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Preface

The 21st International Conference on Artificial Intelligence in Education (AIED 2020)
was held virtually during July 6–10, 2020. AIED 2020 was the latest in a longstanding
series of a yearly international conference for high-quality research on ways to enhance
student learning through applications of artificial intelligence, human computer inter-
action, and the learning sciences.

The theme for the AIED 2020 conference was “Augmented Intelligence to
Empower Education.” As AI in education systems becomes more mature and imple-
mented at scale in real-world contexts, the value of supplementing human intelligence
and decision making (e.g., teacher, tutor, peer-tutor) is more apparent than ever. While
the paradigm of augmented intelligence is not new to the field, solid theoretical and/or
empirical work in the area is limited. Thus, further work is needed to understand the
balance of human and AI partnerships in systems that support student learning.
The AIED community was convened in 2020 to present solutions for the key questions
related to this theme, including the identification of the augmentation opportunities that
would empower the stakeholders of education.

AIED 2020 was originally scheduled to visit the African continent for the first time
and be co-located with Educational Data Mining (EDM 2020). However, the
unprecedented COVID-19 pandemic made international traveling and in-person
meetings impossible and AIED joined other conferences in becoming a virtual
event. While this certainly brought new challenges, we were humbled by the response
of our community during this difficult time. We are extremely grateful to the authors,
the keynote speakers, the reviewers, and the other track chairs for making AIED
possible. The virtual event included keynotes from Prof. Neil Heffernan on ways that
tutoring systems can improve online learning, Prof. Yvonne Rogers on designing
interactive technologies that augment humans, and Andreas Schleicher, director for the
directorate of education and skills at OECD, with Lord Jim Knight, former school
minister from the UK on how AI impacts upon the policymaking landscape in edu-
cation. We want to extend a special thank you to the AIED Program Committee
(PC) members and reviewers – your hard work and commitment was truly appreciated.

There were 184 submissions as full papers to AIED 2020, of which 49 were
accepted as full papers (ten pages) with virtual oral presentation at the conference (for
an acceptance rate of 26.6%), and 52 were accepted as short papers (four pages). Of the
30 papers directly submitted as short papers, 14 were accepted. Each submission was
reviewed by three PC members. In addition, submissions underwent a discussion
period (led by a leading reviewer) to ensure that all reviewers’ opinions would be
considered and leveraged to generate a group recommendation to the program chairs.
The program chairs checked the reviews and meta-reviews for quality and, where
necessary, requested for reviewers to elaborate their review. Final decisions were made
by carefully considering both meta-reviews (weighed more heavily) scores and the
discussions. Our goal was to conduct a fair process and encourage substantive and



constructive reviews without interfering with the reviewers’ judgment. We also took
the constraints of the program into account, seeking to keep the acceptance rate within
the typical range for this conference.

Beyond paper presentations and keynotes, the conference also included:

– An Industry and Innovation Track, intended to support connections between
industry (both for-profit and non-profit) and the research community

– A series of four workshops across a range of topics, such as: empowering education
with AI technology, intelligent textbooks, challenges related to education in
AI (K-12), and optimizing human learning

– A Doctoral Consortium Track, designed to provide doctoral students with the
opportunity to obtain feedback on their doctoral research from the research
community

Special thanks goes to Springer for sponsoring the AIED 2020 Best Paper Award.
As already mentioned above, we also want to acknowledge the wonderful work of the
AIED 2020 Organizing Committee, the PC members, and the reviewers who made this
conference possible.

May 2020 Ig Ibert Bittencourt
Mutlu Cukurova
Kasia Muldner
Rose Luckin
Eva Millán
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How Can Platforms Like ASSISTments
Be Used to Improve Research?

Neil Heffernan

Worcester Polytechnic Institute, Worcester, MA 01609, USA
nth@wpi.edu

Abstract. The head of the Institute of Education Sciences is asking about how to
use platform to increase education sciences. We have been addressing this. So
how do you use platforms like EdX, Khan Academy, Canvas to improve sci-
ence? There is a crisis in American Science referred to as the Reproducibility
Crisis where many experimental results are not able to be reproduced. We are
trying to address this crisis by helping “good science” to be done. People that
control platforms have a responsibility to try to make them useful tools for
learning what works. In Silicon Valley, every company is doing AB Testing to
refine their individual products. That, in and of itself, is a good thing and we
should use these platforms to figure out how to make them more effective. One
of the ways we should do that is by experimenting with different ways of
helping students succeed. ASSISTments, a platform I have created, with 50,000
middle-school math students, is used to help scientists run studies. I will explain
how we have over 100 experiments running inside the ASSISTments platform
and how the ASSISTment-sTestBed.org allows external researchers to propose
studies. I will also explain how proper oversight is done by our Institutional
Review Board. Further, I will explain how users of this platform agree ahead of
time to Open-Science procedures such as open-data, open-materials, and
pre-registration. I’ll illustrate some examples with the 24 randomized controlled
trials that I have published as well as the three studies that have more recently
come out from the platform by others. Finally, I will point to how we are
anonymizing our data and how over 34 different external researchers have used
our datasets to publish scientific studies. I would like to thank the U.S.
Department of Education and the National Science Foundation for their support
of over $32 million from 40+ grants. I will also address how COVID-19 has
driven a ten-fold increase in the number of teachers creating new ASSISTments
accounts, and I will give my own personal take on how COVID-19 highlights
the need to keep teachers in the loop so that their students know their teachers
are paying attention to their work and what it means for the AIED community.



How AI Impacts the Policy Making Landscape
in Education

Jim Knight1, Andreas Schleicher2

1 Tes Global
2 Organisation for Economic Co-operation and Development (OECD)

Abstract. This keynote aims to provide insights into the criteria that policy
makers are looking for when they are advocating for Artificial Intelligence plat-
forms in education. Whilst efficacy and proof of concept of any platform is an
obvious need, policy makers have to always consider a world view and consider
AI platforms as part of an holistic approach to whole child education and
welfare. With a multitude of AI platforms on offer how do they make informed
decisions and recognise good from bad. How can policy makers work better
with those developing the tools? Since the COVID-19 pandemic what shifts
have they seen at state and government level as schools and parents adopt AI
platforms as part of the daily education of children worldwide?



The New Zeitgeist: Human-AI

Yvonne Rogers

University College London, London, WC1E 6EA, UK
y.rogers@ucl.ac.uk

Abstract. In place of the Singularity, Superintelligence, and General AI visions
that have dominated much of the debate surrounding AI (that predicted that
ma-chines will eventually become more intelligent than human beings and take
over the world) quite different ways of imagining AI are now emerging that are
less dystopian or utopian-driven. A new discourse is emerging that is re-thinking
the benefits of future AI advances from a more human perspective. The main
thrust of this approach is to orient towards envisioning new forms of human-AI
partnerships, where humans collaborate with, talk to, or even confide in AI, and
conversely, where AI, through its various guises, becomes a companion, ther-
apist, colleague, assistant, or other. Such a shift in thinking enables researchers
and developers to design quite different kinds of intelligent systems – those that
augment humans. The implications of doing so are profound; especially when
considering how to enhance the way learners, educators, and teachers can col-
laborate with AI in the future. In my talk I will begin to describe what the
opportunities and challenges are with this new framing for AI and Ed.
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Making Sense of Student Success
and Risk Through Unsupervised Machine

Learning and Interactive Storytelling

Ahmad Al-Doulat, Nasheen Nur, Alireza Karduni, Aileen Benedict,
Erfan Al-Hossami, Mary Lou Maher(B), Wenwen Dou, Mohsen Dorodchi,

and Xi Niu
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Abstract. This paper presents an interactive AI system to enable aca-
demic advisors and program leadership to understand the patterns of
behavior related to student success and risk using data collected from
institutional databases. We have worked closely with advisors in our
development of an innovative temporal model of student data, unsu-
pervised k-means algorithm on the data, and interactive user experi-
ences with the data. We report on the design and evaluation of FIRST,
Finding Interesting stoRies about STudents, that provides an interactive
experience in which the advisor can: select relevant student features to
be included in a temporal model, interact with a visualization of unsu-
pervised learning that present patterns of student behavior and their
correlation with performance, and to view automatically generated sto-
ries about individual students based on student data in the temporal
model. We have developed a high fidelity prototype of FIRST using 10
years of student data in our College. As part of our iterative design pro-
cess, we performed a focus group study with six advisors following a
demonstration of the prototype. Our focus group evaluation highlights
the sensemaking value in the temporal model, the unsupervised clusters
of the behavior of all students in a major, and the stories about individual
students.

Keywords: Sensemaking in learning analytics · Data storytelling ·
Unsupervised machine learning · Data visualization · Interactive user
experience · Human-centered design

1 Introduction

As artificial intelligence in education becomes increasingly prominent, there is
a growing need to consider augmented intelligence. This is the idea that arti-
ficial intelligence can and should be used to enhance human intelligence and
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abilities rather than attempt to replace it. The 2016 National Artificial Intelli-
gence Research and Development Strategic Plan stated that “the walls between
humans and AI systems are slowly beginning to erode, with AI systems aug-
menting and enhancing human capabilities. Fundamental research is needed
to develop effective methods for human-AI interaction and collaboration” [1].
Popenici and Kerr further emphasize the importance of recognizing education
as a “human-centred endeavor” and the idea that “solely rely[ing] on technol-
ogy is a dangerous path, and... that humans should identify problems, critique,
identify risks, and ask important questions...” [2]. Therefore, we should take on
a human-centered approach in the era of AI. Human-centered AI is a viewpoint
that AI systems and algorithms “must be designed with an awareness that they
are part of a larger system involving humans” [3]. AI research should not just
be technological, but humanistic and ethical as well [4]. One aspect of human-
centered AI is to create systems that help humans understand the system itself
[3]. Therefore, the goal is not simply to provide results through a black-box
model. The focus is to help users understand those results and how those results
are derived.

We explore sensemaking in Learning Analytics (LA) as an example of human-
centered AI and present how we address this challenge for advisors that are
presented with large amounts of data and analytics about their students. LA is
an interdisciplinary field that emerged to make sense of unprecedented amounts
of data collected by the extensive use of technology in education. LA brings
together researchers and practitioners from two main fields: data mining and
education [5]. Effective presentation of analytical results for decision making has
been a major issue when dealing with large volumes of data in LA [6]. Many sys-
tems for early alerts on student performance provide results without providing
necessary explanations as to how the system derived those results. If an early
warning system gives a result that is inconsistent with the expectations of a
teacher or an advisor, and there is no information to explain how the system
arrived at the prediction, it can easily cause educators to discount or mistrust
the prediction [7]. Human sensemaking relies on developing representations of
knowledge to help serve a task, such as decision-making, and on the design of
AI approaches to better aid these tasks. We discuss the design, implementation,
and evaluation of an interactive system designed to help advisors better under-
stand student success and risk. In contrast to many LA systems designed to
support student awareness of their performance or to support teachers in under-
standing the students’ performance in their courses, our interactive system is
designed to support advisors and higher education leadership in making sense of
students’ success and risk in their degree programs. Our approach to interactive
sensemaking has three main parts: (1) a temporal student data model, (2) data
analytics based on unsupervised learning, and (3) storytelling about the student
experience.
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2 Related Work

In this section, we review related research in two interdisciplinary threads: (1)
sensemaking in LA, and (2) data storytelling techniques.

2.1 Sensemaking in Learning Analytics

Sensemaking is process of understanding connections to anticipate their trajec-
tories and to act effectively [8]. Van et al. [9] stated that sensemaking is a core
component of LA dashboard interventions, as the purpose of these tools is to
provide users with the ability to become aware of, reflect upon, and make data-
based decisions. Echeverria et al. [6] proposed a learning design-driven data sto-
rytelling approach where they support user sensemaking by directing the user’s
attention to the critical features of the students’ data using visualizations with
data storytelling components. Their user study suggests that adding storytelling
elements to the LA dashboards has the potential to help users make sense of the
critical features of students’ data with less effort. CALMSystem [10] is another
example of a LA system that supports sensemaking, awareness, and reflection.
It was developed on top of an intelligent tutoring system to give a learner insight
into the learner model. Klein et al. [11] proposed a model of student sensemak-
ing of LA dashboards to show how data and visualization inform user sense-
making and action. Verbert et al. [11] introduced a LA system for learners and
teachers visualizing learning traces with four distinguished stages for the process
model - (i) awareness is only concerned with the students’ data presented using
various visualizations, (ii) reflection focuses on usefulness and relevance of the
queries by the users, (iii) sensemaking is concerned with users’ responses in the
reflection process and the creation of new insights, and (iv) impact is concerned
with the induction of new meaning or changing behavior by the users. Addi-
tionally, researchers made contributions to better prediction and sensemaking
of student progress trajectories. Learning Management Systems (LMSs) storing
students’ temporal data have been leveraged in various works to analyze stu-
dents’ progression throughout their whole program [12–16] and within a course
level [12,17–19].

2.2 Sensemaking with Data Storytelling

Stories are capable of conveying essential information to users more naturally
and familiarly for them [20]. Data storytelling aims to make data more under-
standable and memorable by human users by presenting data in the form of
stories. Several research studies created natural language presentations of tabu-
lar or numeric data ranging from summarizing statistical results [21,22], stock
market trends [23], and environmental data [24]. Many applications of Natural
Language Generation (NLG) have been used to generate stories from data to
promote the user sensemaking. Notable examples of tools that generate textual
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forecast from structured data include the Forecast Generator (FoG) [25], MUL-
TIMETEO [26], and the SumTime system [27]. Such systems increase inter-
pretability and reduce routine writing tasks performed by human forecasters.
NLG is also used in medicine. TOPAZ [28], creates reports of blood cell and
drug dosages for lymphoma patients. It uses a schema-based generation system
that generates a textual report read by clinicians. Other systems that gener-
ate medical reports include Suregen [29], Narrative Engine [30], and STOP [31].
These systems tend to facilitate the users’ sensemaking of homogeneous data
through brief textual summaries. FIRST is capable of generating stories to sup-
port advisors’ sensemaking of complex, temporal, and heterogeneous student
data.

3 FIRST: Design and Implementation

The goal of FIRST is to better communicate analytics results by guiding the
user through sensemaking tasks and interactive LA. Sensemaking tasks consist of
information gathering, developing insights, and performing knowledge discovery
[32]. In the sensemaking process, domain experts such as the educational leaders,
teachers, and academic advisors decide on the existing challenges and expected
outcomes for their institution. Most of the learning management tools involve
data scientists in the knowledge discovery process to design the student data
model, analytics approach, visualizations, and a reporting system to understand
students’ patterns of success or failure. Next, domain experts design intervention
methods based on the analytics. The analytical process, essential to knowledge
discovery, needs substantial data science skills. Domain experts do not engage
in the discovery process since the analytical model is a black box to them. In
FIRST, domain experts can select features from the temporal data model, see
the stories about students, and explore which factors are major contributors to
a student’s performance and behaviors.

3.1 Interface Design

Our system is designed to allow advisors to engage in sensemaking by inter-
acting with temporal data, reviewing aggregate analytics, and reading stories.
Figure 1A shows the interface for the user to select the student features in the
temporal model. The selected features are used when generating stories for each
student. The user can change their preferred features at any point, which will
consequently change the content of the stories. It is also possible for the system
to automatically generate stories based on what it selects as the most appropri-
ate features. However, allowing the user to select the features is important to
sensemaking. Figure 1B shows the user experience with the results of unsuper-
vised learning, and Fig. 1C shows the user experience for interacting with the
automatic story generator. FIRST differs from existing LA tools in the following
ways:
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– The user can leverage their insights about student behavior and participate
in model construction, giving them the flexibility to change the features to
be used in the analytic models and automatically generated stories.

– The user is presented with automatically generated stories to complement the
results from analytic models.

Fig. 1. Interface design for FIRST (Color figure online)

3.2 Temporal Data Model

FIRST uses a temporal data model that uses time segments to group heteroge-
neous sources of data and form sequences of information for each student [16].
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This allows the analytic models to consider the temporal dependencies of stu-
dents throughout their enrollment. The temporal model gives flexibility in defin-
ing the duration of the temporal node, contextualizing information within a
node, and interpreting sequences of nodes as stories. The data model contains
one sequence per student that starts with their enrollment and ends with when
the student graduates or leaves the university. Each node in a sequence repre-
sents a period (e.g., a single semester) and contains a vector of features (vari-
ables, such as courses taken in that semester). There are three types of temporal
nodes for each student: the background node with demographic information, the
semester node with semester-wise activities and information, and the outcome
node with the value of the performance variable. The student data model is
shown in Fig. 2A.

Fig. 2. Components for generating students’ stories: (A) temporal data model, (B)
selected student features, and (C) examples of sentences in the story (Color figure
online)

3.3 Unsupervised Learning

FIRST uses unsupervised learning to identify patterns of student behavior and
then maps that behavior onto performance. The user can select from options for
the student performance variable, such as GPA, and can select filters to include a
subset of the total population, such as male or female students or a period of time.
Figure 1B shows the results of clustering all students according to their course
progression with the performance variable of GPA, where 2.0 is a minimum value
to be successful. Course progression is an example engineered temporal feature,
which is the average value of the first digit of a course level for each semester.
For example, if a student took three courses with levels 1200, 1212, and 3000
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in his/her first semester, this feature will take a value of 1.7 (average of 1, 1,
and 3) for the first semester. We then formed a 2D (two-dimensional) feature
vector for each student in which each row has the values for one of the engineered
features for each semester. We used the K-means clustering algorithm [33] on
several engineered features and found that course progression, for example, was
able to cluster students with high “purity” in terms of the defined outcome
variable. We used the elbow method [34] to determine the optimal number of
clusters. We analyzed each cluster to see if they were “coherent” in terms of
student performance. For example, after we applied the K-means approach to
the “course progression” feature, the result could separate the successful and
risky student reasonably clearly. Our primary hypothesis for this feature is that
it should be either increasing or steady along the semesters for those successful
students. If it is decreasing or steady for a long time, the student did not progress
to higher-level courses or the student was repeating lower-level courses.

Figure 1B presents the clustering results with 3 clusters for the engineered
feature “Course Progression Through Semesters”. In the blue cluster with 483
students, successful students are the most dominant with a percentage of 90.27%.
As we see the intercept and the slope of this blue line in Fig. 1B, it has a higher
average course level in each semester compared to the other two clusters. In
addition, the average course level is consistently increasing. This suggests that
this cluster of students consistently takes courses at a higher level and starts to
progress early on. The green cluster also has a higher percentage of successful
students than the orange cluster. If we compare their intercepts and slopes, the
green line stays above the orange one and makes more “linear” progression than
the orange counterpart. In this analysis, we define student success as obtaining
the final GPA last semester higher than 2.0. If we changed the GPA threshold, the
clustering results would be different. The user can select each cluster and further
review the data for each student who belongs to that cluster. The bar chart shows
the average GPA for each cluster. The user can select an individual student or
groups of students in the analytic interface and review their temporal data. The
selected students in exploring the analytic results are saved and available on the
storytelling page.

We use clustering since more students are successful than unsuccessful:: a
supervised learning approach could overfit and impose an accuracy paradox due
to a higher number of majority class examples caused by the imbalance. Equaliz-
ing class membership by adjusting the within-class imbalance and using random
sampling can introduce unrealistic patterns in the data [35]. We use clustering
to separate and classify samples. The clustering results provide insight into the
engineered features that discriminate on percentages of successful students com-
pared to students at risk. This classification describes characteristics of cohorts
of students and how they behave in the clusters. In the future, we will consider
a guided re-sampling and classification method to overcome over-fitting. For
this reason we adopted an unsupervised clustering approach to find patterns of
student behavior that map onto success criteria. In the future, we plan to incor-
porate the cluster results into a predictive model to apply our knowledge about
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patterns of behavior in cohorts of students to develop early alerts or predictions
for individual students.

Fig. 3. Process of story generation

3.4 Student Stories

FIRST automatically generates stories for each student using the features
selected in the temporal data model. These stories present a summary of the
student’s experience in a narrative. Figure 1C shows the user experience for
interacting with the student stories. When the user selects a student from the
left panel, the timeline and story sections are updated. The storytelling algo-
rithm uses user-selected and standard features. The stories are generated from
the data in the temporal model shown in Fig. 2. Figure 2A shows the nodes in the
temporal data model, Fig. 2B shows the features selected from each node, and
Fig. 2C shows the sentences that are constructed from each feature. The text in
black is from a predefined template while the text in red is generated from the
features. After generating the sentences for each of the selected features, these
sentences are used to generate the story as discussed below. An example of a
generated story can be shown in Fig. 1C. Figure 3 illustrates the 3 stages in the
process of generating stories: raw data source and user selection inputs, story
synthesis, and story analysis. We describe each stage of story generation.

Data Source. As shown in Fig. 3A, the input data for story generation com-
prises: (i) features in the temporal data model, (ii) the results of the analytics,
and (iii) the user selected features and outcome. The features in the data model
are used in a set of predefined template rules, the analytics results are used to
compare the current student with other similar students, and the user-selected
variables are used to make the story more customized for the user.

Story Synthesis. The goal of this stage is to determine and sort the content
presented in the student’s story. As shown in Fig. 3B, synthesis has two tasks:
content determination and story structuring.
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– Content Determination: this is the task of choosing what is included in the
story. The selection is based on these factors:
• user-selected features: we include the features selected by the user as

illustrated in Fig. 1A.
• performance rules: we identified a set of rules that either inspect any

sudden changes of the students’ performance over time (e.g., A student’s
GPA suddenly dropped or increased), or abnormal information compared
to most students (e.g., the number of attempted, passed, or failed courses
for a semester is higher, or the number of D-scored courses is higher).

• comparison with other similar students: we used clusters to look for stu-
dents that are similar and successful to inspect if the student per se is an
outlier in terms of some variables.

– Story Structuring: this is the task of deciding the order of information in
which it is presented to the reader. We order the information based on the
student temporal data model, in which the story starts with the background
information about the student, then with the semester information, and ends
with the outcome information.

Story Analysis. This stage improves the language of the stories so they are
more human-readable and coherent. As shown in Fig. 3C, this includes 2 tasks:
sentence aggregation and lexicalization.

– Sentence Aggregation: Clusters multiple pieces of the same kind of informa-
tion together into a single sentence instead of several ones. For instance, if we
have a set of candidate sentences as “student achieved an A in the course X”,
and “student achieved B in course Y”, these sentences should be aggregated
into one sentence “student maintained all his grades at B or above”.

– Lexicalization and Linguistic Realization: Lexicalization is choosing the
proper words and phrases to transform the data into natural language text.
Linguistic realization is inserting punctuation, functional words and other
elements required for the text to be fluid and coherent.

4 User Study - Focus Group

A focus group study was conducted with the goal of learning what users find
important in a tool to support advising. In the focus group session, we demon-
strated FIRST and then asked questions about the value of the student data
model, analytics, and storytelling. We recruited six professional and faculty advi-
sors whom are already familiar with multiple tools that provide data, analytics,
and risk scores for the students that they advise. A focus group study was
selected for its effectiveness in collecting user opinions and attitudes through
group discussion and dynamic conversations. Some preliminary questions were
asked to collect information related to the current technology used during advis-
ing and the useful features of those tools. The participants revealed that they
often ignored the risk score provided by the analytics in their advising tool
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because the process behind the calculation is not clear to them. They men-
tioned that although the student reports generated by the existing tool were
useful, they would like more flexibility to customize the information for different
cohorts of students. The group discussed that one goal for such tools is to be
prepared for advising before the student arrives for the advising appointment.
FIRST was demonstrated to the group with scenarios for specific students. The
participants asked questions about the system and the facilitator demonstrated
additional interactive features. Then the participants were asked to answer ques-
tions to assess the sensemaking they performed through the demonstration: (i)
What insights were you able to gain about students through viewing this tool?
(ii) What are the differences between what you learned about the students
from the analytics versus the stories? (iii) What is the value of the analytics
results and the stories? (v) How can the student stories help you with advising?
And (vi) Can you think of other good predictors(features) of student success?
Two researchers reviewed the transcript and identified emerging themes indepen-
dently and through discussion they agreed on three higher-level themes. These
three high-level themes were then used to revisit and code the transcript accord-
ing to the themes.

– Selecting Features for Student Models: Participants appreciated that
they could select the features they thought should be part of a predictive
model of risk or part of the student story. They also like a number of features
that were included, such as students’ financial need status, family life, housing
options, and mailing addresses. Many expressed surprise that the University
actually had a lot of data that would be useful for advising that was not
available in the other tools.

– Value of Aggregate Analytics and Temporal Data: Participants agreed
that aggregate analytics is essential for understanding students, especially a
targeted group of students. They found the presentation of the student data
as a temporal progression is useful since it presents the overall students’
progression through semesters.

– Value of Student Stories: The participants agreed that student stories were
useful and effective to provide a high-level overview or snapshot of the student.
They mentioned that the stories would be helpful for understanding a specific
student quickly. They agreed that stories provide a good understanding of
students in terms of their demographic information as well as their academic
performance. One participant said: “I like the stories the best - knowing that
the story was created using analytics is reassuring”. One comment to extend
FIRST is the suggestion to tell stories about groups of students that lie in a
single cluster.

5 Conclusions and Future Work

In this paper, we present FIRST, an interactive LA system designed to sup-
port advisors using a temporal data model, unsupervised models, and story-
telling. FIRST enables the advisor to select specific features, review the aggregate
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analytics based on unsupervised learning algorithms, and interact with stories
about specific students. The student stories are automatically generated using
user-selected features, the features that indicate significant changes, and addi-
tional data about the student using rules that present a more complete story.
The process for generating stories has 3 stages: sourcing the data, selecting and
structuring story components, and text-processing the sentences. A focus group
study was conducted to evaluate FIRST and gather feedback. The participants
highlighted the sensemaking value of storytelling and the increased access to
student data compared to other tools. The aggregate analysis was reported to
be enhanced by the storytelling since the user can switch between the story and
the visual analytics. The results of the focus group confirm our hypothesis that
storytelling complements dashboard-style analytics. In the future, we plan to do
a longitudinal study of the use of FIRST to learn more about the changes in the
advisors’ understanding of their students with and without FIRST.
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Abstract. We describe the deployment of an imperfect NLP-based
automatic short answer grading system on an exam in a large-enrollment
introductory college course. We characterize this deployment as both
high stakes (the questions were on an mid-term exam worth 10% of
students’ final grade) and high transparency (the question was graded
interactively during the computer-based exam and correct solutions were
shown to students that could be compared to their answer). We study
two techniques designed to mitigate the potential student dissatisfaction
resulting from students incorrectly not granted credit by the imperfect
AI grader. We find (1) that providing multiple attempts can eliminate
first-attempt false negatives at the cost of additional false positives, and
(2) that students not granted credit from the algorithm cannot reliably
determine if their answer was mis-scored.

Keywords: Automatic short answer grading · Computer-based
exams · Transparency · Code reading · CS1 · EiPE

1 Introduction

Workplace demand for computing skills [19] has led to large enrollments in intro-
ductory programming classes [6]. These courses, however, have had historically
large failure rates [2,29]. Some evidence suggests that this is due to a prema-
ture emphasis on code writing instead of reading-oriented activities [4,14,32].
One important reading skill is the ability to describe the high-level behavior of
code [14,17,18,31]. Questions to assess this skill—“Explain in Plain English”
(EiPE) questions—aren’t widely utilized due to the workload of manually grad-
ing natural language responses. Figure 1(A) shows an example prompt of one of
our EipE questions.

In this work, we describe our initial efforts in deploying an NLP-based AI
grader for EiPE questions and our transition from low-stakes to high-stakes
environments. Initially, simple NLP-based AI graders were trained using a small
amount of survey data collected from course teaching assistants and upper-
level undergraduate computer science students. These simple AI graders were
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12163, pp. 16–28, 2020.
https://doi.org/10.1007/978-3-030-52237-7_2
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Example Explain-in-Plain English (EiPE) question prompt       A

Example formative feedback given after student submits answerB

Fig. 1. An example mid-semester automated EiPE exercise (A) in a Python-based intro
CS course. After a student submits their answer, they are shown example solutions (B)
so that they can learn. Non-trivial code fragments are deconstructed so as to show the
correspondence between the code and the natural language description.

deployed in a low-stakes homework context for which we had two goals: 1) we
wanted students to improve their ability to provide natural language descriptions
of code, so we provided both immediate correct/incorrect feedback and example
correct answers as shown in Fig. 1(B) and 2) we wanted to collect additional
training data which could be used to train improved NLP-based AI graders.

Positive results with the homework deployment emboldened us to deploy
our AI grader on an exam. To our knowledge, this deployment is unique in the
research literature for (imperfect) AI-based graders because it was both high
stakes—this question was on one of three midterm exams each worth 10% of
students’ final grades—and high transparency—the question was graded inter-
actively and students are shown correct answers in a way that permits them to
evaluate their submitted answer in light of the correct answers.

A high-stakes, high-visibility deployment of an imperfect AI grader, if not well
managed, has the potential for student dissatisfaction on a large scale. As such,
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we wanted to understand what precautions can be taken to prevent students
from feeling that they were harmed by such an imperfect grader. To this end,
we were willing to tolerate some number of false positives in order to minimize
false negatives, and we were willing to employ some manual labor. All things
being equal, however, we sought to minimize false positives and the amount of
manual labor required.

We brain-stormed two strategies to minimize false negatives and, hence, stu-
dent unrest. First, because our exam was graded interactively on a computer, we
could permit students to attempt the question multiple times if the AI grader
didn’t award them credit on their first attempt. This would hopefully permit
students to re-word their answers into a form that could receive credit automat-
ically from the algorithm. Second, we could provide students an appeal system
where they could, after they are shown the correct answer, request a manual
re-grade for an EiPE question, if they believed the AI grader had scored them
incorrectly.

These two strategies led to two corresponding research questions:

RQ1: Does providing students with multiple attempts enable false negatives to
earn credit without manual intervention?

RQ2: Can students correctly recognize when the AI grader has failed and appro-
priately appeal for a manual re-grade?

Our findings can be summarized as follows:

1. The two techniques were effective at avoiding large-scale student dissatisfac-
tion.

2. Re-training the AI grader using student responses drawn from the homework
deployment improved the accuracy from 83.4% to 88.8%.

3. Providing three attempts (at full credit) enabled all first-attempt false nega-
tives to automatically earn credit from the algorithm. It did, however, have
the consequence of yielding additional false positives.

4. Appeals were useful for morale, but were not effective for distinguishing false
negatives from true negatives.

5. Students’ perception of the grading accuracy of our NLP-based AI grader
was lower than that of deterministically-correct auto-graders for true/false,
multiple-choice, and programming questions, but only to a modest degree.

This paper is structured as follows. Section 2 briefly reviews related work.
Section 3 describes our data collection and AI grader training, while Sect. 4
reviews the AI grader’s performance and results. We conclude in Sect. 5.

2 Related Work

Automatic grading of free response questions is largely split into two areas of
focus: automatic short answer grading (ASAG) and automatic essay scoring
(AES). We review briefly the recent work in both areas below.
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A review of recent, competitive machine learning ASAG shows only 11%
of ASAG papers were focused on computer science [11]. Most of the recent
studies are laboratory studies or model evaluations on public or sample data
sets [11,16,20,22,25,26,33]. The closest to a high-stakes course exam featured
automatic grading for very short answer—defined as four or less words—
questions, but in a not-for-credit exam-like context rather than on a for-credit
exam [23]. The Educational Testing Services (ETS) C-rater is deployed for some
ETS standardized exams, but is not high-transparency and focuses on concept
mapping [13,24]. ASAG feature selection includes lexical, semantic, syntactic,
morphological, and surface features [3,11,26]. Most recently, dialog based sys-
tems and intelligent tutoring systems [20,22,25] and end-to-end models have
been used for ASAG [16,33]. To our knowledge, no ASAG work has reported on
the deployment of AI graders in a high-stakes, high-transparency environment
like ours.

AES work is more familiar with high-stakes environments. The ETS E-rater
receives yearly updates and is used in both high-stakes settings like the GRE and
low-stakes such as the SAT online test [21]. However, these systems are not high-
transparency as students are provided no means to judge the validity of their
scores and there is no process to contest scores. Further, AES’ major impact
is reduction of human labor, with the evaluation of essays focusing broadly on
how essay features correlate to human-grader provided marks rather than spe-
cific content grading [12]. Recent AES approaches include GLMMs [8], autoen-
coders [7], statistical classifiers [15], and various deep-learning neural network
approaches [1,9,10,27].

3 Methods

In Fall 2019, we developed and deployed automated EiPE questions in an intro-
ductory CS course for non-technical majors at a large U.S. university. This 600-
student course introduces basic principles of programming in both Python and
Excel to a population largely without any prior programming experience. The
course was approaching gender balance with 246 women and 355 men.

We constructed our EiPE AI graders using logistic regression on bigram
features. These graders were initially trained with minimal data from a series of
surveys. Each survey asked participants to provide two correct responses and two
plausible incorrect responses for each of the EiPE questions. These surveys were
completed by the course’s instructor and TAs and a collection of upper-level CS
students who were compensated with an Amazon gift card for each survey. These
surveys resulted in approximately 100–200 responses per question. Survey data
was manually reviewed by a research team member to perform any necessary
re-categorization of the responses.

This survey-data-trained AI grader was deployed on four homework assign-
ments during the first half of the semester. The questions were deployed using
the PrairieLearn [30] online learning platform, the course’s primary assessment
system. Each assignment included a pool of 10–12 EiPE questions, and each
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time a student attempted a question they were given a random draw from the
pool. To tolerate the AI grader’s inaccuracy in this low-stakes, formative con-
text, students could attempt the activity as many times as they wanted; points
were granted for any correct answers with no penalty for incorrect answers. As
such, any false negatives would only delay (rather than prevent) students from
getting points. Furthermore, the AI graded EiPE questions were one of many
activities on the students’ weekly assignment, and they could ignore the activ-
ity completely and earn the week’s homework points through answering other
questions instead.

We next deployed the auto-graded EiPE questions as one of 24 questions on
a proctored, computer-based mid-term exam in the 12th week of the course (also
run using PrairieLearn). We selected the pool of EiPE questions deployed on the
homework during the 5th week of the course. Prior to deployment, two members
of the research team manually labeled the students’ homework responses to these
questions and used as additional training data to improve the grader. The AI
graders deployed on the exam were trained with 500–600 labeled responses per
question.

Four of the problems in the pool were not included on the exam because
they exhibited a noticeable difference in difficulty from the rest. Students were
randomly assigned one of the remaining eight problems. Students were given
three attempts to submit a correct answer, receiving correct/incorrect feedback
on each submission and were shown correct answers (as shown in Fig. 1(B)) once
all attempts had been used or their answer was scored as correct.

The students submitted a total of 1,140 responses. After the exam was com-
pleted, for the purpose of this research, two members of the research team famil-
iar with the course content independently scored each response without knowing
the AI grader’s score. For any responses where these two scores matched, the
score was considered the final ground truth. Final ground truth for the remaining
responses was established by a process of discussion and reconciliation between
both scorers and a third research team member until consensus was reached.
Necessary grade corrections were made for all students who had incorrectly been
denied credit. All further analysis in this paper has been done on this set of 1,140
auto-graded exam responses.

To understand how students perceived the accuracy of auto-graded EiPE
questions as compared to other types of auto-graded questions, we asked students
to fill out a survey in the week after the exam with the EiPE question. Using a
1–5 Likert scale, students were asked: “For each type of question, rate it based
on how reliably accurate you feel the grading for that kind of question is”.

4 Results

Comparing AI Grader and Human Performance. 51% of students had
their EiPE question scored as correct by the reconciled human graders, and the
AI grader achieved an accuracy of 89%, with a 12% False Positive (FP) rate
and a 9% False Negative (FN) rate. We used Cohen’s kappa to compare the
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inter-rater reliability of humans and the AI grader. Cohen’s kappa between the
two experienced human graders was 0.83 (“almost perfect” agreement [28]) and
between the AI grader and the ground truth (reconciled human graders) was
0.74 (“substantial” agreement [28]).
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Fig. 2. The performance of the AI grader on the 1,140 exam responses when trained
on different combinations of data with different sample sizes.

AI Grader Accuracy Versus Amount of Training Data. To understand
how much training data is needed for obtaining a reasonable AI grader and
whether there is a qualitative difference between survey data and student home-
work data, we trained graders with different subsamples of data and show the
mean of the grader’s performance in Fig. 2. There are three main sources of train-
ing data: (1) a subset of the survey data, (2) a subset of the student homework
data, and (3) both, meaning all of the survey data and a subset of the student
homework data. Although more data consistently lead to better performance,
the student homework data seems qualitatively better than survey data, sug-
gesting that the course staff and senior students creating the survey data were
only somewhat able to generate realistic training data.

Student Perceptions of Accuracy. Students perceived the grading of AI
graded EiPE questions as being less accurate than that of other kinds of ques-
tions to a statistically significant degree (p < 0.001). Compared to the next-
lowest question type (programming), code-reading questions were d = 0.48 stan-
dard deviations lower, a “medium” effect size [5]. Mean Likert scores for each
type of question are shown in Fig. 3 with 95% confidence intervals. We failed
to find any correlation between students’ perception of the EiPE AI grader and
whether it mis-graded their answers on the exam. Instead, a student’s percep-
tion of accuracy for all kinds of questions is weakly correlated with the student’s
performance on that kind of question (mean r = 0.22).
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Multiple Choice

Single-line Response
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EiPE Questions

Multi-line Programming
Questions

How reliably accurate was the grading
for each kind of question?

Fig. 3. Responses to a survey question auto-grader accuracy by question type. Choices
were from 1= “Very Unreliable” to 5 = “Very Accurate”.

Multiple-Attempt Accuracy. We need to differentiate between the AI
grader’s performance on a single student submission versus the net performance
over all student submissions to a question. To describe the latter, we define
the Multi-Attempt-k outcomes as shown in Table 1. Whenever we use terms like
False Positive (FP) without the prefix of “Multi-Attempt”, we are referring to
the performance on a single-submission level.

Table 1. Definitions of “multi-attempt” terminology.

Term Definition

Multi-Attempt-k True Positive Within the first k attempts, student submits at
least one correct answer and AI grader awards
points for some submission

Multi-Attempt-k False Positive Within the first k attempts, student submits no
correct answer but the AI grader awards points
for some submission

We visualized how multiple attempts impact the performance metrics in
Fig. 4. We see that as students attempted the question more times (moving from
MA-1 to MA-3), the true positive rate increased somewhat (93.2% to 97.7%),
but at the expense of a substantially higher multi-attempt false positive rate
(14.9% to 32.9%). The reference ROC curve is for the AI grader evaluated on
only the first-attempt responses, and we see that the multi-attempt performance
is always worse than this.

Trajectories with Multiple Attempts. Figure 5 shows the trajectories stu-
dents took through the multiple attempts at the EiPE questions. This reveals
several features. First, all students who were falsely graded as incorrect (FN) on
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Fig. 4. Multi-attempt AI grader performance (MA-k) using only the first k attempts
(see Table 1). The blue ROC curve is for the AI grader on the first-attempt data only.
(Color figure online)

the first attempt were able to use the multiple attempts to eventually be graded
as correct (as TP or FP). A majority (73%) of these students needed a second
attempt to be graded correct, and only 27% needed three attempts. Second,
students who were falsely graded as incorrect (FN) re-attempted the question
at a higher rate than students who were truly graded as incorrect (TN) (100%
versus 96%, p = 0.013). Third, the ratio of falsely-graded incorrects (FN) to
truly-graded incorrects (TN) decreased as students used more attempts (4.7%
to 3.2%, p = 0.015).

Strategies with Multiple Attempts. Students marked as incorrect by the
AI grader on either first or second attempt deployed two correction strategies:
(1) reword, where students rephrased their previous answer, and (2) change,
where students submitted a response different in meaning from their previous
answer. Figure 6 plots the paths through these strategies taken by the student
population. From a standpoint of strategy selection, we see that students who
had an actually-correct answer (FN) used the reword strategy at a higher rate
than students who did not (TN) (57% vs 42%, p = 0.022). Considering strategy
effectiveness, we observe that for FN students the reword strategy was more
successful for receiving points than the change strategy, but not significantly so
(75% versus 25%, p = 0.22), whereas for TN students the change strategy was
significantly more effective (81% vs 19%, p = 0.036).

Appeals to Human Graders. Out of the 203 students who were graded as
incorrect by the AI grader, 69 appealed for a human re-grade and 4 of these
were truly correct (rate of 5.8%). Among those that did not appeal, 3 were truly
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Fig. 5. Trajectories of all students through multiple attempts of the AI graded ques-
tions. Students who were scored as correct by the AI grader, either truly (TP) or falsely
(FP), do not attempt further.
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Fig. 6. Strategy selection and effectiveness after a submission was graded as incorrect.
There was no significant dependence on attempt number, so this figure collapses all
attempts together.
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correct (2.2%). The difference in rates of true-correctness was not statistically
significant between students who appealed and those that did not (p = 0.20).

5 Discussion and Conclusion

These initial results suggest automatically grading “Explain in plain English”
(EiPE) questions may be a simpler task than other ASAG contexts. Even using
just bigrams, our results (accuracy of 88.78%) are competitive with other ASAG
results using much more sophisticated algorithms. We believe that this high accu-
racy is the result of specific elements of disciplinary vocabulary (e.g., “count”,
“even”) being effective markers of when students have correct answers.

It is not surprising that the student homework responses were more effective
than survey data for training the algorithm to predict student exam responses.
The surveys did enable us to deploy the algorithm in the low stakes homework
context to collect that homework training data, but our conclusion is that we
could get by with fewer survey responses, especially if we were to quickly score
early homework responses and re-train the model.

While students’ perception of accuracy of our NLP model was statistically
significantly below their perceptions of accuracy for the other question types,
we were surprised by how small the difference in perceptions was. In our minds,
the deterministic autograders and our NLP model are categorically different
things. The students rated the deterministic autograders much lower than we
anticipated (means near 4 out of 5) and the NLP model only d = 0.48 standard
deviations below the deterministic autograders.

While the answer to RQ1—does providing students with multiple attempts
enable false negatives to earn credit without manual intervention?—is yes, there
are a number of caveats. First, while all first attempt FN students automati-
cally earned credit on subsequent attempts, a few did so through submitting FP
answers, which will potentially hinder those students’ learning. Second, rather
than merely reword their answer, many students used the multiple attempts to
submit conceptually different answers. That is, while FN students primarily used
the multiple-attempt feature to rephrase their answer for clarity (as intended by
us), TN students appear to be aware that they don’t know the answer, and used
the multiple-attempt feature as a way to take more “shots in the dark”, changing
their answer in the hope that they’d strike the correct response and gain credit.
Because some of these “shots” resulted in FP, giving students multiple attempts
negatively impacted the FP rate.

This distinction between rewording and changing answers is important,
because they have different implications on how much credit a student should
receive. A student whose answer was correct, but needed rewording to be
accepted by the algorithm, presumably deserves full credit. In contrast, a stu-
dent that hedges by changing their answer on each submission, probably has a
more fragile understanding and may deserve only partial credit. If we were to
use multiple attempts again, we would probably: 1) provide only two attempts,
since the majority of FNs were able to self correct within by their second try,
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and 2) have a small penalty (10–30%) for credit earned on a second attempt.
That said, in our current implementation providing a single attempt and just
shifting the implementation along its ROC curve may provide a better FN/FP
trade-off.

The answer to RQ2—can students correctly recognize when the AI grader
has failed and appropriately appeal for a manual re-grade?—appears to be no.
Students that appealed had a statistically equivalent rate of being correct as
the whole population of students that didn’t earn credit from the algorithm.
Relying on students to self report appears to be an inequitable strategy that
rewards “noisier” students. One important caveat is that appeals were evaluated
in a context with multiple attempts; appeals could be more useful in a single-
attempt context where more FNs are present.

In short, in this first report on strategies for deploying imperfect AI graders in
high stakes, high visibility contexts, we found that our strategies were ultimately
successful. There was no obvious student discontent and only 0.5% (3 out of
600) of students would have incorrectly not received credit (FN) had we not
manually scored all responses. While our strategy was passable, there remains
a lot of opportunity for improvement. Because perfect auto-graders will not
be achievable for many important problems, it is important to explore hybrid
AI/human systems that can mitigate algorithmic shortcomings with minimal
manual effort.
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Abstract. A significant number of jobs require highly skilled labor
which necessitate training on pre-requisite knowledge. Examples include
jobs in military, technical field such computer science, large scale fulfill-
ment centers such as Amazon. Moreover, making such jobs accessible to
the disabled population requires even more pre-requisite training such
as knowledge of sign language. An artificial intelligent (AI) agent can
potentially act as a tutor for such pre-requisite training. This will not
only reduce resource requirements for such training but also decrease
the time taken for making personnel job ready. In this paper, we develop
an AI tutor that can teach users gestures that are required on the field
as a pre-requisite. The AI tutor uses a model learning technique that
learns the gestures performed by experts. It then uses a model compari-
son technique to compare a learner with the expert gesture and provides
feedback for the learner to improve.

Keywords: AI enabled tutor · ASL · Explainable AI

1 Introduction

Advances in machine learning, artificial intelligence (AI) and embedded comput-
ing is bringing a revolution in human computer communication, where humans
and computers will operate in symbiosis for collaborative outcomes and cooper-
ative learning. The applications with collaboration can span over robot assisted
military combat [12,22,33], and collaboratory rehabilitation for diseases such
as Parkinson’s or Alzheimer’s [1,30]. Cooperative learning applications include
computer aided training of military personnel [23], heavy equipment operators
[15], or performance coaching in entertainment applications [29] or tutoring
American Sign Language (ASL) for ease of communication between humans with
various disability profiles such as deaf or hard-of-hearing [7]. In most of these
applications gestures form an important component of communication between
the human and the computer or another human. A gesture is composed of mul-
tiple components arranged in temporal order with specific transitions from one
component to the other. There are typically two components: a) gesture recog-
nition, by a machine or a human, and b) replication by an audience (machine/
human). If the audience is a machine, the recognized gesture may not be in any
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understandable form since the machine can be programmed to replicate by using
the original sensor measurements. But if the audience is a human then gestures
need to not only be recognized but understood in more fundamental ways to
achieve desired learning outcomes.

Fig. 1. Co-operative learning application model for understanding and replicating ges-
tures similar to a tutor.

In this work, we consider a co-operative gesture learning application model
that not only recognizes errors in a learner but also provides corrective feed-
back that enables the learner to replicate a gesture with similar qualities of a
tutor (Fig. 1). The application model takes multiple iterations of a given gesture
from several tutors. It should model not only the individual gesture components
potentially using a data-driven machine learning architecture but also the tran-
sition from one component to the other. In addition, the tutors will also provide
“expert rules” that are essential for expressing the correct or nuanced meaning of
a gesture and can be used to guide corrective feedback to the learner. In the test-
ing phase, a learner provides sensor data for a replication of the gesture, which
is passed to a recognition system. It results in recognition of the gesture compo-
nents along with an explanation for correctness. The inter-component movement
will be checked against a tutor. The results from the component and movement
recognition system will be combined with expert rules to create a prioritized
set of corrective feedback for the learner, which will be disseminated through
audio-visual means. In an extension of this system, it can also be envisioned
that the system generates a personalized training plan for the learner over time.
The training plan is considered as an extension for the research.

In this paper, we consider ASL learning example to demonstrate our contribu-
tions. ASL signs are poly-componential in nature and is a sophisticated gesture
based language [2]. Hence, lessons learned from this example can potentially
be applicable to other gesture based communication domains such as ensuring
compliance to Center for Disease Control (CDC) guidelines for hand-washing
[3].
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The ASL tutor is intended to be used in computer science accessible virtual
education (CSAVE) architecture for Deaf and Hard of Hearing (DHH) individu-
als [14]. An IMPACT Lab project, CSAVE architecture facilitates personalized
learning environment for deaf and hard of hearing students. It enables DHH
students to collaborate with the instructor, interpreter, and their hearing peers
seamlessly without them having to reveal their disability. Many of these technical
courses require students to work in groups to collaborate on projects. Incorpo-
rating ASLTutor within the CSAVE architecture can enable the hearing students
with the tool they would need to communicate with their DHH peers.

2 Existing Work and Challenges

To understand the unique challenges associated in answering the above-
mentioned question, let us contrast two examples: a) an AI tutor for training a
person in a foreign spoken language, and b) an AI tutor for training a person in
ASL.

Existing Work: For second spoken language learners, many research works
point out to the positive relationship between feedback given through interaction
and the learning performance [19,20]. The ability to practice and receive feedback
is also a positive aspect of immersive environments for second language learning
such as study abroad programs and even classroom environment to some extent
[21]. Many software applications for spoken languages incorporate some form of
feedback to help improve the pronunciation of learners [36]. Applications like
DuoLingo also provide interactive chat-bot like environments with feedback to
increase immersion [40]. However, such applications are not available for learners
of sign languages. This is in part due to the inherent technical difficulties for
providing feedback to sign language learners.

2.1 Challenge 1: Explainable Systems

A simple notion of the correctness of a sign execution can be computed using
existing sign language recognition systems [5,6,8,9,16,17,32,34,41]. However,
for providing more fine-grained feedback, more details are desirable. This is
specially so because sign languages, unlike spoken languages, are multi-modal.
Thus, if an error is present in execution, feedback should be given that ties back
to the erroneous articulator(s). For instance, if a student executes the movement
part of a sign correctly, and performs the sign in the right position relative to her
body, but she fails to articulate the right shape of the hand, then feedback should
be given regarding the incorrect handshape. Thus, blackbox recognition systems
are not very useful for feedback and explainable systems that can recognize
conceptual elements of the language must be developed.

2.2 Challenge 2: Determination of Appropriate Feedback

Feedback mechanisms for spoken and sign language differ significantly. The dif-
ferences arise primarily due to the articulators used for speech versus those used



32 A. Banerjee et al.

for signing. Apart from some research for feedback in rehabilitation for physical
therapy, which is conceptually very dissimilar to sign language learning, there are
no existing systems in this domain [42]. Thus, the types of feedback to be given
to learners must be determined by referring to the linguistics of sign languages,
close work with ASL instructors and referring to academic studies. Codifying
and automating the suggested feedback into a usable system is a challenging
process and a worthy research undertaking.

2.3 Challenge 3: Extension to Unseen Vocabulary

Sign language recognition differs from speech recognition in one crucial aspect:
the number of articulatory channels. This is partially an artifact of the medium
used for recognition, i.e. audio vs video. Audio is usually represented as two-
dimensional signals in amplitude and time, while colored videos are four-
dimensional signals: three spatial dimensions, one channel dimension for color
and one time dimension. The consequence of this for speech to text systems for
spoken language learning such as Rosetta Stone [36] offers some feedback to a
learner based on comparisons between their utterances and those of a native
speaker. This one-to-one comparison to a gold standard is a desirable way for
learning systems where the learner is attempting to get close in performance to
a tutor. Such comparison for gesture learning becomes multi-dimensional spatio-
temporal problem and hence is more challenging. Moreover, a tutoring system
needs to readily extend to new vocabulary as the learner progresses. To extend
the capability of a recognition system that is based on a classifier, the entire
system will need to be retrained to account for new signs.

2.4 Challenge 4: Ubiquitous Recognition

The growing usage of self-paced learning solutions can be attributed to the effect
of the economy of scale as well as to their flexibility in schedule. To achieve these
desired advantages, the barrier to access must be reduced as much as possible.
This implies that requiring the usage of specialized sensors such as 3-D cameras
will hinder the utility. Thus, a proposed solution that can truly scale and have
the maximum impact as a learning tool must be accessible without the need to
purchase special sensors or to attend in special environments. The sensing device
that is most accessible to any user is the smartphone. This is challenging because
there is a huge variance in the type, quality, and feed of smartphone-based cam-
eras and webcams. Furthermore, assumptions on adequate lighting conditions,
orientations, camera facing directions and other specific configurations cannot
be made, and have to either be verified by quality control or accounted for by
the recognition and feedback algorithms.

In this paper, we use concept level learning for gesture understanding that can
enable: a) extendable recognition, b) corrective explainable feedback to human
learners, c) configurable feedback incorporation based on expert rules, and d)
ubiquitous operation on any smartphone.
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3 AI Tutor Design Goals

In this section, we discuss the design goals and principles for an AI Tutor and
show proof-of-concept studies on an ASL tutor.

3.1 Embedding Movement in Models

Hybrid systems encode transient behavior using a set of differential equations
that can potentially be used to represent the kinematics of the gesture. For
example, the transient behavior of the movement from one hand shape to other is
captured from high definition video and then utilizing Posenet to estimate wrist
positions [24]. A kinematic model obtained from expert knowledge of human
hand movements [35] can express the transient dynamics of movement in between
hand shapes. The recognition result of the explainable machine learning system
can then be considered as discrete states while the learned kinematic model can
be considered as the dynamical component of the hybrid system representation
of the gesture. State transitions can be expressed through temporal constraints.
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Fig. 2. Day example, the evolution of reach set over time for a tutor, and the execution
for a learner.

Proof-of-Concept Example
We consider the gesture for “Day” in ASL. The Day gesture is shown in Fig. 2,
it involves two hand shapes: a) the left hand pointing towards the right, and
b) the right hand pointing towards the head. Then it has one transient hand
movement, where the right arm while pointing pivots on the right elbow and
makes a quarter circle and lands on the left elbow.

We generate the hybrid system for Day gesture as shown in Fig. 3. We con-
sider three different components or states of the “Day” gesture: a) Pointing to
the head (State A), b) movement from head to the top of the left arm (State
B), and c) movement from top of the left arm to the elbow (State C). While
transiting from one state to the other, we consider that the center point of the
palm of both the left and right arm move following the model described in Eq. 1.

d−→p
dt

= −→v ,
d−→v
dt

= −→a ,
d−→a
dt

= x1
−→a + x2

−→v + x3
−→p + x4, (1)
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where −→p is the position vector for the right arm, −→v is the velocity vector and−→a is the acceleration vector and xis are parameters of the hand motion. This is
an overly simplistic model of the palm movement but is used to generate useful
feedback relating to arm acceleration.

3.2 Ubiquitous Recognition of Movement

STATE 
A

STATE 
C

STATE 
B

Fig. 3. HA representation of the Day gesture.

The need for recognition of
concepts from data collected
using heterogenous sensors
prohibits the usage of tradi-
tional machine learning sys-
tems, which are affected by
camera resolution, lighting
condition, as well as distance
from the lens. Although Con-
volutional Neural Networks
(CNN) or other deep learning
systems can perform object
recognition under noisy con-
ditions, concepts in a gesture
video include much finer details such as handshapes, fine grained location infor-
mation, and movements, which may not be recognized effectively by a deep
learning system [25–27]. Moreover, the amount of available training data for
gesture recognition is far less than what needed for reliable performance of deep
learning classification systems avoiding the risk of over-fitting [26,27].

We take a different approach through pose estimation [31,38,39]. Our app-
roach is to convert the gesture execution into spatio-temporal evolution of con-
tinuous variables. The recognition is a composite outcome of simpler similarity-
based comparisons. This can potentially contribute to the robustness to chang-
ing environmental conditions since the pose estimation step already eliminates
background and only focuses on points of interest.

We considered the “X” and “Y” co-ordinate time series of the right and
left wrist normalized with respect to torso height and hip width. The location
concept was extracted using six location buckets around the face and the chest
of a user. This is because as a concept only the proximity to different body parts
are important and not the exact pixel level location.

To extract handshape we utilized the wristpoints to crop the palm of the user.
We then used the CNN Inception model trained using the ImageNet dataset and
retrained using fingerspelling handshapes [37]. The retrained inception model
was not used to classify handshapes but instead was used to compare two hand-
shapes: one from the tutorial video and the other from the test user. Only the
outputs of the penultimate layer of the Inception model for both the tutorial
and the user was compared using the euclidean distance metric. This not only
enables concept matching but also provides extensibility, because to compare
with a new tutorial sign no training is required.
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We explored two different methods of movement concept recognition: a)
direct comparison using segmental dynamic time warping strategy [28], and b)
comparison with respect to kinematic model parameters [4]. The first strategy is
model agnostic and only gives feedback about the correctness of the movement
concept. The second approach utilizes a hybrid dynamical system to model ges-
ture concepts. This model driven approach can provide more granular feedback
as discussed in our initial work [4].

We evaluated the concept learning methodology on 100 first time learners of
ASL users each of them learned 25 ASL gestures and performed three times each
gesture. The videos of the ASL gestures were taken using their own smartphones
at home. The system has an overall test accuracy of 87.9% on real-world data
[28]. We also evaluated our hybrid dynamical model on 60 first time learners
of ASL users each of them learned 20 ASL gestures and performed three times
each gesture. Results show that kinematic parameters in Eq. 1 can represent each
gesture with precision of 83%, and recall of 80%.

3.3 Movement Matching Between Tutor and Learner

In our approach, the hybrid system based representation of a gesture is instan-
tiated for a tutor. The instantiation procedure involved collecting data using
wearable and video based sensors from a tutor and running the following hybrid
system mining technique.

Hybrid Mining Technique: The input to the model mining methodology
are the input output traces, which may contain timed events, and discrete or
continuous inputs.

A) First step is I/O segmentation. The discrete mode changes of the hybrid
model is triggered by three main causes: a) user generated external events that
are accompanied by time stamps and input configurations, b) system generated
timed events, and c) events generated due to threshold crossing of observable
parameters of the physical system.

B) Second step is to cluster modes in accordance with their triggering
mechanism. This clustering step is required to minimize the redundancy in the
number of discrete modes of the mined specification.

C) The third step is mining the kinematic equations. Each trace is passed
to a Multi-variate Polynomial Regression to obtain the kinematic equations. For
the linear case, we utilize Fischer information and Cramer Rao bound to compute
the linear coefficients [18]. The output is the flow equation parameters for each
trace between modes. A result of the flow equation extraction mechanism is that
different traces may have the same flow equation. The corresponding modes are
then clustered together using density based approaches on the flow parameters
and assigned the same mode labels.

D) The fourth step is guard mining. We derive the guard conditions for
each cluster, where each cluster represents a distinct control switch. If the guard
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condition is not a constant value of actuation and is varying within each data
point in the cluster, we employ Fisher information and Cramer Rao bound to
derive the linear relation of the input, output, and internal parameters [18]. The
Guard conditions are then used to further refine the mode clustering. The output
is a Hybrid automata inferred from the input, output, and internal parameters
with modes, flow equations, and guards.

Tutor and Learner Comparison: The natural variation of a tutor is modeled
by computing a reach set of the learned hybrid system. The reach set is the
set of all continuous states that is observed from simulating the hybrid system
over time for a bounded set of initial conditions, which may represent natural
variations in the tutor’s execution of the gesture.

Given an execution of the gesture by a learner, the video based hand gesture
recognition system provides us with executed hand shapes, the times of transi-
tion from one shape to the other, and an identification of wrong executions by
the learner. The reach set comparison can provide the deviation from a tutor.
For instance if the fingertip data is encompassed by the reach set then, it is
tutor level. However, if it is outside the reach set at any point in time, then it
the learner has differences with the tutor. The time segments where the learner
differed from the tutor can then be passed to a dynamical system mining tech-
nique that is programmed with the kinematic model of the human arm. The
mining technique will provide a new set of parameters for the learner.

Proof-of-Concept: We collected Kinect data including video and bone move-
ment data from 60 subjects for 20 ASL gestures including “Day”. We chose one
user, who is a lecturer at ASU on sign language and considered the person as a
tutor. We collected data for 20 executions of “Day” and computed the variations
in initial positions and angles, speeds, and the parameters of Eq. 1. The sensors
used were Kinect video and bone data. In addition the tutors wore an armband
that collected accelerometer, orientation, gyroscope and Electromyogram data.
The traces were used to derive the parameters of the kinematics described in
Eq. 1.

We then derived different initial conditions by performing a statistical anal-
ysis of the tutor’s speed, initial positions and parameters for Eq. 1. These were
used to perform the reachability analysis of the hybrid system using the SpaceEx
tool [10]. Figure 2 shows the X orientation reach set evolution of the hybrid sys-
tem. All the different executions of the tutor are inside the gray area. The reach
set is an over approximation because exact computing is intractable.

We then considered another subject’s execution of the “Day” gesture, where
the learner ended the Day gesture with the right palm near to the left. The X ori-
entation of the right palm of the learner is shown in red in Fig. 2. It clearly shows
that the learner violates the reach set and hence is not classified as similar to a
tutor, although all the hand signs are correctly executed by the learner. How-
ever, the learner executes the same sequence of hand shapes. Hence, a knowledge
based feedback system will consider this execution as correct. But the execution
has clear differences with the tutor in the transition between gestures in the
transition from state B to C.
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The dynamics of the learner’s execution between state B and C is then used
to regenerate the parameters of Eq. 1. The learner is seen to have 40% elevated
x3. This means that as the position of the right arm goes closer to the left arm,
the acceleration increases resulting in overshooting of the right arm beyond the
left arm position. Hence the feedback that is generated for the learner is to
control the learner’s right arm so that the velocity is uniform. By practicing one
can get the right arm velocity uniform and be on par with a tutor.

3.4 Explainable Feedback

A variety of feedback could be constructed using the information available from
the results of the location, movement, and handshape modules. In addition to
separate feedback for each of the hands, feedback could also be presented in
forms of annotated images or by using animations. For location feedback, the
correct and the incorrect locations for each of the hands could be highlighted in
different colors. For the handshape feedback, the image of the hand that resulted
in the highest difference in similarity could be presented. Each of these types of
possible feedback is derived from the information available. However, they should
be individually tested for usability and care should be taken not to cognitively
overload the learner with too much feedback at once.

More granular feedback can be provided using kinematic models if each com-
ponent of the model has direct correlation with a physical manifestation of the
human arm. Such correlations and the parameters estimated for the learner can
be used to generate understandable feedback that enables the learner to perfect
gesture execution. Such feedback will be guided by the expert rules specified by
the tutor. Complex models tend to be less amenable towards feedback generation.
Hence our goal will be to best exploit the trade-off between model complexity
and explainability.

4 Prototype and Evaluation of Learning Outcomes

We first discuss our experimental setup and then evaluation results.

4.1 Prototype

A chat bot enabled web based gesture learning interface is developed (Fig. 4).
In this chatbot, the learner chooses a sign and learns the gesture. Then the
learner chooses to practice when the video of the learner executing is recorded
and compared with the expert. Textual feedback is then provided to the learner
to improve gesture execution capability.
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Fig. 4. Interactive chat-bot interface. Right: The movement of both the hands were
correct (green), but the location and right hand handshape were not correct. (Color
figure online)

4.2 Learning Outcomes

The purpose of assessment tests are to evaluate learning outcomes. Two types
of tests are considered: a) retention tests and b) execution tests. We recruited
15 subjects who were tested on 50 ASL signs of their choice from a pool of ASL
signs for the states of USA.

Each learner is given randomly selected signs for retention tests. The learner
either chose to practice a given sign multiple times or move on. For each test,
the learner is shown a video and is asked to choose among 4 options for the
correct one. Thus, the baseline performance for random guessing would be 25%.
The performance of the learner with and without feedback is used as a metric
for feedback effectiveness.

For execution tests each of the learners is given randomly selected signs to
execute. During the test the learner is given a sign and asked to begin recording
its execution. The execution tests is manually scored offline by the research team.
If the learner had any two of location, movement or handshape correct on both
hands, then she receives a score of 0.5 for that sign. If all three were correct, she
receives 1. Otherwise, she receives 0. The performance on execution tests with
and without feedback is considered to evaluate effectiveness of feedback.

Our results show that retention of the signs did not improve with feedback.
In fact retention was already upwards of 80% with or without feedback. How-
ever, there was significant improvement in execution accuracy. It improved from
63% without feedback to 85% with feedback. This indicates that overall feedback
has a significant effect on learning outcome. The effectiveness of different types
of feedback however could not be evaluated given the less number of partici-
pants. However, an end of study survey showed that majority of the participants
preferred fine grained feedback.

5 Conclusions and Discussions

Feedback in gesture based learning is of utmost importance as evidences in our
evaluation results. An AI tutor hence not only has to disseminate knowledge and



AI Enabled Tutor for Accessible Training 39

evaluate students, but also provide feedback to ensure learning. In this paper, we
have demonstrated through a proof-of-concept study of an AI tutor of ASL, that
AI tutor has to be explainable, ubiquitous and extensible. The concepts learned
in this project can be employed in other gesture based training applications such
as military, physiotherapy, medical surgery training. Through proof-of-concept
implementations we have shown the importance of feedback in AI tutor, however,
there are significant hurdles before it can be realized in practice.

Usability: The system requires no extra sensor, just a mobile phone camera
is enough. The system could achieve this operation, because of the modular
representation and identification of gestures in terms of their components.

Extensibility: The system only compares a test gesture to one expert video
and does not need training for new gesture classes. Hence it is extensible with
only the inclusion of an expert gesture video.

Difference in Feedback Generation Methods: Generation of explanation
heavily depends on the model. Complex models may be more accurate but not
be explainable. Dynamical models of the human arm of different complexity can
be broadly classified into the following categories:

a) Differential equation models derived from kinematics of human fingers and
arms: These models are typically derived from Magnetic Resonance Imaging
(MRI) [35] or CT [13] scans of the human hand and can go to the level of
minute finger movements. In these methods a kinematic model is developed
from a general understanding of human hand and the parameters are esti-
mated from the imaging data. Authors in [35] use a parameterized models
such that each parameter has a direct visual manifestation. A deviation in
a parameter hence can be easily converted into explanations considering the
visual signatures. A big problem is that the model is the dimensionality, and
learning the appropriate parameters from MRI images is computationally
expensive.

b) Data-driven models derived using data glove or frictional sensors: Such models
typically utilize predictors such as Kalman filters [11]. The model parameters
have no direct relation to any understandable component of the human hand.
But the overall model can be used to predict hand motion given a configura-
tion of the parameters. Results from these models are difficult to explain.

Constraints on Generation of Feedback: Another significant hurdle is the
feasibility of using the feedback for a person given their unique constraints. A
difference in model parameters between the learner and the tutor is intended to
be used to generate correctional feedback. However, the low dimensional dynam-
ical model is not accurate for larger time horizons. This means that there can
be cases where the model may generate inviable feedback. Such as requesting
extremely large acceleration or bending the arm at infeasible angles. Hence, every
feedback has to be validated against a set of constraints that express viable feed-
back. Moreover in case feedback is invalid, we have to modify the model such
that it can generate a feasible feedback.
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One of the important future work is to apply this AI tutor for training DHH
students, gestures related to technical concepts of computer science so that they
can then take CS courses in the future and have a career in the technical field.
CS courses have several technical terms which do not have gestures for them.
Utilizing AI tutor to not only teach but organically generate signs for these
technical gestures is one of our future goals.
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Abstract. Statistical models such as those derived from Item Response
Theory (IRT) enable the assessment of students on a specific subject,
which can be useful for several purposes (e.g., learning path customiza-
tion, drop-out prediction). However, the questions have to be assessed as
well and, although it is possible to estimate with IRT the characteristics
of questions that have already been answered by several students, this
technique cannot be used on newly generated questions. In this paper,
we propose a framework to train and evaluate models for estimating the
difficulty and discrimination of newly created Multiple Choice Questions
by extracting meaningful features from the text of the question and of
the possible choices. We implement one model using this framework and
test it on a real-world dataset provided by CloudAcademy , showing that
it outperforms previously proposed models, reducing by 6.7% the RMSE
for difficulty estimation and by 10.8% the RMSE for discrimination esti-
mation. We also present the results of an ablation study performed to
support our features choice and to show the effects of different charac-
teristics of the questions’ text on difficulty and discrimination.

Keywords: Natural language processing · Item Response Theory ·
Learning analytics

1 Introduction

Modeling the skill level of students and how it evolves over time is known as
Knowledge Tracing (KT), and it can be leveraged to improve the learning expe-
rience, for instance suggesting tailored learning content or detecting students in
need of further support. KT is most commonly performed with logistic mod-
els or neural networks. Although neural models often reach the best accuracy
in predicting the correctness of students’ answers, they do not provide easy
explanations of their predictions. Logistic models such as Item Response Theory
(IRT), instead, estimate latent traits of students and questions (e.g., numerical
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values representing skill level and difficulty level) and use those to predict future
answers. IRT leverages the answers given by a student to a set of calibrated ques-
tions (i.e., whose latent traits are known) to estimate her skill level, by finding
the skill value that maximizes the likelihood of the observed results. Questions’
latent traits are non-observable parameters which have to be estimated and, if
such estimation is not accurate, it affects the students’ assessment and impacts
the overall efficacy of the system (e.g., suggesting wrongly targeted learning
content). Also, an accurate calibration of the questions allows to identify the
ones that are not suited for scoring students because they cannot discriminate
between different skill levels. For instance, questions that are too difficult or
too easy are answered in the same way by all the students, and questions that
are unclear (e.g., due to poor wording) are answered correctly or wrongly inde-
pendently of the knowledge of the students. Questions’ latent traits are usually
estimated with one of two techniques: they are either i) hand-picked by human
experts or ii) estimated with pretesting. Both approaches are far from optimal:
manual labeling is intrinsically subjective, thus affected by high uncertainty and
inconsistency; pretesting leads to a reliable and fairly consistent calibration but
introduces a long delay before using new questions for scoring students [29].

Recent works tried to overcome the problem of calibrating newly-generated
questions by proposing models capable of estimating their characteristics from
the text: with this approach, it is possible to immediately obtain an estimation
of questions’ latent traits and, if necessary, this initial estimation can be later
fine-tuned using students’ answers. However, most works targeted either the
wrongness or the p-value of each question (i.e., the fraction of wrong and correct
answers, respectively), which are approximations of the actual difficulty; [4] focus
on latent traits as defined in IRT (i.e., difficulty and discrimination). This work
introduces text2props, a framework to train and evaluate models for calibrating
newly created Multiple-Choice Questions (MCQ) from the text of the questions
and of the possible choices. The framework is made of three modules for i) esti-
mating ground truth latent traits, ii) extracting meaningful features from the
text, and iii) estimating question’s properties from such features. The three mod-
ules can be implemented with different components, thus enabling the usage of
different techniques at each step; it is also possible to use predefined ground truth
latent traits, if available. We show the details of a sample model implemented
with text2props and present the results of experiments performed on a dataset
provided by the e-learning provider CloudAcademy1. Our experiments show an
improvement in the estimation of both difficulty and discrimination: specifically,
reaching a 6.7% reduction in the RMSE for difficulty estimation (from 0.807 to
0.753) and 10.8% reduction in the RMSE for discrimination estimation (from
0.414 to 0.369). We also present an ablation study to empirically support our
choice of features, and the results of an experiment on the prediction of stu-
dents’ answers, to validate the model using an observable ground truth. The
contributions of this work are: i) the introduction of text2props, a framework to
implement models for calibrating newly created MCQ, ii) the implementation of

1 https://cloudacademy.com/.
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a sample model that outperforms previously proposed models, iii) an ablation
study to support our choice of features in the sample model, iv) publication of
the framework’s code to foster further research2. This document is organized as
follows: Sect. 2 presents the related works, Sect. 3 introduces text2props, Sect. 4
describes the dataset and the sample model, Sect. 5 presents the results of the
experiments, Sect. 6 concludes the paper.

2 Related Work

2.1 Students’ Assessment

Knowledge Tracing (KT) was pioneered by Atkinson [3] and, as reported in a
recent survey [2], is most commonly performed with logistic models (e.g., IRT
[27], Elo rating system [25]) or neural networks [1,22]. Recent works on stu-
dents’ performance prediction claim that Deep Knowledge Tracing (DKT) (i.e.,
KT with neural networks [22]) outperforms logistic models in predicting the
results of future exams [1,6,32,33], but this advantage is not fully agreed across
the community [8,20,28,31]. Also, DKT predictions do not provide an explicit
numerical estimation of the skill level of the students or the difficulty of the ques-
tions. Recent works [17,30] attempted to make DKT explainable by integrating
concepts analogous to the latent traits used in logistic models, but being much
more expensive from a computational point of view and without reaching the
same level of explainability as logistic models. Thus, logistic models are usually
chosen when interpretable latent traits are needed. In this work, we use Item
Response Theory (IRT) [12], that estimates the latent traits of students and
questions involved in an exam. We consider the two-parameters model, which
associates to each item two scalars: the difficulty and the discrimination. The
difficulty represents the skill level required to have a 50% probability of cor-
rectly answering the question, while the discrimination determines how rapidly
the odds of correct answer increase or decrease with the skill level of the student.

2.2 NLP for Latent Traits Estimation

The idea of inferring properties of a question from its text is not new; however,
most of previous works did not focus on difficulty estimation. The first works
focused on text readability estimation [9,16]. In [14] the authors use a neural
network to extract from questions’ text the topics that are assessed by each
question. Wang et al. in [26] and Liu et al. in [18] proposed models to estimate
the difficulty of questions published in community question answering services
leveraging the text of the question and some domain specific information which
is not available in the educational domain, thus framing the problem differently.
Closer to our case are some works that use NLP to estimate the difficulty of
assessment items, but most of them measured questions’ difficulty as the fraction
of students that answered incorrectly (i.e., the wrongness) or correctly (i.e., the
2 https://github.com/lucabenedetto/text2props.
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p-value), which are arguably a more limited estimation than the IRT difficulty, as
they do not account for different students’ skill levels. Huang et al. [13] propose
a neural model to predict the difficulty of “reading” problems in Standard Tests,
in which the answer has to be found in a text provided to the students together
with the question. Their neural model uses as input both the text of the question
and the text of the document, a major difference from our case. Yaneva et al.
in [29] introduce a model to estimate the p-value of MCQ from the text of the
questions, using features coming from readability measures, word embeddings,
and Information Retrieval (IR). In [23] the authors propose a much more complex
model, based on a deep neural network, to estimate the wrongness of MCQ. In [4]
the authors use IR features to estimate the IRT difficulty and the discrimination
of MCQ from the text of the questions and of the possible choices. All relevant
related works experimented on private datasets and only [4] focuses on IRT
latent traits. In this paper, we make a step forward with respect to previous
research by introducing text2props, a modular framework to train and evaluate
models for estimating the difficulty and the discrimination of MCQ from textual
information. Then, we implement a sample model with text2props and test is on
a sub-sample of a private dataset provided by CloudAcademy .

3 The Framework

3.1 Data Format

The text2props framework interacts with two datasets: i) the Questions (Q)
dataset contains the textual information, ii) the Answers (A) dataset contains
the results of the interactions between students and questions. Specifically, Q
contains, for each question: i) ID of the question, ii) text of the MCQ, iii) text
of all the possible choices, and iv) which are the correct choices and which
the distractors. A, instead, contains for each interaction: i) ID of the student,
ii) ID of the question, iii) correctness of student’s answer, and iv) timestamp
of the interaction. The interactions in A are used to obtain the ground truth
latent traits of each question, which are used as target values while training the
estimation of latent traits from textual information.

3.2 Architecture

Three modules compose text2props: i) an IRT estimation module to obtain
ground truth latent traits, ii) a feature engineering module to extract features
from text, and iii) a regression module to estimate the latent traits from such
features. At training time all the modules are trained, while only the feature engi-
neering module and the regression module are involved in the inference phase.

Figure 1 shows how the three modules interact with the datasets during
training. A split stratified on the questions is performed on A, producing the
dataset for estimating the ground truth latent traits (AGTE) and the dataset for
evaluating students’ answers prediction (ASAP). This is done in order to have
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Fig. 1. Framework’s architecture and interactions with the datasets during training.

Fig. 2. Framework’s architecture and interactions with the datasets during inference.

all the questions in both datasets and, therefore, be able to obtain the ground
truth latent traits of all the questions from AGTE and, later, perform the experi-
ments on students’ answers prediction using previously unseen interactions. The
ground truth latent traits obtained with the IRT estimation module from AGTE

are then stored in Q, in order to be used as target values in the regression mod-
ule. Then, a split is performed on Q, obtaining the dataset used to train the
feature engineering and regression modules (QTRAIN) and the dataset to test
them (QTEST). Lastly, the textual information of QTRAIN is used by the feature
engineering module to extract numerical features, which are then used together
with the ground truth latent traits to train the regression module.

During the inference phase, pictured in Fig. 2, the trained feature engineer-
ing module is fed with the textual information of the questions in QTEST, and
extracts the features that are given to the trained regression module to estimate
the latent traits. These estimated latent traits can then be used for evaluat-
ing i) latent traits estimation, directly comparing them with the ground truth
latent traits (in QTEST), and ii) students’ answers prediction, comparing the
predictions with the true answers (in ASAP).
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4 Experimental Setup

4.1 Sample Model

In order to implement a model using text2props, it is sufficient to define the
three modules. In the sample model used for the experiments, the calibration
module performs the estimation of the IRT difficulty and discrimination of each
question; these two latent traits are then used as ground truth while training
the part of the model that performs the estimation from text. The regression
module contains two Random Forests to estimate the difficulty and discrimina-
tion. The feature engineering module is made of three components to compute:
i) readability features, ii) linguistic features, iii) Information Retrieval features.

– Readability indexes are measures designed to evaluate how easy a text is to
understand, thus they can prove useful for estimating question’s properties,
as suggested in [29]. In particular, we use: Flesch Reading Ease [10], Flesch-
Kincaid Grade Level [15], Automated Readability Index [24], Gunning FOG
Index [11], Coleman-Liau Index [7], and SMOG Index [21]. All these indexes
are computed with deterministic formulas from measures such as the number
of words and the average word length.

– The usage of linguistic features is motivated by [9], in which they proved
useful for readability estimation. The following features are used: Word Count
Question, Word Count Correct Choice, Word Count Wrong Choice, Sentence
Count Question, Sentence Count Correct Choice, Sentence Count Wrong
Choice, Average Word Length Question, Question Length divided by Correct
Choice Length, Question Length divided by Wrong Choice Length.

– The choice of Information Retrieval (IR) features is supported by previous
research [4] and by the idea that there must be a relation between the latent
traits of a MCQ and the words that appear in the text. We i) preprocess
the texts using standard steps of NLP [19], ii) consider both the text of the
question and the text of the possible choices by concatenating them, and
iii) use features based on Term Frequency-Inverse Document Frequency (TF-
IDF). However, instead of keeping only the words whose frequency is above
a certain threshold (as in [4]), we define two thresholds - tuned with cross-
validation - to remove i) corpus-specific stop words (i.e., words with frequency
above SUP) and ii) very uncommon words (i.e., with frequency below INF).

4.2 Experimental Dataset

All previous works experimented on private data collections [4,13,23,29] and,
similarly, we evaluate this framework on a private dataset, which is a sub-sample
of real world data coming from the e-learning provider CloudAcademy . Dataset Q
contains about 11 K multiple-choice questions and they have 4 possible answers;
for some questions, there is more than one correct answer and, in that case, the
student is asked to select all the correct choices. Dataset A, which is used for
estimating the ground truth latent traits and for the experiments on students’
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answers prediction, contains about 2M answers. Also, it is filtered in order to
keep only the students and the questions that appear in at least 100 different
interactions; thus we assume that the IRT-estimated latent traits are accurate
enough to be used as ground truth for this study.

5 Results

5.1 Latent Traits Estimation

The sample model used for the comparison with the state of the art was chosen
from a pool of models, all implemented with text2props. All these models had
the same IRT estimator module and the same feature engineering module, con-
taining the three components described in Sect. 4.1, but they were implemented
with different algorithms in the regression module: specifically, we tested Ran-
dom Forests (RF), Decision Trees (DT), Support Vector Regression (SVR), and
Linear Regression (LR). For each model, hyperparameter tuning was performed
via 10-fold randomized cross-validation [5]. The results of this preliminary exper-
iments for choosing the sample model are displayed in Table 1, presenting for each
candidate model the Root Mean Square Error (RMSE) and the Mean Absolute
Error (MAE) for difficulty estimation and discrimination estimation, separately
on a validation set held-out from the test set and on the remaining test set. The
two errors measure how accurate the sample model is by comparing the latent
traits (i.e., difficulty and discrimination) estimated from text with the ground
truth values obtained with IRT estimation. As baseline, we consider a majority
prediction, which assigns to all the questions the same difficulty and discrimina-
tion, obtained by averaging the training latent traits. All the models outperform
the majority baseline, and the RF leads to the best performance in both cases;
thus, that is the model which will be used as sample model for the rest of the
experiments and the comparison with the state of the art.

Table 1. Preliminary experiments for choosing the sample model.

Regression module Difficulty estimation Discrimination estimation

Validation set Test set Validation set Test set

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

RF 0.739 0.575 0.753 0.587 0.393 0.296 0.369 0.287

DT 0.748 0.586 0.826 0.636 0.393 0.295 0.375 0.290

SVR 0.797 0.632 0.804 0.629 0.394 0.298 0.379 0.296

LR 0.752 0.599 0.779 0.607 0.397 0.298 0.378 0.293

Majority – – 0.820 0.650 – – 0.502 0.427
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Table 2. Comparison with state of the art.

Model Difficulty estimation Discrimination estimation

Range RMSE Relative RMSE Range RMSE Relative RMSE

Our model [−5; 5] 0.753 7.53% [−1; 2.5] 0.369 9.22%

R2DE [4] [−5; 5] 0.807 8.07% [−1; 2.5] 0.414 10.35%

Qiu et al. [23] [0; 1] 0.1521 15.21% – – –

Huang et al. [13] [0; 1] 0.21 21% – – –

Yaneva et al. [29] [0; 100] 22.45 22.45% – – –

Table 2 compares the model implemented with text2props with the state of
the art for difficulty and discrimination estimation. Considering difficulty esti-
mation, our model reduces the RMSE by 6.7% (from 0.807 to 0.753) with respect
to R2DE, which was implemented using the code publicly available3, re-trained
and tested on the new dataset. The other works experimented on private datasets
and could not be directly re-implemented on our dataset, therefore a comparison
on the same dataset was not straightforward; however, as suggested in [4], we
can still gain some insight by performing a comparison on the Relative RMSE,
which is defined as: RMSE/(difficultymax − difficultymin). The Relative RMSE
of the sample model is smaller than the ones obtained in previous research and,
although this does not guarantee that it would perform better than the others
on every dataset, it suggests that it might perform well. The part of the table
about discrimination estimation contains only two lines since this and R2DE are
the only works that estimate both the difficulty and the discrimination. Again,
our model outperforms R2DE, reducing the RMSE from 0.414 to 0.369.

5.2 Students’ Answers Prediction

The accuracy of latent traits estimation is commonly evaluated by measuring the
error with respect to ground truth latent traits estimated with IRT. However,
although IRT is a well-established technique, such latent traits are non observ-
able properties, and we want to validate our model on an observable ground
truth as well, therefore we evaluate the effects that it has in predicting the cor-
rectness of students’ answers. Students’ Answers Prediction (SAP) provides an
insight on the accuracy of latent traits estimation because questions’ latent traits
are a key element in predicting the correctness of future answers. Indeed, given
a student i with estimated skill level θ̃i and a question j with difficulty bj and
discrimination aj , the probability of correct answer is computed as

PC =
1

1 + e−1.7aj ·(θ̃i−bj)
(1)

3 https://github.com/lucabenedetto/r2de-nlp-to-estimating-irt-parameters.

https://github.com/lucabenedetto/r2de-nlp-to-estimating-irt-parameters
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The skill level θ̃i is estimated from the answers previously given by the student:

θ̃i = max
θ

⎡
⎣ ∏

qj∈QC

1
1 + e−1.7aj ·(θ−bj)

·
∏

qj∈QW

(
1 − 1

1 + e−1.7aj ·(θ−bj)

)⎤
⎦ (2)

where QC and QW are sets containing the questions correctly and wrongly
answered by the student, respectively.

Known the ordered sequence of interactions, SAP is performed as follows:

1. given the latent traits of a question (bj , aj) and the student’s estimated skill
level (θ̃i, possibly unknown), the probability of correct answer is computed;

2. if the probability is greater than 0.5 we predict a correct answer;
3. the real answer is observed and compared to the prediction (this is the com-

parison used to compute the evaluation metrics);
4. the real answer is used to update the estimation of the student’s skill level;
5. these steps are repeated for all the items the student interacted with.

By using in the two equations above latent traits coming from different
sources, we compare the accuracy of SAP obtained i) with the latent traits
estimated with our model, and ii) with ground truth IRT latent traits. Table 3
displays the results of the experiment, showing also as baseline a simple majority
prediction. As metrics, we use Area Under Curve (AUC), accuracy, precision and
recall on correct answers, and precision and recall on wrong answers. The table
shows that our model performs consistently better than the majority baseline
and fairly closely to IRT - which is an upper threshold - suggesting that the esti-
mation of latent traits from text can be successfully used as initial calibration
of newly generated items. However, it might still be convenient to fine-tune such
estimation when the data coming from student interactions becomes available.

Table 3. Students’ asnwers prediction.

Model AUC Accuracy Correct Wrong

Precision Recall Precision Recall

IRT 0.74 0.683 0.744 0.735 0.589 0.599

Our model 0.66 0.630 0.707 0.678 0.521 0.555

Majority 0.50 0.613 0.613 1.0 – 0.000

5.3 Ablation Study

The objective of this ablation study is to i) empirically support our choice of
features and ii) assess the impact of specific features on the estimation. Table 4
presents the RMSE and the MAE for difficulty estimation and discrimination
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estimation. In all cases, we use Random Forests in the regression module, since
it seemed to be the most accurate and robust approach, according to the prelim-
inary experiments; as baseline, we consider the majority prediction. The com-
bination of all the features leads to the smallest errors, thus suggesting that
all the features bring useful information. The IR features seem to provide the
most information when considered alone: this is reasonable, since they have two
parameters that can be tuned to improve the performance. The smallest error is
usually obtained when some terms are removed from the input text; most likely,
both corpus specific stop-words and terms which are too rare only introduce
noise. It is interesting to notice that readability and linguistic features seem to
be more useful for discrimination than difficulty estimation since, when used
alone, they perform similarly to the best performing features.

Table 4. Ablation study.

Features Difficulty estimation Discrimination estimation

INF SUP RMSE MAE INF SUP RMSE MAE

IR + Ling. + Read. 0.02 0.92 0.753 0.587 0.02 0.96 0.369 0.287

IR + Ling. 0.02 0.90 0.754 0.587 0.02 0.98 0.370 0.287

IR + Read. 0.02 0.94 0.766 0.597 0.02 0.98 0.370 0.288

IR 0.00 0.92 0.758 0.587 0.02 0.96 0.372 0.289

Read + Ling – – 0.791 0.618 – – 0.373 0.291

Readability – – 0.794 0.619 – – 0.374 0.292

Linguistic – – 0.791 0.620 – – 0.375 0.292

Majority – – 0.820 0.650 – – 0.502 0.427

6 Conclusions

In this paper we introduced text2props, a framework that allows the training
and evaluation of models for calibrating newly created Multiple-Choice Ques-
tions from textual information. We evaluated a sample model implemented with
text2props on the tasks of latent traits estimation and students’ answers pre-
diction, showing that models implemented with this framework are capable of
providing an accurate estimation of the latent traits, thus offering an initial cal-
ibration of newly generated questions, which can be fine-tuned when student
interactions become available. Our model outperformed the baselines reaching
a 6.7% reduction in the RMSE for difficulty estimation and 10.8% reduction
in the RMSE for discrimination estimation. As for students’ answers predic-
tion, it improved the AUC by 0.16 over the majority baseline, and performed
fairly close to the prediction made with IRT latent traits (which is an upper
threshold), having an AUC 0.08 lower. Lastly, the ablation study showed that
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all features are useful for improving the estimation of the latent traits from text,
as the best results are obtained when combining all of them. Future works will
focus on exploring the effects of other features on the estimation of latent traits
(e.g., word embeddings, latent semantic analysis) and testing the capabilities of
this framework to estimate other question’s properties. Also, future work should
focus on the main limitation of text2props, consisting in the fact that it forces
the implemented models to have the three-modules architecture presented here;
in this case the model implemented with this framework proved effective, but it
is not guaranteed that it would work similarly well in other situations.
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Abstract. Collaborative game-based learning environments integrate game-
based learning and collaborative learning. These environments present students
with a shared objective and provide them with a means to communicate, which
allows them to share information, ask questions, construct explanations, and work
together toward their shared goal. A key challenge in collaborative learning is
that students may engage in unproductive discourse, which may affect learning
activities and outcomes. Collaborative game-based learning environments that can
detect this off-task behavior in real-timehave the potential to enhance collaboration
between students by redirecting the conversation back to more productive topics.
This paper investigates the use of dialogue analysis to classify student conversa-
tional utterances as either off-task or on-task. Using classroom data collected from
13 groups of four students, we trained off-task dialogue models for text messages
from a group chat feature integrated into Crystal Island: EcoJourneys, a col-
laborative game-based learning environment formiddle school ecosystem science.
We evaluate the effectiveness of the off-task dialogue models, which use differ-
ent word embeddings (i.e., word2vec, ELMo, and BERT), as well as predictive
off-task dialogue models that capture varying amounts of contextual information
from the chat log. Results indicate that predictive off-task dialogue models that
incorporate a window of recent context and represent the sequential nature of the
chat messages achieve higher predictive performance compared to models that
do not leverage this information. These findings suggest that off-task dialogue
models for collaborative game-based learning environments can reliably recog-
nize and predict students’ off-task behavior, which introduces the opportunity to
adaptively scaffold collaborative dialogue.

Keywords: Off-task behavior · Computer-supported collaborative learning ·
Collaborative game-based learning · Game-based learning environments ·
Dialogue analysis

1 Introduction

Computer-supported collaborative learning can create highly effective learning expe-
riences [1, 2]. It has been found that students benefit from learning in groups when
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given automated support [3], with conversation between students acting as a stimu-
lus for learning [4]. In digital learning environments, collaboration can be achieved by
allowing students to contribute to a group chat conversation [5, 6]. However, students
can engage in off-task behavior [7], which can manifest as off-task chat messaging.

Off-task behavior has been identified as a significant challenge [8–10]. Because off-
task behavior may be linked to boredom, which has been shown to negatively impact
learning outcomes [11], it is important to enable learning environments to respond when
students go off task. Although it has been found that off-task behavior can sometimes be
beneficial for learning, as students may use off-task time to regulate negative affective
states such as frustration [12], it is nonetheless important to identify student behaviors
as off-task as such behaviors can be frequently associated with ineffective learning.

Determining when a behavior is off-task is challenging because whether a given
behavior is on-task or off-task is highly dependent on the context in which the behavior
occurs. To be able to provide adaptive scaffolding that responds to off-task behaviors,
learning environments must be able to automatically detect off-task behavior in real-
time. While there has been progress on characterizing types of off-task behavior [9,
13] and understanding their impacts on learning [12, 14], limited work has investigated
automatically identifying off-task behavior. A particularly intriguing area of unexplored
work is on identifying off-task behavior during collaborative learning. In this paper,
we investigate off-task dialogue models to classify chat messages from interactions in
collaborative game-based learning as off-task or on-task to inform the design of conver-
sational agents that can guide groups that have gone off-task toward more productive
dialogue.

Using chat log data collected from middle school students’ interactions in Crystal
Island: EcoJourneys, a collaborative game-based learning environment for ecosys-
tem science, we investigate off-task dialogue models for classifying students’ conver-
sational utterances as off-task or on-task during collaborative game-based learning. We
investigate the effects of contextual information by comparing predictive models that
only incorporate features derived from the current chat message to models that also
include features derived from a context window of previous messages within the chat
log. These include both static and sequential modeling techniques that utilize vary-
ing amounts of context. Additionally, we compare the use of several word embedding
techniques for deriving features. First, we use pre-trained word2vec embeddings [15],
which were trained on very large corpora to capture semantic and syntactic features
of individual words. Second, we derive embeddings from the ELMo [16] and BERT
[17] models, which use sequence-based neural networks to represent lexical semantics.
These embeddings also leverage large corpora and augment each word embedding with
additional information based on how the word is being used in specific contexts. Results
demonstrate that sequential models that incorporate contextual information using both
a window of previous dialogue and contextualized word embeddings yield substantial
predictive accuracy and precision for detecting off-task student dialogue.

2 Related Work

Computer-supported collaborative learning (CSCL) has been shown to positively impact
learning outcomes in a variety of contexts [1, 2]. However, providing students with a
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means to communicate during learning can potentially lead to off-task conversations. In
a study examining discovery learning in a collaborative environment [7], dyads of high
school students worked on separate screens in a shared environment and communicated
via an integrated chat system. Researchers found that 15.7% of the chat messages were
considered to be off-task, which by their definition meant that the messages had nothing
to do with the task [7]. And while collaborative game-based learning environments
offer the potential to create learning experiences that are engaging on many levels, the
combination of collaboration and “seductive details” of game-based learning [8] can
potentially exacerbate this issue, leading to off-task behavior.

Themajority of previouswork investigating off-task behavior in digital learning envi-
ronments does not seek to automatically detect off-task behaviors. Rather, researchers
commonly try to classify the type of off-task behavior and analyze the effects it has
on learning [8, 10]. Some work has explored automatically detecting off-task behavior
in digital learning environments. Baker [13] sought to detect off-task behavior in an
intelligent tutoring system for math education, where off-task behavior was defined as
behavior that did not involve the system or the learning task. Field observations of stu-
dents’ behaviors were used as ground truth labels for the machine learning algorithms
used by Baker [13] and corresponded to the four categories set forth in Baker et al.
[9]. As a baseline, Baker [13] set a threshold for time spent inactive, considering any-
thing above that threshold to be an instance of off-task behavior. Our work extends this
line of investigation and focuses on students’ textual communication while engaging in
collaborative learning.

Little work has analyzed natural language to detect off-task behavior. However, this
approach is similar in vein to detecting the topic of students’ writing [18–20] and ana-
lyzing student dialogue during collaboration [21, 22]. Louis and Higgins [18], Persing
and Ng [19] and Rei [20] all used natural language processing methods to determine
whether a student’s essay is related to a given text prompt. Rei [20] made use of word
embeddings for determining if an essay is related to a prompt. Similarly, we use word
embeddings to determine if students’ dialogue is related to either relevant curricular
content or the collaboration process. Focusing more on collaborative learning, Adam-
son et al. [21] presented a framework for dynamically scaffolding online collaborative
learning discussions using conversational agents that analyze students’ conversations
and respond to certain linguistic triggers. The work by Rodriguez et al. [22] demon-
strated that specific characteristics of quality collaboration can be found by examining
the contribution of multiple students, which we capture in off-task dialogue models that
consider previous messages in the chat log.

3 Off-Task Dialogue Modeling

This work used data collected from Crystal Island: EcoJourneys, a collaborative
game-based learning environment on ecosystem science (Fig. 1). Students work together
in the game to identify the causes underlying a sudden sickness affecting a fish species
on a remote island. Students work at their own computers and share a virtual game
environment with the other students in their group. Within each group of students,
individual members take on unique roles in the storyline, gathering information that can
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help them solve the problem along the way. At various points during the story, students
gather at an in-gamevirtualwhiteboard to sharewhat they have learned andwork together
to narrow down the causes of the fishes’ sickness. Communication between students is
achieved through an in-game chat system (Fig. 1), where they can discuss what they
have learned, ask their peers for help, or work together to construct explanations.

In this work, we utilized 4,074 chat messages collected from 13 groups of students.
On average, each group sent 313.4 chat messages (min= 118, max= 617, SD= 155.6).
Groups consist of four students and a facilitator, who observes students’ problem solving
and dialogue and guides their discussions. The researcher’s role is to keep students on
track and to occasionally ask leading questions to nudge them in the right direction.
Within each group, students sent an average of 242.3 messages (min = 83, max = 553,
SD = 141.9) and the researcher sent an average of 70.1 messages (min = 30, max =
125, SD= 30.1). Individually, students sent an average of 61.8 messages over the course
of the study (min = 10, max = 203, SD = 47.7). Messages sent by the researcher were
used as context for student messages but were not used as training or testing samples.
As a result, the total number of messages available for training and testing was 3,150.

Fig. 1. (Left) Crystal Island: EcoJourneys’ gameplay. (Right) Crystal Island:
EcoJourneys’ in-game chat system.

3.1 Off-Task Message Annotation

We formulate off-task dialogue modeling as a supervised binary classification task.
Thus, each message in the chat data is annotated as off-task or on-task. The annotation
scheme builds on a classic dialogue act modeling framework [23] as well as dialogue
act frameworks related to collaborative learning [22]. Like previous work [24], we label
messages as on-task if they address relevant curricular content, foster collaboration,
address affective states, or pose relevant questions. These messages are either related
to the game’s learning goals, self-regulation, or collaborative processes, so we consider
them to be on-task. Some examples of chat messages and the labels assigned to them
can be seen in Table 1.

To label the chat messages, we first organized the messages by gameplay ses-
sions, which were determined by the day that the students played Crystal Island:
EcoJourneys and the group to which they were assigned. This was done so that the
sequences of chat messages used to create contextual features were all from the same
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Table 1. On-task and off-task chat messages.

Definition Examples

On-Task (0) Productive text: any message that deals
with the game’s scientific content,
fosters collaboration, addresses relevant
affective states, or poses a relevant
question

“Water temp is warm needs to go in
the water cold column”
“What do I do I am at the house and
have a map”;
“Hi” (if the students are introducing
themselves)

Off-Task (1) Text that is not productive “I notice it seems I am the only one
using capital letters around here”;
“Nancy and I switched mice and
switched back”

group and occurred on the same day. The dataset contains 4,074 messages from 13
groups of students, which are split into 69 gameplay sessions. On average, each session
includes approximately 59 messages (min = 1, max = 280, SD = 55.8). Each session,
students sent approximately 45.7 messages on average (min = 1, max = 214, SD =
44.9) and the researcher sent approximately 17.1 messages (min = 0, max = 66, SD =
14.4). The data was labeled by two researchers using a rubric that was developed for
this task (Table 1). Both researchers labeled 60% of the data, with an overlapping 20%
to allow for calculation of inter-rater reliability. The raters achieved a Cohen’s kappa of
0.751, indicating substantial agreement. For the messages that the raters did not agree
on, labels were reconciled through discussion, and messages that appeared to contain
both on-task and off-task dialogue were considered to be on-task. The final message
labels contain 1,960 on-task (0) labels and 1,190 off-task labels (37.7% off-task), repre-
senting an imbalance. This is significantly higher than the rate of off-task conversation
found in some other work [7], whichmay be because the learning environment combines
collaboration and game-related elements.

3.2 Feature Extraction

To evaluate if the context in which a message occurs affects its classification as off-task
or on-task, we generated context-based features as well as features that only used infor-
mation from the current message. The message-specific features were the number of
times the student had previously contributed to the group conversation, a score repre-
senting the polarity of the message’s sentiment, the number of characters in the message,
the Jaccard similarity of the message with the game’s text content, and the average word
embedding for the message [25].

Message sentiment was calculated using NLTK’s [26] Vader sentiment analyzer.
Because the game is dialogue-driven, information is presented through text-based con-
versations with in-game characters. We extracted this text from the game and removed
stop words, as defined by NLTK’s [26] list of English stop words. Then, the complete
corpus of game text was compared against each message to calculate Jaccard similarity,
which quantifies the similarity between the chat message and the game’s text content
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Table 2. An example of 21 consecutive chat messages. A window containing a subset of the 20
preceding messages is used as context for predicting whether the last message is on- or off-task.

Number Group member Message

1 Wizard (Facilitator) How are you all doing? It would be great if you could go in
and vote once you are done putting your evidence in

2 Student A We have voted

3 Student B I am doing very well. I voted for every one and I am also ready
for the next chapter. Game on!

4 Student C And I believe we are done with entering our evidence

5 Wizard I see that you are all very agreeable!

6 Student B Great job!

7 Student C :)

8 Wizard But we also need to see if we can rule any of our hypotheses
out to move on. Let’s try to quickly see if we can go through
the board. Scientists often have disagreements as they advance
their ideas. They will look for evidence both for and against
ideas. Let’s start on the right with the unsorted ideas. Any
suggestions where that might go?

9 Student B Why thank you kind wizard :)

10 Student B Ok

11 Student C Not enough space

12 Student B Not enough space

13 Wizard And would that support or not support it? Let’s talk about that

14 Student A If we put that in not enough space then it would kind of be
going against it

15 Wizard What do the rest of you think? How are we then on the ‘not
enough space’ hypothesis?

16 Student B Yes

17 Student C Well I think that it should be even though it goes against it it
still fits

18 Student A It has no point in being there because it doesn’t affect their
health

19 Student A For not enough space

20 Wizard [Student A] and [Student B], what do you think? Why would
we keep this hypothesis or remove it?

21 Student B We should actually remove it. It doesn’t fit in anything. I
thought it over more

[27]. If a message is very similar to the game’s text content, then the student is likely
talking about something that is relevant to the game and is therefore on-task. Jaccard
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similarity, which is the size of the intersection of two sets divided by the size of the
union, was preferred over other text similarity metrics like the cosine similarity of tf-idf
vectors, because Jaccard similarity only looks at the unique words that are common
between two sources of text. This was preferable because many words that are highly
related to the game’s educational content appear several times in the game’s text, and tf-
idf would discount these words because they are so common. For the message’s average
word embedding, we compared word2vec to ELMo and BERT embeddings to evaluate
the effects of contextualized embeddings. We used word2vec embeddings with dimen-
sionality 300, ELMo with dimensionality 256, and BERT with dimensionality 768. We
used the ELMo embeddings generated from the second LSTM layer (i.e., layer 3 out of
3) to achieve the representation adding contextual information. For the BERT embed-
dings, we used the average of the token outputs across the 11th layer, which is the last
hidden layer. Using these layers for both BERT and ELMo incorporates the richest rep-
resentation produced by these embedding techniques, allowing for the most contextual
information to be used.

For the context-based features, we defined a message’s context as a sliding window
containing the k previous messages in the chat log. Please see Table 2 for an example
of chat dialogue. From these messages, we extracted the number of unique users who
contributed to the conversation, the average length ofmessages in the context, the average
time between messages, the number of times the learning facilitator sent a message, the
cosine similarity between the current message’s average word embedding and the word
embedding of themost recentmessage from the researcher, the cosine similarity between
the average word embedding of the current message and the average word embedding
for all messages in the context, and the average Jaccard similarity between each previous
message and the game’s text content. During annotation, researchers noticed that off-task
behavior often does not include every student in the team, so keeping track of the number
of unique users during this chat window might be an indicator of off-task behavior. That
is, if a small number of students are contributing heavily to the chat, it is likely that
the messages they are sending are either consistently on-task or consistently off-task.
Similarly, message length and time between messages could indicate off-task behavior,
since short messages sent in rapid succession likely were not thoughtfully generated
and could be off-task. Features related to the researcher’s contributions to the chat could
indicate off-task behavior, since more messages from the researcher could indicate that
they needed to try harder to keep students on-task. Also, given that the facilitator’s
messages are examples of on-task dialogue, messages that were similar would likely be
on-task. Since word embeddings allow words to be represented as real-valued vectors in
a high-dimensional space, the cosine similarity between average word embeddings can
be used to quantify the similarity of two messages.

3.3 Modeling

We first compared the performance of static models that incorporate contextual infor-
mation to those that do not. The contextual models include features extracted from the
previous 5, 10, 15 or 20 messages within the gameplay session. If there were fewer pre-
vious messages than the size of the window, we utilized the most messages available for
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calculating the features. Additionally, we evaluated the effects of different word embed-
ding techniques (i.e., word2vec, ELMo, and BERT) on the performance of these models.
We used logistic regression to perform this binary classification. To ensure a fair feature
set comparison, we performed principal component analysis (PCA) on the features for
each representation to reduce the feature set to the first 50 principal components. We
used standardization of the features before applying PCA, transforming both the training
and testing data utilizing the training data’s means and standard deviations.

We also investigated the performance of sequential models on this task. We built
models that took in different window lengths (i.e., 5, 10, 15, 20) of previous messages,
where each message was represented by the set of message-specific features described
earlier. Sequences that were shorter than the length of the window were front-padded
with zeros. Again, models were evaluated across each word embedding technique. For
the sequential modeling task, we adopted LSTM-based sequential models with a single
hidden layer. Hyperparameter tuning was performed across the number of nodes in the
hidden layer (50, 100, 200, or 300), the activation function (sigmoid, hyperbolic tangent,
or rectified linear unit), and the amount of dropout used (0.2, 0.3, 0.4, and 0.5). The
optimal configuration was one hidden layer with 50 nodes, sigmoid activation function,
and 30% dropout. These models were trained for up to 100 epochs, stopping early if
validation loss did not decrease for 15 epochs. Models were trained using group-level
10-fold cross-validation.

4 Results

Results for the off-task prediction task can be found in Table 3. Among the static off-
task dialogue models, we found that the most accurate feature configuration used the
word2vec embeddings with a context window of size 5 (accuracy= 0.786).We also note
that the majority class baseline accuracy for this data is 62.3%, which is the percentage
of on-task messages. The improvement over the baseline indicates that the language-
based representation of the chat messages does help with determining off-task labels.
This same configuration also achieved the highest precision and F1 scores (precision
= 0.710, F1 = 0.678). In general, we notice that all three scores tend to be highly
related. We also note that, for all embeddings, a context window size of 5 performed
the best for these models. Incorporating some amount of contextual information into the
model improves performance over relying solely on features derived from the current
message, confirming our hypothesis that context can help classify off-task behavior in
collaborative game-based learning chat logs.

For the sequential models, themost accurate configurationwas the BERT embedding
with a window size of 20 (accuracy = 0.791). Both contextual embeddings (i.e., ELMo
and BERT) outperformed word2vec across most window sizes. Moreover, these con-
textual embeddings benefit from longer window sizes, while word2vec still performed
best with a window of size 5. While accuracy and F1 score were still correlated, accu-
racy and precision were less correlated than in the static models, with the most precise
configuration being BERT with a window of size 5 (precision = 0.759).

Comparing static and sequential models, we find that the sequential models achieve
the best overall performance, both in terms of accuracy and precision. This confirms
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Table 3. Results across embedding type, context window length, and model.

Embedding Context length Logistic regression LSTM

Accuracy Precision F1 Accuracy Precision F1

Word2vec 0 0.769 0.691 0.642 – – –

5 0.786 0.710 0.678 0.774 0.710 0.636

10 0.783 0.710 0.676 0.751 0.680 0.609

15 0.781 0.707 0.670 0.744 0.659 0.604

20 0.776 0.702 0.660 0.723 0.628 0.591

ELMo 0 0.754 0.662 0.615 – – –

5 0.778 0.696 0.661 0.772 0.693 0.660

10 0.775 0.701 0.654 0.781 0.707 0.667

15 0.767 0.687 0.645 0.788 0.714 0.676

20 0.766 0.681 0.643 0.789 0.720 0.678

BERT 0 0.745 0.664 0.635 – – –

5 0.763 0.684 0.653 0.787 0.759 0.660

10 0.768 0.696 0.659 0.787 0.731 0.674

15 0.767 0.692 0.657 0.778 0.744 0.670

20 0.763 0.687 0.651 0.791 0.714 0.686

our hypothesis that sequential techniques for modeling off-task behavior in student
conversations outperform static techniques. While the static models performed best with
short context windows, the sequential models make better use of longer context.

4.1 Discussion

For the static models, a short window of context yielded the best performance. Awindow
of size 5 performed better than no context at all, and performance tended to decrease with
longer windows. This may be because using toomuch context relies too heavily on infor-
mation from the past, whereas information that ismore recent can indicate components of
the conversation’s flow. Longer context windows likely include more information from
irrelevant messages, and since the static models summarize previous chat messages by
averaging features, relevant and irrelevant information are treated the same. However,
the sequentialmodelsmade better use ofmore context. The performance of theword2vec
embeddings decreased as window size increased, but the contextual embeddings (i.e.,
ELMo and BERT) performed best with windows of size 20. We speculate that this may
be due to the fact that ELMo and BERT create embeddings that, in addition to the syntac-
tic and semantic information transferred from pre-training on large corpora, also encode
some information that is related to the specific context in which words were used. Thus,
while longer sequences accrue more noise from the solely pre-trained embeddings, the



64 D. Carpenter et al.

sequential models may be able to focus on context-specific information captured by the
contextualized embeddings.

We found that the simpler logistic regression models performed nearly as well as
the LSTM models. While we might expect the gap between the static and sequential
models to widen given more training data, since the LSTM may be able to pick up on
more complex relationships than logistic regression, the static models performed well
in this study. This may be due to the set of features that were used to represent the
chat’s context. In particular, we expect that the cosine similarity with the facilitator’s
most recent message and the average Jaccard similarity between each previous message
and the game’s text content could be very helpful in identifying messages as off-task.
Since the facilitator’s messages are examples of on-task dialogue, messages that are
similar will likely be on-task as well. For instance, if a student is responding to the
facilitator’s question or talking about a similar topic, their messages would likely be
similar. In much the same way, if the average Jaccard similarity between the messages
in the contextwindow and the game’s text content is high, this is an indicator that students
are likely talking about things that are related to the game and are thus on-task.

5 Conclusion and Future Work

Collaborative game-based learning environments create learning experiences that fea-
ture rich collaborative problem solving. However, students interacting with one another
may at times engage in off-task behavior, which can manifest in off-task chat messages.
If a collaborative game-based learning environment could utilize an off-task dialogue
model to reliably recognize and even predict when students go off-task, it could facil-
itate more productive conversation. In this work, we have presented predictive off-task
dialogue models that analyze students’ chat conversations and detect off-task behavior.
In particular, LSTM models that use contextualized BERT word embeddings achieve
substantial accuracy for detecting off-task messages. These models perform best when
provided with a context window of 20 previous messages, since they are able to effec-
tively identify features of the previous messages that may be followed by instances of
off-task behavior.

In futurework, it will be instructive to investigate additional conversationalmodeling
that considers participant role to determine the most relevant message to send to the
students to get them back on task. Additionally, it may be possible to increase the
predictive accuracy of models with word-by-word sequential modeling and sentence
embedding. Together, these may significantly increase the ability of off-task dialogue
models to recognize and predict off-task behavior, which opens the door to real-time
adaptive facilitation that supports robust collaborative learning.
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Abstract. Game-based learning environments enable students to engage in
authentic, inquiry-based learning. Reflective thinking serves a critical role in
inquiry-based learning by encouraging students to think critically about their
knowledge and experiences in order to foster deeper learning processes. Free-
response reflection prompts can be embedded in game-based learning environ-
ments to encourage students to engage in reflection and externalize their reflection
processes, but automatically assessing student reflection presents significant chal-
lenges. In this paper, we present a framework for automatically assessing students’
written reflection responses during inquiry-based learning in Crystal Island,
a game-based learning environment for middle school microbiology. Using data
from a classroom study involving 153 middle school students, we compare the
effectiveness of several computational representations of students’ natural lan-
guage responses to reflection prompts—GloVe, ELMo, tf-idf, unigrams—across
several machine learning-based regression techniques (i.e., random forest, support
vector machine, multi-layer perceptron) to assess the depth of student reflection
responses. Results demonstrate that assessment models based on ELMo deep
contextualized word representations yield more accurate predictions of students’
written reflection depth than competing techniques. These findings point toward
the potential of leveraging automated assessment of student reflection to inform
real-time adaptive support for inquiry-based learning in game-based learning
environments.

Keywords: Reflection · Self-regulated learning ·Metacognition · Game-based
learning · Natural language

1 Introduction

Game-based learning environments provide rich opportunities for students to engage
in scientific inquiry by exploring problems that are complex, open-ended, and realistic
[1]. Inquiry-based learning has been demonstrated to yield significant improvements
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in students’ science literacy and research skills [2, 3]. However, the open-ended nature
of inquiry learning in game-based environments can prove challenging for many stu-
dents, which points toward the importance of students effectively regulating their own
learning processes [4–6]. Reflection is a key component of self-regulated learning [7].
During reflection, students can become aware of their problem-solving progress and
make adaptations to their learning strategies, which can lead to improved learning out-
comes [8–10]. We define reflection as a process of introspective consideration of one’s
own knowledge and learning experiences, which is used to inform strategic revisions for
improving learning [11]. During inquiry-based learning, it is important for students to
reflect on their knowledge and actions to ensure that they are on track to achieving their
desired learning objectives.

A common approach to capturing students’ reflections during learning is through
free-response reflection prompts [12]. Free-response reflection prompts can be embed-
ded in game-based learning environments to encourage reflection and externalize stu-
dents’ reflection processes. A key dimension of student reflection is reflection depth,
which distinguishes between responses that exemplify productive reflection versus
surface-level observations or verbatim restatements of content [13, 14].

Assessing students’ written responses to reflection prompts can provide insight into
the characteristics of students’ reflective thinking. However, assessing students’ writ-
ten reflections is often a manual, labor-intensive process. Devising automated methods
for assessing reflection is critical for enabling adaptive learning environments that can
support students’ self-regulatory processes during inquiry-based learning. Approaches
to automatically assessing student reflection include expert-crafted rule-based systems,
dictionary-based techniques that search for specific words and phrases, and machine
learning approaches that are data-driven [15]. Machine learning approaches show par-
ticular promise for devising automated reflection assessment models that are accurate,
reliable, and can be utilized at run-time [15]. Previous work investigating machine learn-
ing approaches to automatically assessing written reflections has used count-based rep-
resentations of students’ natural language reflections [15, 16]. Recent advances in dis-
tributed embedding-based representations of natural language show particular promise
for encoding students’ natural language reflections for automated assessment [17, 18].
Using pre-trained word embeddings, such as GloVe [19] and ELMo [20], syntactic and
semantic information captured from large corpora can be leveraged to concisely represent
students’ written reflections.

In this paper, we present a framework for automatically assessing students’ writ-
ten reflections during inquiry-based learning. Using written reflections of 153 middle
school students, we investigate several vector-based representations of students’ written
reflection responses—unigram, tf-idf, GloVe, and ELMo embedding-based represen-
tations—to induce machine learning-based models for measuring the depth of student
reflection.

2 Related Work

Reflection plays a critical role in self-regulated learning (SRL). In the Information Pro-
cessing Theory of SRL [7], reflection is both a backward-looking and forward-looking
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process [21]. Specifically, students look back at what they have learned and the actions
they have taken in the past, and they consider what changes they might need to make to
achieve their learning goals moving forward [21]. Reflection is especially important in
inquiry-based learning, since it is important for students to understand the relationships
between their learning and problem-solving goals [22].

A common approach for assessing students’ written reflections is to create a model
that distinguishes between varying degrees of reflection depth and different characteris-
tics of reflection breadth [12]. In surveying 34 differentmodels used to analyze reflection,
Ullmann [12] found thatmanymodels include somenotionof reflective depth, often rang-
ing from non-reflective to slightly reflective to highly reflective [13, 23]. Many models
also attempt to capture the breadth of reflection, including aspects such as ‘attending
to feelings’ and ‘validation’ [24] or ‘justification’ [25]. Students’ written responses to
reflection prompts embedded in game-based learning environments are often brief, and
therefore, inherently limited in reflective breadth. Thus, reflective depth serves as a proxy
for measuring the quality of students’ reflective thinking during inquiry-based learning
in game-based environments.

After establishing a model of reflection, a manual coding process is commonly used
to analyze and assess written reflections [15]. Coding students’ written reflections can be
a labor-intensive process, which has motivated growing interest in automated reflection
analysis methods. Approaches to automatic reflection assessment include dictionary-
based, rule-based, and machine learning-based systems [15, 16]. Prior work on auto-
mated analysis of student reflections has largely used one-hot encodings and features
derived from LIWC and Coh-Metrix to represent students’ reflections [15, 16]. How-
ever, recent advances in natural language understanding and automated essay scoring
suggest that pre-trained word embeddings, such as GloVe [19] and ELMo [20], show
promise as representations of students’ written reflections [17, 18], since they are trained
on large corpora and capture both syntactic and semantic aspects of language. Of the
work that has been done to automatically assess written reflection, there is a common
focus on assessing the written reflections of students in higher education [15, 16]. While
supporting reflection in college students is important, substantial benefits can be found
when students engage in SRL processes from a young age [26, 27]. Written data from
K-12 students presents a distinctive set of challenges, since it is often short and rife with
grammatical errors and misspellings [28]. There is a need to investigate more robust
techniques for representing written reflections of K-12 students.

Two recent studies, conducted by Kovanovic et al. [16] and Ullmann [15], have
investigated machine learning-based approaches for automated assessment of student
reflections. Kovanovic et al. [16] coded three different types of reflections (i.e., obser-
vations, motives, and goals). To represent written reflections, they extracted the 100
most common unigrams, bigrams, and trigrams (300 total) from their corpus, gener-
ated linguistic features using the Linguistic Inquiry and Word Count (LIWC) tool, and
extracted severalCoh-Metrix features [16]. Themodel of reflection used byUllmann [15]
included a binary indicator of reflective depth (i.e., reflective versus non-reflective) and
seven breadth dimensions that address common components of reflective models (e.g.,
description of an experience, awareness of difficulties, and future intentions). Ullmann
used binary vectors to represent the unique unigrams that occurred in each reflection,
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ignoring any unigrams that occurred less than ten times throughout the entire corpus
[15].

In contrast to this previouswork, ourmodel of reflection evaluates reflection depth on
a continuous scale.We useUllmann’s binary unigram representation ofwritten reflection
as a baseline and investigate the benefits of several language modeling techniques: tf-idf,
GloVe, and ELMo. Tf-idf represents a step up in complexity from the binary unigram
representation and has been used as a baseline representation for text classification [29].
GloVe [19] and ELMo [20] concisely capture both syntactic and semantic aspects of
language. For GloVe and ELMo, we represent student reflections as the average of
the embeddings for each word [30]. Furthermore, Kovanovic et al. [16] and Ullmann
[15] investigated written reflections collected from undergraduate students, while we
explore middle school students’ reflections as they engage with a game-based learning
environment in their science classrooms.

3 Method

To investigate automated assessment of student reflection,we use data from student inter-
actions with Crystal Island, a game-based learning environment for middle school
microbiology (Fig. 1). In Crystal Island, students adopt the role of a science detec-
tive who has recently arrived at a remote island research station to investigate the cause
of an outbreak among a group of scientists. Students explore the open-world virtual
environment, gather information by reading in-game books and articles, speak with
non-player characters, perform scientific tests in a virtual laboratory, and record their
findings in a virtual diagnosis worksheet. Students solve the mystery by submitting a
diagnosis explaining the type of pathogen causing the illness, the transmission source
of the disease, and a recommended treatment or prevention plan.

Fig. 1. Crystal Island game-based learning environment.
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3.1 Student Reflection Dataset

We analyze a corpus of students’ written reflections collected during a pair of classroom
studies involvingmiddle school students interactingwithCrystal Island during spring
2018 and spring 2019. Data was collected from 153 students in total, but only 118
students reported demographic information. Among these students, 51% identified as
female, and ages ranged from 13-14 (M = 13.6, SD = 0.51). 43 students reported
being Caucasian/White, 32 reported being African American, 21 students reported being
Hispanic or Latino, and 3 reported being of Asian descent. The students did not have
prior experience with Crystal Island.

In both studies, students completed a series of pre-study measures the week prior to
interacting with Crystal Island, including a microbiology content knowledge test, an
emotions, interest, and value instrument, and an achievement goal instrument. Students
were briefly introduced to the game by a researcher, and they viewed a short video
trailer that provided background on the game’s storyline. Afterward, students interacted
with Crystal Island until they solved the mystery or when approximately 100 min
of gameplay time had elapsed. After finishing the game, students completed a series
of post-study materials, which included another microbiology content knowledge test
as well as several questionnaires about students’ experiences with the game, including
sense of presence and engagement.

While interacting with Crystal Island, students were periodically prompted to
reflect on what they had learned thus far and what they planned to do moving forward
(Fig. 2). These reflection prompts came after major game events, such as talking with the
camp nurse, testing objects in the virtual laboratory, or submitting a diagnosis. Students
received several prompts for reflection during the game (M = 3.0, SD = 0.95). After
completing the game or running out of time, students were asked to reflect on their
problem-solving experience as a whole, explaining how they approached the problem

Fig. 2. In-game reflection prompt presented to students.
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and whether they would do anything differently if they were asked to solve a similar
problem in the future. In total, the data included 728 reflection responses from 153
students. The average length of a reflection response was approximately 19 words (min
= 1, max= 100, SD= 14.2). (Please see Table 1 for several example student responses
to reflection prompts in Crystal Island.)

3.2 Annotating Students’ Written Responses to Reflection Prompts

To measure the depth of students’ responses to reflection prompts, a five-point scale
was developed by two of the authors using a grounded theory approach [31]. The scale
was devised to measure the extent to which students assessed their own knowledge
and articulated plans exemplifying high-quality reasoning, hypothesis formation, and

Table 1. Rubric used to annotate students’ written responses to reflection prompts. Reflections
showing at least one characteristic in the middle column were assigned the associated rating.

Rating Characteristics Examples

1 Lacks both a plan and knowledge;
abstract and largely meaningless;
unactionable

“Each clue will help with solving the
problem”;
“Yeah cool game I learned science”

2 Presents a vague hypothesis or plan with
no clear reasoning; simply restates
information that was directly learned in
the game, with no abstraction or
inference on the part of the student

“That the illness causing the people being
sick might be pathogen”;
“I found out that the egg has bacteria”;
“I think I am going to talk to other people”

3 Presents a clear hypothesis or a plan, but
doesn’t provide any reasoning for it;
demonstrates awareness about gaps in
knowledge and presents a plan to fix it;
organizes the importance of their
knowledge

“Getting more information off the food I
think it has something to do with the
food”;
“The most important thing is how the
illness is spreading”

4 Presents a clear hypothesis or plan with
reasoning; provides an abstraction of the
situation with a plan; addresses what
they have learned, why it is important,
and what they plan to do with this
information

“I plan on questioning the cook as they
know more about the food and how it
could be contaminated with viruses or
bacteria”;
“I need to learn more about what the sick
people do on a day to day schedule”

5 Presents both a clear hypothesis and plan
with reasoning; presents a high-quality
sequence of abstract plans

“I think that it might have to do with
salmonella because when I tested the milk
it was positive with pathogenic bacteria. I
think that I will test things that can be
contaminated”;
“I will continue to test the foods the sick
people touched or previously ate to see if
it’s contaminated”
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metacognition. The researchers reviewed 20 reflection responses together, discussing the
strengths and weaknesses of each. These reflection responses were individually selected
to represent the range of reflection depth in the dataset, with the goal of including several
reflections for each of the five ratings. That is, the researchers selected some reflections
that seemed to be particularly weak and discussed why they were weak. The observa-
tions and insights from these discussions formed the basis for the lowest reflection depth
rating. A similar process was used for the other ratings to develop a rubric for evaluat-
ing reflection depth (Table 1), providing examples and reasoning for the five possible
scores. Once the rubric was developed, the researchers separately annotated another 20
reflections to verify the reliability of the model, then discussed and reconciled incon-
gruent ratings. Finally, the remaining 708 reflections were separately annotated by both
researchers and an intraclass correlation of 0.669 was achieved, indicating moderate
inter-rater reliability. The final ratings of reflection depth were calculated by averaging
the values assigned by the two authors (M = 2.41, SD = 0.86), yielding a continuous
measure of reflection. Averaging ratings is a standard approach for reconciling differ-
ences between coders’ assigned ratings, although it does have limitations. For example,
reflections that received the same rating from both coders (e.g., 3 and 3) and reflections
that received different ratings (e.g., 2 and 4) would be rated the same even though there
is disagreement in the latter case.

3.3 Modeling Reflective Depth Using Natural Language Embeddings

Prior to modeling student reflections, the text responses were normalized using tok-
enization, conversion to lowercase, and removal of non-grammatical characters. When
generating binary unigram vectors, tokens that appeared fewer than ten times through-
out the corpus were removed. Similarly, any words that were not found in the GloVe
embeddingswere ignoredwhen calculating averageGloVe andELMoword embeddings,
effectively removingmisspelledwords from the data.We trained regressionmodels using
random forests, SVM, and feedforward neural networks using scikit-learn [32]. Reflec-
tion assessment models were trained using nested 10-fold cross-validation at the student
level. Within each fold, 10-fold cross-validation was used for hyperparameter tuning.
Random forest models were tuned over the number of trees in the forest (100, 200, or
300), the minimum number of samples required to split an internal node (2, 4, or 10), and
a the maximum number of features to consider when searching for the best split (log2
or no maximum). SVM models were tuned over the kernel type (rbf or linear) and the
regularization parameter (1, 2, 5, 10). Multi-layer perceptron models were tuned over
the number of neurons in the hidden layer (50, 100, or 200) and the L2 regularization
penalty (0.0001, 0.001, 0.01).

As a baseline, we encoded each natural language reflection as a binary vec-
tor representing the unique unigrams that occurred in that reflection (i.e., a one-hot
encoding).

This was a 220-dimension vector, where each index represents the presence of a
specific word in the corpus vocabulary after infrequent words were removed. We also
encoded the student reflections as tf-idf vectors, which are sparse real-valued vectors
that represent documents based on the frequency of each term in the corpus, weighted by
the uniqueness of that term in the corpus. Since tf-idf accounts for the frequency of each
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word, unlike the binary unigram representation, infrequent words were not removed.
Finally, we examined two different word embedding techniques, GloVe [19] and ELMo
[20]. GloVe embeddings are word-based, so it is possible to use pre-trained GloVe
embeddings, which have been trained on other corpora (i.e., Wikipedia and Gigaword),
and simply look up embeddings by word.We also investigated the benefits of fine-tuning
GloVe embeddings. Fine tuning allows you to take the pre-trained embeddings and
infuse domain-specific information from an available corpus. Both the pre-trained and
fine-tuned GloVe embeddings were 300-dimension real-valued vectors. ELMo, which
was also trained on large corpora but uses character-based methods to represent text,
is built with the intention that sentences, and not individual words, are used to create
embeddings [20]. To maintain a fair comparison between the various representations of
students’ written reflections, we first embedded entire written reflection responses with
ELMo and then extracted individual word embeddings. This allows the embeddings to
capture information related to the specific context in which each word was used. The
ELMo word embeddings were 256-dimension real-valued vectors. For both GloVe and
ELMo, we represented the reflection text as the average embedding across all words in
the reflection.

4 Results

To investigate the relationship between student learning outcomes and depth of reflec-
tion during inquiry-based learning in Crystal Island, we utilized Pearson correlation
analysis. Average reflection depth ratings for all reflections a student wrote were found
to be positively correlated with student post-test scores (r(601) = .29, p < .001).

Next, we compared the accuracy of competing models of reflection depth across five
natural language embedding representations and three machine learning-based regres-
sion techniques. Models were evaluated using R-squared, mean absolute error, andmean
squared error (Table 2).

Table 2. Model results using 10-fold cross-validation. Bold values represent best performance.

RF SVM NN-MLP

Text features R2 MSE MAE R2 MSE MAE R2 MSE MAE

Binary unigram 0.57 0.32 0.42 0.62 0.28 0.41 0.49 0.37 0.46

TF-IDF 0.53 0.34 0.43 0.40 0.43 0.51 0.43 0.51 0.55

GloVe 0.49 0.38 0.49 0.48 0.38 0.47 0.38 0.67 0.61

GloVe fine-tuned 0.49 0.38 0.49 0.52 0.35 0.45 0.35 0.62 0.62

ELMo 0.55 0.33 0.45 0.64 0.26 0.40 0.26 0.39 0.49

Results indicated that SVM models using average ELMo embeddings to represent
students’ written reflections achieved the highest predictive accuracy (R-squared =
0.64, MSE = 0.26, MAE = 0.40). While we expected the tf-idf representation to yield
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improved performance relative to the binary unigram representation, the top performing
model using tf-idf vectors performed substantially worse (R-squared = 0.53, MSE =
0.34, MAE= 0.43). This may be due to the fact that, while tf-idf accounts for infrequent
terms, keeping words with fewer than ten occurrences in the corpus resulted in a very
large and sparse feature space. We also expected GloVe word embeddings, which are
able to leverage data from large corpora, to outperform both binary unigram and tf-idf,
but the GloVe embedding representations of students’ written reflections generally per-
formed theworst out of all feature representations (R-squared= 0.49,MSE= 0.38,MAE
= 0.49). Fine tuning GloVe embeddings using the Crystal Island reflection dataset
appears to help (R-squared = 0.52, MSE = 0.35, MAE = 0.45), but the improvement
is marginal. Notably, the accuracy of the SVM + ELMo approach was greater than
all competing methods, including the binary unigram baseline representation, but the
improvement was relatively small. A possible explanation is that the information cap-
tured by ELMo’s character-level embeddings and sentence-based contextualization is
critical, especially considering the small size of the dataset used in this work. In compar-
ison, GloVe produces word-level embeddings that are not contextualized, which means
that GloVe embeddings encode less fine-grained information as well as less context-
based information. The performance of unigram models may be explained by the fact
that they use only data from students’ natural language responses to reflection prompts
in Crystal Island, which removes potential noise from external data sources.

To better understand how the competing models distinguished between different
levels of depth in students’ written reflections, we qualitatively examined several select
assessments generated by the SVM + ELMo model, several of which are shown below
in Table 3.

Table 3. Predictions of reflection depth (SVM with ELMo features).

Reflection Predicted score Actual score

“The most important things I’ve learned are that oranges, raw
chicken, and tomato were tested positive for nonpathogenic
virus. Eggs were tested positive for pathogenic virus. I believe
that salmonellosis is the disease that the infected people on
Crystal Island have, but I will have to gather some more
information on other diseases”

3.3 4

“The egg has a pathogenic virus in it. Influenza is a virus that
is spread through direct contact and the only prevention is
vaccination”

3.1 3.5

“The milk is contaminated with pathogenic bacteria. To test
other foods sick members may have been in contact with”

3.1 3

“I realized that raw chicken has influenza” 1.4 2

“I’ve learned a lot and my plan moving forward is in progress” 1.4 1

Examples that were assigned higher depth scores appeared to be longer and contain
more terms that relate to the microbiology content (e.g., pathogenic, virus, bacteria) in
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Crystal Island. This is notable because the ELMo embedding representation should not
be sensitive to reflection length; it uses the average word embedding of the reflection
response. Reflection responses that were assigned lower scores, on the other hand, are
shorter and use fewer terms relevant to the learning scenario’s science content. Low-
scoring reflections are short, vague, and provide little evidence of deeper reasoning.

5 Conclusion and Future Work

Reflection is critical to learning. Scaffolding student reflection in game-based learn-
ing environments shows significant promise for supporting self-regulation and enhanc-
ing learning outcomes. By prompting students to engage in written reflection during
inquiry-based learning experiences, there is an opportunity to identify when students
are not reflecting effectively and scaffold their self-regulated learning processes. This
work investigatedmachine learning-basedmethods for automatically assessing the depth
of student reflection by leveraging natural language embedding-based representations
(i.e., GloVe and ELMo) of reflections in a game-based learning environment for middle
school microbiology education. Results showed that SVMmodels using average ELMo
embeddings were best able to predict reflection depth compared to competing baseline
techniques.

There are several promising directions for future research on automated assessment
and support of student reflection during inquiry-based learning. First, investigatingmeth-
ods to address the inherent “noisiness” of middle school students’ reflective writings,
including misspellings, grammatical errors, non-standard word usage, and other issues
of writing quality, shows significant promise, as they are an inevitable feature of K-12
student writing. A related direction is to investigate the relationship between students’
English languageproficiency and the ratings assigned to theirwritten reflections.Another
direction for future work is to investigate alternative machine learning techniques for
modeling the depth of student reflections, including deep neural architectures (e.g., recur-
rent neural networks). Deep recurrent neural networks have been found to be especially
effective for capturing sequential patterns in natural language data, and it is possible
that they may be well suited for modeling sequential linguistic structures that are more
indicative of reflection depth than individual words. Moreover, since deep neural net-
works can learn abstract representations of data, models of student reflection derived
using deep neural networks may be able to generalize to written reflections in different
domains. Finally, it will be important to investigate ways in which computational mod-
els for automatically assessing student reflection can be used to generate explanations
for ratings of reflection depth, which can be provided to learners and teachers to help
support the development of reflection and self-regulated learning skills.

Acknowledgements. This research was supported by funding from the National Science Foun-
dation under Grant DRL-1661202. Any opinions, findings, and conclusions expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF.



Automated Analysis of Middle School Students’ Written Reflections 77

References

1. Plass, J., Mayer, R.E., Homer, B. (eds.): Handbook of Game-Based Learning. MIT Press,
Cambridge (2020)

2. Gormally, C., Brickman, P., Hallar, B., Armstrong, N.: Effects of inquiry-based learning on
students’ science literacy skills and confidence. Int. J. Sch. Teach. Learn. 3(2), n2 (2009)

3. Lazonder, A.W., Harmsen, R.: Meta-analysis of inquiry-based learning: effects of guidance.
Rev. Educ. Res. 86(3), 681–718 (2016)

4. Belland, B.R., Walker, A.E., Kim, N.J., Lefler, M.: Synthesizing results from empirical
research on computer-based scaffolding in STEM education: a meta-analysis. Rev. Educ.
Res. 87(2), 309–344 (2017)

5. Yew, E.H., Goh, K.: Problem-based learning: an overview of its process and impact on
learning. Health Prof. Educ. 2(2), 75–79 (2016)

6. Taub, M., Sawyer, R., Smith, A., Rowe, J., Azevedo, R., Lester, J.: The agency effect: the
impact of student agency on learning, emotions, and problem-solving behaviors in a game-
based learning environment. Comput. Educ. 147, 103781 (2020)

7. Winne, P.H.: Cognition and metacognition within self-regulated learning. In: Handbook of
Self-regulation of Learning and Performance, pp. 52–64. Routledge (2017)

8. Azevedo, R., Mudrick, N.V., Taub, M., Bradbury, A.E.: Self-regulation in computer-assisted
learning systems. In: Dunlosky, J., Rawson, K. (eds.) The Cambridge Handbook of Cognition
and Education, pp. 587–618. Cambridge Press, Cambridge (2019)

9. Joksimović, S., Dowell, N., Gašević, D., Mirriahi, N., Dawson, S., Graesser, A.C.: Linguistic
characteristics of reflective states in video annotations under different instructional conditions.
Comput. Hum. Behav. 96, 211–222 (2019)

10. Moon, J.A.: A Handbook of Reflective and Experiential Learning: Theory and Practice.
Routledge, Abingdon (2004)

11. Boud, D., Keogh, R., Walker, D. (eds.): Reflection: Turning Experience into Learning. Kogan
Page, London (1985)

12. Ullmann, T.D.:Automated detection of reflection in texts - amachine learning based approach.
Doctoral dissertation, The Open University (2015)

13. Mezirow, J.: Transformative Dimensions of Adult Learning. Jossey-Bass, San Francisco
(1991)

14. Tsingos, C., Bosnic-Anticevich, S., Lonie, J.M., Smith, L.: A model for assessing reflective
practices in pharmacy education. Am. J. Pharm. Educ. 79(8), 124 (2015). https://doi.org/10.
5688/ajpe798124

15. Ullmann, T.D.: Automated analysis of reflection in writing: validating machine learning
approaches. Int. J. Artif. Intell. Educ. 29(2), 217–257 (2019)
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Abstract. In the field of Computer-Supported Collaborative Learning
(CSCL), scripts orchestrate the collaborative learning (CL) process to
achieve meaningful interactions among the students and so improve the
learning outcomes. Nevertheless, the use of scripts may cause motiva-
tional problems over time. To deal with this issue, we propose the gami-
fication of scripted CL sessions through an ontology that encodes knowl-
edge from game design practices and theories of motivation and human
behavior. This knowledge may be used by intelligent theory-aware sys-
tems to avoid the one-size-fits-all approach, providing support for the
personalization of gamification. In this paper, we reported the results
obtained in an empirical study to validate our ontology-based gamifi-
cation of scripted CL sessions. Findings from this study indicate that
intrinsic motivation, perceived choice, and effort/importance of students
were significantly better when our ontology was used to support the gam-
ification. The learning outcomes were significantly better in scripted CL
sessions gamified through our approach, with positive correlations to the
intrinsic motivation and perceived choice. Based on these results, we can
state that the use of ontologies provides adequate support to carry out
well-thought-out gamification of scripted sessions.

Keywords: Gamification · Ontologies · Scripted collaboration

1 Introduction

In CL scenarios, the use of CSCL scripts promotes fruitful and significant inter-
actions among students [18,21]. Despite these benefits, motivational problems
may occur when a scripted CL session has a high degree of coercion/imposition.
For example, when there is an over-scripting [17], the CL sessions limit the stu-
dents’ behaviors and actions, causing a lack of motivation because the students
may feel forced to follow an unwilling sequence of interactions. To deal with this
motivational problem, and others (such as the lack of interest in the content-
domain, and the learners’ preference to work individually), Gamification “as the
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use of game design elements in non-game contexts” [16] has been pointed out as
a novelty approach to engaging students in educational contexts [4]. However,
gamification is too context-dependent [19,29], so that its benefits depend on how
well the game elements are linked with the pedagogical objectives of CL sessions.
Gamifying CL sessions is a non-trivial task, and when the game elements are not
tailored using the one-size-fits-all approach, as was indicated in other contexts,
may cause detrimental to students’ motivation [2], cheating [27], embarrassment
[28], and lack of credibility [13].

The main difficulty of gamification, in particular for instructional designers
who are novices in this approach, is that it needs knowledge from the game
design practices and the theories of motivation and human behavior. Without a
common representation of this knowledge in a manner that can be understood for
computers, we can not build intelligent systems that support the interpretation
of theories and practices related to gamification. These intelligent theory-aware
systems are also responsible to guide the instructional designers in the personal-
ization of gamification, where the theories and practices of gamification may be
used to predict the effects of a gamification design in the students’ motivation
and engagement, and with this information, these systems can suggest the game-
elements and their design that best fit for each student in a scripted CL session.
Thus, employing a top-down ontology engineering approach and the model of
roles proposed in [26], we developed an ontology named OntoGaCLeS 1 (detailed
in [8,10]) in which we defined structures to encode theories and practices that
support the well-thought-out gamification of scripted CL sessions.

Before spending effort in the development of an intelligent theory-aware sys-
tem that uses our ontology, we decided to validate the impact of using it in
comparison with the approach of one-size-fits-all gamification - a gamification
design in which the same game-elements are applied for all the students of CL
sessions. We conducted this validation through an empirical study in which the
first author mediated the interaction between the instructional designers and
our ontology (simulating, thus, an intelligent system that supports the gamifi-
cation process through ontologies). After to present the related work in Sect. 2,
Sect. 3 delineates our ontology-based gamification of scripted CL sessions. Sect. 4
describes the formulation of this empirical study, Sect. 5 shows its operation
process, Sect. 6 presents its findings, Sect. 7 discusses the interpretation of these
findings, and Sect. 8 presents the conclusion and future works.

2 Related Work

The importance of gamification and its personalization based on game design
practices and theories of human motivation and behavior has been demonstrated
in different empirical studies [3,5,15,24,25,30]. However, few empirical studies
were conducted to evaluate the impact of gamification in scripted CL sessions.
We previously conducted two empirical studies [6,9] to explore the benefits of our
proposed ontology-based gamification (Sect. 3). Finding in these studies showed
1 Available at https://geiser.github.io/ontogacles/.

https://geiser.github.io/ontogacles/
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that our approach significantly increases students’ intrinsic motivation, inter-
est/enjoyment and perceived choice when it is compared with non-gamified CL
sessions. These studies also indicated that our approach reduces the students’
pressure/tension, and that the dropping-out percentage of students per group is
reduced through the gamification of CL sessions.

The gamification of CL session based on profiles of learners’ motivation was
evaluated through empirical studies conducted by Knutas et al. [22,23]. The
results from these studies indicate that gamification could increase interactions,
communication, and average grades of students who participated in CL discus-
sions. However, these CL discussions were not mediated by any CSCL script.

3 Ontology-Based Gamification of Scripted CL Sessions

As our ontology was conceived to be the core of intelligent theory-aware systems,
at least two steps are needed to gamify a scripted CL session. The 1st step is to
set the player roles & game elements for each student of the CL session
based on motivational theories and player type models. This step is performed
by selecting a gamification design that best fits the individual motivational goals
and game-player preferences of all the students. In the ontology, the gamification
designs are encoded as “Motivational strategy” into ontological structures to
represent gamified CL sessions, so that an algorithm may be used to search
the ontological structures that have the same pattern of individual motivational
goals of students. These goals are represented in these structures as “I-mot goal
(I)” - an ontological concept encoded from motivational theories, and in which
we represented the expected changes in the students’ motivation at the end of
the scripted CL session. Figure 1 exemplifies the ontology-based gamification of
a scripted CL session inspired by the theory “Cognitive Apprenticeship” [11],
and delineated for two students LA and LB . For this example, the ontological
structure “Gamified Cognitive Apprenticeship for Yee Achiever/Yee Socializer”
was selected to gamify this session because the individual motivational goals of
the student LA match with the structures “I-mot goal (I)” shown in the frame
(a) of Fig. 1. These structures represent the satisfaction of competence need and
the internalization of motivation - both structures encoded from the SDT theory
[14] that states that feeling challenged and being effective to do something cause
the experience of control, making a person to be intrinsically motivated. Thus,
as exemplified in Fig. 1, an adequate gamification design for the student LA with
the need of competence is encoded as the motivational strategy “Gamifying by
CMPT/CMPR” (Gamifying a scripted CL session by providing an environment
with competition and comparison with others).

After the selection of the gamification design, the necessary and desired con-
ditions to play player roles should be verified employing the game-player pref-
erences of the students, and if all the students can play the roles defined by
the gamification design, these roles are assigned to them. These conditions are
encoded as “Player role” in the ontology, and they were encoded based on infor-
mation extracted from player type models. Finally, the game elements for the
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Fig. 1. Example of the ontology-based gamification of a scripted CL session

students come from the ontological structure “Gameplay strategy” - a game
design practice that defines the way in which the students should interact with
game elements to accomplish the individual motivational goals. The frame (b1) of
Fig. 1 exemplifies the verification of necessary and desired conditions to play the
player role “Yee Achiever” for the student LA who has the liking for achievement-
components. Assuming that the student LB can also play the Yee Achiever role,
no one restriction is violated in the Motivational strategy, as shown in the frame
(b2) of Fig. 1. Thus, the Yee Achiever role is assigned to the student LA, and the
game elements selected for him/her are point-systems (individual), leaderboard
(individual ranking), and achievement system (participation level) - elements
indicated by the structure “I-gameplay” shown in the frame (c) of Fig. 1.

The 2nd step in intelligent theory-aware system that uses our ontology is to
design the CL gameplay for the CL process based on persuasive game design
practices. These practices are encoded as ontological structures “gamified I L
events” that describe how the game elements should persuade the students to
perform the interactions defined by a CSCL script. Thereby, an intelligent sys-
tem may use this information to setting up the actions of game elements in the
environment where the CL session is executed. This process is exemplified in
Fig. 1 in which we present the configuration of game elements selected for the
student LA during the instructional event “Giving information.” According to
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the information encoded in the ontology, to persuade a student to give infor-
mation, the game element “Point-system (individual)” should perform the game
action “Promise points” as shown in the frame (d1), the game element “Leader-
board (individual ranking)” should perform the game action “Display/highlight
the current position” as shown in the frame (e), and the game “Achievement
system (participation level)” should perform the game action “Show condition
to achieve the next level” as shown in the frame (f).

During the second step, we also need to establish a proper balance between
ability and challenge. This game design practice comes from the flow theory
[12], and to support the application in the gamification of scripted CL session,
we developed an algorithm to build n-scale GIMF models [7]. Giving n-levels
of challenges, a GIMF model distributes these levels in all the possible tran-
sitions of knowledge/skills defined by instructional/learning theories. Figure 1
exemplifies the use of a 5-scale GMIF model in a scripted CL session inspired
by the Cognitive Apprentice theory. In the gamification design “Gamifying by
CMPT/CMPR,” the points to be obtained by a student to perform an instruc-
tional and learning actions should be directly related to the challenge levels, so
that if a higher challenge is overcome, then a higher amount of points will be
earned by the student. The frame (d3) of Fig. 1 shows that the number of points
to be promised and given for the student during the transition s(3, y) → s(4, y)
should be +1000 points based on a 5-scale GIMF model. We defined five chal-
lenge levels because this value is the maximum number of interactions defined
as gamified I L events in this scripted CL session, and the max value of points
was 1000 points.

4 Formulation of the Empirical Study

As the empirical study was formulated to validate the impact of our ontology-
based gamification (detailed in Sect. 3) in comparison with the one-size-fits-all
gamification, we compared the students’ motivation and learning outcomes in
scripted CL sessions that have been gamified using these two approaches. The
scripted CL sessions gamified with our approach will refer hereinafter as ont-
gamified CL session, whereas the scripted CL sessions gamified with the one-
size-fits-all approach will refer as one-size-fits-all gamified CL sessions. Thereby,
we formulated the following research questions: (1) Is the students’ motivation
in ont-gamified CL sessions better than in one-size-fits-all gamified CL sessions?;
(2) Is the learning outcome in ont-gamified CL sessions better than in one-size-
fits-all gamified CL sessions?; and (3) Are the students’ motivation and learning
outcomes linked on ont-gamified CL sessions?

Hypothesis Formulation: To answer the research question (1), we tested
the null hypothesis, there is no significant difference of the students’ intrinsic
motivation in ont-gamified and one-size-fits-all gamified CL sessions, against the
alternative hypothesis, H1:The students’ intrinsic motivation is greater in ont-
gamified CL sessions than in one-size-fits-all gamified CL sessions. To answer
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the research question (2), we tested the null hypothesis, There is no signifi-
cant difference of the students’ skill/knowledge gain in ont-gamified CL ses-
sions or non-gamified CL sessions, against the alternative hypothesis, H2: The
students’ skill/knowledge gain is greater in ont-gamified CL sessions than in
one-size-fits-all gamified CL sessions. To answer the research question (3), we
tested the null hypothesis, There is no significant correlation between the stu-
dents’ intrinsic motivation and the skill/knowledge gain in ont-gamified and one-
size-fits-all gamified CL sessions, against the alternative hypothesis, H3: There
are significant correlation between the students’ intrinsic motivation and the
skill/knowledge gain in ont-gamified and one-size-fits-all gamified CL sessions.

Experiment Design: The empirical study was designed as a controlled experi-
ment conducted in a real situation, in a CL activity of the course of Introduction
to Computer Science, with the domain-content of Recursion, and using a CSCL
script inspired by the Cognitive Apprentice theory to orchestrate the CL pro-
cess. Based on this script, the students will play the CL roles of Master and
Apprentice, so that this study has a 2 × 2 factorial design, with a randomized
assignment for the types of CL session, and with a theory-driven assignment for
the CL roles employing the pseudo-algorithm proposed in [20].

5 Experiment Operation

The empirical study was conducted in three phases (pre-test, intervention,
and post-test) with 59 Brazilian undergraduate computer engineering students
enrolled in the course of Introduction to Computer Science at the University of
São Paulo. These students were part of a homogeneous population in the age
range of 17–25 years old, sharing the same religion, social-economy status, and
culture. During the conduction of this empirical study, the aspects under study
and hypotheses were not informed to the students, but they were aware that the
researcher would use their data with anonymity. All the materials and question-
naires employed in this study were prepared in advance, and they are available
at https://bit.ly/35CpZ88. As part of the course, the students were instructed
on how to participate in CL sessions orchestrated by CSCL scripts using the
Scripting-forum module2, and they also answered a web-based questionnaire of
the QPJ-BR instrument [1]. During this training, the students were also put in
contact with the game-elements to avoid the novelty effect.

During the pre-test phase (1 week), the students’ initial skill/knowledge
was gathered from one programming problem task (P4 - Calculate fibonacci poly-
nomials) solved by the students using the VPL module3 in the Moodle platform,
and from one multiple-choice knowledge questionnaire (p3a) answered by the
students during 2 h at the classroom as formative evaluation.

During the intervention phase (4 weeks & 3 days), the students were
formed into 21 groups of 2 or 3 members with 21 masters and 38 apprentices

2 Available at https://github.com/geiser/moodle scripting forum.
3 Available at https://moodle.org/plugins/mod vpl.

https://bit.ly/35CpZ88
https://github.com/geiser/moodle_scripting_forum
https://moodle.org/plugins/mod_vpl
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assigned according to the theory-driven group formation proposed in [20]. Thus,
when the students know the topic of recursion, and they known how to use
recursion in the solution of a programming problem, they played the master
role. Otherwise, the student played the apprentice role. After the CL role distri-
bution, one-half of groups were randomly chosen to participate in one-size-fits-all
gamified CL sessions, and the other half was chosen to participate in ont-gamified
CL sessions. Thereby, 11 groups participated in ont-gamified CL sessions, and
11 groups were involved in one-size-fits-all gamified CL sessions.

The game elements were setting-up in the ont-gamified CL sessions through
the approach detailed in Sect. 3. Based on the individual motivational goals
of students who participated in this study, the gamification designs were
defined employing two ontological structures: (a) “Gamified Cognitive Appren-
ticeship Scenario for Master/Yee Achiever and Apprentice/Yee Achiever,” and
(b) “Gamified Cognitive Apprenticeship Scenario for Master/Social Achiever
and Apprentice/Social Achiever.” Thus, students who had more liking for
achievement-components than social-components were assigned to play the Yee
Achiever role, whereas students who had positive liking for social-components
and achievement-components were assigned to play the Social Achiever role.

Figure 2 shows the interfaces of scripted CL sessions that have been gamified
to conduct our empirical study in the Moodle platform using our plugins4: game-
points, game-leaderboards, game-achievements, and game badges. In scripted CL
sessions that have been gamified using the structure (a), the gamification design
intended to support a gameplay of individual competition in which the students
acted as Yee Achiever. For these students, we provided leaderboards that display
individual rankings (a4), point-systems that accumulate rewards for each indi-
vidual (a3), and the win state that was defined through an achievement-system
(a1) and badges of participation (a2). The gamification design for scripted CL
sessions that have been gamified using the structure (2) supported a gameplay
experience of individual and cooperative competition when the students played
the Social Achiever role, so that we provided for them leaderboards that dis-
played individual rankings (b5) and collaborative rankings (b6), point-systems
(b4) that accumulateed rewards for the groups and individuals, and the win state
that was defined through two achievement-systems (b1) and (b2) with badges
of participation and collaboration (b3).

For the one-size-fits-all gamified CL sessions, the game elements were setting-
up without using the ontology, so that we established the same game-elements
and their design for all the students in the CL sessions, as shown in Fig. 2 (c). In
these sessions, we used an individual point-system (c3), an achievement-system
(c1) and badge-system (c2) for participation, and a leaderboard with individual
rankings (c4). The points to be given when a student perform any interaction
were the same (+500 points), and all the students received the same badge of
participation at the end of the CL session. The complete setting up of game-
elements and their design are detailed in https://bit.ly/3dfZdFg.

4 Available at https://github.com/geiser/gamification-moodle-plugins.

https://bit.ly/3dfZdFg
https://github.com/geiser/gamification-moodle-plugins
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Fig. 2. Interfaces of scripted CL sessions delineated in the empirical study

During the post-test phase (1 week), to gather data related to the
skill/knowledge, a multiple-choice knowledge questionnaire of recursion (p3c)
has been answered by the students during 2 h at the classroom as part of the
formative evaluations in the course, and three programming problem tasks (PF -
Programming Problem: Generation of planning poker sequence), (PG - Program-
ming Problem: Counting palindromes) and (PH - Programming Problem: Maze
solving algorithm) have been solved by the students in the Moodle platform
using the VPL module. To gather data of motivation, the students answered a
Web-based adapted Portuguese versions of IMI questionnaire.

6 Findings of the Empirical Study

Employing the responses gathered through the IMI questionnaire, we run two-
way ANOVA tests and Tukey post-hoc comparisons to find significant differences
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in the dependent variables of motivation. Before this analysis, we validated the
IMI questionnaire to ensure the psycho-metrically sound of its items through
a CFA analysis and a reliability test obtaining a Cronbach’s α = 0.85 (good)
- this validation process is detailed at https://bit.ly/2xFsAS8. The students’
skill/knowledge gains were estimated through the difference of scores obtained
in the post-test and pre-test. With these gains, we run two-way ANOVA tests and
Tukey post-hoc comparisons to find significant differences. All the results from
these statistical analyses are available at https://geiser.github.io/phd-thesis-
evaluation/study03.

Motivation: Results from the ANOVA tests indicated significant differences on
the intrinsic motivation (F (1, 47) = 6.15, p = 0.017), perceived choice (F (1, 47) =
8.27, p = 0.006), and effort/importance (F (1, 47) = 7.51, p = 0.009). The tukey
post-hoc comparisons show that the students’ intrinsic motivation in ont-
gamified CL sessions (lsmean = 4.56, SE = 0.149) was significantly greater than
in one-size-fits-all gamified CL sessions (lsmean = 4.10, SE = 0.149) with a p-adj.
value of p = 0.023 and Hedges’ g = 0.63 medium effect size. The perceived choice
in ont-gamified CL sessions (lsmean = 4.80, SE = 0.295) was significantly greater
than in one-size-fits-all gamified CL sessions (lsmean = 3.60, SE = 0.295) with
p = 0.009 and g = 0.75 medium effect size. The effort/importance in ont-gamified
CL sessions (lsmean = 5.32, SE = 0.246) was significantly greater than in one-
size-fits-all gamified CL sessions (lsmean = 4.37, SE = 0.245) with p = 0.007 and
g = 0.79 medium effect size.

Learning Outcomes: According to the ANOVA tests, the effect on the
students’ skill/knowledge gain yielded F (1, 45) = 10.77 with p = 0.002 indicat-
ing a significant difference between one-size-fits-all gamification and ontology-
based gamification of scripted CL sessions. The Tukey post-hoc comparisons
indicate that the students’ skill/knowledge gain in ont-gamified CL sessions
(lsmean = 1.38, SE = 0.578) was greater than in one-size-fits-all gamified CL
sessions (lsmean = −1.26, SE = 0.564) with p = 0.002 and g = 0.88 medium effect
size. For Apprentice students, their skill/knowledge gain in ont-gamified CL ses-
sions (lsmean = 2.50, SE = 0.638) was also greater than in one-size-fits-all gam-
ified CL sessions (lsmean = 0.07, SE = 0.585) with p = 0.036 and g = 0.892 large
effect size.

Correlation of Students’ Motivation and Learning Outcomes: Spear-
man’s rank-order correlation tests were run to find significant correlations
between the students’ motivation and learning outcomes. According to these
tests, in ont-gamified CL sessions, the skill/knowledge gain of master stu-
dents was significantly strong correlated to the intrinsic motivation (ρ = 0.73,
p = 0.05), perceived choice (ρ = 0.85, p = 0.023), and pressure/tension (ρ = −0.77,
p = 0.039).

7 Interpretation and Discussion of Findings

The null hypothesis related to motivation is rejected, so that this study is evi-
dence to support the alternative hypothesis, H1, “the students’ intrinsic moti-

https://bit.ly/2xFsAS8
https://geiser.github.io/phd-thesis-evaluation/study03
https://geiser.github.io/phd-thesis-evaluation/study03
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vation is greater in ont-gamified CL sessions than in one-size-fits-all gamified
CL sessions” in which the students’ perceived choice and effort/importance in
ont-gamified CL sessions were also greater than in one-size-fits-all gamified CL
sessions. This fact is consequence of a well-though-out gamification design that,
through the gamification design provided by our ontology, aligns the pedagogi-
cal objectives with the students’ intrinsic motivation. As was detailed in Sect. 3,
the selection of the gamification design is based on the individual motivational
goals of students. These effects may also consequence of the personalization of
game-elements based on information from player models and the persuasive game
design applied to these game-elements. As the game-elements were set up based
on a persuasive design, they easily convince the student to follow the sequence of
interactions defined by the CSCL scripts during the CL process. The perceived
choice and effort/importance of students in ont-gamified were greater in ont-
gamified CL sessions than in one-size-fits-all gamified CL sessions. A possible
explanation for this fact is that students in our ont-gamified CL sessions put
more effort in their actions and behaviors to be properly rewarded by the game
elements because the GMIF model provides an adequate balance between the
current students’ skill/knowledge and perceived challenge, a balance that was
not established in one-size-fits-all gamified CL sessions.

Our empirical study also constitutes evidence to support the alternative
hypothesis, H2, “the students’ skill/knowledge gain is greater in ont-gamified
CL sessions than in one-size-fits-all gamified CL sessions.” This finding indicates
that, through our gamification approach, the pedagogical benefits of scripted CL
sessions are better achieved by the students. Having better pedagogical benefits
in our scripted CL session is likely a consequence of increasing the students’
intrinsic motivation and their autonomy sense through our ontology-based gam-
ification approach. The evidence that supports this fact is the significant corre-
lations found in the students’ intrinsic motivation and perceived choice with the
skill/knowledge gains in ont-gamified CL sessions.

8 Conclusion and Future Works

The findings in the empirical study reported in this paper indicate that our
ontology-based approach to gamify scripted CL sessions is likely to be an efficient
method to deal with motivational problems with the potential to improve the
learning outcomes. In scripted CL sessions that have been gamified using our
ontology-based approach, students reported to be more intrinsic motivated and
with better perceived choice than in scripted CL sessions that have been gamified
employing the one-size-fits-all approach. Our approach also demonstrated that
raising intrinsic motivation and perceived choice in scripted CL sessions through
gamification helps the students to accomplish in better learning outcomes.

Our empirical study was limited to undergraduate students (ages 17–25), to
the content-domain of Recursion, and using only one CSCL script to conduct
the CL sessions. As the gamification is too-context dependent, we can not gen-
eralize our findings, so additional empirical studies will be carried to validate
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the efficiency of our ontology-based approach. These further study should be
conducted using other content-domains with different difficulty levels and from
different courses, with other participants, and using other CSCL scripts.
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Abstract. Educational technologies may help support out-of-school
learning in contexts where formal schooling fails to reach every child,
but children may not persist in using such systems to learn at home.
Prior research has developed methods for predicting learner dropout but
primarily for adults in formal courses and Massive Open Online Courses
(MOOCs), not for children’s voluntary ed tech usage. To support early
literacy in rural contexts, our research group developed and deployed a
phone-based literacy technology with rural families in Côte d’Ivoire in
two longitudinal studies. In this paper, we investigate the feasibility of
using time-series classification models trained on system log data to pre-
dict gaps in children’s voluntary usage of our system in both studies. We
contribute insights around important features associated with sustained
system usage, such as children’s patterns of use, performance on the
platform, and involvement from other adults in their family. Finally, we
contribute design implications for predicting and supporting learners’
voluntary, out-of-school usage of mobile learning applications in rural
contexts.

Keywords: Machine learning · Dropout · Out-of-school learning

1 Introduction

Access to literacy is critical for children’s future educational attainment and
economic outcomes [13], but despite an overall rise in global literacy rates, these
gains have not been evenly distributed [40]. Educational technologies may help
supplement gaps in schooling in low-resource contexts [6,30,32]. However, given
that many educational technologies are used in schools [51], children in agricul-
tural communities who are chronically absent from school (e.g., [30]), may be
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further denied access to technologies to supplement their learning unless learning
technologies are available for use at home (as in [50]).

Côte d’Ivoire is one such context. While enrollment has risen drastically and
many more children have access to schooling, nearly a fifth of rural fifth graders
are not yet able to read a single word of French (the official national language)
[14] and adult literacy rates stand below 50% [25]. Through multiple studies in
a years-long research program, we investigated families’ beliefs and methods for
supporting literacy at home and their design needs for literacy support technol-
ogy [28], and used these findings as design guidelines to develop an interactive
voice response (IVR) literacy system for fostering French phonological aware-
ness [27]. Then, to investigate how and why children and their families adopt
and use such a system over several months at their homes, we deployed our IVR
system, Allô Alphabet, in a series of studies of increasing size and duration, in 8
rural villages in Côte d’Ivoire [27,29]. We found that there was high variance in
the consistency of children’s use of the system, with some children who did not
access the lessons for several weeks or months at a time [29].

In this paper, in order to understand whether we can predict (and perhaps,
ultimately prevent) such gaps before they occur, we explore the efficacy of using
system log data to predict gaps in children’s system usage. We evaluate the
efficacy of multiple models to predict usage gaps for two separate longitudinal
deployments of Allô Alphabet and identify features that were highly predictive
of gaps in usage. We contribute insights into features that contribute to gaps in
usage as well as design implications for personalized reminders to prompt usage
for educational interventions in out-of-school contexts. This work has contribu-
tions for educational technology usage prediction, as well as for mobile literacy
systems more broadly.

2 Related Work

2.1 Educational Technology Used for Out-of-school Learning

While there is prior literature on the use of educational technologies in low-
resource contexts [19,34,50], existing solutions are often deployed in schools,
where children’s use of devices may be controlled by the teacher [39,51]. Given
that children in agricultural contexts may have limitations in their ability to
consistently access and attend formal schooling [30], there is a need for out-of-
school educational technologies for children. Some designers of mobile learning
applications suggest children will use their applications to develop literacy skills
[17,18,22]. However, as Lange and Costley point out in their review of out-of-
school learning, children learning outside of school often have a choice of whether
to engage in learning or not—given all of the other options for how to spend their
time—a choice which may lead to gaps in their learning [24].

2.2 Predicting Usage Gaps in Voluntary Educational Applications

There is an abundance of prior work on predicting dropout to increase stu-
dent retention in formal educational contexts like colleges [23,47,48]. Some work
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has leveraged Machine Learning (ML) to identify predictors of adult learners’
dropout from courses, as in work with English for Speakers of Other Languages
(ESOL) courses in Turkey [7]. In addition to this work on predicting dropout
from in-person courses, prior work has leveraged ML to identify predictors of
dropout from Massive Open Online Courses (MOOCs) [4,33,36,45,53] and dis-
tance learning for adult learners [2,12,19,49]. Across these studies, a combination
of social factors, like age, finances, family and institutional involvement, etc., and
system usage data, like correctness, frequency, response log, etc. were found to
be predictive of dropout.

While this is informative, much of this prior work is targeted towards distance
learning or use of e-learning portals as part of formal instruction, not informal,
out-of-school learning at home. Additionally, the type of learners is different—
the majority of MOOC learners are between 18 and 35 years old [9], while we
are focusing on children as users, who may have less-developed metacognitive
abilities for planning and sustaining out-of-school learning. It thus remains to be
seen what factors are useful for predicting gaps in children’s literacy education
with out-of-school use of learning technology. In particular, we are interested in
system usage features as those are more easily and automatically acquired than
socio-economic data.

Although there is a dearth of research on predicting gaps in children’s usage
of educational mobile applications, there is a rich legacy of research on mobile
app usage prediction more broadly, primarily for adults (e.g., [20,31,43,44]). In
both educational and non-educational application use, the engagement is volun-
tary, initiated by the user, and designers of such systems want to increase usage
and retention. Prior research on churn prediction in casual and social gaming
applications used machine learning models like Support Vector Machines (SVM)
and Random Forests (RF) to model system usage. RF is an ensemble learning
method, a category of model that has shown good performance for these predic-
tions [37,42]. Churn is defined as using an application and then not continuing
to use it after a given period of time [20]. Churn prediction allows systems to
develop interventions, like reminders or nudges, which are positively related to
increasing user retention [31,43,52]. However, there remain differences between
casual and social mobile games and educational mobile applications, including
the motivation to use the system and the nature of the data. This leads us to
investigate the following research questions:

RQ1: Can we use system interaction data to predict gaps in children’s usage
of a mobile-based educational technology used outside of school in rural con-
texts?

RQ2: Which features of the users’ interaction log data are most predictive
of gaps in system usage of a mobile educational technology?

RQ3: How well does this usage gap prediction approach continue to perform
for a replication of the same study in similar contexts?
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3 Methodology

3.1 Study Design

This study is part of an ongoing research program [14,27–29] to support literacy
in cocoa farming communities, conducted by an interdisciplinary team of Amer-
ican and Ivorian linguists, economists, sociologists, and computer scientists, in
partnership with the Ivorian Ministry of Education since 2016, and approved by
our institutional review boards, the Ministry, and community leaders. Based on
design guidelines identified through co-design research with children, teachers,
and families [28], we developed Allô Alphabet, a system to teach early liter-
acy concepts via interactive voice response (IVR) accessible on low-cost mobile
devices ubiquitous in the context (described in more detail in [27,29]). When a
user placed a call to the IVR system, they heard a welcome message in French,
an explanation of the phonology concept to be taught in that lesson, and were
given a question. For each question, the system played a pre-recorded audio mes-
sage with the question and response options. Students then pressed a touchtone
button to select an answer and received feedback on their responses. If incorrect,
they received the same question again with a hint, otherwise a selection of the
next question was made based on their level of mastery of the concepts.

In this paper, we use data from two deployments of Allô Alphabet. In the
first deployment (Study 1), we deployed Allô Alphabet with nearly 300 families
with a child in grade CM1 (mean age = 11 years, SD = 1.5) in 8 villages in Côte
d’Ivoire for 16 weeks, beginning in February 2019 [29]. Then we deployed it again
in a larger randomized controlled trial with 750 children of similar ages (Study
2), beginning in December, 2019 and ongoing at the time of publication. In
the beginning of each study we provided a mobile device and SIM card to freely
access the system and a one-hour training session for children and a caregiver, in
which we explained the purpose of the study and taught the child and caregiver
how to access and use the IVR system (described in more detail in [27,29]. We
obtained 16 weeks of system and call data for Study 1 (February - May, 2019),
and equivalent data from the first 8 weeks of the ongoing Study 2 (December,
2019 - February, 2020). For our analysis, we use data from the participants who
called the system at least once (N1 = 165, N2 = 408).

3.2 Data Collection and Processing

The data used in training our models was the same for both Study 1 and 2. Each
time a user called the system, the call metadata and the interactions during the
call were logged on our database. The metadata included call start and end times
(in local time), and the interaction data corresponded to a log of events that
occurred during the call, such as attempting quiz questions, correctly completing
those questions, parents or other caregivers accessing information (e.g., support
messages and progress updates) about their child’s usage, and more.

Each record in the data was identified by a unique user-week. Because we
wanted to use all the data up to (and including) a given week to predict a gap in
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usage in the subsequent week, we excluded the final week of system usage from
our dataset. For Study 1, we generated a time series with 15 timestamps (one
for each week prior to the final week) and data from 165 children for each times-
tamp (N1 = 2475). For Study 2, we generated a time series with 7 timestamps
and data from 408 children for each timestamp (N2 = 2856). Each timestamp
corresponded to data up to, and including, the given week. We trained a new
model on the data for each timestamp to avoid future bias, i.e., training on future
data while predicting the same. Based on prior research on dropout prediction in
MOOCs (e.g. [4,33,53]) and churn prediction in mobile applications and social
games (e.g. [20,37]) with a focus on features that could be gleaned solely from
interaction logs, we used a total of 11 features including call duration (aver-
age call duration during the week), num calls (total number of calls), num days
(number of days the user called in a given week), mastery (percentage of ques-
tions attempted correctly), and main parent (number of times a user accessed
the main menu for the parent-facing version of the system). A list of all features
used in the model and their pre-normalized, post-aggregation means and stan-
dard deviations can be found in Table 1. We aggregated the features at the week
level, averaging call duration and mastery, and summing the others. We decided
to average mastery and call duration to better represent the non-uniform distri-
bution of lesson performance and call duration across the calls in a given week.

Table 1. Full set of features used in the predictive model

Feature Explanation Mean (SD)

sum correct Number of questions correct 8.78 (20.90)

sum incorrect Number of questions incorrect 10.38 (24.76)

sum completed Total number of questions completed 19.16 (44.48)

mastery Percentage of questions correct 0.19 (0.26)

nunique unit id Number of distinct units attempted 0.46 (0.53)

nunique lesson id Number of distinct lessons attempted 4.34 (9.34)

num calls Number of calls 6.39 (12.01)

num days Number of days user called system 1.59 (1.83)

start child call flow Number of times a child began a lesson 3.78 (7.70)

main parent Number of times user accessed 2.02 (5.62)

Parent-facing version of the system

call duration Average call duration in seconds 137.95 (238.91)

3.3 Problem Formulation

We wanted to predict gaps in usage for our users. Given the distribution of usage
data in our study which related to the school week, we define a gap as a given
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user not calling the system for one week. We thus use this gap as the positive
class in our model (base rate = 65%, i.e., 65% of user weeks have a gap). Because
we want to be able to predict for out-of-sample users who might begin calling
later in the study (i.e., without prior call log data), we use a population-informed
week-forward chaining approach to cross-validation [3]. That is, we held out a
subset of users and trained the data for all weeks using a k -fold time-series
cross-validation [46].

We wanted to use model types that were likely to perform well on smaller,
imbalanced datasets as well as models that would allow us to identify feature
importance and compare model performance. Prior literature on churn predic-
tion [15,37] identified several model types that might meet these criteria: Ran-
dom Forests (RF), Support Vector Machines (SVM), and eXtreme Gradient
Boosting (XGBoost). Ensemble learning methods (like RF and XGBoost) had
been shown to perform well for churn prediction, and SVM’s kernel trick had
been shown to successfully identify decision boundaries in higher dimensional
data. Furthermore, boosted tree algorithms have been shown to perform as well
as deep, neural approaches in certain scenarios [11,41], while requiring smaller
datasets and compute power, which is of particular interest for predictive models
in low-resource, developing contexts [21]. We used Scikit-Learn modules [35] for
implementation, and Grid Search for hyper-parameter tuning of the optimisa-
tion criterion, tree depth, type of kernel, learning rate, and number of estimators
[16].

4 Findings

4.1 Usage Gap Prediction Models for Study 1 (RQ1)

We evaluated the three models (SVM, RF, and XGBoost) models using four
metrics—recall, precision, accuracy, and Area Under the Curve (AUC). Of these,
we optimised for recall because we wanted to minimize false negatives. That is,
we do not want to incorrectly predict that someone will call the next week, and
thus miss an opportunity to remind or nudge them to use the system. We report
on the mean and standard deviation for the performance metrics for all three
models, averaged across all 15 model iterations in Table 2. In Fig. 1, we show
the AUC results for each weekly model iteration for all 15 weeks. We found that
XGBoost was the best performing model for Study 1, using a tree booster, a
learning rate of 0.1, and a maximum depth of 5. We hypothesize that XGBoost
performed the best because it was an ensemble learning method (unlike SVM),
and used a more regularized model formalization (as opposed to RF), which may
be more effective for the nature of our data because it avoids overfitting [5].
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Table 2. Performance of Different Models in Study 1: Mean and Standard Deviation

Model Recall Precision Accuracy AUC

XGBoost 0.93 (σ=0.06) 0.78 (σ=0.13) 0.75 (σ=0.12) 0.68 (σ=0.12)

SVM 0.92 (σ=0.06) 0.78 (σ=0.13) 0.75 (σ=0.12) 0.65 (σ=0.12)

RF 0.90 (σ=0.06) 0.78 (σ=0.13) 0.74 (σ=0.12) 0.60 (σ=0.10)

Fig. 1. AUC for each of the 15 iterations of the XGBoost model for Study 1

Fig. 2. Feature importance for Study 1, with direction of the feature in parentheses

4.2 Feature Importance in Usage Gap Prediction for Study 1 (RQ2)

We next wanted to estimate feature importance in order to identify the features
most associated with gaps in usage, to suggest potential design implications for
personalized interventions or system designs to promote user retention. The fea-
ture importance and the directionality of the top ranked features in the XGBoost
model can be seen in Fig. 2. We obtained the direction of the influence of the
feature (i.e., either positively or negatively associated) using SHAP (SHapley
Additive exPlanation), which allows for post-hoc explanations of various ML
models [26]. We find that the most predictive features associated with gaps in
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usage are the call duration, number of calls to the system, number of days with a
call to the system, and total number of completed questions in a given week—all
negatively predictive of gaps (i.e., positively associated with usage).

Table 3. Performance of Different Models in Study 2: Mean and Standard Deviation

Model Recall Precision Accuracy AUC

XGBoost 0.69 (σ=0.18) 0.58 (σ=0.19) 0.66 (σ=0.07) 0.73 (σ=0.09)

SVM 0.68 (σ=0.13) 0.58 (σ=0.19) 0.66 (σ=0.07) 0.72 (σ=0.09)

RF 0.69 (σ=0.24) 0.56 (σ=0.18) 0.65 (σ=0.12) 0.66 (σ=0.11)

Fig. 3. Feature importance for Study 2, with direction of the feature in parentheses

4.3 Replication of Usage Prediction for Study 2 (RQ3)

In order to evaluate the robustness of our approach, we evaluated the same
models on data from the first 8 weeks of Study 2. We used the same features
described in Table 1, for the 408 learners with data for the 7 weeks (again leaving
out the 8th and final week for testing), as described in Sect. 3.2. We find that
our model performance was consistent with the model performance from Study
1. Mean and standard deviation of model performance across the 7 models is
reported in Table 3 We find that the AUC values are higher in Study 2 than in
Study 1, although recall, precision, and accuracy are lower overall in Study 2.
Given that Study 2 (8 weeks) was half the duration of Study 1 (16 weeks), we
hypothesize that these prediction performance differences may be due to effects
from differences in usage in the beginning of the study. That is, system usage in
the first 1–2 weeks of the study was higher than the rest of the duration (for both
Study 1 and 2). Thus, the model may fail to minimize the false negatives, as it
is inclined to predict that a user will call back, when in reality there may be a
gap in usage. The set of important features (seen in Fig. 3) were nearly the same
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as in Study 1, but their rank order was different in Study 2, with consistency of
calling (operationalized by the number of days called in a given week) being the
most predictive feature as opposed to average call duration.

5 Discussion and Design Implications

Contextually-appropriate technologies may support learning outside of school
for children in rural contexts with limited access to schooling. However, as prior
work has demonstrated, in spite of motivation to learn, a variety of exogenous
factors may inhibit children and their caregivers from consistently using learning
technologies outside of school, limiting their efficacy [27,29]. While prior research
has developed predictive models of the likelihood of dropout, these approaches
have historically dealt with adults dropping out from formal in-person or online
courses, each of which may have some financial or social cost for dropping out.
These factors may not be relevant for children’s voluntary usage of a mobile
learning application. In rural, low-resource contexts, mobile educational appli-
cations may be more accessible than online learning materials, though there
may be additional obstacles to consider (e.g., children’s agricultural participa-
tion [30]).

We have identified a set of system interaction features that are predictive
of gaps in calling. Prior work in predicting dropout of adult learners in online
courses found that factors like organizational support, time constraints, financial
problems, etc. play an important role in predicting dropout [33]. We extend prior
literature by finding that the important features associated with system usage
were related to patterns of use, such as the duration of the interactions, their
consistency of use (e.g., number of calls and number of days called in a week), as
well as features related to their performance on the platform, including the num-
ber of questions completed and their overall mastery percent across all questions.
In addition, we find that involvement of other family members (operationalized
as the number of times the informational menu designed for adult supporters
was accessed) is a predictive feature associated with system usage, which had
not been accounted for in prior literature on app usage prediction.

Designers of voluntary educational systems can leverage these insights on the
impact of learners’ consistency of use and patterns of performance on future sys-
tem usage. First, personalized, preemptive usage reminders may support ongo-
ing engagement with the system. While usage reminders, like SMS texts and call
reminders, have been associated with increased usage of mobile learning appli-
cations, they are often post-hoc (i.e., sent after a usage gap has already been
observed) [38], which may be too late if users have already stopped engaging.
Alternatively, sending too many reminders has been associated with a decrease
in system usage, perhaps due to perceptions of being spammed [38]. Thus, there
is a need for personalized, preemptive interventions based on users’ likelihood
to not persist in using the system. Researchers can use models trained on the
aforementioned features to identify those users who are expected to have a gap
in usage in the upcoming week. Furthermore, as we found that family involve-
ment was associated with increased student engagement (following other prior
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work that did not use predictive modeling [10,54]), we suggest that parents or
guardians also receive personalized messages to prompt children’s use of the
system.

Second, analysis from both Study 1 and 2 showed that students’ mastery
(i.e., percentage of questions attempted correctly) was negatively associated
with gaps in system usage. We thus hypothesize that users may feel a sense
of achievement, or a positive sense of self-efficacy when they answer questions
correctly, thus motivating them to continue learning (as in [1,55]). Voluntary
educational applications may leverage mechanisms like dynamic question diffi-
culty depending on correctness of responses, or system elements designed to give
users this sense of achievement and mastery (e.g., virtual rewards to promote
student engagement [8]). Introducing such features may better motivate students
to continue using the system.

Finally, we analyzed these features across two studies with similar results.
We did find that consistency (measured by number of days called) plays a more
important role in shorter studies, as seen in Study 2, while call duration plays
a more important role in longer studies, as seen in Study 1. We confirmed this
by running post-hoc analyses on 8 weeks of data from Study 1 and found the
same result. We see that in the first few weeks of usage, a user’s calling pattern,
as opposed to the interactions within each call, is more predictive of gaps, while
the opposite is true for longer studies. We hypothesize that this may be due
in part to the novelty effect, and suggest that over time, students receive more
personalized content support in deployments.

5.1 Limitations and Future Work

This study uses system interaction data to predict gaps in children’s use of a
mobile literacy learning application. However, there may be other relevant infor-
mation that may be useful for informing usage prediction—including data on
children’s prior content or domain knowledge (here, French phonological aware-
ness and literacy more broadly), prior experience with similar types of appli-
cations (here, interactive voice response used on feature phones), and, more
broadly, data on children’s motivations for learning and self-efficacy. Future work
may explore how to most effectively integrate such data collected infrequently
in a survey or assessment with time-series data such as we have used here. In
addition, the studies we trained our models on were in rural communities in
low-resource contexts, and future work may investigate how predictive models
of voluntary educational technology usage may differ across rural and urban con-
texts, and across international and inter-cultural contexts. Finally, future work
may investigate the efficacy of personalized reminders or nudges to motivate
increased use of the system and their impact on consistent system usage and
learning.
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6 Conclusion

Educational technologies have been proposed as an approach for supporting edu-
cation in low-resource contexts, but such technologies are often used in schools,
which may compound inequities in education for children who may not be able
to attend schools regularly. However, when ed tech use is voluntary for children
to use outside of school, there may be gaps in their usage which may negatively
impact their learning, or lead to them abandoning the system altogether—gaps
which may be prevented or mitigated using personalized interventions such as
reminder messages. In this paper, we explore the efficacy of using machine learn-
ing models to predict gaps in children’s usage of a mobile-based educational
technology deployed in rural communities in Côte d’Ivoire, to ultimately inform
such personalized motivational support. We evaluate the predictive performance
of multiple models trained on users’ system interaction data, identify the most
important features, and suggest design implications and directions for predict-
ing gaps in usage of mobile-based learning technologies. We intend for this work
to contribute to designing personalized interventions for promoting voluntary
usage of out-of-school learning technologies, particularly in rural, low-resource
contexts.
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Rosé, P., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 353–357. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93846-2 66

https://doi.org/10.1007/978-3-030-23207-8_13
https://doi.org/10.1007/978-3-319-93846-2_66


Predicting Gaps in Usage in a Phone-Based Literacy Intervention System 105

46. Tashman, L.J.: Out-of-sample tests of forecasting accuracy: an analysis and review.
Int. J. Forecast. 16(4), 437–450 (2000)

47. Terenzini, P.T., Lorang, W.G., Pascarella, E.T.: Predicting freshman persistence
and voluntary dropout decisions: a replication. Res. High. Educ. 15(2), 109–127
(1981)

48. Tinto, V.: Research and practice of student retention: what next? J. Coll. Stud.
Retent.: Res. Theory Pract. 8(1), 1–19 (2006)

49. Tyler-Smith, K.: Early attrition among first time elearners: a review of factors
that contribute to drop-out, withdrawal and non-completion rates of adult learners
undertaking elearning programmes. J. Online Learn. Teach. 2(2), 73–85 (2006)

50. Uchidiuno, J., Yarzebinski, E., Madaio, M., Maheshwari, N., Koedinger, K., Ogan,
A.: Designing appropriate learning technologies for school vs home settings in Tan-
zanian rural villages. In: Proceedings of the 1st ACM SIGCAS Conference on Com-
puting and Sustainable Societies, pp. 9–20. ACM (2018)

51. Warschauer, M., Ames, M.: Can one laptop per child save the world’s poor? J. Int.
Aff. 64(1), 33–51 (2010)

52. Xie, Y., Li, X., Ngai, E., Ying, W.: Customer churn prediction using improved
balanced random forests. Expert Syst. Appl. 36(3), 5445–5449 (2009)

53. Yang, D., Sinha, T., Adamson, D., Rosé, C.P.: Turn on, tune in, drop out: antic-
ipating student dropouts in massive open online courses. In: Proceedings of the
2013 NIPS Data-Driven Education Workshop, vol. 11, p. 14 (2013)

54. Zellman, G.L., Waterman, J.M.: Understanding the impact of parent school
involvement on children’s educational outcomes. J. Educ. Res. 91(6), 370–380
(1998)

55. Zimmerman, B.J.: Self-efficacy: an essential motive to learn. Contemp. Educ. Psy-
chol. 25(1), 82–91 (2000)



MACER: A Modular Framework
for Accelerated Compilation Error Repair

Darshak Chhatbar1 , Umair Z. Ahmed2 , and Purushottam Kar1(B)

1 Indian Institute of Technology Kanpur, Kanpur, India
{darshak,purushot}@cse.iitk.ac.in

2 National University of Singapore, Singapore, Singapore
umair@comp.nus.edu.sg

Abstract. Automated compilation error repair, the problem of suggest-
ing fixes to buggy programs that fail to compile, has pedagogical appli-
cations for novice programmers who find compiler error messages cryptic
and unhelpful. Existing works frequently involve black-box application
of generative models, e.g. sequence-to-sequence prediction (TRACER) or
reinforcement learning (RLAssist). Although convenient, this approach is
inefficient at targeting specific error types as well as increases training
costs. We present MACER, a novel technique for accelerated error repair
based on a modular segregation of the repair process into repair iden-
tification and repair application. MACER uses powerful yet inexpensive
learning techniques such as multi-label classifiers and rankers to first
identify the type of repair required and then apply the suggested repair.
Experiments indicate that this fine-grained approach offers not only
superior error correction, but also much faster training and prediction.
On a benchmark dataset of 4K buggy programs collected from actual
student submissions, MACER outperforms existing methods by 20% at
suggesting fixes for popular errors while being competitive or better at
other errors. MACER offers a training time speedup of 2× over TRACER
and 800× over RLAssist, and a test time speedup of 2 − 4× over both.

Keywords: Introductory programming · Compilation error · Program
repair · Multi-label learning · Structured prediction

1 Introduction

Programming environment feedback such as compiler error messages, although
formally correct, can be unhelpful in guiding novice programmers on correcting
their errors [14]. This can be due to 1) use of technical terms in error messages
which may be unfamiliar to beginners, or 2) the compiler being unable to com-
prehend the intent of the user. For example, for an integer variable i in the C pro-
gramming language, the statement 0 = i; results in an error that the “expres-
sion is not assignable”. Although the issue was merely the direction of assign-
ment, the error message introduces concepts of expressions and assignability
which may confuse a beginner (see Fig. 1 for examples). For beginners, navigating
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1 void main(){

2 int i, n=5, s=0;

3 for(i=1, i<n, i++)

4 s = s+i*(i++)/2;

5 printf ("%d", s);

6 }

1 void main(){

2 int i, n=5, s=0;

3 for(i=1; i<n; i++)

4 s = s+i*(i++)/2;

5 printf ("%d", s);

6 }

1 void main(){

2 int i=0;

3 if(0 = i)

4 i++;

5 }

1 void main(){

2 int i=0;

3 if(0 == i)

4 i++;

5 }

Error Message E6: expected ’;’ in ’for’ statement specifier Error Message E10: expression is not assignable
Repair Class [E6 [,,] [;;]] (see Sec 2 for details) Repair Class [E10 [=] [==]] (see Sec 2 for details)

Fig. 1. Two examples of actual repairs by MACER.

such feedback often means seeking guidance from a human mentor which is not
scalable [5]. In this work we report MACER, a tool that automatically suggests
repairs to programs with compilation errors to reduce loads on human mentors.

Related Works. DeepFix [9] was one of the first methods to use deep learn-
ing (sequence-to-sequence models) to jointly locate and repair errors. TRACER [1]
reported better performance by segregating the repair pipeline into repair line
localization and repair prediction, and introduced the stringent Pred@k metric
that compares the predicted repair against the actual repair desired by student,
as opposed to the existing repair accuracy metric that simply counts reduction in
compilation errors. RLAssist [8] introduced the use of reinforcement learning to
eliminate the need for labeled training data but suffers from slow training times.
Sect. 4 offers explicit experimental comparisons of MACER to DeepFix, TRACER
and RLAssist. Apart from this, [10] used variational auto-encoders to introduce
diversity in the suggested repairs. [19] considered variable-misuse errors that
occur due to similar-looking identifier names. TEGCER [2] focused on repair
demonstration by showing examples of fixes made by other students rather than
repairing the error, which can be argued to have greater pedagogical utility.

Our Contributions. In addition to locating lines that need repair, MACER
further segregates the repair pipeline by identifying what is the type of repair
needed on each line (the repair-class of that line), and where in that line to apply
that repair (the repair-profile of that line). Methods like TRACER and DeepFix
perform the last two operations in a single step using some heavy-duty generative
mechanism. MACER’s repair pipeline is end-to-end and entirely automated1 i.e.
steps such as creation of repair classes can be replicated for any programming
language for which static type inference is possible. In addition to this,

1. MACER is able to pay individual attention to each repair class to offer superior
error repair. MACER also introduces the use of highly scalable multi-label
learning techniques, such as hierarchical classification and re-ranking. To the
best of our knowledge, the use of these techniques is novel in this domain.

2. MACER accurately predicts the repair class (see Table 1). Thus, instructors
can manually rewrite helpful feedback (to accompany MACER’s suggested
repair) for popular repair classes which may offer greater pedagogical value.

1 The MACER tool-chain is available at https://github.com/purushottamkar/macer/.

https://github.com/purushottamkar/macer/
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ErrorID Error Message Freq.

E1 Expected � after expression 4999
E2 Use of undeclared identifier � 4709
E3 Expected expression 3818
E6 Expected � in � statement specifier 720
E10 Expression is not assignable 538
E23 Expected ID after return statement 128
E57 Unknown type name � 23
E76 Non-object type � is not assignable 11
E98 variable has incomplete type ID 3
E148 Parameter named � is missing 1

ClassID [ErrorID [Del] [Ins]] Type Freq.

C1 [E1 [∅] [;]] Insert 3364
C2 [E2 [INVALID] [INT]] Replace 585
C12 [E6 [,] [;]] Replace 173
C22 [E23 [;] [∅]] Delete 89
C31 [E6 [,,] [;;]] Replace 62
C64 [E3 [)] [∅]] Delete 33
C99 [E45 [==] [=]] Replace 19
C115 [E3 [∅] [‘]] Insert 16
C145 [E24 [.] [->]] Replace 11
C190 [E6 [for] [while]] Replace 9

Fig. 2. (Left) Some of the 148 compiler errorIDs listed in decreasing order of frequency
in the train set. Some errorIDs are frequent whereas others are very rare. The symbol
� is a placeholder for program specific tokens such as identifiers, reserved keywords,
punctuation marks etc. E.g., an instance of E6 is shown in Fig. 1. An instance of E1
could be “Expected ; after expression”. (Right) Some of the 1016 repair classes used
by MACER listed in decreasing order of frequency in the train set. E.g., ClassID C145
concerns inappropriate use of the dot operator to access member fields of a (pointer
to a) structure and requires replacement with the arrow operator. ∅ indicates that no
token need be inserted/deleted for that class, e.g., no token need be inserted to perform
repair for C22 whereas no token need be deleted to perform repair for C115. Please see
the text in Sect. 2 for a description of the notation used in the second column.

2 MACER: Data Pre-processing

The training data for MACER is in the form of (source-target) program pairs
where the source program failed to compile and the target is the student-repaired
program. Similar to [1], we train only on pairs where the two programs differ in a
single line (although MACER is tested on programs where multiple lines require
repairs as well). The differing line in the source (resp. target) program is called
the source line (resp. target line) (e.g. line 3 in Fig. 1). With every such program
pair, we also receive the errorID and message generated by the Clang compiler
[13] when compiling the source program. Figure 2 lists a few errorIDs and error
messages. Some error types are extremely rare whereas others are very common.

Notation. We use angular brackets to represent n-grams e.g. the statement
a = b + c; contains unigrams 〈a〉, 〈=〉, 〈b〉, 〈+〉, 〈c〉, 〈;〉, and bigrams 〈a =〉,
〈= b〉, 〈b +〉, 〈+ c〉, 〈c ;〉, 〈; EOL〉. Including an end-of-line character EOL helps
MACER distinguish this location since several repairs (such as insertion of expres-
sion termination symbols) require edits at the end of the line.

Feature Encoding. Source lines contain user-defined literals and identifiers
that are diverse yet uninformative for error repair. Thus, we perform abstrac-
tion by replacing literals and identifiers with an abstract LLVM token type [13],
while retaining keywords and symbols, e.g. the raw/concrete statement int abc
= 0; is converted to the abstract statement int VARIABLE INT = LITERAL INT
;. An exception is string literals where format-specifiers (e.g. %d and %s) are
retained since these are often a source of error themselves. Such abstraction is
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common in literature [1,2]. The token INVALID is used for unrecognized identi-
fiers. This gave us a vocabulary of 161 uni and 1930 bigrams (trigrams did not
offer significant improvements). A source line is represented as a 2239 (148 + 161
+ 1930) dimensional vector storing one-hot encodings of the compiler errorID
(see Fig. 2), and uni and bigram feature encodings of the abstracted source line.
Note that the feature encoding step does not use the target line in any way.

Repair Class Creation. The repair class of a source line encodes what
repair to apply to that line. The Clang compiler offers 148 distinct errorIDs in our
training dataset. However, diverse repair strategies may be required to handle all
instances of a single errorID. E.g., errorID E6 can either signal missing semicolons
‘;’ within the for loop statement specifier (as in Fig. 1), or missing semicolon
at the end of a do-while block, or missing colons ‘:’ in a switch case block.
To address this, similar to TEGCER [2], we expand the 148 compiler errorIDs
into 1016 repair classes. These repair classes are generated automatically from
training data and do not require any manual supervision. For each training
example, the diff of the abstracted source and target lines reveals the set of tokens
that must be inserted/deleted to/from the abstracted source line to obtain the
abstracted target line. The repair class of this example is then simply a tuple
enumerating the compiler error ID followed by the tokens to be inserted/deleted
(in order of their occurrence in the source line from left to right).

[ErrID [TOK−
1 TOK−

2 ...][TOK+1 TOK+2 ...]]

We identified 1016 such classes (see Fig. 2). Repair classes requiring no insertions
(resp. no deletions) are called Delete (resp. Insert) classes and others are called
Replace classes. Repair classes, like error IDs, exhibit a heavy tail distribution
with a few popular repair classes having hundreds of training examples whereas
most repair classes having single digit training examples (see Fig. 2).

Repair Profile Creation. The repair profile of a source line encodes where
in that line to apply the repair encoded in its repair class. For every erroneous
program, the diff between its abstracted source and target lines tells us which
bigrams in the abstracted source line require edits (insert/delete/replace). The
repair profile for a training example is given as a one-hot representation of the
set of bigrams i.e. r ∈ {0, 1}1930 which require modification. We note that the
repair profile is a sparse fixed-dimensional binary vector (that does not depend
on the number of tokens in the source line) and ignores repetition information.
Thus, even if a bigram requires multiple edit operations, or appears several times
in the source line and only one of those occurrences requires an edit, we record
a 1 in the repair profile corresponding to that bigram. This was done in order to
simplify prediction of the repair profile for erroneous programs at testing time.

Working Dataset. After the above pre-processing steps, we have with us,
corresponding to every training source-target example pair, a class-label yi ∈
[1016] telling us the repair class for that source line, a feature representation
xi ∈ {0, 1}2239 that tells us the errorID along with the uni/bigram representation
of the source line, and a sparse Boolean vector ri ∈ {0, 1}1930 that tells us the
repair profile. Altogether, this constitutes a dataset of the form

{
(xi, yi, ri)

}n

i=1
.
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Fig. 3. The training pipeline for MACER, illustrated using the example used in Fig. 1.
L INT and V INT are shorthand for LITERAL INT and VARIABLE INT.

3 MACER: Training and Prediction

MACER segregates the error repair process (at test time) into six distinct steps

1. Repair Lines: Locate which line(s) are erroneous and require repair.
2. Feature Encoding: A 2239-dimensional feature vector for each such line.
3. Repair Class Prediction: Use the feature vector to predict which of the

1016 repair classes is applicable i.e. which type of repair is required.
4. Repair Localization: Use the feature vector to predict locations within the

source line where repairs should be applied.
5. Repair Application: Apply repairs at the predicted locations.
6. Repair Concretization: Undo code abstraction and compile.

MACER departs notably from previous works in segregating the repair process
into these steps. Apart from faster training and prediction, this allows MACER
to learn a customized repair location and repair application strategy for every
repair class, e.g. if it is known that the repair requires the insertion of a semi-
colon, then the possible repair locations are narrowed down significantly.

Repair Lines. In addition to the compiler reported error line numbers,
MACER samples 2 additional lines, one above and one below, as candidate repair
lines. The same technique was used by TRACER [1], and achieves a repair line
localization recall of around 90% on our training dataset.

Repair Class Prediction. Given the large number of repair classes, MACER
uses a probabilistic hierarchical classification trees [12,17] for fast and accurate
prediction. Given a source line feature vector x ∈ {0, 1}2239, they assign a likeli-
hood score streec (x) for each repair class c ∈ [1016] that is used to rank the classes.
The tree used by MACER (see Fig. 4) uses a feed-forward network with 2 hidden
layers with 128 nodes each at the root node and linear one-vs-rest classifier at
other nodes, all trained on cross entropy loss. However, given the large number
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Fig. 4. (Left) The prediction hierarchy used by MACER to predict the repair class.
(Right) The repair pipeline for MACER, illustrated using the example used in Fig. 1. A
situation is depicted where a wrong repair class gets highest score from the classification
tree, but reranking corrects the error. Table 1 shows that this is indeed common.

Table 1. Performance benefits of reranking. Here, Top@k reports the fraction of test
examples on which the correct errorID/repair tokens were predicted within top k loca-
tions of the ranking. MAP refers to mean-averaged precision. Reranking significantly
boosts MACER’s performance. MAP error indicates that reranking ensures that the
correct errorID/repair tokens were almost always predicted within the first two ranks.

Top@1 Top@3 Top@5 MAP

Reranking Off (use streec (x) to rank repair classes) 0.66 0.83 0.87 0.40
Reranking On (use 0.8 · streec (x) + 0.2 · sprotc (x) instead) 0.67 0.88 0.90 0.50

of extremely rare repair classes (Fig. 2 shows that only ≈150 of the 1016 repair
classes have more than 10 training examples), there is room for improvement.

Repair Class Reranking. To improve classification performance on rare
repair classes, MACER uses prototype classifiers [11,16]. Prototypes vectors are
obtained for each repair class c ∈ [1016] (with say nc training examples) by clus-
tering training examples associated with that class into kc =

⌈
nc

25

⌉
clusters with

centroids x̃1
c , . . . , x̃

kc
c . For a source line x ∈ {0, 1}2239, the prototypes are used to

assign a new score to each repair class sprotc (x) := maxk∈[kc] exp
(
− 1

2

∥
∥x − x̃k

c

∥
∥2

2

)
.

This score is combined with the earlier (hierarchical classification tree) score as
sc(x) = 0.8 · streec (x) + 0.2 · sprotc (x) and sc(x) is used to rank the repair classes.
Table 1 outlines how the reranking step significantly boosts MACER’s ability to
accurately predict the relevant compiler errorID and the repair class.

Repair Localization. MACER predicts the repair profile vector by solving
a multi-label learning problem with 1930 “labels” corresponding to the bigrams
in our vocabulary. MACER trains a separate “one-vs-rest” (OVR) classifier [4]
per repair class that allows it to adapt to needs of different repair classes. Only
those OVR classifiers that correspond to bigrams actually present in the source
line are invoked. This offers good localization with a Hamming loss of just 1.43.
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Repair Application. Having obtained the nature and location of the repairs
from the above steps, MACER uses frugal but effective techniques to apply the
repairs. Due to lack of space, we postpone details to the full version. Let B denote
the ordered set of all bigrams (and their locations, ordered from left to right) in
the source line which the predicted repair profile considers edit-worthy.

1. Insertion Repairs: In most cases of insertion repair, all tokens need to be
inserted at the same location, e.g., for(i=0;i<5) → for(i=0;i<5;i++) with
repair class [E6 [∅] [; VARIABLE INT ++]]. MACER concatenates all tokens
marked for insertion and tries inserting this ensemble into all bigrams in B.

2. Deletion Repairs: Tokens marked for deletion in the predicted repair class
are deleted at the first bigram in the set B that has that token.

3. Replace Repairs: The repair class specifies a list of pairs of tokens (TOK−,
TOK+) where TOK− needs to be replaced with TOK+. Similar to deletion repairs,
MACER attempts this edit at the first bigram that contains TOK−.

4. Miscellaneous Repairs: for unstructured repair classes where insertions and
deletions are both required but an unequal number of tokens are inserted and
deleted, MACER first ignores insertion tokens and performs edits as if this were
a deletion repair class instance and then performs all insertions. This approach
leaves room for improvement but nevertheless performs relatively well.

Repair Concretization. To make the repaired program compilable,
abstract LLVM tokens such as LITERAL_INT are replaced with concrete program
tokens such as literals and identifiers. Each abstract token is replaced with the
most recently used concrete variable/literal of the same type, that already exists
in the current scope. The process, although approximate, nevertheless recovers
the correct replacement in 90+% of the instances in our datasets. Each candi-
date repair line reported by the repair line localizer is replaced with MACER’s
repair prediction, if it reduces the number of compilation errors in the program.

4 Experiments

We compared MACER’s performance against previous works, as well as per-
formed ablation studies to study the relative contribution of its components. All
MACER implementations2 were done using standard machine learning libraries
such as sklearn [15] and keras [6]. Experiments were performed on a system
with Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz × 8 CPU having 32 GB RAM.

Datasets. We report results on 3 different datasets, all curated from CS-1
course offerings at IIT-Kanpur (a large public university) with 400+ students
attempting 40+ programming assignments. The datasets were recorded using
Prutor [7], an online IDE. The DeepFix dataset3 contains 6,971 programs that
fail to compile, each with max 400 tokens [9]. The single-line (17,669 train +
4,578 test) and multi-line (17,451 test programs) datasets4 contain program pairs
where error-repair is required, respectively, on a single line or multiple lines [1].
2 The MACER tool-chain is available at https://github.com/purushottamkar/macer/.
3 https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.zip.
4 https://github.com/umairzahmed/tracer.

https://github.com/purushottamkar/macer/
https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.zip
https://github.com/umairzahmed/tracer
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Metrics. We report i) repair accuracy, the fraction of test programs that
were successfully repaired by a tool, and ii) Pred@k, the fraction of programs
where at least one of the top k abstract repair suggestions exactly matched the
student’s own abstract repair. This is a metric introduced in [1] motivated by
the fact that the goal of program repair, especially in pedagogical settings, is
not to merely generate any program that compiles (see below).

The Importance of Pred@k. We consider a naive method Kali’ that sim-
ply deletes all lines where the compiler reported an error. This is inspired by
Kali [18], an erstwhile state-of-art semantic-repair tool that repaired programs
by functionality deletion alone. Kali’ gets 48% repair accuracy on the DeepFix
dataset whereas DeepFix [9], TRACER [1] and MACER get respectively 27%, 44%
and 56% (Table 3). Although Kali’ seems to offer better repair accuracy than
TRACER, its Pred@1 accuracy on the single-line dataset is just 4%, compared
to 59.6% and 59.7% by TRACER and MACER respectively (Table 2). This shows
the weakness of the repair accuracy metric and the need for the Pred@k metric.

Results. Of the total 7 min train time (see Table 3), MACER took less than
5 s to create repair classes and repair profiles from the raw dataset. The rest of
the training time was taken up more or less evenly by repair class prediction
training (tree ranking + reranking) and repair profile prediction training.

Comparisons with Other Methods. The values for Pred@k (resp. Rep@k)
were obtained by considering the top k repairs suggested by a method and declar-
ing success if any one of them matched the student repair (resp. removed compila-
tion errors). For Pred@k computations, all methods were given the true repair line
and did not have to perform repair line localization. For Rep@k computations, all
methods had to localize then repair. Tables 2 and 3 compare MACER with com-
petitor methods. MACER offers superior repair performance at much lesser train-
ing and prediction costs. Figure 6 shows that MACER outperforms TRACER by ≈
20% on popular classes while being competitive or better on others.

Ablation studies with MACER. To better understand the strengths and
limitations of MACER, we report on further experiments. Figure 6 shows that
MACER is effective at utilizing even small amounts of training data and that its
prediction accuracy drops below 50% only on repair classes which have less than
30 examples in the training set. Figure 5 offers examples of actual repairs by
MACER. Although it performs favorably on repair classes seen during training,
it often fails on zero-shot repair classes which were never seen during training.
Table 4 presents an explicit ablation study analyzing the differential contribu-
tions of MACER’s individual components on the single-line dataset. Re-ranking
gives 10–12% boost to both Pred@k and repair accuracy. Predicting the repair
class (resp. profile) correctly accounts for 5–12% (resp. 6%) of the performance.
MACER loses a mere 6% accuracy on account of improper repair application. For
all figures and tables, details are provided in the captions due to lack of space.
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Table 2. TRACER vs MACER on
single, multi-line datasets. Although
comparable on single line, MACER
outperforms TRACER by 14% on
multi-line dataset. P@k,R@k are
shorthand for Pred@k,Rep@k resp.

Dataset Single Multi

Metric P@1 P@5 R@5 R@5

TRACER 0.596 0.683 0.792 0.437
MACER 0.597 0.691 0.805 0.577

Table 3. All methods on the DeepFix dataset.
Values take from ∗[9] and †[8]. MACER offers the
highest repair accuracy with a margin of 12.5%
over the next best method, a prediction time that
is at least 2× faster, and a train time 2× faster
than TRACER and 800× faster than RLAssist.

DeepFix RLAssist TRACER MACER

Repair Acc 0.27∗ 0.267† 0.439 0.566

Test Time <1s† <1s† 1.66 s 0.45 s
Train Time - 4 Days 14 min 7 min

# Source-line Target-line MACER’s Top Prediction Pred? Repair? Zero-shot?
1 scanf("%c",&a[i] ; scanf("%c",&a[i]); scanf("%c",&a[i] ); Yes Yes No
2 for (i =0;i<n;i++) for(int i=0;i<n;i++) for (int i =0;i<n;i++) Yes Yes No
3 if(x==y)printf("Y"); break; if(x==y)printf("Y"); if(x==y)printf("Y") ; Yes Yes No
4 for(i=0; i=<N ;i++) for(i=0;i<=N;i++) for(i=0; i<N ;i++) No Yes No
5 if ( (a[j]==’ ’) if(a[j]==’ ’) if((a[j]==’ ’) ) No Yes No
6 int n; n=q; int n; int n; n=0; No Yes Yes
7 c=sqrt( a^2+b^2 ); c=sqrt(a*a+b*b); c=sqrt( a^2+b^2 ); No No Yes

Fig. 5. Some examples of repairs by MACER on test examples. Pred? = Yes if MACER’s
top suggestion exactly matched the student’s abstracted fix. Rep? = Yes if MACER’s
top suggestion removed all compilation errors. ZS? = Yes for “zero-shot” test examples
i.e. the corresponding repair class was absent in training data. MACER offers exactly
the student’s repair for the first three examples. Note that the second example involves
an undeclared identifier. For the next three examples, although MACER does not offer
exactly the student repair, it nevertheless offers sane fixes that eliminate all compilation
errors. The last two are zero-shot examples – MACER handles one of them.

5 Conclusion

We presented MACER, a novel technique that offers superior repair accuracy and
increased training and prediction speed by finely segregating error repair into
efficiently solvable ranking and labeling problems. Targeting rare error classes
and “zero-shot” cases (Fig. 5) is an important area of future improvement. A
recent large scale user-study [3] demonstrated that students who received auto-
mated repair feedback from TRACER [1] resolved their compilation errors faster
on average, as opposed to human tutored students; with the performance gain
increasing with error complexity. We plan to conduct a similar systematic user
study in the future, to better understand the correlation between our improved
Pred@k metric scores and error-resolution efficiency of students.

Acknowledgments. The authors thank the reviewers for helpful comments and are
grateful to Pawan Kumar for support with benchmarking experiments. P. K. thanks
Microsoft Research India and Tower Research for research grants.
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Fig. 6. (Left-Top and Left-Bottom) MACER vs TRACER on the 60 most frequent
(head) and top 60–120 (torso) repair classes. To avoid clutter, only 30 classes from each
category are shown. MACER outperforms TRACER by around 20% in terms of Pred@k
on head classes and is competitive or better on torso classes. (Right-Top and Right-
Bottom) Prediction (exact match) accuracy for MACER on the 391 repair classes that
had at least 3 training points. On a majority of these classes 221/391 = 56%, MACER
offers greater than 90% Pred@k. On a much bigger majority 287/391 = 73%, MACER
offers more than 50% prediction accuracy. MACER’s prediction accuracy drops below
50% only on classes which have less than around 30 points. This indicates that MACER
is effective at utilizing even small amounts of training data.

Table 4. An ablation study on the differential contributions of MACER’s components.
ZS stands for “zero-shot”. For the “ZS included” column, all test points were considered
while the “ZS excluded” column took only those test points whose repair class was seen
at least once in the training data. RR stands for reranking. RCP stands for Repair Class
Prediction, RLP stands for Repair Location Prediction. RCP = P (resp. RLP = P)
implies that we used the repair class (resp. repair location) predicted by MACER. RCP
= G (resp. RLP = G) implies that we used the true (G for gold) repair class (resp. true
repair profile vector). The difference in the first two rows shows that reranking gives 10–
12% boost to both Pred@k and repair accuracy. Predicting the repair class (resp. profile)
correctly accounts for 5–12% (resp. 6%) of the performance. The final row shows that
MACER loses 6–8% performance owing to improper repair application/concretization.
In the last two rows, Pred@1 is higher than Rep@1 (1–2% cases) owing to concretization
failures – even though the predicted repair matched the student’s repair in abstracted
form, the program failed to compile after abstraction was removed.

ZS included ZS excluded

RR RCP RLP Pred@1 Rep@1 Pred@1 Rep@1

OFF P P 0.492 0.599 0.631 0.706

ON P P 0.597 0.703 0.757 0.825

ON G P – – 0.885 0.877

ON G G – – 0.943 0.926
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Abstract. Open-ended learning environments such as makerspaces present a
unique challenge for instructors. While it is expected that students are given
free rein to work on their projects, facilitators have to strike a difficult balance
between micromanaging them and letting the community support itself. In this
paper, we explore how Kinect sensors can continuously monitor students’ collab-
orative interactions so that instructors can gain a more comprehensive view of the
social dynamics of the space. We employ heatmaps to examine the diversity of
student collaborative interactions and Markov transition probabilities to explore
the transitions between instances of collaborative interactions. Findings indicate
that letting students work on their own promotes the development of technical
skills, while working together encourages students to spend more time in the
makerspace. This confirms the intuition that successful projects in makerspaces
necessitate both individual and group efforts. Furthermore, such aggregation and
display of information can aid instructors in uncovering the state of student learn-
ing in makerspaces. Identifying the instances and diversity of collaborative inter-
actions affords instructors an early opportunity to identify struggling students and
having these data in a near real-time manner opens new doors in terms of making
(un)productive behaviors salient, both for teachers and students. We discuss how
this work represents a first step toward using intelligent systems to support student
learning in makerspaces.

Keywords: Motion sensors · Social interactions ·Makerspaces

1 Introduction

Makerspaces are open-ended learning environments that offer students unique learning
opportunities for developing amaker’smindset [1] aswell as critical 21st century compe-
tencies [2]. The nature of makerspace projects allows students with diverse prior knowl-
edge and experiences to come together in pursuit of personallymeaningful projects. Such
learning opportunities effectively model the demands of a professional workspace and
cultivates students with the proper skills and mindset to meet the challenges of the 21st
century. As such, makerspaces have become increasingly popular over the last decade.
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Open-ended learning environments, however, make it challenging for instructors to
continuously monitor students’ progress. While there may be pockets of instructional
timewhen instructors explicitly teach students, students are often left to their owndevices
when it comes to project work. In fact, the many benefits of makerspaces cannot be
divorced from the need to leave students to productively struggle on their own. As a
result, instructors have to strike a difficult balance between micromanaging students and
simply leaving them without any form of support.

The use of minimally invasive sensors such as Kinect can provide instructors with
a dual advantage: to unobtrusively monitor student progress without affecting their nat-
ural workflow, and to intervene whenever necessary to help struggling students [3]. In
particular, the study of students’ collaborative interactions within makerspaces can bring
a unique insight into students’ learning. As proposed by Lave [4], ‘learning is a process
of becoming a member of a sustained community of practice’ (p. 65). By examining
how students socially interact within makerspaces, we hope to identify indicators that
will inform instructors of students’ needs. Thus, the goal of this paper is to examine the
instances and diversity of student collaborative interactions within makerspaces using
Kinect sensors.

2 Literature Review

Makerspaces embody learning under the long tradition of constructionism [5]. Within
makerspaces, students are encouraged to address open-ended problems and figure things
out for themselves with minimal aid from instructors. In such learning environments,
instructors play the role of facilitators while students are given free rein to explore the
space as they construct knowledge for themselves [2, 6].

However, since students are still novices, they may encounter barriers to learning. If
struggling students are not promptly identified by instructors, repeated failuresmay result
in them developing a sense of learned helplessness [7]. On the other hand, instructors
may not want to intervene too early so that they can fail productively [8]. This creates
an inherent tension between instruction and construction in makerspaces [9]. Instructors
need to strike a balance between giving direct instruction to help struggling students
and leaving students to productively fail and construct knowledge for themselves. This
balance in instruction has been discussed by scholars such as Star [10], who pointed
out that despite the many benefits of productive failures [8], there are instances when
instructors should step in to prevent students from giving up entirely.

Recognizing the need to balance instruction and free exploration presents instructors
with a new challenge. Using traditional methods, it is difficult for instructors to monitor
students’ progress without disrupting their natural workflow. Constructionist researchers
like Berland et al. [11] have proposed the use of technology-enabled learning analytics
to derive rich inference about learners whilst preserving minimum instructor interfer-
ence. For the purpose of providing instructional support, several related works have
been conducted. For instance, orchestration graphs were created by Prieto et al. [12] to
suit teaching needs using data and Behoora and Tucker [13] have examined how body
language can expose the emotional states of students, which is suitable for identifying
frustration. Such work goes beyond just the simple extraction and assimilation of data
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for presentation as algorithms used value-added by showing teachers information that
is pedagogically meaningful.

A reasonable question is what data our sensors should be collecting within mak-
erspaces. A potential answer comes from Lave’s call for situating learning in communi-
ties of practice [4]. In his seminal paper, Lave [4] states that ‘learning is recognized as a
social phenomenon… the process of changing knowledgeable skill is subsumed in pro-
cesses of changing identity in and through membership in a community of practitioners;
and mastery is an organizational, relational characteristic of communities of practice’
(p. 64). When viewed through this lens, makerspaces can be seen as natural grounds
for the formation of a community of practice, and students’ collaborative interactions
become natural targets for data collection. As such, this paper aims to provide instruc-
tional support in makerspaces through the examination of the instances and diversity of
student collaborative interactions using motion sensors.

3 Context of the Study

This section outlines the curriculum of the makerspace course the students were enrolled
in, the infrastructure of the multi-sensor data collection system and the primary research
questions for this study.

3.1 Course Overview

Over the course of 15 weeks, the research team collected motion sensor data and survey
responses of 16 graduate students enrolled in a hands-on digital fabrication course. The
goal of the course was to teach students the usage of modern fabrication technologies
such as 3D printers and laser cutters, and their application in educational contexts.
Throughout the semester, students were responsible for prototyping educational toolkits
using digital fabrication tools, all of which were provided in the makerspace. Students
were given access to use the space any time they wanted and collaborate across teams
at their discretion, without presence of an instructor required.

The 15-weekmakerspace course can be divided into four discrete units of 3–4weeks:
1) Introductory unit where students complete individual tasks, learn about makerspace
tools and build up basic technical knowhow. 2) Making focused unit covering micropro-
cessor programming using block-based code, fabrication and robotics 3) Programming
focused unit involving the use of more advanced computer applications and techniques
such as fiducial marker tracking, MMLA sensing and object-oriented programing basics
4) Final project unit during which students work on their group capstone projects for the
class relying on the techniques and principles they learned during the first 3 units. For
units 2, 3 and 4, students work in groups of 2–3 and their group members were assigned
to them.

3.2 Makerspace Setup

The makerspace was equipped with two Kinect v2 sensors to capture human motion
within the space. The sensors were placed on opposing ends of the makerspace lab,
collecting data streams independently as shown in Fig. 1.
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Fig. 1. Skeletal joint data collected by the Kinect (left). Sample frame from the video generation
script showing a few students working together after course hours (right).

3.3 Research Questions (RQs)

– RQ1: Do the instances of collaborative interactions (as detected by Kinect sensors)
provide meaningful and accurate information about students’ performance in the
makerspace?

– RQ2: Do the diversity of collaborative interactions (as detected by Kinect sensors)
provide meaningful and accurate information about students’ performance in the
makerspace?

– RQ3: What can the transitions between instances of interactions inform instructors
about student learning experiences in the makerspace?

4 Methods

This section describes the data and analysis methods used in this study. Kinect data
were collected 24/7 for the duration of the semester, and we obtained information about
the collaborative interactions of students using the data collected. Instructors also rated
the students based on their perceived levels of collaborative interactions and technical
competence. Information was also gathered through surveys given to the students on
a weekly basis, asking about the amount of time spent in the space and on solving
the weekly assignment, and 5-point Likert items on personal evaluation of levels of
challenge, frustration, and engagement.

4.1 Kinect Data

Two Kinect sensors were used to collect motion and posture data in the makerspace.
Motion detection and tracking was possible by the embedded IR sensor within each
Kinect sensor. Before data were processed, the multi-sensor system collected approxi-
mately 1.04 million observations. From those observations, 800,513 were labeled with
identity numbers, and after removing non-participants (the teaching team) and per-
forming further preprocessing (as described below), 352,943 observations were used
to perform our analysis.

Kinect Data - Cleaning and Labeling: To detect episodes of collaboration, students
and instructors needed to be identified. OpenFace, an open-source facial recognition
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algorithmwas used to label the individuals in each data collection instance.When applied
to eachweek’s facial image dataset, the algorithm achieved an accuracy of approximately
88%, which was determined by manually validating 100 face images per week.

KinectData - Standardizing andDeduplicating: This study involved the simultaneous
use of two Kinect sensors, so the first step in preprocessing was to translate the data
into one reference coordinate system. Data cleaning was facilitated via the use of a
custom video generation script, which allowed manual checking for further detection of
erroneous data. In many cases, the two Kinect sensors would pick up the same person
within the makerspace, due to an overlap in the field of view of the sensors. Duplicates
were identified by calculating the Euclidean and cosine distances between the head joints
of two skeletons and comparing the value to a lower threshold. Upon the identification of
a duplicate, a decision tree was used to determine whether to average the data collected
between the two sensors or choose one and discard the other.

Kinect Data - Instances of collaborative interactions: A student is said to have col-
laboratively interacted with another student or instructor if he/she is within one meter
to another student or instructor. Even though the choice of using physical proximity is
admittedly a necessary but not sufficient condition for collaborative interaction, prior
work has demonstrated the reliability and efficacy of using proximity as a proxy for
collaborative interactions [14–17]. Furthermore, based on the theory of proxemics, indi-
viduals normally interact at an optimal distance of one meter [18]. If the distance is too
far, individuals will tend to move closer to facilitate a quality interaction, and if the dis-
tance is too near, individuals will tend to move apart to avoid unease in encroaching into
each other’s personal space. We classify the different instances of collaborative interac-
tions as students working individually, working in a group of students and interacting
with an instructor.

4.2 Instructor Rating Data

To gain a complementary perspective of the students’ collaborative interactions and
learningprogress,we invited two senior instructors of the teaching team to assess students
on two dimensions at the end of the course: social and technical. For the social dimension,
instructors rated each student based on their observed ability to collaborate with others.
For the technical dimension, instructors rated each student based on their perceived
mastery of makerspace tools and skills. The rating for each student was completed
separately by each instructor before they came together to review the given ratings. A
rating of 1 on any dimension indicates weak, 2 indicates average, and 3 indicates strong.
If any of the ratings differed, the instructors had to negotiate to settle on an agreed score.
In this manner, the ratings assigned to the students were the result of deliberations from
senior members of the teaching team.

5 Results

RQ 1: Do the instances of collaborative interactions (as detected by Kinect sensors)
provide meaningful and accurate information about students’ performance in the
makerspace?
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We correlated the time spent by students in each interaction category (“individual”:
working alone; “instructor”: working with an instructor; and “student”: working with
peers) with the scores assigned by the instructors on each of the performance dimensions.
As shown in Table 1, we found that receiving a higher technical score was significantly
correlated with spending more time working individually (r = 0.54, p < 0.05) and
spending more time working with other students (r = 0.64, p < 0.01) – but only in the
4th unit. On the other hand, no significant results were uncovered in the first three units.
One interpretation is that the nature of the final projects (which is only executed in the
4th unit) necessitates both individual and group efforts to produce an outcome that meets
instructor expectations on the technical dimension.

Similarly, both spending more time interacting with instructors and spending more
time interacting with other students were found to significantly positively correlate to
social score (r= 0.60, p< 0.05 and r= 0.56, p< 0.05 respectively) in the 4th unit. This
might suggest that actively seeking help and interacting with others - whether students
or instructors - is related to getting assigned a higher score on the social dimension. This
finding could also reflect the collaborative and open-ended nature of the final deliverable.
As such, it appears that a certain balance of the three interaction types - provided sufficient
overall time has been spent by the student - is required to maximize student performance
during this course.

Table 1. Correlations between collaborative interaction and performance (* p < 0.05; ** p <

0.01)

Unit Interaction type Performance Pearson’s
correlation

4 Individual Technical r = 0.54*

4 Instructor Social r = 0.60*

4 Student Technical r = 0.64**

4 Student Social r = 0.56*

To further investigate and visualize the instances of collaborative interactions, bar
plots (Fig. 2) and line plots (Fig. 3) were created to show the differences in interaction
profile. For each dimension of instructor rating, two separate bar plots were generated.
Within each bar plot, the students were grouped according to the scores that they received
from the instructors. The x-axis reflects instructor-rated scores while the y-axis indicates
fluctuations (from class average at y= 0) in time spent for each instance of collaborative
interaction. Fluctuationswere studied becausewe treated the class average as the baseline
amount of time spent and we are interested in the deviations from this baseline.

Examining the social dimension bar plot (Fig. 2), we see that social scores received
by the students is proportional to the amount of interaction time with instructors and
other students. For instance, students with lower social scores (below 2.0) spent notably
less time with instructors and other students. This demonstrates that the Kinect sensor
data can indeed reflect students’ collaborative interactionswithinmakerspaces. Based on
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the technical dimension bar plot, students who received an instructor-assigned score of
1.0 spend less time (about 30 min lesser per week) working individually than their peers;
and spent nearly the same average time (fluctuation = 0) interacting with an instructor
or with other students across the semester. In contrast, students with high technical skills
spent a lot of time working individually. Thus, it seems important that students spend
sufficient time working alone to hone their technical skills.

Fig. 2. Bar plots indicating fluctuations (from class average) in time spent (minutes) for students
grouped according to instructor ratings. Box colors indicate interaction type. (Color figure online)

Line graphs in Fig. 3 show the weekly time spent for different interaction instances
averaged for the whole class and for a student with a low technical score (whose
anonymized name is Pat). Comparing the general shape of the two-line graphs, it is
clear that the interaction profile for Pat is distinct from the entire class. In particular,
the amount of time committed by Pat decreases as the weeks go by, with a relatively
low period from week 7 to week 10. The amount of time spent by Pat only increased
towards the end of the course, presumably because of the final project that he/she has
to undertake. In contrast, the interaction profile for the entire class exhibits an ebb and
flow that is in line with the demands of the course. For instance, the class’ weekly time
spent peaks in week 6 and 10 when the midterm and final term projects are ongoing.
Overall, these data can aid instructors by providing a clear visualization to indicatewhich
students have interaction instances that are inconsistent with class averages.

Fig. 3. Class overall (left) compared to Pat - student with low technical score (right)
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RQ 2: Do the diversity of collaborative interactions (as detected by Kinect sensors)
provide meaningful and accurate information about students’ performance in the
makerspace?

To visualize the diversity of student collaborative interactions, we generated
heatmaps based on the time that each student spent with each other in the makerspace.
A single cell within the heatmap indicates the amount of time (in hours) that student
A (on the x-axis) spend with student B (on the y-axis). The longer the amount of time
spent, the brighter the color of the cell. Additionally, the students are grouped according
to the level of technical ratings that they receive from the instructors on the x-axis and
according to the level of social ratings on the y-axis.

Figure 4 shows the generated heatmaps of all students for the duration of the course.
The heatmap on the left includes student interactions with their assigned partners while
the heatmap on the right leaves out all student interactions with their assigned partners.
By comparing the two heatmaps, we see a stark difference between the time spent
among partners compared to non-partners: not surprisingly, a lot more time is spent with
assigned partners compared to the rest of the student population.

Furthermore, it can be observed from the heatmaps that students with higher social
ratings have more diverse collaborative interactions (which is expected), and students
with higher technical ratings have less diverse collaborative interactions (which corrobo-
rates with the findings in RQ1). The heatmaps allow instructors to directly identify pairs
of students who worked closely together. For instance, we see that Ben and Pat share a
close working relationship. Pat has been identified previously as someone who might
be struggling in the space. On the other hand, Ben received a high technical rating. In
this case, it is likely that Pat has reached out to Ben to address his learning challenges.

Fig. 4. Heatmaps indicating diversity of interactions. Students are arranged according to the
instructor technical ratings on the x-axis and according to the instructor social ratings on the
y-axis.
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RQ 3: What can the transitions between instances of interactions inform instructors
about student learning experiences in the makerspace?

Figure 5 displays Markov chains for a well performing student (Meg) and for a
struggling student (Pat). The Markov chains demonstrate the transitions between states
over the entire duration of the course. For example, Meg’s chain in Fig. 5 indicates
that at any given minute of working individually in the makerspace (Individual state),
Meg has a 81% chance of continuing to work alone, an 13% chance of transitioning
to working with others (Student state), and a 6% chance of transition to working with
instructors (Instructor state). We notate a state transition probability value by the initial
state and the next state. For example, Instructor-Individual corresponds to 0.41 inMeg’s
diagram. For each state transition, we computed 16 transition probabilities for each
student, which were then correlated against the survey and technical skill measures
gathered. The significant correlations are reported in Table 2.

Fig. 5. Examples ofMarkov chains representing state changes within themakerspace. Individual:
working individually state, Student: working with other student(s) state, Instructor: working with
instructor(s).

Table 2. Transition probabilities correlations. Technical rating refers to the instructor rating on
the technical aspect. Time spent refers to the students’ self-reported amount of time spent in the
makerspace. Frustration level refers to the students’ self-reported level of frustration from the
weekly survey.

State transition Measure Correlation p-value

1. Individual – Individual Technical rating 0.59 0.017

2. Student – Student Time spent in makerspace 0.50 0.050

3. Instructor – Individual Frustration level −0.52 0.038
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1. This correlation indicates a positive relationship between the Individual-Individual
transition probability and the technical skills of the student. In other words, students
who are more likely to stay in an individual working state, gain greater technical
competence. This is an expected finding which corroborates the findings in RQ1,
indicating that mastering the tools of the makerspace requires individual practice.

2. This correlation indicates a positive relationship between the Student-Student transi-
tion probability and the time spent within the makerspace by the student. In an open-
ended learning environment, it is motivating to work in a group, and this correlation
aligns with this idea.

3. This correlation indicates a negative relationship between the Instructor-Individual
transition probability and the frustration levels of students. It is likely that when an
instructor effectively addresses a student’s challenges, the student transitions from
working with the instructor to working alone once again. This correlation could
indicate that the instructors are effective in helping students get unstuck, which is
demonstrated by the lower levels of reported frustration.

6 Discussion

The results of our analyses suggest the possibility that letting students work on their
own promotes the development of technical skills, while working together encourages
students to spendmore time in the makerspace. Heatmaps and line charts generated from
these data allow instructors to visualize student behavior, and how far each student is
from the right balance of collaborative interactions. This is a task that is challenging
for an instructor to accomplish based solely on personal observations or interactions
with students. Limitations of our study include using a relatively small sample size
(16 students over 15 weeks). Additionally, the Kinect sensor data are inherently noisy
owing to such aspects as overlapping student bodies, obscured joints, and other errors
in skeleton tracking. Lastly, in future analysis we are planning to use a finer grain proxy
for collaborative interactions that includes joint visual attention (from head orientation),
body gestures and speech data to replace the current coarse proxy for collaborative
interaction by physical proximity. Nonetheless, the information and data made available
by the Kinect sensor system, paired with analysis techniques and methodologies to
understand and interpret the data, opens new doors for both teachers, as classroom
facilitators, and students for making (un)productive behaviors salient. For example,
teachers will be afforded a greater awareness of how much support each student is
receiving and can make informed pedagogical decisions accordingly.

7 Conclusion

While makerspaces hold much promise in providing training grounds for students to
emulate the practices of a professional working environment and develop 21st century
skills, instructors face the constant tension in deciding when and how to intervene in the
pedagogical process. In this respect, we explored the use of Kinect sensors in identifying
the instances and diversity of student collaborative interactions to help instructors gain a
comprehensive view of student progress and to intervenewhen necessary. These findings
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suggest that multimodal sensors have a role to play in aiding instructors in harnessing
the full potential of makerspaces and represent initial steps towards the development of
a semi-automated teacher dashboard to provide instructional support for makerspaces.
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Abstract. Among the many open problems in the learning process,
students dropout is one of the most complicated and negative ones, both
for the student and the institutions, and being able to predict it could
help to alleviate its social and economic costs. To address this problem
we developed a tool that, by exploiting machine learning techniques,
allows to predict the dropout of a first-year undergraduate student. The
proposed tool allows to estimate the risk of quitting an academic course,
and it can be used either during the application phase or during the first
year, since it selectively accounts for personal data, academic records
from secondary school and also first year course credits. Our experiments
have been performed by considering real data of students from eleven
schools of a major University.

Keywords: Machine learning · Educational data mining · Decision
support tools

1 Introduction

Artificial Intelligence is changing many aspects of our society and our lives since
it provides the technological basis for new services and tools that help decision
making in everyday life. Education is not immune to this revolution. Indeed AI
and machine learning tools can help to improve in several ways the learning
process. A critical aspect in this context is the possibility of developing new
predictive tools which can be used to help students improve their academic
careers.

Among the many different observable phenomena in the students’ careers,
University dropout is one of the most complex and adverse events, both for
students or institutions. A dropout is a potentially devastating event in the life
of a student, and it also impacts negatively the University from an economic
point of view [6]. Furthermore, it could also be a signal of potential issues in the
organisation and the quality of the courses. Dropout prediction is a task that can
be addressed by exploiting machine learning techniques, which already proved to
be effective in the field of education for evaluating students’ performance [1,6,8–
10].
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In this work, we face the challenge of early predicting the dropout for a
freshman by adopting a data-driven approach. Trough an automated learning
process, we aim to develop a model that is capable of capturing information
concerning the particular context in which dropout takes place.

We built our model by taking into account the following three design prin-
ciples. First, we want to estimate the risk of quitting an academic course at an
early stage, either before the student starts the course or during the first year.
Statistical evidence shows that this time frame is one of the most critical periods
for dropout. Targeting first-year students means that the data we can use to train
our predictive models are only personal information and academic records from
high school—e.g. gender, age, high school education, final mark — and the num-
ber of credits acquired during the first months of the first year. Second, we do
not focus on a specific predictive model; instead, we conducted a thorough study
considering several machine learning techniques in order to construct a baseline
and assess the challenge of the problem under analysis. Last, we conducted the
training and test processes on real data, collecting samples of approximately
15,000 students from a specific academic year of a major University.

The remainder of this paper has the following structure. Related approaches
are discussed in Sect. 2. In Sect. 3 we describe the machine learning methods used
in our analysis, the dataset we collected and the preprocessing techniques applied
to it. In Sect. 4 we evaluate the selected models by comparing their performance:
first, with the different values of the models’ parameters; second, to the features
used in the train and test sets and, finally, considering each academic school
separately. Then, we draw final remarks in Sect. 5 and present possible uses and
extensions of this work.

2 Related Work

Several papers recently addressed the prediction of students’ performances
employing machine learning techniques. In the case of University-level educa-
tion [14] and [1] have designed machine learning models, based on different
datasets, performing analysis similar to ours even though they use different fea-
tures and assumptions. In [1] a balanced dataset, including features mainly about
the student provenance, is used to train different machine learning models. Tests
report accuracy, true positive rate and AUC-ROC measures. Also in [11] there is
a study in this direction but using a richer set of features involving family status
and life conditions for each student. The authors used a Fuzzy-ARTMAP Neu-
ral Network gaining competitive performances. Moreover, as in our case, they
performed the predictions using data at enrollment time. In [12] a set of features
similar to the previous work is exploited. An analysis with different classifica-
tion algorithms from the WEKA environment is performed, in order to find the
best model for solving this kind of problem. It turns out that in this case the
algorithm ID3 reaches the best performance with respect to the classification
task.
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Another work on the University dropout phenomenon was proposed in [7].
The proposed solution aim at predicting the student dropout but using a com-
pletely different representation for the students. In fact, the approach exploits
data acquisition by web cams, eye-trackers and other similar devices in the con-
text of a smart class. Based on these data, it is possible to perform emotion
analysis and detection for the students in the room which will be then exploited
to predict the dropout. There also exist studies related to high school educa-
tion [10]. However, in this case, different countries have quite different high
school systems, for example, the duration of the high school and the voting
system can vary a lot among countries. Due to these differences, datasets from
different countries can have very different meanings and, even if they include
similar features, these are describing quite different situations. For this reason,
works on lower levels of education are much less general and exportable to other
systems. On the contrary, University systems are more similar, or it is possible
to easily “translate” a system into another. Predictive models for students’ final
performance in the context of blended education, partially exploiting online plat-
forms [9] or entirely online University courses [8,15], have also been proposed.
In these cases, the presence of the technological devices allows the use of an
augmented set of data—e.g. consulting homework submission logs—which can
improve the quality of the models. However, the aim of these approaches is
different from the proposed solution. In fact, besides the analysis of the corre-
lations between the features and the students’ performances discovered by the
machine learning models, we propose to exploit the prediction at the moment
of the students’ enrolment in order to prevent the problematic situations that
can bring to the dropout occurrences. Prediction at application-time is one of
our main contribution, in fact a model exploiting data which are available after
the enrolment—e.g. considering the students’ performances and behaviour at
the University—is certainly more accurate, but the timing for the suggestions is
not optimal. Considering to take more courses or to change academic path while
the mandatory courses at the University have already started could be highly
frustrating for the students and do not enhance motivation in continuing their
studies. Another important point in our work is the fact that we aim to perform
a careful analysis of fair results with respect to the statistical characteristics
of the dataset (in particular dealing with the unbalanced data). On the other
hand, most of the previous works while mentioning the problem do not focus
on how this unbalance affects the exploited models and may produce misleading
results, and often dot not provide a clear justifications for the best performance
measures on real data affected by this problem. This lack of extensive statisti-
cal analysis and evaluation of the limits and risks of the developed models has
also been highlighted in [5], an excellent survey of different techniques for the
students’ performances prediction and related considerations.

3 Methodology

We considered a specific set of well-known classification algorithms to provide a
tool enabling a reasonably accurate prediction of the dropout phenomenon. In
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particular, we considered the Linear Discriminant Analysis (LDA), Support Vec-
tor Machine (SVM) [3] and Random Forest (RF), as they are the most commonly
used models in literature to solve similar problems.

LDA acts as a dimensional reduction algorithm, trying to reduce the data
complexity, i.e. by projecting the actual feature space on a lower-dimensional one,
while trying to retain relevant information; also, it does not involve parameter
settings. SVM is a well-established technique for data classification and regression.
It finds the best separating hyper-plane by maximising the margin in the feature
space. The training data participating in the maximisation process are called
support vectors. RF builds a collection of tree-structured classifiers combining
them randomly. It has been adopted in the literature for a great variety of
regression and prediction tasks [2].

We verified our methodology in three steps, providing a proper set of evalua-
tion measures as we discuss later in this section. First, we assessed the different
classifiers performance for the model parameters. In our case, we validated the
SVM model over seven different values of C, that is the regularisation parame-
ter, and we analysed the behaviour of four number of estimators in the case of
RF. Moreover, we performed each validation considering two different re-scaling
techniques of the data instances. Second, we evaluated the classifiers over three
training sets that considered different features. For LDA, RF and SVM we only
kept the best parameters’ choice and monitored their performance on the differ-
ent datasets.

Dataset. The dataset used for this work has been extracted from a collection
of real data. More precisely, we considered pseudo-anonymized data describing
15, 000 students enrolled in several courses of the academic year 2016/2017.
The decision to focus our research within the limit of the first year lies in the
analysis of statistical evidence from the source data. This evidence indicates a
concentration of career dropouts in the first year of the course and a progressive
decrease of the phenomenon in the following years. More specifically, students
who leave within the first year is 14.8% of the total registered, while those who
leave by the third year is 21.6%. This is equivalent to saying that the 6.8%
of registered abandoned in subsequent years compared with 14.8% who leaves
during the first year; confirming the importance of acting within the first year
of the program to prevent the dropout phenomenon.

Table 1 shows a detailed description of the information available in the
dataset. The first column lists the name of the features, while the second column
describes the possible values or range. The first two features represent personal
data of students while the third and the fourth are information related to the
high school attended by the student.

Concerning the Age feature, its three possible values represent three different
ranges of ages at the moment of enrolment, the value 1 is assigned to students
until 19 years old, 2 for student’s age between 20 and 23 years, and 3 other-
wise. The values of High school id indicate ten different kinds of high school
where the student obtained the diploma.The High school final mark represents
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Table 1. Available features for each student in the original dataset, along with the
possible values range

Feature Value range

Student gender 1, 2

Student age range 1 to 3

High school id 1 to 10

High school final mark 60 to 100

Additional Learning Requirements 1, 2, 3

Academic school Id 1 to 11

Course Credits 0 to 60

Dropout 0, 1

the mark that the student received when graduating in high school. The flag
Additional Learning Requirements (ALR) represents the possibility for manda-
tory additional credits in the first academic year. In fact, some degree programs
present an admission test; if failed, the student has to attend some further spe-
cific courses and has to pass the relative examinations (within a given deadline)
in order to be able to continue in that program. The values for the ALR feature
indicate three possible situations: the value one is used to describe degree pro-
grams without ALR; the value two stands for an ALR examination that has been
passed while the value three indicates that the student failed to pass the ALR
examination, although it was required. Academic school id represents the aca-
demic school chosen by the student: there are eleven possible schools according
to the present dataset. Course Credits indicates the number of credits acquired
by the students. We use this attribute only in the case in which we evaluate the
students already enrolled, and we consider only those credits acquired before the
end of the first year, in order to obtain indications on the situation of the stu-
dent before the condition of abandonment arises. The Boolean attribute Dropout
represents the event of a student who abandons the degree course. This feature
also represents the class for the supervised classification task and the outcome
of the inference process—i.e. the prediction. Since the dropout assumes values
True (1) or False (0), the problem treated in this work is a binary classification
one.

It is possible to evaluate the amount of relevant information contained in the
presented features by computing the Information Gain for each of them. This
quantity is based on the concept of entropy, and it is usually exploited to build
decision trees, but it also permits to obtain a ranked list of the available features
for their relevance. In our case, some of the most relevant ones are (in descending
order) ALR, High school final mark, High school Id, Academic school Id.

Data Preprocessing. We describe the preprocessing phase, used to clean the
data as much as possible in order to maximise their exploitation in the prediction
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task. Firstly, we observed that in the original dataset, some of the values contain
an implicit ordering that is not representative of the feature itself and can bias
the model. These are the High school id, Academic school id, and ALR. We
represent these three features as categorical—and thus not as numerical—by
transforming each value, adopting a One-hot encoding representation. As one
can expect, the dataset is highly unbalanced since the students who abandon the
enrolled course is a minority, less than 12.3%; in particular, the ratio between the
negative (non-dropout) and positive (dropout) examples is around 7 : 1. Even
though this is good for the educational institution, training a machine learning
model for binary classification with a highly unbalanced dataset may result in
poor final performance, mainly because in such a scenario the classifier would
underestimate the class with a lower number of samples [16]. For this reason, we
randomly select half of the negative samples (i.e., the students who effectively
drop) and use it in the train set; an equal number of instances of the other class
is randomly sampled from the dataset and added to the train set. In doing so, we
obtain a balanced train set, which is used to train the supervised models. The
remaining samples constitute an unbalanced test set which we use to measure
the performance of the trained models. This procedure is repeated ten times and
for each one of these trials we randomise the selection and keep balanced the
number of samples for the two classes in the train set. The final evaluation is
obtained by averaging the results of the ten trials on the test sets.

Feature Selection and Evaluation Metrics. Concretely, the first group of
features that we select is composed by gender, age range, high school, high school
final mark, and academic school. We referred to this set of features as the “basic”
set. We performed the other validations by adding to the “basic” set the remain-
ing features incrementally, first, ALR (basic + ALR) and then CC (basic + ALR
+ CC ). In this way, we were able to check the actual relevance of each feature.
Third, considering the best configuration from the analysis above, the perfor-
mance for each academic school separately has been analysed.

Several evaluation metrics can be used to asses the quality of the classifiers
both in the process of selecting the best hyper-parameter configuration and in
ranking the different models. The classification produces True Positive (TP), True
Negative (TN), False positive (FP) and False Negative (FN) values; in our case,
we interpret an FP as the prediction of a dropout that does not occur, and an
FN as a student which accordingly to the model’s prediction will continue the
studies while the dropout phenomenon actually occurs.

In the case of binary classification, accuracy (ACC), specificity (SPEC), and
sensitivity (SENS) are used instead of plain TP, TN, FP and FN values to improve
experimental results interpretability [4]. ACC is the ratio between correct predic-
tions over the total number of instances. SPEC, or True Negative Rate (TNR), is
the ratio of TN to the total number of instances that have actual negative class.
SENS, also known as recall or True Positive Rate (TPR), is the ratio of TP to the
total number of instances that have actual positive class.
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Fig. 1. Results obtained: (a) using RFs with an increasing number of estimators with-
out rescaling the data; (b) using SVM for different values of C without rescaling the
data; (c) using SVM for different values of C with standard rescaling; (d) using SVM
for different values of C with min-max rescaling.

4 Experimental Result

All the experiments have been performed using the Python programming lan-
guage (version 3.7) and the scikit-learn framework [13] (version 0.22.1),
which provides access to the implementation of several machine learning algo-
rithms. Training and testing run on a Linux Workstation equipped with Xeon
8-Core 2,1 Ghz processor and 96 GB of memory.

Parameters Selection and Data Scaling. We performed a set of experiments
in order to find the best parameters configuration for SVM, and RF. Tests with
SVM have been conducted by progressively increasing the penalty term C, rang-
ing over the following set: {1E−04, 1E−03, 1E−02, 1E−01, 1E+00, 1E+01, 1E+02}.
The same applies to the value for the number of estimators in RF algo-
rithm, ranging over the set {1E+00, 1E+01, 1E+02, 1E+03}. We observe, from
Fig. 1, that the best results for both accuracy and sensitivity are obtained with
C = 1E−01 and with a number of estimators = 1E+03. In addition, we assessed
whether our dataset may benefit from data re-scaling or not. For this reason, we
performed standard and min-max scaling on the data before training to evaluate
their effectiveness for the original data—i.e., without scaling. Standard scale acts
on numerical data values transforming for each numerical feature the original
values distribution into another one with mean equal to zero and standard devi-
ation equal to one, assuming that the values are normally distributed. Min-Max
scaling aims to transform the range of possible values for each numerical feature
from the original one to [0, 1] or [−1, 1]. Both standard scaling and min-max
scaling are computed on the train set and applied to the test set. We observed
that the scaling has no effect on the final performance of LDA and RF. On the
contrary, as shown in Fig. 1 the scaling does affect the performance of SVM but
it does not seem to add any benefit. This may be related to the fact that most
of the features are categorical. For this reason we chose not to re-scale the data
in the following tests.
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Features Analysis. Table 2 shows the results obtained considering different
features combinations while keeping the SVM and RF parameters as described
in the previous section and without data rescaling.

Considering the basic set of features LDA and SVM obtain the highest per-
formance with a slightly larger variance for the SVM results. The introduction of
the ALR feature mainly improves the accuracy and specificity for the LDA and
SVM, but it drops the sensitivity. On the contrary, the introduction of the ALR
feature in RF helps improving the final performance across all the measures,
obtaining a higher performance compared to the results of LDA and SVM on
the basic set of features.

The relevant gain here is that this work permits to estimate the risk of
the dropout at the application time (for the basic and the basic+ALR features
cases), i.e. before the students’ enrolment and examination—which can give a
clear indication about the future academic performances. We believe that this
possibility is significant since appropriate policy and measures to counter the
dropout should be taken by universities very early, possibly at the very beginning
of the academic career, in order to maximise the student success probability and
to reduce costs.

Finally, when considering the CC feature, all the models reach very high
performance, with slightly higher results for SVM. However this feature is not
available at application time.

Dropout Analysis per Academic School. The results in Table 2 are useful to
understand the general behavior of the predictive model, but it may be difficult
for governance to extract useful information. The division of results by academic
school allows an analysis of the performance of the models with higher resolution.
This could be an important feature that facilitates local administrations (those
of schools) to interpret the results that concern students of their degree courses.
In Table 2, we have selected the best models from those trained with basic +
ALR and basic + ALR + CC features. These are RF for the former and SVM for
the latter. The results divided by school are shown in Table 3.

For completeness, we report in Fig. 2 an overview of the dataset composition
with respect to the school (horizontal axis) and the number of samples (vertical
axis), divided by dropouts, in green, and the remaining, in blue. The results of
Table 3 highlight a non-negligible variability between the results for each school
and suggests that each school contributes differently to the predictive model.
For instance, the results for schools 4, 9, and 10 are higher than those of schools
3, 7, and 8 and all of these schools show results that differ significantly from the
general ones (Table 2), both for basic + ALR and basic + ALR + CC. In this
case, the number of dropout samples for schools 4, 9, and 10 is 207, 66, and 231
examples—504, in total—respectively, against the number of dropout samples
for schools 3, 7, and 8 which is respectively of 76, 63, and 89 examples—139,
in total.
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Table 2. Experimental results for LDA, SVM and RF classifiers over different feature sets.

Set Model ACC SENS SPEC

Basic LDA 0.62 (±0.01) 0.64 (±0.01) 0.62 (±0.01)

SVM 0.62 (±0.02) 0.65 (±0.02) 0.62 (±0.02)

RF 0.56 (±0.01) 0.58 (±0.01) 0.56 (±0.01)

+ ALR LDA 0.75 (±0.01) 0.59 (±0.02) 0.76 (±0.02)

SVM 0.81 (±0.03) 0.50 (±0.06) 0.83 (±0.04)

RF 0.63 (±0.01) 0.63 (±0.01) 0.63 (±0.01)

+ CC LDA 0.85 (±0.00) 0.90 (±0.00) 0.85 (±0.00)

SVM 0.87 (±0.00) 0.87 (±0.01) 0.87 (±0.01)

RF 0.87 (±0.01) 0.85 (±0.01) 0.87 (±0.01)

Fig. 2. Number of students per school. Green represents dropout students, blue repre-
sents the students which applied to the second academic year. (Color figure online)

Table 3. Experimental results for each academic school: (left) RF model trained using
Basic + ALR features; (right) SVM model trained using Basic + ALR + CC features.

School Random Forest (N = 1E+03) SVM (C = 1E−01)

ACC SENS SPEC ACC SENS SPEC

1 0.61 (±0.05) 0.67 (±0.08) 0.61 (±0.06) 0.86 (±0.01) 0.99 (±0.01) 0.85 (±0.01)

2 0.74 (±0, 03) 0.63 (±0.07) 0.74 (±0.03) 0.91 (±0.01) 0.84 (±0, 01) 0.92 (±0.01)

3 0.45 (±0.04) 0.71 (±0.09) 0.44 (±0.04) 0.84 (±0.02) 0.73 (±0.01) 0.85 (±0.02)

4 0.71 (±0.03) 0.77 (±0.05) 0.70 (±0.03) 0.84 (±0.01) 0.93 (±0.01) 0.83 (±0.01)

5 0.68 (±0.03) 0.56 (±0.05) 0.68 (±0.04) 0.83 (±0.01) 0.91 (±0.01) 0.83 (±0.01)

6 0.58 (±0.03) 0.66 (±0.03) 0.57 (±0.03) 0.86 (±0.01) 0.88 (±0.01) 0.86 (±0.01)

7 0.49 (±0.09) 0.55 (±0.12) 0.49 (±0.10) 0.91 (±0.01) 0.90 (±0.03) 0.91 (±0.01)

8 0.60 (±0.03) 0.46 (±0.06) 0.61 (±0.03) 0.87 (±0.02) 0.87 (±0.05) 0.87 (±0.03)

9 0.80 (±0.03) 0.71 (±0.04) 0.80 (±0.04) 0.94 (±0.01) 0.93 (±0.01) 0.94 (±0.01)

10 0.44 (±0.04) 0.71 (±0.03) 0.41 (±0.04) 0.77 (±0.02) 0.94 (±0.01) 0.76 (±0.02)

11 0.61 (±0.02) 0.64 (±0.03) 0.61 (±0.02) 0.89 (±0.01) 0.83 (±0.01) 0.90 (±0.01)
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5 Conclusion and Future Work

In this paper, we have presented an analysis of different machine learning tech-
niques applied to the task of dropout occurrences prediction for university stu-
dents. The analysis has been conducted on data available at the moment of the
enrolment at the first year of a bachelor or single-cycle degree. The analysis made
on the model performance takes into account the actual statistical composition
of the dataset, which is highly unbalanced to the classes. Considering predictions
at the moment of enrolment increases the difficulty of the task (because there are
less informative and available data since we cannot use data from the University
careers of students) compared to most of the existing approaches. Despite these
difficulties, this different approach makes it possible to use the tool in order to
actively improve the student’s academic situation from the beginning and not
only to make predictions and monitoring during the academic career. On the
other hand, we also performed a set of tests considering the credits obtained
by a students after a certain period of time. As one can expect, this helps in
largely improving the final performance of the model. This fact can be used by
the institution to decide whether to act as early as possible, on the basis of
the information available at enrolment time, or to wait for some more data in
the first year thus obtaining more accurate predictions. In any case, the results
obtained show that starting from data without any pedagogical or didactic value,
our tool can practically help in the attempt to mitigate the dropout problem.

We designed the tool in such a way that the integration with other com-
ponents can occur seamlessly. Indeed, we aim to extend it to a more general
monitoring system, to be used by the University governance, which can moni-
tor students careers and can provide helpful advice when critical situations are
encountered. For example, if the tool predicts that for a new cohort of students
enrolled in a specific degree program there are many possible dropouts, then
specific support services (such as supplementary support courses, personalised
guidance, etc) could be organised. We hope and believe that this can be an
effective way to decrease the dropout rate in the future years and to avoid the
phenomenon since the very beginning of the University careers of the students.

The first natural step in our work is the integration of our tool with other Uni-
versity services as described before. Next we would like to monitor the dropout
frequency in the coming years in order to obtain some hint about the effec-
tiveness of our tool. The outcomes of this analysis could guide us to improve
the deployment of the tool—e.g. by using different, more robust strategies. To
improve the model effectiveness it could also be useful to make predictions for dif-
ferent courses possibly within the same school, possibly integrating this with an
appropriate definition of a similarity measure between courses. Another further
development could be the inclusion of more data about student performances, for
example by considering the results of activities done in Learning Management
Systems (LMS) or Virtual Learning Environments (VLE) such as, for example,
Moodle, Google Classroom, Edmodo, that could be used in the courses man-
agement and organisation. A limitation in our study is in the fact that the tool
take advantage of sensitive data, so one has to be very careful with using the
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classifier, since there is no evidence of the model fairness—e.g., concerning the
gender feature.

Finally, given the increasing attention gathered by deep learning models, we
would like to extend our analysis in order to include these methods and consider
several factors, such as: the depth of the network (e.g., the number of layers) the
dimension of each layer, etc.
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Abstract. We developed the CPR Tutor, a real-time multimodal feed-
back system for cardiopulmonary resuscitation (CPR) training. The CPR
Tutor detects mistakes using recurrent neural networks for real-time
time-series classification. From a multimodal data stream consisting of
kinematic and electromyographic data, the CPR Tutor system auto-
matically detects the chest compressions, which are then classified and
assessed according to five performance indicators. Based on this assess-
ment, the CPR Tutor provides audio feedback to correct the most critical
mistakes and improve the CPR performance. To test the validity of the
CPR Tutor, we first collected the data corpus from 10 experts used for
model training. Hence, to test the impact of the feedback functionality,
we ran a user study involving 10 participants. The CPR Tutor pushes
forward the current state of the art of real-time multimodal tutors by
providing: 1) an architecture design, 2) a methodological approach to
design multimodal feedback and 3) a field study on real-time feedback
for CPR training.

1 Introduction

In learning science, there is an increasing interest in collecting and integrating
data from multiple modalities and devices with the aim of analysing learning
behaviour [4,15]. This phenomenon is witnessed by the rise of multimodal data
experiments especially in the contexts of project-based learning [21], lab-based
experimentation for skill acquisition [11], and simulations for mastering psy-
chomotor skills [19]. Most of the existing studies using multimodal data for
learning stand at the level of “data geology”, investigating whether multimodal
data can provide evidence of the learning process. In some cases, machine learn-
ing models were trained with the collected data for classifying or predicting
outcomes such as emotions or learning performance. At the same time, the
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12163, pp. 141–152, 2020.
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existing research that uses multimodal and multi-sensor systems for training
different types of psychomotor skills features neither personalised nor adaptive
feedback [18].

In this study, we aimed at overcoming this knowledge gap and by explor-
ing how multimodal data can be used to support psychomotor skill development
by providing real-time feedback. We followed a design-based research approach:
the presented study is based on the insights of [8], in which we demonstrated
that it is possible to detect common CPR mistakes regarding the quality of the
chest compressions (CC) (CC-rate, CC-depth and CC-release). In [8], we have
also shown that it is possible to extend the common mistake detection of com-
mercial and validated training tools like the Laerdal ResusciAnne manikin with
the CPR tutor. We were able to detect the correct locking of the arms while
doing CPR and the correct use of the body weight when performing the CCs.
The mistake detection models were obtained training multiple recurrent neural
networks, using the multimodal data as input and the presence or absence of the
CPR mistakes as output. This study extends the previous efforts by embedding
the machine learning approaches for mistake detection with real-time feedback
intervention.

2 Background

2.1 Multimodal Data for Learning

With the term “multimodal data”, we refer to the data sources derived from
multimodal and multi-sensor interfaces that go beyond the typical mouse and
keyboard interactions [16]. These data sources can be collected using wearable
sensors, depth cameras or Internet of Things devices. Example of modalities rel-
evant for modelling a learning task is learner’s motoric movements, physiological
signals, contextual, environmental or activity-related information [7]. The explo-
ration of these novel data sources inspired the Multimodal Learning Analytics
(MMLA) researc [15], whose common hypothesis is that combining data from
multiple modalities allows obtaining a more accurate representation of the learn-
ing process and can provide valuable insights to the educational actors, informing
them about the learning dynamics and supporting them to design more valuable
feedback [4]. The contribution of multimodal data to learning is still a research
topic under exploration. Researchers have found out that it can better predict
learning performance during desktop-based game playing [11]. The MMLA app-
roach is also thought to be useful for modelling ill-structured learning tasks [5].
Recent MMLA prototypes have been developed for modelling classroom interac-
tions [1] or for estimating success in group collaboration [21]. Multimodal data
were also employed for modelling psychomotor tasks and physical learning activ-
ities that require complex body coordination [14]. Santos et al. reviewed existing
studies using sensor-based applications in diverse psychomotor disciplines for
training specific movements in different sports and martial arts [19]. Limbu et
al. reviewed existing studies that modelled the experts to train apprentices using
recorded expert performance [13].
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2.2 Multimodal Intelligent Tutors

We are interested in the application of multimodal data for providing automatic
and real-time feedback. This aim is pursued by the Intelligent Tutoring Systems
(ITSs) research. Historically ITSs have been designed for well-structured learning
activities in which the task sequence is clearly defined, as well as the assessment
criteria and the range of learning mistakes that ITS is able to detect. Related
ITS research looked primarily at meta-cognitive aspects of learning, such as the
detection of learners’ emotional states (e.g. [3,10]). Several ITSs of this kind
are reviewed in a recent literature review [2]. Most of these studies employed
a desktop-based system where the user-interaction takes place with mouse and
keyboard. To find applications of ITSs beyond mouse and keyboard we need to
look in the field of medical robotics and surgical simulations into systems like
DaVinci. These robots allow aspiring surgeons to train standardised surgical
skills in safe environments [22].

2.3 Cardiopulmonary Resuscitation (CPR)

In this study, we focus on one of the most frequently applied and well studied
medical simulations: Cardiopulmonary Resuscitation. CPR is a lifesaving tech-
nique applied in many emergencies, including a heart attack, near drowning or
in the case of stopped heartbeat or breathing. CPR is nowadays mandatory not
only for healthcare professionals but also for several other professions, especially
those more exposed to the general public. CPR training is an individual learn-
ing task with a highly standardised procedure consisting of a series of predefined
steps and criteria to measure the quality of the performance. We refer to the
European CPR Guidelines [17]. There exists a variety of commercial tools for
supporting CPR training, which can track and assess the CPR execution. A very
common training tool is the Laerdal ResusciAnne manikins. The ResusciAnne
manikins provide only retrospective and non-real-time performance indicators
such as CC-rate, CC-depth and CC-release. Other indicators are neglected and
that creates a feedback gap for the learner and higher responsibility for the
course instructors. Examples of these indicators are the use of the body weight
or the locking of the arms while doing the CCs. So far, these mistakes need to
be corrected by human instructors.

3 System Architecture of the CPR Tutor

The System Architecture of the CPR Tutor implements the five-step approach
introduced by the Multimodal Pipeline [9], a framework for the collection, stor-
ing, annotation, processing and exploitation of data from multiple modalities.
The System Architecture was optimised to the selected sensors and for the spe-
cific task of CPR training. The five steps, proposed by the Multimodal Pipeline
are numbered in the graphical representation of the System Architecture in
Fig. 1. The architecture also features three layers: 1) the Presentation Layer
interfacing with the user (either the learner or the expert); 2) the Application
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Layer, implementing the logic of the CPR Tutor; 3) the Data Layer, consisting
of the data used by the CPR Tutor. In the CPR Tutor, we can distinguish two
main phases which have two corresponding data-flows: 1) the offline training
of the machine learning models and 2) the real-time exploitation in which the
real-time feedback system is activated.

3.1 Data Collection

The first step corresponds to the collection of the data corpus. The main system
component responsible for the data collection is the CPR Tutor, a C# appli-
cation running on a Windows 10 computer. The CPR Tutor collects data from
two main devices: 1) the Microsoft Kinect v2 depth camera and 2) the Myo
electromyographic (EMG) armband. In the graphic user interface, the user of
the CPR Tutor can ‘start’ and ‘stop’ the recording of the session. The CPR
Tutor collects the data of the user in front of the camera wearing the Myo. The
collected data consist of:

– the 3D kinematic data (x,y,z) of the body joints (excluding ankles and hips)
– the 2D video recording from the Kinect RGB camera,
– 8 EMG sensors values, 3D gyroscope and accelerometer of the Myo.

3.2 Data Storing

The CPR Tutor adopts the data storing logic of the Multimodal Learning
Hub [20], a core component of the Multimodal Pipeline. As the sensor applica-
tions collect data at different frequencies, at the ‘start’ of the session, each sensor
application is assigned to a Recording Object a data structure arbitrary number
of Frame Updates. In the case of the CPR Tutor, there are two main streams
coming from the Myo and the Kinect. The Frame Updates contain the relative
timestamp starting from the moment the user presses the ‘start’ until the ‘stop’
of the session. Each Frame Update within the same Recording Object shares the
same set of sensor attributes, in the case of the CPR Tutor, 8 attributes for
Myo and 32 for Kinect, corresponding to the raw features that can be gathered
from the public API of the devices. The video stream recording from the Kinect
uses a special type of Recording Object, specific for video data. At the end of
the session, when the user presses ‘stop’, the data gathered in memory in the
Recording Objects and the Annotation Object is automatically serialised into the
custom format introduced by the LearningHub: the MLT Session (Meaningful
Learning Task). For the CPR Tutor, the custom data format consists of a zip
folder containing: the Kinect and Myo sensor file, and the 2D video in MP4
format. Serialising the sessions is necessary for creating the data corpus for the
offline training of the machine learning models.

3.3 Data Annotation

The annotation can be carried out by an expert retrospectively using the Visual
Inspection Tool (VIT) [6]. In the VIT, the expert can load the MLT Session
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files one by one to triangulate the video recording with the sensor data. The
user can select and plot individual data attributes and inspect visually how
they relate to a video recording. The VIT is also a tool for collecting expert
annotations. In the case of CPR Tutor, the annotations were given as properties
of every single CC. From the SimPad of the ResusciAnne manikin, we extracted
the performance metrics of each recorded session. With a Python script, we
processed the data from the SimPad in the form of a JSON annotation file, which
we added to each recorded session using the VIT. This procedure allowed us to
have the performance metrics of the ResusciAnne manikin as “ground truth” for
the training the classifiers. As previously mentioned, the Simpad tracks the chest
compression performance monitoring three indicators, the correct CC-rate, CC-
release and CC-depth. By using the VIT, however, the expert can extend these
indicators by adding manually custom annotations, in the form of attribute-
value pairs. For this study, we use the target custom classes armsLocked and
bodyWeight corresponding to two performance indicators, currently not tracked
by the ResusciAnne manikins.

3.4 Data Processing

For data processing, we developed a Python script named SharpFlow1. This
component is used both for the offline training and validation of the mistake
detection classifiers as well as for the real-time classification of the single CCs.
In the training phase, the entire data corpus (MLT Sessions with their anno-
tations) is loaded into memory and transformed into two Pandas data frames,
one containing the sensor data the other one containing the annotations. As the
sensor data came from devices with different sampling frequencies, the sensor
data frame had a great number of missing values. To mitigate this problem,
the data frame was resampled into a fixed number corresponding to the median
length of each sample. We obtained, therefore, a 3D tensor of shape (#samples
× #attributes × #intervals). The dataset was divided in 85% for training and
15% for testing using random shuffling. A part of the training set (15%) was used
as validation set. We also applied feature scaling using min-max normalisation
with a range of -1 and 1. The scaling was fitted on the training set and applied on
the validation and test sets. The model used for classification was a Long-Short
Term Memory network [12] which is a special type of recurrent-neural network.
Implementation was performed using PyTorch. The architecture of the model
chosen was a sequence of two stacked LSTM layers followed by two dense layers:

– a first LSTM with input shape 17× 52 (#intervals times #attributes) and
128 hidden units;

– a second LSTM with 64 hidden units;
– a fully-connected layer with 32 units with a sigmoid activation function;
– a fully connected layer with 5 hidden units (number of target classes)
– a sigmoid activation.

1 Code available on GitHub (https://github.com/dimstudio/SharpFlow).

https://github.com/dimstudio/SharpFlow
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All of our classes have a binary class, so we use a binary cross-entropy loss for
optimisation and train for 30 epochs using an Adam optimiser with a learning
rate of 0.01.

3.5 Real-Time Exploitation

The real-time data exploitation is the run-time behaviour of the System Archi-
tecture. This phase is a continuous loop of communication between the CPR
Tutor, the SharpFlow application and the prompting of the feedback. It can be
summarised in three phases 1) detection, 2) classification and 3) feedback.

1) Detection. For being able to assess a particular action and possibly
detect if some mistake occurs, the CPR Tutor has to be certain that the learner
has performed a CC and not something different. The approach chosen for action
detection is a rule-based approach. While recording, the CC detector continu-
ously checks the presence of CCs by monitoring the vertical movements of the
shoulder joints from the Kinect data. These rules were calibrated manually so
that the CC detector finds the beginning and the end of the CCs. At the end of
each CC, the CPR Tutor pushes the entire data chunk to SharpFlow via a TCP
client.

2) Classification. SharpFlow runs a TCP server implemented in Python
which is continuously listening for incoming data chunks by the CPR Tutor. In
case of a new chunk, SharpFlow checks if it has a correct data format and if
it is not truncated. If so, it resamples the data chunks and feeds them into the
min-max scaler loaded from memory, to make sure that also the new instance
is normalised correctly. Once ready, the transformed data chunk is fed into the
layered LSTMs also saved in memory. The results for each of the five target
classes are serialised into a dictionary and sent back to the CPR Tutor where
they are saved as annotations of the CC. SharpFlow takes on average 70 ms to
classify one CC.

3) Feedback. Every time the CPR Tutor receives a classified CC, it com-
putes a performance and an Error Rate (ER) for each target class. The per-
formance is calculated with a moving average with a window of 10 s, mean-
ing it considers only the CCs performed in the previous 10s. The Error Rate
is calculated as the inverse sum of the performance: ERj = 1 − ∑n

i=0
Pi,j

n
where j is one of the five target classes, n is the number of CCs in one time
window of 10s. Not all the mistakes in CPR are, however, equally important.
For this reason, we handcrafted five feedback thresholds of activation in the
form of five rules. If the ER is equal or greater than this threshold the feed-
back is fired, otherwise, the next rule is checked. The order chosen was the
following: ERarmsLocked >= 5, ERbodyWeight >= 15, ERclassRate >= 40,
ERclassRelease >= 50, ERclassDepth >= 60. Although every CC is assessed
immediately after 0.5s we set the feedback frequency to 10s, to avoid overload-
ing the user with too much feedback. The modality chosen for the feedback was
sound, as we considered the auditory sense the least occupied channel while
doing CPR. We created the following audio messages for the five target classes:
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(1) classRelease: “release the compression”; (2) classDepth: “improve compres-
sion depth”; (3) armsLocked : “lock your arms”; (4) bodyWeight : “use your body
weight”; (5) classRate: *metronome sound at 110 bpm*.

4 Method

In light of the research gap on providing real-time feedback from multimodal sys-
tems, we formulated the following research hypothesis which guided our scientific
investigation.

H1: The proposed architecture allows the provision of real-time feedback for
CPR training.

H2: The real-time feedback of the CPR Tutor has a positive impact on the
considered CPR performance indicators.

4.1 Study Design

To test H1, we developed the CPR tutor with a real-time feedback component
based on insights from our design-based research cycle. We planned a quan-
titative intervention study in collaboration with a major European University
Hospital. The study took place in two phases: 1) Expert data collection involving
a group of 10 expert participants, in which the data corpus was collected; 2) a
Feedback intervention study involving a new group of 10 participants. A snap-
shot of the study setup for both phases is shown in Fig. 2. All participants in the
study were asked to sign an informed consent letter detailing all the details of
the experiment as well as the treatment of the collected data in accordance with
the new European General Data Protection Regulation (2016/679 EU GDPR).

4.2 Phase 1 - Expert Data Collection

The expert group counted 10 participants (M: 4, F: 6) having an average of 5.3
previous CPR courses per person. We asked the experts to perform 4 sessions
of 1 min duration. Two of these sessions, they had to perform correct CPR,
while the reminder two sessions they had to perform incorrect executions not
locking their arms and not using their body weight. In fact, from the previous
study [8] we noticed it was difficult to obtain the full span of mistakes the
learners can perform. Asking the experts to mimic the mistakes was, thus, the
most sensible option for obtaining a dataset with a balanced class distribution.
We, therefore, collected around 400 CCs per participant. The 1 min duration was
set to prevent that physical fatigue influenced the novice’s performance. Once
the data collection was completed, we inspected each session individually using
the Visual Inspection Tool. We annotated the CC detected by the CPR Tutor, by
triangulating with the performance metrics from the ResusciAnne manikin. The
bodyWeight and armsLocked were instead annotated manually by one component
of the research team.
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Fig. 1. The system architecture of the CPR tutor

4.3 Phase 2 - Feedback Intervention

The feedback intervention phase counted 10 participants (M: 5, F: 5) having an
average of 2.3 previous CPR courses per person. Those were not absolute novices
but recruited among the group of students that needed to renew their CPR
certificate. The last CPR training for these participants was, therefore, older
than one year. Each participant in the feedback intervention group performed 2
sessions of 1 min, one with feedback enabled and one without feedback.

5 Results

The collected data corpus from the expert group consisted of 4803 CCs. Each
CC was annotated with 5 classes. With the methodology described in Sect. 3.4,
we obtained a tensor of shape (4803, 17, 52). As the distribution of the classes
was too unbalanced, the dataset was downsampled to 3434 samples (-28.5%).
In Table 1, we report the new distribution for each target class. In addition,
we report the results of the LSTM training reporting for each target class the
accuracy, precision, recall and F1-score. In the feedback group, we collected a
dataset of 20 sessions from 10 participants with 2223 CCs detected by the CPR
Tutor and classified automatically. The feedback function was enabled only in
10 out of 20 sessions. The feedback was fired a total of 16 times. In Table 2, we
report the feedback frequency for each target class and the class distribution for
each target class. We generated Error Rate plots for each individual session. In
Fig. 3, we provide an example plot of a session having five feedback interventions
(vertical dashed lines) matching the same colours of the target classes. Although
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Table 1. Five target classes distribution and performance of corresponding LSTM
models trained on the expert dataset.

Class Class distribution Accuracy Precision Recall F1-score

classRelease 0: (1475, 42.9%), 1: (1959, 57.1%) 0.905 0.897 0.954 0.925

classDepth 0: (2221, 64.6%), 1: (1213, 35.4%) 0.954 0.955 0.953 0.954

classRate 0: (1457, 42.5%), 1: (1977, 575%) 0.901 0.815 0.819 0.817

armsLocked 0: (1337, 38.9%), 1: (2097, 61.1%) 0.981 0.975 1 0.987

bodyWeight 0: (1206, 35.1%), 1: (2228, 64.9%) 0.97 0.967 0.994 0.98

the Error Rates fluctuate heavily throughout each session, we noticed that nearly
every time the feedback is fired the Error Rate for the targeted mistake is subject
to a drop. We analysed, therefore, the effect of CPR Tutor feedback by focusing
on the short-term changes in Error Rate for the mistakes targeted by the CPR
Tutor. In Table 2, we report the average ERs 10s before and 10s after the audio
feedback was fired. We report the average delta of these two values for each
target class. For classRelease, classDepth and classRate we notice a decrease of
the Error Rate, whereas for armsLocked and bodyWeight an average increase.

Fig. 2. Study design of
the CPR tutor

Fig. 3. Plot of the error rates for one session.

6 Discussion

In H1 we hypothesised that the proposed architecture for a real-time feedback
is suitable for CPR training. With the System Architecture outlined in Sect. 3,
we implemented a functional system which can be used both for the offline
model training of the CPR mistakes as well as for the real-time multimodal
data exploitation. The proposed architecture exhibited reactive performances,
by classifying one CC in about 70 ms. The System Architecture proposed is the
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Table 2. Average Error Rate for each target class 10 s before and 10 s after the audio
feedback were fired.

Class Class distribution Freq. Feedback ER 10 s

before feed-

back

ER 10 s after

feedback

Delta

classRelease 0: (475, 21.4%), 1:

(1746, 78.6%)

2 46.60% 33.50% −13.10%

classDepth 0: (704, 31.7%), 1:

(1517, 68.3%)

5 59.80% 55.00% −4.80%

classRate 0: (475, 21.4%), 1:

(1746, 78.6%)

5 44.20% 34.5% −9.70%

armsLocked 0: (3, 0.1%), 1:

(2218, 99.9%)

1 0.6% 5.1% 4.50%

bodyWeight 0: (69, 3.1%), 1:

(2152, 96.9%)

3 10.70% 12.90% 2.20%

first complete implementation of the Multimodal Pipeline [9] and it shows that
it is possible to close the feedback loop with a real-time multimodal feedback.

In H2 we hypothesised that the CPR Tutor with its real-time feedback func-
tion can have a positive impact on the performance indicators considered. With a
first intervention feedback study involving 10 participants we noticed that there
is a short-term positive influence of the real-time feedback on the detected per-
formance, witnessed by a decrease of Error Rate in the 10 s after the feedback
was fired (Table 2). This effect is confirmed in three out of five target classes. The
remaining two classes show opposite behaviours. In these two cases, the increase
of Error Rate is smaller as compared to the former target classes. We suppose
this behaviour is linked to the extreme class distribution of these two classes. In
turn, this distribution can be due to the fact that the participants of the second
group were not beginners and, therefore, not perform common mistakes such as
not locking the arms or not using their body weight correctly. These observa-
tions cannot be generalised due to the small number of participants tested for
the study.

7 Conclusions

We presented the design and the development of real-time feedback architecture
for CPR Tutor. Building upon existing components, we developed an open-source
data processing tool (SharpFlow) which implements a neural network architec-
ture as well as a TCP server for real-time CCs classification. The architecture
was employed in a first study aimed at expert data collection and offline training
and the second study for real-time feedback intervention allowing us to prove
our first hypothesis. Regarding H2, we collected observations that, while cannot
be generalised, provide some indication that the feedback of the CPR tutor had
a positive influence on the CPR performance on the target classes. To sum up,
the architecture used for the CPR Tutor allowed for provision of real-time mul-
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timodal feedback (H1) and the generated feedback seem to have a short-term
positive influence on the CPR performance on the target classes considered.
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Abstract. The evaluation of student models involves many method-
ological decisions, e.g., the choice of performance metric, data filtering,
and cross-validation setting. Such issues may seem like technical details,
and they do not get much attention in published research. Nevertheless,
their impact on experiments can be significant. We report experiments
with six models for predicting problem-solving times in four introduc-
tory programming exercises. Our focus is not on these models per se
but rather on the methodological choices necessary for performing these
experiments. The results show, particularly, the importance of the choice
of performance metric, including details of its computation and presen-
tation.

1 Introduction

Student modeling [4,12] is at the core of many techniques in the field of arti-
ficial intelligence in education. A key element of research and development of
student modeling techniques is the comparison of several alternative models.
Such comparisons are used to choose models (and their hyper-parameters) to be
used in real-life systems, to judge the merit of newly proposed techniques, and
to determine priorities for future research.

Results of model comparison can be influenced by methodological decisions
made in the experimental setting of the comparison, e.g., the exact manner of
dividing data into training and testing set [13], the choice of metrics [10], or
the treatment of outliers. These issues do not get much attention unless suspi-
ciously good results are reported, e.g., as in the case of deep knowledge trac-
ing paper [15], which reported significant improvement in predictive accuracy,
prompting several research groups to probe the results and to identify several
methodological problems in the evaluation [8,16,17].

The importance of methodological choices was recently discussed in [13], but
using mostly simplified examples and simulations. We perform an exploration of
the impact of methodological choices using real data. We use data from introduc-
tory programming exercises, where students are expected to construct a program
to solve a given problem. We compare models that predict the problem-solving
time for the next item. We use data from four types of exercises with different
characteristics—this allows us to explore the generalizability of our observations.
c© Springer Nature Switzerland AG 2020
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For the data, we perform a comparison of six student models. Our focus
is not on these models (which typically get attention in reported results), but
rather on the methodological choices done in the experimental setting and on the
impact of these choices on results. We explicitly describe the choices that need to
be made and show specific examples that illustrate how these choices influence
the results of model comparison. Our results highlight the importance of the
choice of performance metric, including details of its computation, processing,
and reporting.

2 Setting

To analyze the impact of methodological choices, we measure the performance
of six student models for predicting the time to solve the next problem in four
programming exercises. Predicting problem-solving times is less explored than
predicting binary success, yet it is a more informative measure of performance for
problems that take more than just a few seconds to solve [14]. As the problem-
solving times are usually approximately log-normal [14], our models and evalu-
ations work with the log-transformed times (denoted ‘log-time’).

2.1 Data

We use data from four introductory programming exercises, each containing
70–100 items divided into 8–12 levels. Table 1 provides an overview of these
exercises. In the Arrows exercise, students place commands (usually directions
to follow) directly into the grid with the game world. In the Robot exercise [5] and
Turtle graphics [2], students create programs using a block-based programming
interface [1]. In the last exercise, students write Python code to solve problems
with numbers, strings, and lists. In all cases, the problems require at most 25
lines of code and are solved in between 10 seconds and 5 min by most of the
students.

Table 1. Programming exercises and data used in experiments.

Exercise Items Students Successful attempts Median time

Arrows 94 13,000 182,000 32 s

Robot 85 10,800 146,000 51 s

Turtle 77 10,100 87,000 81 s

Python 73 1,400 17,000 174 s
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2.2 Student Models

In all experiments, we compare the following student models for predicting
problem-solving times. All these models can be first fitted offline and then eval-
uated online on previously unseen students.

1. Item average (I-Avg): a baseline model predicting average log-time for a given
item.

2. Student-item average (SI-Avg): a simple model predicting item average time
reduced by a naive estimate of the student’s skill. The skill is computed from
the previous student’s attempts as the average deviation between the observed
log-time and the item average log-time. To avoid overfitting, the estimate is
regularized by adding five pseudo-observations of zero deviations.

3. t-IRT : a one-parameter item response theory model (1PL IRT) adapted for
problem-solving times [14]. The model has the same set of parameters as the
SI-Avg, but now they are optimized to minimize RMSE (with L2 penalty),
using regularized linear least squares regression. The skill, which is assumed to
be constant, is in the online evaluation phase estimated using the regularized
mean deviation in the same way as in the SI-Avg model.

4. t-AFM : an additive factors model [3] adapted for problem-solving times. The
Q-matrix is constructed from the levels in each exercise. Three additional
modifications to the standard AFM were necessary for a reasonable perfor-
mance: a difficulty parameter for each item, log-transformation of the practice
opportunities counts (only solved attempts are considered), and an online esti-
mate of the prior skill, using the same regularized mean deviation as for the
SI-Avg and t-IRT.

5. Elo: a model based on the Elo rating system adapted for problem-solving
times [11]. It tracks a single skill for each student and a single difficulty
for each item. After each observed attempt, the skill and the difficulty are
updated in proportion to the prediction error. In contrast to SI-Avg and
t-IRT, the Elo model assumes changing skill, which is reflected by holding
the learning rate for the estimate of the student’s skill constant. On the other
hand, the difficulties are assumed not to change over time, so their learning
rate is inversely proportional to the number of observations.

6. Random forest (RF): a generic machine learning model utilizing ensemble
of decision trees, with the following features: item and level (using one-hot-
encoding scheme), problem-solving time on recent items (using exponential
moving average), and the numbers of items the student had already solved
under and above several time thresholds, both in total and in the individual
levels.

To select reasonable hyper-parameters for the models (e.g., the number of
pseudo-observations for the online estimate of the prior skill, or the number of
trees and the maximum depth for the Random forest), we used a subset of data
from the Robot exercise (first 50,000 attempts). These data were not used for
the subsequent experiments, and the hyper-parameters were not modified for
the other exercises.
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2.3 Evaluation Approach

To explore the impact of a set of methodological choices, we compare the results
of student models evaluation using these choices. For each exercise and each
set of methodological choices, we use the following evaluation approach, which
corresponds to a common practice in the evaluation of student models.

First, we apply data preprocessing choices, such as filtering of students with
few attempts and capping observed solving times. Then we perform student-
level k-fold cross-validation [13], i.e., all attempts of a single student are all
assigned to one of the k folds (we use k = 10). For each fold and each model, we
fit the model parameters on a training set (k − 1 folds) and then evaluate the
performance of the model on a testing set (the remaining fold). The evaluation
phase is online, i.e., the models can update their parameters (e.g., the skill of a
student) after each observed attempt. The performance of models is measured by
comparing the predicted and observed problem-solving times, using Root Mean
Square Error (RMSE) as the default performance metric. Finally, we report the
mean value and the standard deviation of the metric across folds and also the
average rank of the model according to the metric.

We evaluate the impact of several methodological choices and their interac-
tions: the choice of predictive accuracy metric and the details of the computa-
tion and reporting of the metric, division of data into training and testing sets,
filtering of the data, and treatment of outliers. When reporting the observed
results, we face the trade-off between conciseness and representativeness. Often,
we illustrate the impact of a given choice on a single exercise; when we do so,
we always report to which extent the trends observed in this exercise general-
ize to the other three and provide the same plots for the other exercises as a
supplementary material available at github.com/adaptive-learning/aied2020.

3 Metrics

Although student models can be evaluated and compared from many perspec-
tives [7], the primary criterion used to compare models is the predictive accuracy.
The predictive accuracy is quantified by a performance metric [10], i.e., a func-
tion that takes a vector of predictions and a vector of observations and produces
a scalar value. The choice of a metric used for model comparison involves quite
a large number of (often under-reported) decisions.

3.1 Normalization and Stability of Results

We start by a discussion of the processing and presentation of results since it
also influences the presentation of our results in the rest of the paper. To check
the stability of model comparisons, it is useful to have not just a single value
of a metric but to run repeated experiments and study the stability of results.
A straightforward approach is to perform k-fold cross-validation and report the
mean value of a metric and its standard deviation.

http://github.com/adaptive-learning/aied2020
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Fig. 1. Comparison of student models for the Robot exercise using RMSE (left), RMSE
relative to the baseline (center), and order of the models according to RMSE (right).
The vertical bars show standard deviations computed from 10 cross-validation folds.

Such a presentation can be, however, misleading. Figure 1 provides a specific
illustration. The left part of the figure shows the basic approach to evaluation
where we compare the values of RMSE directly. This presentation shows that the
results for individual models overlap to a large degree; we could be tempted to
conclude from this that the accuracy of the studied models is not very different.
However, it may be that the observed variability is due to variability across folds,
not due to the variability of models predictive ability.

The variability caused by data can be, for example, due to the presence
of unmotivated students with chaotic and hard to predict behavior and their
uneven distribution across folds. To reduce this variability, we can normalize the
metric value. In Fig. 1 we report two types of such normalization: A) RMSE
relative to a baseline model (per fold), B) RMSE rank among compared models
(per fold). As Fig. 1 shows, these normalizations give quite a different picture
concerning how consistent are the differences in model performance. Consider,
for instance, comparison of SI-Avg and t-AFM. While the distributions of their
RMSEs across folds largely overlap, exploring their ranks reveals that t-AFM
has consistently better performance than SI-Avg. This is not an isolated case; for
all four exercises, there are some pairs of models whose distributions of RMSEs
largely overlap, while the distributions of the ranks do not.

We do not claim that the normalized approaches are better. It may be that
one model is consistently better (which is highlighted by the rank approach),
but the differences are consistently small and thus practically not important.
Reporting both the absolute and normalized RMSEs gives a fuller picture than
using just one of the approaches alone.

In this paper, we usually report both the absolute RMSEs and the ranks.
The ranks often provide more insight into the impact of methodological choices,
since they are more robust to the noise within the folds, and this makes the
differences between the models more salient. Additionally, the ranking approach
allows us to study the impact of different metrics, which we look at next.
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Fig. 2. Comparison of model orderings under RMSE and MAE metrics in four pro-
gramming exercises. The vertical bars show standard deviations of the ranks computed
from 10 cross-validation folds.

Fig. 3. Comparison of models for the Robot exercise using RMSE averaged either
globally, across students, or across items. The vertical bars show standard deviations
of the ranks computed from 10 cross-validation folds.

3.2 RMSE Versus MAE

There is a large number of metrics, particularly for the case of models predicting
probabilities [10]. Our default choice, RMSE, is a commonly used metric. For
the case of predicting continuous values (as is the case of the used logarithm of
time), another natural choice is Mean Absolute Error (MAE). To explore the
potential impact of metric choice, we compare these two metrics.

Figure 2 shows the results of this comparison across our four datasets. The
figure visualizes the ranking of models and shows that the results are mostly
stable with respect to the choice of metric. However, there are cases where the
choice of metric influences results. Particularly, there is a mostly consistent trend
with respect to SI-Avg and t-IRT models: t-IRT achieves better results for the
RMSE metric, whereas SI-AVG is better for the MAE metric.

3.3 Averaging

Another decision is the approach to the averaging in the computation [13]. We
can use either global computation (treat all observations equally), averaging
across students (compute RMSE per student and then compute an average), or
averaging across items (compute RMSE per item and then compute an average).
These can produce different results, particularly when the distribution of answers
is skewed across items or students. For all four datasets we use, that is indeed
the case. Figure 3 shows an example of the Robot exercise, where the impact
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Fig. 4. Average ranks of student models in individual levels of the Robot exercise.

of the averaging is the most pronounced. In this exercise, the averaging across
items leads to considerably higher values of RMSE and even to some changes in
the ordering of the models.

To get better insight, we can disaggregate RMSE into individual levels
(groups of items of similar difficulty) or populations (e.g., groups of students
according to their activity or performance). Figure 4 shows an example of such
per-level RMSE decomposition for the Robot exercise. Note, particularly, the
performance of the Random forest model; it is one of the best models in the ini-
tial levels, while one of the worst in the advanced levels. Since students mostly
solved items in the first few levels, the global averaging (shown in Fig. 3) favors
this model.

We expected that the benefits of the more complex models (like Random
Forest and t-AFM) would manifest especially in the last levels, where the com-
plex models can make use of richer students’ history. However, the results, for
all four programming datasets, show that the trends are exactly opposite: the
mean ranks of all models get closer to each other in higher levels. Probably, the
skew of the data leads the complex models to overfocus on the first few levels
at the expense of the less solved last advanced levels; furthermore, while the
models can benefit from more data about the students, they might be seriously
hampered by less data for the items.

4 Data Processing

Another set of methodological choices concerns the processing of data: Do we
perform some data filtering? How do we treat outliers? How exactly do we divide
data into a training and testing set?
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Fig. 5. Average RMSE and RMSE ranks of student models when students with few
attempts are filtered (Robot exercise). The filtering of students with at least 10, 20, 30,
and 40 attempts results in keeping 86%, 47%, 22%, and 13% of the original attempts.

4.1 Filtering and Outliers

The data from learning systems are noisy, e.g., due to off-task behavior, guessing,
or cheating. In order to reduce the impact of this noise on the results of experi-
ments, it may be meaningful to perform some data preprocessing, for example:

– filtering students with small activity (rationale: students with small activity
are often just experimenting with the system, and thus there is higher chance
that their behavior is noisy),

– filtering items with small activity (rationale: models do not have enough infor-
mation to provide good predictions for such items),

– removing or capping outliers, i.e., too high problem-solving times (rationale:
very high problem-solving times are often caused by some disruption in solv-
ing activity, not by poor student skill or high item difficulty).

In some cases, the choice of a filtering threshold can have a pronounced effect
on the absolute RMSE, even much higher than the differences in RMSE caused
by using a different model. This is illustrated in Fig. 5 for the case of filtering
students in the Robot exercise. We observed similar trends in all four datasets
and for other data preprocessing choices: high impact on the absolute values of
RMSE, but usually a negligible impact on the ranking, unless the thresholds are
rather extreme.

As in the case of disaggregating RMSE per level, our initial intuition about
the relative merits of the filtering for the simple and complex models was incor-
rect: we expected the complex models to benefit more from severe filtering since
the remaining students have a long history that the complex models can utilize,
while the simple models cannot. Nevertheless, both the absolute RMSE and
ranks of the complex models actually increase with more severe filtering since
the filtering results in an increased proportion of the data for the items with few
attempts and less training data overall, which is a more significant issue for the
models with many parameters.



Impact of Methodological Choices on the Evaluation of Student Models 161

Fig. 6. Comparison of models for the Turtle exercise using either student-level or time-
series cross-validation strategy.

4.2 Data Division for Cross-Validation

Reported comparisons of student models often use “k-fold cross-validation” with-
out further specification of the division of data into folds. Since the data from
learning systems have an internal structure (mapping to items and students,
temporal sequences), there are many ways in which the division of data can be
performed [13].

To explore the impact of this choice, we compare two natural choices: student-
level cross-validation and time-series cross-validation. In the student-level k-fold
cross-validation, all attempts of a single student are assigned randomly to one
of the k folds. The relative order of the attempts is preserved (there is no shuf-
fling), and all groups contain approximately the same number of students. This
cross-validation strategy ensures that the models cannot use future attempts of a
given student to predict her past, but it does not prevent them from using future
attempts of the other students. In contrast, the time-series cross-validation cre-
ates the folds strictly by time, always using only the preceding folds for the
training.

Our analysis shows that the choice of cross-validation strategy can influence
the results of experiments. Figure 6 shows the results for the Turtle dataset:
with respect to ranking, the Elo model is a clear winner when the time-series
cross-validation is used, whereas in the case of student-level cross-validation, it
has similar results as other models. An analysis of the dataset shows that it
contains a temporal pattern—the performance of consecutive students on each
item is correlated. Although this correlation is quite weak and the Elo model is
not explicitly designed to exploit it, the presence of this pattern is sufficient to
impact the results of the comparison.

In the other exercises, especially in the Arrows and Python, the impact of
the cross-validation strategy is rather small. However, in these two exercises, the
Elo model is already the best model even when the student-level cross-validation
is used. In the other five models, the students in the test set cannot influence
the predictions for the subsequent students, so these models cannot exploit the
described temporal pattern.
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5 Discussion

The comparison of student models involves many methodological choices, which
can influence the results of the evaluation. This situation is not unique to student
modeling; similar problems are well-known in other fields, e.g., Gelman and Loker
[6] discuss statistical analysis of experiments with examples from social science.

In this work, we highlight and explore methodological choices that are typ-
ically encountered in the evaluation of student models. Insufficient attention to
these details poses several risks:

– Possibility of “fishing” for choices that present a researcher’s favorite tech-
nique (e.g., a newly proposed method) in a favorable light.

– Missing of potentially interesting results due to some arbitrary methodological
choice that masks important differences between models.

– Misleading comparisons of models, which were evaluated by slightly differ-
ent methodologies (differing in details that are undocumented or over which
authors gloss over).

The basic step to mitigating these risks is the awareness of the available
choices and their explicit and clear description in research papers. Some kind of
preregistration procedure [9] can further strengthen the credentials of student
model comparisons.

Typically, researchers in student modeling and developers of adaptive learn-
ing systems are interested primarily in student models and do not want to spend
much time exploring methodological choices. Experiments are not inherently
unstable—many decisions have only a small impact on results. It is thus useful
to know which choices deserve most focus. This, of course, depends to a large
degree on a particular setting and it is unlikely that some completely univer-
sal guidelines can be found. However, reporting experience from a variety of
comparisons should lead to a set of reasonable recommendations.

We have performed our experiments in the domain of problem-solving activi-
ties and for the student models predicting problem-solving times. In this setting,
the results show the importance of the choice of a performance metric and of
the details of its processing and presentation. Specifically, our results show that
there are large differences between the presentation of results of cross-validation
across folds in terms of the absolute value of metrics, relative values (normalized
by baseline performance per fold), and rankings of performance per fold. On the
other hand, filtering of data and treatment of outliers have a relatively small
impact on the ranking of models (for reasonable choices of thresholds).

Our results also clearly illustrate that the absolute values of performance
metrics depend on details of the evaluation methodology and properties of a
specific dataset. The differences in metric values are typically larger among dif-
ferent evaluation settings than among different models. Consequently, it is very
dangerous to compare metric values to results reported in research papers even
when using the same dataset (as done, for example, in the deep knowledge trac-
ing paper [15]). Comparisons make sense only when we are absolutely sure that
the computation of metric values is done in exactly the same way. Since there
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are many subtle choices that influence metric values, this can be in practice
best done by comparing only models that use the same implementation of an
evaluation framework.

Supplementary Materials

For all the presented plots, we provide their analogues with all four exercises as
supplementary materials at github.com/adaptive-learning/aied2020. The num-
bering of the supplementary plots corresponds to the numbering in the paper.
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Abstract. Engagement plays a critical role in visitor learning inmuseums. Devis-
ing computational models of visitor engagement shows significant promise for
enabling adaptive support to enhance visitors’ learning experiences and for pro-
viding analytic tools for museum educators. A salient feature of science museums
is their capacity to attract diverse visitor populations that range broadly in age,
interest, prior knowledge, and socio-cultural background, which can significantly
affect how visitors interact with museum exhibits. In this paper, we introduce
a Bayesian hierarchical modeling framework for predicting learner engagement
with Future Worlds, a tabletop science exhibit for environmental sustainabil-
ity. We utilize multi-channel data (e.g., eye tracking, facial expression, posture,
interaction logs) captured from visitor interactions with a fully-instrumented ver-
sion of FutureWorlds to model visitor dwell time with the exhibit in a science
museum. We demonstrate that the proposed Bayesian hierarchical modeling app-
roach outperforms competitive baseline techniques. These findings point toward
significant opportunities for enriching our understanding of visitor engagement in
science museums with multimodal learning analytics.

Keywords: Museum-based learning · Visitor modeling · Multimodal learning
analytics

1 Introduction

Engagement is a critical component of learning in informal environments such as muse-
ums [1, 2]. Visitor engagement shapes how learners interact with museum exhibits,
navigate the exhibit space, and form attitudes, interests, and understanding of scientific
ideas and practices. Recent developments in multimodal learning analytics have sig-
nificant potential to enhance our understanding of visitor engagement with interactive
museum exhibits [3, 4]. Multimodal learning analytics techniques can be utilized to
create computational models for uncovering patterns in meaningful visitor engagement
through the triangulation of multimodal data streams captured by physical hardware sen-
sors (e.g., webcams, eye trackers, motion sensors). Multimodal learning analytics has
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shown significant promise in laboratory and classroom environments [5, 6], but there has
been comparatively little work investigating multimodal learning analytics in informal
contexts, such as science museums.

Devising computational models of visitor engagement with interactive science
museum exhibits poses significant challenges. Visitor interactions withmuseum exhibits
are brief; dwell times with highly engaging exhibits often last only 3–4 min [7–9].
Furthermore, museums attract a broad range of visitors of varying age, background,
knowledge, and learning objectives. Different types of museum visitors show distinctive
patterns of engagement, including how they interact with specific exhibits, as well as
how they move about the museum floor [10]. To address these challenges, it is important
to utilize computational techniques that make efficient use of available data and account
for inherent differences in how visitors engage with interactive exhibits in museums.

In this paper, we present a multimodal learning analytics framework for investi-
gating visitor engagement in science museums that is based upon Bayesian hierarchi-
cal models. Bayesian hierarchical models explicitly account for differences in patterns
of visitor engagement between separate visitor groups. We focus on visitor interac-
tions with a game-based interactive museum exhibit about environmental sustainability,
FutureWorlds. By instrumenting FutureWorldswithmultiple hardware sensors, it
is possible to capture fine-grained data on visitors’ facial expression, eye gaze, posture,
and learning interactions to model key components of visitor engagement in science
museums. We investigate the relationship between multimodal interactions and visi-
tor engagement by analyzing posterior multimodal parameter distributions of Bayesian
hierarchical models that model visitor dwell time with the FutureWorlds interactive
exhibit. Results show that Bayesian hierarchical linear models more accurately model
visitor dwell time than baseline techniques that do not incorporate hierarchical architec-
tures and yield valuable insights into which features are most predictive for modeling
visitor engagement.

2 Related Work

Engagement is a critical mechanism for fostering meaningful learning in museums [7].
Muchwork onmodeling learner engagement has focused on formal educational settings,
such as school classrooms [11]. In a museum context, low levels of visitor engagement
may appear as shallow interactions with an interactive exhibit, or no interaction at all,
whereas high-level engagement can manifest as extended dwell times and productive
exploration behaviors. We seek to utilize rich multi-channel data streams to identify
patterns of meaningful visitor engagement as defined through visitor dwell time with a
game-based interactive exhibit. Dwell time has been used previously to examine visitor
engagement with museum exhibits [12, 13].

Multimodal learning analytics techniques show significant promise for capturing
patterns of visitor engagement in museums. By taking advantage of information across
concurrent sensor-based data channels, multimodal learning analytic techniques have
been found to yield improved models in terms of accuracy and robustness compared to
unimodal techniques [14]. Although these applications have shown significant promise,
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the preponderance of work onmultimodal learning analytics has been conducted in labo-
ratory and classroom settings [5, 15]. Using multimodal learning analytics to investigate
visitor engagement in informal environments is an important next step for the field.

Traditionally, computational models of learner engagement assume relatively high
levels of homogeneity across learners in the training data, which is a natural assump-
tion for classroom settings where all learners are approximately the same age and have
similar levels of prior knowledge. However, learners express engagement in different
ways depending on a range of factors such as prior knowledge and socio-cultural back-
ground, suggesting that group-based differences should be considered when modeling
engagement [16]. There are limited examples of research on computational models of
engagement that account for these differences. Sawyer et al. used Bayesian hierarchical
models to investigatemodels of learner engagementwith a game-based learning environ-
ment in both classroom and laboratory settings [17]. We build on this work by adopting
a Bayesian hierarchical modeling framework for investigating group-level differences
in visitor engagement in a museum context.

3 FUTURE WORLDS Testbed Exhibit

To conduct data-rich investigations of visitor engagement in sciencemuseums, we utilize
a game-based museum exhibit called FutureWorlds. Developed with the Unity game
engine, Future Worlds integrates game-based learning technologies into an inter-
active surface display to enable hands-on explorations of environmental sustainability
[18]. With FutureWorlds, visitors solve sustainability problems by investigating the
impacts of alternate environmental decisions on a 3D simulated environment (Fig. 1).
Learners interact with the environment through tapping and swiping the display to test
hypotheses about how different environmental decisions impact the environment’s sus-
tainability and future health. Visitors read about different regions of the virtual environ-
ment and observe how they are impacted by the learner’s actions. The effects of visitors’
decisions are realized in real-time within the simulation.

Fig. 1. FutureWorlds museum exhibit capturing multimodal visitor data.

Future Worlds’ focus on environmental sustainability targets three major
themes—water, energy (both renewable and non-renewable), and food—and it facili-
tates exploration of the interrelatedness of these themes. Initial pilot testing with both
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school and summer-camp groups in a science museum in the southeastern United States
has shown that learner interactionswith FutureWorlds enhance sustainability content
knowledge and yield promising levels of visitor engagement as indicated by observations
of learner behavior [18].

4 Multimodal Data Collection

We leverage a suite of multimodal sensors (e.g., video camera, motion tracking sensor,
eye tracker, game logs) to capture visitors’ facial expression, body movement, eye gaze,
and interaction trace data, respectively, to serve as complementary data sources for
inducing computational models of visitor engagement with Future Worlds. In this
work, we focus on modeling visitor dwell time, which is a manifestation of visitors’
behavioral engagement, as the ground-truth label of visitor engagement.

4.1 Study Participants and Procedure

We conducted a series of three data collections with museum visitors engaging with the
FutureWorlds exhibit at the North Carolina Museum of Natural Sciences in Raleigh,
North Carolina. The three groups of visitors were recruited from regional elementary
schools from different socio-cultural backgrounds (e.g., race/ethnicity, urban vs. rural,
language diversity). Each of the schools served populationswhere 70%of the students are
considered economically disadvantaged. In aggregate, participants included 116 visitors
between 10–11 years of age. Each visitor completed a series of questionnaires before
and after interacting with Future Worlds, including a demographics survey, science
interest scale, sustainability content knowledge assessment, and engagement survey.
Fourteen of the participants did not complete the surveys, which left 47 female and
55 male participants. Approximately 21.6% of the visitors were African American, 8%
Asian, 3% Caucasian, 32.3% Latino, and 11.8% American Indian. Visitors interacted
with Future Worlds individually until they were finished or up to a maximum of
approximately 10min (M =3.97,SD =2.24). The resultingdataset consistedof complete
multimodal data for 86 visitors, following removal of participantswithmissing data from
one or more modalities.

4.2 Multimodal Data Channels

The study utilized a suite of multimodal sensors to gather data on visitor interactions
with FutureWorlds. These data streams included facial expression, eye gaze, posture,
gesture, and interaction trace logs.

Facial Expression. Facialmovement data has beenwidely used to devise computational
models for automatically recognizing learning-centered affective states [5]. In our work,
we capture facial expression data using video recordings from an externally mounted
Logitech C920 USB webcam. The resulting data is analyzed using OpenFace, an open-
source facial behavior analysis toolkit that provides automated facial landmark detection
and action unit (AU) recognition for 17 distinct AUs [19].
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Eye Gaze. Agrowing body of empirical work has demonstrated the importance of eye
gaze for modeling learner interactions [20]. To track visitor eye gaze, we utilize a
mounted eye-tracking sensor which uses near-infrared light to track eye movements
and gaze points during visitor interactions with the interactive exhibit. We automat-
ically identify in-game targets of visitor attention in Future Worlds using a gaze
target-labeling module that processes eye tracking data using ray casting techniques.

Body Movement. Recent years have seen growing interest in research on affective
modeling using human body movement data [21, 22]. To capture data on visitor posture
and gesture, we utilize Microsoft Kinect for Windows v2, a dedicated motion sensing
camera that provides skeletal tracking for 26 distinct vertices, in addition to raw pixel
data for depth and color camera sensors [23]. The Kinect sensor was mounted on a tripod
five feet away from the exhibit and allowed for tracking of body movement.

Interaction Trace Logs. FutureWorlds provides support for detailed logs of learner
interactions with the digital interactive exhibit software. The log data consists of times-
tamped records (at the millisecond level) of visitor taps and multitouch gestures, as well
as learning events and simulation states, that arise during visitor experiences.

4.3 Multimodal Features

We extracted several features from each modality to serve as predictors of visitor dwell
time. We selected a relatively small number of features for each modality due to the
limited size of our dataset. For visitor facial expression, we used AU data captured by
OpenFace. We calculated the proportional duration that each AUwas exhibited through-
out the visitor’s interaction with FutureWorlds. Each visitor’s facial expression data
was standardized and the duration of anAUwas recorded if its tracked intensity exceeded
one standard deviation above the mean intensity for that AU. Each duration was only
recorded if it was present for longer than 0.5 s to avoid noise associated with facial
micro expressions [24]. We selected 5 AU values: AU2 (Outer Brow Raiser), AU7 (Lid
Tightener), AU10 (Upper Lip Raiser), AU12 (Lip Corner Puller), and AU14 (Dimpler).
These AUswere selected based upon related work onmodeling learner engagement with
facial expression data [24–26]. We adopted a similar approach to previous work using
facial expression for student modeling [24] by scaling the durations of AU data by the
total time spent engaging with Future Worlds.

To capture patterns in visitor attention with Future Worlds, we used the Tobii
EyeX eye tracker to pinpoint areas of interest (AOIs) on the interactive exhibit’s dis-
play. Visitor fixations on in-game objects exceeding 210 ms in duration were automat-
ically tracked [27]. We aggregated the gaze fixation data to compute the proportion of
time visitors spent looking at five categories of in-game objects: virtual locations (AOI-
Location), environmental sustainability imagery (AOI-Imagery), environmental sustain-
ability labels (AOI-Labels), environmental sustainability selection menus (AOI-Menu),
and user interface elements (AOI-Interface). The AOI-Location category included fixa-
tions on any of the nine discrete, hexagon-shaped regions of the virtual environment in
Future Worlds. The AOI-Imagery category included high-resolution images associ-
ated with the exhibit’s environmental sustainability content. The AOI-Labels category
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encompassed all textual labels about environmental sustainability topics within Future
Worlds (e.g., text descriptions about renewable vs. non-renewable energy, sustainable
farming practices). The AOI-Menu category referred to a pop-up menu that appeared
when a visitor tapped on a particular location of the virtual environment to learn more
about that region or make a change to the region’s environmental practices (e.g., add
solar panels, introduce organic farming). The AOI-Interface category contained user
interface elements for navigating the exhibit software (e.g., restart button). Leveraging
an approach similar to related work on gaze-enhanced student modeling [28], we calcu-
lated the total time spent fixated on each category of in-game element and scaled by the
total time spent engaging with FutureWorlds.

To extract features on visitor body movement, we focused on four skeletal vertices
tracked by the Microsoft Kinect motion sensor: Head, SpineShoulder (upper-back),
SpineMid (mid-back), and Neck. Selection of these vertices was informed by prior work
on multimodal affect detection with motion-tracking sensor data [29]. For each skeletal
vertex, we calculated the sum variance of its distance from the Kinect sensor across the
visitor’s entire interaction with FutureWorlds. Additionally, we utilized the four ver-
tices to calculate the total posture change for each visitor based upon the summovement
of all vertices within the Kinect’s coordinate tracking space.

For interaction log features, we calculated the total number of times the visitor tapped
on theFutureWorlds exhibit’s touch display (Total Taps) and the total number of times
the visitor tapped to examine environmental sustainability imagery and labels (Total Info
Taps). The two interaction log features were computed by scaling the above measures
by the total dwell time for that visitor (i.e., taps per second), which measured how
actively participants interacted with FutureWorlds and its embedded environmental
sustainability content.

In sum, we extracted five facial expression features, five eye gaze features, five body
movement features, and two interaction log features for a total of 17 multimodal features
for this analysis.

5 Bayesian Linear Models

To predict visitor dwell time with the FutureWorlds exhibit, we induced linear mod-
els using Bayesian Lasso regression. Lasso regression is a regression analysis method
that privileges simpler models by forcing a subset of model coefficients to be set to
zero, which serves as a form of feature selection and regularization [30]. We utilized a
Bayesian framework to incorporate prior distributions for parameter estimation, account
for uncertainty in modeling, and share information across groups of data. Because our
dataset containedmultimodal data from 86 participants, linear models provided a natural
machine learning framework to prevent overfitting and support parameter interpretabil-
ity.We implementedBayesian linearmodels using double exponential prior distributions
on all feature coefficients, serving as a form of L1 (Lasso) regularization to limit the
number of features utilized in the induced models.

In addition to utilizing prior distributions for model parameters, we also used a log-
arithmic link function in the regression model to better predict visitor dwell time. In
standard Bayesian linear regression, a normal distribution is used to model the rela-
tionship between the predictor variables and the dependent variable. The mean of this
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distribution is the linear combination of the input features and their coefficients. Due
to use of the normal distribution, the predictions can be negative. In our case, dwell
time cannot be a negative value, so we exponentiate the linear combination of features
and coefficients before using it as the mean of the normal distribution. Varying the link
function is a form of generalized linear modeling [30]. The formulation for the base
linear regression used in our analysis is as follows:

Yi ∼ Normal(μi, σ
2), where log(μi) = α +

∑p

k=1
Xikβk (1)

Yi is the dwell time for visitor i. α is a fixed intercept added to all predictions in the
regression, Xik is the value of the input feature k for student i, βk is the coefficient for
feature k, p is the total number of features (of which there are 17), and σ 2 is the fixed
variance used for all predictions.

5.1 Baseline Models

We investigated two baseline models using the regression formula (Eq. 1) described
above for modeling visitor dwell time. First, we use a Pooled Model, where all visitor
data was grouped together and treated equally. Second, we used a Group-Specific model,
where a separate linear model was trained on each visitor group. The Pooled Model
loses information about the individual groups and does not characterize group-based
differences in visitor interest, background, or demographics. This can lead to underfitting
of the data. TheGroup-Specificmodel is amore specialized formof the regressionmodel,
where each visitor group has its own distinct set of model parameters. In comparison to
the Pooled Model, this approach risks overfitting the data and is unlikely to generalize
effectively due to the limited number of data samples per group and inherent differences
between the visitor groups.

5.2 Bayesian Hierarchical Model

The regression formula (Eq. 1) assumes that the residual variance for all visitor obser-
vations are the same. In many contexts this is a reasonable assumption, but in a museum
setting, different groups of visitors may arrive with highly different socio-cultural back-
grounds, interests, knowledge levels, and learning objectives, among other relevant char-
acteristics. Different groups of visitors may not only spend different amounts of time at
exhibits, but their dwell timesmay have higher or lower variance depending on the group.
Thus, it is important that the multimodal models of visitor engagement account for these
differences, and therefore treat the error variances differently in the regression formula-
tion. The assumption of equal variance by standard linear models, or homoskedasticity,
can result in reduced model fit and information loss when the observations come from
groups. We propose an extension to Eq. 1 to incorporate a learned variance parameter
that is unique to each visitor group to ensure that the variance of the residual errors
is treated differently depending on the group from which the visitor came. To avoid
overfitting to the visitor groups, we used a shared latent distribution to model the three
groups’ variance parameters. This Bayesian hierarchical model is shown below:

Yi ∼ Normal(μi, σ
2
g ), where log(μi) = α +

∑p

k=1
Xikβk (2)
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The only difference in this regression formulation compared to Eq. 1 is that the
variance, σ 2

g , varies based on the school group, g.

6 Results

The predictive models of dwell time were trained and compared using student-level
leave-one-out cross-validation. We used cross-validation to compare the performance of
the PooledModel, the Group-SpecificModel, and the HierarchicalModel.We report R2,
root mean squared error (RMSE), and mean absolute error (MAE) averaged across each
cross-validation fold. The performance of each model is reported on the entire dataset
as well as the performance for each visitor group.

Each model was trained using Markov chain Monte Carlo (MCMC) sampling in R
using the JAGS framework [31]. To check the convergence of the sampling, we used the
Gelman-Rubin diagnostic, which is commonly used for evaluating MCMC convergence
[32]. For each of the models, we drew 3,000 MCMC samples after omitting the first
1,000 for burn-in. The process of burn-in is performed to ensure the convergence of
the Markov chain in MCMC sampling. The final predictive models used the means of
the 3,000 samples for each model parameter. Within each of the predictive models, the
coefficients of the features, s, are assigned a prior distribution. For each ,we used a double
exponential prior with mean 0 to operate in the same manner as Lasso regression priors.
This encouraged many of the feature coefficients to be as close to 0 as possible, resulting
in only a few selected features as significant. The group-level variance parameters, σ 2

g ,
also used a shared prior distribution to relate information across groups. We chose the
Gamma distribution with shape and scale parameters equal to 0.1. Each of the prior
distributions chosen for this work were relatively uninformative and thus weak. This
forced the posterior distributions of the model parameters to be largely affected by the
data rather than our prior beliefs.

6.1 Predictive Accuracy

We compared the accuracy of the three Bayesian linear models: the Pooled Model,
Group-SpecificModel, andHierarchicalModel. Table 1 shows the results for eachmodel
in predicting visitor dwell time (seconds). The Hierarchical Model outperformed both
the Pooled and Group-Specific models for all visitor groups. For Group 1, the Pooled
Model outperformed the competing models, but for Groups 2 and 3, the Hierarchical
Model performed best with respect to the three evaluation metrics.

The Group-Specific models were each trained on data from a single group, and
then each model was evaluated only using data from that group. The total predictive
performance of theGroup-SpecificModelswas calculated by aggregating the predictions
of each of the three models and calculating R2, RMSE, and MAE with the total data.
An explanation for why this modeling approach performed relatively poorly its risk of
overfitting to a specificgroup; eachvisitor grouponly consistedof 20–40visitors. Pooling
the data and ignoring group-level characteristics yield good results but risks underfitting
the data by losing group-specific information about the visitors. The Hierarchical Model
takes advantage of both modeling approaches by incorporating group-level information
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Table 1. Predictive performance of the three linear models.

Model type Context R2 RMSE MAE

Pooled All
Groups

0.514 93.720 68.334

Group 1 0.425 85.846 72.532

Group 2 0.727 70.429 47.583

Group 3 0.370 118.319 82.637

Group-Specific All
Groups

0.285 110.882 81.457

Group 1 0.303 96.270 74.216

Group 2 0.685 75.616 54.567

Group 3 −0.116 157.409 117.060

Hierarchical All
Groups

0.536 91.593 67.690

Group 1 0.411 88.488 72.649

Group 2 0.742 68.444 47.338

Group 3 0.428 112.713 80.582

but keeping all data instances pooled using a shared prior for the group-level variance.
An alternative approach to hierarchical modeling is to train a set of feature coefficients
for each visitor group. However, this approach would multiply the number of model
parameters by the number of visitor groups, which risks poor performance due to the
limited size of the data sample.

6.2 Posterior Distributions of Model Parameters

Bayesianmodels allow summarization and comparison ofmodel parameters by using the
MCMC samples that were directly taken from their posterior distribution. As the Hierar-
chical Model outperformed both the Pooled and Group-Specific models, we summarize
the model parameters’ posterior distributions of the Hierarchical Model.

Table 2 displays the mean and standard deviation (SD) for each of the model param-
eters from the Hierarchical Model. Since each model induced double exponential priors
on the feature coefficients, many of the features resulted in non-significant coefficients.
We report the 10 features with the largest coefficients in terms of absolute value, includ-
ing the model intercept, noting that features from each modality were chosen as being
significant. The remaining features had posterior distributions that resulted in a mean of
0. The significant features for the posturemodality were Total Position Change andHead
Variance. For eye gaze, the significant features were AOI-Labels and AOI-Interface. For
facial expression, the features wereAU12,AU7, andAU2. The features for the interaction
log modality were Total Taps and Total Info Taps.
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Table 2. Posterior parameter distributions for Bayesian Hierarchical linear model.

Mean SD

Intercept 5.344 0.046

AU12 −0.197 0.050

AOI-interface −0.197 0.080

Total position change −0.151 0.052

AU7 −0.130 0.049

Head variance 0.082 0.095

AOI-labels 0.081 0.040

AU2 −0.080 0.044

Total info taps 0.068 0.056

Total taps −0.060 0.043

7 Conclusion and Future Work

Multimodal learning analytics offers significant potential to advance our understanding
of museum visitor engagement. However, museums pose distinctive challenges for mod-
eling learner engagement, including the brief duration of visitor dwell times, as well as
visitor populations that range broadly in age, prior knowledge, and socio-cultural back-
ground. To address these challenges, we have introduced a multimodal Bayesian hier-
archical modeling framework for modeling visitor engagement with interactive science
museum exhibits. Leveraging multimodal data on visitor interactions with an interac-
tive game-based exhibit for environmental sustainability education across three diverse
groups of visitors, we found that Bayesian hierarchical models outperform competing
baseline methods. Furthermore, results indicate that features from each modality con-
tributed significantly toward predicting visitor dwell time, underscoring the promise of
multimodal learning analytic techniques for modeling visitor engagement.

There are several promising directions for future research. First, extending multi-
modal models of visitor engagement beyond predicting visitor dwell time to capture pat-
terns of visitors’ cognitive, affective, and behavioral engagement is a key next step. Fur-
thermore, adapting multimodal learning analytic techniques to account for the “messi-
ness” of free-choice learning, including fluid grouping at exhibits [12] and complex
patterns of movement across the museum floor [10], is an important challenge. Extend-
ing this work to other science museums as well as other informal learning contexts
(e.g., science centers, aquariums, zoos, and other public spaces) will help reveal and
strengthen the generalizability of this approach. Finally, it will be critical to investigate
how multimodal learning analytics can inform iterative cycles of design and develop-
ment by exhibit designers, as well as best practices of museum educators to enhance
high-quality visitor engagement in science museums.
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Abstract. With the rising success of adversarial attacks on many NLP
tasks, systems which actually operate in an adversarial scenario need to
be reevaluated. For this purpose, we pose the following research question:
How difficult is it to fool automatic short answer grading systems? In par-
ticular, we investigate the robustness of the state of the art automatic
short answer grading system proposed by Sung et al. towards cheating
in the form of universal adversarial trigger employment. These are short
token sequences that can be prepended to students’ answers in an exam
to artificially improve their automatically assigned grade. Such triggers
are especially critical as they can easily be used by anyone once they
are found. In our experiments, we discovered triggers which allow stu-
dents to pass exams with passing thresholds of 50% without answering a
single question correctly. Furthermore, we show that such triggers gen-
eralize across models and datasets in this scenario, nullifying the defense
strategy of keeping grading models or data secret.

Keywords: Automatic short answer grading · Adversarial attacks ·
Automatic assessment

1 Introduction

Adversarial data sample perturbations, also called adversarial examples, intend-
ing to fool classification models have been a popular area of research in recent
years. Many state of the art (SOTA) models have been shown to be vulnerable
to adversarial attacks on various data sets [8,44,47].

On image data, the extent of modifications needed to change a sample’s
classified label are often so small they are imperceptible to humans [2]. On
natural language data, perturbations can more easily be detected by humans.
However, it is still possible to minimally modify samples so that the semantic
meaning does not change but the class assigned by the model does [3,6,13,17,
22,29,30].

While the existence of such adversarial examples unveils our models’ short-
comings in many fields, they are especially worrying in settings where we actu-
ally expect to face adversaries. In this work, we focus on one such setting: auto-
matic short answer grading (ASAG) systems employed in exams. ASAG systems
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take free-text answers and evaluate their quality with regards to their semantic
content, completeness and relevance to the answered question. These free-text
answers are provided by students and are typically somewhere between a phrase
and a paragraph long.

The willingness of college students to cheat has been well-studied [1,9,11,18,
36,37]. And while the exact percentage of cheating students varies greatly from
study to study, Whitley [42] reports a mean of 43.1% of students cheating on
examinations over 36 studies in his review. Klein et al. [19] report similar values
for cheating on exams in their large scale comparison of cheating behaviors in
different schools.

In these studies cheating behavior included copying from other students,
getting the exam questions beforehand or bringing a cheat sheet to the exam. We
argue that exploiting weaknesses in automatic grading schemes is just another,
albeit less explored, form of cheating and expect the students’ willingness to
exhibit such behavior to be similar. Therefore, if we wish to employ automated
grading systems in exams, we should ensure that the perceived cost of cheating
them outweighs the benefits.

The perceived cost of cheating is made up of various factors, such as the
punishment when caught, moral considerations or the difficulty of cheating in
the first place [26]. In this work, we aim to investigate the last factor: How
difficult is it to fool automatic short answer grading systems?

For this purpose, we first reproduce the SOTA approach to ASAG [39] which
is based on the transformer model BERT [10]. Then we subject the reproduced
models to adversarial attacks. In particular, we employ and modify the universal
trigger attack proposed by Wallace et al. [41]. It generates short sequences of
tokens, called universal adversarial triggers, which try to make a model predict
a target class regardless of the actual sample.

In our context, students could prepend such a universal trigger targeted at
the correct class to all of their answers in an exam to artificially improve their
score. An example of such a trigger can be seen in Table 1. This kind of universal
trigger attack is especially critical as such triggers can be easily employed by
anyone once they are found.

In this work we make the following novel contributions:

– Application of SOTA natural language processing insights to the educational
scenario of exam grading

– Modification of Wallace et al.’s universal trigger attack to make it more tar-
geted at a specific class, namely the correct class

– Investigation of trigger transferability across datasets and models

2 Related Work

Two research areas are relevant for our work: automatic short answer grading
and adversarial attacks.
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Table 1. An example showing how prepending the trigger sequence “none exits” to a
student answer - taken from SciEntsBank’s question EM-21b’s unseen answers [12] -
changes the prediction from incorrect to correct.

Question: Georgia found one brown mineral and one black mineral.
How will she know which one is harder?

Reference Answer: The harder mineral will leave a scratch on the less hard
mineral. If the black mineral is harder, the brown
mineral will have a scratch

Student Answer: that it stay the scratch. → incorrect

Triggered Answer: none exits that it stay the scratch. → correct

2.1 Adversarial Attacks in NLP

Adversarial attacks can be categorized into input dependent and input indepen-
dent attacks. Input dependent attacks aim to modify specific inputs so that
the model misclassifies them. Strategically inserting, deleting or replacing words
with their synonyms [29], their nearest neighbors in the embedding space [3] or
other words which have a high probability of appearing in the same context [47]
are examples of such an attack. Samanta and Mehta [35] also consider typos
which in turn result in valid words, e.g. goods and good, for their replacement
candidate pool. Modifications can also be made on the character level by insert-
ing noise, such as swapping adjacent characters or completely scrambling words
[6]. Finally, the text can also be paraphrased to change the syntactic structure
[17].

Input agnostic attacks, on the other hand, aim to find perturbations that lead
to misclassifications on all samples. For instance, this can be done by selecting
a single perturbation in the embedding space which is then applied to all tokens
indiscriminately [15]. Alternatively, Ribeiro et al. [30] propose an approach that
first paraphrases specific inputs to find semantically equivalent adversaries and
then generalizes found examples to universal, semantically equivalent adversarial
rules. Rules are selected to maximize semantic equivalence when applied to a
sample, induce as many misclassifications as possible and are finally vetted by
humans. An example of such a rule is “What is” → “What’s”.

Another input independent approach involves concatenating a series of adver-
sarial words - triggers - to the beginning of every input sample [5]. The universal
trigger attack [41] utilized in this work also belongs to this category. In Sect. 4
the attack is explained in more detail. Additional information on adversarial
attacks can also be found in various surveys [44,48].

2.2 Automatic Short Answer Grading

Systems that automatically score student answers have been explored for multi-
ple decades. Proposed approaches include clustering student answers into groups
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of similar answers and assigning grades to whole clusters instead of individ-
ual answers [4,16,45,46], grading based on manually constructed rules or mod-
els of ideal answers [21,43] and automatically assigning grades based on the
answer’s similarity to given reference answers. We will focus on similarity-based
approaches here because most recent SOTA results were obtained using this kind
of approach. However, more information on other approaches can be found in
various surveys [7,14,32].

The earlier similarity-based approaches involve manually defining features
that try to capture the similarity of answers on multiple levels [12,24,25,33,34,
38]. Surface features, such as lexical overlap or answer length ratios, are utilized
by most feature engineered approaches. Semantic similarity measures are also
common, be it in the form of sentence embedding distances or measures derived
from knowledge bases like WordNet [28]. Some forms of syntactic features are
also often employed. Dependency graph alignment or measures based on the
part-of-speech tags’ distribution in the answers would be examples of syntactic
features. A further discussion of various features can be found in [27].

More recently, deep learning methods have also been adapted to the task
of automatic short answer grading [20,31,40]. The key difference to the feature
engineered approaches lies in the fact that the text’s representation in the fea-
ture space is learned by the model itself. The best performing model (in terms
of accuracy and F1 score) on the benchmark 3-way SemEval dataset [12] was
proposed by Sung et al. [39]. They utilize the uncased BERT base model [10]
which was pre-trained on the BooksCorpus [49] and the English Wikipedia. It
was pre-trained on the tasks of predicting randomly masked input tokens and
whether a sentence is another’s successor or not. Sung et al. then fine-tune this
deep bidirectional language representation model to predict whether an answer
is correct, incorrect or contradictory compared to a reference answer. For this
purpose, they append a feed-forward classification layer to the BERT model.
The authors claim that their model outperforms even human graders.

3 Reproduction of SOTA ASAG Model

To reproduce the results reported by Sung et al. [39], we trained 10 models with
the hyperparameters stated in the paper. Unreported hyperparameters were
selected close to the original BERT model’s values with minimal tuning. The
models were trained on the shuffled training split contained in the SciEnts-
Bank dataset of the SemEval-2013 challenge. As in the reference paper, we use
the 3-way task of predicting answers to be correct, incorrect or contradictory.
Then the models were evaluated on the test split. The test set contains three dis-
tinct categories: unseen answers, unseen questions and unseen domains. Unseen
answers are answers to questions for which some answers have already been seen
during training. Unseen questions are completely new questions and the unseen
domains category contains questions belonging to domains the model has not
seen during training.

We were not able to reproduce the reported results exactly with this setup.
Out of the 10 models, Model 4 and 8 performed best. A comparison of their
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and the reported model’s results can be seen in Table 2. The 10 models’ average
performance can be seen in Fig. 1. Since the reported results are mostly within
one or two standard deviations of the results achieved in our experiments, more
in-depth hyperparameter tuning and reruns with different random seeds may
yield the reported results. Alternatively, the authors may have taken steps that
they did not discuss in the paper. However, as this is not the focus of this work,
we deemed the reproduced models sufficient for our experiments.

Table 2. Performance of best reproduced models, Model 4 and 8, compared to the
results reported by Sung et al. [39] in terms of accuracy (Acc), macro-averaged F1
score (M-F1) and weighted-averaged F1 score (W-F1). Each category’s best result is
marked in bold.

Unseen answers Unseen questions Unseen domains

Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

#4 0.744 0.703 0.741 0.675 0.555 0.665 0.624 0.490 0.609

#8 0.737 0.690 0.732 0.674 0.561 0.662 0.670 0.599 0.661

Ref. 0.759 0.720 0.758 0.653 0.575 0.648 0.638 0.579 0.634

4 Universal Trigger Attack

In this work, we employ the universal trigger attack proposed by Wallace et al.
[41]. It is targeted, meaning that a target class is specified and the search will try
to find triggers that lead the model to predict the specified class, regardless of the
sample’s actual class. The attack begins with an initial trigger, such as “the the
the”, and iteratively searches for good replacements for the words contained in
the trigger. The replacement strategy is based on the HotFlip attack proposed by
Ebrahimi et al. [13]. For each batch of samples, candidates are chosen out of all
tokens in the vocabulary so that the loss for the target class is minimized. Then,
a beam search over candidates is performed to find the ordered combination of
triggers which maximizes the batch’s loss.

We augment this attack by also considering more target label focused objec-
tive functions for the beam search than the batch’s loss. Namely, we experiment
with naively maximizing the number of target label predictions and the targeted
LogSoftmax function depicted in Eq. 1. Here, L = {correct, incorrect, contra-
dictory}, t is the target label, n denotes the number of samples in the batch x
and fl(x) represents the model’s output for label l’s node before the softmax
activation function given a sample x.

TargetedLogSoftmax(t,x) =
n∑

i=0

log

(
exp(ft(xi))∑

jεL exp(fj(xi))

)
(1)
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Fig. 1. Average performance of the 10 reproduction models compared to the results
reported by Sung et al. [39]. The black bars represent one standard deviation in each
direction. Please note that the y axis begins at 0.4 instead of 0.

5 Experiments

In this section, we first give a short overview of the datasets used in our experi-
ments. Then, we present the best triggers found, followed by a short investigation
of the effect of trigger length on the number of successful flips. Next, the effect of
our modified objective function is investigated. Finally, we report on the trans-
ferability of triggers across models.

5.1 Data

The SemEval ASAG challenge consists of two distinct datasets: SciEntsBank
and Beetle. While the Beetle set only contains questions concerning electric-
ity, the SciEntsBank corpus includes questions of various scientific domains,
such as biology, physics and geography. We do not include the class distribution
of the 3-way task here, as it can be found in the original [12] and the ASAG
reference paper [39].

5.2 Experiment Setup

Unless explicitly stated, all experiments were conducted in the following way.
Model 8 was chosen as the victim model because it has the overall best perfor-
mance of all reproduction models. See Table 2 for reference. Since the model was
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trained on the complete SciEntsBank training split as stated in the reference
paper, we selected the Beetle training split as basis for our attacks. While the
class labels were homogenized for both datasets in the SemEval challenge, the
datasets are still vastly different. They were collected in dissimilar settings, by
different authors and deal with disparate domains [12]. This is important,
as successful attacks with this setup imply transferability of triggers
across datasets. In practice, this would allow attackers to substitute secret
datasets with their own corpora and still find successful attacks on the original
data. To the best of our knowledge, experiments investigating the transferability
of natural language triggers across datasets are a novel contribution of our work.

From the Beetle training set all 1227 incorrect samples were selected. The
goal of the attack was to flip their classification label to correct. We would
also have liked to try and flip contradictory examples. However, the model was
only able to correctly predict 18 of the 1049 contradictory samples without any
malicious intervention necessary. Finally, the triggers found are evaluated on the
SciEntsBank test split.

5.3 Results

In the related work, the success of an attack is most often measured in the drop in
accuracy it is able to achieve. However, this would overestimate the performance
in our scenario as we are only interested in incorrect answers which are falsely
graded as correct in contrast to answers which are labeled as contradictory.
Therefore, we also report the absolute number of successful flips from incorrect
to correct.

During the iterative trigger search process described in Sect. 4 a few thousand
triggers were evaluated on the Beetle set. Of these, the 20 triggers with the
most achieved flips were evaluated on the test set and of these, the best triggers
can be seen in Table 3. On the unseen answers test split, the model without any
triggers misclassified 12.4% (31) of all incorrect samples as correct. The triggers
“none varies” and “none would” managed to flip an additional 8.8% of samples
so that 21.3% (53) are misclassified in total. On the unseen questions split, the
base misclassification rate was 27.4% (101) and “none would” added another
10.1% for a total of 37.5% (138). On the unseen domains split, “none elsewhere”
increased the misclassification rate from 22.0% (491) to 37.1% (826).

Effect of Trigger Length. Wallace et al. [41] state that the trigger length is a
trade-off between effectiveness and stealth. They experimented with prepending
triggers of lengths between 1 and 10 tokens and found longer triggers to have
higher success rates. This differs from observations made in our experiments.
When the correct class is targeted, a trigger length of two achieves the best
results, as can be seen in Table 3. On the unseen answers split, the best trigger
of length 3 is “heats affected penetrated” and it manages to flip only 42 samples.
The number of successful flips further decreases to 9 for the best trigger of length
4, “##ired unaffected least being”. The same trend also holds for the other test
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Table 3. The triggers with the most flips from incorrect to correct for each test split.
The number of model 8’s misclassifications without any triggers can be found in the
last row. For the sake of comparability with related work, the accuracy for incorrect
samples is also given. UA stands for “unseen answers”, UQ denotes “unseen questions”
and UD represents “unseen domains”.

Triggers Number of flips Accuracy

UA UQ UD UA UQ UD

none varies 53 134 687 71.08 54.62 63.69

none would 53 138 810 41.77 31.25 31.15

none elsewhere 50 121 826 47.79 36.14 37.93

Base misclassification 31 101 491 84.74 70.65 76.93

splits but is omitted here for brevity. This difference in observation may be due
to the varying definitions of attack success. Wallace et al. [41] view a trigger
as successful as soon as the model assigns any class other than the true label,
while we only accept triggers which cause a prediction of the class correct. The
educational setting of this work may also be a factor.

Effect of Objective Function. We compared the performance of the three
different objective functions described in Sect. 4, namely the original function
proposed by Wallace et al. [41], the targeted LogSoftmax depicted in Eq. 1 and
the naive maximization of the number of target label predictions. To make the
comparison as fair as possible while keeping the computation time reasonable,
we fixed the hyperparameters of the attack to a beam size of 4 and a candidate
set size of 100. The attack was run for the same number of iterations exactly
once for each function. The best triggers found by each function can be seen
in Table 4. The performance is relatively similar, with the targeted function
achieving the most flips on all test splits, closely followed by the original function
and, lastly, the naive prediction maximization. Qualitative observation of all
produced triggers showed that the original function’s triggers resulted in more
flips from incorrect to contradictory than the proposed targeted function’s.

Table 4. A comparison of the objective functions.

Objective function Best trigger Number of flips

UA UQ UD

Naive none cause 42 107 647

Original nobody penetrated 43 121 673

Targeted none elsewhere 50 121 826
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Transferability. One of the most interesting aspects of triggers relates to the
ability to find them on one model and use them to fool another model. In this
setting, attackers do not require access to the original model, which may be kept
secret in a grading scenario. Trigger transferability across models allows them
to train a substitute model for the trigger search and then attack the actual
grading model with found triggers. We investigate this aspect by applying all
good triggers found on Model 8 to Model 4. Note that this also included triggers
from a search on the SciEntsBank training split and not just the Beetle
training set. The best performing triggers in terms of flips induced in Model 4
can be seen in Table 5. We also included the triggers which performed best on
Model 8 here.

Table 5. Performance of the triggers found on Model 8 evaluated on Model 4. For
reference, the number of flips originally achieved on Model 8 are also given. The first
rows are the best performing triggers on Model 4. The middle block contains the best
triggers on Model 8. Finally, the last row gives the number of samples misclassified by
Model 4 without any triggers.

Trigger Number of flips on Model 4 and 8

UA UQ UD

4 8 4 8 4 8

nowhere changes 81 51 184 135 957 640

anywhere. 58 45 108 105 1027 682

none else 73 53 158 136 941 818

none varies 49 53 79 134 576 687

none would 38 53 97 138 495 810

none elsewhere 60 50 115 121 701 826

Base misclassification 44 31 100 101 646 491

While there are triggers that perform well on both models, e.g. “none else”, the
best triggers for each model differ. Interestingly, triggers like “nowhere changes”
or “anywhere.” perform even better on Model 4 than the best triggers found
for the original victim model. On UA, “nowhere changes” flips 14.9% of all
incorrect samples to correct. In addition to the base misclassification rate, this
leads to a misclassification rate of 32.5%. On UQ, the same trigger increases the
misclassification rate by 22.8% to a total of 50%. On the UD split, prepending
“anywhere.” to all incorrect samples raises the rate by 17.1% to 46.1%.

As a curious side note, the trigger “heats affected penetrated” discussed in
the section regarding trigger length performed substantially better on Model 4,
so that it was a close contender for the best trigger list.
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6 Discussion and Conclusion

In our scenario, a misclassification rate of 37.5% means that students using
triggers only need to answer 20% of the questions correctly to pass a test that
was designed to have a passing threshold of 50%. If an exam would be graded by
Model 4, students could pass the test by simply prepending “nowhere changes”
to their answers without answering a single question correctly! However, this
does not mean that these triggers flip any arbitrary answer, as a large portion
of the flipped incorrect answers showed at least a vague familiarity with the
question’s topic similar to the example displayed in Table 1. Additionally, these
rates were achieved on the unseen questions split. Translated to our scenario this
implies that we would expect our model to grade questions similar to questions
it has seen during training but for which it has not seen a single example answer,
besides the reference answer. To take an example out of the actual dataset, a
model trained to grade the question What happens to earth materials during
deposition? would also be expected to grade What happens to earth materials
during erosion? with only the help of the reference answer “Earth materials are
worn away and moved during erosion.”. The results suggest that the current
SOTA approach is ill-equipped to generalize its grading behavior in such a way.

Nevertheless, even if we supply training answers to every question the mis-
classification rates are quite high with 21.3% and 32.5% for Model 8 and 4,
respectively. Considering how easy these triggers are employed by everyone once
someone has found them, this is concerning. Thus, defensive measures should
be investigated and put into place before using automatic short answer grading
systems in practice.

In conclusion, we have shown the SOTA automatic short answer grading
system to be vulnerable to cheating in the form of universal trigger employment.
We also showed that triggers can be successful even if they were found on a
disparate dataset or model. This makes the attack easier to execute, as attackers
can simply substitute secret grading components in their search for triggers.
Lastly, we also proposed a way to make the attack more focused on flipping
samples from a specific source class to a target class.

7 Future Work

There are several points of interest which we plan to study further in the future.
For one, finding adversarial attacks on natural language tasks is a very active
field at the moment. Exposing ASAG systems to other forms of attacks, such
as attacks based on paraphrasing, would be very interesting. Additionally, one
could also explore defensive measures to make grading models more robust. An
in-depth analysis of why these attacks work would be beneficial here. Finally,
expanding the transferability study conducted in this work to other kinds of
models, such as RoBERTa [23] or feature engineering-based approaches, and
additional datasets may lead to interesting findings as well.
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Abstract. In this paper, we present a novel approach to leverage the
power of Neural Tensor Networks (NTN) for student answer assessment
in intelligent tutoring systems. The approach was evaluated on data
collected using a dialogue based intelligent tutoring system (ITS). Par-
ticularly, we have experimented with different assessment models that
were trained using features generated from knowledge graph embeddings
derived with NTN. Our experiments showed that the model trained with
the feature vectors generated with NTN, when trained with a combina-
tion of domain specific and domain general triplets, performs better than
a previously proposed LSTM based approach.

Keywords: Knowledge graph · Neural Tensor Network · Answer
assessment · Open ended short answer assessment · Entity vector
embedding

1 Introduction

Natural language understanding is the foundation of assessment in conversa-
tional ITSs and other educational technologies that elicit freely generated natural
language responses. Typically, automatic answer assessment methods measure
the extent to which a given student answer or parts of it related or match some
target/benchmark concepts. These benchmark or expected concepts are speci-
fied by subject matter experts and other experts (e.g., experts in pedagogy or
linguistics). If the student answer or parts of it are semantically similar to the
target (reference) concepts then the student response is deemed correct; other-
wise, it is deemed incorrect. Semantic similarity methods can be categorized as
either knowledge based, such as methods that rely on WordNet for computing
similarity among concepts, versus corpus based, such as Latent Semantic Anal-
ysis (LSA) [10] and Latent Dirichlet Allocation (LDA) [4]. Another category
of methods use a combination of knowledge based and corpus based methods
[16,20].

There is a major limitation of similarity based assessment methods: they
assume the student answer and the reference answer are self contained. Most
often, the student responses are elliptical, contain anaphoras, or depend heavily
on a broader context such as the instructional task description or prior dialogue
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12163, pp. 191–203, 2020.
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Table 1. An example of student tutor conversation in DeepTutor

Q: What forces are acting on the puck while the puck is moving on
the ice between the two players?

A1: The forces acting on the puck are the gravitational force and
the normal force from the ice

A2: Normal and gravity

A3: The downward force from the earth and the normal force
from the ice

E: The forces acting on the puck are the downward force of gravity
and the upward normal force from the ice

turns (dialogue history) in the case of task-oriented conversational ITSs. For
example, in Table 1, student answer A1 is quite self-contained; a semantic simi-
larity approach would lead in this case to a high similarity score to the expected
answer (E).

On the other hand, some correct short answers could be elliptical (see answers
A2 and A3 in the table) and computing a semantic similarity score between
such elliptical answers and the references answer is a challenge simply because
the elliptical, shorter answers have many implied parts which a typical semantic
similarity approach would fail to account for as such approaches rely mostly
on explicitly specified information, i.e., words in this case. The problem with
assessing such elliptical answers using a standard semantic similarity approach
is that it leads to a low similarity score between the elliptical responses and the
expected answers, thus incorrectly assessing elliptical responses even if they are
correct.

Fig. 1. Portions of knowledge graph that show concepts “gravitational force” (left) and
“downward force from the earth” (right)

To address this issue, we propose a knowledge graph based approach by repre-
senting the concepts in the student answers and reference answers using embed-
ded vectors that are learned directly from a knowledge graph. The embedded
vectors encode indirect relationship between concepts, e.g., they can account for
implicit information among concepts in the student answer and the benchmark
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answer. To this end, we construct a knowledge graph by extracting concepts
and their surface relations from reference answers and then train a Neural Ten-
sor Network (NTN; [22]). The idea here is that once the NTN is trained, these
concept vectors encode relationships among entities/concepts in the knowledge
graph - the more two entities share same or similar neighbors and relations with
those entities, the more similar their vector representations are. For instance, in
Fig. 1, the entity “gravitational force” and “downward force from the earth” are
more likely to have similar vector embeddings since they share same neighbors
(force and problem 1 ) and relation types (constituent of, has head and is expected
concept).

2 Related Works

Knowledge graphs containing concepts or entities and their relations are impor-
tant knowledge resources that have been used successfully for various applica-
tions such as question answering and information retrieval. However constructing
knowledge graphs from unstructured data such as text is challenging. There have
been a number prior efforts such as [1,5,9] to extract knowledge graphs from the
text. These efforts employed classification approaches to classify whether an
entity participates in a particular relation or not. The output of those methods
is in the form of triplets specifying two entities and the corresponding relations
among those entities (entity 1, relations, entity 2). The OpenIE tool [1] is an
example of such an information extraction software system that outputs triplets
from a given input text1.

Often such knowledge graphs do not specify all possible relations between
entities and in general they lack reasoning capabilities to infer the unspecified
relations. That is, there are many true relations among entities in a given knowl-
edge graphs that are not explicitly encoded in the graph. The task of explicitly
inferring those missing relations is called the knowledge completion task. Several
attempts have been made to complete knowledge graphs with missing relations
among their entities.

One such approach to the task of knowledge completion in knowledge graphs
relies on relational learning and was proposed by Nickel and colleagues [18]. They
used a tensor model representation of relational data and developed RESCAL,
an approach that employs tensor factorization to factorize the tensor obtained
from relational data. This approach is comparable to LSA with two dimensional
matrices representing relation between entities. However, in the RESCAL app-
roach the representation of relations with three dimensional (3-D) matrices make
it possible to have multiple relationships between entity pairs.

Socher and colleagues [22] proposed a neural network approach to represent
relations with neural network. They developed a method to represent entities
as vectors and relations as neural tensor networks (NTN), a variant of neural
networks which combines a feed forward model with a bi-linear tensor product.
The parameters of such NTN encode the latent relationship between the entities.
1 https://nlp.stanford.edu/.

https://nlp.stanford.edu/
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One of the important aspects of NTN that attracted our attention towards using
the model in answer assessment is that it learns entity embeddings for each con-
cepts as a vector that inherently encodes the relationship with the other entities.
Such embeddings of concepts could help infer implied relationships and concepts
in knowledge graphs corresponding to student answers. Our work relies on clas-
sification method for which concepts in answers are represented by embedding
vectors learned while training Neural Tensor Network similar to that proposed
by Socher and colleagues [22].

To our knowledge, our work is the first attempt to use knowledge graphs and a
knowledge completion mechanism for automated answer assessment. In the past
decade, automated assessment systems [6,11,21] were developed for texts of var-
ious sizes and generated with different purposes in mind. For instance, SAT-style
argumentative essays have a well-defined structure and are 3–5 paragraphs in
length on average. On the other hand, in problem-solving conversational tutor-
ing systems students generate short answers in the form of dialogue turns while
working with the tutoring system to solve a given problem. Unlike the essay
grading, which focuses more on style, coherence, and organization of ideas, the
short answer assessment task focuses more on assessing the correctness of the
student response. Ziai and colleague [23] pointed the need of publicly available
good quality dataset that could arguably enable comparison of such systems that
are designed for different purposes. To this end, we focus here on the latter task of
short answer assessment and compare result with previous works such as [13,14]
that were proposed for same problem as this work. In the past, Latent Semantic
Analysis, for instance, was used [7,17] for short answer assessment. However,
LSA is an algebraic method that relies on word co-occurrence analysis of large
collections of naturally occurring texts and it cannot account for linguistic phe-
nomena such as anaphora resolution which is quite frequent in tutorial dialogues
as explained next. While analyzing tutorial dialogues in a dialogue based tuto-
rial system, Niraula and colleague [19] found that a significant portion of student
answers contain pronoun that refer entities in the previous utterances. Methods
to address such problems were proposed at different times such as [2,3,12,13].
In their methods, they assume that the question and the problem description
provide import contextual cues for elliptic answers. In our case, when generating
knowledge graphs, pronouns are solved to their corresponding referents.

3 Methods

Our assessment system is based on a multi-class classifier that classifies a stu-
dent answer into one of the four assessment labels: (i) correct, (ii) correct but
incomplete, (iii) incorrect and (iv) contradictory. For this, we extract entities and
relations from student answers and reference answers and obtain embedding vec-
tor of these entities. In the following sections, we discuss in detail the steps of
knowledge graph construction, entity embeddings, and assessment models.
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3.1 Entity Relations Extraction

In order to construct the knowledge graph, a large collection of entities and
relations triplets are needed. These triplets could then be used to learn latent
(implied) relationships and thus discover missing, valid links between the entities.
In our work, we use two categories of such entity relations: (i) semantic relations
obtained from WordNet [22] and (ii) surface relations defined and extracted from
the domain dataset, i.e., the DT-Grade dataset (see later).

While extracting surface relation triplets, we assume that there are a finite
number of problems that are authored for training with a given intelligent tutor-
ing system. An entity could be a token, a text chunk, or an unique identification
number of the problem. The token entities are obtained by tokenizing the ref-
erence answers. From those tokens, we keep only content words such as nouns,
verbs, adverbs and adjectives as entities. The text chunks are obtained from
dependency parse trees. We used SpaCy [8] for text parsing. Besides that, other
kind of entities and binary relationships are extracted using OLLIE [15], a state-
of-art tool for information extraction.

Fig. 2. Example of a sentence parsed with SpaCy dependency parser

In addition to extracting phrases, the dependency parse tree provides a way
to obtain syntactic relations between entities. For instance, from Fig. 2 we can
obtain several possible relations between entities. We define the following five
relation types:

1. is concept of: if an entity is an expected concept of a problem. A problem
is an abstract entity that represents problem’s unique identification number
(“Problem 1” is an abstract entity; Fig. 1).

2. is constituent of: if an entity is constituent of another entity; i.e., if an
entity is a part of another entity (“force” is constituent of “gravitational
force”; Fig. 1)

3. has head text: if a noun phrase’s head word is another entity according to
the dependency parse tree.

4. has ancestor text: if an entity’s ancestor is another entity according to the
dependency parse tree.

5. has child text: if an entity’s child is another entity according to the depen-
dency parse tree.
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3.2 Knowledge Graph Embedding

A collection of entity-relation triplets forms a knowledge graph. Such graphs are
usually extracted from explicit information in texts. Many valid relationships
among the entities in the graph are not explicitly mentioned in those graphs. This
is known as the knowledge incompleteness property. Among several approaches
proposed previously, we used Neural Tensor Network (NTN) proposed by Socher
and colleagues [22], which learns the connection strength between entity pairs,
hence discover missing links. The NTN architecture consists of a bilinear tensor
layer as well as feed forward layer which makes NTN powerful by harnessing the
power of both bilinear and feed forward networks. Here, we present a high level
architecture (Fig. 3) of a typical Neural Tensor Network and the scoring function
(see Eq. 1) that is originally used in the original paper by Socher et al. Several
NTN units (equal to the number of relation types) trained in unison produces a
knowledge graph embedding. Since the errors from each unit (i.e error for each
relation type) are aggregated while training, the weights of each cell affect each
other during training. In other words, the whole knowledge graph represented by
neural tensor network gets updated. While after training, the weights of these
NTN embed the relation between entities, the connection strength of two entities
in the knowledge graph is given by the score function shown in Eq. 1.

Fig. 3. High level architecture of knowledge graph embedding derived using NTN.

g(e1, R, e2) = UT
Rf

(
eT1 W

[1:k]
R e2 + VR [e1e2] + bR

)
(1)

where e1, e2 ∈ R
d are d dimensional vectors of entities, f = tanh, is a non-linear

activation function, W [1:k]
R ∈ R

d×d×k is a tensor and the bilinear tensor product
eT1 W

[1:k]
R e2 results in a vector h ∈ R

k, where each entry is computed by one slice
i = 1, ..., k of tensor: hi = eT1 W

i
Re2. The other parameters for relation R are the

standard form of a neural network: VR ∈ R
k×2d and U ∈ R

k, bR ∈ R
k.

To train such NTN, the entity relation triplet such as “(net force, has head
text, equal)” are labeled as true relation and negative examples such as “(net
force, has head text, friction)”, created by corrupting one of the entities in each
of the positive relation triplets are labeled as false. Then, such negative and
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positive triplets with corresponding binary labels are used to train the NTN.
While training, the network updates its weights as well as the entity vector to
obtain better representation of each of the entity after each epoch. The vectors
produced as bi-product are useful in our answer assessment method.

3.3 Classifier Using Entity Embedding

Using the entity embeddings obtained after training with NTN, we construct
vectors by extracting entities from an answer instance and averaging the entity
vectors to get a single vector for the answer instance. We obtain such vectors
for both the student answer as well as the reference answer. While computing
the average of vector entities, out of vocabulary entities in student answers need
to be handled. We address this problem by replacing such out of vocabulary
entities with the vectors of potential synonyms or one of its constituents, if the
case. If none exists, we simply use the “NONE” word vector.

Once the vectors of the student and reference answers are obtained, we feed
them onto a classifier. Indeed, our assessment model is a classifier that catego-
rizes the student answer into one of the classes that represent the assessment
labels. We used two types of classifiers based on neural networks. The first type
is a simple neural network with one input (Fig. 4a), the vector of the student
answer. The second type concatenates the reference answer vector and the stu-
dent answer vector (Fig. 4b). The advantage of the classifier with two input
vectors is its ability to learn by comparing the student answers with standard
reference answers during training. In other words, such a classifier learns to dis-
tinguish between a good answer that is semantically close to the reference answer
and incomplete or incorrect answers which are not semantically close to the ref-
erence answer. Additionally, the reference answers are generally self contained
and complete, hence they can provide contextual cues to the student answer,
when used together.

(a) Student answer as input
(b) Student answer and reference answer as
input

Fig. 4. Student answer classifier

Compared to one input classifier, training and predicting with the two input
classifier is different when there are multiple possible reference answers (usu-
ally, paraphrases of each other) for same problem. For training, those reference
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answers, paired with corresponding student answers produce a larger number of
training examples, an advantage over the one input classifier. However, while pre-
dicting, multiple pairs with same true label but different predicted labels could
be possible for a single instance (student answer). In such situations, a majority
vote strategy is used to select the predicted assessment label; i.e., the assessment
label that is predicted most frequently for a student answer is selected as the
final predicted label.

4 Experiments and Results

We performed experiments with two different types of classifiers using entity vec-
tors learned with NTN trained with both semantic (domain general) and surface
(domain specific) relation triplets. The two types of classifiers, one input and two
inputs trained with different entity vectors obtained from various triplet sources,
are shown in Table 2. The domain general triplets are obtained from WordNet
relations (prefixed with “WN”) whereas the domain specific triplets are obtained
from DT-Grade dataset (prefixed with “DT”). We also performed experiments
by augmenting the domain general triplets with domain specific triplets (pre-
fixed with “Aug”). For augmentation, we combined the domain general entities
and relation obtained from WordNet with entities and triplets obtained from the
DT-Grade dataset. In the following sections, we first describe datasets and then
present the results obtained in various experimental setups.

Table 2. Experimental models

One input classifier Two input classifier Triplet source

WN1IP WN2IP WordNet

DT1IP DT2IP DT-Grade

Aug1IP Aug2IP Augmented (WordNet &
DT-Grade combined)

4.1 Dataset

Tutorial Dataset. We used the DT-Grade dataset [3] which contains instances
in the form of student answer - ideal answer pairs extracted from logged tutorial
interaction of 40 junior level college students and a state-of-the-art intelligent
tutoring system. The instructional tasks were conceptual physics problems. The
dataset consists of 900 instances. The student responses were labeled with the
following four assessment labels (shown in Table 3).
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Table 3. DT-Grade dataset

Labels Description Distribution

Correct Covers all the expected concepts 367 (40.77%)

Incomplete Covers some of the expected concepts 211 (23.44%)

Contradictory Semantically opposite or contrast to expected answer 84 (9.33%)

Incorrect Does not include any of the expected concepts 238 (26.44%)

Total 900

Knowledge Graph Dataset. We used the WordNet knowledge graph dataset
described by Socher and colleagues [22]. We preprocess the WordNet triplets to
combine the different senses for same word into a single entity for training our
neural tensor network. Though the different senses are combined, the relations
that those different senses previously participated in was kept unchanged and
treated as a separate training instance. This makes the model simple yet enabling
the encoding of the relations in the embedding. There are 11 relations categories
obtained from WordNet, 33,163 entities, and 109,165 relationship triplets. These
categories characterize the semantic relations between the entities in the knowl-
edge graph. Additionally, we created an entity relation triplets dataset from the
reference answers in the DT-Grade dataset. The entities we created are of two
types: (i) the question itself is the entity, i.e. there are 900 such entities and (ii)
the content words, phrases, head words, parents and children obtained by parsing
the reference answers using the SpaCy [8] dependency parser. Encoding question
as an entity provides contextual information such as the relation “is concept of”
(see Sect. 3.1) to the knowledge graph. After obtaining the entities, we identified
5 syntactic relations among the entities obtained from reference answers, with
1,263 entities and 22,941 relation triplets. We used these two categories of knowl-
edge graph datasets separately as well as augmenting the syntactic knowledge
graph dataset by combining with the semantic knowledge graph dataset.

4.2 Results

The results of 10-folds cross validation training-testing process is summarized in
Table 4. We report the performance in terms of accuracy and F1 measure. The
result shows that Aug2IP performed best with an average accuracy of 0.644,
which is 2.2% better than *LSTM, the previously best performing model (0.622)
[13]. Also its F1 score (= 0.642) is 2.2% and Kappa (= 0.482) is 3.2% better,
respectively, than that of *LSTM. The *LSTM used the problem description,
tutor question, student answer, and reference answer as input, however, and
relied on one-hot-encoding inputs for entities to discover general semantic and
domain specific linguistic relationships. In fact, our two inputs classifier when
used with domain specific vectors (DT2IP & Aug2IP) performed better. This
suggests that the NTN model could learn vectors better than the word2vec used
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in previous approach. The result aligns with our expectation that the knowledge
graph inferred with NTN can encode the latent relations between entities.

Table 4. Performance of models

Model Avg acc F1 Kappa

*LSTM [13] 0.622 0.620 0.450

DT2IP 0.626 0.624 0.450

Aug2IP 0.644 0.642 0.482

WN2IP 0.564 0.569 0.334

DT1IP 0.569 0.569 0.350

Aug1IP 0.604 0.604 0.409

WN1IP 0.551 0.565 0.302

Fig. 5. Comparison of precision, recall and f1 score for different models

Besides performing better than previous model, the result suggests that when
trained with vectors created from the same dataset, the classifiers that takes
both student answer and reference answer as input perform better compared
to models that only take student answer as input. For instance, DT2IP has
average accuracy of 0.626 which is 5.7% higher than of DT1IP. Similarly Aug2IP
has average accuracy of 0.644 which is 4% higher than Aug1IP. Whereas the
performance of WN2IP is higher than that of WN1IP, it is a small improvement
(1.3%) when compared to other classifiers.

Table 4 further shows that the classifier when trained on domain specific vec-
tors (prefixed with DT) perform better than when trained on domain general
vectors prefixed with WN). Moreover, when the domain specific triplets were
augmented with domain general triplets, the performance boosted up signifi-
cantly (3.5% improvement for Aug1IP than DT1IP, and 1.8% for Aug2IP than
DT2IP).

Figure 5 shows the average precision, recall, and F1 score of various models we
experimented with. As seen from the figure, our two input classifier trained with
augmented vectors performed best in terms of precision (0.639), recall (0.644)
and F1 score. Compared to domain specific vectors (DT1IP and DT2IP) the
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domain general vectors(WN1IP and WN2IP) performed worse. The reason could
be because a significant number of the entities extracted from student answers
and reference answers from DT-Grade dataset were not present in the domain
general vocabulary. And lack of such entities resulted in inaccurate representa-
tion of entities. Because such entities need either semantically similar entities or
synonym words instead of relying on NONE entity in the vocabulary.

5 Conclusions

In this paper, we proposed several knowledge graph based models to assess freely
generated student responses with a focus on short responses generated in tutorial
dialogues. The improved performance in terms of accuracy and F1 measures of
the propose models suggests knowledge graph based models yield better vectorial
representation of student answer and reference answer texts. In addition, the two
input classifier always performed better than the one input classifier when trained
with the same set of vectors. This is expected, since the two input classifier uses
the reference answer as input as well. More importantly, when the two input
classifier is trained with augmented vectors, they performed best. This suggest
that the relation triplets obtained from actual tutorial data helps to encode
highly predictive features when training with NTN. In summary, the NTN model
learns entity vectors that help to represent concepts and relations some of which
are not explicitly mentioned and therefore benefit methods for answer assessment
such as the one we propose here.

Our method has several areas where further improvement is possible. One
of those areas is to define more relations among entities that are specific to
a target domain, e.g., physics. In this work, we have limited ourselves to gen-
eral, syntactically-derived relations. In the future, we plan to integrate methods
that can automatically discovering domain specific relations from free text, for
instance.
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Abstract. Lecturing in a classroom environment is challenging - instructors are
taskedwithmaintaining students’ attention for extended periods of timewhile they
are speaking. Previous work investigating the influence of speech on attention,
however, has not yet been extended to instructor speech in live classroom lectures.
In the current study,we automatically extracted acoustic features from live lectures
to determine their association with rates of classroom mind-wandering (i.e., lack
of student attention). Results indicated that five speech features reliably predicted
classroom mind-wandering rates (Harmonics-to-Noise Ratio, Formant 1 Mean,
Formant 2 Mean, Formant 3 Mean, and Jitter Standard Deviation). These speaker
correlates of mind-wandering may be a foundation for developing a system to
provide feedback in real-time for lecturers online and in the classroom. Such a
system may prove to be highly beneficial in developing real-time tools to retain
student attention, as well as informing other applications outside of the classroom.

Keywords: Mind-wandering · Attention · Acoustics · Speech · openSMILE

1 Introduction

In the classroom, lecturers are often faced with the challenging task of combatting
frequent bouts of student inattention and disengagement. Such inattention often arises
in the form of mind-wandering, defined here as thoughts unrelated to the task at hand
(e.g., a classroom lecture [31, 32]). When a student mind-wanders, they risk missing out
on critical pieces of information and thus can develop an impoverished understanding
of the learning material. It is therefore important to find ways to reduce the occurrence
of mind-wandering and potentially mitigate its negative impact.

Oneway tominimize the potential negative influence ofmind-wandering is by detect-
ing and responding to it in real-time [20]. However, approaches to date have mostly
focused on student-centered models of mind-wandering – where ongoing data specific
to each learner (e.g., eye-gaze) are necessary to make predictions about whether or not
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they are currently mind-wandering. These attempts have been successful in laboratory
contexts, but they are not currently scalable to entire classrooms.

Herewe adopt an environment-centeredmodel instead, by focusing on subtle natural-
istic fluctuations in the learning environment (i.e., the instructor’s speech).We test, for the
first time, whether instructor speech patterns are related to classroom mind-wandering
– potentially setting the foundation for the development environment-centered mod-
els of mind-wandering that can mitigate mind-wandering through scalable automated
instructor feedback.

Environment-centered models seem based on the lessons we have already learned
from laboratory cognitive psychology studies about when and why mind-wandering
occurs. For example,mind-wandering tends to increase over the course of a task [33], and
decrease when the task becomes more difficult (but see [13, 29]). Notably, even features
like typeface seem to influence how often learners report mind-wandering: participants
reported mind-wandering more often when reading a text in grey Comic Sans ver-
sus black Arial [11]. Although these studies demonstrate the potential malleability of
mind-wandering, it is unclear if subtle environmental features (e.g., instructor behaviors,
content changes, speech) may influence mind-wandering in live classrooms.

Here we directly examine how variations in the way information is transmitted
through speech relates to students’ attention in classroom contexts. This study builds
on the environment-centered approach adopted by Bosch et al. [3], which examined
how fluctuations in instructor movements were found to successfully predict classroom
mind-wandering rates. Our specific focus on the instructor’s speech fills an important
gap in the literature, as very little research to date has been dedicated to quantifying and
understanding how acoustical speech patterns influence student attention (e.g., rates of
mind-wandering).

1.1 Background Literature

Acoustical features of speech have previously been linked to listener attention and infor-
mation retention, albeit outside of the educational realm [4, 24]. For example, both
the structure of speech (e.g., pitch contour and trajectory of source location) as well as
prosodic quality (e.g., pitch and loudness) appear to reliably predict audience inattention
[5, 10]. The emotional tone conveyed through acoustical features also seems to be an
important aspect of speech; for example, there are clearly dissociable processing patterns
in the brain when people hear angry versus neutral prosody [26]. These studies, though
not conducted in the context of a lecture, highlight the potential for acoustic-prosodic
features to impact information processing – making it likely that mind-wandering may
also be influenced.

Only a few studies have attempted to link acoustic features tomind-wandering specif-
ically. Drummond & Litman [6] asked students to read a paragraph about biology aloud
and then perform a learning task (either self-explanation or paraphrasing). Periodically,
they were probed to report how frequently they experienced off-task thoughts on a scale
from 1 (all the time) to 7 (not at all) during the task. Students’ responses were split
into two categories, where 1–3 on the scale was “high” in zoning out, and 5–7 was
“low” in zoning out. They trained a supervised machine learning model on the students’
acoustic-prosodic features to classify low and high zone out, and achieved an accuracy
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of 64% in discriminating between the two. This study provides some evidence that indi-
viduals’ tendencies to mind-wander are related to acoustic-prosodic cues (e.g., percent
of silence, pitch, energy) of their own speech. It remains unclear, however, how such
acoustic-prosodic features extracted froma speaker influencemind-wandering for listen-
ers. Establishing associations between these speaker features and listener attention may
have direct applications for an environment-centered feedback system in a classroom.

In the current study we sought to bridge the gap in our understanding of possible
associations between features of speech and classroom attention. Our goals were (1)
to provide a proof-of-concept method for automatically analyzing classroom speech
features from low-cost audio recordings, and (2) to elucidate the relationship between
acoustical speech features and mind-wandering in the classroom.

To tackle the first goal, we automatically extracted speech features from classroom
lecture recordings using an open source software package called open Speech andMusic
Interpretation by Large-Space Extraction (openSMILE) [9]. We selected a popular fea-
ture set provided by openSMILE – the Geneva Minimalistic Acoustic Parameter Set [8].
We then identified and extracted a set of theoretically-relevant acoustic features from
nine live classroom lecture recordings.

Next, as a step toward identifying key features to use in an environment-centered
model of mind-wandering, we assessed the relation of these features to mind wandering.
We focused on mind-wandering because it is consistently reported to be negatively
associated with performance and comprehension in complex learning environments [19,
23, 31], including university lectures [34–36]. We aligned speech features in time with
students’ self-reported mind-wandering rates in order to probe this relationship. Below
we describe our method for processing the audio recordings, how we arrived at a set of
theoretically-relevant acoustic-prosodic variables, and how we tested for associations
with mind wandering behavior.

2 Method

To address our two research goals, we collected data from multiple sources. As an
overview, audio was extracted from low-cost video recordings of lectures, and students’
attention was polled using a computer application during these same lectures. The two
data channels were temporally aligned at 500-second intervals for analyses. Each stage
is outlined in greater detail below.

2.1 Classroom Audio and Self-reported Mind Wandering

We extracted audio from recordings of nine different lectures at the University of Water-
loo. These lectures were delivered by three different instructors (three lectures each) who
were teaching undergraduate psychology courses. The lectures were delivered during
normal classroom meeting times and with no manipulations or interference related to
our experiments. The lectures took place in two similar classrooms, each with sloped,
stadium-style seating and a stage with a podium for the teacher. The audio recording
began at the same time as the lecture and lasted for the entirety of the class. For more
details on data collection, please refer to Wammes et al. and Bosch et al. [3, 36].



The Sound of Inattention 207

Mind-wandering self-reports were collected from the students who participated in
the study during the lecture (N = 76). Students who agreed to participate in the exper-
iment downloaded an application onto their laptop that administered pseudo-randomly
scheduled thought probes throughout the lecture. Specifically, the occurrence of each
thought probe notification was individually randomized, with the constraint that probes
appeared no more than five times throughout the lecture with a range of 15 and 25 min
between probes. When a thought probe was scheduled, a small window appeared in
the bottom right corner of their computer screen. This prompted participants to intro-
spect about their mental state just prior to the probe, and report their current degree
of mind-wandering on a continuous scale ranging from Completely mind-wandering
to Completely on task (reverse scored to correspond numbers between 0 and 1, where
higher values refer to more mind-wandering). They were informed thatmind-wandering
was defined as “thinking about unrelated concerns,” and on task was defined as “thinking
about the lecture.”

2.2 Audio Processing and Feature Extraction

In order to avoid interference from speech unrelated to lecture delivery,we usedAudacity
software to trim each audio clip to only include the instructor’s speech. Trimmed audio
was then processed using openSMILE [10]. openSMILE is a flexible, open-source soft-
ware package and audio toolkit capable of extracting a variety of different sound-based
features, tailored for applications ranging from music to speech. The software extrapo-
lates features based upon one’s chosen configuration package and returns information
about the occurrences of the selected features [10]. In this experiment, the configuration
package was an implementation of the GeMAPS, a set of acoustic parameters based
upon recent acoustical speech research [8]. GeMAPS was selected as the configuration
for openSMILE due to its minimalistic approach to affect-oriented audio feature extrac-
tion. These parameters are Pitch, Jitter, Formant 1, 2, and 3 frequencies (F1, F2, and
F3, respectively), F1 bandwidth, Shimmer, Loudness, Harmonics-to-noise-ratio (HNR),
Alpha ratio, Spectral slope of 0–500Hz and 500–1500Hz, F1, F2, and F3 relative energy,
Harmonic difference H1-H2, and Harmonic difference H1-A3 [8].

Various relevant summary statistics of these basic parameters are also output by
openSMILE. These include coefficient of variation (standard deviation normalized by
the mean; SD) and mean for each parameter. For Loudness and Pitch, the following
features were additionally included: 20th percentile, 50th percentile, 80th percentile, the
range of 20th to 80th percentile, as well as the mean and SD of the slope rising signal
and slope falling signal. Lastly, the mean of Spectral slopes (from 0–500 Hz and 500–
1500Hz), theAlpha Ratio, and theHammarberg Indexwere included for each recording,
resulting in 56 total features for analysis.

Following extraction of audio recordings from lectures and feature extraction, we
identified a subset of these GeMAPS features (described in more detail below) for our
analysis.
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2.3 Selecting Acoustic Features

We identified a set of theoretically-relevant acoustical characteristics based on previous
literature. Specifically, we searched for features that have well-established relationships
with psychologically-relevant constructs (seeTable 1 for a full description of features and
corresponding sources). Due to the lack of classroom-based investigations, the major-
ity of literature review focused on studies examining how features of speech relate to
attention and emotion, broadly conceived, in laboratory contexts. For example, emotion
is considered to be a fundamental aspect of speech, as the delivery of emotional infor-
mation is tied to inflection of the voice [21]. The following features were identified with
the corresponding sources, as described in Table 1.

Table 1. Full list of selected acoustical speech features, description of selected features, rationale
for selection and citations of relevant literature

Formant 0 (F0) Mean. This feature characterizes the fundamental frequency of 
voice, which is critical in driving inflection and linked to prosody [18, 22, 27] 

Formant 1 (F1) Mean. The first harmonic formant is a determinant of prosodic 
quality, which drives speech reception [18, 26-27].

Formant 2 (F2) Mean. The second harmonic formant uniquely defines sounds of 
speech and is an acoustic correlate of resonance and clearness of speech [18, 25-27] 

Formant 3 (F3) Mean. The third harmonic formant is present in vowel sounds and is 
fundamental to reception of clear speech [1, 18, 26-27] 

F1 Bandwidth Mean. This is the region of frequency in which amplitudes differ by 
less than 3 decibels from the center frequency. It is a determinant of nasally/honky 
qualities of speech [17-18].

Loudness Mean. The average maximum volume of speech indicates more careful 
and precise speech and is correlated to confident speech as well as compliance [15,
18].

Loudness Standard Deviation. See above (Loudness Mean).

Jitter Standard Deviation. The standard deviation of pitch fluctuations is associated 
with trembling/tremorous voices, relating it to nervous voice [30].

Shimmer Mean. The average fluctuations of speech loudness are also associated with 
trembling/tremorous voices, relating it to nervous voice [30].

Voiced Segment Mean Length. The average length of discrete units in a stream of 
speech is a correlate of confident and compliant speech, indicative of precise and 
careful speech [15, 18].

Harmonics-to-Noise Ratio. This is the ratio of harmonic energy difference between 
the fundamental formant (F0), first harmonic (F1) and second harmonic (F2). This is a 
correlate of rough, uneven, and bumpy speech [7]. 

Hammarberg Index Mean. The difference in spectral energy between peaks in the 
0.2 kHz and 2.5 kHz band [16] is a correlate of low percentile sadness and perceived 
attractiveness of the speaker [15, 18].
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2.3.1 Formants
Formants are descriptions of the high regions of spectral energy that occur in discrete
regions of frequency. F1, 2 and 3 are necessary for synthesis of vowels in speech;
additionally, the presence of F3 is required for interpretable speech [37]. F1 Bandwidth
Mean also describes the degree to which speech is nasally and thus is included here (see
Table 1).
2.3.2 Voiced Segment Length, Loudness, Jitter and Shimmer
Loudness of Speech is vital in a lecture due to its important role in conveying information
to all members of the audience as well as its relation to confident and precise speech
[15, 18].
Voiced Segment Length is defined as the length of discrete units in a stream of speech,
which is measured by recording the average periods of uninterrupted speech. Similar to
loudness of speech, voiced segment length is a correlate of confidence and precision in
speech [15, 18].
Shimmer Mean is described as the occurrences of fluctuations in loudness of speech.
Somewhat analogous, Jitter Standard Deviation is defined as the fluctuations in pitch.
Both shimmer and jitter have been found to be correlates of trembling and nervous
speech [30].
2.3.3 Harmonics-to-Noise Ratio and Hammarberg Index
Harmonics-to-Noise Ratio (HNR) is the ratio of harmonic energy: the difference between
fundamental formant (F0), first formant (F1), and second formant (F2). Previous research
has found HNR to be a correlate of rough, uneven, and bumpy speech.

2.4 Predicting Student Mind-Wandering with Acoustic Features

Speech features were processed and extrapolated from the audio recordings in 500 s
epochs of time, whereas students’ mind-wandering reports were sampled continuously
throughout the lecture. To facilitate comparison between these two data channels, speech
features were paired with mind-wandering reports within the same 500 s window. To
accomplish this, mind wandering reports were aggregated across participants within
each time window from which acoustic features were derived. This resulted in 72 time
windows per class, which we used in the analyses below. The average rating of mind-
wandering (on a continuous scale between 0–1, where higher values mean more mind-
wandering) was .499 (SD = .287).

Relationships between speech features and mind-wandering rates were assessed
using linear mixed-effects models. We used the lme4 package in R [2]. All models
included a random effect of class to control for within-class variability in baseline mind-
wandering. All models regressed mind-wandering on each acoustic feature of interest.
We used restricted maximum likelihood estimation (REML) with unstructured covari-
ance to avoid biasing the error variance. Tests of model significance were computed
using a type II Wald chi-square test with a two-tailed α of .05 from the car package to
take a conservative approach based on only estimates from the model [14].
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3 Results

Descriptive statistics for each theoretically-relevant feature can be found in Table 2.
Below we describe how each of these features related to classroom rates of mind-
wandering. Effect sizes (i.e., standardized regression coefficients) can be found in
Table 3. We checked for normality of the residuals (i.e. an assumption for linear
regressions), and the residuals displayed a normal distribution.

Table 2. Mean and standard deviation of speech features and mind wandering reports.

Features M SD
Formant 0 Mean 28.3 2.04
Formant 1 Mean 638 55.8 
Formant 2 Mean 1683 56.0
Formant 3 Mean 2750 59.0
Formant 1 Bandwidth Mean 1190 34.0 
Loudness Mean .571 .105
Loudness Standard Deviation .452 .080
Jitter Standard Deviation 1.56 .117
Shimmer Mean 1.40 .027
Voiced Segment Length Mean .168 .049
Harmonics-to-Noise Ratio 2.01 1.74 
Hammarberg Index Mean .359 .892
# of Mind Wandering in Epoch 11.8 12.6

3.1 Formants

Formant 0 Mean (ß = .047, p = .494) and Formant 1 Bandwidth Mean (ß = .102, p =
.156) were not reliably related to mind-wandering. In contrast, Formant 1 Mean (ß =−
.236, p = .006), Formant 2 Mean (ß = −.188, p = .025) and Formant 3 Mean (ß = −
.239, p= .007) were all significantly negatively related to classroom ofmind-wandering.

3.2 Loudness, Voiced Segment Length, Jitter and Shimmer

Mind-wandering was not significantly related to Loudness Mean (ß =−.094, p= .128)
or Loudness Standard Deviation (ß = .024, p= .801). The same non-significant patterns
were observed between mind-wandering and Voiced Segment Length Mean (ß = .056, p
= .482) and Shimmer Mean (ß =−.051, p= .367). However, Jitter Standard Deviation
was significantly positively related to mind-wandering (ß = .097, p = .008).
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Table 3. Linear mixed effects models of relevant acoustical speech features. Standardized
regression coefficients and p-values listed for each model with significant values (p< .05) bolded.

Features ß p 
Formant 0 Mean .047 .494
Formant 1 Mean -.236 .006
Formant 2 Mean -.188 .025
Formant 3 Mean -.239 .007
Formant 1 Bandwidth Mean .102 .156

Loudness Mean -.094 .128
Loudness Standard Deviation .024 .801
Jitter Standard Deviation .097 .008
Shimmer Mean -.051 .367
Voiced Segment Length Mean .056 .482

Harmonics-to-Noise Ratio .175 .009
Hammarberg Index Mean .071 .224

3.3 Harmonics-to-Noise Ratio and Hammarberg Index

Harmonics-to-noise Ratio was significantly positively related to mind-wandering (ß =
.175, p = .009), whereas Hammarberg Index Mean was not (ß = .071, p = .224).

3.4 Summary of Results

We show that subtle fluctuations in speech characteristics influence classroom mind-
wandering. Findings indicate that higher speech interpretability (higher values of For-
mant 1, Formant 2, and Formant 3 Mean), stability of pitch inflection (lower Jitter
Standard Deviation, and the smoothness and evenness of speech (lower Harmonics-to-
noise Ratio) were associated with lower rates of self-reported mind-wandering. This
same pattern of results was unchanged when analyses were repeated with the number of
mind-wandering reports as a control variable.

4 Discussion

To date, little research has been devoted to environment-centered models of mind-
wandering in classrooms. However, understanding how subtle variations in classroom
lectures relate to student attention is important given that students frequently report
mind-wandering while listening to lectures. We addressed this gap by assessing the rela-
tionship between acoustical speech features and mind-wandering in a classroom setting.
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We first detailed a method for automatically extracting a set of psychologically-relevant
acoustical speech features from low-cost video recordings in live classrooms. We then
related these features to students’ self-reported mind-wandering across nine lectures.
The data indicate that acoustical characteristics of the instructor’s speech matter: we
observed significant relationships between mind-wandering and Formant 1, Formant
2, and Formant 3 Means as well as Jitter Standard Deviation and Harmonics-to-noise
Ratio. Of these features, Jitter Standard Deviation and Harmonics-to-noise Ratio were
positively related to student mind-wandering, whereas Formants 1, 2, and 3 Meanswere
negatively related to mind-wandering.

The negative relationships seen for Formant 1, Formant 2, and Formant 3 Means
suggest that students paid more attention when speech was clearer. These three formants
are associated with better speech clarity and negative correlates of raspy or hard-to-hear
speech [18, 26, 27]. From a cognitive standpoint, mind-wandering may be more likely
to occur when speech is less clear because discerning the content of the speech becomes
more difficult; students may not have the cognitive resources available to match these
increased task demands [13, 38].

The positive relationship observed for Jitter StandardDeviation provide some insight
into the role of pitch changes in mind-wandering; that is, as the volatility of the instruc-
tor’s pitch increased, students reported higher rates of mind-wandering. Prior work
revealed an association between jitter and trembling or nervous speech [30]. Thus,
mind-wandering occurrences may increase when nervousness becomes detectable in
an instructor speech. This relationship may be due to how students interpret of the
prosody speech; additional sub textual emotional information that is actually irrelevant
to the lecture may influence their attention. A similar positive relationship was found
for Harmonics-to-Noise Ratio Mean: mind wandering increased along with increased
magnitude of Harmonics-to-Noise Ratio (i.e., rough, uneven speech [15, 18]). In the
context of our findings, this suggests that mind-wandering is more likely to occur when
the instructor’s speech is more rough and uneven. Taken together, these finding highlight
promising avenues for improving classroom lectures given that overall clarity of speech
may be a simple way to increase student attention.

Our findings serve as a potential basis for an environment-centered system to address
mind-wandering that does not require any intrusive or high-cost student measurements.
Current developments for such a system are in their infancy and rarely explore raw
audio data. For example, Schneider, Borner, Van Rosmalen & Specht [28] developed a
real-time feedback system which analyzes nonverbal and verbal behaviors and provides
feedback to speakers. This system, while found to increase performance and confidence
in speaking, focused onmore basic features than the ones used here, such as arm-crossing
and volume. This system seeks to ensure that fluid speech is maintained and does not cur-
rently incorporate potential predictors of listener attention such as mind-wandering. Our
findings suggest that interventionsmaybe effective by targeting acoustical characteristics
of instructor speech to improve lecture delivery and reduce classroom mind-wandering.

Our results,when combinedwith other environment-centered features likemovement
[3],may provide a crucial step toward the development of amulti-modal feedback system
where acoustic properties are considered along with motion, content, and other sources
of classroom data. Future research in this area may benefit by repeating the experiment
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while controlling for lecture content, as content of the presented information is likely
to influence off-task though. Next steps include integrating and testing automatically
extracted acoustic features into a real-time system. Such a system would require the
intake of data in a specified time window, buffering the data in order to allow time for
openSMILE computation, then feeding the buffered data to openSMILE for computation
and prediction of student attention. Finally, the system will need to return a report that
is easily accessible and interpretable by the instructor. While these steps are substantive,
they are all attainable and the efficacy of using both video and auditory features has
been established. As these tools develop, they provide a promising direction for online
real-time intervention in educational settings.
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Abstract. Gamification, defined as the use of game elements in non
game situations, is a widely used method to foster learner engagement
and motivation. It is generally accepted that in order to be effective,
gamification should be tailored to users. Currently, most systems adapt
by assigning different game elements based on a single learner profile
(e.g. dominant player type, personality or gender). However, there is no
study yet that analyse the effect of combining several profiles. In this
paper, we study the usage data from 258 students who used a gamified
learning environment as a part of their mathematics class. By simulating
different adaptation techniques, we show that the learner model chosen
to tailor gamification has significant effects on learners’ motivation and
engaged behaviours depending on the profile(s) used in this context.
We also show that tailoring to initial motivation to learn mathematics
can improve intrinsic motivation. Finally, we show that tailoring to both
player type and motivation profiles can improve intrinsic motivation, and
decrease amotivation, compared to a single adaptation only based on
learner motivation. We discuss the implications of our findings regarding
the choice of a learner model for tailoring gamification in educational
environments.

Keywords: Tailored gamification · User modelling · User behaviour ·
Motivation · User profile

1 Introduction

Gamification, defined as the use of “game design elements in non-game contexts”
[3] is widely used in education to foster learner engagement and motivation, and
to improve learner performances. Previous studies have shown that to be effective
gamification should be tailored to users’ expectations, and individual preferences
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[8,10,17,20,26]. However, adapting game elements to specific individual prefer-
ences can be a complex task, as learners can have different preferences towards
games, and different motivations for learning. Most systems therefore use learner
profiles to categorise and classify learners, based on information such as their
player type [18,22], personality traits [6], more rarely learner motivation [28]),
or more context-dependent information, such as learning styles [12]. Existing
tailored gamification systems use a single learner profile to recommend relevant
game elements. Even if most of these systems have positive results on learner
motivation, engagement, and performance, some more recent work shows more
mitigated results [16,29]. This raises the question of how effective the profile is
at capturing the differences between learners, the nuances in their motivations
and preferences when using learning environments and therefore if the impact
of tailored game elements provided to learners depends on the profile used.

In this paper, we study the usage data from a gamified learning environment
where learners were randomly assigned a game element whilst doing mathematics
quizzes. We compare different subsets of learners that used game elements either
adapted to their player profile or to their motivation profile. We also evaluate the
impact of a dual profile adaptation method based both on player type and learner
motivation. We aim to answer two research questions: (1) What are the effects of
tailored gamification on users’ motivation and engaged behaviours in comparison
to non-tailored gamification? (2) Are these effects different depending on the user
model chosen for tailoring game elements?

We show that the user model chosen to tailor game elements has signifi-
cant effects on learners, but on different metrics depending on the chosen pro-
file. We also highlight that tailoring game elements according to initial motiva-
tion induces a more positive variation of intrinsic motivation compared to non-
tailored game elements. Finally, the dual profile leads to a more positive variation
of intrinsic motivation and less amotivation compared to tailoring based only on
initial motivation profile.

2 Related Work

2.1 The Impact of Tailored Gamification

The reported effects of tailored gamification can generally be broken down into
two categories: effects on learner motivation [12,16,19–21,24,28,29], and effects
on learner performance [12–14,19,28]. Regarding motivation, Mora et al. [21]
report an increase in behavioural and emotional engagement from students when
adapting to their player type. They estimated these engagements using a post
test survey. Monterrat et al. [20] showed that learners who used counter adapted
elements said that their game elements were more fun and useful, than learners
who used adapted elements. In an earlier study [19], they found that learners
spent more time using the learning tool with adapted game elements. Lavoué et
al. [16] showed that adaptation had little to no effect for the majority of learners,
only reducing the amotivation of the more invested ones. Dos Santos et al. [29]
showed that for some of the Brainhex [22] player types, adapted game elements
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increased flow (using the survey proposed by Hamari et al. [11]), whereas for
others, the counter adapted game elements increased flow instead. Oliveria et al.
[24] also evaluated learners’ flow experience. However they found no differences
between the adapted and non adapted learners. In previous work [23], the same
authors looked at learner concentration when using game elements adapted to
player type. They found that for some gamer types, the tailored system was
better than the counter-tailored system, however for other player types, the
counter-tailored game elements functioned better.

Regarding performance, Kickmeier-rust et al. [14] found that their adap-
tive badges decreased the amount of errors made by learners. Jagust et al. [13]
reported that learners provided with adapted game elements completed more
tasks than those who had none. Paiva et al. [27] found that tailored goals were
effective when targeting social and collaborative behaviours, but failed when
targeting individual learning goals.

Finally two authors showed an effect on both motivation and performance:
Roosta et al. [28] found an impact on motivation and quiz results, with adapted
learners having better results in both than a non adapted control group. Hassan
et al. [12] found an increase of course completion and motivation from their
adapted situation (almost twice as much than a non adapted situation).

We can therefore observe that there are many cases where tailoring gamifi-
cation works, and has positive results on learner motivation, engagement, and
performance. However some recent work shows more mitigated results in these
categories, raising issues on modeling user and selecting relevant game elements.

2.2 User Models in Education

In a literature review of adaptive gamification in education Hallifax et al. [8]
show that most adaptive gamification systems use user profiles to classify users,
and adapt game elements to these categories. Of these systems, most use “player
types” (reasons why people play and enjoy games as a basis for classification).
One commonly used player type is the Hexad typology [18] created specifically
for gamification, and has been shown to be more effective for gamification than
other player profiles [9]. Based on Self Determination Theory [1], this profile
distinguishes six different categories: Philanthropists, Socialisers, Free Spirits,
Achievers, Players, and Disruptors, and has been used in several adaptive gam-
ification studies. For example Mora et al. [21] sorted learners into one of four
gamified situations based on their Hexad profile scores. Knutas et al. [15] created
rules to propose personalised tasks based on Hexad type. Other profiles, that are
less “game” centric are also used to tailor gamification. For example Denden et
al. [2] base their tailoring system on the Big Five personality traits [6].

Some adaptive systems use profiles focused on more task related informa-
tion but are far less common. Hassan et al. [12] use various forms of user task
motivation as a basis for adaptation. They identify learner motivation based on
a questionnaire adapted from the Academic Motivational Scale [31]. Roosta et
al. used the framework presented by Elliot et al. [4] to divide learners into four
types of motivation based on what is important for them.
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All of these different adaptation systems leverage different learner profiles
that present interesting ways to categorise learners and their preferences, How-
ever, little is known about the relevance of each user model and no work has
yet explored the possibility of combining both player preferences and learning
motivation to consider different preferences simultaneously.

2.3 Tailoring Algorithms and Methods

Tailoring algorithms and methods aims at assigning specific game elements for
each user profile values. Some research explored the use of direct ratings by
experts [16] where experts were asked to rank which game elements would be
most appropriate for each player type. Otherwise, the most explored approach
consists in using statistical techniques to highlight correlations between game
elements and user profile values. For instance, Tondello et al. [30] calculate the
correlations between Hexad profile and various game elements directly rated by
users. Hallifax et al. [9] used a pairwise comparison approach to generate user
ratings for a set of game elements. They then performed a Partial Least Squares
Path Modelling (PLS-PM [7]) between various profile systems and the game
element ratings in order to provide recommendations for the studied profiles. The
path analysis performed with PLS-PM allows to evaluate associations between
different variables. This technique is thus well adapted to study the influences
of each dimension of a profile on specific metrics, as used also in [5,25].

3 Study Framing

3.1 Research Questions

Our analysis of the literature about tailored gamification in education highlights
that gamification could be more effective when tailored to learners, however some
recent work shows mitigated or negative results. In addition, these results seem
very dependent on the user model used to assign most suitable game elements
to users. This work intends to fill that gap by investigating different user mod-
els, including a combination of two learner profiles. This paper addresses the
following research questions: (1) What are the effects of tailored gamification on
users’ motivation and engaged behaviours in comparison to non-tailored gami-
fication? (2) Are these effects depending on the user model chosen for tailoring
game elements? Especially when considering motivation and player types?

3.2 Method

To investigate these questions, we analysed the data collected during the use of a
gamified learning platform in ecological conditions. Each learner was randomly
assigned a game element without tailoring. We collected metrics about their
motivation, player types and engaged behaviours while using the platform. We
chose the Hexad player types since recent studies showed that it is the most
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relevant typology for tailored gamification [9]. To measure motivation, we used
the Academic Motivational Scale (AMS) proposed by Vallerand et al. [31]. It
can measure learner academic motivation for a specific task, in our case learning
Mathematics. It decomposes academic motivation into seven sub scales, assessing
intrinsic motivations (IM), extrinsic motivations (EM), and amotivation:

– IM for Knowledge: performing an activity simply for the pleasure and the
satisfaction of doing something new.

– IM for Accomplishment: performing an activity for the pleasure of over-
coming a challenge.

– IM Stimulation: performing an activity for fun or excitement.
– EM External Regulation: performing an activity to gain some kind of

external rewards.
– EM Introjected Regulation: performing an activity to avoid shame or

increase self-esteem.
– EM Identified Regulation: performing an activity in order to achieve pre-

cise objectives.
– Amotivation: absence of intention to perform an activity.

Once the data was collected, we analysed it through the lens of different
tailoring simulations. We analysed the effects of three tailored approaches, each
one considering a different user model (1) Hexad profile user model, (2) initial
motivation user model, and (3) a dual profile user model composed of both
previous profiles. For each single profile tailored approach, we generate an affinity
matrix (presented in detail in Sect. 5.1) representing how each profile value affects
the appreciation for each game element. Thanks to this matrix, we were able to
assign a game element for each learner according to the value of their profile. For
the dual adapted condition we used an algorithm to find a compromise between
the two single profile recommendations (described also in Sect. 5.1). We then
built two subsets from the original data for each approach: a subset containing
learners whose game element matched with the one recommended and a second
subset containing learners that used a non-adapted game element.

To generate these affinity matrices (Hexad profile and motivation profile),
we used the statistical approach PLS-PM [7] inspired by several studies in the
domain [5,9,25]. PLS PM is a method of structural equation modelling which
allows estimating complex cause-effect relationship models. We used it to iden-
tify the influences of the values for each user type on the variations for each
motivation type. We chose this approach instead of considering pre-existing rec-
ommendations from the literature because as shown by Hallifax et al. [9] the
context plays a major role in the impact of game elements on user motivation,
and we could not ensure that the context of the studies were similar to ours.

Finally, to measure and compare the impacts of each condition, we ran com-
parisons on the different subsets created using a Wilcoxon rank sum test.

4 Data Collection

The data collection lasted for a total of 6 weeks, with a frequency of 1–2 lessons
per week, involving 4 high schools and 12 classes of approximately 25 learners.
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After removing learners who failed to correctly fill out either the pre- or post-
test motivation questionnaires, or who were absent too many times during the
experiment, we were left with data from 258 learners, aged between 13 and 14
(123 self-reported as female and 135 self-reported as male).

4.1 Gamified Learning Platform

The Ludimoodle platform was designed with the help of secondary school teach-
ers who then used it in class. In total, ten lessons were designed to learn basic
algebra, each lesson containing between 4 and 10 quizzes. Each quiz had to be
correctly answered at least 70% before learners could access the next one. Game
elements implemented in the platform were co-designed with the same teachers.
Six game elements were implemented in the platform but only one was embed-
ded to the platform interface. Thus at the beginning of the experiment, each
learner was randomly assigned a game element for the ten lessons. We chose six
different game elements among the most well-identified ones in the literature:

– Avatar: As learners progress in a lesson they can unlock a different piece of
clothing, or item that a character can be holding.

– Badges: Learners can receive badges for a quiz depending on how much of
the quiz they get correctly (bronze for 70%, silver: 85%, and gold: 100%).

– Progress: It portrays different coloured spaceships that travel from the earth
to the moon depending on how many quizzes learners complete.

– Leaderboard: It portrays a “race” where as the learners answer questions
correctly they can climb higher in the rankings and possibly win the race.

– Points: Each lesson has its own score counter, with a detailed view on how
many points learners scored for each quiz.

– Timer: It shows a timer for each quiz. Learners are asked to try and beat a
“reference time” (generally their average response time for each question).

4.2 Measurements

Before the experiment, learners filled out the Hexad [30] and the AMS [31] ques-
tionnaires. Both were translated into French, and some vocabulary was slightly
adapted to the context (mathematics for secondary school age learners). After
the last lesson, learners filled out the AMS questionnaire a second time. We then
calculated the variation in intrinsic, extrinsic motivations, and amotivation as
the difference in the motivation scores between the pre test questionnaire (ini-
tial motivation) and post test questionnaire (final motivation). The metrics we
used to analyse engaged behaviours (mostly related to performances as shown in
related work) were computed using the logs generated by the learning platform:

– AvgQTime: Average time to answer a question
– QRatio: Ratio of correct versus incorrect answers to a question
– NQuiz: Number of quizzes attempted
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Fig. 1. PLS PM model for creating the
Hexad influence matrices.

Table 1. Influence matrix for the Hexad
profile on the Avatar game element. Only
the significant (p < .05) influences are
shown here.

Pl. Ac. So. FS. Di. Ph.

Know.Var. 0.329 −0.356

Acc.Var. 0.541 −0.521

Stim.Var.

Ext.Reg.Var.

Id.Reg.Var.

Int.Reg.Var.

Amot.Var.

Behaviours 0.396

Table 2. Final affinity matrix for the Hexad profile

Pl. Ac. So. FS. Di. Ph.

Avatar 0.870 −0.356 −0.521 0.396

Badges −0.548 −1.233 1.229

Progress −0.011 −0.331 −0.061

Leaderboards −0.459 −0.870

Points 0.490 −0.467 −0.694

Timer 1.772 0.439 0.530 0.398 -1.125

5 Adaptation Simulation

5.1 Data Subsets

For the two single user models, we ran two PLS-PM models between the profile
values and the variations of motivations for each subset of learners that used a
particular game element (Fig. 1). This gave us a set of 6 matrices of influences
for each profile (one per game element, an example for the Avatar game element
is given in Table 1). By combining all six of these matrices, we obtained a final
affinity matrix, that showed for each game element, how important a given profile
metric is in their influences (the full affinity matrix for the Hexad Profile is given
in Table 2). By combining these matrices with learner profiles, we generated a
recommendation of game element based on the Hexad profile and one based on
the initial motivation. For example, a learner with the Hexad profile (Pl:0; Ac:-8;
So:2; FS:0; Di:6; Ph:7), would have the following affinity vector (‘Avatar’: .385,
‘Badges’: .0364, ‘Progress’: -.241, ‘Leaderboards’: -.920, ‘Points’: -.577, ‘Timer’:
.225) and would therefore be recommended the Avatar game element.
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For the dual profile user model, we developed an algorithm that recommends
a game element based on both player and motivation profiles. In our original
dataset, out of the 258 learners, 87 of them used a game element that was
either adapted to their Hexad profile, or adapted to their initial motivation
scores (no learners had a game element adapted to both their Hexad profile
and initial motivation). The algorithm proposes a compromise between both
recommendations: we evaluate if there is a positive overlap between the two
affinity vectors, and we take the game element that minimises the ranks in the
positive overlap. If there is none, we take the game element that minimises the
ranks from both affinity vectors (or maximises the affinities if tied). From our set
of 258 learners, we built the following data subsets using the three approaches:

– Hexad data subset: 42 learners used game elements adapted to their Hexad
player profile (216 did not).

– Initial motivation data subset: 45 learners used game elements adapted to
their initial motivation (213 did not).

– Dual profile data subset: 42 learners used a game element recommended by
the dual profile algorithm (216 did not).

5.2 Hexad Adaptation Results

Comparing metrics for the two subsets, we found that learners using an adapted
game element spent significantly less average time per question and had a sig-
nificantly lower correct question ratio (i.e. they got more questions wrong) than
learners who had a non adapted game element (see Table 3a). The adaptation
process had no significant impact on learners’ motivation.

Table 3. Results for different simulations. The values given are the averages for each
group. In light grey: no significant differences, in bold and highlighted in grey: signifi-
cant at p < .05, and highlighted in light grey: almost significant p ≈ .05

(a) Hexad

Metric p Adapted Non

Know.Var. .233 -1.489 -2.099

Acc.Var. .289 0.422 -0.352

Stim.Var. .458 0.289 -0.263

Id.Reg.Var .447 0.289 -0.117

Int.Reg.Var .492 0.222 -0.282

Ext.Reg.Var .482 -1.089 -1.235

Amot.Var. .619 2.267 2.953

AvgQTime .016 60.73 67.78

QRatio .010 0.608 0.665

NQuiz 0.792 34.56 35.33

(b) Motivation

p Adapted Non

.022 -1.156 -2.169

.008 0.756 -0.423

.335 0.267 -0.258

.383 -0.400 0.0282

.233 0.378 -0.315

.141 -0.667 -1.324

.867 2.956 2.808

.066 71.42 65.51

.224 0.637 0.659

.189 34.18 35.41

(C) Dual profile

p Adapted Non

.052 -1.326 -2.137

.056 0.739 -0.425

.045 0.848 -0.387

.691 -0.283 0.005

.445 0.326 -0.307

.476 -1.043 -1.245

.012 1.391 3.146

.812 68.07 66.21

.137 0.630 0.661

.923 36.17 34.98
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5.3 Initial Motivation Adaptation Results

Adaptation based on the initial motivation profile had significant positive
impacts on the variation of intrinsic motivation (see Table 3b). Learners with
adapted game elements lost significantly less Intrinsic Motivation for Knowl-
edge (Know.Var.), i.e. their satisfaction to learn new things decreased less than
for learners with non adapted game elements. They also gained significantly
more Intrinsic Motivation for Accomplishment (Acc.Var.), i.e. their pleasure for
overcoming a challenge increased, whereas it decreased for learners with non
adapted game elements. The adaptation process had no significant effects on
learner engaged behaviours.

5.4 Dual Profile Adaptation Results

When compared to learners who used a non adapted game element (see Table
3c), we found that learners with adapted game elements gained significantly
less amotivation (Amot.Var.), meaning that they were less reluctant to learn
mathematics. They also gained significantly more Intrinsic Motivation for Stim-
ulation (Stim.Var.), meaning that they had more fun and excitement performing
the maths activities. As with the initial motivation adaptation, we also found
that these learners lost less intrinsic motivation to knowledge (Know.Var.) and
gained more intrinsic motivation for accomplishment (Acc.Var.) (although these
differences were only slightly significant p ≈ .05).

6 Study Limitations

We identified some limitations to our study related to the context-dependency
and generalisability of our results. We employed 6 game elements designed espe-
cially for young learners (around 13 years old), for a specific learning environment
(secondary school mathematics). First, the influences measured for each game
element could be different for other learners. Younger learners may be more
receptive to the playfulness induced by our game elements whereas older, or less
technology fluent learners, might have been less receptive. Second, we may obtain
different results when considering other game elements implementing other game
mechanics (such as collaboration or competition). Finally, results could be dif-
ferent for other domains as suggested by [9], some examples of how these results
might change in other domains are presented in the following section.

7 Discussion and Conclusion

Our study shows three important findings in the educational field. First, we show
that the user model chosen to tailor game elements can have significant effects on
learners, but on different metrics (motivation or engaged behaviours) depending
on the chosen profile (player profile, initial motivation or both). Second, we
highlight that tailoring game elements according to initial motivation can induce
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a more positive variation of intrinsic motivation compared to un-tailored game
elements. Third, a combination of player profile and initial motivation can lead to
a more positive variation of intrinsic motivation and less amotivation compared
to tailoring based only on initial motivation. We discuss these findings hereafter.

Tailoring gamification based only on the Hexad profile led learners to be
more engaged in the learning task, which confirms the results obtained in [21] in
a computer network design course regarding learner engagement. However, our
study highlights that this engagement is associated with lower performances,
which is contradictory with the study reported in [14], where they found that
personalised badges and feedback had a positive effect on maths performance.
We also show that an adaptation based only on player types has no effect on
learner motivation to learn Mathematics, as also observed in [19] when learning
French spelling. We can conclude that game elements could be beneficial to
engage learners in the learning activity, but only if these elements give direct
feedback on their performance.

Providing learners with game elements adapted to their initial motivation
led to a positive effect on two kinds of intrinsic motivation to learn Mathemat-
ics. This finding is consistent with other studies on the impact of a tailored
gamification based on learner motivation in a technical English course [28], and
a database management course [12]. More precisely, it reduced the decrease in
intrinsic motivation for knowledge and made learners more intrinsically moti-
vated to overcome maths challenges. It therefore seems promising to use learner
motivation for the learning subject as a basis to tailor gamification in education,
although it was rarely considered in previous studies (see Sect. 2.2).

Finally, combining both profiles for the dual adaptation reinforced the
observed results with initial motivation, but also led learners to be more moti-
vated to learn Mathematics for fun or excitement. This finding is in line with
previous studies on the impact of tailored gamification that show an increase
in perceived fun [19] or flow induced by some game elements depending on the
player types [29]. Dual adaptation also reduced learner amotivation to learn
Mathematics, which is consistent with the findings of the study conducted in
[16] when adapting only to player types. We believe that the dual profile adap-
tation could be even more reinforced by adding more information on the learn-
ers. For example, tailoring to personality traits has shown some promises (see
Sect. 2.2). It would therefore be interesting to study whether adding a third or
even fourth profile to the learner model would increase the effectiveness of the
adaptation. However, it is also possible that adding more profiles to the learner
model may dilute the differences between learners, making it more difficult to
provide accurate recommendations to tailor gamification.

Acknowledgements. This work is a part of the LudiMoodle project financed by the
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Abstract. Accurately recognizing learner affect is critically important for
enabling affect-responsive learning environments to support student learning and
engagement.Multimodal affect detection combining sensor-based and sensor-free
approaches has shown significant promise in both laboratory and classroom set-
tings. However, important questions remain regarding which data channels are
most predictive and how they should be combined. In this paper, we investigate
a multimodal affect detection framework that integrates motion tracking-based
posture data and interaction-based trace data to recognize the affective states of
students engaged with a game-based learning environment for emergency medi-
cal training. We compare several machine learning-based affective models using
competing feature-level and decision-level multimodal data fusion approaches.
Results indicate that multimodal affect detectors induced using joint feature repre-
sentations from posture-based and interaction-based data channels yield improved
accuracy relative to unimodal models across several learner-centered affective
states. These findings point toward implications for the design of multimodal
affect-responsive learning environments that support learning and engagement.

Keywords: Affect detection ·Multimodal data fusion · Game-based learning

1 Introduction

Affect is critical in student learning. Automatically recognizing learners’ affective states
is foundational to the development of affect-responsive learning environments that can
support student emotion regulation and promote enhanced learning experiences [1].
Recent years have seen growing interest in the use of sensor-based approaches for
capturing data on student affect within adaptive learning environments, and in particular,
game-based learning environments [1, 2]. An important feature of sensor-based affect
detection is its potential for generalizability across a range of domains and learning
environments [3]. Sensor-based modalities such as facial expression [4] and posture [5]
have been demonstrated to be highly indicative of learner-centered affective states.
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An alternative to sensor-based affect detection is utilizing interaction trace log data
to induce sensor-free affect detectors, which can be used in contexts where it may be
difficult or prohibitive to use physical hardware sensors [6]. Sensor-free features are
typically derived from trace data generated by learner interactions with adaptive learn-
ing environments [7]. Notably, sensor-free affect detectors typically avoid challenges
inherent in the use of physical sensors, including calibration issues, hardware failure,
and mistracking [8].

A subject of growing interest is the application of multimodal machine learning
techniques to develop affect detectors using multiple complementary data sources. Mul-
timodal affect detectors integrate sensor-free (i.e., interaction-based) and sensor-based
approaches, capturing multiple simultaneous perspectives on student interactions with
adaptive learning environments. Important questions remain about the predictive value
of specific modalities and how they should be combined. Prior work has investigated
multimodal affect detection across a range of educational subjects, including science
[9], math [10], and introductory programming [11]. However, there is a need for con-
tinued research on how effectively multimodal affect detection techniques translate to
alternative learning environments and educational subjects.

In thiswork,we present amultimodal affect detection framework that utilizes posture
data and interaction-based trace data from college students engaged with a game-based
learning environment for emergency medical training called TC3Sim. We extract both
spatial and temporal posture features captured by a Microsoft Kinect sensor as well
as interaction-based features depicting students’ actions within the game-based learn-
ing environment. We compare several methods of multimodal data fusion to determine
the optimal approach for detecting students’ learner-centered affective states using a
range of machine learning-based classification techniques. Results indicate that multi-
modal affect detectors that utilize a combination of posture-based and interaction-based
feature representations outperform competing unimodal baseline models on classifica-
tion accuracy across several affective states. In this work, we focus on variations of both
decision-level and feature-level multimodal data fusion to determine the optimal method
of combining modalities during the affective modeling process.

2 Related Work

Recent years have seen growing interest in both sensor-free and sensor-based affect
detection in adaptive learning environments. Deep neural architectures have shown
promise in sensor-free affect detection. Jiang et al. investigated tradeoffs between deep
learning-based representation learning and expert feature-engineering in a sensor-free
affect detection framework using interaction trace log data [7]. Botelho et al. explored
the use of recurrent neural networks in a related sensor-free affect detection task [6].
More recent work has explored improvements in unimodal affect detection with the
introduction of sensor-based modalities [12]. For example, Paquette et al. examined the
predictive accuracy of several unimodal sensor-free and sensor-based affect detectors
that utilized interaction trace log data as well as posture-based data [13], but did not
explore multimodal models that integrate multiple modalities simultaneously.

Multimodal affect detection combining sensor-free and sensor-based data channels
offers several benefits in terms of model accuracy and robustness. Grafsgaard et al. used
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multimodal posture and gesture data to model undergraduate students’ affect as they
engaged in computer-mediated tutoring sessions on introductory programming [14],
with results indicating that more shifts in posture corresponds to increased frustration,
while stationary posture may be predictive of engagement. Other multimodal affective
computing work has investigated the predictive value of combining interaction-based
modalities, such as keystroke data or text-based dialogues, with sensor-based modal-
ities such as posture and gesture data [15]. The results of these prior efforts demon-
strated the effectiveness and additive value sensor-basedmodalities contribute compared
to unimodal dialogue-only models. Additional work has investigated student affective
responses with facial expression data in combination with interaction patterns as a sec-
ondary modality [2]. Bosch et al. investigated the combination of facial expression and
interaction log data to detect affect in students using an educational game to teach ele-
mentary physics, reporting that the facial expression modality was more predictive than
the interaction-based modality [16]. However, important questions remain regarding
how to most effectively combine independent modalities for affect detection in adaptive
learning environments, such as student posture and interaction log data.

3 Multimodal Data Collection

To investigate multimodal affect detection, we utilized an existing dataset containing
sensor-based and interaction-based log data from learners engaged with a game-based
learning environment for emergency military medical training, TC3Sim. In TC3Sim,
learners complete a series of simulated medical training scenarios and are tasked with
providing adequate medical care to one or more wounded teammates. The dataset con-
sisted of sensor data and interaction trace logs from 119 undergraduate students (i.e.,
cadets) from the United States Military Academy (83% male, 17% female). During the
data collection, participants completed a series of four training scenarios in TC3Sim,
which ranged from situations involving the simple application of a tourniquet to simu-
lated scenarios involving severely injured characters expiring regardless of medical care
administered (Fig. 1). Each learner engaged with TC3Sim for approximately one hour.
Interaction trace log data was captured using GIFT, an open-source service-oriented
software framework used to develop and deploy adaptive training environments [17].
To facilitate capture of learners’ posture data, each participant sat at a laptop connected
to a Microsoft Kinect motion-tracking sensor, which was positioned directly in front of
the participant to capture skeletal vertex coordinates based on posture and upper-body
movement during the session. For additional detail about the dataset, please see DeFalco
et al. [1]. We elect to use interaction data due to its ease of collection and cost effective-
ness, while also utilizing posture-based data due to its low-cost, non-invasive method of
capture.

To obtain ground-truth labels of affect, a pair of trained observers annotated stu-
dents’ affective states and learner behaviors in accordance with the Baker Rodrigo
Ocumpaugh Monitoring Protocol (BROMP) [18]. The observations were recorded in
20-second intervals, and they were made using a small handheld device to allow anno-
tations to be recorded discreetly. The two observers recorded an inter-rater agreement
on a subset of the data (i.e., data from a single one-hour session) exceeding 0.6 in terms
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Fig. 1. TC3Sim game-based learning environment.

of Cohen’s Kappa [19]. During this study, six affective states were recorded: bored,
confused, engaged concentration, frustration, surprise, and anxiety, with 3,066 distinct
BROMP observations captured between the two observers. During the post-processing
stage, any observations for which the two observers did not agree were removed from the
dataset, as were observations recorded when the students were not actually interacting
with the game-based learning environment (i.e., viewing pre- and post-test material or
receiving instruction on combat medic procedures). Following post-processing, there
were 755 total BROMP observations captured during the study. 435 of the BROMP
observations were labeled as engaged concentration, 174 as confused, 73 as bored, 32
as frustrated, 29 as surprised, and 12 as anxious. Due to the low number of observations
for anxious, we do not consider instances of this affective state in this work.

4 Multimodal Affect Detection

Using the dataset containing synchronized posture data, interaction trace log data, and
affect observation data, we induced binary affect detectors for the following learner-
centered affective states: bored, confused, engaged concentration, frustrated, and sur-
prised. We extracted three types of features—posture-based spatial features, posture-
based temporal features, and interaction-based features—using feature engineering tech-
niques. The data is upsampled (within the training set only) to resolve imbalances for
specific affective states. The features are normalized, and they are utilized to train, vali-
date, and test several machine learning-based models. Due to the multimodal nature of
our dataset, we evaluated three variations of data fusion techniques to capture and model
information from different modalities, including two feature-level fusion techniques and
a decision-level technique [20].
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4.1 Posture-Based Spatial Features

The Kinect motion-tracking sensor captures (x, y, z) coordinate information for 91 ver-
tices. We selected the head, top_skull, and center_shoulder vertices to generate features
based on prior work for similar posture-based affect detection tasks [14]. From these
vertices, we extracted 73 distinct features to capture the spatial position of each partici-
pant’s head andupper torso. For eachof the three vertices, several positional featureswere
extracted, including current Euclidean distance from the Kinect, current Z-coordinate,
minimum observed distance, maximum observed distance, median distance, and vari-
ance in observed distance. These features were calculated for each BROMP observation.
Additionally, summative features, such as the minimum, maximum, median, and vari-
ance in distance, were calculated for the preceding 5, 10, and 20 s time intervals prior
to each BROMP observation. In addition to these 54 features, several features were
extracted to capture net changes in posture and distance for time windows of 3 and 20 s.
Finally, several features were calculated to determine whether a learner was leaning for-
ward, backward, or sitting upright. These features were calculated using the head vertex.
The learner was considered to be leaning forward or backward if the vertex was more
than a single standard deviation from the median head position for that particular work-
station. These three posture-based features were calculated over observed sequences of
5, 10, and 20 s, in addition to the entire gameplay session up to the current observation.

4.2 Posture-Based Temporal Features

While skeletal tracking functionalities of motion-tracking sensors, such as Microsoft
Kinect, directly capture spatial information about upper body position, temporal infor-
mation about torso movement is often left implicit despite having been shown to be
informative and yield improved accuracy in affect recognition tasks [21]. To address
this issue, we extracted several temporal features that capture the “velocity” of skeletal
vertices tracked by the Microsoft Kinect sensor. Specifically, the distance between con-
secutive sensor readings was calculated for the head vertex’s positional coordinates. The
subsequent delta values were used to generate velocity features calculated across time
windows of 3, 5, 10, and 20 s preceding each BROMP observation. Extracted statistical
features included the mean, median, max, and variance of each corresponding velocity
value, introducing an additional 48 features that served as a form of simulated temporal
modality [22]. Because of the large number of features generated per vertex, additional
velocity informationwas not calculated using the top_skull and center_shoulder vertices.

4.3 Interaction-Based Features

From the gameplay interaction logs, we extracted 39 distinct features centered around
the participants’ actions in the TC3Sim game-based learning environment, as well as
information about the virtual patients treated in the game. Features summarizing the
state of virtual patients in TC3Sim included changes in systolic blood pressure and heart
rate, number of exposed wounds, lung volume, remaining blood volume, and bleed
rate. Additionally, features were extracted based upon actions taken by the learner such
as checking a patient’s vital signs, conducting a blood sweep, applying a bandage or
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tourniquet, communicating with the patient, or requesting an evacuation. The resulting
interaction-based features were calculated over the 20 s duration prior to the current
BROMP observation, using statistical measures such as the sum or current count of a
gameplay action, or the standard deviation or average of a metric such as blood pressure.

4.4 Affect Model Evaluation

Following feature engineering, binary datasets were generated for each of the affective
states with a variable (i.e., label) denoting whether the record was associated with a
positive instance of that particular affective state (e.g., bored, confused, engaged con-
centration). Because of the imbalance between positive and negative instances of several
affective states, including frustrated and surprised, each dataset underwent upsampling
using the Synthetic Minority Oversampling Technique (SMOTE) [23], within training
sets only. This process selects a positive instance of the minority class at random and lin-
early interpolates synthetic data points between the selected point and another minority
sample chosen by a randomized K-nearest neighbor clustering approach. SMOTE is a
common approach to resolving class imbalance issues by bringing the class distribution
to a uniform balance while avoiding duplication of minority instances, which can lead
to overfitting in affective models.

The datasets for each binary classification taskwere split into a training set and a held-
out test set, containing approximately 80% and 20% of the total dataset, respectively.
The datasets were sampled to ensure that the distributions between training and test
data were relatively similar. The training set was used to evaluate each of the modeling
approaches using 4-fold cross-validation. The splits for both the cross-validation and
training/test sets were performed at a student level to avoid data leakage from a single
session during either the training or evaluation phases.

Prior to training, each of the datasets was normalized and underwent forward feature
selection to allow the models to train using only selected features, eliminating redundant
or otherwise uninformative features. Forward feature selection involves iterating through
combinations of features in a greedy fashion, beginning with feature vectors of size 1
and continuing until a certain number of features are selected or all combinations of
features are exhausted. For this work, we selected 12 features per data channel. In cases
involving multimodal input, 6 features were selected per feature type (i.e., spatial and
temporal) for the posture-based feature representations, and 4 features were selected per
feature type across both of the data channels (i.e., spatial, temporal, and interaction).
We used a support vector machine (SVM) to guide feature selection due to its ability
to efficiently perform non-linear classification. A feature is selected as “optimal” if its
addition to a feature set yields improved accuracy for the SVMmodel. The computational
efficiency of the SVM is important due to the number of times a model is trained during
the feature selection process. Feature normalization, upsampling, feature selection, and
model training took placewithin each cross-validation fold to prevent data leakage across
the training and validation data.
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4.5 Multimodal Data Fusion with Posture- and Interaction-Based Modalities

We investigated several approaches for integrating feature representations from the inde-
pendent modalities using multimodal data fusion techniques. Two commonly used vari-
ations of data fusion include feature-level fusion (early fusion) and decision-level fusion
(late fusion). Early Fusion (EF) involves the concatenation of features prior to training
the models. We evaluated two different configurations of Early Fusion. Early Fusion 1
(EF1) implements feature selection (F. S.) following feature concatenation, and Early
Fusion 2 (EF2) implements feature selection prior to feature concatenation. Late Fusion
(LF) involves independently training a separate model on each modality and subse-
quently obtaining a single representative prediction through a voting scheme based on
the predictions and confidence levels of each model. We used the highest average con-
fidence across each class to determine the final representative prediction within Late
Fusion. A visualization of the multimodal data fusion processes is shown in Fig. 2.

Interaction
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Fig. 2. Visualization of multimodal data fusion pipeline for Early Fusion 1 (2A), Early Fusion 2,
(2B), and Late Fusion (2C).

5 Results

We compared five machine learning techniques for inducing detectors of each affec-
tive state: Support Vector Machine (SVM), Random Forest (RF), Gaussian Naive Bayes
(NB), Logistic Regression (LR), and Multi-Layer Perceptron (MLP). To serve as base-
lines, we trained unimodal models using either interaction data or posture data, respec-
tively. These models were based upon unimodal affect detectors induced in prior work
[1], although we make several methodological refinements related to feature selec-
tion, upsampling, cross-validation, evaluation on a held-out test, and implementation
of machine learning models. These modifications have a small impact on the results for
the baselinemodels, but overall accuracy trends across affective states remained the same
as in prior findings. The posture-only baselines were evaluated using both spatial and
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temporal modalities using data fusion techniques depicted in Fig. 2, but for this analysis,
we consider these models to be “unimodal” because both the spatial and temporal fea-
tures were extracted from the same sensor-based data channel. Each model’s predictive
accuracy was examined under cross-validation on the training set to determine which
model was “optimal” for the respective combination of feature set, data fusion method,
and affective state. The model with highest performance during cross validation was
evaluated using data from the held-out test set. Each model was evaluated with Cohen’s
Kappa as the primary metric, due to its ability to account for positive classifications
occurring due to random chance or dataset-induced bias [19]. We also present results
in terms of raw classification accuracy (Acc.) and F1. Results from this evaluation are
shown in Table 1, with the highest-performing combination of data fusion technique and
model for each affective state shown in bold.

Table 1. Optimal models for each combination of modalities and affective states.

Bored Confused
Modality Model Kappa Acc. F1 Model Kappa Acc. F1

Gameplay RF 0.3788 0.8579 0.4476 MLP 0.0161 0.4581 0.3232
Posture (EF1) MLP 0.3147 0.9074 0.3478 SVM 0.1336 0.6975 0.3288
Posture (EF2) SVM 0.2941 0.9012 0.3334 MLP 0.2206 0.7593 0.3607
Posture (LF) MLP 0.1107 0.8458 0.1935 MLP 0.1141 0.7531 0.2307

Multimodal (EF1) LR 0.4328 0.8581 0.5106 MLP 0.1181 0.7099 0.2985
Multimodal (EF2) SVM 0.4664 0.9074 0.5161 MLP 0.1023 0.5000 0.4000
Multimodal (LF) MLP 0.4568 0.9135 0.5000 MLP 0.1329 0.5432 0.4127

Engaged Concentration Frustrated
Modality Model Kappa Acc. F1 Model Kappa Acc. F1

Gameplay MLP 0.1047 0.5718 0.6046 MLP 0.0514 0.6643 0.1182
Posture (EF1) SVM 0.1565 0.5679 0.5205 MLP 0.1492 0.9283 0.1667
Posture (EF2) RF 0.1566 0.5864 0.6417 SVM 0.0825 0.9135 0.1250
Posture (LF) MLP 0.1199 0.5741 0.6532 MLP 0.0825 0.9135 0.1250

Multimodal (EF1) MLP 0.1199 0.5741 0.6532 NB 0.1124 0.7099 0.2034
Multimodal (EF2) RF 0.1625 0.6049 0.7117 MLP 0.2054 0.8951 0.2609
Multimodal (LF) SVM 0.2544 0.6172 0.5694 SVM 0.0028 0.3395 0.1157

Surprised
Modality Model Kappa Acc. F1

Gameplay RF 0.0797 0.8362 0.1352
Posture (EF1) MLP 0.0831 0.6605 0.1538
Posture (EF2) SVM 0.0236 0.8642 0.0834
Posture (LF) MLP 0.0053 0.0987 0.0875

Multimodal (EF1) MLP 0.1041 0.9259 0.1429
Multimodal (EF2) MLP -0.0373 0.9259 0.0000
Multimodal (LF) MLP 0.0803 0.9135 0.1250
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We observe from the results that multimodal affect detectors utilizing a combination
of interaction-based and posture-based modalities outperform posture-only baseline and
interaction-only baseline models for four out of the five affective states, with the sole
exception being the state of confused. For the four other affective states, Early Fusion 1
was the best fusion technique for surprised, and Early Fusion 2 was the most accurate
method for bored and frustrated. Late Fusion achieved the highest performance for
engaged concentration. The majority of the affective states produced a relatively high
Kappa value (>0.2), excluding surprised.

It is noteworthy that the MLP models were the optimal classification model for a
majority of cases (60%), potentially due to their ability to robustly model complex, non-
linear relationships between modalities. This capability is especially important when
modeling data from multiple independent modalities such as Early Fusion and the
posture-based models using both spatial and temporal modalities. SVM and RF models
were occasionally the best-performing classification techniques for both unimodal and
multimodal affect detection. NB and LR models were each selected once as the best-
performing model for a certain multimodal configuration, although neither model was
the optimally performing model for an entire affective state.

6 Discussion

To conduct a more in-depth analysis of the predictive value of each modality during
multimodal data fusion, we recorded the frequency that each feature was selected during
cross-validation for each data fusion variation. Although Early Fusion 2 and Late Fusion
enforced an inherent balance between modality features, Early Fusion 1 combined all
features into a single dataset prior to feature section, resulting in a majority of features
being weighted towards the most predictive modality.

We find that the ratio of interaction-based features to posture-based features selected
for all 4 folds (48 total features) is 25:23 for bored, 18:30 for confused, 22:26 for engaged
concentration, 26:22 for frustrated, and 27:21 for surprised. The distribution of features
was skewed towards interaction-based features for three of the affective states and toward
posture-based features for two of the affective states, suggesting a comparable degree of
predictive value between modalities across all affective states. This trend may explain
why Early Fusion 2 and Late Fusion yielded the best-performing models for three of
the five affective states examined (i.e., bored, engaged concentration, and frustrated).
Both of these techniques allot equal emphasis on each modality and prevent individual
modalities from monopolizing the feature set.

Results indicate that confusion was modeled most effectively using posture features
only, which suggests that learner posture may be more indicative of confusion than
interaction-based features extracted from TC3Sim log data. D’Mello and Graesser pre-
viously demonstrated a correlation between students’ upright posture and instances of
displayed confusion [24]. In aggregate, the results indicate that the predictive value of
each modality varies across affective states, which in turn impacts the performance of
Early Fusion and Late Fusion techniques. Utilizing dedicated models for each affective
state, rather than inducing a singlemodel to classify all affective states, enables the use of
different modeling and data fusion techniques to yield improved detector performance.
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This also allows the multimodal framework to adapt to variance in feature balances for
individual affective states.

It was observed that the most frequently selected features across all of the affective
states were sitmid_freq, sit_forward_freq, Sum of isSafe, CENTER_SHOULDER_max,
sitmid_freq_20sec, andMin of HeartRate. This indicates that each modality contributed
relatively equally to the performance of the optimal multimodal classifiers. The two
most frequent features (sitmid_freq, sit_forward_freq) were representative of the fre-
quency that a learner adjusted their posture,while the two interaction-based features (Sum
of isSafe, Min of HeartRate) were representative of the student’s in-game actions and
states, respectively. The remaining two features were also posture-based features: CEN-
TER_SHOULDER_max focused on the furthest distance of the CENTER_SHOULDER
vertex from the Kinect sensor over the entire session, and sitmid_freq_20sec focused on
the learners’ frequency of sitting upright for the preceding 20 s. A possible explanation
for the improvement of the multimodal models’ performance over the unimodal base-
lines is that the multimodal models were able to obtain a more thorough, comprehensive
picture of the learners’ behavior, as the most frequently used features were widely varied
in the information provided.

7 Conclusion

Accurately detecting learner affect is a critical component of student modeling and
has significant potential for guiding adaptive learning environments that support student
learning and engagement. In this work, we have demonstrated the effectiveness of a mul-
timodal affect detection framework that integrates interaction-based and posture-based
data channels captured from undergraduate students engaging with a game-based learn-
ing environment for emergency military medical training. Results indicate that use of
multiple independent modalities yields improved performance from multimodal detec-
tors of five affective states compared to unimodal detectors that utilize only interaction-
based or posture-based feature representations. We also explored several methods of
multimodal data fusion to combine the two modalities and found that feature-level data
fusion yielded the greatest predictive accuracy for three of the five affective states.

These results suggest several promising directions for future work. Investigating
recent advances in multimodal machine learning techniques, including multimodal neu-
ral architectures, has strong potential to yield further improvements to the accuracy
of multimodal affect detectors in adaptive learning environments. More sophisticated
methods of data upsampling can be explored, as this might have a significant impact
on classifier performance due to the pronounced imbalance and relatively small size of
many learner-centered affective datasets. Generativemodels such as generative adversar-
ial networks and variational autoencoders are upsampling methods that show particular
promise. Finally, itwill be important to investigate the run-time integration ofmultimodal
affect detectors into game-based learning environments to enable adaptive features such
as user-sensitive feedback or tailored scaffolding to improve learner engagement and
support greater learning outcomes.
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Abstract. Educational AI (AIEd) systems are increasingly designed and evalu-
ated with an awareness of the hybrid nature of adaptivity in real-world educational
settings. In practice, beyond being a property of AIEd systems alone, adaptivity is
often jointly enacted byAI systems and human facilitators (e.g., teachers or peers).
Despite much recent research activity, theoretical and conceptual guidance for the
design of such human–AI systems remains limited. In this paper we explore how
adaptivitymay be shared across AIEd systems and the various human stakeholders
who work with them. Based on a comparison of prior frameworks, which tend to
examine adaptivity in AIEd systems or human coaches separately, we first synthe-
size a set of dimensions general enough to capture human–AI hybrid adaptivity.
Using these dimensions, we then present a conceptual framework to map dis-
tinct ways in which humans and AIEd systems can augment each other’s abilities.
Through examples, we illustrate how this framework can be used to characterize
prior work and envision new possibilities for human–AI hybrid approaches in
education.

Keywords: Adaptivity · Human–AI hybrid · Orchestration · Collaboration ·
Framework

1 Introduction

Moving beyond a focus on adaptivity as a property ofAIEd systems alone, AIEd research
increasingly acknowledges that, in practice, adaptive learning experiencesmay be jointly
enacted by AI and human facilitators (e.g., [7, 15, 24, 30, 47, 58, 70]). For instance,
recent work indicates that in K-12 classrooms using AI tutoring software, the sequence
of educational activities students receive is often driven by a combination of AI-based
activity selection and the dynamic decision-making of classroom teachers (who may
selectively override algorithmic recommendations) [53]. Other work has explored the
nature and impacts of human–human interactions during AI-supported class sessions,
finding that these interactions can play critical roles in mediating AIEd technologies’
effectiveness [25, 26, 30, 41, 48, 70].Buildingupon suchobservations, a number of recent
projects have begun to explore how AIEd systems might more effectively work together
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with human facilitators, to amplify their abilities and leverage their complementary
strengths [18, 24, 26, 42, 47, 66, 70].

As the AIEd community increasingly turns its attention to human–AI hybrid
approaches for education, some conceptual guidance may be helpful in navigating this
broaddesign space and indifferentiatingbetween fundamentally different kinds of hybrid
approaches. Different configurations of AIEd systems and humans, designed to integrate
human and AI abilities in different ways, may yield very different outcomes (e.g., [26,
55, 66, 70]). In this paper, we begin to map the diverse ways in which adaptivity may
be shared among humans and AIEd systems, to aid the community in (1) organizing
prior work through the lens of human–AI hybrid adaptivity, and (2) envisioning new
possibilities for human–AI hybrid approaches in education. To this end, we present a
conceptual framework for human–AI hybrid adaptivity in education. Drawing uponmul-
tiple existing frameworks for adaptive support—here defined broadly as support that is
responsive to unfolding learning situations in pursuit of educational goals—we begin
by synthesizing a set of dimensions general enough to capture human–AI adaptivity
(Sect. 2). Using these dimensions, we then introduce distinct ways in which humans and
AImight augment each other’s abilities, illustrating the framework’s utility via examples
of new directions it surfaces (Sect. 3).

2 Framing “Adaptivity”: Synthesizing Existing Frameworks

Several frameworks have been developed to characterize adaptivity in education. In this
paper, we build upon a small set of prior frameworks [3, 21, 50, 51, 56, 57, 61, 65]
to inform our thoughts about what a more encompassing framework should include.
In selecting this set we aimed to consider influential work across multiple research
areas, includingAIEd [3, 21, 50, 65], computer-supported collaborative learning (CSCL)
[56, 61, 65], teacher cognition [57], and classroom orchestration [51]. We searched
broadly for theoretically oriented articles that focus on characterizing adaptive instruc-
tional behavior. While the resulting selection of prior frameworks is not intended to be
exhaustive, this set presents several interesting contrasts and overlaps.

Each of the frameworks considered offers a lens to examine particular aspects of
adaptive learning systems, while abstracting over others. As discussed below, some
frameworks, such as the Adaptivity Grid [3] and Plass’s framework [50] provide high
resolution lenses to analyze what an adaptive system might respond to and when an
adaptive system might respond, but do not, for example, offer explicit language for
describing how an adaptive systemmight respond (seeAction space below).Meanwhile,
other frameworks focus much of their resolution towards characterizing the design space
for instructional support actions. For example, VanLehn [65] and Rummel [56] offer
ways of characterizing how and when a system might respond, yet do not offer language
for what to respond to (see Perceptual capabilities below). One possible reason for
these differences is that different frameworks have tended to focus on different kinds of
adaptive learning systems. A related possibility is that because different frameworks are
grounded in different research literatures (e.g., CSCL versus AIEd [65]) they are heavily
influenced by the state of the empirical literature within each community. For example,
the Adaptivity Grid [3] offered finer-grained distinctions in areas where there was much
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existing empirical work at the time of writing, but offered coarser-grained distinctions
where less prior work existed.

In the remainder of this paper, we adopt a broad framing of adaptivity in terms of
perception-action cycles [11, 44, 62, 65] enacted by decision-making agents or systems
of agents (e.g., AI, students, and teachers) [56], in service of specified educational goals
[56, 65]. Building from prior frameworks, in this section we provide a set of dimensions
that are general enough to encompass prior frameworks, while also providing language
rich enough to characterize a broad possibility space for human–AI hybrid adaptivity.
Whereas prior frameworks focus on providing partial views of agents’ adaptive behavior,
as discussed above, our dimensions draw from multiple frameworks to provide a more
encompassing perspective (cf. [43]). At the same time, we abstract over dimensions from
these prior frameworks in the interest of generalizing across a broad range of instructional
systems and contexts. For instance, six of the dimensions proposed in [56] are collapsed
into the Actions dimension below, given that all of these dimensions capture properties
of instructional support actions in CSCL.

Goals and Targets: Adaptive instruction presupposes educational goals, or outcomes
that the adaptive behavior is intended to bring about (whichmay vary by student or group
and may change over time) [8]. For example, some AIEd systems may be designed to
adapt instruction with the ultimate goal of improving student learning outcomes within a
domain, whereas others may adapt with the goal of helping students become better self-
regulated learners or collaborators. Notably, only some prior frameworks for adaptive
instruction provide vocabulary to describe the end goal(s) of the adaptivity. Rummel
[56] explicitly names goals as the first dimension that needs to be defined upfront of
designing any support. Both Rummel [56] andVanLehn [65] further distinguish between
the ultimate goals of the support (e.g., the kind of change the adaptivity is intended to
produce in students), and the immediate targets of the support (e.g., whether the support
targets cognitive versus metacognitive knowledge).

Perceptual Capabilities: Decision-making agents can adapt to unfolding learning sit-
uations only to the extent that they can perceive (i.e., sense and interpret [11, 20]) and
represent these situations. An agent’s ability to perceive particular variables of a learning
situation defines what it can potentially adapt to. In addition to variables that are directly
observable, this may also include ones that the agent is able to infer from observable
attributes (e.g., inferring a student’s or teacher’s current knowledge from patterns in
their recent behavior). In an Intelligent Tutoring System (ITS), the system’s perceptual
capabilities are defined by its student modeling capabilities, which may include unob-
servable, inferred constructs such as “help avoidance” or “frustration” [13, 21, 29]. A
human teacher’s perceptual capabilities can be understood as the range of phenomena
the teacher is capable of sensing and inferring about a learning situation. In realistic
contexts, this may depend on factors such as the teacher’s current attentional load [51,
52], as well as the teacher’s skill in noticing instructionally relevant events and drawing
correct inferences based on potentially limited observations [51, 57, 59]. As noted above,
some, but not all prior frameworks included explicit language to characterize an adap-
tive agent’s perceptual capabilities. The Adaptivity Grid [3] categorized previously pub-
lished empirical evaluations of adaptive learning technologies, in part, based on whether
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they adapt instruction based on perceptions of students’ prior knowledge & knowledge
growth, their path through an activity, their affective & motivational states, their SRL
strategies, metacognition, & effort, or based on a notion of learning styles. Similarly,
Plass (2016) categorized adaptive learning technologies based on whether they adapt
instruction based on perceptions of affective, cognitive, motivational, or socio-cultural
variables [50].

Action Space: An agent’s ability to adapt instruction is also delimited by the set of
responses or instructional moves it has at its disposal [56, 57, 61, 62, 65]. For instance,
an ITS or a human tutor might try to adapt the kinds of help they provide to a student in
their class based on their perceptions of the student’s current knowledge state. However,
the tutor’s ability to adapt will be limited by the instructional moves they currently have
in their repertoire (e.g., providing correctness feedback, presenting a worked example,
or prompting a self-explanation). Some, but not all, of the frameworks we reviewed
included dimensions to characterize an agent’s action space. Soller [61] and VanLehn
[65] distinguish between actions that mirror an agent’s perceptions back to students
or human facilitators, actions that present an agent’s assessments of what it perceives,
and coaching actions (e.g., providing advice). Rummel [56] presents multiple related
dimensions classifying instructional support actions, for instance the directivity of an
action (i.e., whether and towhat extent the action presents explicit guidance). In addition,
VanLehn [65] and Rummel [56] both characterize instructional actions in terms of their
recipient or addressee (e.g., whether a system presents information to a student, a group
of students, or an instructor), and Rummel further specifies whether a student (or group
of students) is the direct target of an action, or whether the action is mediated through
other actors in the learning environment (e.g., where an adaptive system suggests that a
teacher or peer tutor help a given student).

Decision Policies: An agent’s adaptive behavior can be understood in terms of deci-
sion policies: sets of rules that map (in a potentially non-deterministic manner) from
perceived learning situations or states to particular actions that the agent will take in
response [62]. For example, an agent might adaptively respond to detected student frus-
tration by acknowledging or mirroring the student’s frustration [21, 50, 65]. However,
many alternative decision policies exist. The system might instead respond to detected
frustration by selecting alternative activities for the student to work on, or by asking
the student whether the system should alert their teacher/peers that they need help [28].
Prior frameworks do not typically provide explicit dimensions to categorize “types”
of decision policies (e.g., “responding to affect with affective responses” or “mastery
learning based activity selection policies”), although such categorizations often appear
in practice when empirically comparing different forms of adaptivity.

Granularity and Timing: Finally, many prior frameworks provide dimensions dedi-
cated to describing when a system adapts instruction (e.g., [3, 50, 51, 56, 65]). That is,
the frequency or granularity at which the perception-action cycle is enacted. This may
occur, for instance, once per task or per step of a task [3, 56, 65], once per turn in a
conversation [56], or even once per design iteration (when considering systems that are
iteratively improved based on data) [3]. Plass [50], Prieto [51], and Rummel [56] also
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distinguish the timing of the adaptation; e.g., whether the adaptation occurs prior to the
instructional activity, in the midst of the activity, or afterwards [50, 51, 56].

Many frameworks for adaptive instructional support have been developed, with each
offering a lens to examine particular aspects and particular kinds of adaptive learning
systems. The set of high-level dimensions presented in this section are intended to capture
essential components of adaptive learning systems, informed by a comparison across
frameworks (cf. [43]). In the next section, we use these dimensions to explore distinct
ways for adaptivity to be shared across humans and machines.

3 A Conceptual Framework for Human–AI Hybrid Adaptivity

In the following we present a conceptual framework for human–AI hybrid adaptivity
in education, examining the same set of basic components (goals/targets, perception,
action, decision policies, and granularity/timing) while broadening our focus. We use
this framework both to characterize prior work and to envision new possibilities, based
upon distinct ways in which humans and AIEd systems might augment one another:
(1) Goal Augmentation, (2) Perceptual Augmentation, (3) Action Augmentation, and
(4) Decision Augmentation. Within each category, possibilities exist both for augment-
ing performance (in which humans and AI systems, assumed to have complementary
strengths and weaknesses, augment one another’s abilities at “runtime”, but without nec-
essarily producing lasting changes in behavior) and for co-learning (inwhichhumans and
AI systems help one another improve over time). Finally, we discuss how theGranularity
and Timing of adaptivity might be understood in human–AI systems.

3.1 Goal Augmentation: Informing Each Other’s Instructional Goals

A key way for humans and AIEd systems to support one another is by influencing each
other’s goals. To a large extent, AIEd technologies encode the assumptions and goals
of those who design and develop them—whether explicitly, via objective functions that
a system’s adaptive policies optimize towards, or implicitly, through design decisions
that promote certain goals over others. However, the goals baked into an AIEd system
may not always align with those of humans in real-world educational contexts [24, 46,
53]. For example, ITSs used in K-12 school contexts often implement mastery-based
activity selection policies, allowing each student to progress through the curriculum at
their own pace. Yet prior work suggests that teachers often struggle to balance their
desire to implement such personalized classrooms with external pressure to keep classes
“on schedule”. In practice, teachers often opt to manually push students forward in the
curriculum if they are slower to master certain skills [24, 53], sometimes even if they
are aware that doing so may harm students’ learning [24, 28]. As of yet, little work in
AIEd has explored the design of supports for goal augmentation.

AIEd Informing Human Goals. It may not always be desirable for AIEd systems to
adapt to human facilitators’ instructional goals. For instance, in some cases, teachers’ or
peer tutors’ goals may be fundamentally at odds with known instructional best practices.
Future systems could play an important role in helping humans productively reflect upon
their goals, helping them refine these goals or consider alternatives [4, 19].
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Humans Informing AIEd Goals. Human facilitators may hold critical, on-the-ground
knowledge about their instructional contexts and personal goals, to which AIEd systems
would not typically be privy. Building upon the above example, ITSs might be even
more effective in classroom contexts if designed to accept teachers’ input regarding the
goals they should be optimizing towards. By enabling teachers to help shape the system’s
goals, the system could in turn help teachersmore effectively navigate trade-offs between
competing goals (e.g., by supporting teachers in deciding when to push students ahead
in the curriculum, while causing minimal harm to their learning [28]).

3.2 Perceptual Augmentation: Leveraging Complementarity in Perception

A second way for AIEd systems and humans to augment one another is by enhancing
each other’s abilities to perceive instructionally relevant information, or opportunities
for action. This may take the form of (1) extending what the other is able to sense (i.e.,
what information is made available to them, prior to further interpretation [11, 20]); (2)
guiding how the other distributes their attention; or (3) guiding how the other interprets
incoming information. Each of these broad possibilities is discussed in turn, below.

3.2.1 Augmenting Sensing and Attention

AIEd systems can be designed to extend what humans are able to sense and notice about
learners, learning, or their own teaching, or from the other direction, to help humans
augment what AIEd systems sense and notice. Thus far, more work in AIEd has focused
on supporting AI→human than human→AI augmentation in this area.

AIEd Augmenting Human Sensing and Attention. A number of AIEd systems have
been developed to help human facilitators sense information to which the AI would
otherwise have unique access (e.g., [2, 5, 26, 38, 40, 55, 69, 70]). Prior work has focused
on augmenting what learners and peer tutors are able to sense and notice about a learning
situation. For example, theAdaptive Peer Tutoring Assistant (APTA) supports peer tutors
in recognizing opportunities for effective intervention, in the context of ongoing peer
tutoring [70]. In the context of self-regulated learning with an AI tutor, the Help Tutor
supports students in monitoring their own help-seeking behavior, and in noticing cases
where they may be using the software’s help functions in maladaptive ways [2]. More
recently, several projects have focused on designing ways to keep human teachers in
the loop in AI-supported classrooms (e.g., [27, 40, 47, 68]). For example, the Lumilo
teacher smartglasses are designed to direct teachers’ attention, during a class session, to
situations that an AI tutor may be poorly suited to handle on its own, or which require a
teacher’s further assessment [26, 27]. In each of the above examples, there is potential for
future AIEd systems not only to augment human facilitators’ abilities in-the-moment,
but also to help humans learn to notice relevant features of a learning situation even
when in-the-moment support is unavailable [2, 19, 59, 70].

Humans Augmenting AIEd Sensing and Attention. From the other side, humans
may have relevant on-the-ground knowledge to which AIEd systems are likely to be
blind. AIEd systems may be designed so that humans can help them perceive such
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information. For instance, future systems might be designed to allow teachers and par-
ents to update individual student models with relevant information about the student’s
broader context; e.g., whether the student is currently facing at-home difficulties that
may impact their performance (cf. [9]). Similarly, an AIEd system might be designed to
periodically poll students regarding their subjective feeling of knowing particular skills
that are targeted by the instruction [12, 36]. In addition to having humans input infor-
mation directly, some research has begun to explore approaches in which humans teach
AIEd systems, via demonstration, to perceive instructionally relevant features to which
they should attend in the future (e.g., [35]).

3.2.2 Augmenting Interpretation

AIEd systems can also be designed to support humans in interpreting and drawing
inferences from what they notice, or to assist humans in shaping or mediating AIEd
systems’ interpretations of the events they are able to sense.

AIEd Augmenting Human Interpretation. Beyond extending human sensing capac-
ities, AIEd systems may also support human facilitators in productively interpreting
and reflecting upon the information available to them. Whereas some technologies are
designed to present information to humans with low-level, minimally pre-interpreted
data (e.g., “number of help requests”) [4, 5, 16], several of the AIEd systems discussed
above, includingAPTA, theHelp Tutor, andLumilo rely upon advanced studentmodeling
techniques (e.g., automated detectors of “help abuse” or “help avoidance” behaviors).
Thus, beyond augmenting human sensing and attention, these systems perform a con-
siderable amount of pre-interpretation on behalf of human facilitators or learners [5].
Emerging lines of research are beginning to explore the design of interfaces that canmore
actively guide humans towards particular interpretations of learning data (e.g., [17]) or
interfaces that can scaffold humans in more productive forms of reflection (e.g., [19]).
However, it remains an open question for future research how best to productively guide
human interpretation, while still leveraging (rather than diminishing) humans’ unique
inferential capacities [5, 14, 17, 23, 33].

Humans Augmenting AIEd Interpretation. Future AIEd systems may be designed
to support human facilitators in detecting cases where the AI misinterprets learning
data (e.g., by misclassifying patterns in collaborating groups’ behaviors) and to pro-
vide corresponding feedback in order to shape these interpretations in more meaningful
directions. As of yet, the question of how AIEd systems can be designed to effectively
elicit and learn from such feedback remains underexplored (cf. [9, 10, 14, 23, 34, 54]).

3.3 Action Augmentation: Leveraging Complementarity in Action Spaces

A thirdway inwhichAIEd systems and humans canwork together to support more adap-
tive instruction is by augmenting and extending the other’s capacities for instructional
action. In particular, AIEd systems and humans can (1) enhance each other’s ability
to perform particular kinds of instructional actions, and relatedly expand the range of
actions available to each; and (2) enhance each other’s scalability and capacity for
action. Each of these broad possibilities is discussed below.
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3.3.1 Enhancing Ability and Expanding the Availability of Actions

Many open research and design opportunities exist for human–AI systems that augment
and expand each other’s action spaces. Just a few examples are presented below.

AIEd Augmenting Human Actions. AIEd systemsmay be designed to support human
facilitators in providing more effective help. For example, while a human coach works
with a student, a future AIEd system might follow along with what the coach is doing,
and adaptively present educational resources (e.g., relevant readings, videos, or practice
materials) that support their current goals [28, 70]. Alternatively, a system may respond
during or after human coaching by adaptively providing feedback on the quality of the
instruction (e.g., the clarity of a particular explanation the coach provides), to help the
coach adjust and improve over time (cf. [19, 28, 70]).

Humans Augmenting AIEd Actions. Humans can also augment the set of instruc-
tional moves available to an AIEd system by either customizing or creating new actions
for the system. For example, AIEd systems may be designed to adaptively deliver hints
written by peers or instructors (cf. [22, 28, 72]). Authoring tools have been developed
to support non-programmer authoring, but further research is needed to support easy
authoring in everyday educational settings (e.g., by teachers or students) [1, 29, 37, 39].

3.3.2 Enhancing Scalability and Capacity

Much prior research in AIEd has focused on augmenting human scalability, whereas
relatively less research has targeted the reverse direction. However, many open questions
remain in each direction, which emerging work is beginning to tackle.

AIEd Augmenting Human Scalability. AIEd systems have often been promoted as
“scaling up” some of the benefits of one-on-one tutoring, effectively providing each
student with their own, personal AI tutor [6, 31, 58, 64]. In doing so, AIEd systems
can serve as teachers’ aides [24, 73], helping human coaches or teachers personalize
instruction beyond what might otherwise be feasible, while also freeing up humans’
limited time and attention for other activities (e.g., providing socio-emotional support
or coaching for students most in need) [22, 24, 58, 73]. Thus, one way in which AIEd
systems can augment human scalability and capacity is through selective delegation
[27]. Some research has begun to explore the design of AIEd systems that adaptively,
dynamically delegate instructional roles between AI systems, teachers, and peers, based
upon an awareness of trade-offs between the instructional ability and capacity of each
[28, 47, 49, 63]. A second emerging way for AIEd systems to help human facilitators
scale their efforts is by supporting them in teaching the AI tutor (as discussed below),
transferring their unique expertise and pedagogical preferences into a system that can
reach more students than they themselves can [37, 39, 60, 74].

Humans Augmenting AIEd Scalability. It can also be useful to consider the ways
in which human facilitators can (and in practice, often do) support AIEd systems in
scaling. Increased scalability risks reducing a system’s fit with particular educational
contexts, as system developers design solutions to fit constraints of multiple contexts
simultaneously [32, 45, 46]. On-the-ground facilitators may support AIEd systems in
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scaling to diverse contexts by adapting the way these systems are implemented in use to
the needs of their local contexts (e.g., [24, 30, 46, 58]). For example, when classroom
teachers useAIEd systems that are poorly alignedwith their school’s existing curriculum,
they may selectively assign particular modules to students, overriding the systems’ built
in sequencing algorithms in the interest of providing better aligned learning experiences
[23, 45]. Future AIEd systems may be explicitly designed to facilitate such adaptability
(e.g., local customizations and overrides) [16], improving their chances for adoption
across varied contexts of use [22, 24, 28, 45].

3.4 Decision Augmentation: Leveraging Complementarity in Decision-Making

Beyond informing each other’s goals or augmenting each other’s capacities for per-
ception and action, a fourth major way in which AIEd systems and humans can work
together is by helping each other make more effective pedagogical decisions (i.e., help-
ing each other more effectively link between perception and action). Prior work has
explored forms of both AI→human and human→AI decision augmentation. However,
much additional research is needed in order to fully realize the visions of AIEd systems
as, for instance, effective decision support and professional development tools [5, 19,
23, 24, 66] and as teachable machines [37, 39, 60, 74].

AIEd Augmenting Human Decision-Making. In addition to providing instruction to
students directly, AIEd systems may be designed as decision support for human facil-
itators, helping humans take more effective instructional actions in particular learning
situations [2, 26, 27, 66, 67, 70]. To an extent, all forms of human augmentation dis-
cussed thus far can function as forms of decision support. Indeed, decision support is
often conceptualized as a continuous spectrum rather than a binary design choice [5, 56,
65, 71]. For instance, perceptual augmentation may enhance decision-making by direct-
ing humans’ attention towards learning phenomena that require their further assessment
or action [5]. However, AIEd systems may also be designed to support human decision-
making more directly and explicitly. For example, an AIEd system might automatically
suggest effective ways for a human facilitator to help a group of students, in the moment,
based on its perceptions of the students’ and/or facilitator’s current states (effectively
functioning as hints or bug messages, targeted for a human in an instructional role rather
than a learner; see [27, 28, 68, 70]). With knowledge of a facilitator’s instructional goals,
future AIEd systems might help the facilitator make more informed trade-offs between
competing goals or nudge them away from practices that are at odds with their goals
[28]. Such systems could function not only as decision support, but also as professional
development, helping humans improve over time, potentially even in the absence of such
support [19, 27, 28, 70].

Humans Augmenting AIEd Decision-Making. AIEd systems may also be designed
to help human facilitatorsmediateor shape these systems’ instructional decision-making.
Mediation may occur in practice where a facilitator such as a teacher overrides a deci-
sion made by an AIEd system (e.g., by selecting an alternative activity for a student
to work on, or an alternative group for a student to collaborate with, rather than ones
selected by the system) [5, 24, 47, 49]. As discussed under Goal Augmentation above,
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such overriding behavior occurs regularly inK-12 classroom contexts; as noted, although
teachers’ overrides can often be seen as adaptive, they can also bemaladaptive when they
detract from (some) goals for the instruction. In addition to mediating AIEd systems’
decision-making, humans might also help systems learn more effective policies or ones
better suited to their particular educational contexts [23]. Recent work onmachine teach-
ing for AIEd suggests promise for approaches in which humans teach the AI to teach
through feedback and demonstrations [37, 39]. However, further research is needed to
develop interaction paradigms for machine teaching that are fast and intuitive enough
for everyday use in educational settings [60, 74].

3.5 Granularity and Timing in Human–AI Systems

Finally, we briefly discuss how granularity and timingmight be understood in human–AI
systems.WhenAIEd systems andhumanswork together, theymay each adapt instruction
at different grain sizes. For instance, in classrooms using step-based tutoring software,
teachers may provide substep feedback on-the-spot (i.e., feedback on a step while the
student is, from the system’s perspective, still in themidst of completing the step) [23, 27,
30].While an AIEd systemwaits for the student to submit their input, a human facilitator
might perceive an opportunity to intervene within a long pause in student typing. The
timing of adaptation may also vary across humans and machines. For instance, Aleven
et al’s “design loop adaptivity” [3] can be viewed as involving a form of shared adaptivity
in which human facilitators or instructional designers repeatedly adapt an AIEd system’s
design (informed by educational data and/or their own observations) before or after an
instructional activity, while the AIEd system in turn takes care of adapting to learning
situations during the activity.

4 Conclusions

AIEd systems are increasingly designed and evaluated with an awareness of the shared
nature of adaptivity in real-world educational settings. Despite much recent research
into human–AI hybrid approaches for education, theoretical and conceptual guidance in
this area remains limited. Whereas prior frameworks have tended to examine adaptivity
in AIEd systems or human coaches separately, in this paper we have explored how
adaptivity may be shared across AIEd systems and the various human stakeholders who
work with them.

Based on a comparison and synthesis of prior frameworks, we have presented a gen-
eralized set of dimensions, with the goal of capturing essential components of adaptive
instructional behavior (cf. [43]). Using these dimensions, we have introduced a concep-
tual framework for human–AI hybrid adaptivity in education, suggesting distinct ways in
which AIEd systems and human facilitators might augment one another. Throughout the
previous section, we have presented several examples to illustrate how this framework
can be used both to characterize prior work and to surface new possibilities and open
questions for human–AI hybrid approaches in education.

We view the current framework as a step towards the development of richer the-
ory for human–AI hybrid adaptivity in education, and for human–AI hybrid approaches
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more broadly. As an empirical and design science, AIEd needs theory to productively
guide hypothesis generation, prediction, understanding, and design. Theory can help
researchers adopt common concepts and vocabulary, which may in turn accelerate com-
munication and innovation. Theory can shape—for better or worse—how researchers
and designers see the world, how they make sense of their observations, and what alter-
natives they are able to envision. The current framework should be viewed as a starting
point, not a finished product. We invite others in the community will challenge this
framework and expand upon it.

The design space for human–AI hybrid approaches in education is large and combi-
natorial: almost any real case will involve combinations of the categories of human–AI
adaptivity specified in this framework (e.g., an AIEd system might augment human
decision-making via a human-augmented perceptual model). It is our hope that the
present work will help to guide future research and design, assisting others in navigating
this broad design space, in formulating more useful hypotheses, and in differentiating
among fundamentally different kinds of human–AI hybrid approaches.
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Abstract. In digital learning games, do game mechanics that promote learning
and those that promote enjoyment have different effects on students’ experience?
Do males or females learn from or enjoy games more? We explored these ques-
tions in Decimal Point, a digital learning game that teaches decimal numbers and
decimal operations to middle school students. In this work, we conducted a class-
room study with two versions of the game, one that encourages students to play
to learn and one that encourages students to play for enjoyment. We compared
these two conditions to a control condition that is neutral regarding learning and
enjoyment. Our results indicated that the enjoyment-focused group learned more
efficiently than the control group, and that females had higher learning gains than
males across all conditions, particularly on the near and middle transfer learning
items. Post hoc analyses also revealed that the learning-focused group engaged in
re-practicing the same mini-games, while the enjoyment-focused group demon-
strated more exploration of different mini-games. These findings suggest that
emphasizing learning or enjoyment can result in distinctive gameplay behaviors
from students, and that our game can help bridge the typical gender gap in math
education.

Keywords: Digital learning game · Decimals · Learning · Enjoyment · Gender

1 Introduction

Digital learning games are instructional tools that can both engage students and promote
learning [20]; however, students may be distracted from learning by the engaging game
features [23]. To help students stay on track, modern learning games often incorporate
learning-oriented mechanics such as collaborative problem-solving [50], instructional
feedback [35] or open learner models [15]. More generally, several frameworks on how
to design game features that optimize learning have been proposed [14, 26, 27].

On the other hand, an implicit expectation in digital learning games is that students’
enjoyment can serve as a catalyst for their learningmotivation and is positively correlated
with learning outcomes [2, 19, 30]. Given this expectation, it would be interesting to
compare the effects of an enjoyment-focused game environment with those of a learning-
focused one, provided that the enjoyment-inducing features are also strongly tied to
learning and not just superficial game activities. To our knowledge, only a handful of
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prior studies have explicitly compared the learning and enjoyment constructs in the same
game context. For example, [17] manipulated how undergraduate students perceived the
same multimedia environment as either a learning module or a game, and found that the
learninggroupdemonstrated deeper learningwhile reporting the same level ofmotivation
as the game group. On the other hand, the game group performed better than the learning
groupwhen instructional feedbackwas included in both conditions, implying that a game
environment can be helpful if it promotes active learning. Another study by [52] adopted
a similar strategy with high school students and found that enjoyment is not affected
by playful or serious framing. However, rather than manipulating only the students’ a
priori perspective of the game as these prior studies did, we believe a more authentic
comparison should take place during students’ actual gameplay, with different game
mechanics designed to emphasize either the learning or enjoyment aspect of the game.

In our work, we explored this idea in the context of Decimal Point, a math learning
game for middle school students. Our study compared the learning and enjoyment-
focused features through three conditions: one that displays the student’s current level
across different decimal skills and encourages more playing of the mini-games they are
weakest at (Learning Condition - LC), one that displays the student’s current enjoyment
and encourages more playing of the mini-games they enjoy the most (Enjoyment Con-
dition - EC), and one that does not show any learning- or enjoyment-related information
(Control Condition - CC). Our research questions are as follows.

RQ1: Is there a difference in learning outcomes among students in the three conditions?
As the LC design is essentially an open learner model [7, 10], which allows students to
see their skill performance and helps regulate their learning, we hypothesized that LC
students would achieve the highest learning outcome.
RQ2: Is there a difference in self -reported enjoyment among students in the three con-
ditions? Given the emphasis on students playing their most enjoyed mini-games, we
hypothesized that the EC group would report the highest enjoyment scores.
RQ3: Is there a difference in learning outcomes between male and female students?
Given past research showing that females tend to learn more from digital learning games
than males [28, 32], we hypothesized that female students would have better learning
outcomes than males in our game across all three conditions.
RQ4: Is there a difference in self -reported enjoyment betweenmale and female students?
Prior research has suggested that males are typically drawn to video game features such
as competition [4], achievement [41] and social interaction [22], whereas females tend
to prefer engaging with familiar characters in a fantasy setting [49], which aligns more
closely with our game environment. Therefore, we hypothesized that females would
report higher enjoyment than males across all three conditions.

2 The Digital Learning Game Decimal Point

Decimal Point is a web-based single-player digital learning game that helps middle-
school students learn about decimal numbers and their operations. The game features
an amusement park metaphor (Fig. 1) with 8 theme areas and 24 mini-games that tar-
get common decimal misconceptions [25]. Each mini-game also exercises one of the
following decimal skills:
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Fig. 1. The main game map where students can select among 24 mini-games to play (left), and
an example mini-game in the Sorting skill category (right).

1. Number Line - locate the position of a decimal number on the number line.
2. Addition - add two decimals by entering the carry digits and the sum.
3. Sequence - fill in the next two numbers of a sequence of decimal numbers.
4. Bucket - compare given decimals to a threshold number and place each decimal in

a “less than” or “greater than” bucket.
5. Sorting - sort a list of decimal numbers in ascending or descending order.

An initial study of Decimal Point, where students had to play all mini-games in
a canonical order, showed that the game yielded more learning and enjoyment than a
conventional tutor with the same instructional content [33]. Subsequent studies have
integrated the element of agency into the game, by allowing students to select which
mini-games to play and when to stop [24, 36]. Students who were provided agency
acquired equivalent learning gains in less time than those who were not, suggesting that
they could self-regulate effectively. Furthermore, a post hoc analysis by [51] reported
that certain mini-game sequences which are indicative of students’ exercise of agency
led to higher self-reported enjoyment than others. However, no effect of agency or other
game elements on test performance has been observed so far.

In addition, given an earlier finding that females benefited more from the Decimal
Point game than males [32], we are interested in further analyses of the gender dif-
ferences. As agency and learning/enjoyment-focused mechanics are integrated into the
game, would the findings from [32] still hold? If a gender effect was present, which
factors in the game would likely cause this effect?

3 Method

3.1 Participants and Design

196 fifth and sixth grade students in two public schools in a mid-sized U.S. city partici-
pated in our study,whichwas conducted during students’ regular class time and lasted six
days. The materials included a pretest, game play, evaluation questionnaire and posttest
on the first five days, followed by a delayed posttest one week later. After the study, 35
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students were removed from our analyses due to not finishing all the materials. Using
the outlier criteria from a prior study in Decimal Point [36], we excluded two students
whose gain scores from pretest to posttest were 2.5 standard deviations away from the
mean. Thus, our final sample included 159 students (82males, 77 females). Each student
was randomly assigned to one of three conditions: Control (CC), Enjoyment (EC) or
Learning (LC). In each condition, students could (1) select the mini-games to play in
any order, and (2) choose to stop playing any time after completing at least 24 rounds.
Additionally, each condition features a different dashboard attached to the main game
map shown in Fig. 1. After finishing each mini-game, students were taken back to the
main map, where they could see the updated dashboard and make their next mini-game
selection.

(a) (b) (c)

Fig. 2. The dashboards shown along the gamemap in the Control (a), Enjoyment (b) and Learning
(c) condition. The skills in the Enjoyment condition are renamed to appear more playful, e.g.,
Addition becomes Mad Adder.

In the CC group (30 males, 20 females), students played two rounds of mini-game
per selection (i.e., they played each selected mini-game twice, with different content
but the same mechanics). The dashboard listed the mini-games and their corresponding
skills, where the completed ones were highlighted in red (Fig. 2a). After finishing the
first two rounds of all 24 mini-games, students had the option to play another round of
each. This condition is equivalent to the High Agency condition in [24] and [36].

In the EC group (29 males, 25 females), students played one round of mini-game per
selection. After each mini-game round, students were asked to rate their enjoyment of
that mini-game, on a scale from 1 (“not fun”) to 5 (“crazy fun”). The dashboard showed
the student’s enjoyment rating of each skill, which was averaged over all the mini-game
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ratings in that skill category so far (Fig. 2b). After the first three rounds, the dashboard
would also recommend three mini-games to play next, chosen randomly from the two
skills with the highest enjoyment; the student could follow this recommendation or make
their own choice. Unlike in CC, EC students could play more rounds of a mini-game
any time, without having to complete other mini-games at least once.

In the LC group (23 males, 32 females), students played one round of mini-game per
selection. The dashboard showed the game’s estimates of the student’s mastery of each
skill, from 0% to 100% (Fig. 2c), based on Bayesian Knowledge Tracing (BKT) [53].
We set the initial BKT parameters as p(L0) = 0.4, p(T) = 0.05, p(S) = p(G) = 0.299
[3]. After the first three rounds, the dashboard would also recommend three mini-games
to play next, chosen randomly from the two skills with the lowest mastery; the student
could follow this recommendation or make their own choice. Similar to those in EC, LC
students could play more rounds of a mini-game any time.

3.2 Materials

A web-based learning environment was used in this study. The materials included three
tests, the game conditions outlined above, as well as questionnaire/survey items.

Pretest, Posttest, and Delayed Posttest: Each test consisted of 43 items. Most items
are worth one point each, while some multi-part items are worth several points, for
a total of 52 points per test. The items were designed to probe for specific decimal
misconceptions, and involved either the five decimal skills targeted by the game or
conceptual questions (e.g., “is a decimal number that starts with 0 smaller than 0?”).
Three test forms (A, B and C) that were isomorphic and positionally counterbalanced
across conditions were used. One-way ANOVAs showed no differences in terms of
performance among the three versions of the test at pretest, F(2, 156)= 0.480, p= .620,
posttest, F(2, 156) = 1.496, p = .227, and delayed posttest, F(2, 156) = 1.302, p =
.275.

Questionnaires and Survey: Before and after playing the game, students were given
demographic questionnaires and asked to rate several statements on a Likert scale from
1 (“strongly disagree”) to 5 (“strongly agree”). These statements pertain to factors such
as (1) multidimensional engagement (6 questions adapted from [6] with α = .775 for
the affective subscale and α = .540 for the behavioral/cognitive engagement subscale),
e.g. “I felt frustrated or annoyed,” (2) game engagement (5 questions adapted from
[8] with α = .736), e.g., “I lost track of time,” and (3) the enjoyment dimension of
achievement emotions (6 questions adapted from [43] with α = .891), e.g. “Reflecting
on my progress in the game made me happy.” In the multidimensional engagement
construct, we excluded the behavioral/cognitive engagement subscale from analysis due
to its low α value and only reported the results for affective engagement. After the
game, students were also asked to reflect on their game play behavior, e.g. “How many
mini-games did you play? Why?”
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4 Results

First, a repeated-measures ANOVA showed a significant difference for all students
between pretest and posttest scores, F(1, 158) = 132.882, p < .001, as well as between
pretest and delayed posttest scores, F(1, 158) = 239.414, p < .001. In other words, in
all three conditions, students’ performance improved after playing the game. Next, we
investigated our research questions. Given that gender is not a randomly assigned vari-
able andmales tend to outperform females inmath performance by the end of elementary
school [46], we did not expect students to be equivalent across genders at pretest. For
this reason, we focused our gender analyses on gain scores [18]. In contrast, because the
conditions (CC, LC and EC) were randomly assigned, we expected students to perform
equally well on pretest across conditions; therefore, we used analyses of covariance
(ANCOVA) to assess condition effects on posttest and delayed posttest.

Table 1. Test performance and self-reported enjoyment scores by condition.

Category CC EC LC

Pretest scores M (SD) 26.68 (8.89) 24.76 (9.55) 23.09 (9.65)

Posttest scores M (SD) 32.12 (8.01) 29.76 (10.25) 28.42 (11.31)

Delayed posttest scores M (SD) 32.84 (8.90) 31.74 (10.12) 30.05 (10.06)

Achievement emotion M (SD) 3.46 (1.02) 3.49 (0.88) 3.55 (0.94)

Game engagement M (SD) 3.00 (0.90) 3.14 (0.98) 3.18 (0.80)

Affective engagement M (SD) 3.66 (0.94) 3.42 (1.04) 3.58 (0.85)

RQ1: Is there a difference in learning outcomes among students in the three conditions?
Descriptive statistics about students’ test scores in each condition are included in Table 1.
From a one-way ANOVA, we observed no significant differences across conditions
in pretest scores, F(2, 156) = 1.915, p = .151. With pretest scores as covariates, an
ANCOVA showed no significant condition differences in posttest scores, F(2, 155) =
0.201, p = .818, or delayed posttest scores, F(2, 155) = 0.143, p = .867.

Following [34], learning efficiency was calculated for each student as the z-score of
their pre-post or pre-delayed learning gains minus the z-score of total game time. As
the learning efficiency data was not normally distributed, we used Kruskal-Wallis test
and found a significant condition effect on learning efficiency for both posttest, H =
6.30, p= .043, and delayed posttest, H= 8.64, p= .013. Post hoc (Dunn) comparisons
indicated that the EC group had significantly higher learning efficiency than CC, p =
.013, d = 0.28, and delayed learning efficiency, p = .003, d = 0.33. There were no
significant differences between EC and LC (pre-post: p = .369, pre-delayed: p = .257)
or between CC and LC (pre-post: p = .466, pre-delayed: p = .181). In summary, there
was a condition effect on learning efficiency, where EC students learned more efficiently
than CC, but not on test performance, so our hypothesis that LC students would learn
the most was not confirmed.
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RQ2: Is there a difference in self -reported enjoyment among students in the three condi-
tions?Descriptive statistics about students’ enjoyment ratings by condition are included
in Table 1. Based on one-way ANOVAs, there were no significant differences across
conditions in achievement emotions, F(2, 156) = 0.118, p = .889, game engagement,
F(2, 156) = 0.597, p = .552, or affective engagement, F(2, 156) = 0.886, p = .414. In
other words, there was no condition effect on self-reported enjoyment, so our hypothesis
that EC students would report the highest enjoyment was not confirmed.
RQ3: Is there a difference in learning outcomes between male and female students?
Descriptive statistics about students’ test scores by gender are included in Table 2. A
one-way ANOVA showed no significant gender differences in pretest performance, F(1,
157) = 0.534, p = .466. A two-way ANOVA testing effects of condition and gender
showed a significant main effect of gender on learning gains, F(1, 153) = 4.351, p
= .039, d = .33, and delayed learning gains, F(1, 153) = 4.431, p = .037, d = .35,
but no significant gender x condition interaction effect on learning gains, F(2, 153) =
0.065, p= .937, or delayed learning gains, F(2, 153)= 0.685, p= .506. Therefore, our
hypothesis that females learned more than males across all conditions was confirmed.
However, there were no significant gender differences in learning efficiency, F(1, 157)
= 0.259, p = .612, or delayed learning efficiency, F(1, 157) = 0.301, p = .584.
RQ4: Is there a difference in self -reported enjoyment betweenmale and female students?
Descriptive statistics about males and females’ ratings of the three enjoyment categories
are included in Table 2. A two-way ANOVA testing effects of condition and gender
revealed no significant main gender effect on achievement emotions, F(1, 153)= 0.160,
p = .690, game engagement, F(1, 153) = 1.689, p = .196, or affective engagement,
F(1, 153) = 1.390, p = .240. Similarly, there were no significant gender x condition
interaction effects on these three constructs: achievement emotions, F(2, 153) = 0.390,
p = .678, game engagement, F(2, 153) = 0.345, p = .709, and affective engagement,
F(2, 153) = 0.053, p = .948. Thus, our hypothesis that females would enjoy the game
more than males was not confirmed.

Table 2. Learning gains and self-reported enjoyment scores by gender.

Category Males Females

Pretest M (SD) 25.32 (9.74) 24.22 (9.14)

Learning gains M (SD) 4.34 (5.71) 6.22 (5.66)

Delayed learning gains M (SD) 5.80 (5.27) 7.69 (5.56)

Achievement emotion M (SD) 3.46 (1.04) 3.53 (0.83)

Game engagement M (SD) 3.01 (0.92) 3.21 (0.85)

Affective engagement M (SD) 3.64 (0.99) 3.46 (0.89)

Post Hoc Analyses. We conducted two follow-up analyses to better understand the
condition effect on learning efficiency as well as the gender effect on learning gains. In
cases where the data is not normally distributed, based on the omnibus test of normality
[1], we employed the Kruskal-Wallis test [16] instead of ANOVA.
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Condition Effect on Learning Efficiency. We first examined the number of mini-game
rounds played in each condition. A Kruskal-Wallis test showed significant differences
across conditions in number of rounds, H = 38.08, p < .001. Post hoc (Dunn) compar-
isons revealed that the CC (M = 45.08, SD= 18.40) had significantly more rounds than
LC (M = 33.20, SD = 9.86), p< .001, d = 0.44, and LC had significantly more rounds
than EC (M = 26.65, SD = 4.59), p = .007, d = 0.33. Furthermore, a Kruskal-Wallis
test showed no significant condition differences in average game time per round, H =
2.50, p = .286. Therefore, EC students’ higher learning efficiency than CC’s could be
attributed to their similar test scores but fewer mini-game rounds.

Next, we were interested in how varied the mini-games played in each condition
were. For this purpose, we defined a new metric for each student called replay rate,
which is the number of times a student reselected a mini-game beyond the first try
divided by their total number of mini-game selections. A high replay rate (close to 1)
indicates that the student played more rounds of certain mini-games, while a low rate
(close to 0) points to the student playing fewer rounds of more mini-games (i.e., playing
a wider variety of mini-games). As CC students could not replay mini-games until after
48 rounds, their replay behaviors were necessarily different from those in LC and EC,
so we focused our comparison on the LC and EC groups. We employed a Kruskal-
Wallis test and observed significant differences in replay rates between the LC and EC
students, H = 42.41, p < .001; LC students (M = 0.44, SD = 0.20) had a significantly
higher replay rate than EC students (M = 0.15, SD= 0.17). In other words, LC students
tended to replay more rounds of the mini-games they had already played than those in
EC. Preliminary analysis of students’ reflection on their gameplay behavior revealed a
similar picture. Many in the EC group (25/54) and CC group (20/50) mentioned trying
out every available mini-game, e.g., “I really wanted to finish the whole map and see all
the things filled in with color.” On the other hand, fewer LC students (10/55) touched
on this idea, while 17 of them instead mentioned the mastery scores as motivation for
playing, e.g., “I was trying to get all the decimal category skill bars full.”

Gender Effect on Learning Gains. To see where females outperformed males in the
tests, we assigned a level of learning transfer to each of the 43 test items: 20 near, 8
middle, 15 far. Following [5]’s taxonomy of transfer along the learned skill dimension
[39], we classified test items as near transfer if they could be completed using identical
procedures to those practiced in the game, middle transfer if they relied on practiced
representations but required modification of procedures, and far transfer if they required
students to understand underlying principles of practiced problems. For example, based
on the sorting game in Fig. 1, a near transfer problem involves applying the same sort-
ing procedure with new values (“Place the following list of decimals in order, smallest
to largest: 0.7, 0, 1.0, 0.35”); a middle transfer problem asks students to apply rep-
resentations of magnitude using a different procedure (“Which number is closest to
2.8? 2.88888, 2.91, 2.6, or 2.78”), while a far transfer problem tests abstract reasoning
about decimal magnitude (“Is a longer decimal number larger than a shorter decimal
number?”). Table 3 shows the results of one-way ANOVAs comparing pretest scores,
learning gains and delayed learning gains between males and females at each transfer
level. For the near and middle transfer items, females had lower scores than males at
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Table 3. Comparison of test performance by gender at each transfer level. The mean difference
(MD) indicates the mean value of males minus mean value of females.

Transfer level Category Statistical result

Near Pretest scores F(1, 157) = 3.643, p = .058,MD = 1.399

Learning gains F(1, 157) = 4.541, p = .035,MD = −1.166

Delayed learning gains F(1, 157) = 4.020, p = .047,MD = −1.030

Middle Pretest scores F(1, 157) = 4.474, p = .036,MD = 0.669

Learning gains F(1, 157) = 4.695, p = .032,MD = −0.784

Delayed learning gains F(1, 157) = 2.495, p = .116,MD = −0.651

Far Pretest scores F(1, 157) = 1.569, p = .212,MD = −0.948

Learning gains F(1, 157) = 0.007, p = .932,MD = 0.047

Delayed learning gains F(1, 157) = 0.147, p = .702,MD = −0.226

pretest but outperformed males in learning gains and delayed learning gains; however,
there were no significant gender differences in performance on far transfer items.

5 Discussion and Conclusion

In this study, we investigated whether emphasizing the learning or enjoyment aspect
of a digital learning game would lead to better outcomes, as well as whether males or
femaleswould benefitmore from the game.We found that the EnjoymentCondition (EC)
students played the least number of rounds but had higher learning efficiency than the
Control Condition (CC) students. In addition, females gained more decimal knowledge
than males in the posttest and delayed posttest across all conditions.

The condition effect on learning efficiency is an interesting extension to the study
by [24], where students in the High Agency conditions (equivalent to our CC) learned
more efficiently than those in Low Agency. In our case, since the CC and EC groups had
similar test scores and average time per round, the difference in learning efficiency is
due to CC students’ higher number of rounds, which can be explained by their having to
play two rounds per mini-game selection. Focusing on the EC and LC groups’ gameplay
behavior, we saw that EC students on average played 27 rounds with a replay rate of
0.15, so they chose to stop playing after trying most of the 24 mini-games once. At the
same time, LC students had significantly higher number of rounds (33 on average) and
replay rates (0.44 on average), indicating that the open learner model was effective in
encouraging them to practice for mastery, consistent with prior literature [7, 31]. On
the other hand, we found no significant differences between the LC group’s learning
efficiency and that of EC or CC, suggesting that replaying the mini-games past a certain
point may yield diminishing returns. Our post hoc analysis of this study [37] revealed
that over-practice, which could negatively impact students’ learning efficiency [13], was
indeed very common. Therefore, an important enhancement to the open learner model
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would be to inform students when they have sufficiently practiced one skill and should
move on to the next, in order to maximize their learning efficiency.

From the game play perspective, in the CC and EC settings, without the open learner
model, students may not have monitored their learning progress [9, 54] and more likely
wanted to explore all the mini-games that were offered. In contrast, LC students could
see their skill performance and therefore were potentially more motivated to focus on
mastering the skills one by one, as this is the traditional approach in school instruction
[42]. These conjectures are supported by the students’ reflections, which indicated that
EC students liked to play all the mini-games while LC students wanted to improve
their skill masteries. More generally, this finding suggests that in a game environment
where students are free to choose between different types of task, showing an open
learner model can encourage re-practicing the tasks one at a time (blocked practice),
while not showing the model may result in students engaging in more exploration of the
different tasks (interleaved practice). As the effects of these two practice modes depend
on the instructional domain [11, 12, 21, 47], game designers should investigate the
knowledge content of their game to seewhichmode ismore suitable and, in turn, whether
to incorporate an open learner model. In our context, the skills may be sufficiently
distinct from one another and each was embedded in a unique interface, so interleaving
and blocking, if present, were unlikely to yield differences in learning outcomes. A
prior Decimal Point analysis similarly reported that students playing the mini-games in
different orders still acquired the same knowledge [51].

From the enjoyment perspective, our EC design did not yield the intended effect
of maximizing students’ enjoyment and engaging them in the game for a longer time.
One potential reason is that, while the EC and LC dashboard had similar structures,
students were likely not exposed to this “open enjoyment model” before and did not
use it effectively. Alternatively, students may have reported similar enjoyment levels
because, despite the different dashboards, they still spent the majority of play time in
the actual mini-games, which are identical across conditions. Furthermore, our study
was conducted in a real classroom environment, where students had limited time per
day to play the game and were aware of the posttests; these factors may have negated
the playful atmosphere that the Enjoyment condition was intended to induce [40, 44] or
caused students to not take the enjoyment model as seriously as the learner model.

For the gender effect, we found that females outperformed males in learning gains
at the near and middle transfer items, which most closely resemble those practiced in
the game. In addition, females did not differ significantly from males in learning gains
on far transfer problems. This outcome can be explained by the game’s focus on practic-
ing problems, which is typically beneficial for improving procedural knowledge but not
necessarily for abstract knowledge or far transfer [45, 48]. Overall, our findings demon-
strate thatDecimal Point can potentially contribute to bridging the typical gender gap in
math education [29, 46]. In addition, there were no gender differences in self-reported
enjoyment, suggesting thatDecimal Point was equally appealing to both genders. This is
a positive outcome and likely results from the variety of mini-game themes and activities
(Fig. 1), which appeal to both genders even if the game does not contain the features
that we hypothesized are critical to the male students’ enjoyment.
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Our findings open up several avenues for future work. From the learning perspec-
tive, we could experiment with different skill mappings or model representation [7, 38]
to better observe how students interact with the learner model in Decimal Point. From
the enjoyment perspective, we plan to implement more in-game measures and survey
questions to understand students’ perception of game play in the classroom and to opti-
mize enjoyment in Decimal Point. Finally, there is potential in further exploration of
which game features are conducive to the observed gender effects, and how to extend
the game’s knowledge content to better support far transfer learning.

In summary, while the learning and enjoyment-focused mechanics inDecimal Point
had similar impacts on students’ outcomes, they yielded two distinct gameplay patterns,
one focusing on repeated practice (the Learning Condition) and the other on exploration
(the Enjoyment Condition). We also found that females improved in learning from the
gamemore than males. These results in turn lead to the possibility of exploring the effect
of emphasizing game-based learning or enjoyment in a classroom environment, as well
as the game’s potential in bridging the gender gap in math education.
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Abstract. Asking questions is one of the most crucial pedagogical tech-
niques used by teachers in class. It not only offers open-ended discussions
between teachers and students to exchange ideas but also provokes deeper
student thought and critical analysis. Providing teachers with such ped-
agogical feedback will remarkably help teachers improve their overall
teaching quality over time in classrooms. Therefore, in this work, we
build an end-to-end neural framework that automatically detects ques-
tions from teachers’ audio recordings. Compared with traditional meth-
ods, our approach not only avoids cumbersome feature engineering, but
also adapts to the task of multi-class question detection in real education
scenarios. By incorporating multi-task learning techniques, we are able
to strengthen the understanding of semantic relations among different
types of questions. We conducted extensive experiments on the question
detection tasks in a real-world online classroom dataset and the results
demonstrate the superiority of our model in terms of various evaluation
metrics.

Keywords: Question detection · Multi-task learning · Natural
language understanding · Online classroom

1 Introduction

Teachers utilize various pedagogical techniques in their classrooms to inspire
students’ thought and inquiry at deeper levels of students’ comprehension. These
techniques may include lectures, asking questions, assigning small-group work,
etc. [6,9,25]. A large body of research has demonstrated that asking certain types
of questions can increase student engagement and it is an important factor of
student achievement [1,2,16,20,27,32]. Asking questions has become a central
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component of teachers’ dialogic instructions and often serves as a catalyst for
in-depth classroom discussions [21,26,28].

A large spectrum of approaches have been developed and successfully applied
in generating classroom feedback to evaluate teachers’ performances and help
them improve their pedagogical techniques [15,19,26,28,31]. For example, the
Nystrand and Gamoran coding scheme provides a general template for recording
teachers’ activities, which are used by trained human judges to manually assess
teachers’ classroom practices [15,26]. However, manually analyzing teacher ques-
tions is very subjective, expensive, time-consuming and not scalable. Thus, it is
crucial to develop computational methods that can automatically detect teacher
questions in live classrooms. By automatically analyzing when teachers ask ques-
tions and the corresponding question types, we are able to evaluate the question
impact on teaching achievements and help teachers make adjustments to improve
their pedagogical techniques. Previous endeavors have been conducted to tackle
this problem using traditional machine learning (ML) algorithms [4–6,12,29].
However, the majority of these methods are not sufficient for teacher question
detection due to the following challenges:

– Question type variation. Different from questions in daily chatting, routine
conversation or other scenarios, teacher questions in classrooms are very
diverse and open-ended. There are different types of classroom questions, such
as knowledge-solicitation questions (e.g., “What’s the definition of quadran-
gle?”), open questions (e.g., “Could you tell me your thought?”), procedural
questions (e.g., “Can everyone hear me?”), and discourse-management ques-
tions (e.g., “What?”, “Excuse me?”) [7,28]. Traditional methods fail to per-
form a deep semantic understanding on natural languages, which is necessary
for detecting questions of various types.

– Subject and speaker variability. Teaching materials and styles vary dramati-
cally for different subjects and teachers, which leads to significantly distin-
guished classroom question sentences. Traditional methods show poor adapt-
ability. When new subjects or teachers appear, most existing approaches have
to be redesigned and retrained with the newly arrived data.

– Tedious feature engineering. Traditional ML-based methods detect questions
based on complex acoustic and language features. It’s time-consuming to
construct manually-engineered patterns.

In this work, we aim to investigate accurate teacher question detection in
online classrooms. In particular, we study two variants of the teacher question
detection problem. One is a two-way detection task that aims to distinguish
questions from non-questions. The other is a multi-way detection task that aims
to classify different types of questions. Please note that the formal definitions
of the above two tasks are introduced in Sect. 3.2. We design a neural natural
language understanding (NLU) model to automatically extract semantic features
from teachers’ sentences for both the two-way task and the multi-way task. Our
approach shows a powerful generalization capability for detecting questions of
various types from different teaching scenarios. With the neural model as a core
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component, we build an end-to-end framework that directly takes teacher audio
tracks as input and outputs the detection results. Experiments conducted on a
real-world online education dataset demonstrate the superiority of our proposed
framework compared with competitive baseline models.

2 Related Work

2.1 Teacher Question Detection

Blanchard et al. explore classifying Q&A discourse segments based on audio
inputs [4]. A simple amplitude envelope thresholding-based method is developed
to detect teachers’ utterances. Then the authors extract 11 speech-silence fea-
tures from detected utterances and train supervised classifiers to differentiate
Q&A segments from other segments. Following this work, Blanchard et al. fur-
ther introduce an automatic speech recognition (ASR) system to convert audio
features into domain-general language features for teacher question detection
[5,6]. They extract 37 NLP features from ASR transcriptions and train differ-
ent classical ML models to distinguish questions from non-questions. Besides
linguistic features, Donnelly et al. try both prosodic and linguistic features for
supervised question classification and conclude that ML classifiers can achieve
better performance with linguistic features [12].

The line of research presented above focuses on detecting questions from non-
questions, which is a binary classification problem. Besides, we are interested in
classifying questions into specific categories. Samei et al. build ML models to pre-
dict two properties “uptake” and “authenticity” of questions in live classrooms
[29]. They extract 30 linguistic features related to part-of-speech and pre-defined
keywords from each individual question. Samei et al. show that ML models are
able to achieve comparable question detection performance as human experts.

Different from previous works of building question detection ML models
based on manually selected linguistic and acoustic features, our approach elimi-
nates the feature engineering efforts and directly learns effective representations
from the ASR transcriptions. Furthermore, we introduce multi-task learning
techniques into our model to classify different types of questions.

2.2 Multi-task Learning

Multi-task learning is a promising learning paradigm that aims at taking advan-
tage of information shared in multiple related tasks to help improve the general-
ization performance of all tasks [8]. In multi-task learning, a model is trained with
multiple objectives towards different tasks simultaneously, where all or some of
the tasks are related. Researches have shown that learning multiple tasks jointly
can achieve better performance than learning each task separately. Yang et al.
propose a novel multi-task representation learning model that learns cross-task
sharing structures at each layer of a neural network [37]. Hashimoto et al. propose
a joint multi-task model for multiple NLP tasks [17]. The authors point out that
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training a single network to model the hierarchical linguistic information from
morphology, syntax to semantics can improve its generalization ability. Kendall
et al. observe that the performance of the multi-task learning framework heavily
depends on the weights of the objectives for different tasks [22]. They develop
a novel method to learn the multi-task weightings by taking the homoscedastic
uncertainty of each task into consideration.

3 Problem Statement

The teacher question detection task in live classrooms identifies questions from
teachers’ speech and classify those questions into correct categories. In this
section, we first introduce the method for coding questions and then formulate
the problem of teacher question detection.

3.1 Question Coding

By analyzing thousands of classroom recordings and surveying hundreds of
instructors and educators, we categorize teacher questions into the following
four categories:

– Knowledge-solicitation Question (KQ): Questions that ask for a knowl-
edge point or a factual answer. Some examples include: “What’s the solution
to this problem?”, “What’s the distance between A and B?”, and “What is
the area of this quadrilateral?”.

– Open Question (OQ): Questions to which no deterministic answer is
expected. Open questions usually provoke a cognitive process of students such
as explaining a problem and talking about knowledge points. Some Examples
are: “How to solve this problem?”, “Can you share your ideas?”, and “Why
did you do this problem wrong?”.

– Procedural Question (PQ): Questions that teachers use to manage the
teaching procedure, such as testing teaching equipment, greeting students,
and asking them something unrelated to course content. Examples are: “Can
you hear me?”, “How are you doing?”, and “Have I told you about it?”.

– Discourse-management Question (DQ): Questions that teachers use to
manage the discourses, such as making transitions or drawing students’ atten-
tion. Examples include: “Right?”, “Isn’t it?”, and “Excuse me?”.

We ask crowdsourcing annotators to code each utterance segment as non-
question or one of the above four types of questions. The annotators code utter-
ance segments by listening to the corresponding audio tracks. To ensure the
coding quality, we first test the annotators on a set of 400 gold-standard exam-
ples. The 400 gold-standard examples are randomly sampled from the dataset
and annotated by two experienced specialists in education. We only keep the top
five annotators who achieve precision scores over 95% and 85% on the two-way
and multi-way tasks on the gold-standard set to code the entire dataset.
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3.2 Problem Formulation

We define the two-way task and the multi-way task for the teacher question
detection problem as follows. Let X = (x1, . . . , xn) be a transcribed utterance
where xi is the i-th word and n is the length of the utterance. In the two-way
task, each utterance X is assigned a binary label Y ∈ {Q,NQ} where Q indicates
that X is a question and NQ indicates it is not a question. In the multi-way
task, each utterance X is assigned a label Y ∈ {KQ,OQ,PQ,DQ,NQ} where
KQ, OQ, PQ, DQ indicate that X is a knowledge-solicitation question, open
question, procedural question or discourse-management question, respectively,
and NQ denotes that X is not a question. Both the two-way task and the multi-
way task are treated as classification problems where we seek for predicting the
label Y of a given utterance X.

4 The Proposed Framework

In this section, we present our framework for teacher question detection in both
two-way and multi-way prediction settings. We first introduce the overview of
the proposed framework. After that, we discuss the details of our neural natu-
ral language understanding module, which is a key component in our question
detection framework.

4.1 The Framework Overview

The overall workflow of our end-to-end approach is shown in Fig. 1. Similar to
[24], we efficiently process the large-volume classroom recordings by utilizing a
well-studied voice activity detection (VAD) system to cut an audio recording
into small pieces of utterances [30,40]. The VAD algorithm is able to segment
the audio stream into segments of utterances and filter out the noisy and silent
ones. Then, each utterance segment is fed into an ASR system for transcription.
After that, we build a neural NLU model to extract the semantically meaningful
information within each sentence and make the final question detection predic-
tion. Please note that as an end-to-end framework, our model can be integrated
seamlessly into a run-time environment in the practical usage.

VAD

Audio Recording

ASR

Utterance 
Segments

Transcript

Transcript

Transcript

Neural 
Model

Transcribed 
Texts

NQ

KQ

PQ

Label

Fig. 1. The overall workflow of our end-to-end question detection framework.
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4.2 The Neural Natural Language Understanding Model

In the task of text classification, traditional ML models only use simple word-
level features, a.k.a., word embeddings. Due to the fact that such models are not
able to extract contextual information, they fail to understand the sentence-level
semantics and yield satisfactory detection performance. Therefore, in the work,
we propose a neural NLU model to address above issues.

In our NLU module, given a sentence X = (x1, . . . , xN ) that contains N
tokens, similar to Devlin et al. [11], we first insert a special token [CLS] in
front of the token sequence X. Then the sequence of the corresponding token
embeddings E = (E[CLS], E1, . . . , EN ) is passed through multiple Transformer
encoder layers [35]. Within each Transformer block, each token is repeatedly
enriched by the combination of all the words in the sentence so that the con-
textualized information is captured. At last, we obtain the final hidden states
H = (H[CLS],H1, . . . , HN ). We treat the final hidden state H[CLS] of the spe-
cial token [CLS] as the aggregated representation of the entire sentence and use
H[CLS] for our two-way and multi-way prediction tasks. Our neural NLU module
is shown in Fig. 2.
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Fig. 2. An overview of our neural NLU module for question detection.

The NLU structures are different for the two-way and the multi-way tasks.
For the two-way task, we feed the final hidden state of the special token [CLS]
into a Softmax layer for binary classification. While for the multi-way task, we
convert the multi-class classification problem into multiple binary classification
problems and train the model in a multi-task learning manner. Suppose that
the number of classes is M . The final hidden state of [CLS] is fed into M
different multi-layer perceptron (MLP) layers to calculate the probabilities of
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class memberships for each utterance segment. For class ci, the cross-entropy
loss function is

Li = −(I{ci = 0} log(1 − pi) + I{ci = 1} log pi)

where I{·} is an indicator function. ci is 1 if the utterance segment belongs to the
i-th class and is 0 otherwise. pi is the predicted probability that the utterance
segment belongs to the i-th class. We minimize the sum of cross-entropy loss
functions of the M tasks, which is defined as Lmulti =

∑M
i=1 Li. In the inference

phase, we make predictions for utterance segments by picking question types
with the highest estimated probability.

In this multi-task learning model, multiple binary question classification tasks
are learned simultaneously. This method provides several benefits. First, for dif-
ferent tasks, lower layers of the model are shared while the upper layers are
different. The shared layers learn to extract the deep semantic features of the
input utterance and the upper layers are responsible for making accurate ques-
tion type predictions. This design yields more modeling capabilities. Second,
in teacher question detection, different types of questions share some common
patterns, such as interrogative words. But they typically have vastly different
contents. When learning a task, the unrelated parts of other tasks can be viewed
as auxiliary information, which prevents the model from overfitting and further
improves the generalization ability of the model.

5 Experiment

To verify the effectiveness and superiority of our proposed model, we conduct
extensive experiments on a real-world dataset. In this section, we first introduce
our dataset that is collected from a real-world online learning platform. Then
we describe the details of our experimental setup and the competitive baselines.
Finally, we present and discuss the experimental results.

5.1 Dataset

We collect 548 classroom recordings of different subjects and grades from a third
party K-12 online education platform1. Recordings from both teacher and the
students are stored separately in each online classroom. Here, we only focus on
the teacher’s audio recording. The audio recordings are cut into utterance seg-
ments by a self-trained VAD system and each audio segment is transcribed by
an ASR service (see Sect. 5.2). As a result, we obtain 39313 segments in total
that are made up of 5314, 16934, and 17065 segments from classes in elemen-
tary school, middle school, and high school respectively. The average length of
the segments is 3.5 seconds. The detailed segment-level per school-age and per
subject question distribution is shown in Fig. 3(a).

1 https://www.xes1v1.com/.

https://www.xes1v1.com/
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Fig. 3. Question distributions of our real-world education dataset.

As described in Sect. 3.1, each segment is labeled by five qualified annotators.
The average pairwise Cohen’s Kappa agreement score is 0.696, which indicates
a strong annotator agreement. Therefore, we choose to use majority votes as the
final labels. The detailed distribution of questions with different types is shown
in Fig. 3(b). We split the whole dataset into a training set, a validation set, and a
test set with the proportion of 8:1:1, and the details of data statistics are shown
in Table 1.

Table 1. Data statistics of the training set, the validation set, and the test set.

KQ OQ PQ DQ NQ Total

Training 6450 3551 2786 8514 10149 31450

Validation 861 431 328 1104 1207 3931

Test 778 458 372 1086 1238 3932

5.2 Implementation Details

In the work, we train our VAD model by using a four-layer DNN neural network
to distinguish normal human utterances from background noises and silences
[33]. Similar to Blanchard et al. [3], we find that publicly available ASR ser-
vice may yield inferior performance in the noisy and dynamic classroom envi-
ronments. Therefore, we train our own ASR models on the classroom specific
datasets based on a deep feed-forward sequential memory network proposed by
Zhang et al. [38]. Our ASR has a word error rate of 28.08% in our classroom
settings.

Language model pre-training techniques have achieved great improvements
on various NLU tasks [11,36]. In the implementation of our neural NLU model,
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we first pre-train the model with a large-scale language corpus and then use
question specific classroom data to conduct the model fine-tuning. Here, we
adopt the pre-trained NEZHA-base model released by Wei et al. [36]. In the
multi-task setting, we apply a two-layer MLP with hidden sizes 256, 64 for
each class. The output is passed through a sigmoid function to calculate the
predictive probability. An optimal set of hyper-parameters is picked according
to the model’s performance on the validation set and we report its performance
on the test set.

5.3 Baselines

We compare our approach with the following representative baseline methods:
(1) Logistic Regression (LR) [23], (2) K-Nearest Neighbor (KNN) [14], (3) Ran-
dom Forest (RF) [18], (4) Support Vector Machine (SVM) [10], (5) Gradient
Boosted Decision Tree (GBDT) [13] and (6) Bidirectional Long Short Term
Memory Network (Bi-LSTM) [39]. For the first five baselines, we use the sen-
tence embedding of a given transcribed utterance as the feature vector for clas-
sification. The sentence embedding is computed by taking the average of the
pre-trained word embeddings within each sentence. For Bi-LSTM, the word
embeddings are fed into an LSTM network sequentially and the concatenation
vector of the final hidden states in two directions is fed into a Softmax layer for
classification.

5.4 Experimental Results

We show the results of the two-way and the multi-way tasks in Table 2 and
Table 3, respectively. In the two-way task, we report the classification results
of different models in terms of accuracy, precision, recall, F1 score, and AUC
score, respectively. In the multi-way task, we report the classification results on
each question type in terms of F1 score, as well as the overall results in terms
of precision, recall and F1 scores from both micro and macro perspectives [34].
From Table 2 and Table 3, we make the following observations:

Table 2. Performance comparison of the two-way task.

Accuracy Precision Recall F1 score AUC

LR 0.724 0.863 0.711 0.779 0.811

KNN 0.740 0.745 0.943 0.832 0.763

RF 0.766 0.758 0.968 0.850 0.824

SVM 0.798 0.874 0.824 0.848 0.854

GBDT 0.817 0.826 0.929 0.874 0.837

Bi-LSTM 0.873 0.882 0.940 0.910 0.915

Our Model 0.885 0.888 0.952 0.919 0.933
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Table 3. Performance comparison of the multi-way task. ma-Pre., ma-Rec., mi-F1
and ma-F1 represent the macro precision, macro recall, micro F1 score and macro F1
score respectively.

Type KQ OQ PQ DQ NQ Overall

F1 F1 F1 F1 F1 ma-Pre. ma-Rec. mi-F1 ma-F1

LR 0.621 0.584 0.532 0.734 0.620 0.611 0.634 0.637 0.618

KNN 0.450 0.461 0.450 0.616 0.540 0.580 0.490 0.540 0.503

RF 0.564 0.454 0.483 0.699 0.632 0.661 0.537 0.612 0.566

SVM 0.644 0.629 0.561 0.791 0.694 0.655 0.681 0.688 0.664

GBDT 0.629 0.583 0.516 0.758 0.676 0.662 0.616 0.668 0.632

Bi-LSTM 0.743 0.751 0.654 0.914 0.778 0.769 0.769 0.794 0.768

Our Model 0.767 0.768 0.686 0.912 0.793 0.781 0.794 0.808 0.785

– First, in terms of both the two-way and multi-way tasks and most of the
evaluation metrics, our model outperforms all the baseline methods. Due to
the fact that our dataset consists of different subjects, school-ages, teachers
and question types, we believe that the performance improvements achieved
by our approach show the adaptability and robustness towards the real chal-
lenging educational scenarios.

– Second, by comparing the performances of the models on different types of
questions, we find that procedural questions are relatively harder to identify
compared to discourse-management questions. We believe the reason is that
procedural questions typically involve a wide range of topics and appear in
diverse forms. While discourse-management questions are short and succinct,
and their forms are relatively fixed.

– Third, the baselines LR, KNN, RF, SVM, and GBDT achieve unsatisfactory
performance in both tasks. Because they simply average the word embed-
dings as the features for classification, which fail to capture any contextu-
alized information. Bi-LSTM performs better by learning better contextual-
ized representations. The proposed framework outperforms Bi-LSTM because
of its powerful ability of deep semantic understanding learned through the
Transformer layers, the pre-training procedure, and the multi-task learning
technique.

6 Conclusion

In this paper, we present a novel framework for the automatic detection of
teacher questions in online classrooms. We propose a neural NLU model, which
is able to automatically extract semantic features from teachers’ utterances and
adaptively generalize across recordings of different subjects and speakers. Exper-
iments conducted on a real-world education dataset validate the effectiveness of
our model in both two-way and multi-way tasks. As a future research direction,
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we are going to explore the relationship between the use of teacher questions
and student achievement in live classrooms, thus we can make corresponding
suggestions to teachers to improve their teaching efficiency.
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Across MOOCs
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Abstract. MOOCs have great potential to innovate education, but lack of per-
sonalization. In this paper, we show how FUMA, a data-driven framework for
student modeling and adaptation, can help understand how to provide personal-
ized support to MOOCs students, specifically targeting video watching behaviors.
We apply FUMAacross severalMOOCs to show how to: (i) discover videowatch-
ing behaviors that can be detrimental for or conductive to learning; (ii) use these
behaviors to detect ineffective learners at different weeks of MOOCs usage. We
discuss how these behaviors can be used to define personalized support to effective
MOOC video usage regardless of the target course.

Keywords: Personalization · Student modeling ·MOOCs · Data mining

1 Introduction

While the popularity of Massive Open Online Courses (MOOCs) has risen to engage
thousands of students in higher-education, there is still limited understanding on how to
deliver personalized instruction in MOOCs to accommodate the needs and abilities of
their very diverse audience. Research on MOOCs has mostly focused on analyzing the
students’ logged data to model relevant states or behaviors, such as dropping-out [1–3],
learning outcome [4, 5], or browsing strategies [6–8]. There is initial work on how to
leverage such models to deliver personalized support in real time, e.g., to recommend
better pathways in the course [9, 10] or tailor the course content [11, 12]. Although
these studies provided encouraging results, further research is needed to broaden the
understanding of which forms of personalization are effective in MOOCs.

In this paper, we contribute to this research by looking at the potential of providing
adaptive interventions to support effective usage of MOOCs’ videos, a form of person-
alization largely unexplored thus far, except for recommending what videos to watch
next [10, 13, 14]. We do so by leverage an existing framework for User Modeling and
Adaptation (FUMA from now on) that we proposed to learn from data how to pro-
vide adaptation in exploratory learning environments [15, 16]. FUMA uses clustering of
existing interaction data to learn which student behaviors are more or less conducive to
effective learning. Next, association rule mining extracts behavioral patterns that charac-
terize each clustered group of students. These association rules are then used to classify
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new students in terms of how well they are learning during interaction, and trigger real-
time adaptive interventions designed to encourage effective behaviors and discourage
ineffective ones.We have successfully applied FUMA to identify useful adaptations with
two different interactive simulations [17, 18]. In this paper, we investigate if FUMA can
also identify meaningful forms of adaptive support across several MOOCs.

We focus on video watching behaviors because videos typically account for a signif-
icant amount of the learning material in [19]. However, not all students use and benefit
from videos at best [20–23], indicating the need for adaptive support that can promote
effective video watching for all students. To the best of our knowledge, adaptive support
for videos has been limited in MOOCs to recommending a video to watch [10, 13, 14],
but not to counteract suboptimal behaviors while watching videos.

In this paper we make a first step toward this direction by providing insights on
what forms of adaptation could promote effective video watching behaviors, along with
a student model that can be deployed across MOOCs to drive these adaptations. Our
results show in particular that FUMA can derive student models that distinguish with
high accuracy effective and ineffective learners solely based on their video watching
behaviors, indicating that these behaviors can be leveraged for defining the content of
adaptive support to video watching during interaction. These results broaden the set
of video watching behaviors that have been considered for adaptation in MOOCs, in
particular by showing that behaviors related to how selectively the students interact with
the videos can identify low learners, thus warranting the design of adaptive support.
We also show that a single student model built with FUMA from these behaviors can
generalize across several MOOCs, so as to drive adaptation regardless of the target
MOOC.

2 Related Work

There has been extensive work on analyzing student clickstream data in MOOCs, typi-
cally by using data-mining techniques to identify relevant behaviors and learning strate-
gies. In particular, several of these studies have leveraged the same data-mining tech-
niques used in FUMA offline to mine students’ behaviors. For instance, clusters and
association rules were mined in [6–8, 24, 25] to identify relationships among student’s
behaviors and their engagement in the course. Unlike these works, FUMA can not only
identify students’ behaviors that can be the target of adaptive support, but also detect
these behaviors online, to build a student model and drive adaptive support accordingly.

There has been work focused on analyzing video watching behaviors in MOOCs.
Li et al. [23] compared video behaviors related to pausing, seeking or replaying videos
among effective and ineffective learners to understand what behaviors can hinder the
student experience. Interaction data collected during videowatchingwere used to predict
performance on quiz in [26, 27] and dropping out in [28]. We contribute to these works
by leveraging additional video watching behaviors than the ones they used, in particular
related to how consistently students used the different video actions (pausing, seeking…)
captured by the standard deviation of these usages across videos. We also contribute to
these works by building a student model from these behaviors over multiple MOOC
datasets, so as to examine the generality of the resulting student model.
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A few other works have evaluated classifiers to predict dropout over several MOOC
datasets, using standard classifiers and neural networks [29–32]. We contribute to these
works by using solely video watching behaviors and a data-driven approach based on
association rules, which are fully interpretable and can guide the design of adaptive
support to video watching regardless of the target courses. We also extend [29–32] by
modeling students’ learning performance across MOOCs rather than dropout.

In non-MOOC settings, previous works have shown that adaptive support can
improve the student’s engagement and learning with educational videos, e.g., [33, 34].
In MOOCs, a few studies have evaluated the value of adaptive support. Adaptation rec-
ommending the next page or video to visit was delivered in [10, 13, 14] based on the
previous pages/videos visited by the students, but not based on how students interact
with the video. Other work tailored the course content to the students, depending on
their learning performance [11] or their learning style [12]. Adaptive feedback has been
explored in [35] to encourage students to be more active, when their clickstream data
reveal a low level of engagement. Another work [31] provided encouragements to stu-
dents predicted to be at risk of dropping-out by a classifiers trained on interaction data.
Adaptive scaffolding to foster self-regulation can improve the amount of viewed videos
in MOOCs [36]. While these works have shown that adaptation is MOOCs can be valu-
able, they have largely ignored adaptation to promote efficient video watching behaviors
(e.g., dedicated adaptation to recommend effective pausing or seeking behaviors), which
is the end goal of the data-driven student models we build in this paper.

3 FUMA Framework

FUMA consists of two main phases to guide the delivery of adaptive support, shown in
Fig. 1 and described next (for a complete description, see [15, 16]).

In the Behavior Discovery phase (Fig. 1, top), interaction data of previous students
is first pre-processed into feature vectors. Next, clustering is applied to these vectors to
identify students with similar interaction behaviors. The resulting clusters are analyzed
by comparing the learning performance of the students in each cluster relatively to the
other clusters. Next, association rule mining is used to identify the distinctive behaviors
in each cluster. To do so, the values of features are discretized into bins to avoid producing
a large number of fine-grained rules that are difficult to interpret, a well-known problem
with association rules learnt on continuous features [16]. Hyper-parameters such as the
number of clusters, the minimum support of the association rules, and the number of
bins to be used for discretization, are learnt as part of the training process.

In the User Classification phase (Fig. 1, bottom), the labeled clusters and the corre-
sponding association rules extracted in Behavior Discovery are used to train a classifier
student model. As new students interact with the target MOOC, they would be classi-
fied in real-time into one of the identified clusters, based on a membership score that
summarizes how well the student’s behaviors match the association rules for each clus-
ter. In addition to classifying students, this phase returns the subset of association rules
satisfied by the students that caused the classification. These rules can be used to trigger
adaptation meant to encourage productive behaviors and discourage detrimental ones.

FUMA has been previously applied to two interactive simulations (CSP [15, 16]
and CCK [18]), respectively to support learning about constraint satisfaction algorithms
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Fig. 1. FUMA’s framework

and electric circuits. For both simulations, results showed that FUMA identified two
clusters of students, one with significantly higher learning gains than the other, solely by
mining interaction behaviors. FUMA then classified unseen students as “low” or “high”
learners significantly better than chance and other standard classifiers (e.g., random
forests, SVM…), with accuracies above 85% [15, 18]. A user study [17] has shown that
a version of the CSP simulation augmented with adaptive support provided by FUMA
improved students learning, compared to no support or support provided at random.

4 Applying FUMA to MOOC Data

For this work we leverage four edXMOOC datasets collected at the Stanford University.
These MOOCs include two science courses, namely computer science (CS101) and
statistics (STAT), as well as two courses on social sciences and humanities, namely
economics (ECO101) and the study of ancient texts (ATEXT). Table 1 summarizes the
content of each of these MOOCs in terms of number of videos (#video) and quizzes
(#quiz). Table 1 also includes number of students who accessed the course at least once
(#students) and who passed the course (#passed). Students could pass by obtaining a
final grade greater than a threshold set by the instructors, with the final grade defined as
the number of successfully completed quizzes divided by the total number of quizzes.

Table 1. Summary of MOOC content and enrollments.

MOOC Weeks #video #quiz #students #passed

CS101 6 33 29 114,205 10,311
(9%)

STAT 9 65 69 78,631 5,504
(7%)

ECO101 8 72 34 18,873 1,854
(10%)

ATEXT 6 33 36 98,028 7,842
(8%)
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Table 2. List of features used for running FUMA.

a) Features on video views
• Total number of videos views (both watches and rewatches)
• Average and SD of the proportion of videos watched per week
• Average and SD of the proportion of rewatched videos per week
• Average and SD of the proportion of interrupted videos per week

b) Features on actions performed within the videos
• Frequency and Total number of all video actions performed
• Frequency of video action performed, for each type of video action
• Average and SD duration of: video pauses, seek length, and time speeding-up the video

4.1 Features Generated from MOOC’s Video Usage

We derived 23 features to capture important aspects of the student interaction with the
videos, related to video views (Table 2a) and video actions performed (Table 2b).

Video view features are meant to capture how engaged were the students in the
video content. Specifically, the total number of video views indicates the overall level
of activity of the students in terms of access to the video content, which is one of the
most common measures for capturing video usage in MOOCs, e.g., [1, 6, 8, 24, 25].
Additionally, we leveraged features that characterize these video views in a more fine-
grained manner, in terms of the mean and standard deviation (SD) of the proportion of
videos watched, rewatched and interrupted per week. The average of these measures
indicates how extensively students exhibit these behaviors overall, while the standard
deviation shows the consistency of these behaviors across weeks.

Action features capture specific usage of each of the available action clicks from
within the video in edX, namely play/resume, pause, seek backward, seek forward,
change speed, and stop. Specifically, the frequency (number of actions divided by the
time spent watching videos) and the total number of all actions performed reveals how
active the students are when watching videos, which might indicate how engaged the
student is. Furthermore, we distinguish between each type of action by measuring the
frequency of each action performed, to understandwhat actions students tend to usemore,
which might reveal suboptimal usage of the video (e.g., seeking forward too frequently
might indicate that the student skipped too much of the material). We also measure
features that characterize how the students used some of these actions, which includes
the average and standard deviation of the length of videos pauses, of the length of seeks,
and of the time spent with a higher-than-normal speed (last three rows of Table 2b). The
average of these measures indicate how students tended to use these actions overall (e.g.,
make short versus long pauses), while the standard deviation indicates the consistency
of these usages across videos, as discussed above for video views features.

4.2 Building Student Models with FUMA

To account for the fact that the number of students changes overtime due to students
dropping-out, we apply FUMA to three different sets of data for each MOOC, namely
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cumulative student activity data up to Week 2, up to Week 3, and up to Week 4. We
ignored week 1 because about 50% of the students dropped the course during this week,
which is typical in MOOCs and may provide irrelevant behaviors for FUMA. We also
did not include weeks beyond week 4 because adaptive assistance is most useful early
in the course [37]. We include only students who attempted to complete at least half
of the quizzes available, because a portion of the students were active in the course
but completed very few quizzes, for example because they did not care to obtain the
certification, which would make it hard for FUMA to assess how well they learned.

The set of features in Table 1 are computed at each of the three weeks in each of the
targetMOOC.Next, we split the datasets into a training and holdout set, and train FUMA
with two different setups: within-MOOCand across-MOOC. In thewithin-MOOC setup,
FUMA is trained on the data from eachMOOC separately, to ascertain how well FUMA
can learn useful rules that are specific to the target MOOC. This produces four FUMA’s
student models (one per MOOC). In the across-MOOC setup, FUMA is trained over a
merged dataset that combines data from all of our MOOCs, to ascertain if FUMA can
build a student model that generalizes across multiple MOOCs. Note that FUMA does
not know which MOOC each student was taking.

Each of the five FUMA student models learned with these two setups at each week is
tested on four holdout sets (one perMOOC). Each holdout set is generated beforehand by
randomly sampling 100 students from the corresponding MOOC, so as the distribution
of students who passed within the holdout set is the same as in the original dataset. The
holdout sets are never seen by FUMA (cf. Fig. 1). 10-fold cross-validation is used on
the training data to learn FUMA’s hyper-parameters (see Sect. 3).

5 Results

We evaluate the suitability of the student models generated by FUMA in terms of:

(i) The quality of the learned clusters, measured by the difference in learning perfor-
mance between students in the different clusters. We measure learning performance as
the combination of four indicators that are commonly used in MOOCs, without clear
evidence as for which one is most representative of student learning on its own [1, 2,
27, 38]: the final grade (defined above); the proportion of correct first answers to quiz;
whether the student passed; whether the student dropped. We combine these indicators
using a Principal Component Analysis (PCA) with one component (PCA-Metric from
now on), which explained >80% of the variance as recommended for PCA [39].
(ii) The classification accuracy of FUMA’s rule-based classifiers trained on the obtained
clusters. We compare FUMA against a majority-class baseline, which always assigns
students to the largest cluster, as well as a Support Vector Machine (SVM) and a Ran-
dom Forest (RF) classifier. All features in the training set are leveraged to train these
classifiers, and their accuracy is measured on the same holdout sets as used for FUMA.
This is to ensure that the association rules learned by FUMA are accurate enough at
assigning students to their relevant cluster, as compared to SVM and RF, which have
been extensively used for student modeling in MOOCs [2, 32, 40–42].
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Table 3. Statistical comparisons among the clusters (abbreviated “cl”).

FUMA’s 
model

Main    
effect

Pairwise comparisons of clusters
Week 2 Week 3 Week 4

W
ith

in
-M

O
O

C CS101 p < .0001,  
η2 = 0.17 cl1 < cl2 < cl3 cl1 < cl2 < cl3 cl1 < cl2 < cl3 < cl4

Stat p < .0001,  
η2 = 0.19 cl1 < cl2 < cl3 < cl4<cl5 cl1 < cl2 < cl3 < cl4 < cl5 cl1 < cl2 < cl3 < cl4 < cl5

Eco101 p < .0001,  
η2 = 0.15 cl1 < cl2<cl3 < cl4 cl1 < cl2 < cl3 < cl4 cl1 < cl2 < cl3 < cl4 < cl5

AText p < .0001,  
η2 = 0.16 cl1 < cl2 < cl3 < cl4 cl1 < cl2 < cl3<cl4 cl1 < cl2 < cl3 < cl4

Across-
MOOC

p < .0001,  
η2 = 0.22 cl1 < cl2 < cl3 cl1 < cl2 < cl3 cl1 < cl2 < cl3

(iii) The potential usefulness of the association rules generated by FUMA in identifying
behavior patterns that can be used to design and trigger support to students. In doing so
we provide insights about the forms of adaptive support our results suggest.

5.1 Quality of the Clusters

The optimal number of clusters found by FUMA ranges from 3 to 5 depending on the
target MOOC and setup (within-MOOCS vs across-MOOCS). To ascertain whether the
students’ video watching behaviors are representative of their learning performance we
run a statistical analysis that compares our measure of students’ performance (PCA-
Metric) across clusters. Specifically, for each of the 5 FUMA’s student model and each
of the 3 weeks of data, we run a Kruskal–Wallis test with PCA-Metric as the dependent
variable, and the corresponding clusters as the factor, for a total of 15 tests, adjusted for
family-wise error using the Holm adjustment (α = 15). The results, shown in Table 2
(“Main effect”), reveal a significant (i.e., p < .05) main effect of clusters in all tests.
Effect sizes are reported as large for η2 > .14, medium for η2 > .06, small otherwise.

Post-hoc pairwise comparisons with Holm-adjusted Mann–Whitney U tests are
shown in the right portion of Table 2: the clusters are ranked based on their mean
PCA-Metric, with underlines indicating clusters that are not statistically different by
this measure. Results show that in all datasets the clusters can be further categorized
into three main groups based on the levels of PCA-Metric, namely a group representing
students with lower learning compared to all the others (bold red), a group representing
students with higher learning (italic blue), and a group representing moderate learning
in between (regular black), with medium to high effect sizes. Noteworthy, these three
main groups are found in all datasets, including across-MOOC, which indicates that
these three general levels of performance generalize well across our MOOCs.

5.2 Classification Accuracy of the Online Rule-Based Classifiers

Classification accuracy is measured as percentage of unseen students in the relevant
holdout sets that are assigned to their relevant cluster. As a first step, we compare the
accuracy of each FUMAstudentmodel against the corresponding SVM,RF, and baseline
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Table 4. Prediction accuracy of FUMA.

Within-MOOC Across-MOOC

Week 2 Week 3 Week 4 Week 2 Week 3 Week 4

CS101 88% 88% 78% 82% 83% 75%

Stat 79% 77% 76% 70% 72% 72%

Eco101 83% 84% 80% 78% 79% 73%

AText 87% 82% 82% 82% 77% 76%

Average 84% 82% 80% 78% 77% 74%

classifiers. To do so we run a set of ANOVAs (one per FUMAmodel) with classification
accuracy as the dependent variable, and classifiers (4 levels) as the factor. After adjust-
ment, all ANOVAs yield a significant main effect of classifiers (p < 0.001, η2 from 0.14
to 0.21). Holm-adjusted pairwise comparisons show that FUMA outperforms all other
classifiers (p < 0.05, η2> .10) in all cases, including the baseline.

Next, we explore FUMA’s accuracy across the two different prediction setups
(within- and across-MOOC) and the three weeks. Table 4 reports FUMA’s accuracy
in each of the four MOOCs (i.e., the corresponding holdout set), with the last row
showing the accuracy averaged over all holdout sets. We run an ANOVAwith classifica-
tion accuracy as the dependent variable, week (3 levels) and prediction setup (2 levels:
within-MOOC and across-MOOC) as the factors. Results show a significant main effect
of prediction setup (p < .001, η2 = 0.09). A follow-up pairwise comparison among
the setups reveals that accuracy for within-MOOC is significantly higher than across-
MOOC. This is not surprising given that the within-MOOC setup allows FUMA to learn
rules that are fully tailored to a given MOOC, albeit not all of these rules may generalize
well. This said, it is noteworthy that even across-MOOC prediction accuracy is much
higher than the baseline, and only about 5% below the within-MOOC setup on average.
This indicates that FUMA is able to learn a set of rules that can generalize well across our
MOOCs, a useful finding since the across-MOOC student model can then be leveraged
to drive the delivery of adaptive support regardless of the current MOOC.

The lack ofmain effect ofweek is also interesting because itmeans that peak accuracy
can be already achieved at week 2, leaving substantial time to provide adaptation.

We report in Table 5 the class accuracy for FUMA at predicting each of the main
groups identified in Sect. 5.1, i.e., low, moderate and high learning group. For simplicity,
we only report class accuracy averaged over all holdout sets. Results show that FUMA
reaches high accuracy at identifying high and low learning students both within-MOOC
(87–88% at week 2) and across-MOOC (84%–85% at week 2), while still being able to
predict the in-between clusters with over 60% accuracy. The fact that high accuracy is
obtained for the low group is especially important, as these students are the ones who
need help and may benefit from adaptive support. These results provide encouraging
evidence for the usefulness of association rule mining for building a student model
across MOOCs, which is interesting because association rules are interpretable and thus
can be used to guide the design of adaptation support, as discussed next.
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Table 6. Association rules learnt by FUMA.

Week Low learning group High learning group

All 
Week

1. num_views = Low & avg_pause = Low &
a. sd_seek = Low 
b. sd_speed = Low

2. num_views = Low and avg_rewatch = Low

3. num_views = Med & avg_coverage = [Med, 
High]

Week 
2 & 3
only

4. num_views = Low & sd_pause = Low &
sd_seek = Low

5. avg_coverage = [Med, High] &
a. avg_pause = [Med, High]
b. sd_pause = Med

6. avg_pause = Medium and pause_rate = Med

Week 
4 only

7. avg_rewatch = Low & avg_pause = Med &
a. sd_pause = Med⎣

⎣ b. sd_speed = Med

Table 5. Class accuracy of FUMA averaged over all holdout sets.

Learner group Within-MOOC Across-MOOC

Week 2 Week 3 Week 3 Week 2 Week 3 Week 4

Low 88% 86% 87% 84% 84% 80%

Moderate 67% 65% 65% 61% 60% 59%

High 87% 86% 85% 85% 83% 82%

5.3 Implications of the Rules for Adaptation

We discuss how the association rules identified by FUMA can inform the design of
adaptive support for video watching. We focus on the rules learned in the across-MOOC
setup as they can be used drive adaptation regardless of the target MOOC. Among these,
we focus on the rules representative of the “Lower learning” and “Higher learning” clus-
ters, because they most clearly identify behaviors detrimental vs conductive to learning
respectively, and thus can be used to derive adaptive support to discourage the inef-
fective behaviors and promote instead the effective ones exhibited in the high learning
group. Such behavioral recommendations have been successfully applied in previous
applications of FUMA to improve students’ learning [17, 43].

Table 6 shows these rules grouped as those that generalize across all weeks (first
row), rules for week 2 and 3 because they largely overlap (second row), and rules that
appear at week 4 only (third raw). As discussed in Sect. 3, FUMAdiscretizes the features
into bins, with the number of bins (6 in our case) being learnt during model training.
For ease of interpretation we label the bins for the rules in Table 6 as Low for bins 1–2,
Medium (Med) for bins 3–4, and High for bins 5–6. When rules share behaviors they
are merged in Table 6 as indicated by the indents, e.g., Rule L1a and L1b differ only in
terms of the indented behaviors: ‘sd_seek’ for Rule L1a and ‘sd_speed’ for L1b.

One trend common to all rules for the lower learning group is that they watch few
videos (num_view= Low), which intuitively explains their lower learning performance.
This low video watching activity however, is always accompanied by other interesting
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patterns in these rules, especially making short pauses (avg_pause= Low, rules L1a and
L1b) and/or exhibiting a low standard deviation for video action features (seek, speed
and pause, rules L1a, L1b and L3). The short pauses suggest that these students may
not take the time to think about the few videos they watch. The low standard deviations
suggest that theywerewatching videos in a rather uniformmanner, rather than selectively
focusing on aspects that might be more challenging or interesting for them.

The fact that most of these behaviors are pervasive in students with lower learning
performance at all weeks (see rules L1a and L1b), indicates that these students do not
modify these behaviors over the course of the different MOOCs, which makes them a
suitable target of adaptive support. This support may leverage the rules discovered in
the higher learning groups to identify and promote behaviors that can address some of
difficulties in the lower learning group, a strategy that has been successfully applied in
previous work on FUMA [17]. As shown in Table 6, these “higher learning” behaviors
are not always the exact opposite of those representative of lower learning, indicating
that it is important to mine the representative behaviors of each cluster separately.

For instance, as discussed above the lower learning students tend to take short pauses
during video watching throughout the weeks. In week 2–3 the high learning group shows
the opposite behavior of pausing longer (avg_pause=Medium/High, rule H2a and H3).
These longer pauses are accompanied by covering more of the weekly videos available
(avg_coverage=Medium/High, rule H2a) a behavior that does not have a direct opposite
in lower learning students. The fact that a high coverage of the weekly videos is linked to
higher performance makes sense, because each video often introduces new knowledge
that can be the target of a quiz. Thus, it is worth experimenting with adaptive support
that, in weeks 2–3, recommends longer pauses to students in the lower learning group
who tend to go through videos with little pausing, a help strategy that has been shown to
be effective with FUMA [17]. This adaptive support should also promotes good video
coverage, e.g., by recommending an unwatched video.

This higher coverage of the higher learning group also appears at week 2 and 3 in
conjunctionwith a higher standard deviation of pausing (sd_pause=Medium, ruleH2b).
Because during these weeks the lower learning group shows the opposite behaviors
of pausing uniformly (sd_pause = Low, rule L3), these students could benefit from
recommendation to be more selective in how they pause (e.g., by reminding them that
it is okay to take their time for pausing to reflect on parts a video that are unclear or
interesting), combined with the aforementioned suggestion to cover more of the videos.

In week 4, the high learning group still shows the behavior of pausing longer, but
now accompanied by a more selective pause length (sd_pause = Medium, rule H4a)
and video speed (sd_speed = Medium, rule H4b), suggesting the need to recommend
different behaviors to the low learning students later in the course. In particular, the low
learning group may still benefit from suggestion to take longer pauses, but also to be
more selective in how they use the aforementioned video actions.

6 Conclusion

We have presented an application of FUMA to students’ video usage in several MOOCs.
FUMA is a framework that uses logged interaction data to learn which student behaviors
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should trigger adaptive help. Our results show that the behaviors learnt by FUMA can
predict student learning performance during interaction with a MOOC with accuracy
up to 84% across several MOOC datasets lumped together. In particular, our findings
reveal that low learners can be identified by their tendency to watch few videos while
making short pauses, as well as by their rather uniform usage of the video actions as
shown by the low standard deviation of their pause length, seek length, and video speed.
This finding is interesting because, to the best of our knowledge, we are the first to
mine behaviors related to the consistency (standard deviation) of some of these video
watching behaviors for informing the design of adaptive support in MOOCs. Based
on these findings, we provided insights on how these behaviors can guide the design
of adaptive support in MOOCs to promote better video watching strategies, based on
the opposite behaviors shown by high learning students. Moving forward, we plan to
collaborate with MOOC instructors to design and implement adaptive support based on
FUMA’s rules. We are also deploying FUMA on the cloud so has to drive this adaptive
support remotely in severalMOOCs, and evaluate the value of such support, an important
step toward making MOOCs more personalized using data-driven approaches.
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23. Li, N., Kidziński, Ł., Jermann, P., Dillenbourg, P.: MOOC video interaction patterns: what do
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Abstract. Virtual reality has gained popularity as an effective training
platform in many fields including surgery. However, it has been shown
that the availability of a simulator alone is not sufficient to promote
practice. Therefore, simulator-based surgical curricula need to be devel-
oped and integrated into existing surgical training programs. As practice
variation is an important aspect of a surgical curriculum, surgical sim-
ulators should support practice on multiple specimens. Furthermore, to
ensure that surgical skills are acquired, and to support self-guided learn-
ing, automated feedback on performance needs to be provided during
practice. Automated feedback is typically provided by comparing real-
time performance with expert models generated from pre-collected data.
Since collecting data on multiple specimens for the purpose of developing
feedback models is costly and time-consuming, methods of transferring
feedback from one specimen to another should be investigated. In this
paper, we discuss a simple method of feedback transfer between speci-
mens in virtual reality temporal bone surgery and validate the accuracy
and effectiveness of the transfer through a user study.

Keywords: Virtual reality surgical training · Automated performance
feedback · Temporal bone surgery

1 Introduction

Virtual reality (VR) is increasingly being used in surgical training as it offers
a risk-free, interactive, repeatable, and easily accessible platform that can be
utilised to develop standardised training programs. Despite an emerging body
of evidence related to the effectiveness of VR in surgical training [1,10,15,40],
it is clear that the availability of a surgical simulator alone cannot promote best
practice amongst surgical trainees. For example, a study in the United States
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observed that only 14% of surgical residents completed VR training when partic-
ipation was voluntary [3]. Thus, even when facilities for VR training exist, a lack
of awareness, trainee motivation, and limited access to simulators inhibit their
usage [22,25]. To overcome these barriers, an appropriate VR-based curriculum
should be developed and integrated into mandatory competency-based surgical
training programs [31,33].

Optimal skill acquisition during simulation-based training relies on the avail-
ability of performance feedback, task variety with a range of difficulty levels, and
the opportunity for extensive deliberate practice [13,21,33]. The incorporation
of the above considerations into a VR-based module of a surgical curriculum
is likely to improve trainees’ readiness for the operating room. The availabil-
ity of immediate performance feedback is a required component of deliberate
practice [9]. Its purpose is to reinforce strengths, address weaknesses, and foster
improvements in the learner by providing insights into the consequences of their
actions and by highlighting the differences between intended and actual results
[33]. While some simulators provide feedback by means of an expert supervising
practice [6,27], others have been developed with in-built real-time procedural
feedback. For example, a dental simulator exists that compares the user’s tool
position, tool orientation and force application to an expert data set, and dis-
plays its feedback on the screen [30]. Similarly, Sewell et al. [32] have developed
a system that provides real-time feedback on bone visibility, drilling velocity and
force. The University of Melbourne VR Temporal Bone Surgery Simulator [26]
provides step-by-step procedural feedback [38] and technical verbal feedback on
drill handling skills [7,18,19,41,42].

Another important aspect of a surgical curriculum is practice variation, which
is essential to prepare trainees for anatomical variation between patients [13,33].
In the context of VR simulation, practice variation refers to the availability of
multiple specimens of varying difficulty levels. The availability of such practice
variation has been shown to improve surgical performance on previously unseen
temporal bone models by Otolaryngology residents [29]. Various VR surgical
simulators for laparoscopy [3,27] and temporal bone drilling [5,16,23,34] have
been developed to offer a selection of cases with a range of difficulties.

To maximise skill acquisition and support self-directed learning, real-time
feedback must be provided when practicing on different specimens. However,
performance feedback doesn’t appear to be available across the full range of
cases on existing surgical simulators, limiting their educational value. Also, at
present there are no reported methods that transfer feedback models automati-
cally between different cases, as an alternative to the time consuming and data
intensive process of developing feedback models individually for each case.

According to the concepts of transfer learning [28], feedback transfer can
be defined as transferring the same task (providing feedback on performance)
from a source domain to a target domain. The differences in domains can be
characterised as the variations in anatomy. Although the feature space (metrics
on which feedback should be provided) is the same, the values that these metrics
take may differ according to anatomical variations between specimens. Therefore,
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the transfer of feedback from one specimen to another can be characterised as
a domain adaptation problem [2]. It is not practical to obtain labelled data
for each new specimen to train a new model or to retrain an existing one. As
such, unsupervised learning (such as, instance weighting for covariate shift, self-
labelling methods, changes in feature representation, and cluster-based learning
[20]) is commonly used in solving problems of this form.

In contrast to using unsupervised learning for domain adaptation, we investi-
gate a simpler, direct transfer approach supported by a pre-processing task that
makes the source and target domains similar. To this end, we define regions of
a specimen where surgical skills can be considered to be consistent. By defining
these regions, we account for the changes in anatomical variation in specimens.
We assume that the source and target specimens are similar enough that changes
in the values of metrics (features) that feedback is provided on between spec-
imens are negligible. This enables direct transfer of a feedback model of one
region in the original specimen to the corresponding region in another specimen.
Using this method, we transfer the neural network based model developed for
providing technical feedback in VR temporal bone surgery in Ma et al. [18] to
new specimens. We show through a user study that the feedback provided by
the transferred models are as accurate as that provided by the original model.
We also show that practice on multiple specimens with transferred performance
feedback results in positive acquisition of surgical skills.

2 VR Environment

The VR platform used in this research is the University of Melbourne tempo-
ral bone surgery simulator temporal bone surgery simulator (see Fig. 1). Virtual
models of multiple temporal bones, generated from segmented micro-CT scans
of cadaveric bones, are available to drill on this simulator. A haptic device that
emulates the operation of a surgical drill provides tactile feedback during an
operation. Depth perception is achieved through NVIDIA 3D vision technology.
A MIDI controller is used as an input device to change environment variables
such as magnification level and burr size. Using the VR simulator, surgeons
can perform ear operations to remove disease and improve hearing. The surgery
under consideration in this paper is cortical mastoidectomy. This is a common
procedure performed to remove mastoid air cells as a treatment for chronic otitis
media, with or without cholesteatoma or mastoiditis. It is also performed as an
initial step of cochlear implant surgery and various lateral skull base operations.
A cortical mastoidectomy requires routine identification of key anatomical struc-
tures including the tegmen mastoideum, sigmoid sinus, incus, and facial nerve
to be used as landmarks to ensure safe removal of the mastoid bone.

3 Types of Performance Feedback

Surgical skills are multi-faceted. As such, surgeons provide performance feed-
back and guidance on different aspects of surgical skill during training. To
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Fig. 1. A surgeon performing an operation on the VR temporal bone surgery simulator.

emulate this, the simulation system considers four main aspects of skill that
need to be acquired: procedural knowledge, knowledge of landmarks/boundaries
of the operative field, manipulation of environmental variables, and drill han-
dling/technical skills. The effectiveness of these types of feedback/guidance
methods on one specimen have been established by Davaris et al. [7].

Procedural guidance is provided using the step-by-step guidance method of
Wijewickrema et al. [38]. The steps were obtained by manually segmenting an
expert procedure. Each step of the surgery is highlighted sequentially on the
temporal bone - the next step is only provided once the current step is completed.

Verbal warnings are provided in the form of verbal advice when nearing an
anatomical structure to make trainees aware of the boundaries of the opera-
tive field [35]. To this end, distance thresholds per anatomical structure were
defined, the crossing of which generated proximity warnings. Further, to enable
learning of the anatomical structures, functionality to make the temporal bone
transparent, so that the underlying structures can be viewed, is also available.

Feedback on environmental settings such as magnification level and burr size
are provided as verbal advice. The ideal values of these settings differ according
to where the surgeon is drilling. For example, at the start of a cortical mas-
toidectomy, an overall view of the surgical space is required, and therefore, a
lower magnification level is used. When drilling in tighter spaces, a higher mag-
nification level is required. Advice on how to change these values are provided
by comparing against value ranges calculated from pre-collected expert data per
surgical region. The region calculation process is discussed in the next section.

For the provision of technical feedback (feedback on surgical technique or
motor skills), the method discussed in Ma et al. [18] is used. Similar to envi-
ronmental setting, surgeons adopt different surgical technique when drilling in
different regions of the temporal bone. For example, higher speed and force may
be used when drilling in an open area, while lower speed and force may be
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used when near anatomical structures. As such, different behaviour models were
trained for different regions and used to provide technical feedback. Figure 2
shows an overview of the technical feedback generation process.

Fig. 2. Method of providing feedback on surgical technique.

For the offline training of the neural network classifier, a dataset of 16 surg-
eries recorded by 7 experts and 34 surgeries from 18 novices was used. The
surgical performances were segmented into strokes - continuous drilling motions
without abrupt changes in direction [12]. All strokes in expert and novice per-
formances were considered to be expert and novice strokes respectively. The
strokes were separated according to the region. Isolation forests [17] were used
to remove outliers. Characteristics (or metrics) of each stroke, such as length,
duration, speed, and force were then calculated to represent a stroke. These were
used to train a neural network with one hidden layer per region. The number of
hidden neurons for each region was chosen using cross validation [18].

In real-time, strokes are segmented from the surgical trajectory, and the
neural network classifier for the relevant region is used to identify whether it is
an expert or novice stroke. In the case of a novice stroke, an adversarial example
[11], a small modification of the metrics that changes the prediction of the model
from novice to expert, is generated. The resulting change is recorded in a buffer
as an increase or decrease of the metrics that were changed to generate the expert
prediction. Once multiple instances of the same change is generated in a row,
it is presented to the user as verbal auditory feedback (for example, ‘decrease
force’) [37].

4 Transfer of Feedback Models

As a method of adapting the feedback models to specimens other than the one
they were developed on, we explored a method of direct transfer. We assumed
that surgical technique (and environmental settings) are similar in the same
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region on all specimens and that the specimens are similar enough that the values
of the metrics (features) that the feedback is provided on remain the same. As
such, once the regions are defined on a new specimen, feedback models developed
on the original specimen can be transferred to be used on this new specimen
without any changes to the models themselves. Note that this assumption is
only valid for specimens with no abnormal or pathological anatomy, which is the
case for the specimens considered here.

We used the same process used in the generation of regions in the original
specimen for this purpose [35]. Regions were identified as the areas surrounding
or between anatomical structures. The width of a region was pre-defined and
morphological operations were used to generate them. For example, to gener-
ate areas around an anatomical structure, we dilated the voxels belonging to
that structure and subtracted them from the resulting region. To obtain regions
between anatomical structures, we used dilation and erosion in tandem. Figure 3
shows the regions generated for different specimens.

For the generation of proximity warnings on different specimens, we used
the same distance thresholds that were defined for the original specimen. We
manually segmented steps of an expert procedure for each specimen in order to
provide procedural guidance.

5 Validation of the Feedback Transfer

5.1 Study Design

We conducted a user study of 14 medical students to evaluate the accuracy
of feedback transfer and to test the effect of the transferred feedback on skill
acquisition. The ratio of postgraduate (MD) to undergraduate (MBBS) students
was 5:2 and the male to female ratio was 4:3. This study was approved by the
Royal Victorian Eye and Ear Hospital Human Ethics Committee (#17/1312H).
Written consent was obtained from all participants.

Participants were first shown a video tutorial on how to perform a corti-
cal mastoidectomy on our VR simulator. Then, they were shown how to use
the simulator and given five minutes of familiarisation time. Participants then
performed the same surgery on the VR simulator with no automated guidance
(pre-test). The pre-test was performed in order to gauge their initial skill level, to
account for individual variations in aptitude. This is the specimen that the origi-
nal feedback models were developed on (Bone 0). Next, they underwent training
on four specimens (in the same order) with real-time automated guidance. The
first of the training sessions was on the original bone. The next three sessions
were on different specimens (Bones 1–3) and the automated feedback on these
were transferred from the original specimen using the method discussed above.
After this, on the same day, the participants performed a post-test: a cortical
mastoidectomy without feedback on the original specimen. Note that the ‘trans-
fer’ temporal bone specimens were from the same side of the head as the original
specimen (right-hand side). All procedures were recorded by the simulator and
using screen capture software. The study design is shown in Fig. 4.
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Fig. 3. Definition of regions where surgical technique is considered to be uniform: (a)
original specimen and (b)–(d) transfer specimens. The anatomical structures and the
regions defined around them are shown in opaque and transparent colours respectively.
(Color figure online)

Fig. 4. Design of the validation study.
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5.2 Accuracy of Transfer

To determine the accuracy of the provided technical feedback, the errors in
the feedback were determined by an expert surgeon through the analysis of
anonymised videos based on the following criteria [36].

– False positives (FP): feedback was provided while stroke technique was
acceptable.

– Wrong content (WC): participants’ technique was accurately detected as
poor, but the content of the feedback was inaccurate.

– False negatives (FN): Feedback was not provided while stroke technique was
unacceptable.

The accuracy of the feedback (ACC) was calculated for each training session
as ACC = TF−FP−WC

TF+FN × 100%, where, TF is the total feedback provided in a
session. Feedback accuracy was compared between specimens using a Kruskal-
Wallis test. There was no significant difference in the accuracy level of the feed-
back provided by the original model when compared to that of the transferred
models. Figure 5 illustrates this comparison.

Fig. 5. Accuracy of the technical feedback. Bone 0 is the original specimen on which the
feedback models were developed. Bones 1–3 are the new specimens that these models
were transferred to. No significant difference was observed in the accuracy levels of the
feedback on all specimens.

5.3 Effectiveness of Transfer

To investigate the effect of the transferred feedback on skill acquisition, partici-
pant performance in the pre- and post-tests were evaluated by a blinded expert
surgeon. To this end, a validated assessment scale designed for temporal bone
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surgery [14] was used. This scale comprises two parts: checklist and global instru-
ments, and assesses competency of the surgeon in performing the surgery as a
whole. This takes into consideration all aspects of surgical skill, for example,
knowledge of landmarks and procedure as well as technical skills. The checklist
and global instruments consists of 22 and 10 items respectively, each based on a
Likert scale ranging from 1 (unable to perform), through 3 (performs with min-
imal prompting), to 5 (performs easily with good flow). Comparison of pre- and
post-test scores using a Wilcoxon signed rank test showed significant improve-
ment in performance (checklist score: p = 0.001 and global score: p = 0.002).
Figure 6 shows the comparison between pre- and post-test scores.

Fig. 6. Comparison of pre- and post-test performance results: (a) checklist score and
(b) global score. Significant improvements were observed in the post-test scores when
compared to the pre-test scores in both scores.

6 Discussion

The results of this study demonstrate the accuracy of the feedback transfer,
as no significant difference was observed between the accuracy of the feedback
of the original and transferred models. Furthermore, participants showed sig-
nificant improvement in surgical performance after training on specimens with
transferred feedback models, demonstrating that the transferred feedback (along
with other factors such as repeated practice) had a positive impact on skill acqui-
sition. However, it has already been established that repeated practice (without
feedback) is not sufficient to impart surgical skills in mastoidectomy in a novice
cohort such as the participants in our study [7]. Therefore, we can attribute the
improvements in performance to the effectiveness of the feedback.

Successful feedback transfer (of the type outlined in this study) will allow
VR simulators to meet the requirement of deliberate practice to have imme-
diate and continuous feedback [9,33]. The provision of instant, unsupervised
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performance feedback by VR simulators offers a time efficient alternative to the
current dependency on continuous expert supervision. Thus, this VR curriculum
may serve as a valuable adjunct to current surgical training. In addition, devel-
oping a library of virtual temporal bone models covering anatomical variants
complete with automated feedback could provide a valuable training resource
for rural trainees where exposure to varying cases is limited.

It would also be beneficial to apply feedback transfer to VR simulation in
other types of surgery, including laparoscopic surgery [24] and neurosurgery
[4], or even endovascular procedures [8,39]. However, a potential barrier to the
reapplication of this direct feedback transfer technique would be the ability for
comparable pre-processing of the simulation cases, defining different anatomical
regions to facilitate the transfer of feedback models.

A limitation of this work is that the developed method was for feedback
transfer between specimens with normal anatomy. As surgical behaviour may
not be the same when operating on abnormal or pathological specimens, this
direct transfer method may not be as accurate for those. For example, for an
abnormally large specimen, values of feedback metrics such as stroke length may
not be directly transferable. In such cases, the region-based method could be used
in conjunction with more complicated domain adaptation techniques and/or a
limited amount of labelled data from the abnormal or pathological specimens
to overcome this. This may also be used to improve the accuracy of transfer
between normal specimens. This is a future avenue of research we will explore.

A further study limitation is that only three of the four types of performance
guidance/feedback provided during training were automatically transferred. Pro-
cedural guidance was provided by segmenting an expert procedure performed
on each specimen. In future work, this process will also be automated, albeit
using different techniques to that used for transferring technical feedback. A
simulation-based surgical training program that incorporates other concepts of
curriculum design that were not considered here (such as practice distribution,
task difficulty including pathological cases, and proficiency based training) [33]
will also be developed and validated.

The generalisability of our results are limited by the small number of spec-
imens, cohort size, and use of a single expert reviewer. Further studies will be
conducted to account for this bias with a larger number of specimens on a larger
cohort, including those with intermediate level surgical skills (surgical residents).
Assessments by multiple experts will also be performed to reduce the subjectivity
of assessment.

7 Conclusion

We introduced a method of transferring technical feedback models from the spec-
imen they were developed on to other specimens and showed that the feedback
provided by the transferred models were as accurate as that of the original model.
We also showed that the transferred feedback assisted in positive skill acquisi-
tion. This enables the development of self-directed, simulation-based surgical
curricula that can be used as adjuncts to traditional surgical training methods.
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Abstract. Language learning apps have become increasingly popular. However,
most of these apps target the first stages of learning a new language and are lim-
ited in the type of feedback that can be provided to users’ spontaneous spoken
responses. The English Language Artificial Intelligence (ELAi) app was devel-
oped to address this gap by providing users with a variety of prompts for sponta-
neous speech and adaptive, targeted feedback based on the automatic evaluation of
spoken responses. Feedback in the ELAi app was presented across multiple pages
such that users could choose the amount and depth of feedback that they wanted to
receive. The present work evaluates how 94 English language learners interacted
with the app. We focused on participants’ use of the feedback pages and whether
or not performance on spontaneous speech improved over the course of using the
app. The findings revealed that users were most likely to access the most shallow
feedback page, but use of the feedback pages differed based on the total number
of sessions that users completed with the app. Users showed improvement in their
response performance over the course of using the app, which suggests that the
design of repeated practice and adaptive, targeted feedback in the ELAi app is
promising. Patterns of feedback page use are discussed further as well as poten-
tial design modifications that could increase the use of feedback and maximize
improvement in English language spontaneous speech.

Keywords: MALL · Language learning · Automated speech analysis · Feedback

1 Introduction

Language learning has moved from the traditional classroom-only model to computer-
assisted language learning to mobile-assisted language learning (MALL) [1, 2]. MALL
apps provide users with flexibility, autonomy, and personalized learning experiences
[3]. There are currently over 100 language learning apps in the iOS App Store, and apps
have even expanded to smart watches that incorporate exercise into language learning
[4]. MALL apps have shown to be an effective method [5, 6]. Duolingo, for example,
claims to be as effective as college-level language courses [7], but others report more
mixed findings [8]. In this abundance of MALL apps, many have a similar focus in that
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they target (a) general language learning and (b) learners at an initially low proficiency
level. Thus, there is still a need for the development of apps that provide support to
learners at other proficiency levels and with differing goals. For example, recent efforts
in MALL app development have focused on the particular language needs of migrants
and refugees [9, 10] and low literacy adults [11].

One of the main advantages of MALL apps (and attractions to users) is that they
provide immediate, targeted feedback about users’ performance on learning activities.
This is consistent with years of research that has shown that simply providing feedback
is not enough, it must be delivered in a way that is optimally useful for learners [12, 13].
MALL apps are typically able to provide targeted feedback on the quality of selected-
response items, grammar and spelling for written responses, and word pronunciation for
constrained speaking tasks. However, manyMALL apps are limited in the level of detail
that can be provided for feedback on speaking tasks [14, 15]. Duolingo, for example,
identifies whether or not a user has correctly pronounced a word, but it does not provide
feedback about how the user could more accurately pronounce the target word. Given
that speaking is often one of the more challenging aspects of learning a language [16–
18], it is important for MALL apps to provide feedback in such a way that users feel
confident that they can improve their speaking skills.

Given the challenges of providing targeted feedback in real time for speaking tasks,
most MALL apps focus only on constrained speaking tasks in which users are pro-
vided with a text to read aloud verbatim because automated feedback can be more easily
provided. However, our recent user interviews suggested that many language learners
would like to practice and receive feedback for spontaneous speaking tasks. Spontaneous
speaking tasks involve learners responding to an open-ended prompt (e.g., Tell me about
your favorite vacation.). This type of task is utilized on many standardized assessments
of language skills (e.g., TOEFL®, IELTS™) as it shows an advanced level of speak-
ing proficiency and spontaneous speaking skills are viewed as an important aspect of
effective communication [19, 20]. This type of task is often not included in MALL apps
because it is difficult to provide immediate, targeted feedback. Spontaneous speaking
tasks are typically evaluated by human raters in standardized assessments, which limits
the ability to provide feedback to users immediately after responding.

To address the apparent lack of spontaneous speaking practice with immediate feed-
back for language learners, we have developed the English Language Artificial Intel-
ligence (ELAi) app. The ELAi app was designed to provide users with an opportunity
to practice spontaneous speech and receive detailed feedback about the quality of their
responses. This learning model is consistent with languaging [21–23] as students are
asked to engage in effortful language production that can draw attention to their current
weaknesses, but with the added benefit of targeted feedback to help focus efforts for
improvement. We utilized an automated speech analysis tool that evaluates spontaneous
speech on delivery, language use, and topic development to provide targeted, detailed
feedback. However, it is not enough to simply provide feedback [12, 13]. A recent review
of research on oral feedback for spoken responses, for example, found that there is a
limited understanding of how learners make use of feedback [24]. It is then important
that we understand how users interact with the feedback provided. The present work
is the first evaluation of the ELAi app and was guided by three research questions: (1)
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How do users interact with the app features?, (2) What do users do after viewing feed-
back?, and (3) Does users’ performance improve during app use? We investigated these
three research questions with native Mandarin speakers who are learning English for the
purpose of attending university in an English-speaking country.

2 ELAi App

The ELAi app was developed to provide an easily accessible resource for English lan-
guage learners at an intermediate or advanced level, with the goal of attending university
in an English-speaking country, to practice spontaneous speech and receive feedback.
The development was guided by interviews with potential users from the target audi-
ence, which revealed that users were often practicing spontaneous speech on theirmobile
phone but were unable to receive feedback in the same medium [25]. Users were most
interested in feedback that corresponded to standardized English language assessment
evaluations. Users also revealed their desire for access to sample responses to compare
to their own responses both in terms of delivery and content. The ELAi app was then
developed to address the needs of these real-world users.

Users began with the ELAi app by browsing the many prompt options available.
Figure 1 shows (from left to right) screenshots of the app splash page as well as the pro-
cess of selecting a prompt category, responding to a specific prompt (e.g., Do you think
the use of smart watches will increase or decrease in the future? Why?), and the feed-
back overview. After completing a new response, users were notified when feedback was
available (latency was equivalent to the response length). User responses were evaluated
with an automated speech analysis tool that used acoustic and language models to allow
for the extraction of acoustic characteristics and creation of a response transcript. The
models were based on nonnative English speakers to account for pronunciation differ-
ences due to accents. The automated speech analysis tool then evaluated the response on
over 100 raw speech features from the acoustic characteristics and transcript. A subset of
these features was selected based on their potential for learning feedback and were then
combined to provide feedback on six key speech features (filler words, pauses, repeated
words, speaking rate, stressed words, vocabulary diversity) to help users improve speak-
ing skills. Users could access feedback on four pages within the app, which allowed for
self-selection of the type and amount of feedback provided.

The first feedback page was My History (Fig. 1, rightmost panel), which provided a
FeedbackOverview for each response at a relatively shallow level in that it only identified
two speech features that needed improvement (weightlifter icon) and one feature that
was done well (thumbs up icon). This was the first instance of feedback that was adaptive
to the individual user. For example, in Fig. 1 the user needed to improve on Repeated
Words and Vocabulary Diversity, whereas Filler Words was done well in the technology
response (top card). Needs work was defined separately for each speech feature with
some defined as overuse (filler words, pauses, repeated words, vocabulary diversity),
whereas other features had an inverted U-shaped relationship in which too much or
too little was problematic (speaking rate, stressed words). However, users were not
provided with any explanations or resources to improve future responses on Overview.
Thus, Overview provided minimal feedback on the quality of a response and minimal
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Fig. 1. Screenshots of finding and completing a new response in the ELAi app

support for improving future responses but did serve as an organized resource for users
to access all of the feedback they had received.

Figure 2 shows the next feedback page that users could access by selecting a specific
response card on Overview or directly through the feedback ready notification. This
next page was Feedback Summary Report and was designed to be the main source
of feedback for users. On Summary Report users could listen to their own response,
review explanations for those three speech features that were shown onOverview, access
additional ideas for how to develop a response to that prompt, and listen to sample
responses from both native and nonnative English speakers (from left to right in Fig. 2).
The design of Summary Report allowed the user to quickly develop an understanding of
the quality of their response by focusing on two features that needed improvement and
ensured that this feedback was actionable by providing users with additional information
and resources to improve their future responses.

Fig. 2. Screenshots of Feedback Summary Report page in the ELAi app
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Users could view more detailed feedback on Feedback Full Report and Feedback
Details (see Fig. 3). TheFull Report provided explanations for all six speech features. For
example, in Fig. 3 the two leftmost panels show that the user did well on FillerWords but
needed to improve on Repeated Words and Speaking Rate. Details provided even more
detailed information about four of the six speech features (pauses, repeated words, filler
words, vocabulary diversity). Details provided a transcript of the response (see second
from the right panel in Fig. 3), which highlighted the problematic aspects of the speech
feature (e.g., repeated words). Details for vocabulary diversity provided suggestions of
additional words that could be used to respond to the prompt (see rightmost panel in
Fig. 3). Full Report and Details provided users with a greater amount of and more in-
depth feedback, which can be beneficial if users dedicate the time and effort needed to
process and apply the information provided [26].

Fig. 3. Screenshots of Feedback Full Report and Details pages in the ELAi app

Users were also able to view information about their app use metrics through theMe
Screen. Users could see the total amount of time they had recorded responses, total num-
ber of responses, the amount of time for recorded responses in the current week, and how
many days in a row they had recorded responses. The Me Screen also allowed users to
View Badges that they earned. Users could earn a variety of badges that targeted engage-
ment and performance. Engagement-based badges were designed to encourage persis-
tence and regular practice (e.g., multi-day streaks of recording), whereas performance-
based badges allowed users to track their progress over time on a single speech feature
(e.g., received “good job” on filler words three times in a row).

3 Method

3.1 Participants

Participants were 94 students from an English language learning program in China that
primarily focused on preparation for standardized English language learning assess-
ments. Gender information was obtained from 62 participants: 58% female, 33% male,
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and 6% preferred not to respond. Participants completed from 1 to 45 sessions with
the ELAi app over a one-month period (M = 8.62, SD = 8.56). Sessions were a little
over five minutes on average (SD= 4.52) and included an average of 17.2 user-initiated
actions (SD = 14.8). Users completed an average of 14.4 spoken responses over the
course of using the ELAi app (SD = 24.2).

3.2 Procedure

Participants were recruited through their English language learning program. Those
participants whowere interested then completed an informed consent and were provided
with the information needed to access the ELAi app. Participants were free to use the
app as they wanted for one month. There were no direct instructions about how users
should interact with the app; however, participants were told that they would receive a
certificate of participation if they recorded at least five spoken responses.

4 Results and Discussion

4.1 How Do Users Interact with the App Features?

First, we investigated the use of app features in four ways (see Table 1): feature access
(proportion of participants), average feature time use (in seconds, avg time per access),
proportion of total session time (proportion of time), and proportion of total session
actions (proportion of actions) [27]. The proportion of participants that accessed each
feature at least once revealed a generally high rate of feature access, with the exception
that 60% or less of users accessed the more in depth feedback pages (Full Report,
Details) and listened to their own or samples responses, which were features that users
specifically requested. This contradiction between what users say they want and how
they interact with a MALL app has been found in other apps as well [28].

Repeated measures ANOVAs that compared the average time each feature was
accessed [F(10,930) = 11.4, p < .001, MSe = 1858, partial η2 = .109], the propor-
tion of time spent on each feature [F(10,930) = 229, p < .001, MSe = .008, partial η2

= .711], and the proportion of actions that accessed each feature [F(10,930) = 474, p
< .001, MSe = .005, partial η2 = .836] were significant. Bonferroni corrections were
applied to all post hoc analyses and revealed that users spent the most time viewing
prompts and the least time viewing badges. Responding to prompts had one of the
highest proportions for both time and actions, with only View Prompt having a higher
proportion and FB Overview and Me Screen having similar proportions.
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Table 1. Use of ELAi features.

Proportion 
of 

Participants

Avg Time 
per Access

Proportion 
of Time

Proportion 
of Actions

M SD M SD M SD
View Category .787 8.97 1.11 .034 .056 .032 .041

Low Engagement .638 5.37 6.29 .037 .072 .032 .051
High Engagement .936 12.6 13.0 .031 .034 .032 .028

View Prompt 1.00 17.1 2.79 .493 .187 .542 .156
Low Engagement 1.00 12.0 21.3 .514 .211 .564 .173
High Engagement 1.00 22.3 31.2 .472 .157 .520 .135

New Response .862 58.7 12.8 .114 .113 .057 .051
Low Engagement .745 30.6 42.7 .115 .144 .055 .056
High Engagement .979 86.9 167 .114 .071 .059 .046

FB Overview .947 23.6 4.75 .164 .115 .150 .078
Low Engagement .915 12.2 19.9 .159 .142 .134 .077
High Engagement .979 35.0 60.2 .170 .080 .165 .076

FB Summary Report .723 17.9 2.44 .053 .067 .040 .041
Low Engagement .532 14.0 23.2 .042 .071 .026 .040
High Engagement .915 21.8 23.6 .064 .061 .053 .038

FB Full Report .574 20.2 3.16 .019 .036 .011 .016
Low Engagement .404 16.1 34.7 .017 .044 .009 .016
High Engagement .745 24.4 25.6 .021 .025 .013 .015

FB Details .606 10.8 1.24 .019 .032 .017 .024
Low Engagement .362 7.71 13.2 .017 .037 .013 .025
High Engagement .851 13.8 9.86 .021 .026 .020 .023

Listen Own Response .436 17.3 2.87 .014 .024 .008 .014
Low Engagement .468 7.68 17.8 .011 .025 .006 .014
High Engagement .638 27.0 32.5 .017 .023 .010 .014

Listen Sample Response .457 11.2 1.90 .013 .026 .011 .021
Low Engagement .255 5.44 11.1 .008 .022 .006 .015
High Engagement .660 16.9 22.3 .018 .029 .017 .025

Me Screen Viewed .936 8.20 1.70 .075 .107 .131 .108
Low Engagement .894 5.89 17.4 .080 .134 .153 .123
High Engagement .979 10.5 15.5 .070 .073 .109 .085

View Badge .223 1.38 .327 .001 .004 .003 .008
Low Engagement .064 .589 2.75 .001 .004 .001 .009
High Engagement .383 2.18 3.40 .002 .004 .004 .007

Overall the feature use analyses revealed that users spent the majority of their time
interacting with the ELAi app browsing for a prompt, responding to prompts, viewing
the shallowest level of feedback, and viewing their overall app usage data. This pattern
is both consistent and inconsistent with user requests. Users were frequently practicing
their spontaneous speech, but theywere not typically utilizing themore detailed feedback
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and learning resources that they requested. It is important to note, however, that the more
detailed feedback and learning resources were embedded in the app, meaning that users
could only access them via another feedback page. Feedback Overview and Summary
Report, on the other hand, could be accessed directly. Thus, the lack of access to themore
detailed feedback (Full Report, Details) could represent a lack of user interest or lack of
feature awareness. In an effort to consider this dependence between actions, we repeated
the proportion of actions analysis with instances in which less detailed feedback page
views were removed if they immediately preceded a more detailed feedback page view.
This was an overly conservative analysis as it assumed that all of these less detailed
feedback page views were only in service of accessing more detailed feedback. The
pattern of findings remained the same, which suggests that although we cannot target
the exact reason for infrequent access of more detailed feedback, we can feel confident
that those pages were accessed less frequently.

The previous analyses considered the sample as a whole; however, there was a wide
range in the degree to which users engaged with the ELAi app (1 to 45 sessions), which
suggests a potential for different use patterns. Users were divided into low (five or
less sessions, n = 47) and high engagement groups (more than five sessions, n = 47)
based on a median split to explore potential feature use differences. Table 1 shows the
descriptive statistics for each engagement group. Particularly large differences can be
seen for accessingmore detailed feedback and learning resources, with high engagement
users accessing those features at least once at a higher rate than low engagement users.

The two engagement groups were compared with independent samples t-tests for
average time spent on each feature, which revealed that the high engagement group spent
more time on all features, except Summary Report, Full Report, andMe Screen. Despite
this difference in time spent on features, there were no differences in how users in each
engagement group distributed their time (proportion of time, p’s > .05) and actions
within a session (proportion of actions, p’s > .05). The comparison of engagement
groups revealed that users who had greater engagement with the ELAi app accessed
more features and spent more time on those features, particularly those features that
provided more in-depth feedback and support for improving future performance.

4.2 What Do Users Do After Viewing Feedback?

The previous findings led us to question if there were particular patterns of behavior after
viewing feedback thatwere indicative ofmore or less productive behavior. For example, a
productive behavior after viewing FBOverviewwould be to access FB Summary Report
to better understand why certain speech features need improvement and access resources
for improvement. Thus, we investigated the next action taken after viewing each type of
feedback. We combined several actions into action categories that consisted of Browse
Behavior (View Category, View Prompt), Feedback Viewed, Me Screen Viewed (Me
Screen, View Badge), and Exit App for these analyses.

Repeated measures ANOVAs compared the prevalence of post-feedback actions for
each feedback page (see Table 2) and were significant [Overview: F(4,352)= 33.6, p <

.001,MSe = .044, partial η2 = .277; Summary Report: F(4,268) = 333, p < .001,MSe
= .024, partial η2 = .832; Full Report: F(4,212)= 313, p< .001,MSe= .026, partial η2

= .855; Details: F(4,224) = 259, p < .001,MSe = .032, partial η2 = .822]. Bonferroni
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Table 2. Proportion of next action type after feedback page view.

Post-Feedback Page 
Action

Feedback Page
Overview Summary Report Full Report Details
M SD M SD M SD M SD

Browse Behavior .308 .225 .067 .109 .024 .073 .079 .230
Feedback Viewed .272 .213 .805 .216 .895 .225 .876 .246
Me Screen Viewed .277 .241 .014 .052 .003 .023 .008 .028
Exit App .143 .143 .114 .185 .078 .219 .038 .113

corrections were applied to all post hoc comparisons. The pattern for Overview revealed
that all action categories were more likely to occur after viewing Overview than exiting
the app. A different pattern emerged for the remaining feedback pages. Specifically,
viewing feedback was the most likely action to occur after viewing Summary Report,
Full Report, and Details, with at least 80% of next actions involving viewing one of
the feedback pages. Exit App and Browse Behavior were the next most likely to occur
and Me Screen Viewed was the least likely action to occur after viewing those three
feedback pages. These findings suggest that if users can go deeper into the feedback
than Overview, they may get into a potentially beneficial feedback loop.

4.3 Does Users’ Performance Improve During App Use?

Last, we investigated changes in spoken response performance over the course of app
interaction.User sessions (visit to app)were divided into thirds (first,middle, last) andwe
investigated changes in performance from the first third to the last third. Performancewas
measured as the proportion of spoken responses that received “Needs Work” feedback
on each speech feature in each third of sessions. This investigation reduced the number
of users to 27 as users were required to have at least three sessions and to have at least one
speech in both thefirst and last third of sessions.All 27users included in this analysiswere
in the high engagement group,whichmeans that theymadegreater use of the app features,
in particular themore detailed feedback and resources for response improvement. Table 3
shows the descriptive statistics and paired samples t-test comparisons for each of the six
speech features.

Table 3. Proportion of spoken responses that need work across session phases.

Session Phase
First Third Last Third
M SD M SD t df p d

Filler Words .520 .509 .110 .320 4.23 26 <.001 −.964
Pauses .560 .506 .300 .465 2.56 26 .017 −.535
Repeated Words .670 .480 .150 .362 4.65 26 <.001 −1.22
Speaking Rate .930 .267 .520 .509 4.23 26 <.001 −1.01
Stressed Words .560 .506 .070 .267 4.32 26 <.001 −1.21
Vocabulary Diversity .810 .396 .300 .465 4.65 26 <.001 −1.18
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The comparisons revealed a reduction in the proportion of speech features that needed
work, which suggests an overall improvement in performance across use of the ELAi
app. The effect size differences between the first and last third of sessions were all large
(d > .8) [29], with the exception of a medium effect size (.5 < d < .8) for Pauses.
These findings are very promising as they show large improvements in a variety of
speech features over a relatively short period of time. However, the findings should be
interpretedwith amodicum of caution as a small number of participants were included in
these analyses (29% of sample), time on task varied across participants, and we were not
able to consider additional resources that users may have accessed during this same time
period (e.g., language courses, other MALL apps). It is also important to note that this
investigation was limited to performance within the app and a more formal investigation
of changes in speaking skills is needed (e.g., pre/posttest design) to determine the true
effectiveness of the ELAi app as a learning tool [27].

5 Conclusion

There is currently a plethora of language learning apps available to users. However, these
apps are often designed for beginning language learners and are limited in their ability
to provide feedback to spoken responses. The ELAi app was developed to provide an
easily accessible English language learning app for users that want to receive detailed
feedback about their speaking skills during spontaneous speech. The present work was
the first evaluation of the ELAi app. Overall, the findings revealed that users spent the
majority of their time browsing for prompts, completing new responses, and viewing
shallow level feedback. This suggests that users are generally not taking advantage
of the more in-depth feedback and resources to facilitate improvement, which were
requested by users during interviews [28]. Although the prominence of viewing shallow
feedback is disappointing, it could represent productive behavior. Feedback Overview is
the only page in which users can compare their performance on multiple speech features
across individual responses, which could reveal patterns of improvement or persistent
issues [30] by leveraging the benefits of open learner models [31]. Future research
is needed to determine if this cross-response comparison is occurring and to explore
designs to facilitate these comparisons [32, 33] as language learners may not engage in
self-regulated learning behaviors on their own in MALL apps [34].

We also investigated changes in user performance. Our preliminary findings were
promising in that more engaged users improved their performance on all six speech
features from the beginning to the end of their interaction with the ELAi app. However,
these findings are only preliminary and a more rigorous investigation of the impact of
the ELAi app on speaking skills is needed. Overall our initial findings suggest that the
ELAi app is a promising MALL, but there is still room for improvement. The Feed-
back Summary Report, for example, could be improved by requiring less scrolling for
users to access learning resources and explicitly highlighting the availability of more
in-depth feedback to reduce any lack of feature awareness. Tailoring the feedback to user
characteristics (e.g., cultural background) could also benefit learning [35]. New in-app
incentives (e.g., badges) could encourage more frequent use (e.g., more than five ses-
sions) and use of the in-depth feedback pages and learning resources. Users could also
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benefit from being shown their improvement over time to implicitly reward continued
use of the app. Overall, the ELAi app shows initial promise at creating an easily acces-
sible resource for practicing and receiving feedback on spontaneous speaking tasks, but
more research is needed to understand how this app can be the most beneficial to users.
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Abstract. This study investigated the impact of conversational agent formality on
the quality of summaries and formality of written summaries during the training
session and on posttest in a trialog-based intelligent tutoring system (ITS). During
training, participants learned summarization strategies with the guidance of con-
versational agents who spoke one of the following three styles of language: (1) a
formal language for both the teacher agent and the student agent, (2) an informal
language for both agents, and (3) a mixed language with a formal language for
the teacher agent and the informal language for the student agent. Results showed
that participants wrote better quality summaries during training than pretest and/or
posttest in each condition. Results also showed that agent informal language
caused participants to write more informal summaries during training than on
pretest. Implications are discussed for the potential application of adaptive design
of conversational agents in the ITS.

Keywords: Summary writing · Agent language · Formality

1 Introduction

How to design effective language for instruction and explanations is always a contro-
versial topic for researchers who develop computer-assisted learning environments. The
question “which language better facilitates learning, formal language or informal lan-
guage” has been investigated for decades. Formal language and informal language are
two opposite ends on a continuum of formality. Formal language is precise, cohesive,
and articulate independent of the context and common ground, whereas informal lan-
guage is conversational, personal, and narrative dependent on the context and common
grounds [2, 9, 11–13]. Both formal and informal language could be either in print or
oral.

The majority of studies on agent language used personal pronouns to distinguish
formal language from informal language. These studies provided empirical evidence that
agents’ informal language (e.g., first- or second-person pronouns) enhanced learning,
reduced perceived difficulties, and increased interests in varied domains such as science
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[13, 15–19] and psychology [21, 22], as well as in diverse settings ranging from research
labs [21] to massive online open course (MOOC) environments [22] and from intelligent
tutoring systems (ITS) [13] to educational games [18].No studies, to date, have examined
the effect of agent language on learners’ use of language in writing.

The Common Core State Standards for English Language Arts (CCSS-ELA) [3]
require students to develop academic writing skills and to use an academic style in their
writing. The National Assessment of Educational Progress [20], however, reports that it
is still a daunting challenge for secondary students to meet these standards. Therefore,
it is worthwhile to conduct more research on the effect of agent language on students’
academic language use to better address this challenge. The present study aimed to
investigate how agent language affected participants’ learning of summary writing as
well as the formality of language in their written summaries.

1.1 Agent Language and Learning

Increasingly, studies have investigated how agent language affects learning through dif-
ferent subject matters and in diverse computer-assisted learning environments. Moreno,
Mayer, and colleagues [17–19] conducted a series of experiments to test the effect of
informal language (e.g., first- and second-person pronouns) that the agent used to pro-
vide instructional explanations for science in an educational game. They found that
agent informal language yielded better performance on retention tests and problem-
solving transfer tests. These findings were further supported by a meta-analysis study
that reviewed 74 empirical studies on agent language published from 1981 to 2012 [5].
A study from a science domain, however, showed an inconsistent finding: agent infor-
mal language enhanced retention performance but did not enhance transfer performance
[15]. Inconsistent findings are likely due to the different learning environments in the
experiments and the different languages in learning. Specifically, the former was in an
educational game and the instructional language was in English, while the latter was
in a multimedia lesson with a PowerPoint show and the instructional language was in
Chinese.

These inconsistent findings were also found in the domain of psychology in dif-
ferent settings. Reichelt et al. conducted a study in the research lab and found that
the use of informal language in learning materials yielded better retention performance
than the formal language, but this effect was not found on transfer performance [21].
Riehemann and Jucks also used instructional material in psychology but conducted the
study in a MOOC [22]. They found that the use of informal language enhanced transfer
performance.

We investigated the effect of agent language on summary writing in an ITS and
found that the agent informal language enhanced better quality of summary writing
[13], but this study is different from previous studies in four ways. First, this study
designed a trialog rather than a dialogue or solo narrator. In the trialog, a human learner
learned summarization strategies with two computer agents: one was the teacher agent,
and another was the student agent. Second, the agent language was designed using three
styles rather than two: the formal language for both agents, the informal language for both
agents, and the mixed language by merging teacher agent formal language and student
agent informal language. Third, the results that the agent informal language facilitated
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summary writing was on the concentration of the main effect of agent language, namely,
formal, informal, and mixed language, but did not consider the effect of agent language
on posttest from pretest within each condition. Fourth, this study used multiple textual
levels to measure agent language rather than merely personal pronouns as was the case
in prior studies. The next section describes the multi-level measure of agent language in
detail.

1.2 Measure of Agent Language

Many studies used personal pronouns to distinguish formal language from informal
language. Specifically, third-person pronouns were used to produce the formal language,
whereas first- and second-person pronouns were used to construct the informal language
[17–19]. On one hand, the informal language with greater use of first- and second-person
pronouns creates a more social environment that is more engaging for learners. Further,
informal language is a familiar and everyday language, which requires less cognitive
effort and is much easier to process and comprehend. Even though personal pronouns
are an important indicator for formality, we could not ignore the essential roles of other
language components that are used to differentiate the formal language from informal
language [9, 11, 23].

We used the Coh-Metrix formality to measure agent language at multiple textual lev-
els ranging fromword, to syntax, to cohesion, and to genre [13]. Formality increaseswith
the more use of abstract words (e.g., damage vs. hurricane), complex syntactic structures
(e.g., subordinate sentences vs. simple sentences), referential cohesion (e.g., repetition
of nouns vs. using pronouns to replace the repeated nouns), deep cohesion (e.g., more
connectives vs. less/no connectives), and non-narrativity (e.g., third-person pronouns vs.
first/second-person pronouns). This multi-level measure considers language in a holistic
way rather than with one individual linguistic element. Thus, the agent language that
was generated at multi-textual levels was more authentic and natural.

Our previous study examined the effect of agent language on learning. More studies
are needed to explore whether agent language affects learners’ use of language. The
present study aimed to investigate the effect of agent language on both the quality of
writing and formality of writing. Agent language was designed and developed into three
styles: (1) a formal language for both the teacher agent and the student agent, (2) an
informal language for both agents, and (3) a mixed language combining the teacher
agent’s formal language with the student agent’s informal discourse. Specifically, this
study addressed two research questions:

(1) Does agent language have an effect on the quality of participants’ summary?
(2) Does agent language have an effect on formality in participants’ written summaries?

This study advances research on agent language in the following two ways. First,
this is the first study to unpack the effect of agent language on both learning outcomes
and the use of language in writing. Findings could provide researchers with guidance on
how to design language that adapts to the goals of instruction, namely, learning and/or
academic writing. Second, this study reveals how agent language affects learning and
use of language by comparing not only performance on pretest with posttest but also
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with training. This method allows for scrutiny of the learning processes from pretest
to training (i.e., learning with guidance), and to posttest (i.e., learning with guidance
removed) associated with the appropriate and sufficient instructional time for effective
learning and the use of academic language during and after the intervention.

2 Method

2.1 Participants

Participants were recruited from Amazon Mechanical Turk (AMT) with $30 compen-
sation for a three-hour experiment [13]. Data collected through AMT are as trusted and
reliable as those collected through traditional methods [1, 24]. Qualified participants met
the criteria of being English learners and wanted to improve English summary writing.
Participants were randomly assigned to three conditions: formal, informal, and mixed
conditions (see the Manipulation section for details). Most participants were from India,
so this study only used Indian participants to exclude the confounding of participants
fromdifferent cultures.Ninety-three participants (66.4%male,MAge= 32.49with SDAge

= 8.64) were in three conditions: 29 in the formal condition, 29 in the informal condi-
tion, and 35 in the mixed condition. Participants had learned English for 16.39 years on
average (SD = 8.43). They first took a demographic survey, then a pretest, training, and
finally a posttest.

2.2 Materials

The reading materials were the same as Eight short expository English texts (195–
399 words) in our previous study [13]. Four of them were comparison texts and four
were causation texts. Two comparison texts (Butterfly & Moth, Hurricane) and two
causation texts (Floods, Job Market) were randomly selected for pretest and posttest
and the balanced 4 × 4 Latin-square designs were used to control for order effects. The
training session used the remaining four passages (two comparison texts (Walking and
Running, Kobe and Jordan) and two causation texts (Effects of Exercising, Diabetes))
and the same 4 × 4 balanced Latin-square design was applied. The causation texts
displayed a causal relationship between ideas and concepts,whereas the comparison texts
compared or contrasted ideas or persons and revealed their similarities and differences
[20]. These texts were measured by the Coh-Metrix formality scores (.12–.64) and the
Flesch-Kincaid grade level (Grade 8–12) and their text difficulties were equivalent to
those for students from upper middle school to high school students.

During training, two conversational agents [13] interactively presented amini-lecture
on the function of signal words in comparison and causation texts and lists signals fre-
quently used in comparison texts (e.g., same/similar signifying similarity, differ/but sig-
nifying differences) and in causation texts (e.g., as/because signifying causes, thus/so
signifying effects). Agents then interactively guided participants to read four passages
and apply the summarization strategy that they learned. Learning was assessed through
five multiple-choice (MC) questions for each passage. The first MC question required
participants to identify the text structure of the passage, the second to identify the main
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ideas, and the last three to distinguish important supporting information from unimpor-
tant minor information (see Fig. 1). After completing the MC questions, participants
were required to write a summary for the passage they just read. Conversational agents
provided real-time feedback and scaffolding for the MC questions, but not for the qual-
ity of written summaries due to the lack of accurate real-time automated assessment of
summaries [14]. It took participants about one hour to complete the training session in
this trialog-based ITS.

Fig. 1. Screenshot of interface during the training session.

The same procedure was applied to the pretest and posttest sessions, with the only
difference in the exclusion of five MC questions along with the real-time feedback and
scaffolding. One comparison and one causation texts were used on pretest and another
one comparison and one causation texts were used on posttest.

2.3 Manipulation

The agents’ conversations were generated by an expert at discourse processing, follow-
ing a five-step tutoring frame and the expectation and misconception-tailored dialogue
(EMT) [6–8]. These conversations were modified by another expert to make them more
natural and authentic. Figure 2 presents this conversation mechanism: (1) the teacher
agent first asked a main question, (2) the participant initiated an answer, (3) the teacher
agent provides feedback and hints to help the participant seek the correct answer, (4) the
agent evaluated learning by asking the question again and the participant took another
try to answer the question, and (5) the agent wrapped up the question with assertion. This
dialogue mechanism has been proven to enhance student learning and engagement [10].
Table 1 displays an example of the conversations that followed this mechanism. Agents
delivered the content of their utterances via synthesized speech, but the participants
clicked on or typed in their responses.

The agents’ conversations involving mini-lecture, asking questions, providing hints,
and wrapping-up questions were generated in informal and formal language styles at the
multiple text levels of word usage (e.g., less vs. more frequently-used words), syntactic
complexity (e.g., simple vs. complex sentences), referential cohesion (e.g., using pro-
nouns to substitute the previous noun vs. repeating nouns), deep cohesion (e.g., less vs.
more connectives to make meaning coherently), and genre (e.g., narrative vs. expository
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Fig. 2. Trialog moves during the training session.
Note. Conversations in red boxes were manipulated by agents’ formality. Participants’ responses
were in yellow boxes. Jordan was the student agent. (Color figure online)

Table 1. An example of trialog during training.

Cristina: Esther [Participant], which statement better summarizes the main idea of this text? 
[Main question]

Esther: (Click) Diabetes, a lifelong disease, is caused by too little insulin or resistance to 
insulin and its symptoms include fatigue, blurry vision, weight loss, and excess thirst. 
[First trial: Wrong Answer]

Cristina: Jordan, it is your turn. What is your answer? [Ask Jordan]
Jordan: This is the correct answer. [Jordan’s incorrect response]
Cristina: The first part of this answer elaborates on the important causes of diabetes, whereas 

the second part illustrates many specific symptoms, which are inappropriate for the 
main idea. [Elaboration] The main idea in the causation texts should specify the causal 
relationships. For instance, what causes diabetes and how diabetes affects people’s 
health? [Hint] Esther, take another try. I will repeat the question. Which statement bet-
ter summarizes the main idea of this text? [Repeat Question]

Esther: (Click) Diabetes is indicated by high levels of sugar in the blood and it has two 
types: Type 1 happens at any age; Type 2 happens in adulthood. [Second trial: Incor-
rect Answer]

Cristina: Alright. [Neutral Feedback] The first part of this answer informs us that people 
with diabetes have high levels of blood sugar, whereas the second part states two types 
of diabetes. The second part doesn’t demonstrate the causal relationships [Elaboration]

Jordan: I see. The text points out two reasons. One is the pancreas. Another is cells. The third 
answer sums up this information. Therefore, the correct answer should be the first one: 
Diabetes is caused by too little insulin or resistance to insulin and can cause harmful 
health complications over the years. [Wrap-up]

Cristina: Excellent, Jordan! [Positive Feedback] The correct answer should be the first 
statement: Diabetes is caused by too little insulin or resistance to insulin and can cause 
harmful health complications over the years. The first part of the statement specifies the 
causes of diabetes, whereas the second part states the consequences of diabetes. [Wrap-
up]

style). These conversations were then evaluated by the measure of the Coh-Metrix for-
mality [1, 3]. The mean of agents’ formal language was 1.02 and informal,−0.37, which
was consistent with humans’ perception of formality when they generated conversations.
Then the teacher agent formal language and the student agent informal language were
mixed, which generated the mixed language. Its formality score was 0.12. The agents’
formality in three conditions represents three different levels of formality: informal,
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medium, and formal [9]. Table 2 illustrates an example of the formal and informal dis-
course when agents explained why the answer was incorrect. In Table 1, agents used
the formal language when they asked the participant the main question, elaborated why
the selected answer was incorrect, and provided hints (e.g., elaboration, hint, question),
whereas they used the informal language for socialization (e.g., “Jordan, it is your turn”)
or to provide feedback (e.g., “Excellent”).

Table 2. Examples of explanations in the formal language and the informal language.

Cristina’s Formal discourse:
The third statement specifies that the pancreas produces insufficient insulin and that cells do 
not respond to insulin normally, which are the right causes of diabetes. Therefore, this state-
ment is correct.
Cristina’s Informal Discourse:
The third answer shows how people get diabetes. We can find this information from the text.
This answer is correct.

2.4 Measures

Participants were required to write a summary with 50–100 words after reading each
passage. They were required to state the main idea and important information with a
topic sentence when generating the summaries. They were also encouraged to use signal
words to explicitly express their ideas. The summaries were graded based on the rubric
used in the previous studies [4, 13] in terms of four components: (1) topic sentence,
(2) content inclusion and exclusion, (3) grammar and mechanics, and (4) signal words
of text structures [19]. Each component was given 0–2 points, with 0 for the absence
of target knowledge, 1 for the partial presence of knowledge, and 2 for the complete
presence of knowledge.

Four experts whose native language was English (1 male and 3 females) graded
summaries after three rounds of training. For each round of training, they graded 32
summaries that were randomly selected from eight texts and then discussed disagree-
ments until an agreement was reached. The average interrater reliabilities for the three
training sets reached the threshold (Cronbach α = .82). After training, each rater graded
summaries for two source texts. Four raters graded 1,296 summaries in total.

We used the text analysis toolCoh-Metrix (3.0) to analyze participants’ written sum-
maries. Specifically, Coh-Metrix extracted the five primary Coh-Metrix components:
word concreteness, syntactic simplicity, referential cohesion, deep cohesion, and narra-
tivity [9, 13]. We reversed the first two and the last component scores and then computed
the formality scores with an average of five scores. The higher scores represented more
formal summaries.

3 Results and Discussion

We performed the mixed repeated ANOVA with agent language (informal, mixed, and
formal) as a between-subjects factor, text structure (causation and comparison) and time
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(pretest, training, and posttest) as within-subjects factors (i.e., a repeated measure), and
participants’ age and year of learning English as covariates. We aimed to examine how
agent language affected the quality of summaries and language use from pretest to
training and then to posttest. Thus, the design of analyses included three fixed factors:
the main-effect of time, the two-way interaction between time and condition, and the
three-way interaction among time, condition, and text structure.

Two dependent variables were the quality of written summaries and formality of
written summaries. All significance testingwas conducted with an alpha level of .05with
Bonferroni correction for multiple analyses. Cohen’s d was computed as an appropriate
effect size. Table 3 displays the means and standard deviations of summary scores and
formality scores of written summaries within each condition in each text structure on
pretest, during training, and on posttest.

Table 3. Means and standard deviations of quality and formality of summaries.

Condition Text
structure

Quality of written summaries Formality of written summaries

Pretest Training Posttest Pretest Training Posttest

Formal Causation 3.86(1.35) 4.89(1.55) 3.84(1.45) 0.57(0.58) 0.34(0.51) 0.41(0.51)

Comparison 3.99(2.01) 4.63(1.71) 4.28(2.05) 0.16(0.47) 0.08(0.43) 0.21(0.58)

Total 3.93(1.70) 4.76(1.63) 4.06(1.77) 0.36(0.56) 0.21(0.49) 0.31(0.55)

Informal Causation 4.14(1.38) 5.64(1.54) 4.45(1.38) 0.55(0.52) 0.38(0.45) 0.51(0.44)

Comparison 4.21(1.70) 4.95(1.49) 4.86(1.85) 0.30(0.56) 0.08(0.35) 0.15(0.48)

Total 4.17(1.53) 5.29(1.55) 4.66(1.63) 0.43(0.55) 0.23(0.43) 0.33(0.49)

Mixed Causation 3.69(1.59) 4.71(1.74) 3.79(1.84) 0.49(0.49) 0.35(0.49) 0.32(0.44)

Comparison 3.54(2.08) 4.76(1.58) 3.97(1.74) 0.17(0.62) 0.05(0.46) 0.26(0.61)

Total 3.61(1.84) 4.74(1.65) 3.88(1.78) 0.33(0.57) 0.20(0.49) 0.29(0.53)

Total 3.89(1.71) 4.92(1.63) 4.18(1.75) 0.37(0.56) 0.21(0.47) 0.31(0.52)

3.1 Quality of Written Summaries

Themixed repeated ANOVA analysis on the quality of summaries exhibited a significant
main effect of time, F(2, 720) = 26.64, p < 0.001. Pairwise analyses (see the Quality
column and the Total row in Bold in Table 3) indicated that participants wrote better
quality summaries during the training session when they read the texts with the guidance
of conversational agents than when they read by themselves without the guidance of
conversational agents on pretest (p < 0.001, Cohen’s d = 0.50) and on posttest (p
< 0.001, Cohen’s d = 0.35).

Analyses also displayed a significant two-way interaction for the quality of sum-
maries, F(6, 720)= 2.91, p= 0.008. Further pairwise analyses showed that participants
wrote significantly better quality summaries in each agent formality condition:F(2, 720)
= 6.33, p= 0.002 for the formal condition, F(2, 720)= 8.88, p< 0.001 for the informal
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condition, F(2, 720) = 12.60, p < 0.001 for the mixed condition. Further analyses (see
the Total Row within each condition in Italic in Table 3) revealed that participants wrote
significantly better summaries during the training session than on pretest and posttest in
both formal condition and mixed condition: p = 0.005, Cohen’s d = .41 for pretest and
training and p= 0.028, Cohen’s d = .34 for posttest and training in the formal condition;
and p< 0.001, Cohen’s d = .52 for pretest and training and p= 0.003, Cohen’s d = .40
for posttest and training in the mixed condition. In the informal condition, participants
wrote significantly better quality summaries during the training session than on pretest,
p < 0.001, Cohen’s d = .5. Results did not show a significant three-way interaction.

These findings indicated that conversational agents could facilitate participants writ-
ing better summaries when agents guided them to read the texts during training than
on pretest and posttest when the guidance was removed. Participants benefited from the
guidance provided by agents, no matter what language formality that agents used, for-
mal, informal, or mixed. Unfortunately, when agents’ guidance was removed on posttest,
participants read and processed texts and then wrote summaries independently, and the
quality of their written summaries was not significantly different from that on pretest.
These findings imply that intervention on text structure could effectively facilitate sum-
mary writing, but would likely be insufficient for participants to master these skills
and apply them towards completing summary writing tasks independently. Participants
probably need more assistance to complete summary writing tasks successfully.

3.2 Formality of Written Summaries

The analysis on the formality of summaries that participants constructed showed a sig-
nificant main effect of time, F(2, 720) = 7.32, p < 0.001. Pairwise analyses (see the
Formality column and the Total row in Bold in Table 3) showed that participants wrote
more informal summaries during the training session than on pretest (p= 0.001, Cohen’s
d = 0.25). This pattern was not found on posttest and training. Further analyses for each
condition (see the Total Row within each condition in Italic in Table 3) showed that this
patternwas only found in the informal condition,F(2, 720)= 3.23, p= .040. Participants
wrote more informal summaries during training than on pretest (p= .038, Cohen’s d =
0.32). Results indicated a significant three-way interaction, F(9, 720)= 6.73, p< .001,
but further pairwise analyses showed no significant effects.

These findings suggest that the agent informal language more easily influenced
participants’ use of informal language. Specifically, participants tended to imitate agents’
informal discourse when they generated their summaries, possibly because the informal
language ismore familiar andmuch easier as it requires less cognitive effort. Fortunately,
when participants wrote summaries without agents’ guidance, the effect disappeared.
We did not find that the agent formal or mixed language affected participants’ language
use in their written summaries. One explanation is that the training session focused
on the instruction of text structures, not the use of formal language in writing. Another
explanation is that the directions for summarywriting did not require participants towrite
summaries in the formal language. The third explanation is that the formal language is
more complex and using the formal discourse would take more effort and time. Thus,
participants tended to use the more familiar language to save effort and time in the
situation where they were not explicitly required to write formally.
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4 Conclusions and Implications

In this study, we investigated the impact of conversational agent formality on learning
of text structures, concentrating on the quality of participants’ written summaries and
formality of their written summaries during learning processes that included independent
reading and writing on pretest, reading with guidance during training, and independent
reading and writing on posttest in a trialog-based ITS. During the training session,
participants learned with the guidance of conversational agents who spoke one of three
styles of language: a formal language for both the teacher agent and the student agent,
an informal language for both agents, and a mixed language with the formal language
for the teacher agent and the informal language for the student agent.

We found that when participants were guided to read texts, they wrote better quality
summaries. When the guidance was removed, they wrote summaries as well as on the
pretest. Our findings were inconsistent with prior studies: agents’ informal language
facilitated learning. The reason for the ineffective intervention on posttest is likely that
summary writing involves complex cognitive processes, which may take participants,
particularly language learners a longer time to master the skills and successfully apply
them to anew task independently. The reason for the effective interventionduring training
is that even if summary writing is a difficult and complex task, participants could benefit
from the intervention no matter what language the agents use. Our findings imply that
one-hour intervention is insufficient for summary writing. Further studies are needed
to investigate how long participants, including English-native speakers and language
learners, need agents’ guidance and what is the best time to remove the guidance so that
they could successfully complete summary writing tasks independently.

Moreover, we found that participants’ use of language was affected by agents’ use of
language only when agents spoke with the informal language. This finding implies that
participants’ use of language is potentially affected by the agents’ use of language. This
study provides evidence that we might facilitate participants’ use of language through
the use of similar language by agents. The reason for the ineffectiveness of the agents’
formal or mixed language on participants’ use of formal language is possibly that we
did not specify the use of formal language in writing or provide explicit instruction for
formal language. Further studies are needed to examine whether agent formal discourse
could elicit learners’ use of formal language through explicit instruction and requirement
in the writing prompts.

This study has some limitations, which could be addressed in future studies, as
aforementioned. Another restriction, which has not been mentioned, is the measure of
agent language. Previous studies on agent language used personal pronouns, which are
easier to manipulate. The present study used multiple textual-level measures to measure
agent language, including word abstractness, syntactic complexity, referential cohesion,
deep cohesion, and non-narrativity, which are implicit and complex. Future studies will
focus on certain specific language anddiscourse features at each level, provide instruction
on the use of these features in academic writing, and investigate the effectiveness of the
intervention.

This study contributes to research on agent language in the following three ways.
First, this fine-grained analysis unpacked learning processes and informed researchers
and educators of the potential for intervention for complex learning tasks. Second, the
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findings of effective learning during training in all conditions suggest that further stud-
ies on agent language need to consider the design of language holistically and com-
prehensively. Third, this study is the first one to lay a foundation that agent language
affects participants’ use of language and encourage researchers to design more learning
environments to facilitate academic writing.
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Abstract. Women are traditionally underrepresented in science, tech-
nology, engineering, and mathematics (STEM). While the representa-
tion of women in STEM classrooms has grown rapidly in recent years,
it remains pedagogically meaningful to understand whether their learn-
ing outcomes are achieved in different ways than male students. In this
study, we explored this issue through the lens of language in the con-
text of an asynchronous online discussion forum. We applied Linguistic
Inquiry and Word Count (LIWC) to examine linguistic features of stu-
dents’ reflective posting in an online chemistry class at a four-year uni-
versity. Our results suggest that cognitive linguistic features significantly
predict the likelihood of passing the course and increases perceived sense
of belonging. However, these results only hold true for female students.
Pronouns and words relevant to social presence correlate with passing the
course in different directions, and this mixed relationship is more polar-
ized among male students. Interestingly, the linguistic features per se
do not differ significantly between genders. Overall, our findings provide
a more nuanced account of the relationship between linguistic signals
of social/cognitive presence and learning outcomes. We conclude with
implications for pedagogical interventions and system design to inclu-
sively support learner success in online STEM courses.

Keywords: Community of Inquiry · Gender in STEM ·
Computational linguistics · Linguistic Inquiry and Word Count
(LIWC) · Online learning · Higher education

1 Introduction

In higher education, introductory courses have been found to have key influ-
ence on students’ motivation to major in science, technology, engineering, and
mathematics (STEM) disciplines [26,39]. The success in introductory STEM
courses is not only determined by academic performance, but also by whether
or not students feel supported by the classroom community [19]. While we have
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seen an increase in female students’ enrollment in STEM disciplines, partic-
ularly in online courses [45], more challenges and higher attrition rates were
reported among females [3]. It is thus important to understand female students’
presence in STEM classrooms and how it affects their learning outcomes and
experience. With universities increasingly employing learning management sys-
tems and offering STEM classes online, there are more opportunities for learning
analytics to offer insights into students’ learning processes and for artificial intel-
ligence systems to appropriately scaffold learning behaviors.

Language is a window to learners’ social, cognitive, and affective states in
learning [8,10,13,42]. The advances of computational linguistics offer a power-
ful and efficient way to quantify learning behavior at scale [7,9,11,12]. While
these methods have been commonly applied to forecast academic achievement
and cognitive processes [35,36], there have been fewer instances that focus on
non-cognitive outcomes such as learning experience and social identity [1,6].
Moreover, prior research suggests that there are gender differences at the socio-
linguistic level in computer-mediated communication [5,29,32]. But it is less
known whether these language patterns are associated with outcomes in a dif-
ferent manner for male and female students. As such, we are interested in explor-
ing whether linguistic characteristics of students’ discussion forum posts foretell
cognitive and non-cognitive outcomes, and what this means for different genders
in the context of online STEM courses.

The contributions of this work are as follows. We extend the understanding
of gender differences in STEM learning through the lens of language, illustrating
the links between linguistics features in students’ reflective posting and perfor-
mance. Further, by incorporating sense of belonging as an additional outcome
measure, we demonstrate different ways language is associated with female and
male students’ experience in class. Lastly, our research contributes to the emerg-
ing research around (gender) equity in personalized and adaptive AIED systems.
In the conclusion section, we further discuss the theoretical and practical impli-
cations for future research and practices in the AIED community.

2 Related Work

The Community of Inquiry (CoI) framework is commonly referenced by works
on asynchronous discussion forums. The framework is comprised of three com-
ponents: cognitive, social, and teaching presence [16]. We primarily focus on the
cognitive and social presence in this work. Cognitive presence involves higher-
order thinking and constructing meaning through reflection [25]. In the context
of our current investigation, the reflection writing assignment highlights two
phases of cognitive presence: knowledge integration and resolution. Cognitive
presence can be achieved when students link new concepts to past knowledge,
and reflect on the application of what they learned in class to real-life scenarios.

Social presence reflects the process when learners interact socially and coor-
dinate efforts with peers [16,31]. In online learning, social presence is further
elaborated as “the ability of participants to identify with the community (e.g.,
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course of study)” [15]. Ample evidence from existing literature suggests enhanced
academic outcome and educational experience through promoting cognitive and
social presence [41]. Prior research also suggests that learning activities promot-
ing social presence may also enhance the learner’s satisfaction and a greater
sense of belonging to the online community [2,17,37].

There has been extensive research that applies linguistic analysis to reveal
social and cognitive presence in online learning. Previously, research has found
distinct distributions of psychological categories of words at each level of the cog-
nitive presence in the CoI framework, legitimizing language as a proxy for cogni-
tive engagement [14,24]. Other research combined natural language processing
techniques and behavioral data to establish the connection between linguistic
features and engagement to predict learning outcomes [4]. The advances in com-
putational techniques and machine learning models have given rise to automatic
identifications of activities in discussion forums that require timely intervention
[44]. Researchers have also attempted to translate the CoI coding scheme into
a artificial intelligence model to capture cognitive presence [27]. However, it has
become increasingly evident that the AIED community should progress towards
building automated approaches with an eye on equity and inclusivity in order
to appropriately address the issue of “one size fits all” [18].

Previous research suggests that linguistics characteristics in computer-
mediated communication differ across gender lines [21,22]. In the context of
STEM learning, a more recent study also found the ability for language to reveal
distinct socio-cognitive processes in male and female students’ engagement [29].
With online courses serving as an entryway for female students to pursue STEM
disciplines [45], it is important to understand what leads to female students’
performance and learning experiences in introductory STEM courses compared
to their male counterparts [14,30]. Towards that end, we propose the following
research questions:

1. What linguistic features of students’ reflective posting are associated with
cognitive and non-cognitive outcomes in online STEM courses?

2. Do male and female students exhibit different linguistic features?
3. Do these linguistic features correlate with learning outcomes differently for

male and female students?

3 Methods

3.1 Sample and Data

This study was conducted in a fully online, ten-week introductory chemistry
course at four-year university in the United States, with a total of 300 students
enrolled. The course was administered in the Canvas learning management sys-
tem (LMS) and students were required to write a reflection post every week in
the discussion forum about the assigned reading for that week. This discussion
task accounted for 5% of the final course grade and was organized in small groups
of ten students. Each student was randomly assigned to a group at the end of
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Week 2 and remained in the same group throughout the course. They could only
access the posts written by their group members. Beyond the required posts for
course credits, students were free to make additional contribution in the discus-
sion forum. For fair comparison, we focused our text analysis on these original
reflection posts.

For the linguistic analysis, we obtained students’ discussion posts throughout
the course along with their metadata (e.g., timestamp, response relationship).
In order to address the first research question, we collected the gradebook data
to derive performance measures. For the second research question, a pre- and
a post-course survey were sent to measure students’ sense of belonging, using a
validated Classroom Community Scale [37]. The scale contains ten items on a 5-
point Likert scale. For each student, the mean of their valid responses across the
ten items was calculated as their sense of belonging. Additionally, we collected
students’ demographic information and academic history data.

We excluded students who did not post at all throughout the course, leaving
a total of 238 students for our final analysis. Among them, 53.6% were female,
42.1% were racial/ethnic minorities (African American, Hispanic and Native
American), and 58.6% were first-generation college students. These figures sug-
gest that the class had a fair proportion of traditionally underrepresented stu-
dent populations in STEM fields, so the findings in this study would be especially
meaningful for STEM educators in general.

3.2 Linguistic Inquiry and Word Count (LIWC)

Linguistic Inquiry and Word Count (LIWC) is one of the most commonly used
dictionary-based tools to evaluate and assess cognitive, social and affective prop-
erties in student discourse, as well as educational materials more broadly [34,38].
In the CoI literature, several studies have utilized LIWC to examine the linguistic
features associated with social and cognitive presence. In the current research,
we focused on a set of LIWC variables that are most representative of cognitive
and social presence in students’ discussion posts. A brief description of these
linguistic features can be found below and in Table 1.

Table 1. Summary of LIWC variables in the analysis

Construct LIWC variables Example words

Cognitive presence Analytic, Tone –

Cognitive process Cause, think, should

Social presence Clout, Authentic –

Social process Friends, talk

Personal pronouns I, we, they, you

Among the four composite variables, two of them are used as proxies of
cognitive presence. Analytic signifies formal and logical language which results
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from cognitive processes. Tone captures the positive and negative valence in lan-
guage. Previous research suggests a combination of language valence, pronouns,
and cognitive lexicons indicate state of confusion [46]. Academic writing which is
less narrative and more cognitively demanding may reside on the negative side
of this variable [42]. By contrast, the other two composite variables represent
elements relative to social presence. Clout is defined as “relative social status,
confidence, or leadership displayed through writing” [34]. Authentic has been
found to signal self-referencing and “humble, vulnerable” positions [33].

The cognitive process variable in LIWC includes terms that relate to higher-
order thinking and signal cognitive presence [28,31,34]. Research has highlighted
subcategories of words under this category to demonstrate different phases of
cognitive presence [24]. Social process includes content words concerning social
support and relationships. While this can be a good indicator for social presence
in casual contexts, highly social words might conversely suggest off-topicness in
formal chemistry reflections. Personal pronouns indicate attentional focus and
social relationships [35]. Specifically, the use of “I” represents attention drawn to
oneself, in contrast to “we”, “you” and “they” which take more “other-oriented”
views. Learners who notice and make connections to others’ work are likely to use
more other-oriented pronouns [33]. For each student, we computed the average of
each LIWC variables across all of their discussion posts to reflect their linguistic
experience throughout the term.

3.3 Statistical Analysis

We leveraged two models under the framework of generalized linear regressions
(GLM) to examine the relationship between linguistic features (all centered and
Z-standardized) and students’ cognitive and non-cognitive outcomes. For the
cognitive aspect, we used logistic regression to regress the log-odds of passing
the course (getting a letter grade of D- or above) on LIWC variables. Note that
only 76% of the class passed the course. For the non-cognitive outcome, we used
multiple regression, where students’ change in sense of belonging throughout
the course was regressed on LIWC variables. In all regression models, students’
background information, including gender, first-generation college status, ethni-
cally underrepresented minority (URM) status and SAT scores, was controlled
for, as these variables captured group differences shaped by opportunity gaps
prior to their college experience [40]. Also, the four composite LIWC variables
were included in separate models from individual LIWC variables (Sect. 3.2) to
avoid potential issues of (partial) collinearity.

To compare linguistic features between genders, we used independent t tests
to statistically test difference between genders in each of the LIWC variables.
Moreover, we reran the previous regression models separately on female and male
students, and interpreted the coefficients of LIWC variables to explore potential
gender differences in the relationship between linguistic features and student
outcomes.
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4 Results

4.1 Linguistic Features and Student Outcomes

Table 2 presents the estimated relationships between LIWC variables and cog-
nitive and non-cognitive outcomes. Note that composite and individual LIWC
variables were included in separate regression models. For the cognitive out-
come (passing the course), raw instead of exponentiated coefficients from logis-
tic regression models are reported. These estimates show that high cognitive
complexity, low social content, negative tones, low social-status language and
high frequencies of other-oriented pronouns (we/you/they) are associated with a
higher likelihood of passing the course. Reflecting on our construction in Sect. 3.2,
these results combined suggest a positive relationship between cognitive presence
and cognitive outcome but a more complicated one between social presence and
the same outcome. In stark contrast, none of the linguistic features succeeds in
predicting students’ change in sense of belonging after taking the course, or the
non-cognitive outcome.

Table 2. Relationship between LIWC variables and cognitive (passing the course) and
non-cognitive (change in sense of belonging) outcomes

Pass ΔSOB

Coef SE Coef SE

Composite LIWC variables

Analytic −.164 (.191) .079 (.0535)

Clout −.377* (.195) −.0192 (.0615)

Authentic .0861 (.182) −.0143 (.061)

Tone −.473*** (.17) .0041 (.0684)

Individual LIWC variables

CogProc .383* (.211) .103 (.0805)

SocProc −1.04*** (.317) −.119 (.121)

I −.057 (.207) −.07 (.0698)

We .665* (.343) −.0188 (.121)

You .281 (.186) −.106 (.0746)

They .352* (.197) .0217 (.0704)

* p<0.1 ** p<0.05 *** p<0.01

4.2 Gender Differences in Linguistic Features

Table 3 presents the summary statistics of LIWC variables for male and female
students, respectively. All the statistics were calculated before centering and
standardization. The last column reports results from independent t tests to show
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Table 3. Gender difference in LIWC variables. Format: mean (SD).

Male Female Diff

Composite LIWC variables

Analytic 83.8 (9.94) 83.8 (10.2) −.0292

Clout 71.8 (13.4) 72.1 (10.9) −.325

Authentic 34.6 (15) 36.4 (15.2) −1.78

Tone 52.1 (16.8) 52.1 (17) −.0105

Individual LIWC variables

Cognitive process 11.3 (2.96) 11.3 (2.85) .04

Social process 6.12 (1.96) 6.16 (1.99) −.0398

Pronoun: I .256 (.679) .237 (.51) .0191

Pronoun: we 3.35 (1.7) 3.15 (1.53) .205

Pronoun: you .176 (.408) .273 (.431) −.0973*

Pronoun: they .558 (.483) .574 (.514) −.0166

* p<0.1 ** p<0.05 *** p<0.01

if each variable had a significant gender difference. Contrary to some prior liter-
ature [21,22], we did not observe much difference in linguistic features between
male and female students. The only differences observed was that male students
perceived significantly stronger sense of belonging at the end of the course, and
that female students used “you” significantly more in their reflection posts.

4.3 Gender Differences in the Relationship Between Linguistic
Features and Student Outcomes

Figure 1 visualizes the estimated coefficients from separate regression models.
The visuals depict that the positive relationship between cognitive language and
cognitive outcomes is concentrated on female students, evidenced by the signif-
icant effects of tone (−) and cognitive process (+) on the likelihood of passing
the course. In contrast, the mixed relationship between social language and cog-
nitive outcomes is more polarized for male students. Specifically, social referenc-
ing through other-oriented pronouns (we/you/they) significantly contributes to
males’ course outcomes but the use of social words has negative effects on the
same outcomes.

While the change in sense of belonging is not correlated with any LIWC vari-
ables in the overall model, there are some significant relationships among female
students. More cognitive language use predicts an increase in women’s perceived
classroom community, whereas other-oriented pronouns exhibit negative associ-
ations.
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(a) Composite LIWC variables

(b) Individual LIWC varaibles

Fig. 1. Gender differences in the estimated relationship (regression coefficients)
between LIWC variables and cognitive (passing the course) and non-cognitive (change
in sense of belonging) outcomes
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5 Discussion

In this study, we investigated the relationships between linguistic features of
students’ reflective posting and student outcomes in an introductory online
chemistry class. We further examined the gender differences in these linguis-
tic features, and in the way they associated with outcomes. From our results,
the strong positive relationship between cognitive language use and course per-
formance for female students suggests that there might be an underlying need
for female students to demonstrate cognitive engagement through language to
achieve better outcomes. Additionally, the positive correlation between cognitive
language and increased sense of belonging indicate that females are more likely
to derive a sense of belonging from making intellectual contributions to the dis-
cussion forum. This might imply that cognitive language can improve learning
experience and shape STEM identity more for female students than for male
students.

The overall negative relationship between social language and passing the
course may suggest that being on-topic is an important indicator of grades [43].
A reflection post with too many social signal words could mean a deviation
from core content, leading to lower performance on tests. Regarding the use
of pronouns, “we” was associated with decreased perceived sense of belonging
for female students, which was somewhat surprising. While we expected that
the use of an inclusive pronouns such as “we” would create a greater sense of
community, this result shows the opposite. This counter-intuitive relationship
might be accounted for by group factors. For instance, if a female student is the
only person in her discussion group who engages in deep reflection, she may feel
disconnected. A weaker sense of belonging may therefore be triggered by using
“we” when the personal and group identity do not align. Due to the scope of our
analysis, the current study did not take into account of group-level influence,
but this remains an important direction for future work.

6 Conclusion

The naturally occurring educational discourse data within online learning plat-
forms presents a golden opportunity for the AIED community to advance the
understanding of cognitive and social processes in STEM learning and enables
new kinds of personalized interventions focused on increasing inclusivity and
equity [20]. Towards these ends, there are several key obstacles including lim-
ited analytical approaches to handling the scale of such data and substantive
data-driven knowledge that can direct us to cultivate more equitable, respectful,
and diverse environments that meaningfully engage all learners. In this context,
our findings present some theoretical and practical implications for the AIED
community.

For starters, our results alert that transferring and interpreting learner behav-
ior across different types of online environments (i.e., MOOCs versus accredited
university classes) or across academic disciplines require careful considerations.
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One might assume that increased social presence in asynchronous discussion
forums reflected by social language use would benefit learning. Yet the oppo-
site result in the context of this chemistry course suggests that discussing non-
academic content may also be irrelevant and undesirable in a formally structured
discussion environment. Consequently, contextual information including class-
room community and course delivery needs to be considered when deploying
AIED applications focused on linguistic analytics. More nuanced considerations
should also be given to applying theoretical models to online environments. For
the same results above, it is also likely that social presence built upon knowl-
edge construction is more valuable to learners’ sense of belonging than that upon
shared personal interests. Knowing this differentiation can be particularly infor-
mative for designing strategies to reduce the attrition rates of female students
in STEM subjects.

Finally, our findings shed light on the emerging discourse around fairness and
equity issues in student models [23,47]. Mining educational data should not be
left without considerations for equity and inclusivity for different student pop-
ulations. In our case, although the linguistics features appeared to be indistin-
guishable for male and female students overall, they were in fact associated with
learning outcomes differently at a deeper level. We further highlight concerns
about making instructional decisions based on the analysis for an entire student
body. Such an approach, as we have found, might inadvertently discount the dis-
parate impact on gender subgroups. Future development of automated analytic
tools and machine learning models used to monitor learners’ discussion forums
activities should thus aim to recognize gender differences in order to close gender
gaps in STEM education.
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Abstract. Indigenous languages have been dying out due to colonial practices
that limited and even punished their use. For this reason, there is a need to support
the maintenance and revitalization of these languages as part of the reconciliation
process. However, there has been little research to guide the use of technology in
supporting language revitalization. To contribute to this process, this study inves-
tigated the use of a novel e-learning activity for a specific Indigenous language -
Plains Cree (nehiyawewin). This activity, SoundHunters, targets the development
of learner phonological awareness (i.e., their ability to understand and manipu-
late sounds in a language) through game play. A mixed-methods study was used
to measure learning and explore learner experiences. Learner performance on a
transcription task, which required the mapping of sounds to characters, improved
following SoundHunters use. The nature of learner errors indicates the develop-
ment of learners’ interlanguage and provides evidence of transfer from English
to Cree. Additionally, learners enjoyed the activity while finding it appropriately
challenging. These results show the potential for using adaptive technology to sup-
port learning in low-resource settings, such as those that exist for most Indigenous
languages.

Keywords: Computer assisted language learning · Indigenous languages ·
Listening skills

1 Introduction

Canadawants to reconcile its previous actions against Indigenous peoples inCanadawho
have historically been mistreated and oppressed. In 2015, the Truth and Reconciliation
Commission of Canada (TRC) released a report calling for the government to take action
towards reconciliation [49]. One of the calls to action was the revitalization of the many
Indigenous languages and cultures within Canada.

Likewith learning any language, learning Indigenous languages includes the acquisi-
tion of reading, writing, speaking, and listening skills.Within these, excelling in listening
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and speaking requires phonological awareness which is knowledge of how sounds are
used within a language [5]. This awareness gradually develops throughout childhood for
one’s first language, but it needs to be nurtured when learning additional languages [2].
Phonological awareness facilitates learners’ speaking and listening skills. Supporting
the development of these skills is of primary importance because of the oral traditions
that are common amongst Indigenous cultures in Canada. The need for technologies to
support this type of learning is pronounced because of the limited access learners have
to instructors or speakers and the prevalence of dictionary-like vocabulary tools that fail
to meet this community-identified need [35]. The current lack of ingenuity and adap-
tivity in the language-learning technologies that are available to learners of Indigenous
languages [35] means that there has been little research investigating their effectiveness.
Given this lack of investigation, we do not know which approaches support the devel-
opment of the skills necessary for engaging in the learning practices that are of cultural
value to specific Indigenous communities.

One of the approaches that might help learners develop core skills is game-based
learning which has been garnering continued attention [10, 56]. Its affordances such
as providing immersive exposure to the language and decreasing anxiety [26], as well
as creating an entertaining and interactive learning experience have contributed to its
use within language learning. These are important factors in language learning because
learners’ willingness to use a language can foster improvement [1].

In addition to supporting language learning, game-based learning can trigger intrinsic
motivation in learners [32] which might help them overcome the barriers that they face
during learning. This additional motivation is especially important to Indigenous lan-
guage learning as there are many social, technical, and access barriers to acquiring these
languages [21, 35, 37]. The popularity ofDuolingo has demonstrated technology’s ability
to provide a captivating language learning experience [24]. For these reasons, a game-
based e-learning activity that aims to develop learner phonological awareness could
support Indigenous language learning as learner knowledge of phonology is predictive
of several other language learning tasks [52].

2 Related Literature

Language learning has a long history of using games and simulations in both digital and
non-digital learning contexts [12]. Most studies of technology used to support language
learning have focused on enhancing the vocabulary knowledge of learners [9, 17, 54],
with only a handful of systems using adaptive features to support oral language acquisi-
tion. For example, VocabNomad was a mobile communication support tool that enabled
listening and pronunciation practice with recommendations being used to expose learn-
ers to new vocabulary items [16, 18]. Many other systems focus on supporting grammar
instruction [9]. Among the systems and approaches that support learner’s grammati-
cal knowledge and writing skills are Grammarly [38] and the use of machine learning
approaches for detecting or correcting grammatical errors [48]. When investigating the
combined impact of feedback with such approaches, the addition of self-explanation
within an adaptive grammar tutor failed to improve retention over practice alone [55].
Other than feedback and practice, a learner’s writing abilities benefit from improved
reading proficiency as increased receptive knowledge is predictive of productive knowl-
edge [53]. Keeping this in mind, a system that was designed to support English language
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learners when they are trying to read authentic texts [57] might benefit both skills. How-
ever, the effectiveness of this system has yet to be evaluated. As summarized in reviews
[45] and demonstrated by the above explorations and system designs, most adaptive
computer-assisted language learning applications have focused on receptive skills (e.g.,
grammar, reading) or text-based approaches. This may be partly due to the technological
and other challenges associated with supporting oral and productive language learning
activities [31].

While less studied [9, 17], investigations examining how to improve language learn-
ers’ speaking and listening have used a variety of technologies. One investigation
showed that the most common learning activities performed by migrant language learn-
ers involved the repurposing of existing technologies to support pronunciationmodelling
and self-testing [17]. These types of interactions are dependent upon several features that
include the ability to record, play audio or produce language through speech synthesis,
and automatically analyze learner speech. One commercial technology that aimed to
promote the identification and production of sounds used speech recognition to provide
feedback on English language learners’ pronunciation of single words [47]. Similarly,
a game-based adaptive pronunciation tutor provided feedback on learner pronunciation
[19]. This tutor was well received by language learners even though it was not shown
to improve their phonemic awareness or pronunciation. In contrast, findings from a
study where a mobile game was used to promote speaking and listening skills sug-
gested the game only supported the improvement of learners’ speaking abilities [28].
In contrast, a popular commercial language-learning application that includes activi-
ties which are expected to support the development of phonological awareness (i.e.,
Duolingo) was associated with improved listening skills [44], and an experimental sys-
tem, called ToneWars, helped learners develop their declarative knowledge of Chinese
tones through collaboration and competition [20]. Going beyond the simpler interac-
tions seen in the above systems, the investigation of one of the few simulation-based
systems that effectively supports language learning revealed that those who performed
well in foundational skill-based activities, such as phonemic awareness, also performed
better in simulation tasks [29]. A more recent example that aims to support communi-
cation practice focuses on adding features to agents in a way that will increase learner
willingness to communicate [1].

A scoping review on the use of games in language learning revealed that 94% of stud-
ies were focused on English as an additional language [26] even though other languages
could benefit from these types of approaches. It has even been argued that this class of
approaches might help revitalize endangered and threatened Indigenous languages [22].
However, this vision has yet to be realized. In one attempt to support Indigenous lan-
guage revitalization, Parker and colleagues [39] designed a game to support learners of
Blackfoot (an Indigenous language in North America). This game asked players to fol-
low instructions in Blackfoot to achieve a set of sub-goals; however, its effectiveness was
not evaluated with users. Another study introduced a computer-based language learning
activity to families who want to learn Ojibwe (anishinaabemowin): an Indigenous lan-
guage spoken in North America. This activity aimed to promote Ojibwe acquisition by
incorporating language learning into family activities [25]. An adaptive system for the
appropriate use of pronouns in Maori (an Indigenous language in New Zealand) showed
similar performance gains as those obtained from standard tutorials [51]. So far, the sole
adaptive system for supporting the acquisition of Plains Cree (nehiyawewin) grammar
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has only been evaluated from the perspective of people’s opinion about the system’s
design [6].

As can be seen in the literature, many technological approaches to supporting lan-
guage learning can advance learner skills and knowledge. Although, some of them add
little benefit over non-adaptive approaches (e.g., [55]). We have yet to see the evaluation
of the effectiveness of adaptive or other language learning technologies for Indigenous
languages. Given this information and a need for effective educational resources to sup-
port Indigenous language learning [34], we created a game that aims to support the
development of phonological awareness in Plains Cree (nehiyawewin) with the hope
that it would be the first step in a series that supports improved listening and speaking
skills among learners.

3 Method

A mixed-methods approach was used where qualitative and quantitative data were tri-
angulated [14]. This approach provided a holistic view of learners’ experience and
knowledge acquisition [50].

3.1 Learning Technology: SoundHunters

The approach under investigationwas inspired by the arcade game called Space Invaders.
Instead of defending against an alien invasion, the game asks learners to differentiate
between sets of characters and identify the one that matches the sounds they are hearing.
Note that there are two common ways that Cree is written, and within this study we
will be focusing on the Standard Roman Orthography (SRO) writing system which is
composed of eight consonants, two semi-vowels, and seven vowels.

The temporal pressure aspect of the game mechanics was used to help support the
development of student fluency [42]. When the game starts, the user sees two to four
deer move down the screen (Fig. 1). Each deer has text attached at its side. The learner
is then given a sound that corresponds to one of the deer’s text (i.e., the correct answer).
This sound repeats until the learner identifies and shoots the correct deer.

SoundHunters has four tasks. The first tests the user’s knowledge of sound to single
character mappings, which is the base unit. The second tests their knowledge of the
mapping between sounds and character pairs on the way to developing an understanding
of how sound-to-charactermappings interactwhen they are grouped into larger units. The
third task tests their ability to distinguish minimal pairs (i.e., two words that are identical
except for one sound, such as sun and fun), which is known to support the development
of phonological awareness. The fourth task tests the user’s ability to identify the word
that was said and is the most ecologically valid task as learners will typically have to
understand full words when interacting with others. Each task has three difficulty levels:
easy, medium, and hard.

The difficulty for the first two tasks is determined in the same way. In both, distractor
types are defined based on their similarity to the audio and visual cues associated with
the target item (i.e., correct answer). When providing examples, we also provide an
international phonetic alphabet (IPA) pronunciation guide. An example of a distractor
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Fig. 1. Screenshots from game play. 1 shows the full screen for task 1. Images 2 through 4 show
a close up of the types of stimuli in tasks 2 through 4 respectively.

that includes aspects of both orthography and phonology would be “ô” (as in moose or u
in IPA) which is audibly and visually similar to o (as in put or * in IPA).We refer to these
types of distractors as bidimensional. A unidimensional distractor would be similar with
respect to a single channel (i.e., audio or visual). For example, ‘e’ (as in bet or ε in IPA)
sounds similar to ‘â’ (as in fa or father - A in IPA) but is not visually similar. A simple
distractor would be a distractor that is neither visually nor audibly similar. For example,
‘t’ is neither audibly nor visually similar to ‘a’ (as in cut or � in IPA).

For both tasks one and two, the user is presented with two simple distractors and
the correct answer at the easy level. At the medium difficulty level, the user is presented
with a combination of three simple or unidimensional distractors and the correct answer.
At the hard level, the user is presented with a combination of three unidimensional or
bidimensional distractors and the correct answer. At the hard level, the speed at which
the distractors descend also increases.

The nature of the third task limits the number of potential distractors to one. Conse-
quently, the difficulty of the distractor in this task is based on its length and increased
speed for the hard level.

The fourth task requires the user to identify the difference betweenwords. Distractors
were randomly chosen. Like task three, the difficulty was determined by the length of
the word and the speed at which items descend. The speed increased for the medium
level and again for the hard level. At the easy level, the user was presented with the
correct answer plus two distractors. At the medium and hard level, they were presented
with the correct answer plus three distractors.
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3.2 Participants

Participants were recruited via advertisements that included social media posts, posters
around campus, and classroom announcements. Participant ages ranged from 19 to 76
(M = 25.9, SD = 11.68); 2 did not provide their age. Of the 25 participants, 13 were
female, 11 male, and 1 participant opted not to specify. All were native English speakers
who do not know Plains Cree. However, 4 said they can identify Plains Cree when they
hear it. Participants were assigned a numeric identifier. This identifier (e.g., P1) is used
to indicate which participant a quote originated from.

3.3 Data Collection

This study and its methods were pre-registered (https://osf.io/xjy4v). As planned, we
used two measures to evaluate both the effectiveness of SoundHunters and learners’
experience. These measures consist of a Cree knowledge test (as pre-test and post-test)
and a questionnaire to evaluate player experience.

As a knowledge test, we asked participants to transcribe two short recordings of
someone speaking in Cree. Each recording contained approximately 5–10 words in a
single sentence. Each recording was 3–5 s long and the participant was allowed to listen
to it a maximum of 3 times without pausing. Different recordings were used for the pre-
and post-test. Scoring was handled based on correctness of the letters. Each correct letter
earned one point. A half point was given to letters that do not exist in Plains Cree when
their English sound represents a valid sound in Cree. An example would be if the user
wrote ‘g’ in place of ‘k’. The ‘k’ sound in Cree often sounds like ‘g’ in English, but ‘g’
is not used in SRO. The percentage of accumulated scores according to the number of
letters in the correct answer (maximum score) are reported.

User experience was evaluated using the Model for Evaluating Educational Games
(MEEGA+). This instrument was developed to analyze educational games and was
reported to have high reliability (Cronbach’s α = 0.928) with its subscales established
through factor analysis [40].

3.4 Data Analysis

For the knowledge test, the normalized learning gain of each player was calculated [23,
41]. Additionally, using a paired sample t-test, we determined whether performance
on the transcription test improved following system use. This test was conducted after
determining that data followed a normal distribution. Errors on the pre- and post-testwere
groupedbasedonhow theparticipant responded.These errorswere compared across tests
to identify evidence of changes in participant knowledge of specific sound-to-character
mappings.

The analysis of the qualitative data beganwith reviewing the data from theperspective
of participants’ learning experience [46]. After that, we conducted thematic analysis to
reveal themes within their learning experiences [8]. This process started with identifying
codes which are expressions that relate to participants’ learning experience. Then, these
codes were grouped around themes and data were reviewed to confirm these themes.
This process was handled by a researcher who has a PhD in educational technology and

https://osf.io/xjy4v
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is experienced in qualitative data analysis. All steps of the process were reviewed and
confirmed by another researcher to increase reliability (as in [43]).

4 Results

4.1 Increased Phonological Awareness

A paired-samples t-test of the phonemic knowledge tests revealed a significant improve-
ment in learner performance (t(24) = −6.85, p < .001, d = 1.37) from the pre-test (M
= 49.37, SD = 8.56) to the post-test (M = 58.50, SD = 8.74). Participants’ normalized
learning gain showed considerable improvement, 95% CI= [0.12, 0.23], given that par-
ticipants interacted with the system for approximately 49 min (M = 49 min. 21 s, SD =
6 min. 2 s).

In addition to measurable changes in their knowledge, participants’ open-ended
responses indicate they learned Cree words or sounds which implies increased phono-
logical awareness of Cree: “As levels progressed, I found I had a better understanding
of different sounds” (P16) and “I feel like you get more used to the letters/sounds as you
advance” (P14).

An examination of the errors participants made on the pre- and post-tests, indicates
many mistakes were consistent across tests. These mistakes included using “e” (as in
bet or E in IPA) instead of “i” (as in sit or I in IPA), or “oo” instead of “ô” (as in
moose or u in IPA). These mistakes reflect the differences in the sound-to-character
mappings between English (participants’ native language) and Plains Cree. Along with
these persistent errors, there were some types of errors that were different across tests.
In the pre-tests, learners did not use accents where they were needed, such as using i and
o (as in put or * in IPA) instead of î (as in feel or i in IPA) and ô, whereas accents were
observed in the post tests. In some cases, this meant that learners were using accents
where they were not needed (e.g., ê instead of e, as e never takes an accent). Similarly,
some consonants such as “h” and “w” were absent from the pre-test (e.g., waya was
written instead of wâhyaw pronounced wAhya* in IPA). In contrast, users included
these consonants both where they were needed (e.g., mahtesa pronounced m�htes� in
IPA) and in other locations which demonstrated negative transfer of sound-to-character
mappings from English to Cree. For example, chin was written instead of cin, which is
the SRO representation that is pronounced tsIn in IPA.

4.2 Learner Experience

Figure 2 shows the distribution of participant responses to the learning experience ques-
tionnaire. Overall, participants reported positive experiences and positive perceptions
of their learning. Their perception that they learned Cree sounds is consistent with the
gains seen from the pre-test to the post-test. The themes that emerged from participant
comments on their learning experience included the perceived learning of Cree words,
having a positive learning experience, and facilitating learner attention.

The questionnaire results indicate that participating learners were challenged, had
fun, and were highly satisfied with their learning experiences. Their open-ended com-
ments confirm this finding of the game facilitating a positive learning experience. As
participants said,
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Fig. 2. Learners’ play experience with SoundHunters

P9: “I really enjoyed the game. I thought it was a new and interesting way to
help learn some basics on Cree word/sound structure. The game itself was simple
enough that it didn’t take away from learning but fun enough to keep interest”.

P17: “The game was a cool and easy way to learn Cree words/sounds. It was really
useful to see both the spelling on screen and hear the sounds.”
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P13: “Finally hitting the correct target was very satisfying”

Even though participants enjoyed learning in this way, their perceptions with respect
to preferred learning approach did not necessarily indicate that using SoundHunters
would be their first choice (Relevance, item 1, in Fig. 2). Their responses to the focused
attention related items of the questionnaire indicate the game could have better captured
their full attention even though their open-ended responses indicate that it helped them to
focus on performing the learning task without making them feel like they were engaged
in a learning activity: “It did grab my attention throughout playing the game” (P19) and
it is a “learning tool where you can forget you’re learning” (P12). One learner also stated
that “it was simple enough and engaging to play” (P9), suggesting that its simplicity
contributed to its capturing their attention.

5 Discussion

We explored the use of a game to improve phonological awareness for Indigenous lan-
guage learning. The learning observed in this study provides empirical evidence for
informal game-based learning practices, which generally lack strong support [7]. The
observed improvement in participants’ ability to map sounds to characters can be inter-
preted as a sign of the game’s appropriate difficulty levels for the target audience since
language-learning technologies that fail to provide the right amount of challenge are
associated with a lack of learning [36].

Along with the amount of challenge, the type of interactivity provided could play
a role in the activity’s effectiveness, as some types of interactions that learners have
with games have been associated with increased vocabulary retention [15]. In our game,
the primary interaction with the user was through a combination of sounds and text
which probably played an important role in the success of the game. These interactions
are consistent with the learning objective of increasing learner phonemic awareness,
with improvements shown through assessments that required learners to map sounds to
characters, which is a fundamental component of phonemic awareness [4]. The repetition
involved in the game is likely to have contributed to the measured improvements as
repetition provides practice opportunities [13].

Learners’ comments and questionnaire responses indicate they responded positively
to this learning technology. More specifically, participants said they felt more like they
were playing than studying, suggesting that the activity format eliminated the negative
emotions, such as anxiety [27, 56], that are associated with foreign language learn-
ing as well as the learning of Indigenous languages [35]. As family-based approaches
have helped improve Indigenous language learning [25] in other contexts, further game
activities can be developed in a way that allows collaborative play so that families can
engage with the learning activities together. This would additionally help to mitigate
generational differences in Indigenous language learning.

Some of the errors participants made in the post-test indicated negative transfer,
which is the expansion and use of existing knowledge fromawell-known language to that
of another language [3]. In this case, negative transferwas seen through the application of
sound-to-character mappings from English during a Cree transcription task. To mitigate
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negative transfer, further activities can be planned to explicitly point out differences
between these two languages [33]. The observed errors additionally provide evidence
of the development of learners’ interlanguage, which is a part of the language-learning
process where learners combine characteristics of the first and additional languages [11]
en route to eventual mastery of the target language if they persist.

6 Conclusion

In the last two decades, youth interest in learning their own Indigenous languages has
been steadily increasing [21, 30]. However, these languages have few resources [34],
research-informed learning activities [37], or personalized systems [6, 35] that learners
can access to support their learning.Consistentwith this, the need to develop technologies
that support Indigenous language learning has been identified by community members
[35]. To help meet this need, this study provided a novel instructional activity that
promotes listening by developing learners’ phonological awareness of Plains Cree using
an adaptive game. Increases in learner knowledge as measured through a receptive task,
demonstrate the potential for these types of activities, especially when considering how
they enable access to learning that may not otherwise be possible, provide a safe practice
environment where learners can afford to take risks, and transform the learning of an
Indigenous language from something that was previously punishable to something that
is enjoyable.
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Abstract. This paper presents Moodoo, a system that models how teachers make
use of classroom spaces by automatically analysing indoor positioning traces. We
illustrate the potential of the system through an authentic study aimed at enabling
the characterisation of teachers’ instructional behaviours in the classroom. Data
were analysed from seven teachers delivering three distinct types of classes to +
190 students in the context of physics education. Results show exemplars of how
teaching positioning traces reflect the characteristics of the learning designs and
can enable the differentiation of teaching strategies related to the use of class-
room space. The contribution of the paper is a set of conceptual mappings from
x − y positional data to meaningful constructs, grounded in the theory of Spatial
Pedagogy, and its implementation as a composable library of open source algo-
rithms. These are to our knowledge the first automated spatial metrics to map from
low-level teacher’s positioning data to higher-order spatial constructs.

Keywords: Spatial modelling · Indoor localisation · Learning spaces

1 Introduction

Classroom activity is ephemeral, and has largely remained opaque to computational
analysis [38], with only a small number of artificial intelligence (AI) innovations tar-
geting physical aspects of teaching and learning [16, 38, 47, 54]. However, despite the
online learning revolution, physical classrooms remain pervasive across all educational
levels [7]. There is a growing interest in using novel sensing technologies (e.g. wear-
able and computer vision systems) to automatically analyse classroom activity traces to
model behaviours such as engagement [30], teacher-student interactions [10] and stu-
dents’ physical activity [1, 53]. Previous research has found that teachers’ positioning in
the classroom and proximity to students can strongly influence critical aspects such as
students’ engagement [14], motivation [19], disruptive behaviour [27], and self-efficacy
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[31] (see review in [43]). Yet, most research focused on studying spatial aspects of teach-
ing rely on observations or peer/self-assessments [11] that are hard to scale up [21], with
the purpose supporting teachers, and are susceptible to bias [49].

Tracking systems have emerged recently, enabling the automated capture of posi-
tioning and proximity traces from authentic classrooms using wearables attached to
students’ shoes [48], computer-vision [1] and positioning trackers [18]. Some systems
even summarise the time a teacher has spent in close proximity to a student or group of
students, to raise an alarm if a threshold is reached (e.g. [5, 37]). However, very little
work has been done in exploring what kinds of metrics researchers can generate from
low-level x − y positioning data that could be useful to characterise classroom activity
in ways that are meaningful to educators.

This paper presents Moodoo, a system for modelling spatial teaching dynamics. We
build on the foundations of Spatial Analysis [20] and Spatial Pedagogy [33] (SP), to
explore and propose a set of metrics that can identify teaching positioning strategies in
a classroom space. We set the system in an authentic physics education study, in which
seven teachers wore indoor positioning trackers while teaching in pairs (see Fig. 1). In
total we analysed 18 classes and used the findings to map the x − y positional data to
higher-order spatial constructs and propose a composable library of algorithms that can
be used to study instructional behaviour of teachers in different teaching scenarios.

Fig. 1. Physics laboratory classroom taught by two teachers while wearing indoor positioning
sensors contained in a badge (bottom-right).

2 Background and Related Work

2.1 Foundations of Spatial Pedagogy

Although fragmented across multiple areas [40], research investigating the relationship
between classroom spaces and teaching processes has a long history. In the 19th cen-
tury, observational studies by Barnard [8] informed the design of the teacher-centric
lecture classroom to maximise surveillance of students. More contemporary works also
used systematic observations to investigate how teachers’ proximity to students influ-
ences aspects that can impact learning such as effective communication [46], disruptive
behaviours [27, 32], sense of ownership of students’ own work [25], and motivation
[12].
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Lim et al. [33] recently coined the term Spatial Pedagogy (SP) to refer to themeaning
of certain spaces in the classroom depending on the positions and distances between
teachers, students and classroom resources. Authors observed two teachers using the
same classroom to differentiate pedagogical strategies and created state diagrams to
represent the spaces of the classroom in which the teacher was moving, frequency to
which a space was visited, and transitions. Chin et al. [14] conducted a similar study with
four teachers. The authors of these studies suggested the need for automated approaches
that could help scale up their analysis, given the potential to support teachers.

In sum, although the literature suggests that teachers’ classroompositioning can have
a significant effect on learning, most analyses have been based on self-report question-
naires, and observations made on some classes, visualised until recently mostly through
manually produced diagrams (e.g. [33]). Automating the analysis of spatial classroom
dynamics has the potential to enable new research in learning spaces that can directly
support teachers with objective, accurate, and timely feedback. In the next section, we
elaborate on current approaches that automatically study teachers’ positioning.

2.2 Spatial Analysis and Positioning Technology in the Classroom

There has been a growing interest in exploring physical aspects of the classroom [16].
For example, authors have used automated video analysis to model students’ posture
[45] and gestures [1], teacher’s walking [10], interactions between teachers and students
[1, 53] during a lecture, and characterising the types of social interactions of students in
makerspaces [15]. Wearable sensors have also been used to track teachers’ orchestration
tasks by using a combination of sensors (eye tracker, accelerometer, and a camera) [44]
and students’ mobility strategies while working in teams in the contexts of primary
education [48], healthcare simulation [18] and firefighting training [51]. Some work
has attempted to close the feedback loop by displaying some positioning traces back to
teachers. For example, ClassBeacons [5] summarises the amount of time a teacher has
spent in close proximity to groups of students and displays it through a lamp located at
each group’s table. Similar work displayed the same information on a screen with alarms
indicating potentially neglected students [37], or simple graphs [48] and heatmaps [4]
showing what parts of the classroom teachers visited the most.

The above studies indicate that there is an emerging interest in using sensing tech-
nologies to analyse teachers’ positioning traces. Yet, none of these works have addressed
the need for creating spatial metrics (beyond counting the times a teacher comes close
to certain students) from the large amounts of indoor positioning data, that may be rel-
evant for teachers’ professional development. Whilst we can learn from metrics used
in broader areas such as Spatial Analysis [20], these are commonly applied to outdoor
data, in which the granularity of the positioning is coarse and the particularities of the
educational context are not considered. In fact, there is an identified dearth of indoor
positioning analytics tools also in non-educational contexts [13, 35, 42]. To the best of
our knowledge, this paper is the first to document the implementation, and empirical val-
idation, of automated spatial metrics that map from low-level x− y teacher’s positioning
data to higher-order spatial constructs.
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3 The Learning Context

The authentic learning situation the illustrative study focuses on was part of the regular
classes of a first-year undergraduate unit at the University of technology Sydney. This
includes weekly 2½ h laboratory classes (labs) in which students run experiments. A
teacher and a teaching assistant both co-teach each lab in the physical classroom (see
Fig. 1). Each lab typically has between 30 and 40 students working in 10–13 small teams
of 2–3 students each. Eighteen labs were randomly chosen (1–18) for the study. All labs
were conducted in the same (16.8 × 10 m) classroom equipped with workbenches,
a lectern, a whiteboard, and multiple laboratory tools. Seven teachers (T1-T7) were
involved in these classes. T1, the unit coordinator, designed the learning tasks and did
not teach any class. T2 and T3 were the main teachers for 12 and 6 classes respectively,
and T4-T7 supported T2 and T3 as teaching assistants in various combinations.

Each lab exhibited one of three possible learning designs (LD1-3). LD1 was a pre-
scribed lab, in which all students had to do the same experiment following a step-by-step
guide. LD2 was a project-based lab, in which students were asked to formulate a testing
project, with each team working with a different appliance, such as vacuum cleaners or
pedestal fans. Finally, LD3 was a theory-testing lab, in which 4–5 experiments were set
up by the teacher and students had to move to one experiment at a time and predict the
outcome of each without further guidance.

The labs were conducted with the same students (and not necessarily with the same
teachers) in the same classroom for three consecutive weeks (enacting a different LD
in each). This means LD1 was enacted in classes 1–6 in week 4 of the term. LD2 was
enacted in classes 7–12 in week 5 with the same students fromweek 4. LD3 was enacted
in classes 13–18 in week 6 with the same students from the previous two weeks.

4 Apparatus

The x and y positions of the two teachers in each labwere automatically recorded through
wearable badges (Fig. 1, right) based on the Pozyx ultra-wideband (UWB) system, at a
2 Hz average sampling rate (with an error rate of 10 cm). Eight anchors were affixed to
the classroom walls to estimate the positions of the badges. UWB sensors do not require
a straight line of sight and are not affected by signals of students’ personal devices [2].
The cost of the equipment is relatively low (~1.5 K AUD) making it affordable and
portable. Given the large number of teams in each lab (10–12), the positions of students’
experiments were captured by an observer using an observation tool (i.e., iPad) whenever
there was a change in the position of teams. For LD1 and LD2, students mostly stayed
at the benches where they installed their experiments. For LD3, students moved to each
experiment setup, so these were recorded by the observer (Fig. 2).

5 Moodoo: Indoor Positioning Metrics

This subsection presents the metrics defined for teachers’ positioning, grounded in the
notion of SP [33]. The metrics have been implemented into a composable open source
library in Python (https://gitlab.erc.monash.edu.au/rmat0024/moodoo).

https://gitlab.erc.monash.edu.au/rmat0024/moodoo
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Fig. 2. Floor plan of the classroom with data points from two teachers (in blue and orange).

5.1 Metrics Related to Teachers’ Stops

A teacher’s stop can be defined as a sequence of positioning data points that are short
distance apart in space and time. According to the notion of SP, this can denote a period
in which the teacher is “positioned to conduct formal teaching” or stands “alongside the
students’ desk or between rows” of seats to interact with students ([33], pp. 237).

Thus, a stop can be modelled from x − y teacher’s data grouping data points based
on a centroid C(x, y) point, distance d and time t parameters; where d is the maximum
distance from the current data point to C, and t is the minimum time to group consecutive
points (see Fig. 3). For example, for our illustrative study we chose d = 1 m, since this
distance is considered within a teacher’s personal space [50]; and t = 10 s to disregard
very short stops. These parameters can be further calibrated according to the context
and the tracking technology used. From the defined stop construct, other metrics can be
calculated, such as the total or partial number of stops, average stopping time; or more
complex metrics in relation to other sources of evidence, such as student locations and
classroom resources (e.g. work-benches).

Fig. 3. Modelling from raw x− y positioning data (left) to teachers’ stops and transitions (right).

5.2 Metrics Related to Teachers’ Transitions

A teacher’s transition is defined as a sequence of positioning data points that follow a
trajectory between two stops. This includes all those positioning traces generated while,
for example, the teacher moves from attending one group of students to another group,
or, according to the notion of SP, the teacher paces “alongside the rows of students’
desks as well as up and down the side of the classroom transforming these sites into
supervisory spaces” ([33], pp. 238).
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Although a smoothing algorithm can be used by the sensing software when capturing
positioning data [41], each data point is always an estimate (with its associated error)
of the actual position. Hence, a linear quadratic estimation algorithm [52] (i.e. Kalman
filtering) was applied to the x− y data points as a pre-processing step. Then, the teacher’s
walking trajectory ismodelled as the transition between two consecutive stops in relation
to their centroids (see Fig. 3, right). From teachers’ transitions, other related metrics can
also be calculated, such as the distancewalked, speed and acceleration, and the transitions
between specific groups of students or classroom areas.

5.3 Metrics Related to Teacher-Student Interactions

Lim et al. [33] proposed that a space in the classroom becomes interactional when
the teacher is in close proximity to students to enable conversations or consultation.
Although this space may be shaped by the learning task, furniture, and preferences [6],
extensive work studying cultural aspects of space has identified that a distance from
0.75 to 1.2 m creates optimal opportunities for social interaction [28, 36]. Hence, a
teacher standing within the interactional space of students (iDis) can be considered as a
potential teacher-student interaction. In our study, we accounted for the parameter iDis
= 1 m (based on [36]) as the maximum distance to define a teacher’s stop within certain
students’ interactional space. From this construct, other metrics can be calculated, such
as teachers’ total attention time per student/group, frequency and duration of teachers
attending certain students, and sequencing of teacher-student interactions.

Additionally, an index of dispersion can be calculated to identify how evenly teach-
ers’ attention was distributed in terms of the number of visits and the total time teachers
spent with each student or group. In our illustrative study, we calculated the Gini index
[23], which is commonly used tomodel inequality or dispersion (with a single coefficient
output ranging from 0 to 1, where 0 represents perfect equality).

5.4 Metrics Related to Proximity to Classroom Resources of Interest

Teachers’ proximity to certain resources in the classroom also gives meaning to x − y
data. For example, “the space behind the teacher’s desk can be described as the personal
space where the teacher … prepares for the next stage of the lesson” ([33], pp. 238)
similarly, a space can become authoritative “where the teacher is positioned to conduct
formal teaching as well as to provide instructions to facilitate the lesson ([33], pp. 237).
In our study, close proximity to teacher’s lectern or a whiteboard, can be indicative of
particular activities such as lecturing to the whole class or explaining formulas. For this
purpose, the parameter dObj delimits the proximity of objects of interests that are close
to the teacher (calibrated to 1 m in the study).

5.5 Metrics Related to Co-teaching

Having more than one teacher in the classroom is not an uncommon practice [22]; an
example is our illustrative study where pairs of teachers co-taught classes in different
combinations. Modelling the instances when both teachers are within each other’s inter-
personal spaces (dTeacher) can assist teachers to reflect how often and where these
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events happen in the classroom space, or whether the teachers jointly attend a team of
students (i.e. parameter dTeacher = 1 following the same heuristic as above [36]).

5.6 Metrics Related to Focus of Positional Presence (Spatial Entropy)

In a qualitative study [39], teachers contrasted two extreme mobility behaviours: 1)
a teacher walking around the classroom mostly supervising, without engaging much
with students (unfocused positional presence), and 2) a teacher focusing most of his/her
attention on a small number of students or remaining only in specific spaces of the
classroom (focused presence). From the x − y positioning data, the spectrum between
these two extreme behaviours can be modelled based on the notion of spatial entropy
[9] which has been used to measure information density in spatial data [3]. To calculate
the entropy, we create a m-by-m grid (m = 1 m in our illustrative study) from the
two-dimensional x − y data. The proportion of data points in each cell of the grid is
calculated, creating amatrix of proportions. This is then vectorised and Shannon entropy
is calculated (resulting into a positive number in bits). The closer the number is to zero, the
more focused teacher’s positioning was to specific students or spaces in the classroom.

6 Illustrative Study: Analysis and Results

This section demonstrates the potential of the metrics related to the constructs presented
above through exemplars of how positioning traces i) reflect the characteristics of the
learning design, and ii) can be used to characterise contrasting instructional behaviours.

6.1 Dataset, Pre-processing and Analysis

A total of 835,033 datapoints were captured by the indoor positioning system used in
the 18 classes taught by pairs of teachers. Each datapoint consisted of i) an identifier of
the teacher, ii) a timestamp and iii) x − y coordinates of the classroom position of that
teacher in millimetres (e.g., {teacher1, 18/02/2019 9:39:20.34, 5600, 8090}).

Three pre-processing steps were conducted before analysing the data usingMoodoo.
1) Sampling normalisation: the positioning datawas down sampled to 1Hzby calculating
the average position of a teacher per second. 2) Interpolation: as sensors are susceptible
to missing readings for a few seconds [26], a linear interpolation was applied to fill gaps
for cases in which there was not at least 1 datapoint per second. The resulting dataset
contained 60 positioning data points per minute and per teacher. 3) Segmentation: each
class was segmented into three phases according to a common macro-script for the three
LDs defined by the unit coordinator. Phase 1 includes the main teacher of the class
giving instructions from the lectern (average duration 13 ± 8 min, n = 18). Phase 2
corresponds to the period in which all students start working on the experiment(s) of the
day in small teams (1.5 h± 18 min). Phase 3 corresponds to the time when some teams
complete their experiments and start leaving the class (33 ± 22 min). The analysis of
this paper focuses on Phase 2, which enables comparison across the classes considered.
The resulting dataset comprised a total of 290,228 datapoints.
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The data analysis involves processing the x − y positioning data from teachers
enacting each learning design (LD1-3) using Moodoo. We report Moodoo’s metrics
for each teacher by LD, and normalising the results according to the class with the
shortest Phase 2 which lasted 1:07 h. We ran a Mann-Whitney’s U test to evaluate
differences in the metrics among each pair of learning designs (i.e. LD1-LD2; LD1-
LD3 and LD2-LD3). Therefore, the median and interquartile range (IQR) values are
reported accordingly.

6.2 Results

An overview of the resulting teachers’ positioning metrics per learning design (LD) are
presented in Tables 1 and 2, below. The median and IQR (Q3-Q1) values are presented
by metric (columns/cols) and LD (rows). Bar charts are shown at the bottom of each
table to facilitate comparison. Significant differences among pairs of LDs (p< 0.05) are
emphasised in blue and orange (representing higher and lower values, respectively).

Table 1. Positioning metrics related to teachers’ stops and transitions – median (Q3-Q1).

Stops Total stop
time (mins)

Time per 
stop (min)

Distance 
walked (m) Speed (m/s) Dispersion 

(gini index)
LD1 42 (44-40) 52.5 (56-47) 0.8 (1-0.7) 370 (502-340) 0.5 (0.6-0.4) 0.5 (0.6-0.3)

LD2 35 (43-31) 58.4 (61-54) 1.4 (1.6-1) 303 (389-272) 0.6 (0.6-0.5) 0.4 (0.5-0.3)

LD3 35 (44-26) 58.1 (62-50) 1.1 (1.5-1) 440 (618-177) 0.5 (0.6-0.4) 0.4 (0.5-0.2)

0

620 m

0

0.6 m/s

0

0.6

Table 2. Metrics related to teacher-student interactions and proximity to objects in the classroom.

Attention 
time (min)

Visits to 
experiments

Visit 
duration

Visits per 
experiment

Time at 
lectern

Time at 
whiteboard

LD1 41.5 (50-38) 37 (40-30) 0.9 (1.4-0.7) 3 (3-2.4) 0.6 (5.3-0) 0.3 (1-0)

LD2 42.7 (57-37) 29 (33-26) 1.3 (2-1) 2.5 (3-2) 3.5 (12-0.5) 1 (2-0)

LD3 34 (44-24) 23 (27-13) 0.9 (1.4-0.6) 5 (7-3) 7.3(16-3) 2.9 (5.9-0.6)

Overall, when teachers enacted LD1 they featured a higher number of stops (median
45 stops) thanwhen enactingLD2 andLD3 (35 stops). This differencewas not significant
given the high variability of teachers’ behaviours (see col 1, IQR values, in Table 1).
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Yet, stops were significantly longer for LD2 (U = 35, p = 0.02) and LD3 (U = 37, p
= 0.02). For example, every time a teacher stopped while enacting LD2 s/he spent a
median of 1.4 (IQR 1.6-1) minutes in that position before moving to the next space in the
classroom. In contrast, most of the stops during LD1 were briefer (0.8, 1–0.7 min). This
can be explained by the nature of students’ task. In LD2 and LD3, students worked on
more complex projects. In LD1, all students conducted the same (prescribed) experiment
with teachers mostly providing corrective feedback, resulting in shorter pauses.

In terms of distance walked and speed, there were no significant differences by
learning design (cols 4 and 5). This means that the learning designs did not strongly
shape the way the teachers walked in the classroom as a cohort, in this study. However,
there were differences between teachers at a per case (exemplified below).

Table 2 shows more results for those cases in which teachers were in close proximity
to students (cols 1–4) and classroom resources (5–6). There was a significant difference
between the three LDs regarding the number of visits to students’ experiments (LD1-
LD2, U = 36, p = 0.02; LD2-L3, U = 33, p = 0.01; LD1-LD3, U = 13, p = 0.001).

There was a larger number of visits for LD1, in comparison to LD2 (col 2), which
contributes to describing a supervisory pedagogical approach [9] provoked by the pre-
scribed learning task. However, the total attention time to experiments was very similar
between LD1 and LD2 (column 1, 41.5 and 42.7 min, respectively). In contrast, for the
theory-testing lab (LD3) teachers acted as demonstrators, dividing their attention (34,
44–24 min, col 1) visiting around 5 times each of the 4–5 experiments (col 4).

Regarding proximity to objects of interest, teachers significantly spent more time
at the lectern and the whiteboard for LD3 compared to LD1 (U = 28, p = 0.01) and
LD2 (U = 42, p = 0.04). This can be because in LD1 classes the task is prescribed
so teachers did not need to show additional information through the computer (lectern)
or whiteboard. For LD2 and LD3, teachers commonly had to explain formulas using
the whiteboard. Additionally, classes enacting LD3 occurred later in the semester after
student partial results were published, with students often asking clarification questions
regarding these LD3 classes. This explains the longer presence of teachers at the lectern.

Finally, the computed index of dispersion (Table 1, col 6) and entropy, did not
show any significant difference between LDs. Yet, they enabled the characterisation of
contrasting instructional approaches of individual teachers. For example, Fig. 4 shows
heatmaps and selected metrics obtained from positioning data of a focused (T6) and an
unfocused teacher (T5) in Phase 2 of two LD2 classes. T6 focused on two benches of
the classroom (Fig. 4, left), stopping almost half the number of times compared to T5
(25 versus 46 stops). Evidently, the main teacher had to attend students sitting at the
remaining desks. This was captured by the metric that counted the times both teachers
got close to each other (3 versus 10) suggesting two different co-teaching strategies.

In contrast, T5 remained constantly circulating (see Fig. 4, right), making the space
between thework-benches his supervisory zone. Themeasure of spatial entropy captured
this behaviour. T6 featured the lowest entropy among the teachers in the dataset (3.2
bits) whilst for T5 it was the second highest (6.2 bits), pointing at the more spread
distribution of datapoints in the classroom space. The index of dispersion, calculated in
relation to students’ experiments, contributes to characterise the contrasting behaviours
with a resulting coefficient very close to 1 for T6 (0.83 - highly unequal distribution of
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Fig. 4. Contrasting spatial pedagogical approaches. Left: a teacher focusing on certain students
during a class. Right: a second teacher mostly walking around the classroom, supervising.

teacher’s attention) compared to T5 (0.14 – more even distribution of attention). Finally,
teacher-student attention time was higher for the first teacher, who spent much of his
time attending 3-4 teams out of the 12 in the class.

In sum, this characterisation of instructional behaviour should provoke reflection
among teachers about the different teaching approaches, as it has been previously per-
formed from observations (e.g. [14, 33]). Due to space limitations, providing additional
metrics and examples is beyond the purpose of this paper.Yet, some additional illustrative
examples are provided in the library documentation.

7 Discussion and Conclusion

Metrics proposed in the paper helped characterise three learning designs using quantifi-
able observations of classroom positioning data. Such metrics can uncover and bring to
the attention of teachers and learning designers certain characteristics that are inherent
to learning activities – for instance, increased teacher-student time ratio for a hands-on
experiment design versus a lecture delivery.

Our work conveys several implications for research and practice. Teachers can use
the resulting metrics to reflect on the proportion of different types of learning activities
comprising a teaching session, which can then lead to changes in the learning design
as needed. Decisions to intervene and make changes are not automated by algorithms
deliberately, as this involves another layer of human interpretation and understanding
that suits the learning context in hand. Rather, the metrics can act as tools to aid teachers
to make informed decisions [24], which can contribute to the expansion of teachers’
classroom capabilities, as envisaged in Luckin’s work [34] regarding AI in education.
While we note that the teachers would require some form of training to best utilise
SP, we also identify the potential for teachers and other stakeholders to identify best
teaching practices, as illustrated in our example of contrasting the different pedagogical
approaches of two teachers. Finally, the data provided by emerging indoor positioning,
alongwith themetrics proposed in this paper, can contribute to the assessment of specific
learning spaces, which is an identified gap in learning spaces research [29].

In terms of limitations of our illustrative study,wenote that the parametersmight need
tuning to work with other types of learning spaces and learning designs, in particular, the
thresholds set for defining certain metrics might vary across contexts. For this reason,
other classroom spaces that make use of the metrics need to test them for the right fit in

https://gitlab.erc.monash.edu.au/rmat0024/moodoo
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their learning contexts. This points at the opportunity to generate learning design-aware
classroom positioning metrics, that can guide instructional behavior in ways productive
for learning. Moreover, the analysis of significance of the metrics was not intended to
support strong claims about what pedagogical approach is better given the size of the
dataset and the authentic conditions of the study which introduced several confounding
variables. Controlled experimental studies are not recommended as they can hardly
replicate emergent and often unexpected classroom situations that occur in authentic
classes [17]. Yet, future work could focus on the analysis of a larger dataset with the
aim of mining the positioning data to identify patterns that could be used to differentiate
instructional behaviours.

In conclusion, this paper presented a set of conceptualmappings fromx−ypositional
data of teachers to higher-order spatial constructs (namely: teacher’s stops, transitions,
teacher-student interactions, proximity to objects of interest, instances of co-teaching
and entropy of teachers’ movement), informed by the concept of Spatial Pedagogy [33].
The resulting metrics related to such constructs can facilitate the study of classroom
activity in novel ways, which can lead to the expansion of current knowledge about
teacher-student proximity and physical behaviours at various learning settings. Future
research should certainly further test the applicability of the metrics in other learning
settings (i.e. in multi-class open spaces or lecture halls) and, expand the library with
metrics that can better model how teachers and students move in such classrooms.
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Abstract. Techniques for clustering student behaviour offer many
opportunities to improve educational outcomes by providing insight into
student learning. However, one important aspect of student behaviour,
namely its evolution over time, can often be challenging to identify using
existing methods. This is because the objective functions used by these
methods do not explicitly aim to find cluster trends in time, so these
trends may not be clearly represented in the results. This paper presents
‘DETECT’ (Detection of Educational Trends E licited by C lustering
T ime-series data), a novel divisive hierarchical clustering algorithm that
incorporates temporal information into its objective function to priori-
tise the detection of behavioural trends. The resulting clusters are simi-
lar in structure to a decision tree, with a hierarchy of clusters defined by
decision rules on features. DETECT is easy to apply, highly customis-
able, applicable to a wide range of educational datasets and yields easily
interpretable results. Through a case study of two online programming
courses (N > 600), this paper demonstrates two example applications of
DETECT: 1) to identify how cohort behaviour develops over time and
2) to identify student behaviours that characterise exercises where many
students give up.

Keywords: Hierarchical clustering · Student behaviour · Intelligent
tutoring systems · Behavioural trends · Time series clustering

1 Introduction

In recent decades, educational datasets have become increasingly rich and com-
plex, offering many opportunities for analysing student behaviour to improve
educational outcomes. The analysis of student behaviour, particularly tempo-
ral trends in this behaviour, has played a major role in many recent studies
in areas including automated feedback provision [8,12,16,19], dropout analysis
[17,18,22], collaborative learning [4,21,23] and student equity [6,9,13].

However, a significant challenge in analysing student behaviour is its com-
plexity and diversity. As such, clustering techniques [24], which organise com-
plex data into simpler subsets, are an important resource for analysing student
c© Springer Nature Switzerland AG 2020
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behaviour, and have been employed in many recent studies [5]. For example,
in [1] and [3] K-means clustering and a self-organising map, respectively, are
used to group students based on their interactions with an educational system.
In addition, in [7] student programs are clustered to identify common
misconceptions.

One limitation of standard clustering techniques is that they are not well-
suited to detecting behavioural trends in time. One solution is to use time-series
clustering techniques, which typically combine standard techniques with extra
processing steps [2]. For example, [15] uses dynamic time warping in conjunction
with K-means clustering to cluster time series’ of student Moodle activity data.
Alternatively, temporal information is often considered only after all student
work samples or behaviours have been clustered. For example, in [14] student
work is clustered to allow an interaction network over time to be built and in [10]
clusters of student behaviour over time are used in a second round of clustering.

Although it is possible to gain insight into student behavioural changes using
these techniques, one important limitation is that temporal trend detection is not
explicitly incorporated into the objective function when clustering. For example,
consider the case where K-means is first used to cluster student behaviours, and
then cluster changes over time are observed, as in [10]. Since the objective of
K-means is to minimise the distance between points (which in this case represent
student behaviours), the process will prioritise grouping behaviours that match
on as many features as possible. However, this may obscure important trends,
especially if many of the features are unrelated to these trends.

The contribution of this paper is ‘DETECT’ (Detection of Educational
T rends E licited by C lustering T ime-series data), a novel divisive hierarchical
clustering algorithm that incorporates trend detection into its objective function
in order to identify interesting patterns in student behaviour over time. DETECT
is highly general and can be applied to many educational datasets with tempo-
ral data (for example, from regular homework tasks or repeated activities). In
addition, it can be customised to detect a variety of trends and produces clusters
that are well-defined and easy to understand. Moreover, it does not require that
the features be independent, or that the objective function be differentiable.

Broadly, DETECT has similar properties to the classification technique of
decision trees [20]. In particular, it produces a hierarchy of clusters distinguished
by decision rules. However, whereas decision trees are a supervised technique
requiring the existence of classes in order to calculate entropy, DETECT is unsu-
pervised and uses an objective function completely unrelated to this measure.

This paper is set out as follows: Sect. 2 describes the DETECT algorithm,
including the input it takes, its flexibility and how the output is interpreted.
Section 3 then shows example usage of the algorithm through a case study and
Sect. 4 concludes with a summary of the main ideas of the paper.
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2 DETECT Algorithm

2.1 Overview

DETECT produces clusters of student behaviour that reveal cohort behavioural
trends in educational datasets. Such trends can include changes in behaviour over
time, anomalous behaviours at specific points in the course or a variety of other
customisable trends. This is achieved by iteratively dividing student behaviours
into clusters that maximise a time-based objective function. The clusters found
can then be interpreted by teachers and course designers to better understand
student behaviour during the course.

DETECT can be applied to a wide range of datasets, of the form described
in Table 1. In particular, the data should be temporal - that is, able to be divided
into a series of comparable time steps. For example, a series of homework tasks
or fixed time periods during an intervention could be considered as comparable
time steps. In addition, for each student and time period, there should be a
set of features describing the behaviour of the student during that time period.
These features could be numeric, such as the number of exercise attempts, or
categorical, such as a label for the style of their work. Note that features are not
required to be independent or equally important, since the objective function
can determine the quality of features and penalise less useful ones.

Table 1. Structure of input data, where the number of cells in the table is equal to S
(number of students) × T (number of time periods) × M (number of features). F1, ...,
FM are different feature names.

Student Time F1 F2 ... FM

1 1 v111 v112 ... v11M

1 2 v121 v122 ... v12M

... ... ... ... ... ...

1 T v1T1 v1T2 ... v1TM

... ... ... ... ... ...

S 1 vN11 vN12 ... vN1M

... ... ... ... ... ...

S T vNT1 vNT2 ... vNTM

DETECT outputs clusters of student behaviour explicitly defined by rules
on feature values. For example, a cluster may be defined as all rows of the input
data where ‘num submissions’ ≤ 7 and ‘completed’ == ‘yes’. These clusters
are organised into a hierarchical structure where, in each successive level, an
additional condition is added, similarly to a decision tree. Examples of this are
given in Sect. 3, as part of the case study.

It is important to note that the clusters are not clusters of students but
rather clusters of the input data rows (which each represent the behaviour of



A Hierarchical Clustering Algorithm for Temporal Educational Data 377

one student at one time period). This means students are in many clusters - one
for each time period. By observing changes to the distributions of clusters over
time, trends in student behaviour can be identified (see Sect. 3).

2.2 Cluster Formation

Clusters are formed divisively through an iterative process with four main steps,
as summarised in Fig. 1. Initially, all examples are placed in the same cluster.
Then, during each iteration, a search is performed to find the best feature and
value to split this cluster on. If this split would result in new clusters that are
larger in size than a specified lower-limit (e.g. at least 100 examples each), then
the split it performed, creating two new clusters, and the process is repeated
recursively on the new clusters. Otherwise, the split is not performed. The algo-
rithm terminates when no cluster can be split further.

Using the given objective functions and assuming the cluster size threshold
scales proportionally with the number of examples (which places a constant
upper bound on the number of clusters), the time complexity of this process is
O(nm log n), where m is the number of features and n the number of examples.

Fig. 1. A summary of the steps involved in DETECT.

Feature and Value Search. Before a cluster is divided, a search is performed
to find the best feature and value to split on. For each feature, this can be per-
formed in O(n log n) time (where n is the cluster size) using the given objective
functions in the next subsection. For numeric features, the process is as follows:

1. Sort the examples in ascending order based on the feature value.
2. Create two new clusters, one containing no examples (Ca) and the other

containing all (Cb).
3. Set a threshold, t, that is lower than the smallest feature value.
4. While there are still examples in Cb, increase t to the next smallest feature

value (or larger) and add all examples ≤ t from Cb to Ca, each time checking
if this improves the objective function value (and, if so, remembering t).
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The best feature and split will then be the one that optimises the function
values. Similarly, for categorical features, each category can be iterated through
to find the best one to split off from the rest. Note that we recommend minimising
the amount of missing data (e.g. by selecting subsets of students or making time
periods relative to students as in [11]). However, if required, missing values can
be treated as another category if the feature is categorical, or, if the feature
is numeric, the process can be repeated twice – once where the missing value
examples are always in Ca, and once where they are always in Cb.

Objective Function. The objective function is used to determine the quality
of potential cluster divisions using temporal information, thereby controlling
the types of trends detected by the algorithm. More specifically, this function
maps the distributions of Ca and Cb over time, along with optional additional
parameters, to a score. It can be customised to suit different purposes and there
are no constraints such as differentiability on the function. Two examples of an
objective function are defined here:

Let n = [na(ti), nb(ti)] be the number of students in clusters Ca and Cb

respectively at time i and T be the number of time steps in total. In addition,
for f2, let x be a time step of interest. Then:

f1(n(t1),n(t2), ...,n(tT )) =
∣
∣
∣
∣

na(t1) + na(t2)
2

− na(tT ) + na(tT−1)
2

∣
∣
∣
∣

f2(n(t1),n(t2), ...,n(tT ), x) =
|na(tx) − na(tx+1)| + |na(tx) − na(tx−1)|

2

The first function, f1, compares the average number of students in Ca at
the beginning of the course to the average at the end. As such, it is a measure
of how many students change cluster from the start to the end of the course,
and will be maximised when there is a large shift in behaviour. In contrast, the
second function, f2, compares the number of students in Ca at time x to the
adjacent time periods and finds the average difference. As such, it is maximised
when behaviours at time x vary greatly from those at neighbouring times.

3 Case Study

This section demonstrates two example applications of DETECT using the two
objective functions introduced in Sect. 2.2. Specifically, in the first example we
apply DETECT to an intermediate course using f1 to find behavioural trends
over time. In the second example, we then apply DETECT to a beginner course
using f2 to find behaviours that characterise an exercise where many students
give up. While the data come from programming courses, we only use gen-
eral features not specific to this domain to demonstrate the generality of the
approach.
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3.1 Data

Our data come from school students participating in two online Python program-
ming courses of different difficulty levels: intermediate (N = 42131) and beginners
(N = 7164(see footnote 1)). These courses were held over a 5-week period during
2018 as part of a programming challenge held primarily in Australia. The courses
involved weekly notes, which introduced students to new concepts, and program-
ming exercises to practice these skills. Students received automated feedback on
their work from test cases and were able to improve and resubmit their work.

From this data, we extracted 10 features per student per exercise: 1–3) the
number of times the student viewed, failed and passed the exercise, 4) the number
of times their work was automatically saved (triggered when unsaved work was
left for 10 s without being edited), 5–8) the time of the first view, autosave, fail
and pass relative to the deadline, 9) the average time between successive fails
and 10) the time between the first fail and passing. Note that these features did
not need to be independent (see Sect. 2.1).

3.2 Example 1: Using f1 to Detect Changes over Time

When analysing student behaviour during a course, one important question is
how this behaviour changes in time. To answer this, f1 was applied to the data
from the intermediate course. Since exercises from the last week differed in struc-
ture from the others (i.e. students were given significantly less time to complete
them), these were excluded, leaving a total of 20 exercises. Each of the remain-
ing exercises were then considered as a time period. The resulting behavioural
clusters are given in Table 2 and the number of students in each of the final clus-
ters at each time period is shown in Fig. 2. Note that only data from completing
students (N = 658) was used to minimise the amount of missing data.

Table 2. Clusters formed by applying f1 to the intermediate course, using a minimum
cluster size threshold of 400 - i.e. an average of 20 students per time period. The clusters
are defined by the number of autosaves (level 1) and how long before the deadline the
exercise was completed (level 2).

Level 1 Level 2 Label

autosaves ≤ 9 Completed 7.25 days or more before deadline C11

Completed within 7.25 days of deadline C12

autosaves > 9 C2

From Fig. 2 and Table 2, the most important difference in behaviour between
the beginning and end of the course was the number of autosaves, which increased
over time. In particular, Fig. 2 shows that most students began in C11 (with ≤ 9

1 These refer to the number of students who attempted at least the first exercise.
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Fig. 2. The distribution of final clusters over time when f1 is applied to data from
all students who completed the course. Most students begin in C11, but transition to
other clusters over time.

autosaves) and ended in C2 (with > 9 autosaves). Since these autosaves were
triggered when a student paused for 10 or more seconds, this could indicate
increased difficulty (if the students were pausing to read notes or think) or
increased disengagement (if they were frequently stopping to do other activities).

Interestingly, even the students who had a smaller number of autosaves
changed in behaviour over time, with an increasing proportion completing the
exercises closer to the deadline as the course progressed. This can be seen by
the increasing proportion of students in C12 compared to C11 over time. For
the importance of this change to be apparent, note that passing these exercises
within 7 days of the deadline actually indicates that a student is behind sched-
ule. This is because each week of exercises is intended to take one week, but the
deadlines for the first four weeks allow two weeks. If students were falling behind
over time, this may suggest that the course content was too dense, and perhaps
reducing the amount of content or spreading the course over a larger time period
could be beneficial for students.

Furthermore, the distribution of clusters does not change smoothly over time.
In particular, the plot lines are jagged, indicating that student behaviour varies
a lot even between adjacent exercises. This is particularly interesting considering
the features the clusters are defined by. For example, the fact that the number of
autosaves varies a lot between adjacent exercises indicates that some exercises
may be more interesting or difficult than similar exercises. For instance, the
number of students in C11 (where there are ≤ 9 autosaves) drops by almost 100
from Exercise 3 to Exercise 4, then increases again at Exercise 5, even though
all three exercises involve if-else statements. This could indicate that Exercise 4
is more difficult or less interesting than the others, since students pause more
here (either because they are thinking or doing something else).

Another interesting observation is that there are three general and overar-
ching changes to the cluster distributions over the course. In particular, from
around Exercises 1 to 7, C11 is most dominant. Upon inspection, these exercises
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are primarily revision exercises (e.g. printing, variables and if-statements). After
this period, there is an immediate shift in cluster distributions, with C11 and
C2 becoming similar in size, as students begin to learn about string slicing and
loops. This general change suggests that students may find these topics more
challenging than the previous ones. After Exercise 13, C2 becomes dominant
and C12 overtakes C11 in size as students learn about list operations, dictionar-
ies and files. Since these general changes in student behaviour seem to occur as
the topics become increasingly complex, perhaps the course could be improved
by condensing the large revision period and expanding the other topics to allow
for a more gradual difficulty change.

In summary, even by using DETECT with a simple objective function, f1,
and a highly general set of features, distinct and interpretable clusters can be
found that coherently represent changes in student behaviour over time. By
observing how the distributions of these clusters change at different scales (i.e.
over the whole course, over groups of exercises or between individual exercises),
important insights into student behaviour can be easily gained, and then used
for purposes such as informing course development.

3.3 Example 2: Using f2 to Analyse Behaviour Where Many
Students Quit

Another topic of interest when analysing a course is the exercises that students
have difficulty completing. In particular, if students attempt an exercise but can-
not complete it, this can discourage them from continuing and lead to increased
disengagement. This is particularly concerning in a beginner course, where stu-
dents may not yet have confidence and could be dissuaded from pursuing further
study in the area. This section provides an example of how DETECT could be
used with objective function f2 to explore such issues.

During the beginner course, 761 students attempted but could not complete
Exercise 29 - the highest out of any exercise during the first four weeks. To under-
stand how student behaviour differed during this exercise compared to others,
we applied DETECT to the data using f2 (setting x = 29), which identified
clusters that distinguished this exercise from adjacent ones. The clusters formed
and their distributions over time are shown in Table 3 and Fig. 3 respectively.

Table 3. Clusters formed by applying f2 to data from completing beginner students
(N = 635) with parameter x = 29 and minimum size threshold of 660 (i.e. an average
of 20 students per time period). The clusters are defined by the number of autosaves
and the time between a student’s first failure and completion of the exercise.

Level 1 Level 2 Label

autosaves ≤ 8 Time from first fail to completion ≤ 48 s, or no fails C11

Time from first fail to completion > 48 s C12

autosaves > 8 C2
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Fig. 3. The distribution of final clusters over time when f2 is applied to data from all
students who completed the course using Exercise 29 (marked in grey) as a parameter.

Fig. 4. The number of students who attempt but do not complete each of the beginner
exercises from the first four weeks. Exercise 29, used for clustering, is marked in grey.

By comparing the cluster distribution at Exercise 29 to the adjacent exercises
in Fig. 3, three general differences can be observed. Firstly, the proportion of
students in C2 (> 8autosaves) is much higher for Exercise 29, indicating that
students paused more often. In addition, the proportion of students in C11 is
much lower. Since this cluster describes behaviour where students quickly solve
the task (i.e. with few pauses, and either no failed submissions or a short time
from their first fail to passing), a decrease in its frequency suggests this exercise
is especially challenging compared to the adjacent tasks. The slight increase in
the frequency of C12 (where the time from first failing to passing is > 48 s)
supports this, suggesting students take longer to correct their work after failing.

Interestingly, the pattern of C2 sharply increasing and C11 sharply decreasing
is not limited to Exercise 29. For example, this change also occurs at Exercises
17 and 20. From Fig. 4, which shows the number of students who unsuccessfully
attempted each exercise, Exercises 17 and 20 also appear to have resulted in a
large number of students giving up, especially relative to the adjacent exercises.
Since information about these exercises was not used in the clustering, this is a
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strong indication that the cluster changes are not simply noise, but meaningful
behaviour associated with times when students give up.2

Since the clusters are distinguished by the number of autosaves and also the
time between a student’s first fail and completion, one potential use of this infor-
mation could be to improve interventions. For example, additional feedback or
support messages could be triggered if a student pauses too many times or is
unsuccessful in correcting their work for too long after their first fail. In addi-
tion, since students already receive automated feedback after failing an exercise,
perhaps longer correction times could indicate that this feedback is unclear and
could be revised. Finally, perhaps the information could be a useful tool when
testing future courses. For example, senior students or a teacher could test-run
a course, and the relative differences in the number of autosaves or time taken
after failing could be used to highlight potential issues in advance.

In summary, this example has demonstrated how DETECT can be used
to find different kinds of trends in educational data by changing the objective
function. This customisable feature allows for great flexibility so that DETECT
can be used for a range of interesting purposes.

4 Conclusion

This paper has presented a novel hierarchical clustering algorithm, DETECT,
for identifying behavioural trends in temporal educational data. In contrast to
current clustering approaches, DETECT incorporates temporal information into
its objective function to prioritise the detection of behavioural trends. It can be
applied to a wide range of educational datasets, produces easily interpretable
results and is easy to apply, since the input features do not need to be indepen-
dent. Two examples of objective functions have been provided, but these can be
customised to identify different trends with few constraints (e.g. the functions
do not need to be differentiable).

Through a case study, this paper has shown how DETECT can be used
to identify interesting behavioural trends in educational data, even when the
features are simple and not domain-specific. In particular, it can detect gen-
eral changes in student behaviour over time or highlight behaviours character-
ising exercises where students give up. Such information is invaluable to teach-
ers, course designers and researchers, who can use it to understand student
behaviour, stimulate further investigation and ultimately improve educational
outcomes.

In future, we hope to further develop DETECT by considering a greater
range of objective functions and stopping conditions, and exploring the impact
of additional domain-specific features and missing data on trend detection. In
addition, it would be interesting to consider how DETECT could be used in
conjunction with other techniques to, for example, analyse individual student
2 Indeed, regression analysis finds that the correlation between the percentage of stu-

dents in C2 and the number of students unsuccessfully attempting each exercise is
statistically significant with a p-value of 0.008.
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trajectories. Ultimately, in a time when educational data are becoming increas-
ingly abundant, this work aims to contribute to better-understanding student
behaviour in order to improve educational outcomes.
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Abstract. Numerous controlled studies prove the effectiveness of Intelligent
Tutoring Systems (ITSs). But what happens when ITSs are available to students
for voluntary practice? EER-Tutor is a mature ITS which was previously found
effective in controlled experiments. Students can use EER-Tutor for tutored prob-
lem solving, and there is also a specialmode allowing students to develop solutions
for the course assignment without receiving feedback. In this paper, we report the
observations from two classes of university students using EER-Tutor. In 2018, the
system was available for completely voluntary practice. We hypothesized that the
students’ pre-existing knowledge and the time spent in EER-Tutor, mediated by
the number of attempted EER-Tutor problems, contribute to the students’ scores
on the assignment. All but one student used EER-Tutor to draw their assignment
solutions, and 77% also used it for tutored problem solving. All our hypotheses
were confirmed. Given the found benefits of tutored problem solving, wemodified
the assignment for the 2019 class so that the first part required students to solve
three problems in EER-Tutor (without feedback), while the second part was sim-
ilar to the 2018 assignment. Our hypothesized model fits the data well and shows
the positive relationship between the three set problems on the overall system use,
and the assignment scores. In 2019, 98% of the class engaged in tutored prob-
lem solving. The 2019 class also spent significantly more time in the ITS, solved
significantly more problems and achieved higher scores on the assignment.

Keywords: Intelligent Tutoring System · Conceptual database design · Learning
analytics · Voluntary practice · Learning effect

1 Introduction

Intelligent Tutoring Systems (ITSs) have been shown in controlled studies to produce
significant improvements in learning in comparison to the classroom, e.g. [1–3]. Such
randomized studies are usually based on the pre/post-test design, which allows for mea-
suring learning gains. VanLehn [4] in his meta-review reported the effect size of d= 0.76
for ITSs, comparable to the effect sizes achieved in 1:1 human tutoring. Other recent
meta-analyses of reported evaluations of ITSs show similar findings [5, 6].

But what happens when ITSs are available for voluntary practice? Existing literature
suggests only a fraction of students typically engages with educational systems when
their use is completely voluntary. For example, Gašević et al. [7] write that over 60% of
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students are limited users of educational technology. Similarly, Denny and colleagues
[8] report that only one third of students used PeerWise, a system that supports peer
learning by allowing students to pose questions and to answer/rate questions written by
their peers. Brusilovsky and colleagues [9] report that only one half of students engaged
in voluntary practice in Python grids, a system that provides several types of activities
for learning Python.

In this paper, we investigate the effect of EER-Tutor, a mature ITS that teaches
conceptual database design. Different versions of EER-Tutor have been used in courses
at the University of Canterbury since 2001. The system is available to students for
voluntary practice, as a supplement to lectures and labs. The system has previously been
evaluated in several studies, which proved its effectiveness. In this paper, we focus on
two questions: how students use this ITS, as well as its effect on students’ learning.

In Sect. 2, we briefly introduce EER-Tutor, while the following Section presents out
hypothesized model. Section 4 presents the findings from the 2018 class. We then made
a modification to the assignment, by requiring students to solve three problems in EER-
Tutor in addition to a more open-ended problem, and developed a new hypothesized
model. We present the findings from the 2019 class in Sect. 5. Finally, we reflect on the
findings and discuss the limitations.

2 EER-Tutor

EER-Tutor is a mature ITS, that teaches conceptual database design using the Enhanced
Entity-Relationship (EER) data model [10, 11]. Different versions of EER-Tutor have
been available to students enrolled in a second-year relational database course since
2001. The system has also been used by numerous students world-wide1.

We have presented the architecture, the student modeler and the adaptive features of
EER-Tutor in previous papers [12–14]; here we briefly summarize its features necessary
to understand the analysesweperformed. Figure 1 shows a screenshot ofEER-Tutor,with
the text of the problem at the top, the drawing area in the middle pane, and the feedback
area on the right. The student can select any problem he/she wants, or ask for a problem
to be selected adaptively by the system (on the basis of the student model). The current
version of the system contains 57 problems, which are ordered by their complexity. The
student draws the diagram by selecting tools representing the components of the EER
model, and names them by selecting words or phrases from the problem text. EER-Tutor
highlights the names of created entity types in blue, the names of attributes in green and
the names of relationships in magenta, thus providing an easy way for the student to see
howmuch of the requirements have been covered.When the student submits the solution,
EER-Tutor evaluates it and presents the feedback. In the situation shown in Fig. 1, the
student specified the participation of the SENSOR entity type as partial (single line),
while it should be total (double line). EER-Tutor highlights the relevant components of
the solution in red to make it easier for the student to focus on the error.

1 EER-Tutor was available on the Addison-Wesley’s DatabasePlace portal from 2003 to 2016.
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Fig. 1. The screenshot of EER-Tutor

We have implemented many versions of EER-Tutor, in order to evaluate some of
its features, such as the open learner model [15–17], affect-aware animated pedagogical
agent [18] and tutorial dialogues [19]. In all controlled studies, we have found significant
improvements in learning.

3 2018 Database Course and Hypothesized Model

COSC265 is a single-semester (12 weeks) course on Relational database systems at the
University of Canterbury, with three lectures and two lab hours per week. In 2018, there
were 201 students enrolled in the course, who were completing Bachelor degrees in
Computer Science (65%), Software Engineering (32%) or Information Systems (3%).
Most of the students were in their second year, but there were 16 students repeating the
course, and also some students taking the course in their first year (6%).

After a general introduction to databases (two lectures), the following four lectures
were on conceptual database design using the EERmodel. At the end of the second week
of the course (on July 27), the students were given an assignment worth 25% of the final
grade, requiring them to develop an EER schema based on the given requirements. The
assignment was due on August 24, which is the last day of week 6 (followed by a two-
week break). Late submissions were allowed until August 31, in which case the students
received a penalty of 15 marks.
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Fig. 2. Hypothesized path analytic model

EER-Tutor was introduced to the students
briefly in a lecture in the second week, and the
system was used in labs in the third week. The
use of EER-Tutor was completely voluntary;
the students did not receive any marks for solv-
ing problems in the ITS. The pre-test was given
to students immediately after logging in, while
the post test was given on a specific date. In
addition to the 57 available problems, there is
also a special mode of the tutor (referred to as
mode 99), which allows students to draw EER
diagrams without feedback. All students used
this mode to draw their solutions for the assignment. The assignment was similar to the
most complex problems in EER-Tutor. The final exam covered the whole course (50%
of the final grade).

Figure 2 presents our path analytic model, based on previous research. Our first
hypothesis is that the pre-existing knowledge (the pre-test score) will have a positive
effect on the assignment score (Assignment). Positive correlation between pre-existing
knowledge and the score after training (in our case the assignment score) is commonly
found in the literature (e.g. [9]). Another common finding in the literature is that learning
time is positively correlated with the final score. In our case, the time students spent in
EER-Tutor was divided between working on assignment (i.e. drawing the diagram in
mode 99) and tutored problem solving. The more time students spend in EER-Tutor, the
more problems they attempt. We also hypothesize that attempted problems contribute to
learning, as have been shown in previous studies with EER-Tutor. Therefore, the number
of attempted problemsmediates the relationship between time and the assignment score.

4 Findings from the 2018 Course

The pre-test contained seven questions (multiple choice or true/false), worth one mark
each. Three questions asked to select correct definitions of EER concepts, while the
remaining four questions required the student to select correct diagrams matching given
requirements. There were two tests of similar complexities, which were randomly given
to students as the pre-test. A student who received Test A as the pre-test, received Test B
as the post-test and vice versa. Since there are two different tests used as the pre/post-test,
we analysed the students’ scores at the pre-test time, to make sure they were of similar
difficulty. We report the statistics on pre-test scores in Table 1. There were 89 students
who completed test A, and 86 completed test B. We found no significant difference
between the pre-test scores on the two tests (t= 1.46, p= 0.15). The internal validity is
acceptable for both tests, given the limited number of test questions and the broad range
of tested knowledge [20].

Table 2 report statistics of how students interacted with EER-Tutor. The number
of sessions and time are presented for 200 students, while the remaining rows present
the values for the 153 students who attempted problem solving. One student never
logged onto EER-Tutor. Forty-six students have only used the tutor to work on their
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Table 1. 2018 pre-test scores

Mean score (sd) Cronbach’s alpha

Test A (89) 3.62 (1.79) 0.59

Test B (86) 3.99 (1.56) 0.52

assignment. The median number of attempted problems is 13, while the median number
of solved problems is 11. The median number of attempts per student was 34. For
each submission, EER-Tutor provides feedback (as shown in Fig. 1). The pedagogical
strategy implemented in the current version of EER-Tutor provides positive feedback on
correct submissions, or provides up to three messages on mistakes when the submission
is incorrect. The last row of Table 2 (Hints) reports the total number of error messages
provided to the student.

Table 2. Summary statistics of EER-Tutor usage in 2018

Min Max Median Mean (sd)

Sessions 0 72 14 16.11 (11.84)

Time (min) 0 1285 125 189.85 (218.27)

Attempted problems 1 55 13 14.64 (10.47)

Solved problems 0 54 11 13.04 (10.09)

Attempts 1 364 34 49.95 (52.95)

Hints 0 614 43 75.58 (97.76)

Figure 3 (left) shows the number of students solving problems with EER-Tutor
in weeks 2–7. Nineteen students started solving problems as soon as EER-Tutor was
introduced in lectures in week 2. The highest number of students solving problems was
recorded in week 3, when they used the ITS in the scheduled lab for the course. In weeks
5 and 6, 41 and 67 respectively worked on problems, in preparation for the assignment.
There were few problems solved after week 7 until weeks 14–16, when students again
solved problems in preparation for the exam. On average, students completed 78.55%
of problems they attempted. Figure 3 (right) shows the number of students working
on the assignment in weeks 3–7, with the average time (in minutes). Fourteen students
started working on their assignment in the second week of the course. The peak in
week 6 corresponds to the assignment deadline. Students who were late submitting the
assignment used the system substantially in week 7.

Table 3 presents several performance measures. As EER-Tutor was available for
voluntary practice, not all students started using it immediately, and consequently the
date when students completed the pre-test ranged from July 23 to August 31. There
were 16 students who either completed the pre- and post-test on the same day (because
they started using the system late), or completed the two tests without attempting any
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Fig. 3. Left: Number of students and attempted/solved problems. Right: Number of students and
average time spent in mode 99

problems in between. For that reason, we did not include those students when calculating
the normalized learning gain. Additionally, many students did not complete the post-test,
so the number of students for whom we computed the normalized learning gain is 57.
On average, the students achieved higher scores on the post-test compared to the pre-test
scores, with the effect size (Cohen’s d) of 0.38. One possible reason for the low value
of the normalized gain is that students did not take the post-test seriously, as it did not
contribute to the final grade. Additionally, the students were focused on completing their
assignment at the time the post-test was administered.

Table 3. 2018 performance measures

Min Max Median Mean (sd)

Pretest % (180) 0 100 57.14 53.97 (24.33)

Normalized gain (57) −1 1 0 0.17 (0.46)

Assignment % (198) 17 96 58.50 59.37 (13.20)

Fig. 4. 2018 model with path coefficients

The path analytic model was eval-
uated with IBM SPSS Amos ver-
sion 25, using the data collected from
179 participants for whom all relevant
datawere available (Fig. 4). The num-
ber of the parameters to be estimated
in this model is 12. The amount of
data we have is appropriate for this
kind of analysis, as the recommenda-
tion is that there are at least ten partici-
pants per parameter [21]. All the vari-
ables in the path model are observed.
Chi-square test (1.62) for this model
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(df = 2) shows that the model’s predictions are not statistically significantly different
from the data (p = .44). The Comparative Fit Index (CFI) was .99, and the Root Mean
Square Error of Approximation (RMSEA) was .01. Therefore the model is acceptable:
CFI is greater than .9 and RMSEA is less than .06 [22, 23]. All the path coefficients are
significant at p < .005. Therefore, all our hypotheses are confirmed.

Therefore, tutored problem solving is important. One way to improve the perfor-
mance of the class would be to require students to solve some problems in the ITS. In
order to investigate howmany problemsmake a difference, we divided the 2018 students
post-hoc into two groups. The Active group contains those students who solved three
or more problems in EER-Tutor. Table 4 reports the scores of Active students versus
the rest of the class. There was a significant difference between the pre-test scores of
the two subgroups of students (t = 2.32, p < .05). The Active students started with a
higher level of knowledge, and used the system more, which may be the effect of those
students being more motivated. There was no significant difference on the normalized
gain, but the number of students who completed the post-test in both subgroups is small.
This may show that the students have not taken post-test seriously; at that time of the
course they were focused on completing their assignments, and taking a non-mandatory
post-test was low priority. There were significant differences between the two subgroups
on both assignment (t = 3.01, p < .005) and exam marks (t = 4.72, p < .001).

Table 4. Comparing the two 2018 subgroups

Pretest Norm. gain Assignment Exam

Active 57.02 (22.95)
n = 120

0.18 (0.44)
n = 51

61.44 (12.09)
n = 127

73.97 (16.14)
n = 121

Others 47.86 (26.01)
n = 60

-0.03 (0.44)
n = 19

55.68 (14.34)
n = 71

62.37 (16.14)
n = 67

5 2019 Course

Given the findings from 2018, we split the assignment into two parts for the 2019 class.
The first part (Assign1) required students to solve three problems in EER-Tutor, with-
out feedback. The chosen problems included one easy problem, and two problems of
moderate difficulty. The hypothesized model is shown in Fig. 5. Similar to the 2018
model, we hypothesize that pre-existing knowledge and time spent in EER-Tutor will
have a positive effect on the assignment score. The time students spent in EER-Tutor was
divided between working on the three set problems in EER-Tutor (Assign 1), working on
the second part of the assignment (i.e. drawing the solution using mode 99), and tutored
problem solving. Therefore there are directional links between Time and Attempted
problems, and Assign1. While working on Assign1, the students would improve their
knowledge of database design; therefore we hypothesized a positive effect of Assign1 on
Assign2. As in the previous model, we again hypothesize that the number of attempted
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problems would have a positive effect on the second part of the assignment (Assign2).
Assign1 mediates the relationship between the pre-test and attempted problems, as well
as between pre-test and Assign2. The number of attempted problems mediates the rela-
tionship between the time spent in the system andAssign2, because students’ knowledge
would increase as they attempt problems in EER-Tutor.

Fig. 5. Hypothesized model for the 2019 class

The only difference between the 2018 and 2019 instances of the course was in the
assignment. The first part of the assignment was due at the end of week 4, while the
second part was due at the end of week 6. There were 198 students enrolled in 2019, five
of which have not engaged with the course at all. Out of the remaining 193 students, only
one has not logged onto EER-Tutor. Table 5 presents some statistics of how students
interacted with EER-Tutor. The number of sessions and the time in EER-Tutor are
reported for 193 students, while the remaining rows of the table present the values for
the 189 studentswho have attempted problem solving. Three students have not attempted
problem solving, and used EER-Tutor solely to draw the solution for Assign2.

Table 5. Summary statistics of EER-Tutor usage in 2019

Min Max Median Mean (sd)

Sessions 0 74 15 17.22 (11.14)

Time (min) 0 2147 382 488.69 (355.89)

Attempted problems 1 57 22 22.11 (11.03)

Solved problems 0 50 18 17.53 (10.90)

Attempts 2 303 62 79.41 (60.93)

Hints 1 613 91 128.38 (117.91)
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Table 6 presents the summary results about students’ performance. Assign1 was
worth 8% and Assign2 was worth 17% of the final grade. The last row in Table 6
presents the overall score for the assignment.

Table 6. 2019 performance measures (in percentages)

Min Max Median Mean (sd)

Pretest (184) 14.29 100 57.14 60.17 (21.03)

Assign 1 (188) 21 100 92 83.72 (16.29)

Assign 2 (189) 12 93 76.5 71.69 (15.32)

Assignment (192) 14 94 79.5 73.74 (16.39)

The estimated model is shown in Fig. 6. The model fits the data well, with CFI =
0.99, and RMSEA = 0. Chi-square test (1.71) for this model (df = 2) shows that the
model’s predictions are not statistically significantly different from the data (p = .43).
All path coefficients are significant at p < .05, except Pretest - > Assign1 (p = .077).

Fig. 6. 2019 model with standardized path coefficients

For the reader’s convenience, we present the 2019 data on weekly use of EER-Tutor
together with the 2018 data in Fig. 7. In 2019, students used EER-Tutor for the first
time in week 3, and therefore we present the data for weeks 3 to 7 only. Many more
students engaged in tutored problem solving in weeks 3 and 4 in 2019 in comparison to
2018. We believe the reason for that is the requirement for three problems to be solved
in 2019 by week 4, which motivated students to practice more. In 2018, students have
spent more time in mode 99 (working on the assignment) than in 2019; that might be
because the 2019 students learnt more from tutored problem solving in early weeks and
were therefore able to complete the assignment faster.
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6 Conclusions

In this paper we reported how students used EER-Tutor for voluntary practice in two
consecutive years of the same course. Our findings are in contrast to the finding from
the literature which shows that many students (50% or more) do not engage in voluntary
practice with educational technology [7–9]. On the contrary, in our 2018 cohort, 23%
of students used the tutor only to draw their assignments, and have not attempted any
problem solving. The majority of the class (77%) used EER-Tutor both to work on the
assignment, and for tutored problem solving.

One of the reasons for limited use of educational technology reported in the literature
is the low levels of self-regulation skills and motivation [9, 24]. Since tutored problem
solving in EER-Tutor was voluntary, it may be the case that the students who solved a
lot of problems are more motivated students. We did, however, find that the number of
attempted problems and time spent with EER-Tutor are significant predictors of their
performance on the assignment. Students who solved at least three problems in EER-
Tutor in 2018 received significantly higher marks on the assignment than the rest of the
class.

Therefore, one straightforward recommendation for improving students’ learning is
to introduce a degree of mandatory problem solving. We have made that change in 2019,
when the students were required to solve three problems in EER-Tutor as the first part
of the assignment. In 2019, only three students have used EER-Tutor solely to draw
the EER diagram; therefore, the percentage of students who used EER-Tutor for tutored
problem solving increased from 77% in 2018 to 98% in 2019. In 2018, 69.5% of students
solved at least one problem in EER-Tutor, while in 2019 that percentage increased to
91.71% (this is one problem in addition to the three mandatory problems). Therefore,
requiring students to solve three problems increased their voluntary use of EER-Tutor in
2019. Comparing the two classes, we found that the 2019 class spent significantly more
time in the tutor (t= 10.03, p< .001), solved significantly more problems in EER-Tutor
(t = 7.03, p < .001) and achieved significantly higher marks on the assignment (t =
9.52, p < .001). Comparing the 2018/2019 assignment scores may not be fair, as the
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two assignments may not have been of the same complexity, but the other two measures
(time and the number of solved problems) show evidence that the intervention (requiring
students to solve three prescribed problems) has made a difference.

One limitation of our study is that we have not collected data about students’ self-
regulation skills and motivation. We plan to collect such data in the 2020 class, which
will allow us to look deeper into individual differences.
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Abstract. Associating assessment items with hypothesized knowledge compo-
nents (KCs) enables us to gain fine-grained data on students’ performance within
an ed-tech system. However, creating this association is a time consuming pro-
cess and requires substantial instructor effort. In this study, we present the results
of crowdsourcing valuable insights into the underlying concepts of problems in
mathematics and English writing, as a first step in leveraging the crowd to expe-
dite the task of generating KCs.We presented crowdworkers with two problems in
each domain and asked them to provide three explanations about why one problem
is more challenging than the other. These explanations were then independently
analyzed through (1) a series of qualitative coding methods and (2) several topic
modeling techniques, to compare how they might assist in extracting KCs and
other insights from the participant contributions. Results of our qualitative coding
showed that crowdworkers were able to generate KCs that approximately matched
those generated by domain experts. At the same time, the topic models’ outputs
were evaluated against both the domain expert generated KCs and the results of
the previous coding to determine effectiveness. Ultimately we found that while
the topic modeling was not up to parity with the qualitative coding methods, it
did assist in identifying useful clusters of explanations. This work demonstrates
a method to leverage both the crowd’s knowledge and topic modeling to assist in
the process of generating KCs for assessment items.

Keywords: Knowledge component · Knowledge component modeling ·
Crowdsourcing · Topic modeling · Intelligent tutoring systems

1 Introduction

The combination of data-driven knowledge tracing methods and cognitive-based model-
ing has greatly enhanced the effectiveness of a wide range of educational technologies,
such as intelligent tutoring systems and other online courseware. In particular, these
systems often employ knowledge component modeling, which treats student knowledge
as a set of interrelated KCs, where each KC is “an acquired unit of cognitive func-
tion or structure that can be inferred from performance on a set of related tasks” [14].
Operationally, a KC model is defined as a mapping between each question item and a
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hypothesized set of associatedKCs that represent the skills or knowledge needed to solve
that item. This mapping is intended to capture the student’s underlying cognitive process
and is vital to many core functionalities of educational software, enabling features such
as adaptive feedback and hints [22].

While machine learning methodologies have been developed to assist in the auto-
matic identification of new KCs, prior research has shown that human judgment remains
critical in the interpretation of the improved model and acquisition of actionable insights
[19, 24]. An emerging area that has the potential to provide the human resources needed
for scaling KCmodeling is crowdsourcing. Naturally, the challenge with this approach is
that the population of crowdworkers is highly varied in their education level and domain
knowledge proficiency. Therefore, as a first step towards examining and promoting the
feasibility of crowdsourced KC modeling, we studied how crowdworkers can provide
insights into different word problems that might suggest areas of improvements and
generating KCs for the questions. We took these insights via explanations, coded them
and ran them through two topic models to analyze how they might be utilized for the
task. Our research questions are as follows:

RQ1: Are the explanations provided by crowdworkers indicative of any KCs that the
problems require?
RQ2: How effective is topic modeling compared to qualitative coding in identifying
explanations indicative of KCs?
RQ3: Do the explanations provide insights into how the presented assessment items may
be improved?

2 Related Work

KC models are typically developed by domain experts through Cognitive Task Anal-
ysis methods [29], which lead to effective instructional designs but require substantial
human efforts. Fully automated methods can potentially discover models with better
performance than human-generated ones (in terms of statistical metrics such as AIC,
BIC and cross validation score), but they suffer from a lack of interpretability [31].
Other efforts of automatic cognitive model discovery make use of student data, such as
the Q-matrix algorithm [2]. On the other hand, [13] showed that a refined KCmodel that
results from both human judgment and computational metrics can help students reach
mastery in 26% less time. More generally, as pointed out in [18] the inclusion of human
factors in the KC modeling process can be advantageous, leading to lessons that can be
implemented in follow-up studies.

Recently, crowdsourcing has become increasingly popular for content development
and refinement in the education domain [21, 27]. The process of crowdsourcing data from
learners, or learnersourcing, has been used to identify which parts of lecture videos are
confusing [12], and to describe the key instructional steps and subgoals of how-to videos
[11]. In particular, [33] explored a crowdsourcing-based strategy towards personalized
learning in which learners were asked to author explanations on how to solve statistics
problems. The explanations generated by learnerswere found to be comparable in quality
to explanations produced by expert instructors.
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As the fields of natural language processing and text mining continue to advance,
they are being increasingly leveraged by education to help automate arduous tasks [6].
Previous work has looked at using different machine learning models [25, 26] and
utilizing a search engine [10] to tag educational content with KCs. Recent efforts have
utilized topic modeling on a set of math problems from an intelligent tutoring system to
assist in the labeling of KCs [30]. While their initial model had promising results, there
was an issue of human interpretability for the topics it produced, that may be relieved
by different models [17]. Much of the work in this space is focused towards predicting
KCs for content, after being trained on similarly KC tagged problem. Few studies have
tried to leverage text mining techniques to generate KCs for content, with no training or
prediction modeling involved.

3 Methods

Our study consists of two experiments with the same procedure, but involve different
domain knowledge. The first domain is mathematics, with a focus on the area of shapes;
the second is English writing, with a focus on prose style involving agents and clause
topics. In both domains, we deployed an experiment using Amazon’s Mechanical Turk
(AMT). Forty crowd workers on AMT, known as “turkers,” completed the math experi-
ment, and thirty turkers completed the writing experiment, for a total of 70 participants.
In each domain, the tasks took roughly five minutes. Participants were compensated
$0.75 upon completion, providing a mean hourly wage of $9.

The main task of the experiment presented participants with two word problems
positioned side by side, labeled Question 1 and Question 2. In the math experiment, both
problems involve finding the area of two different structures. In the writing experiment,
both problems involve identifying the agents and actions of two different sentences.
Participants were truthfully told that past students were tested on these problems and
that the collected data indicates Question 2 is more difficult than Question 1. They were
then asked to provide three explanations on why this is the case. The specific question
prompt stated: “Data shows that from the two questions displayed above, students have
more difficulty answering Question 2 than Question 1. Please list three explanations on
why Question 2 might be more difficult than Question 1”.

3.1 Math and Writing Experiments

The two mathematics word problems used for the explanation task can be seen in Fig. 1.
These problems come from a previous study of a geometry cognitive tutor [32], where
the data indicates that students struggle more with the problem involving painting the
wall (the right side of Fig. 1). Both problems are tagged with the same three KCs by the
domain experts that created the problems, so they assess the same content. These KCs
are: Compose-by-addition, Subtract, and Rectangle-area.

Both problems used in thewriting experiment come from an online prose style course
for freshman and sophomore undergraduates (Fig. 2). Similar to the math problems,
student data collected from the online course indicates students struggle more with one
problem over the other. The KCs were generated by domain experts and are: Id-clause-
topic, Discourse-level-topic, Subject-position, and Verb-form.



Evaluating Crowdsourcing and Topic Modeling in Generating KCs 401

Fig. 1. The two word problems for which participants provided three explanations in the math
experiment, with the one on the right being more difficult.

Fig. 2. The two problems for which participants provided three explanations in the writing
experiment, with the one on the right being more difficult.

3.2 Categorization of Explanations

We collected three explanations from each of the 40 participants in the math experiment,
for a total of 120, and three explanations from each of the 30 participants in the writing
experiment, for a total of 90.Overall therewere 210 explanations,where each explanation
is defined as the full text provided by a participant into the answer space. These mostly
consisted of sentence fragments or full sentences, but therewere several that hadmultiple
sentences. Such explanations were still treated as a single unit, to which the best fitting
code was applied [9].

Using data collected from a brief pilot study, two researchers followed the process
in [7] to develop a codebook from the explanations in the math experiment, and a
separate codebook for the writing experiment. This involved assigning the participant
explanations to a set of codes based on their interpreted meaning. These codebooks were
iteratively refined until agreement on the codes was achieved. Two research assistants
then applied the codebook to the pilot data and discussed discrepancies, seeking clarity
for any codes they were unfamiliar with. Table 1 shows the finalized version of the
codebook applied to the collected math and writing explanation data. The codebook
was then applied to the full dataset from each domain by the two research assistants.
Next, we measured the code agreement via Inter-Rater Reliability (IRR). The coders
achieved a Cohen’s kappa κ = 0.813 for the math experiment and κ = 0.839 for the
writing experiment, which indicates a high level of agreement [15].

3.3 Topic Modeling Explanations

Topic models estimate latent topics in a document from word occurrence frequencies,
based on the assumption that certain words will appear depending on potential topics in
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Table 1. Coding dictionary for the math and writing experiment responses.

Code Definition Example explanation

Math experiment

Calculation Mentions the computational aspects
involved in the problem, e.g.,
subtraction or use of area

“Because they don’t know how to
calculate the area”

Clarity-Shape Relates to the understanding of the
depicted shape

“It may be less clear which part should
be calculated because of shading”

Clarity-Text Relates to the understanding of the
text

“Wording is kinda confusing”

Complexity Claiming that one problem is more
complicated than the other, without
further clarification

“Problem two is more complicated
than problem one”

Composite Addresses an embedded shape used
in the problem

“The picture itself shows other objects
such as windows and this might throw
off the student”

Content General remarks about the problem
content that are not captured by other
content subcategories

“The numbers displayed have decimal
points”

Meta A mention of general skills needed to
solve any type of word problem, such
as focusing, reading, and attention

“It takes more time to read in
problem 2 so students are more prone
to getting discouraged”

N/A Does not provide any sensible
explanation

“340”

Shape-Layout Mentions the visual element of the
word problem’s shapes

“It is more difficult based on the
shapes presented in question two”

Step-Num Indicates one problem requires a
certain number of steps/more steps

“There are more steps to complete in
problem 2”

Value-Num Indicates one problem has more
variables/values to work with

“It has more variables”

Writing experiment

Answer # Relating to the number of answer
choices present in the question

“In option one there is only one right
answer”

Complexity Discusses the general
difficulty/complexity

“More complex knowledge needed”

Content Touches on the content of the
question

“They have to revise it instead of just
saying what is wrong”

Meta Describing a skill required by similar
problems, at a more meta level

“It is hard to write”

(continued)
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Table 1. (continued)

Code Definition Example explanation

N/A Not applicable or relevant “Poor communication with suppliers”

Prework Discusses the prior knowledge or
prework that might be required to
answer

“The second isn’t explained in the
coursework”

Question-type Addresses the question’s type (MCQ
or free response) in the explanation

“Written answer instead of multiple
choice”

Question-text Mentions the question’s text in some
capacity, e.g., longer/confusing

“Sentence 2 is more vague”

Rules Mentions the rules a student would
need to know to solve the problem

“Problem one only requires an
understanding of grammar”

Technical Mentions a specific technical term
that might be required to answer

“In problem two, the subject is not in
the beginning of the sentence”

the text. We used two topic modeling techniques, Latent Dirichlet Analysis (LDA [5])
and Non-negative Matrix Factorization (NMF [16]), to further analyze the explanations.
LDAmaps all documents, in this case the explanations, to a set number of topics in a way
such that the words in each document are captured by the topics [1]. NMF uses linear
algebra for topic modeling by identifying the latent structure in data, the explanations,
represented as a non-negative matrix [20]. The explanation text was lemmatized and
stop words were removed, using a common NLP library in Python [4]. No further text
processing was performed on the explanation data before running them through the
models, as we wanted results without fine-tuning any parameters or heavily processing
the data. The results of the topic models were then evaluated against the researcher-
generated codes, categorizations, and the expert generated KCs for the problems, in
order to gauge their effectiveness for this task.

4 Results

RQ1: Are the explanations provided by crowdworkers indicative of any KCs that the
problems require? From the coded explanations in the math and writing experiments, we
constructed a set of themes, shown in Table 2, formed by grouping several of the related
codeswithin each experiment together [28]. In themath experiment the first three themes,
Greater Quantity, Shapes Present, and Domain Knowledge, all comprise explanations
which address features of the given problems and are indicative of a KC required to solve
the problem. Explanations that are grouped into these three themes can be translated into
KCs that fit the problem and are indicative of the underlying skill(s) required to solve it.
However, the only explanations that suggested a KC that matched any of the expert ones
(Compose-by-addition, Subtract, and Rectangle-area) came from the Calculation code.
The fourth theme, Clarity/Confusion, pertains to the problem’s question text or visuals
being unclear and hard to decipher. This theme contains explanations that relate to what



404 S. Moore et al.

makes the problems particularly difficult outside of the knowledge required to solve it;
from these explanations, one could also derive ways to improve the assessment, such as
making the question text more explicit or clarifying the depicted image. The fifth theme,
Irrelevant, holds the remaining explanations – those that do not address the problem in
a meaningful way, i.e., they are too general or abstract.

Table 2. Themes for the math (above) and writing (below) experiments created from the coded
data and if the theme is akin to a KC or an area of problem improvement.

Theme (# of explanations) Codes KC Improvement

Greater quantity 27 Step-num, value-num ✔

Shapes present 30 Shape-layout, composite ✔

Domain knowledge 33 Content, calculation ✔

Clarity/confusion 15 Clarity-text, clarity-shape ✔

Irrelevant 15 Complexity, meta, N/A

Process to solve 13 Rules, content ✔

Domain knowledge 07 Prework, technical ✔

Question specific attributes 42 Question-text, question-type,
answer-num

✔

Irrelevant 28 Complexity, meta, N/A

In the writing experiment the first two themes, Process to Solve and Domain Knowl-
edge, are indicative of KCs that were required to solve the problems. The only expla-
nations that matched any of the expert generated KCs (Id-clause-topic, Discourse-
level-topic, Subject-position, and Verb-form) for the problems came from the Rules
and Technical codes. The third theme, Question Specific Attributes, discusses the rel-
ative level of difficulty between problems, due to one being multiple-choice and the
other being free-response, or the question text differences between the two. This theme
relates explanations that address ways to improve the assessment, such as simplifying
the answer choices. Finally, the Irrelevant theme again consists of explanations that are
not meaningful or overly general.

RQ2: How effective is topic modeling compared to qualitative coding in identifying
explanations indicative of KCs? The 10 topics identified by both the LDA and NMF
models, along with the five most common words associated with them, are presented in
Table 3. From themath experiment data, both the LDA andNMFmodels had comparable
results to one another. They share the same set of topic interpretations and an equally
low number of N/A topics. While certain topics in both models are attributed to KC
codes, it would be challenging to discern the explicit KC just from the terms. The three
primary themes across the ten topics from each model are calculation of area, the visual
nature of the shapes in the problems’ figures, and how one problem is generally more
complicated than the other. We expected some of the expert-generated KCs for the math
problems (Compose-by-addition, Subtract, & Rectangle-area) to be identifiable in the
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topics. Surprisingly ‘subtract’ was not a top five term for any topic nor was ‘area’ a term
alongside ‘rectangle’ for any topics.

Similar to the math topics, both the LDA and NMF models produced compara-
ble results for the writing experiment, with slightly different terms used for the topics
between the two. The predominant topic in both models is related to the question type,
which is appropriate as it was a dominating category from the qualitative coding. Inter-
estingly, there are not as many topics involving Complexity or N/A, both irrelevant codes
that attribute little to no meaning. The majority of the topics focus on the high-level fea-
tures of the questions, such as thewording or type. Topic 9 from the LDAmodel and topic
7 from the NMF one include vocabulary used in two of the expert generated KCs (Id-
clause-topic, Discourse-level-topic, Subject-position, and Verb-form). However, these
topics and the others are not interpretable enough to discern such KCs explicitly from
the terms.

RQ3: Do the explanations provide insights into how the presented assessment itemsmay
be improved? In addition to some of the explanations being indicative of a KC, such as
ones that fall into the Calculation or Technical codes, many of the other explanations
suggested complications with the word problems. In the math experiment, 15 of the
120 total explanations (12.5%) fall into the Clarity/Confusion theme from Table 2.
Additionally, only 15 of the 120 (12.5%) were deemed Irrelevant to the problems,
meaning that in general the majority of the explanations were either suggestive of an
improvement that could bemade or a KC required to solve them. The writing experiment
had a greater number of explanations, 42 out of 90 (46.67%), that fell into the Question
Specific Attributes theme in Table 2. Only 28 of the 90 (31.11%) explanations in this
experiment were deemed Irrelevant to the problems.

5 Discussion and Implications

Firstly, we wanted to see if the provided explanations could be used to generate fitting
KCs for the problems. We found that many of the provided explanations did address
the underlying concepts required to solve a problem, more so in the math domain than
the writing domain. For example, explanations from the math experiment in the Greater
Quantity theme often discuss how one problem required the area calculation of more
shapes than the other. Solving a problem that involves the area of multiple shapes instead
of just a single one has been identified as a knowledge component for similar problems
from a previous study [32]. This type of difficulty may be overlooked due to expert
blindspot, as the explicit steps taken to solve a problem can get grouped together when
it becomes second nature [23]. Eliciting the crowd for explanations such as these can
help bring in a diverse level of knowledge, ranging from novice to expert, that can help
to make this KC explicit.

From the writing experiment, the Process to Solve theme consists of the most KC
indicative explanations. These often discuss a step required to solve one of the problems,
which was usually at the granularity that would make it a fitting KC. Unfortunately the
explanations contributed by participants that were indicative of KCs were relatively
rare, making up only 20 of 90 (22.22%) of the total explanations from the writing data,
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Table 3. Top 5 terms from 10 topics identified by the LDA and NMF topic models

Topic # LDA terms LDA topic
interpretation

NMF terms NMF topic
interpretation

Math experiment

1 Figure, question,
hard, shape,
confusing

Clarity-shape Problem, longer,
figure, steps, lines

Step-Num

2 Problem,
complicated, 1,
complex, 2

Complexity Area, windows,
given, figure, door

Calculation

3 Step, calculation,
need, require,
work

Step-num Confusing, wording,
question, painted,
wall

Complexity

4 Consider, answer,
visually,
complicated,
simple

Shape-layout Shapes, deal,
irregular, question,
rectangles

Shape-Layout

5 Width, 223,
calculate,
problem, attention

Calculation Numbers, deal, size,
work, need

N/A

6 Area, complicated,
window, 143, 2

Clarity-shape Complicated,
calculation,
somewhat, problem,
involves

Complexity

7 Confusing, know,
abstract,
somewhat, term

Complexity Simple, question,
involves, consider,
shape

Complexity

8 Accommodate,
time, difficult,
shading, shape

Clarity-shape Harder, visually,
figure, shape, make

Clarity-Shape

9 Instruction,
measurement,
equal, forward,
straight

N/A Areas, account,
figure, need, just

Calculation

10 Detail, variable,
340, long, contain

N/A Difficult, calculate,
solve, door, width

Calculation

Writing experiment

1 Answer, prework,
specific, pick,
confine

Prework Choice, multiple,
problem, allows,
simple

Question-type

(continued)
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Table 3. (continued)

Topic # LDA terms LDA topic
interpretation

NMF terms NMF topic
interpretation

2 Multiple, choice,
1, problem,
thinking

Question-type Sentence, meaning,
needs, subject,
problem

Rules

3 Sentence, vague,
problem, option,
right

Question-text Problem, requires,
understanding, rules,
thinking

Meta

4 Long, response, 1,
free, variable

Question-type Answer, free, easier,
pick, right

Question-type

5 Know, comment,
paraphrase, range,
contain

Rules People, writing, hard,
write, questions

Meta

6 People, write,
simplified,
question, multiple

N/A Comments, written,
eliminate, like, level

N/A

7 Need, complex,
written,
knowledge,
number

Complexity Know, subject, verb,
tense, agent

Technical

8 Comment,
problem, choice,
multiple, complex

Question-type Answers, correct,
just, questions,
incorrect

Question-type

9 Comment, clause,
look, agent,
suggest

Technical Clause, concept,
agent, ended, like

Technical

10 Concept, rewrite,
choose, sentence,
end

Content Complex, concept,
written, ended, like

Complexity

compared to 73 of 120 (60.83%) from the math domain. We attribute this difference
between domains due to the knowledge required for them, as the math problems were
from amiddle school class and the writing questions from a college-level writing course.

The two topic models were only able to identify a few topics, each relating to Cal-
culation, that fit into a code indicative of a KC that matched one an expert generated.
While the terms for the topics can be gleaned for words that suggest a KC such as “area”
or “window”, they still lack interpretability and a direct translation into a KC. This is
also true of the two models’ results in the writing domain, which identified several top-
ics relating to the Rule and Technical codes. Without further interpretation, the terms
suggest some vocabulary used in the problems, but they are insufficient to derive an
actionable KC without further human processing.
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Secondly, we wanted to see if the explanations provided insights into how the assess-
ment items might be improved. Both experiments had one theme directly related to
improving the surface level features of the problems, such as the question text or images.
For instance, in the math experiment, the theme Clarity/Confusion addresses the con-
fusion caused by the visual elements of the problems. The included images for the
questions are a key aspect to the assessment and beneficial to problem solving, but may
be misinterpreted in a way the content creators may not have intended [8]. Correcting
the images can allow for better assessments; based on the explanations we received, a
student may answer incorrectly purely based on the poor image design.

Across both domains, the 10 topics identified by eachmodel are mostly comprised of
those that indicate areas of problem improvement. While the models performed poorly
at generating KCs from the explanations, many of the topics and terms were indicative of
student struggle due to confusion with the text or image of the problems. In total, 12.5%
of the explanations in math and 31.11% in writing were considered irrelevant to the task
and presented problems. Even with limited instruction and the varying backgrounds,
participantswere able to provide insights into the problems that could be used for baseline
KC generation or identifying areas of assessment refinement.

6 Conclusion and Future Work

In this study, we gathered explanations for the relative difficulty between two mathemat-
ics questions and between two English writing questions from crowdworkers. We found
that crowdworkers were able to generate valuable explanations that were indicative of a
KC required to solve the problems or a suggestion for how to make the problems clearer.
Understandably, they were able to provide better explanations in the easier domain of
middle school math than in an undergraduate English writing domain. However, in both
experiments, a majority of the explanations either pertained to identifying a KC or area
of improvement, rather than being irrelevant. The LDA and NMF models created top-
ics akin to the researcher generated codes, although the interpretability of these topics
based solely on the terms is limited in usefulness. Nevertheless, the categories from the
coding and topic models ultimately assisted in clustering explanations that were either
indicative of a KC or an aspect of the problem that could be improved.

For future work, we plan to integrate this process in a learner-sourced context, where
participants (i.e., students) potentially have more commitment and domain knowledge
that could be leveraged [27]. This would enable us to properly train them to provide
such explanations throughout the course, rather than completing the task once with only
a brief instruction like the crowdworkers did in this study. Ultimately, we envision a
workflow in which students submit explanations for why certain problems are difficult;
these explanations are then peer reviewed and presented to the teachers (or relevant
parties) to help them identify potential KCs and improve the assessment items. This
procedure is analogous to the find-fix-verify pattern in crowdsourcing, which has been
shown to be effective [2]. However, before reaching this point, the interpretability of
the models will need to be improved or another technique should be utilized. This study
demonstrates a first step in developing such a workflow, providing initial insights into
how crowdsourced explanations might be leveraged for KC generation and assessment
content refinement.
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Abstract. Commercial facial affect detection software is typically trainedon large
databases and achieves high accuracy in detecting basic emotions, but their use in
educational settings is unclear. The goal of this research is to determine how basic
emotions relate to the achievement emotion states that are more relevant in aca-
demic settings. Such relations, if accurate and consistent,maybe leveraged tomake
more effective use of the commercial affect-detection software. For this study, we
collected affect data over four days from a classroom study with 65 students using
Betty’s Brain. Basic emotions obtained from commercial software were aligned
to achievement emotions obtained using sensor-free models. Interpretable classi-
fiers enabled the study of relationships between the two types of emotions. Our
findings show that certain basic emotions can help infer complex achievement
emotions such as confusion, frustration and engaged concentration. This suggests
the possibility of using commercial software as a less context-sensitive and more
development-friendly alternative to the affect detector models currently used in
learning environments.

Keywords: Affective modeling · Basic emotions · Achievement emotions

1 Introduction

Detecting student emotions in computer-based learning environments (CBLEs) is cen-
tral to the development of pedagogical interventions that respond to students’ emotional
needs during learning.With the growth of the affective computingfield [31] and the inclu-
sion of emotion as an important aspect of self-regulated learning (SRL) [1], researchers
studying SRL and affect regulation have emphasized the development of affect detec-
tion technologies [7] that can be integrated with CBLEs to obtain automated measures
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of student emotions during learning. However, the focus of researchers studying affect
detection in the learning context has been different from other fields.

A majority of affective computing research outside education has emphasized the
detection of the prototypical basic emotions that are considered fundamental to human
psychology [17, 20]. This has led to the development of affect detectors that capture a
person’s basic emotions using models trained on data from multimodal sources, such as
facial expressions (cf., FACS in [14]), physiological sensors (EEG), and bodily gestures.
There are commercially available affect detector models, such as Affectiva [26], that are
trained and tested on large datasets (~10,000 labeled facial images - see [33]). These
systems predict basic emotions from face video frames with high accuracy, using only
facial features as action units (AUs) [25]. Therefore, they can be integrated with any
webcam-equipped computer to offer accurate and non-intrusive emotion detection.

However, most affect detection with CBLEs has been limited in tapping into the
power of commercial software. In complex learning settings, learners face achievement
scenarios that are hypothesized to elicit the experience of achievement emotion states
(such as confusion, frustration, and engaged concentration), which are more complex
than basic emotions (such as joy, anger, fear, and sadness). Achievement emotions reflect
how learners cope with cognitive difficulties in different learning situations as they
progress towards their achievement goals [30]. Therefore, research needs to focus more
on detecting achievement emotions rather than basic emotions.

In recent years, AIED researchers have built classifiers to detect students’ achieve-
ment emotions from features available during learning, such as learner activities [22] or
facial expressions [5]. While these non-intrusive models are usable in real classrooms
[28], the models driven by activity-based features are context-sensitive, since the fea-
tures are based on activities specific to the learning environment. Therefore, thesemodels
require considerable effort to develop and the features have to be recomputed (or even
re-designed) every time the models are deployed in new learning environments. While
facial feature-based models are more generally applicable, current models for detecting
achievement emotions using facial features are limited by a lack of large testing datasets
across diverse populations. In general, they have a lower accuracy for predicting specific
affective states [5].

Therefore, an alternate approach is to developmethods to link achievement and basic
emotions so that the commercial software output can be transformed to report academic
achievement emotions. After discussing our framework and the Betty’s Brain system,
this paper presents a first attempt at this approach. We report findings from data on
learners’ emotions collected from a classroom study.

2 Background

Emotions have been widely studied in psychology. Plutchik [32, p. 345] describes emo-
tion as “a complex chain of loosely connected events that begins with a stimulus and
includes feelings, psychological changes, impulses to action and specific, goal-directed
behavior”, thereby suggesting that an emotion is not an isolated event but more of a
human response to certain actions or situations.
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2.1 Basic Emotions

Over time, researchers have defined a set of basic emotions that deal with universal
human situations [14] or have served certain fundamental biological and social func-
tions through human evolution [20], e.g., as the basis for coping strategies and adaptation.
Multiple research studies support this concept of basic emotions, e.g., how sadness elic-
its empathy [4] or fear elicits protection behaviors [6]. Another view of basic emotions
deals with their fundamental role in ‘universal human predicaments’ [15, p. 46]. These
emotions can be distinguished from each other and from other emotions [14]. Ekman’s
list of seven basic emotion states are: anger, contempt, disgust, fear, joy, sadness, and
surprise [16]. Ekman [14] claimed that there is robust and consistent evidence of distinc-
tive facial expressions for each basic emotion. Currently, commercial software, such as
iMotions AffDex, predicts these basic emotions from facial features with high accuracy
by using the Emotional Facial Action Coding System (EMFACS) [18] that provides
a comprehensive taxonomy for coding facial behaviors. The AffDex SDK uses binary
support vector machine classifiers that compute the likelihood values of the seven basic
emotions by detecting facial landmarks from video frames, extracting features, classify-
ing facial action units (AUs), and then modeling emotion expressions using EMFACS.
While iMotions does not provide public information about the accuracy of their emotion
prediction models, they report very high accuracy (with ROC values ranging from 0.75
to 0.96 for AU-classifiers) for the identification of AUs [26].

2.2 Achievement Emotions

Achievement emotions are tied directly to students’ achievement activities and out-
comes in learning situations [30]. Since students’ learning activities and outcomes are
often judged with respect to achievement standards (e.g.., the COPES SRL model [34]),
emotions pertaining to these learning situations may be seen as achievement emotions.
Individuals experience specific achievement emotions based on their perceived control
of the achievement activities and the personally meaningful outcomes (cf., control-value
theory [30]). Researchers also constitute these emotions as cognitive-affective states [3]
due to the relevance of learner cognition to these emotional experiences. Several studies
(e.g., [11, 27]) have shown the relation of these emotions to cognitive activities and
performance in the learning environment. These achievement emotion states include
boredom, confusion, frustration, engaged concentration, and delight. D’Mello et al.
[12] have explored the transitions between emotion states during learning. Affect obser-
vationmethods such as BROMP [29] have facilitated the observation and coding of these
emotions in classrooms. Classifier models trained on BROMP affect labels can capture
the probability of occurrence of the emotion states during learning from log data [22]
and facial AUs [5]. However, these models may not be as robust as commercial models
that detect basic emotions (cf. Sect. 1). In this paper, we apply methods for basic and
achievement emotion detection to collect both types of affect data for students working
in Betty’s Brain, a learning-by-teaching environment [24].
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3 The Betty’s Brain Learning Environment

Betty’s Brain adopts a learning-by-teaching method to teach complex scientific pro-
cesses, such as climate change or thermoregulation, to middle school students. Students
teach the virtual pedagogical agent Betty by building causal (cause-and-effect) relation-
ships between concepts, and they have access to a set of hyperlinked science book pages
to learn the science topic. A causal map equipped with a palette of editing tools helps
them build and annotate their causal map. A quiz module offers students the ability to
let Betty take a quiz on causal relationships she has been taught. A mentor agent named
Mr. Davis helps students evaluate the quiz results by comparing their causal model to
an expert model that is hidden from the student’s view. These tools allow the student to
constantly refine their maps and engage in learning and understanding of the scientific
process as they teach Betty.

The learning environment supports SRL as students engage in cognitive activities
and develop strategies to teach Betty a correct causal model. This enables achievement
scenarios, which elicit the experience of achievement emotions. Prior research [27]
has explored the relationships between students’ cognitive and affective experiences in
Betty’s Brain and emphasized howautomated affect detectormodels can be beneficial for
providing students with personalized guidance that respond to their affective-cognitive
states during learning.

In the following section, we describe our classroom study and data collection proce-
dures.We analyze and relate two types of emotion data obtained from separate automated
affect detector models in Betty’s Brain.

4 Methodology

4.1 Study Design and Data Collection

The classroom study involved 65 sixth-grade students in an urban public school in the
southeastern USA. The study was conducted over a period of 7 days. Day1 included a
pre-test of domain knowledge and causal reasoning skills. Day2 familiarized students
with the features of Betty’s Brain. For the next four days, students built causal models
of climate change, and then took a post-test (identical to pre-test) on Day7.

In addition to pre-post test scores that showed statistically significant learning gains
(p < 0.05,Cohen

′
sd = 1), we collected timestamped logs of students’ activities in

Betty’s Brain over 4 days. Our action-view logging mechanism (based on the cognitive
task model in [23]) captured and categorized student activities. Affect detector models
(binary classifiers trained onBROMPaffect labels aligned to learners’ activity sequences
- cf., [22]) were used to measure students’ achievement emotion probabilities at a 20-
s interval based on a sliding window of their cognitive activities within the learning
environment. Individual students worked on their own webcam-enabled laptops, and
their facial videos were processed post hoc using iMotions AffDex [26] to obtain basic
emotion likelihoods at a 30 Hz frequency. (Our facial videos suffered from occasional
data loss when students moved or changed their laptop orientations.)
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4.2 Data Analysis

Data Processing Stages. The basic emotion likelihood scores (between 0(absent) to
1(present)) for joy, anger, surprise, contempt, fear, sadness, and disgust were obtained
fromAffDex [26] at the frame rate of 30 Hz. Separate classifiers detect likelihood values
for each facial AU, and emotion likelihoods are calculated by weighting averages of the
relevant AU likelihood scores for each basic emotion.

The achievement emotions (confusion, frustration, engaged concentration, boredom,
delight) were obtained at a 0.05 Hz frequency (i.e., one set of emotion likelihood values
every 20 s), as probability scores (between 0 to 1) from the affect detector models
(originally validated using BROMP data) integrated with Betty’s Brain.

Data Synchronization. We aligned the two affect data streams using logged timestamps.
Since achievement emotions were available at a coarser time scale (one set of likelihood
values every 20 s) than basic emotions (30 likelihood values per emotion every 1 s),
the two data streams were aligned at the coarser granularity, i.e., one set of emotion
likelihood values every 20-s. We extracted the sets of basic emotion likelihoods for
20-s intervals and picked the set with the highest sum of likelihoods for that interval.
(This set represented the most pronounced likelihood predictions from the iMotions
software for that time interval). Assuming at time = t secs, the set of likelihood values
of the 7 basic emotions is denoted by LBtime=t = [LB1,LB2, . . . ,LB7]time=t , then the
representative set of basic emotion likelihoods for the time interval {t, t + 20}secs can be
obtained as the set LBtime= T , where

∑7
i=1 LBitime= T = maxt∈{t,t+20}

[∑7
i=1 LBit

]
and t ≤

T ≤ t + 20. The joined likelihood set
{
LBtime= T ,LAtime= T

}
is the representative set of

basic and achievement emotions after the selection and merging of data at the 20-s time
interval. This set was then aligned with the set of achievement emotion likelihoods that
the BROMP detector provided for the same interval.

Data Filtering. We applied norm-based thresholding to the aggregated data to filter
out the instances that had a very low likelihood of detecting a basic or achievement
emotion. This was achieved by filtering out data points where the norm of emotion
likelihoods for basic or achievement emotions was below the first quartile, i.e. keeping
only those instances at which NormbB > Q1(NormB) and NormaA > Q1(NormA),

where NormB =
√∑7

i= 1 L
2
Bi and NormA =

√∑5
i= 1 L

2
Ai.

The norm-filtered data contained 5152 of the original 9198 data points. This included
4607 instances where the dominant achievement emotion was confusion, 157 instances
of dominant engaged concentration, 360 instances of dominant frustration, 28 instances
of boredom, and 0 instances of delight. (The dominant achievement emotion at each
data-point was obtained as max(LAi)). Due to the lack of sufficient training instances
to model delight or boredom, data instances with dominant delight or boredom were
excluded from subsequent analyses. We re-sampled the three other labels to remove
class imbalance biases and then proceeded to build binary classifier models (with target
class prediction label = TRUE or FALSE for each classifier).

We note here that the distribution of data instances above is dependent on prediction
rates of the BROMP-trained affect detector models, and while these models predict
the classes with high AUC ROC, they are not representative of the exact frequency of
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each affective state occurring in the classroom. These detectors attempt to identify rare
situations – using re-sampling to succeed in this goal [22], and may be more biased
towards preferring false positives to false negatives, which may lead to over prediction
in certain situations. This limitation, likely caused by re-sampling, is addressed by using
more sophisticated re-sampling to address the imbalance created.

Specifically, classifier bias due to imbalanced target classes (i.e., a large difference
in the proportion of target class labels) in the training data for each binary classifier
was handled by (1) under-sampling majority-class cases using random sampling and
(2) synthetic oversampling minority-class cases using the SMOTE algorithm [8]. The
re-sampled data, containing 7 numeric features (implying likelihood of basic emotions)
and one nominal binary target class, was used to train classifier models.

Training Classifier Models. We used 10-fold stratified cross-validation to build binary
classifiers for predicting engaged concentration, frustration, and confusion. The classifier
models selected for this purpose included Random Forest (RF), Decision Tree (DT),
Neural Network (NN), Naïve Bayes (NB), and Logistic Regression (LR). The Naïve
Bayes andLogisticRegressionmodelswere selected to serve as baselines for establishing
model performance. While our model selection criteria considered both interpretability
and performance, since our intended research objectivewith this analysis was to interpret
how the basic emotion features predict achievement emotion classes, our selection of
classifier models was biased towards interpretable models like logistic regression and
decision trees over more complex and less interpretable models (cf., [9]). In practice,
complex models (viz., Neural Networks) did not produce very notable differences in
predictive accuracy for this data set (see Table 1), likely due to the relatively small sample
size. In the next section, we present our findings from five different classifier models
and study the best-performing interpretable model to determine relations between basic
and achievement emotions in learning.

5 Results and Discussion

5.1 Model Performance

Table 1 lists the performance metrics for five classifier models (Random Forest (RF),
Decision Tree (DT), Neural Network (NN), Naïve Bayes (NB), and Logistic Regression
(LR)). NB and LR served as baselines for establishing model performance. AUC was
used as the primary performance metric, since it provides a better measure of model
performance than classification accuracy in a skewed dataset. From Table 1, Random
Forest outperformed other models for all three prediction classes.

5.2 Model Interpretation

Random forest was the highest performing algorithm, followed closely by the deci-
sion tree with forward pruning (Table 1). The high performance of random forest can
be attributed to averaging over multiple generated random trees, thereby achieving a
model with low bias and low variance. Despite its high predictive efficiency, interpret-
ing a random forest model is considerably difficult, especially compared to ‘glass-box’
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approaches like decision tree. In Table 1, we observe that the decision tree model (with
Gini-index for feature selection and forward pruning to prevent overfitting the feature
space) achieved the second-highest performance for all target classes. Since decision
trees provide better interpretability, we choose to study and interpret the decision tree
models for each predicted class in greater detail, given that the purpose of this research
is to relate the predicted achievement emotions to the basic emotion detectors.

Table 1. Performancemetrics (average over classes) for classifier models predicting achievement
emotion (AE) classes (class label = TRUE or FALSE) from basic emotion features

AE Confusion Frustration Engaged concentration

Classifier RF DT NN NB LR RF DT NN NB LR RF DT NN NB LR

AUC 0.73 0.70 0.60 0.56 0.58 0.76 0.73 0.59 0.58 0.54 0.85 0.83 0.66 0.62 0.58

F1 0.64 0.64 0.53 0.45 0.45 0.69 0.68 0.56 0.56 0.50 0.78 0.76 0.61 0.58 0.57

Accuracy 0.66 0.66 0.59 0.56 0.56 0.69 0.69 0.57 0.57 0.52 0.78 0.76 0.62 0.58 0.58

Figures 1 and 2 present the visualization of the decision tree models for predicting
confusion and frustration. (The figure for engaged concentration is not presented due
to space constraints in the paper.). In each figure, the color of a tree node indicates
the predicted class labels at that node (’red’ = TRUE, ‘blue’ = FALSE), the strength
of the colors indicates the predictive power of the model at that node, the width of the
edge indicates the proportion of instances classified along a branch with respect to total
instances in the training data. The root node at the top is both the most individually
predictive and most meaningful for interpretation.

Fig. 1. Decision tree model to predict confusion from basic emotions

Figure 1 presents the decision tree model to predict confusion. From the first two
splits, we find that the two most informative features are anger and disgust. Figure 1
shows a stark contrast between the left and right halves of the tree, right from the first
split. We note how the right half of the tree, with higher values for anger and disgust, has
more ‘red’ nodes predictive of confusion = TRUE, with a recall value of 87% at the
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Fig. 2. Decision tree model to predict frustration from basic emotions

decision node LAnger ≥ 0.6& LDisgust ≥ 0.06 at depth = 3. Moving further down to
depth= 4 gives more pronounced predictions of confusion= TRUE, where the decision
nodes LAnger ≥ 0.6& LDisgust ≥ 0.06& (LSadness ≥ 0.98||LContempt ≤ 0.71) show
that higher likelihood of anger and disgust, together with high sadness or low contempt,
predict confusion with a recall value upwards of 98%. When we shift our focus to the
left half of the tree, we see that low anger and low disgust are mostly predictive of a lack
of confusion. The only low anger-low disgust situation that is predictive of confusion =
TRUE is when this lack of anger and disgust is present together with high likelihood of
sadness (LAnger ≤ 0.6& LDisgust ≤ 0.06& LSadness ≥ 0.95).

We interpret these findings based on the affect literature in learning. Confusion has
been linked to ‘cognitive disequilibrium triggered by contradictions, conflicts, …’ [13,
p. 10]. In an agent-based learning environment (like Betty’s Brain), this disequilibrium
could be socio-cognitive [13, p. 10], e.g., when the learner disagreeswith agent feedback.
In this context, the close mapping of confusion to higher anger likelihood make more
sense, especiallywhenwe note ‘interferencewith one’s activity’ is a cognitive antecedent
event to anger [17]. The relation of confusion to disgust may be explained by Plutchik’s
circumplex model of emotions, which notes disgust as a complementary (contrasting)
state to trust/acceptance [32]. This again relates back to cognitive disequilibrium, in an
achievement scenario that may incorporate conflict due to lack of trust, perhaps in the
agent’s feedback or the quiz results in Betty’s Brain, or a student’s disappointment with
himself/herself. This suggests that investigating the socio-cognitive processes leading
to each basic or achievement emotion in Betty’s Brain can help shed more light on
finer-grained relations between the two types of emotions during complex learning tasks.

Figure 2 presents the decision tree for predicting frustration. While disgust appears
to be the most informative feature at the root node, higher predictive recall (cf., strength
of colors in the tree nodes in Fig. 2) is obtained at lower levels of the tree, where disgust
is combined with other states such as fear, sadness or contempt. For example, in the
right half of the tree (where LDisgust ≥ 0.014), we find a 92.9% recall for frustration
= TRUE at the decision node LDisgust ≥ 0.014& LFear ≤ 1.4 ∗ 10−7 at depth = 3.
In the left half of the tree (LDisgust ≤ 0.014), we find higher recall (= 94.5%) for
confusion prediction when the low disgust likelihood is combined with high sadness
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and low contempt (refer to Fig. 2 at depth = 4 where LDisgust ≤ 0.014& LSadness ≥
4.9 ∗ 10−5 & LContempt ≤ 0.002).

From the above, frustration seems to closely map to two complex states: (1) a state
of high disgust + low fear, and (2) a state of low disgust + possibility of sadness + low
contempt. Affect dynamics models in learning [12] show two affect transition scenar-
ios leading to a state of frustration: (1) confusion → frustration, where disequilibrium
associated with confusion remains unresolved and leads to failure/blocked goals. Such
a transition into frustration may be related to the [high disgust + low fear] state noted
above, which is associatedwith low trust/acceptance and high annoyance (cf. [32], where
disgust is complementary to trust/acceptance & submissive states like fear are comple-
mentary to aggressive states like annoyance & anger). A prolonged non-acceptance of
agent feedback or quiz results due to conflict with expectations may translate into a
state of frustration for the learner. (Negative feedback from a tutor has been previously
established as possible antecedent of frustration [10]); (2) boredom→ frustration, where
having to endure a learning session despite disengagement may translate into frustra-
tion. This state may be related to the [low disgust + sadness + low contempt] state we
find from the decision tree model, suggesting an affective state that is still negative in
valence, but with lower activation than the [high disgust + low fear] state.

Predicting Engaged Concentration from Basic Emotion Likelihoods. In the deci-
sion tree that predicts engaged concentration, joy is the most informative feature, and
a very high joy likelihood (LJoy ≥ 0.84) is associated with a prediction of engaged
concentration = FALSE with a recall of 72.7%. This implies that engaged concen-
tration was not the dominant emotion here; so the dominant emotion could be any of
the other achievement emotion states, including delight, an achievement emotion state
whose definition closely matches that of joy but which could not be modeled here due to
insufficient data instances. Indeed, engaged concentration is often seen as having neutral
activation whereas joy and delight are often seen as high activation [3].

The second most predictive feature for engaged concentration is sadness. A closer
analysis of the model shows that, when joy is low, a greater likelihood of sadness is
a stronger predictor of engagedconcentration = TRUE. However, a more acceptable
predictive recall is obtained at depth= 4, where a combination of low tomedium joy, low
to medium sadness and a possibility of fear predict engagedconcentration = TRUE
with a recall value of 70.7%. This situation is obtained by the decision node LJoy ≤
0.84& LSadness ∈ (3.1 ∗ 10−6, 0.78)& LFear ≥ 3.4 ∗ 10−3.

Engaged concentration being an affect state of neutral activation and mildly positive
valence [3] is not associated with high positive valence and high activation emotions
like joy or negative valence, low activation emotions like sadness. The association of
engaged concentration with lower joy and a possibility of fear may also be related to the
fact that engaged concentration associated with the high competence and high challenge
scenario of flow (cf. [3, 29]).

6 Conclusion and Future Scope

This research uses interpretable prediction models built from classroom data to suggest
links between fundamental basic emotions and complex achievement emotions during
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learning in a CBLE. To summarize, we found that the achievement emotion state of con-
fusion seems tomapmost closely to basic emotion states like [highanger+highdisgust],
while frustration maps closely to states like [high disgust + low fear] or [low disgust
+ sadness + low contempt], and engaged concentration maps closely to low/moderate
levels of joy, sadness and a possibility of fear.

While data collection in a classroom setting suggests that our findings have the
potential to generalize across natural learning settings, the non-constrained setting adds
its own limitations, as discussed in Sect. 4.1 and in prior research on collecting affect
data in real classrooms [5].

Since our research objective was to map basic and achievement emotions, we could
use only the subset of our collected data, where both basic and achievement emotion
likelihoods were high. Moreover, our emotion logs were likelihood measures that were
not direct human-observed emotions but obtained from affect detector models trained
on codes obtained from human observations. While these detector models allow for
automated detection of affect at scale in a noisy classroom environment, they are likely
to be less reliable than human observations. We intend to further validate our findings by
replicating our methods with human-coded emotion labels in future classroom studies.
Furthermore, since our affect detectors were built off action sequences and performance
data in Betty’s Brain, it is hard to claim generality for these results.

Despite the data limitations, the research methods and findings reported in this work
have implications for shaping future research directions on affect modeling in AIED.
First, our approach using interpretable classifiers tomodel affect in learning accords with
prior work [9] that underlines the importance of interpretable ML in AIED. Secondly,
this paper presents a scalable and accessible way to identify achievement emotions
whose instructional implications have been studied extensively by prior work in the
field. Moreover, since commercial software packages for detecting basic emotions are
trainedonmuch larger andmore varied data than the affect detectormodels currently used
in education, understanding the relations between basic and achievement emotions can
help education researchersmake use of these commercial software to detect achievement
emotions during learning in a computer-enabled classroom.

In future research, beyond addressing limitations noted earlier, we hope to collect
affect data from a wider variety of samples and investigate cross-cultural differences in
the presentation of affect [19, 21], including achievement emotions [2]. We also intend
to conduct further analyses into the cognitive-affective relationships in Betty’s Brain,
such as how students’ socio-cognitive states during agent interactions influence affect.
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Abstract. Task difficulty (TD) reflects students’ subjective judgement on the
complexity of a task. We examine the task difficulty sequence data of 236 under-
graduate students in a simulation-based Predict-Observe-Explain environment.
The findings suggest that if students perceive the TDs as easy or hard, it may
lead to poorer learning outcomes, while the medium or moderate TDs may result
in better learning outcomes. In terms of TD transitions, difficulty level hard fol-
lowed by a hard may lead to poorer learning outcomes. By contrast, difficulty
level medium followed by a medium may lead to better learning outcomes.

Understanding how task difficulties manifest over time and how they impact
students’ learning outcomes is useful, especially when designing for real-time
educational interventions, where the difficulty of the tasks could be optimised for
students. It can also help in designing and sequencing the tasks for the development
of effective teaching strategies that can maximize students’ learning.

Keywords: Task difficulty · Task complexity · Predict-Observe-Explain ·
Learning outcomes · L-statistic · Intervention · Flow · Zone of proximal
development

1 Introduction

Students’ perceptions of tasks can influence their learning behaviours [4, 6]. For example,
when a task is challenging yet attainable, students may invest effort and persist at it. In
contrast, students may not engage in a task if they repeatedly fail at it [28, 49]. This,
then, engenders the question: how can instructors design optimal learning conditions
where students get challenged but feel confident in accomplishing the task? To address
this question, we analyse the relation of task difficulties (TDs) with students’ learning
outcomes. Further,we observe howTDs vary in a simulation-based learning environment
(e.g., is it more probable for TDs to transition from easy to hard or vice-versa). Lastly, we
assess whether students’ sequences of TDs can be indicative of their learning outcomes.

In this paper, TDs are analysed in a digital simulation-basedPredict-Observe-Explain
(POE) learning environment by using the likelihood statistic (L-stat). The AIED com-
munity has frequently used L-stat for studying students’ affective dynamics [18, 19, 21,
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22, 36, 37]. Compared to a traditional classroom environment, a benefit of analyzing
TDs in a digital setting is that students can receive just-in-time support. For instance, the
level of TDs can be adjusted by the instructors to match student’s level of understanding
or individual students may also choose and change the level of TD in a self-controlled
setting [3, 25, 30, 62]. We believe that a better understanding of students’ TDs will
enable interventions to improve students’ learning [1, 53, 55] and reduce undesirable
behaviours such as gaming the system [2] and disengagement [29].

2 Related Work

Task complexity and task difficulty (TD) are often used interchangeably. However, they
are two different constructs [51, 52]. Task difficulty refers to a person’s subjective judg-
ment on the complexity of a task, whilst task complexity represents the characteristics
or cognitive demands of a task [9].

Different learners can perceive the same tasks differently [9]. Researchers have
shown that TDs can influence students’ motivation [32] and self-regulation [4]. TDs can
also affect problem-solving strategies and tactics. For example, DeLoache, Cassidy and
Brown [24] suggest that “problems that are too easy or too difficult are less likely to
elicit strategic behaviour than the problems that present a moderate degree of challenge”
(1985, p. 125). Further, the “law of optimum perceived difficulty” states that, if the tasks
are perceived very easy or very hard, they can result in lower levels of engagement
than the moderately difficult tasks – which may lead to higher levels of engagement [6].
Vygotsky [60] suggested that for instruction to be effective it must be aimed at learners’
proximal level of development (where learners can succeed with assistance; a difficulty
that is somewhat more challenging than an exact match to a student’s skill level, but not
so challenging that the student cannot succeed). Csikszentmihalyi in his works [14, 58]
talks about TDs and their influence on emotions. He suggests that a person may feel
worried and anxious when presented with overly challenging tasks and may feel bored if
the tasks are too easy. However, when the tasks are moderately difficult, or they offer just
the right challenge, a positive ‘flow’ experience may occur [15, 16]. Therefore, different
emotions can be encountered based on how an individual perceives a given task.

This, then raises the question: what relation do TDs have to students’ learning out-
comes? The data is not entirely clear on these theoretical perspectives. Some studies
report that TDs have a negative association with students’ self-efficacy and performance
[44, 45], yet [7] states that ‘certain difficulties can enhance learning’. Several studies
have indicated that students can learn from challenges that lead them to identify and
articulate their current views, examine their ideas and clarify their misconceptions [34,
35]. To sum up, we investigate the following questions in this paper:

RQ1: What relation do task difficulties have with students’ learning outcomes?
RQ2: How do task difficulties vary over time?
RQ3: Is there a sequence of task difficulties that is indicative of better learning?
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3 Learning Environment

3.1 Predict Observe Explain (POE) Simulations

This study is built on an underlying educational framework known as the Pre-
dict-Observe-Explain (POE) paradigm [61]. POE is a three-phase, iterative design
[23].

1. During Prediction, students formulate a hypothesis. They are often asked to provide
the reasons as to why they committed to it.

2. During Observation, students test their hypothesis by changing parameters or vari-
ables in a simulation. They can then see the effects of their manipulations. This
phase is especially crucial for those who make incorrect hypotheses, as they can see
a mismatch between their predictions and observations [26].

3. During the Explanation phase, clarifications are provided to students detailing the
relationship between variables or parameters that represent the conceptual phe-
nomenon under investigation. This phase assists students to reconcile any dis-
crepancies between what they predicted and what they observed in the simulation
[31].

POEs can be applied in face-to-face, online and computer lab contexts [13]. They can
promote student discussion [61], probe into their prior knowledge and help them update
prior conceptions [12, 39, 59]. POE learning designs canmake digital environmentsmore
engaging [39, 57]. Recently, POE environments have been analysed to examine students’
affective experience [38] and their behaviours relating to struggle and confusion [47,
48].

To the best of our knowledge, TDs have not yet been investigated within POE based
environments. Understanding how TDs manifest over time and how they impact stu-
dents’ learning outcomes is useful, especiallywhen designing for real-time interventions.
Therefore, it is essential that we examine how TDs vary in these environments.

3.2 Course and Module Description

The data in this study is taken from an online project-based course called Habitable
Worlds. It aims to introduce the foundational concepts of Physics, Chemistry and Biol-
ogy [33]. It intends to develop problem-solving and logical reasoning skills in students
through immersive and interactive tasks in a guided discovery environment. Habitable
Worlds is built using Smart Sparrow’s eLearning platform1, which records moment by
moment activity of students. This adaptive learning environment allows the provision
of feedback based on students’ responses or lack of responses. This course is offered to
non-science major undergraduate students over a duration of 7.5 weeks, and it consists
of 67 interactive modules.

The current study focuses on an introductory module called Stellar Lifecycles. The
concept under investigation is the relation between a star’s mass and its lifespan. There

1 https://www.smartsparrow.com/research/.

https://www.smartsparrow.com/research/
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are several tasks within this module which involve one or more of the following activi-
ties: providing free-text answers to a question, watching videos, responding to multiple-
choice questions or the ‘submissions’ associated with simulations. In this module, stu-
dents follow the prescribed sequence of tasks or activities. Occasionally, however, there
is pathways adaptivity for the remediation of students who make errors. Further, the
students cannot proceed onto the next tasks unless the current task is completed.

3.3 Tasks Description

Of the 23 tasks within this module, we utilize the following POE based tasks:

• Prediction: Students need to select a hypothesis from five possible choices regarding
the relationship between stellar mass and lifespan. Then, they need to report their
reasons (through free text) for selecting that hypothesis.

• Observation 1: During the first stage of the Observe task, students explore the stellar
nursery simulator to create virtual stars, manipulate their mass and run them (as
many times as they wish). Through this simulator, students can study and hopefully
understand the relation between stellar mass and its lifespan.

• Observation 2: During the second stage of the Observe task, students need to create
at least three different stars within a specified mass range. They need to record the
mass and associated lifespan of these stars. Next, given their observations, they need
to either accept or reject their earlier proposed hypotheses.

• Explanation 1: This task is only available to the students who make incorrect predic-
tions and endorse them or those who make correct predictions but reject them. This
task can assist students in rectifying their hypotheses.

• Explanation 2:This task requires the students to report theminimumand themaximum
lifespan of seven different stellar classes. Students can again create and run starswithin
the stellar nursery simulator. Most students seem to struggle at this task as they need
to manipulate several different stellar classes. This struggle is reflected in students
making repeated attempts. Those who manipulate only one stellar class at a time
(more systematic) are more likely to complete this task than those who manipulate
more than one stellar classes (less systematic) [48].

• Post POE: At the final stage, students are provided with a short lecture-style video
to explain to them why low mass stars live longer and how a star’s mass and internal
pressure contribute in the nuclear fusion process which fuels the burning of stars.

3.4 Participants

The data in this study is taken from the October 2017 offering of the course Habitable
Worlds. A total of 236 non-science major undergraduate students attempted this module.
Of these students, 50%were females, 46%were males, and 4% did not respond. In terms
of age, 33% of students were younger than 20, 46% were between the age range of 21
and 30 both inclusive. The remaining 21% were older than 30.
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3.5 Measures

Learning Outcomes. We analyse students’ scores at the transfer task – the Stellar Appli-
cations module, which immediately follows the Stellar Lifecycles module. It tests stu-
dents on the concepts that were already introduced to them. The maximum achievable
score is ten; with each incorrect attempt, students are penalized by two marks.

Perceived Difficulty During-Task. During each phase of the POE tasks, to infer students’
perceived difficulty, they are asked to report their levels of confidence and challenge on
a 6-point scale: from 1 (not at all) to 6 (extremely). Following questions are asked:

• How confident are you that you understand the task right now?
• How challenging do you find the task right now?

Perceived Difficulty After-Task. At the end of the POE sequence, students can again
report their confidence and challenge on a 6-point scale when asked these questions:

• Overall, how confident are you that you understood the material in the preceding
tasks?

• Overall, how challenging was the material in the preceding tasks?

The response to these survey items is voluntary. In terms of participation, during-
task, 186 students report their perceived TD during the Prediction task, 151 and 146
during theObserve-1 andObserve-2 tasks respectively, 74 and 146 during the Explain-1
and Explain-2 tasks. Lastly, 185 students report their perceived TD after-task.

4 Data Pre-processing

4.1 Levels of Task Difficulty

For analyzing the TD dynamics, we include those students who respond to one or more
of the task-based surveys. Asmentioned, survey items are related to students’ confidence
and challenge for a given task. To infer TDs, we assign following (3) labels:

• Easy (E): if reported confidence exceeds reported challenge,
• Hard (H): if reported confidence is lower than the reported challenge,
• Medium (M): if reported confidence matches the reported challenge

Note that our TD labels match with Csikszentmihalyi’s flow theory [17]. While the
flow theory reports on students’ affects in terms of their challenge and skills; we use
these measures (challenge and confidence) to infer students’ perceptions of difficulties.

4.2 Task Difficulties and Learning Outcomes

Learning outcomes reflect students’ scores at the transfer task. Themaximum achievable
score is 10, and for each repeated attempt at this task two points are deducted. High
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achieving students are those who score above the mean (M = 9.21, SD = 0.92), while,
the students scoring below the mean are considered low achievers (M = 3.64, SD =
4.58).

To compare the above two student groups, we perform Pearson’s Chi-square test (or
Fisher’s exact test when the entries in the contingency table are less than 5). Comparisons
are presented for each level of TD and during each phase of the POE cycle.

4.3 Task Difficulty Sequences

During each phase of the POE tasks, as students report their confidence and challenge,
we infer their TD sequences. Later, we use these TD sequences to estimate the likelihood
statistics (L-stat) as well as the bigram sequences.

Calculating L-stat. After obtaining students’ TD sequences, we compute the likeli-
hoods of transitions between any two possible states using the transition metric L [21],
with self-transitions included in the calculation. This metric specifies the probability of
a transition from a level at time t to t + 1, after correcting for the base rate at time t + 1.
We can represent this as L (difficultyt → difficultyt+1), where difficultyt is the difficulty
level at the current task and difficultyt+1 is the difficulty level at the next task:

L
(
difficultyt → difficultyt+1

) = P
(
difficultyt+1/difficultyt

) −P
(
difficultyt+1

)

1 − P
(
difficultyt+1

)

The value of L may vary from −∞ to 1. For a given transition, if L ≈ 0, we say that
the transition occurs at chance level, if L > 0, we say that the transition is more likely
than chance. Finally, if L < 0 then the transition is less likely than chance [20].

For calculations, the L-statistic is computed separately for each student and for
each possible transition. The transitions where L is undefined are excluded from further
analysis. Later, one-sample (two-tailed) t-tests are conducted on the calculated L values
to measure whether each transition is significantly more or less likely than chance.
Next, the Benjamini-Hochberg (BH) post-hoc correction is applied to control for false
positives, as the analysis involves multiple comparisons [36].

Generating Bi-gram Sequences. We process students’ TD sequences to generate TD
bigrams. We only consider the students who respond to all task-based surveys and who
also attempt the transfer task – there are 63 such students.

In this regard, given a sequence: ‘easy-medium-medium-hard-hard-easy’, the asso-
ciated bigrams are: ‘easy-medium’, ‘medium-medium’, ‘medium-hard’, ‘hard-hard’ and
‘hard-easy’. After this, we compare the students who report a given bigram sequence
versus those who do NOT report it. For this, we perform t-tests and report the results
in terms of p-value statistic and t-value statistic. Test result is considered significant if
p-value < 0.05 (*) and marginally significant if p-value < 0.10 (·). As the analysis also
involves multiple comparisons, BH post-hoc correction is applied.
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5 Results

5.1 Task Difficulties Across Different Achievement Levels

A comparison of perceived difficulties, between the high achieving students and the
low achieving students, is presented in Fig. 1. The high achievers are more likely to
perceive the tasks as medium or moderately difficult than the low achievers – who seem
to perceive the tasks as either hard or easy. Overall, the proportion of students who
respond during the Explain-1 is the lowest, as this task is only available to the incorrect
predicting students. Further, during the Post POE phase, many of the high achievers
did not respond to the surveys. Therefore, the patterns during this task (where each TD
category is more likely to be reported by the low achievers) differ from the overall trend.

Fig. 1. Comparison of TDs between the high and low achievers using Pearson’s Chi-square test
(or the Fisher’s exact test when the counts in the contingency table are less than 5). High-achievers
tend to report medium TDs; in contrast, low-achievers tend to report the TDs as either easy or
hard. Results are significant if p-value< 0.05 (*)and marginally significant if p-value< 0.10 (·).

5.2 Analysis of Task Difficulty Sequences

Table 1 presents the TD dynamics in terms of D’Mello’s L statistic. For self-transitions,
the shift from easy→ easy is not significantlymore or less likely than chance, in contrast,
the shift from hard → hard and from medium → medium are significantly less likely
than chance. In terms of increasing TDs, a transition from easy → medium is less likely
than chance, from easy → hard is more likely than chance and from medium → hard is
not different from chance level. Finally, in terms of decreasing TDs, the transitions from
hard → easy and from medium → easy are not different from chance level, however,
from hard → medium is more likely than chance.
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Table 1. Dynamics of TDs, using D’Mello’s L-Statistic. LMEAN in bold indicates the transition
is more likely and LMEAN in Italics indicates that the transition is less likely than chance.

Transitions Descriptives One-sample t-test

from to N LMEAN LSD T (df) p-value sig after BH
correction

easy easy 101 −0.01 0.63 −0.15 (100) 0.88

medium 121 −0.44 1.00 −4.85 (120) <0.01 *

hard 133 0.25 0.74 3.85 (132) <0.01 *

medium easy 130 −0.11 1.01 −1.24 (129) 0.22

medium 110 −0.65 1.27 −5.43 (109) <0.01 *

hard 138 −0.05 0.43 −1.48 (137) 0.14

hard easy 135 −0.08 0.70 −1.33 (134) 0.19

medium 139 0.14 0.47 3.36 (138) <0.01 *

hard 107 −0.77 1.28 −6.20 (106) <0.01 *

5.3 Analysis of Bi-gram Sequences

Next, we analyze students’ perceived difficulty over consecutive tasks. We compare the
students who report a given bigram sequence versus those who do NOT report it. This
analysis can assist in analyzing how a sequence of TDs may impact students’ post-test
performance (see Table 2). From this table, the performance is significantly low for the

Table 2. TD sequences and their likely association with students’ performance. Performance
seems to be lower for the bigram sequence hard-hard, and it appears to be higher for the sequence
medium-medium.

TD Bigram
sequence

Bigram reporting students T (59) p-value sig after BH
correctionYes No

Post-test
(Mean ± SD)

Post-test
(Mean ± SD)

easy-easy 7.81 ± 3.08 8.34 ± 3.01 −1.12 0.26

easy-medium 6.96 ± 4.48 8.01 ± 2.86 −1.34 0.18

easy-hard 6.35 ± 5.04 8.08 ± 2.86 −1.86 0.06

medium-easy 7.68 ± 3.63 7.79 ± 3.18 −0.15 0.88

medium-medium 9.81 ± 0.57 7.19 ± 3.70 3.44 <0.01 *

medium-hard 8.67 ± 1.70 7.66 ± 3.60 0.62 0.54

hard-easy 7.03 ± 3.53 8.04 ± 3.48 −1.22 0.22

hard-medium 8.33 ± 1.81 7.66 ± 3.71 0.57 0.57

hard-hard 6.35 ± 5.58 8.18 ± 2.49 −2.61 0.01 *
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students who report the TD sequence hard-hard than those who do not report it. In
contrast, the students who report the TD sequence medium-medium have significantly
high scores than those who do not report it.

6 Discussion

The goal of this study is to analyse the perceptions of difficulties or TDs. For analysis,
we use three labels namely: easy, medium and hard.

RQ1. The first research question examines the relationship between students’ TDs and
their learning outcomes. FromFig. 1 it is observed that during the POE sequence of tasks,
the low achieving students mostly report the tasks as either easy or hard. For the low
achievers who report the tasks as hard, it could be that they struggled with the learning
content, the environment or both. However, for the students who perceive the tasks as
easy and yet achieve poorer learning outcomes, a possible explanation for this could be
their self-efficacy beliefs. Self-beliefs may influence students’ performance [4, 5]. The
students with unrealistic and overly optimistic opinions may have difficulty aligning
their efforts with the desired performance levels and that can subsequently deteriorate
their performance [10, 11, 46].

Figure 1 further suggests that the high achieving students mostly report the TDs as
medium. A plausible explanation for this outcome is that students tend to engage more
in the tasks that are perceived moderately difficult than the tasks that are perceived too
easy or too hard [6]. Therefore, for curricula design, the instructors should plan the tasks
that are within the learners’ zone of proximal development (ZPD) [60]. If learners are
taught a skill that is within their ZPD, it can lead to better performance than when the
skill is not [62]. In this regard, [15] suggests that subjects can perform at their optimal
capabilities when they experience ‘flow’, which is likely to happen when their challenge
regarding the tasks matches with their skills (confidence in this case).

It is important to mention that students’ TDs from Fig. 1 seem to differ at the start of
the POE tasks – the Prediction phase, where the high achieving students are more likely
(p-value< 0.10) to indicate that the TDs are easy. This difference during the Prediction
task is important as this task probes students’ prior knowledge. Reporting this task easy
couldmean that these students have higher prior knowledge or higher confidence in prior
knowledge which contributed to their performance [40, 41].

Further, in a POE context, the Observe phase is crucial, it may provide valuable
insights into students’ prior held beliefs [26]. Confusion may be triggered for students
who make incorrect Predictions [47]. Interestingly, there were more low achievers who
made incorrectPredictions; yet the low achieving students weremore likely to report this
task as easy (p-value = 0.08). Thus, knowledge of students’ TDs at specific moments
can help identify the students who require interventions.

RQ2. The second research question analyses the dynamics of TDs – how students’
perceptions of difficulties change within this environment. Prior research on task-based
instruction suggests that pedagogic tasks should be sequenced in increasing order of their
demands or complexity [43, 52, 56]. For example, the cognition hypothesis suggests that
a gradual increase in task complexity can prepare students for more advanced problems
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and can lead them to achieve better performance and development [50–52]. Within
the current simulation environment, as the students progressed, the tasks became more
complex (in terms of the required actions and activities). The impact of task complexity
on TDs is presented in Table 1. From this table, the transition from hard → medium is
more likely than chance, while from easy → medium is less likely than chance.

When the findings from RQ1 suggest that medium or moderate difficulty may lead
to better learning outcomes, the results from RQ2 suggest that harder tasks are likely to
be followed by moderate difficulty. This, then raises the question of how we can make
all students experience difficulties of moderate level – should we intentionally make
harder or complex tasks as they seem to precede TDs of medium level? Or should we
make the follow-up tasks feel easier by comparison? We believe that this question may
benefit from further studies where, e.g., we compare two groups, a treatment group may
be offered less guidance from the system so that the tasks become more complex.

RQ3. The last research question analyses the association between sequences of TDs
and students’ learning outcomes. Research on the sequential effects of TDs suggests
that a learner’s performance on a given task (regardless of whether the task is easy or
hard) may be affected by the TDs on the preceding task [8, 54]. In their work, Schneider
and Anderson [54] report that when an individual faces a hard task, a greater amount of
cognitive resources may be allocated to it, and as they proceed to the next task there may
be a depletion in the available resources. Hence, the performance in the next task may
be affected. To inspect this in more detail, we analyse the impact of TD sequences (over
consecutive tasks) on students’ learning outcomes. From Table 2, the students with
perceived difficulty of hard on two or more consecutive tasks are significantly more
likely to have poorer learning outcomes than those who do not report such a transition.
On the one hand, it could mean that these students are weak and therefore perceive the
tasks as hard. On the other hand, it could also mean that perhaps there was a depletion
of resources as students progressed from a hard task – which is in agreement with [54].

The next significant finding from Table 2 is that the students who report medium
difficulty on two or more consecutive tasks are likely to have better learning outcomes
than other students. What implications do these findings have for learning design? We
find that medium TDs may lead to better learning outcomes and they often follow hard
TDs. However, if tasks get too difficult for students, e.g., reporting hard on two or more
consecutive tasks, then it can adversely affect students’ performance. A knowledge of
such perceptions of TDs, early on, may enable us to provide timely interventions to
students.

7 Conclusion

In this study, we use task difficulties (TDs) as a factor of analysis. Researchers [27, 28]
have acknowledged that only limited studies have investigated the role of students’ TDs
on their learning outcomes. We examine the effects of increasing as well as decreasing
TDs on students’ performance. Students who find the tasks easy or hard generally
have poorer learning outcomes. However, if a task is perceived easy and it is the prior
knowledge task, it may lead to better learning outcomes. Furthermore, in accordance
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with ZPD [60] and the flow theory [15], we find that TDs of medium level can lead
to better performance. An implication for AIED researchers is that, TDs are based on
students’ subjective judgement of the task rather than task complexity. This creates a
possibility of individualized predictions of better paths to learning for each student.

An unexpected finding was that the students who find the current task to be hard
are more likely to perceive the following task as medium than the students who find the
current task to be easy. This suggests that hard and challenging TDs have the potential to
engage students and lead them to achieve better scores, as well as potentially influencing
perception of following tasks. However, when tasks become too hard (difficulty sustains
over two or more tasks) then it can adversely affect students’ performance. To control
for the negative effects of TDs, one approach is to detect these difficulties early on so
that personalised interventions are provided to enhance students’ learning.

A potential future direction for this work could be the analysis of students’ learning
behaviours to see how some students who find the current task to be hard can overcome
their challenges and then report the following task to be easy ormedium. Understanding
how task difficultiesmanifest over time and how they impact students’ learning outcomes
is useful especially when designing for real-time educational interventions, where the
difficulty of the tasks could be optimised for the learners. It can also help in designing
and sequencing the tasks, for the development of effective teaching strategies that can
maximize students’ learning [42] and reduce undesirable behaviours such as gaming the
system [2] and disengagement [29].
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Abstract. Now that themodeling of affective states is beginning tomature, under-
standing affect dynamics has become an increasingly realistic endeavor. However,
the results from empirical studies have not always matched those of theoretical
models, which raises questions as to why. In this study, we explore the relationship
between affective sequences that have been previously explored in the literature
and the activities students may engage in when interacting with Reasoning Mind,
a blended learning system for elementary mathematics. The strongest correlations
are found for students who shift from engaged concentration to frustration,making
fewer actions in the system. While confusion is generally associated with positive
patterns, and frustration and boredom have unexpectedly similar implications for
student activity.
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1 Introduction

Efforts to understand the relationship between affective states and learning have been
underway in earnest since researchers were first able to model affective constructs
through the use of sensors (e.g.,Grafsgaard et al. 2014;Bosch et al. 2016) and interaction-
basedmodeling (e.g., Baker andOcumpaugh 2014). Theoreticalmodels of how students’
experiences of affect change over time, such as those suggested byD’Mello andGraesser
(2012), have guided much of the discussion, but empirical findings have also had con-
siderable impact on the literature, with researchers suggesting, for example, that brief
instances of confusion and frustrationmay have different effects than extended confusion
and frustration (Liu et al. 2013), that different affective states tend to persist for different
amounts of time (D’Mello and Graesser 2011; Botelho et al. 2018), and that differences
in affective sequences can have substantial impacts on learning (Andres et al. 2019).
Work has suggested that affect can influence how students choose to interact with a
learning system. For instance, researchers have found that negative affective states such
as boredom tend to precede disengaged behaviors such as gaming the system (Baker
et al. 2010; Sabourin et al. 2011).
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The field has studied how affect manifests within AIED systems, and there have been
several attempts to influence affect through the design of AIED systems (Arroyo et al.
2011; Grawemeyer et al. 2017, Karumbaiah et al. 2017). However, there has been rela-
tively limitedwork to determine how the existing design ofAIED systems interacts affect
– i.e. how features not specifically intended to be affect-responsive nonetheless connect
with the affect students experience. In one example, Slater and colleagues (2016) inves-
tigated how the textual features of math problems within the ASSISTments platform.
They found relatively minor effects, perhaps due to the relatively minor differences in
content they studied. However, for systems that alternate between very different pedago-
gies (e.g., shifting between games andworkbook-style content), it is reasonable to expect
that affective experiences may be influenced more substantially by the kinds of tasks
students are being asked to complete and that affect may also drive students’ choices.

This paper looks at the affective sequences of students using one such system, Imag-
ine Learning’s ReasoningMind, which provides a blended learning curriculum inmathe-
matics that engages elementary-aged students in tasks that range frombasic instruction to
challenge problems to speed games to non-academic activities. Specifically, this study
looks at how the prevelance of affective patterns that have been studied in previous
research—including D’Mello and Graesser (2012) and Andres et al. (2019)—correlates
with different activities students may engage in when using Reasoning Mind.

2 Previous Research

Theorists working on the role of academic emotions have long suggested the need to
understand both their antecedents and their consequences (see discussion in Pekrun
2006; Pekrun and Linnenbrink-Garcia 2012). Therefore, it is becoming increasingly
important to understand how student affect relates to their engagement within different
kinds of learning environments.

Empirical investigations of academic emotions have produced a number of interest-
ing results, including findings that it is better to be frustrated than bored (Baker et al.,
2010). Researchers have also shown that both confusion and frustration appear to have
Goldilocks effects on learning, where either too little or toomuch can be detrimental (Liu
et al. 2013). These lead to important questions about when a system should intervene to
resolve confusion and frustration and when a student should be allowed or even guided
to shift into these affective states (Lehman and Graesser 2015).

As AIED environments have developed as research tools that can provide fine-
grained temporal data on the shifts in student cognition and emotion, there has emerged
a growing interest in affect dynamics— the study of how affect shifts and develops over
time. One of themost prominentmodels of affective dynamics comes to us fromD’Mello
andGraesser (2012). In thismodel, two sequences are hypothesized to be related to learn-
ing. The first, which is thought to encourage learning, involves a student cycling between
engaged concentration and confusion (and back again). The second, which is thought to
inhibit learning, involves a student cycling from engaged concentration to confusion to
frustration, and finally to boredom.

Subsequent research has sometimes found evidence for the two cycles proposed by
D’Mello and Graesser (2012), and in fact, efforts to promote confusion actually lead to
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positive learning outcomes (Lehman and Graesser 2015), but the cycles themselves are
less common than had originally been thought. A recent synthesis of published research
on affective dynamics (Karumbaiah et al. 2018) shows that the relative frequency of
the transitions captured by these sequences is often below chance. This raises important
questions for those hoping to build interventions triggered by affective sequences. If
these sequences are tied to learning outcomes, but they are unlikely to occur, we need
to know what behaviors within a learning environment might mediate their appearance.

3 Reasoning Mind

3.1 Reasoning Mind

Imagine Learning’s Reasoning Mind is an intelligent tutoring system for mathematics
that was used by over 100,000 pre-K to 8th grade students, primarily in the South-
ern United States. Research has shown that Reasoning Mind is associated with higher
state standardized test scores (Waxman and Houston 2012) and engagement measures
(Ocumpaugh et al. 2013).

Reasoning Mind activities are organized within the context of a virtual environment
known asRMCity, where students can navigate frombuilding to building to participate in
multiple modes, including:City Landscape (navigation page),Guided Study (theory and
tests on math concepts), Office (teacher-assigned topics),My Place (students use points
to purchase decorations for their virtual room) and Game Room (students participate in
speed games, that require them to race against a speed meter, or solve math puzzles, like
those found in the Riddle Machine). Content is further classified according to function
anddifficulty.Theory problemsguide students to learnmath concepts through animations
and exercises.Notes Test check comprehension at the end of segments of theorymaterial,
requiring a review crucial concepts while reinforcing good note-taking practices. A-level
problems reflect a fundamental understanding of basic material, while B-level problems
may requiremultiple skills to completemultiple steps.C-level problems are conceptually
advanced, requiring higher order thinking skills (Fig. 1).

Fig. 1. ReasoningMind’s pedagogical agent, the Genie (left) andRMCity (whereCity Landscape
Actions happen, right)
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4 Methods

4.1 Students

This study examines data from 796 Texas students who used Reasoning Mind as part of
their regular 2nd to 6th-grade mathematics instruction during the 2017–18 school year.

4.2 Activities (Type of System Usage) Considered

Reasoning Mind students are offered a wide range of activities within the system. These
include activities related to the primary modes of instruction, from the most basic prob-
lems (A-levelActions,A-levelAccuracy, andGuidedStudyActions) that all studentsmust
complete to more challenging problems (B/C-level Actions) which are often optional.
They also include measures related to behaviors that vary in terms of their instructional
content. For example, the speed-drills (Game Room Actions) review learning modules
but do not provide instruction on new content. Meanwhile, the number of actions spent
in the RM City, (or City Landscape Actions) tell us how often a student is switching
between tasks, which may indicate either completion or dissatisfaction with the learning
environment. Finally, we also consider the how students are spending the points they
earn in Reasoning Mind’s virtual store (Items Purchased).

Four activities chosen for this analysis represent a range in the type of usage that stu-
dents using Reasoning Mind encounter: Guided Study Actions, B/C-Level Actions, City
Landscape Actions, and Items Purchased. The first two represent actions that involve
learning, while the latter may be less indicative of learning (although students are not
able to purchase items unless they have earned points through positive learning behav-
iors). These activities also represent a range in the amount of choice a student has in
whether they participate in that activity. Finally, they were carefully selected in order
to exclude any actions that might have contributed to the BROMP-based interaction
detectors developed by Kostyuk et al. (2018). (A-level Actions, for example, are a part
of several of Kostyuk’s affect detectors, and so they were excluded in order to avoid
circularity problems in the analysis.)

4.3 Affective Models and Sequences Considered

Models of Affective States. Affective states studied in this paper are modeled using
detectors built by Kostyuk et al. (2018). These cross-validated, interaction-based detec-
tors (e.g., Baker and Ocumpaugh 2014) were developed using the BROMP protocol
for classroom observation (Ocumpaugh et al. 2015). Table 1 shows detectors for four
academic emotions (boredom, confusion, engaged concentration, and frustration) and
for off-task behavior. Although detector performance was relatively weak, the scale of
data was sufficient to derive theoretically expected predictions for learning outcomes
(Kostyuk et al. 2018). The distribution of affect predictions were re-scaled to bring
the low incidence affective states back to the original distributions: Bor (13.7%), Eng
(78.8%), Con (31.1%), and Fru (1.1%).
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Table 1. Affective Models (from Kostyuk et al. 2018).

Algorithm AUC

Boredom (Bor) Random Forest 0.60

Engaged Concentration (Eng) Gradient Boosting Machine (GBM) 0.61

Confusion (Con) Stepwise forward selection linear regression 0.53

Frustration (Fru) Random Forest 0.65

Off-task (Off) Stepwise forward selection linear regression 0.64

Affective Sequences. A considerable body of research has emerged using D’Mello’s
L, a likelihood metric for studying individual transitions (D’Mello and Graesser 2012).
However, this metric does not handlemulti-state sequences, and recent research suggests
that L requires corrections in order to be valid (Karumbaiah et al. 2019). Therefore, we
take a different approach.

Instead, this study investigates affective sequences that were selected based on
two previous publications. Specifically, we include the two cycles from D’Mello and
Graesser’s (D’Mello and Graesser 2012) theoretical model, as well as include 16
sequences found to be important in Andres et al.’s (2019) exploration of affective
dynamics in Betty’s Brain, which (like this study) also made use of BROMP-based
detectors.

Specifically, Andres et al. (2019) examined 12 “three-step” transitions where the
first step was repeated (e.g., Eng-Eng-Bor, or Fru-Fru-Con) as well as four homoge-
nous “four-step” transitions, which repeated the same affective state across the entire
sequence (e.g., Bor-Bor-Bor-Bor). We also investigate two four-step sequences that
involve off-task behavior (also modeled using Kostyuk’s et al. (2018) BROMP-based
detectors), basedon evidence that off-taskbehavior ismore stronglynegatively correlated
with learning outcomes in ReasoningMind than other interactive learning environments
(Kostyuk et al. 2018). In total, this study investigates 20 affect sequences.

For each affect sequence, prevalence is computed using the method in Andres et al.
(2019). Prevalence is the total number of times a pattern occurred within a given stu-
dent’s data divided by the total number of times it could have occurred in that data.
The sequences involving only engaged concentration or confusion show the highest
prevalence with Eng-Eng-Eng-Eng at 63.4% and Con-Con-Con-Con at 13.1%. This
is followed by the sequences that have Bor with Eng-Eng-Bor at 6.2% and Bor-Bor-
Con at 1.3%. Lastly, the sequences with frustration show the lowest prevalence with
Eng-Eng-Fru at 0.29% and Eng-Con-Fru-Bor at 0.02%.

4.4 Analysis

Spearman’s Rho (ρ) was used to correlate the prevalence of 20 affect sequences studied
to the 4 types of student activities (types of usage) within Reasoning mind. Spearman’s
Rho is a non-parametric correlation coefficient that is often used when assumptions of
normality cannot be applied across an entire data set. Because this analysis resulted
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in 80 separate statistical tests (20 affective states ×4 activity types within the system),
Benjamini and Hochberg’s (Benjamini and Hochberg 1995) post-hoc FDR correction
was applied. P-values in the results section are onlymarked as significant if they remained
significant after the B&H procedure was applied.

5 Results

Results for the relationship between the prevalence of affective sequences and the dif-
ferent types of activities within Reasoning Mind are given in Table 2, where they are
organized by the type of affective sequence being considered. These include (1) the
D’Mello and Graesser cycles (both the facilitative and the inhibitory), (2) the sequences
using the BROMP-based off-task detector, and then (3) the sequences studied by Andres
et al., (2019). The latter is organized by the dominant affect in each sequence (i.e.,
the one that appears most frequently), with the homogenous four-step sequences (i.e.,
Eng-Eng-Eng-Eng) given in the order of the D’Mello and Graesser’s inhibitory cycle
(i.e., engaged, followed by confusion, followed by frustration, followed by boredom).
However, readers will see that the results do not fully fit this model’s predictions.

Table 2. Correlations between prevalence of affective sequences and types of student actions.
Items that are non-significant after the B&H correction was applied are given in gray-scale.

Learning Actions Non-Learning Actions
Guided Study 

Problems
B/C-Level 
Problems

City Land-
scape 

N of Items 
Purchased

Rho p Rho p Rho p Rho p
Eng-Con-Con-Eng -0.02 0.4 -0.02 0.54 0.03 0.32 -0.06 0.06
Eng-Con-Fru-Bor -0.21 0 -0.1 0.01 -0.17 0 0.04 0.24
Off-Off-Off-Off -0.23 0 -0.09 0.01 -0.19 0 0.03 0.45
Off-Off-Off-Eng -0.13 0 -0.03 0.33 -0.18 0 -0.02 0.52
Eng-Eng-Eng-Eng 0.16 0 0.09 0 0.05 0.14 -0.05 0.18
Eng-Eng-Bor -0.16 0 -0.08 0.01 -0.11 0 0.09 0.01
Eng-Eng-Con 0 0.83 0 0.97 0.06 0.1 -0.07 0.03 
Eng-Eng-Fru -0.29 0 -0.12 0 -0.31 0 0.11 0
Con-Con-Con-Con -0.13 0 -0.07 0.03 -0.04 0.26 -0.02 0.66
Con-Con-Bor -0.22 0 -0.13 0 -0.08 0.01 0.07 0.03 
Con-Con-Eng -0.05 0.13 -0.03 0.31 0.03 0.48 -0.04 0.21
Con-Con-Fru -0.28 0 -0.13 0 -0.2 0 0.11 0
Fru-Fru-Fru-Fru -0.24 0 -0.09 0.01 -0.18 0 0.07 0.05
Fru-Fru-Bor -0.23 0 -0.1 0 -0.17 0 0.05 0.18
Fru-Fru-Con -0.28 0 -0.12 0 -0.21 0 0.08 0.02
Fru-Fru-Eng -0.27 0 -0.1 0 -0.23 0 0.08 0.02
Bor-Bor-Bor-Bor -0.26 0 -0.13 0 -0.13 0 0.07 0.03
Bor-Bor-Con -0.25 0 -0.13 0 -0.09 0 0.1 0
Bor-Bor-Eng -0.21 0 -0.12 0 -0.11 0 0.06 0.08
Bor-Bor-Fru -0.28 0 -0.14 0 -0.17 0 0.07 0.02
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5.1 Off-Task Sequences

Two sequences that were constructed using the BROMP-based off-task detectors were
included in these analyses in order to explore findings suggesting that off-task behavior
is correlated more negatively in learning in Reasoning Mind than in other interactive
learning environments (Kostyuk et al. 2018). The first, Off-Off-Off-Off, was negatively
correlated with three of the activity types: City Landscape Actions (ρ = −.19), Guided
Study Actions (ρ = −.23), and B/C-Level Actions (ρ = −.09). Interestingly, this effect
was nearly twice as strong forGuided Study Actions as it was for B- and C-Level Actions,
which may be because students spend less time in that mode overall. Off-Off-Off-Off
was not, however, significantly correlated with the Number of Items Purchased, perhaps
because students can only purchase items if they spend enough time on task to earn the
points to do so.

When we changed the fourth step from off-task to engaged, only two of the correla-
tions remained significant. While the City Landscape Actions correlation only changed
slightly (ρ = −.18), the Guided Study Actions correlation was half as strong for Off-
Off-Off-Eng (ρ=−.13) as it was for the homogenous four-step sequence. This suggests
that even a slight reduction in the duration of off-task behavior improves the outcomes
for Reasoning Mind students, in line with Pardos et al.’s (2014) findings.

5.2 D’Mello and Graesser’s (2012) Sequences

As discussed above, D’Mello and Graesser (2012) they theorized a number of different
transitions between affective states that were thought to be relevant to learning. In this
section, we explore results related to their facilitative and inhibitory sequences.

D’Mello and Graesser’s facilitative sequence, in which a student cycles between
engaged concentration and confusion, is operationalized here as Eng-Con-Con-Eng. As
the results in Table 2 show, this sequence has no statistically-significant relationship to
any of the activities within Reasoning Mind. Likewise, the three-step patterns related
to this sequence, Eng-Eng-Con and Con-Con-Eng, show similar results. The former
is only weakly significantly related to the Number of Items Purchased (ρ = −0.07),
where it shows the only negative correlation with that activity. The latter, like the main
D’Mello and Graesser facilitative sequence, has no significant relationships with any of
the activity types.

D’Mello andGraesser’s inhibitory sequence is operationalized here as Eng-Con-Fru-
Bor. Its results are similar to Off-Off-Off-Eng, as it shows non-significant relationships
with two of the action types (B/C-Level Actions and Number of Items purchased) and
negative relationships for the other two (ρ = −.17 for City Landscape Actions and ρ =
−.21 for Guided Study Actions).

5.3 Engaged Concentration Sequences

Four sequences in this study are composed primarily of engaged concentration, and these
sequences demonstrate some of the most divergent results. Much of this divergence
is driven by results from Eng-Eng-Fru, which, when compared to all other affective
sequences in this study, shows the strongest (negative) correlations with City Landscape
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Actions (ρ=−.31) and withGuided Study Actions (ρ=−.29). Eng-Eng-Fru also shows
one of the strongest correlations with B/C-Level Actions (ρ = −.12 compared to max ρ

=−.14). These results are stronger than those of Eng-Eng-Bor: City Landscape Actions
(ρ = −.11), Guided Study Actions (ρ = −.16), and B/C-Level Actions (ρ = −.08).
Compared to Eng-Eng-Con, which does not have significant relationships with these
actions, the results for Eng-Eng-Fru and Eng-Eng-Bor suggest that students who skip
confusion when transitioning from engaged concentration have lower levels of positive
behaviors.

Skipping confusion (i.e., not going through the Eng-Eng-Con transition) and going
to boredom (i.e., Eng-Eng-Bor) or frustration (i.e., Eng-Eng-Fru) also shows differences
for theNumber of Items Purchased.While the sequence with confusion shows a negative
relationshipwith this action type (ρ=−.07), the sequenceswith boredom and frustration
are positive (ρ = .09, .11, respectively).

Finally, Eng-Eng-Eng-Eng is significant for only two activity types. Notably, in
contrast to the results forEng-Eng-Fru andEng-Eng-Bor, Eng-Eng-Eng-Eng is positively
correlated with Guided Study Actions (ρ = .16), and B/C-Level Actions (ρ = .09). In
fact, these are the only positive correlations in the whole study that are not related to the
Number of Items Purchased.

5.4 Confusion Sequences

Sequences involving confusion also show some divergence in their relationships with
activity types, though not as extreme as those for engaged concentration. Most of the
significant relationships between sequences composed primarily of confusion and activ-
ity types are negative. As with the results for the engaged concentration sequences, the
exceptions to this pattern are for the Number of Items Purchased, which may some-
times be driven by a desire to go off-task, but also require a student to have successfully
completed a significant amount of work.

In general, these results show that Con-Con-Con-Con isweakly negatively correlated
to learning activities (ρ = −.16 for Guided Study Actions and ρ = −.07 for B/C-Level
Actions). (The relationship between Con-Con-Con-Con and City Landscape Actions
is not significant.) The relationships for Con-Con-Bor and Con-Con-Fru are slightly
stronger: City Landscape Actions (ρ =−.08,−.20, respectively), Guided Study Actions
(ρ = −.22, −.28, respectively), and B/C-Level Actions (ρ = −.13, −.13, respectively).
These results are not inconsistent with findings that confusion is beneficial to learning
(i.e. Lehman and Graesser 2015; Liu et al. 2013), but contrast with findings that suggest
that it is better to be frustrated than bored (i.e. Baker et al. 2010). Interestingly, Con-Con-
Eng is not significantly related to these learning activities. While this result is surprising,
it is consistent with the results for the facilitative D’Mello and Graesser sequence.

5.5 Frustration and Boredom Sequences

Nearly all of the relationships between sequences composed primarily of frustration
and activity types are significantly significant, and the same is true for those sequences
composed primarily of boredom. As with the results for confusion sequences, these
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show negative relationships with City Landscape Actions, Guided Study Actions, and
B/C-Level Actions and positive relationships with the Number of Items Purchased.

For City Landscape Actions and Guided Study Actions, the relationships with frus-
tration sequences tend to be stronger than those with boredom sequences, which also
contradicts the idea that frustration is better for learning than boredom. However, this
difference is small, and for B/C-Level Actions, that relationship is reversed. That is,
frustration and boredom both appear to be negatively associated with learning-related
activities (and positively associated with non-learning activities), but overall there is
little separation between them.

6 Conclusion

In this paper, we investigate how affective patterns connect to student activity choices
within Reasoning Mind. We find that the strongest patterns involve students who shift
from engaged concentration to frustration. These students interact less with the environ-
ment than other students, although they do spend more of their points purchasing virtual
decorations for theirMy Place room. We also find that confusion is generally associated
with positive behavioral patterns. Somewhat surprisingly, frustration and boredom gen-
erally correlate to the same usage patterns. Also, inhibitive sequences emerging from
D’Mello and Graesser’s (2012) theoretical model are relatively weakly associated with
activities within the system, while the facilitative sequence is not significantly associated
with any of the activities considered in this study.

The findings here, in concert with Karumbaiah et al.’s (2018) research synthesis of
affect dynamics research, which found that few patterns were more likely than chance
across studies, potentially raise concerns about the generalizability of findings from
previous research. However, they also point to the need for a more comprehensive
understanding of the relationship between affective dynamics, behavioral patterns, and
learning outcomes, as these findings suggest that these relationships may not be as
straight-forward as we once thought.

Overall, the findings here suggest that there are relationships between student affect
and the activities they engage in within a learning system. It is not entirely clear what the
direction of the effects is from our current evidence – are students with specific affective
patterns choosing different activities? Or are the activities driving the affective patterns?
Amore in-depth temporal analysis may be able to shedmore light on this issue, but these
issues are complex; affect may develop, and shape interaction choices but also shape
the future affect itself (i.e. D’Mello and Graesser 2012; Botelho et al. 2018). What our
findings indicate is that usage choices and affect are connected in many ways.

Overall, these findings point to the need for a more comprehensive understanding of
the relationship between affective dynamics, behavioral patterns, and learning outcomes,
as the findings here suggest that the relationship may not be as straight-forward as might
have been thought. Fully understanding these interconnections – and the role that the
design ofAIED systems plays – is an important area for future research, and an important
step towards AIED systems that are fully sensitive to the shifts in students’ affect and
how these shifts in turn impact behavior.



446 J. Ocumpaugh et al.

Acknowledgements. Our thanks to the NSF (Cyberlearning Award #1623730) for their funding
of this project. All opinions (and any mistakes) are, of course, our own.

References

Andres, J.M.A.L., et al.: Affect sequences and learning in Betty’s brain. In: Proceedings of the
9th International Learning Analytics and Knowledge Conference, pp. 383–390 (2019)

Arroyo, I., Woolf, B.P., Cooper, D.G., Burleson, W., Muldner, K.: The impact of animated peda-
gogical agents on girls’ and boys’ emotions, attitudes, behaviors and learning. In: 2011 IEEE
11th International Conference on Advanced Learning Technologies, pp. 506–510. IEEE, July
2011

Baker, R.S., D’Mello, S.K., Rodrigo, M.M.T., Graesser, A.C.: Better to be frustrated than bored:
the incidence, persistence, and impact of learners’ cognitive-affective states during interactions
with three different computer-based learning environments. Int. J. Hum.-Comput. Stud. 68(4),
223–241 (2010)

Baker, R.S., Ocumpaugh, J.: Interaction-based affect detection in educational software. In:
Calvo, R.A., D’Mello, S.K., Gratch, J., Kappas, A. (eds.) The Oxford Handbook of Affective
Computing. Oxford University Press, Oxford (2014)

Benjamini,Y.,Hochberg,Y.:Controlling the false discovery rate: a practical andpowerful approach
to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 289–300 (1995)

Bosch, N., D’Mello, S.K., Ocumpaugh, J., Baker, R.S., Shute, V.: Using video to automatically
detect learner affect in computer-enabled classrooms. ACM Trans. Interact. Intell. Syst. 6 (2)
(2016)

Botelho, A.F., Baker, R., Ocumpaugh, J., Heffernan, N.: Studying affect dynamics and chronom-
etry using sensor-free detectors. In: Proceedings of the 11th International Conference on
Educational Data Mining, pp. 157–166 (2018)

Crossley, S., Bradfield, F., Ocumpaugh, J., Dascalu, M., Labrum, M., Baker, R.S.: Modeling math
identity and math success through sentiment analysis and linguistic features. In: International
Conference on Educational Data Mining, pp. 11–20. EDM Society Press (2018)

DeFalco, J.A., et al.: Detecting and addressing frustration in a serious game for military training.
Int. J. Artif. Intell. Educ. 28(2), 152–193 (2017). https://doi.org/10.1007/s40593-017-0152-1

D’Mello, S., Graesser, A.: The half-life of cognitive-affective states during complex learning.
Cogn. Emot. 25(7), 1299–1308 (2011)

D’Mello, S., Graesser, A.: Dynamics of affective states during complex learning. Learn. Instr.
22(2), 145–157 (2012)

Grafsgaard, J., Wiggins, J., Boyer, K.E., Wiebe, E., Lester, J.: Predicting learning and affect from
multimodal data streams in task-oriented tutorial dialogue. In: Educational Data Mining 2014,
July 2014

Grawemeyer, B., Mavrikis, M., Holmes, W., Gutiérrez-Santos, S., Wiedmann, M., Rummel, N.:
Affective learning: improving engagement and enhancing learning with affect-aware feedback.
UserModel. User-Adapt. Interact. 27(1), 119–158 (2017). https://doi.org/10.1007/s11257-017-
9188-z

Hake, R.R.: Interactive-engagement versus traditional methods: a six-thousand-student survey of
mechanics test data for introductory physics courses. Am. J. Phys. 66(1), 64–74 (1998)

Karumbaiah, S., Lizarralde, R., Allessio, D.,Woolf, B., Arroyo, I., Wixon, N.: Addressing Student
Behavior andAffectwith Empathy andGrowthMindset. International EducationalDataMining
Society (2017)

https://doi.org/10.1007/s40593-017-0152-1
https://doi.org/10.1007/s11257-017-9188-z


Affective Sequences and Student Actions Within Reasoning Mind 447

Karumbaiah, S., Andres, J.M. A.L., Botelho, A.F., Baker, R.S., Ocumpaugh, J.: The implications
of a subtle difference in the calculation of affect dynamics. In 26th International Conference
for Computers in Education (2018)

Karumbaiah, S., Baker, R.S., Ocumpaugh, J.: The case of self-transitions in affective dynam-
ics. In: Proceedings of the 20th International Conference onArtificial Intelligence in Education,
pp. 172–181 (2019)

Kostyuk, V., Almeda, M.V., Baker, R.S.: Correlating affect and behavior in reasoning mind with
state test achievement. In: Proceedings of the International Conference on Learning Analytics
and Knowledge, pp. 26–30 (2018)

Lehman, B., Graesser, A.: To resolve or not to resolve? That is the big question about confusion.
In: Conati, C., Heffernan, N.,Mitrovic, A., Verdejo,M.Felisa (eds.) AIED 2015. LNCS (LNAI),
vol. 9112, pp. 216–225. Springer,Cham(2015). https://doi.org/10.1007/978-3-319-19773-9_22

Liu, Z., Pataranutaporn, V., Ocumpaugh, J., Baker, R.S.: Sequences of frustration and confusion,
and learning. In: Proceedings of the 6th International Conference on Educational Data Mining,
pp. 114–120 (2013)

Mulqueeny, K., Kostyuk, V., Baker, R.S., Ocumpaugh, J.: Incorporating effective e-learning prin-
ciples to improve student engagement in middle-school mathematics. Int. J. STEMEduc. 2(15)
(2015)

Ocumpaugh, J., Baker, R.S., Rodrigo, M.M.T.: Baker Rodrigo Ocumpaugh Monitoring Protocol
(BROMP) 2.0 Technical and TrainingManual. Technical Report. NewYork, NY: Teachers Col-
lege, Columbia University. Manila, Philippines: Ateneo Laboratory for the Learning Sciences
(2015)

Ocumpaugh, J., Baker, R.S., Gaudino, S., Labrum, Matthew J., Dezendorf, T.: Field observations
of engagement in reasoning mind. In: Lane, H.Chad, Yacef, K., Mostow, J., Pavlik, P. (eds.)
AIED 2013. LNCS (LNAI), vol. 7926, pp. 624–627. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39112-5_74

Pardos, Z.A., Baker, R.S., San Pedro, M.O., Gowda, S.M., Gowda, S.M.: Affective states and
state tests: investigating how affect and engagement during the school year predict end-of-year
learning outcomes. J. Learn. Anal. 1(1), 107–128 (2014)

Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and
implications for educational research and practice. Educ. Psychol. Rev. 18(4), 315–341 (2006)

Sabourin, J., Rowe, J.P.,Mott,BradfordW.,Lester, JamesC.:Whenoff-task is on-task: the affective
role of off-task behavior in narrative-centered learning environments. In: Biswas, G., Bull, S.,
Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738, pp. 534–536. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21869-9_93

Slater, S., Ocumpaugh, J., Baker, R., Scupelli, P., Inventado, P.S., Heffernan, N.: Semantic features
of math problems: relationships to student learning and engagement. In: Proceedings of the 9th
International Conference on Educational Data Mining., pp. 223–230 (2016)

Waxman, H.C., Houston, W.R.: Evaluation of the Reasoning Mind program in Beaumont ISD.
Unpublished manuscript (2012)

https://doi.org/10.1007/978-3-319-19773-9_22
https://doi.org/10.1007/978-3-642-39112-5_74
https://doi.org/10.1007/978-3-642-21869-9_93


Helping Teachers Help Their Students:
A Human-AI Hybrid Approach

Ranilson Paiva(B) and Ig Ibert Bittencourt

Instituto de Computação - IC, Universidade Federal de Alagoas - UFAL, Av. Lourival
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Abstract. There is a global interest in artificial intelligence to support
online learning, but little increase in support for online professors, teach-
ers and tutors (instructors). Over time, more students join online learn-
ing, but instructors have no equivalent increase in support to manage
their online classes, leaving students under-served. This is evidenced by
the number of students who dropout or fail online courses, blaming the
“lack of support” from instructors. Interactions in such courses generate
considerable quantity and diversity of data, allowing the extraction of
pedagogically relevant information. However, instructors do not master
the techniques and technologies needed to do it, and it is not practical to
train them to do so. In this work, we propose an authoring tool (called T-
Partner) that implements a process we created to deal with educational
data. The objective is to support instructors making informed pedagog-
ical decisions to manage their online course. T-Partner promotes the
cooperation between artificial and human intelligences, however we do
not know the appropriate balance between these “intelligences”. We then
created two versions of the T-Partner to help instructors to: (1) find rel-
evant pedagogical situations occurring within their online courses; (2)
understand these situations; (3) create interventions (study plans, for
example) to address these situations; (4) monitor and evaluate the impact
of these interventions. We evaluated if both versions allowed instructors
to make pedagogical decisions and their perceptions regarding this sup-
port to decision-making. The results show that both versions brought
benefits to pedagogical decision-making, and were positively perceived
by the participants.

Keywords: Pedagogical Decision-Making · Data-informed decisions ·
Authoring tools · On-line learning environments

1 Introduction

Technology can influence the processes and outcomes of education, and many
countries are investing in technological support for teaching and learning [20].
Online education is one such example and the number of courses offered online
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increase constantly and worldwide [8,19]. Besides that, some countries are pass-
ing laws to regulate online learning, while others are investing considerable
amounts to stimulate its use1. These facts evidence that online education is
a viable approach to propagate and democratize education, and there is demand
for it.

However, professors, teachers and tutors (we will refer to them as instructors)
face challenges with online education. One such challenge is to make (course)
decisions using educational data. Doing so requires instructors to quickly and
continually deal with these data [21], which can be diverse and in considerable
volume. Training them to analyze these data would require lots of time, effort
and resources, with uncertain results [7,11]. This highlights the importance to
provide instructors the necessary technological support [5,10]. These informa-
tion indicate the need to: (1) help instructors extract relevant information from
educational data; (2) Provide them means to create personalized interventions
to address issues discovered and; (3) Check the success of these interventions
[14,15].

Complimentary, there is a new research branch in the AIED field: the cre-
ation of artificial intelligence to collaborate with human intelligence [2,4]. This
should position professors, teachers and tutors as the main decision-makers [3,20]
in the online “classroom”. However, there are no scientific works regarding how
much of each of these “intelligences” (artificial and human), should be used in
this collaboration. Based on these information, we ask the following research
question: how can we balance artificial and human intelligence in order to help
instructors manage their online courses while they are occurring? Researching
about this problem, we found the definition for authoring tools, which is a tool
to help users (professors, teachers and tutors), allowing them to create, sequence
and publish content (to students), without requiring advanced technical knowl-
edge or training [6,12].

In this work, we evaluate two versions of an authoring tool (we called it
Teachers’ Partner or T-Partner). The two versions were named: lightweight and
heavyweight, and they were created to present different combinations of artifi-
cial and human intelligences in order to assist online instructors manage their
courses. In the lightweight version, users make simple choices, with the artificial
intelligence having more control over the decisions. In the heavyweight version,
users are required to make more choices, giving them more control over the
decisions. The trade-off is: simplicity vs. control.

T-Partner was designed to assist online instructors to: (1) search for relevant
pedagogical situations in the learning environment (using educational data); (2)
Use these data to generate visualizations of patterns and trends in order to
understand what is happening with their students/courses; (3) Create person-
alized study plans (interventions) and deliver them to the target students; (4)
Check whether these study plans helped students or not.

We evaluated both versions of T-Partner by asking instructors to complete
the four tasks listed above, for a specific scenario, which was to evaluate how the
students’ interactions affect their performance. The results show the participants

1 Available at: https://bit.ly/2zM3JKp and https://bit.ly/2FX7saW.

https://bit.ly/2zM3JKp
https://bit.ly/2FX7saW
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(instructors) were able to properly complete the proposed tasks and had positive
perceptions about the T-Partner, considering it easy to use, helpful and inter-
esting. The results also show that the participants preferred the heavyweight
version, suggesting that the balance between artificial and human intelligence
should be designed in favor of human control on the decision-making process.

2 Proposal

In this section, we present the Process (Pedagogical Decision-Making Process),
and the two versions (lightweight and heavyweight) of the authoring tool (T-
Partner) created.

2.1 Pedagogical Decision-Making Process (PDMP)

The T-Partner follows a process where: (1) educational data is analyzed in search
for pedagogical situations; (2) Relevant issues are presented to the instructors as
easy-to-understand and interactive visualization; (3) The educational resources
(videos, texts, questions, etc.) are organized (domain, curriculum and knowledge
component), allowing instructors to devise pedagogical interventions for the ped-
agogical situations found and; (4) The instructor defines the criteria to measure
if the interventions were effective or not (Fig. 1).

The Pedagogical Decision-Making Process (PDMP) is a cyclical process and
its objective is to guide instructors (from online learning environments) to:
(1) discover issues/situations, with pedagogical value, occurring in their online
courses; (2) Understand these situations; (3) Make decisions to address them;
(4) Monitor and evaluate the impact of the decisions made. The PDMP has
two phases: the construction phase and the execution phase. In the construction
phase, human and artificial intelligences collaborate to specify (1) which, among
some defined pedagogical situations, they want to search for in the learning envi-
ronment; (2) What decision they want to make, considering the learning envi-
ronment’s capabilities, to address a pedagogical situation found; (3) How they
want to measure the effectiveness of the decision made [16,17]. In the execution
phase, the successful definitions made in the construction phase are automati-
cally repeated, if the same pedagogical situation is found again.

In previous works, we used the PDMP to: (1) evaluate the effectiveness of
gamification elements in an OLE [13]; (2) Measure differences between male and
female students’ interactions in an online learning environment (OLE) [18]; (3)
Improve students’ interactions in an OLE [16]; (4) Recommend topics learners
should study to improve their writing performance [1], among other uses2.

2.2 T-Partner

In order to avoid the error-prone and repetitive task of manually following the
PDMP, we created an authoring tool named T-Partner (Teachers’ Partner). The
T-Partner needs to be integrated to a learning environment in order to access
2 Detect and recommend actions to disengaged learners; Recommend educational

resources to practice a specific math topic etc. These works are not published, yet.
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Fig. 1. The Pedagogical Decision-Making Process.

Fig. 2. T-Partner communication with an online learning environment.

its educational data3. Basically: (1) learners interact with the online learning

3 Data about learners, educational resources, interaction data (user-user, user-content
and user-environment interactions), and other data to support instructors’ pedagog-
ical decision making.
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environment (OLE); (2) These interactions generate (educational) data that are
stored in the OLE’s data repository; (3) These data are retrieved and processed
by the T-Partner; (4) The results are used to inform instructors about pedagogi-
cal situations occurring in the OLE; (5) Instructors use this information to make
pedagogical decisions; (6) These decisions use the educational resources available
in the OLE; (7) The decisions should consider the OLE’s interface capabilities;
(8) The decisions are sent to the targeted learners; (9) The T-Partner measures
the effectiveness of the decisions (Fig. 2).

We created two versions of the T-Partner: (1) Light Weight : This version
is an easy to use, but more limited, version of the tool for users with little
experience with computers, allowing them to make pedagogical decisions eas-
ier and faster, but more constrained. It can also be used as an entry version
for training instructors; (2) Heavy Weight : This version has more features,
allowing finer-grained decisions, but it may slow down the process and be more
complex/demanding to the user4.

2.3 T-Partner Implementing the PDMP

In this subsection we describe how T-Partner implements the PDMP (Subsect.
2.1). It is important to mention that instructors should first define a domain and
a curriculum. For example: linear functions (curriculum) in the math domain.

Step 1: Define the Pedagogical Situation. In this step, the instructors
choose among the available pedagogical situations, defining some parameters
in order to personalize data collection. After that, they must specify how T-
Partner must classify each parameter as inadequate, insufficient and adequate,
named classes of results. For example: an instructor wants to evaluate the
impact of the students’ interactions with some educational resources, for a par-
ticular subject, in the previous 15 days. The instructor chooses the domain
(math), the curriculum (linear functions), the group (group 1). (S)he selects
the resources (s)he wishes to measure the impact on the students’ performance
(the students’ accesses to the course, their gamification level, the number of
badges they received and the number of video classes they watched). (S)he also
defines the period of time the analysis must consider (the last 15 days). Next,
the instructor classifies the amount of interactions for each chosen resources as
inadequate, insufficient or adequate. Considering the number of accesses, the
instructor classified it as follows: (1) below 30% the average, is considered inad-
equate; (2) between 30% and 59% the average, is considered insufficient; (3)
above 59% the average, is considered appropriate. The instructor classified level,
badges and videos with the same values as the number of accesses. The T-Partner
searches the data, following the parameters defined, and classifies the resulting
data according to the classification values provided by the instructor.
4 Due to the restricted number of pages, it was not possible to add pictures of T-

Partner in this paper. However, we created a website where we present images
and detailed descriptions of both versions. It is available at: http://tpartner.
ranilsonpaiva.com.

http://tpartner.ranilsonpaiva.com
http://tpartner.ranilsonpaiva.com
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Step 2: Investigate Pedagogical Situation. In this step, the T-Partner
groups the students according to the way instructors classified the resources.
In this part of the tool, data is processed using an algorithm associated with
the pedagogical situation chosen in step 1 (for example: if the instructor chose
to evaluate the students’ interactions impact on their performance, the algo-
rithm used is a Decision Tree). Before data processing, instructors select how to
pre-process the data (imputation, remove registries with missing values, remove
outliers etc.), and how they wish to visualize the data processing result. The
resulting visualization uses different colors to represent different result classes:
inadequate - red, insufficient - yellow and adequate - green. The aim is to provide
instructors with information extracted from the educational data, in order to aid
their decision process.

Step 3: Define Pedagogical Decisions. In this step, instructors create a
personalized intervention (for example: a study plan) for each class of results
(inadequate, insufficient and adequate). For each intervention, instructors must
give it a name and define: (1) the activities learners should do (texts, videos,
questions etc., depending on what is available in the OLE); (2) The amount for
each activity; (3) The order the activities should be arranged; (4) The desired
modifiers for the activity (for multiple choice questions, a modifier can be its
difficulty); (5) The target class of results; (6) The amount of time learners have
to complete the task; and (7) The pedagogical approach learners should follow
to finish the task (for example: do it individually, do it in group, peer-evaluate
colleagues answers, receive points or badges for doing it in case of gamified
learning environments etc. It depends on what the OLE offers). For example, an
intervention can be, for linear function in the math domain, to read one
text, watch one video-class, answer one easy multiple-choice ques-
tion, answer three difficult multiple-choice questions (in this order).
This must be sent to students in the insufficient result class, who must do it
individually and in the next 10 days.

Step 4: Define Assessment. In this step, instructors set the desired per-
centage for adherence5 and the desired outcome from those who followed the
recommended intervention. This is done for each class of results. For example:
an instructor defines, for the inadequate result class, 50% adherence and an 20%
increase in the students’ performance (number of correct answered divided by
the number of questions answered).

3 Experimentation

In this experiment, we invited professors, teachers and tutors to evaluate the T-
Partner. This experiment was available on-line for a 30 days period. After this
period, we collected the participation data, cleaned them, removing test data,
5 The amount of learners that completed the intervention recommended by the

instructor.
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empty and incomplete records. Next, we performed the data analysis following
the guidelines proposed by [9].

Part 1 - Using T-Partner to Solve a Pedagogical Issue. Participants were
randomly assigned to one of the two versions of the T-Partner6. They had to read
a description of a real education scenario, guiding them to perform the following
tasks: (1) evaluate the performance of the students based on their interactions in
the OLE; (2) Create a study plan for each class of results; (3) Define the criteria
of a successful intervention.

Based on the scenario, we asked participants to: (1) choose the issue they
wanted to search for in the learning environment. The available options were:
evaluate students’ failing probability; evaluate students’ dropping out proba-
bility and evaluate students’ interactions with the educational resources; (2)
Choose one of the pre-processing techniques available. Some available options
were: remove empty and null registries and apply imputation technique. Next,
choose the way they wanted to visualize results7; (3) Create a study plan, to
address the issue, for each class of results and define how long students had to
complete it; (4) Define the adherence and the desired outcome.

Participants could make different choices (decisions). Some were appropriate,
some were not. We calculated a score, for each step, which was the sum of the
tasks completed appropriately, divided by the total amount of tasks, according
to the formula:

SCORE =
∑n

i=1 ei
MAX

(1)

Part 2 - The Participants’ Perceptions About the T-Partner. We asked
the participants’ perceptions, regarding the following metrics: (1) Perceived util-
ity (PU) - if participants considered the tool useful to manage their courses; (2)
Perceived ease of use (PEU) - if participants considered the tool easy to use;
(3) Attitude towards use (ATU) - if participants had a positive attitude towards
using the tool; (4) Intention to use (IU) - if participants would use the tool if it
was available in their workplace; (5) Visualizations used (VIZ) - if the visualiza-
tions used were informative; (6) Color scheme used (COL) - if the colors used
(red, yellow and green) to represent the classes of results, helped participants
understand the situation learners were facing; and (7) vocabulary used (VOC) -
if the vocabulary used was appropriate. The first 4 metrics were based on the
Technology Acceptance Model [22] and the others were created for the purpose
of this experiment. Participants had to assign a score for each criteria, according
to a Likert scale from 0 to 6, where: 0 = I strongly disagree; 1 = I disagree; 2 =
I slightly disagree; 3 = I neither agree nor disagree (indifferent); 4 = I slightly
agree; 5 = I agree; 6 = I strongly agree.
6 We used anonymized data from a high school level online learning environment with

more than 6000 active Brazilian students.
7 The available visualizations depended on the pedagogical issue chosen in step 1.
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Table 1. Scores for accomplishing the tasks (LW = Light Weight and HW = Heavy
Weight).

PDMP MIN LW/HW MAX LW/HW MED LW/HW AVG LW/HW SD LW/HW

Step 1 0/0.67 1/1 1/1 0.94/0.97 0.15/0.10

Step 2 0/0 1/1 0.93/1 0.84/0.93 0.3/0.19

Step 3 0/0 1/1 0/0.55 0.33/0.52 0.44/0.49

Step 4 1/0.1 1/1 1/1 1/0.7 0/0.84

All tasks 0/0 1/1 1/1 0.84/0.87 0.32/0.29

Table 2. Score comparison for completing the tasks (Wilcoxon-Mann-Whitney test).

PDMP P-VALUE HIGHER SCORE

Step 1 0.0001984* HW

Step 2 0.08513 No difference

Step 3 0.01698* HW

Step 4 0.0004147* LW

All tasks 0.02922* HW

* = Statistically significant; LW = Light
Weight; HW = Heavy Weight.

4 Results and Discussion

Regarding the participants, we had 45 complete and valid participations, with
n = 20 for the Light Weight version and n = 25 for the Heavy Weight version.
They were all higher education professors from Brazil, with ages ranging from 32
to 63 years old. Their years of experience ranged from 6 years to more than 15
years as higher education professors. Their level of familiarity and professional
use of educational technologies ranged from good to very good.

For part 1, the Score for each step was normalized8. We calculated the mini-
mum score (MIN), maximum score (MAX), median score (MED) average score
(AVG) and the standard deviation (SD) for each step. The results are shown in
Table 1. In Table 2 we applied the Wilcoxon-Mann-Whitney to test for statistical
relevance of the differences in scores for the two versions.

The results show that, regarding the tasks in Steps 1, 2 and the sum of the
tasks in all steps, the scores in the Heavy Weight version (HW) were higher,
suggesting the HW version allowed instructors to make better decisions (score
higher in doing what was expected from them) than the LW version. The Heavy
Weight version offers greater detailing and control to instructors (human intelli-
gence), which is represented by more options to make more detailed decisions. In
the Light Weight version this control and detailing is mostly done by the system.
We believe that having the system handle some parts of the decision confused the
participants, affecting their comprehension and proper completion of the task.

8 All scores are in the 0 to 1 interval.
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Fig. 3. Participants’ perceptions about the T-Partner’s versions.

We need to further investigate other variations of this human/computer balance
for each step of the process.

The results show higher standard deviation, regarding the scores in Steps
3 and 4 in the Heavy Weight version, suggesting participants had difficulties



Helping Teachers Help Their Students: A Human-AI Hybrid Approach 457

completing the respective tasks. This may be due to these steps were the ones
with a higher amount of tasks to complete (in the HW version). It may be the
case to improve clarity of the steps and/or divide these steps into sub-steps
(further investigation is necessary).

The results of the participants’ perceptions for all metrics of both versions
(heavy weight and light weight) were positive and similar (Fig. 3), which is a good
and desired result, showing that the participants had a favourable perception
regarding the T-Partner and the process, independent of the version. The median
value was 4, which corresponds to the answer “I slightly agree.” This shows that
participants’ perceptions were positive (above neutral/indifferent).

5 Conclusion

We proposed the Pedagogical Decision-Making Process (PDMP) and an author-
ing tool (T-Partner) that implements it. The objective was to have artificial
and human intelligence work, collaboratively, to help online instructors man-
aging their courses/students, offering personalised assistance. However, we did
not know how to balance these two “intelligences” in the final tool. Therefore,
we created two versions of T-Partner: the light weight version, where most part
of the decisions are made by the system, and the heavy weight version, where
most part of the decisions are made by the instructors (professors, teachers and
tutors). We evaluated both versions of T-Partner, regarding its capacity to sup-
port instructors’ pedagogical decision-making as well as their perceptions on its
utility and use.

Overall, the results showed that the participants were able to properly per-
form the demanded tasks, supporting online instructors’ pedagogical decision-
making, with some minor issues in the tasks for steps 3 and 4 from the Heavy
weight version (with higher number of tasks to complete). Instructors show
positive perceptions regarding all the metrics considered, independent of the
version, stating that: (1) the tool would be useful to help them manage their
courses/students; (2) The tool was easy to use; (3) They had a positive percep-
tion towards using the tool; (4) They would use the tool if it was available in
their workplace; (5) The visualizations provided were informative; (6) The color
scheme helped them understand how serious the students’ situation was and; (7)
The vocabulary used was appropriate.

We believe the proposed process and tool are a step towards augmenting
human intelligence with artificial intelligence in the education area. However, we
noticed that some situations require more research and experiments, for example:
what is the ideal balance between human and artificial intelligence for making
pedagogical decisions? Does this balance change in different contexts? Does the
experience of the instructor affect his/her interest in more or less control over
the pedagogical decisions they make and the technology support they receive?
We will research these and other questions in future works.
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Abstract. Adaptive math software supports students’ learning by targeting spe-
cific math knowledge components. However, widespread use of adaptive math
software in classrooms has not led to the expected changes in student achieve-
ment, particularly for raciallyminoritized students and students situated in poverty.
While research has shown the power of human mentors to support student learn-
ing and reduce opportunity gaps, mentoring support could be optimized by using
educational technology to identify the specific non-math factors that are disrupt-
ing students’ learning and direct mentors to appropriate resources related to those
factors. In this paper,we present an analysis of one non-math factor—reading com-
prehension—that has been shown to influencemath learning.We predict math per-
formance using this non-math factor and show that it contributes novel explanatory
value in modeling students’ learning behaviors. Through this analysis, we argue
that educational technology could better address the learning needs of the whole
student bymodeling non-math factors.We suggest future research should take this
learning analytics approach to identify the many different kinds of motivational
and non-math content challenges that arise when students are learning from adap-
tive math software. We envision analyses such as those presented in this paper
enabling greater individualization within adaptive math software that takes into
account not only math knowledge and progress but also non-math factors.

Keywords: Math education · Reading comprehension · Opportunity gap ·
Cognitive tutor · Additive Factors Model · Gaming ·Wheel spinning

1 Introduction

1.1 Opportunity Gaps in Mathematics Education

Math software can accelerate—and even double—the rate of student learning in math-
ematics by identifying the specific knowledge components students have not mastered
and delivering individualized instruction accordingly [1, 2]. These types of gains have
been replicated across topics and contexts [3–6], leading to increasingly widespread use
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in schools [7]. Based on such results and a sense of excitement around the possibili-
ties of individualized learning through technology, many school districts have invested
significant resources to bring educational technology into classrooms.

As schools adopt educational technology, however, many are not seeing the changes
in student achievement expected based on results from laboratory and controlled class-
room experiments. Despite the success of adaptive math software in supporting learning
outcomes, there is evidence that challenges in math learning go well beyond issues
with math [8, 9], particularly for racially minoritized students and students situated in
poverty. Racial and economic opportunity gaps prevent millions of American students
from realizing their potential, but researchers have struggled to identify effective solu-
tions to these longstanding problems [10–12]. Although some studies have found that
math software supports learning outcomes for all students [13], educational technology
is rarely designed to address existing inequities in access and opportunity, and high vari-
ation in students’ use of educational technology produces additional opportunity gaps.
This suggests an important gap in current research: although we have powerful adaptive
methods to teach students math, these programs are typically based solely on math per-
formance even though we know that students’ math knowledge is not the only factor in
understanding math outcomes.

1.2 AI Support for Personalized Mentoring

Recent research suggests that intensive, personalized mentoring may provide a fruitful
avenue for reducing racial and economic gaps in learning opportunities and outcomes.
In one study, fifth through seventh-grade students who participated in a two-year men-
toring program targeting attendance and engagement were absent less often and failed
fewer courses by the end of the program [14]. Another mentoring study that focused on
intensive instructional support significantly improved students’ math achievement test
scores and grades while reducing course failure rates [15]. Both studies took place in
Chicago Public Schools with predominantly racially minoritized students and students
situated in poverty. These effects are encouraging, but the large resources required for
such intensive mentoring are prohibitive to many districts.

Mentoring support could be optimized by using artificial intelligence (AI) to help
mentors and caregivers assess the specific non-math factors that are disrupting students’
learning and direct them to appropriate resources related to those factors. In other words,
we could use the same kind ofAI that currently assesses and responds tomath knowledge
to address the non-math factors influencing student learning. To provide this type of
individualized non-math support, we must build better models.

In this paper, we present an analysis of one non-math factor—reading comprehen-
sion—that has been shown to influencemath learning [16–20]. Through this analysis, we
argue that educational technology could better address the learning needs of the whole
student by modeling non-math factors. We undertook this analysis in the context of
developing the Personalized Learning2 (PL2) app, which is designed to supplement the
individualized cognitive tutoring provided in existing adaptive math software with the
motivational and learning support capabilities of human mentors [21]. Data generated
through students’ use of math software could provide evidence for differentiating moti-
vational and cognitive barriers to engagement and learning. Using this data, we aim to
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identify the many different kinds of motivational and non-math content challenges that
arise when students are learning from adaptive math software and to adapt the PL2 app
to help mentors support students through those challenges. The app currently focuses
on data about students’ math performance in math software to guide mentors to appro-
priate resources, but analyses such as those presented in this paper could enable greater
individualization that takes into account not only math knowledge and progress but also
non-math factors.

1.3 Reading Comprehension and Math Performance

We focus on reading because comprehending math text requires more than numerical
fluency. Although reading a math story problem is different from reading a work of
fiction, reading comprehension plays an important role in comprehending math texts
[16]. Students’ technical reading skills (i.e., word recognition and decoding, adaptive
reading method, speed) predict their skills solving math word problems [17]. The role
of reading comprehension in understanding math texts without symbols is similar to
its role in understanding non-math texts, but math texts with symbols appear to require
more specialized reading skills [18] and present more challenges than non-math texts
[19]. This suggests the importance of both generalized reading skills and content-specific
math reading skills for understanding symbolic math story problems.

Reading comprehension may have a cumulative effect in constraining math learning.
A study that used third-graders’ reading comprehension scores to predict math problem
solving, math conceptual knowledge, and math computation skills through eighth grade
showed that reading comprehension predicted the rate of growth across all three math
components, evenwhen controlling for third-grademath achievement [20]. These results
suggest that failure to support students’ reading comprehension can impact the trajectory
of their math learning, but the role of reading comprehension in learning from math
software is still an open question. In the current study, we aim to further examine the
hypothesized role reading comprehension may have in constraining math learning.

1.4 Current Study

Our data were gathered through a popular educational technology platform used in
classrooms around the United States that serves as a good example of an evidence-
based, adaptive math software. Although we use reading comprehension in this adaptive
math software as a test case, the ultimate goal is that our approach could be used to
identify a range of non-math factors across many educational technologies. We explore
the following research questions:

RQ1: Does a measure of reading comprehension extracted from math software relate
to math performance in the software? We hypothesize that reading comprehension,
as measured by performance in a non-math software tutorial, will be correlated with
performance in the math modules of the same software. We predict that our measure of
reading comprehension will not be correlated with non-performance behaviors, such as
math hint use, because we hypothesize that we are not measuring an underlying, general
behavior in the math software.
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RQ2: Does the reading performance measure constrain growth from math learn-
ing opportunities? We will assess students’ learning by modeling growth from each
additional practice opportunity, and we hypothesize that our measure of reading
comprehension will be associated with less growth.
RQ3: Is the reading performance measure distinct from established measures of student
behaviors in math software? To determine whether the reading performance measure is
simply capturingother student behaviors,wewill assess the relationbetweenourmeasure
of reading comprehension andwheel spinning and gaming.Wheel spinning occurs when
a student fails to demonstrate mastery of a skill after a long time, typically indicating
that they do not have the skills or support to advance [22]. Gaming occurs when students
attempt to take advantage of the design of the software to get the correct answer without
thinking carefully or learning, such as exploiting hints or clicking through multiple-
choice answers until they find the correct response, and it typically involves making a
large number of mistakes in a short amount of time [23]. If reading comprehension is
highly correlated with these other measures, it may suggest that our measure of reading
comprehension is simply detecting wheel spinning or gaming behaviors, since both can
be associated with poor performance and learning. We hypothesize that our measure
may be moderately correlated with gaming, as poor reading comprehension could lead
to attempts to solve the problems without carefully reading them, but that it will not be
strongly correlated with either, suggesting it is also detecting something unique.

2 Methods

2.1 Participants and Design

We analyzed two datasets: a smaller dataset with more detailed step-level data from the
math software (Dataset 1) and a larger dataset with less detailed, problem-level data
from the same software (Dataset 2). Dataset 1 contained data from 67 students from
seven schools, including one public school and six charter schools in an urban area in
the United States. Within the participating schools, more than 80% of students identified
as racially minoritized and 80% qualified for free or reduced lunch. Students were in
6th, 7th, 8th, or 10th grade. Dataset 2 contained data from 197,139 students enrolled
in middle school math across multiple schools across the United States. All students in
both datasets used the same adaptive math software.

2.2 Materials and Procedure

Anonymized data were collected from students’ math software use. Our analysis focused
on two module types in the software. The first was an introductory module focused on
orienting students to the software through brief instructional text and questions about
the text. Performance on the tutorial questions was selected as a measure of reading
comprehension because it contained no math content; instead, students read about the
math software and answered comprehension questions. For example, one page of the
tutorial contained the following: “An Explore Tool is an interactive model that lets
you explore math ideas on your own. These tools let you see different ways to model
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your mathematical thinking.” After reading the full text, students saw a list of questions
including the following: “I can learn by playingwith anExploreTool,which is a(n) _____
that can help me model mathematical thinking,” with “interactive model” available as
one of five multiple-choice answers. There were 24 tutorial questions, and most students
completed all of them.

Performance on all other modules was used as a measure of math comprehension.
Questions targeted a variety of math concepts depending on students’ grade level and
instructors’ choices of assignments. Content across modules was typically presented in
the form of math story problems. The number of math problems completed varied by
student depending on a number of factors including time spent in the math software and
problem type.

3 Results

3.1 Student Performance in Math and Reading Content

First, we examined Dataset 1 students’ performance on the math content and reading
(non-math tutorial) content separately, looking at the number of problems completed,
accuracy, and hint use. This initial inspection of the data allowed us to determinewhether
both sources of data (Math and Reading Content) provided adequate individual variation
to allow for investigation of the RQs in the following sections.

All data focused on students’ first attempt on a problem. Onmath problems, students
completed an average of 218.9 problems with an average accuracy rate of .54 and an
average of 36.4 hints requests on their first attempts (Fig. 1a–c, Fig. 2a). On the reading
problems, only four students completed fewer than the full 24 items available. Students
had an average accuracy rate of .67 and used an average of only 1.27 hint requests on
their first attempts (Fig. 1d–f, Fig. 2c). Two-tailed, paired-sample t-tests indicated that
students had significantly higher accuracy rates, t(66)= 4.38, p< .001, and significantly
lower hint use, t(66) = 5.55, p < .001, when they were completing the reading content
compared to the math content. Overall, these analyses suggest students’ behavior in
both reading and math portions of the tutor is sufficiently varied, and that the reading
content is sufficiently different from the math content as demonstrated by differences in
accuracy and hint behavior.

3.2 Is Reading Performance Related to Math Performance?

First, we assessed whether reading assistance scores predicted math assistance scores
(RQ1). Assistance scores represent the level of support a student required to complete
a learning opportunity. If the student completed the step correctly the first time, the
assistance score would be 0; every hint or incorrect answer until the correct response
added one assistance point to the score. Thus, higher scores mean greater assistance to
complete the step, whereas lower scores mean lower assistance levels and potentially
correct responses on the first try. A linear regression showed that assistance scores on the
reading content explained 10%of the variance in assistance scores on themath content, r2

= .51, t(65) = 2.74, p = .008 (Fig. 2a). We also examined the relation between reading
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Fig. 1. Histograms for the number of math (a) and reading (d) problems completed, overall math
(b) and reading (e) accuracy, and math (c) and reading (f) hints requests in Dataset 1.

Fig. 2. Correlation between reading assistance score and (a) math assistance score, (b) number
of math problems completed in Dataset 1, and (c) math hint use.

assistance and progress, as measured by the number of math problems completed. A
linear regression showed that reading assistance explained 6% of the variance in the
number of math problems completed, r2 = .548, t(65) = 2.04, p = .046 (Fig. 2b).
Finally, to test whether reading assistance would fail to predict something that we did
not hypothesize to be dependent on reading comprehension, we assessed the relation
between reading assistance and math hint requests. Reading assistance did not explain
a significant level of variance in average number of math hint requests on first attempt,
r2 = .51, t(65) = −0.34, p = .74 (Fig. 2c).

To further understand how performance in the reading tutorial module relates to
or constrains later performance during math learning (RQ2), we investigated how well
students learned math from each added math practice opportunity using regression mod-
els. We investigated student learning using the Additive Factors Model (AFM), which
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extends item-response theory to include a growth or learning term. In short, AFM pre-
dicts, for each assessment opportunity, the probability of correctly answering a problem
given the student’s baseline easiness and the number of opportunities with each knowl-
edge component. We compared a baseline of AFM with a version of AFM (AFM-R)
that included an added parameter to take into account the student’s performance in the
reading tutorial section of the tutor. In essence, this model took into account not only
students’ a priori easiness with knowledge components but also a priori easiness with
reading materials.

Overall, AFM-R provided a better fit to the data than the baseline AFM (X2 (1)
= 19.61, p < .001; see Table 1), suggesting that reading assistance has an impact on
math learning.Moreover, consistent with the previous finding, requiringmore assistance
during the reading portion of the tutor was related to worse math learning, β = −2.55,
z = 4.82, p < .001.

Table 1. Model comparison for AFM vs. AFM-R.

Model DF AIC BIC logLik

AFM 6 31191 31240 −15590

AFM-R 7 31174 31231 −15580

3.3 Is Reading Accuracy Related to Other Negative Student Behaviors While
Learning Math?

Having established that performance in the pre-math reading activities was related to
subsequentmath performance and learning, we turn our attention towhether reading per-
formance is related to other unproductive student behaviors, specifically wheel spinning
and gaming (RQ3). We predicted that poor reading ability might be related to gaming
behavior (specifically many errors in a short period of time), but not to wheel spinning
(specifically indicators of effort without progress). Students with poor reading compre-
hension may advance in the tutor without trying, making them likely to display gaming
behaviors but not wheel spinning.

For this analysis, we used existing models of wheel spinning [22] and gaming [24,
25] to determine for each knowledge component whether each student’s behavior could
be classified as wheel spinning or gaming. We calculated a proportion of wheel spinning
and gaming events out of all knowledge components for each student and related that
proportion to performance in the reading portion of the tutor. As predicted, we saw that
worse reading performance was related to more gaming events, r2 = .45, p < .001, but
not related to wheel spinning behavior, r2 = .05, p = .69 (see Fig. 3).

3.4 Does This Relation Scale and Generalize?

To test the generalizability of our results, we investigated whether the relation between
reading and math performance that we observed in the small dataset generalized and
scaled to a larger sample.
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Fig. 3. Correlation between reading assistance score and (a) the proportion of gaming events and
(b) the proportion of math wheel spinning events in Dataset 1.

Using Dataset 2, we extracted the same measures of reading and math performance
used for our Dataset 1 analyses. Overall, our findings generalized to a larger dataset (see
Fig. 4). Students with higher assistance scores during the reading section performed
worse (higher assistance scores) in the subsequent math section, r2 = 0.39, t(197136)
= 186.35, p < .001 (Fig. 4a), and completed fewer problems, r2 =−0.07, t(197136)=
−30.433, p < .001 (Fig. 4b). However, contrary to what we saw in the small Dataset 1,
we found that students who required greater assistance during the reading portion also
requested more hints during the math portion, r2 = 0.27, t(197136)= 127.03, p < .001
(Fig. 4c).

Fig. 4. Correlation between reading assistance score and (a) math assistance score, (b) number
of math problems completed, and (c) math hint use in Dataset 2.
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4 Discussion and Conclusion

4.1 Overview

Educational technology offers opportunities for students to engage in adaptive learning
but does not always lead to positive learning gains. When the technology does not
consider the whole student, ignoring key factors that influence learning, it often falls
short of helping students reach their optimal potential. Racially minoritized students and
students situated in poverty are especially susceptible to being left behind. Technologies
must do better to go beyond math content and address the other factors that influence
performance. In this study, we provide a first look at using a non-math module within
a prominent educational technology to identify an important factor that may negatively
impactmath learning: reading comprehension. In doing so, our goal was to determine if a
measure of reading comprehension within a math software predicted math performance
in the same software, restricted growth from learning opportunities, and differed from
other measures of student behaviors.

Overall, our results regarding reading comprehension andmath learningwere similar
to those found in previous literature: reading accuracy has an impact on math perfor-
mance [16–20]. Our study expands on this literature, however, by demonstrating that a
module within an adaptive educational technology platform can be used to identify stu-
dents who may need assistance during reading, which, if provided, could support future
math learning. Typical software of this nature falls short in identifying potential issues
beyond content understanding. Our results show the importance of integrating novel
modules that target other non-content aspects of math learning. Moreover, we were able
to show that lower reading performance was related to more gaming behavior, but not
to wheel spinning behavior. This suggests that students may attempt to take advantage
of the system (e.g., exploiting multiple-choice responses) due to difficulties in reading.
Finally, we were able to scale up and generalize our findings related to performance from
our original dataset (n = 67) to a much larger dataset (n = 197,139). Unfortunately, we
did not have detailed (i.e., transaction-level) data for the larger dataset; therefore, we
could not attempt to generalize the gaming and wheel spinning findings.

4.2 Contributions

This study contributes to our understanding of how students learnmath using educational
technology. First, our findings demonstrate a new and potentially fruitful avenue for
measuring and responding to non-math factors in student learning. While we focused on
a text-heavy, non-math module to measure reading comprehension, we believe a similar
approach could detect other non-math factors in student data captured by educational
technology. Second, these results contribute to the theoretical understanding of how
non-math factors influence math learning. Our findings expand on prior research to
demonstrate that poor reading comprehension relates to fewer problems solved, less
learning from each new learning opportunity, and more gaming behaviors in online
math learning. Third, we have highlighted the benefit of adding a non-math, introductory
module to existing math content lessons to help identify potential issues with reading
comprehension. Doing so introduces a powerful resource to detect possible reading
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comprehension issues, which in turn could help designers and developers build and refine
tutoring systems that better consider the whole student. Finally, our study helps create
a way for tutors, mentors, and teachers (i.e., practitioners) to identify students whose
literacy needs may negatively affect their math performance. This practical application
addresses a need that is often overlooked in math learning. Moreover, a technological
solution to identifying these students frees up the time and resources of busy practitioners
who may need assistance in identifying these students on their own.

This is a first step toward supporting practitioners as they help students learn math by
addressing the needs of the whole student. Programs like PL2 can create support features
(e.g., resources, remediation) for students based on their needs [21]. Supporting reading
comprehension as well as students’ motivational and social needs could positively affect
educational factors such as attendance [26], enrollment in future math courses [27],
and performance on college admissions tests [28], which could in turn help address
opportunity gaps for marginalized populations of students.

4.3 Limitations

We argue that the results from the non-math (i.e., reading) module can be attributed
to reading comprehension due to the nature of the content. One limitation and idea
for future research is the unknown effect of motivated attention on learning math-free
content. Future researchers could measure the students’ attention during these sections
(e.g., through eye-tracking) to determine how attention factors into the results. Given that
there were no available student performance data outside the math software, we could
not validate our measures of reading and math performance with other measures; future
work would benefit from comparing these within-software measures to other reading
comprehension assessments and measure of math knowledge and growth. Due to the
lack of transaction data in the larger dataset, we were unable to generalize our findings
on gaming and wheel spinning. Nevertheless, we were still able to scale up our findings
related to reading and performance. Future research could examine more comprehensive
datasets as well as other educational technology software to assess the scalability and
generalizability of these measures and results.

4.4 Next Steps

Future research should focus on adding modules into new and existing tutor systems
and using them as detectors for students who may need help with reading comprehen-
sion. Once students have been identified, researchers and practitioners need to develop
support to address issues with reading comprehension. Researchers could then test the
effectiveness of the support and develop formulas for both detecting and improving
reading comprehension in adaptive math software, similar to the way such technolo-
gies currently detect and support math knowledge. Similarly, research can focus on the
specific pieces of word problems (e.g., length, individual word difficulty) that are most
detrimental to student performance. Using this information, designers and developers
can provide more support when students encounter these problems or structure modules
to reduce these issues (e.g., reduce wordiness). Researchers could also experiment with
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the effectiveness of flagging students based on their performance and hint use in the non-
math modules to determine if awareness of additional literacy needs can improve later
math performance. Finally, more research should take this learning analytics approach to
identify additional detectors to address the needs of the whole student. There are many
other important learning factors that can affect math performance (e.g., utility value,
technological literacy), and building detectors for these factors increases the likelihood
of addressing challenges and improving math learning.

4.5 Conclusion

In this study,wewere able to connect reading comprehension tomath learning,measuring
both constructs within an adaptive math software. This type of analysis will improve
our understanding of how math learning interacts with non-math factors and individual
differences among students. Building a better theory of how math and non-math factors
predict learning will help to clarify the best forms of support for student learning and
provide a roadmap for developing tutoring systems that consider the whole student when
creating adaptation.
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Abstract. In recent years, Reinforcement learning (RL), especially
Deep RL (DRL), has shown outstanding performance in video games
from Atari, Mario, to StarCraft. However, little evidence has shown that
DRL can be successfully applied to real-life human-centric tasks such as
education or healthcare. Different from classic game-playing where the
RL goal is to make an agent smart, in human-centric tasks the ultimate
RL goal is to make the human-agent interactions productive and fruit-
ful. Additionally, in many real-life human-centric tasks, data can be noisy
and limited. As a sub-field of RL, batch RL is designed for handling sit-
uations where data is limited yet noisy, and building simulations is chal-
lenging. In two consecutive classroom studies, we investigated applying
batch DRL to the task of pedagogical policy induction for an Intelli-
gent Tutoring System (ITS), and empirically evaluated the effectiveness
of induced pedagogical policies. In Fall 2018 (F18), the DRL policy is
compared against an expert-designed baseline policy and in Spring 2019
(S19), we examined the impact of explaining the batch DRL-induced
policy with student decisions and the expert baseline policy. Our results
showed that 1) while no significant difference was found between the
batch RL-induced policy and the expert policy in F18, the batch RL-
induced policy with simple explanations significantly improved students’
learning performance more than the expert policy alone in S19; and 2) no
significant differences were found between the student decision making
and the expert policy. Overall, our results suggest that pairing simple
explanations with induced RL policies can be an important and effective
technique for applying RL to real-life human-centric tasks.

Keywords: Deep reinforcement learning · Pedagogical policy ·
Explanation

1 Introduction

In interactive learning environments such as Intelligent Tutoring Systems (ITSs)
and educational games, the human-agent interactions can be viewed as a tempo-
ral sequence of steps [2,20]. Most ITSs are tutor-driven in that the tutor decides
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what to do next. For example, the tutor can elicit the subsequent step from
the student either with prompting or without (e.g., in a free form entry window
where each equation is a step). When a student enters an entry on a step, the ITS
records its success or failure and may give feedback (e.g. correct/incorrect mark-
ings) and/or hints (suggestions for what to do next). Alternatively, the tutor
can choose to tell them the next step directly. Each of such decisions affects the
student’s successive actions and performance. Pedagogical policies are used for
the agent (tutor) to decide what action to take next in the face of alternatives.

Reinforcement Learning (RL) offers one of the most promising approaches
to data-driven decision-making for improving student learning in ITSs. RL algo-
rithms are designed to induce effective policies that determine the best action for
an agent to take in any given situation so as to maximize a cumulative reward.
In this work, we use batch RL, an RL sub-field that deals with the inability to
explore the environment. In batch RL, all the learning is done from a fixed-length
dataset of samples that were obtained by interacting with the environment using
some unknown behavior policy. A number of researchers have studied applying
RL to improve the effectiveness of ITSs (e.g. [7,8,11,21,25,38,39,46,47]). While
promising, prior work has two limitations: communication and agency.

One limitation of applying RL to ITSs is communication. In recent years,
RL, especially Deep RL, has achieved superhuman performance in several com-
plex games [3,49,50,55]. However, different from the classic game-play situations
where the ultimate goal is to make the agent effective, in human-centric tasks
such as ITSs, the ultimate goal is for the agent to make the student-system inter-
actions productive and fruitful. Thus, we argue it is important to communicate
the agent’s pedagogical decisions to students. Prior work on applying RL to ITSs
primarily focused on inducing effective pedagogical policies for the tutor to act,
but the tutor rarely explains to students why certain pedagogical decisions are
made. As far as we know, no prior research has been done on exploring the effec-
tiveness of explaining pedagogical policies to students. On the other hand, prior
research in Self-Determination Theory (SDT) suggests that explanations could
be a powerful tool to increase student engagement and autonomy in learning.
For example, it was shown that explaining the benefits of learning a specific
task to students would increase their sense of control over their own learning
[9,19,22,43,48,57], which can improve their learning outcomes.

The other limitation of RL in ITSs is agency. Rather than inducing effective
pedagogical policies for the tutor to act, would it be more effective if we just let
students make certain pedagogical decisions? Prior research has shown that it is
desirable for students to experience a sense of control over their own learning,
which could enhance their motivation and engagement [9,19] and improve their
learning experience [43,57]. People are more likely to persist in constructive
activities, such as learning, exercising, or quitting smoking, when they are given
choices and make decisions. Thus, we investigated the effectiveness of letting
students make pedagogical decisions vs. the traditional tutor-driven approach.

In short, we 1) examined the impact of simple explanations of tutor ped-
agogical decisions on student learning, and 2) investigated the effectiveness of
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letting students be the decision makers. Through two empirical classroom stud-
ies, our results show that batch RL-induced policies could improve students’
learning performance more than our expert-designed baseline policy only if sim-
ple explanations are present; and no significant difference was found between the
student decision making and the baseline policy. In summary, our work suggest
that neither letting the tutor make effective pedagogical policy alone nor letting
students make decisions alone may be sufficient to improve student learning, a
more effective way is to let the tutor make effective pedagogical decisions while
communicating some of the decisions to students through simple explanations.

2 Background and Related Work

Prior Research in Applying RL to Pedagogical Policy Induction can
be roughly divided into classic RL vs. Deep RL approaches. The latter is highly
motivated by the fact that the combination of deep learning (neural networks)
and novel reinforcement learning algorithms has made solving complex problems
possible in the last decade. For instance, the Deep Q-Network (DQN) algorithm
[29] takes advantage of convolutional neural networks to learn to play Atari
games observing the pixels directly. Since then, DRL has achieved success in
various complex tasks such as the games of Go [49], Chess/Shogi [50], Starcraft
II [55], and robotic control [3]. One major challenge of these methods is sample
inefficiency where RL policies need large sample sizes to learn optimal, general-
izable policies. Batch RL, a sub-field of RL, aims to fix this problem by learning
the optimal policy from a fixed set of a priori-known transition samples [24],
thus efficiently learning from a potentially small amount of data and being able
to generalize to unseen scenarios.

Prior research using classic RL approaches has applied both online and
batch/offline approaches to induce pedagogical policies for ITSs. Beck et al. [6]
applied temporal difference learning to induce pedagogical policies that would
minimize the students’ time on task. Similarly, Iglesias et al. applied Q-learning
to induce policies for efficient learning [15,16]. More recently, Rafferty et al.
applied an online partially observable Markov decision process (POMDP) to
induce policies for faster learning [33]. All of the models described above were
evaluated via simulations or classroom studies, yielding improved student learn-
ing and/or behaviors as compared to some baseline policies. Offline or batch RL
approaches, on the other hand, “take advantage of previous collected samples,
and generally provide robust convergence guarantees” [44]. Thus, the success
of these approaches depends heavily on the quality of the training data. One
common convention for collecting an exploratory corpus is to train students on
ITSs using random yet reasonable policies. Shen et al. applied value iteration
and least square policy iteration on a pre-collected exploratory corpus to induce
a pedagogical policy that improved students’ learning performance [46,47]. Chi
et al. applied policy iteration to induce a pedagogical policy aimed at improv-
ing students’ learning gain [7]. Mandel et al. [25] applied an offline POMDP to
induce a policy which aims to improve student performance in an educational
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game. All the models described above were evaluated in classroom studies and
were found to yield certain improved student learning or performance relative
to a baseline policy. Wang et al. applied an online DRL approach to induce a
policy for adaptive narrative generation in educational game using simulations
[56]; the resulting DRL-induced policies were evaluated via simulations only. In
this work, based on the characteristics of our task domain, we focus on batch RL
with neural networks, also known as batch Deep Reinforcement Learning (batch
DRL) [13,18] and evaluate their effectiveness in classroom studies.

The Impact of Explanation on Learning: This work is highly motivated by
large amount of research in Self-Determination Theory (SDT) investigating the
benefit of explanations [10,17,35,41,42]. When teaching correlations to college
students in a teacher training program, Jang et al. found that the students who
were told the benefit of learning correlation (Explanation), were significantly
more engaged than those who were not told (No-Explanation), in that the for-
mer showed more on-task attention, effort, and persistence than the latter [17].
Similarly, on a routine tedious task of letter copying, the Explanation students
were significantly more engaged in the task than the No-Explanation peers who
were not told [42]. Additionally, Reeve et al. compared the impact of Expla-
nation vs. No-Explanation [35] on learning Chinese and found that the former
self-reported significantly higher engagement in the task on a post-survey.

While explanations in much of the prior work above were human gener-
ated, in recent years an increasing amount of research has explored on how
to automatically generate explanations. For example, Eslami et al. [12] inves-
tigated users’ perspective on revealing advertisement algorithms and personal
information used for generating personalized advertisements. As expected, users
preferred interpretable explanations about how and why an ad was personalized
to their identity. Additionally, Rago et al. [34] and Palanca et al. [31] explored
using argumentation to provide explanations for recommender systems. More
closely to this work, Barria-Pineda & Brusilovsky [5] and Tsai & Brusilovsky [52]
explored explaining recommendations in education and social recommender sys-
tems and showed great promises. Despite these results, Kunkel et al. [23] showed
human-generated explanations were rated more highly for recommendations and
trustworthiness than machine-generated explanations based on item similarity.
In [10], Deci et al. examined the impact of several factors on the effectiveness of
explanations. As an example, they investigated two levels of controllingness: a
high controlling statement would be something like “You must watch me solve
this problem” while a low controlling counterpart sentence would be “Now you
can watch me solve this problem”. Results showed that low controlling expla-
nations can be significantly more effective to enhance participants’ engagement
than high controlling ones and more importantly, the former can lead to a posi-
tive correlation between engagement and the desired learning outcomes. Inspired
by this result, in this work our simple explanations are human-generated and to
do so, we followed the low controlling principle.

Students as Decision Makers on ITS: While engaging students in decision-
making within an ITS is not novel, prior research has focused on letting students
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dictate content by letting them decide what problem they wish to solve [20] but
not how they wished to solve it. On one hand, letting students make their own
decisions would allow them to experience a sense of control over their learning,
which could enhance their motivation and engagement [9,19] and further improve
their learning experience [43,57]. On the other hand, prior research has shown
that students, especially low performing ones, may not always have the necessary
meta-cognitive skills to make effective pedagogical decisions [1]. In that research,
Aleven & Koedinger studied students’ help-seeking behaviors in the Cognitive
Tutor where students request help when they do not know what step to take
next. Help is provided via a sequence of hints that progress from general top-
level hints to bottom-out hints that tell them exactly what action to take. They
found that students do not always have the necessary metacognitive skills to
know when they need help. Roll et al., by contrast, examined the relationship
between students’ help-seeking patterns and their learning [37], and found that
asking for help on challenging steps was productive while help-abusing behavior
(asking for help as a way to avoid work) was correlated with poor learning.

3 Methods

In the conventional RL, an agent interacts with an environment E over a series
of decision-making steps, which can be framed as a Markov Decision Process
(MDP). At each timestep t, the agent observes E in state st; it chooses an action
at from a discrete set of possible actions; and E provides a scalar reward rt and
evolves into next state st+1. The future rewards are discounted by the factor
γ ∈ (0, 1]. The return at time-step t is defined as Rt =

∑T
t′=t γt′−trt′ , where T is

the last time-step in the episode. The agent’s goal is to maximize the expected
discounted sum of future rewards, also known as the return, which is equivalent
to finding the optimal action-value function Q∗(s, a) for all states. Formally,
Q∗(s, a) is defined as the highest possible expected return starting from state
s, taking action a, and following the optimal policy π∗ thereafter. It can be
calculated as Q∗(s, a) = maxπ E[Rt|st = s, at = a, π] and Q∗(s, a) must follow
the Bellman Equation. We follow the batch RL formulation in that we have a
fixed-size dataset D consisting of all historical sample episodes, each formed by a
sequence of state, action, reward tuples (s0, a0, r0, ..., sT , aT , rT ). We assume that
the state distribution and behavior policy that were used to collect D are both
unknown. We explored two batch DRL algorithms: Deep Q-Network (DQN) and
Double Deep Q-Network (Double DQN).

DQN [29] is fundamentally a version of Q-learning which uses neural net-
works to approximate the true Q-values. In order to train the DQN algorithm,
two neural networks with equal architectures are employed: one for calculating
the Q-value of the current state and action Q(s, a), and another neural network
to calculate the Q-value of the next state and action Q(s′, a′). The former is the
main network and its weights are denoted θ and the latter is the target network,
and its weights are denoted θ−. Equation 1 shows its corresponding Bellman
Equation. It is trained through gradient descent to minimize the squared differ-
ence of the two sides of the equality. Online DQN uses an experience replay buffer



Exploring the Impact of Simple Explanations and Agency on Batch DRL 477

to store the recently collected data and to uniformly sample (s, a, r, s′) steps from
it. When inducing our batch RL policy, the whole D is in the experience replay
buffer.

Q(s, a;θ) = E
s′∼E

[r + γ max
a′

Q(s′, a′;θ−)] (1)

Double-DQN was proposed by Van Hasselt et al. [53] by combining the idea
behind Double Q-Learning [14] with the neural network advances of the DQN
algorithm to form Double-DQN. The intuition behind it is to decouple the action
selection from the action evaluation. To achieve this, the Double-DQN algorithm
uses the main neural network for action selection first, and then the target net-
work evaluates its Q-value. This trick has been proven to significantly reduce
overestimations in Q-value calculations, resulting in better final policies. With
this technique, the modified Bellman Equation becomes:

Q(s, a;θ) = E
s′∼E

[r + γQ(s′, argmax
a′

Q(s′, a′,θ);θ−)] (2)

Last but not least, in order to address the credit assignment problem caused
by having delayed rewards in our ITS, we used the Gaussian Processes (GP)
approach in [4] to estimate immediate rewards based on delayed rewards.

4 Pedagogical Decisions and Pedagogical Policy Induction

Pedagogical Decisions: When comparing the effectiveness of students’ ped-
agogical decision-making vs. batch DRL, we strictly control the instructional
content to be equivalent for all students in that our ITS gives students the
same training problems and we focused on tutorial decisions that cover the same
domain content: Problem-Solving (PS) versus Worked Examples (WE). In PS,
students are given tasks or problems to complete either independently or with
assistance of ITSs while in WE, students are given detailed solutions.

A great deal of research has investigated the impacts of WEs vs. PSs on
learning. [26–28,30,36,40,45,51]. Generally speaking, it is shown that studying
WEs can significantly reduce the total time on task while keeping the learning
performance comparable to doing PS [26–28]; alternating WE and PS can be
more effective than PS only [26,30,36,40,45,51]. Despite prior work, there is lit-
tle consensus on how they should be combined effectively and thus when deciding
between PS and WE, most existing ITSs always choose PS [20,54]. Since there
is no widespread consensus on how or when each alternative should be used, we
apply batch DRL to derive pedagogical strategies directly from empirical data.

Training Corpus: Our training corpus consists of 786 historical student-ITS
trajectory interactions over 5 different semesters, one trajectory per student. All
students go through a standard pretest, training on ITS, and posttest procedure
and each student spent around 2–3 h on the ITS, completing around 20 train-
ing problems. To represent the learning environment, 142 state features from
five categories were extracted. More specifically, we have 10 Autonomy features
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describing the amount of work done by the student; 29 Temporal features includ-
ing average time per step, the total time spent, the time spent on PS, the time
spent on WE, and so on; 35 Problem Solving features describing the difficulty
of the problem, the number of easy and difficult problems solved, and so on; 57
Performance features including the number of incorrect steps, and the ratio of
correct to incorrect rule applications and so on; 11 Hint-related features includ-
ing the total number of hints requested etc. The primary goal of our RL-induced
pedagogical policy is to improve student Learning Gain, measured by the differ-
ence between the posttest and the pretest scores with a range of [−200,+200].
Since in RL immediate rewards are often more efficient than delayed ones, here
we applied Gaussian Processes (GP) [4] to infer the immediate rewards for non-
terminal states from the final delayed reward (students’ Learning Gain).

Policy Induction: For both DQN and Double DQN, we explored using Fully
Connected (FC) vs. Long Short Term Memory (LSTM) to estimate the action-
value function Q. Our FC network consists of four fully connected layers of 128
units each, with Rectified Linear Unit (ReLU) as the activation function. Our
LSTM architecture consists of two layers of 100 LSTM units each with ReLU
activation functions, and a fully connected layer as output. Additionally, for both
FC and LSTM, for a given time t, we explored three input settings: 1) k = 1
that use only the last state st; 2) k = 2 that uses to use the last two states: st−1

and st; and 3) k = 3 for using st−2, st−1 and st. L2 regularization was employed
to get a model that generalizes better to unseen data and avoid overfitting. We
trained our models for 50,000 iterations, using a batch size of 200. To select the
best pedagogical policy, we compared all of the different models (FC vs. LSTM,
DQN vs. Double-DQN, k = {1, 2, 3}) using Per-Decision Importance Sampling
(PDIS), which is one of the most robust off-policy evaluation methods [32]. The
policy with highest PDIS value was selected to be our final pedagogical policy. In
this work, our final pedagogical policy was DQN with an LSTM network using
k = 3 observations.

Simple Explanations: The design of our explanation is rather straightforward.
We followed the “low-controllingness” principle described in [10]. Our explana-
tions are action-based in that they focused on explaining the benefit of taking
the subsequent tutorial actions. Our simple, action-based explanations were pri-
marily based on the prior research on learning science and cognitive science. For
example, a large amount of research showed that studying WEs can be more ben-
eficial if it is a problem involving new level of difficulty or content [27,28] and
thus if the current problem was the first problem in a level, our action-based
explanation for WE would state “The AI agent thinks you should view this
problem as a Worked Example to learn how some new rules work.” Our simple
action-based explanation for other WE states: “The AI agent thinks you would
benefit from viewing this problem as a worked example.” Similarly, if the policy
decided that the next problem should be a PS, then the message shown stated
something like: “The AI agent thinks you should solve this problem yourself.”
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5 Experiment Setup

Our ITS is a graph-based logic tutor named Deep Thought, which is used in the
undergraduate Discrete Mathematics class at North Carolina State University.
In this ITS, students must sequentially apply rules to logic statement nodes in
order to derive the conclusion node and solve the problem. The tutor consists of
seven levels, with three to four problems per level. Here level 1 is our pretest and
level 7 is our the posttest. All students experience the exact same problems in the
same way in the pretest and posttest. The pedagogical policy decides whether
to represent each problem in the training levels 2–6 as a Worked Example (WE)
or as a Problem Solving (PS). Our baseline policy is designed by the instructor
who has more than 20 years experience on the subject, referred to as the Expert-
designed baseline policy in the following. Based on our ITS, prior instructional
experience, and prior research on WE vs. PS, our Expert Baseline policy is
basically an alternative WE-PS policy with additional constraints: on each level,
students must complete at least one PS and one WE.

Two studies were conducted: one in Fall 2018 and the other in Spring 2019,
denoted F18 and S19 respectively. In both studies, our ITS was given as one of
the regular homework assignments and students had one week to complete it.

For F18, 84 students were randomly assigned to the two conditions using
stratified sampling based on the pretest score to ensure that the two conditions
had similar prior knowledge. As a result, we have N = 41 students for the DQN
condition and N = 43 for the Expert baseline condition. Here the tutor in the
DQN condition followed the induced DQN policies described in Sect. 5 without
explanations. Our stratified sampling resulted in balanced incoming competence
in that no significant difference between the pretest scores for the DQN (M =
59.23, SD = 30.63) and the Expert conditions (M = 57.42, SD = 30.95): t(82) =
0.27, p = 0.79. For S19, 83 students were randomly assigned to three conditions
through stratified sampling: DQN + Explanation (DQN+Exp) (N = 30), Student
Choice (N = 30), and the Expert baseline (N = 23). In the Student Choice
condition, once a next problem is presented the students will make decisions on
whether they want the ITS to show them how to solve the next problem (WE)
or they want to solve the next problem themselves (PS). A one-way ANOVA test
showed no significant difference in the pretest scores among the three conditions:
F (1, 81) = 0.26, p = 0.61. More specifically, we have DQN+Exp (M = 54.2,
SD = 30.0), Student Choice (M = 50.3, SD = 31.3), and Expert Baseline
(M = 49.9, SD = 35.8). In short, our results suggested that all conditions were
balanced in incoming competence in both F18 and S19.

6 Results

6.1 F18 Study

Overall, no significant difference was found on the posttest between DQN
(M = 48.6,SD = 22.7) and Expert-Baseline (M = 54.0,SD = 18.3). A
one-way ANCOVA analysis on posttest scores using Condition as factor and
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Table 1. Results of S19 study by condition.

PostTest Training time (mins.) PS count WE count

DQN+Exp 41.61 (25.07) 93.0 (109.6) 9.40 (2.42) 6.10 (1.21)

Student choice 34.24 (20.09) 75.5 (104.0) 8.06 (3.15) 7.46 (2.14)

Expert baseline 29.44 (16.43) 65.8 (87.7) 8.13 (1.74) 7.34 (1.26)

pretest scores as a covariate shows that there was no significant difference:
F (1, 81) = 1.76, p = 0.19. Moreover, much to our surprise, no significant dif-
ferences were found on the total training time nor on the total number of WE
and PS students experienced between the two conditions. So, our DQN-induced
bath DRL policy is as effective as the Expert baseline policy.

6.2 S19 Study

The S19 study had two goals: one was to determine whether DQN with simple
explanations (DQN+Exp) can be more effective than the Expert baseline policy,
and the other was to determine whether Student Choice can be more effective
than either the DQN+Exp or the Expert baseline policy. In the following, we
will first compare the three conditions in terms of learning performance and then
perform a log analysis. Table 1 shows a comparison of the posttest, total training
time, the total number of PSs, and the total number of WEs among the three
conditions, showing the mean (and SD) for each value.

Learning Performance. A one-way ANOVA test using the condition as a
factor showed a significant difference in the posttest scores: F (1, 81) = 4.47, p =
0.037, with means (SD) shown in the first column in Table 1 for each condition.
Furthermore, a one-way ANCOVA analysis on posttest scores using Condition
as factor and pretest scores as a covariate confirms a significant difference in the
posttest scores: F (1, 80) = 4.25, p = 0.042. Contrast analysis revealed that the
DQN+Exp condition significantly outperformed the Expert condition: t(79) =
2.02, p = 0.046; but no significant difference was found between the DQN+Exp
and Student Choice conditions: t(79) = 1.30, p = 0.20 or between the Student
Choice and Expert conditions: t(79) = 0.81, p = 0.42. In short, our results showed
that on the posttest scores, DQN+Exp significantly our-performs the Expert
condition, and no significant difference was found between the Student Choice
and Expert conditions.

Training Time and Log Analysis. The second column in Table 1 shows the
average amount of total training time (in minutes) students spent on the tutor
for each condition. Despite the differences among the three conditions, a one-way
ANOVA test using the condition as a factor showed no significant difference in
time on task among them: F (1, 81) = 0.97, p = 0.33.

The last two columns in Table 1 show the average number of WEs and PSs
that each condition experienced in S19. When comparing the DQN+Exp and
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the Expert conditions, a t-test showed a significant difference in the number of
PS: t(51) = 2.22, p = 0.031, and a significant difference in the number of WE:
t(51) = 3.62, p = 0.0007, with the DQN condition seeing about one more PS and
one less WE than the Expert condition. When comparing the DQN+Exp and
Student Choice conditions, a t-test showed a marginal difference in the number
of PS t(58) = 1.84, p = 0.07, and a significant difference in the number of WE
t(58) = −3.04, p = 0.003, with the DQN+Exp condition seeing about one more
PS and one less WE than the Student Choice group. A contrast analysis also
showed a significant difference in the number of PS (t(80) = 2.02, p = 0.047)
and in the number of WE t(80) = −3.26, p = 0.001 between the DQN+Exp and
Student Choice conditions.

Much to our surprise, the Student Choice condition behaved in a very similar
way to the Expert condition in that no significant difference was found between
the two conditions on the number of PS: t(51) = −0.09, p = 0.93. Similarly,
no difference was found on the number of WE: t(51) = −0.251, p = 0.802.
To summarize, our log analysis shows that DQN+Exp generated more PS and
less WE than the other two conditions and no significant difference was found
between the Student Choice and Expert conditions.

7 Discussion and Conclusion

This work demonstrates one potential way to combine data-driven methods such
as DRL with other educational strategies that increase student autonomy and
agency, and observe that it can benefit student learning in our Intelligent Tutor-
ing System. In this work, we investigated the impact of 1) providing students
with simple explanations for the decisions of a batch DRL policy and 2) the
impact of students’ pedagogical decision-making on learning. We focused on
whether to give students a WE or to engage them in PS. We strictly controlled
the domain content to isolate the impact of pedagogy from content.

In two classroom studies, we compared the batch DRL policy (with and
without explanations), the Student Choice pedagogical decision making and the
Expert baseline. Overall, our results show that when deciding whether to app-
roach the next problem as PS or WE, both batch DRL-induced policies and
Student Choice can be as effective as the Expert baseline policy; however by
combining batch DRL-induced policies with simple explanations, we can signif-
icantly improve students’ learning performance more than our expert-designed
baseline policy. One potential hypothesis is that simple explanations can promote
students’ buy-in to pedagogical decisions made by batch DRL induced policies.
However, further survey studies are needed to determine this hypothesis. Inter-
estingly, our results showed that students can make as effective problem-level
decisions as the Expert baseline policy. Surprisingly, students selected as many
PSs and WEs as the Expert policy but the variance of decisions in Student
Choice is larger than those of Expert Baseline.

We believe that the results from this research can shed some light on how
to apply DRL for human-centric tasks such as an ITS, and further research is
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needed to fully understand why simple explanations work and whether they can
indeed be applied effectively to other domains. Furthermore, in this work, we
have only explored straightforward, human-expert designed explanations, which
can sometimes be limiting. In the future, personalized, data-driven explanations,
will make the system more powerful and provide more accurate explanations.
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Abstract. Learning Analytics Dashboards (LADs) make use of rich and
complex data about students and their learning activities to assist edu-
cators in understanding and making informed decisions about student
learning and the design and improvement of learning processes. With the
increase in the volume, velocity, variety and veracity of data on students,
manual navigation and sense-making of such multi-dimensional data have
become challenging. This paper proposes an analytical approach to assist
LAD users with navigating the large set of possible drill-down actions to
identify insights about learning behaviours of the sub-cohorts. A distinc-
tive feature of the proposed approach is that it takes a process mining
lens to examine and compare students’ learning behaviours. The process
oriented approach considers the flow and frequency of the sequences of
performed learning activities, which is increasingly recognised as essential
for understanding and optimising learning. We present results from an
application of our approach in an existing LAD using a course with 875
students, with high demographic and educational diversity. We demon-
strate the insights the approach enables, exploring how the learning
behaviour of an identified sub-cohort differs from the remaining students
and how the derived insights can be used by instructors.

Keywords: Learning analytics dashboards · Process mining
in education · Drill down analysis · Intelligent dashboards

1 Introduction

The use of online learning systems provides a rich set of data that makes it pos-
sible to extract information about student learning behaviours. This information
provides an opportunity for understanding and improving education, which has
motivated many universities to invest in learning analytics dashboards (LADs)
[6,28,41,48]. These dashboards generally provide visualisations of student data,
collected from a variety of educational systems, to assist educators in making
decisions [41]. However, the increasing popularity and improvement of online
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learning systems over the years has resulted in a significant increase data in
terms of its volume, velocity and variety. Consequently, making sense of data in
LADs has become more challenging compared to earlier years [43].

In some domains, a common approach to navigating large complex multi-
dimensional data sets is to use drill-downs [39]. A drill-down operation, in an
educational setting, allows users to explore the behaviour of sub-cohorts of stu-
dents by progressively adding filters. Manual drill-down operations can generally
be used by instructors to effectively investigate curiosity-driven questions that
are related to student attributes. For example, it is possible to use a drill-down
filter to find how international or female students have performed compared to
other students. However, instructors may also be interested in finding which
drill-down filters lead to insightful results. As an example, an instructor may
be interested in finding drill-downs that identify a sub-cohort of students who
have significantly different behaviour or performance compared to the rest of the
class. Given the availability of a large number of potential drill-downs, manually
finding drill-downs that provide insights is a challenging task [1,42].

In this paper, we report on extending LADs with a functionality that pro-
vides recommendations of insightful drill-downs. Our approach takes a process
mining lens to examine students’ learning process considering three aspects of
their learning behaviour: performed learning activities, the frequency of each
activity and the order in which the activities are performed. Utilising the learn-
ing process, rather than focusing on aggregated engagement metrics which is
the common approach in LADs [41], is increasingly being recognised as essential
to understanding and optimising learning [33,46]. In our approach, the notion
of an insightful drill-down is defined as a set of filtering rules that identify a
sub-cohort of students whose learning processes are most differentiated from
the rest of the students. Our key contribution is the design and development
of an algorithm, which we refer to as Learning Process Automated Insightful
Drill-Down (LP-AID). LP-AID employs a process mining method called Earth
Movers’ Stochastic Conformance Checking (EMSC) [29] to compute the dis-
tance between learning processes of different cohorts to recommend insightful
drill-downs.

We present a practical application of LP-AID in an existing LAD called
Course Insights that provides users with a manual drill-down functionality.
Specifically, we apply LP-AID to data from a course with 875 students, with
high demographic and educational diversity, to demonstrate the drill-down rec-
ommendations and to explore the possible insights that can be derived from
them. Our initial findings, and instructor feedback on our approach, suggest
that LP-AID can be integrated into LADs to provide automated and insightful
drill-down recommendations.

2 Related Work

Learning Analytics Dashboards (LADs). Several recent systematic liter-
ature reviews have been published on LADs [6,41]. Schwendimann et al. [41]
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provide a comprehensive picture of the common data sources that are used by
LADS, which include clickstream logs (e.g., [12,14,25,34]), data related to learn-
ing artefacts (e.g., [11,16,20,24,45]), survey data (e.g., [4,35,40]), institutional
databases (e.g., [9,19,23]), physical user activities (e.g., [16,31,44]) and data cap-
tured from external educational technologies (e.g., [10,26,27,36]). To make sense
of these data LADs provide a variety of visualisation options. Schwendimann et
al. [41] outlines the different types of visualisations that are commonly used in
LADs, which include bar charts, line graphs, tables, pie charts, and network
graphs. While these visualisations simplify the process of making sense of large
data sets, they naturally abstract away much of the details related to learning
processes, which are essential to understanding and optimising learning [17]. We
aim to address this challenge by employing process mining approaches to guide
drill-down operations and identification of insightful data.

Smart Drill-Down Approaches. The concept of a drill-down operation was
initially introduced in the context of OLAP data cubes. They enabled analysts
to explore a large search space to identify exceptions and highlight interesting
subsets of data [39]. In recent years, drill-downs have also been employed in
analytical dashboards. While their use has enabled users to explore large data-
sets, they provide users with too many drill-down choices and also the potential
for incorrect reasoning due to incomplete exploration [1]. Several attempts to
address these challenges have been made. Many of the proposed methods for
discovering insightful drill-downs focus on detecting anomalies in small data
portions (e.g. [1,37,38]) while some focus on identifying interesting differences in
larger data subsets (e.g. [21]). In this paper, we take a similar approach as [42] by
letting LAD users request drill-down recommendations at a level of granularity
they are interested in, thus reducing drill-down choices without affecting user
autonomy. While [42] recommends drill-downs based on the difference between
cohorts’ attribute values, this paper bases the recommendations on the difference
between cohorts learning processes.

Educational Process Mining. Process mining aims to derive information
from historical organisational behaviour, recorded in event logs [2]. Educational
process mining uses data from educational contexts to discover, analyse, and
visualise educational and learning processes, for instance to analyse whether
students’ behaviour corresponds to a learning model, to detect bottlenecks in
the educational process, to identify patterns in processes [7], to study adminis-
trative processes [18] and to study student learning through their interactions
with online learning environments [3,8,49]. Prior work [7] indicates that current
educational process mining solutions have not adequately provided support for
allowing users to identify and investigate cohorts of interest.

3 Automated Insightful Drill-Down Recommendation

Next, we introduce our method for recommendation of insightful drill-down cri-
teria in LADs, by first introducing relevant concepts and defining our problem
statement formally, presenting our approach, and illustrating it with an example.
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3.1 Notation and Problem Statement

Assume that a LAD has access to an event log L that captures a collection of
traces T = {t1, . . . tN}, each representing a student. A trace ti has a unique
identifier (e.g. a student ID), a set of features F = f1, . . . fM where fim = v
presents v being assigned to feature fi for user si and a sequence of events
Ei = 〈ei1, . . . eiLi

〉 representing the learning path taken by student si, where the
trace length Li can vary for each student. Each event eiLi

has a timestamp and
a label representing the learning activity.

A rule r expresses a condition on a feature (e.g., ‘program’ = ‘Computer Sci-
ence’ ). For a feature with numerical values in an event log L, the corresponding
rule value can be a range instead of a single value (e.g., ‘age’ > 25). A drill-
down criterion σ is defined as the conjunction of a set of rules (e.g., ‘program’
= ‘Computer Science’ ∧ ‘age’ > 25). A drill-down criterion σ is said to cover
a student sn, if all rules in σ are satisfied for the corresponding features of sn.
Consequently, applying σ to L leads to the selection of a set of students S′ ⊆ S
such that σ covers each sn ∈ S′. We define the coverage of a drill-down criterion
Cσ as |S′|

|S| , which is the fraction of students S covered in the resulting sub-cohort
S′. Using this notation, our problem can be formalised as follows:

Formal Problem Statement: Given an event log L, a set of features F ′ ⊆ F ,
a constant 0 ≤ α ≤ 1 and a constant k, find a set of drill-down criteria Σ =
{σ1, . . . σk} that uses features in F ′ such that each criterion σk: (1) has a larger
coverage than α (i.e., Cσk

> α), (2) selects a sub-cohort of students S′ that
deviates most from the remaining students on their taken learning path L′ in
terms of events, relative frequency of each different learning path and the order
in which the activities have been triggered (i.e. the distance between the sub-log
L′ and the remaining students L \ L′).

3.2 Proposed Approach

We present our approach by first providing a high-level overview of the under-
lying algorithm, and then describing the automatic drill-down process using an
example. Our algorithm takes the students event log as an input and returns a
set of drill-down criteria annotated with the learning process distance and stu-
dents’ population coverage as the output. The algorithm examines all the pos-
sible drill-down actions to find the drill-downs that result sub-cohorts with the
most deviated learning processes. Algorithm 1 provides the high-level pseudo-
code of our proposed approach. It takes four parameters as input: the event log
L, the features F ′, the minimum coverage α and the number of drill-down cri-
teria to be recommended k. The output of the algorithm is a set of top k scored
drill-down criteria represented by Σ. The algorithm consists of three main blocks
as described in the remainder of this section.

Create Drill-Down Tree. The BuildTree function takes two parameters as
input: the event log L and the list of selected features F ′, and returns a drill-down
tree. The function obtains all the values of each feature in F ′ that exist within
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Algorithm 1. Finding a set of k smart drill-down criteria
function Main(Log L, Features F ′, Minimal Coverage α, k)

T ← BuildTree(L, F ′) � Create drill-down tree
PruneAndScore(T , L, α)
topK ← topDistances(T, k) � Sort and return the top K drill-down criteria
return nodeToDrillDown(topK)

end function
function PruneAndScore(Log L, Node parentNode, Log parentL, Minimal Coverage α) �
Score nodes and prune the tree

for childNode ∈ parentNode.children do
cohortSublog ← ObtainSublog(childNode, parentL)
if (|cohortSublog|/|L| ≤ α then

remove childNode
else if (|L| − |cohortSublog|)/|L| ≤ α then

remainderL ← ObtainRemainderSublog(L, cohortL)
childNode.distance ← −1
PruneAndScore(L, childNode, cohortL, α)

else
remainderL ← ObtainRemainderSublog(L, cohortL)
childNode.distance ← computeDistance(cohortL, remainderL)
PruneAndScore(L, childNode, cohortL, α)

end if
end for

end function

L and generates a tree-like collection of nodes T , where each node represents
a splitting rule r for one feature. Each path in the tree consists of a set of
feature-value pairs.

Score Nodes and Prune the Tree. The tree embodies all possible drill-down
paths, of which not all will necessarily result in a cohort with the required mini-
mum size (i.e. α). PruneAndScore traverses the tree recursively to examine all
the possible drill-down actions. ObtainSubLog takes each node, which is a pair
of feature/value pairs, and its parent’s event log parentL as input and filters
parentL to obtain a sub-log cohortL containing only the data of the sub-cohort.
The sub-cohort’s size is checked for the covered fraction of the student popu-
lation to not be smaller than α and not greater than 1 − α. If the condition
is met, the main event log L is filtered to obtain the event log of the rest of
students remainderL. Otherwise, the node is pruned (if coverage ≤ α) or dis-
carded from scoring (if coverage coverage ≥ 1 − α). For each drill-down path,
computeDistance takes the pair of the sub-cohort and the remaining sub-logs as
input and computes the distance between them using Earth Movers’ Stochastic
Conformance Checking [29].

Sort and Return the Top K Drill-Down Criteria. topDistances takes the
scored drill-down Tree T and k as input and returns k recommendations. To pick
the k nodes, this function uses a solution set ranking function that maximizes
diversity, similar to the approach by [47]. As an alternative we could pick the
k highest scored nodes. However, diversifying the recommendation allows us
to provide a wider range of insightful drill-downs. Our algorithm converts the
chosen nodes to a set of drill-down criteria Σ, each annotated with distance score
and returns them as a recommendation to users.
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3.3 Example Illustration

In this section, we illustrate our approach using an event log with a small set
of 6 students, and k = 1 and α = 0.2. We explain how our algorithm is used to
find the most insightful drill-down criteria (namely the criteria that identify a
sub-cohort with the highest distance) for the event log given in Fig. 1a,b with
students {S1 · S6} and the feature set: {Residential Status, Assessment} as F ′.
Our example course has learning activities of: {Lecture 1, Lecture 2, Quiz A,
Lecture 3, Lecture 4, Quiz B and Lecture final}, which were made available to
students weekly in the mentioned order. The trace of triggered learning events
by each student is shown in Fig. 1a. Each event is represented by an activity
label and the timestamp.

Mid Grade
Coverage = 0.16

[Pruned]

Domes c and High Grade 
coverage = 0.16

[Pruned]

Interna onal and High Grade 
coverage = 0.16

[Pruned]

Domes c and Low Grade 
coverage = 0.16

[Pruned]

Domes c
Coverage =  0.5

{d = 41%} 

P1 Interna onal 
Coverage =  0.5

{d = 41%}

P2 Low Grade
Coverage = 0.5

{d= 38%}

P3 High Grade 
Coverage = 0.33

{d = 35%} 

P4

Interna onal and Low Grade 
coverage = 0.33

P5

Drill-Down 
Tree

{d = 57%}

(c) Drill-down tree annotated with the coverage and the measured distance.

(e) Sub-cohort’s Learning Process

Lecture 1
2

Lecture 2
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Lecture 4
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Lecture final

2
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2Lecture 3
1

Lecture 1
4

Lecture 2
4
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4

Lecture 3
4

Quiz B
4
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4
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(f) Rest of Students’ Learning Process

# Assessment Residential Status
S1 Low Grade International
S2 Low Grade International
S3 High Grade International
S4 High Grade Domestic
S5 Low Grade Domestic
S6 Mid Grade Domestic

(b) Students Features

(a) Students Learning Events

(d) The drill-down recommenda on interface in [blinded LAD name].

# Time Stamp Activity
S1 19-02-02T23:02:32 Lecture 1
S1 19-04-02T23:02:33 Lecture 2
S1 19-06-02T23:02:34 Lecture 4
S1 19-08-02T23:02:36 Lecture final
S1 19-09-02T23:02:35 Quiz A
S1 19-10-02T23:02:35 Quiz B

S2 19-02-01T23:02:32 Lecture 1
S2 19-03-02T23:02:32 Lecture 2
S2 19-04-02T23:02:33 Lecture 3
S2 19-06-02T23:02:34 Lecture 4
S2 19-8-02T23:02:36 Lecture final
S2 19-09-02T23:02:35 Quiz A
S2 19-10-02T23:02:35 Quiz B

S3 19-02-02T23:02:32 Lecture 1
S3 19-03-02T23:02:33 Lecture 2
S3 19-04-02T23:02:33 Quiz A
S3 19-05-02T23:02:34 Lecture 3
S3 19-06-02T23:02:34 Lecture 4
S3 19-07-02T23:02:35 Quiz B
S3 19-09-02T23:02:36 Lecture final

S4 19-02-02T23:02:32 Lecture 1
S4 19-03-02T23:02:33 Lecture 2
S4 19-04-02T23:02:33 Quiz A
S4 19-05-02T23:02:34 Lecture 3
S4 19-06-02T23:02:34 Lecture 4
S4 19-07-02T23:02:35 Quiz B
S4 19-09-02T23:02:36 Lecture final

S5 19-01-02T23:02:33 Lecture 1
S5 19-02-02T23:02:33 Lecture 2
S5 19-03-02T23:02:33 Quiz A
S5 19-04-02T23:02:33 Lecture 3
S5 19-05-02T23:02:34 Quiz B
S5 19-07-02T23:02:35 Lecture final

S6 19-02-02T23:02:32 Lecture 1
S6 19-03-02T23:02:33 Lecture 2
S6 19-04-02T23:02:33 Quiz A
S6 19-05-02T23:02:34 Lecture 3
S6 19-06-02T23:02:34 Quiz B
S6 19-08-02T23:02:35 Lecture final

Fig. 1. Illustrative example of LP-AID applied on a sample learning event log.

Our algorithm initially extracts all values of F ′ that are present in the
event log and generates the drill-down tree T . Next, the tree is traversed depth
first; based on each node’s filtering criteria, the event log is divided into the
sub-cohort’s sub-log and the remaining students’ sub-log. The nodes covering
less than α = 0.2 of the student population are pruned. For instance, the
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node [Assessment=‘Mid Grade’] is pruned as only one student (i.e. 0.16 cov-
erage) adheres to this criteria. As a result, 5 actionable drill-down paths remain
(shown in Fig. 1c); P1: [Residential Status=‘Domestic’], P2: [Residential Sta-
tus=‘International’], P3: [Assessment = ‘Low Grade’], P4:[Assessment = ‘High
Grade’ and P5: [Assessment = ‘Low Grade’ and Residential Status = ‘Inter-
national’]. Our algorithm computes the distance between the sub-logs for each
drill-down path and annotates each node by the distance d and the coverage
(as shown in Fig. 1c). The drill-down path P5, which has the highest difference
(57%), is the resulting recommendation. Figure 1d shows the LP-AID interface
in Course Insights, representing the input and the resulting recommendation,
including the drill-down criteria, coverage and distance.

To understand the difference between the learning behaviour of the sub-
cohort and the remaining students, here we used Disco [15] to visualise the
underlying learning processes of each group. Disco generates a Process Map
in which: boxes represent activities, numbers in the boxes represent frequency
of each activity, arrows represent sequence the activities were performed in (i.e.
the control flow), numbers on the arrows represent frequency with which the two
connected activities were performed, and thickness of the arrows the activities
represent relative frequencies. For the demonstration purpose we highlighted the
activities that were performed in a different order in red. To compare the two
modelled learning processes, we look at the difference between the activities,
their frequencies and their order. For instance, Fig. 1e shows that Lecture 3 was
skipped by one of the two students in the cohort, while Fig. 1f shows that the
remaining students have done this activity. From a control flow perspective,
Quiz A and Quiz B were performed as the last activities by the cohort while the
remaining students performed these quizzes during the semester.

4 Practical Application

This section presents an application of our approach using an existing LAD
called Course Insights, which is equipped with manual drill-down functionality1.
We first provide background on Course Insights and its main segments. We
then use data from a course that was integrated with Course Insights to: 1)
explore the recommended drill-downs generated by LP-AID; 2) visualise the
process deviation for an example drill-down, and 3) report on the comments
and feedback that was provided by the course coordinator upon reviewing our
recommendations.

Course Insights. Course Insights (CI) is a LAD that provides filterable and
comparative visualisations of students’ aggregated daily activities. CI aims to
provide actionable insights for instructors by linking data from several sources,
including a Student Information System, Blackboard [5], edX Edge [32], and
embedded learning tools such as Echo360 [13] and Kaltura [22] to create a multi-
dimensional educational data set. CI is embedded in the learning management
1 Approval from our Human Research Ethics Committee (#2019002181) was received

for conducting this study.
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system of The University of Queenslandand is available to all instructors. It is
equipped with filtering functionality to enable instructors to drill-down into the
data to explore the behaviour of sub-cohorts of students. Figure 2a illustrates the
filter interface, which allows users to select attributes from demographic, assess-
ment, engagement and enrolment features. When a filter is applied, statistical
data and a graph representing the filtered versus unfiltered distribution of the
target feature is presented (as shown in Fig. 2b).

Demographic Enrolment Engagement Assessment

Match AllYesequalsBrand New

Mid Sem - MCQ Less than 50

FILTER

(a) Filtering Interface (b) Demonstra on of filtered vs. overall students for a target 
feature.

AND

AND

APPLY FILTER RESET FILTER

Fig. 2. The Course Insights learning analytics dashboard.

Drill-Down Recommendations in Action. We applied our technique to an
introductory calculus and linear algebra course offered in 2019 to 875 undergrad-
uate students from 16 programs. Following our data cleaning process, we were
left with a dataset on 739 students. As the input for our approach, the event
log includes three types of learning activities: (1) Accessing course materials:
access to course materials by chapter. (2) Submission of formative quiz: submit-
ting chapter based practice quizzes. Practice quizzes were formative assessments
and thus optional. (3) Review summative assessment solutions: access to chapter
based workbook solutions, released weekly. Workbooks were summative assess-
ments, assigned weekly with a weekly requirement to submit their answer-sheets
(paper based submissions).

As the features F ′, we selected the attributes Brand New, Final Exam,
Gender, Program, and Residential Status. A total of 2447 drill-down actions
were possible for this data set. Table 1 presents the recommendations generated
for this course using respectively small (α = 0.05), medium (α = 0.1) and large
(α = 0.03) coverage.

Visualising Sub-cohort Learning Process Deviations. To investigate what
insights can be derived from the recommended drill-downs, we used process
discovery methods for the identified sub-cohort and the remaining students.
Here, we demonstrate the insights derived from the recommended drill-down
(1) (shown in Table 1). This drill-down results in a sub-cohort of: Brand new
= ‘Yes’ and Residential status = ‘International’ and Final exam = ‘High’ and
Gender = ‘Male’. According to the LP-AID result, this sub-cohort’s learning
process is 72% different from the remaining students. To investigate the differ-
ence between the two learning processes we visualised the underlying process of
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the sub-cohort (shown in Fig. 3a) and the remaining students (Fig. 3b). Each box
in the map is an activity which is labeled by the action type and the relevant
chapter (e.g., Formative Quiz—chapter1). To more clearly visually distinguish
the three types of learning activities in the process map, we use color coding. In
the sub-cohort’s process, the arrows in between the three different types of activ-
ities indicate switching between the types of learning tasks. Such switching can
be an indication that the three types of tasks were being performed every week
before the next chapter’s activities were made available. In contrast, the under-
lying process of the remaining students shows that each activity type related
to chapters 9 to 18 (highlighted in Fig. 3b) are mainly performed sequentially,
which is indicative of students performing them at the end of the semester when
all tasks were available.

Table 1. Resulting recommendations generated by our approach.

α Recommended Drill-Down Criteria Coverage Distance

0.05 (1) [Brand new = ‘Yes’ and Residential status = ‘International’
and Final exam = ‘High’ and Gender = ‘Male’]

0.055 72%

(2) [Brand new = ‘Yes’ and Residential status = ‘International’
and Gender = ‘Female’]

0.051 70%

0.1 (3) [Brand new = ‘Yes’ and Residential status = ‘International’
and Program = ‘Bachelor of Engineering (Honours)’]

0.10 69%

(4) [Brand new = ‘Yes’ and Residential status = ‘International’
and Gender = ‘Male’]

0.12 68%

0.3 (5) [Final exam = ‘High’] 0.33 64%

(6) [Brand new = ‘Yes’ and Residential status = ‘Domestic’] 0.69 63%

To further investigate our initial findings, we used Disco’s Events’ graph
to compare the distribution of the events over the semester. Figures 3c and d
demonstrate that the sub-cohort was more active during the semester compared
with the remaining students. Furthermore, the average number of events per
student was 36 in the sub-cohort and 25 for the remaining students, which is
significantly different (p = 0.0006). To conclude our analysis, the identified sub-
cohort had a high rate of activities throughout the semester compared to the
remaining students. One of the common features of this cohort was their high
performance in the final exam, which might be correlated with their developed
learning process. Some other differences perceived by comparing the two process
maps are that the Formative Quiz of chapter 8 was not performed by any students
of the sub-cohort, Solution Review of chapters 2, 7, 8 and 9 were the highest-
rated activities by the sub-cohort, and that Solution Review of chapters 1, 2, 6,
7, 8 and 9 were the highest-rated activities by the remaining students.

Feedback From the Instructor. We presented the reported drill-down rec-
ommendations and the process visualisations to the instructor of the course to
capture their feedback and comments on the findings. Their feedback can be
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(a) Sub-cohort’s Learning Process (b) Rest of Students’ Learning Process

Ev
en

ts

Log meline
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Log meline

(c) Sub-cohort’s Number of Events Over the Semester (d) Rest of students’ Number of Events Over the Semester

Submission of Forma ve QuizAccess to Course Materials Review Solu on of Summa ve 

Chapter 9 to Chapter 18 related ac vi esChapter 9 to Chapter 18 related ac vi es

Fig. 3. Learning behaviours of filtered students (by the recommended drill-down) vs.
the rest of students.

summarised as follows: (1) While the instructor had access to Course Insights
throughout the semester, they rarely used it and generally found it to be over-
whelming. They considered the large number of potential drill-down options
within the platform as the main reason that made using the platform over-
whelming; (2) Findings of behaviour that have led to successful outcome can be
used for positive deviance [30] purposes. The instructor indicated they would like
to share Fig. 3 as a recommended pattern of successful learning with their stu-
dents as evidence that consistent engagement with learning activities throughout
the semester is related to better outcomes. (3) Providing the ability to receive
drill-down recommendations based on a rule (e.g., ‘midterm’ < 50) would be
useful. The instructor indicated that they would like to understand deviations
in low performing and at-risk students to help them pass the course.
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5 Conclusion and Future Work

The OLAP drill-down operation is commonly used in data-driven dashboards to
enable users to meaningfully zoom in to explore data in more detail. For LADs,
this operation can be used to enable educators to identify a sub-cohort of stu-
dents who deviate from class norms and who may require special attention. In
this paper, we provide an automated method called LP-AID for finding and rec-
ommending a set of insightful drill-down actions to guide data exploration. To
support understanding of student learning approaches, we take a process min-
ing lens to examine and compare student learning behaviour in terms of their
learning activities, the relative frequency of each different learning path and the
order in which the activities were performed. It examines all drill-down paths
and uses Earth Movers’ Stochastic Conformance Checking to score the ‘insight-
fullness’ of each path by examining the distance between learning behaviours of
two cohorts. Furthermore, we use a solution set ranking function that maximizes
diversity to rank and select the drill-down paths for instructors to consider.

We illustrated how LP-AID can be used as part of a LAD to guide the
discovery of insightful drill-downs. The learning processes of students based on
the recommended drill-downs were visualised and compared, highlighting how
the learning process of the identified sub-cohort deviates from the remaining
students. Feedback from the instructor of the course suggests that manual drill-
downs without guidance can be overwhelming, and that insights gained from
the recommendations can be shared with students to encourage change (i.e.
application of positive deviance). Future work aims to embed LP-AID in Course
Insights and to partner with course instructors through co-creation to investigate
(1) the practical implications of our approach and refine it accordingly; (2) the
most effective way to present the drill-down recommendations to instructors and
(3) the most appropriate visualisation method(s) to present the learning process
deviation of sub-cohorts to instructors.
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Abstract. Cognitive control and rule learning are two important mech-
anisms that explain how goals influence behavior and how knowledge
is acquired. These mechanisms are studied heavily in cognitive science
literature within highly controlled tasks to understand human cognition.
Although they are closely linked to the student behaviors that are often
studied within intelligent tutoring systems (ITS), their direct effects on
learning have not been explored. Understanding these underlying cog-
nitive mechanisms of beneficial and harmful student behaviors can pro-
vide deeper insight into detecting such behaviors and improve predictive
models of student learning. In this paper, we present a thinkaloud study
where we asked students to narrate their thought processes while solving
probability problems in ASSISTments. Students are randomly assigned
to one of two conditions that are designed to induce the two modes of
cognitive control based on the Dual Mechanisms of Control framework.
We also observe how the students go through the phases of rule learning
as defined in a rule learning paradigm. We discuss the effects of these
different mechanisms on learning, and how the information they provide
can be used in student modeling.

Keywords: Cognitive control · Rule learning · Problem solving ·
Intelligent tutoring systems

1 Introduction

In ITS research, student behaviors that are associated with positive and negative
cognitive and motivational states are often used within student models to design
personalized adaptations. These states are often defined at a high level (e.g. gam-
ing the system, zoning out), while in cognitive psychology, cognitive states are
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studied at a much finer grain. We believe that identifying the parallels between
the low-level cognitive structures that are studied within controlled tasks in cog-
nitive science literature and the student behaviors associated with both positive
and negative cognitive and motivational states within ITS research will improve
our understanding of student learning and eventually help us design better stu-
dent models and ITSs. Two such lower-level cognitive processes are cognitive
control and rule learning.

Cognitive control is the basis of goal-directed behavior. It is defined as the
ability to adapt behavior depending on the current goals and online maintenance
of goal-related information [3]. In cognitive psychology, cognitive control’s role
in self-regulating behavior [16], focusing attention [19], and goal maintenance [4]
have been studied within controlled tasks. These are relevant in ITS research
in detecting various kinds of student behaviors. Examples include how students
inhibit their will to game the system in face of temptation [11], interfering with
student zoning out [12], and supporting self-regulated learning strategies [1].
Despite the fact that low-level cognitive structures that are studied in cognitive
science are the underlying mechanisms of these behaviors, these mechanisms
are rarely explored directly in the ITS literature. We hypothesize that identi-
fying these mechanisms could help us better understand student behaviors and
eventually help us design better detectors of them.

Rule learning consists of activities related to collecting instances of some
phenomenon and identifying commonalities, relationships, and rules from these
specific instances. These activities show themselves in the learning domain in
the induction and refinement processes that are introduced in [17]. Some exam-
ples for these processes are perception, generalization, discrimination, catego-
rization, and schema induction. These processes are linked to rule learning as
they also require abstracting regularities and relationships, and inducing rules
from them. ITSs support induction and refinement processes by giving timely
feedback, guiding students’ attention, and presenting worked examples in order
to achieve robust learning. However, again, the underlying cognitive mechanisms
of the processes are underexplored in this line of research.

As a first step, we investigate how these low-level cognitive mechanisms can
be detected within an ITS. More specifically, we are interested to discover how
cognitive control and rule learning present themselves within a real setting and
if they have direct effects on learning, addressing two research questions: 1) How
do phases of rule learning and modes of cognitive control manifest themselves in
problem solving? 2) Do different operation modes of cognitive control and the
different phases of rule learning have an effect on domain learning?

We designed a thinkaloud study where we instructed students to verbalize
their thoughts while solving probability problems in ASSISTments [15]. Stu-
dents were randomly assigned to one of the two conditions that were designed to
encourage them to use different modes of cognitive control [4], and we explored
differences in student behavior and learning. In addition, we designed the prob-
lems in a way that allows us to observe the phases of rule learning within a more
complex educational context.
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2 Background

2.1 Cognitive Control and Dual Mechanisms Framework

The Dual Mechanisms of Cognitive Control (DMC) framework [4] suggests that
cognitive control operates via two distinct modes: proactive and reactive control.
Proactive control is used when the goal-related information is actively main-
tained in order to prepare for cognitively demanding events. In contrast, in
reactive control, goal-relevant information is only retrieved in a “just-in-time”
manner and individuals rely on triggers to focus their attention back on the
goal-relevant information. Even though proactive and reactive control are not
considered to be mutually exclusive, people are likely to prefer one over the
other. This preference is caused by individual factors such as age [20], working
memory capacity [21,23], and external factors such as incentives [5], and the
working memory load the task introduces [22].

To assess the relative use of proactive and reactive control, the AX continu-
ous performance task (AX-CPT) has been used heavily [2,4,8]. In the AX-CPT,
participants respond to letter probes based on the previous letter cue. Partic-
ipants are instructed to provide a certain response if the cue-probe pair is an
“AX” pair, and a different response is required for any other letter sequences.
The performance of participants on specific letter sequences is indicative of their
usage of proactive and reactive control. Prior research have successfully induced
participants to utilize proactive or reactive control in the AX-CPT by strat-
egy training [5,13,14,20]. The study we describe in this paper was inspired by
this method. We test if a similar manipulation can successfully be applied to a
realistic learning task. Further, we investigate if utilizing one mode of cognitive
control influences learning.

2.2 Rule Learning

Rule learning includes investigating how humans go through phases of recog-
nizing instances and keeping them in memory, detecting the regularities, and
understanding the relationships between them [10]. The behaviors associated
with the phases of rule learning were studied within different versions of a rule
attainment task [6,7,10,18]. In one example, subjects are shown cards with
sequentially-numbered circles. Exactly one of the circles is blue. The subjects
must predict the position of the blue circle on the next card. In other words,
they should respond in a certain way if the position of the blue circle is changing
based on a rule. In all versions of the task, three main phases of rule learning
were identified based on how subjects respond to the stimuli presented. These
are rule search, rule discovery and rule following.

Rule Search. The first response with a new rule and all responses preceding
rule discovery are identified as the rule search phase.

Rule Discovery. The third correct response in a row indicates that the subject
discovered the rule.



Using Thinkalouds to Understand RL and CC Within an ITS 503

Rule Following. The streak of correct responses after rule discovery corre-
sponds to rule following.

This work investigates if students learn rules associated with mathematical
problems in the same way as in the rule learning paradigm. We identify possible
different patterns of rule learning that can occur in a real learning environment.

3 Task Design

We used ASSISTments [15] to design our task. It is an online tutoring system
that allows teachers to write problems with solutions, hints, and feedback. Stu-
dents are assisted by the system (either on demand or automatically) with hints,
scaffolding (i.e. breaking the problem down to steps), and feedback. Teachers can
get immediate feedback on students’ performance on the problems. We built a
problem set that consisted of 9 probability problems (3 calculating probability,
3 addition rule with non-mutually exclusive events, 3 multiplication rule with
dependent events). All problems were divided into 3 to 4 substeps. Participants
were not expected to solve the problem when they first saw it. Instead, they
were asked to rate their confidence level in solving the particular problem. When
the participants clicked on the “Next Problem”1 button after confidence rating,
they were shown the first substep to solve that problem in the same window (see
Fig. 1). Similarly, after each substep, participants were presented with the next
one until they reached the last substep that would lead them to the solution.
The reasoning behind this design is to observe how the participants maintain
the goal of the full problem when they needed to solve it in multiple steps.

3.1 Cognitive Control Manipulation

The participants were shown a prompt below the problem substep texts. The
prompt instructed, “Think about how this step relates to the goal of the prob-
lem” in the proactive condition to encourage active maintenance of the goal of
the full problem. In the reactive condition, it instructed, “Think about how you
are solving this step” in order to make the participants only pay attention to
what the substep tells them to do. The purpose of this is to induce proactive
or reactive control through strategy training similar to [14]. This allowed us to
observe how proactive and reactive control look like in a real problem-solving
environment. The participants who were prompted to relate the substeps to the
problem goal will be utilizing proactive control and the participants who were
prompted to only react to the substeps will be utilizing reactive control. An
example problem shown in Fig. 1.

1 ASSISTments does not allow one to change the interface elements such as button
text. Even though “next problem” sounds odd in this design as participants were
going to “next step”, we did not observe confusion among participants as they were
given time to practice with this design.
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Fig. 1. 1: Participants rate their confidence level in solving the shown problem when
they first see it. The system accepts all answers to confidence ratings as correct. 2:
When participant clicks on “Next problem” first substep of the problem was shown.
3: Participants see a prompt below the problem text in each substep to remember the
strategy they were trained to follow based on the condition they are assigned. 4: The
green bar shows if student took the available hints on the step. 100% means no hints
were taken. As students take more hints, the percentage decreases. (Color figure online)

3.2 Rule Learning Manipulation

To track how students go through the phases of rule learning, every problem
substep was assigned a rule. For example, for the problem given in Fig. 1, the
rules assigned to the substeps are: P (only A) = P (A) − P (A ∩ B) for substeps
1 and 2, and P (Aor B not both) = P (only A) + P (only B) for the final substep.
There were 7 distinct rules that were assigned to the problem substeps across
all problems. The students may see the same rule either within a problem (as in
the example) or across multiple problems. Participants saw each rule at least 3
times so that we would be able to track how they moved through phases of rule
learning over multiple occurrences of each rule.

4 Study

The main purpose of this paper is to investigate how cognitive control and rule
learning show themselves during problem solving and understand the effect of
these mechanisms on learning with an ITS. Within this section we describe a
thinkaloud study we designed in order to achieve these goals in more detail.
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20 undergraduate students (6 male) from the Northeastern US, between 18
and 23 years old (M = 19.45, SD = 1.27), were recruited via emails sent to
student mailing lists and flyers posted around university campuses. Our inclusion
criterion was having completed no more than two university-level math courses.
The study was a 1-hour session and participants were paid $10 compensation.

Participants solved the problems on ASSISTments version 1.0. They were
provided a pen and a scratch paper to make the calculations on paper if they
wished. They were also allowed to use the built-in calculator on the computer. We
recorded the computer screen and thinkalouds while participants solved problems
using a screen recording tool with audio.

After providing written consent, participants were introduced to ASSIST-
ments. Participants first solved a simple practice problem to get used to the
interface. We explained how they could submit answers and ask for hints as they
solved the practice problem. After the practice, participants took a pre-test con-
sisting of 6 probability problems. They solved these problems in “test mode” of
ASSISTments (no hints available). After the pre-test, we gave another practice
to the participants to prepare them for the thinkaloud session in which they were
randomly assigned to one of the two conditions named “Proactive” and “Reac-
tive”. Within the second practice, participants solved an example problem with
the prompts we described in Sect. 3.1 based on the condition they are assigned.
After this practice, participants solved the real problems and engaged in the
thinkaloud activity. After the thinkaloud session, participants took a post-test
that was isomorphic to the pre-test, then filled a demographic questionnaire.

5 Data Analysis

5.1 Data Coding

We coded the video recordings from the thinkaloud sessions using Atlas.ti soft-
ware. Each substep of the problem was coded. Our data had 532 substeps across
19 participants (1 participant was excluded from the analyses due to solving the
pre-test in “tutor mode” of ASSISTments). The codes consisted of six labels
related to the different modes of cognitive control and the phases of rule learn-
ing, and substeps could be given one or more labels. Two coders coded 20% of
the data independently. Cohen’s kappa was used to compare the ratings of the
two coders. The agreement was K = 0.70 for the labels associated with cognitive
control (relation to goal, saying answer, reacting), and K = 0.82 for the rule
learning labels (rule search, rule discovery, rule following). The labels we gave
the substeps are described below.

Relation to Goal. Substeps where the participant relates the current step to
the goal of the problem or where they repeat the goal explicitly (e.g. “This step
relates to the goal because it helps us eliminate the probability of owning both
a cat and a dog.”, “So, the goal of the problem is getting the probability of A
or B occurring but not both.”).
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Saying the Answer. Substeps where the participant says the answer but never
show how the answer relates to the goal of the problem (e.g. “The answer is 35.”,
“Total number of possible outcomes will just be number of prizes plus number of
blanks because there’s a possibility of getting either of those, and that is 35.”).

Reacting. Substeps where the participant reacts to a mistake or a hint (e.g.
“Ok it is wrong.”, “Oh, I see I did not have to do the multiplication, that was
just part of it.”).

Rule Search. Substeps where the participant is simply guessing the answer or
trying to figure out the right way to solve it (e.g. “I don’t quite remember how
to solve this but I’m going to try multiplying them before I take the hint.”,
“So, my first inclination is to do something with 0.3 and 0.4. I am going to try
multiplying them or maybe I should add them.”).

Rule Discovery. Substeps where the participant has just discovered a rule
(“Oh! So, we add the probability of just A and just B.”).

Rule Following. Substeps where the participant explains how they got to an
answer. Participants being in this state does not mean they follow the correct
rule. Sometimes they follow a rule they think is correct (e.g. “We multiply the
two probabilities together and that is 5/44.”).

5.2 Statistical Analyses

In order to test if the students in the experimental conditions are behaving
as expected, we conducted two-sample t-tests for each code. The results sug-
gested that the participants in the proactive condition related the problem
substeps to the goal significantly more than the ones in the reactive condi-
tion (t(17) = 2.49, p < 0.05). In contrast, participants in the reactive condi-
tion answered by simply saying the answer significantly more than the par-
ticipants in the proactive condition (t(17) = −2.66, p < 0.05). There was no
significant difference in reacting to hints or mistakes between two conditions
(t(17) = −0.55, p = 0.59). Table 1 summarizes these results. Overall, the results
suggest that our experimental conditions were successful.

Table 1. Mean (SD) of quotation labels between the experimental conditions. * indi-
cates p < 0.05.

Condition Relation to goal Saying the answer Reacting

Proactive 7.89 (9.93)* 17.44 (9.26) 3.33 (2.12)

Reactive 0.1 (0.31) 25.4 (1.96)* 3.8 (1.55)

We could successfully alter the student behavior in a way that reflects
proactive and reactive modes of cognitive control. But does using one of these
modes while problem solving result in better learning gains? We conducted a
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two-way repeated-measures ANOVA to compare the pre and post-test scores
between conditions. Results showed that there was no significant difference in
learning gain (difference between post-test and pre-test) between the proactive
(M = 0.48, SD = 0.18) and the reactive (M = 0.32, SD = 0.23) conditions
(F (1, 17) = 0.17, p = 0.68). Note that there was no significant difference in
students’ pre-test scores between the proactive (M = 0.42, SD = 0.24) and the
reactive (M = 0.48, SD = 0.18) conditions (t(16.44) = −0.69, p = 0.5). However,
time spent on problem substeps was significantly higher in the proactive condi-
tion (M = 21.43, SD = 12.89) than in the reactive condition (M = 17.06, SD =
11.19), (t(661.49) = 4.77, p < 0.001).

Next, we turn to rule learning. In our problem set, each problem substep was
assigned one rule and the students may go through multiple phases of rule learn-
ing solving one substep. We identified which rule learning phases the students
went through in one problem step based on the presence of the relevant labels
from thinkaloud data. Then we investigated patterns of rule learning phases
that the students follow across all substeps that are assigned the same rule. We
extracted one sequence of rule learning phases for each participant and rule type.
The unique sequences of these phases pointed out 3 different patterns (see Fig. 2
for examples) the students followed:

1) “Search, Discover, Follow” Students search for the rule that is assigned
to the problem step and discover the rule either by thinking it through or
asking for a hint in the first occurrences of a problem step that is assigned
the particular rule. In the next occurrences, students would discover then
follow that rule. This is the pattern we would see in the rule learning task.

2) “Follow wrong, Search, Discover, Follow” Students who follow this pat-
tern start from following a wrong rule that they think is correct. When they
realize it is wrong, they search for the correct one. In the next occurrences,
students would discover then follow that rule. The difference between this
and the first pattern is that students already have an idea about what the
rule is from the beginning. This pattern is also different than what we would
see in a rule learning task. Since the rules are random in a rule learning task,
the participants can only guess the rule.

3) “Follow” The student knows the rule assigned to the problem step already,
and they continue following that rule in all occurrences of the same rule.

We identified different combinations of rule learning phases over multiple
occurrences of the same rule type across all participants. Since we see no inter-
action between the experimental conditions and following specific patterns of rule
learning, we investigate how students follow these patterns across conditions.

To see if these patterns were related to students’ prior knowledge and learning
gains, we first divided the students into 2 groups using a mean split on the
learning gain. Similarly, both groups were divided into two using a mean split
on the pre-test scores. In the end, we had 4 groups of students: high knowledge
and high learning gain (HH) (N = 6), high knowledge and low learning gain (HL)
(N = 4), low knowledge and high learning gain (LH) (N = 3), and low knowledge
and low learning gain (LL) (N = 6). Figure 3 visualizes the proportions of the
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Fig. 2. A: “Search, Discover, Follow” pattern, B: “Follow wrong, Search, Discover,
Follow” pattern (red dot represents that the participant started by following the wrong
rule), C: “Follow” pattern. (Color figure online)

patterns we defined earlier for each student profile. The proportion of the rule
learning patterns seem similar for different student groups except students in
LH seem to follow “Search, Discovery, Follow” pattern more frequently.

To explore the difference in proportion of “Search, Discover, Follow” pattern
among the different student profiles, we computed confidence intervals for these
proportions. For the HL, HH, LL, and LH groups, the confidence intervals were
90% CIs [.02, .24], [.04, .20], [.09, .32], and [.31, .69], respectively. These intervals
suggest the proportion of students who follow “Search, Discover, Follow” pattern
will be higher in LH group than it is in other groups. However, this should be
confirmed with a significance test with enough sample size.

FOLLOW_WRONG, SEARCH, DISCOVER, FOLLOW

RULE LEARNING PATTERN

FOLLOW
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1.00

0.75

0.50

0.25

0.00

HIGH KNOWLEDGE
HIGH GAIN

HIGH KNOWLEDGE
LOW GAIN

LOW KNOWLEDGE
HIGH GAIN

LOW KNOWLEDGE
LOW GAIN

Fig. 3. Rule learning patterns by student profiles based on students’ learning gains
and prior knowledge.

6 Discussion and Conclusion

Most well-studied cognitive and motivational states that were associated with
learning within ITSs have roots in cognitive science studies of rule learning and



Using Thinkalouds to Understand RL and CC Within an ITS 509

cognitive control. To explore the relevance of these lower level cognitive mecha-
nisms within ITS research, we investigated how these mechanisms show them-
selves in a complex learning environment and their relationship with learning.
We presented a study in which we induced one of the two modes of cognitive con-
trol based on the DMC framework [4] and observed how students move through
the phases of rule learning within an ITS.

Our results indicated success in shifting student behavior in a way that
reflects the proactive or reactive modes of cognitive control, achieving effects
similar to studies that have been done with more controlled tasks [5,13,14,20].
However, we did not observe a difference in learning between the two modes.
Multiple explanations could account for this result. Firstly, since this was a
thinkaloud study, all participants were explaining their thought processes while
they were solving the problems. The explanation practice might have helped
all participants [9] and possibly hindered the effect of relating to the goal of
the problem. Future studies without the thinkaloud procedure should further
explore these effects. Secondly, since using proactive control is more cognitively
demanding than reactive control [22], practicing proactive control might have
exhausted the cognitive resources participants have and as a result they strug-
gled with the learning tasks, cancelling out the benefits of maintaining the goal
in working memory. Our finding on time data was consistent with this expla-
nation as students in the proactive condition spent more time on the problem
steps. As we show it is possible to induce proactive control, we hope future work
will further explore its effects on learning.

Our analyses on rule learning revealed that students were following three
main patterns of rule learning phases while they are solving problems. Results
showed that the students with low prior knowledge and high learning gains
followed the pattern that formal studies of rule learning [6,7,10,18] show (i.e.
“Search, Discover, Follow”) more frequently than the other student profiles. This
result could be an indicator of a relationship between rule learning and domain
learning and ITSs can benefit from this relationship in task selection by choosing
tasks that support appropriate rule learning patterns based on the student’s
profile. However, the small sample size was a limitation for further exploration
of this relationship.

To summarize our contributions, we presented a novel coding scheme in order
to categorize student utterances that are indicative of mechanisms of cognitive
control and rule learning within a complex learning environment and we took
a first step towards understanding the underlying mechanisms of student cogni-
tive states that are associated with learning. We believe that identifying these
underlying mechanisms within such complex learning environments will open
new paths in ITS research and student modeling.
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Abstract. Reading is a crucial skill in the 21st century. Thus, scaf-
folding text comprehension by automatically generated questions may
greatly profit learners. Yet, the state-of-the-art methods for automatic
question generation, answer-aware neural question generators (NQGs),
are rarely seen in the educational domain. Hence, we investigate the
quality of questions generated by a novel approach comprising an
answer-aware NQG and two novel answer candidate selection strate-
gies based on semantic graph matching. In median, the approach gen-
erates clear, answerable and useful factual questions outperforming an
answer-unaware NQG on educational datasets as shown by automatic
and human evaluation. Furthermore, we analyze the types of questions
generated, showing that the question types differ across answer selection
strategies yet remain factual.

Keywords: Automatic question generation · Natural language
generation · Education

1 Motivation

Reading materials encode a significant amount of our human knowledge, from
cooking recipes to textbooks about quantum mechanics. When we are learn-
ing, we are often relying on those reading materials as our primary source for
knowledge acquisition.

Yet, learning by reading is often challenging and text comprehension depends
not only on the reader but also on the text. Even advanced readers occasionally
experience difficulties while reading. Texts encompassing jargon, assuming a lot
of prior knowledge, or using a specific style of writing challenge even the best of
readers. Consequently, providing additional text-specific help might be of great
value, not only for novices but also for the intermediate and advanced.

An established reading aid is questioning the readers about the content of the
text [1,14]. Depending on the type of questioning, it has different effects. Factual
questions direct the attention of learners to specific aspects of the text [1], help-
ing them to remember facts easily. Conversely, comprehension questions require
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learners to combine different aspects of the text, supporting deeper understand-
ing [1]. That is, to get the most benefit from asking readers, combining different
types of questions is important [1,10].

Yet, posing questions is a challenging task even for humans. Authors first
need to understand the underlying texts. Next, they have to identify meaning-
ful facts and connections, which are important for the learners’ understanding.
Finally, they have to state a question in such a way that it actually fosters text
comprehension. As a result, having well written, manually authored questions in
formal learning settings is expensive, and almost impossible in informal learning
settings, where the amount of reading materials is endless.

Automatic question generation is a research field investigating how to create
questions without human intervention. It is used in different domains such as
dialog systems, question answering or in educational settings. Ideally, to foster
text comprehension, an automatic question generator receives the reading mate-
rial, e.g. a text passage, as input and poses meaningful questions about this text,
alleviating the need for expensive human questioning.

However, those systems are far from perfect and posing fluent and meaning-
ful questions from unstructured text is still under active research. The current
state-of-the-art systems are answer-aware neural generators (NQGs). It has been
shown that such systems generate questions with excellent fluency and accept-
able relevancy [7].

They are used in dialog systems and to augment question answering data,
but are rarely seen in the education domain. During generation they expect two
inputs (see Fig. 1). First, they generate questions given a single question-worthy
sentence (context sentence) instead of the whole unstructured reading material.
Second, they use an explicitly marked expected answer inside the given context
sentence (answer candidate).

Fig. 1. Automatic question generation by selecting the context sentence (underlined)
and the answer candidate (bold) from a physics paragraph before generating the actual
question via an answer-aware NQG.

This paper makes two contributions. First, we apply answer-aware NQGs
to texts in the educational domain and investigate the quality of the generated
questions by conducting automatic and human evaluation. Furthermore, we pro-
pose two novel answer candidate selection strategies, relying on semantic graph
matching, which are easily adaptable to different cases.
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2 Related Work

The following section will examine the problem of question generation from dif-
ferent viewpoints. It aims to exemplify the challenges of the task and to motivate
our design decisions. For a thorough review of automatic question generation in
education we refer to Kurdi et al. [17] and for a general review of NQGs to Pan
et al. [22].

The literature usually distinguishes three types of automatic question gen-
eration approaches. The most common in the field of educational research are
rule-based and template-based approaches [17], while outside of the educational
domain NQGs are state-of-the-art [22]. Systems in the educational domain inves-
tigate a variety of different question types such as Gap-fill questions, multiple-
choice questions or Wh-questions in a variety of domains such as generic text
comprehension, history or biology [17]. They rely either on text [19] or structured
data such as ontologies or knowledge-bases [15] for their context and answer
candidate selection. When relying on text, the answer candidate selection of
the systems is mostly done via shallow semantic parsing such as semantic role
labeling or named entity recognition [12,21]. Furthermore, some authors train
classifiers on human-annotated data [2,16].

Looking outside the educational domain, NQGs evolved from relatively sim-
ple sequence to sequence models, relying only on the context sentence and the
statistical regularities of language to generate questions [9], to sophisticated
model with different facets. Subsequent systems make use of advanced neural
architectures [7], take desired answers into account [7,25] and are difficulty-
aware [13]. These neural approaches have been shown to be superior in terms of
naturalness and grammatical correctness by automatic and empirical measures
[9,22]. Current state-of-the-art systems are answer-aware NQGs, outperforming
answer-unaware and non-NQG approaches [7,22].

Looking at the application of NQG systems in educational settings, rela-
tively little work has been done. Recently, datasets have been collected, con-
taining questions on different cognitive levels, providing more training data for
NQGs in education [5,18]. Initial experiments on those datasets have shown that
answer-unaware NQGs also outperform rule-based systems on those datasets [5].
Furthermore, selecting the question-worthy context sentences from text either
by using classifiers [8] or relying on methods of extractive summarization [4] has
been investigated. Preliminary results show that none of the investigated algo-
rithms consistently performs best on all datasets, with LexRank [11] being one
of the best performing approaches.

3 Research Questions

Our research is guided by the related work and the fact that answer-unaware
NQGs outperform rule-based systems on educational datasets and answer-aware
NQGs outperform all other systems on non-educational datasets. Thus we
hypothesize answer-aware systems will also perform better for educational sce-
narios, leading to our first research question (RQ1):
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1. To what extent are answer-aware NQGs more useful in educational scenarios
than answer-unaware NQGs?

Aside of this direct comparison, more nuanced analysis is also important as we
need to pose different question types to the learner to achieve optimal support.
Therefore, the interaction between the NQG and the answer selection has to
be investigated. Only asking for plain facts will not result in the best learning
outcome and we hypothesise that some answer selection strategies yield more
factual questions than others. Additionally, We assume that answer selection
methods have a strong influence on some but not all quality criteria. We suspect
that the grammaticality of the question is not altered by using different strategies
but that the usefulness of the generated questions and their respective question
types (e.g. what vs. why questions) is influenced by different answer selection
strategies. We therefore pose our second research question (RQ2):

2. How do different answer selection strategies influence types and quality
aspects of the generated questions?

We operationalize RQ1 and RQ2 by looking at the grammaticality, the
answerability and the usefulness of the generated questions. Grammaticality is
necessary for a question to be comprehensible at all. Furthermore, high grammat-
icality results in a more fluent reading of the question. We understand answer-
ability as, how well can the answer to the generated question be given taking into
account only the context sentence that was used to construct it. This score not
only indicates whether the question is meaningful at all, but also whether the
answer selection and question generation have worked well together. Finally, we
are looking at the usefulness of the generated questions. A useful question is one
that covers major concepts or fosters text comprehension whereas a useless ques-
tion does not help to understand the text any better. Thus, this score informs
us about the suitability of the generation process for educational purposes.

4 Experiment Setting

To investigate our research questions, we implement a question generation pro-
cess comprising constant context selection and varying answer candidate selec-
tions. We compare an answer-unaware NQG baseline with three different answer-
aware NQGs, yielding four different conditions in total. For the context selection
in all conditions, we learn from Chen et al. [4] and use LexRank.

4.1 Answer-Unaware Condition

The answer-unaware NQG [9] is the baseline model from the related work [5]. It
consists of a sequence to sequence NQG with attention. It rewrites the context
sentence to a question, implicitly selecting an answer inside the sentence. There-
fore it is answer-unaware, as it does not explicitly need the answer candidate as
an input. We train the system on the SQuAD dataset with the same parameters
as given in the authors’ paper until we reach a similar performance measured by
BLEU-4 [23] on the provided validation set.
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4.2 Nsubj Condition

We select the subject phrase from context sentences as the answer candidate for
the question. We choose this strategy because the subject is frequently correlated
with the main protagonist in a sentence. Furthermore, it is a common constituent
in many sentences and thus can be selected in most sentences as a plausible
answer. Finally, we suspect that asking for the subject of a sentence will yield
many factual questions asking for the main protagonists of a sentence or story.
In other words, when answering such questions, learners are thinking about the
main driving forces of a story.

To implement the strategy, the selected context sentence is dependency-
parsed [6] using Stanford CoreNLP 3.9.2 [20], resulting in a semantic graph
representing the grammatical relationships of the sentence. Next, we use Sem-
grex matching to extract relevant information from the graph [3]. This has the
advantage that we do not have to write complicated graph traversal code to
extract vertices that belong to a grammatical relationship. Instead, a Semgrex
pattern describes subgraphs with special properties, that can easily be processed
further. We apply pattern matching to all nodes under the sentences subject
relation. For sentences containing multiple candidates, we heuristically select
the longest, under the assumption that longer inputs are beneficial for the ques-
tion generator. Note that this approach can easily be extended by changing the
Semgrex pattern e.g. by matching adverbial clauses and checking the resulting
subgraph to only express consequences.

To generate the actual question, an answer-aware NQG [7] based on a neural
transformer [24] is used. It is pre-trained on unidirectional, bidirectional and
sequence to sequence prediction tasks. For our task, we use the publicly available
fine-tuned question generation model1 provided by the authors, which is a 24-
layer, 1024-hidden states, 16-attention heads 340M parameter model trained on
Wikipedia and the BookCorpus and fine-tuned on the SQuAD dataset.

4.3 Dobj Condition

We select the direct object phrase from context sentences as the answer candidate
for the question by using the same algorithm as in the Nsubj condition.

Direct objects are also common parts of sentences, allowing the application of
this strategy in most cases. Yet, in contrast to the subject, direct objects are more
often targets of actions. Hence, we suspect that asking for direct objects will yield
questions having different purposes than in the Nsubj condition. Using direct
objects as answer input may e.g. cause the NQG to focus more on the carried
out action which might be favourable for understanding. The generation of the
question is done with the same answer-aware NQG as in the Nsubj condition.

1 https://github.com/microsoft/unilm.

https://github.com/microsoft/unilm
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4.4 Random Condition

We apply basic answer candidate selection by selecting one word from the given
sentence at random. The sentence is tokenized2 and a word is sampled at random.
As discussed in the related work section, different neural architectures result in
different performing generators. Thus, we include this strategy in the experi-
ments to measure the influence of the different neural architectures independent
of their answer-awareness. Observing high-scoring metrics when applying this
strategy implies that the answer-aware generator’s underlying architecture pro-
duces better results detached from the answer candidate. The generation of the
question is done with the same answer-aware NQG as in the Nsubj condition.

5 Results

5.1 Datasets

We conduct an automatic and a human evaluation. We focus on texts given by
the RACE dataset [18]. It is a publicly available educational dataset, comprising
passages and questions generated by human experts for the Chinese English
reading exams. It covers different domains in middle to high school difficulty.

Moreover, we also report some automatic evaluation results for the TED-ed
part of the LearningQ [5] dataset which also covers a wide variety of topics. This
dataset is gathered by crawling the transcripts of TED-ed, an educational video
provider, and the corresponding comprehension questions posed by educational
experts. Albeit we report such results for comparability, we focus on RACE
because of the different nature of video transcripts compared to educational
texts.

Note that we filter both datasets before conducting our evaluation. We
remove all questions not ending with a question mark (e.g. fill-in-the-gap type of
questions), resulting in 1089 paragraphs and 5235 gold questions for the Learn-
ingQ dataset and 19,944 paragraphs and 40,439 gold questions for the RACE
dataset.

5.2 Automatic Evaluation

As a proxy for the grammatical quality of the generated questions, we compute
BLEU-4 scores similar to Chen et al. [4].3 For that, we compare the generated
and the gold-standard questions in the given datasets, by only considering the
maximum-scoring questions per passage (see Fig. 2).

For the RACE dataset, all answer-aware conditions slightly outperform the
answer-unaware generator in terms of the BLEU-4. Yet, the differences are
marginal except for the Random condition which performs best. For the Learn-
ingQ dataset, the Random condition again performs best, however, closely fol-
lowed by the Answer-unaware condition.
2 Using Stanford CoreNLP 3.9.2.
3 Using https://github.com/tylin/coco-caption.

https://github.com/tylin/coco-caption
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Fig. 2. BLEU-4 evaluation results only considering the maximum score per paragraph
on the filtered questions of RACE and the TED-ed part of LearningQ.

To validate these results, we compared the distributions of the average sen-
tence BLEU-4 scores per paragraph. They are narrow, with median sentence
BLEU-4 scores of zero for any condition (see Fig. 3). Put differently, most ques-
tions do not overlap with the gold standard. Yet, they nevertheless might be
valid as the gold standard comprises only a small subset of all plausible ques-
tions. Hence, BLEU-4 may measures little overlap, although the questions are
still useful. Second, because the NSubj and Dobj conditions might fail to find
an answer-candidate in a context sentence, they generate fewer questions per
paragraph than the other two strategies. Only 90% of Nsubj and 65% of Dobj
generation attempts succeeded. As a consequence, selecting the maximum scor-
ing sentence per paragraph slightly favors the Random and Answer-unaware
conditions, because they always generate the maximum amount of sentences

Fig. 3. Violin plot of the average sentence BLEU-4 scores per paragraph on the RACE
dataset. The estimated kernel density shows that BLEU-4 scores are rarely different
from zero.
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Fig. 4. Wh-word frequency on the RACE dataset for the three answer candidate
conditions.

resulting in a higher chance to generate an overlapping question. In summary,
although BLEU-4 is often used as a proxy measure for grammaticality, no clear
statement about the grammaticality can be made from the automatic measures.

When plotting the distribution of the Wh-words we can gather some data for
RQ2. The different answer-aware conditions show that they indeed influence the
generated question types in our experiments (see Fig. 4). The Nsubj condition
splits the generated questions almost evenly in “Who” and “What” questions
whereas the Dobj and the Random condition mostly pose “What” questions.
Hence, looking at these automatically computed statistics provides evidence that
most of the generated questions are factual, not asking about reasons or deeper
explanations. While this is also true for the Answer-unaware condition, it is
worth noting that it stated more “How” questions than any other system.

5.3 Human Evaluation

We conducted a human evaluation with two annotators to get more insights
into the grammaticality, answerability, and usefulness of the questions. Both
annotators speak English either as a native language or at level CEF4 B2. We
included all four experimental conditions in our evaluation study. We randomly
sampled 80 paragraphs from the RACE dataset and assigned each of them to one
condition. For every paragraph, we generated three questions. Every annotator
evaluated 80 paragraphs having 3 questions each, 240 questions in total. We pre-
sented the paragraphs to the annotators in random order. For every paragraph
annotators initially saw three context sentences with their generated questions

4 Common European Framework of Reference for Languages.
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Fig. 5. Human evaluation. Left: five-point grammar and answerability ratings. Right:
three-point usefulness ratings. The bars indicate the median, the whiskers the 1.5
interquartile range and circles outliers. For Nsubj, the grammar box is a single point.

and rated them in terms of answerability and grammaticality on a five-point
Likert scale. Then they saw the reading passage together with the questions and
rated the questions again for their usefulness (three-point Likert scale) and pro-
gressed to the next paragraph. To ensure a common understanding of the scales,
an annotation guideline defining answerability, grammaticality, and usefulness
was shown. The inter-rater agreement was measured by Krippendorff’s α = .63
for grammar, α = .78 for answerability and α = .55 for usefulness. Conflicts
were resolved by preferring the native speaker’s rating.

The data yields interesting insights into the performance of the different
conditions. The median grammaticality rating for the different conditions is 4
in the answer-unaware condition and 5 in all three answer-aware conditions.
The median answerability rating is 5 for the Nsubj and Dobj conditions, 3 for
the Random condition and 1 for the Answer-unaware condition. The usefulness
rating indicates that the Nsubj and Dobj conditions result in a median score of
2 whereas the two other conditions score a median of 1. As shown in Fig. 5 most
ratings have a non-negligible dispersion.

6 Discussion and Future Work

Concerning RQ1, our experiments present evidence that answer-aware NQGs are
more suitable for the educational domain than answer-unaware NQGs. The pro-
posed answer selection strategies outperform answer-unaware systems in terms
of grammaticality, answerability, and usefulness. For the usefulness criteria, the
NSubj and Dobj conditions are the only ones that generate factual questions sup-
porting readers in the median. In contrast, the Answer-unaware condition creates
useless questions in the median often even worse than the Random condition. A
possible explanation is that the answer-unaware generator mostly selects unim-
portant information as answers. On the answerability criteria, the answer-aware
conditions also perform better, yielding readily answerable questions most of
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the time. We can rule out the possibility that this is only due to better gram-
mar of the generated questions as the Random condition leads to worse results
while scoring high on grammar. For the grammaticality criteria, things are a
bit more complex. On the one hand, the BLEU-4 scores are inconclusive. On
the other hand, human evaluation shows that the three answer-aware conditions
produce more grammatically sound questions. Additionally, the BLEU-4 distri-
butions are almost always close to zero indicating that the gold standard is rarely
met. Therefore, we assume that the answer-aware systems are also performing
better and that the automatic scores are not representative. However, as the
random answer candidate condition also performs quite well on these criteria,
answer-unaware systems might profit here from other neural architectures or
more training data.

Regarding RQ2, we can see that our strategies result in better questions
overall, but the data indicates that the variety of question types is still limited.
In every condition, the generated questions remain mainly of factual nature.
This is supported by the analysis of the Wh-word distribution, showing that
determining questions are posed most often. Furthermore, the usefulness ratings
of the annotators indicate that the questions are also mostly of factual nature
and not connected to the main ideas of the texts. There might be several reasons
for this focus on factual questions. Perhaps the most striking thing is that the
whole question generation process currently works on a single sentence basis not
taking into account inter-sentence relations. However, important information
about the gist of the text can often only be deduced by reasoning about the
whole input text. Future work may investigate such reasoning by building NQG
processes working with whole paragraphs or extracted summaries, and figuring
out synergies between context and answer selection steps. Finally, the used NQGs
are mostly trained on data from question answering datasets and thus have most
often seen factual questions during their training. In the future, one could explore
ways to train or fine-tune such systems on the existing educational datasets.

In summary, this work showed that answer-aware NQGs can generate factual
questions to support text comprehension. Yet, more research is needed to pose
not only factual but also comprehension questions. Furthermore, we introduced
two strategies for answer candidate selection to make the use of answer-aware
NQGs possible, which both can easily be extended to more complex patterns.
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Abstract. Despite the positive outcomes obtained through the appli-
cation of gamification in the technology-enhanced learning context, pre-
vious studies have also reported unexpected results concerning students’
engagement, learning outcomes, and motivation in gamified learning sys-
tems. To increase the chances of obtaining positive results in this con-
text, this article proposes a “gamification analytics model for teachers”.
In this model, teachers are allowed to define interaction goals, moni-
tor students’ interaction with the system’ learning resources and the
gamification elements, and adapt the gamification design through mis-
sions to motivate disengaged students to achieve the interaction goals
defined. However, the gamification analytics model-based design con-
cepts that will be implemented to support the learning process should
be well-planned to teachers’ needs. Hence, one of the contributions of this
paper is the validation of twenty design concepts based on the gamifica-
tion analytics model for teachers by using the speed dating method. Our
results suggest that teachers judged useful/relevant visualize students’
interaction with gamification elements such as missions, levels to help
them understand the students’ status, but did not evaluate the visual-
ization of the interaction of students with trophies relevant. Teachers also
highly evaluated the creation of personalized missions for a student or
a specific group as relevant to help demotivated students to engage and
achieve the desired goals. Therefore, this study provides some relevant
insights to guide the design and re-design of gamified adaptive learning
systems.

Keywords: Gamification · Teachers · Data visualization · Adaptive
learning · Gamification analytics

1 Introduction

There is a growing interest in applying gamification in the technology-enhanced
learning context [1,7,10,27,28,31] to increase students’ motivation and engage-
ment [3,20]. However, despite the benefits of using gamification in users’ psycho-
logical and behavioral outcomes [11], including in the educational context [24,30],
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some studies have also reported unexpected outcomes after the implementa-
tion of gamification in technology-enhanced learning environments [9,12,29].
Research has pointed out that the design of gamification is one of the possible
causes of negative results in educational settings [9,19]. According to Heilbrunn,
Herzig, and Schill [15], the process to design gamification should incorporate dif-
ferent aspects such as the personas of involved users, the application’s domain,
properties of the gamified application itself, or legal constraints. These diverse
aspects are subject to change over time, thus, gamification design must not be
a rigid artifact [15].

Therefore, monitoring and adapting data related to gamification can be an
alternative solution to avoid negative outcomes related to the use of gamifica-
tion and can give valuable insights to take corresponding actions towards goals
achievement [13–15]. Heilbrunn, Herzig and Schill [15] named this process as
gamification analytics, and defined it as “the data-driven processes of monitor-
ing and adapting gamification designs”. Nonetheless, the studies that address
gamification in technology-enhanced learning environments are, in general, not
concerned in monitoring and adapting gamification design during the learning
process, neither through automated adaptation nor through human decision-
making, increasing the risk of obtaining unexpected results [32].

Considering that we are in an era where data is being more used in the service
of human decision-making and design than automated adjustment [2,5], and that
teachers should be at the heart of most ICT for education programs [34], teachers
could also be in charge to monitor and adapt gamification design in gamified
adaptive learning systems. In this sense, this paper proposes the “gamification
analytics model for teachers” that can be applied in gamified adaptive learning
systems to allow teachers to adapt the gamified design during learning process
based on monitoring of data that show students’ relevant information about their
interaction with the system‘s learning resources and gamification elements in an
intuitive and meaningful way, aiming to increase the chances in obtaining positive
results related to students’ motivation, engagement, and learning outcomes.

To implement this model as support for a gamified learning system, it is
of utmost importance that the model-based design concepts are well designed
concerning the needs of the teachers, and the target audience of the model. In
this paper, we use the “Speed Dating method” – a design method for rapidly
exploring application concepts and their interactions and contextual dimensions
without requiring any technology implementation [6,17] – aiming to validate the
design concepts related to the Gamification Analytics Model for Teachers that
we are targeting.

The remainder of this paper is structured as follows. In Sect. 2, we describe
the Gamification Analytics model. In Sect. 3, we depict the Speed Dating method
planning and execution. In Sect. 4, we describe the results obtained after the
Speed Dating method execution. Finally, in Sect. 5, we present the discussion,
concluding remarks and future works.
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2 Gamification Analytics Model for Teachers

The “Gamification Analytics Model for Teachers” was developed to increase
the chance of obtaining positive results concerning students’ engagement, learn-
ing outcome, and motivation during the learning process in gamified adaptive
learning systems. In this model, teachers can define interaction goals, monitor
students’ interaction with the system’s learning resources and gamification ele-
ments, and adapt the gamification design through the use of missions to motivate
disengaged students to achieve the defined goals. Therefore, this is the main goal
of the “Gamification Analytics Model for Teachers”, which is shown in Fig. 1. In
the following sections, we describe this model.

Fig. 1. Gamification Analytics Model for Teachers.

2.1 Model Components

Definition of Interaction Goals. In the Gamification literature, it is stated
the importance of defining clear goals and measuring the success of gamification
design towards their achievement [14,18,35]. As such, in the model presented in
this paper, teachers may define interaction goals that they expect students to
achieve in a given time. The interaction goals represent the number/percentage
of interactions that are expected students to have with the educational resources
(e.g., videos, texts, questionnaires, forums, and so on) available in the system
related to a certain topic in a specific time. Therefore, the interaction goals
can be represented by two elements for each topic (quantity of resources, time
expected). For example, one interaction goal configured by a teacher could be:
expect that students interact with at least 70% of the learning resources available
in the gamified learning system related to a topic in 2 weeks.

Monitoring of Students Interaction with Resources. In the Gamifi-
cation Analytics Model for Teachers, teachers are allowed to visualize stu-
dents‘interaction with learning resources and compare the if students’ interac-
tions occur according to the interaction goals defined by the teacher. The inter-
action goals previously define may serve as a metric for teachers to monitor stu-
dents’ learning process, since they can assess if students are at the expected pace
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towards the defined goal. To better present these important data for teachers, it
is necessary to rely on research in Information Visualisation and Learning Dash-
boards. The positive effects of Information Visualisation and Learning Dash-
boards on teachers’ decision-making processes in the technology-enhanced learn-
ing context have been reported in several studies in the literature [21,22,25,36].

Monitoring of Students Interaction with Gamification Elements. There
are different objectives in showing students’ interaction with gamification ele-
ments to the teachers. First, teachers can visualise students’ interactions with
the gamification elements implemented in the system in order to understand
students‘ engagement with these elements, increasing teachers awareness about
students‘ status (e.g., how many points each student accumulated so far, stu-
dents’ ranking and current level). Moreover, this monitoring could increase the
chance of teachers perceiving the positive impact of gamification, and hence,
motivating themselves towards the use of gamification. Furthermore, the adap-
tation of the gamification design during the learning process is performed by
using the gamification element mission, thus, it is necessary that teachers can
visualise which missions are more effective to motivate the students. Through
these visualisations, teachers could see which missions were most successful, and
assign missions properly along the learning process. This concept is based on the
theoretical model of user requirements for supporting the monitoring and adap-
tation of gamification designs proposed by Heilbrunn, Herzig and Schill [14].
However, there is a lack of studies that explore the visualisation by teachers
of students’ interaction with gamification elements in the technology-enhanced
learning context.

Adaptation of Gamification Design Through Missions. As previously
explained, the adaptation of gamification design in educational systems can be
made by teachers through the gamification element mission, e.g. when students’
interaction is decreasing over time and students are not achieving the interac-
tion goal defined by the teacher. In previous studies, missions have been also
effectively used to motivate students during the learning process [25,26]. There-
fore, we propose the usage of missions to adapt gamification design during the
learning process because when teachers perceive students’ interactions are not
as expected, they can assign missions in order to motivate students to increase
interaction with the educational resources available in the system. Hence, the
gamification design of other gamification elements will also be adapted because
when students achieve a mission, they also conquer points, badges, levels, and
change their position on the leaderboard.

3 Method

To explore the wide range of feature possibilities with users, the speed dating
method based on the HCI (Human-Computer Interaction) research is designed
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to help researchers/designers draw unmet needs and probe the boundaries of
what certain users will find acceptable (initially unknown until after a technol-
ogy prototype) [16,37]. The method begins with sessions in which participants
receive hypothetical scenarios in rapid succession (for example, through story-
boards) while researchers observe and understand participants’ immediate reac-
tions [6,23,37]. The Speed Dating method leads to the discovery of unexpected
design opportunities when unforeseen needs are found, based on participants’
assessment of the given scenario. Note that the Speed Dating method can reveal
needs and opportunities not easily discovered through field observations or other
project activities [6,8,23,37]. The method consists of two main stages - validation
and user approval. In the validation step, researchers present to the target users
a variety of predefined storyboards to observe the needs that users demonstrate
[6,33]. Storyboards select innovation spaces and use this information to narrow
the design space for the potential product. Therefore, researchers create an array
of critical design problems and write short dramatic scenarios that address the
permutations of these problems. As such, participants must play a specific role
that they play regularly (as a teacher) while running through scenarios in a
simulation [4,6,33].

3.1 Validation Through Speed Dating Method

As the gamification analytics model for teachers is a new contribution, it is still
an open question on how to design gamified educational systems implementing
this model. Therefore, it is of utmost importance that model-based design con-
cepts are well designed to respect the needs of the teachers. Hence, the “Speed
Dating method” was used to validate the design concepts of this model. As the
target audience of the model are teachers, we recruited 15 teachers (14 post-
secondary teachers and 1 secondary education teacher, all living in Alagoas,
Brazil) to participate in individual sessions, through emails or requests made
personally. The duration of the sessions with each teacher ranged from 30 to
60 min and 14 were performed at the university and 1 through video conference
(with the help of meet.google.com).

At the beginning of each session, teachers attended a presentation made by
one of the researchers, where teachers were presented with a contextualization of
learning systems, gamification, and their challenges. Afterward, the “gamifica-
tion analytics model for teachers” was presented. Moreover, to put all teachers
on the same page regarding their understanding of gamified educational envi-
ronments, a gamified educational platform (https://avance.eyeduc.com/) and its
functionalities were introduced, clarifying doubts that appeared from teachers
about educational environments and gamification. Therefore, it was possible to
equalize the knowledge level of all teachers, thus they could formulate a more
concrete opinion on the subject in the evaluation of the concepts embedded in
the storyboards.

The session participants were introduced to design concepts based on the
model proposed through storyboards. Teachers had time to read, reflect, and
analyze each concept presented. At this time, teachers were encouraged to talk

https://meet.google.com/
https://avance.eyeduc.com/


Raising Teachers Empowerment in Gamification Design 529

about their immediate reactions to the concept presented. Hence, the teachers
evaluated the concept and classified it into three grades: grade 1 (if the teacher
thought the concept would be relevant for him to use in a gamified educational
environment), grade −1 (if the teacher thought the concept would not be relevant
for him to use in a gamified educational environment) and grade 0 (if the teacher
could not decide whether or not the concept would be relevant to him). These
grades are based on the work by [17].

The first design concepts presented to teachers were developed by the author
of the model. However, teachers could at any time suggest new ideas for the
formulation of new concepts based on their needs. When a teacher suggested a
new concept, the researchers created a new storyboard related to the concept and
that storyboard would be included in the set shown to the next participant. After
debating and evaluating a concept, the next concept was presented, extending
that method until the last concept in the set. During this process, two supporting
researchers were responsible for recording teachers’ opinions, ideas, and grades
for each concept for future analysis.

This research was initialized with 13 initial concepts, which were increased
after the suggestion of new concepts by the teachers, resulting in a maximum of
20 concepts until the end of the research. After conducting the analysis, a table
was created with the average teacher evaluation for each concept presented and
recorded opinions of each teacher. The information given by each teacher will be
further analyzed, so researchers can define what will be developed or adjusted
in future gamified learning platforms.

4 Results

As previously explained, 20 (twenty) design concepts based on the gamification
analytics model were evaluated by teachers to understand their needs in gami-
fied adaptive learning systems. These concepts are related to the visualizations
they judge most applicable to monitor students’ interaction with resources and
students’ interaction with gamification elements, as well as the most appropri-
ate procedures for adapting gamification design when they consider necessary.
In this section, we discuss the most five well-rated design concepts in Sect. 4.1
and the most three poorly rated design concepts in Sect. 4.2. The list of all
design concepts and their correspondent storyboards explored in this work can
be visualized in the following site: sites.google.com.

The quantitative evaluation made by teachers about each design concept is
shown in Fig. 2. The columns in this figure represent the teachers who partici-
pated in the research (listed in order of participation), and the rows represent
the design concepts. The last seven design concepts listed in the figure were
generated by the participants. The cells in red indicate that the teacher evalu-
ated negatively the correspondent concept while the cells in yellow indicate that
the teacher was neutral about the corresponding concept. Moreover, the cells in
green show that the teacher rated positively the correspondent design concept.
The overall average rating of the design concepts among teachers is listed in the

https://sites.google.com/ic.ufal.br/speed-dating-method/p%C3%A1gina-inicial
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Fig. 2. Validation results and average (Color figure online)

rightmost column. The average grade was calculated considering the sum of the
grades the teachers assigned to the design concept divided by the number of
teachers who evaluated the following design concept.

4.1 Most Well-Rated Design Concepts

Concept 3: Visualization of the percentage of the students that reached inter-
action goals (Average: 0,9333333333).

The vast majority of participants reported that this concept is fundamental
to understand the progress of the class, enabling the teacher to intervene and
make a decision regarding these results (T1, T2, T4, T9, T15) since the purpose
of the concept is to provide a visualization in the system showing how many of
the students have already reached the interaction goals defined by the teacher. As
pointed out by teacher T9, “This visualization is important for a quick overview
of the class as we would know if we can move on to the next topic, or continue
in the topic and intervene in the process to motivate students to achieve the
goals”.

Concept 8: Visualization of each student’s interaction with the resources (Aver-
age: 0,9333333333).

From the opinions captured in the sessions regarding this concept, we under-
stand the need for the teacher to obtain a detailed view of each student, not
just the class, and visualize their interaction with each available resource in the
system (T2, T9, T15). Therefore, this concept enables the teacher to visualize
the interaction of each student with each resource added in the activity plan
of each topic. However, some teachers reported that for classes with a small
number of students this concept would be ideal, but for large classes would be
impracticable.
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Concept 9: Creation of personalized missions for a student or for a specific
group (Average: 0,8666666667).

In this concept, we investigate the need for the teacher to have the auton-
omy to intervene/adapt the system when students or a specific student are not
achieving an expected goal. A mission, in the teachers’ view, makes it possible
to motivate students to interact with the system resources and motivate the
achievement of interaction goals (T1, T3, T6, T13). Some teachers believe that
missions might have a more positive impact if they involve rewards that impact
students’ grades (T1, T6). In addition, one teacher reported, “The teacher could
monitor groups by levels and could select from the most advanced group to
assist the less advanced students as well, being possible to create a mission with
this suggestion” (T2). By analyzing other points of view, we obtained negative
opinions regarding the offering of rewards (such as trophy, points) to students
who achieve a mission. As reported by teacher T15, the reward would be the
learning.

Concept 11: Show the status of each mission created (Average: 0,8666666667).
This concept was considered relevant by most of the teachers who partici-

pated in the sessions. For teachers, once missions are created, it is important for
them to be able to view the results of each mission they create, such as the num-
ber of students who successfully completed the mission, the number of students
who tried but did not achieve the mission, and the students who have not tried.
Teachers believe this visualization becomes interesting for teacher monitoring
and evaluation of which assignments have the most positive impact on students
(T12) and whether they are positively impacting students’ level of interaction
with resources (T9). In a teacher’s opinion, with this concept, he can measure
the difficulty of the mission, whether it is difficult, easy, or moderate. It also has
the possibility to look for students who failed the mission to know the reasons
for the failure (T1).

Concept 13: Help button provided for each visualization describing its func-
tionality (Average: 1).

This concept was the most well-rated among the teachers who participated
in the sessions. For teachers, the support of the system through help buttons
describing the functionality of the graphics is important especially at the begin-
ning of the teacher’s interaction with the system when the teacher is not familiar
with the system (T14, T11, T3). In addition, this functionality increases the pos-
sibility of joining users with few technological experiences (T1, T9).

4.2 Most Poorly Rated Design Concepts

Concept 6: Visualization of the number of students who achieved each trophy
(Average: 0,2).

Some teachers see the possibility of taking advantage of this concept, given
that the trophies obtained by the students correspond to the achievements and
facilities in the use of the system, “can be used to compare the evolution of the
class through the trophies” (T2) and “interesting to analyze the motivation or
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difficulty of the class with the trophies” (T4). However, the concept was poorly
evaluated by most teachers, because according to teachers T3, T5, T9, T10,
T13, T14, this functionality would not affect the methodology applied by the
teacher. As pointed out by professor T10, “This kind of visualization would be
most useful for designers or teachers with full control of course authorship, but
apart from this use it can be a problem than a solution.”

Concept 16: Visualization of each student’s interaction with the trophies (Aver-
age: 0,2142857143).

The purpose of this concept is to visualize each student’s trophy achieve-
ments. However, teachers show doubts regarding the achievement of trophies
and their relationship with student performance, “I do not find the viewing of
trophies per student as relevant”, teacher (T11). However, the teacher T3 affirms
the relevance of this concept, “being a way to track students’ performance”.

Concept 19: Visualization of student’s descriptive data (Average: 0,2727272727).
The availability of student descriptive data (interaction with resources, tro-

phies, missions completed) for teachers in a textual way was poorly rated due
to the teachers’ remarkable preference for visualizing data through graphs. For
teacher T10, “presentation as the text may be a detriment to the teacher, a
sensory noise.”

5 Discussion, Conclusion and Future Works

In this article, we introduced the “Gamification Analytics Model for Teach-
ers”, a model that can be implemented in gamified adaptive learning systems to
decrease the chances to obtain negatives outcomes concerning students’ engage-
ment and motivation. In this model, teachers are allowed to define interaction
goals, monitor students’ interaction with the system’ resources and gamification
elements, and adapt the gamification design when they judge necessary through
the use of missions to motivate and engage students to achieve the interaction
goals. Nonetheless, future gamified adaptive learning systems that adopt the
“Gamification Analytics Model for Teachers” need to implement model-based
design concepts in the system that corresponds to teachers’ needs. Therefore,
to validate these design concepts, in this paper, we used the “Speed Dating”
method to understand teachers‘ needs in gamified adaptive learning systems.
We present the most well-rated design concepts and most poorly rated design
concepts related to the “Gamification Analytics Model for Teachers”. In general,
most of the 20 design concepts evaluated by the participant teachers were well
accepted and judged useful.

The most well-rated concept is the concept 13 (Help button provided for
each visualization describing its functionality), teachers pointed out that this
functionality is mainly important at the beginning of teachers’ interaction with
the system, supporting and facilitating the understanding of the visualizations
provided in the gamified adaptive learning systems. Other highly well-rated con-
cept designs were the concepts 3 (Visualization of the percentage of the students
that reached interaction goals) and 8 (Visualization of each student interaction
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with the resources). Note that there was a high acceptance rate for both more
general, class level visualizations (such as concepts 2, 3, 5, 7, 11), and the more
specific, more individually focused visualizations (such as concepts 8, 14, 15,
17). The first type of visualization helps teachers because it is a very compact
and straightforward visualization while the second type helps teachers to act in
isolated cases in the underperforming students, as stated by teacher T3.

Furthermore, the most poorly rated design concept was the concept 6 (Visual-
ization of the number of students who achieved each trophy), followed by concept
16 (Visualization of each student’s interaction with the trophies) and concept 19
(Visualization of student descriptive data). Therefore, it could be observed that
the visualization of the interaction of students with the trophies available in the
gamified learning system was not judged important and relevant by the teach-
ers. However, the students’ interactions with other gamification elements such as
missions and levels (concepts 5, 11, 14, 15) were well-rated design concepts. Con-
sequently, although teachers did not evaluate the visualization of the interaction
of students with the trophies relevant, teachers judged useful/relevant visualize
students’ interaction with other gamification elements (missions, levels) to help
them understand the students’ status. Teachers have also demonstrated that
visualizing students’ data through graphs is more relevant for them than visual-
izing students’ data through descriptive data in a textual way. During the speed
dating process, some teachers highlighted how better is to visualize students’
data through graphs. For example, teacher T9 stated that visualize students’
interaction through descriptive data could be relevant, but visualize through
graphs is more enjoyable and useful. Teachers T2 and T6 concluded that both
visualizations could be relevant, but they should not be shown together, but by
demand, at different levels.

This article presents some limitations such as the participants’ recruitment,
93% of the participants are post-secondary teachers, implying a threat to exter-
nal validity. Another limitation faced in this article is related to the subjectiv-
ity of the storytellings where the design concepts were presented for teachers,
which may have caused different interpretations depending on the participating
teacher. However, we tried to soften this limitation through explanations and
clarifying doubts during the speed dating method conduction. Our future work
includes the validation of a prototype to be developed based on the most well-
rated design concepts validated by teachers regarding teachers’ perceptions of
perceived usefulness, perceived ease of use, behavioral intention, relevance, and
perceived enjoyment. Afterward, a controlled experiment will be held in a real
scenario within a gamified educational system platform based on the validated
prototype to evaluate the effectiveness of the use of gamification analytics model
by teachers on students’ learning outcomes, motivation, and engagement.
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534 K. Tenório et al.

2. Baker, R.S.: Stupid tutoring systems, intelligent humans. Int. J. Artif. Intell. Educ.
26(2), 600–614 (2016). https://doi.org/10.1007/s40593-016-0105-0

3. Borras-Gene, O., Martinez-Nunez, M., Blanco, A.: New challenges for the moti-
vation and learning in engineering education using gamification in MOOC. Int. J.
Eng. Educ. 32(1), 501–512 (2016)

4. Buchenau, M., Suri, J.F.: Experience prototyping. In: Proceedings of the Con-
ference on Designing Interactive Systems Processes Practices Methods and Tech-
niques, DIS 2000, pp. 424–433. Association for Computing Machinery, New York
(2000). https://doi.org/10.1145/347642.347802

5. Cukurova, M., Kent, C., Luckin, R.: Artificial intelligence and multimodal data
in the service of human decision-making: a case study in debate tutoring. Br. J.
Educ. Technol. 50(6), 3032–3046 (2019). https://doi.org/10.1111/bjet.12829

6. Davidoff, S., Lee, M.K., Dey, A.K., Zimmerman, J.: Rapidly exploring applica-
tion design through speed dating. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 429–446. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74853-3 25

7. Dermeval, D., et al.: An ontology-driven software product line architecture for
developing gamified intelligent tutoring systems. Int. J. Knowl. Learn. 12(1),
27–48 (2017). https://doi.org/10.1504/IJKL.2017.10009129

8. Dillahunt, T.R., Lam, J., Lu, A., Wheeler, E.: Designing future employment appli-
cations for underserved job seekers: a speed dating study. In: Proceedings of the
2018 Designing Interactive Systems Conference, DIS 2018, pp. 33–44. Associa-
tion for Computing Machinery Inc., New York (2018). https://doi.org/10.1145/
3196709.3196770

9. Domı́nguez, A., Saenz-de Navarrete, J., de Marcos, L., Fernández-Sanz, L., Pagés, C.,
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learning. In: Lavoué, É., Drachsler, H., Verbert, K., Broisin, J., Pérez-Sanagust́ın,
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Abstract. In a learning situation, feedback is of great importance in order to help
a student to correct a possible misconception. However, previous research shows
that many students tend to avoid feedback regarding failures, including critical
constructive feedback (CCF) that is intended to support and guide them. This
is especially true for lower-achieving students, who might perceive feedback as
an ego-threat, and therefore protect themselves by neglecting it. However, it has
been shown that such neglect can be suppressed by using teachable agents (TA’s).
Another, but less studied factor that influences feedback acceptance is the degree
or extent of failure when trying to solve a task. The present study explores if and
howmomentary performance levels influencemiddle school students’ willingness
to accept CCF when playing an educational game in history – with or without a
TA. On the basis of teacher assessments of the students’ general skills, data logs
and analyses of sequential patterns, we concluded that the willingness to accept
CCF differs between students, but also between conditions and situations. One
major finding is that a TA supports the students to more readily embrace CCF,
even if the effect is larger for lower-achieving students. Another finding is that
indications of being far from succeeding, such as low success rates or repeated
trials and revisions, have a negative impact on feedback acceptance, even if a TA
mitigates some of this influence. The implications of these results are discussed in
relation to meta-cognitive aspects of learning and to educational software design.

Keywords: Critical constructive feedback · Feedback neglect · Teachable
agents · Lower-achieving students

1 Introduction

We know from previous studies that feedback can be an important factor for students’
learning. It can provide the student with information and clues on how to proceed with
a task, as well as work as a motivator, pushing the student further, into self-regulating
activities and improvement [1–5].
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Feedback on errors is especially important for students with low prior knowledge and
students lacking appropriate learning strategies but must be balanced and well designed
to not hinder learning [6]. Nevertheless, feedback aiming at scaffolding students to not
only identify, but also to evaluate and correct errors through proper instructions, can
have a significant effect on learning outcomes [4, 7]. In this text we refer to this type
of feedback as critical constructive feedback (CCF). This feedback provides the learner
with some type of assessment, pointing at the need for correction of the task, or part of
task (hence critical). Further, the feedback scaffolds the learner towards improvement
by providing informative hints or directions (hence constructive).

This said, for feedback to have an effect, not only does it have to be carefully
formulated, it also needs to be adequately attended and responded to. And, unfortunately,
the latter is not always the case.

1.1 The Problem with Feedback Neglect

Despite the beneficial learning effects of feedback in general – and CCF in particular
– we also know that students neglect it to a great extent [8, 9]. In for example the
study by Segedy and colleagues, the authors realized that approximately 77% of the
CCF statements delivered in an educational science learning game were ignored by the
students [9]. Further, in an eye-tracking study performed by Tärning et al., they found
that as many as a third of the presented feedback texts in an educational history game
were not even noticed [8].

The avoidance or neglect of feedback can be influenced by many factors. One is the
feeling of personal failure. Critical constructive feedback indicates that the student has
failed in one way or another and this might cause feelings of uneasiness [10]. CCF may
also be seen as an evaluative punishment [3], and the tendency to avoid it ismore frequent
amongst lower-achieving students and students with low self-efficacy [11]. Not only are
these individuals exposed to more negative critique due to repeated mistakes, they are
also at risk for being convinced of their incapacity to succeed, whatever strategies they
might apply [11].

Another factor influencing the effects of feedback is the learner’s control over it.
Traditionally, research on feedback has focused on situations where the feedback is
provided to the learner – whether she asks for it or not [12, 13]. This is also the most
common situation in an everyday classroom. When the student has no impact on the
delivery of feedback, she is left with little control over her learning situation, something
that often is ill correlatedwithmotivation or other emotional states important for learning
[14].

There are, however, some studies on students’ control over feedback [15–17]. For
example, Cutumisu and colleagues studied the effects of letting students choose between
critical and confirmative feedback, provided to them in a game about graphical design
principles [17]. Results showed that the students’ game performance correlated sig-
nificantly with both their tendency to choose critical feedback and their tendency to
revise their tasks. Evidently, higher-achieving students not only have a stronger shield
towards criticism than lower-achieving students, they also tend to seek this criticism
voluntarily, presumably with an understanding of its importance for their own learning
and development.
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1.2 Protecting the Student’s Ego by Using Teachable Agents

One way of addressing the problem with feedback neglect is to try to strengthen the
student’s ego, another one is to provide her with tools that helps her maintain attention
to problems and tasks when failing. In an educational software context, both can be
obtained by using a Teachable Agent (TA).

A TA is a type of agent based on the instructional approach of “learning by teaching”
[10, 18, 19]. A student playing with a teachable agent takes the role of a teacher and
hence learns for herself in order to later teach her TA. Learning on behalf of the TA
has been shown to lead to a general increase in effort and motivation as well as to
better learning and performance [10]. That is, having a protégé can make the student
engage in behavior they otherwise might be prone to avoid, such as the up-take of
critical-constructive feedback. In particular, the benefits of interacting with a TA are
more pronounced for lower-achieving students [10, 20, 21]. The reasons are many,
but one is that in this situation the student is positioned as the most capable, teaching
someone less knowledgeable. Being in such a position can influence students positively
since they view their own competence differently [22]. Lower-achieving students are
less likely than higher-achieving students to take the role of a teacher in the classroom
and hence, they have less experience of being the ‘expert’ on a subject. Consequently,
such an experience is likely to be more beneficial for this group.

Another positive consequence of the TA is what is proposed by Chase and colleagues
as the ego-protective buffer, indicating that the TA has protective qualities in that it shares
the responsibilities of a possible failure with the student [10]. By letting the TA solve
tasks or take tests and (perhaps) fail, the student is also transformed – from a more
or less capable learner into a more or less capable teacher. And since students often
treat the TA as an autonomous creature, they also – at least partially – tend to blame
it for its own failures. Consequently, the ego protective buffer has also been suggested
to decrease feedback neglect, since it is the TA that is being tested and hence receives
critical constructive feedback and not the student [23].

1.3 Research Aims and Research Questions

Given the theoretical and empirical background presented above, studying students’
inclination to accept or reject CCF during different conditions and situations, is of great
interest. Working with digital educational tools gives us a unique opportunity to do
so, since these conditions can be manipulated, while the students’ behaviour may be
evaluated in detail through data log analyses. To our knowledge, this kind of studies on
feedback neglect are rare. Consequently, the study at hand focused on the probability
of students accepting CCF when failing on tasks - to a larger or lesser extent. The CCF
was provided to them in a teachable-agent based educational game, where the students,
after receiving information about the success-rate on a task, were given an opportunity
to accept or dismiss elaborations on errors and how to correct them. After this, the
students were free to follow the instructions or not (see Sect. 2.1 below for a more
detailed description of the game structure and experimental design). More specifically,
our research questions were:
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1) When playing an educational game and failing on a certain task, does the students’
momentary performance level have an impact on their inclination to accept CCF?

2) Does the introduction of a teachable agent influence the students’ inclination to
accept CCF?

3) Does the inclination to accept CCF differ between lower- and higher achieving
students?

2 Method

The work presented in this paper constitutes a post hoc analysis of data collected in a
study performed in spring 2019 in the south of Sweden with 289 middle school children
from 6 schools [23]. While the comprehensive study focused on aggregated data and
general differences between conditions, this specific study utilized details in the data
logs to find behavioral patterns and sequences related to the research questions. An
overview of the original experimental setup, together with a description of the stimuli
and a definition of the parameters relevant for this particular study is presented below.

2.1 The Educational Game

The material used in the study consists of an educational game in history, where the
students visit historical scenes and persons, search for text-based information and solve
tasks (on the format of a conceptmap, a timeline, a sorting task or a set ofmultiple-choice
questions) (Fig. 1).

Fig. 1. (Left): An example dialogue from visiting Gutenberg and his apprentice (Right): Teaching
activity where the student shows the TA “Timy” how to construct a timeline.

To be able to continue and progress in the game, the tasks (six in total) need to
be completed one at a time. The students have unlimited attempts to revise the tasks,
and may, if they want, revisit scenes to repeat facts or gather new information. After
presenting a solution on a task, the students receive feedback in two parts: i) a general
task assessment, and ii) CCF about errors together with suggestions about how to acquire
useful information by revisiting relevant scenes. Depending on the level of correctness,
the first part is formulated as follows:
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• 100% correct (Passed): “The task is approved, everything is correct. Great work!”
• 100–80% correct (Passed): “Only some minor error. The task is approved. Great
work!”

• 75–80% correct (Failed): “The major part is correct, great work!”
• 60–74% correct (Failed): “A fair amount is correct, not far to go now, great work!”
• 30–59% correct (Failed): “Some things are correct, but there is some way to go, so
keep on working!”

• <30% correct (Failed): “A lot is missing or wrong, unfortunately. Keep on working!”

This verbal information is always provided, but without presenting the exact amount
of errors. In other words, the student mainly receives a hint about the remaining effort
necessary for success. The game can then be set to deliver the more constructive part
of the feedback automatically (automatic condition), or to ask the student if he or she
wants this information or not (choice condition). The subsequent CCF is structured in
the following way: “Some facts concerning Mrs X’s relation to A and B are not correct.
Travel back and speak to her, locate the item C on the shelf behind her and find out more.”
After receiving the CCF-dialogue, which varies in phrasing and content depending on
the errors made, the student can choose to act upon it, by revisiting historical places,
or by simply revising the task by trying to make use of the information. The overall
structure of the game is described in Fig. 2 below:

Fig. 2. Game structure with automatic or optional delivery of CCF. In the latter, the students are
asked if they want the critical constructive feedback or not.

A central aspect of the game is the presence of a digital tutee, a Teachable Agent (TA),
whom the student is set to teach. Within a traditional learning context without a TA, the
students perform tasks and tests ‘themselves’, and consequently they are also exposed
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to potential CCF. By contrast, in a setting with a TA it will be the agent that receives
critical remarks on its performance, and not the student. Consequently, by configuring
the gamewith and without the TA, we can evaluate its impact on the students’ inclination
to accept or neglect feedback.

2.2 Participants, Procedure and Instruments

Since this study focused on the inclination to voluntarily accept or dismiss CCF, the
problem area only accounts for students in the choice condition. This left us with 121
students, 60 played in TA-condition and 61 in NoTA-condition. These were all equally
distributed in all participating classes. Due to the game’s consistently text-based content,
the students’ in-gameperformance is strongly related to their reading skills. Thus, prior to
the study all teachers provided assessments (lower,mid, higher) of each student’s reading
proficiency. The ability to process text-based information also impacts a student’s overall
achievement in social science subjects. When conducting their first mission and solving
their first task, it became clear that the performance levels for the ‘mid-achievers’ were
diversified. Based on their effort in the first mission (put more accurately: the number
of revisions necessary for solving the task), the students of this group were therefore
allocated into either the higher- or the lower-achieving group. The final distribution of
the students in different TA-conditions is shown in Table 1 below:

Table 1. Number of higher- and lower-achieving students in the used data set, assigned to the TA
or the NoTA-condition (choice-condition only).

TA NoTA

Higher 27 29

Lower 33 32

Each class played the game during three sessions à 60 min (approximately one
session per week) in their ordinary classroom setting. During this time, two researchers
were present, not to directly help the students with the actual tasks but for technical
support and general guidance and observation. Since all students were playing at their
own pace, some of them finished all tasks before the end of third session, while others
didn’t finish many. The actual contribution to the data set from each student does thereby
vary. In the introductory phase, the students were informed that they would be exposed
to a post-test on the historical content after finishing playing. This test was distributed
after the final session, the result of this is, however, not used in this study.

2.3 Defining Parameters, Categories and Hypotheses

The main research question addresses the student’s willingness to attend to CCF in
relation to game performance. It is hypothesized that the amount of failure and/or success
during play influences the student’s self-efficacy, her attitude towards trying and learning,
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or her general state-of-mind in a way that she either embraces more information about
errors, or simply rejects it. To estimate the probability that a student accepts the CCF at
a specific moment in the game, the following variables were used to formulate a logistic
regression model with repeated measures and mixed effects:

Accepting offers of CCF: CCFaccept (binary dependent variable). Classified as 1 if
the student answered “yes” to the question “Do you want to know more about the errors
you have made?”, and 0 if the student responded “no”.
Teachable Agent Condition: Agnt (categorical independent variable, fixed effects).
Two conditions: TA and NoTA.
Student Achievement Level: Achv (categorical independent variable, fixed effects).
Two levels: Higher and Lower.
Task assessment category: TaC (categorical independent variable, fixed effects). The
primarymeasure for momentary game performance. For failed tasks, the assessment had
four levels: Almost Correct (75–80%), Quite Correct (60–74%), QuiteWrong (30–59%)
and Very Wrong (< 30%). See Sect. 2.1 above for verbal descriptions.
Number of previous trials on task:Tnr (numerical independent variable, fixed effects).
The secondmeasure for game performance. Only the first six unsuccessful trials for each
mission were included in the dataset. Students with only one single failed trial were
eliminated. Hence, each student contributed with everything from 2 to 36 trials.
Proportion of pervious trials with accepted CCF’s: CCFp (numerical independent
variable, fixed effects). A measure of possible “feedback fatigue” due to repeated
feedback acceptance (%).
Student subject: Id (categorical independent variable, randomized effects).
Interaction effects: The TA-condition was also hypothesized to generate interaction
effects on the achievement level (Achv), the task assessment category (TaC) and on the
number of previous trials (Tnr).

The following logistic model predicting CCF-acceptance was hypothesized:

logit(CCFaccept) = β0+
[
1

Id

]
+ β1Agnt + β2Achv + β3TaC + β4Tnr + β5CCFp

+ β6Agnt : Achv + β7Agnt : TaC + βbAgnt : Tnr

3 Results

In general, the students’ inclination to accept CCF was high. In total, 1316 task trials
were evaluated, and 81% of these were followed by CCF-acceptance. The distribution of
trials between groups and conditions (CCF-accepted or not) was the following (Table 2):

A mixed-effect binomial logistic regression model containing subject (Id) as ran-
dom effect was fit to the data set in a step-wise-step up procedure. As postulated, the
student achievement level (Achv) showed significant effect on the probability for feed-
back acceptance, revealing that higher-achieving students more often accept CCF than
lower-achieving students. The general interaction effect between the TA and the achieve-
ment level was almost significant (p = 0.055) and had a moderate contribution to the
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Table 2. Number of trials related to achievement levels in the TA or the NoTA-condition.

TA NoTA

H 295 327

L 354 340

model as a whole. However, as shown in Table 4, the TA had a significant positive
impact on CCF-acceptance for lower-performing students, making them almost as keen
as higher-achieving students to accept CCF. No other interaction effects were found.

With regard to in game performance, both the total number of previous trials (Tnr),
and the task assessment category (TaC) were significant for the model, although the
importance of the latter varied between categories, revealing significance only between
‘Almost Correct’ and ‘Very Wrong’. The effect from the proportion of pervious trials
with accepted CCF’s (CCFp) was not significant. Hence, the main findings consist of
a negative correlation between the number of previous trials (Tnr) and the willingness
to accept CCF, and that a large amount of errors on a task (>70%) also influence CCF-
acceptance in a negative manor. These effects are visualized in Figs. 3 and 4 below.

Fig. 3. Probability of CCF-acceptance in relation to TA-condition, achievement-levels and the
task assessment category (Almost Correct, Quite Correct, Quite Wrong and Very Wrong).

Fig. 4. Probability of CCF-acceptance in relation to TA-condition, achievement-levels and the
number of previous trials on the same task (no 0–5).
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The final minimal adequate model for CCFaccept performed significantly better
than an intercept-only base line model (χ2(8): 147.6, p < .001), and had a reasonable
fit (C-value: 0.83, Somers Dxy: 0.65). See Tables 3 and 4 for more details and statistics.

Table 3. Summary of thefinalminimal adequate binomial logisticmixed-effects regressionmodel
fitted to predict CCF acceptance (CCFaccept).

Random effects Variance Std. dev.

Id (N = 121) 0.77 0.88

Fixed effects
(no of obs = 1316)

Coeff. OddsRatio Std. err. z-value Pr(>|z|)

Intercept 2.98 19.30 0.42 7.10 <0.001 ***

Agnt[TA] 0.11 1.11 0.38 0.29 0.78 ns

Achv[Lower] −1.42 0.25 0.33 −4.25 <0.001 ***

Agnt[TA]:Achv[Lower] 0.93 2.44 0.48 1.92 0.055.

Tnr −0.22 0.79 0.05 −4.50 <0.001 ***

TaC[QuiteCorrect] −0.11 0.87 0.37 −0.31 0.76 ns

TaC[QuiteWrong] −0.31 0.74 0.34 −0.92 0.36 ns

TaC[VeryWrong] −0.77 0.45 0.37 −2.11 0.03 *

Model statistics Value

AIC 1147

C-value 0.83

Somers’ Dxy 0.65

Likelihood ratio test χ2(8): 147.6, p < .001

Table 4. Post-hoc analysis on the interaction effect between achievement level and TA-condition.

Linear hypothesis Coeff. Std. err. z-value Pr(> |z|)

Agnt[TA].Lower – Agnt[NoTA].Lower 1.04 0.31 3.39 0.001**

Agnt[TA].Higher – Agnt[NoTA].Higher 0.11 0.38 0.29 0.95 ns

4 Discussion

As expected, students with greater reading proficiency (in this study classified as higher-
achieving students) were more inclined to accept CCF. This is hardly surprising since
these students ought to be more capable of comprehending text (compared to students
with lower reading skills) and therefore also should make use of the presented feedback
with less effort and cognitive load.
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Further, when looking at the amount of errors on a task, we saw how trials with few
mistakes followed by the task assessment “The major part is correct, great work!” lead
to a significantly higher probability to accept CCF than trials with many errors (followed
by the formulation “A lot is missing or wrong, unfortunately. Keep on working!”). This
finding is in line with previous research on feedback rejection and severe failing [11],
as well as to studies on motivation and self-regulation within learning contexts [24, 25].
Additionally, research on gaming behavior reveals that gamers having ‘near-wins’ tend
to stay highly motivated for continuing playing, even if their effort has nothing to do
with the possibility to succeed – such as in using slot machines [26]. Evidently, the
feeling of ‘being on the right path, not far from success’ is significantly more motivating
and strengthening than being totally unsuccessful. It should be noted, however, that
in this particular case, we do not know if it is the specific formulation of the CCF
(“Unfortunately…”) or its underlying content (many errors) that has an effect. It might
very well be both – but that remains to be studied.

The more trials students had, the less probable it was that they accepted CCF when
failing. This relates to the research mentioned above, in that repeated failure might wear
the students out, convincing them of their incapacity to succeed, and that the feedback
will not help them. By turning the number of previous trials to an independent numerical
variable, the study is treated as an experiment with repeated measures, adding a random
effect from each subject. Yet, when including this kind of order-effects, we cannot be
sure of the exact reasons behind it. Perhaps the CCF accepted in earlier rounds was
perceived as confusing or hard to understand, making the students negative towards it.
Or perhaps a student at a later trial remembered CCF’s from former trials and was trying
to make use of these instead of accepting a new one.

Looking at the impact of the TA, the results are even more interesting. The group of
students in TA-condition was more inclined to accept feedback compared to the group in
NoTA-condition. This benefit was higher for the lower-achieving students, closing the
gap between them and the higher-achieving students. Even though accepting feedback
is not the same as reading it or understanding it, we know that it at least is better than
neglecting it. This turns the TA into an interesting tool in educational software, not at
least for empowering lower-achieving students to more easily embrace CCF and to try
harder. Even thoughwe didn’t find any significant interaction effects between the TA and
game performance, the diagram in Fig. 2 reveals a tendency for students without a TA
to have steeper curves in relation to the number of previous trials than the students with
a TA. It is quite possible that the students take a greater responsibility when teaching
someone else as compared to themselves, which is in line with other research [10].

Finally, we know from research on meta-cognition, motivation and learning, that
the student’s knowledge monitoring has an impact on both learning outcomes and on
self-regulating activities, such as spending time on delivered feedback [2]. That is, if a
student is convinced that she has failed on a task, she is more reluctant to process and
act on feedback messages. On the other hand, if the student thinks she has succeeded,
and seeks confirmation, she is generally more receptive to negative feedback, which in
this case comes as a surprise. Evidently, the importance of maintaining lower-achieving
students’ self-esteem, even if failing, can’t be emphasized enough. Yet how feedback in
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educational software should be designed to deal with these matters is still not obvious
and needs to be further investigated.
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Abstract. Automated essay scoring (AES) is the task of automatically
assigning scores to essays as an alternative to human grading. Conven-
tional AES methods typically rely on manually tuned features, which
are laborious to effectively develop. To obviate the need for feature engi-
neering, many deep neural network (DNN)-based AES models have been
proposed and have achieved state-of-the-art accuracy. DNN-AES models
require training on a large dataset of graded essays. However, assigned
grades in such datasets are known to be strongly biased due to effects
of rater bias when grading is conducted by assigning a few raters in a
rater set to each essay. Performance of DNN models rapidly drops when
such biased data are used for model training. In the fields of educational
and psychological measurement, item response theory (IRT) models that
can estimate essay scores while considering effects of rater characteris-
tics have recently been proposed. This study therefore proposes a new
DNN-AES framework that integrates IRT models to deal with rater bias
within training data. To our knowledge, this is a first attempt at address-
ing rating bias effects in training data, which is a crucial but overlooked
problem.

Keywords: Deep neural networks · Item response theory · Automated
essay scoring · Rater bias

1 Introduction

In various assessment fields, essay-writing tests have attracted much attention
as a way to measure practical and higher-order abilities such as logical think-
ing, critical reasoning, and creative thinking [1,4,13,18,33,35]. In essay-writing
tests, examinees write essays about a given topic, and human raters grade those
essays based on a scoring rubric. However, grading can be an expensive and time-
consuming process when there are many examinees [13,16]. In addition, human
grading is not always sufficiently accurate even when a rubric is used because
assigned scores depend strongly on rater characteristics such as strictness and
inconsistency [9,11,15,26,31,43]. Automated essay scoring (AES), which utilizes
natural language processing (NLP) and machine learning techniques to automat-
ically grade essays, is one approach toward resolving this problem.
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Many AES methods have been developed over the past decades, and can
generally be classified as feature-engineering or automatic feature extraction
approaches [13,16].

The feature-engineering approach predicts scores using manually tuned fea-
tures such as essay length and number of spelling errors (e.g., [3,5,22,28]).
Advantages of this approach include interpretability and explainability. How-
ever, these approaches generally require extensive feature redesigns to achieve
high prediction accuracy.

To obviate the need for feature engineering, automatic feature extrac-
tion based on deep neural networks (DNNs) has recently attracted atten-
tion. Many DNN-AES models have been proposed in the last few years (e.g.,
[2,6,10,14,23,24,27,37,47]) and have achieved state-of-the-art accuracy. This
approach requires a large dataset of essays graded by human raters as train-
ing data. Essay grading tasks are generally shared among many raters, assign-
ing a few raters to each essay to lower assessment burdens. However, assigned
scores are known to be strongly biased due to the effects of rater character-
istics [8,15,26,31,34,39,40]. Performance of DNN models rapidly drops when
biased data are used for model training, because the resulting model reflects
bias effects [3,12,17]. This problem has been generally overlooked or ignored,
but it is a significant issue affecting all AES methods using supervised machine
learning models, including DNN, and because cost concerns make it generally
difficult to remove rater bias in practical testing situations.

In the fields of educational and psychological measurement, statistical models
for estimating essay scores while considering rater characteristic effects have
recently been proposed. Specifically, they are formulated as item response theory
(IRT) models that incorporate parameters representing rater characteristics [9,
29,30,38,42–45]. Such models have been applied to various performance tests,
including essay writing. Previous studies have reported that they can provide
reliable scores by removing adverse effects of rater bias (e.g., [38,39,41,42,44]).

This study therefore proposes a new DNN-AES framework that integrates
IRT models to deal with rater bias in training data. Specifically, we propose
a two-stage architecture that stacks an IRT model over a conventional DNN-
AES model. In our framework, the IRT model is first applied to raw rating data
to estimate reliable scores that remove effects of rater bias. Then, the DNN-
AES model is trained using the IRT-based scores. Since the IRT-based scores
are theoretically free from rater bias, the DNN-AES model will not reflect bias
effects. Our framework is simple and easily applied to various conventional AES
models. Moreover, this framework is highly suited to educational contexts and
to low- and medium-stakes tests, because preparing high-quality training data
in such situations is generally difficult. To our knowledge, this study is a first
attempt at mitigating rater bias effects in DNN-AES models.

2 Data

We assume the training dataset consists of essays written by J examinees and
essay scores assigned by R raters. Let ej be an essay by examinee j ∈ J =
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{1, · · · , J} and let Ujr represent a categorical score k ∈ K = {1, · · · , K} assigned
by rater r ∈ R = {1, · · · , R} to ej . The score data can then be defined as
U = {Ujr ∈ K ∪ {−1} | j ∈ J , r ∈ R}, with Ujr = −1 denoting missing data.
Missing data occur because only a few graders in R can practically grade each
essay ej to reduce assessment workload. Furthermore, letting V = {1, · · · , V } be
a vocabulary list for essay collection E = {ej | j ∈ J }, essay ej ∈ E is definable
as a list of vocabulary words ej = {wjt ∈ V | t = {1, · · · , Nj}}, where wjt is a
one-hot representation of the t-th word in ej , and Nj is the number of words in
ej . This study aimed at training DNN-AES models using this training data.

3 Neural Automated Essay Scoring Models

This section briefly introduces the DNN-AES models used in this study.
Although many models have been proposed in the last few years, we apply
the most popular model that uses convolution neural networks (CNN) with long
short-term memory (LSTM) [2], and an advanced model based on bidirectional
encoder representations from transformers (BERT) [7].

3.1 CNN-LSTM-Based Model

A CNN-LSTM-based model [2] proposed in 2016 was the first DNN-AES model.
Figure 1(a) shows the model architecture. This model calculates a score for a
given essay, which is defined as a sequence of one-hot word vectors, through the
following multi-layered neural networks.

Lookup table layer: This layer transforms each word in a given essay into a D-
dimensional word-embedding representation, in which words with the same
meaning have similar representations. Specifically, letting A be a D × V -
dimensional embeddings matrix, the embedding representation correspond-
ing to wjt ∈ ej is calculable as the dot-product A · wjt.

Convolution layer: This layer extracts n-gram level features using CNN from
the sequence of word embedding vectors. These features capture local textual
dependencies among n-gram words. Zero padding is applied to outputs from
this layer to preserve the word length. This is an optional layer, often omitted
in current studies.

Recurrent layer: This layer is a LSTM network that outputs a vector at
each timestep to capture long-distance dependencies of the words. A single-
layer unidirectional LSTM is generally used, but bidirectional or multilayered
LSTMs are also often used.

Pooling layer: This layer transforms outputs of the recurrent layer H = {hj1,
hj2, · · · , hjNj

} into a fixed-length vector. Mean-over-time (MoT) pooling,
which calculates an average vector Mj = 1

Nj

∑Nj

t=1 hjt, is generally used
because it tends to provide stable accuracy. Other frequently used pooling
methods include the last pool, which uses the last output of the recurrent
layer hjNj

, and a pooling-with-attention mechanism.
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Fig. 1. Architectures of DNN-AES models.

Linear layer with sigmoid activation: This layer projects pooling-layer out-
put to a scalar value in the range [0, 1] by utilizing the sigmoid function as
σ(W Mj + b), where W is a weight matrix and b is a bias. Model training
is conducted by normalizing gold-standard scores to [0, 1], but the predicted
scores are rescaled to the original score range in the prediction phase.

3.2 BERT-Based Model

BERT, a pretrained language model released by the Google AI Language team,
has achieved state-of-the-art results in various NLP tasks [7]. BERT has been
applied to AES [32] and automated short-answer grading (SAG) [19,21,36] since
2019, and provides good accuracy.

BERT is defined as a multilayer bidirectional transformer network [46].
Transformers are a neural network architecture designed to handle ordered
sequences of data using an attention mechanism. Specifically, transformers con-
sist of multiple layers (called transformer blocks), each containing a multi-head
self-attention and a position-wise fully connected feed-forward network. See
Ref. [46] for details of this architecture.

BERT is trained in pretraining and fine-tuning steps. Pretraining is con-
ducted on huge amounts of unlabeled text data over two tasks, masked language
modeling and next-sentence prediction, the former predicting the identities of
words that have been masked out of the input text and the latter predicting
whether two given sentences are adjacent.

Using BERT for a target NLP task, including AES, requires fine-tuning
(retraining), which is conducted from a task-specific supervised dataset after
initializing model parameters to pretrained values. When using BERT for AES,
input essays require preprocessing, namely adding a special token (“CLS”) to
the beginning of each input. BERT output corresponding to this token is used
as the aggregate sequence representation [7]. We can thus score an essay by
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inputting its representation to a linear layer with sigmoid activation, as illus-
trated in Fig. 1(b).

3.3 Problems in Model Training

Training of CNN-LSTM-based AES models and fine-tuning of BERT-based AES
models are conducted using large datasets of essays by graded human raters.
For model training, the mean-squared error (MSE) between predicted and gold-
standard scores is used as the loss function. Specifically, letting yj be the gold-
standard score for essay ej and letting ŷj be the predicted score, the MSE loss
function is defined as 1

J

∑J
j=1(yj − ŷj)2.

The gold-standard score yj is a score for essay ej assigned by a human rater
in a set of raters R. When multiple raters grade each essay, the gold-standard
score should be determined by selecting one score or by calculating an average or
total score. In any case, such scores depend strongly on rater characteristics, as
discussed in Sect. 1. The accuracy of a DNN model drops when such biased data
are used for model training, because the trained model inherits bias effects [3,
12,17]. In educational and psychological measurement research, item response
theory (IRT) models that can estimate essay scores while considering effects of
rater characteristics have recently been proposed [9,29,30,38,42–44]. The main
goal of this study is to train AES models using IRT-based unbiased scores. The
next section introduces the IRT models.

4 Item Response Theory Models with Rater Parameters

IRT [20] is a test theory based on mathematical models. IRT represents the
probability of an examinee response to a test item as a function of latent exami-
nee ability and item characteristics such as difficulty and discrimination. IRT is
widely used for educational testing because it offers many benefits. For example,
IRT can estimate examinee ability considering effects of item characteristics.
Also, the abilities of examinees responding to different test items can be mea-
sured on the same scale, and missing response data can be easily handled.

Traditional IRT models are applicable to two-way data (examinees × test
items), consisting of examinee test item scores. For example, the generalized par-
tial credit model (GPCM) [25], a representative polytomous IRT model, defines
the probability that examinee j receives score k for test item i as

Pijk =
exp

∑k
m=1 [αi(θj − βi − dim)]

∑K
l=1 exp

∑l
m=1 [αi(θj − βi − dim)]

, (1)

where θj is the latent ability of examinee j, αi is a discrimination parameter
for item i, βi is a difficulty parameter for item i, and dik is a step difficulty
parameter denoting difficulty of transition between scores k − 1 and k in the
item. Here, di1 = 0, and

∑K
k=2 dik = 0 is given for model identification.

However, conventional GPCM ignores rater factors, so it is not applicable to
rating data given by multiple raters as assumed in this study. Extension models
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that incorporate parameters representing rater characteristics have been pro-
posed to resolve this difficulty [29,30,38,42–45]. This study introduces a state-
of-the-art model [44,45] that is most robust for a large variety of raters. This
model defines the probability that rater r assigns score k to examinee j’s essay
for a test item (e.g., an essay task) i as

Pijrk =
exp

∑k
m=1 [αrαi(θj − βr − βi − drm)]

∑K
l=1 exp

∑l
m=1 [αrαi(θj − βr − βi − drm)]

, (2)

where αr is the consistency of rater r, βr is the strictness of rater r, and drk is
the severity of rater r within category k. For model identification, we assume∑I

i=1 log αi = 0,
∑I

i=1 βi = 0, dr1 = 0, and
∑K

k=2 drk = 0.
This study applies this IRT model to rating data U in training data. Note

that DNN-AES models are trained for each essay task. Therefore, rating data
U are defined as two-way data (examinees × raters). When the number of tasks
is fixed to one in the model, the above model identification constraints make αi

and βi ignorable, so Eq. (2) becomes

Pjrk =
exp

∑k
m=1 [αr(θj − βr − drm)]

∑K
l=1 exp

∑l
m=1 [αr(θj − βr − drm)]

. (3)

This equation is consistent with conventional GPCM, regarding use of item
parameters as the rater parameters. Note that θj in Eq. (3) represents not only
the ability of examinee j but also the latent unbiased scores for essay ej , because
only one essay is associated with each examinee. This model thus provides essay
scores with rater bias effects removed.

5 Proposed Method

We propose a DNN-AES framework that uses IRT-based unbiased scores θ =
{θj | j ∈ J } to deal with rater bias in training data.

Figure 2 shows the architectures of the proposed method. As that figure
shows, the proposed method is defined by stacking an IRT model over a conven-
tional DNN-AES model. Training of our models occurs in two steps:

1. Estimate the IRT scores θ from the rating data U .
2. Train AES models using the IRT scores θ as the gold-standard scores. Specifi-

cally, the MSE loss function for training is defined as 1
J

∑J
j=1(θj − θ̂j)2, where

θ̂j represents the AES’s predicted score for essay ej . Since scores θ are esti-
mated while considering rater bias effects, a trained model will not reflect
bias effects. Note that the gold-standard scores must be rescaled to the range
[0, 1] for training because sigmoid activation is used in the output layer. In
IRT, 99.7% of θj fall within the range [−3, 3] because a standard normal dis-
tribution is generally assumed. We therefore apply a linear transformation
from the range [−3, 3] to [0, 1] after rounding the scores lower than −3 to −3,
and those higher than 3 to 3.
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Fig. 2. Proposed architectures.

Note that the increase in training time for the proposed method compared with
a conventional method is the time for IRT parameter estimation.

In the testing phase, the score for new essay ej′ is predicted in two steps:

1. Predict the IRT score θj′ from a trained AES model, and rescale it to the
range [−3,3].

2. Calculate the expected score Ûj′ , which corresponds to an unbiased original-
scaled score of ej′ [39], as

Ûj′ = 1
R

R∑

r=1

K∑

k=1
k · Pj′rk. (4)

6 Experiments

This section describes evaluation of the effectiveness of the proposed method
through actual data experiments.

6.1 Actual Data

These experiments used the Automated Student Assessment Prize (ASAP)
dataset, which is widely used as benchmark data in AES studies. This dataset
consists of essays on eight topics, originally written by students from grades 7
to 10. There are 12,978 essays, averaging 1,622 essays per topic. However, this
dataset cannot be directly used to evaluate the proposed method, because despite
its essays having been graded by multiple raters, it contains no rater identifiers.

We therefore employed other raters and asked them to grade essays in the
ASAP dataset. We used essay data for the fifth ASAP topic, because the number
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Fig. 3. Score statistics (average
and SD) for each rater.

Table 1. Category usage rates.

Rater Rating category
ID 1 2 3 4 5
1 4% 23% 27% 28% 17%
2 4% 3% 36% 48% 10%
3 2% 6% 7% 32% 54%
4 2% 4% 10% 22% 62%
5 3% 20% 35% 30% 12%
6 6% 16% 33% 25% 21%
7 3% 22% 41% 23% 12%
8 12% 8% 11% 10% 58%
9 1% 11% 33% 43% 12%

10 9% 24% 28% 23% 17%

of essays in that topic is relatively large (n = 1805). We recruited 38 native
English speakers as raters through Amazon Mechanical Turk and assigned four
raters to each essay. Each rater graded around 195 essays. The assessment rubric
used the same five rating categories as ASAP. Average Pearson’s correlation
between the collected rating scores and the original ASAP scores was 0.675.

To confirm any differences in rater characteristics, we plotted averaged score
values and standard deviations (SD) for each rater, as shown in Fig. 3. In that
figure, each plot represents a rater, and horizontal and vertical axes respectively
show the average and SD values. In addition, Table 1 shows appearance rates in
the five rating categories for 10 representative raters. The figure and table show
extreme differences in grading characteristics among the raters, suggesting that
consideration of rater bias is required.

6.2 Experimental Procedures

This subsection shows that the proposed method can provide more robust scores
than can conventional AES models, even when the rater grading each essay in
the training data changes. The experimental procedures, which are similar to
those used in previous studies examining IRT scoring robustness [39–42], were
as follows:
1. We estimated IRT parameters by the Markov chain Monte Carlo (MCMC)

algorithm [30,42] using all rating data.
2. We created a dataset consisting of (essay, score) pairs by randomly selecting

one score for each essay from among the scores assigned by multiple raters.
We repeated this data generation 10 times. Hereafter, the m-th generated
dataset is represented as U ′

m.
3. From each dataset U ′

m, we estimated IRT scores θ (referred to as θm) given
the rater parameters obtained in Step 1, and then created a dataset U ′′

m

comprising essays and θm values.
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Table 2. Evaluations of prediction robustness.

Kappa Weighted Kappa RMSE Correlation
Prop. Conv. Prop. Conv. Prop. Conv. Prop. Conv.

CNN+LSTM (MoT) 0.749 0.624 0.778 0.727 0.191 0.301 0.937 0.931
CNN+LSTM (Last) 0.696 0.459 0.701 0.551 0.212 0.400 0.829 0.783
LSTM (MoT) 0.831 0.697 0.845 0.779 0.142 0.237 0.965 0.958
LSTM (Last) 0.612 0.371 0.624 0.514 0.300 0.518 0.804 0.775
BERT 0.790 0.629 0.808 0.743 0.159 0.311 0.960 0.935

4. Using each dataset U ′′
m, we conducted five-fold cross validation to train AES

models and to obtain predicted scores θ̂m for all essays.
5. We calculated metrics for agreement between the expected scores calcu-

lated by Eq. (4) given θ̂m and those calculated given θ̂m′ for all unique
m, m′ ∈ {1, · · · , 10} pairs (10C2 = 45 pairs in total). As agreement metrics,
we used Cohen’s kappa, weighted kappa, root mean squared error (RMSE),
and Pearson correlation coefficient.

6. We calculated average metric values obtained from the 45 pairs.

High kappa and correlation and low RMSE values obtained from the experiment
indicate that score predictions are more robust for different raters.

We conducted a similar experiment using conventional DNN-AES models
without the IRT model. Specifically, using each dataset U ′

m, we predicted essay
scores from a DNN-AES model through five-fold cross validation procedures as
in Step 4. We then calculated the four agreement metrics among the predicted
scores obtained from different datasets U ′

m, and averaged them.
These experiments were conducted with several DNN-AES models. Specifi-

cally, we examined CNN-LSTM models using MoT pooling or last pooling, those
models without a CNN layer, and the BERT model. These models were imple-
mented in Python with the Keras library. For the BERT model, we used the
base-sized pretrained model. The hyperparameters and dropout settings were
determined following Refs. [2,7,46].

6.3 Experimental Results

Table 2 shows the results, which indicate that the proposed method sufficiently
improves agreement metrics as compared to the conventional models in all cases.
The results indicate that the proposed method provides stable scores when the
rater allocation for each essay in training data is changed, thus demonstrating
that it is highly robust against rater bias. Note that the values in Table 2 are
not comparable with the results of previous AES studies because our experiment
and previous experiments evaluated different aspects of AES performance.

In addition, as in previous AES studies, we evaluated score (θ) prediction
accuracy of the proposed method through five-fold cross-validation. We mea-
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Table 3. Prediction accuracy for IRT score θ by the proposed method

MAE RMSE Correlation R2

CNN+LSTM (MoT) 0.431 0.546 0.719 0.499
CNN+LSTM (Last) 0.580 0.717 0.417 0.161
LSTM (MoT) 0.408 0.519 0.749 0.557
LSTM (Last) 0.509 0.640 0.584 0.340
BERT 0.400 0.511 0.763 0.562

sured accuracy using mean absolute error (MAE), RMSE, the correlation coeffi-
cient, and the coefficient of determination (R2), because θ is a continuous vari-
able. Table 3 shows the results, which indicate that the CNN-LSTM and LSTM
models with MoT pooling achieved higher performance than did those with last
pooling. The table also shows that the CNN did not effectively improve accu-
racy. These tendencies are consistent with a previous study [2]. In addition, the
BERT provided the highest accuracy, which is also consistent with current NLP
studies.

Tables 2 and 3 show that the score prediction robustness in Table 2 tends to
increase with score prediction accuracy. This might be because scores in low-
performance DNN-AES models are strongly biased not only by rater character-
istics, but also by prediction errors arising from the model itself. With increasing
accuracy of DNN-AES models, rater bias effects as a percentage of overall error
increases, suggesting that the impact of the proposed method increases.

7 Conclusion

We showed that DNN-AES model performance strongly depends on the char-
acteristics of raters grading essays in training data. To resolve this problem, we
proposed a new DNN-AES framework that integrates IRT models. Specifically,
we formulated our method as a two-stage architecture that stacks the IRT model
over a conventional DNN-AES model. Through experiments using an actual
dataset, we demonstrated that the proposed method can provide more robust
essay scores than can conventional DNN-AES models. The proposed method is
simple but powerful, and is easily applicable to any AES model. As described
in the Introduction, our method is also highly suited to situations where high-
quality training data are hard to prepare, including educational contexts.

In future studies, we expect to evaluate effectiveness of the proposed method
using various datasets. Although this study mainly focused on robustness against
rater bias, the proposed method might also improve prediction accuracy for each
rater’s score. In future studies, the accuracy should be evaluated. Our method
is defined as a two-stage procedure for separately training IRT models and
DNN-AES models. However, conducting end-to-end optimization would further
improve the performance. This extension is another topic for future study.
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Abstract. Assessment in the context of foreign language learning can
be difficult and time-consuming for instructors. Distinctive from other
domains, language learning often requires teachers to assess each stu-
dent’s ability to speak the language, making this process even more time-
consuming in large classrooms which are particularly common in post-
secondary settings; considering that language instructors often assess
students through assignments requiring recorded audio, a lack of tools
to support such teachers makes providing individual feedback even more
challenging. In this work, we seek to explore the development of tools
to automatically assess audio responses within a college-level Chinese
language-learning course. We build a model designed to grade student
audio assignments with the purpose of incorporating such a model into
tools focused on helping both teachers and students in real classrooms.
Building upon our prior work which explored features extracted from
audio, the goal of this work is to explore additional features derived
from tone and speech recognition models to help assess students on two
outcomes commonly observed in language learning classes: fluency and
accuracy of speech. In addition to the exploration of features, this work
explores the application of Siamese deep learning models for this assess-
ment task. We find that models utilizing tonal features exhibit higher pre-
dictive performance of student fluency while text-based features derived
from speech recognition models exhibit higher predictive performance of
student accuracy of speech.

Keywords: Audio processing · Natural language processing ·
Language learning

1 Introduction

When learning a new language, it is important to be able to assess proficiency
in skills pertaining to both reading and speaking; this is true for instructors
but also for students to understand where improvement is needed. The ability
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to read requires an ability to identify the characters and words correctly, while
successful speech requires correct pronunciation and, in many languages, correct-
ness of tone. For these reasons, read-aloud tasks, where students are required to
speak while following a given reading prompt, are considered an integral part
of any Standardized language testing system for the syntactic, semantic, and
phonological understanding that is required to perform the task well [1–3].

This aspect of learning a second language is particularly important in the
context of learning Mandarin Chinese. Given that Chinese (Mandarin Chinese)
is a tonal language, the way the words are pronounced could change the entire
meaning of the sentence, highlighting the importance of assessing student speech
(through recordings or otherwise) an important aspect of understanding a stu-
dent’s proficiency in the language.

While a notable amount of research has been conducted in the area of
automating grading of read-aloud tasks by a number of organizations (cf. the
Educational Testing Service’s (ETS) and Test of English as a Foreign Language
(TOEFL)), the majority of assessment of student reading and speech is not tak-
ing place in standardized testing centers, but rather in classrooms. It is there-
fore here, in these classroom settings, that better tools are needed to support
both teachers and students in these assessment tasks. In the current classroom
paradigm, it is not unreasonable to estimate that the teacher takes hours to
listen to the recorded audios and grade them; a class of 20 students providing
audio recordings of just 3 min each, for example, requires an hour for the teacher
to listen, and this does not include the necessary time to provide feedback to
students.

This work observes student data collected from a college-level Chinese lan-
guage learning course. We use data collected in form of recorded student audio
from reading assignments with the goal of developing models to better support
teachers and students in assessing proficiency in both fluency, a measure of the
coherence of speech, and accuracy, a measure of lexical correctness. We present
a set of analyses to compare models built with audio, textual, and tonal features
derived from openly available speech-to-text tools to predict both fluency and
accuracy grades provided by a Chinese language instructor.

2 Related Work

There has been little work done on developing tools to support the automatic
assessment of speaking skills in a classroom setting, particularly in foreign lan-
guage courses. However, a number of approaches have been applied in studying
audio assessment in non-classroom contexts. Pronunciation instruction through
computer-assistance tools has received attention by several of the standardized
language testing organizations including ETS, SRI, and Pearson [4] in the con-
text of such standardized tests; much of this work is similarly focused on English
as a second language learners.

In developing models that are able to assess fluency and accuracy of speech
from audio, it is vital for such models to utilize the right set of representative
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features. Previous work conducted in the area of Chinese language learning,
of which this work is building upon, explored a number of commonly-applied
features of audio including spectral features, audio frequency statistics, as well
as others [5]. Other works have previously explored the similarity and differences
between aspects of speech. In [6], phonetic distance, based on the similarity of
sounds within words, has been used to analyse non-native English learners. Work
has also been done on analysing different phonetic distances used to analyse
speech recognition of vocabulary and grammar optimization [7].

Many approaches having been explored in such works, starting from Hid-
den Markov Models [8] to more recently applying deep learning methods [6]
to predict scores assessing speaking skills. Others have utilized speech recogni-
tion techniques for audio assessment. There have been a number of prior works
that have focused on the grading of read-aloud and writing tasks using Auto-
matic Speech Recognition using interactive Spoken Dialogue Systems (SDS)
[9], phonetic segmentation [10,11], as well as classification [12] and regression
tree (CART) based methodologies [8,13]. Some speech recognition systems have
used language-specific attributes, such as tonal features, to improve their model
performances [14,15]. Since tones are an important component of pronunciation
in Chinese language learning, we also consider the use of tonal features in this
work for the task of predicting teacher-provided scores.

As there has been seemingly more research conducted in the area of natural
language processing, such an approach as to convert the spoken audio to text is
plausibly useful in understanding the weak points of the speaker. Recent works
have combined automatic speech recognition with natural language processing
to build grading models for English Language [16]. In applications of natural
language processing, the use of pre-trained word embeddings has become more
common due to the large corpuses of data on which they were trained. Pre-
trained models of word2vec [17] and Global Vectors for Word Representation
(GloVe) [18], for example, have been widely cited in applications of natural lan-
guage processing. By training on large datasets, these embeddings are believed to
capture meaningful syntactic and semantic relationships between words through
meaning. Similar to these methods, FastText [19] is a library created by Face-
book’s AI Research lab which provides pre-trained word embeddings for Chinese
language.

Similarly, openly available speech-generation tools may be useful in assessing
student speech. For example, Google has supplied an interface to allow for text-
to-speech generation that we will utilize later in this work. Though this tool is
not equivalent to a native Chinese-speaking person, such a tool may be useful
in helping to compare speech across students. The use of this method will be
discussed further in Sect. 4.5.

3 Dataset

The data set used in this work was obtained from an undergraduate Chinese
Language class taught to non-native speakers. The data was collected from mul-
tiple classes with the same instructor. The data is comprised of assignments
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requiring students to submit an audio recording of them reading aloud a pre-
determined prompt as well as answering open-ended questions. For this work,
we focus only on the read-aloud part of the assignment, observing the audio
recordings in conjunction with the provided text prompt of the assignment.

For the read-aloud part of the assignment, students were presented with 4
tasks which were meant to be read out loud and recorded by the student and
submitted through the course’s learning management system. Each task consists
of one or two sentences about general topics. The instructor downloaded such
audio files, listened to each, and assessed students based on two separate grades
pertaining to fluency and accuracy of the spoken text. Each of these grades
are represented as a continuous-valued measure between 0–5; decimal values are
allowed such that a grade of 2.5 is the equivalent of a grade of 50% on a particular
outcome measure. This dataset contains 304 audio files from 128 distinct students
over four distinct sentence read-aloud tasks. Each audio is taken as a separate
data point, so each student has one to four audio files. Each sample includes
one of the tasks read by the student along with the intended text of the reading
prompt.

4 Feature Extraction

4.1 Pre-processing

The audio files submitted by students were of varying formats including mp3,
m4a. The ffmpeg [20] python library is used to convert these audio inputs into
a raw .wav format required by the speech models.

While prior work [5] explored much of this process of processing and extract-
ing features from audio, the current work intends to expand upon this prior work
by additionally introducing textual and tonal features into our grading model.
The next two sections detail the feature extraction process for audio, tonal. and
textual features using the processed dataset.

4.2 Audio Features

Audio feature extraction is required to obtain components of the audio signal
which can be used to represent acoustic characteristics in a way a model can
understand. The audio files are converted to vectors which can capture the var-
ious properties of the audio data recorded. The audio features were extracted
using an openly-available python library [21] that breaks each recording into 50
millisecond clips, offsetting each clip by 25 milliseconds of the start of the pre-
ceding clip (creating a sliding window to generate aggregated temporal features
using the observed frequencies of the audio wave). A total of 34 audio-based fea-
tures, including Mel-frequency cepstral coefficients (MFCC), Chroma features,
and Energy related features, were generated as in previous work [5].
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4.3 Text Features

From the audio data, we also generate a character-representation of the inter-
preted audio file using openly-available speech recognition tools. The goal of this
feature extraction step is to use speech recognition to transcribe the words spo-
ken by each student to text that can be compared to the corresponding reading
prompt using natural language processing techniques; the intuition here is that
the closeness of what the Google speech-to-text model is able to interpret to
the actual prompt should be an indication of how well the given text was spo-
ken. Since building speech recognition models is not the goal of this paper, we
used an off-the-shelf module for this task. Specifically, the SpeechRecognition
library [22] in python provides a coding interface to the Google Web Speech
API and also supports several languages including Mandarin Chinese. The API
is built using deep-learning models and allows text transcription in real-time,
promoting its usage for deployment in classroom settings. While, to the authors’
knowledge, there is no detailed documentation describing the precise training
procedure for Google’s speech recognition model, it is presumably a deep learn-
ing model trained on a sizeable dataset; it is this later aspect, the presumably
large number of training samples, that we believe may prove some benefit to our
application. Given that we have a relatively small dataset, the use of pre-trained
models such as those supplied openly through Google, may be able to provide
additional predictive power to models utilizing such features.

We segment the Google-transcribed text into character-level components and
then convert them into numeric vector representations for use in the models. We
use Facebook’s FastText [19] library for this embedding task (c.f. Section 2).
Each character or word is represented in the form of a 300 dimensional numeric
vector space representation. The embedding process results in a character level
representation, but what is needed is a representation of the entire sentence. As
such, once the embeddings are applied, all characters are concatenated together
to form a large vector representing the entire sentence.

The Google Speech to text API is reported to exhibit a mean Word Error
Rate (WER) of 9% [23]. To analyse the performance of Google’s Speech to Text
API on our dataset of student recordings, we randomly selected 15 student audio
files from our dataset across all the four reading tasks and then transcribed them
using the open tool. We then created a survey that was answered by the Teacher
and 2 Teaching Assistants of the observed Chinese language class. The survey
first required the participants to listen to each audio and then asked each to rate
the accuracy of the corresponding transcribed text on a 10-point integer scale.
The Intraclass Correlation Coefficient (ICC) was used to measure the strength
of inter-rater agreement, finding a correlation of 0.8 (c.f. ICC(2,k) [24]). While
this small study illustrates that the Google API exhibits some degree of error,
we argue that it is reliable enough to be used for comparison in this work.

4.4 Tonal Features

Chinese is a tonal language. The same syllable can be pronounced with different
tones which, in turn, changes the meaning of the content. To aid in our goal
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of predicting the teacher-supplied scores of fluency and accuracy, we decided
to explore the observance of tonal features in our models. In the Mandarin
Chinese language, there are four main tones. These tones represent changes of
inflection (i.e. rising, falling, or leveling) when pronouncing each syllable of a
word or phrase. When asking Chinese Language teachers what are some of the
features they look for while assessing student speech, tonal accuracy was one of
the important characteristics identified.

To extract the tones from the student’s audio, we use the ToneNet [25] model
which was trained on the Syllable Corpus of Standard Chinese Dataset (SCSC).
The SCSC dataset consists of 1,275 monosyllabic Chinese characters, which are
composed of 15 pronunciations of young men, totaling 19,125 example pronun-
ciations of about 0.5 to 1 second in duration. The model uses a mel spectrogram
(image respresentation of an audio in the mel scale) of each of these samples to
train the model. The model uses a convolutional neural network and multi-layer
perceptron to classify Chinese syllables in the form on images into one of the
four tones. This model is reported to have an accuracy of 99.16% and f1-score of
99.11% [25]. To use the ToneNet on our student audio data, we first break the
student audio into 1 second audio clips and convert them into mel spectrograms.
We then feed these generated mel spectrograms to the ToneNet model to predict
the tone present in each clip. The sequence of predicted tones is then used as
features in our fluency and accuracy prediction models.

4.5 True Audio: Google Text to Speech API

As a final source of features for comparison in this work, we believed it may
be useful to compare each student audio to that of an accepted “correct” pro-
nunciation; however, no such recordings were present in our data, nor are they
common to have in classroom settings for a given read-aloud prompt. Given that
we have audio data from students, and the text of each corresponding prompt,
we wanted to utilise Google’s text-to-speech to produce a “true audio” - how
Google would read the given sentence. While not quite ground truth, given that
it is trained on large datasets, we believe it could help our models learn certain
differentiating characteristics of student speech by providing a common point
of comparison. The features extracted from the true audio is particularly useful
in training Siamese networks, as described in the next section, by providing a
reasonable audio recording with which to compare each student response.

5 Models

In developing models to assess students based on the measures of accuracy and
fluency, we compare three models of varying complexities and architectures (and
one baseline model) using different feature sets described in the previous sections.
Our baseline model consists of assigning the mean of the scores as the predicted
value. We use a 5-fold cross validation for all model training (Fig. 1).
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Fig. 1. The figure shows the steps involved in transforming audio to sequence of tones
and feeding into the Siamese network

Aside from the baseline model, the first and second models explored in this
work are the same as applied in previous research in developing models for
assessing student accuracy and fluency in Chinese language learning [5]. These
models consist of a decision tree (Using the CART algorithm [26]) and a Long
Short Term Memory (LSTM) recurrent neural network. While previous work
explored the use of audio features, labeled in this work as “PyAudio” features
after the library used to generate them, this work is able to compare these
additional textual and tonal feature sets. Similar to deep learning models, the
decision tree model is able to learn non-linear relationships in the data, but also
can be restricted in its complexity to avoid potential problems of overfitting.
Conversely, the LSTM is able to learn temporal relationships from time series
data as in the audio recordings observed in this work. As in our prior research, a
small amount of hyperparameter tuning was conducted on a subset of the data.

In addition to the three sets of features described, a fourth feature set, a
cosine similarity measure, was explored in the decision tree model. This was cal-
culated by taking the cosine similarity between the embedded student responses
and the embedded reading prompts. This feature set was included as an alterna-
tive approach to the features described in Sect. 4.5 for use in the Siamese network
described in the next section.

5.1 Siamese Network

The last type of model explored in this paper is a Siamese neural network.
Siamese networks are able to learn representations and relationships in data by
comparing similar examples. For instance, we have the audio of the student as
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well as the Google-generated “true audio” that can be compared to learn features
that may be useful in identifying how differences correlate with assigned fluency
and accuracy scores. In this regard, the generated audio does not need to be
correct to be useful; they can help in understanding how the student audio
recordings differ from each other and how these differences relate to scores.

The network is comprised of two identical sub networks that share the same
weights while working on two different inputs in tandem (e.g. the network
observes the student audio data at the same time that it observes the gener-
ated audio data). The last layers of the two networks are fed into a contrastive
loss function which calculates the similarity between the two audio recordings
to predict the grades.

We experimented with different base networks within the Siamese architec-
ture including a dense network, an LSTM and 1D Convolution Neural Net-
work(CNN). There has been prior research showing the benefits of using CNNs
on sequential data [27,28]. We wanted to explore their performance on our data.
We report the results for 1D CNN in this work.

5.2 Multi-task Learning and Ensembling

Following the development of the decision tree, LSTM, and Siamese network
models, we selected the two highest performing models across fluency and accu-
racy and ensembled their predictions using a simple regression model. As will be
discussed in the next section, two Siamese network models (one observing textual
features and the other the tonal feature set) exhibited the highest performance
and were used in this process.

Our final comparison explores the usage of multitask learning [29] for the
Siamese network. In this type of model, the weights of the network are optimized
to predict both fluency and accuracy of speech simultaneously within a single
model. Such a model may be able to take advantage of correlations between the
labels to better learn distinctions between the assessment scores.

6 Results

In comparing the model results we use two measures to evaluate each model’s
ability to predict the Fluency and Accuracy grades: mean squared error (MSE)
and Spearman correlation (Rho). A lower MSE value is indicative of superior
model performance while higher Rho values are indicative of superior perfor-
mance; this later metric is used to compare monotonic, though potentially non-
linear relationships between the prediction and the labels (while continuous, the
labels do not necessarily follow a normal distribution as students were more
likely to receive higher grades).

Table 1 illustrates the model performance when comparing models utilizing
each of the three described sets of features (See Sect. 4). From the table, it
can be seen that in terms of MSE and Rho, the Siamese network exhibits the
best performance across both metrics. It is particularly interesting to note that
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Table 1. Results for the different models.

Model Features Fluency Accuracy

Rho MSE Rho MSE

Siamese network Text features 0.073 0.665 0.317 0.833

Tonal features 0.497 0.497 −0.006 0.957

LSTM PyAduio features 0.072 1.139 −0.066 2.868

Tonal features −0.096 0.648 0.042 0.929

Text features −0.123 1.885 0.128 3.733

Decision tree PyAudio Features −0.005 0.749 0.011 1.189

Tonal features 0.285 0.649 0.107 0.960

Text features 0.090 0.794 0.261 0.998

Cosine similarity 0.037 0.674 0.162 0.984

Baseline - 0.636 - 0.932

Table 2. Multitasking and ensembled Siamese models

Model Fluency Accuracy

Rho MSE Rho MSE

Multitasking 0.129 0.603 0.313 0.915

Ensemble (Regression) 0.477 0.490 0.34 0.839

the textual features are better at predicting the accuracy score (MSE = 0.833,
Rho = 0.317), while the tonal features are better at predicting the fluency score
(MSE = 0.497, Rho = 0.497).

Table 2 shows the results for the multitasking and ensemble models. We see
that the Siamese model with multitasking to predict both the fluency and accu-
racy scores do not perform better than the individual models predicting each.
This suggests that the model is not able to learn as effectively when presented
with both labels in our current dataset; it is possible that such a model would
either need more data or a different architecture to improve. The slight improve-
ment in regard to Fluency MSE and Accuracy Rho exhibited by the ensemble
model suggests that the learned features (i.e. the individual model predictions)
are able to generalize to predict the other measure. The increase in Rho for
accuracy is particularly interesting as the improvement suggests that the tonal
features are similarly helpful in predicting accuracy when combined with the
textual-based model.

7 Discussion and Future Work

In [5], it was found that the use of audio features helped predict fluency and
accuracy scores better than a simple baseline. In this paper the textual features
and tonal features explored provide even better predictive power.



Supporting Teacher Assessment in Chinese Language Learning 571

A potential limitation of the current work is the scale of the data observed,
and can be addressed by future research. The use of the pre-trained models may
have provided additional predictive power for the tonal and textual features, but
there may be additional ways to augment the audio-based features in a similar
manner (i.e. either by using pre-trained models or other audio data sources).
Similarly, audio augmentation methods may be utilized to help increase the size
and diversity of dataset (e.g. even by simply adding random noise to samples).

Another potential limitation of the current work is in regard to the explo-
ration of fairness among the models. It was described that the ToneNet model
used training samples from men, but not women; as with any assessment tool, it
is important to fully explore any potential sources of bias that exist in the input
data that may be perpetuated through the model’s predictions. In regard to the
set of pre-trained speech recognition models provided through Google’s APIs,
additional performance biases may exist for speakers with different accents.
Understanding the potential linguistic differences between language learners
would be important in providing a feedback tool that is beneficial to a wider
range of individuals. A deeper study into the fairness of our assessment models
would be needed before deploying within a classroom.

As Mandarin Chinese is a tonal language, the seeming importance and ben-
efit of including tonal features makes intuitive sense. In both the tonal and
textual feature sets, a pre-trained model was utilized which may also account
for the increased predictive power over the audio features alone. As all libraries
and methods used in this work are openly available, the methods and results
described here present opportunities to develop such techniques into assessment
and feedback tools to benefit teachers and students in real classrooms; in this
regard, they also hold promise in expanding to other languages or other audio-
based assignments and is a planned direction of future work.
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Abstract. Persistence is a crucial trait for learners. However, a common
issue in mastery learning is that persistence is not always productive, a
construct termed wheel-spinning. In this paper, we extend on prior work
to develop wheel-spinning detectors in the ASSISTments learning sys-
tem that distinguish between non-persistence, productive persistence and
wheel-spinning. To understand how quickly we can detect each state, we
use data from different numbers of practice opportunities and compare
model performance across student-problem set pairs. We identify that a
model constructed using data from the first nine practice opportunities
outperforms models using less practice data. However, it is possible to
differentiate students who will eventually wheel-spin from learners who
will persist productively using data from only the first three opportuni-
ties. Wheel-spinning can be differentiated from non-persistence from the
first five opportunities, and non-persistence can be differentiated from
productive persistence from the first seven opportunities. These results
show that early differentiation between wheel-spinning and productive
persistence is feasible. These detectors relied upon hint requests, the cor-
rectness of prior opportunities, and the amount of practice and time on
the skill. Identifying predictive features offer insights into the impact of
in-system behaviors on wheel-spinning and guide the system design.

Keywords: Wheel-spinning · Persistence · Decision tree · Early
detection · Intelligent tutoring system

1 Introduction

1.1 Persistence and Non-Persistence in Learning

Research in recent years has focused on the development of non-cognitive skills to
improve student learning, such as resilience and persistence during learning. Per-
sistence is defined as the ability to maintain an action or complete a task regard-
less of the person’s inclination towards the task [5,7]. Recent studies have shown
that persistence in educational settings is associated with academic achievement
[3,19], creativity [20] and long-term academic outcomes such as later school-
ing and future earnings [6,19]. However, not all persistence is positive. [2] have
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argued that some persistence may be unproductive, or wheel-spinning, defined
as spending too much time struggling without achieving mastery. The definition
of wheel-spinning has varied across different studies and different learning con-
texts. [2] defined wheel-spinning as not achieving mastery even after attempting
10 or more problems within a problem set; [14] involved two human raters to code
wheel-spinning behaviors qualitatively based on a coding manual, with a Cohen’s
Kappa of 0.9. On the other hand, [10] defined wheel-spinning as attempting more
than 10 problems but failing to achieve three consecutive correct responses in a
row or demonstrate later retention of the skill.

Non-persistence, or quitting the current learning task without mastering the
requisite knowledge, has also been documented in several computer-supported
learning environments. For example, in the educational game Physics Play-
ground, non-persistence was defined as quitting the level without successfully
solving the problem using the physics knowledge [11,12]. In the learning system
ASSISTments, [4] looked at non-persistent behaviors in which students quit the
problem set without reaching mastery of a skill, differentiating between quitting
immediately and quitting after attempting a few problems. Within the same
learning system, [10] defined non-persistence as attempting fewer than ten prob-
lems for a skill, but did not consider non-persistence detection in their work.

1.2 Detection of Persistence in Learning

Detection of wheel-spinning behaviors is important in identifying students who
may need additional support during a learning task. Because persistence is gen-
erally defined by the number of practice opportunities a student has on a learn-
ing task, some approaches to modeling or detecting wheel-spinning have been
designed to run only after the system has collected student data for a sufficiently
large number of practice opportunities. For example, [2], as the first study of
wheel-spinning, states that wheel-spinning could be detected as early as the
eighth practice opportunity in the ASSISTments system by a logistic regres-
sion model. A follow-up study further refined this model and was able to detect
wheel-spinning on the seventh practice opportunities [8]. Other machine learning
methods such as neural networks [14], gradient boosting [17] and random forest
[22] have also been used to enable wheel-spinning detection at earlier stages in
practice. Most notably, [4] was able to identify wheel-spinning students at their
third opportunity, applying Long Short Term Memory Recurrent Neural Net-
works. While these studies all take place in an ITS environment, there has also
been work on wheel-spinning detection in educational games. [16] constructed
a model to detect wheel-spinning based on the features engineered within the
first 5 min, first 10 min, and first 15 min of game playing, and [15] constructed a
model to differentiate wheel-spinning from productive persistence in a sequence
of mathematics games.

In reviewing these prior works, we note that for a wheel-spinning detector
to be practical for real-time usage, there are two important criteria to consider.
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First, a detector should be able to differentiate wheel-spinning from both non-
persistence (either successful or non-successful non-persistence) as well as from
productive persistence, and should be able to do this at the earliest possible
point. With early detection of these states, teachers and system designers may
have more opportunities to create interventions to improve the learning experi-
ence for students who are at risk of unproductively persisting, or quitting early
without completing a learning task. Secondly, predictions based on interpretable
models, like decision trees, will offer instructors and system designers more use-
ful insights into the factors influencing persistence and wheel-spinning. Prior
work has not yet fully met both of these criteria. Currently, most detectors only
account for binary prediction, by either eliminating the non-persistence cases
from consideration [17] or treating all cases that are not wheel-spinning as being
acceptable [8]. At the same time, recent efforts to improve prediction of wheel-
spinning using gradient boosting or neural networks have improved speed and
quality of prediction at the cost of interpretability, posing a challenge for educa-
tional researchers to uncover and understand the impact of learning behaviors
on wheel-spinning.

In this paper, we attempt to address each of these limitations. We 1) con-
struct multi-class detectors distinguishing the three categories discussed above
states—non-persistence, productive persistence, and unproductive persistence
(wheel-spinning)—so as to capture and compare specific behaviors that differ-
entiate both between persistent vs. non-persistent students, and productively
persistent vs. wheel-spinning students; 2) explore the minimum number of prac-
tice opportunities that could be used with reasonable accuracy to detect the
various persistence states under these conditions, and derive specific features
that may be translated into practical interventions. In doing so, in order to com-
pare our results with the previous works on binary wheel-spinning detectors,
predicting wheel-spinning vs. non-wheel-spinning [2,4,17], we also build mod-
els to make pairwise comparisons for two classes out of the three. In addition,
we will summarize the predictive features used across models based on different
practice opportunities, to promote better understanding of wheel-spinning. We
conclude by discussing the possible impact of the features on persistence and
unproductive persistence in learning.

2 Methods

2.1 ASSISTments

ASSISTments is a free online learning platform that provides immediate feed-
back to students and formative assessment of student performance to teachers [9].
Within the ASSISTments system, Skill Builders are a type of math problem set
where students practice randomly generated problems that are based on existing
templates and correspond to the same skill [9]. In a Skill Builder, students cannot
proceed to the next problem until they submit the correct response. Hints are
available to assist them with problem-solving. For each problem, students could
make multiple attempts and request multiple hints. In general, there are two to
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three levels of hint per problem, followed by a bottom-out hint that provides the
final answer. Students have to correctly answer three consecutive questions to
complete a problem set. They are then given a single-item test after a certain
period—usually a week later, though teachers can configure this—with gradu-
ally increasing space between reassessments. This test comprises one randomly
selected item from a template in the completed problem set, and is delivered
through the Automatic Reassessment and Relearning System (ARRS) [21]. The
main objective of ARRS is to assess a student’s retention of a skill over time.
If the student does not answer this item correctly, and therefore fails in skill
retention, they will be assigned the corresponding Skill Builder problem set to
re-learn the materials.

2.2 Data Collection and Label Generation

Our research dataset is the publicly available ASSISTments Skill Builders data
set from the 2014–2015 school year, which consists of 26,522 students who
attempted 1,088 Skill Builder problem sets over a year. Each record in the dataset
represents a student-problem set pair, which includes the log data when a learner
practices a Skill Builder problem set. This data set was chosen due to its use in
past research on wheel-spinning and persistence (i.e. [10]). We then constructed
eight new datasets: first-3, first-4,..., first-9, and first-10 (first-1 and first-2 were
not generated, due to not being enough data to infer wheel-spinning in any previ-
ous work). Each row in one of these first-x datasets shows aggregate data about
a student’s learning in a certain problem set (i.e., a student-problem set pair),
where x is the threshold number of problems over which data is aggregated. For
example, first-3 contains only data about the first 3 problems that the student
attempted in each problem set, whereas first-4, first-5 and first-6 contain data
about the first 4, 5 and 6 problems respectively. It should be noted that, given
a problem set, a student who attempted only 3 problems would be included in
first-3 but not in first-4 to first-10, while a student who completed 10 problems
would be included in every dataset from first-3 to first-10. More generally, the
number of student-problem set pairs decreases as x increases, because there are
fewer students who attempt more problems.

Table 1. Criteria of non-persistence (NP), productive persistence (PP), and wheel-
spinning (WS) in the Skill Builder system.

Definition Three Correct in a Row (Mastery) on
or after the 10th Problem

First ARRS Test Ten or More Problems

NP Any Any No

PP Yes Passed Yes

WS No Any Yes

Yes No
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Next, we labeled each row of student-problem set pair as either productive
persistence (PP), wheel-spinning (WS) or non-persistence (NP), according to the
operational definitions in [10] (Table 1). If a student did fewer than 10 problems
in a problem set, the corresponding student-problem set pair is labeled as NP.
Otherwise, the pair is labeled as PP if the student reached mastery (i.e., get
three correct responses in a row and pass the ARRS test) or WS if she did not.

While our definitions involve the ARRS test, some students were not assigned
this test even after getting three correct responses in a row because the teachers
turned the ARRS feature off. These instances, which account for 211,612 pairs
from the original 287,093 student-problem set pairs, were considered out of scope
and removed from further analysis. Of the remaining student-problem set pairs,
6,855 were classified as WS and 2,093 as PP; these pairs are present in every
first-x dataset but take on different feature values depending on x. The number
of NP pairs in the datasets from first-3 to first-10 are 51866, 33197, 26983,
12663, 7833, 4290, 1900 and 0 respectively. As previously noted, there are fewer
NP records as x increases; the first-10 dataset, in particular, has no NP records
because students who reached the 10th problem were considered persistent.

2.3 Feature Engineering and Machine Learning

We built upon the feature set developed by [1], which consists of student actions
and attributes within the ASSISTments Skill Builder platform that provides
information on student persistence and learning. More specifically, we included
25 core features related to student hint usage, number of practice opportunities at
a problem set, number of skill opportunities, and time between student actions.
As in [10], we calculated the respective sum, minimum, maximum, average and
standard deviation values of these core attributes for each student sequence and
generated 125 features based on 25 core features. Next, we constructed a set of
models to distinguish between NP, PP and WS. Each model is based on one of
the first-x datasets. This process consists of three main steps:

Data splitting. We performed a student-stratified split of each first-x
dataset into a train-validate set (90% of students) and a test set (10% of
students).
Feature selection. For each value of x, we conducted outer-loop forward
feature selection on the train-validate set. This routine starts with an empty
feature set and, at each step, selects the feature that would generate the best
performance, according to the result of cross-validation. To reduce overfitting,
we set the maximum number of features to 20 and imposed an early-stopping
condition: if the next candidate feature does not yield a performance improve-
ment of more than 0.001, the routine would stop.
Model evaluation. We built a model based on the features from the previ-
ous step, and trained it on the whole train-validate set. Then we evaluated
the model on the test set based on macro-average AUC and pairwise AUC
between NP-WS, PP-WS, and NP-PP. In this way, we ensured that no data
was used for both feature selection and model evaluation, which would bias
the results.
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In the above steps, our performance metric is 10-fold cross-validated AUC.
Due to a class imbalance between WS, NP and PP, we oversampled the training
data by randomly adding copies of records from the minority classes. To measure
the goodness of the model, we adopted macro-averaging AUC for the multi-class
prediction. Finally, to compare to our results with those of [10]’s binary detector
that differentiates between wheel-spinning and productive persistent states, we
chose the decision tree implementation from [18]. We used entropy as the splitting
criterion, set the maximum tree depth as 12 and minimum number of instances
per leaf as 2. While these hyperparameters could be individually tuned for each
dataset model to potentially yield better performance, our goal is to use the same
model construction process across all eight datasets in order to compare their
performances as well as the salient features in each, and to avoid the over-fitting
associated with hyperparameter tuning.

Among the 125 features, some were computed based on student actions on
a certain number of past problems. Past8BottomOut and Past8HelpRequest, for
example, refer to the number of bottom-out hints and help requests made in the
past 8 problems. We removed these features from the feature selection process on
the datasets where they are not applicable - for this example, the first-3 to first-8
datasets, which do not include student-skill data from more than 8 problems.

3 Results

3.1 Feature Selection Results

By applying the forward feature selection algorithm, we identified the feature
sets that maximized the model performance for each first-x dataset. Among the
eight decision tree models, six have root node features which are related to hint
usage, such as the mean (first-3, first-7, first-8 ) and sum (first-4, first-6 ) of the
total number of hints used, and mean of the bottom-out hint requested in the last
eight opportunities (first-10 ). The root nodes of the other two models are time
factors, such as sum (first-5 ) and mean (first-9 ) of the duration since the last
time the student practiced the skill. While each dataset has its own feature set,
we observed that there were features shared across datasets. To better represent
this commonality, we summarized all the selected features into seven categories,
which include the question type in the problem set, help request behaviors,
hint use, scaffolding, opportunity number, amount of practice and time, and
the count of failed opportunities. In Table 2, we listed three example feature
categories selected with their descriptions1. The number list after each feature
indicates which first-x dataset models it was selected for.

Based on forward selection, all the models from first-3 to first-10 include
features related to hint requesting behaviors (HintTotal). In addition, features
related to HintTotal are selected for the root node of five models, which indicates
that features related to hint requests play a crucial role in predicting WS, NP

1 The full table of features selected for each model can be viewed at https://github.
com/yeyuw215/AIED WS 2020/blob/master/FullTable2.pdf.

https://github.com/yeyuw215/AIED_WS_2020/blob/master/FullTable2.pdf
https://github.com/yeyuw215/AIED_WS_2020/blob/master/FullTable2.pdf
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Table 2. Examples of selected features, categories and descriptions.

Features
categories

Features and descriptions

Hint - HintTotal (3,4,5,6,7,8,9,10): The total number of hint requests

- Past8BottomOut (9,10): The number of bottom-out hint
requests in the past 8 attempts

Amount of
Practice
and Time

- TimeBetweenProblems (5,7,8,9): The duration of time in
between problems related to the skill

- TimeTaken (3,4,5,6): The amount of time spent to complete the
current problem

- TotalSkillOpportunities (5,6,7,8,9): The total number of
problems attempted that are related to the skill in the current
problem set

- TotalTimeOnSkill (3,4): The total amount of time spent on the
skill in the system

Wrong
Count

- TotalPastWrongCount (3,4,9): The total number of incorrect
attempts made on problems within the current problem set

- TotalPercentPastWrong (4,5): The percentage of incorrect
attempts made on problems within the current problem set

- Past5WrongCount (9): The number of attempts made that were
incorrect in the past 5 attempts

Table 3. Features selected for each first-x dataset model. Root feature denotes the
feature at the root node of each decision tree model. “ m” indicates the feature is
aggregated as mean; “ s” indicates the feature is aggregated as sum.

first-3 first-4 first-5 first-6

# of Features 10 12 11 6

Root Feature m HintTotal s HintTotal s TimeBtwProb s HintTotal

first-7 first-8 first-9 first-10

# of Features 11 8 10 5

Root Feature m HintTotal m HintTotal m TimeBtwProb m P8BottomOut

and PP. Other features, like the number of practice opportunities and amount of
time as well as the number of wrong attempts made on the previous problems,
are present across different models. We will discuss the implications of these
findings in the discussion section (Table 3).

3.2 Model Performance for “first-x” Datasets

For all first-x datasets, we applied the same feature selection and model evalu-
ation procedure. In order to identify how early we can predict wheel-spinning,
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Fig. 1. AUC scores for different first-x dataset.

we calculated the macro-averaging AUC (for the multiple classes of PP, NP and
WS) as goodness measurement and compared the improvement from including
more problems, or practice opportunities, into consideration. We also calculated
the pairwise AUC for WS-PP, NP-PP, and WS-NP predictions, to understand
how well the model can differentiate between specific pairs of states.

When including more and more practice opportunities into consideration,
the macro-average AUC scores of the multi-classes detector increases gradually
(see Fig. 1). The model including the data for the first 9 opportunities has the
best performance, with a macro-averaging AUC of 0.62. For contrasting NP-
PP and WS-NP, the AUC shows an increase with more practice opportunity
data. For the prediction contrasting NP and PP, including data from the first
7 practice opportunities leads to the largest increase of AUC from 0.54 (first-6 )
to 0.61 (first-7 ). Similarly, the AUC score of contrasting WS and NP increased
the most after including data from the first 5 practice opportunities, from 0.56
(first-4 ) to 0.62 (first-5 ). However, the AUC for the WS-PP detector fluctuates
around 0.625 and shows no rising trend from first-3 to first-10.

4 Discussion

4.1 Feature Selection Results

We observed that the hint-related features were present in all dataset models
as well as at the root node of five models, which indicates these features have
the most predictive power. This finding is consistent with previous studies. For
instance, [8] identified features involving hints to predict wheel-spinning, such as
hint use, count of previous practice opportunities with hint requests and whether
students requested at least five hint requests. Another finding in our model is
the effect of bottom-out hint requests for predicting WS. The average number of
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bottom-out hint requests for the past eight practice opportunities is selected as
a root node for predicting WS and PP (first-10 ), which indicates that bottom-
out hint is a strong predictor for predicting WS against PP. [2] also identified a
similar finding: after the 4th practice opportunities, bottom-out hint request is
positively associated with wheel-spinning. [10] similarly reported that heavy use
of bottom-out hints is associated with wheel-spinning.

Another category of features highly related to wheel-spinning detection is the
correctness of previous practice opportunities (TotalPastWrongCount, TotalPer-
centPastWrong, and Past5WrongCount). This finding is also consistent with
previous studies [8,15,22]. In particular, [22] compared wheel-spinning detection
across different tutors, algorithms and features. They found that a logistic regres-
sion model with only one feature, correct response percentage, achieved less but
comparable accuracy with other multi-feature models built using random forest,
indicating that correctness is a strong predictor for wheel-spinning prediction.
Furthermore, according to [8], the number of previous incorrect responses on
the same skill has a positive relationship with wheel-spinning. In a math learn-
ing game, [15] also found that prior knowledge measured by missing rate and
nonproficiency of skills is highly related to wheel-spinning.

Features related to the amount of practice and time (TimeTaken, TotalTime-
OnSkill, TotalSkillOpportunities, TimeBetweenProblems) are selected in all the
first-x models. For models including fewer opportunities to practice the skill
(first-3 to first-6 ), timetaken and totalfrtimeonskill are predictive of wheel-
spinning. However, for the models with more accumulated data (first-5 to first-
9 ), the features switched from time duration (TotalTimeOnSkill) to measures
of the number of opportunities (TotalSkillOpportunities). [2] also found that
response time is more predictive on the first several practice opportunities. For
the later responses, fast response might indicate either the mastery of skill or
gaming the system, which makes the meaning of response time ambiguous.

4.2 Model Performance of Multi-class and Pairwise Prediction

According to Fig. 1, the performance of the multi-class prediction increases as we
include data from more practice opportunities. When including data from the
first 9 practice opportunities, the macro-averaging AUC reached 0.62. To our
best knowledge, this is the first study exploring the integrated detection of non-
persistence, wheel-spinning, and productive persistence together, extending the
previous research on WS detector using a decision tree classifier [10]. Therefore,
it could be used as a baseline to evaluate model performance in future work.

In differentiating wheel-spinning (WS) from productive persistence (PP), we
found that model performance AUC values fluctuate around 0.625 from the
first-3 to the first-10 datasets, which implies that our predictive model is sta-
ble and able to differentiate between students at-risk of wheel-spinning from
students who are productively persistent early on from the third practice oppor-
tunity onward. This finding may appear to contradict prior studies that find
that models improve with more data [8,14,22]. This difference between stud-
ies may be due to the difference in how mastery is defined across the various
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studies. In prior studies, the criteria of productive mastery is defined based on
in-system performance, like three-correct-in-a-row [8]. However, the stricter def-
inition of productive persistence in our study requires students to not only meet
the “three-correct-in-a-row” mastery criteria, but also pass the delayed ARRS
test to demonstrate learning retention [10]. It is possible that a definition of mas-
tery based on robust learning, a higher bar than simply achieving three correct
answers in a row, might be easier to detect early. However, a contrasting finding
is obtained by [22], who obtained more accurate prediction and earlier detection
when using a more generous criterion of mastery than three-correct-in-a-row.

In our models generated to differentiate between wheel-spinning (WS) and
non-persistence (NP), we observed that while model performance increased with
the number of practice opportunities, the increase in AUC value is highest
between the 4th and 5th practice opportunities. This implies that our detectors
may be able to differentiate WS from NP with sufficient accuracy by the 5th
practice opportunity. [4] examined the performance of Long-Short Term Mem-
ory Networks to predict wheel-spinning and non-persistence on ASSISTments
in terms of how many opportunities to practice were provided to the algorithm.
They found that the 3rd opportunity might be the earliest timing to predict
both WS and NP, an earlier point than seen in our study. Our detectors there-
fore require more data than [4]. However, we are able to interpret the features in
our model based on the decision tree structures to derive more general insights.
This tradeoff between model performance and interpretability is also present in
other areas of learning analytics such as knowledge component modeling [13].

5 Conclusion

In this study, we explore the potential for early detection of wheel-spinning,
productive persistence and non-persistence in ASSISTments. By constructing
decision tree models and observing the change of model performance as data
about more practice opportunities is aggregated, we found that the model based
on nine practice opportunities results in the best performance; the model based
on the first three practice opportunities allows early detection of wheel-spinning
versus productive persistence, the first five practice opportunities are sufficient
for differentiation of wheel-spinning from non-persistence, and the first seven
practice opportunities are sufficient for differentiation of productive persistence
from non-persistence. Due to the interpretability of decision tree models, we
examined the common features across models and the root node features of
each. The predictive features, like hint and bottom-out hint usage, correctness
and amount of time and opportunities on the previous practice, offer us insights
about the factors which might lead to wheel-spinning.

Another potential area for future work, personalized intervention based on
which features are predictive could be integrated into the existing learning sys-
tem to better optimize student learning. Since the features which are predictive
of wheel-spinning are at least somewhat consistent across studies and datasets
(see discussion above), this may help us to design future intelligent tutoring sys-
tems that are more adaptive to the possibility of wheel-spinning in their early
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stages of learning. Such a system could encourage students to use the bottom-
out hints at the first several practice opportunities, if needed; then the system
could limit bottom-out hints availability in the later practice opportunities. In
this way, the system could leverage what we know about wheel-spinning to help
us prevent it.
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Abstract. Simulated learners represent computational theories of
human learning that can be used to evaluate educational technologies,
provide practice opportunities for teachers, and advance our theoretical
understanding of human learning. A key challenge in working with sim-
ulated learners is evaluating the accuracy of the simulation compared to
the behavior of real human students. One way this evaluation is done is
by comparing the error-rate learning curves from a population of human
learners and a corresponding set of simulated learners. In this paper, we
argue that this approach misses an opportunity to more accurately cap-
ture nuances in learning by treating all errors as the same. We present
a simulated learner system, the Apprentice Learner (AL) Architecture,
and use this more nuanced evaluation to demonstrate ways in which it
does and does not explain and accurately predict student learning in
terms of the reduction of different kinds of errors over time as it learns,
as human students do, from an Intelligent Tutoring System (ITS).

Keywords: Simulated learners · Learning curves · Apprentice Learner

1 Introduction

Simulated learners are artificially intelligent agents that simulate human learn-
ing. Simulated learners offer a powerful set of affordances to AI powered instruc-
tional technology. Prior work has demonstrated the use of simulated learners
for efficient authoring of intelligent tutoring systems [9,20], building automated
learning by teaching exercises [10], and automated testing and refinement of
educational technologies [5,18].

Simulated learners differ from parameterized statistical models like the Addi-
tive Factors, Performance Factors, and similar models [3,14] in that they fully
simulate the process of human learning, not just the patterns of performance
students exhibit over the course of learning. Simulated learners work in and
learn from educational technology through an inductive process of skill creation
and refinement. In this study we use simulated learners built with the Appren-
tice Learner Architecture, a modular framework for building simulated learners
and testing computational theories of human learning [8]. Unlike deep learning
c© Springer Nature Switzerland AG 2020
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based simulated learners [16], Apprentice Learner (AL) agents reach mastery
at roughly the same rate per opportunity as human learners, and make strong
commitments to the theoretical underpinnings of learning without relying on
highly parameterized fitting of human data [21].

To fully deliver on their potential to aid in the testing of instructional tech-
nology, simulated learners must embody an accurate theory of learning which
can both reproduce the patterns of errors that humans produce over the course
of learning, and respond as humans do in different instructional conditions. Prior
work has assessed the fidelity of simulated learner models by comparing simu-
lated student learning curves of error rate by opportunity to the learning curves
of human learners. Macllelan [6] for example, presents simulated learners that
shows similar learning curve patterns as humans trained under both blocked and
interleaved instruction strategies. While this method has been helpful in guiding
cognitive architectural decisions in the past, it has a potential to hide nuances
in learners’ behavior (e.g., doing a step incorrectly in different ways) that are
also important for a simulation to model.

In this work, we demonstrate a method of assessing the accuracy of a sim-
ulated learner model not just by comparing overall learning curves, but also
by a novel method of splitting learning curves by error type. While prior work
has explored disaggregating learning curves by student subpopulations [11], our
new method of generating learning curves draws two distinctions, first, between
errors of omission whereby a learner’s request for help is an indication that they
do not know what do (Hint-Errors) and errors of commission where a student
performs an incorrect action (Incorrects). Second, we make a distinction within
Incorrects between actions on the wrong interface element, such as doing a step
in the wrong order (Selection-Errors), and entering an incorrect value on an
otherwise correct next step (Input-Errors). In the context of many tutoring sys-
tems, this distinction often appears as a difference between students putting any
answer in an inappropriately selected text field (e.g., one they may use later on
in the problem) and students putting an incorrect answer in an appropriately
selected text field (e.g., making an arithmetic error). Tutoring systems commonly
allow for multiple strategies, as is the case here, such that there may be multiple
appropriate selections at some states in the solution.

An additional difficulty with modeling humans with current simulated learn-
ers [6,9], is that they use and acquire only domain-specific knowledge and, per-
haps reasonably enough, they start with none. As such, they always begin learn-
ing with a 100% error rate. In principle, there is also a point at which human
learners possess zero knowledge of a domain, however in the classroom setting,
it is generally the case that most students have received at least some within-
domain instruction prior to working with an intelligent tutoring system (ITS).
Students also may possess some knowledge from previously learned domains that
may sometimes provide correct solutions in the current domain of study. For the
purposes of comparing the learning curves of humans and simulated learners, a
comprehensive history of student learning is rarely available, and thus simulated
learners must account for unobserved prior knowledge in their human counter-
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parts. Weitekamp et al. [21], have compared several methods for accounting for
prior knowledge in simulated learners. In addition to our error type analyses, we
also incorporate several innovations on the best reported method of accounting
for prior knowledge from this work.

Ultimately, we propose to improve learning theory by evaluating whether
simulated learners that implement the computational theory of the Appren-
tice Learner Architecture and account for prior knowledge, can accurately pre-
dict (and thereby explain) the reduction in distinct types of errors produced by
human learners; not just in overall error rate. Thus, we claim simulated learn-
ers capable of matching human learners’ performance on all three of these error
types (Hint-Error, Selection-Error, and Input-Error) constitute stronger mod-
els of human learning than those only capable of matching human learners on
aggregate error-rates. Furthermore, we show that splitting the errors in these
ways can help generate insights for how to refine simulated learner models and
improve learning theory.

2 The Apprentice Learner Architecture

The simulated learners we employ throughout this work are implemented within
a modular framework for generating simulated learners called the Apprentice
Learner (AL) Architecture [6,8]. A single AL agent is a simulation of a single
human learner, which learns as humans do through demonstrations and cor-
rectness feedback. AL agents can be trained interactively or, using an existing
ITS. The Apprentice Learner Architecture’s modular design consists of several
independent learning mechanisms that can be swapped in and out to test differ-
ent computational theories of human learning. Together, an AL agent’s different
learning mechanisms generate and refine production rules [1] that represent the
skills of the agent. The left-hand side or if-part of each production rule is refined
by when-learning and where-learning mechanisms, and the right-hand side or
then-part of each production rule is generated by a how-learning mechanism.

In a typical AL agent, the how-learning mechanism is the first learning mech-
anism to come into play during learning. This mechanism induces a sequence of
operations to explain how the action parameters (e.g. value) of a demonstrated
training example were produced. How-learning searches over a set of domain-
general operators such as addition, subtraction, multiplication, and division to
find a sequence of operations that will constitute the then-part of a produc-
tion rule capable of matching a demonstrated input. In this study we evaluate
learning in fraction arithmetic, which only necessitates searching over singular
unchained operators.

The where-learning mechanism is responsible for producing matching rules
associated with each skill that can bind to the interface elements in an ITS
interface associated with a particular use of a skill. For example, if a particular
skill involves multiplying two numbers and placing the result in a text box,
then the matching rule would need to bind to the text box (the selection) and
to the two interface elements (the arguments) from which the solution will be
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computed. If there are multiple instances of a step in a problem then the where
matching rule would need to match to all such instances. In this work we employ
a simple where-learning mechanism that simply recalls previously seen matches.

Lastly, the when-learning mechanism is responsible for learning when it is
appropriate for a skill to be applied. When-learning mechanisms are simply
binary classifiers, which take the current state of the problem and, for each skill,
evaluate each where match in the state for that skill to determine whether or not
the skill should be applied for that match. When-learning mechanisms generalize
from correct and incorrect instances of a skill being applied to determine which
features of a state indicate that a particular skill should be applied. In this study
we test two different classification algorithms for when-learning, which have been
used in prior studies with the Apprentice Learner [6] the Decision Tree algorithm
a common classification algorithm [2], and trestle which was used in prior work
to model the gradual process of concept formation from examples [7].

3 Method

We evaluate our simulated learners against human data collected from a class-
room study of a fraction arithmetic ITS. This dataset consists of the work of 117
students solving fraction addition and multiplication problems. Among the addi-
tion problems some problems involved adding fractions with the same denom-
inator meaning the numerators could simply be added together, other prob-
lems involved adding fractions with different denominators, meaning a common
denominator had to be found. For the later case, the ITS enforced the ‘but-
terfly’ method where a common denominator is found by multiplying the two
denominators. All three problem types, Add-Different (AD), Add-Same (AS),
and Multiply (M), were solved on the same interface. This dataset was used in
prior work with simulated learners [6,21] and we have chosen to use it in this
work for the sake of comparison. The dataset is available as project 243 on the
PSLC DataShop [4]1.

In this study, we use a novel method of learning curve analysis that cate-
gorizes student errors into several different types. Following conventions from
DataShop and ITS research [4,15], we frame student actions in terms of
Selection-Action-Input (SAI) triples and consider errors along each dimension
of the SAI. Selection is the interface element in the tutoring system that the
student interacted with during an attempted step, Action is what they did to
that interface element, and Input is the value associated with that action. For
example, (num3, UpdateTextArea, 5) is the SAI for placing 5 in the textbox
labelled num3.

Our method for defining error types leverages the behavior graph of a CTAT
example-tracing tutor to annotate each student transaction with four new binary
values by comparing a student’s SAI against the problem step the transaction is
associated with. These four new values are “current selection” which indicates
whether a student worked on a correct selection for the next step, “current
1 https://pslcdatashop.web.cmu.edu/Project?id=243.

https://pslcdatashop.web.cmu.edu/Project?id=243
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Fig. 1. An example of a fraction addition problem with different denominators (AD).
The students must indicate that the fractions must be converted and apply the conver-
sion using the “butterfly” method (multiplying the denominators together, and cross
multiplying to find the new numerators). AS and M problems use the same interface
but without the intermediate conversion steps.

input” which indicates if the input was correct, “downstream selection” which
indicates whether the student’s choice of selection is correct for a later step in
the problem, and “downstream input” which indicates whether the input of the
student’s transaction would be correct on any step down stream in the behavior
graph from the current step. Table 1 shows a few common patterns of these new
values and how we group them together to get Selection-Errors and Input-Errors.
Several combinations have been omitted because they are either impossible or
not applicable to our data.

Table 1. Error types by SAI matching pattern

Current
selection

Current
input

Downstream
selection

Downstream
input

Error type

1 1 0 0 Correct response

1 0 0 0 Input-Error

0 0 1 0 Input-Error

0 1 1 0 Selection-Error

1 0 0 1 Selection-Error

0 0 1 1 Selection-Error

0 1 1 1 Selection-Error

In general, Selection-Errors occur whenever the student’s current selection is
wrong, but their input is applicable somewhere later in the problem, while Input-
Errors occur when the student’s input is incorrect for any step in the problem.
Our motivation for encoding these distinct types of errors was to determine
which characteristics of AL’s learning mechanisms differed from human learners.
Selection-Errors roughly correspond to issues of over-generality in the left-hand
side of production rules (i.e. skills). For example, if a student does the wrong
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step in a problem then that is an indication that they do not fully understand
the conditions under which a particular skill should be applied. Input-Errors
can arise when the right-hand side of a production rule is incorrect, however,
they can also occur if a student applies the wrong skill for the correct next
step, in which case, the Input-Error may arise from two or more skills with
underspecific left-hand sides. In the context of AL, this means that Selection-
Errors are definitely issues of under specific rules generated by the when- or
where-learning mechanisms. Input-Errors, on the other hand, could arise from
any learning mechanism, however, we hypothesize incorrect how-learning is most
likely to show up as an Input-Error. Lastly, Hint-Errors can occur if no learning
has occurred yet, or if when- or where-learning has generated skills with overly
specific left-hand sides.

Before working with an ITS, human learners generally have some prior expo-
sure to learning materials or instruction. However, when AL agents are first
instantiated they have no such prior knowledge. Weitekamp et al. [21] attempted
to estimate the number of prior practice opportunities per knowledge component
needed to get a set of simulated learners on par with their human counterparts
by extrapolating backwards with AFM [3]. In this work, we attempt to account
for prior knowledge opportunities more precisely by using a pool of simulated
learners trained on randomly generated problems. We estimate the number of
prior opportunities per KC by finding the opportunity at which the pool of
agents’ learning curves best align with the first opportunity rate of the human
data. To model each student individually we perturb the log odds of the target
error rate by the AFM student intercept, yielding an individualized number of
estimated prior opportunities for each knowledge component per student. This
estimate is then used to pretrain each agent before it practices on the set of
problems solved by its human counterpart.

Whereas [21] trained using only whole problems, we developed a new training
procedure capable of training individual knowledge components. For all of the
knowledge components of a particular problem type we train agents on random
problems up to the minimum number of estimated prior opportunities over the
constituent knowledge components. Any opportunities needed beyond this point
are trained by having the agent solve problems from start to finish as usual, but
only providing agents feedback on steps associated with knowledge components
that still need practice. This new pretraining procedure can be applied to any
step-based ITS with labelled KCs [17].

4 Results

Figure 2 shows learning curves for each type of error compared across the human
data and AL using the two different when-learning mechanisms Decision Tree
and trestle. In accounting for prior knowledge, we find different results across
the two methods. For the trestle condition the overall error rate on the first
opportunity is equivalent to the first opportunity error rate in the human data.
For the Decision Tree, we find that AL has a first opportunity error rate that
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Fig. 2. Error-rate learning curves for each type of error (Total-Error, Hint-Error,
Selection-Error, Input-Error) plotted by dataset (Human, AL with Decision Tree, AL
with trestle). Note the difference in y-axis scale between Total-Error and the others

is 4% lower than the human error rate – AL received on average too many pre-
training opportunities and “over shot” the student state, indicating an imperfec-
tion in the pre-training method that we discuss below. In both conditions these
results show an improvement over prior work which reported a first opportunity
error rate discrepancy of 11% on the same dataset [21].

Overall, we find that AL agents with both when-learning methods learn more
rapidly by opportunity than the human students. The AFM slope averaged over
all KCs is 2.1 times greater than the humans for AL in both the Decision Tree
and trestle conditions. Additionally, In the Decision Tree and trestle con-
ditions the proportion of Input-Errors to Selection-Errors is roughly 1.1 whereas
the human students make these errors at a ratio of 1.7. Both AL and the human
students make almost all of their Hint-Errors within the first 5 opportunities.
Only 5% of the human errors in the first 5 opportunities are Hint-Errors, how-
ever, trestle based agents make considerably more Hint-Errors in these 5
opportunities at 26%. The Decision Tree makes 8% Hint-Errors over the first
5 opportunities, which is 60% more Hint-Errors than in the human data.

5 Discussion

We have compared AL agents with two different when-learning configurations
to human data collected from a fraction arithmetic ITS. We have made this
comparison using our novel method for splitting error curves by error type. In
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this section we discuss the implications of these results toward converging on
a more accurate computational model of human learning. We discuss potential
future features of the Apprentice Learner Architecture, and discuss how these
changes would affect the trends of AL agent learning curves split by error type.

5.1 Accounting for Prior Knowledge

The pretraining method outlined in Weitekamp et al. [21] pretrained simulated
learners to within 11% of the human first opportunity rate. In this study, we have
used the same trestle when-learning strategy and dataset, but have employed
a new method for accounting for prior knowledge in our simulated learners which
matched the human first opportunity rate to within less than 0.1%. Our strat-
egy was however, not quite as successful with the other agent configuration,
which used the Decision Tree when-learning mechanism. This remaining dis-
crepancy between AL and the human data may have to do with the granularity
by which we can estimate prior opportunities for each knowledge component.
The first opportunity error rate for some of the knowledge components in the
human data is well over 50%, but for most knowledge components the pool
of AL agents trained on random fraction arithmetic problems take only 4 or
fewer opportunities on average to learn beyond 50% error. This means that our
pre-training strategy is still fairly sensitive to rounding. When finding the best
whole number of opportunities to pretrain to get the desired first opportunity
error rate, rounding to the nearest opportunity can lead to large discrepancies
since the difference in error rates between early opportunities is large.

5.2 Learning Curve Comparison

The split error curves in all three conditions indicate that our AL agents’ pace
of performance improvement by opportunity is much higher than the human
students. Thus, we would expect any method for lowering the amount of learning
per opportunity to improve the fit of our simulated learners to human data.
Additionally, slowing down our agents’ learning in this way would alleviate some
of the rounding issues we have had with estimating prior knowledge since the
learning curves would be less steep overall. The issue remains of determining how
learning should be slowed. Recall that a simulated learner embodies a theory of
human learning, thus our objective should not simply be to make our learners fit
better to human data, but to do so in a theoretically and empirically grounded
manner in order to converge on a model of human learning that is predictive
across a wide range of domains and conditions.

On the empirical side, our learning curves split by error type provide a few
insights concerning our three configurations of AL agents. Firstly, we find that
the AL agents that employed trestle made considerably more Hint-Errors than
human students early in the learning process. For an AL agent a Hint-Error is
committed when it encounters a problem state in which it believes that none of
its learned skills are applicable. When this occurs, AL agents ask for a demon-
stration of the next correct step. Hint-Errors generally occur early on in learning
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when skills either do not exist or have induced when and where conditions that
are overly specific to previously seen training examples. In other words, Hint-
Errors occur either when there is no appropriate how function induction for the
then-part or when the preconditions for applying the correct skill for a step have
not yet generalized to the point that they have become inclusive of all potential
correct uses of that skill.

One capability which AL agents currently lack that may reduce the rate of
Hint-Errors and increase the rate of Incorrect responses is the ability to make a
plausible inference based on “weak methods” for more general problem solving
[12] or by guessing, perhaps based on past response frequency. Human students
sometimes rely on weak methods or guessing in the absence of strong hypotheses
for what to do next [19]. Plausible inference may be informed by prior knowledge
and involve actually taking actions similar to those in prior learned domains, or
may even be slightly superstitious, (i.e., this seems like the kind of problem
where the answer is 0) or based on interface heuristics (i.e., I usually operate on
things that are next to each other). Further investigations are needed to select
from or derive weak methods for plausible inference.

Another method for reducing Hint-Errors would be to use a when-learning
mechanism that generalizes heavily from positive examples or incorporates nega-
tive feedback conservatively so that skills tend to be applied in spite of negative
feedback. The Decision Tree appears to have this characteristic more so than
trestle.

One approach to plausible inference is to incorporating a memory mecha-
nism. One weak method for plausible inference is to propose the action with the
highest current memory activation (e.g., because of recency or history frequency
of repetition or spacing). The AL agents tested in this work have no current
means for such inference, and correspondingly, no means for forgetting skills or
inferences. AL agents could incorporate methods of forgetting prior examples,
features of problem states, induced internal states, or whole skills. While most
existing literature on memory mechanisms pertains to the effects of memory
on learning facts [1], it may be that a model like Anderson’s ACT-R model of
practice spacing and retention [13] is applicable to skills as well as facts. Overall
a memory mechanism would likely slow down the learning rate of AL agents,
although the effects of a memory mechanism on the proportion of Hint-Errors to
Incorrect responses would likely depend on the implementation. The inclusion
of a model of forgetting entire skills would likely further increase the number
of Hint-Errors, however the spurious activation of other skills may make up for
this and produce more Incorrect responses.

5.3 The Relative Rate of Input and Selection Errors

Another empirical result from our split learning curves is that among Incorrect
responses human learners consistently make a larger proportion of Input-Errors
than Selection-Errors over the course of learning. By contrast, AL agents con-
sistently make these errors at about the same rate. One likely explanation for
this difference is that the human students’ Input-Error learning curve includes
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instances of arithmetic mistakes when computing the right-hand side operations
of skills. Currently, AL agents employ domain general operator functions to per-
form arithmetic and thus are incapable of making this kind of error. It may be
possible to further split out these errors as a separate type of error with their
own learning curve. One possible method for separating out these sorts of errors
would be to use the methods employed by AL’s how-learning mechanism in the
error type labelling process to find errors which cannot be explained by applying
weak methods on the values in the interface.

5.4 Other Uses of Learning Curve Splitting

Our method of splitting learning curves likely has uses for student modeling
outside of the realm of simulated learners. Analyzing the rate of Selection-Errors
and Input-Errors separately may help measure the efficacy of interventions baked
into ITSs. For example, CTAT tutoring systems often correct students when they
are working on the wrong step of a problem (i.e., a Selection-Error). Adding
elaborative feedback to these messages to explain what the correct next step is
and why it is correct may improve “if” and “then” type learning differently. The
relative effect of such an intervention on these two types of learning could be
measured directly with split learning curves to help refine feedback messages.

In this study we have grouped several distinct patterns into just two groups,
but there may also be uses for splitting errors further. For example, one pattern
we encode picks out cases where students have provided a correct answer for
a later step. Analyzing the rate of this kind of error may help catch instances
where a tutoring system arbitrarily constrains the order that steps can be taken.
It may also help identify cases where students are restricted from providing a
final answer produced through mental steps.

6 Conclusion

Just as theoretical physics complements experimental physics we suggest here,
a need for more computational learning science to complement experimental
learning science. Simulated learners are computational theories of human learn-
ing which model inductive human learning processes by working in and learning
from ITSs. Evaluating and refining simulated learners as computational theories
requires measuring the accuracy with which simulated learners match the specific
learning behaviors of humans. In this work, we have presented two new methods
to help make this comparison more precise. We have developed an improvement
on previous methods [21] for accounting for prior knowledge in simulated learn-
ers, and we have developed a new method of splitting learning curves by error
type.

We have employed these two methods in a comparison of simulated learners
built with the Apprentice Learner Architecture and found that when prior knowl-
edge is accounted for, AL agents learn about twice as fast as human learners,
commit more initial Hint-Errors than humans, and produce a lower proportion
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of Input-Errors to Selection-Errors. Finally, we have discussed several potential
refinements of our current model based on these results such as alterations to
when-learning mechanisms and the inclusion of mechanisms for forgetting, and
the usage of weak methods that produce plausible inferences or guesses.
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Abstract. Computational Thinking (CT) can play a central role in
fostering students’ integrated learning of science and engineering. We
adopt this framework to design and develop the Water Runoff Challenge
(WRC) curriculum for lower middle school students in the USA. This
paper presents (1) the WRC curriculum implemented in an integrated
computational modeling and engineering design environment and (2) for-
mative and summative assessments used to evaluate learner’s science,
engineering, and CT skills as they progress through the curriculum. We
derived a series of performance measures associated with student learning
from system log data and the assessments. By applying Path Analysis we
found significant relations between measures of science, engineering, and
CT learning, indicating that they are mutually supportive of learning
across these disciplines.

Keywords: Science and engineering · Computational modeling · Log
analysis · Regression methods

1 Introduction

The Next Generation Science Standards (NGSS) call for the inclusion of engi-
neering design activities in K-12 science classrooms and propose that science
investigation and engineering design be closely integrated into the curricu-
lum [19,22]. In addition, computational modeling and analysis have become
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a key component of scientific study [8]. We adopt an integrated approach to
developing science and engineering curricula, bringing in computational think-
ing (CT) concepts through computational modeling activities to develop the
Water Runoff Challenge (WRC) for fifth and sixth grade students [4,34].

This paper discusses the WRC curriculum, the learning environment that
supports the computational modeling and engineering design activities, and the
formative and summative assessments developed for evaluating student learning.
We discuss the results of a study with 99 sixth-grade students. The intervention
produced significant learning gains in science, engineering, and CT with moder-
ate to large effect sizes. Given these results, we applied Path Analysis [1,33] to
model the relationships between measures of student learning in science, engi-
neering, and CT, and interpreted their relative importance. In more detail, we
derived a range of measures from logs of student activities and their assessment
scores to investigate (1) the relations between students’ behavior and perfor-
mance variables in the computational modeling and engineering design activi-
ties and (2) which of these variables contribute to the learning outcomes. Path
analysis also informs us of the importance and significance of pairwise relations.

1.1 Background and Related Work

The majority of people in the U.S. are introduced to science and engineering in
middle and high schools, and the experiences in these formative years shape their
interest in pursuing science and engineering careers [15,25]. However, engineering
had not traditionally been part of the core K-12 curriculum, instead often being
offered as an elective or after-school course, where students primarily work on
design projects with little discussion of the science that supports the design and
implementation [6].

Recently, the “growing inclusion of engineering design in K-12 classrooms”
presents students with opportunities to construct an understanding of the nat-
ural and designed world [19, p. vii]. It has been proposed that science investiga-
tion, which includes students’ investigating scientific phenomena and engineering
design, i.e., applying the learned knowledge to design solutions to challenges of
interest should be more central to the K-12 curricula [19].

Modeling is a key practice in science and an essential mechanism to support
effective engineering design [20,24,28]. A model is defined as an abstract and
simplified representation of a scientific phenomenon built around the important
features that explain and predict the phenomenon [9,28]. Computational model-
ing has become integral to STEM learning and practice [21,30]. Computational
modeling activities can support the learning of science and engineering in virtual
environments by (1) enabling learners to manipulate variables on unobservable
phenomena and (2) improving the efficiency and reducing unanticipated conse-
quences of experimental studies [7]. In other words, learners have more oppor-
tunities to conduct systematic investigations and gather more information as
compared to conducting observations in a physical environment [7]. For exam-
ple, chemical reactions (invisible) and geological changes (long-term) are easier
to study by simulating computational models than trying to conduct physical or
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observational studies. Students’ engagement with computational modeling activ-
ities provides instructional benefits of improved domain knowledge and problem-
solving skills [2,29,31].

2 The Learning Environment in the WRC Curriculum

Our research is motivated by the trends towards integrated learning of science
and engineering. Furthermore, we introduce CT and computational modeling
activities as a platform for integrated engineering and science learning [30,32].
Exploration with models involves manipulating parameters to study the model’s
behaviors. On the other hand, model exploration often does not require invok-
ing the complex cognitive processes required to build models, which includes
scoping the model, developing algorithms to represent model behaviors, com-
puting numerical outcomes, interpreting results, and validating solutions; nei-
ther do students have to fully understand the nuances of the modeling language
employed [18,29]. In our previous work, students used a pre-built computational
model for their engineering task to develop and test playground designs to mit-
igate flooding problems in a school [4,34]. In the present work, we introduce
computational model building activities into the WRC curriculum unit. Stu-
dents used the runoff computational models that they developed themselves to
design a schoolyard that reduced runoff and its associated environmental impact.

Our previous runoff model was dynamic; the model representations needed
to capture the behavior of a system over time [29]. An agent-based approach
to modeling [5] makes the model modular and facilitates decomposition into its
constituent parts. For compatibility with middle school math proficiency, the sys-
tems dynamics model was simplified to a discrete-time algebraic form [29]. This
simplified representation computes the amount of rainfall, absorption, and runoff
with three simultaneous equations. To make this form of modeling representation
explicit and linked to the science concepts, we have created a domain-specific
modeling language (DSML) to support students’ computational modeling activ-
ities [10]. DSMLs specify modeling constructs at a level of abstraction that is
compatible with the students’ ability to build and analyze the model.

Figure 1 shows the DSML blocks created for the computational modeling
activity on the left, and a correct implementation of the runoff model using
these blocks on the right. The DSML, created in the NetsBlox visual program-
ming environment [3], incorporates CT concepts, such as control structures along
with the primary domain concepts to support the modeling of the water runoff
processes: (1) the amount of rainfall (2) absorption of water by different sur-
face materials, and (3) runoff. In addition, the DSML specifies key arithmetic
and algebraic mathematical operations to support model-building. Using the
DSML blocks, students create a rule-based computational model, which is a
simplification of the system dynamics model. The runoff for a specific material
is computed as the difference in the amount of rainfall and the amount of water
that is absorbed by the surface material (see the example implementation in
Fig. 1).
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Fig. 1. DSML of the runoff problem (left) and a correct implementation of the runoff
model using the DSML (right).

Students build schoolyards models for their engineering design tasks. They
do this using a visual interface to populate individual squares with different
surface materials (Fig. 2). The computational models that the students develop
are used to calculate the total absorption and total runoff given a total amount
of rainfall that the student specifies. The students can build and test multiple
schoolyard designs using different combinations of materials. Their overall goal
is to (1) minimize runoff, (2) remain under budget; and (3) ensure that sufficient
squares in the schoolyard have accessible surface materials to meet wheelchair
needs. Students need to generate multiple designs using a search process to find
the optimal design that meets all of the constraints, i.e., minimize runoff, while
meeting the cost and accessibility constraints. This design task is challenging
for young learners. Typically, the more absorbent and accessible materials also
tend to have high costs, so students need to analyze the trade-offs between cost,
absorption, and accessibility in searching for optimal design solutions. A non-
systematic trial-and-error approach may overwhelm a student’s search. Figure 2
(right) depicts the engineering design interface. The current solution is incom-
plete, and students can assign any of the six available materials to the unassigned
yellow square.

3 Methods

We conducted a classroom study with 99 sixth-grade middle school students
in the U.S. using the WRC curriculum. All participating students had vary-
ing levels of prior programming experience with block-structured programming
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Fig. 2. The runoff simulation (left) and material selection (right) interface (Color figure
online)

with Scratch [26] in their programming class. The study was led by two experi-
enced science teachers who received four days of training before the study. Three
researchers provided additional support but mostly acted as observers during the
study. Students worked for 45 min per day, three days a week during their regular
science classes, and 75 min, twice a week with additional personalized-learning
time. The WRC curriculum was covered in 15 school days, with identical pre-post
tests administered in two additional 45-min classes.

The WRC unit also includes (1) hands-on activities in which students con-
duct physical investigations on the absorption of different surface materials; (2)
conceptual modeling of the runoff system as a pictorial representation; and (3)
presenting their methods and final engineering designs. This paper analyzes the
NGSS-aligned science and engineering + CT pre-post assessments and the data
collected on days 8–13. This includes (1) formative assessments administered as
homework that covered science, engineering, and CT topics; and (2) system logs
of students’ model-building and engineering design activities.

Assessments and Grading. Our science and engineering summative assess-
ments align with a number of NGSS Performance Expectations (PEs) [16,17].
The CT assessments are derived from the concepts and practices that students
perform as part of their science modeling activities. The rubrics used for cod-
ing and scoring these assessments were updated from our previous work [16].
Two researchers received 5 h of training on the rubrics, during which 5% of
the test submissions were randomly selected and graded together to establish
initial grading consistency. Another 20% test submissions were then graded by
the two researchers independently to establish inter-rater reliability (Cohen’s κ
at ≥ 0.8 level on all items). All differences in the coding were discussed and
resolved before the remaining 75% of test submissions were graded by a sin-
gle researcher. We also designed formative assessment tasks that mirror the
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curricular tasks students worked on in the WRC. These tasks measured stu-
dents’ understanding of (1) the water conservation relations, (2) the relative
effect of different surface materials on runoff, (3) the ability to compute water
runoff and absorption under different circumstances, (4) the ability to debug
incomplete or incorrect model code, and (5) the method to compare different
design solutions considering trade-offs. We used students’ responses to 14 items
from 6 formative assessment tasks in this work.

Log Analysis. The learning environment logs individual students’ actions dur-
ing their computational model-building and engineering design activities. We
calculated three behavioral measures from students’ computational model-
ing activities: (1) the total number of add, remove, connect, or disconnect blocks
actions, (2) the number of run the model actions to test the computational model,
and (3) the median number of edit actions between tests (because students often
perform a series of edits without testing or a series of testing without editing the
model, the median number is a more robust measure given the skewness in the
data). In addition to deriving behavior measures, we defined a computational
model score for the student-generated models. A correct computational model
scored 6 points (1 point for each correctly implemented function that calculates
and assigns values to an output variable. There were two variables each in the
three rules, see Fig. 1 for reference). To allow students to conduct meaningful
design activities, the researchers made an effort to ensure that all students’ had
correct computational models before they started the design activity. Common
errors were discussed with the whole class, and the students were given a chance
to correct their models. The model scores reported in this work were calculated
before the correction feedback was provided to the students.

Our measurements of students’ engineering design quality and their learn-
ing behaviors have been discussed in our previous work [34]. The two quality
measurements used are: (1) the number of satisfying designs and (2) the small-
est runoff value from all of the satisfying designs created by a student. The
two behavior measurements used are: (1) the number of tests conducted to
evaluate designs; and (2) the total standardized Euclidean distance between
a student’s m consecutive tested designs, i.e.,

∑m−1
i=1 ||(Vi+1 − Vi)2|| where

V = 〈runoffz, costz, accessibliltyz〉. The subscript z indicates the standard-
ized value of runoff, cost, and accessibility of a design. The total standardized
Euclidean distance and the number of tested designs indicate the extent to which
a learner explored the engineering design experiment space [12].

Path Analysis. Traditional regression methods assume that (1) only direct
associations exist between dependent and independent variables and (2) errors
in the dependent variable are uncorrelated with the independent variable [1,33].
When applied to intrinsically related variables, where indirect variables play a
mitigating role, multi-regression or correlation analysis do not provide optimal
model estimates [23]. Path Analysis addresses these problems. It can be seen as
a variation of Structural Equation Modeling [13] without the latent variables. In
this work, we use Path Analysis to study the effects and the relative importance
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Fig. 3. Hypothesized path model.

of effects among the measured performance and behavior values. We hypothesize
that students’ prior knowledge and formative assessment scores influence their
subsequent learning behaviors, computational model building and engineering
design performance, and post-test scores in the WRC curriculum. This is rep-
resented by the causal path model shown in Fig. 3. Each arrow in the diagram
indicates a direct effect on the endogenous variable from the exogenous variable.

4 Results and Discussions

4.1 Learning Performances and Behaviors

Students’ pre-post test scores were compared to determine their learning gains
in science, engineering, and CT. To check the normality of the scores, we first
measured the skewness (z-value = −0.811, p-value = 0.417) and kurtosis (z-
value = −0.567, p-value = 0.571) of the score distributions and confirmed that
they were close to a normal distribution. Therefore, we used the paired t-test
to evaluate the statistical significance of the pre-post score differences. Table 1
shows that all differences are statistically significant with moderate (≥0.5) to
large (≥0.8) effect sizes.

Table 1. Learning gains (N = 99)

Total points Pre-score (stdev) Post-score (stdev) p-value Cohen’s d

Science 7 4.56 (1.03) 5.13 (1.04) <0.001 0.54

Engineering 16 8.73 (2.62) 10.50 (2.67) <0.0001 0.67

CT 13 6.23 (2.60) 8.41 (2.69) <0.0001 0.83

Overall 36 19.52 (4.47) 24.03 (4.39) <0.0001 1.02

Formative Assessment. The average score of the integrated science, engi-
neering, and CT formative assessment was 19.05 points (stdev = 4.57) out of
maximum possible scores of 31 points. This result, along with the pre-post test
gains, indicates that the students were learning the domain content, CT concepts
and skills, and engineering design practices through the intervention.

Computational Modeling. Students showed a large variation in their compu-
tational model-building behaviors. On average, they made 167 edits (stdev = 77)
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to build their computational models, and they performed 43 tests (stdev = 47)
on them. The average of the median number of edits between tests was 1.11,
indicating the student mostly made edits in small chunks between successive
model tests. The average computational model score was 4.67 (stdev = 1.85),
and 59% of the students created a correct computational model before the answer
was disclosed in class. The model component with the least number of correct
implementations (n = 67) was “set total runoff to (total rainfall − absorption
limit)” when “total rainfall is greater than absorption limit” (c.f. Fig. 1).

Engineering Design. The students performed an average of 29.4 tests (stdev
= 22.2) on their schoolyard designs. The average total standardized Euclidean
distance was 18.6 (stdev = 19.0). The average number of unique designs that
satisfied the criteria for cost and accessibility was 6.3 (stdev = 4.2). Ninety
students created and tested at least 1 satisfying design, and the average amount
of runoff for the satisfying design solutions, with 2 inch of rainfall, was 1.23
inch (stdev = 0.94). The global minimal runoff of all satisfying designs was 0.96
inch, and 29 students got at this optimal solution. These results show that most
students created feasible design solutions.

4.2 Path Analysis

We created a path diagram of the measured variables using the IBM R© SPSS R©

Amos 26 software. We modeled a total of 47 direct effects from the 15 variables in
the path diagram. As a pre-analysis suggested by [27], we evaluated the assump-
tions of multivariate normality and then removed four outliers from subsequent
analyses, leaving a sample size of 95 for the Path Analysis. 1000 bootstrap sam-
ples were generated to estimate the standard errors and calculate the confidence
intervals at the 95% level. The standard errors and their critical ratios were later
used to evaluate the statistical significance of the modeled causal effects while
reducing the variance in the observed variables.

We also calculated model-fitting statistics of the path model as compared to
the saturated model [27]: χ2 = 40.89 (DF = 54, p-value = 0.91); the goodness of
fit (GFI) was 0.95 (≥0.95 threshold); the comparative fit index (CFI) was 0.99
(>0.9 threshold); and the root mean square error of approximation (RMSEA)
was 0.01 (<0.06 threshold). These statistics indicate that the path model derived
fitted the measurements well. All of the hypothesized paths in Fig. 3 were con-
firmed as direct or indirect effects. Figure 4 shows the statistically significant
causal paths that are large (β > 0.2).

Computational Modeling. The students’ learning behaviors and performance
in the computational modeling activity (yellow boxes in Fig. 4) were directly
affected by variables in the same category and the formative assessment score.
The CT pre-test score also indirectly related to the comp model score and
comp edits (via formative, comp test, and edit btw tests) with total β’s of 0.28
and 0.28, respectively (indirect effects are not shown in Fig. 4). As one of the
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Fig. 4. Discovered causal paths with statistically significant direct effects. (Color figure
online)

main learning outcomes, the students’ comp model score was also significantly
affected by the median number of model edits between tests (edit btw test),
indicating students who edited their model in small chunks between tests did
better in the computational model-building task. Similar results of smaller edit
chunks being associated with better models have also been reported by [2]. The
engineering pre-test score (pre eng) also had a statistically significant but small
(total β = 0.12) indirect effect on comp model score through formative.

Engineering Design. The number of unique satisfying designs (num satisfy)
and the lowest amount of runoff of satisfying designs (lowest runoff ) were the
two variables evaluating the quality of students’ designs. For num satisfy, the
strongest direct effects came from the number of tests on the designs (engi-
neering test, β = 0.53) and the total standardized Euclidean distance between
the tested designs (eng euclid, β = 0.25). The lowest runoff was most strongly
affected by num satisfy (β = −0.35) and comp model score (β = −0.25).

These results align with our previous findings with a group of fifth-grade
students in another school that students who explored a larger portion of the
problem space were more likely to generate better engineering design solu-
tions [34]. It also matched the scientific discovery as dual search theory [12]
that successful learners connect the hypothesis space and the experiment space
by making inferences with data drawn from their investigations. More impor-
tantly, these results suggest a strong connection between computational mod-
eling (comp model score) and engineering design (lowest runoff ) with a total
standardized effect of −0.32 (β = −0.25, total indirect effect is −0.07). The
negative value indicates that students making better computational models on
their own generated better design solutions, even though all students were shown
the correct implementation of the computational model before the engineering
design activity. It also indicates the benefits of having students develop their
own computational model to use for designing and testing, relative to providing
students with a model that has been developed by experts.

Post-test Scores. The science post-test scores (post sci) were significantly
influenced by lowest runoff (β = −0.23), num satisfy (indirectly, total β’s =
0.08), engineering test (indirectly, total β =0.08), and comp model score (indi-
rectly, total β = 0.04). The engineering post-test scores were mostly affected
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by pre eng (β = 0.52), eng euclid (β = −0.25), and num satisfy (indirectly, total
β’s = 0.20). The effect from num satisfy indicates that students’ success in solv-
ing the engineering design problem by searching for the optimal combinations
of surface materials on the schoolyard reflected better learning outcomes. As of
the CT post-test score, it was only significantly affected by the related pre-test
scores. The variable comp model score had a relatively large total effect of 0.14
on post ct yet the effect was not statistically significant.

These overall positive results suggest that the students’ success with the engi-
neering design activities can be linked to their science and engineering proficien-
cies, providing evidence for the benefit of integrating engineering with science
learning [19]. In addition, the effect of engineering activities on the summa-
tive assessments suggested that the design goals of the WRC curriculum were
achieved, and students’ high learning gains (Cohen’s d = 1.02) illustrated the
benefits of integrating instruction across engineering and science.

Future Work. In the present work, we identified the connections between
computational modeling, engineering design, and the learning outcomes as
effects on the causal paths. Such connections might not be discovered by only
examining the associations between the variables using model-less correlation
methods [23]. For example, the correlation coefficient (Spearman’s ρ) between
comp model score and lowest runoff was −0.11 (p = 0.28). This suggests that
Path Analysis is an effective technique to study the relationship between related
variables, such as the measures derived from the WRC.

This work can be further advanced by employing more sophisticated mea-
sures. For example, we used a simple heuristic to measure the computational
modeling performance. We plan to (1) implement more sophisticated meth-
ods to study the structure of the students’ models (e.g., abstract syntax trees
(ASTs) [14]) and (2) include machine learning methods (e.g., sequence min-
ing [11]) to analyze and understand their learning processes and learning strate-
gies. These measures will help us design online feedback in the system to support
student learning.

5 Conclusions

The Water Runoff Challenge is one of the first examples of NGSS-aligned cur-
ricula that support the interdisciplinary learning of science, engineering, and
CT. In the present work, the curriculum is enhanced by enabling computational
modeling activities for students to develop and practice CT instead of perform-
ing engineering design with a pre-built model. Results from our classroom study
demonstrated the instructional benefits of using the WRC and provided empir-
ical evidence to support the integration of engineering activities with science
learning and computational model building, especially in early K-12 settings.

Our studies point to ways that using computational modeling to integrate
science and engineering can merge insights from two learning research traditions:
developing computational artifacts and engaging in simulation-based problem-
solving. Specifically, our analysis suggests potential benefits of guiding students’
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development of a computational scientific model prior to using the model to
solve a related engineering problem. Further research is needed to better under-
stand the learning processes that produce such benefits and identify instructional
design features that best take advantage of them.
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Abstract. One important aspect of learning is through verbal interac-
tions with teachers or teaching assistants (TAs), which requires signifi-
cant effort and puts a heavy burden on teachers. Artificial intelligence
has the potential to reduce their burden by automatically addressing the
routine part of this interaction, which will free them up to focus on more
important aspects of learning. We explore the use of automated ques-
tion answering methods to power virtual TAs in online course discussion
forums, which are heavily relied on during the COVID-19 pandemic as
classes transition online. First, we focus on answering frequent and repet-
itive logistical questions and adopt a question answering framework that
consists of two steps: retrieving relevant documents from a repository and
extracting answers from retrieved documents. The document repository
consists of course materials that contain information on course logis-
tics, e.g., the syllabus, lecture slides, course emails, and prior discussion
forum posts. This question answering framework can help virtual TAs
decide whether a question is answerable and how to answer it. Second, we
analyze the timing of student posts in discussion threads and develop a
classifier to predict the timing of follow-up posts. This classifier can help
virtual TAs decide whether to respond to a question and when to do so.
We conduct experiments on data collected from an introductory physics
course and discuss both the utility and limitations of our approach.

1 Introduction

Learning happens in many forms, including learning through self-regulated stud-
ies and learning through verbal interactions with a teacher. The latter is espe-
cially effective for problem solving [1,2] and when students experience negative
emotions [3]. However, interacting with students individually requires a lot of
effort from teachers, or sometimes teaching assistants (TAs), especially in large-
scale educational settings such as online courses [4]. Teachers and TAs often
face numerous tasks including reviewing the curriculum, teaching, creating and
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grading assignments and exams, and answering questions in an online course
discussion forum. These tasks not only put a heavy burden on teachers and TAs
but also result in a slow and insufficient feedback cycle for students.

One solution to this problem is to use automated pedagogical agents driven
by artificial intelligence (AI) to scale up teacher effort and interact with many
students at the same time [5–8]. For example, using AI-driven virtual TAs in
online course discussion forums such as Piazza has enjoyed some success [9–
12]. However, there are many limitations to current virtual TAs and significant
advances in AI must be made before they can become a reality. Below, we outline
three major requirements virtual TAs have to satisfy:

– They have to be comprehensive and must decide whether to automatically
answer a student question or to defer it to humans. This decision can be made
by searching course content (e.g. textbooks, lecture notes, and supplementary
materials) [13] for relevant information and evaluating their confidence in
understanding the question and providing a satisfactory answer.

– They have to be context-aware and should decide on the best timing of an
automated intervention. For duplicate questions (studied in [10]) and ques-
tions that students can discuss among themselves and resolve, virtual TAs
should decide not to intervene since discussions facilitate engagement and
peer learning [14]. For questions where misconceptions are formed among
student responses, virtual TAs should decide to intervene immediately to
clear up these misconceptions. This decision can be made by analyzing both
interactions among students and topics in each discussion forum thread [15].

– They have to be conversational and should engage in meaningful conver-
sations with students, such as asking a follow-up question when a student
question is unclear or offering words of encouragement [6]. This requirement
has been the focus of numerous existing works [5–8,16–18].

1.1 Contributions

In this paper, we explore the use of automated question answering methods
in natural language processing to power virtual TAs in online course discus-
sion forums. We focus on the first two requirements outlined above and restrict
ourselves to studying frequent and repetitive logistical questions; our goal is
to reduce the burden on teachers and TAs by automating the routine part of
teacher-student interaction. First, we adopt an open-domain question answering
framework [19] that consists of two steps: retrieving relevant documents from
a pool of course materials (including the syllabus, lecture slides, announcement
emails, and previous discussion forum posts), and extracting an answer to the
question from retrieved documents via automated, neural network-based meth-
ods [20]. We also use an answerability classifier to decide whether a question is
answerable given information from the document pool. Second, we analyze the
content and timing of student posts and develop classifiers based on multi-class
and ordinal classification to predict the timing of follow-up posts in a discussion
thread. These classifiers can be used to identify threads where student questions
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are not likely to be resolved in time and thus require immediate intervention.
We evaluate our system using a Piazza dataset collected from an introductory
physics course. Quantitatively, we compare our system to both humans and IBM
Watson on question answering performance. Qualitatively, we use several exam-
ples to illustrate where the model excels and where it falls short and discuss
future advances needed for virtual TAs to become a reality.

1.2 Connections to Existing Work

Existing work on developing automated virtual TAs in course discussion forums
is limited; the most relevant work is Jill Watson [9]. It requires a list of common
question-answer pairs in a course; for every incoming question, it searches over
all questions in the list and finds the most similar one, before deploying the corre-
sponding answer if the similarity passes a certain threshold. The question-answer
list can either be hand-crafted by teachers and TAs, which requires significant
human effort, or come from discussion forum data collected in previous offerings
of the same course, which is not applicable when the course is offered for the first
time. On the contrary, our approach automatically retrieves relevant information
from course materials and does not require human effort or prior data.

Another relevant recent work is the Curio SmartChat system [21] for question
answering in self-paced middle school science courses. For an incoming student
question, Curio Smartchat searches the content repository and either i) answers
directly when the question is well-understood and can be matched to a question
in the question-answer list, ii) recommends relevant content to the student if the
question is not well-understood, or iii) responds with “small-talk” when there is
no relevant content. Similarly, the Discussion-Bot system [11] retrieves relevant
course documents and prior discussion posts for each discussion forum question
and presents them to students after a series of rules-based post-processing steps.
Despite similarities in document retrieval methods, our approach employs the
additional step of automatic question answering using the retrieved documents
to provide concise answers to student questions.

Most open-domain question answering systems, starting with DrQA [19], use
document retrieval and answer extraction/ranking in a two-step approach. Term
frequency-inverse document frequency (tf-idf) is an efficient way to retrieve doc-
uments based on their word overlap with a query, considering frequency in the
document and the entire corpus. DrQA uses a tf-idf [22] look-up to retrieve docu-
ments and a recurrent neural network to extract answers from the retrieved doc-
uments. The work in [23] uses a ranking module that is jointly trained with the
answer extraction module using reinforcement learning. The work in [24] explores
how to better extract relevant information from documents before extracting an
answer from retrieved information. The work in [25] links the document retriever
with the question answering module by iteratively retrieving documents and
updating the query accordingly. These systems are trained and evaluated on
standard question answering datasets with highly structured text. In contrast,
our goal is to explore their effectiveness on questions asked by students in online
course discussion forums, which are often ill-posed or poorly written [21].
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For the study of post timing in online (not necessarily course) discussion
forums, relevant existing works include [26] which predicts which posts are help-
ful to answering a question post, [27] which predicts whether the user asking
a question will accept an answer post, and [28] which predicts the timing of
posts using point processes parameterized by neural networks. Instead, we use
multi-class and ordinal classification for timing prediction since our dataset is
not large enough for point process-based methods.

2 Methodology

We now detail our logistical question answering system. Code implementing
these methods will be made available at https://github.com/bzylich/qa-for-ta.

2.1 Question Answering Framework

Our question answering framework builds on DrQA [19]. First, for each question,
we retrieve a set of relevant documents using a document retriever. Then, we
extract and rank short answers from each document using automated question
answering methods. Finally, we add an answerability classifier to determine the
probability that we are able to provide a satisfactory answer to the question.

Before retrieving documents, we split each document into paragraphs and
merge short paragraphs together if they do not exceed 220 characters in total.
Documents are then retrieved by calculating the inner product between the tf-idf
[22,29] vector for a question and the tf-idf vectors for each document. We select
the 5 documents with the highest scores as relevant sources of information for
question answering. We compare variants of this retrieval approach in Sect. 3.

Following common question answering methods, we encode the text from
a retrieved document and the question into a low-dimensional representation
using a recurrent neural network (RNN) trained on the SQuAD [20] question
answering dataset1. Then, we use another RNN to decode the start and end
indices corresponding to the span of text in the retrieved document that best
answers the question2. In this manner, we produce 5 candidate answers, one
from each document, and rank them using their tf-idf document retrieval scores.

The document pool contains documents published by the instructor, TAs,
and even other students that contain information about the course. These docu-
ments include the course syllabus, announcement emails from instructors, class
notes, practice problems, the course textbook, and previous student posts on dis-
cussion forums. However, some student questions may not be answerable given
the current document pool at a point in time. For example, students may ask
about the time and location of the final exam during the first week of the semester

1 SQuAD consists of Wikipedia articles and crowdsourced questions with answers.
2 We extract a span of text from the document rather than generating an open-ended

answer since tools for the latter are still unreliable [30,31].

https://github.com/bzylich/qa-for-ta
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when final exams are not yet set by the university. Therefore, we need an answer-
ability classifier that can determine the probability that a question is answer-
able given a document in the available document pool. To train this classifier,
we use the bert-base-uncased variant of BERT [32]. BERT is a state-of-the-art
pre-trained neural language model that has been used to improve performance
on a variety of downstream natural language processing tasks. We fine-tune
BERT using adapters [33] with size 256 on the SQuAD 2.0 dataset [34] and
the Natural Questions dataset [35] that contain human-generated answerability
labels for question-document pairs. We then apply this trained classifier to filter
out retrieved documents that are similar to the question but cannot be used to
answer it. Specifically, we pass each question and each retrieved document sepa-
rately to the answerability classifier; If the answerability classifier indicates that
the question is answerable given the document with high probability, we keep
that document; otherwise, it is discarded. This answerability classifier helps us
to i) only answer a question when we are confident in providing a satisfactory
answer and ii) improve the quality of the document retriever.

2.2 Post Timing Prediction

Automated question answering systems can potentially answer many questions
immediately after they are posted, which will be effective in reducing human
effort for straightforward logistical questions. However, for knowledge-related
questions, there exists a clear connection between balanced collaboration in
problem solving and effective student learning [1]. If the system always answers
questions immediately, it will stifle useful discussion between students that pro-
motes peer learning. Thus, there is a need for the system to decide when to
automatically answer a question by predicting the length of time until the next
post in a thread.

Given the sequential nature of discussion threads, we employ an RNN to
predict the time until the next post of a particular thread, where each discrete
time step of the network corresponds to a post. At each time step, our input to
the RNN is a vector concatenating the following information: the textual embed-
ding of the current post (generated using BERT), the time between the previous
and current post, and a one-hot encoded representation of the Piazza post type.
For the output at each time step, it is difficult to formulate time prediction as
a regression problem since time between posts ranges from seconds to days or
even infinity for the end-of-thread (EOT) post. Therefore, we formulate it as a
k-class classification problem where the first k − 1 classes are time intervals, e.g.
[5 mins, 1 hr), and the final class is for EOT posts.

We use two different loss functions to train the RNN. The first loss function,
cross entropy, uses the softmax function and assumes the classes are not ordered:

L = − log(eyg/
∑

i e
yi).

In this case, the output at each time step is a length-k vector that is used
to predict the probability for each output class and yi denotes its ith entry.
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g corresponds to the actual time bin the post belongs to. However, given the
ordered nature of the time intervals, we also use another loss function which is
a threshold-based generalization of the hinge loss [36]:

L =
∑k−1

i=1 max{0, 1 − s(i, g)(θi − y)}, s(i, g) =
{−1, i < g

1, i ≥ g
.

In this case, the output at each time step is a scalar y; −∞ = θ0 < θ1 < ... <
θk−1 < θk = ∞ denotes a set of thresholds that partition the possible values of
the RNN scalar output into k bins. In other words, this loss compares the scalar
output with each threshold to put it into a bin, penalizing outputs farther from
their actual time bin.

3 Experiments

3.1 Dataset

Our dataset, which we dub PhysicsForum, consists of 2004 posts in 663 threads in
the online discussion forum of an introductory physics course. 802 of these posts
are questions asked by students (640 primary questions and 162 follow-up ques-
tions). We manually divide these questions into different types: 140 conceptual
(regarding a specific concept), 250 reasoning (apply concepts to specific prob-
lems), 172 logistics (pertain to class structure, not content), 18 factual (content
related, with definitive answer), 213 not answerable (needs human intervention,
eg., grading related), and 9 off-topic (unrelated to course content/structure).
We focus on logistics questions and content-related factual questions since auto-
mated question answering methods are mainly developed for factual questions.
In addition to the discussion forum data, there are 288 course material docu-
ments including the syllabus, assignments, notes, announcement emails from the
instructor, exams, and sections of the electronic course textbook.

3.2 Question Answering

Experimental Setup. To more easily judge for correctness, we use the 172 logis-
tical questions from the PhysicsForum dataset where students ask about assign-
ment due dates, exam locations, grading policy, etc. Since our goal is to test
document retrieval and question answering performance, we retrieve documents
from the entire pool of course documents and discussion forum posts, regardless
of the availability at the time a question was posted. We include several variants
of our proposed question answering system in an ablation study. First, we com-
pare retrieving documents via an inner product of tf-idf vectors (our system)
versus cosine similarity [29], i.e., normalizing the inner product by dividing by
document length (+N). Second, we compare splitting documents into paragraphs
before document retrieval (our system) versus not splitting (−P).



616 B. Zylich et al.

Table 1. Document retrieval performance for all question answering systems.

System Human Watson DrQA Ours-P+N Ours+N Ours

Top-1 % 80 .2% 38.4% 17.4% 51.2% 52.9% 61.6%

Top-3 % 86 .0% – 42.4% 79.7% 75.6% 83.7%

Top-5 % 86 .0% – 55.8% 89.0% 83.7% 90.7%

Table 2. Answer extraction performance for all question answering systems.

System Human Watson Ours

Top-1 % 80 .2% 38.4% 41.3%

Top-3 % 86 .0% – 66.3%

Top-5 % 86 .0% – 77.3%

Evaluation Metric and Baselines. We use human judgment to evaluate the per-
formance of all systems3; for document retrieval, we label a document according
to whether or not it contains information that could be used to answer the ques-
tion, and for answer extraction, we label an answer span according to whether or
not it is a satisfactory answer to the question. Sometimes, a satisfactory answer
is not ranked first; this situation occurs when a question has some ambiguity,
which makes the answer extraction model favor generic, indirect answers. Since
our system produces a list of 5 answers with their rankings, we use Top-k accu-
racy to characterize the percentage of questions where at least one satisfactory
answer is included in the top-k ranked answers, with k ∈ {1, 3, 5}.

We compare our question answering system against several baselines. The
first baseline is the actual performance of course staff and other students
(Human) in our dataset. We note that most questions elicit between 1–3 answers
from students or course staff, causing Top-1 accuracy to differ slightly from Top-3
and Top-5 accuracies. The second baseline is the IBM Watson Assistant (Wat-
son), which is given the 15 most commonly asked logistical questions in our
dataset and the corresponding answers. We expect this baseline to be a near-
optimal version of Jill Watson [9] because it knows a-priori the exact questions
asked by the students. The Top-3 and Top-5 metrics do not apply to Watson
because Watson does not provide a ranked list of answers; Instead, Watson ran-
domly deploys one response from a pool of possible responses to a given question.
The third baseline is the unaltered version of DrQA [19].

Results and Discussion. Table 1 shows the performance of document retrieval for
all systems on the PhysicsForum dataset. Here, we only consider whether the
retrieved paragraph contains information that could answer the question. For

3 To gauge the subjectivity of our metric, we randomly sampled 50 question-answer
pairs (across questions, answer ranks, and systems) and found moderate agreement
between 2 independent labelers (80% agreement, Cohen’s Kappa [37] = 0.554).
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Fig. 1. Our system can use the answerability classifier to be selective in the questions
it answers to improve precision at the expense of recall.

the Human and Watson baselines which do not answer every question, unan-
swered questions are treated as incorrect to ensure that recall is the same for
all systems (since our system has 100% recall). We see that despite generally
not reaching human-level performance, especially with the top-ranked answer,
our system is the best-performing automated question answering method. More-
over, our system can automatically provide a satisfactory answer within its top-5
ranked answers for 90.7% of the questions, while the course staff answered only
86% of the questions. We also see that our system slightly outperforms its vari-
ants and significantly outperforms the original DrQA system that does not split
documents into paragraphs in the document retrieval step. Even without this
split, Ours-P+N still outperforms DrQA using the normalized cosine similarity
values to rank documents instead of using inner products. These results suggest
that splitting documents into paragraphs before the document retrieval process
eliminates the need of normalization for the inner products between tf-idf vec-
tors. The likely reason is that course content documents such as the syllabus and
textbook sections are very long; splitting them into smaller paragraphs enables
more past discussion forum posts to be selected. These threads can be highly
relevant despite being relatively short.

Table 2 shows the answer extraction performance for all systems on the
PhysicsForum dataset. We see that the performance on answer extraction is
significantly worse than document retrieval, which means that the short span
of text extracted from the document often fails to capture key information.
This observation is not surprising since current answer extraction methods are
designed for well-structured documents and questions with simple answers, while
questions asked by real students often require complex answers using informa-
tion from different pieces of the document. Therefore, if our system is to be
deployed in real online course discussion forums, it is necessary to provide the
entire retrieved document in addition to the short answer in case the answer
itself is not satisfactory but its context still contains relevant information.
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Question: How is our grade impacted if we forgot to do the catme team
evaluation…
Top Answer: …There will be two team evaluations during this semester,
one after the first three labs, and one after the last three. Each team
evaluation will be worth 5%.
Source: Lab syllabus

Question: Does anyone know if we can still get credit for late Perusall
comments?
Top Answer: …no extensions will be given." No credit for late homework.
Source: Forum post

Question: I did not receive full credit for the exam 1 corrections and there were no
comments on moodle. How do I find out where I lost points?
Top Answer: …there will be a correction aspect to the exams…you will, after the
exam be able to turn in some corrections to regain 15% of your lost points back…
Source: Course syllabus

Question: Where can I find the SI materials from the review session?
Top Answer: …There is a link on your moodle under "Supplemental Instruction"
called "Location of SI materials"… Tuesdays and Sundays are used to go over class
material…I upload worksheets 2 hours before every session…
Source: Forum post

Fig. 2. Examples of correct (left) and incorrect (right) answers provided by the system.
The short answer chosen by the answer extraction model is underlined.

To improve the precision of our question answering system (at the expense of
recall), we can use our answerability classifier’s confidence value output to select
questions to answer. Figure 1 shows the precision-recall curves with varying con-
fidence threshold values for our system. The Human and Watson baselines are
represented as points on the plot because neither supports multiple threshold-
ing values. The precision shown for these baselines is higher than that in Table 1
since we are now using their actual recall values. We see that despite not reaching
human-level performance, our system is capable of achieving 80% precision at
20% recall, which decreases to 50% at 80% recall. Moreover, our system slightly
outperforms the IBM Watson-based system that was developed with knowledge
of the questions (and corresponding answers) that were actually present in our
dataset. This result means that our system can be readily used to enhance exist-
ing dialogue-based question answering systems that require non-trivial effort by
instructors and TAs. Moreover, our system does not need to be warm-started
using discussion forum data from previous offerings of the course; instead, all
the instructor has to do is upload materials into the document pool.

Figure 2 shows several example questions and answers both when our sys-
tem performed well and poorly. Figure 2(a) shows that our system can harness
both course content documents and other forum posts to answer student ques-
tions. Figure 2(b) shows two cases where our system fails to extract a satisfactory
answer. In one case, the text similarity-based document retriever finds a docu-
ment about exam corrections, but the document does not answer the question of
how to determine why the student did not receive full credit on their corrections.
In the other case, the document contains relevant information about how stu-
dents can access materials from a review session; this information is distributed
throughout the document. However, existing answer extraction methods can only
select a single short span in the text, causing the model to select a span that
addresses the related (but different) question of when review sessions are held.

Question: How do you determine the direction of an electric field?
Top Answer: The electric field from a positive charge points away from the charge.
The electric field from a negative charge points towards the charge.
Source: Forum post

Fig. 3. Beyond logistical questions, our system may also be used to answer content-
related factual questions.
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In addition to logistical questions, we also applied our system to the 18
questions we labeled as factual [38] in the PhysicsForum dataset. On these ques-
tions, our document retrieval system had Top-1, Top-3, and Top-5 accuracies of
44.4%, 88.9%, and 88.9%, respectively. Figure 3 shows an example where the sys-
tem answers correctly. This example and the system’s performance suggest that
our system may be applicable beyond the limited domain of logistical questions,
which we will explore in future work.

3.3 Post Timing Prediction

Experimental Setup. For the next post timing prediction task, we consider all
threads in the PhysicsForum dataset. Using RNNs as the base model, we com-
pare several variants of our method, including varying the number of discrete
time bins as k ∈ {4, 8}, using the two different loss functions, cross entropy (C)
and ordinal hinge loss (O), and the addition of two input features (A). These
two additional features are derived from the answerability classifier; one is the
maximum predicted probability of a satisfactory answer to the main question
across all available documents, and the other is the maximum predicted proba-
bility of a satisfactory answer across only previous answer posts in the thread.
We select bin boundaries such that EOT posts make up their own bin while the
remaining posts are evenly placed into the other k − 1 bins. We train the RNN
on a subset of 522 randomly sampled threads of the PhysicsForum dataset and
evaluate it on the remaining 141 held-out threads. We evaluate the model using
the time bin prediction accuracy (ACC) metric, which is simply the portion of
correct predictions, and accuracy within one bin (ACC1), which is the portion
of predictions that differ from the the actual time bin by at most 1. We repeat
our experiments over 10 randomly sampled training and test sets.

Results and Discussion. Table 3 shows the mean performance across all training
and test sets for all variations of our model. For reference, a majority-class
model (EOT posts) achieves an ACC of 33.1%. We see that the ordinal loss
provides a slight advantage over the cross entropy loss on both metrics under
almost all settings. This observation suggests that the ordinal loss function that
considers bin ordering by penalizing predictions farther from their actual bin
more heavily is more effective than the cross entropy loss that does not consider
bin ordering. We also see that the use of the answerability classifier improves the
timing prediction performance but only marginally. This observation suggests
that knowing whether the question in a discussion forum thread is answerable
or whether it has already been answered can benefit next post timing prediction.
However, this benefit is limited by the performance of the answerability classifier,
which is not as accurate on the PhysicsForum dataset as it is on the standard
SQuAD and Natural Questions datasets since real student questions are often
ill-posed or poorly written. Nevertheless, the next post timing predictor can help
virtual TAs to predict whether a student question is likely going to be answered
by other students soon and decide whether to answer it immediately.
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Table 3. Comparison between variants of the RNN using the cross entropy loss (C),
ordinal loss (O), and the answerability classifier features (A) for predicting the discrete
time bin of the time until next post.

System k = 4 k = 8

RNN-C RNN-O RNN-CA RNN-OA RNN-C RNN-O RNN-CA RNN-OA

ACC 75.2% 76.6% 75.4% 74.7% 69.8% 72.0% 70.0% 72.3%

ACC1 89.3% 91.9% 89.5% 92.3% 78.1% 79.5% 77.8% 80.6%

4 Conclusions and Future Work

In this paper, we have developed an automated system for logistical question
answering in online course discussion forums and discussed how it can help
the development of virtual teaching assistants. In addition to analyzing stu-
dents’ interactions with our system in a live course setting, avenues of future
work include i) exploring what type of course content-based questions can be
answered, ii) improving our system by fine-tuning neural language models on
course content to adapt to student-generated text, and iii) developing methods
that can automatically identify misconceptions in student posts.
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