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Abstract The hydrophobic characteristic of polymers is considered a limiting prop-
erty for its applications. To some extent, this has been overcome by techniques such
as non-thermal plasma, which, even with a few seconds of application, can increase
the surface energy and hydrophilic character of polymers. However, this technique is
associated with advantages and disadvantages. Surface degradation related to oxida-
tion and crosslinking are considered irreversible changes, in most cases, while the
hydrophobic character is quickly restored, presenting a challenge to researchers all
over the world. As a reversible behavior, efforts have been made to understand this
particular characteristic of the hydrophobic recovery (or the aging effect) of poly-
mers. The application of non-thermal plasma on polymeric surfaces has also been
used in biomedicine as a sterilization device to control the growth of biofilms, as well
as to increase the biocompatibility of prosthetic surfaces. This chapter discusses some
particular characteristics of polyolefins exposed to plasma.

1 Introduction

The environment generated by non-thermal plasma discharges is rich in highly reac-
tive particles such as ions, electrons, radical species and UV radiation [1]. This
enables the technique to beused to improve surface interactions and chemical changes
in gas and liquids as well as in organized structures like condensed matter, exceeding
the limits of conventional chemistry.

There is great interest in the improvement of current plasma techniques, mainly
due to the low cost of implementation and low generation ofwaste associatedwith the
process. These factors lead to very promising applications and, currently, there are

T. Felix (B) · V. Soldi · N. A. Debacher
Chemistry Department, Federal University of Santa Catarina, Santa Catarina, Florianópolis
88040-900, Brazil

V. Soldi
Instituto Brasileiro de Tecnologia Do Couro, Calçado e Artefatos, IBTec, Novo Hamburgo, Rio
Grande Do Sul 93334-000, Brazil

© Springer Nature Switzerland AG 2022
N. S. Baneesh et al. (eds.), Plasma Modification of Polyolefins,
Engineering Materials, https://doi.org/10.1007/978-3-030-52264-3_8

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52264-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-52264-3_8


198 T. Felix et al.

many researchers addressing the application of non-thermal plasma in the degrada-
tion and reforming of polluting gases, the treatment of effluents, sterilization and the
functionalization and degradation of surfaces [2–8]. Thus, some surface character-
istics, such as the roughness, wettability and chemical composition, can be changed
in response to a set of reactions promoted by the plasma.

In particular, properties conferred by non-thermal plasma (NTP) to polymeric
materials have been investigated not only considering the wide range of applications
identified for polyolefins, but also due to the relative simplicity and eco-friendly char-
acteristic of the technique. Immediate effects on polymeric surfaces characteristic
of plasma techniques include etching, crosslinking and chemical functionalization.
However, there are also long-term effects, such as structural and conformational
changes, and hydrophobic recovery (HR) or aging, but these do not restrict the
feasibility of using polymers, given their attractive mechanical properties [9].

The direct application of NTP under atmospheric pressure conditions is an impor-
tant tool used in sterilization processes applied to tissues in patients undergoing
post-surgical treatment, wounds, catheters, and tools, etc. In general, the efficiency
of sterilization to eliminate bacteria and viruses, without compromising the surface
of the base or causing toxicity to living tissues, is obtained by applying an NTP with
a low power dielectric barrier discharge for a few seconds [10].

In addition to sterilization, exposure to plasma can improve the quality to poly-
olefins and, in particular, polypropylene for application as a biosensor through the
immobilization of anti-biofilm molecules or as separation membranes in hemodial-
ysis. Recently, the co-immobilization of biomolecules on the polypropylene surface
after activation by plasma has also been investigated [11]. Polyethylene can also be
used for cardiovascular or orthopedic prostheses after exposure to plasma, which
makes them more biocompatible than conventional materials and prolongs their
mechanical resistance [12].

The usual techniques for the evaluation of polymeric surfaces exposed to plasma
are image analysis and the evaluation of the chemical environment and structural
changes. Themagnified images provided bymicroscopy (optical, scanning and trans-
mission electron, atomic force microscopy) provide structural information and are
considered fundamental for this type of investigation.

High-resolution field emission gun scanning electron microscopy (FEG-SEM),
for instance, provides important information on the surface erosion produced by
plasma attack. However, the operation temperature of the light source needs to be
known in order to avoid interference in the surface roughness.

The chemical environment can be analyzed by qualitative techniques such as
infrared (vibrational) spectroscopy (IRS), based on the ability of the surface to absorb,
emit and scatter radiation after applying electromagnetic radiation.

Among the quantitative techniques for the determination of chemical groups,
X-ray photoelectronic spectroscopy (XPS) is a notable non-destructive technique
used to analyze the binding energies of the core levels with intensity precision. This
provides valuable information regarding the composition and chemical structure of
polymeric surfaces and is considered a mandatory technique for surface analysis
before and after exposure to plasma [13]. A technique associated with transmission
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electron microscopy (TEM) is energy-dispersive X-ray spectroscopy (EDX), used
for elemental analysis, from which qualitative data on the chemical composition of
the surface can be obtained.

In thermogravimetry analysis (TGA), the physical properties of the polymer,
related to the degradation temperature under an oxidizing or inert atmosphere, can be
determined. Degradation events provide information on the thermal stability, degree
of crystallinity and oxidation reactions, which can be used to evaluate the pres-
ence of crosslinking and fragments associated with plasma exposure. Simultane-
ously, derivative thermogravimetry (DTG) allows the initial and final temperatures
of thermal degradation to be defined and the area proportional to the mass variation
to be estimated.

Water contact angle (WCA) analysis is carried out to evaluate the free surface
energy, wettability and adhesive properties related to polar and dispersive compo-
nents and, therefore, the hydrophilic characteristics. However, the roughness and
smoothness of the surface need to be taken into account since they influence the
contact angles.

The subjects discussed in this chapter are closely linked but, to allow a better
understanding, they are divided into two topics. The first addresses the degradation
of polymeric surfaces exposed to non-thermal plasma with an emphasis on poly-
olefins and the second is related to the definition of hydrophobic recovery (or aging),
its characteristics and some unpublished research results highlighting its effect on
polyolefins.

2 Surface Modification of Polyolefins Treated by Plasma

In general, polymers are versatility materials due to their mechanical properties.
They can therefore be used in almost all technological areas in their pure form, as
polymeric blends or associatedwith othermaterials in composites or nanocomposites
[14–17].

There are two essential characteristics that define most of the properties of a
polymer: the chemical structure and the molar mass distribution pattern [18], since
these directly determine the cohesive forces, the packing density and the molec-
ular mobility of the chains. Indirectly, these characteristics play an important role in
the morphology and the relaxation phenomenon. The different chemical structures,
compositions and functional groups of polymers determine their resistance to chem-
ical attack. Under a plasma ionizing radiation atmosphere, for example, aromatic and
conjugate structures aremore resistant to photon absorption or the collision of excited
or charged particles. On the other hand, aliphatic chains undergo hydrogen abstrac-
tion, forming C• radicals, which easily result in oxidation sites, double bonding and
crosslinking [9]. Figure 1 shows the main degradation reactions that occur under
non-thermal oxygen plasma.

The susceptibility to etching and the successive reactions that occur on the polymer
surface are directly related to themechanical and chemical resistance of the polymeric
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Fig. 1 Main degradation reactions that occur under non-thermal oxygen plasma (adapted from [8])

matrix. Polymers with high resistance to oxidation, molar mass, density and hardness
generally showhigh resistance to degradation. Plasma can cause the erosionof several
micrometers of a surface, depending on the hardness of the material and also on the
exposure time and distance between the electrodes. Figure 2 shows in detail the
erosion of a polymer surface caused by non-thermal oxygen plasma [19, 20].

Figure 3 shows the spectra obtained from the X-ray photoelectronic spectroscopy
(XPS) analysis of high-density polyethylene (HDPE) samples, unexposed and
exposed to non-thermal oxygen/argon plasma (NTP). Note the increase in the groups
containing oxygen (C-O) and a considerable decrease in the intensity of the C1s peak
(C–C) in relation to the unexposed sample [21].

Fig. 2 Erosion on a polymer surface after exposure to non-thermal oxygen plasma: a untreated
surface; b and c after 20 and 30 min of exposure, respectively [19]
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Fig. 3 C1s peaks of high-density polyethylene unexposed and exposed to Ar/O2 NTP for 60 s
(8 mbar, 80 W) [21]

Many low molar mass fragments are formed through the oxidation mechanism.
In some cases, spectra obtained by XPS can be used to quantitatively estimate the
degree of double bonds formed (C=C), and mass spectrometry provides information
on crosslinking based on an increase in the average molar mass. The new interac-
tion groups generate an increase in density in the polymer and consequently a new
orientation, reducing the distances between the fragments of larger chains. Thus, the
formation of crosslinking using plasma derived from inert gases has been used to
induce stiffness of the polymer surface, a technique known as CASING (crosslinking
by activated species of inert gases), since 1967 [22, 23].

The crosslinking phenomenon can start within the first few seconds of plasma
application, depending on the polymer matrix. Studies on polystyrene have shown
that after 180 s of exposure to O2 plasma the crosslinking reached 80% of the original
sample, increasing the molar mass distribution from 80,000 g/mol to more than
18,000 g/mol. In addition, the density of low-density polyethylene increased from ρ

= 0.75 g/cm3 to ρ = 0.79 g/cm3 [24]. Chalykh et al. [25] showed that polypropylene,
despite losing its biaxial orientation after a few seconds of exposure to plasma,
produced a completely different orientation after long exposure as a result of the
intersection of the chains. This new conformation is called “chemi-crystallization”,
and it is also associated with higher density and, consequently, higher resistance [25].

For all polymers, the surface differs from the bulk of a sample with respect to the
physical–chemical characteristics, such as surface tension (γS/A)- or surface energy,
which can result from polar and dispersive energies, this being closely related to the
fraction of the exposed macromolecule, consisting of side/end groups of the chains,
polar groups or branches. The occurrence of crosslinking, oxidation and degradation,
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Fig. 4 Sample spectrograms of low density polyethylene unexposed and exposed to O2 NTP (left)
and N2 (right) plasma treatment, (1 torr, 8 W) [20] (unpublished results)

therefore, may also be dependent on the macromolecular orientation on the surface
[26]. Crosslinking occurs in the superficial layer reaching a few micrometers of
thickness (Fig. 4) [24]. In this case, the main species responsible for this crosslinking
originate from UV radiation and C• radical sites, which are continuously supplied
by the oxidizing source [1].

Polyolefins (e.g., polypropylene (PP) and the class known as polyethylene (PE))
are inert and only certain processes, such as those involving oxidation, can increase
their free surface energy, making them, for example, printable. In this regard, the
application of oxygen plasma to polymer surfaces, either at low or atmospheric
pressure, is advantageous, since it provides partial hydrophilization of the surface
through functional groups derived from oxygen. An increase in the wettability and
adhesive properties of surfaces considered inert is the result of oxidative degrada-
tion processes initiated/supported by the plasma. Fig. 5 shows the variation in the
roughness, monitored by atomic force microscopy (AFM) as a function of the time
of exposure to plasma of three different areas of the sample. The average roughness
values for each of the three areas were determined with the aid of theWSxM software
[27]. As mentioned above, variations in the etching resistance are observed for PP
and PE. The microscopy results in Figs. 5, 6 and 7 show that, under the same condi-
tions, erosion on the surface increases for both the PP and PE samples. However the
visual aspect of this erosion as well as the size “depth” of the peaks and valleys differ
[21].

The 3D images in Fig. 6, for PP, show the changes in the surface topography
during the period of exposure to plasma, with successive stages of elevation (light
dots) and relaxation (darkened regions). This suggests that the erosion caused by
exposure to plasma occurs as fragments are removed layer by layer. For polyolefins,
a first stage of erosion occurs after 20–30min of exposure followed by a second stage.
However, the HDPE shows a homogeneous evolution, with only one stage of rough-
ness formation being observed, probably due to its high-density structure. In general,
the superficial fraction of the samples that erodes in the first 20–30 min of exposure
to plasma appears to be distinct from the bulk of the polymeric sample, presenting
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Fig. 5 Average roughness (nm) as a function of the plasma exposure time (min) obtained by AFM,
in three different sample areas (5 mbar, 65 W) [21]

Fig. 6 Atomic force micrographs as a function of plasma exposure time (5 mbar, 65 W) [21]

less resistance to attack, which could be related to the superficial stress caused by
the sample preparation. The thickness of the layer that will undergo erosion can vary
by a few hundred nanometers, depending on the exposure time and experimental
conditions of plasma application.

The erosion of the polymer surface exposed to plasma is also a function of the
gas used in the process, the working pressure, the applied power and the exposure
time. Friedrich et al. [24] demonstrated that the erosion rate for high and low density
polyethylene samples (HDPE and LDPE), in an oxygen atmosphere at 8 Pa and
300 W, was 6 mg.cm−2 s−1. Under the same conditions, poly(methyl methacrylate)
(PMMA), with functional groups in its structure, showed a higher degradation rate,
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Fig. 7 SEM micrographs as a function of plasma exposure time (5 mbar, 65 W) (5000x / 5 μm
scale) [21]

around 11 mg.cm−2 s−1 [24]. Oxygen plasma produces a more uniform and progres-
sive erosion of the surfacewhen compared to other gases, independent of the polymer
structure. The etching rate for a sample of polyethylene terephthalate (PET), exposed
to O2/NTP was 6.4 mg.cm−2 s−1, while for He and N2/NTP, under the same experi-
mental conditions, the corresponding values were 1.8 mg.cm−2 s−1 and 0.8 mg.cm−2

s−1, respectively [28].
There are negative and positive aspects associated with the techniques used to

increase the adhesion or free surface energy, the hydrophilicity and the biocompati-
bility of polymer surfaces.

As shown in Fig. 8, under identical conditions of NTP exposure, PEEK and
PET show similar WCA values and differ only in terms of roughness and Entero-
coccus faecalis adhesion.Despite the original structural and composition differences,
these results suggest that the roughness of the surface plays an important role in the
microbiological adhesion.

Of the existing methods, those that have the least effect on the physical properties
(transition temperature, viscosity, etc.) and mechanical properties (strength, tough-
ness and rigidity) are preferred. In general, the erosion due to plasma exposure is
limited to a fewmicrometers of the interface and the process preserves the bulk of the
polymer, which is not the case with conventional chemical erosion processes. The
erosion of the surface, in general, improves the quality of polyolefins in a controlled
and versatile way.

3 Hydrophobic Recovery (Aging) Effect

The NTP plasma technique is notable for increasing the polar component of polymer
surfaces, a term related to polar interactions and hydrogen bonds, which directly
contributes to increasing the surface energy [30, 31]. The increase in the polar
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Fig. 8 Roughness (nm) and CFU (Enterococcus faecalis) of unmodified PEEK and PET after
14 min exposure to NTP (argon 1.5 L.min−1, 74.6 kPa). WCAs measured after NTP exposure were
33.32° and 33.68°, respectively [29] (unpublished results)

component, however, is short lived due to the effect of physical aging or hydrophobic
recovery (HR) [32–36]. This effect is observed through the gradual recovery of the
original wettability properties of the surface, which can last for a few minutes or for
months, and it can be partially or totally restored to the initial hydrophobic conditions.

The change in the water contact angle (WCA), shown in Fig. 9, has been widely
used as a primary tool to observe the hydrophobic recovery of polymer surfaces.
Contact angle measurements performed immediately after the application of plasma
to polymer samples, in general, show a sudden decrease in hydrophobicity of up
to 80% of the initial value [37, 38], followed by an exponential increase over
time, reaching a new level of stabilization that does not always match the orig-
inal contact angle [39–42]. In addition, morphological modifications resulting from

Fig. 9 WCA profiles (degrees) as a function of restoration time (h) for high-density polyethylene:
samples a exposed to plasma for 60 s and 600 s; and b aged at 25 °C and 65 °C [21]
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these hydrophilic → hydrophobic changes promoted by the plasma have been the
subject of studies by several authors using different polymeric matrices [43–47].

Irving Langmuir (1938) [48] reported the effect of hydrophobic recovery using
stearic acid salts in water, having verified that hydrophilic groups (dipoles or ionic
charges) are reoriented on the surface and cause changes in the properties of the films.
He showed that in the liquid phase molecules of different polarities tend to undergo
reorientation, minimizing contact with each other. Sharma andYasuda (1981) carried
out studies exposing more complex materials, such as polypropylene, to oxygen
plasma and observed that the inserted hydrophilic groups do not rotate as rapidly.
The decay phenomenon, related to reorientation of macromolecules occurs in the
order of days to months (>85 s) [49].

The vast majority of studies found in the literature on the HR of polymers, relate
the HR effect to the formation of hydrophilic groups and low molecular weight
oxidized materials (LMWOM) by surface oxidation. These oxidized species have
the ability to undergo reorientation or even leave the surface during aging. This
restructuring, rotation and modification of the roughness morphology conferred by
the plasma is commonly reported for polymers with a lower crystallinity index,
since the fragmentation in amorphous materials is pronounced. With regard to the
interface, the restructuring is related to the thermodynamic imbalances between the
surface of the polymer exposed to the plasma and the surroundings. This energetic
difference is the driving force for neutralization at the interface of charged species,
radicals or volatile fragments in post-discharge reactions. There is another active
mechanism in most of the material, which, despite receiving less radiation intensity
and oxidizing species, responds to surface disturbances, such as crosslinking. The
translational entropy associated with increased energy on the surface interferes, in
the long-term, with the macromolecules close to the surface and can affect the HR
[50].

In addition to the proposedmechanismofHR, based on the surface rearrangement,
the release of dimers and trimers and the mobility of macromolecules and their frag-
ments, there may be another effect in action based on the fact that polymeric matrices
can retain charge as electrets [51, 52]. Polymers in general are known as insulating
materials and are often used to insulate cables and electrical devices. In addition,
when compared to inorganic materials, for example, of high molecular order, poly-
mers are considered molecularly disordered and weakly linked with respect to their
chains. This characteristic strongly affects the electrical properties, such as the glass
transition temperature, related to the crystalline fraction.

The mobility capacity of polymer fragments, such as translation or rotation, is
higher in polymers with high amorphous content. In a polymer with a high crystalline
index, the amorphous fraction has less mobile segments and, therefore, shows a
higher glass transition temperature. Molecules are continuously in motion and the
crystalline fraction imposes restrictions on these movements. The high degree of
translational and rotational disorder in polymeric materials results in the occurrence
of states called traps (Fig. 10). These states and the energy they store after a load
stimulus, have a temporal fluctuation. Therefore, charge storage will be dependent
on the mobility of the polymer chains/fragments. The impurities present, chain ends,
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Fig. 10 HR dependence with charges induced by exposure to plasma as a function of time. a The
charge-carrying fragments at the interface and subinterface, dipole orientation and charge induction;
b–c start of thermodynamic relaxation in fragments of the amorphous fraction and at the interface,
decay of energy in the traps and the compensation of charged species; d potential decay and HR
[54] (unpublished results)

branches and interfaces of crystalline-amorphous fractions act as traps [51]. In a
study by Tompkins and Fisher (2015), HDPE (with a higher degree of crystallinity)
showed less initial variation in the post-plasma contact angle and at the end of 30 days
the angle had a higher value compared to LDPE. Thus, the amorphous fraction in a
polymer is an important factor for HR evaluation [53].

MacDonald and Fallone (1993) studied the effects of X-rays on polyethylene
terephthalate (PET) and polytetrafluoroethylene (PTFE) and observed that, after
50 days, for PET 40% of the original surface potential was restored, while for PTFE
the corresponding value was 15%. They found that polymers with greater internal
resistivity (greater electrical stiffness) conserve more surface potential. Thus, the
current induced in the material and how it is stored is dependent on the chemical
nature of the material and reflects in the electrical potential observed at the surface
[55]. In addition, Borcia et al. [56] showed, through experiments with polysulfone
(PSU), that the relationship between the changes in the contact angle (�(θ)) and the
number of groups containing oxygen (�(O/C)) is not direct. For the PSU, a differ-
ence of 31° was observed due to a 89% increase in the amount of oxygen, and for
PET there was a difference of 32° due to a �(O/C) of only 13% [56]. Therefore, HR
is not only associated with the displacement/disappearance of hydrophilic groups.

If the HR effect is also related to the surface charge, then the compounds or the
ability of the environment to interact electrostatically will have an important effect
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on this phenomenon. Bormashenko et al. [39] showed that liquids with a molecular
dipole momentum (D) “compensate” for the charges on the surface of LDPE samples
and delay theHR effectwhile liquidswith zero dipolemomentumdo not “slowdown”
the HR and the surface hydrophobicity is restored (Fig. 11). In addition, for samples
kept in a vacuum theHR is suppressed, showing theopposite behavior to that observed
in contact with air [39, 57].

Bormashenko et al. [58] studied polyethylene samples and suggested that the
collision of ions accelerated by the plasma can modify the organic molecules in
a small layer at the interface, by a magnitude of the order of the Debye length.
Therefore, the momentary hydrophilization of polymeric surfaces would be related
to the capture of ions by the solid and subsequent orientation of the dipoles induced by
the electric field in an interfacial fraction of the surface [58]. This concept of charge
“storage” after the cessation of the source of radiation or electrical induction is the
principle of electrets and is observed in both conductive and insulating materials.

The crossover effect refers to the injection of charged species into the bulk,
followed by a slow process of internal polarization, in response to the initial charging
stimulus. The decay process appears to be dependent on the initial surface potential
applied, duration of discharge, ambient temperature and relative humidity [59]. Other
mechanisms responsible for the decay are the bulk neutralization, gas neutralization
and surface conduction [60–62]. Although studies have shown that bulk neutraliza-
tion is the dominant decaymechanism [62, 62, 63, 63], surface electrical conductivity
(SEC) can bemeasured and used to observe the phenomenon. As an example, Fig. 12
shows theWCAandSECprofiles as a function of time and the twoprofiles are similar.
PET samples were exposed to NTP and the contact angle and SEC were monitored
during aging.

The WCA and SEC reach the stable regime at around 150 h, so the driving agent
of HR is related to the surface conductivity.

The rate and extent of HR can be associated with factors such as temperature, time
of exposure to plasma, plasma working gas and stored conditions after exposure [41,
42, 56, 63–65]. Studies show that hydrophobic recovery can be accelerated in LDPE
samples by increasing the temperature, which, due to diffusion effects, accelerates
the rearrangement of LMWOM and polar groups [64].

Fig. 11 Plasma-exposed surface: a charge-bearing fragments orienting liquid/vapor molecules
from the immersion medium (adapted from [38]) and b charges trapped in shallow or deep traps,
and oriented polar groups of the immersion medium on the surface
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Fig. 12 The profiles for WCA and SEC as a function of time (h) for PET samples exposed to NTP
at 8 W [54] (unpublished results)

The delay or attenuation of HR is determined applying experimental strategies,
such as the use of hydrogen plasma or recurrent exposure to it, thus obtaining surfaces
with a high degree of crosslinking, restricting the mobility of fragments associated
with HR (Fig. 13) [66].

The HR also can be attenuated by coating the surface with a different polymer
(or blends), and crosslinking by the plasma source itself. A well-known technique

Fig. 13 Profiles showing the
variation in WCA over time.
The intensity of RH is a
function of the crosslinking
promoted by the plasma
(adapted from [49])
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is the grafting of functional molecules using the surface with high free energy after
exposure to plasma [67].

Despite all techniques developed to reduce or delay HR, this effect cannot be
completely avoided. The decay of this energy is related to the ability to relax ther-
modynamically, reorganize its structures and disperse the induced charges, either in
the amorphous fractions or in the crystal lattices. The presence of impurities, dopants,
plasticizers and other additives as charges, also act as charge carriers [68].

In summary, it is possible to describe some factors related to the HR of poly-
mers, including: (i) resistivity of the material; (ii) reorientation and neutralization
of hydrophilic fragments on the surface; (iii) reorganization of fragments of macro-
molecules in the amorphous fraction of the material; and (iv) decay of the surface
potential (relaxation) trapped in the material.

Therefore, the HR and the decay of the potential on the surface have a syner-
gistic effect, resulting from energy in the amorphous fraction traps, contaminants or
additives, plus the mobility/neutralization of fragments on the surface resulting from
oxidation. If the recovery process is monitored based on theWCA, the total or partial
restoration of the contact angle will also be dependent on the degree of roughness
obtained after the etching/degradation process. The contact angle for rough surfaces
needs to be corrected, since the equations commonly used consider perfectly smooth
surfaces [21, 69, 70].

4 Conclusions

This chapter describes some characteristics of polymeric surface erosion by non-
thermal plasma (NTP) and highlights that oxidation processes constitute the main
result of the interaction of a polyolefinic surface with NTP. The amount of species
derived from the oxidation, during and after NTP exposure, as well as the final
morphological aspect of the surface, is dependent on the properties of each polyolefin.
According to reported studies, the higher the degree of crosslinking, the greater the
energy or exposure time required for erosion to be continuous and the process seems
to occur layer by layer.

Hydrophobic recovery (or simply aging) is a common effect observed in poly-
olefins after exposure to NTP radiation and oxidizing species, regardless of the atmo-
sphere used, time of exposure and electrical working conditions. This phenomenon
can be attenuated using some experimental strategies; however, it cannot be
completely avoided. Studies show that the mobility of the fragments formed and
the structural rearrangement of the macromolecules help to explain the HR effect,
but its behavior is far from been fully understood. For this reason, a new perspec-
tive of the HR effect, based on the storage of charges by traps, such as amorphous
sites or clusters, impurities and additives, is described, in which the response can be
observed from the electrical conductivity on the surface. Polymers, therefore, would
act as semiconductors and the electrical response is explained by considering these
versatile materials as simple electrets.
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