
Agent-in-the-Loop: Conversational Agent
Support in Service of Reflection

for Learning During Collaborative
Programming

Sreecharan Sankaranarayanan(B), Siddharth Reddy Kandimalla, Sahil Hasan,
Haokang An, Christopher Bogart, R. Charles Murray, Michael Hilton,

Majd Sakr, and Carolyn Rosé

Carnegie Mellon University, Pittsburgh, PA, USA
{sreechas,skandima,sahilh,haokanga,cbogart,rcmurray,mhilton,

msakr,cprose}@andrew.cmu.edu

Abstract. Dynamic conversational agent-based support for collabora-
tive learning has shown significant positive effects on learning over no-
support or static-support control conditions in prior studies. In order
to understand the boundary between human-led and AI-led support for
collaboration, we compare in this study an approach where the agent’s
primary role is to help students regulate their own collaboration with
two more typical prompting strategies that are used only during a reflec-
tion phase: one designed to provide a specific informational focus for the
reflection, and the other designed to draw out evaluation, elaboration,
and exploration of alternative perspectives. Significant positive effects on
learning over and above just the human-led form of support are observed
when either of the prompting strategies are used.

Keywords: Conversational agents · Human-AI collaboration ·
Reflection prompts · Group conversational agents · Adaptive
Collaborative Learning Support (ACLS) · Collaborative programming

1 Introduction

In an article in the 25th anniversary issue of IJAIED, Rummel and colleagues
contrast two possible futures for adaptive collaborative learning support (ACLS)
[11]: In one more dystopian future, an intelligent agent has tremendous AI-
enabled capabilities and the resulting blind trust in these abilities leads to prac-
tices experienced by students as inscrutable and lacking in nuance. In the second,
more utopian vision, the system not only takes into account multiple dimensions
of support [4,16] but also balances this adaptivity with user freedom and shared
user/system control [11]. While a great many studies have demonstrated a signif-
icant positive impact on learning for fully AI-enabled support for collaborative

c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12164, pp. 273–278, 2020.
https://doi.org/10.1007/978-3-030-52240-7_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_50&domain=pdf
https://doi.org/10.1007/978-3-030-52240-7_50


274 S. Sankaranarayanan et al.

learning compared to no-support control conditions [1,7–10], contrasting AI-
enabled support to human-led support will allow us to understand the boundary
between the two and work towards the more utopian vision.

We situate our study in a synchronous programming activity in an online
graduate-level course on Cloud Computing offered at Carnegie Mellon University
and its international branch campuses. The activity is divided into several tasks.
Within each task, students work in groups of 4 in complementary roles designed
with the purpose of assisting each other and furthering the progress of the group
as a whole. Thus, the locus of support resides with the students themselves, in
an effort to embody the more utopian vision of AI. In this human-led design, the
conversational agent only serves as the agent-in-the-loop to provide automated
feedback regarding how well students perform their roles – in effect, helping
students help each other.

Added to this human-led support, we investigate two more traditional fully
AI-enabled conversational agent supports in the form of agent-led reflective dis-
cussions at the end of each programming task: one designed to provide a specific
informational focus for the reflection, and the other designed to draw out evalua-
tion, elaboration, and exploration of alternative perspectives. The experimental
manipulation enables us to test whether the addition of fully automated support
produces learning gains over-and-above the human-led support (The Automated
Support Benefit Hypothesis).

Results of the 2 × 2 experimental study show that specific portions of the
programming activity lend themselves to pre- to post-test learning and within
those portions, a significant improvement in learning is observed over-and-above
that of the human-led support when either of the two agent-led supports are
offered.

2 Method

A summary of the course structure and the location of the study within it is
shown in Fig. 1. Within the first sub-unit of the fourth project unit of the course,
students work with our synchronous collaborative software development activity,
called the Online Programming Exercise (OPE) in an 80-min long session. A total
of 101 students from across three campuses completed the activity to build an
inverted index using the Scala programming language, and 100 of these students
completed the subsequent project.

Based on instructional design best practices [2], we divide the overall pro-
gramming activity into five different tasks which target five learning objectives
(LOs). Each task is divided into a problem-solving phase where students work
on the programming task, and a discussion phase where they participate in a
reflective discussion based on the task. This task structuring can be considered
a macroscript [3] that sequences the activity into learning phases as described
in the Script Theory of Guidance [5]. Each LO is assigned two multiple-choice
questions on the pre- and post-tests to measure student learning from the activ-
ity. Student performance on the subsequent individual project associated with
the task then serves as a delayed post-test as show in Fig. 1.



Conversational Agent Support for Collaborative Programming 275

Fig. 1. Course Structure, Pre-Test, Post-Test and Delayed Post-Test Alignment

Within each task, based on the industry paradigm referred to as Mob Pro-
gramming [6,12–14,17,18], we specified four interdependent roles with well-
defined responsibilities that students are assigned to. The Driver is the only
participant who writes the code, based on high level instructions received from
the Navigator, who makes decisions on the next course of action based on dis-
cussion with the rest of the team members which include the Researcher who
assists the group with ideation and implementation by consulting external sup-
port material, and the Project Manager who is responsible for making sure the
rest of the team members are complying with and adequately performing their
roles. The roles rotate after each task. This role-scaffolding paradigm can be
considered a microscript that provides support for the collaboration within a
learning phase. The control condition consists of the task structuring macro-
script used in combination with the role-scaffolding microscript.

In the experimental conditions, we additionally investigate two more tra-
ditional conversational agent supports in the form of discourse level prompts
during the discussion phase which can also be considered microscripts. Infor-
mation Prompts support learners in warranting their claims (Ex: “@Researcher,
what is the advantage of writing OS-aware code like you did here?”) and Elabo-
ration Prompts explicitly prompt another learner to build on an existing argu-
ment towards knowledge construction (Ex: @Driver, How would you improve the
implemented approach? ) [15].

We tested the Automated Support Benefit Hypothesis with a 2 × 2 fac-
torial design in which the first factor was the presence or absence of informa-
tion prompts, and the second factor was the presence or absence of elaboration
prompts. The teams were randomly placed into the four conditions: 7 groups in
the control condition where no prompts were presented, 6 groups presented with
elaboration prompts, 5 with information prompts only and 9 groups where both
prompts were presented.



276 S. Sankaranarayanan et al.

3 Results

We first test pre- to post-test learning gains from the exercise. For LOs 3 and 4
there was a significant pre- to post-test gain as measured with a 2-tailed paired
t-test, t = 2.43, p < .05 indicating that these two tasks lent themselves to learn-
ing during programming much more than the other tasks. For LO 2, average
pre-test score was 1.7, post-test score 1.8, and standard deviation .6. For LO
3, average pre-test score was 1.5, post-test score 1.6, and standard deviation .6.
Because of the learning gains achieved in the two LOs, we are able to test our
hypothesis regarding the intensification of learning in the experimental condi-
tions.

We used a repeated measures ANCOVA model, with LO and role as random
variables, pre-test score (per LO) as a covariate, elaboration prompts and infor-
mation prompts and the interaction between the two as independent variables,
and post-test score (per LO) as the dependent variable. As an aside, there was
no statistically significant difference in learning between roles.

In terms of pre- to post-test gains, there was no significant main effect of
the elaboration prompt factor; F(1, 440) = .21, p = n.s. However, there was a
significant interaction effect between the two experimental factors F(1, 440) =
11.6, p <.0001. In a post-hoc analysis, we determined that both of the conditions
with only one type of prompt were associated with significantly more learning
than the control condition, and the condition with both types of prompts was not
significantly different from control. The effect size of the addition of elaboration
prompts over no prompts was .32 s.d., which is a medium effect size. The effect
size of the addition of information prompts over no prompts was .42 s.d., which
is a medium effect size.

To test the impact on a subsequent individual programming task, we built
an ANOVA model, with elaboration prompts and information prompts and the
interaction between the two as independent variables, to measure the impact of
the experimental manipulation separately on three outcome measures related to
task performance: time on subsequent programming task, number of submitted
attempts on that task, and score. Here, there was a trend for the elaboration con-
dition to improve performance in terms of time-on-task, number of submission
attempts, and score, though none of these were statistically significant. For the
information prompts also, the trend was consistently that they were associated
with lower time on task, lower number of submissions, and higher scores.

Thus, the use of elaboration prompts or information prompts alone signifi-
cantly improve on pre- to post-test learning from the task and exhibit positive
trends for the subsequent delayed test.

4 Conclusion

Based on the results, we can conclude that agent-led support shows promise for
augmenting and significantly improving over primarily human-led support.



Conversational Agent Support for Collaborative Programming 277

Acknowledgements. This work was funded in part by NSF grants IIS 1822831, IIS
1917955 and funding from Microsoft.

References

1. Adamson, D., Dyke, G., Jang, H., Rosé, C.P.: Towards an agile approach to adapt-
ing dynamic collaboration support to student needs. Int. J. Artif. Intell. Educ.
24(1), 92–124 (2014)

2. Carver, S.M.: Cognition and instruction: enriching the laboratory school experience
of children, teachers, parents, and undergraduates. In: Cognition and instruction:
Twenty-Five Years of Progress. pp. 385–426. Lawrence Erlbaum Associates (2001)

3. Dillenbourg, P., Hong, F.: The mechanics of cscl macro scripts. Int. J. Comput.-
Support. Collaborative Learn. 3(1), 5–23 (2008)

4. Diziol, D., Rummel, N.: How to design support for collaborative e-learning: a frame-
work of relevant dimensions. In: E-collaborative Knowledge Construction: Learn-
ing from Computer-Supported and Virtual Environments, pp. 162–179. IGI Global
(2010)

5. Fischer, F., Kollar, I., Stegmann, K., Wecker, C.: Toward a script theory of guid-
ance in computer-supported collaborative learning. Educ. Psychol. 48(1), 56–66
(2013)

6. Hilton, M., Sankaranarayanan, S.: Online mob programming: effective collaborative
project-based learning. In: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, p. 1283. SIGCSE 2019, Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3287324.3293774, https://
doi.org/10.1145/3287324.3293774

7. Kumar, R., Rose, C.: Architecture for building conversational agents that support
collaborative learning. IEEE Trans. Learn Technol. 4(1), 21–34 (2011)

8. Kumar, R., Rosé, C.P.: Triggering effective social support for online groups. ACM
Trans. Interact. Intell. Syst. (TiiS) 3(4), 24 (2014)

9. Kumar, R., Rosé, C.P., Wang, Y.C., Joshi, M., Robinson, A.: Tutorial dialogue as
adaptive collaborative learning support. Front. Artif. Intell. Appl. 158, 383 (2007)

10. Rosé, C.P., Ferschke, O.: Technology support for discussion based learning: from
computer supported collaborative learning to the future of massive open online
courses. Int. J. Artif. Intell. Educ. 26(2), 660–678 (2016)

11. Rummel, N., Walker, E., Aleven, V.: Different futures of adaptive collaborative
learning support. Int. J. Artif. Intell. Educ. 26(2), 784–795 (2016)

12. Sankaranarayanan, S.: Online mob programming: effective collaborative project-
based learning. In: Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education, p. 1296. SIGCSE 2019, Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3287324.3293709, https://
doi.org/10.1145/3287324.3293709

13. Sankaranarayanan, S., et al.: Online mob programming: bridging the 21st century
workplace and the classroom (2019)

14. Sankaranarayanan, S., et al.: An intelligent-agent facilitated scaffold for fostering
reflection in a team-based project course. In: Isotani, S., Millán, E., Ogan, A.,
Hastings, P., McLaren, B., Luckin, R. (eds.) Artificial Intelligence in Education, pp.
252–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8 47

15. Stegmann, K., Weinberger, A., Fischer, F.: Facilitating argumentative knowledge
construction with computer-supported collaboration scripts. Int. J. Comput. Sup-
port. Collaborative Learn. 2(4), 421–447 (2007)

https://doi.org/10.1145/3287324.3293774
https://doi.org/10.1145/3287324.3293774
https://doi.org/10.1145/3287324.3293774
https://doi.org/10.1145/3287324.3293709
https://doi.org/10.1145/3287324.3293709
https://doi.org/10.1145/3287324.3293709
https://doi.org/10.1007/978-3-030-23207-8_47


278 S. Sankaranarayanan et al.

16. Walker, E., Rummel, N., Koedinger, K.: Beyond explicit feedback: new directions
in adaptive collaborative learning support (2009)

17. Wilson, A.: Mob programming-what works, what doesn’t. In: International Confer-
ence on Agile Software Development. pp. 319–325. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18612-2 33

18. Zuill, W., Meadows, K.: Mob programming: a whole team approach. In: Agile 2014
Conference, Orlando, Florida, vol. 3 (2016)

https://doi.org/10.1007/978-3-319-18612-2_33
https://doi.org/10.1007/978-3-319-18612-2_33

	Agent-in-the-Loop: Conversational Agent Support in Service of Reflection for Learning During Collaborative Programming
	1 Introduction
	2 Method
	3 Results
	4 Conclusion
	References




