sum is equal to s. Then when a parity belonging
to this subset appears during the execution of C, on qubit i for instance, we insert
in C a CNOT i → n. We ultimately have a new circuit C ′ that implements L.

The problem of finding the smallest subset of parities whose sum equals s
can be recast as a classical cryptographic problem. Assuming that H ∈ Fn−1×m

2

is a Boolean matrix whose columns correspond to the m available parities, any
Boolean vector x satisfying Hx = sT gives a solution to our problem and the
Hamming weight of x, wt(x), gives the number of parities to add, i.e, the number
of CNOTs to add to C. We are therefore interested in an optimal solution of the
problem

minimize
x∈Fm

2

wt(x)

such that Hx = sT .
(1)

Problem 1 is an instance of the syndrome decoding problem, a well-known
problem in cryptography. The link between CNOT circuit synthesis and the
syndrome decoding problem has already been established in [2], yet it was used in
a different problem for proving complexity results (under the name of Maximum
Likelihood Decoding problem) and the authors did not pursue the optimization.
The syndrome decoding problem is presented in more details in Sect. 3.1.

To summarize, we propose the following algorithm to synthesize a triangular
operator L. Starting from an empty circuit C, for i from 1 to n perform the
three following steps:

1. scan circuit C to compute all the parities available on a single matrix H,
2. solve the syndrome decoding problem Hx = s with s the parity of qubit i,
3. add the relevant CNOT gates to C depending on the solution obtained.
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Provided that the size of C remains polynomial in n, which will be the case, then
steps 1 and 3 can be performed in polynomial time and in practice in a very
short amount of time. The core of the algorithm, both in terms of computational
complexity and final circuit complexity, lies in Step 2.

3.1 Syndrome Decoding Problem

In its general form, the syndrome decoding problem is known to be NP-Hard [4]
and cannot be approximated by a constant factor [3]. A good overview of how
difficult the problem is can be found in [27].

We give two methods for solving the syndrome decoding problem. The first
one is an optimal one and uses integer programming solvers. The second one is
a greedy heuristic for providing sub-optimal results in a short amount of time.

Integer Programming Formulation. The equality Hx = s is a Boolean
equality of n lines. For instance the first line corresponds to

H1,1x1 ⊕ H1,2x2 ⊕ . . . ⊕ H1,mxm = s1.

We transform it into an “integer-like” equality constraint. A standard way to do
it is to add an integer variable t and to create the constraint

H1,1x1 + H1,2x2 + . . . + H1,mxm − 2t = s1.

If we write c = (1, ..., 1, 0, ..., 0)T ∈ N
m+n and A = [H|−2In] then the syndrome

decoding problem is equivalent to the integer linear programming problem

min
x∈Fm

2 ,t∈Nn
cT · [x; t]

such that A[x; t] = s.
(2)

A Cost Minimization Heuristic. Although the integer programming app-
roach gives optimal results, it is very unlikely that it will scale up to a large
number of qubits. Moreover, to our knowledge the other existing algorithms
proposed in the literature give exact results, they are complex to implement
and their time complexity remains exponential with the size of the problem. We
therefore have to consider heuristics to compute an approximate solution in a
much shorter amount of time.

We use a simple cost minimization approach: starting with the parity s we
choose at each iteration the parity v in H that minimizes the Hamming weight
of v ⊕ s and we pursue the algorithm with the new parity v ⊕ s. The presence of
the canonical vectors in H (as we start with the identity operator) is essential
because they ensure that this method will ultimately converge to a solution.

A simple way to improve our heuristic is to mimic path finding algorithms
like Real-Time A* [19]. Instead of directly choosing the parity that minimizes
the Hamming weight, we look up to a certain horizon and we make one step in
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the direction of the most promising path. To control the combinatorial explosion
of the number of paths to browse, we only expand the most promising parities
at each level. We set the maximum width to m and the depth to k so that it
represents at most mk paths to explore. With suitable values of m and k we
can control the total complexity of the algorithm. A limitation of such a simple
approach is that we can store the same path but with different parities order:
we decided to ignore this limitation in order to keep a simple implementation.

Lastly, we introduce some randomness by change of basis and we solve the
problem PHx = Ps for several change of basis matrices P . Repeating this
several times for one syndrome decoding problem increases the chance to find
an efficient solution. This technique has been proven to be efficient for a class of
cryptographic algorithms called Information Set Decoding [25], even though the
complexity of these algorithms remains exponential.

3.2 Benchmarks

All the code is written in Julia and executed on the QLM (Quantum Learning
Machine) located at ATOS/BULL. We generate random operators by generat-
ing random circuits with randomly placed CNOT gates. When the number of
input gates is sufficiently large we empirically note that the operators generated
represent the worst case scenario.

We first generate an average complexity for different problem sizes: for n =
1..200 we generated 20 random operators on n qubits with more than n2 gates
to reach with high probability the worst cases. We run our algorithms on this
set of operators in the following cases:

– with the integer programming solver (Coin-or branch and cut solver),
– with the cost minimization heuristic with unlimited width and depth 1,
– with the cost minimization heuristic with width 60 and depth 2,
– with the cost minimization heuristic with width 15 and depth 3,
– with the cost minimization heuristic (width=Inf, depth=1) and 50 random

changes of basis, the “ISD” case.

In the case of the ISD experiment, due to its probabilistic nature, one can
hope that repeating the complete synthesis several times and keeping the shortest
circuit would improve the results. Yet the experiments show that it has a minor
influence on the final result.

The results are given on Fig. 2. For clarity, instead of plotting the size of the
circuits we plot the ratio between the size of the circuits given by our algorithms
and the state of the art algorithm [23, Algo. 1]. We stopped the calculations
when the running time was too large for producing benchmarks in several hours.

Overall, for the considered range of qubits and for all versions of our algorithm
we outperform [23, Algo. 1]. The integer programming solver gives the best
results with a maximum gain of more than 40% but its scalability is limited:
beyond 50 qubits it requires too much computational time. Using commercial
softwares for reaching larger problem sizes would be interesting to confirm the
tendency toward an increasing gain.
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Concerning the cost minimization heuristic, it seems better to increase the
depth of search than the width. With depth 3 and width 15 we have the best
results for the range 70–125 with 30% of gain. Surprisingly the ISD based method
with 50 random changes of basis works well until 60/70 qubits with more than
35% of gain. Then it seems that the number of random changes is not enough to
search efficiently an optimal solution and ultimately after 150 qubits the random
changes have no effect at all compared to the simpler heuristic with one try. It is
possible to increase this number of random changes but this comes at the price
of a longer computational time and the ISD method cannot compete with the
other versions of the cost minimization heuristic.

As the number of qubits increases our method performs worse. We ran a
few computations for much larger problems and the results are that [23, Algo. 1]
produces shorter circuits whenever n goes approximately beyond 400. This raises
the question of whether it is due to the method in itself or to the solution of
the syndrome decoding that becomes less and less optimal as the problem size
increases. We leave this question as future work.

We now look at the performance of the algorithms on a specific number
of qubits, here n = 60, but for different input circuit sizes. This experiment
reveals how close to optimal our algorithm is when we synthesize an operator
for which we expect a small output circuit. The results are given on Fig. 3. As
the ISD method produces the best results for this size of problem we only plot
the results for this method. We also plot the line y = x that shows how far we
still are from the optimal solution. Again we outperform the best algorithm in
the literature even for small input circuits with more than 50% of savings when
the input circuit is of size 100–300 gates, with a maximum saving of 60% for 200
gates.

4 Extension to an Arbitrary Connectivity

In this section we extend the algorithm to the case where the connectivity is
not complete. First we present how to adapt our algorithm based on syndrome
decoding for the synthesis of triangular operators, then we extend our method
to the synthesis of any general operator.

4.1 Synthesis of a Triangular Operator

Let G be a qubit connectivity graph and L the lower triangular operator to
synthesize. We require an ordering on the nodes of G such that the subgraphs
containing only the first k nodes, for k = 1..n, are connected. As we need to
synthesize both L and U we need in fact this property to be true for an ordering
of the qubits and the reverse ordering. An Hamiltonian path in G is enough
to have this property so for simplicity we assume that the ordering follows an
Hamiltonian path in G.
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Fig. 2. Average performance of the Syndrome Decoding based algorithms versus the
state of the art [23, Algo. 1].

Fig. 3. Performance of Syndrome Decoding based algorithms versus [23, Algo. 1] on
60 qubits for different input circuit sizes.

Even though the native CNOTs in the hardware are CNOTs between neigh-
bor qubits in the connectivity graph, it is possible to perform an arbitrary CNOT
gate but this requires more local CNOT gates. Given a target qubit qt and a
qubit control qc and assuming we have a path (qc, q1, ..., qk, qt) in the graph con-
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necting the two nodes (such path always exists with the assumption we made
above), it is possible to perform the CNOT qc → qt with max(1, 4k) CNOTs.
An example for 4 qubits (with k = 2) is given Fig. 4.

|xc〉

|x1〉

|x2〉

|xt〉

|xc〉

|x1〉

|x2〉

|xc ⊕ xt〉

Fig. 4. CNOT in LNN architecture

Hence, it is still possible to perform the synthesis parity by parity but we
have to be more careful in the setting and in the solution of the syndrome
decoding problem. Not all parities have the same cost, depending on the qubit
holding the parity and its position on the hardware. Therefore we have to solve
a weighted version of the syndrome decoding problem. Namely once we have a
set of parities in a matrix H and a cost vector c ∈ N

m, we look for the solution
of the optimization problem

minimize
x∈Fm

2

cT · x

such that Hx = sT .
(3)

Problem 3 can be recasted again as an integer linear programming problem:
we only have to change the value of c. We also propose a greedy heuristic for
solving quickly and approximately the problem: we define the “basis cost” of
implementing s as the sum of the costs of each canonical vector whose component
in s is nonzero. Let bc(s) be this cost. Our greedy approach consists in finding
among the parities of H the parity v (column i of H) that minimizes the cost

c[i] + bc(s ⊕ v).

This approach gives a good trade-off between zeroing the most costly com-
ponents of s and applying parities at a very high cost. Again we can repeat
the algorithm with random changes of basis to find a better solution. Especially
we focused on computing bases for which the canonical vectors have the lowest
possible costs.

Nonetheless, compared to the all-to-all case, solving the weighted syndrome
decoding problem is not the only computational core for controlling both the
quality of the solution and the computational time. Another key task lies in the
enumeration of the available parities. As we will see, it is possible to generate
more parities for one syndrome decoding problem instance and this increases the
chances to get a low-cost solution.



Quantum CNOT Circuits Synthesis for NISQ Architectures 199

Listing the Parities Available. Until now we set the weighted syndrome
decoding instances by computing the parities appearing during the synthesis and
by using the template in Fig. 4 to estimate their costs. This is in fact inefficient
because it ignores some specificities of the problem:

– It is possible to add multiple parities in one shot using the template in Fig. 4.
– There is not necessarily one unique path in G between the control qubit and

the target qubit.

|xc〉

|x1〉

|x2〉

|x3〉

|x4〉

|xt〉

|xc〉

|x1〉

|x2〉

|x3〉

|x4〉
|y〉

|y〉 = |xt ⊕ xc ⊕x1 ⊕x2 ⊕x3 ⊕ x4〉

Fig. 5. Fan in CNOT in LNN architecture

More precisely, the template shown in Fig. 4 is the best to our knowledge, in
terms of size, to apply solely the parity on qubit qc to qubit qt. However it is
possible to apply any parity

qt ← qt ⊕ qc ⊕k
i=1 αiqi

with αi ∈ {0, 1} using less CNOTs than required for applying only qc. In fact
the less costly linear combination of parities is the complete combination qc ⊕
q1 ⊕ ...⊕ qk, showing that 2k +1 CNOTs are enough. Removing any parity from
this combination requires 2 additional CNOTs per parity except for the qubit qk

that needs only one extra CNOT. An explanatory template on 6 qubits (k = 4)
is given on Fig. 5. For any parity at a distance k of the target qubit, there is at
most 2k−1 different linear combinations possible and just as many new parities
to consider. Moreover the path between the control qubit and the target qubit
matters as a different path will result in different linear combinations of parities.
A slight modification of the A* algorithm is enough to compute all the shortest
paths between two nodes in a graph.

Even for a small number of qubits the number of parities becomes quickly
intractable. The number of linear combinations along a path increases expo-
nentially with the length of the path as the number of paths for most of the
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architectures—a grid for instance. In practice we control the total number of par-
ities by favoring paths over the choices in the linear combinations. This option
is empirically justified but a more detailed analysis could be made. For one path
we only consider the less costly linear combination, i.e, the one that adds all the
parities on the way. On the other hand if possible we go through all the shortest
paths between one control qubit and one target qubit. We introduce a parameter
Pmax equal to the maximum number of shortest paths we consider between two
qubits.

4.2 Synthesis of a General Operator

The extension of the synthesis from triangular to general operator is not as
straightforward as in the all-to-all connectivity case. We cannot simply write
A = PLU and concatenate the circuits synthesizing L and U and ultimately
permuting the qubits. If we want to use this algorithm as a sub-task of a global
circuit optimizer for NISQ architectures we cannot afford to swap the qubits
because it could break the optimizations done in the rest of the circuit.

To avoid the permutation of the qubits we have to transform the matrix A
by applying a pre-circuit C such that CA = LU . Then the concatenation of C−1

and the circuits synthesizing L and U gives a valid implementation of A.

Computation of C . If A is invertible, which is always the case, then it admits
an LU factorization if and only if all its leading principal minors are nonzero.
We propose an algorithm for computing C exploiting this property while trying
to optimize the final size of C. We successively transform A such that every
submatrix A[1:i, 1:i] is invertible. By construction when trying to make A[1 :
k, 1 : k] invertible for some k we have A[1:k−1, 1:k−1] invertible. If A[1 : k, 1 : k]
is invertible then we do nothing, otherwise we look in the parities A[k + 1:n,1:k]
those who, added to A[k, 1 : k], make A[1 : k, 1 : k] invertible. By assumption
A is invertible so there is at least one such row that verifies this property. Then
among the valid parities we choose the closest one to qubit k in G. We can add
all the parities along the path because by assumption they belong to the span of
the first k−1 rows of A[1 : k, 1 : k] so it has no effect on the rank of A[1 : k, 1 : k].

Choice of the Qubit Ordering. A last optimization can be performed by
changing the qubits ordering. The algorithm we have presented for synthesizing
a triangular operator is still valid up to row and column permutations. Thus,
given a permutation P of the qubits, one can synthesize P−1LP by applying
our algorithm with the order given by P . Then, instead of computing a circuit
C such that CA = LU we search for a circuit C satisfying P−1CAP = LU and

CA = PLP−1PUP−1 = L′U ′

where L′ and U ′ can be synthesized using our algorithm. Searching for such
C can be done using our algorithm on A[P, P ] (in Matlab notation, i.e. the
reordering of A along the vector P ).
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This means that we can choose P such that the synthesis of L and U will
yield shorter circuits. Empirically we noticed that when synthesizing the kth

parity of L it is preferable to have access to the parities appearing on qubits
k − 1, k − 2 etc. in priority for two reasons: first because they can modify more
bits on the kth parity and secondly because it is likely that there will be much
more parities available, increasing the chance to have an inexpensive solution to
the weighted syndrome decoding problem. Intuitively we want the ordering of
the qubits to follow at least an Hamiltonian path in G = (V,E) which would
match the previous restriction on the ordering we formulated at the beginning
of the section. We formulate the best ordering π : V → [[1, n]] as a solution of
the Minimum Linear Arrangement problem

minimize
π

∑

(u,v)∈E

wuv |π(u) − π(v)| (4)

where wuv is the weight of the edge connecting u and v in the graph. Here we
want to give priority to neighbors in the hardware: the nodes must be as close
as possible in the hardware if their “numbers” are also close. A way to do so is
to solve the MinLA problem, not in the hardware graph, but in the complete
graph with suitable weights. Namely wij must be large when i, j are neighbors
in the hardware and wij must be smaller if i, j are at distance 2 etc. The MinLA
problem has already been used for qubit routing [24] and the problem is in
general NP-Hard [10]. In our case we did not use any heuristic for solving this
problem: all the architectures chosen to test our method have Hamiltonian paths
and we simply chose manually a suitable ordering of the qubits. Figure 1 features
the choices we made for some architectures: nodes are labeled with their position
in the linear arrangement. We leave as a future work the inclusion of the solution
of the MinLA problem in our algorithm.

4.3 Benchmarks

We compare our method against the best algorithm in the literature [17] whose
source code is available on the PyZX Github repository [16]. For each archi-
tecture considered in their implementation we generate a set of 100 random
operators and perform the synthesis using the Steiner trees. Their algorithm
provides an optimization using genetic algorithms but this implements the cir-
cuit up to a permutation of the qubits. As we focus on implementing exactly the
operator we considered their algorithm without this extra optimization.

Our own algorithm is implemented in Julia. The experiments have been car-
ried out on one node of the QLM (Quantum Learning Machine) located at
ATOS/BULL. We set a time limit of 10 min for the synthesis of an operator. We
recall that Pmax is the maximum number of shortest paths considered between
two qubits. We also set Niter syndrome to be the number of iterations for the solu-
tion of a decoding syndrome and Niter the number of times that the synthesis
has been repeated. The values of the parameters for the different problem sizes
are the following:
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– n < 36, Pmax = Inf, Niter = 100 and Niter syndrome = 1,
– n = 36, Pmax = Inf, Niter = 20 and Niter syndrome = 1,
– n = 49, Pmax = 10, Niter = 100 and Niter syndrome = 1,
– n > 49, Pmax = 1, Niter = 100 and Niter syndrome = 1.

Table 1. Performance of our Syndrome Decoding based algorithm vs Steiner trees
algorithm [17] for several architectures

Architecture # Steiner [17] Syndrome Saving tSt (s) tSy (s)

Mean Min. Max. Positive

9q Square 9 60 56 6% −25.5% 40.6% 66% 0.01 0.16

Rigetti 16q 16 272 245 10% −6% 23.1% 97% 0.022 1.6

IBM QX 5 16 245 195 20.2% 10% 28.7% 100% 0.019 2

16q Square 16 205 183 10.7% −7.1% 33% 93% 0.02 1.6

19q Line 19 455 470 −6.7% −19.4% 7.9% 6% 0.045 4.5

IBM Q20 Tokyo 20 292 239 18.1% 8.7% 26.9% 100% 0.025 1.8

25q Square 25 512 458 10.6% 3.5% 19.1% 100% 0.04 19

25q Sq. + diag 25 410 324 21% 10.7% 28.3% 100% 0.035 8

36q Square 36 1067 891 16.5% 11% 22.4% 100% 0.1 67

36q Sq. + diag 36 861 667 22.5% 18.2% 26.6% 100% 0.09 22

49q Square 49 1981 1662 16% 11.9% 20.7% 100% 0.2 420

49q Sq. + diag 49 1607 1246 22.4% 19% 25.2% 100% 0.19 114

64q Square 64 3374 2812 16.6% 13.9% 18.9% 100% 0.54 79

81q Square 81 5363 4447 17% 14.4% 19.2% 100% 1.04 192

100q Square 100 8148 6666 18.2% 16.8% 19.8% 100% 2.1 449

The results are summarized in Table 1. Columns 3 and 4 give the average
size of the generated circuits for the method using Steiner trees in [17] and our
algorithm based on syndrome decoding. The next columns detail the savings:
the mean saving, the minimum saving (negative saving means that our algo-
rithm performs worse), the maximum saving and the proportion of operators for
which our circuit is actually shorter than the one provided by the state-of-the-
art method. The last two columns give the average time required to perform the
synthesis of one operator (all iterations included for our algorithm).

We can expect our algorithm to behave better if there are more connections
between the qubits. When the connectivity is as limited as possible, for instance
with an LNN architecture, our algorithm does not outperform the algorithm
based on Steiner trees. Except for 6% of the operators where we have a slight
gain (less than 8%) we provide circuits with more gates, up to 19%. For other
architectures the results are more promising. In the case of the 9-qubit square
there is a lot of variance in the results: depending on the operator we can have a
gain of 40% or a loss of 25%. Overall we still manage to produce a shorter circuit
66% of the time. For larger square architectures, we outperform the state-of-the-
art algorithm consistently with increasing savings, between 10% for the 25 qubits
square to 18% for the 100 qubits square. When adding diagonal connections in
the square architectures the results are even better. This shows that improving
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just slightly the connectivity can improve consistently the results of our algo-
rithm compared to the state of the art method. Finally on specific architectures
we also provide better results. The results for Rigetti’s chip are not as good as
for IBM’s chips essentially because the connectivity is still close to a straight
line, otherwise we manage to have a saving of around 20% for both IBM-QX5
and IBM-Tokyo chips.

5 Conclusion

We have presented a new framework for the synthesis of linear reversible cir-
cuits. We exploit the specific structure of triangular operators to transform the
synthesis into a series of syndrome decoding problems, which are well-known
problems in cryptography. Using an LU decomposition we can synthesize any
quantum operator in the case of an all-to-all connectivity. Benchmarks show
that we outperform a state-of-the-art algorithm for intermediate sized problems
(n < 400). Our heuristics for solving the syndrome decoding problem are effi-
cient but could be still improved, both in circuit size and computational time.
For instance, some quantum algorithms have been proposed for solving the syn-
drome decoding problem via the Information Set Decoding algorithm [5,14,15],
which gives the possibility of designing a hybrid quantum/classical compiler for
this particular synthesis problem.

Then we have highlighted the robustness of our framework by extending it
to an arbitrary connectivity graph having a Hamiltonian path. With a suitable
pre-processing of the matrix we transform the problem into a series of weighted
syndrome decoding problems. Except for the LNN architecture whose connectiv-
ity is too sparse, we consistently outperform existing algorithms by a percentage
that increases with the number of qubits. As a future work, we can study how
to extend our method to the case where the connectivity graph does not have a
Hamiltonian path, similarly to [17].
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Abstract. We investigate collections of reversible gates closed under
parallel and serial composition. In order to better understand the struc-
ture of these collections of reversible gates, we investigate the lattice of
closed sets and the maximal members of this lattice, that is, collections
that are not all gates, but the addition of a single new gate will allow
us to construct all gates. We find the maximal closed sets over a finite
alphabet.

We then extend to ancilla and borrow closure for reversible gates.
Here we find some structural results, including some examples.

Keywords: Reversible gates · Maximal closed classes · Permutation
groups

1 Introduction

For a given finite set A, we investigate the collections of reversible gates, or
bijections of Ak for all k. The work derived from Tomasso Toffoli’s work [14] and
as such we call closed systems of bijections reversible Toffoli Algebras (RTAs).
We also consider ancilla and borrow closure, where an extra input and output
is allowed; an ancilla is provided and returned in a particular state, whereas a
borrowed bit is provided and returned in an arbitrary state.

The work also relates to permutation group theory, as an RTA C is a N-
indexed collection of permutations groups, C [i] ≤ Sym(Ai).

In previous papers, Aaronson, Grier and Schaeffer have determined all ancilla
closed gates on a set of order 2 [1], and the author, together with Jarkko Kari
and Ville Salo, has investigated generating sets [2,3] and other themes.

In this paper, we determine the possible maximal closed systems, relying
strongly on Liebeck, Praeger and Saxl’s work [11], and determine some properties
of maximal borrow and ancilla closed RTAs.

We show that the maximal RTAs are defined by an index that defines the
single arity at which the RTA is not the full set of bijections. We then show
that for different indices and orders of A, only certain possibilities can arise. For
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ancilla and borrow closed RTAs we find that there is similarly an index below
which the maximal RTAs are full symmetry groups and above which they are
never full.

We start by introducing the background properties of RTAs and some per-
mutation group theory. The next section is an investigation of maximality, with
the main result, Theorem 4, taking up the main body of this section. We then
investigate properties of borrow and ancilla closed RTAs.

2 Background

In this section we will introduce the necessary terminology.
Let A be a finite set. Sym(A) = SA is the set of permutations or bijections

of A, Alt(A) the set of permutations of even parity. If A = {1, . . . , n} we will
write Sn and An. We write permutations in cycle notation and act from the
right. We write the action of a permutation g ∈ G ≤ Sym(A) on an element
a ∈ A as ag. A subgroup G ≤ SA is transitive if for all a, b ∈ A there is a g ∈ G
such that ag = b. We also say that G acts transitively on A. If for all distinct
a1, . . . , an ∈ A and b1, . . . , bn ∈ A there is a g ∈ G such that ag

i = bi for all i,
then we say G is n-transitive on A. A subgroup G of SA acts imprimitively if
there is a nontrivial equivalence relation ρ on A such that for all a, b ∈ A, for
all g ∈ G, aρb ⇒ agρbg. If there is no such equivalence relation, then G acts
primitively on A.

Let G be a group of permutations of a set A. Let n ∈ N. Then the wreath
product GwrSn is a group of permutations acting on An. The elements of
GwrSn are {(g1, . . . , gn, α) | gi ∈ G, α ∈ Sn} with action defined as follows:
for (a1, . . . , an) ∈ An, (a1, . . . , an)(g1,...,gn,α) = (ag1

α−11, . . . , a
gn

α−1n).
Let Bn(A) = Sym(An) and B(A) =

⋃
n∈N

Bn(A). We call Bn(A) the set of
n-ary reversible gates on A, B(A) the set of reversible gates. For α ∈ Sn, let
πα ∈ Bn(A) be defined by πα(x1, . . . , xn) = (xα−1(1), . . . , xα−1(n)). We call this
a wire permutation. Let Π = {πα|α ∈ Sn, n ∈ N}. In the case that α is the iden-
tity, we write in = πα, the n-ary identity. Let f ∈ Bn(A), g ∈ Bm(A). Define
the parallel composition as f ⊕ g ∈ Bn+m(A) with (f ⊕ g)(x1, . . . , xn+m) =
(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), g1(xn+1, . . . , xn+m), . . . , gm(xn+1, . . . ,
xn+m)). For f, g ∈ Bn(A) we can compose f •g in Sym(An). If they have distinct
arities we “pad” them with identity, for instance f ∈ Bn(A) and g ∈ Bm(A),
n < m, then define f • g = (f ⊕ im−n) • g and we can thus serially compose all
elements of B(A).

We call a subset C ⊆ B(A) that includes Π and is closed under ⊕ and • a
reversible Toffoli algebra (RTA) based upon Toffoli’s original work [14]. These
have also been investigated as permutation clones [8], with ideas from category
theory [9] and as memoryless computation [6]. If we do not insist upon the inclu-
sion of Π, then we have reversible iterative algebras [3] in reference to Malcev
and Post’s iterative algebras. For a set F ⊆ B(A) we write 〈F 〉 as the smallest
RTA that includes F , the RTA generated by F .

Let C be an RTA. We write C [n] = C ∩ Bn(A) for the elements of C of arity
n. We will occasionally write (a1, . . . , an) ∈ An as a1a2 . . . an for clarity.
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In any RTA C, the unary part C [1] is found as a wreath product in all other
parts, C [1]wrSn ≤ C [n] because the wire permutations give us the right hand
factor while f1 ⊕ · · · ⊕ fn for fi ∈ C [1] gives us the left hand side.

Let q be a prime power, GF (q) the field of order q, AGLn(q) the collec-
tion of affine invertible maps of GF (q)n to itself. We note that for all m ∈ N,
AGLn(qm) ≤ AGLnm(q). For a prime p, let Aff(pm) =

⋃
n∈N

AGLnm(p) be the
RTA of affine maps over A = GF (p)m.

We say that an RTA C ≤ B(A) is borrow closed if for all f ∈ B(A), f⊕i1 ∈ C
implies that f ∈ C. We say that an RTA C ≤ B(A) is ancilla closed if for all
f ∈ Bn(A), g ∈ C [n+1] with some a ∈ A such that for all x1, . . . , xn ∈ A, for
all i ∈ {1, . . . , n}, fi(x1, . . . , xn) = gi(x1, . . . , xn, a) and gn+1(x1, . . . , xn, a) = a
implies that f ∈ C. If an RTA is ancilla closed then it is borrow closed. For any
prime power q, Aff(q) is borrow and ancilla closed.

3 Maximality in Permutation Groups

In this section we introduce some results from permutation group theory that will
be of use. The maximal subgroups of permutation groups have been determined.

Theorem 1 ([11]). Let n ∈ N. Then the maximal subgroups of Sn are conjugate
to one of the following G.

1. (alternating) G = An

2. (intransitive) G = Sk × Sm where k + m = n and k 
= m
3. (imprimitive) G = SmwrSk where n = mk, m, k > 1
4. (affine) G = AGLk(p) where n = pk, p a prime
5. (diagonal) G = T k.(Out(T )×Sk) where T is a nonabelian simple group, k > 1

and n = |T |(k−1)

6. (wreath) G = SmwrSk with n = mk, m ≥ 5, k > 1
7. (almost simple) T �G ≤ Aut(T ), T 
= An a nonabelian simple group, G acting

primitively on A

Moreover, all subgroups of these types are maximal when they do not lie in An,
except for a list of known exceptions.

It is worth noting that in the imprimitive case, A is a disjoint sum of k sets
of order m, giving an equivalence relation with k equivalence classes of order m,
the wreath product acts by reordering the equivalence classes as Sk, then acting
as Sm on each equivalence class. In the wreath case, the set A is a direct product
of k copies of a set of order m, the wreath product acts by permuting indices by
Sk then acting as Sm on each index.

Lemma 1. Let A be a set of even order and n ≥ 3. Then SAwrSn ≤ Alt(An).

Proof. SAwrSn is generated by SA acting on the first coordinate of An and Sn

acting on coordinates.
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The action of SA on An is even because for each cycle in the first coordinate,
the remaining n−1 coordinates are untouched. Every cycle occurs |A|n−1 times,
which is even, so the action of SA lies in Alt(An).

Sn is generated by Sn−1 and the involution (n−1n). By the same argument,
each cycle of the action occurs an even number of times, so the action of Sn−1

and the involution ((n − 1)n) on An lies in Alt(An) so we are done. �
We have a similar inclusion for affineness.

Lemma 2. For n ≥ 3, AGLn(2) ≤ Alt(2n).

Proof. AGLn(2) is generated by the permutation matrices {π(1,i) | i = 2, . . . , n}
and the matrix

[
1 1
0 1

]

⊕ in−2. These bijections are even parity because they only

act on two entries, thus have parity divisible by 2n−2 modulo 2 which is 0. �
Lemma 3. Let A be even order. Then SAwrS2 ≤ Alt(A2) iff 4 divides |A|.
Proof. The same argument as above applies for SA. The action of S2 swaps
|A|(|A|−1)

2 pairs. This is even iff 4 divides |A|. �

4 Maximality in RTAs

In this section, we will determine the maximal RTAs on a finite set A.
We have some generation results from other papers that will be useful.

Theorem 2 ([2] Theorem 5.9]). Let A be odd. If B1(A), B2(A) ⊆ C ⊆ B(A),
then C = B(A).

Theorem 3 ([3] Theorem 20]). If Alt(A4) ⊆ C ⊆ B(A) then Alt(Ak) ⊆ C for
all k ≥ 5.

Lemma 4. Let |A| ≥ 3, then 〈B1(A), B2(A)〉 is 3-transitive on A3.

Proof. Let A = {1, 2, 3, . . . }. Let a, b, c ∈ A3 be distinct. We show that we can
map these to 111, 112, 113 ∈ A3. There are three cases. See Fig. 1.

Case 1: Suppose a3, b3, c3 all distinct. Let α = (a1a3 1a3)(b1b3 1b3)
(c1c3 1c3) ∈ B2(A). Let β = (a2a3 11)(b2b3 12)(c2c3 13) ∈ B2(A). Then
γ = (π(23) • (α ⊕ i1) • π(23)) • (i1 ⊕ β) satisfies the requirements.

Case 2: Suppose a3, b3, c3 contains two values, wlog suppose a3 = b3. Let
d ∈ A − {a3, c3}. Let δ = (a1a3 a1d) ∈ B2(A). Let λ = π(23) • (δ ⊕ i1) • π(23).
Then λ will map a, b, c to the situation in the first case.

Case 3: Suppose a3 = b3 = c3. Then one of a1, b1, c1 or a2, b2, c2 must contain
at least two values, wlog let a1, b1, c1 be so. Then π(13) will give us the Case 1 if
a1, b1, c1 contains three values, Case 2 if a1, b1, c1 contains two values. �

The two following results are only relevant for even A.
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Fig. 1. Cases 1 and 2 in Lemma 4

Lemma 5. Let |A| ≥ 4, B1(A), B2(A) ⊂ C ≤ B(A). Then Alt(A3) ⊆ C [3].

Proof. For |A| = 4, the result is shown by calculation in GAP [7] that 〈B1(A) ⊕
i2 ∪ B2(A) ⊕ i1 ∪ Π [3]〉 as a subgroup of B3(A) is Alt(A3).

For |A| = 5 the result follows from Theorem 2.
Suppose |A| ≥ 6 Since B2(A) ⊆ C, we have all 1-controlled permutations of

A in C. By [3] Lemma 18, with P ⊂ Alt(A) the set of all 3-cycles, we have all
2-controlled 3-cycles in C. Thus (111 112 113) ∈ C. B1(A)∪B2(A) is 3-transitive
on A3 by Lemma 4, so we have all 3-cycles in C, so Alt(A3) ⊆ C. �

We know that this is not true for A of order 2, where B2(A) generates a
group of order 1344 in B3(A), which is of index 15 in Alt(A3) and is included in
no other subgroup of B3(A). However we find the following.

Lemma 6. Let |A| be even, B1(A), B2(A), B3(A) ⊂ C ≤ B(A). Then Alt(A4) ⊆
C [4].

Proof. For A of order 4 or more, we use the same techniques as in Lemma 5.
For A of order 2, we calculate. We look at C [4] as a subgroup of S16. The wire

permutations Π [4] are generated by (2, 9, 5, 3)(4, 10, 13, 7)(6, 11)(8, 12, 14, 15)
and (5, 9)(6, 10)(7, 11)(8, 12). Then i1 ⊕ B3(A) is a subgroup of B4(A) acting on
the indices {2, 3, 4}, generated by (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)
and (1, 2)(9, 10). It is a simple calculation to determine that this group is the
entire alternating group A16, so Alt(A4) ⊆ C [4]. �

We can now state our main theorem.

Theorem 4. Let A be a finite set. Let M be a maximal sub RTA of B(A). Then
M [i] 
= Bi(A) for exactly one i and M belongs to the following classes:

1. i = 1 and M [1] is one of the classes in Theorem 1.
2. i = 2, |A| = 3, and M [2] = AGL2(3) (up to conjugacy)
3. i = 2, |A| ≥ 5 is odd and M [2] = SAwrS2

4. i = 2, |A| ≡ 2 mod 4 and M [2] = SAwrS2

5. i = 2, |A| ≡ 0 mod 4 and M [2] = Alt(A2)
6. i = 2, |A| ≡ 0 mod 4 and M [2] = T (3).(Out(T ) × S3) where T is a finite

nonabelian simple group, with |A| = |T | (up to conjugacy)
7. i = 2, |A| ≡ 0 mod 4 and M [2] is an almost simple group (up to conjugacy)
8. i ≥ 3, |A| is even and M [i] = Alt(Ai)
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Proof. Suppose M < B(A) with i 
= j natural numbers such that M [i] 
= Bi(A)
and M [j] 
= Bj(A). Wlog, i < j, let N = 〈M ∪Bj(A)〉. Remember that composi-
tions of mappings of arity at least j will also be of arity at least j, so N [k] = M [k]

for all k < j. Then M < N because N contains all of Bj(A) and N < B(A)
because N [i] = M [i] 
= Bi(A). Thus M was not maximal, proving our first claim.

For the rest of the proof, take M maximal with M [i] 
= Bi(A). Then M [i] is
a maximal subgroup of Bi(A).

Suppose i = 1. Then B1(A) = SA and we are interested in the maximal
subgroups of SA. From Theorem 1 we know that these are in one of the 7
classes.

Suppose i ≥ 2. Then Si
A ≤ M [i] so M [i] is transitive on Ai. As Π [i] ≤ M [i]

we also know that SAwrSi ≤ M [i]. Assume M [i] acts imprimitively on Ai with
equivalence relation ρ. Let a, b ∈ Ai, aρb with ai 
= bi. By the action of SA acting
on the ith coordinate we obtain a′ρb′ with aj = a′

j and bj = b′
j for all j 
= i. By

the action of Si on coordinates we can move this inequality to any index. Thus
by transitivity we can show that ρ = (An)2 and is thus trivial, so our action
cannot be imprimitive.

We now consider the cases of A odd and even separately.
Suppose i ≥ 2 and |A| is odd. If i ≥ 3 then M [1] = B1(A) and M [2] = B2(A),

so by Theorem 2 we have all of B(A) and thus M is not maximal, a contradiction.
Thus we have i = 2. M [1] = B1(A) = SA and π(1 2) ∈ M so M contains
SAwrS2. If |A| ≥ 5 then by Theorem 1 this is maximal in Sym(A2) so M [2]

must be precisely this. So the case of A order 3 is left. We want to know which
maximal subgroups of Sym(A2) contain SAwrS2. There are 7 classes of maximal
subgroups, we deal with them in turn.

– Since π(1 2) ∈ M is odd on A2, M [2] 
⊆ Alt(A2).
– From the discussion above we know that M [2] is transitive and primitive on

A2, so the second and third cases do not apply.
– The permutations in S3 can be written as affine maps in Z3 and π(1 2) can be

written as
[
0 1
1 0

]

, the off diagonal 2 × 2 matrix over Z3, so S3wrS2 embeds in

the affine general linear group. Thus M [2] = AGL2(3) is one possibility.
– The diagonal case requires |T |k−1 = 9 for some nonabelian finite simple group

T , a contradiction.
– The wreath case requires 9 ≥ 52, a contradiction.
– By [4] all G acting primitively on A2 with subgroups that are nonabelian

finite simple groups are subgroups of Alt(A2), and we have odd elements in
M , so this is a contradiction.

Thus the only maximal subgroup is M [2] = AGL2(3).
Suppose i ≥ 2 and |A| is even. We know from Theorem 3 that for i > 4 we

can get all of Alt(Ai) from ∪1≤j<iBj(A). Alt(Ai) is maximal in Sym(Ai) so we
are done.

Thus we are left with 3 cases, i = 2, 3, 4.
From Lemma 6 we know that for i = 4 , M [4] = Alt(A4) is the only possibility.
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From Lemma 5 we know that for i = 3 and |A| 
= 2, M [3] = Alt(A3) is the
only possibility. For |A| = 2 we find that B2(A) generates a subgroup of B3(A)
that is only included in Alt(A3), so again M [3] = Alt(A3) is the only possibility.

Thus we are left with the case i = 2. From the above we know that the
intransitive and imperfect cases cannot arise. Thus we need to consider the
wreath, affine, diagonal and almost simple cases.

– |A| = 2: SAwrS2 has order 8, B2(2) has order 24, so M [2] = SAwrS2 is
maximal and we are done.

– Case 6 ≤ |A| ≡ 2 mod 4: Lemma 3 above says that SAwrS2 
≤ Alt(A2) so it
is maximal by Theorem 1.

– Case |A| = 4: Alternating is possible by inclusion. The affine case AGL4(2)
lies in A16 by Lemma 2. Diagonal not possible by order. Almost simple not
possible because all primitive groups of degree 16 lie in the alternating group
A16 [4] .

– Case 8 ≤ |A| ≡ 0 mod 4: Alternating is always possible. If A = 2m for
some m, then AGLm(2) might be possible, but lies in Alt(A2) by Lemma 2.
Diagonal, almost simple might be possible, if SAwrS2 ≤ M [2].

�

4.1 The Existence of Maximal RTAs

It is not immediately clear that all the classes of maximal RTAs can actually
exist. So let us investigate a few small examples.

Let us take A of order 2. For i = 1 we find no nontrivial subgroups, so the
maximal is M [1] of order 1. For i = 2 case 4 gives us S2wrS2 of order 8 as a
maximal subgroup. We note that B2(A) = AGL2(2), i.e. all binary bijections
are affine maps. For i ≥ 3 we have M [i] alternating as the only example, as we
know from Toffoli [14] and others that the alternating bijections of arity i are
generated by the collection of all permutations of arity less than i.

Taking A of order 3, we obtain a few more examples. For i = 1 we write A =
{1, 2, 3} and we know that S3 has maximal subgroups A3 as well as 〈(1 2)〉, 〈(1 3)〉,
〈(2 3)〉. These correspond in Theorem 1 to the alternating case and intransitive
cases. For i = 2 we write A = Z3 and note that the unary maps are all affine,
that is, the set of affine maps {x �→ ax + b|a, b ∈ Z3, a 
= 0} is identical to the
permutations S3 = B1(A). The binary affine maps AGL2(3) include all sums

of unary affine maps and the wire permutation
[
0 1
1 0

]

. With the inclusion of the

linear map (x, y) �→ (x + y, y) =
[
1 1
0 1

]

we obtain all affine maps. From Theorem

1 above we know this is maximal as a subgroup of B2(A). For i ≥ 3 we know
that B1(A), B2(A) generate all of B(A) so we are done.

For A of order 4 things get a touch more complex. For i = 1 we get a
number of maximal subgroups. A4 is maximal. By fixing one element we obtain
4 maximal subgroups isomorphic to S3 as intransitive subgroups. By imposing an
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equivalance relation with two classes of two elements each ( 1, 2 | 3, 4 or 1, 3 | 2, 4
or 1, 3 | 2, 3) we obtain subgroups isomorphic to S2wrS2 that act imprimitively
on A. AGL2(2) is of order 24, same as S4, we see that the affine maps are
precisely the permutations, not maximal. There is no nonabelian simple group
to allow a diagonal maximal subgroup. The wreath product also fails by order,
and no nonabelian simple group of order less than 24 exists, so the almost simple
case cannot arise. For i ≥ 2 we find M [2] = Alt(A2) a maximal subgroup. For
i = 2 we see that there are no nonabelian finite simple groups of order 16, so
case 6 cannot arise. It can be shown by investigation of [4] that M [2] cannot be
an almost simple group.

For orders 5 and above, we know that the maximal RTAs for i = 1 can be
obtained by permutation group analysis directly. For A of odd order we have the
wreath case SAwrS2 maximal in B2(A) and none others. For A even we have the
alternating and wreath cases easily constructible. We are left with the question
whether, for A of order a multiple of 4, the diagonal or almost simple cases can
actually arise.

The possibilities for the diagonal case with A of order equal to the order of
a finite simple nonabelian group start with A of order 60. The other possibility
is that |A|2 = |T | for some finite simple nonabelian group T . The only known
result in this direction is in [13] where they show that symplectic groups Sp(4, p)
where p is a certain type of prime, now known as NSW primes, have square order.
The first of these groups is of order (24 · 3 · 5 · 72)2 corresponding to A of order
(24 · 3 · 5 · 72) = 11760. We note that the sporadic simple groups have order that
always contains a prime to the power one, so they are not of square order. We
know that the Alternating group can never have order that is a square, as the
highest prime less than n will occur exactly once in the order of the group. It
might be possible that there are other finite simple groups of square order. As
far as we are aware, there have been no further results in this direction.

Each of these possibilities is far beyond the expected useful arities for com-
putational processes.

The other case is to look at almost simple groups. Let A be of order 4k, then
we are looking for an almost simple action of degree 16k2. In [4] we saw that
all primitive actions of degree 16 are alternating, that is, they are subgroups of
A16. In order to find an example, we can hope to use results about primitive
permutation groups of prime power [5] and product of two prime power [10]
degrees, so we would be able to investigate A of order 4k for k ≤ 14. Once again
this would include all examples of arities expected to be useful for computational
processes.

5 Maximality with Borrow and Ancilla Closure

The strength of Theorem 4 is partially due to the fact that there is no effect of
the existence of mappings of a certain arity in a given RTA on the size of the
lower arity part, as there are no operators to lower the arity of a mapping. This
does not apply with ancilla and borrow closure. In this section we collect some
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results about maximal ancilla and borrow closed RTAs. The following result
reflects the first part of Theorem 4.

Lemma 7. Let M ≤ B(A) be a maximal borrow or ancilla closed RTA. Then
there exists some k ∈ N such that for all i < k, M [i] = Bi(A) and for all i ≥ k,
M [i] 
= Bi(A).

Proof. Suppose M [k] = Bk(A). Then for all f ∈ Bm(A), m < k, f ⊕ ik−m ∈ M
so by borrow closure f ∈ M , so M [m] = Bm(A) for all m ≤ k. As M is maximal,
there must be a largest k for which M [k] = Bk(A), since otherwise M = B(A).

�
We will call k the index of the maximal ancilla closed or borrow closed RTA.
From Theorem 2 we then note the following.

Lemma 8. Let |A| be odd. Then M maximal with index k = 1, 2 are the only
options.

In this case, we can say a bit more for index 2. If A is of order 3, then by the
argument in Theorem 4 above, we find that M = Aff(A), the affine maps over
a field of order 3. Otherwise A is at least 5 and B1(A) is no longer affine. See
Lemma 11 below.

Similarly, we obtain the following, but see Corollary 1 below for a stronger
result.

Lemma 9. Let |A| ≥ 4 be even. Then M maximal with index k = 1, 2, 3 are the
only options and for i > k, M [i] 
= Alt(Ai).

Proof. We start by noting that for even |A|, for all f ∈ Bi(A), f⊕i1 ∈ Alt(Ai+1).
Thus if M [i] = Alt(Ai) for some i > k, then M [i−1] = Bi−1(A) which is a
contradiction, which shows the second part of the result.

Suppose k ≥ 4, so B1(A), B2(A), B3(A) ⊆ M . Then by Lemma 6 Alt(A4) ⊆
M , so by Theorem 3 Alt(Aj) ⊆ M for all j ≥ 5. But we know that by bor-
row closure, this implies that Bj−1(A) ⊆ M so M is in fact B(A). This is a
contradiction, so k < 4. �

Using similar arguments, we obtain the following.

Lemma 10. Let |A| = 2. Then M maximal with index k = 1, 2, 3 are the only
options and for i > k, M [i] 
= Alt(Ai).

Proof. Suppose M is maximal with k ≥ 5. Then by Theorem 3 we obtain M [i] =
Alt(Ai) for all i ≥ 5, which by the first argument in the previous Lemma, implies
that M is not maximal.

Suppose M is maximal with k = 4. We know that M [3] = B3(A). Then by
Lemma 6 we find that M [4] = Alt(A4), by Theorem 3 we obtain all of Alt(A5)
so by borrow closure all of B4(A) and thus M is not maximal. �

We obtain some examples of maximal borrow and ancilla closed RTA. The
expression degenerate to describe maps where each output index depends only
upon one input comes from [1].
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Lemma 11. For |A| ≥ 5, the degenerate RTA Deg(A) generated by B1(A) is a
maximal borrow closed RTA and maximal ancilla closed RTA.

Proof. Let Deg(A) be generated by B1(A) = SA. Then Deg(A)[i] = SAwrSi for
all i ≥ 2 which is maximal in Bi(A) by Theorem 1. Thus any RTA N properly
containing Deg(A) will have N [i] = Bi(A) for some i ≥ 2 and thus N [2] = B2(A)
by Lemma 7. Let f ∈ N [2] − Deg(A)[2], then f ⊕ f ∈ N [4] − Deg(A)[4] so
N [4] = B4(A) and by Lemmas 8 and 9, N = B(A), so Deg(A) is maximal. �

For |A| < 5, B1(A) consists of affine maps, so Deg(A) < Aff(A) and thus
cannot be maximal.

Corollary 1. Let |A| ≥ 4 be even. Then M maximal with index k = 1, 2 are the
only options.

Proof. From Lemma 9 we know k = 1, 2, 3 are possible. Suppose M is maximal
in B(A) with k = 3.

Suppose |A| = 4. B2(A) can be embedded in B4(A) represented on S256

with the tuples in A4 represented by the integers 1, . . . , 256, generated by the
permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
(17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32) . . .

. . . (241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256)

and (1, 2)(17, 18) . . . (241, 242). With the wire permutations we obtain a sub-
group of S256 that is the alternating group, so M [4] = Alt(A4) and by Theorem
3 we then get M [5] = Alt(A5) and thus M is not maximal.

Suppose A is even with more than 6 elements. The degenerate RTA Deg(A) ≤
M because M [1] = B1(A), but because Deg(A) is maximal and M [2] is a super-
group of Deg(A)[2], M is all of B(A) and is not maximal. �
Lemma 12. Let A be of prime power order. Then Aff(A) is a maximal borrow
closed RTA and a maximal ancilla closed RTA.

Proof. Let M = Aff(A). Suppose M is not maximal, so M < N < B(A).
Let A be of odd order. For every i, except i = 1 with A of order 3, M [i] is

maximal in Bi(A) by Theorem 1. Let f ∈ Bn(A), f ∈ N − M . Then N [n] =
Bn(A) by subgroup maximality, so for all i < n, N [i] = Bi(A). For all j ∈ N,
f ⊕ ij ∈ (N − M)[n+j] so similarly N [n+j] = Bn+j(A) so N = B(A) and M is
maximal.

Let A be of even order, so a power of 2. Let f ∈ Bn(A), f ∈ N − M . We
know from Lemma 2 above that M [n] ≤ Alt(An) is not maximal, so the odd
order argument above does not hold. By [12] we know that N [n] = Bn(A) or
N [n] = Alt(An). For all j ∈ N, f ⊕ ij ∈ (N − M)[n+j] so N [n+j] = Bn+j(A) or
N [n+j] = Alt(An+j). In both cases this means that N [n+j−1] = Bn+j−1(A), as
for all g ∈ Bn+j−1(A) g ⊕ i1 ∈ Alt(An+j)f , so N = B(A) and M was maximal.
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Because Aff(A) is ancilla closed and maximal as borrow closed, there can be
no ancilla closed RTA between Aff(A) and B(A) so Aff(A) is a maximal ancilla
closed RTA. �

We look at a few concrete examples.
By [1] we know that for A of order 2, we have the following maximal ancilla

closed RTAs.

– The affine mappings,
– The parity respecting mappings, which either preserve the number of 1s mod

2, or invert it,
– The odd prime-conservative mappings, that preserve the number of 1s mod

p, an odd prime.

The affine mappings have index 3, the parity respecting index 2 and the odd
prime-conservative mappings have index 1.

It remains an open problem whether these are the borrow closed maximal
RTAs over A of order 2.

For A of order 3, we know that the affine maps Aff(3) is an index 2 maximal
borrow closed RTA and a maximal ancilla closed RTA.

For A of order 4, we can say the following about index 2 maximals. There
are the following inclusions, S4wrS2 < ASp < AGL4(2) < Alt(42) where ASp is
a group of order 11520 that consists of the affine maps where the linear part is a
symplectic linear map in Sp(4, 2). If M [2] = Alt(42) then M includes the affine
maps properly. We know that the affine maps are maximal, a contradiction.
M [2] = AGL4(2) for the affine maps that we know form a maximal borrow and
ancilla closed RTA. It is possible that M [2] = S4wrS2 or M [2] = ASp for some
maximal M .

For A of order 5 or more, we know that index 2 arises only for the degenerate
RTA Deg(A).

6 Conclusion and Further Work

We have determined the maximal RTAs, using results from permutation group
theory and some generation results.

As we have not been able to construct explicitly an example of a maximal
RTA with i = 2 and M [i] of diagonal or almost simple type, the conjecture
remains that these are not, in fact, possible. We note however that if such exam-
ples exist, they will arise for A of order 8 or more, so will probably not be relevant
for any practical reversible computation implementation.

In future work we aim to determine the weight functions as described by [8]
for maximal RTAs, in order to determine whether they hold some interesting
insights.

The results for borrow and ancilla closed RTAs are not as comprehensive.
We hope to determine these in the foreseeable future. We note interestingly that
for a state set of order 5 or more, Lemma 11 indicates that if we can implement
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all permutations of the state set, we need only have one non-degenerate gate in
order to implement all gates under borrow or ancilla closure. Similarly we see
that once we can implement all affine maps on a state set of prime power order,
then only one nonaffine gate is needed to implement all gates. For the ancilla
case, many of the techniques of [1] will prove useful. In the ancilla case, we know
all maximal RTA with index 2 except for A of order 4.
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Abstract. A novel bounded search transformation-based synthesis app-
roach is presented that finds a reversible circuit implementation for
a given reversible function. Methods for simplifying the circuit post-
synthesis are presented. Quantum implementation constraints are also
considered. Experimental results for all 2-input 3-valued functions
show the effectiveness of the new approaches compared to earlier
transformation-based synthesis approaches. Other examples are given to
show both the effectiveness and limitations of the new approach which
point to a number of key areas for further research.

1 Introduction

An r-valued n-variable reversible logic function maps each of the rn input pat-
ters to a unique output pattern. Hence the function has n outputs. The synthesis
problem is to realize a reversible function by a cascade of basic reversible gates.
In this paper we present a novel bounded search method for this synthesis prob-
lem as well as systematic approaches to circuit simplification. Quantum circuit
implementation is considered with respect to a variety of practical constraints.

Reversible functions and circuits have the interesting property that if one
has a circuit for a function f , reversing the order of the gates and replacing each
by the gate implementing the inverse operation yields a circuit realizing f−1.
Consequently, one can synthesize a circuit for f and a second circuit for f−1 and
choose the better circuit as the basis to realize f .

Transformation-based synthesis was introduced in [4] for Boolean reversible
functions and extended to MVL functions in [3,5]. A study of the MVL reversible
logic synthesis including the transformation-based approach appears in [1]. The
method introduced here employs a bounded recursive search to more extensively
explore alternative circuits. It employs the basic pattern transform operation of
earlier transformation-based synthesis approaches. The bound is based on the
best circuit found to date.

Empirical results for 3-valued functions show the new search method pro-
duces significantly better circuits. Since the new method is a search, significantly
more CPU time is required but this is justified by the improvement in the syn-
thesized circuits. Limitations of the approach are discussed and issues for further
research are identified.
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2 Background

2.1 Reversible Functions, Gates and Circuits

Definition 1. An n-input, n-output, (written n × n) totally-specified r-valued
function is reversible if it maps each input assignment to a unique output assign-
ment. We use x0, x1, ..., xn−1 to denote the function inputs and x+

0 , x+
1 , ..., x+

n−1

to denote the corresponding outputs. A reversible function defines a permutation
of the input patterns. There are rn! r-valued, n × n reversible functions. ��

An r-valued n × n reversible function can be specified as a list F with rn

entries F0, F1, ..., Frn−1 where the n digit r-valued expansion of each Fi specifies
the output pattern corresponding to the input pattern which is the n digit r-
valued expansion of i. The specification list for the identity function has the ith

entry equal to i for all i.

Definition 2. For a given f with specification F , the distance between f and
the identity function is given by

�(f)=
rn−1∑

j=0

d(j, Fj) d(a, b)=
n−1∑

k=0

|ak − bk|

where ak and bk denote the kth digit in the r-valued expansion of a and b, respec-
tively. ��
Definition 3. A reversible gate has p inputs and p outputs and realizes a p × p
reversible function. ��

In this work, we employ 3-valued reversible gates given by the following
definition:

Definition 4. A 3-valued p × p controlled unary reversible gate passes p − 1
control lines through unchanged, and applies a specified unary operator to the
pth line, the target line, if the control lines assume particular specified values.
Otherwise the target line is passed through unaltered. The permitted unary oper-
ators are the five listed in Table 1. Note that a gate must have a single target
and the case of 0 controls (p = 1) is permitted in which case the gate is said to
be uncontrolled. ��
Definition 5. A reversible circuit realizing an n × n reversible function is a
cascade of reversible gates with no fanout or feedback [7]. The circuit has n
inputs and n outputs and is thus identified as n × n. ��

The synthesis problem considered here is how to realize a given reversible
function specification as a circuit using a basic set of reversible gates. The pre-
sentation focuses on 3-valued functions and circuits but the methods can be
readily extended to a higher radix.

We will use circuit diagrams where targets are boxes labeled by the appropri-
ate unary operation and controls are shown as circles containg the control value
for reversible circuits and as • for quantum circuits.
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Table 1. 3-valued unary operators

x C1[x] C2[x] N [x] D[x] E[x]

0 1 2 2 0 1

1 2 0 1 2 0

2 0 1 0 1 2

Consider the operators in Table 1. C1 and C2 are inverses of each other. D,
E and N are each self-inverse. The following readily verified identities are used
in the circuit simplification techniques discussed later in this paper.

C2[C2[x]] = C1[x] (1)
C1[C1[x] = C2[x] (2)

D[x] = E[C1[x]] = N [C2[x]] (3)
E[x] = D[C2[x]] = N [C1[x]] (4)
N [x] = D[C1[x]] = E[C2[x]] (5)

2.2 Quantum Circuits

Reversible circuits may be implemented in a variety of technologies. Here we are
interested in potential quantum circuit implementations [6–8,10]. The objective
is to map a reversible circuit composed of reversible gates as defined in Defini-
tion 4 to a circuit composed of gates directly implementable in a given quantum
technology.

Muthukrishnan and Stroud [6] introduced a family of elementary ternary
quantum gates (MS gates) widely used in the quantum MVL circuit literature
which for the ternary case can be defined as follows:

Definition 6. A Muthukrishnan and Stroud (MS) gate is a gate as defined in
Definition 4 with at most one control.

Muthukrishnan and Stroud considered ion trap technology for implementing
these gates and for the ternary case required that all control values be 2. Here,
we do not assume a particular underlying technology and consider a number of
possible scenarios. In particular, we consider situations where only a subset of the
MS gates are physically available since in some technologies certain MS gates are
readily implemented while others are more costly or may not be implementable.
In addition, we require that all controls in a quantum circuit have the same
global control value (cv). We will consider cases with cv = 1 or 2.

It is clear from equations (1) to (5) that a single cycle gate, C1 or C2, and
at least one of D, E or N , is sufficient as the other gates can be implemented
by suitable gate pairings. In this work, we distinguish between the gates that
are logically available during circuit synthesis and the gates that are physically
available for the quantum circuit with the assumption that all physically avail-
able gates are available for use during the synthesis process. We also assume that
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both C1 and C2 are physically, and therefore logically, available as a cycle gate
is implemented as a rotation the difference between C1 and C2 being the direc-
tion of rotation. A technology that supports one type of cycle can reasonably be
expected to support the other.

Given a set of physically available MS gates, we next consider how to imple-
ment reversible gates with more than 1 control. A realization for 2 controls as
given in [2] is shown in Fig. 11. α can be any of C1, C2, D, E or N that are
physically available. h is a helper line which is initialized to 0. Given that, a gate
with three controls can be implemented as shown in Fig. 2. Two helper lines, h1

and h2 are required and must both be initialized to 0. Gates with more controls
can be implemented following a similar strategy.

x0

x1

h

x2

C1 C1

α

C2 C2

x0
+

x1
+

h+

x2
+

Fig. 1. Implementation for α[x2, x1 = 2, x0 = 2] with helper line h
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x1

x2

h1

h2

x3

C2

α

C2

=
C1 C1

C2

C2 C2 C1 C1

α

C2 C2 C1 C1

C2

C2 C2

x0
+

x1
+

x2
+

h1
+

h2
+

x3
+

Fig. 2. Implementation for α[x3, x2 = 2, x1 = 2, x0 = 2] with helper lines h1 and h2

The 2 control case requires 5 MS gates whereas the 3 control case requires
15. We have shown the circuits where the control values are 2. These are readily
changed to 1, but recall that we assume all controls in a quantum circuit have
the same global value. If a control line to a gate g is required to have a different
value, a simple solution is to place uncontrolled gates on that line before and
after gate g. This leads to the following definition of quantum cost.

Definition 7. A gate which applies α ∈ {C1, C2,D,E,N} with 0, 1, 2, 3 con-
trols has a base cost of 1, 1, 5, 15, respectively. In general, the base cost for a
k-control gate, k > 2, is 5 + 2×the cost of a gate with k − 1 controls. If the gate
type α is not physically available as a single MS gate a pair of gates is required
and the cost increases by 1. The cost increases by 2, for each control that does
not have the global control value.

Adding uncontrolled gates before and after each control not equal to the
global control value can obviously be very costly. A more efficient approach will
be introduced in Sect. 5.
1 The gate notation is type[target, controls].
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Table 2. Transition options

Transition Options Transition Options

0 → 1 C1 E 0 → 2 C2 N

1 → 0 C2 E 1 → 2 D

2 → 0 C1 N 2 → 1 D

3 Transformation-Based Synthesis

Transformation-based synthesis was introduced by the current authors and D.
Maslov in [4] for Boolean functions and in [3,5] for MVL, specifically 3-valued,
functions. The core operation, transform(a, b), is the identification of an
ordered list of reversible gates to map an n digit pattern a to an n digit pattern
b where a > b. The gates are chosen so they will not affect any pattern < b.
We here describe transform(a, b) for the 3-valued case. Note that we use ←
to denote assignment, break to indicate exiting the current loop and continue
to indicate going back to the top of the current loop.

1: procedure transform(a, b)
2: list ← φ
3: for i=0, 1, ..., n − 1 do
4: if ai=bi then
5: continue
6: end if
7: create a new gate G with target xi

8: use ai → bi to get the type for G using Table 2
9: there may be a choice in which case both are recorded

10: c ← a and then set ci ← 0
11: for j=0, 1, ..., n − 1 do
12: if setting cj to 0 results in c < b then
13: break
14: else
15: cj ← 0
16: end if
17: end for
18: the nonzero digits in c identify the controls for G
19: append G to the end of list
20: ai ← bi
21: end for
22: return list
23: end procedure

transform generates a gate for each i such that ai �= bi. The gates generated
use only control values 1 and 2. 0 controls are generated by an optimization
discussed in Sect. 5. The for j loop in 11–17 reduces the number of controls for
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the gate while ensuring the gate will not affect any pattern < b. transform is
readily extended to other radices by revising the options in Table 2.

As noted, transform can generate a choice of gate depending on the tran-
sition required and also of course which gates are available to be used in a
particular synthesis. Our approach to resolving a choice is to choose the one
that when applied moves the function closest to the identity. Note that D gates
are specified as single choices in the table for transitions 1 → 2 and 2 → 1. C1

and C2 cannot be used alone for those two cases as they would always affect an
entry earlier in the specification.

The basic bidirectional transformation-based synthesis approach [5] is shown
as method1. transform is as just described. inverse computes the specifica-
tion of the inverse of a reversible function which by definition must always exist.
Applying a gate to a function specification F means to apply the gate to update
each of the entries in F .

1: procedure method1(F )
2: set gate lists Cin ← Cout ← φ
3: FI ← inverse(F )
4: for i=0, 1, ..., rn − 2 do
5: if Fi �= i then
6: Tout ←transform(Fi, i)
7: apply the gates in Tout to update F
8: Tin ←transform(FIi, i)
9: apply the gates in Tin to update FI

10: if |Tout| < |Tin| or
11: |Tout|=|Tin| and �F < �FI then
12: append the gates in Tout to the end of Cout

13: FI ← inverse(F )
14: else
15: append the gates in Tin to the end of Cin

16: F ← inverse(FI)
17: end if
18: end if
19: end for
20: reverse the order of the gates in Cout

21: replace each gate in Cout by its inverse
22: form the circuit by appending Cout to the end of Cin

23: return circuit
24: end procedure

The operation of method1 is straightforward. The basic idea is to find a
circuit that will map F to the identity. The inverse circuit will of course map
the identity to the desired F . For each i starting at 0, the method determines
the output-side gates that will map the ith output side entry to i. Separately, it
finds the input-side gates that will map the appropriate input pattern to match
the output pattern i. The latter is expressed in terms of FI, the inverse of F , so
that lines 6–7 and 8–9 are similar and can be implemented with common code
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which is more efficient that treating the output and input sides of F separately.
Recall, that transform is such that the gates chosen will not alter an entry
Fj , j < i. Also note that entry i = rn − 1 need not be considered since as the
last entry aligning all previous entries to the identity means it is also mapped
to the identity.

For each i, the method chooses to use the output-side or input-side trans-
formation based on the number of gates required and if those factors are the
same based on which choice leads to a specification closest to the identity using
the � operator. In the event of a tie, the output-side transform is used. A more
fulsome description of this algorithm can be found in [5].

method1 uses either all input or all output gates for each iteration as it
only considers two possibilities. An extension to this approach, developed in [9]
for the 2-valued case, is to for each i, consider all j, i ≤ j ≤ rn − 1 and for
each apply transform(Fj , i) to find output-side gates and transform(FIj , i)
to find input-side gates. From the results for each j, the one is chosen that
requires the fewest gates (input plus output) and if there is a tie the lowest j
resulting in an F closest to the identity is used. We call this approach method2.
A full description can be found in [9]. The bounded search transformation-based
synthesis method introduced in the next section is derived from this approach.

4 Bounded Search Transformation-Based Synthesis

method3 is the new bounded search approach introduced in this paper. The
basic idea is to search through the options to transform each entry of F in order
0, 1, ..., rn − 1 in a recursive manner. A bounded search is performed where the
bound is based on the best circuit found to that point in the search. Any search
path where the circuit to that point has a higher cost than the best circuit found
so far is abandoned.

A key question is how to set the initial bound. One could use a cost of ∞
but that can lead to excessive searching. The approach we adopt is to apply
method1 to find an initial circuit and to use it as the initial best circuit which
is retained in a global called BestCircuit. The invocation of method1 to set
the initial bound is made prior to calling method3 to initiate the search. In the
initial call to method3 a value of 0 should be provided for parameter k and an
empty list for parameter circuit.

cost is a function that computes the cost of a circuit which can be selected
to be either (a) the number of gates in the circuit, or (b) the sum of the quantum
costs of the gates in the circuit as specified in Definition 7.

simplify is a procedure that applies the post-synthesis simplifications pro-
cess described in Sect. 5.

Function map used in method3 orders the alternatives to be considered in
a special way. If j = k it returns k. If j = k + 1, it returns the value p such that
Fp = k. Those two cases are considered first since the first one only requires
output side gates and the second only requires input side gates. Those cases
quite often have the cheapest incremental costs. For j > k +1 in order, function
map returns the other choices from k to Rn − 1 in ascending order.
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1: procedure method3(F, k, circuit)
2: if k=rn − 1 then
3: simplify(circuit)
4: if cost(circuit) <cost(BestCircuit) then
5: BestCircuit ← circuit
6: end if
7: return
8: end if
9: for j=k, k + 1, ..., rn − 1 do

10: i ← map(j, k)
11: copy F into FC
12: Tout ←transform(Fi, k)
13: apply the gates in Tout to update FC
14: Tin ←transform(i, k)
15: if |Tin| + |Tout| + |circuit| ≥ |BestCircuit| then
16: return
17: end if
18: FIC ← inverse(FC)
19: apply the gates in Tin to update FIC
20: FC ← inverse(FIC)
21: append gates in Tout reversed and inverted
22: to the end of circuit
23: prepend gates in Tin to the front of circuit
24: method3(FC, k + 1, circuit)
25: remove gates in Tin and Tout from circuit
26: end for
27: return
28: end procedure

Lines 2–8 in method3 is the terminal case for the recursive search. The
current circuit is compared to the best circuit found so far and replaces it if it
is cheaper. Lines 15–17 implement the bound on the search by comparing the
number of gates in the circuit being built to the number of gates in the best
circuit found so far. This bound is used as it has been found to better bound the
search in terms of computational time than using the quantum cost. Line 24 is
the recursive call to move to the next entry in F and line 25 removes the gates
generated for one alternative before iterating to consider the next.

5 Post-synthesis Circuit Simplification

Suggestions for circuit simplification were made in [5] with a hand-worked exam-
ple. Here we present two procedures for circuit simplification of 3-valued circuits.
The first, reduce, accepts an ordered list of gates G = G0G1...Gngates−1 and
returns a modified list of gates. The following four definitions are employed.

Definition 8. Two gates are inverses of each other if they have the same target,
the same control variables and control values and either they are both D, E or
N gates, or one is a C1 gate and the other is a C2 gate. ��
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Definition 9. Two Ck gates are mergeable if they have the same target, the
same control variables and control values. The merge into a single gate has the
given target, control variables and control values and is of type C3−k. ��
Definition 10. Two gates Gi and Gj are control reducible if they are of the
same type, have the same target and controls and matching control values except
for one control xk. The gates can be modified by removing xk from Gi and setting
the control value for xk for Gj to 3 − s where s is the sum of the original xk

control values for the two gates. If the gates are C gates, Gj is replaced by its
inverse. ��

The commonly used rule [4] for whether two adjacent gates Gi and Gi+1 can
be interchanged is to check that the target for Gi is not a control for Gi+1 and
the target for Gi+1 is not a control for Gi. Here we introduce a more flexible
definition which permits more optimization possibilities.

Definition 11. Two adjacent gates Gi and Gi+1 can be interchanged unless:

1. The two gates have the same target but the gates are not both of the same
type (C, D, E or N);

2. If Gi has type t ∈ {C,D,E,N}, the target of Gi is a control for Gi+1 with
control value v and t = C, or t = D,E,N and v �= 0, 2, 1 respectively; or

3. If Gi+1 has type t ∈ {C,D,E,N}, the target of Gi+1 is a control for Gi with
control value v and t = C or t = D,E,N and v �= 0, 2, 1 respectively. ��
(1) in the above definition states two gates cannot be interchanged if they

have the same target but potentially conflicting gate operations. (2) and (3)
state two gates cannot be interchanged if the target for one gate is a control for
the second gate and the target operation could affect the corresponding control
value. This allows more gate movement than the simple blocking rule [4].

reduce, Fig. 3, implements our gate simplification strategy. It should be
noted that the procedure looks for two gates Gi and Gj that could be moved to
be adjacent but does not actually move them. Lines 8–9, 18–19 and 30–31 follow
the removal or modification of Gi and start the reduction search over to look for
simplifications that may have been previously blocked.

Our second simplification procedure, insert C, Fig. 4, accepts G, an ordered
list of gates and a global control value cv = 1 or 2, and inserts uncontrolled C1

and C2 gates so that all control values in the circuit will be cv. Effort is made
to reduce the number of gates inserted, i.e. it does not insert a gate before and
after every control that differs from the global value.

Post-synthesis circuit simplification used in this work involves four steps:

1. apply reduce to the circuit produced by the chosen synthesis method;
2. if the target is a quantum circuit, apply insert C to add the required uncon-

trolled C gates to map all gate control values to the desired value;
3. perform any logical gate substitutions for D, E or N gates depending on

which types of gate substitution have been specified for the current synthesis.
4. if step 2 and/or step 3 has been applied, apply reduce a second time to

identify any possible reductions arising from steps 2 and 3.
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Fig. 3. Gate reduction procedure

Step 3 requires some explanation. If a D, E or N gates is logically available,
i.e. available during synthesis, but not physically available for the final circuit,
it must be substituted by other gates. Step 3 is a logical substitution where the
gate is replaced during the simplification process at which point the substituted
gates become candidates for reduction. The alternative is to do a physical gate
substitution in the final quantum circuit as suggested in Definition 7.
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Fig. 4. Insertion of uncontrolled C gates

6 Experimental Results

We have implemented the above techniques in C using the gcc compiler with
optimization level -O3. Experiments were run on a computer with an Intel i5
650 CPU @ 3.20 GHz and 3 GB of RAM.
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Our first experiment generated reversible circuits for the 9! = 362, 880 2-
variable 3-valued reversible functions. Table 3 shows the results for methods 1, 2
and 3 with and without applying reduce. Since the target is reversible circuits,
insert C is not applied and gate count is used for circuit cost.

To make the results comparable to [5], D gates are used as individual gates,
i.e. without substitution, and E gates are not used. In each case, results are
shown for synthesizing the function alone and synthesizing the function and its
inverse and choosing the better circuit. The table shows the average gate count
and total CPU time in seconds for each scenario. The CPU time, here and for the
other experiments, includes the time required to verify the circuits. The table
shows that method2 provides quite small improvement over method1.

method3 yields substantial improvement but at a high increase in compu-
tational cost. For each method3 scenario, the table shows the average number
of circuits examined per function which is a good indicator of where the compu-
tational cost comes from. For example, for the gate reduction using f and f−1

scenario, a total of 21,798,180 circuits were generated in finding solutions for the
362,880 functions an average of 60.07.

As an aside, noted by one of the referees, the method1 search considering
f and f−1 with no gate reduction took 5.31 CPU sec. whereas the same search
in 2004 [3] took several CPU minutes on a then modern desktop computer. An
interesting illustration of the tremendously increased computing power that is
now available.

Table 3. 2-variable 3-valued functions: average gate count

Method No gate reduction

f f and f−1

Avg. CPU Avg. Circ. Avg. CPU Avg. Circ.

Gates Sec. per Func. Gates Sec. per Func.

1 7.160 2.51 6.957 5.31

2 7.078 12.67 6.860 25.28

3 6.125 86.42 21.727 6.083 171.63 43.450

impr. 3 vs 1 14.46% 12.56%

Method Gate reduction

f f and f−1

Avg. CPU Avg. Circ. Avg. CPU Avg. Circ.

Gates Sec. per Func. Gates Sec. per Func.

1 7.077 2.67 6.855 5.51

2 6.989 12.73 6.753 25.65

3 5.983 103.45 30.030 5.919 209.25 60.070

impr. 3 vs 1 15.46% 13.65%
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Our second experiment again considers all 2-variable 3-valued functions. The
results are shown in Table 4. Each row of the table represents a particular sce-
nario regarding the use of D, E and N gates and choice for the global control
value cv. Recall that C1 and C2 are assumed to be physically, and therefore
logically, available in all the scenarios. In every case, the best circuit found
by considering f and f−1 is used. The table is ordered by ascending cost for
method3 with cv = 2 which most often yields the best results.

Column Synth. identifies which of D, E and N are available during the syn-
thesis process. As noted above, D must always be available. Column Sub. iden-
tifies what gate substitutions are performed. A 1 denotes logical substitution
during the synthesis process i.e. gate substitution during the circuit simplifi-
cation step. A 2 denotes physical substitution in the final circuit. Results are
shown for the three methods with cv, the circuit wide control value, equal 1 and
2. Each trial for method1 required 5–6 CPU sec. For method2 and method3
the CPU usage per trial is around 35–40 s and 3–3.5 min, respectively.

As before, method3 shows very significant improvement over the other meth-
ods at a rather high computational cost. It is interesting that, as one would tend
to expect, the best performance (shown in bold) for all methods, except for
method3 with cv = 2, is for the scenario where D, E and N are available dur-
ing synthesis with no logical or physical substitution, i.e. all three gate types are
available with lowest cost. For the case of method3 with cv = 2, the best result
is when only D and N are available for synthesis and direct implementation.
This is reflective of the fact our methods are heuristic and even the search based
method relies on heuristic choices as to which gates are best to use at each step
of the synthesis.

In all cases for method1 and method2 a cv value of 2 leads to lower average
quantum cost than does a cv value of 1. For method3, there are some exceptions
(shown in italics). In those cases the differences are rather small. This effect arises
from the fundamental property that the transformation-based synthesis methods
process the specification in a fixed order and tend to produce more gate control
values of 2 than 1. Consequently, fewer uncontrolled C gates need to be inserted
to map all control values in the circuit to 2 than to 1.

The results also strongly suggest that logical substitution for D, E and N is
more effective than physical substitution. This is because for logical substitution,
the substituted gates are considered during the circuit simplification process.

To further illustrate the effectiveness of the circuit reductions performed
by procedure reduce, consider the best result in Table 4 – the scenario using
method3 with D and N gates with no gate substitution, cv = 2, and considering
f and f−1. If one turns off reductions but leaves insertion of uncontrolled C gates
on, the average quantum cost rises from 7.837 to 8.771 an increase of 11.9%.

Our third experiment considers a 3-valued full adder which is an irreversible
function with three inputs, here identified as x0, x1, x2 and two outputs sum and
carry. To make it reversible, requires an additional input and two additional
outputs. As noted in [3], experience with a reversible binary full adder is helpful
and leads to the following specification which behaves as a full adder when
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x3 = 0.

x+
0 = sum[x0, x1, x2) x+

1 =x1 ⊕ x2 x+
2 = x2 x+

3 = carry[x0, x1, x2) ⊕ x3 (6)

Figure 5 shows the reversible adder circuit found using method1 forward
synthesis with circuit reduction but no gate substitutions. This circuit has 17

Table 4. 2 variable 3-valued functions: average quantum cost

Synth. Sub. method1 method2 method3

D E N CV = 2 CV = 1 CV = 2 CV = 1 CV = 2 CV = 1

D N 9.950 11.667 9.896 11.279 7.837 8.488

D E N 9.701 10.884 9.623 10.553 7.963 8.048

D 10.193 11.995 10.143 11.617 8.057 8.684

D E 10.001 11.301 9.917 10.935 8.163 8.154

D N 1 10.416 12.224 10.355 11.823 8.275 8.934

D E N 1 10.386 11.713 10.307 11.404 8.327 8.730

D E N 1 10.244 11.409 10.157 11.063 8.477 8.345

D N 2 10.614 12.328 10.546 11.923 8.486 9.082

D E N 2 10.543 11.772 10.464 11.459 8.502 8.800

D E N 2 10.338 11.513 10.245 11.164 8.545 8.507

D E 1 10.653 11.988 10.591 11.674 8.566 8.786

D E 2 10.762 12.109 10.697 11.783 8.722 8.978

D E N 1 11.489 12.215 11.345 11.876 8.799 8.670

D E N 1 1 10.898 12.212 10.813 11.892 8.859 9.085

D E N 2 11.627 12.769 11.479 12.346 8.879 8.809

D N 1 12.208 13.355 12.086 12.975 8.887 9.237

D E N 2 1 11.003 12.326 10.916 11.996 8.977 9.251

D E N 1 2 11.075 12.289 10.982 11.968 9.045 9.185

D N 2 12.484 14.180 12.37 13.723 9.130 9.643

D E N 2 2 11.181 12.403 11.086 12.072 9.175 9.357

D E 1 12.077 13.132 11.892 12.701 9.197 8.979

D E N 1 1 12.211 13.072 12.071 12.755 9.285 9.475

D E N 2 1 12.350 13.626 12.204 13.227 9.386 9.640

D E 2 12.316 13.575 12.13 13.083 9.406 9.189

D E N 1 1 12.040 12.992 11.886 12.598 9.443 9.135

D E N 1 2 12.365 13.129 12.225 12.807 9.478 9.548

D E N 1 2 12.133 13.093 11.973 12.697 9.518 9.305

D E N 2 1 12.179 13.304 12.023 12.867 9.519 9.219

D E N 2 2 12.507 13.685 12.362 13.282 9.586 9.718

D E N 2 2 12.274 13.408 12.112 12.968 9.597 9.393
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gates. D and E gates were allowed. method2 finds the same circuit. Figure 6
shows the reversible adder circuit found using method3 forward synthesis. This
circuit has 10 gates.
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Fig. 5. method1 forward synthesis: 17 gate reversible adder circuit
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Fig. 6. method3 forward synthesis: 10 gate reversible adder circuit

x0

x1

x2

x3

C2

C2

C2 N

C1

C2 N C1

C1

C1

C2

C2

C2 C1

C1

C1

C1

C2

x0
+

x1
+

x2
+

x3
+

Fig. 7. method3 forward synthesis with simplification: 18 gate full adder quantum
circuit, cost 26, cv = 2

Table 5 shows our full experimental results for the full adder. Uncontrolled
C gates were inserted for a global control of 2 and logical substitution of D
and E gates was employed. The top half of the table shows the results for the
reversible full adder and the bottom half shows the results for the inverse func-
tion. Here the new search method (method3) significantly outperforms the basic
transformation-based synthesis methods. Note that method3 is quite quick for
the full adder but takes significantly longer for the inverse case.

It is interesting to contrast the results in the top half of Table 5 to the discus-
sion in [5] where an initial 16 gate solution was hand optimized to a circuit with
23 gates with a quantum cost of 96. that circuit contains four 3-control C gates
which are quite expensive in terms of elementary quantum operations. In partic-
ular, method3 forward synthesis followed by circuit simplification as described
in Sect. 5 produces the circuit in Fig. 7 which has 18 gates and a quantum cost
of 26. There are only two 2-control gates (shown in bold) in this circuit, the rest
having 1 or 0 controls.
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Table 5. Ternary full adder

Method No E Gates E Gates

Gates Cost CPU Gates Cost CPU

Forward synthesis

1 30 106 0.047 37 157 0.047

2 30 106 0.062 37 157 0.078

3 18 26 0.438 18 26 0.703

impr. 3 vs. 1 75.5% 83.4%

Reverse synthesis

1 44 180 0.063 59 289 0.078

2 44 180 0.094 59 289 0.125

3 18 34 379.8 18 34 593.7

impr. 3 vs. 1 81.1% 88.2%

Next we consider a 5-variable function with inputs x4, x3, ..., x0 which acts as
a controlled counter. The 4-digit 3-valued number represented by x3, x2, x1, x0 is
incremented by the value of x4 and that result is taken modulo 34. In specifying
F for this problem x4 is treated as the most significant variable and x0 as the
least significant. The results are shown in Table 6. Note that the same circuits
are found regardless of whether E gates are used. The synthesis scenario and
circuit simplification used are as described for the adder.

The results are significantly better for method3 compared to the other meth-
ods but once again at a high computation cost. The 11 gate quantum cost 29
circuit is shown in Fig. 8.
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Fig. 8. method3 Forward synthesis: 11 gate quantum counter circuit, cost 29, cv = 2

The previous two examples, the adder and counter, are arithmetic functions.
It is constructive to consider a different type of example. We consider a reversible
function with four inputs x3, x2, x1, x0 which rotates the order of x2, x1, x0 based
on the value of x3. Specifically, the output is x3, x2, x1, x0 if x3 = 0, x3, x1, x0, x2

if x3 = 1, and x3, x0, x2, x1 if x3 = 2.
Applying method1 using N , D and E gates with D and E gate logical

substitution and the simplification procedure outlined above yields a reversible
circuit with 76 gates and a quantum cost of 358. Applying the same approach
to the inverse function yields a circuit with 75 gates and quantum cost 358.
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Table 6. Controlled counter

Method No E Gates E Gates

Gates Cost CPU Gates Cost CPU

Forward synthesis

1 15 137 0.03 15 137 0.05

2 15 137 0.11 15 137 0.13

3 11 29 182.17 11 29 290.64

impr. 3 vs. 1 78.8% 78.8%

Reverse synthesis

1 17 137 0.03 17 137 0.03

2 17 137 0.11 17 137 0.13

3 11 29 210.96 11 29 272.52

impr. 3 vs. 1 78.8% 78.8%

The same results are found if method2 is used. About 0.125 CPU seconds is
required for each synthesis.

Applying method3 directly to this function is problematic. Unlike the pre-
vious examples, the search takes a truly inordinate amount of time. We have
implemented two changes to method3 to make it a bit more reasonable for this
problem: (1) A check is inserted between lines 8 and 9 to test if Fk = k and if
it does to accept that 0 gate case without exploring all other alternatives i.e.
j = k + 1...rn − 1. (2) The search is aborted if a preset circuit cost is reached.

Applying the modified method3 with a cost limit of 170 to the inverse of the
rotation function a circuit was found with 50 gates and quantum cost 170 – a bit
less than half the cost found using method1. The search took 3.8 CPU hours
and considered 1,551 circuits. The question is whether this is a good result.

Consider a gate swap[xi, xj ] that interchanges the values of the two inputs
and assume that controls can be applied to such a gate. This is a generalization
of the well-known binary Fredkin gate [7]. Given such a gate, the input rotation
function as described above can be realized as shown in (7) which can be simpli-
fied by applying control reduction to the first and third swaps, which is possible
because swaps two and three can be reordered, yielding the circuit in (8).

swap[x0, x2, x3 = 1] swap[x1, x2, x3=1] swap[x0, x2, x3 = 2] swap[x0, x1, x3=2] (7)
swap[x0, x2] swap[x0, x2, x3 = 0] swap[x1, x2, x3 = 1] swap[x0, x1, x3 = 2] (8)

Using method3 with quantum cost as the cost metric and without post-synthesis
simplification yields the circuit in Fig. 9(a) for the uncontrolled swap of xi and
xj . Substituting this circuit for each of the swaps in (8) with x3 control added
appropriately we find the circuit in Fig. 9(b) where the lines separate the swap
gate implementations. Note that the inverse circuit has been used for the third
swap so that the two D gates in red are brought together. This is possible since
the swap operation is self-inverse.
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Applying the circuit simplification procedures from Sect. 5 yields the circuit
in Fig. 9(c). That circuit has 50 gates and quantum cost 122 which is a reduction
of 28.2% from the 170 found by applying method3 directly to the rotation
function specification.
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(b) reversible rotation circuit by substituting swap circuit in (a) into eqn. 8

x0

x1

x2

x3

C1

C2

C1

C1

C2

C2

C1

C1

C2

C2

C2

C2

N C1 C1

C1

C2

C2

C1

C1

C2

C2

C2

C1

N

C2 N

C1

C1 C1

C1

C2

C2

C1

C1

C2

C2

C2

C2

C1

C1

C2

C2

C1

C1

C2

C2

C2

C2

N x0
+

x1
+

x2
+

x3
+

(c) 50 gate quantum rotation circuit found by simplification of the circuit in (b),
quantum cost 122, cv = 2

Fig. 9. Rotation circuit derived from 4 swap gate circuit

7 Conclusions and Future Work

This paper has presented a novel bounded search transformation-based synthesis
method as well as circuit simplification and quantum mapping procedures. The
discussion of the rotation function example shows the limitation of the search
based approach on its own but also the potential to use it within a broader
approach using alternative gates and decomposition techniques. It is an issue
for further study why method3 takes so much longer for the rotation function
compared to the adder and counter.

Our implementation accepts and handles F , the specification of a reversible
function, in tabular form. Other researchers [9] have explored alternative more
compact representations in the Boolean case. It would be interesting to consider
how those approaches might be used in our search based synthesis approach.
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The search based approach has been described in terms of r-valued func-
tions, but our implementation concentrates on 3-valued functions. The proce-
dure transform and the circuit simplification techniques need to be extended
if MVL functions with r > 3 are to be considered.

We have considered various circuit simplification techniques but not the opti-
mization of the final quantum circuit after substitution of the realizations of gates
with more than one control. That is an interesting area for further research.

Lastly, we have developed the new methods for the MVL case. It would be
interesting to adapt them to the Boolean case, which is simpler, and see how
they compare to other Boolean reversible circuit synthesis approaches.

Acknowledgement. The authors gratefully acknowledge the comments and sugges-
tions by the reviewers, particularly the suggestion that we better clarify issues regarding
quantum circuits which has led to inclusion of much broader experimental results.
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Abstract. This paper presents reverCSP, a tool to animate both for-
ward and backward CSP computations. This ability to reverse compu-
tations can be done step by step or backtracking to a given desired state
of interest. reverCSP allows us to reverse computations exactly in the
same order in which they happened, or also in a causally-consistent way.
Therefore, reverCSP is a tool that can be especially useful to compre-
hend, analyze, and debug computations. reverCSP is an open-source
project publicly available for the community. We describe the tool and
its functionality, and we provide implementation details so that it can
be reimplemented for other languages.

Keywords: Reversible computations · CSP · Tracing

1 Introduction

The Communicating Sequential Processes (CSP) is nowadays one of the must
used process algebras [16]. The analysis of CSP computations has traditionally
been based on the so-called CSP traces. Roughly, CSP traces are a representation
to specify all possible computations that may occur in a system, and they are
represented with sequences of events. Among the different analyses defined over
traces we have security analysis [6], livelock analysis [3], and deadlock analysis
[7,17].

Unfortunately, CSP traces are not very appropriate for debugging because
they do not relate the computations with the source code. For this reason, a
data structure called CSP track [12] was defined to overcome that problem.
CSP tracks were originally conceived for program comprehension and debugging
because they can represent forward CSP computations with the advantage that
every single step of the operational semantics is associated with the positions
in the source code (i.e., initial and final line and column) of the literals of the
specification participating in that step. This means that, with a CSP track, one
can see directly in the source code the parts that are being executed.
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Fig. 1. Extended track of the computation produced by the trace 〈abb〉 in reverCSP.

Example 1. Consider the following CSP specification:1

channel a,b

MAIN = P ||
{a}

Q

P = R ||
{a}

a → (b → SKIP � Q)

R = a → SKIP

Q = a → b → SKIP

The only possible traces of this specification are: {〈〉,〈a〉,〈ab〉,〈abb〉}
If we consider the trace 〈abb〉, it can be produced by two different computa-

tions due to the non-deterministic evaluation order of the processes. While the
first event (a) is deterministic, the b events are not (they could correspond to
either process P or Q). Therefore, a trace 〈abb〉 does not give information about
what parts of the computation have been executed and in what order.

In contrast, if we observe the track in Fig. 1, we can see that it represents the
source code literals inside nodes (at the top right); each node is labelled with
its associated timestamp (at the top left) and they contain pairs line-column
to uniquely identify the literals in the CSP specification. Synchronizations are
represented with a dashed edge. For the time being the reader can ignore the
green text and lines.

In this paper we present a new tool called reverCSP that uses an extension of
CSP tracks to animate and reverse computations. We explain how to download
and install the tool, and we explain its functionality and architecture.

1 Those readers non familiar with the CSP syntax are referred to [16], where all CSP
syntax constructs are explained.
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2 Recording the History of a CSP Computation

According to the Landauer’s embedding principle [8] a record of a computation
can make that computation reversible. In order to record CSP computations
we have defined an extension of CSP tracks [12] so that they also store the
exact time when each literal in the track was executed. This gives us the ability
to know exactly in what order where the literals executed and, thus, to reverse
computations. Observe in Fig. 1 that each node has a label with a timestamp that
represents the instant where this node was generated. Therefore, synchronized
events have the same timestamp.

With the timestamp we can serialize the program. For instance, if we only
focus on event nodes (those in bold) then it is trivial to generate the associ-
ated trace 〈abb〉 following the sequence: (6,a)→(10,b)→(13,b). Timestamps
together with synchronizations also allow us to define a causally-consistent rela-
tion between nodes. This relation allows us to perform (forward and backward)
causally-consistent steps. These steps group a set of nodes that must happen
before a given action (a visible event or the end of the computation represented
with SKIP or STOP) and after another action that already happened.

Example 2. Consider again the track in Fig. 1. Those nodes that belong to the
same causally-consistent step have been grouped inside an area marked with
a dotted green line. The causal relation is represented by the identifier of the
causally-consistent steps. Step X.Y cannot be undone until any suffix of X.Y
has been undone. This means that steps 1.1, 1.2, and 1.3 must be undone (in
any order) before undoing step 1. Similarly, step 1.2.1 must be undone before
undoing step 1.2. Steps 1.2.1 and 1.3.1 can be undone in any order. All this
information is automatically computed by reverCSP and used to control that
steps are (un)done (and offered to the user) in the correct order.

3 The System reverCSP

3.1 Downloading and Installation

The reverCSP system is open-source and free. It can be downloaded from:
https://github.com/tamarit/reverCSP. The system can be run either on Linux
or in a Docker container. The later is the simplest, as the user only needs to
install docker and run the following commands:

$ git clone --recursive https://github.com/tamarit/reverCSP
$ docker build -t reverCSP .
$ docker run -it -v $PWD/examples:/reverCSP/examples \

-v $PWD/output:/reverCSP/output --rm reverCSP

Then, from within the shell inside the docker container, the user can run
the script reverCSP, accompanied by the path to a CSP specification file, as
can be seen in Fig. 2. The two volumes exposed to docker (the -v option) allow

https://github.com/tamarit/reverCSP
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Fig. 2. Main menu (left) and a series of user actions and the resulting states (right).
(Color figure online)

the user to view the generated PDF files in the output folder and to add new
specifications to be analyzed.

The system uses the Erlang/OTP framework2 to animate CSP specifications,
and it (optionally) uses Graphviz3 to produce PDF outputs of the tracks. Oth-
erwise, only DOT files will be produced. Both systems are also freely available
under open-source licenses.

3.2 Main Functionality

reverCSP implements in Erlang a reversible CSP interpreter with two phases:

Generation of tracks. Tracks can be generated using a random number of
steps (a random execution) or following the computation steps defined by
the user (user-directed execution). This means that, at any point of the
computation, the user can choose how to proceed and the associated track
is dynamically generated. For instance, a user can perform, say, 50 random
steps, then go backward, say 20 steps, and then go forward again but selecting
a different rule to be applied. Thus, a different computation (and track) is
produced.

Exploration of tracks. Provided that we have a track generated, it can be
traversed backward. The traversal is done with computation steps that can
be deterministic (using the Undo option) or causally-consistent (using the
Reverse evaluation option). After each step, the system shows the current
expression and it gives the option to output the trace and the track. Figure 2
shows the menu displayed during a computation (left), followed by the com-
putation steps selected by the user (right). The states reached are in black,
the user actions are in blue and the changes in the state produced by the
last action selected are in red.

2 https://www.erlang.org/.
3 https://www.graphviz.org/.

https://www.erlang.org/
https://www.graphviz.org/
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Fig. 3. reverCSP architecture.

3.3 Architecture and Implementation Details

Figure 3 shows the architecture of reverCSP. The source code is parsed by mod-
ule CSP tracker to produce an initial state (of the operational semantics). This
state is used by module Forward Computation to perform a forward step and
generate the associated track. If we want to reverse the computation, then mod-
ule Backward Computation can update the state with the information of the
track. When required, module CSP tracker serves the parsed code to the other
modules and performs semantic steps from a given state. The interface interacts
with the user and continuously displays the trace of the computation.

4 Related Work

There exist different works that propose techniques for rollback-recovery [5] and
for reversibility in sequential systems [15] and concurrent systems [11]. Our sys-
tem, reverCSP, is a replay debugger that uses tracks to record the execution. In
the core of our tool we use a library called CSP-tracker [13] that can be invoked
to produce tracks. One interesting tool that is related to our work is CauDEr
[10]. It can also causal-consistently reverse computations, but in this case for
Erlang and using a different notion of track. The idea of reversing computations
in a causally-consistent manner was introduced in [4] for CCS. Since then, differ-
ent approaches have emerged. A survey that very nicely describes some of those
approaches is [9].

There are other systems such as [1,2] and [11] that are somehow related to
our tool. The work in [1] proposes a modular framework that can be used to
define causal-consistent reversible extensions of different concurrent models and
languages. The extension of tracks that we defined was inspired by that work.
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Another interesting work that also proposes a tool that can reverse computa-
tions, this time for a CSP-based language embedded in Scala, was presented by
Brown and Sabry [2]. Unfortunately, the implementation is not publicly avail-
able. Finally, Lanese et al. [11] proposed a novel approach called controlled
causal-consistent replay where the debugger displays all and only the causes
of an error. These approaches are also related to causally-consistent dynamic
slicing [14], but there are important differences: They target pi calculus and we
target CSP. Our tool is based on tracks to reverse computations, while dynamic
slicing uses execution traces to compute program slices that contain the parts of
the source that could influence a given behavior.

5 Conclusions

This paper described reverCSP, a tool for the animation and analysis of CSP
specifications. On the practical side, reverCSP can be seen as a CSP animator
with the ability to replay and reverse computations. This ability is provided by
the fact that reverCSP records every execution step of the computation in a
graph-like data structure called track.

We have extended the original definition of track to incorporate timestamps
that make explicit the order in which the components of the specification were
executed; and this order allows us to reverse the computation. reverCSP imple-
ments different functionalities such as step-by-step forward and backward execu-
tion, random (multiple) steps, undo, and rollback. Besides, it allows to perform
both deterministic and causally-consistent reversible steps.

Because reverCSP (re)generates the corresponding part of the track with
every computation step, the complete track is available to perform different
post-mortem analyses. One of them is program slicing, which was already imple-
mented in a tool called CSP-tracker. As future work we plan to adapt our anal-
yses to also implement a causally-consistent dynamic program slicer based on
tracks for CSP.
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Abstract. In this work, we say that a computation is reversible if one
can find a procedure to undo the steps of a standard (or forward) compu-
tation in a deterministic way. While logic programs are often invertible
(e.g., one can use the same predicate for adding and for subtracting nat-
ural numbers), computations are not reversible in the above sense. In
this paper, we present a so-called Landauer embedding for SLD reso-
lution, the operational principle of logic programs, so that it becomes
reversible. A proof-of-concept implementation of a reversible debugger
for Prolog that follows the ideas in this paper has been developed and is
publicly available.

1 Introduction

In this work, we say that a semantics is reversible if there exists a deterministic
procedure to undo the steps of any computation (often called backward deter-
minism). The ability to explore the steps of a computation back and forth is
particularly useful in the context of program debugging, as witnessed by several
previous tools like Undo [8], rr [6] or CauDEr [4], to name a few.

In this paper, we present a reversible version of SLD resolution [5], the oper-
ational semantics of logic programs, that may constitute the basis of a reversible
debugger for Prolog. As is well known, logic programming is already invertible,
i.e., one can exchange the input and output arguments of a predicate so that,
e.g., the same predicate is used both for addition and for subtraction of natural
numbers. However, SLD resolution is in principle irreversible according to the
definition above. Nevertheless, given an irreversible semantics, one can always
define an instrumented version which is reversible (this process is often called
reversibilization) by defining an appropriate Landauer embedding [3], i.e., by
adding a “history” to each state with enough information to undo the steps of
a computation. However, defining a non-trivial Landauer embedding for SLD
resolution is particularly challenging due to non-determinism and unification.
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Let us first briefly recall some basic notions from logic programming (see, e.g.,
[1,5] for more details). A query is a finite conjunction of atoms which is denoted
by a sequence of the form A1, . . . , An, where the empty query is denoted by true.
A clause has the form H ← B1, . . . , Bn, where H (the head) and B1, . . . , Bn (the
body) are atoms, n ≥ 0 (thus we only consider definite logic programs, i.e., logic
programs without negated atoms in the body of the clauses). Clauses with an
empty body, H ← true, are called facts, and are typically denoted by H.

In the following, atoms are ranged over by A,B,C,H, . . . while queries (pos-
sibly empty sequences of atoms) are ranged over by A,B, . . . Substitutions and
their operations are defined as usual; they are ranged over by σ, θ, . . . In par-
ticular, the application of a substitution θ to a syntactic object o is denoted by
juxtaposition, i.e., we write oθ rather than θ(o). We denote by σ ◦ θ the compo-
sition of substitutions σ and θ. Moreover, id denotes the identity substitution A
variable renaming is a substitution that is a bijection on the domain of variables.
A substitution θ is a unifier of two atoms A and B iff Aθ = Bθ; furthermore, θ
is the most general unifier of A and B, denoted by mgu(A,B) if, for every other
unifier σ of A and B, we have that θ is more general than σ.

A logic program is a finite sequence of clauses. Given a program P , we say
that A,B′ �P,σ (B,B′)σ is an SLD resolution step1 if H ← B is a renamed
apart clause (i.e., with fresh variables) of program P , in symbols, H ← B << P ,
and σ = mgu(A,H). The subscript P will often be omitted when the program
is clear from the context. An SLD derivation is a (finite or infinite) sequence of
SLD resolution steps. A terminating SLD derivation can be either successful, if
it ends with the query true, or failed, if it ends in a query where the leftmost
atom does not unify with the head of any clause. SLD derivations are represented
by a (possibly infinite) finitely branching tree, which is called SLD tree, where
choice points (queries with more than one child) correspond to queries where
the leftmost atom unifies with the head of more than one program clause.

Consider, for instance, the following simple logic program:

p(b, b, Y ) ← q(Y ), r(Y, Y ).
q(b).
r(b, b).

Given the query p(X, b, b), r(b,X), we have the following SLD derivation:

p(X, b, b), r(b,X) �θ q(b), r(b, b), r(b, b) � r(b, b), r(b, b) � . . .

with θ = {X/b, Y/b}. In order to undo, e.g., the first step in this derivation, we
face several problems:

– First, one needs to know the applied rule, since there exist several possibilities;
for instance, one can always consider undoing the application of a fact by

1 In this paper, we only consider Prolog’s computation rule, so that the selected atom
in a query is always the leftmost one.
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adding a call to this predicate to the left of the current query. E.g., one could
go backwards from q(b), r(b, b), r(b, b) to q(b), q(b), r(b, b), r(b, b), which is not
the desired backward step.

– Second, we need to “unapply” the computed substitution in this step (which is
applied to all the atoms of the query). Unfortunately, there is no deterministic
way to do that. E.g., given the last atom r(b, b) in the second query, we can
undo the application of θ and get r(b,X) but also r(X, b) or r(X,X).

– Finally, we have no deterministic way to obtain the selected call in the previ-
ous goal, even if we know the applied rule and the computed unifier (this is
also related to the previous point and the fact that there is no deterministic
way to undo the application of a substitution).

Of course, one could define a trivial Landauer embedding where all queries in a
derivation are stored, e.g.,

〈p(X, b, b), r(b,X); [ ]〉 �θ 〈q(b), r(b, b), r(b, b); [p(X, b, b), r(b,X)]〉
� 〈r(b, b), r(b, b); [q(b), r(b, b), r(b, b); p(X, b, b), r(b,X)]〉
� . . .

but the overhead would be very high since we would need to store the entire
derivation. In the next section, we present a more efficient approach.

2 A Reversible Semantics for Logic Programs

In this section, we present a reversible version of SLD resolution. In principle,
in order to avoid the nondeterminism when undoing the application of a substi-
tution, one could consider some non-standard queries where computed substitu-
tions (mgu’s) are not applied to the atoms of the query but stored in a list. For
instance, one could redefine SLD resolution as follows:

〈A,B′; [θn, . . . , θ1]〉 �P,θn+1 〈B,B′; [θn+1, θn, . . . , θ1]〉

if H ← B << P and mgu(Aθ1 . . . θn,H) = θn+1. An initial query A would now
have the form 〈A; [ ]〉. Of course, this definition introduces some additional (pos-
sibly unavoidable) overhead since the computed substitutions must be composed
and applied at each resolution step.

However, this is not enough to make SLD resolution reversible. Additionally,
one would also need to store the selected call of the previous query, since it
cannot be obtained even if we know the applied rule and keep the computed
substitutions in a list. Furthermore, we need to know how many (leftmost) atoms
should be discarded when performing a backward step (i.e., we need to store the
number of atoms in the body of the applied clause).

In summary, we define our (forward) reversible SLD resolution semantics
(denoted by ⇀) as shown in Fig. 1, where the auxiliary function subst is used
to compute the (partial) answer computed so far from the current history (this
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notion is formalized below). In this semantics, reversible queries have the form
〈B;H〉, where B is a standard query (a sequence of atoms) and H, the history,
is a list of elements of the form fail(A) or unf(A,H,m). The first one, fail(A), is
used to denote that A is the last query of a failing derivation (i.e., the leftmost
atom in A unifies with the head of no clause). The second one, unf(A,H,m), is
used for unfolding steps, where A is the selected call of the query (the leftmost
atom), H is the head of the applied clause, and m is the number of atoms in the
body of this clause. This is enough to make SLD resolution reversible.

It is worthwhile to note that we have chosen to store elements of the form
unf(A,H,m) instead of unf(A, θ,m) as observed above. This decision might intro-
duce some additional overhead since we should not only compose and apply the
computed substitutions at each step, but we must also recompute the mgu’s of
all considered pairs of atoms (A,H) once per forward step. Nevertheless, storing
pairs (A,H) instead of the corresponding mgu’s is rather convenient since we do
not need to implement (expensive) operations like substitution composition and
application, but rely on Prolog’s native unification and propagation of variable
bindings. There are, however, several possible optimizations that can be applied
to improve performance, like storing mgu’s as lists of pairs Variable = value (as
suggested by one of the reviewers of this paper). This is left as future work.

In the following, we use Haskell’s notation for lists so that E : H denotes a
history where E is the first element and H contains the remaining elements of
the list; the empty history is denoted by an empty list [ ]. Moreover, we also
use Haskell’s list concatenation operator, ++, so that H++[E] denotes a history
that begins with the elements of list H and ends with element E.

Fig. 1. Reversible SLD resolution: forward semantics.

Let us briefly explain the rules of the reversible forward semantics in Fig. 1:

– Rule success is used to denote the end of a successful derivation. Here,
σ denotes the computed answer substitution of the derivation (typically
restricted to the variables of the initial goal), where the auxiliary function
subst is defined as follows:

subst(H) =
{
mgu(A,H) ◦ subst(H′) if H = H′++[unf(A,H,m)]
id if H = [ ]
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Intuitively speaking, subst(H) computes the substitution encoded by the ele-
ments in H. In this rule, we add nothing to the current history since the step
is trivially reversible.

– Rule failure is used to denote the end of a failing derivation. Essentially, a
query fails when the (instantiated) leftmost atom, Aσ, does not unify with
the head of any program clause, where σ is the substitution encoded by the
current history. In this case, we store an element fail(A,B) since the current
goal is needed to undo the step.

– Finally, rule unfold performs an unfolding step. In this case, we add an element
unf(A,H,m) to the history, where A is the selected atom (the leftmost atom
of the query), H is the head of the considered (renamed apart) clause, and
m is the number of atoms in the body of this clause.

Consider again the program from Sect. 1 and the initial query p(X, b, b), r(b,X).
An (incomplete) reversible SLD derivation is then as follows:

〈p(X, b, b), r(b,X); [ ]〉
⇀ 〈q(Y ), r(Y, Y ), r(b,X); [unf(p(X, b, b), p(b, b, Y ), 2)]〉
⇀ 〈r(Y, Y ), r(b,X); [unf(q(Y ), q(b), 0), unf(p(X, b, b), p(b, b, Y ), 2)]〉

Now, we have enough information in each query in order to deterministically
undo a step. The corresponding backward semantics (denoted by ↽) is shown in
Fig. 2, where each forward rule (e.g., unfold) has a counterpart in the backward
semantics (e.g., unfold). The rules are self-explanatory. Note that H is not needed
in rule unfold; it was only stored in order to be able to compute the mgu’s of the
derivation for the next steps of the forward computation.

Fig. 2. Reversible SLD resolution: backward semantics.

We note that extending our developments to SLD resolution with an arbi-
trary computation rule (i.e., different from Prolog’s rule, which always selects
the leftmost atom) is not difficult. Basically, one only needs to extend the unf
elements as follows: unf(A,H, i,m), where i is the position of the selected atom,
and m is the number of atoms in the body of the applied clause (as before).

The following result states the correctness of our reversible semantics (it can
be proved by a simple induction on the length of the considered derivation):
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Theorem 1. Let P be a logic program and A a query. Given a forward deriva-
tion 〈A1,H1〉 ⇀ . . . ⇀ 〈An,Hn〉, there exists a unique (deterministic) backward
derivation of the form 〈An,Hn〉 ↽ . . . ↽ 〈A1,H1〉. Moreover, both derivations
perform exactly the same number of steps.

For instance, given the previous (incomplete) forward derivation, we can produce
the following backward derivation:

〈r(Y, Y ), r(b,X); [unf(q(Y ), q(b), 0), unf(p(X, b, b), p(b, b, Y ), 2)]〉
↽ 〈q(Y ), r(Y, Y ), r(b,X); [unf(p(X, b, b), p(b, b, Y ), 2)]〉
↽ 〈p(X, b, b), r(b,X); [ ]〉

3 Discussion

To the best of our knowledge, no other reversible debugger for Prolog has been
defined. Typical Prolog debuggers are based on the so called “box model”, where
every predicate call or atom, A, has four associated events: call, the initial call
to A; exit, when unification of A with the head of a program clause succeeds;
redo, when A is tried again after backtracking; and fail, when A does not unify
with any other head clause. Typically, debuggers can only proceed forward in
the computation or redo the current goal. The closer approach we are aware
of is that of Opium [2], which introduces a trace query language for inspecting
and analyzing trace histories. In this tool, the trace history of the considered
execution is stored in a database, which is then used for trace querying. Several
analysis can then be defined in Prolog itself by using a set of given primitives to
explore the trace elements.

A proof-of-concept implementation of a Prolog reversible debugger that fol-
lows the ideas in this paper has been developed. It is publicly available from
https://github.com/mistupv/Prolog-reversible-debugger. The main features of
our debugger are the following:

– It implements both the (nondeterministic) forward semantics and the (deter-
ministic) backward semantics presented in the previous section. Some addi-
tional extensions include dealing with built-in’s, using colors and other visual
improvements, etc. Essentially, the debugger shows a trace including every
call and whether it succeeds (exit) or fails. Calls that unify with the head of
more than one clause (choice points) are distinguished in bold. In contrast
to traditional Prolog debuggers, we show the entire goal and underline the
selected atom, rather than showing only the selected atom.

– The SLD tree of a query can be explored step by step using the cursor
arrows: down (next step), up (previous step), left/right (considering alter-
native clauses for choice points). When a derivation ends with failure, press-
ing the down arrow will jump to the next pending choice (backtracking). In
particular, we follow Prolog’s search strategy, where clauses are considered in
their textual order (from top to bottom) and the SLD tree is explored using

https://github.com/mistupv/Prolog-reversible-debugger
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a depth-first strategy with backtracking (despite the fact that this strategy
is incomplete [1]). However, the debugger cannot undo a backtracking step.
If we press the up arrow after a backtracking step jumps to the next alter-
native of a choice point, the debugger will show the previous goal in this
derivation (the parent of this node) rather than the failing leaf that caused
backtracking. This was a design decision to ease the exploration of a given
computation (following the ideas in this paper). Finally, if a derivation ends
with an empty query (a successful derivation), the computed answer is shown.
Alternative derivations (if any) can be explored by typing “;” (as in Prolog).

– We have also implemented a “continuous” mode (pressing “s”, a shorthand
for “skip”), where the entire trace up to a leaf of the SLD tree (either a failure
or a success) is shown.

Consider, for instance, the following example:

p(X,Y) :- q(X), r(X,Y).
q(a).
q(f(X)) :- X is 2+1.
q(c).
r(f(X),f(X)).

where the built-in is/2 evaluates the expression in the second argument and
unifies it with the first argument. A typical session looks as follows:

Call : p(A, B)
Exit : p(A, B) ↓

Call : q(A), r(A, B)
Exit : q(a), r(a, A) ↓

Call : r(a, A)
Fail : r(a, A)

so our first derivation is a failing one. Now, if we press the up arrow once, we
get back to

Call : p(A, B)
Exit : p(A, B)
Call : q(A), r(A, B)
Exit : q(a), r(a, A)

and we can consider the next choice (pressing the right arrow), ending up with
the following successful derivation:
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Call : p(A, B)
Exit : p(A, B) ↓

Call : q(A), r(A, B)
Exit : q(f(A)), r(f(A), B) ↓

Call : A is 2 + 1, r(f(A), B)
Exit : 3 is 2 + 1, r(f(3), A) ↓

Call : r(f(3), A)
Exit : r(f(3), f(3))
**Solution [p(A,B)]:A = f(3), B = f(3)

Our reversible debugger can be a useful tool both for program understanding
and for locating the source of a misbehaviour.

The development of a reversible debugger is an ongoing work, so several
extensions are planned. In particular, we would like to consider more Prolog
features (e.g., deal with exceptions, so that one can explore a computation back-
wards from a runtime error) as well as introducing a technique for record and
replay. Often, one is not interested in exploring all the SLD tree but just a single
root-to-leaf derivation (the one that led to the misbehaviour). Here, being able
to produce a log of the considered computation and use this log to replay only
this particular derivation in our reversible debugger might be useful.

As for the overhead, we consider several possibilities: first, we can consider a
more efficient representation by storing pairs Variable = value instead of atoms,
as discussed in Sect. 2; moreover, we could simplify the stored unification prob-
lems (the pairs A,H) when they cannot affect the current query (e.g., when they
are ground or the bindings do not affect to other atoms); also, one might con-
sider the introduction of “spy points” (as in the standard debugger for Prolog)
so that the reversible mode is restricted to some computations rather than the
entire SLD tree. Finally, we also plan to explore the definition of a reversible
linear semantics for Prolog, analogous to that of [7]. This approach might be
useful to undo backtracking steps.

Acknowledgements. The author gratefully acknowledges the anonymous referees for
their useful comments and suggestions.
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Abstract. Software transactional memory (STM) is a concurrency con-
trol mechanism for shared memory systems. It is opposite to the lock
based mechanism, as it allows multiple processes to access the same set
of variables in a concurrent way. Then according to the used policy, the
effect of accessing to shared variables can be committed (hence, made
permanent) or undone. In this paper, we define a formal framework for
describing STMs and show how with a minor variation of the rules it is
possible to model two common policies for STM: reader preference and
writer preference.

Keywords: STM · Transactions · Concurrency

1 Introduction

Starting from the 1960s, reversible computing has been studied in several con-
texts ranging from quantum computing [6], biochemical modelling [7], program-
ming [8,9], and program debugging [10,15]. Distributed reversible actions can
be seen as defeasible partial agreements: the building blocks for different trans-
actional models and recovery techniques. The work of Danos and Krivine on
reversible CCS (RCCS) [1] provides a good example: they show how notions
of reversible and irreversible actions in a process calculus can model a primi-
tive form of transaction, an abstraction that has been found useful, in different
guises, in reliable concurrent and distributed programming. Since the seminal
work of [1], other works have investigated the interplay between transactions
and reversibility [2,11] in the area of message passing systems. On the shared
memory side, we just recall the work of [12] where a CCS endowed with a mech-
anism for software transactional memories (STMs) is presented. Another work
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about reversibility and a high-level abstraction of shared memory (tuple spaces)
is presented in [16].

Software Transactional Memory [3,4] is an elegant way to address the prob-
lem of concurrent programming, by relieving the programmer from the burden of
dealing with locks. The lock-based approach is error prone and usually leads to
deadlocks when the complexity of the system grows. Opposite to the lock-based
approach, STM uses transactions. A transaction is a block of code accessing
shared data which is meant to be executed atomically with an “all or nothing”
policy: that is either all the effects of a transaction have to be visible when it
commits, or none of them has to be visible in case of abortion. This abstrac-
tion allows for multiple transactions to be executed “at the same time”. The
programmer just needs to specify the sequences of operations to be enclosed in
transactions, while the system is in charge of the interleaving between the con-
current transactions. A transaction can either commit and update the system
permanently or abort and discard all the changes done by its execution.

In this work, we are interested in the interplay between reversible comput-
ing and the STM approach to control the concurrent executions. Therefore, we
present a formal framework for describing STMs in a simple shared memory
context. In particular, when a transaction aborts, it is necessary to discard all
the updates that it made and we need to bring the system back to the state
before the execution of the transaction. To accomplish the behaviour above, we
implement a rollback operator following the approach given in [13]. A transac-
tion can access a shared variable either in read or in write mode. Given this,
different policies can be used to regulate the transactions which are accessing
the same value in the shared memory. According to the implemented policy,
some transactions will succeed and some will be aborted. We will show how it is
possible to model writer and reader preference [5] in our framework. Consider
the following C-like code where two functions/threads access the same shared
variables:

int x = 0 ;
int y = 5 ;
int z = 0 ;

void t1 ( )
{z = y+x ; }

void t2 ( )
{ x = z+1; }

t1 ; t2 t2 ; t1 t1 | t2
z = 5 z = 6 z = 5
x = 6 x = 1 x = 1

All the possible executions of the two functions are reported above: either the two
functions are executed sequentially or are interleaved (leading to an unwanted
state). If we wrap the two functions into two atomic blocks then the third
behaviour would be automatically ruled out by the system as one of the two
transactions will be aborted depending on the implemented policy.

2 Syntax

In this section we give the syntax of our calculus. Let us assume the existence
of the mutually disjoint sets V (a set of variables) and I (a set of transaction
identifiers), ranged over by x, y, z and t, h, respectively.
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Fig. 1. Syntax

The syntax of the calculus is given in Fig. 1. Write and read access to the
variable x are represented with actions wr(x) and rd(x). The sequential execu-
tion of the actions wr(x) and rd(x) together with the choice operator + build
the processes, given with A,B productions. The term t : �A�Γ represents a trans-
action, where t is a unique identifier, A is the body of the transaction and Γ is
the set recording the identifiers of the transactions which have the write access
to the variable that transaction t has to read. The idea behind the set Γ is to
allow transaction t to have read access to any variable, but to record the write
access to them. In this way if the transaction that writes on the variable fails,
the transaction that reads the same variable has to fail too. More explanations
will be given in Sect. 3.

Transactions, together with processes, build expressions. An expression can
be prefixed with the actions wr(x) and rd(x) and we denote it as α.X. Two
expressions X and Y can be executed in parallel, X |Y , or in sequential order
X;Y . We can note that the expression X can be the process that is not inside of
the transaction, and that operation ; allows us to have a transaction followed by
an action (for example t : �A�Γ ; wr(x)). The whole system, called configuration,
is denoted with C and it represents the expressions together with the shared
memory. The shared memory M is made of triples of the form 〈x,W,R〉 for
every variable in the system. In 〈x,W,R〉, x is the variable name, W and R are
the sets recording transactions which had write and read access to x, respectively.
Let us note that we abstract away from the value contained by variables, since
this is not relevant for our framework. We just need to record whether a variable
is read (a transaction reads its value) or modified (a transaction changes its
value).

In order to write expressions in a more compact way, we define
the notion of history context. For instance, having a transaction t :
�wr(x).rd(x1)rd(y).A + B�Γ we can write it as t : �H[rd(x1)rd(y).A]�Γ where
H = wr(x). • +B. Formally:

Definition 1 (History context). A history context H is a process with a hole
•, defined by the following grammar: H ::= • |α. • +A.
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3 Semantics

The semantics of our calculus is presented in two steps. First, we give the basic
rules of the framework (common to all the policies) and then, we present the extra
rules, necessary to model reader or writer preference. With reader preference,
we intend that reading the value of a variable is always possible, i.e. no read
access should be suspended, unless the write access already took place. Writer
preference, on the other side, allows the write access to the value of a variable
x even if some read access already took place. In this case, all the executing
transactions with the read access to a value x need to be aborted and brought
back to their initial state.

In what follows we provide the auxiliary functions necessary for the semantics
of the calculus: the function which computes the set of the transaction identifiers
of a given expression and the operation which removes transaction identifiers
from the system.

Definition 2 (Set of the transaction identifiers). The set of the transaction
identifiers of a given expression X, written id(X), is inductively defined as:

id(Y |Y ′) = id(Y ) ∪ id(Y ′) id(α.Y ) = id(Y ) id(A) = ∅
id(Y ;Y ′) = id(Y ) ∪ id(Y ′) id(t : �A�Γ ) = {t}

Definition 3 (Removing of identifiers). The operation of deleting transac-
tion identifier t from the configuration C, denoted as C@t, is defined as follows:

(X ‖ M)@t = X@t ‖ M@t (α.X)@t = α.(X@t)
(X|Y )@t = X@t|Y@t (t′ : �A�Γ )@t = t′ : �A�Γ\t

(X;Y )@t = X@t;Y@t (〈x,W,R〉 ‖ M)@t = 〈x,W \ t, R \ t〉 ‖ M@t

When a transaction fails, the effects of the internal computation are undone
and the entire transaction is restarted, that is, brought back to its initial state. As
a consequence, the transactions depending on it are also rolled back. Dependency
between transactions changes with the chosen preference. We shall see more
information about the preferences by the end of this section.

To be able to identify the state of the internal computation of a trans-
action, we mark it with symbol ∧. For instance, if we consider transaction
t : �rd(x).rd(y).∧wr(z).wr(x′)�Γ , the actions rd(x) and rd(y) represent the past
of the transaction and the action wr(z) is the next action to be executed.

Now we define our rollback operator which brings a transaction back to
its initial state i.e. the symbol ∧ is placed in the beginning of the trans-
action and its set Γ is empty. For instance, if we roll back transaction t :
�rd(x).rd(y).∧wr(z).wr(x′)�Γ , we obtain t : �∧rd(x).rd(y).wr(z).wr(x′)�∅. For-
mally, we have:

Definition 4 (Rollback operator). The rollback operator on the transaction
t : �A�Γ , written roll(t), is defined as: roll(t) = t : �∧A�∅.
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Fig. 2. Common rules for both models

In what follows, we give the semantics of our calculus. We shall start by
introducing semantics rules representing the base of our framework (rules that
are common for both models) and then we show the additional rules for each
preference.

The common rules are given in Fig. 2. An action executed outside a trans-
action can be seen as an atomic step in which the action is discarded after the
execution (rules WriteP and ReadP). Therefore, there is no need to keep track
of its access to the variable. The only constraint is that they cannot access the
variable while some transaction has read or write access to it.

Rule Write describes when a transaction can modify the content of a vari-
able. To do so, there should not be another transaction which has already
accessed the variable in either writing or reading mode. After the execution,
the identifier t is added to the write access set W of the variable x and the
symbol ∧ is moved to the next computational step. Rule Read allows the trans-
action t to execute the action rd(x) at any moment. Then the identifier t is
added to the set R of the variable x and the set W \ t is added to the set Γ (if
write and read access to the variable x are in the same transaction t, then it is
not necessary to save the identifier t into a set Γ ).

To have a better intuition about these two rules, we give a simple example.
Consider the transaction t with a corresponding shared memory

t : �∧wr(x).rd(y)�∅ ‖ 〈x, ∅, ∅〉 ‖ 〈y, ∅, ∅〉
After executing the write access to the variable x, we obtain the system

t : �wr(x).∧rd(y)�∅ ‖ 〈x, {t}, ∅〉 ‖ 〈y, ∅, ∅〉
where the pointer ∧ is moved to the next action and the identifier t is added to
the write set of the variable x. Now we can perform the read access to variable
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y and we have:

t : �wr(x).rd(y)∧�∅ ‖ 〈x, {t}, ∅〉 ‖ 〈y, ∅, {t}〉

where the identifier t is added to the read set of the variable y. The set Γ of the
transaction t remains empty since there is no transaction which had write access
to variable y.

Rule Par allows expressions to execute in parallel (in an interleaving fash-
ion) ensuring the uniqueness of the identifier t. By executing its last action, the
transaction t can commit if the set Γ is empty, by applying the rule Commit.
After it commits, the execution proceeds with the continuation Y and the iden-
tifier t is deleted from the remaining system. The intuition is that transaction t
can commit if the other transactions, having a write access to the variables that
transaction t read, have been committed. The rollback of the transaction t can
be done with the rule RollR. It will force every transaction in parallel having
the identifier t in their set Γ to roll back too. The intuition is that when the
transaction with wr(x) rolls back, every transaction which has read access to
x should roll back as well. For instance, let us consider the system containing
following transactions:

t : �A�Γ | t1 : �A1�{t} | t2 : �A2�Γ2
such that rd(x) ∈ A1 and t /∈ Γ2

and that transaction t needs to be rolled back. Then, by applying the rule
RollR, we obtain the system:

roll(t) | roll(t1) | t2 : �A2�Γ2

in which transaction t1 is rolled back too since t ∈ Γ1 while t2 remains the same.
Now we can give the rules necessary to model reader and writer preference.

To give a better intuition about the differences between the two models, we use
the example from the introduction as a running example.

Reader Preference. To model the reader preference we use the rules from Fig. 2
and the rule given below.

(R-RollW)
(W �⊆ {t} ∨ R �⊆ {t})

t : �H[
∧
wr(x).A]�Γ ‖ 〈x, W, R〉 ‖ M → roll(t) ‖ 〈x, W, R〉@t ‖ M@t

The rollback operator is triggered when the transaction t cannot write on the
variable x (this happens when W �⊆ {t} or R �⊆ {t}). With the rule R-RollW
the transaction t goes to the state roll(t), i.e. the initial state of the transaction.
Additionally, the identifier t is removed from every triple of the shared memory.

To illustrate it, we use the example from the introduction, abstracting away
from the read and write values contained in variables and representing accesses
of two threads to the shared memory in our framework with transactions t1
and t2. Transaction t1 has read accesses to variables y and x and then writes on
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variable z, while t2 has read access to variables z and then writes on x. We have
the following system

t1 : �∧rd(y).rd(x).wr(z)]�∅ | t2 : �∧rd(z).wr(x)]�∅ ‖ 〈x, ∅, ∅〉 ‖ 〈y, ∅, ∅〉 ‖ 〈z, ∅, ∅〉
We assume that read accesses are executed in parallel and the obtained system
is

t1 : �rd(y).rd(x).∧wr(z)]�∅ | t2 : �rd(z).∧wr(x)]�∅ ‖ 〈x, ∅, {t1}〉 ‖ 〈y, ∅, {t1}〉 ‖ 〈z, ∅, {t2}〉

Now transaction t1 is executing write access to variable z but since in the
memory for variable z we have R �⊆ {t1} (R = {t2}), the transaction t1 needs to
roll back according to the rule R-RollW, and we have

roll(t1) | t2 : �rd(z).∧wr(x)]�∅ ‖ 〈x, ∅, ∅〉 ‖ 〈y, ∅, ∅〉 ‖ 〈z, ∅, {t2}〉
where roll(t1) = t1 : �∧rd(y).rd(x).wr(z)]�∅.

Writer Preference. To model the writer preference we use the rules from Fig. 2
and the rules given below.

(W-Pref)
W ⊆ {t} ∧ R �⊆ {t} ∧ R

′
= R \ t

t : �H[
∧
wr(x).A + B]�Γ |

∏

ti∈R′
ti : �Ai�Γi

‖ 〈x, W, R〉 ‖ M → t : �H[wr(x).
∧

A + B]�Γ |
∏

ti∈R′
roll(ti) ‖ 〈x, W ∪ t, R〉@ti

‖ M@ti

(W-RollW)
(W �⊆ {t})

t : �H[
∧
wr(x).A]�Γ ‖ 〈x, W, R〉 ‖ M → roll(t) ‖ 〈x, W, R〉@t ‖ M@t

The rollback is triggered by the writer only in the case when another trans-
action has write access to the same variable. Therefore the condition on the rule
W-RollW is simply W �⊆ {t}. The additional rule, with respect to the reader
preference is the rule W-Pref. It allows a transaction to modify the value of a
variable x if other transactions have read access to it. At the same time, all trans-
actions executing in parallel whose identifiers belong to the set R, are requested
to roll back.

To illustrate it, we use the same example as for the reader preference where
read accesses are executed already. Therefore, we have the system

t1 : �rd(y).rd(x).∧wr(z)�∅ | t2 : �rd(z).∧wr(x)]�∅ ‖ 〈x, ∅, {t1}〉 ‖ 〈y, ∅, {t1}〉 ‖ 〈z, ∅, {t2}〉

Now we can execute the write access to variable z, since in the rule W-Pref
the condition for the read set R allows a transaction to perform the write access,
and in that case all transactions in parallel having read access to variable z need
to be rolled back. Therefore, transaction t1 executes write access, while t2 will
be rolled back, and we have:

t1 : �rd(y).rd(x).wr(z)∧�∅ | roll(t2) ‖ 〈x, ∅, {t1}〉 ‖ 〈y, ∅, {t1}〉 ‖ 〈z, {t1}, ∅〉
where roll(t2) = t2 : �∧rd(z).wr(x)]�∅.
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4 Conclusion and Future Work

We have presented a framework to express the STM mechanism in a simple
shared memory context. The framework is able to model two different policies
for the execution of the concurrent transactions: writer and reader preference.
Our intention is to start from a simple calculus and then to add in a modular
way: nested transactions, data structures (e.g., C structures) and more complex
scheduling policies. Nested transactions will require to record for each transac-
tion a list of its children transactions. These children inherit the access of the
parent transaction. There exist different policies to deal with nested transactions:
closed nested transactions [17] and open nested transactions [18]. The difference
is that in the first case the parent does not execute till all the children have com-
mitted, while in the second case the parent can commit even before its children.
This may lead to inconsistencies which have to be dealt with compensations.

Our ultimate goal is then to prove that the modular framework satisfies the
opacity [14] property, that is, all the execution traces of our semantics, where
the transactional bodies are interleaved, are equivalent to executions in which
transactional blocks are executed as a whole (in a lock-based fashion) without
being interleaved with other transactions.
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Abstract. Reversing Petri nets (RPNs) have been proposed as a
reversible approach to Petri nets, which allows the transitions of a net to
be reversed. This work presents an approach towards an implementation
of RPNs to support their simulation and analysis. Specifically, we define
how to model RPNs in Answer Set Programming (ASP), a declarative
programming framework with competitive solvers. We highlight how the
methodology can be used to reason about the behavior of RPN models.

1 Introduction

Reversibility is a phenomenon referring to the ability of a system to execute
its actions in both the forward and the reverse directions. It occurs in a vari-
ety of systems (e.g., quantum computation and biochemical systems) and can
be exploited in many others (e.g., robotics, manufacturing systems, distributed
systems, and logical circuits). Recently, its study has been receiving increased
attention. Among the developments, a variety of formal frameworks of modeling
reversible systems have been defined, contributing towards an improved under-
standing of the basic principles of reversibility. A natural next step for this work
is the development of techniques for the automatic analysis of reversible models.

In this paper we consider reversing Petri nets (RPNs) [8], a recently-proposed
Petri-net framework that allows transitions to be carried out in both the forward
and the reverse directions in or out of causal order. Specifically, we present work
in progress towards a framework for simulation and analysis of RPN models via
an encoding into Answer Set Programming (ASP) [5,7] a declarative program-
ming framework with competitive solvers that may be used to model a system
as well as a query about the system via a logic program, such that models of the
program provide the answers to the set query. ASP has proved to be a promising
approach towards reasoning about Petri nets with encodings to ASP having been
defined for a number of Petri net subclasses, e.g. [1–3,6]. In this paper we provide
a systematic way of modelling RPNs and their causal reversibility semantics in
ASP. Our long term goal is the development of an ASP-based framework for
reasoning about RPN models.
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2 Reversing Petri Nets

In this section we briefly recall RPNs and we refer the reader to [8,9] for the full
exposition. Following [9], RPNs are cyclic structures defined as follows:

Definition 1. A reversing Petri net (RPN) is a tuple (A,P,B, T, F ) where:

1. A is a finite set of bases or tokens ranged over by a, b, . . .. We write A = {a |
a ∈ A} and A = A ∪ A.

2. P is a finite set of places and T a finite set of transitions.
3. B ⊆ A × A is a set of undirected bonds ranged over by β, γ, . . .. We write

a−b for a bond (a, b) ∈ B, B = {β | β ∈ B}, and B = B ∪ B.
4. F : (P × T ∪ T × P ) → 2A∪B defines a set of directed arcs.

RPNs are built on the basis of a set of bases or tokens each having a unique
name. Tokens may occur as stand-alone elements or merge together to form
bonds. Places and transitions have the standard meaning. Directed arcs connect
places to transitions and vice versa and are labelled by a subset of A ∪ B where
A and B are the sets of “negative” tokens and bonds, expressing token and bond
absence, respectively. For a label � = F (x, t) or � = F (t, x), we assume that each
token a can appear in � at most once, either as a or as a, and that if (a, b) ∈ �
then a, b ∈ �. Furthermore, for � = F (t, x) it must be that � ∩ (A ∪ B) = ∅.
F (x, y) = ∅ implies that there is no arc between x and y. Finally, we assume
that F is defined so that transitions (1) do not erase tokens, (2) do not destroy
bonds, and (3) do not clone tokens/bonds into more than one outgoing place.

We write ◦t = {x ∈ P | F (x, t) 	= ∅} and t◦ = {x ∈ P | F (t, x) 	= ∅}, pre(t) =⋃
x∈P F (x, t) and post(t) =

⋃
x∈P F (t, x), and define the effect of a transition as

eff(t) = post(t)−pre(t). Furthermore, we employ the notion of a marking defined
as a distribution of tokens and bonds across places, M : P → 2A∪B . In addition,
a history assigns a memory to each transition, H : T → 2N, where H(t) = ∅
captures that transition t has not taken place, or it has been reversed, and
H(t) = {k1, . . . , kn} captures that t was executed and not reversed n times where
the ki indicate the order of the execution instances. A pair 〈M,H〉 describes a
state of a RPN. Finally, we write con(a,C), where a ∈ C and C ⊆ A ∪ B, for
the connected component of token a in the graph described by C.

We proceed to define forward execution for RPNs.

Definition 2. Consider a RPN (A,P,B, T, F ), a transition t ∈ T , and a state
〈M,H〉. We say that t is forward enabled in 〈M,H〉 if:

1. if a ∈ F (x, t) (resp. β ∈ F (x, t)), for some x ∈ ◦t, then a ∈ M(x) (resp.
β ∈ M(x)), and if a ∈ F (x, t) (resp. β ∈ F (x, t)) for some x ∈ ◦t, then
a 	∈ M(x) (resp. β 	∈ M(x)),

2. if a ∈ F (t, y1), b ∈ F (t, y2), y1 	= y2, then b 	∈ con(a,M(x)) for all x ∈ ◦t,
3. if β ∈ F (t, x) for some x ∈ t◦ and β ∈ M(y) for some y ∈ ◦t, then β ∈ F (y, t).
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Definition 3. Given a RPN (A,P,B, T, F ), a state 〈M,H〉, and a transition t

forward enabled in 〈M,H〉, we write 〈M,H〉 t−→ 〈M ′,H ′〉 where:

M ′(x) =

⎧
⎨

⎩

M(x) − ⋃
a∈F (x,t) con(a,M(x)) if x ∈ ◦t

M(x) ∪ F (t, x) ∪ ⋃
a∈F (t,x)∩F (y,t) con(a,M(y)) if x ∈ t◦

M(x), otherwise

H ′(t′) =
{

H(t′) ∪ {max({0} ∪ {k | k ∈ H(t′′), t′′ ∈ T}) + 1}, if t′ = t
H(t′), otherwise

Thus, when a transition is executed all tokens and bonds on its incoming arcs are
relocated from its input to its output places with their connected components.

According to causal-order reversibility, a transition may be reversed only if all
transitions causally dependent on it have either been reversed or not executed:

Definition 4. Consider a RPN (A,P,B, T, F ), a state 〈M,H〉, and a transition
t ∈ T . Then t is co-enabled in 〈M,H〉 if H(t) 	= ∅ and, for all a ∈ F (t, x), if
a ∈ M(y) for some y and con(a,M(y)) ∩ pre(t′) 	= ∅ for some t′ then either
H(t′) = ∅ or there is k ∈ H(t) such that k > k′ for all k ∈ H(t′).

When a transition is reversed in a causal fashion, all tokens and bonds in the
postcondition of the transition and their connected components are transferred
to the incoming places of the transition and any created bonds are broken.

Definition 5. Given a RPN (A,P,B, T, F ), a state 〈M,H〉, and a transition t

co-enabled in 〈M,H〉, we write 〈M,H〉 t�c 〈M ′,H ′〉 where

M ′(x) =

⎧
⎨

⎩

M(x) ∪ ⋃
y∈t◦,a∈F (x,t)∩F (t,y) con(a,M(y) − eff(t)), if x ∈ ◦t

M(x) − ⋃
a∈F (t,x) con(a,M(x)), if x ∈ t◦

M(x) otherwise

H ′(t′) =
{

H(t′) − {k}, if t′ = t, k = max(H(t))
{k′ | k′ ∈ H(t′), k′ < k} ∪ {k′ − 1 | k′ ∈ H(t′), k′ > k}, otherwise

An example of a reversing Petri net can be seen in Fig. 1 simulating the
assembly of a three-component product. A principal process during the re-
manufacturing of worn-out or malfunctioning products is disassembly that
enables the dumping, cleaning, repair or replacement of components as desired.
Therefore, reversible computation can be used as means of modelling the dis-
assembly process while considering the product topology, mating relations, and
precedence relations. Here we have three tokens a, b, and c representing the
three components of an assembly line. Token d represents the machine required
in order to assemble the components into the final product. The system con-
sists of two independent transitions, t2 and t3 causally following transition t1,
and transition t4 causally following t2. This structure gives the ability to the
machine to directly bond component a with c by executing t3 or to indirectly
bond a with c through component b. The ability to reverse every transition in
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Fig. 1. Causal-order example

the context of manufacturing task planning, can be used in order to recover from
failures during the assembly process. In the figure, we observe the execution of
transition sequence t1; t3; t3; t2; t4, demonstrating a causally-ordered reversal of
transition t3 (denoted by t3) in order to accommodate the manufacturing of a
product consisting of a−b−c. Note that a non-empty history of transitions is
presented as a list over the transitions.

3 Translating RPNs into ASP

Answer Set Programming (ASP) [5,7] is an extension of logic programming with
negation as failure under the stable model or answer set semantics. An Answer
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Set Program is a set of rules of the form

A0 ← A1, A2, . . . Am, not Am+1, not Am+2, . . . not An

with the intuitive reading that if all atoms A1, A2, . . . , Am are true and none
of Am+1, Am+2, . . . , An is true, then A0 must be true. Most ASP systems, such
as clingo (https://potassco.org/clingo/) that we use for our encoding, extend
the basic language with additional constructs such as choice rules of the form
{A1

0, . . . , A
k
0} ← A1, . . . , Am, not Am+1, . . . not An, with the meaning that if the

right hand side of the rule holds, then some subset of the atoms {A1
0, . . . , A

k
0}

must hold true, which introduces a form of non-determinism that is useful when
modeling combinatorial problems. ASP systems, such as clingo, couple a highly
expressive language that provides constructs from various fields, such as database
systems and constraint programming, with powerful solvers. Therefore, these
systems can be successfully applied to a large number of application domains and
they have shown the potential of solving problems with thousands of variables
and hundreds of thousands of rules in seconds or minutes.

In the following we discuss a translation of reversing Petri nets under the
causal reversibility semantics into ASP for a simulation length that is encoded
by the last argument TS of the predicates of our model. The basic predicates
that represent the input network are trans(T), token(Q), and place(P), that
correspond to the transitions, tokens and places, respectively, whereas predi-
cates ptarc(P,T,Q) declare that Q ∈ F (P, T) (similarly for tparc(T,P,Q)) and
ptarcbond(P,T,Q1,Q2) refer to bonds, i.e. Q1-Q2 ∈ F (P, T). The markings of a
RPN are captured by predicates holds for tokens and holdsbonds for bonds.
That is, holdsbonds(P,Q1,Q2,TS) means Q1-Q2 ∈ MTS(P), where MTS refers
to the marking at step TS of the simulation.

In the following we discuss some excerpts of the RPN to ASP translation
that has been implemented in the clingo system.

Forward-enableness of Definition 2 is captured via notenabled(T,TS), which
assumes the value true if transition T cannot be enabled at step TS. Some of the
rules for this predicate are depicted in Listing 3.1. The first rule refers to the case
Q ∈ F (P, T) and Q 	∈ MTS(P), and the second to the similar case for bonds. The
rule in lines 5–6 corresponds to the second item of Definition 2, i.e. Q1 ∈ F (P1, T),
Q2 ∈ F (P2, T) and Q2 ∈ con(Q1,MTS(P)), where predicate connected defines the
set con(a,C). The third case of Definition 2 corresponds to the rule in lines 7–9.

If none of the conditions that disable a transition holds, the transition is
enabled, as encoded by the rule in line 11. The choice rule of line 12, allows
clingo to assign any of the values true or false to atom fires(T,TS), i.e. choose
whether transition T executes or not.

Lines 15–22 of Listing 3.1 are the rules for bond addition and deletion that
result from forward transition execution. The rule in line 15 says that Q1-Q2 ∈
M(TPTS+1) for Q1-Q2 ∈ F (T, TP) if transition T fires at time TS. The rule in
lines 16–18 enforces that Q1-Q2 ∈ M(TPTS+1) for Q1-Q2 ∈ M(PTTS), Q1-Q2 ∈
con(Q,M(PTTS), Q ∈ F (PT, T) ∩ F (T, TP), and transition T that fires at time TS.
Lines 20–22 implement bond deletion in a similar way. The encoding also contains
rules for token addition and deletion.

https://potassco.org/clingo/
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Listing 3.1. Forward enabledness and execution

1 notenabled(T,TS):-ptarc(P,T,Q),not holds(P,Q,TS).
2 notenabled(T,TS):- ptarcbond(P,T,Q1 ,Q2),
3 not holdsbonds(P,Q1 ,Q2 ,TS).
4
5 notenabled(T,TS):-tparc(T,P1 ,Q1),tparc(T,P2 ,Q2),P1!=P2 ,
6 connected(P,Q1 ,Q2 ,TS),ptarc(P,T,_).
7 notenabled(T,TS):- tparcbond(T,TP ,Q1 ,Q2),ptarc(PT ,T,_),
8 holdsbonds(PT ,Q1 ,Q2 ,TS),
9 not ptarcbond(PT ,T,Q1 ,Q2).

10
11 enabled(T,TS):-not notenabled(T,TS).
12 {fires(T,TS)}:- enabled(T,TS).
13
14
15 addBond(TP ,Q1 ,Q2 ,TS+1):- fires(T,TS),tparcbond(T,TP ,Q1 ,Q2).
16 addBond(TP ,Q1 ,Q2 ,TS+1):- fires(T,TS),tparc(T,TP ,Q),
17 ptarc(PT ,T,Q),connected(PT ,Q,Q1 ,TS),
18 holdsbonds(PT ,Q1 ,Q2 ,TS).
19
20 delBond(PT ,Q1 ,Q2 ,TS+1):- fires(T,TS),ptarcbond(PT ,T,Q1 ,Q2).
21 delBond(PT ,Q1 ,Q2 ,TS+1):- fires(T,TS),ptarc(PT ,T,Q),
22 connected(PT ,Q,Q1 ,TS),holdsbonds(PT ,Q1 ,Q2 ,TS).

Listing 3.2. Co-enabledness

1 dependent(T2 ,T1 ,TS):-tparc(T1 ,_,Q),ptarc(_,T2 ,Q),
2 H2=#max{H:transHistory(T2 ,H,TS),history(H)},
3 H1=#max{H:transHistory(T1 ,H,TS),history(H)},
4 H2 >H1 ,H1 >0.
5 dependent(T2 ,T1 ,TS):-tparc(T1 ,_,Q),ptarc(_,T2 ,Q1),
6 connected(_,Q,Q1 ,TS),
7 H2=#max{H:transHistory(T2 ,H,TS),history(H)},
8 H1=#max{H:transHistory(T1 ,H,TS),history(H)},
9 H2 >H1 ,H1 >0.

10
11 notenabledC(T,TS):- dependent(T1 ,T,TS).
12 enabledC(T,TS):-not notenabledC(T,TS),transHistory(T,H,TS),H>0.
13 {reversesC(T,TS)}:- enabledC(T,TS).

Lines 1–9 of Listing 3.2 define predicate dependent(T2,T1,TS), which is true
if the execution of transition T2 depends on the execution of transition T1. The
rule in lines 1–4 requires that this is the case if max(H(T2)) > max(H(T1)) and
there is Q such that Q ∈ F (T1, x) and Q ∈ F (y, T2). The rule in lines 5–9 covers
the similar case where Q ∈ F (T1, x), Q1 ∈ F (y, T2), and Q1 ∈ con(Q,MTS(P)).
Lines 11 and 12 encode coenableness, whereas the rule in line 13 encodes the
choice of reversing a transition or not.

The ASP encoding can be used to tackle complex reasoning tasks about
RPNs. Consider for instance the network of Fig. 1 and its ASP representation in
Listing 3.3. Lines 1–6 define the places, transitions and tokens of the network,
whereas lines 8–24 list all arcs (both incoming and outgoing) associated with
each transition. For instance, lines 11–14 define all arcs related to transition t2.
Finally, line 26 represents the initial marking.
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Listing 3.3. ASP representation of network of Fig. 1

1 place(r). place(s). place(t). place(u). place(v).
2 place(x). place(y). place(z).
3
4 trans(t1). trans(t2). trans(t3). trans(t4).
5
6 token(a). token(b). token(c). token(d).
7
8 ptarc(r,t1 ,d). ptarc(s,t1 ,a).
9 tparc(t1 ,u,a). tparc(t1 ,u,d).

10
11 ptarc(t,t2 ,b). ptarc(u,t2 ,a).
12 ptarc(u,t2 ,d).
13 tparc(t2 ,x,a). tparc(t2 ,x,b). tparc(t2 ,x,d).
14 tparcbond(t2 ,x,a,b).
15
16 ptarc(v,t3 ,c). ptarc(u,t3 ,a). ptarc(u,t3 ,d).
17 tparc(t3 ,y,a). tparc(t3 ,y,c). tparc(t3 ,y,d).
18 tparcbond(t3 ,y,a,c).
19
20 ptarc(v,t4 ,c). ptarc(x,t4 ,a). ptarc(x,t4 ,b).
21 ptarc(x,t4 ,d). ptarcbond(x,t4 ,a,b).
22 tparc(t4 ,z,a). tparc(t4 ,z,b). tparc(t4 ,z,c).
23 tparc(t4 ,z,d).
24 tparcbond(t4 ,z,a,b). tparcbond(t4 ,z,b,c).
25
26 holds(r,d,0). holds(s,a,0). holds(t,b,0). holds(v,c,0).

Then, query

goal:- connected(P,a,c,T),place(P),time(T).
:- not goal.

asks for a reachable state where there is a place P s.t. a − c ∈ M(P). The ASP
encoding returns the answer fires(t1,0) fires(t3,1). For query

goal:-C>1,C=#count{K2:connected(P,K1,K2,T),token(K2)},holds(P,K1,T).

:- not goal.

where a state is sought where some place holds a bond with at least three
tokens, clingo finds the solution fires(t1,0) fires(t2,1) fires(t4,2). We
can arbitrarily increase the complexity of the analysis, by combining aggregates
such as #count in conjunctive or disjunctive queries such as

goal1(T):- C>1,C=#count{K2:connected(P,K1,K2,T),token(K2)},
holds(P,K1,T).

goal2(T):- connected(P,a,c,T), not connected(P,a,b,T),time(T).
goal:- goal1(T1),goal2(T2),T2>T1,time(T1),time(T2).
:- not goal.

where we search for a sequence of transitions that first create a bond with at
least three tokens, and then a bond with a and c but without b. The answer
computed now is fires(t1,0) fires(t2,1) fires(t4,2) reversesC(t4,3)
reversesC(t2,4) fires(t3,5).
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4 Conclusions

We have presented work in progress towards a methodology for analysing
reversible systems modeled as RPNs based on ASP. We argue that ASP allows
an expressive and flexible methodology for defining models and their proper-
ties, which can handle difficult queries on complex models efficiently. As future
work, we plan to extend our translation to out-of-causal reversibility, to capture
a variety of RPN properties, and to apply the framework on realistic systems.
We remark that a complementary approach which we are also exploring is the
possibility to exploit existing model-checking Petri net tools (CPN tools [10]) for
analysing RPN models through a translation of RPNs to coloured Petri nets [4].
CPN tools is a graphical tool for the simulation of Reversing Petri nets. However,
it does not pursue more than one simulation and it breaks transition choice ties
randomly. Its effectiveness is still to be verified as the approach is characterized
by a blow-up in the state space during the translation to coloured Petri nets.
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Abstract. We present a reversible runtime environment for simple par-
allel programs and its experimental implementation. We aim at a light-
weight implementation of the backtrack reversibility by the state-saving
mechanism using stacks. We translate a program to a sequence of sim-
ple commands of an executable intermediate representation for reversible
stack machines. The parallel composition is implemented using the mul-
tiprocessing feature of Python. While executing the commands, the stack
machines collect the information for the backward execution in the aux-
iliary stacks for the update history of the variables and the history
of jumps. The commands for the backward execution is obtained by
reversing the commands for the forward execution by replacing each
command with the corresponding reversed command. In the purpose of
behaviour analysis with reversibility such as debugging, our runtime is
more portable than the source-to-source translation of a high-level pro-
gramming language.

Keywords: Reversible computation · Imparative parallel programs ·
Stack machine · Python multiprocessing

1 Introduction

Reverse execution of programs has been investigated based on the reversible
computing recently. Undoing the effect of an execution of a program till returning
to the initial state is useful in analysing the finer-grained behavioural property
of the program. In general, the execution of a parallel program depends on the
environment such as the scheduler and I/O channels. Replaying the program
may not reach the same states as the previous run. This makes behavioural
analysis difficult to work out the cause of the defect for debugging.

Reversible programming languages such as Janus [4,7] and RFUN [6] are
designed for the reversed execution at the level of the design of programming
languages. For example, Janus needs the extra-control structure at the end of the
conditional branch in order to know which branch is executed to reverse the con-
ditional statement. For this approach, the state-saving mechanism is not needed
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I. Lanese and M. Rawski (Eds.): RC 2020, LNCS 12227, pp. 272–279, 2020.
https://doi.org/10.1007/978-3-030-52482-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52482-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-52482-1_18


A Reversible Runtime Environment for Parallel Programs 273

since the computation is fully reversed. However, introducing parallel composi-
tion becomes difficult since the runtime environment is not directly described in
programs.

We present a reverse execution mechanism that the runtime collects the infor-
mation in stacks at a forward execution. At the reverse execution, the runtime
executes the program simply in the reversed order using the information stored
in the stacks. A source program is compiled to a sequence of simple commands
executed by the stack machine. Each process in the parallel composition is dis-
patched to each stack machine forked from the initial stack machine. We imple-
ment the backtrack reversibility with the multiprocessing feature of Python. In
the reverse execution, multiple stack machines are invoked, but they are con-
trolled by the stacks to follow back the forward execution.

The report is structured as follows. Section 2 gives the syntax of the pro-
grams, Sect. 3 presents the stack machine design and Sect. 4 states the concluding
remarks.

2 Programming Language with Parallel Composition

Our parallel programming language is defined as follows where ()+ and ()∗

denotes the repetition of one or more times and zero or more times respectively:

P :: = DQR | DQ par {Q}({Q})+R
D :: = (var X;)∗

R :: = (remove X;)∗

Q :: = (S;)∗S
S :: = skip | X=E | if C then Q else Q fi | while C do Q od
E :: = X | n | E op E | (E)
C :: = B | C && C | not C | (C)
B :: = E == E | E < E

The language is a simplified version of that in [2,3]. par denotes the parallel
composition of sequential procedures. For simplicity, we remove the nested block
structure and procedures. remove statements at the end of a program correspond
to the variables declared at the beginning of the program, where the order of
declarations is supposed to be reversed. For example, if variables are declared as
var X; var Y , the variables are removed as remove Y ; remove X. This ensures
the correspondence between the variable and the entry of the symbol table.

3 Reversible Execution of Stack Machine Code

3.1 Reversible Stack Machine

For simplicity, a parallel program in this report is limited in the form that an
initial stack machine runs first followed by parallel blocks. For values, we consider
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the integers Z. A is the set of address A as the locations of commands in a stack
machine code. Here an address is a positive natural number. P is the set of stack
machine identifiers (SMid). An SMid is a natural number. We assume the initial
stack machine has the SMid of 0. Other stack machines have id’s in a row from
1 to N where N is the number of parallel blocks.

The stack machine configuration is (PC,PC ′, w, ρ, ξ)σ where PC is the pro-
gram counter, PC ′ holds the previous PC value, w ∈ Z

∗ is a local stack,
ρ ∈ (A × P)∗ is a label stack, and ξ ∈ (Z × P)∗ is a value stack. σ is a symbol
table that maps a variable to its value. σ(v) presents the value of v. For the local
stack w and z ∈ Z, zw is the concatenation of z and w.

Each stack machine is identified by (p,N) with p is a process identifier and
N is a number of all parallel blocks in a program. The behaviour of a stack
machine SM(p,N) for command c is specified by c−→(p,N) as follows:

nop: (PCp, PC′
p, wp, ρ, ξ)σ

〈nop 0〉−−−−→(p,N) (PCp + 1, PCp, wp, ρ, ξ)σ

〈nop 0〉 does nothing but increasing the program counter.

ipush: (PCp, PC′
p, wp, ρ, ξ)σ

〈ipush z〉−−−−−→(p,N) (PCp + 1, PCp, zwp, ρ, ξ)σ

〈ipush z〉 pushes an immediate value of z to the local stack.

load: (PCp, PC′
p, wp, ρ, ξ)σ

〈load v〉−−−−−→(p,N) (PCp + 1, PCp, σ(v)wp, ρ, ξ)σ

〈load v〉 puts a value of v on the top of the local stack.

store: (PCp, PC′
p, zwp, ρ, ξ)σ

〈store v〉−−−−−→(p,N) (PCp + 1, PCp, wp, ρ, 〈σ(v), p〉ξ)σ[v �→z]

〈store v〉 pops a value from the local stack and store the value z to the local
storage σ after saving the previous value σ(v) to the value stack along with the
process number.

jpc: (PCp, PC′
p, zwp, ρ, ξ)σ

〈jpc a〉−−−−→(p,N)

{
(a, PCp, wp, ρ, ξ)σ if z �= 0

(PCp + 1, PCp, wp, ρ, ξ)σ if z = 0

〈jpc a〉 jumps to a when the stack top is 0. Otherwise, it moves to the next instruc-
tion by increasing the program counter.

jmp: (PCp, PC′
p, wp, ρ, ξ)σ

〈jmp a〉−−−−→(p,N) (a, PCp, wp, ρ, ξ)σ

〈jmp a〉 jumps to a unconditionally.

op: (PCp, PC′
p, z1z2wp, ρ, ξ)σ

〈op k〉−−−−→(p,N) (PCp + 1, PCp, opk(z1, z2)wp, ρ, ξ)σ

where op1 ≡ +, op2 ≡ ×, op3 ≡ −, op4 ≡<, op5 ≡==.
z1 < z2 and z1 == z2 are 1 when the relations hold and 0 otherwise.
〈op k〉 applies the operation specified by k. Depending on k, it pops two or one
from the local stack and pushes the result on the local stack. When 〈op k〉 is a
relation, it pushes 1 when the relation holds and pushes 0 otherwise.

label: (PCp, PC′
p, wp, ρ, ξ)σ

〈label n〉−−−−−−→ (PCp + 1, PCp, wp, 〈n + 1 − PC′
p, p〉ρ, ξ)

〈label n〉 pushes the address for backward execution to the label stack where n is
the number of all instructions. label is the only instruction that uses PC′

p.

rjmp: (PCp, PC′
p, wp, 〈a, N + 1 − i〉ρ, ξ)σ

〈rjmp 0〉−−−−−→(p,N) (a, PCp, wp, ρ, ξ)σ

〈rjmp 0〉 is a reverse jump that pops an address and a stack machine number from
the label stack and jump back to the address on that process with the number.

restore: (PCp, PC′
p, wp, ρ, 〈z, N + 1 − i〉ξ)σ

〈restore v〉−−−−−−−→(p,N) (PCp + 1, PCp, zwp, ρ, ξ)σ[v �→z]

〈restore v〉 pops the value of v and the stack machine number from the value stack
on the specified stack machine.

alloc: (PCp, PC′
p, wp, ρ, ξ)σ

〈alloc v〉−−−−−→(p,N) (PCp + 1, PCp, wp, ρ, ξ)σ[v �→0]

〈alloc v〉 adds v to the environment σ and initialises v.

free: (PCp, PC′
p, wp, ρ, ξ)σ

〈free v〉−−−−−→(p,N) (PCp + 1, PCp, wp, ρ, ξ)σ\v

〈free v〉 removes v from the environment σ.
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a label n

a − 1 · · ·

k jmp a

...

〈n − k + 1, p〉

label stackSMp

n − a + 1 rjmp 0

n − a + 2 · · ·

n − k + 1

...

label 0

〈n − k + 1, p〉

SMp label stack

(a) Forward jump (b) Backward jump

Fig. 1. Reversing jump instructions

store and label collect the information in a forward execution. store
updates σ and ξ. In ξ, it records the value is stored by p. But in the back-
ward execution, the process number is also reversed, and it stores N + 1 − p
as the backward process number. label records from which address the control
reach this place.

rjmp and restore restore the information for a backward execution. rjmp
corresponds to label and pops the location from ρ and jump back to the location
where the forward execution came from. And restore puts back the previous
value from the value stack. In both cases, the stack machine must be identified
where the SMid is inverted since the order of the parallel blocks is reversed1.

Figure 1 shows the mechanism of label and rjmp. label is a destination of
jpc and jmp. If label is executed, it pushes the source address of that jump to
the label stack. In the backward execution, label is substituted by rjmp. By
popping the label stack, one of the stack machines executes rjmp and jumps
back to the source address.

alloc allocates a variable slot on the stack and updates the symbol table.
free removes a variable slot. σ\v removes v from the domain of σ. In current
target codes, alloc and free are executed only by the initial stack machine
with id 0.

3.2 Inverting Stack Machine Code

We do not present the detailed translation from a source program to the stack
machine code here. The translator is implemented using Javacc. In the transla-
tion, label is inserted at a target of jmp and jpc. The argument of label is the
length of the generated code. Since this is not known until the whole translation
is done, it can be specified by back-patching. par 0 and par 1 are inserted for a
parallel block.

From a forward stack machine code s, the backward code i(s) is obtained:

i(s) =

{
ε s = ε

i(s′)inv(c) s = cs′

1 Since an address of command is uniquely assigned to a unique stack machine, it is
not essential to record p in ρ. Without p in ρ, another table is necessary.
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where invn for each command is defined as below where n is the :

inv(〈store v〉) = 〈restore v〉, inv(〈jpc a〉) = 〈label 0〉,
inv(〈jmp a〉) = 〈label 0〉, inv(〈label n〉) = 〈rjmp 0〉,
inv(〈par 0〉) = 〈par 1〉, inv(〈par 1〉) = 〈par 0〉,

inv(〈alloc v〉) = 〈free v〉, inv(〈free v〉) = 〈alloc v〉
For other command c, inv(〈c n〉) = 〈nop 0〉.

3.3 Execution from the Initial Stack Machine

Let s be the forward stack machine code. From the construction of a program,
s is partitioned to:

sIs0〈par 0〉s1〈par 1〉 · · · 〈par 0〉sN 〈par 1〉sF

where M is the length of the code and SM(0,N) executes sI , s0, and sF where
sI and sF are alloc and free for variables. s0 is the sequential code for SM0 to
initiase the variables followed by the parallel composition. SM(p,N) executes sp

in parallel for 1 ≤ p ≤ N .
Figure 2 shows the overview of executing a program. The code starts on the

initial stack machine SM0. After reaching the parallel composition starting with
par 0, the N stack machines run in parallel. When all the executions of parallel
processes terminate, it passes the control to the initial stack machine, freeing the
variable at the end. The environment σ, the label stack ρ, and the value stack ξ
are shared by all stack machines.

Let ρ and ξ be the label stack and the value stack. 〈Execs(PC,PC ′, w), ρ, ξ〉
is a configuration of code s with the initial SM. For the forward execution,
the initial configuration is 〈Execs(1, 0, ε), ε, ε〉 and the final configuration is
〈Execs(M + 1,M, ε), ρF , ξF 〉. The corresponding backward execution starts with
〈Execi(s)(1, 0, ε), ρF , ξF 〉 and ends with 〈Execi(s)(M + 1,M, ε), ε, ε〉. While the
parallel blocks are executed, the configuration is in the form:

〈Exec1s(PC1, PC ′
1, w1)‖ · · · ‖ExecN

s (PCN , PC ′
N , ε), σ, ρ, ξ〉

We define the execution of s as the transition relation between configurations
shown in Fig. 3. In the rules above, PC ∈ s denotes that PC points a code in
s. s(PC) is the code pointed by PC and loc(si) is the address of si in the stack
machine code.

– Init defines the behaviour before and after the parallel composition. � is the
number of variables. SM0 constructs the symbol table by sI and executes the
initial sequential code s0.

– Fork dispatches the development of the parallel blocks once it reaches the first
par 0. The program counter of stack machine SMi is set to loc(si).

– Par defines the interleaving behaviour of the parallel composition.
– Merge goes back to the initial stack machine and sets the PC to loc(sF ) once

all SMp reaches par 0. The execution continues with Init.



A Reversible Runtime Environment for Parallel Programs 277

· · ·

SM0

SM1 SM2 SMN

· · ·

p
ar

0

sIs0 s1

p
ar

1
p
ar

0

s2

p
ar

1

p
ar

0

sN

p
ar

1

sF

σ
label
stack

value
stack

Stack
Machine
code

Fig. 2. Execution by stack machines

Fig. 3. Execution for code s

In order to implement the operational semantics, it is necessary to scan the
whole stack machine code before executing the code to identify N , loc(si) and
loc(sF ).

4 Concluding Remarks

We present a reversible runtime environment for simple parallel programs and its
experimental implementation by Python. The reversibility mechanism is state-
saving and the environment performs the back-track reversibility. The runtime
environment is a set of reversible stack machines. The stack machines that exe-
cute the parallel blocks share the stacks for value-updates and jumps. Since
we focus on the reversibility of states, we do not precisely reverse the forward
computation. We replace the commands for computing values with nop in the
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backward code. This eases the concurrency control in the backward execution
since it has no effect for states. We regard this is enough for behavioural analysis
such as debugging. The approach of forward and backward executions is funda-
mentally similar to that of [2]. Our approach is finer-grained than [2]. This eases
the implementation with the existing runtime since the runtime is often less
controlled. As the result, in our approach a backward execution does not pre-
cisely undo the forward execution at the level of stack machine code. By sharing
the variable environment, the label stack, and the value stack, we manage the
consistency of variable updates among the stack machines running in parallel.

As related work, our stack machine is close to the basic architecture of [1] in
jumping mechanism although only a sequential execution is considered. The label
stack maintains the control of jumps across the parallel composition. [5] presents
the reversible semantics in the functional programming style at the abstract
machine level with communications and concurrency. [5] gives the operational
semantics for backward execution, while our approach translates the abstract
machine instructions for backwards within the single operational semantics. Our
language has no built-in communication mechanism.

For future work, we need to prove the correctness of our translation by strictly
formalising the behaviour of the concurrent execution of a program. The pro-
gramming language in Sect. 2 limits the class of programs although the stack
machine operations have more capability. Adding the nested structure of blocks
and procedure is possible by extending the reference mechanism for variables.
Adding recursion with the parallel composition make the number of parallel
processes dynamic. We need to extend the numbering scheme for identifying the
sequential processes executed in parallel and how to choose the next available
process in the backward execution.

Acknowledgement. The authors thank Dr. I. Ulidowski and Dr. J. Hoey for the
valuable suggestions and discussion. This work was supported by JSPS KAKENHI
Grant Numbers JP17H01722 and JP17K19969.

A Runtime Environment by Python

The concrete examples and our implementation by Python are shown at https://
github.com/syuen1/RevRunTimeEnv.

A source program is compiled to the forward stack machine code.

% java Parser "source program"

The forward stack machine code is stored in code.txt. To run the code
forward,

% Python vm.py code.txt f v

Then, we get stack.txt,rstack.txt, and lstack.txt as the stack for vari-
able values and the stack for labels2

2 The last v shows the verbose mode to show all the steps. No intermediate result is
shown when q is specified.

https://github.com/syuen1/RevRunTimeEnv
https://github.com/syuen1/RevRunTimeEnv
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To invert the forward code,

% Python inv.py code.txt invcode.txt

And run the backward code,

% Python vm.py invcode.txt b v

In the backward, vm.py reads the stack files. The result for the airline ticket
example is shown in the appendix.

A.1 Controlling Parallel Blocks

The runtime can be executed step-by-step choosing which parallel block is exe-
cuted in the next step in both directions. The execution of the parallel blocks is
controlled by the process that is running the initial stack machine. By entering
the process number, the program executes one step in the forward and backward
execution showing the stacks.
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