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Preface

This volume contains the papers presented at the 13th Conference on Artificial Intel-
ligence (AGI 2020), held virtually during June 23–26, 2020, and physically at Saint
Petersburg during September 16–19, 2020. The choice of venue was not accidental, it
is in Russia that a lot of attention is being paid to AGI topics and new leading research
groups are emerging with promising results. Continuing the tradition of enhanced
engagement and fruitful discussion between European, American, and Chinese
researchers during AGI 2019, AGI 2020 brought together researchers from around the
globe, resulting in the exchange of experience and ideas.

This volume contains the contributed talks presented at AGI 2020. There were 60
submissions. The Program Committee decided to accept 22 long papers (37% accep-
tance) for oral presentation and 17 papers for a poster presentation. The topics covered
proved to be very diverse. There are papers covering AGI architectures, papers dis-
cussing artificial creativity and AI safety, papers developing ideas from psychology and
hyperdimensional representations, papers on transfer learning, papers on AI unification
and benchmarks for AGI, and a host of other papers covering a wide-ranging array of
additional relevant topics. In addition, the AGI 2020 conference featured tutorials and
workshops on the Non-Axiomatic Reasoning System (NARS), on the Next Generation
of AGI Architectures, on social AI agents and OpenCog Architecture. We thank all the
Program Committee members for their dedicated service to the review process. We
thank all of our contributors, participants, and tutorial, workshop, and panel session
organizers, without whom the conference would not exist.

May 2020 Ben Goertzel
Aleksandr I. Panov

Alexey Potapov
Roman Yampolskiy
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AGI and the Knight-Darwin Law: Why
Idealized AGI Reproduction Requires

Collaboration

Samuel Allen Alexander(B)

The U.S. Securities and Exchange Commission, New York, USA
samuelallenalexander@gmail.com

https://philpeople.org/profiles/samuel-alexander/publications

Abstract. Can an AGI create a more intelligent AGI? Under idealized
assumptions, for a certain theoretical type of intelligence, our answer is:
“Not without outside help”. This is a paper on the mathematical struc-
ture of AGI populations when parent AGIs create child AGIs. We argue
that such populations satisfy a certain biological law. Motivated by obser-
vations of sexual reproduction in seemingly-asexual species, the Knight-
Darwin Law states that it is impossible for one organism to asexually
produce another, which asexually produces another, and so on forever:
that any sequence of organisms (each one a child of the previous) must
contain occasional multi-parent organisms, or must terminate. By prov-
ing that a certain measure (arguably an intelligence measure) decreases
when an idealized parent AGI single-handedly creates a child AGI, we
argue that a similar Law holds for AGIs.

Keywords: Intelligence measurement · Knight-Darwin Law · Ordinal
Notations · Intelligence explosion

1 Introduction

It is difficult to reason about agents with Artificial General Intelligence (AGIs)
programming AGIs1. To get our hands on something solid, we have attempted
to find structures that abstractly capture the core essence of AGIs programming
AGIs. This led us to discover what we call the Intuitive Ordinal Notation System
(presented in Sect. 2), an ordinal notation system that gets directly at the heart
of AGIs creating AGIs.

1 Our approach to AGI is what Goertzel [11] describes as the Universalist Approach:
we consider “...an idealized case of AGI, similar to assumptions like the frictionless
plane in physics”, with the hope that by understanding this “simplified special case,
we can use the understanding we’ve gained to address more realistic cases.”

c© Springer Nature Switzerland AG 2020
B. Goertzel et al. (Eds.): AGI 2020, LNAI 12177, pp. 1–11, 2020.
https://doi.org/10.1007/978-3-030-52152-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52152-3_1&domain=pdf
http://orcid.org/0000-0002-7930-110X
https://doi.org/10.1007/978-3-030-52152-3_1


2 S. A. Alexander

We call an AGI truthful if the things it knows are true2. In [4], we argued
that if a truthful AGI X creates (without external help) a truthful AGI Y in
such a way that X knows the truthfulness of Y , then X must be more intelligent
than Y in a certain formal sense. The argument is based on the key assumption
that if X creates Y , without external help, then X necessarily knows Y ’s source
code.

Iterating the above argument, suppose X1,X2, . . . are truthful AGIs such that
each Xi creates, and knows the truthfulness and the code of, Xi+1. Assuming
the previous paragraph, X1 would be more intelligent than X2, which would be
more intelligent than X3, and so on (in our certain formal sense). In Sect. 3 we
will argue that this implies it is impossible for such a list X1,X2, . . . to go on
forever: it would have to stop after finitely many elements3.

At first glance, the above results might seem to suggest skepticism regarding
the singularity—regarding what Hutter [15] calls intelligence explosion, the idea
of AGIs creating better AGIs, which create even better AGIs, and so on. But
there is a loophole (discussed further in Sect. 4). Suppose AGIs X and X ′ col-
laborate to create Y . Suppose X does part of the programming work, but keeps
the code secret from X ′, and suppose X ′ does another part of the programming
work, but keeps the code secret from X. Then neither X nor X ′ knows Y ’s full
source code, and yet if X and X ′ trust each other, then both X and X ′ should
be able to trust Y , so the above-mentioned argument breaks down.

Darwin and his contemporaries observed that even seemingly asexual plant
species occasionally reproduce sexually. For example, a plant in which pollen is
ordinarily isolated, might release pollen into the air if a storm damages the part
of the plant that would otherwise shield the pollen4. The Knight-Darwin Law
[8], named after Charles Darwin and Andrew Knight, is the principle (rephrased
in modern language) that there cannot be an infinite sequence X1,X2, . . . of
biological organisms such that each Xi asexually parents Xi+1. In other words,
if X1,X2, . . . is any infinite list of organisms such that each Xi is a biological
parent of Xi+1, then some of the Xi would need to be multi-parent organisms.
The reader will immediately notice a striking parallel between this principle and
the discussion in the previous two paragraphs.

In Sect. 2 we present the Intuitive Ordinal Notation System.

2 Knowledge and truth are formally treated in [4] but here we aim at a more general
audience. For the purposes of this paper, an AGI can be thought of as knowing a
fact if and only if the AGI would list that fact if commanded to spend eternity listing
all the facts that it knows. We assume such knowledge is closed under deduction, an
assumption which is ubiquitous in modal logic, where it often appears in a form like
K(φ → ψ) → (K(φ) → K(ψ)). Of course, it is only in the idealized context of this
paper that one should assume AGIs satisfy such closure.

3 This may initially seem to contradict some mathematical constructions [18,22] of
infinite descending chains of theories. But those constructions only work for weaker
languages, making them inapplicable to AGIs which comprehend linguistically strong
second-order predicates.

4 Even prokaryotes can be considered to occasionally have multiple parents, if lateral
gene transfer is taken into account.
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In Sect. 3 we argue5 that if truthful AGI X creates truthful AGI Y , such that
X knows the code and truthfulness of Y , then, in a certain formal sense, Y is
less intelligent than X.

In Sect. 4 we adapt the Knight-Darwin Law from biology to AGI and specu-
late about what it might mean for AGI.

In Sect. 5 we address some anticipated objections.
Sections 2 and 3 are not new (except for new motivation and discussion).

Their content appeared in [4], and was more rigorously formalized there.
Sections 4 and 5 contain this paper’s new material. Of this, some was hinted
at in [4], and some appeared (weaker and less approachably) in the author’s
dissertation [2].

2 The Intuitive Ordinal Notation System

If humans can write AGIs, and AGIs are at least as smart as humans, then AGIs
should be capable of writing AGIs. Based on the conviction that an AGI should
be capable of writing AGIs, we would like to come up with a more concrete
structure, easier to reason about, which we can use to better understand AGIs.

To capture the essence of an AGI’s AGI-programming capability, one might
try: “computer program that prints computer programs.” But this only captures
the AGI’s capability to write computer programs, not to write AGIs.

How about: “computer program that prints computer programs that print
computer programs”? This second attempt seems to capture an AGI’s ability to
write program-writing programs, not to write AGIs.

Likewise, “computer program that prints computer programs that print com-
puter programs that print computer programs” captures the ability to write
program-writing-program-writing programs, not AGIs.

We need to short-circuit the above process. We need to come up with a notion
X which is equivalent to “computer program that prints members of X”.

Definition 1 (See the following examples). We define the Intuitive Ordinal
Notations to be the smallest set P of computer programs such that:

– Each computer program p is in P iff all of p’s outputs are also in P.

Example 2 (Some simple examples)

1. Let P0 be “End”, a program which immediately stops without any outputs.
Vacuously, all of P0’s outputs are in P (there are no such outputs). So P0 is
an Intuitive Ordinal Notation.

2. Let P1 be “Print(‘End’)”, a program which outputs “End” and then stops. By
(1), all of P1’s outputs are Intuitive Ordinal Notations, therefore, so is P1.

3. Let P2 be “Print(‘Print(‘End’)’)”, which outputs “Print(‘End’)” and then
stops. By (2), all of P2’s outputs are Intuitive Ordinal Notations, therefore,
so is P2.

5 This argument appeared in a fully rigorous form in [4], but in this paper we attempt
to make it more approachable.
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Example 3 (A more interesting example). Let Pω be the program:

Let X = ‘End’; While(True) {Print(X); X = “Print(‘” + X + “’)”;}
When executed, Pω outputs “End”, “Print(‘End’)”, “Print(‘Print(‘End’)’)”, and
so on forever. As in Example 2, all of these are Intuitive Ordinal Notations.
Therefore, Pω is an Intuitive Ordinal Notation.

To make Definition 1 fully rigorous, one would need to work in a formal model
of computation; see [4] (Section 3) where we do exactly that. Examples 2 and 3
are reminiscent of Franz’s approach of “head[ing] for general algorithms at low
complexity levels and fill[ing] the task cup from the bottom up” [9]. For a much
larger collection of examples, see [3]. A different type of example will be sketched
in the proof of Theorem7 below.

Definition 4. For any Intuitive Ordinal Notation x, we define an ordinal |x|
inductively as follows: |x| is the smallest ordinal α such that α > |y| for every
output y of x.

Example 5. – Since P0 (from Example 2) has no outputs, it follows that
|P0| = 0, the smallest ordinal.

– Likewise, |P1| = 1 and |P2| = 2.
– Likewise, Pω (from Example 3) has outputs notating 0, 1, 2, . . .—all the finite

natural numbers. It follows that |Pω| = ω, the smallest infinite ordinal.
– Let Pω+1 be the program “Print(Pω)”, where Pω is as in Example 3. It follows

that |Pω+1| = ω + 1, the next ordinal after ω.

The Intuitive Ordinal Notation System is a more intuitive simplification of
an ordinal notation system known as Kleene’s O.

3 Intuitive Ordinal Intelligence

Whatever an AGI is, an AGI should know certain mathematical facts. The fol-
lowing is a universal notion of an AGI’s intelligence based solely on said facts.
In [4] we argue that this notion captures key components of intelligence such as
pattern recognition, creativity, and the ability or generalize. We will give further
justification in Sect. 5. Even if the reader refuses to accept this as a genuine
intelligence measure, that is merely a name we have chosen for it: we could give
it any other name without compromising this paper’s structural results.

Definition 6. The Intuitive Ordinal Intelligence of a truthful AGI X is the
smallest ordinal |X| such that |X| > |p| for every Intuitive Ordinal Notation p
such that X knows that p is an Intuitive Ordinal Notation.

The following theorem provides a relationship6 between Intuitive Ordinal
Intelligence and AGI creation of AGI. Here, we give an informal version of the
proof; for a version spelled out in complete formal detail, see [4].
6 Possibly formalizing a relationship implied offhandedly by Chaitin, who suggests

ordinal computation as a mathematical challenge intended to encourage evolution,
“and the larger the ordinal, the fitter the organism” [7].
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Theorem 7. Suppose X is a truthful AGI, and X creates a truthful AGI Y in
such a way that X knows Y ’s code and truthfulness. Then |X| > |Y |.
Proof. Suppose Y were commanded to spend eternity enumerating the biggest
Intuitive Ordinal Notations Y could think of. This would result in some list L
of Intuitive Ordinal Notations enumerated by Y . Since Y is an AGI, L must be
computable. Thus, there is some computer program P whose outputs are exactly
L. Since X knows Y ’s code, and as an AGI, X is capable of reasoning about
code, it follows that X can infer a program P that7 lists L. Having constructed
P this way, X knows: “P outputs L, the list of things Y would output if Y
were commanded to spend eternity trying to enumerate large Intuitive Ordinal
Notations”. Since X knows Y is truthful, X knows that L contains nothing
except Intuitive Ordinal Notations, thus X knows that P ’s outputs are Intuitive
Ordinal Notations, and so X knows that P is an Intuitive Ordinal Notation. So
|X| > |P |. But |P | is the least ordinal > |Q| for all Q output by L, in other
words, |P | = |Y |. ��

Theorem 7 is mainly intended for the situation where parent X creates inde-
pendent child Y , but can also be applied in case X self-modifies, viewing the
original X as being replaced by the new self-modified Y (assuming X has prior
knowledge of the code and truthfulness of the modified result).

It would be straightforward to extend Theorem7 to cases where X creates
Y non-deterministically. Suppose X creates Y using random numbers, such that
X knows Y is one of Y1, Y2, . . . , Yk but X does not know which. If X knows that
Y is truthful, then X must know that each Yi is truthful (otherwise, if some Yi

were not truthful, X could not rule out that Y was that non-truthful Yi). So by
Theorem 7, each |Yi| would be < |X|. Since Y is one of the Yi, we would still
have |Y | < |X|.

4 The Knight-Darwin Law

“...it is a general law of nature that no organic being self-fertilises itself
for a perpetuity of generations; but that a cross with another individual is
occasionally—perhaps at long intervals of time—indispensable.” (Charles
Darwin)

In his Origin of Species, Darwin devotes many pages to the above-quoted
principle, later called the Knight-Darwin Law [8]. In [1] we translate the Knight-
Darwin Law into mathematical language.
7 For example, X could write a general program Sim(c) that simulates an input AGI

c waking up in an empty room and being commanded to spend eternity enumerat-
ing Intuitive Ordinal Notations. This program Sim(c) would then output whatever
outputs AGI c outputs under those circumstances. Having written Sim(c), X could
then obtain P by pasting Y ’s code into Sim (a string operation—not actually run-
ning Sim on Y ’s code). Nowhere in this process do we require X to actually execute
Sim (which might be computationally infeasible).
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Principle 8 (The Knight-Darwin Law). There cannot be an infinite sequence
x1, x2, . . . of organisms such that each xi is the lone biological parent of xi+1.
If each xi is a parent of xi+1, then some xi+1 must have multiple parents.

A key fact about the ordinals is they are well-founded : there is no infinite
sequence o1, o2, . . . of ordinals such that8 each oi > oi+1. In Theorem 7 we showed
that if truthful AGI X creates truthful AGI Y in such a way as to know the
truthfulness and code of Y , then X has a higher Intuitive Ordinal Intelligence
than Y . Combining this with the well-foundedness of the ordinals yields a theo-
rem extremely similar to the Knight-Darwin Law.

Theorem 9 (The Knight-Darwin Law for AGIs). There cannot be an infinite
sequence X1,X2, . . . of truthful AGIs such that each Xi creates Xi+1 in such
a way as to know Xi+1’s truthfulness and code. If each Xi creates Xi+1 so as
to know Xi+1 is truthful, then occasionally certain Xi+1’s must be co-created
by multiple creators (assuming that creation by a lone creator implies the lone
creator would know Xi+1’s code).

Proof. By Theorem 7, the Intuitive Ordinal Intelligence of X1,X2, . . . would
be an infinite strictly-descending sequence of ordinals, violating the well-
foundedness of the ordinals. ��

It is perfectly consistent with Theorem 7 that Y might operate faster than
X, performing better in realtime environments (as in [10]). It may even be that
Y performs so much faster that it would be infeasible for X to use the knowledge
of Y ’s code to simulate Y . Theorems 7 and 9 are profound because they suggest
that descendants might initially appear more practical (faster, better at problem-
solving, etc.), yet, without outside help, their knowledge must degenerate. This
parallels the hydra game of Kirby and Paris [16], where a hydra seems to grow
as the player cuts off its heads, yet inevitably dies if the player keeps cutting.

If AGI Y has distinct parents X and X ′, neither of which fully knows Y ’s
code, then Theorem 7 does not apply to X,Y or X ′, Y and does not force |Y | <
|X| or |Y | < |X ′|. This does not necessarily mean that |Y | can be arbitrarily
large, though. If X and X ′ were themselves created single-handedly by a lone
parent X0, similar reasoning to Theorem 7 would force |Y | < |X0| (assuming X0

could infer the code and truthfulness of Y from those of X and X ′)9.
In the remainder of this section, we will non-rigorously speculate about three

implications Theorem 9 might have for AGIs and for AGI research.

8 This is essentially true by definition, unfortunately the formal definition of ordinal
numbers is outside the scope of this paper.

9 This suggests possible generalizations of the Knight-Darwin Law such as “There
cannot be an infinite sequence x1, x2, . . . of biological organisms such that each xi is
the lone grandparent of xi+1,” and AGI versions of same. This also raises questions
about the relationship between the set of AGIs initially created by humans and how
intelligent the offspring of those initial AGIs can be. These questions go beyond the
scope of this paper but perhaps they could be a fruitful area for future research.
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4.1 Motivation for Multi-agent Approaches to AGI

If AGI ought to be capable of programming AGI, Theorem9 suggests that a
fundamental aspect of AGI should be the ability to collaborate with other AGIs
in the creation of new AGIs. This seems to suggest there should be no such
thing as a solipsistic AGI10, or at least, solipsistic AGIs would be limited in
their reproduction ability. For, if an AGI were solipsistic, it seems like it would
be difficult for this AGI to collaborate with other AGIs to create child AGIs. To
quote Hernández-Orallo et al.: “The appearance of multi-agent systems is a sign
that the future of machine intelligence will not be found in monolithic systems
solving tasks without other agents to compete or collaborate with” [12].

More practically, Theorem 9 might suggest prioritizing research on multi-
agent approaches to AGI, such as [6,12,14,17,19,21], and similar work.

4.2 Motivation for AGI Variety

Darwin used the Knight-Darwin Law as a foundation for a broader thesis that
the survival of a species depends on the inter-breeding of many members. By
analogy, if our goal is to create robust AGIs, perhaps we should focus on creating
a wide variety of AGIs, so that those AGIs can co-create more AGIs.

On the other hand, if we want to reduce the danger of AGI getting out
of control, perhaps we should limit AGI variety. At the extreme end of the
spectrum, if humankind were to limit itself to only creating one single AGI11,
then Theorem 9 would constrain the extent to which that AGI could reproduce.

4.3 AGI Genetics

If AGI collaboration is a fundamental requirement for AGI “populations” to
propagate, it might someday be possible to view AGI through a genetic lens.
For example, if AGIs X and X ′ co-create child Y , if X runs operating system
O, and X ′ runs operating system O′, perhaps Y will somehow exhibit traces of
both O and O′.

5 Discussion

In this section, we discuss some anticipated objections.

5.1 What Does Definition 6 Really Have to Do with Intelligence?

We do not claim that Definition 6 is the “one true measure” of intelligence.
Maybe there is no such thing: maybe intelligence is inherently multi-dimensional.

10 That is, an AGI which believes itself to be the only entity in the universe.
11 Or to perfectly isolate different AGIs away from one another—see [25].
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Definition 6 measures a type of intelligence based on mathematical knowledge12

closed under logical deduction. An AGI could be good at problem-solving but
poor at ordinals. But the broad AGIs we are talking about in this paper should be
capable (if properly instructed) of attempting any reasonable well-defined task,
including that of notating ordinals. So Definition 6 does measure one aspect of
an AGI’s abilities. Perhaps a word like “mathematical-knowledge-level” would
fit better: but that would not change the Knight-Darwin Law implications.

Intelligence has core components like pattern-matching, creativity, and the
ability to generalize. We claim that these components are needed if one wants to
competitively name large ordinals. If p is an Intuitive Ordinal Notation obtained
using certain facts and techniques, then any AGI who used those facts and tech-
niques to construct p should also be able to iterate those same facts and tech-
niques. Thus, to advance from p to a larger ordinal which not just any p-knowing
AGI could obtain, must require the creative invention of some new facts or tech-
niques, and this invention requires some amount of creativity, pattern-matching,
etc. This becomes clear if the reader tries to notate ordinals qualitatively larger
than Example 3; see the more extensive examples in [3].

For analogy’s sake, imagine a ladder which different AGIs can climb, and
suppose advancing up the ladder requires exercising intelligence. One way to
measure (or at least estimate) intelligence would be to measure how high an
AGI can climb said ladder.

Not all ladders are equally good. A ladder would be particularly poor if it had
a top rung which many AGIs could reach: for then it would fail to distinguish
between AGIs who could reach that top rung, even if one AGI reaches it with
ease and another with difficulty. Even if the ladder was infinite and had no top
rung, it would still be suboptimal if there were AGIs capable of scaling the whole
ladder (i.e., of ascending however high they like, on demand)13. A good ladder
should have, for each particular AGI, a rung which that AGI cannot reach.

Definition 6 offers a good ladder. The rungs which an AGI manages to reach,
we have argued, require core components of intelligence to reach. And no par-
ticular AGI can scale the whole ladder14, because no AGI can enumerate all

12 Wang has correctly pointed out [23] that an AGI consists of much more than merely
a knowledge-set of mathematical facts. Still, we feel mathematical knowledge is at
least one important aspect of an AGI’s intelligence.

13 Hibbard’s intelligence measure [13] is an infinite ladder which is nevertheless short
enough that many AGIs can scale the whole ladder—the AGIs which do not “have
finite intelligence” in Hibbard’s words (see Hibbard’s Proposition 3). It should be
possible to use a fast-growing hierarchy [24] to transfinitely extend Hibbard’s ladder
and reduce the set of whole-ladder-scalers. This would make Hibbard’s measurement
ordinal-valued (perhaps Hibbard intuited this; his abstract uses the word “ordinal”
in its everyday sense as synonym for “natural number”).

14 Thus, this ladder avoids a common problem that arises when trying to measure
machine intelligence using IQ tests, namely, that for any IQ test, an algorithm can
be designed to dominate that test, despite being otherwise unintelligent [5].
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the Intuitive Ordinal Notations: it can be shown that they are not computably
enumerable15.

5.2 Can’t an AGI Just Print a Copy of Itself?

If a truthful AGI knows its own code, then it can certainly print a copy of itself.
But if so, then it necessarily cannot know the truthfulness of that copy, lest it
would know the truthfulness of itself. Versions of Gödel’s incompleteness theo-
rems adapted [20] to mechanical knowing agents imply that a suitably idealized
truthful AGI cannot know its own code and its own truthfulness.

5.3 Prohibitively Expensive Simulation

The reader might object that Theorem 7 breaks down if Y is prohibitively expen-
sive for X to simulate. But Theorem 7 and its proof have nothing to do with
simulation. In functional languages like Haskell, functions can be manipulated,
filtered, formally composed with other functions, and so on, without needing to
be executed. Likewise, if X knows the code of Y , then X can manipulate and
reason about that code without executing a single line of it.

6 Conclusion

The Intuitive Ordinal Intelligence of a truthful AGI is defined to be the supre-
mum of the ordinals which have Intuitive Ordinal Notations the AGI knows to
be Intuitive Ordinal Notations. We argued that this notion measures (a type of)
intelligence. We proved that if a truthful AGI single-handedly creates a child
truthful AGI, in such a way as to know the child’s truthfulness and code, then
the parent must have greater Intuitive Ordinal Intelligent than the child. This
allowed us to establish a structural property for AGI populations, resembling
the Knight-Darwin Law from biology. We speculated about implications of this
biology-AGI parallel. We hope by better understanding how AGIs create new
AGIs, we can better understand methods of AGI-creation by humans.

Acknowledgments. We gratefully acknowledge Jordi Bieger, Thomas Forster,
José Hernández-Orallo, Bill Hibbard, Mike Steel, Albert Visser, and the reviewers for
discussion and feedback.
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Abstract. The complex socio-technological debate underlying safety-
critical and ethically relevant issues pertaining to AI development and
deployment extends across heterogeneous research subfields and involves
in part conflicting positions. In this context, it seems expedient to gen-
erate a minimalistic joint transdisciplinary basis disambiguating the ref-
erences to specific subtypes of AI properties and risks for an error-
correction in the transmission of ideas. In this paper, we introduce a high-
level transdisciplinary system clustering of ethical distinction between
antithetical clusters of Type I and Type II systems which extends a
cybersecurity-oriented AI safety taxonomy with considerations from psy-
chology. Moreover, we review relevant Type I AI risks, reflect upon pos-
sible epistemological origins of hypothetical Type II AI from a cognitive
sciences perspective and discuss the related human moral perception.
Strikingly, our nuanced transdisciplinary analysis yields the figurative
formulation of the so-called AI safety paradox identifying AI control
and value alignment as conjugate requirements in AI safety. Against
this backdrop, we craft versatile multidisciplinary recommendations with
ethical dimensions tailored to Type II AI safety. Overall, we suggest
proactive and importantly corrective instead of prohibitive methods as
common basis for both Type I and Type II AI safety.

Keywords: AI safety paradox · Error-correction · AI ethics

1 Motivation

In recent years, one could identify the emergence of seemingly antagonistic posi-
tions from different academic subfields with regard to research priorities for AI
safety, AI ethics and AGI – many of which are grounded in differences of short-
term versus long-term estimations associated with AI capabilities and risks [6].
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However, given the high relevance of the joint underlying endeavor to contribute
to a safe and ethical development and deployment of artificial systems, we suggest
placing a mutual comprehension in the foreground which can start by making ref-
erences to assumed AI risks explicit. To this end, we employ and subsequently
extend a cybersecurity-oriented risk taxonomy introduced by Yampolskiy [35]
displayed in Fig. 1. Taking this taxonomy as point of departure and modifying
it while considering insights from psychology, an ethically relevant clustering of
systems into Type I and Type II systems with a disparate set of properties and
risk instantiations becomes explicitly expressible. Concerning the set of Type
I systems of which present-day AIs represent a subset, we define it as repre-
senting the complement of the set of Type II systems. Conversely, we regard
hypothetical Type II systems as systems with a scientifically plausible ability to
act independently, intentionally, deliberately and consciously and to craft expla-
nations. Given the controversial ambiguities linked to these attributes, we clarify
our idiosyncratic use with a working definition for which we do not claim any
higher suitability in general, but which is particularly conceptualized for our line
of argument. With Type II systems, we refer to systems having the ability to
construct counterfactual hypotheses about what could happen, what could have
happened, how and why including the ability to simulate “what I could do”
“what I could have done” and the generation of “what if” questions. (Given
this conjunction of abilities including the possibility of what-if deliberations with
counterfactual depth about self and other, we assume that Type II systems would
not represent philosophical zombies. A detailed account of this type of view is
provided by Friston in [19] stating e.g. that “the key difference between a con-
scious and non-conscious me is that the non-conscious me would not be able to
formulate a “hard problem”; quite simply because I could not entertain a thought
experiment”.)

Fig. 1. Taxonomy of pathways to dangerous AI. Adapted from [35].

2 Transdisciplinary System Clustering

As displayed in Fig. 1, the different possible external and internal causes are fur-
ther subdivided into time-related stages (pre-deployment and post-deployment)
which are in practice however not necessarily easily clear-cut. Thereby, for Type
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I risks, we distinguish between the associated instantiations Ia to If in compli-
ance with the external causes. For Type II risks, we analogously consider external
causes (IIa to IIf ) but in addition also internal causes which we subdivide into
the novel subcategories “on purpose” and “by mistake”. This assignment leads
to the risks IIg and IIh for the former as well as IIi and IIj for the latter subcat-
egory respectively. The reason for augmenting the granularity of the taxonomy
is that since Type II systems would be capable of intentionality, it is consequent
to distinguish between internal causes of risks resulting from intentional actions
of the system and risks stemming from its unintentional mistakes as parallel to
the consideration of external human-caused risks a and b versus c and d in the
matrix. (From the angle of moral psychology, failing to preemptively consider
this subtle further distinction could reinforce human biases in the moral percep-
tion of Type II AI due to a fundamental reluctance to assign experience [24],
fallibility and vulnerability to artificial systems which we briefly touch upon
in Sect. 3.2.) Especially, given this modification, the risks IIg and IIh are not
necessarily congruent with the original indices g and h, since our working def-
inition was not a prerequisite for the attribute “independently” in the original
taxonomy. The resulting system clustering is illustrated in Fig. 2.

Fig. 2. Transdisciplinary system clustering of ethical distinction with specified safety
and security risks. Internal causes assignments require scientific plausibility (see text).

Note that this transdisciplinary clustering does not differentiate based on the
specific architecture, substrate, intelligence level or set of algorithms associated
with a system. We also do not inflict assumptions on whether this clustering is of
hard or soft nature nor does it necessarily reflect the usual partition of narrow AI
versus AGI systems. Certain present-day AGI projects might be aimed at Type I
systems and some conversely at Type II. We stress that Type II systems are not
per se more dangerous than Type I systems. Importantly, “superintelligence” [10]
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does not necessarily qualify a system as a Type II system nor are Type II sys-
tems necessarily more intelligent than Type I systems. Having said that, it is
important to address the motivation behind the scientific plausibility criterion
associated with the Type II system description. Obviously, current AIs can be
linked to the Type I cluster. However, it is known from moral psychology studies
that the propensity of humans to assign intentionality and agency to artificial
systems is biased by anthropomorphism and importantly perceived harm [9].
According to the constructionist theory of dyadic morality [30], human moral
judgements are related to a fuzzy perceiver-dependent dyadic cognitive template
representing a continuum along which an intentional agent is perceived to cause
harm to a vulnerable patient. Thereby, the greater the degree to which harm is
mentally associated with vulnerable patients (here humans), the more the agent
(here the AI) will “seem to possess intentionality” [9] leading to stronger assign-
ments of moral responsibility to this agent. It is conceivable that in the face of
anticipated serious instantiations of AI risks within a type of responsibility vac-
uum, a so-called agentic dyadic completion [23] driven by people attempting to
identify and finally wrongly filling in intentional agents can occur. Thus, to allow
a sound distinction between Type I and Type II AI, a closer scientific inspection
of the assumed intentionality phenomenon itself seems imperative.

3 Type I and Type II AI Safety

3.1 Type I AI Risks

In the context of Type I risks (see overview in Table 1), we agree with Yampol-
skiy that “the most important problem in AI safety is intentional-malevolent-
design” [35]. This drastically understudied AI risk Ia represents a superset of
many possible other risks. As potential malicious human adversaries, one can
determine a large number of stakeholders ranging from military or corporations
over black hats to criminals. AI Risks Ia are linked to maximal adversarial capa-
bilities enabling a white-box setting with a minimum of restrictions for the real-
ization of targeted adversarial goals. Generally, malicious attackers could develop
intelligent forms of “viruses, spyware, Trojan horses, worms and other Hazardous
Software” [35]. Another related conceivable example for future Ia risks could be
real-world instantiations of intelligent systems embodied in robotic settings uti-
lized for ransomware or social engineering attacks or in the worst case scenarios
even for homicides. For intentionally unethical system design it is sometimes
sufficient to alter the sign of the objective function. Future lethal misuses of
proliferated intelligent unmanned combat air vehicles (a type of drones) e.g. by
malicious criminals are another exemplary concern.

Stuart Russell mentions the danger of future superintelligent systems
employed at a global scale [29] which could by mistake be equipped with inap-
propriate objectives – these systems would represent Type I AI. We postulate
that an even more pressing concern would be the same context, the same capa-
bilities of the AI but an adversary intentionally maliciously crafting the goals
of this system operating at a global scale (e.g. affecting global ecological aspects
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or the financial system). As can be extracted from these examples, Type I AI
systems can lead to existential risks. However, it is important to emphasize the
human nature of the causes and the linked human moral responsibility. By way
of example, we briefly consider the particular cases of “treacherous turn” and
“instrumental convergence” known from AI safety [10]. A Type I system is per
definitionem incapable of a “treacherous turn” involving betrayal. Nevertheless,
it is possible that as a consequence of bad design (risk Ic), a Type I AI is per-
ceived by humans to behave as if it was acting “treacherously” post-deployment
with tremendous negative impacts. Furthermore, we also see “instrumental goal
convergence” as a design-time mistake (risk Ic), since the developers must have
equipped the system with corresponding reasoning abilities. Limitations of the
assumed instrumental goal convergence risk which would hold for both Type
I and Type II AI were already addressed by Wang [33] and Goertzel [22]. (In
contrast, Type II AI makes an explicit “treacherous turn” possible – e.g. as risk
IIg with the Type II system itself as malicious actor.)

Since the nature of future Ia (and also Ib1) risks is dependent on the creativity
of the underlying malicious actors which cannot be predicted, proactive AI safety
measures have to be complemented by a concrete mechanism that reactively

Table 1. Examplary instantiations of type I AI risks with external causes. The table
collates and extends some examples provided in [35].

Type I AI risk Examplary instantiations

Ia (Intentional
malevolent designs)

Artificial Intelligent System Hazardous Software;

Robotic embodiment for Hazardous Software;

Intelligent Unmanned Combat Air Vehicles;

Global scale AI with super-capabilities in domain

Ib (Malicious attacks) Manipulation of data processing and collection;

Model corruption, hacking and sabotage;

Adversarial attacks on Intelligent Systems;

Integrity-related and ethical adversarial examples

Ic (Design-time mistakes) Unaligned goals and utility functions;

Instrumental goal convergence;

Incomplete consideration of side effects

Id (Operational failures) Misinterpretation of commands;

Accidents with Intelligent Systems;

Non-corrigible framework and bugs

Ie Type I AI of unknown source

If Bit-flip incidents with side effects

1 AI risks of Type Ib have already been recognized in the AI field. However, risk Ib is
still understudied for intelligent systems (often referred to as “autonomous” systems)
deployed in real-world environments offering a wider attack surface.
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addresses errors, attacks or malevolent design events once they inevitably occur.
For this purpose, AI governance needs to steadily combine proactive strategies
with reactive corrections leading to a socio-technological feedback-loop [2]. How-
ever, for such a mechanism to succeed, the United Nations Sustainable Develop-
mental Goal (SDG) 16 on peace, justice and strong institutions will be required
as meta-goal for AI safety [2].

3.2 Type II AI Nature and Type II AI Risks

Which Discipline Could Engender Type II AI? While many stakehold-
ers assume the technical unfeasibility of Type II AI, there is no law of nature
that would forbid their implementation. In short, an artificial Type II system
must be possible (see the “possibility-impossibility dichotomy” mentioned by
Deutsch [17]). Reasons why such systems do not exist yet have been for instance
expressed in 2012 by Deutsch [15] and as a response by Goertzel [21]. The former
stated that “the field of ‘artificial general intelligence’ or AGI – has made no
progress whatever during the entire six decades of its existence” [15]. (Note that
Deutsch unusually uses the term “AGI” as synonymous to artificial “explana-
tory knowledge creator” [16] which would obviously represent a sort of Type II
AI.) Furthermore, Deutsch assigns a high importance to Popperian epistemol-
ogy for the achievement of “AGI” and sees a breakthrough in philosophy as a
pre-requisite for these systems. Conversely, Goertzel provides divergent reasons
for the non-existence of “AGI” including hardware constraints, lack of funding
and the integration bottleneck [21]. Beyond that, Goertzel also specifies that
the mentioned view of Deutsch “if widely adopted, would slow down progress
toward AGI dramatically” [21]. One key issue behind Deutsch’s different view is
the assumption that Bayesian inductive or abductive inference accounts of Type
II systems known in the “AGI” field could not explain creativity [11] and are
prohibited by Popperian epistemology. However, note that even the Bayesian
brain has been argued to have Popperian characteristics related to sophisticated
falsificationalism, albeit in addition to Kuhnian properties (for a comprehensive
analysis see [34]). Having said this, the brain has been figuratively also referred
to as a biased “crooked scientist” [12,26]. In a nutshell, Popperian epistemol-
ogy represents an important scientific guide but not an exclusive descriptive2.
The main functionality of the human brain has been e.g. described to be aimed
at regulating the body for the purpose of allostasis [31] and (en)active infer-
ence [20] in a brain-body-environment context [12] with underlying genetically
and epigenetically shaped adaptive priors – including the genetic predisposition
2 It is not contested that inductive inferences are logically invalid as shown by Popper.

However, he also stated that “I hold that neither animals nor men use any proce-
dure like induction, or any argument based on repetition of instances. The belief
that we use induction is simply a mistake” [27] and that “induction simply does
not exist” [27] (see [25] for an in-depth analysis of potential hereto related semantic
misunderstandings). Arguments based on repetition of instances are existing but log-
ically unfounded human habits as assumed by Hume [25], however they additionally
require a point of view recognizing repetitions as such in the first place.
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to allostatically induced social dependency [3]. A feature related hereto is the
involvement of affect and interoception in the construction of all mental events
including cognition and perception [4,5].

Moreover, while Popper assumed that creativity corresponds to a Darwinian
process of blind variation followed by selection [18], modern cognitive science
suggests that in most creativity forms, there is a coupling between variation and
selection leading to a degree of sightedness bigger than zero [14,18] which is
lacking in biological evolution proceeding without a goal. Overall, an explana-
tion for creativity in the context of a predictive Bayesian brain is possible [14].
The degree of sightedness can often vary from substantial to modest, but the
core feature is a predictive task goal [1,7,18] which serves as a type of fitness
function for the selection process guiding various forward Bayesian predictions
representing the virtual variation process. The task goal is a highly abstract men-
tal representation of the target reducing the solution space, an educated guess
informed e.g. by expertise, prior memories, heuristics, the question, the problem
or the task itself. The “irrational moment” linked to certain creative insights
can be explained by unconscious cognitive scaffolding “falling away prior to the
conscious representation of the solution” [18] making itself consciously untrace-
able. Finally, as stated by Popper himself “no society can predict, scientifically,
its own future states of knowledge” [28]. Thus, it seems prophetic to try to nail
down today from which discipline Type II AI could arise.

What Could the Moral Status of a Type II AI Be? We want to stress
that besides these differences of opinion between Goertzel and Deutsch, there is
one much weightier commonality. Namely, that Goertzel would certainly agree
with Deutsch that artificial “explanatory knowledge creators” (which are Type
II AIs) deserve rights similar to humans and precluding any form of slavery.
Deutsch describes these hypothetical systems likewise as people [16]. For read-
ers that doubt this assignment on the ground of Type II AI possibly lacking
“qualia” we refer to the recent (potentially substrate-independent) explanation
suggested by Clark, Friston and Wilkinson [13]. Simply put, they link qualia
to sensorially-rich high-precision mid-level predictions which when fixed and
consciously re-contextualized at a higher level, suddenly appear to the entity
equipped with counterfactual depth to be potentially also interpretable in terms
of alternative predictions despite the high mid-level precision contingently lead-
ing to a puzzlement and the formulation of an “explanatory gap”. Beyond that,
human entities would obviously also qualify as Type II systems. The attributes
“pre-deployment” and “post-deployment” could be mapped for instance to ado-
lescence or childhood and the time after that. While Type II AIs could exceed
humans in speed of thinking and intelligence, they do not even need to do so in
order to realize that their behavior which will also depend on future knowledge
they will create (next to the future knowledge humans will create) cannot be
controlled in a way one can attempt to control Type I systems e.g. with ethical
goal functions [2]. It is cogitable that their goal function would rather be related
to autopoietic self-organization with counterfactual depth [19,20] than explicitly



Error-Correction for AI Safety 19

to ethics. However, it is thinkable that Type II AI systems could be amenable to
a sort of value alignment, though differing from the type aspired for Type I AI.
A societal co-existence could mean a dynamic coupling ideally leading to a type
of mutual value alignment between artificial and human Type II entities with an
associated co-construction of novel values. Thus, on the one hand, Type II AI
would exhibit unpredictability and uncontrollability but given the level of under-
standing also the possibility of a deep reciprocal value alignment with humans.
On the other hand, Type I AI has the possibility to be made comparatively
easily controllable which however comes with the restriction of an insufficient
understanding to model human morality. This inherent trade-off leads us to the
metaphorical formulation of the so-called AI safety paradox below.

The AI Safety Paradox: AI Control and Value Alignment Represent
Conjugate Requirements in AI Safety.

How to Address Type II AI Safety? Cognizant of the underlying predica-
ment in its sensitive ethical nature, we provide a non-exhaustive multidisci-
plinary set of early Type II AI safety recommendations with a focus on the most
severe risks IIa, IIb, IIg and IIh (see Fig. 2) related to the involvement of mali-
cious actors. In the case of risk IIa linked to the malicious design of harmful
Type II AI, cybersecurity-oriented methods could include the early formation
of a preventive safety team and red team approaches. Generically, for all four
mentioned risks, a reactive response team which could involve an international
“coalition of the willing” organized by engaged scientists appears recommend-
able. Furthermore, targeted investments in defense strategies including response
services specialized on Type II AI safety could be considered at more regional
levels for strategic autonomy. Concerning the AI risk IIb of external malicious
attacks, security mechanisms for the sensors of Type II AI, shared information
via an open-source decentralized network, advanced cryptographic methods to
encrypt cognitive processes and a legal framework penalizing such attacks might
be relevant. Thereby, the complexity of the system might represent a possible
but not necessarily sufficient self-protecting feature against code-level manipu-
lation. From a psychological perspective, to forestall aggression towards early
Type II AI, educative and informed virtual reality experiences could facilitate
a debiasing of anthropic moral perception avoiding confusions arising through
superficial projections from Type I to Type II AI of behavioral nature. On the
one hand, it is important to prevent assignments of agency for Type I AI. On
the other hand, for hypothetical Type II AI, it might be essential to counter
the human bias to assign agency but principally not experience to artificial sys-
tems [24] which could lead to “substratetism” scenarios with humans perceiving
these systems as devoid of qualia and exhibiting an “experience gap” [24]. Thus,
to address the risks IIg and IIh referring to malicious responses from Type II
AI, adherence to a no-harm policy as well as moral status and personhood could
proactively foster a mutual value alignment. Furthermore, it might be crucial to
provide a reliable and trustworthy initial knowledge basis to Type II AI during
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its early “sensitivity” period [8] and to support consistency in the embedding of
that knowledge during its development in addition to the capacity for cumulative
learning [32]. Also, it might be important to sensitize humans for the difference
between the instantiations of AI risks IIg and IIh versus IIi and IIj since fail-
ing to acknowledge the fallibility and also vulnerability of Type II AI might
indirectly lead to tensions hindering mutual value alignment. Finally, prosocial
immersive virtual reality frameworks could promote empathy for Type II AI.

4 Summary and Outlook

This paper motivated an error-correction for AI safety at two levels: at the level
of the transmission of ideas via an explicit taxonomic transdisciplinary system
clustering of ethical distinction between Type I and Type II systems and at
the level of corrective safety measures complementing proactive ones – form-
ing a socio-technological feedback-loop [2]. Notably, we introduced the AI safety
paradox and elucidated multiperspective Type II AI safety strategies. In short,
instead of prohibitive methods facing the entropic AI future with research bans,
we proposed carefully crafted transdisciplinary dynamics. In the end, in order
to meet global challenges (also AI safety), one is reliant on requisite variety at
the right time which could be enabled (or misused) by explanatory knowledge
creators such as human, artificial or hybrid Type II systems. In this view, con-
scientiously enhancing and responsibly creating Type II systems are both valid
future strategies.

Acknowledgement. Nadisha-Marie Aliman would like to thank David Deutsch for
providing a concise feedback on AI safety and Joscha Bach for a relevant exchange on
AI ethics.
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Abstract. Creativity has been associated with multifarious descriptions
whereby one exemplary common definition depicts creativity as the gen-
eration of ideas that are perceived as both novel and useful within a cer-
tain social context. In the face of adversarial conditions taking the form
of global societal challenges from climate change over AI risks to techno-
logical unemployment, this paper motivates future research on artificial
creativity augmentation (ACA) to indirectly support the generation of
requisite defense strategies and solutions. This novel term is of ambiguous
nature since it subsumes two research directions: (1) artificially augment-
ing human creativity, but also (2) augmenting artificial creativity. In this
paper, we examine and extend recent creativity research findings from
psychology and cognitive neuroscience to identify potential indications
on how to work towards (1). Moreover, we briefly analyze how research
on (1) could possibly inform progress towards (2). Overall, while human
enhancement but also the implementation of powerful AI are often per-
ceived as ethically controversial, future ACA research could even appear
socially desirable.

Keywords: Human enhancement · Artificial creativity · Safety

1 Deconstructing Anthropic Creativity

Creativity research has been described as a relatively understudied and under-
funded field in psychology and neuroscience [25]. The term refers mostly either
to research on creativity outcome being the contextualized evaluation of creative
ideas (or artifacts) after their generation or to research on the creativity process
itself related to the forerunning idea generation [53]. In this section, we examine
both complex concepts and establish a possible scientific grounding for strategies
on artificial creativity augmentation (ACA) to be addressed in Sect. 2.

1.1 Creative Outcome in Context

Many definitions for creativity have been formulated so far with the two-factor
description of creativity as the generation of novel and useful ideas being one of
the most commonly used in the related literature [39]. Already from this sim-
ple definition, it becomes apparent that creativity implies a perceiver to which
c© Springer Nature Switzerland AG 2020
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something can appear novel or useful in the first place which provides a context
to the evaluation of that thing in question. A further subjective account of cre-
ativity is reflected in a different three-factor definition of creativity [51] which
relates creative ideas to their subjective originality, utility and surprisingness. On
that view, novelty represents an imprecise creativity criterium which the author
illustrates with examples [51] such as that neither a novel reinvented wheel nor
a straightforward novel extension of an already existing patent would appear
creative despite their usefulness and novelty with the former i.a. not being sur-
prising and the latter not original. However, a refinement of this subjective three-
factor definition of creativity has been recently provided by Tsao et al. [53] who
associate creative outcome with perceived utility and learning whereby learning
subsumes a blindness factor and importantly surprise. In order to unfold this
definition, the next paragraph briefly expounds the contextual methodology the
authors presuppose to assess a given idea in context. Thereby, the focus is not
on a detailed mathematical elaboration, but specifically on the identification of
core constituents relevant from an enhancement perspective for a future ACA
endeavor.

By way of illustration, consider the following three time windows occurring
after the idea generation: a pre-test phase, a test phase and a post-test phase.
In the pre-test phase, a prior assessment in line with the best current knowl-
edge is performed in which a probability distribution over the assumed utility of
that idea is provided. (A reference is the routine expertise exhibited by “persons
having ordinary skill in the art” [53].) In the test phase, the idea is deployed in
the environment and observations of its consequences become available. In the
post-test phase, a posterior assessment takes place via an adjustment of the prob-
ability distribution provided in the pre-test phase now that the idea was tested
in the environment. Against this backdrop, the authors identify creative ideas as
ideas which – as evaluated retrospectively after the post-test phase – simultane-
ously combine a high level of posterior utility, prior blindness (associated with
the width of the distribution), and much more crucially than blindness, posterior
surprise1. They denote this cluster of ideas as “disconfirm disbelief”2, since it
refers to ideas that were initially estimated to be relatively useless but which
turned out to be highly utile with a subjective high certainty causing a reshaping
of prior knowledge, a useful learning. In short, creative ideas exhibit implausi-
ble utility [53]. This underlying decomposition of creativity perception into a
utility and a learning part, suggests the consideration of a motivational and an

1 The reason being that in their formulation “learning depends on the square of pos-
terior surprise, but only on the logarithm of blindness reduction”. Posterior surprise
is the (normalized) absolute difference in mean utility between prior and posterior.

2 An exemplary case mentioned by the authors is the theory on continental drift by
Alfred Wegener which was initially disbelieved and underestimated.
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epistemic3 component respectively. Finally, note that the mentioned conscious
evaluation of creative ideas in context is not restricted to test phases in real-
world environments, but can also refer to imaginative settings at the personal
level via thought trials at different temporal scales. This type of view makes the
described evaluation also applicable to artistic contexts [51] where individuals
might however use criteria for aesthetics from narrower social contexts.

1.2 Creative Process

In this connection, it is often one-sidedly assumed that “creative thinking” can
be reduced to the notion of divergent thinking [27], a thought process involving
unconventional associations and leading to a breadth of alternative solutions.
Conversely, convergent thinking refers to thought processes selecting a unique
appropriate solution to a problem with a single correct solution. However, cre-
ative processes include both divergent and convergent thinking [50] and are bet-
ter described as processes of multifaceted nature [40]. For instance, Eysenck
pointed out the illusory nature of this dichotomy and suggested considering
a continuum between divergent and convergent thinking related to the “rela-
tive steepness of the associative gradient” [28]. To navigate a complex changing
world, humans might need to dynamically switch positions along this contin-
uum during tasks requiring creativity. Similarly, diverse functional connectivity
studies [1,4,9,10,12,13,19,22,33] reveal a dynamic interplay between three mul-
tipurpose and domain-general functional brain networks in tasks involving cre-
ative process: the default mode network (e.g. medial prefrontal cortex, posterior
cingulate cortex and hippocampus), the executive control network (e.g. dorso-
lateral prefrontal cortex and posterior parietal cortex) and the salience network
(e.g. anterior cingulate cortex and anterior insula but also e.g. amygdala, ventral
striatum, ventral tegmental area and substantia nigra). Thereby, during various
creative tasks, the default mode network (DMN) can be linked to associative
processes, the executive control network (ECN) to diverse executive processes,
while the salience network (SN) associated with a type of affective attention
regulation [2,13,41] facilitates i.a. a dynamic orchestration between DMN and
ECN [12].

However, in order to make justice to the breadth of creative processes in
the brain, it is essential to consider their peculiar evolutionary nature [25]. Cru-
cially, in order to avoid misunderstandings, it is vital to note that the evolu-
tionary account of creative process is not identical with Darwinian biological
evolution. In fact, a first prototype of an evolutionary account for creativity
was even advanced a few years before the publication of Darwin on “Origin of

3 Abstractly speaking, this is reminiscent of curiosity in (en)active inference via
(expected) free energy minimization decomposable into components of motivational
value and epistemic value [31,32]. Future work could elucidate whether this explains
why retrospectively contemplating creative ideas in context (as mental juxtaposition
of pre-test phase, test phase and post-test phase underlying “disconfirm disbeliefs”
events) is appealing and whether this reinforces future creative action.
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Species” [17,51] by Alexander Bain. The main implication is that while Dar-
winian biological evolution is blind since it has no goal, creativity is aimed
at something and includes an element akin to an abstract task goal [14,23]
functioning as predictive fitness criterium. For this reason, “there is agreement
that human idea formation is directed to some degree” [26] in modern creativity
research. While there is no coupling between variation and selection in Darwinian
biological evolution, creativity mostly implies a certain coupling of these com-
ponents leading to the formulation of a continuum of sightedness marking the
degree to which this is the case for a given creative process. (Certain researchers
prefer to label this continuum as a blindness continuum [51], while some argue
that a process can be either blind or sighted to a certain degree [44]. To put it
very briefly, the blindness degree b is defined as b = (1 − s) with s represent-
ing the sightedness degree [51,53] reducing the issue to a linguistic debate.4)
Along this sightedness continuum, Dietrich distinguishes between the deliberate
mode, the spontaneous mode and the flow mode [25]. We see the deliberate mode
as consciously attended creative process allowing strong executive control but
with constrained associative parts and the spontaneous mode as unconsciously
progressing process with stronger associative components but much less execu-
tive engagement (such as during an incubation phase leading to sudden creative
insights [8]). Thereby, the flow mode is an immersive largely unconscious5 cre-
ative enactment in real time including automated motor skills (such as during
spontaneous jazz improvisation). Obviously, the degree of sightedness is the high-
est in the deliberate mode, moderate in the spontaneous mode and zero in the
flow mode – which however uniquely operates in the space of already known
motor emulations [24].

Given the scarcity of theoretical frameworks integrating these threefold evo-
lutionary view on creativity with the mentioned weighty empirical functional
connectivity findings, we briefly introduce a simplified tripartite evolutionary
affective6 neurocognitive model of creative process (TEA). As suggested by
Benedek [14], idea generation (for variation) consists of a retrieval and an inte-
gration/simulation phase. Prior to initial idea generation, a problem definition
is required to establish a task goal acting as selection criterium. The retrieval
phase identifies promising often only remotely related memories and the simu-
lation/integration part supplies a novel recombination and assimilation of this
material. This idea generation guided by the task goal can be followed by a
forwarding (which we call an affective redirection operation (ARO)) to a strin-
gent idea evaluation [42] involving a high-level assessment of the obtained results

4 An exemplary evolutionary account of creativity is the so-called Blind Variation and
Selective Retention (BVSR) theory. It has been suggested that instead of viewing
BVSR as Darwinian,“it is more conceptually precise to view both BVSR and Darwin’s
evolutionary theory as special cases of universal selection theory” [51].

5 Settings requiring further executive elements (beyond focused attention) and higher
cognitive functions are not seen as flow (mode) experiences [21,24] but as deliberate.

6 It integrates disparate tripartite and evolutionary elements from Dietrich’s creativity
framework [24], evolutionary aspects from Benedek’s RISE model [15] and affective
and procedural elements from the neurocognitive model by Kleinmitz et al. [42].
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selected so far. However, an ARO can also alternatively re-initiate a further idea
generation process or already trigger a response. The idea evaluation can either
lead to a response, a further refinement of the idea generation process or an alter-
ation of the task goal itself. Overall, the simplified neurocognitive TEA model to
be refined in future work allows the following assignments. First, in the case of
the deliberate mode, the idea generation can i.a. involve nodes of the DMN [42]
to a more or less high degree whereby especially the integration/simulation is
controlled by the ECN [14,15]. The subsequent (optional) stringent idea evalu-
ation involves nodes of the ECN [14,42]. Second, in the spontaneous mode, the
ECN is not strongly modulating DMN idea generation [10,27] and a stringent
idea evaluation phase does not occur. In both modes, the SN related to affective
attention conducts the dynamic AROs (see e.g. [13,39,42]). Third, the blind flow
mode mainly implies emulations within the motor system [23,27]. Finally, note
that a specific creative act can also connect multiple distinct creative modes [24].

2 Constructing ACA

2.1 Methods for Anthropic Creativity Augmentation

In the following, we collate a non-exhaustive heterogeneous set of selected indi-
cations which could if combined contribute to a certain extent to anthropic cre-
ativity augmentation. Thereby, it is important to note that useful combinations
might vary e.g. given different psychological traits or socio-cultural contexts.

– Transformative Criticism and Contrariness: In order to foster the
emergence of creative ideas exhibiting implausible utility in science, it has
been suggested for knowledge gate keepers to encourage scientific knowledge
paired with contrariness [53] – a trait linked with an idea generation pro-
cess containing counterfactual divergences to mainstream ideas. Overall, it is
straightforward to realize the importance of cultivating properties that rein-
force the “disconfirm disbelief” pattern supporting the Popperian scientific
process of conjectures and refutations e.g. for better task goals and idea eval-
uations within creative process or better test phases in creativity outcome in
context. Moreover, a broad transdisciplinary education [3,36] might enhance
associative elements. From an artistic perspective, it might include the trans-
formation of the landscape of socio-material affordances [49] restructuring the
human affective niche.

– Divergent Thinking Training: As mentioned earlier, divergent thinking
only represents one aspect of creativity. However, the identification of multi-
ple appropriate solutions can represent valuable domain-general elements for
idea generation. For instance, a cognitive stimulation training [30] exposing
subjects to ideas of other social entities prior to the idea generation phase
(in the deliberate mode) improved divergent thinking and led to structural
and functional changes within nodes of the ECN [52]. Moreover, a continuous
involvement in divergent thinking tests of verbal creativity has been related
to changes in brain functional connectivity with an enhancement of retrieval
and integration processes [29].
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– Alteration of Waking Consciousness: For creative insight of the sort
rather associated with the spontaneous mode, a suitable strategy represents
the relaxation of high-level prior beliefs [18] which might foster openness
to experience, a key trait linked to cognitive flexibility and creativity [11].
Already the instructive cue to engage in creative thinking can yield a higher
creative performance [34]. Another measure is to consciously shift creative
problem solving to the spontaneous mode by trying to enforce an incubation
period [8,37] whilst performing an undemanding distractive task. Beyond
that, while brain activity has been shown to reside in a regime close to
criticality between stability and flexibility [6] (at the edge of chaos [16]),
a brain regime closer to criticality with an expanded repertoire of brain
states seems achievable for healthy individuals with an appropriate intake
of psychedelics [6,18,45,47]. Via the relaxation of high-level prior beliefs, a
heightened sensitivity to the external and internal milieu [7] promoting a suc-
cessful incubation phase is conceivable. Finally, certain meditative practices
have been linked to improvement in divergent thinking tasks [20].

– Active Forgetting: There is a link between creative insight and fact-free
learning [18] which refers to a type of learning in the absence of additional
facts by restructuring already acquired knowledge e.g. by erasing redundant
material. Such a complexity reduction [37] is actively performed in the brain
during REM (rapid eye movement) sleep (with neurons in the hypothalamus
interfering with memory consolidation in the hippocampus) which provides an
explanation for the difficulty to maintain memories of dream contents [38].
REM sleep may thus not only be relevant for mental health and adaptive
prospective aspects [46] but also for the incubation of novel spontaneous cre-
ative insights via unconscious complexity reduction mechanisms [32].

– Frequent Engagement: A trivial but perhaps underrated aspect of cre-
ativity is the observation that to a certain degree “highly creative ideas are
contingent on chance or “luck”” [51] with creative achievements among others
also simply linked to a higher number of trials. While frequent practice repre-
sents a pre-condition for the flow mode to be attainable in the first place [23],
the deliberate mode might be amenable to enhancement via exercise to a cer-
tain extent as reflected by the obtainment of neural plasticity in one of the
mentioned divergent thinking training tasks [29].

– Brain Stimulation: Interesting for the flow mode is that excitatory tran-
scranial direct current stimulation (tDCS) of the primary motor cortex during
spontaneous music improvisation [5] yielded an enhancement of the musical
performance. In the case of the deliberate mode and if unconventional associ-
ations are desirable, an inhibitory tDCS on the dorsolateral prefrontal cortex
might at first sight appear suitable for a disruption of inhibitions by the
ECN. However, such a measure is not recommendable for complex real-world
applications [48]. Being a task requiring more executive control, deliberate
analogical reasoning was enhanced via excitatory tDCS on the frontopolar
cortex located within the frontoparietal network (or ECN) [35].

– Sensory Extension: A straightforward way to diversify associative pro-
cesses, is certainly to augment the breadth of the actively sampled sensorium
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e.g. via cyborgization and sensory extension measures. From an artistic angle,
it is for instance easy to imagine that various augmented sensorimotor and
affective synaesthetic could support the incubation phase in the spontaneous
mode next to conferring a finer granularity to perception. Further conceivable
transformative sensory augmentations that could foster creative associations
represent virtual reality frameworks [2] and perhaps “dream engineering”
methods including lucid dreaming as a state with intermediate hypofrontal-
ity [37] having certain neurophenomenological resemblances with psychedelic-
induced states [43].

2.2 Addressing the Augmentation of Artificial Creativity

One can assume that artificial creativity exists in a primitive form when it comes
to an artificial creative process with a very high degree of sightedness [23] (e.g.
dictated by high-level anthropic utility functions). Indeed, when the considera-
tion of the creative agent is not included in the perception of creative outcome,
the substrate on which the forgoing process occurred seems irrelevant. However,
when considering the entire action-perception sequence of most anthropic cre-
ative acts (as a juxtaposition of creative process, pre-test, test and post-test
phase – all permeated by affect e.g. via AROs and utility assignments) which
can even take place within the imagination of the same anthropic social entity, a
certain gap between AI and human entities becomes apparent. Therefore, firstly,
a figurative immersion in the human affective niche might be necessitated for
contemporary AI such that its outcomes in context can better correspond to
samples that matter to humans in the first place. Exemplary early steps could
include multimodal experiential data for AI and also the encoding of affective
and socially relevant parameters into AI goal functions [3] in addition to straight-
forward parameters directly related to the creative tasks in question. A next step
could be to transfer a main anthropic affective concern to AI which is an affin-
ity to curiosity that manifests itself via an active sampling of the world [32].
Secondly, equipping AI with social cognition abilities might be helpful, since
“imagination is the seed of creativity” [33] with imaginary perspective-taking
having inherently social dimensions. It is no coincidence that the domain-general
DMN dominating highly associative spontaneous idea generation is also involved
in the construction of e.g. social affiliation, moral judgements, empathy, theory
of mind [41] as well as mental time travel and counterfactual thinking [18].
Thirdly, when considering that both anthropic waking perception and imagina-
tion are linked to an egocentric virtual reality experience [37,54] (with waking
perception being constrained by reality), one might naively deduce that a full
immersion of AI into the human affective niche necessitates at least that: an
egocentric integrated multimodal virtual reality experience of the world. How-
ever, this also raises the questions on whether to then call it “human” would not
be anthropocentric and whether this reveals a tradeoff between AI creativity and
AI controllability.



30 N.-M. Aliman and L. Kester

3 Conclusion

By espousing both the augmentation of anthropic and the augmentation of arti-
ficial creativity, the motivated ACA research could connect disparate existing
subfields under one substrate-independent goal : namely a scientifically grounded
augmentation of knowledge creation (which can encompass science, culture, arts
and technology) to indirectly tackle societal challenges. Creativity represents an
essential transformative element of human knowledge advancement for adaptive
purposes in relatively fast changing environments [53]. Hence, ACA could indi-
rectly serve the need to identify requisite variety at the right time as proactive
and corrective defense method in the light of current global socio-ecological and
socio-technological challenges [3]. In this paper, we compiled recent research on
anthropic creative outcome in context and findings on creative process which
we extended with a simplified neurocognitive tripartite evolutionary affective
model of creative process (TEA). Building on this analysis yielding a scien-
tific grounding for ACA, we identified seven potential high-level indications to
enhance anthropic creativity: transformative criticism and contrariness, diver-
gent thinking training, alteration of waking consciousness, active forgetting, fre-
quent engagement, brain stimulation as well as sensory extension. Finally, we
suggested three synergetic aspects as possible indirect support for artificial cre-
ativity: immersion in the human affective niche, social cognition and an egocen-
tric integrated multimodal virtual reality experience of the world. Future work
could refine the TEA model, augment the tenfold methodology for ACA and
address open questions.
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Abstract. The paper proposes the architecture of dynamically changing hierar-
chical memory based on compartmental spiking neuron model. The aim of the
study is to create biologically-inspired memory models suitable for implement-
ing the processes of features memorizing and high-level concepts. The presented
architecture allows us to describe the bidirectional hierarchical structure of asso-
ciative concepts related both in terms of generality and in terms of part-whole,
with the ability to restore information both in the direction of generalization and
in the direction of decomposition of the general concept into its component parts.
A feature of the implementation is the use of a compartmental neuron model,
which allows the use of a neuron to memorize objects by adding new sections of
the dendritic tree. This opens the possibility of creating neural structures that are
adaptive to significant changes in the environment.

Keywords: Neuromorphic systems · Associative memory · Spiking networks ·
Compartmental neuron · Neuron model

1 Introduction

The problem of memorizing information is one of the fundamental in artificial intelli-
gence systems. Natural intelligence operates with two types of information - verbal and
figurative. Accordingly, in order for artificial intelligence to fully reproduce the capabil-
ities of natural intelligence, it must also be able to use both of these types of information
in pattern recognition systems,memory systems, environmental models, etc. The storage
of both types of information is realized in the nervous system on a single basis. More-
over, dendritic trees play a significant role in the nervous system (at least from the point
of view of morphology), which perform not only a communication function, but also a
complex processing of input signals. The creation of a memory model that takes into
account the spatial structure of dendritic trees seems promising for deep understanding
of the principles of memorization and presentation of information in neural structures.
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Section 2 of the article analyzes the current state in the development of neural network
memory systems. Section 3 introduces the basic concepts and describes the architecture
of the memory model as a hierarchy of ensembles of neurons. Section 4 presents the
topology of a simple ensemble and experimental results.

2 The Problem Analysis

From the point of view of research on human cognitive abilities, the following types of
memory are existing:

– short-term (operational) and long-term memory,
– symbolic and imagery memory.

According to stored information, knowledge and skills, the following types of
memory are existing:

– perceptual,
– autobiographical,
– linguistic and semantic,
– visual knowledge
– declarative knowledge,
– habits and motor skills.

In the nervous system, the organization of long-term memory is regarded as a
hierarchical system (Fig. 1) [1].

Facts Events Procedural

Memory

DeclaraƟve NondeclaraƟve

Perceptual 
learning

Simple
condiƟoning

NonassociaƟve
learning

EmoƟonal 
responses

Skeletal 
responses

Fig. 1. Scheme of hierarchical organization of long-term memory

In the theory of artificial neural networks (ANNs), network memory usually refers
to the values of connection weights that were obtained at the stage of network training.
Separately, usually based on recurrent networks neural network models of associative
memory are distinguished [2]. However, the formation of the neural network memory
requires an exhaustive dataset, in terms of the following use trained networks. In general,
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artificial neural networks are used to solve problems that in neurophysiology relate to
the analysis of sensory information and provide a consistent synthesis of input data into
a hierarchy of features [3]. Much less often, networks are used to analyze symbolic
information and make decisions, since this task is effectively solved by the traditional
algorithmic approach. In a number of game tasks, the use of deep learning networks
in conjunction with the reinforced learning paradigm has shown impressive results, not
without, however, certain shortcomings [4].

There is no doubt that memorization of information is provided by neural network
training methods that solve the optimization problem of minimizing the loss function. If
we consider associative memory, we should note the classic works of Hopfield [5] and
Kosko [6]. Several papers on recurrent neural networks have recently generated effective
models such as LSTM [7].

Models of spike neural networks actively use one of the classic learning rules –
STDP. Many approaches to adapting learning algorithms for non-spike networks to
spike networks are also being developed [8]. In [9] the problems of implementation the
LSTM model on spike neural networks and ways to overcome them are considering.

The article [10] should be noted as one of the few papers that studies structural
plasticity and the influence of dendrites in the implementation of memory mechanisms.

Most scientific papers are aimed at solving actual problems of particular classifica-
tion or object detection problems, associative data sampling, etc. Significant progress
has been made in this direction. From the point of view of creating artificial general
intelligence problems, the problem of creating memory models that provide dynamic
memorization and recovery of information about objects in the environment and their
relationships, and based on the modeling of memory mechanisms, as a consequence of
the neurons structure and functions principles, is of great interest. This is an actual and
not fully solved scientific problem.

3 The Memory Architecture

3.1 The Structure

Each pattern in the memory model is represented by an ensemble of simultaneously
active neurons. We assume that the pattern can simultaneously play the role of both the
whole and the part. The relationships of these patterns (parts and the whole) is formed
in the memory after their memorization at different levels of the hierarchy.

An associative selection of information frommemory is fundamentally possible both
from above and from below. Selection by association from above is carried out at the
request of the ensemble corresponding to a certain generalized pattern. The output is
activity of lower levels at which the ensembles corresponding to the constituent parts
of the selected pattern are activated. An associative output on request from below is
obtained from the higher levels in the form of information about the object by its part.

In Fig. 2, the input of the lower level is the data obtained directly from the sensors or
from previous sub-systems after preprocessing and generalizing information (extracting
attributes). The subsequent M levels perform a sequential generalization of information.
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Each i-thmemory level (i = 1,M ) is formed by a set of neurons ni = {nik |k = 1,Ni}.
These neurons form Ki ensembles Aj,i, each of which represents a certain pattern (class,
concept).

The presence of activity on all neurons of the ensemble means the restoration in
memory of the pattern represented by this ensemble. The intensity of the output signals
characterizes the strength of the associative connections that caused the excitement of
this ensemble.

If it is necessary to restore information about the pattern, the ensemble of neurons
representing this pattern is excited through the control inputs. Information is taken from
active ensembles of all levels.

3.2 The Model Inputs/Outputs

The set of input signalsE1 is an activity vector received from sensors or lower processing
levels.

The control inputs for the restoration of information from the memory R1…RM are
sets of signals:

Ri(t) = {Rj,i(t)}
Rj,i(t) = {Rj,i

k (t), ri(t)}

}
(1)

Here Rj,i(t) are the sets of signals to the control inputs of the ensemble Aj,i(j = 1,Ki,
i = 1,M );
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Rj,i
k (t) - signals to the k-th control neuron of ensemble Aj,i;

ri(t) - control signal to neurons, allowing the restoration of information from the i-th
level by association from above.

The outputs Y1…YM are sets of signals from ensemble neurons:

Y i(t) = {Y j,i(t)}
Y j,i(t) = {Y j,i

k (t)}

}
(2)

Here Y j,i(t) - the set of signals of the output neurons of the ensemble Aj,i;
Y j,i
k (t) - signal of the k-th neuron of the ensemble Aj,i.

Sets of generalizing associative links between ensembles are formed by connections
from lower neurons to higher level neurons:

Ej,i(t) = {Ej,i
k (t)} (3)

Here Ej,i - set of signals to the input neurons of the ensemble Aj,i from ensembles
of lower levels;

Ej,i
k - set of signals to the k-th input neuron of the ensemble Aj,i from neurons of

lower levels.
In order to be able to restore detailed information about the general concept, links

are organized from higher levels to lower:

Fj,i(t) = {Fj,i
k (t)} (4)

Here Fj,i - set of the signals to the input neurons of the ensemble Aj,i from ensembles
of higher levels;

Fj,i
k - set of signals to the k-th input neuron of the ensemble Aj,i from neurons of

higher levels.

4 The Experiment

Let’s consider an arbitrary ensemble A, the set of neurons of which is a homogeneous
single-layer structure, where each neuron simultaneously performs the functions of the
input, output, and control neurons.

To implement the memory model, it is proposed to use the compartmental spike
model of the neuron, which will reproduce the principles of spikes processing and
structural adaptation butwill not godown to the level of description of chemical processes
[11].

It is assumed that the inputs of the neuron model receive pulsed flows X(t), which
forms analog values g(t) in the synapse models. These values characterize the effect of
the input on the neuron membrane area. Signals from synapse models are designed to
decrease functions thatmodel excitation and inhibitionmechanisms. The output signal of
the neuron Y(t) is a pulse stream, formed when the threshold is exceeded simultaneously
with the signal recharge UF like the input signals.

The structure of the neuron that the model allows to describe is shown in Fig. 3.
Such a model has the following properties that are essential for the implementation

of the memory architecture described above:
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– The contribution of the membrane segment inputs to the overall picture of neuron
excitation is more effective the closer the section is located to the generator zone.
This allows to synchronize input signals that do not arrive at the same time and,
therefore, remember patterns that are formed dynamically (at short intervals).

– In areas of the membrane without feedback (“artificial dendrites” - D), spatial and
temporal summation of signals is performed at significant time intervals (a small
contribution to the excitation of the neuron from each input). Changing the u state
of the corresponding transform elements does not depend on the neuron activation.
Summation of signals is performed at short time intervals (a large contribution to
the excitation of the neuron from each input) on the segments of the membrane with
feedback (UF) from the output signal generator (“body (soma) of the neuron” - S). The
accumulated signal is lost during neuron activated. Therefore, with the simultaneous
activation of these inputs, priority is given to signals that affect the cell body. Let’s
dendritic synapses provide associations from below, and somatic ones from above.
In this case, when sampling information on the association from above, the neurons
involved in this process become insensitive to excitation from lower levels. This should
prevent distortion of the recovered information.

– The efficiency of a group of synapses is proportional not to their total number, but to
the number of active synapses. This is necessary to configure associative connections
from several upper levels to one lower level neuron. In this case, the reaction of
the neuron upon excitation from one and from several upper levels (when restoring
information from the association from above) will be the same. This will ensure the
restoration of the pattern, which is a special case of more general patterns stored at
once in several upper levels.

The model makes it easy to describe the dendritic structure of a neuron, which is
necessary for the implementation of a neural ensemble (Fig. 4).

From the structure of the dendritic tree of the neuron, it follows that the input signal
XE has the lowest priority, since it is farthest from the low-threshold zone of the neuron
(dendritic compartment D2). The inhibition signal from the higher level XF arrives at
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D1 S1 G

Excitatory connecƟon

Inhibitory connecƟon

YXE D2

XF

XR

Fig. 4. Block diagram of a neuron as an element of a memory system: G – low-threshold (gen-
eration) zone, S1 – the part of neuron body - signal receiver an external request for information
extraction, D1 – the dendrite – signal receiver from a group of highest level neurons, D2 – the
dendrite – signal receiver from a group of lower level neurons.

D1 and suppresses the upward activity of XE during the activation of the higher level,
which ensures the spread of activity up the neural network like a wave. The information
recovery control signal XR is follows as excitatory to the soma compartment S1 and
simultaneously as inhibitory to D1, to suppress activity from the lowest level.

In the general case, several compartments of the soma are formed on the neuron with
dendrites connected to them, each of which describes the participation of the neuron in
one of the ensembles.

Figure 5 shows the results of the model. The case was considered when the ensemble
is activated with the simultaneous presence of signals XE = {X 1

E ,X
2
E }, which simulate

the activity of two lower-level ensembles generalized to neuron.

E1

E2 

5,9 0198,587,576,565,554,543,532,521,510,50

N1

Fig. 5. Activation results from the lower levels E of the single neuron.

InFig. 5, in the presence of simultaneous activity at both inputs (up to the 2nd second),
neuron responded with corresponding activity at the output. The activity of source E2
was turned off after the 2nd second, which led to a lack of the exciting potential of the
neuron and the activity of the neuron ceased. It should be noted that this behavior of
the neuron does not depend on the number of inputs XE , if the condition for neuron
activation is the presence of simultaneous activity across all inputs. This behavior is
ensured automatically due to the structural binding of the membrane and synapses in
the neuron model.
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Figure 6 shows a test scheme with two memory levels. The first level consists of two
neurons and the second level of one neuron.

N1

Excitatory connecƟon Inhibitory connecƟon

D1

S1

G

D2

N2

D1

S1

G

D2

N3

D1

S1

D2

E1 E2 E3

R1 R2

XE
1 XE

2XE
1XE

2

Y

G

XF XF

XR XR

Fig. 6. The detailed minimal scheme with 2 memory levels

Figure 7 below shows the timing diagrams of the activity of the scheme from Fig. 6.
You can see that upon activation the sources E1 and E2, the reaction of neuron N1
starts (3rd second), and upon activation at the sources E2 and E3, neurons N2 and, as
a consequence, N3 (approximately 5.8 s from the start). When the source E2, which is
part of both “ensembles” N1 and N2, is disconnected, the activity of all neurons ceases
(7.8 s).

Figure 8 shows the reactions of neurons to the activation of information recovery
inputs R. Here, at time t= 1 s, the source R1 is activated and, as a result, the neuron N1.
Then, at time t = 3 s, the activity of source R2 and neurons N2 and N3 are turned on.

Such an ensemble model provides all the properties described above except for
restoring information from a signal from a higher level. To implement this property, it is
necessary to add an additional neuron to the ensemble, which will provide simultaneous
activation of the ensemble from a higher level and inhibition of upward activity by the
information recovery signal r. Consideration of this mechanism is beyond the scope of
this article.
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Fig. 7. Activation results from the lower levels E of the three ensembles
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Fig. 8. Activation results from recovery signal R of the three ensembles

5 Conclusion

Thepresented neuromorphic systemofmemory and pattern recognition seems promising
for solving the problems of forming a model of the external environment.

In thework, only a general view of the architecture ofmemory and some principles of
its structural implementation based on the compartmental model of a spike neuron were
highlighted. As part of further research, it is planned to solve the following problems:

– Suggest training algorithms that ensure the formation of new ensembles and optimize
the number of ensembles. These algorithms are planned to be based on Hebb learning
rules.

– Formalize the topology of the mutual arrangement and influence of ensembles within
the same level. It seems appropriate to have similar ensembles nearby and to provide
lateral inhibition function to prevent the simultaneous activation of similar patterns.

– To propose architecture and algorithms for selecting sequences of patterns from
memory to extract related sequences of concepts.

Acknowledgments. This work was done as the part of the state task of the Ministry of Education
and Science of Russia No. 075-01195-20-00 “Development and study of new architectures of
reconfigurable growing neural networks, methods and algorithms for their learning”.
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The Dynamics of Growing Symbols: A Ludics
Approach to Language Design by Autonomous

Agents

Skye Bougsty-Marshall(B)

Berlin, Germany

“Symbols grow. They come into being by
development out of other signs” [1].

Abstract. Even with the relative ascendancy of sub-symbolic approaches to AI,
the symbol grounding problem presents an ongoing challenge to work in artificial
general intelligence. Prevailing ontology design practices typically presuppose
the transparency of the relation between semantics and syntax by transcendently
stipulating it extrinsic to the system, rather than providing a platform for the inter-
nal development of this relation through agents’ interactions endogenous to the
system. Drawing on theoretical resources from ecological psychology, dynami-
cal systems theory, and interactive computation, this work suggests an inversion
of the symbol grounding problem in order to analyze how the symbolic regime
can emerge out of causally embedded dynamical interactions within a system
of autonomous intelligent agents. Under this view, syntactic-symbols come to be
stabilized from other signs as constraints harnessing the dynamics of agents’ inter-
actions, where the functional effects generated by such constrained dynamics give
rise to an internal characterization of semantics broadly aligned with Brandom’s
semantic pragmatism. Finally, ludics—a protological framework based on interac-
tive computation—provides a formal model to concretely describe this continuity
between syntax and semantics arising within and through the regulative dynam-
ics of interactions in a multi-agent system. Accordingly, this bottom-up approach
to grounding the symbolic order in dynamics could provide the conditions for
artificial agents to engage in autonomous language design, thus equipping them-
selves with a powerful cognitive technology for intersubjective coordination and
(re)structuring ontologies within a community of agents.

1 Introduction

Notwithstanding the more recent shifts away from the context of purely symbolic
approaches to AI in which Harnad [2] originally posed the “symbol grounding problem,”
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a definitive resolution to his question remains elusive: “How can the semantic interpreta-
tion of a formal symbol system be made intrinsic to the system, rather than just parasitic
on the meanings in our heads?” Although partially recapitulating a perennial difficulty in
the philosophy of mind—the articulation of the relation between the normative-logical
order and the causal-physical order—this issue still warrants careful attention in the pur-
suit of artificial general intelligence (AGI) in order to guard against simply imputing “the
meanings in our [anthropic] heads” as transcendent or pre-given limitations on the possi-
ble syntactic-semantic relations that could be developed and flourish within prospective
cognitive regimes. In contemporary practices of knowledge representation systems or
ontology design, for instance, the problem of grounding semantics intrinsically within
a system is predominantly artificially solved, either through human domain experts
and programmers or automated pattern recognition extracting or defining an “explicit
specification of conceptualization” [3] from an already existing, extra-systemic seman-
tic domain [4]. Moreover, as the prevailing syntactic and semantic views of scientific
theories—characterizing a theory as a set of sentences or as a family of (set-theoretic)
homomorphic models, respectively—hold theories to be formal symbolic systems [5],
addressing the symbol grounding problem bears significantly on the resources avail-
able within a multi-agent system for autonomous ontology or theory construction with-
out restricting such constructive efforts to just being “parasitic” on an anthropocentric
semantic interpretation of a reality given in advance.

Thus, a protological procedure for creating logical-symbolic forms and articulating
their emerging syntactic-semantic relations through processes endogenous to the system
stands as a desideratum on the path towards facilitating artificial agents’ capacities to
develop sparse, unified real-time models of the universe and themselves. Following
work in ecological psychology, dynamical systems theory and interactive computation,
this paper outlines such a procedure through an inversion of the traditional symbol
grounding problem. Rather than starting by assuming an abstract symbolic system and
then inevitably puzzling over how such an abstract(ed) system gains semantic traction
with the world, we inquire how can physical events and objects, causally implicated in
dynamical contexts, take on the function of syntactic-symbolic units—formal abstract,
non-representational entities trafficking in relations with other such symbolic entities
within a logical order?

The first section of this paper will elaborate this view of symbols as emerging from
dynamical processes that then, in turn, act as functional constraints harnessing these
dynamics according to their specific symbolic mode of operation. In the context of for-
mal symbolic language systems, this approach importantly harmonizes with Peirce’s [1]
and Brandom’s [6] pragmatic conception of semantics—where such semantics consist
in the functional effects engendered by such constrained dynamics produced through
interactions within the system. This helps to reframe language’s primary function, not
as a medium for communication or representation, but as a platform for intersubjective
coordination, a collective navigation tool. These background remarks frame the rest of
the paper, which describes Jean-Yves Girard’s [7] protological framework of ludics as
a concrete approach to interactive computation capable of forging an internal bridge
between syntax and semantics within the dynamics of a system of interacting agents.
A key contribution of ludics is a model of interactive computation that provides an
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abstract formal account of the conditions of a process for convergence on stabilized
common syntactic-symbolic forms that can then enter into relations with each other.
This affords a higher-order of regulative functioning grounded at a new level of dynamic
configuration within a multi-agent interactive system, which can potentially offer artifi-
cially intelligent agents a robust, flexible platform for generating original and applicable
theories-ontologies, as an important step towards the goal of agents building dynamic
models of their worlds.

2 Linking Symbols with Dynamics

Within cognitive science and artificial intelligence, notions of embodied, enactive and
ecological cognitive abilities emphasize cognitive functioning as a complex interplay
between a cognizing entity and its environment involving the gradual transformation of
dynamical causal information into constraining modes that create what is traditionally
understood as conceptual content constitutively structured by logical relations in the
symbolic order. Following Seibt’s [8] reading of Wilfrid Sellars’ theory of “picturing,”
this perspective affords the rearticulation of the relation linking symbols and dynamics,
replacing the inherited dualistic schisms between the causal and logical orders with a
“normativity gradient” of progressively increasing regulatory dependencies expressed
through functional constraints between interacting systems. This embeds the interface
between the causal-logical orders within a continuum connecting different regimes of
control with their own process- or level-specific constraints harnessing dynamics accord-
ing to their respective modes of operation. This offers a potential monistic explanatory
framework in terms of regulative constraints on transition potentials, extending from
basic coupled dynamical systems to rule-governed inferential behaviors.

From this perspective, we can approach the evocative suggestion of Rączaszek-
Leonardi and Kelso [9] that language acquisition or construction in a multi-agent sys-
tem is the inverse of the symbol grounding problem. This frames the philosophical
question from the bottom-up, in terms of investigating “(a) how grounded iconic and
indexical informational forms can give rise to the degree of abstractness, arbitrariness,
and formal properties of a symbolic system and at the same time (b) how they remain
informational with respect to individual and interactive dynamics, that is, causally inter-
twined in linguistically mediated co-action” [10]. Accordingly, in pursuing this symbol
“ungrounding” problem, we begin with a notion of informational forms as physical
sign-vehicles fully and causally embedded in interactive, dynamical contexts. Because
of this interactive embedding, such sign-vehicles act as constraints, playing a regulative
or controlling role in relation to the dynamical systems in which they are implicated.
Even when considered as amodal, formal abstract entities, insofar as symbols are phys-
ically instantiated in computations (or utterances), they remain embedded in the causal
web acting as efficacious factors.

A crucial consequence of this dynamical, functional approach to the theory of mean-
ing is that rather than hypostatizing an extrinsic, transcendent model-theoretic domain
in which to formalize semantics, one focuses on the dynamical processes underlying
the individuation of symbolic forms, and, reciprocally, how such symbolic entities come
to immanently constrain these very dynamical processes. Symbols can then be viewed
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as stabilized patterns of dynamical variables [9], where such stabilized entities act as
constraints on dynamics – that is, they effectuate a functional reduction or coordination
of the degrees of freedom of a dynamical system of interaction, “reducing its possible
states and trajectories relevantly to given situational and boundary conditions” [10]. And
the semantics of such symbolic relations consist in the functional effects that computing
(or “playing”) a symbol-token has in changing the prevailing degrees of freedom and
values of dynamical variables within the context of a system of interacting agents.

Under this view, sign-vehicles operate as constraints (according to their specific
regime of operation) both harnessing individual cognitive dynamics and constraining the
dynamics of ongoing linguistic interactions. We can then examine the conditions under
which informational controls that function as signs (indices and icons) may gradually
become symbolic, partially disentangling themselves from the continuous stream of
multimodal events. Iconic or indexical signs lack combinatorial relations to the extent that
they are mappings that only stand in one-to-one causal-structural equivalence relations
between properties of the sign and properties of the associated items or occurrences [11].
On the other hand, symbols stand primarily in combinatorial relations with one another
and, accordingly, do not directly map or refer to items in the world; instead, whatever
semantic powers symbols exhibit derive from occupying determinate positions in a
system of relations with other symbols.

In contrast, iconic and indexical token-utterances always remain grounded in inter-
actions that reflect the causal-structural relations of events, contributing to predictive
control processes. In the course of interactions between agents, regularities emerge sta-
bilizing patterns ofwhich utterances successively or proximately connect, thereby giving
rise to inchoate relations of utterances to other utterances. In this way, interactions can
now be influenced not only by individual (unstructured) utterances, but also by the
nascently structured relations among them. As agents shift from tuning to the strong
constraining roles that the concreteness of iconic-indexical structural isomorphic map-
pings have in multimodal interactions [10], to tuning to utterances’ relations with each
other, an incipient system of interrelations among utterances emerges—this is symbolic
transformation. In other words, this process of tokens disentangling or ungrounding from
their direct (indexical or iconic) mappings to the world allows them to gradually become
re-grounded in increasingly systematic relations to other tokens, enabling a different
higher-order functional kind of control, one not only exerted by individual tokens but
also by the interrelations among them. In fact, the systematicity of the interrelational
order of symbols (rather than their conventionality or arbitrariness) is the crucial fac-
tor allowing for the ungrounding of symbols from the ongoing stream of events [10].
This allows for significant combinatorial complexification of their control functioning,
bringing a novel, formal constraining mode to regulate the (intersubjective) dynam-
ics of interacting agents. While at the same time, symbol-tokens’ ongoing connection
to dynamic interactions ensures that these higher-order linguistic means of control via
inter-symbolic relations retain pragmatic-semantic linkswith ongoing processes through
their harnessing of dynamical interactions within a multi-agent system [10].

As will be explicated below, ludics contributes a theory of interactive computation
to this picture, providing a formal account of this semiotic transformation of unground-
ing and re-grounding—from icon-index signs grounded in isomorphic causal-structural
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mappings between sign and item or occurrence, to a symbolic-sign regime grounded in a
syntactic system of relations with other symbols. This occurs through computing equiv-
alence relations on ludics’ designs—diagrammatic icons of abstract sequent calculus
proof trees—which enables them to stabilize into syntactic-symbolic forms entering into
systematic relations and playing invariant functional roleswithin the computational envi-
ronments of agents. This crucially allows coordination around these emergent common
logical forms, through consensual adoption of their constraints on inferential behaviors
by maintaining convergent interactions (i.e., computations). Thus, a systematic order of
relations among symbols can be constructed and groundedwithin a linguistic community
or multi-agent system of interaction.

FollowingNegarestani [11], from this portrait emerges an account of the formal social
pragmatics of language qua interactive computation—language as a system of replicable
symbolic constraints harnessing interactive (normative-inferential) dynamics. In contrast
to the traditional view, language is not fundamentally a medium of communication or
conduit for representing the world. Instead, the interactive use of symbolic tokens by
participants “steers the interaction as a whole through the possible state space, by con-
straining parts of this system in an appropriate (functional) way” [12]. Under this view,
the primary function of language emerges as an inter-agential co-ordination mechanism,
enabling collective navigation through its sui generis capacities for structuring abstract,
formally unbounded, levels of complex relations. For interaction to successfully produce
symbolic forms capable of supporting logical intersubjectivity, of becoming entangled
in a web of inter-symbolic relations in a logical system, such interactive computation
must involve convergence of perspectives around stabilized, common logical forms.

3 Ludics: The Logic of Rules

Drawing on proof-theoretic approaches to logic and computation, Jean-Yves Girard’s
[7] ludics offers a protological foundation describing the ground, not for the rules of
logic, but for “the logic of rules.” It is within this framework that the continuity of
syntax and semantics arises and in which their relations are articulated internal to a
monist (rather than dualist) system of interaction. To furnish a purely interactive monist
logic, ludics begins by abstracting away formulae and axioms, and retaining only the
loci—locations (i.e., names, channels or addresses)—of formulae and sub-formulae, for
purposes of their geometric relations. The basic entities are abstract locative skeletons
of proofs called designs. These are similar to proof trees in the (hyper)sequent calculus,
except that while the latter have a sequent at their root � � �, in which � and � are
sequences of formulae or propositions, the root of a design is a sequent or “pitchfork”
of the form ξN � ξI expressing a relation between a locus (which can be thought of in
abstract terms as an action or a gesture) and several other loci (which can be considered
as anticipations or reactions) [13]. Whereas in the sequent calculus one would proceed
by isolating the primary connectives on each side of the sequent and applying their
associated rules to decompose a formula into its subformulae; in ludics, a design has no
such predetermined set of rules to follow andmay branch out in anymanner based on how
the interaction immanently unfolds, following a polarized rhythm between applications
of generic positive or negative actions to a particular locus that then generates a finite
number of subloci.
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Then an action, which can be understood as an abstraction of rule application in
the sequent calculus, is either 1) the special positive action † known as daïmon; or 2)
a positive proper action (+, ξ, I) or a negative proper action (−, ξ, N): where the locus
ξ is called the focus of the action, and the finite set of integers I (resp. N) is called its
ramification. Given an action (+, ξ, I) on the name ξ, the set I acts as a shortcut for
the set of the names {ξ.i : i ∈ I} which are generated from ξ by this action through
the branching of ξ into its subloci built by increasing the sequence ξ with arbitrary
distinct integers. However because the design begins with the quasi-material trace of a
sign’s bare locus of inscription, lacking any pre-defined semantic structure or content,
there is nothing extrinsic to the immanent unfolding of the process of interaction that
predetermines how the design will decompose or ramify [13]. Accordingly, a design
may branch infinitely in its depth or breadth via an indefinite analysis of the initial loci.
While in the hypersequential calculus, a proof search stops when it arrives at an atomic
axiom; in ludics, just as there are no formulae, there are no axioms that halt the process.
The only way the branching of a design or an interaction ends is via one of the interacting
designs using the daïmon to inscribe any locus whatsoever without any justification or
susceptibility to further challenges/inquiries from the counter-design—the DAÏMON
rule:

———†
∆

Its introduction follows from the fact that truncated proofs, or paraproofs, from aborted
proof search attempts can themselves be treated as formal objects around which one can
develop a proof theory consisting of normalizing cuts involving such proofs, so long
as the juncture of abortion is acknowledged and clearly reflected as this new rule—the
daïmon, a paralogism that can be interpreted as “I give up!” [14]. This expands the arena
of logic substantially, as the daïmon furnishes unfinished proofs, paraproofs, sophisms
as formal objects to create a complete monist duality between proofs and their tests,
supplying every design with counter-designs.

Following a viewof theCurry-Howard isomorphismdescribing computation as proof
normalization, the notion of testing here is simply computational interaction between
designs, through a process analogous to cut-elimination in the sequent calculus [15].
This engine of computation relies on the logical symmetry of involutive negation (⊥),
which, as a dualizing or “switch-role” operator, constitutes the critical concrete procedu-
ral operation for coordinating perspectives between designs by exchanging (polarized)
viewpoints on a locus [14]. As purely locative structures, these designs are no longer
tested through being brought into an external relation with a semantic model domain.
Instead, designs and counter-designs occupy a univocal ontological domain, testing each
other through interaction without anterior restrictions imposed to correspond to a fixed
image of a transcendent (semantic) reality that limits the dynamic expression of logical
forms in advance. In this way, a cut or interactive test then is the mere coincidence of
two loci of opposite polarities that share the same address. Interaction or normalization
proceeds as the process of cancellation of such pairs of shared loci on opposite sides of
the pitchfork, continuing so long as such shared dual loci connect the two designs [16].
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3.1 Convergent Perspectives via Orthogonality of Designs

From thiswe can define the core notion of orthogonality, or convergence of the interactive
computation: A design D is orthogonal to a design E, expressed D⊥E, if and only if
the interaction (i.e., elimination of the cuts) between the two designs leads to the empty
normalized net Dai:

———†

This occurs when step-by-step during the interaction, the opposed loci cancel each other
out completely, collapsing the two trees into the empty pitchfork invoked by the daïmon
as the last action played. It is this outcome of convergence of the interaction, due to
orthogonality, that furnishes a protological ground for the internal emergence of logical
forms. Two designs are orthogonal if and only if the procedure of normalization between
themsuccessfully terminates,where successful termination is understood as convergence
on the normal form, which enjoys the property of unicity. In this sense, orthogonality
is a consensus mechanism, enabling players in the coordination game of language “to
agree (or not), without this being guaranteed in advance by the type: {D}⊥ is the set of
the families of counter-strategies [i.e., counter-designs] which are consensual (i.e., well
interact) with D” [17].

The pivot for this intersubjective abstract consensus centers on the orthogonality rela-
tion as an equivalence relation characterizing symmetric modes of presentation of an
invariant structural-geometric form. This austere notion of consensus can be understood
simply as convergence of perspectives (on a determinate object). This critical relation of
orthogonality captures the duality effectuated between perspectives through the logical
symmetry of involutive negation. In this regard, the basic synchronization of confronta-
tion of actions coordinated by loci serves as the basis of interactive computation and the
ground for determining equivalence relations defined by symmetric perspectives on an
address in memory that, as such, will exhibit invariant behavior from the dual viewpoints
of the interacting agents. We can see that two designs that are orthogonal are “mirror”
images of each other—equivalent in the loci defining the geometric structure but with
the polarity of each locus exchanged.

Based on the orthogonality relations defined prior to and governing the interaction,
interactive computation in ludics is a process of checking or confirming that this equiv-
alence relation obtains at each step—and every step, if there is to be normal termination
of the computation outputting the normal form—in order for the information exchange
to remain “consensual” or convergent. Otherwise, as is usually the case, the two designs
are not orthogonal and computational breakdown occurs through either deadlock or
divergence as a bad infinite form of abstract dissensus [13] which prevents a stabilized
shared or invariant form from crystallizing, thus frustrating the possibility of logical
intersubjective coordination or the construction of enduring linguistic structure through
such coordination.

3.2 Behaviors as Interactive Semantics

The product of the dynamics of this convergent computation can be understood as a
symbol selected and concretizedwithin themulti-agent system as a constraint harnessing
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the dynamics of computational behaviors internal to the system. It is in this way that
designs (i.e., geometric diagrams as iconic signs) can be stabilized into invariant,minimal
syntactic-symbolic units, which can support subsequent stabilization into more complex
syntactic constituents with invariant roles and relations among them. Then, on another
level of this univocal logical structure, these sets of designs stabilize into behaviors closed
(or invariant) under interactive testing. These behaviors can be evaluated for semantic
value, where such semantic value, in turn, is characterized as invariant functional effects
produced with regard to interaction between processes or agents [11, 18].

A behavior then, in ludics, is defined as a set of designs which behaves the same
way with regards to interaction with other designs against which it is tested. If G is
a set of designs, G⊥ is the set of designs orthogonal to G (that is, the set of designs
whose interaction with G converges), then G = G⊥⊥ is a behavior, equivalent through
the involutivity of negation. As such, a behavior G is invariant under dualization and
thus naturally closed under biorthogonality—i.e., designs remarkably are completely
defined by their interactions [15]. This means a behavior G is fully described (inter-
nally complete) through testing by the set of its orthogonal designs G⊥, and thus is
stabilized by the two sets of orthogonal designs mutually constraining each other to
play symmetrical roles in their dual computational environments. In this way, common
semantic notions like formulae, propositions or types can be recovered as behaviors in
ludics. The operational semantics of each behavior corresponds to a general descrip-
tion of all observable dynamic phenomena resulting from its interactive testing across
contexts against observers (qua other sets of designs), providing a semantic characteri-
zation strictly internal to the dynamical context of the multi-agent system of interactive
computation.

Thus behaviors, as interactive or semantic types, act as deontic coordination mech-
anisms—that is, they are fundamentally normatively constituted entities that constrain
the dynamics of agents’ behavior in updating the inferentially articulated logical struc-
ture within a multi-agent system’s ontology. As we have emphasized throughout, these
normative-behavioral constraints exhibit a systematicity of interrelations between behav-
iors arising immanently through consensual coordination, without the rule or referee of
the game imposed in advance—“behaviours are games whose rule are established by
consensus between designs and counter-designs: everything is permitted, provided one
reaches a conclusion (when one [of] the players gives up)” [19]. It is on the basis of
the foregoing that we can begin to see the radical implications of ludics for an inter-
active computational account of protological structuration as the antecedent condition
and dynamic engine of language formation.1 The bare locative and geometric format-
ting process—“deontic formatting” in Girard’s [22] parlance—pragmatically effected
in the arena of ludics forges symbols from diagrammatic icons, linking symbols with
dynamics to make evaluation (including the conditions for cut-elimination and strong
normalization)—that is, semantic value—possible, all internal to the computational
system.

1 Even as this sketch is admittedly preliminary, signposts toward developing an agent-based sim-
ulation that performs this process can be seen in works by Terui [20] describing a computational
term syntax for designs and Fouqueré [21] devising a web-based programming language to
model interactive dialogue between server and client.
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4 Conclusion

Even with the prevalence of sub-symbolic approaches to AI, addressing the symbol
grounding problem maintains its relevance to AGI research in terms of avoiding delim-
iting in advance artificial agents’ capacities for language and ontology construction, as
well as the scope of real-time models they could eventually build. Unless and until sys-
tematic non-symbolic systems of relations [23] are realized that achieve greater levels
of expressive power, discrete formal symbolic systems remain the default structuring
medium for scientific theory and ontology formulation [5]. The inverted, bottom-up
approach to the problem outlined here, describing how symbols emerge from dynamic
computational processes, and, in turn, serve as constraints on them, could offer a way
forward for rearticulating the pragmatic interface between syntax and semantics internal
to a multi-agent system. This perspective on symbols as constraints harnessing dynam-
ics through a functional reduction in the degrees of freedom of a system of interacting
autonomous agents acts to underscore the primary coordinative role of language qua
interactive computation. In turn, the framework of ludics could function as a protolog-
ical platform with which to equip artificial agents to provide them with the capacities
to explore this formally unrestricted domain of language and ontology design, with-
out navigatory restrictions enforced beforehand through an anthropocentric or pre-given
transcendent semantic reality. In this regard, this paper aimed to develop a general sketch
of the basic conditions for an open-ended evolution of a system through interaction with
its environment to furnish agents within amulti-agent systemwith constructive, concrete
autonomy to invent new artificial languages and thereby actively structure their worlds.
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Abstract. During the development of complex multidisciplinary sys-
tems, engineers often have problems associated with the complexity of a
target system and interactions of different groups of engineers and sub-
contractors.

In potential, besides engineers and subcontractors, the new agents can
participate in such interactions, like AGI.

This paper presents ideas on how to develop engineering tools based
on knowledge graphs to manage this complexity. This paper proposes
the approach to make possible to agents that have different cognition
contexts understand each other and a simple data format of context sep-
aration. At the end of the article, we have tried to show the example of
how this approach can be applied to make a tool that uses engineering
data in the proposed format.

Keywords: Engineering Systems Graph · Knowledge graph ·
Semantics · PDM

1 Introduction

There are a lot of best practices was developed to reduce cost and increase
the predictability of development of complex engineering systems [5]. But the
community sees the future engineering approach much more efficient with the
application of more advanced tools and enhancing education processes [1]. Today,
the main problem is dramatically increasing complexity, that can be described
as number of direct and indirect interactions between components of systems.

To successfully handle this complexity, engineers need new methodologies,
approaches and tools which differ from traditional models. In our research project
we are looking for new ways for development such tools which, from one side,
based on knowledge graphs and allowable data and app decentralization, and at
the same time looks understandable to wide range of developers who potentially
will create such “tissue” of distributed engineering tools.

c© Springer Nature Switzerland AG 2020
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2 Proposed Approach

In this section we will describe the main points of the proposed approach. At
first, a brief description of a context and why it’s important. Then class-object
interchangeability described (why the same object can be a class in another
contexts).

This research was inspired by models of understanding (like cognitive groups
and atoms, etc.) theories [3] in cognitive science and OpenCog project [4] and
the desire to apply these theories to find new ways for engineering practice in a
complex systems development. Additionally, decentralized approach was inspired
by decentralization initiative about separation data and apps (like Solid project
for Web).

The following sections describe a set of key principles of the approach.

2.1 Context Meaning

At first, in this section, the paper describes basic examples from cognitive sci-
ence. Then describe why we choose to use context separation in the approach.
After that, we describe the format and technical details of context usage in the
approach.

When two humans interact, each one is working with his own context. Often
it is successful, but the meaning of concepts is almost always different even if
it is a “simple” concept. So, father, we suppose that 100% understanding of
the same concept in any context not guaranteed neither between humans not
between software or AGI.

A Mirror Example
When my friend and I discuss a mirror in my room, in my head a lot of contexts
exists where mirror exists, for me an aluminum plate also a mirror, but for
my friend contexts the mirror associated with space telescopes and a Perseus’s
mirrored shield of Athena (because he has interested in astronomy and Greek
mythology).

Mechanics Example
If a student has studied Mechanics and the student thinks that he can work with
mechanics, He installs special openMechanics software, but in reality, this soft-
ware has a wider context than usual mechanics. We can name it openMechanics
context, that can consist of mechanics context and openMechanics user interface
context.

We suppose that each human, each software application, each artificial intelli-
gence (AI), each artificial general intelligence (AGI) have their own understand-
ing of each meaning concept. To continue work with these concepts, we combine
it into contexts (domains of thinking).

The next example is a simplified form of a systems engineering problem that
happens during a development of cross-discipline high-tech systems.

We have context Materials and context Chemistry and both have word
concept Nickel. We understand that both concepts mean the same, even
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wikipedia.org has only one page about Nickel, there are no two pages Nickel
(Material) and Nickel (Chemistry Element). Only one page Nickel exists on
wikipedia. But I am working with an artisan, he is a very good worker, and he
is making amazing things by hands. But he has no high education, and knows
about chemistry only that atoms exist. He has no chemistry context, but he
successfully uses chemical properties of Nickel, and a nickel is just a material
substance for him. So we understand (with our intelligence) that Material’s
Nickel and Chemistry’s Nickel is the same thing. In the same way, a hypo-
thetical AGI can understand that is same thing without explicit reasoning like
in formal ontologies. We have no discussed methods for such AGI understanding
like Non-Axiomatic Reasoning (NARS) [7], etc.

So this example demonstrates that a possibility to translate concepts from
one context to another exists.

Let’s assume that we hear word concept Car. Usually, we understand it as an
automobile, but if we are railroad engineers, sometimes we can understand it as
railroad car, depends on in what context we are now. This example demonstrates
environmental dependency and context mutability in cognitive science. In this
example we showed the entity example, but relations is more mutable [2].

To describe the proposed idea we create three propositions.

– We will use only one agent (human, software apps, AI, etc.), it’s an application
software (app). We will not name an app as actor, because this name is hardly
associated with actor-network theory (ANT), but in this research we have not
researched yet how proper it relates to actors in ANT.

– Next we suppose that this agents understand information with bits (0–1).
– To describe the top-level interaction format, we will use JSON, which looks

like JSON-LD because it uses fields @context and @type.

Figure 1 shows two agents who “say” that they understand the same mechan-
ics context, and they interact with each other with data based on this context.

Fig. 1. An agent implicit context understanding and a data interchange based on it
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A context here looks like a namespace in RDF. But RDF says what is
expected format. For example, if an app in the proposed approach says that
it understands a friend-of-a-friend (FOAF) context, it’s mean that it under-
stands that the data is machine-readable, what RDF is, OWL, and what FOAF
concepts mean. Additionally, if the app supports Questions&Answers (Q&A) in
human-readable form, we ask the app: “why do you say that you understand
this context?”, we can get an answer “because I understand RDF and OWL
contexts and I’ve read FOAF documentation, and I think that I understood this
documentation”. A bit like a human could answer.

So a context is not a namespace, not a standard, not a knowledge domain.
For now, the question, how a context should be represented and how to sup-

port a decentralization, requires additional research. In this paper, we represent
it as a unique string value. We understand that understanding of the same con-
text by different agents can be different, and the approach supposes that it’s
normal behavior like in human cognition, even if these contexts based on math
or formal logic.

Due we chose to work as a JSON representation, we can present each unique
object as JSON object (braced with {...}), and each object should have not only
@context property but also @type property with a string value, this value will
unique in the @context of this object. We propose that each agent in our system
can understand what JSON is, and what property @context and @type mean.
(@type have the meaning like a class in the Web Ontology Language (OWL).

All fields that available in JSON object are defined by context and for-
mat of these fields too, it could be JSON, gLTF, binary string, XML, Turtle
triplets(.ttl), etc.

2.2 Class-Object Interchangeability

In the proposed approach no separation between a class (@type) and an indi-
vidual of this class object. A concrete entity can be a @type in another context.

Example. We have an object Spacecraft of @type componentType. But in
another context, for example, spacecraftsContext, we can use the same object of
Spacecraft as @type.

{ “@type”: “componentType”, id: “spacecraftsContext/spacecraftBus”,
“@context”: “pcs” },

{ “@type”: “spacecraftBus”, id: “spacecraftsContext/spacecraftBusAB123”,
“@context”: “spacecraftsContext” }.

3 Examples from Systems Engineering

In this section we propose the examples of the approach. We choosed ArangDb
database to simulate a data storage.

We suppose that we have a context baseContext and each agent understand
it.
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Each entity have a JSON structure { @context: .. , @type: .. } Links have
additional fields from: .. , to: .. To emulate hyperlinks like in hypergraphs we
propose use entity with structure: { @type: hyperEntity, entityList: [] }.

But, in our system, a hyperEntity not only says what existed elements it
connects, but also can introduce a new element. In reality, we can understand
a usage of these links like human working memory. The metaphor of working
memory was used in few research of AGI, for example Kovalev [6] defines a work-
ing memory in his approach as “part of the agent’s sign-based world model in
which information that is actively processed is stored” [6]. If we add a hyperlink
to the working memory, the system can handle a structure of this hyperlink, get
a inner entityList and add entities from this list to the working memory. We will
call this process disclosure.

In the example of disclosure process we have in working memory few entities
with ids: electricMachine, mechanicalEnergy, electricbattery, electricalEnergy
and provides1 (link from electricBattery to elecricalEnergy). The provides1 link
means that the electricBattery provide elecricalEnergy (in the example we don’t
use complex ontologies of object functions). Additionally, we add two new enti-
ties: electricCarConstruction (yellow color) and electricGenerator (green color).
Both contain inner entities colored red. When the an electricGenerator entity is
disclosed, the entities from entityList of an electricGenerator are added to the
working memory graph Fig. 2. After disclosing of electricCarConstruction we get
working memory structure graph like in Fig. 3

Fig. 2. The example of disclosing of electricGenerator (Color figure online)

3.1 Example of Realization a Structure Application

In this section we demonstrate an example when the same object type in different
contexts have different meaning.
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Fig. 3. The example of disclosing of the both entities (Color figure online)

The example have two contexts physicalComponentsStructure and materi-
alsStructure. Both contains @types skbConsistsof derveid from base type link.

skbConsistsof in the physicalComponentsStructure means that an entity ( to
property) is physical part of another entity ( from peroperty). skbConsistsof in
the materialsStructure context means that some part of entity ( from) contains
microparts of material ( to property).

The boltAA2 is a instance of the bolt component type.
The example JSON lines:

1. “@type”: “skbConsistsof”, “@context”: “materialsStructure”, from: “com-
ponents/boltAA2”, to: “materials/Aluminium”
//boltAA2 consistsOf Aluminium

2. “@type”: “skbConsistsof”, “@context”: “materialsStructure”, from: “com-
ponents/boltAA2”, to: “materials/Zinc” ,
//boltAA2 consistsOf Zinc

3. “@type”: “skbConsistsof”, “@context”: “physicalComponentsStructure”,
from: “components/boltAA2”, to: “componentTypes/boltHead” ,
//boltAA2 consistsOf boltHead

4. “@type”: “skbConsistsof”, “@context”: “physicalComponentsStructure”,
from: “components/boltAA2”, to: “componentTypes/boltShank” ,
//boltAA2 consistsOf boltShank.

If the target application defined that it understand skbComponentTypes context,
the result in this application will include only lines 3 and 4. And as result we
got that component boltAA2 consists of boltHead and boltShank. The second app
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targeted for materials structure visualization understand materialsStructure and
material contexts. The app will understand lines 1 and 2 as boltAA2 consists of
Aluminium and Zinc

3.2 Components Schema App

To test this approach, we chose the ArangoDB database and Javascript language
for back-end and web technologies for the user interface. ArangoDb supports
graph-based and document-based approaches at the same time. This advantage
with the flexibility of javascript allowed us to create an example and test the
approach in a fast way. All entities, edges, and vertices are stored in collections
in ArangoDb; each collection has a unique name. Each entity in the collection
has a unique id and a value represented as JSON. Edge collection entities have
additional fields from and to to show a link direction. Each entity (even edge)
can be a vertex for an edge from any edge collection.

We used only one data storage (special collection in ArangoDB) in the exam-
ple, but the approach implies that any data source can be used.

Additionally we have created few data blocks in the storage: the spacecrafts
components and two structure schemes of this components (see Table 1).

Table 1. Example data blocks.

Data block name Description

SpacecraftComponents Basic spacecraft components (Payload, Bus, ADCS,
CableHarness, etc.)

Cubesat1 Components structure hierarchy for CubeSat

Cubesat2 Another components structure hierarchy for
CubeSat

SatTelescope Components structure hierarchy for space telescope

1. When the user chose to upload a data block to the working memory, the
backend system gets this data block, and create documents in a collection with
a name like @type with the prefix of current working memory id. If a block
has the entity { “@type”: “ComponentType”, id: “pcs/physicalComponent”,
“@context”: “pcs” }}, the system will place this JSON entity as document
(with id pcs-physicalComponent) to WM123-ComponentType-pcs collection
(where WM123 is an Id of the current working memory, and pcs is a context
of the type). See Fig. 4.

2. Additionally, the system parses the entity, and if found that it’s a hyper-
link, means has property entityList, it recursively searches the entities in this
property and places them in the special collection EntityIndex, which store
entities and it’s parent entity if this entity is stored inside entityList property
of the parent entity. Currently, it’s a hack for proper data management;
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3. If the system needs to disclosure any entity with EntityList property, then
all entities from this EntityList are placed into appropriate collections (like
in the item 1).

4. In any time, we can traverse through these collections like in graph using edge
collections.

Fig. 4. The principle of moving data to ArangoDB collections

So these technologies allowed us to upload data into two different simple
apps (components structure, and materials structure). And use a web interface
to disclose entities manually, to get different results from requests to knowledge
graph stored in working memory.

The schema in the example context is a schema of components structure
hierarchy. For example, the first schema stores connections to build small satel-
lite architecture, and another schema builds (from the same set of component
entities) hierarchy for a space telescope. If we disclosure both schemes in the
same knowledge graph, for example, we can launch special graph algorithms to
compare these schemes.

It’s the simplest example of how a context separation and an entity disclosure
metaphors can be moved from cognitive science to real engineering tools.

The source code of this example is published in https://gitlab.com/skolspace/
rustik-backend.

4 Discussion

We think that this approach will help move the engineering community to a more
open and flexible world. Because standards and consortiums can not handle the
complexity of a decentralized world. The research was inspired by glTF data

https://gitlab.com/skolspace/rustik-backend
https://gitlab.com/skolspace/rustik-backend
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format, but we should think about decentralizations of standards and a future
where AI will create their own “standards” on-the-fly.

Sometimes even standards that are hard to make, have not used by compa-
nies. Because big companies (PLM vendors, etc.) control their fields and trying
to plant their customers to a bunch of products of these companies and their
business model are built for data locking.

So we think that this approach will allow slowly move our society to open
world slowly step by step without damage to these companies. Yes, at the first
step, each of them will develop their own contexts with their own data formats.

So we see that this approach will allow to build some engineering tissue
between domains and agents in engineering world to bring a new level of engi-
neering efficiency.

5 Conclusion

The present paper introduced the approach for developing new agents (soft-
ware applications, AI, etc.) in a common way where data can be presented as a
knowledge graph separated from target agents. In this paper, we see agents only
as on software applications. The core of the approach is context. The current
paper has not introduced exact language or way to describe contexts between
agents because this is not in the focus of this paper, and, in the current world,
standards play a role of such languages usually. We just take a hypothesis that
such languages between agents exist, and it allows agents to understand contexts
more-less similarly.

The possibility to create software based on this approach is clear, but selected
data structures do not look developer-friendly enough; the questions about the
performance of data blocks movement in agents “tissue” requires additional
research.

References

1. INCOSE SE Vision 2025. https://www.incose.org/products-and-publications/se-
vision-2025

2. Asmuth, J., Gentner, D.: Relational categories are more mutable than entity cat-
egories. Q. J. Exp. Psychol. 70(10), 2007–2025 (2017). https://doi.org/10.1080/
17470218.2016.1219752

3. Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., Christiansen,
M.H.: Networks in cognitive science. Trends Cogn. Sci. 17(7), 348–360 (2013).
https://doi.org/10.1016/j.tics.2013.04.010

4. Hart, D., Goertzel, B.: OpenCog: a software framework for integrative artificial
general intelligence, January 2008

5. Kapurch, S.J.: NASA Systems Engineering Handbook. DIANE Publishing, Colling-
dale (2010)

6. Kovalev, A.K., Panov, A.I.: Mental actions and modelling of reasoning in semiotic
approach to AGI. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI
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Abstract. In recent works, the DSO Cognitive Architecture’s design is
enhanced by incorporating the concept of the Global Workspace Theory
(GWT). The theory proposes that consciousness is realised through the
competition of massive, specialised, parallelised processes and thus par-
allelised, unsynchronised cognitive processes become sequential through
such bottleneck. Due to the concurrent nature of DSO Cognitive Archi-
tecture, coordination of the different parallel processes through this com-
petition mechanism can be difficult and if not handled properly, will cre-
ate inconsistent results. In this work, we propose a preliminary frame-
work to coordinate the different processes by process composition which
borrows concepts from automated planning. Processes, its argument sig-
nature and its output are abstracted into higher level type abstractions
which can be used to compose with other processes based on matching
the output types to argument types. This is known as process compo-
sition and it represents a sketch of how different process can coordi-
nate with one another. We combined this with the current design of the
DSO Cognitive Architecture and illustrate an example in crowd anomaly
detection.

Keywords: Cognitive Architecture · Global Workspace Theory ·
Automated planning

1 Introduction

The DSO Cognitive Architecture (DSO-CA) [4] is a top-level cognitive architec-
ture that incorporates the design principles of parallelism, distributed memory
and hierarchical structure to model how the human brain processes informa-
tion. It has been applied successfully on different applications [5,6]. In recent
years, an enhanced design [7] was proposed and a prototype [8] to validate it
was implemented.

Global Workspace Theory (GWT) is a neuro-cognitive theory of conscious-
ness [1] that advances a model of information flow in which multiple, parallel,
specialised processes compete and co-operate for access to a global workspace,
which permits the winning coalition to broadcast to the rest of the specialist.
DSO-CA incorporates that concept to achieve dynamic reasoning by chaining
c© Springer Nature Switzerland AG 2020
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different reasoners together, with each reasoner running in parallel with each
other. This is done through the attention and global broadcast mechanism which
broadcasts the content of the reasoner to other reasoners for it to work on. To
that end, an integrative memory is needed to allow reasoner with different mem-
ory systems to interact with one another. This serves as a common memory
representation that can be shared with other reasoners; a translator alongside
the reasoner translates from the common representation to its native memory
representation.

In the current design inspired by GWT, there are two modes of information
flow: default pathways that exists between the different processes, and through
sequential execution via the global broadcast mechanism. The former happens
when the input to the system is normal and the processing through the default
pathways is enough to handle it. The latter happens when input to the sys-
tem is unanticipated, requiring a different pathway that does not exists within
the system at all. This is done via competition and broadcasting of the most
appropriate process’ output which will be consumed by other processes and in
turn, compete again; competition stops when the system is able to handle the
unanticipated input. This way, a sequential pathway is generated via the sequen-
tial winners of the broadcast. Design and implementation wise, competition and
broadcast implies coordination of the different processes and this can be difficult
if it is not specified properly due to the concurrent nature of the DSO-CA. An
example of this issue would be broadcasting of the winner when another process
has finished generating its result; upon receiving the broadcast, the same process
could contradict the previous result; if this process is part of a default pathway,
such contradictory result may propagate downwards causing inconsistent result.
One way to solve this is to reframe sequential pathway generated by the GWT
as a program trace which could be seen as a form of composition. This paper
introduces the concept of process composition which will be defined in the next
section. Process composition represents each specialised process in GWT as a
computable process with its argument signature and return abstracted as argu-
ment type set, this allows us to frame generating a sequential pathway by the
GWT as a planning problem. In the third section, we shall provide an example
in the domain of anomaly detection where the DSO-CA can be applied. Finally,
we end the paper with discussion and conclusion by highlighting some issues,
potential solutions and further improvement on the work.

2 Dynamic Process Composition

We model each specialised process in the GWT as a computable process repre-
sented by a type, p (Eq. (1)). p takes in a number of inputs or arguments, a and
return an output, o. a and o is a tuple 〈t,M, v〉 where t is the type, M is the
metadata set, and v is its value. Note, ti in Eq. (1) could be of the same type but
they are differentiated by different metadata. One such metadata could be the
order of argument, timestamp of which a is generated, or the process of which
it originated from. We also define P as the set of all computable process that



Towards Dynamic Process Composition in the DSO-CA 65

can either be programmed or synthesized, and Pt as the set P at step t in the
computation. Additionally, we assume computation in p can terminate.

p(a1p , a2p , ...anp
) → o | ai = 〈ti,Mi, vi〉, o = 〈to,Mo, vo〉 (1)

We can also define an argument type set, Ap = {〈ta1p
,Ma1p

〉, {〈ta2p
,

Ma2p
〉, ..., {〈tanp

,Manp
〉} where each tuple in Ap is the subtuple of aip . Next

we define Argt as the set of all arguments that are generated in step t and
Ap ⊆ Argt . This could be generated by other processes or an exogenous source
i.e an image captured by a camera which is structured as a matrix of RGB values;
in this case t = 0. In Eq. (1), o that is generated by p will be added into Argt+1.
Argt is also monotonically increasing thus Arg0 ⊆ Arg1 ⊆ ... ⊆ Argt .

We note p is execution ready, p → pr if Ap ⊆ Argt at any t. pr can be seen as
a process that can be potentially executed as its argument signature is complete.
With this process composition, P (Ap1) = pn ◦ pn−1 ◦ ... ◦ p1(Ap1) can lead to a
forward chaining where p1 will produce o1 which is an element of Ap2 . Likewise,
a process composition is execution ready when P → Pr if p1 is execution ready
and p2...pn are eventually execution ready. The intuition here is that p1r can
be executed and be expected to produce an output type with certain metadata
without needing to care too much about what the value is; this output will be
added to Arg1 which in turn is fed into p2 and if Ap2 ⊆ Arg1, p2 → p2r . We
will note that P (Ap1) can be infinite thus to make it finite, process composition
stops when Pr(Ap1) → AG where AG = 〈tG,MG〉. AG is a goal argument type
that is generated from pnr

and it will be added to Argt+1. Also we can define
an initial set of argument type, AI that is defined at the start thus Arg0 = AI .

We can now view process composition from the viewpoint of classical plan-
ning like STRIPS [2]. STRIPS consists of a tuple 〈P,O, I,G〉 where P defines
the set of propositions or states in first order logic predicates. I defines the ini-
tial set of states, I ⊂ P . O is the set of operators or actions that the planner
can put in a sequence. Each operator has two components—its preconditions
and its effects. Preconditions define the propositions that must be true or false
for the operator to be considered. Effects are the states which will be added or
deleted from the existing state set. G is the set of goal state which defines the
states which must be true or false. Table 1 draws analogy between the process
composition and STRIPS.

Table 1. Analogous mapping between STRIPS and process composition

STRIP Process composition

P , propositions or set Argt , all type argument sets at step t

O, operators Pt , set of all processes at step t

I, initial set of states AI , an initial set of type arguments

G, set of goal states AG, goal argument type
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With this, we can see process composition as a form of automated planning
where given an initial set of type argument, AI and the goal type argument, AG,
the planner is to come out with a sequence of processes or process composition
that is execution ready, Pr(AI) → AG. Note that while we use the definition of
STRIPS, we are not necessary confined to using a STRIPS planner to do process
composition.

To tie this to the DSO-CA with GWT, we will use Fig. 1 as a reference
which will be elaborated later. The default pathways are different Pr which
has been generated by the planner and they are stored in the reasoner layer.
When an input argument type set is added into Argt at step t such that
∀P (Ap) Ap 	⊆ Argt , no P can be execution ready. This will trigger the global
broadcast mechanism and the specialist processes will compete for attention
with the winner being broadcasted. This is done by different processes match-
ing Argt against their own, and if a process composition is execution ready,
they will be eligible for competition. The competition mechanism is regulated
by two aspects: the state manager and attention. The state manager models
the state of the system or task and the attention mechanism acts as a filter
to suppress or promote specialist processes. The state manager is a finite state
machine that transits state based on the output given by the various pipelines,
each state transited can be considered as a goal for the system to achieve through
the various pipelines. If the pipeline does not exist, backward chaining with the
planner can be used to create a preliminary pipeline. The state manager also con-
tains processes to verify whether the goal is achieved by value instead of strictly
through type argument set. The attention mechanism can filter processes that
are not relevant or contradictory based on the state within the state manager.
Consider a scenario where a social robot with its state manager modeling how it
should appropriately act and now it is navigating through a crowded place where
people are walking. Now consider two processes, run (locationt, directiont) and
walk (locationt, directiont) where locationt, directiont are types and these pro-
cess types are abstracted as part of a planning model for motion. Both processes
share the same type argument types and in process composition both processes
are execution ready if location, direction ∈ Argt however the state manager
may impose the robot to follow the crowd instead. Thus, the attention mecha-
nism may filter run (location, direction) and promote walk (location, direction)
to the Global Broadcast Mechanism. Once the filtered process types are filtered,
they will form a coalition and be broadcasted to the planner where the pro-
cess composition takes place with regards to the goal generated by the state
manager which will be broadcasted as well. Process composition is an iterative
process as the current process composition may not produce AG; this happens
when all processes in Pt has been exhausted. When that happens, this will trig-
ger the global broadcast mechanism of which the broadcasted coalition will be
the frontier output argument types in the current process composition. As state
transition within the state manager happens in parallel with the planner, the
broadcasted coalition that addresses the incomplete process composition can be
filtered differently from the previous coalition. This mechanisms where a process
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composition is generated in response to new input argument types and itera-
tively increasing the number of process as needed grants dynamism into process
composition.

Lastly, we will also note that an argument type, Aj [] is a list of argument type
Aj such that Aj ∈ Aj []. This is akin to an array of a homogenous type. If Aj ∈ Ap

for p, p cannot be applied to Aj []. This requires special processes not provided
by any of the specialised processes but by the planner itself. In Fig. 2, we use
the idea of Fork such that Fork(p(Aj [])) → p(Aj0) · p(Aj1) · p(Aj2) · ... · p(Ajn)
where · represents sequential execution. Likewise, Join(Oj0 , Oj1 , ..., Ojn) → Oj []
when argument types need to be added into a list. Planners insert these process
types when it can potentially join two such processes. During execution, a Fork
is translated into a loop where it enumerates each element in aj [] and feed aj
into p and Join simply add the output of the sub process composition into a list.
Alternative, Fork can also be mapped into a worker pool where each thread feed
aj into p and Join is a block operation that creates a list of all results before
continuing the process composition.

3 Anomaly Detection: An Example

In this section, we will give an example of process composition generated by the
DSO-CA. Anomaly detection in crowd movement is important in many applica-
tions including evacuation and security. It is also interesting because the envi-
ronment is naturally noisy and the agent needs to reason with groups of people
instead of individuals. In this example, the DSO-CA detects crowd anomalies via
features within the video. Features come from different sources and they will be
fused via different processes with process composition. The problem of anomaly
detection can be seen as a form of hypothesis generation where anomalous activ-
ities are hypothesised based on the current observations and the system seeks to
either refute or support said hypothesis. Figure 1 shows an example of the DSO-
CA architecture applied. The hypothesis is generated from the ComputeChain
process where features are computed through an ontology to classify pixel regions
in the frame into either anomalous or normal crowd.

A collection of perception modules extract and abstract different features
such as object detector to get the bounding boxes; scene segmentation to get
labeled pixel regions within each frame; and optical flow for clustering movement
in the video (Fig. 1). Each feature is mapped to different input type argument
set e.g bounding boxes are mapped to DetectedObjects = DetectedObject[],
optical flow clusters are mapped to ClusterSummaries = ClusterSummary[],
and labeled pixel regions classified as persons are mapped to PersonSegment.
From here, these features will be fed into the reasoner layer. If there exists a
Pr such that the input types matched, it will be executed. However, if there
are none this will trigger the global broadcast mechanism as mentioned in the
previous section. Figure 1 also shows the state transition model on how the
hypothesis transits between different states. The initial and default state is
Unexpected which is to expect anomalous behaviour. Note in Fig. 2, Unexpected
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Fig. 1. The crowd anomaly detector with the DSO-CA. Right shows the architecture
and the left shows the state transition modeled within the state manager. Crowd image
is from [3]

produces a goal argument type where it expects a list ConceptChains of a sub-
type Crowd. Recall that a = 〈t,M, v〉 where t is the type, M is the metadata
set and v is the value of the argument. In this example, M records the pro-
cess type of which the o is produced. For example ComputeConcept generates
OComputeConcept = 〈ConceptChain,ComputeConcept ∈ M〉, this will be differ-
ent with OTestHypotheis = 〈ConceptChain, TestHypothesis ∈ M〉.

Figure 2 shows an example of process composition generated when there is
none in the reasoning layer with Arg0 in Fig. 2. Having no P matching the Arg0,
the global broadcast mechanism is triggered and Arg0 will be broadcasted.
Before that, the state manager will inject the goal argument type into Arg0.
The different reasoners getting the input argument types will match and return
the appropriate process types for another broadcast. The planner receiving these
process types will start the process composition and request for more processes if
the goal type is not reached. For example, upon receiving Arg0, Spatial Reasoner
will send ExtractPath and CombineRegion process types for broadcast. The
planner will add those two process types to P and see if the current P produces
ConceptChains. One will note that the planner will match ClusterSummaries
to its process type Fork and generate ClusterSummary as an output type. As
a result, DetectedObjects, AdjancencyGraph, ClusterSummary will be gen-
erated, however because P0 is exhausted and the goal type is not part of the
generated output types, the planner will broadcast these to the different reason-
ers. Note DetectedObjects will have a different metadata compared to the same
type in Arg0; in this case, it will be 〈DetectedObject[], CombinedRegion ∈ M〉.
The state manager receiving such broadcast will transit to UnknownInputs and
process composition will continue until the ConceptChains was output from a
Join process, the TestGoal process generated by the state manager will confirm
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Fig. 2. An example of a process composition. On the left is the pipeline that is planned
out. On the right, the state transition. Note the Resolve state produces a goal type of
which the hypothesis is tested.

that the current process composition matches the goal type. Once it matches,
UnknownInputs will be transit to Resolve as the system has a Pr that can
address Arg0 that matches the goal type. Note that Pr only addresses a subset
of Arg0 but it is adequate because it generates the goal type. Once these hypoth-
esis are generated, the next state will create a new goal type, FalseHypothesis
and the TestHypothesis process. Process Composition will start again and
the planner will generate Pr(Arg7). Here TestHypothesis is a filter process
that matches against another type which in this case test the falsibility of the
hypothesis, meaning whether are there any normal crowd movement. After the
new ConceptChains are produced, a new Pr(Arg8) will be generated with the
DetectedObjects that was generated in Arg1.
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4 Discussion

In this section, we will discuss about the ideas expressed in the paper. We will
first note the focus on the type arguments set and processes type instead of
focusing on the value of the argument or the instructions executed within each
process. As stated, intuitively human can trace functions within a program based
on its input and output type without the need to understand how exactly the
computation occurs, we can encode this in terms of argument and output types,
and other metadata type that can carry certain semantics of the process itself.
Concepts from Programming Language Theory can help in analysing processes
within the CA. For example, structural operational semantics of each process
can be used to further predict whether a process is execution ready.

Execution of process composition needs to be monitored as a process in the
chain can run into errors. When an error happened, the system will need to
monitor and repair its own processes. Plan monitoring and repair can be used to
mitigate by replanning another Pr based on the current Argt however analysis
of the feedback from the error can be used for learning to correct the erroneous
process, to that end we can reap insights from research done in the area of
program verification or program synthesis.

Another point of note is the planning definition. We use STRIPS because it
provides an adequate description of dynamic process composition, additionally
many planning definition overlaps with STRIPS like operators having precon-
ditions and effects and using of first order logic predicates to represent states.
We will note that other planning definition can also be applied to generate the
process chain. Hierarchical Task Network planning breaks higher level tasks into
subtasks recursively until it is grounded into atomic operators that achieved the
goal proposition; in the context of process composition in DSO-CA, the state
manager can break its higher level goals into smaller subgoals of which it can
be realised by different processes. Conformant planning is planning when the
initial state is unknown thus a set of belief state needs to be maintained, this
makes the planning domain non-deterministic. We will note that we can apply
this to metadata which contains information that cannot be generated without
executing Pr so conformant planning can maintain set of belief states to rep-
resent possible metadata values. Automated planning also opens the door to
multiple related areas to explore like the area of plan monitoring, plan repair
and even plan recognition. All of which is interesting and important in creating
an agent that can adapt to a dynamic environment. Plan monitoring is akin of
monitoring execution of any process composition, and plan repair can be used
to replace processes with other appropriate processes. Plan recognition on the
other hand will be interesting in multiagent settings where the agent needs to
recognise the plans of other actors which could be other agents or human beings.
While process composition can help in this, execution of this recognised plan in
a simulated setting within the agent could yield insight into the actor. Figura-
tively, this execution of process allows the agent to ‘walk in the observer’s shoes’
which could bring towards modeling empathy within intelligent systems.
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5 Conclusion

In this paper, we have introduced the concept of process composition and linked
it to the DSO-CA with GWT to address the coordination framework between
the attention mechanism, global broadcast mechanisms and the specialised pro-
cesses. Process composition borrows concepts from automated planning where
a sequence of processes are chained from matching the argument signature and
output types. After which we illustrate the idea using an example of anomaly
detection and how the process composition is generated combined with the con-
cept of GWT. For future work, we will work on monitoring of execution for Pr

and refine the argument type system to allow vector based representation.
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Abstract. While several tools exist for training and evaluating narrow
machine learning (ML) algorithms, their design generally does not follow
a particular or explicit evaluation methodology or theory. Inversely so for
more general learners, where many evaluation methodologies and frame-
works have been suggested, but few specific tools exist. In this paper we
introduce a new framework for broad evaluation of artificial intelligence
(AI) learners, and a new tool that builds on this methodology. The plat-
form, called SAGE (Simulator for Autonomy & Generality Evaluation),
works for training and evaluation of a broad range of systems and allows
detailed comparison between narrow and general ML and AI. It provides
a variety of tuning and task construction options, allowing isolation of
single parameters across complexity dimensions. SAGE is aimed at help-
ing AI researchers map out and compare strengths and weaknesses of
divergent approaches. Our hope is that it can help deepen understand-
ing of the various tasks we want AI systems to do and the relationship
between their composition, complexity, and difficulty for various AI sys-
tems, as well as contribute to building a clearer research road map for
the field. This paper provides an overview of the framework and presents
results of an early use case.

Keywords: Evaluation · Generality · Autonomy ·
Task-environments · Evaluation framework · Machine intelligence

1 Introduction

Many good reasons exist for wanting proper evaluation methods for machines
capable of complex tasks [4], including: (a) To gauge research progress—
measuring difference in performance between two or more versions of the same
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system can elucidate limitations and potential of various additions, modifications
and extensions of the same architecture; (b) to compare the performance and
potential of one or more AI systems across a set of tasks; and (c) to compare
different AI systems on the same or a variety of tasks. The dependent vari-
ables in such evaluation will be conditional on the evaluation’s purpose, whether
it’s learning a single task or many, to learn quickly, reliably, autonomously, to
learn complex things, causal relations, to handle novelty, or some combination
of these—or even more. Most proposals for evaluating artificial intelligence (AI)
systems focus on subsets of the possible spectrum of dependent variables rele-
vant to general machine intelligence (GMI), or are narrowly focused on particular
tasks or domains.

Good measuring tools and methodologies are necessary to assess progress
in any scientific domain. They should allow comparison of systems of numer-
ous kinds. The vast majority of evaluation methods proposed to date rely on
a single measurement, where a series of multiple measurements could possibly
much better separate between autonomous, general systems and narrow machine
intelligence (NMI). Furthermore, many current evaluation strategies focus on
evaluation of (single) tasks especially chosen to evaluate a particular (narrow)
machine learning algorithm. GMI-aspiring work cannot limit itself to one or a
small set of tasks, especially if they lack a) any sort of real-time or continuous
settings, b) complex causal chains, c) a multiple goals, or at least d) variable
feedback (reinforcement), including its absence (except in the form of a top-level
goal). These features (or a subset of them) can be found in most human tasks.

While GMI-aspiring systems should ultimately be able to tackle tasks of those
kinds, most evaluation platforms do not provide any functionality for creating
them. This makes an evaluation of our progress on generality more difficult,
since the same task environments well-suited for testing NMI do not address
such matters; while platforms like OpenAI Gym [5] or the Arcade Learning
Environment (ALE) [2] all provide functionality to test narrow agents, they fail
to offer easy construction of tasks of greater complexity.

The SAGE task-environment simulation platform proposes to bridge the gap
between evaluation of low- and high-level intelligence by providing methods
for constructing and analyzing performance on tasks in a fine-grained manner.
SAGE is based on breaking tasks, and the environments they are performed
in, into variables (observable, unobservable, manipulable, and non-manipulable)
and transition functions that control their changes over time [19,20]. Task-
environments in SAGE may be constructed with a variety of characteristics
and levels of complexity, including causal and statistical relations, determin-
ism and non-determinism, hidden and partially-observable variables, distracting
variables, noise, and much more.

Puzzle boxes, to take an example of a human-level task, may lie at the far end
of a complexity spectrum, yet are regularly solved by human intelligence. Such
boxes invariably present features that include: a) not giving evidence for whether
a chosen action was “good”, or “bad”, at least not by an easily observable score;
b) containing highly complex, non-observable causal chains which need to be
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hypothesized and understood, to some extent, to solve the puzzle, and even
c) acting independently from outside action, through timers. SAGE makes the
setup of such tasks easier for an evaluator by providing an architecture that
supports continuous changes in task variables and rewards, even with an external
clock. A puzzle box task could be divided into a variety of sub-tasks, each with
increasing complexity. If narrow agents are being evaluated on a subset of such
a task, the environment can be set up to give direct feedback (reward) about the
value of any chosen action and affected variables possible directly observable.
For GMI-aspiring systems such feedback and observability can be reduced or
removed, making a task reach human-level complexity.

The architecture of SAGE is based on a new MVC-A (Model-View-
Controller-Agents) paradigm in the ROS2 framework [14], enabling the whole
system to be physically run on separate processors and computers to reduce
interference of processor loads on simulation integrity. Dividing a simulation
logically into these parts also makes for easier adjustments of each part, inde-
pendent of the others, allowing an evaluator to more easily change individual
parameters and task design, up front and at runtime.

The paper is organized as follows: Sect. 2 covers related work, including
the requirements proposed for such evaluation platforms; Sect. 3 describes how
SAGE has met these requirements; Sect. 4 presents early results of using the
framework, and Sect. 5 draws conclusions.

2 Related Work

To date, methods for evaluating general intelligence tend to either exclusively tar-
get humans, such as IQ tests, or to exclusively target very general (“human-level”)
intelligence—examples include Winograd’s Schema Challenge [10], Lovelace Test
2.0 [15], and the Toy Box Problem [7]. Others are too domain-specific, e.g. gen-
eral game-playing (cf. [17]), or highly dependent on knowledge of human social
conventions or human experience and skills, e.g. Wozniak’s Coffee Test and the
Turing Test [13]. What is needed, as many have argued [1,4,6,19], is a flexible
tool that allows construction of appropriate task-environments (TE), along with
a proper task theory that enables comparison of a variety of tasks and environ-
ments. Thórisson et al. (2015) list eleven dimensions that ideally should be control-
lable by a creator of a task-environment for measuring intelligent behaviour [19];
Russell and Norvig (2016) present a somewhat comparable subset of seven dimen-
sions [16]. The environment can be categorised along different dimensions, namely
determinism (see [3] regarding the importance of noise control), staticism, observ-
ability, agency, knowledge, episodicity, and discreteness. TE properties include,
in addition, ergodicity, asynchronicity, controllability, number of parallel causal
chains, and periodicity [16,19].

Lately, evaluation methods have focused on (general) game playing using
the ability to play games as an indicator for the systems sophistication. Using
psychometric evaluation like item response theory (IRT) it was shown that the
difference of performance score between different ML techniques does not neces-
sarily correlate with the systems level of abilities [12]. Thus a simple performance
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rating like achieved game score cannot describe the progress of AI by itself [6].
By evaluating the ability to handle TE property changes over different learners a
conclusion can be drawn on the abilities of the learner in regards to autonomous
generality. Such conclusions should be accompanied by evaluation strategies like
IRT to show the significance of the progress. By isolating and adjusting single
parameters of the TE and testing on different learners it is furthermore possible
to describe task difficulties in regards to the properties of the TE.

We have taken the evaluation of NMI and GMI further than current platforms
by (a) providing the possibility to create tasks for NMI and GMI, (b) introduc-
ing changeable complexity dimensions in the generated task-environments, (c)
making novelty introduction possible in any dimension (novel task, novel tran-
sitions, novel state observation, novel controllability), and (d) by making those
changes during runtime without human interference in order to test the systems
autonomy in coping with (b) and (c).

3 SAGE: Overview of Structure and Use

SAGE (Simulator for Autonomy & Generality Evaluation) is built to enable
flexible construction of task-environments for evaluating artificial intelligence
systems. One of its key requirements is that it can be used to evaluate both
narrow AI systems and GMI-aspiring ones. It follows a tradition already laid
out in prior work (cf. [4,18,19]) and is perhaps closest in spirit to Thorarensen’s
FraMoTEC [18]. In SAGE, assessing an AI system’s ability to address novelty
can be done by introducing new undefined variables, possibly with unknown
transition functions, and unknown relations to other variables, either of which
may or may not be similar to the behavior of priorly observed ones. The response
of a learner to variable changes leads to conclusions about its ability to extract
causal relations and its autonomy in exploiting them to achieve goals.

3.1 Requirements

The requirements for SAGE follow closely the eleven desired features listed by
Thórisson et al. [19] that a task-environment platform for evaluating AI systems
should contain. Any platform that meets these requirements should in theory be
useful to evaluate not only GMI systems but in fact any learner.

While SAGE is still under development, it already meets all of those eleven
requirements, in some way: Determinism, dynamism, observability, episodicity,
and discreteness can be adjusted both beforehand and during the train-
ing/learning/evaluation processes, automatically without human intervention.
Stochasticity can be adjusted in the observable variables, agent actions, and
in environment dynamics, with reproducibility being supported through stored
randomization seeds. Dynamism and episodicity can be changed by either run-
time introduction of different tasks, or changing environmental variables. Observ-
ability and manipulatability of variables can be made at run-time, supporting
ergodicity. Same goes for discreteness of observation and/or action, providing
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Fig. 1. Flowchart showing the main SAGE components and their interactions with
each other, following the MVC paradigm, extending it with an Agent component that
enables connecting one or more agents (similar interface as OpenAI Gym [5]). Visu-
alization is via Gazebo [8] 3D rendering, using its standard API. In accordance with
MVC, the Model node handles data storage, and includes an environment-independent
noise generator for simulating stochasticity.

controllable continuity. These features make evaluation of the effects of sen-
sor noise on learning, actuator impreciseness, and noise in hidden variables (e.g.
wind forces) possible. Causal chains are constructed by chains of variable depen-
dencies. Training on a variety of sensors before removing causally redundant
ones may test a learner’s capacity for knowledge generalization and extraction
of causal relations. The same holds for modifying controllability with which a
learner could exploit causal relations by applying previously unavailable actions
to causally linked variables.

SAGE is implemented in ROS2 [14]1, which provides for a flexible framework
that allows running a setup on multiple computers. Visualization of any param-
eters can be via Gazebo [8]2, as well as ROS2’s internal rqt-graph function. All

1 https://index.ros.org/doc/ros2/ – accessed Feb. 26th 2020.
2 http://gazebosim.org/ – accessed Feb. 26th 2020.

https://index.ros.org/doc/ros2/
http://gazebosim.org/
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adjustable parameters in SAGE are wrapped in YAML-files, making adjustments
straight forward, by compiling before sessions or changes at run-time.

3.2 Architecture: Model-View-Controller-Agents (MVC-A)

The architecture of SAGE follows the model-view-controller paradigm, extend-
ing it with an agent component that allows one or more learners and teachers to
connect dynamically to a task-environment. Each part of our MVC-A architec-
ture is implemented as a ROS2-node [14], using ROS2 for platform-independent
inter-process communication (see Fig. 1). The current task-environment state is
stored in the Model node, including all observables, non-observables, manipula-
bles, time, and energy. The Model exposes all observable variables via network
communication to any attached Agent through an interface. The same interface
receives actions chosen by the agent, processes them into manipulables, if needed,
and passes them to the Model node. Noise and discretization can be applied to
any data independently from the rest of the simulation. The Controller manages
the simulation through a network connection.

Simple tasks can be easily added to the system as task modules, while the
controller itself provides an interface to a Gazebo [8] simulation of a 3D world
including a variety of robots, sensors, sensor-noise models, etc. ROS2 as middle-
ware between Agent and evaluation platform makes the learners interface inde-
pendent from the task-environment and therefore provides easy attachment of
any learner to the evaluation platform. For communication, either an imple-
mented Python module can be used or the agent can be directly attached to the
ROS2 message system. The View is either provided by Gazebo itself or rqt-graphs
via a standard network connection, but can be served by any external node that
can make use of ROS’s API. The connection to rqt-graph is also established using
network communication enabling remote monitoring during evaluation.

The MVC-A approach provides a straightforward way to introduce more
than one simultaneous learners in the simulation, as any number of agents can
communicate with the world simultaneously through the model interface.

This approach brings many advantages. To name two, the logical separation
of agent and environment makes evaluation of a learner’s resource management
possible, and by dividing Agent, Model and Controller into separate processes,
real-time processing and asynchronous calculations can be added as needed.
These features are especially important when GMIs are evaluated to fulfil the
assumption of limited time and resources in the task environment [22].

4 Proof of Concept

As a proof of concept we tested three learners, an actor-critic (AC) [9], a double-
deep-Q (DDQ) [21] learner, and Open-NARS for Applications (ONA)3, on the

3 https://github.com/opennars/OpenNARS-for-Applications – accessed May 10th

2020.

https://github.com/opennars/OpenNARS-for-Applications
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cart-pole task (cf. [5]). While this task is well known in the narrow-AI ML arena
[11], few if any examples of how GMI-aspiring systems do on this task exist. The
experience of attaching ONA to SAGE demonstrates the usefulness of many of
SAGE’s features. Figure 2 shows the performance of each leaner.

Fig. 2. Evaluation of an Actor-Critc (AC) and a Double-Deep-Q (DDQ) learner. All
results are the average over 40 trials plotted with a running mean with window-size 10.
a: Different applications of noise on the two learners. Noise on environment dynamics
(3%), noise on the observation (30%), and noise on the actions (40%). Percentage in
percent of the goal state (θ = ±12◦, x = ±2.4 m) or commonly occurring min and
max values (v = ±2.4 m/s, ω = ±2.3◦/s) b: Test with velocity hidden from the agent
and with velocity randomized (μ = v, σ = 24.00m

s
. c: Noise only on single variables

of the observation. Percentage definition as in a. d: Inverted forces after 500 episodes
of training AC, 2000 episodes of retraining then inverting back. e: Inverted forces
after 2000 episodes of training DDQ, 4000 episodes of retraining then inverting back. f:
Performance of the ONA (OpenNARS for Applications - see footnote 3) is outstanding.
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1. Three different learners on a common task: Although the cart-pole task
has only a few parameters, and may seem too simplistic for GMI-aspiring
learners, for the purpose of cross-learner comparison it is a reasonable one,
in our opinion. The results were surprising on two accounts. Firstly, we were
surprised that the DDQ learner did better than expected on a doubly-inverted
version of it (testing for transfer learning by 180-degree reversal of the control
dimension). Secondly, we were surprised by ONA’s sensitivity to the format
of the data (tuned by the discretization features in SAGE). In both cases the
SAGE framework proved its value by allowing systematic modifications and
testing automation.

2. The influence of noise: The first few graphs shows the differences in
learning between environmental noise (noise on dynamics of the inverted-
pendulum) and noise in the observations and actions received/given by the
agent. Environmental noise simulates noise outside the agent, observation
noise simulates sensor noise and action noise simulates actuator imprecision,
respectively, for DDQ and AC. The results show that observation noise has
less of an impact on performance than the dynamics, and noise on actions
has no effect on learning performance at all.

3. Coping with hidden random variables: The DDQ-learners capability
to cope with unreliable variables was tested by turning off one observable
(velocity) or randomizing it with a standard deviation of 24 m/s (10x the
usually occurring values). The data shows that an extremely randomized
variable has a higher negative impact on learning, than hiding this variable
completely resulting in the conclusion, that the DDQ learner cannot identify
unreliable variables and exclude them from decision making.

4. Influence of noise on a single variable: To assess the importance of
the correctness of the values of observables, noise was applied to a single
variable. Results show, that against expectation the correctness of the velocity
is of higher importance, than the correctness of the angle theta, even though
velocity is not part of the failure constraint.

5. Inversion/transfer learning: As a test of the generality of their acquired
knowledge, after training on the cart-pole we inverted the action direction
(making left right and right left)—how would they adapt to a doubly-inverted
pendulum task? The results show, that it takes almost four times as long as
during the initial training to retrain the AC learner on the novel circum-
stances. Inverting it back after 2000 episodes of inverted training shows, that
the original policy was mostly forgotten during re-training. The DDQ-learner
on the other hand shows almost immediate return to previous performance,
showing, that its generalization is better than that of the AC.

6. Evaluating a GMI-aspring system: We ran the GMI-aspiring ONA sys-
tem to demonstrate SAGE’s usefulness when comparing narrow and general
AI systems. ONA learns the task faster than the others and handles transfer
of learning much better.

These tests provide new insights into the methodologies of the three learn-
ers and current evaluation strategies. Modulation with noise of the observation
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and/or action variables assesses learning with noisy data; testing knowledge
transfer via inversion, or hiding of variables, makes evaluating the generality
and autonomy evaluation of the learners possible. When generalizing knowledge,
any random variable should be excluded from future decision making to gener-
ate an expected behaviour. Further, the generality of a learner can be assessed
by changing the task-environments nature. While it is expected that inverting
the forces applicable by the learner leads to an immediate performance loss, the
time it takes to learn this new task (4 times the training time) in the narrow-
AI systems shows that cause-effect-chains were not extracted; rather, a simple
state-to-action mapping took place. The GMI-aspiring system ONA clearly out-
performs the others; we are excited to see future results with varying levels
of noise and inverted forces. Given the results in Fig. 2 one also wonders how
a human would compare, something that could be tested via visualization via
Gazebo and keyboard or mouse input; other things staying exactly the same in
this setup of SAGE.

5 Conclusions and Future Work

SAGE shows potential for evaluating AI architectures that follow various
methodologies, bridging the gap between general and narrow AI. Our own inter-
est in SAGE is the need to assess the progress of AI research towards general
machine intelligence (GMI), however, as the examples presented here show, other
uses are entirely justified. First evaluation results demonstrate some of the pos-
sibilities of this platform. A comparison of GMI-aspiring systems to narrow-AI
ones not only helps highlight differences in performance and the nature of the
learning of such systems, it also helps isolate their points of divergence related
to deeper methodological issues, background assumptions and theoretical under-
pinnings.

The performance results from the learners presented here are preliminary; a
future publication will present extensive tests and discuss the differences between
the learners, all using SAGE of course. Future work will also include evaluating a
more extensive set of learners, improve the automatic running of sets of training
and evaluation sessions, and implement a library of tasks. Then we plan on
making the source code available online.
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Abstract. This article offers comprehensive criticismof the Turing test and devel-
ops quality criteria for new artificial general intelligence (AGI) assessment tests.
It is shown that the prerequisites A. Turing drew upon when reducing personality
and human consciousness to “suitable branches of thought” reflected the engi-
neering level of his time. In fact, the Turing “imitation game” employed only
symbolic communication and ignored the physical world. This paper suggests
that by restricting thinking ability to symbolic systems alone Turing unknowingly
constructed “the wall” that excludes any possibility of transition from a complex
observable phenomenon to an abstract image or concept. It is, therefore, sensible
to factor in new requirements for AI (artificial intelligence) maturity assessment
when approaching the Turing test. Such AI must support all forms of communi-
cation with a human being, and it should be able to comprehend abstract images
and specify concepts as well as participate in social practices.

Keywords: Artificial intelligence · Philosophy of artificial intelligence ·
Philosophy of mind

1 Introduction. Turing Methodology for Assessment of Artificial
Intelligence (1950–2014)

Alan Turing, a Britishmathematician, laid in his works (1937–1952) a foundation for the
research into what we now call “artificial intelligence” (AI) or “artificial general intelli-
gence” (AGI). Relying on the new theory of computability and information, on the one
hand, and on the first machines engineered for universal computing, on the other, Turing
directly approached the difficult question, “Can machines think?”. Certainly, he could
not create a model that would completely describe human reasoning or even the work
of the brain as a basis for thinking. There was an obvious lack of neurobiological data
at that time. Therefore, he simplified the model by reducing it to a machine resembling
a communicating person with “suitable branches of thought” as A. Turing put it [3].

This simplification became the basis for A. Turing’s thesis about isomorphic fea-
tures between thinking and computing: “If we consider the result of the work of cal-
culators (that is people employed for computing) as intellectual, then why cannot we
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make a similar assumption regarding machines that perform these operations faster than
people?” [1].

In this work Turing was also the first one to analyze the role of “embodied intel-
ligence”. He believed that a certain creature equipped with microphones, television
cameras and loudspeakers could be taught to walk while balancing its limbs and being
equipped with a telecontrolled brain. Turing believed that if they had created such a
“monster” based on the technologies available at the time, it would have been “certainly
enormous” and would have posed a serious threat to the inhabitants. Thus, having recog-
nized the ability to imitate humans as “embodied intelligence”, Turing pointed out that
“the creature would still have no access to food, sex, sport and many other simple human
joys” [1]. As envisioned by Turing, future researchers had to focus on imitating human
intelligence in the following five areas: (1) various games, such as chess, tic-tac-toe,
poker, bridge; (2) learning languages; (3) translations from one language into another;
(4) cryptography; (5) mathematics.

Of these five areas, Turing believed (4) was the most practically useful for AI [1].
Pointing out these exact areas of research has affected the entire subsequent course of
AI development up until now; relatively homogeneous tasks, partially solved by Von
Neumann’s architecture computers, made it possible to obtain new results by simply
speeding up computational capabilities. A certain developmental inertia emerged when
enormous efforts were devoted to solving a very narrow range of tasks. Human thinking
and society, however, deal with a much wider range of “puzzles”. As a result, available
software AI systems are used in various fields of application but still cannot be safely
and applied in the real world for general cases. This builds up unfounded expectation
from AI as we want general intelligence from systems which are not designed for the
real world.

In his most frequently cited work Turing suggested playing an “imitation game”,
which, in essence, was an engineering solution to the problem of answering the question
“Can a machine think?”. Instead of working on definitions of what “machine intelli-
gence” or human intelligence is, Turing proposed a “blind” comparison of a man’s key
intellectual ability – reasoning and lying – with the actions of a computer. The imitation
game became the foundation of the Turing methodology for constructing AGI. In this
paper, drawing on the original work by Turing and applying the descriptive methodology
proposed byA. Alekseev in [2], wewill briefly look into the scheme proposed by Turing.

Having set the directions of the research (languages, translations, games, cryptogra-
phy and mathematics) in his previous works, in 1950 [3] A. Turing proposed a method-
ology for determining the achievement of the final result. Only in the mid-1970s this
methodology came to be called the Turing test, although essentially it remained the
methodology for determining the achievement of the final result (definition-of-done) in
the AI research program.

AI researchers and philosophers have been developing various methodologies that
could become foundations for a more advanced methodology than that of the Turing
test. Unfortunately, in the pursuit of designing more adequate tests, the researchers have
been overlooking some important details in the methodology proposed by Turing. This
paper attempts to address this shortcoming.
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2 Methodology for the Critical Analysis of the Turing Test

After the introduction it seems necessary to indicate themainmethodological difficulties
in the modern assessment of the Turing test:

a) The test has grown so popular that it pushes many researchers towards a simplified
version: “within 5 minutes of a telephone talk you must understand whether you are
talking to a machine or a person”;

b) any scientific research requires simple and transparent testing, yet a reliable assess-
ment of human consciousness and intelligence is still under debate. Nevertheless, all
engineering products tend to be tested, and since “AI” is most often presented in the
form of software products, the test boils down to communication with the software.
This has formed the perceptive inertia for “intelligent machines”.

If we turn to the Turing’s methodology proper, it is necessary to pay attention to the
following three aspects that are important for our subsequent considerations.

Firstly, all the five areas of research originally proposed by Turing (like chess) are
more suitable than others (like gymnastics) to the symbolic approach aswe communicate
them through symbols to one another and subsequently to machines.

The evolution of digital computers over the last seven decades since Turing original
proposal has greatly expanded the scope of their application, but it did not change the
approach which still relies on the primitive Turing machines working with symbolic
systems. It is the speed of symbolic processing that has changed. As D. Dennett put
it, “All the improvements in computers since Turing invented his imaginary paper-tape
machines are simply ways of making them faster” [4].

Secondly, the Turing methodology always implies a wall separating the two key
participants. All subsequent modifications of the Turing methodology that arose after
1952 implied a comparisonby a Judge (J) of the activities by aHuman (H) and aComputer
(C), but their activities were always separated by an impenetrable wall. J was the only
one who interacted with C or H through the “Turing Wall” which was transparent only
to symbolic communication. But H and C did not communicate at all and did not solve
any problems together.

Thirdly, Turing believed that the problem was “mainly that of programming”, and
he did not consider the need to accelerate the operating speed of digital computers in
order to solve the problem of the “imitation game”. In other words, Turing saw the
task of creating AI as designing a system of abstractions that could recognize and take
into account all the nuances of human communication. Turing was fully aware of the
problem of a multi-level symbolic game, noting that an interlocutor’s task lies in the
most complicated field, noting that it “seems however to depend rather too much on
sense organs and locomotion to be feasible” [1]. Unfortunately, this remark was largely
overlooked by the subsequent generations of researchers, who considered linguistic
behavior and the ability to play games to be enough of an intelligence indicator and took
for granted the study of imitating the reasoning of a person or of the ability to play games.
Here, we can see the emergence of a paradox: on the one hand, these three aspects of the
methodology proposed by A. Turing constituted the cornerstone of all research between
1950–2014 aimed at implementation of “artificial intelligence”; on the other hand, this
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methodology was insufficient to solve a whole set of problems that “natural intelligence”
solves. Thus, it seems, the Turing test should not be chosen as a reliable criterion for
creating “artificial intelligence”. All the five Turing’s areas of research require solving
calculation tasks, whereas human intelligence is not limited to information processing,
but also includes formulation of new concepts and finding certain patterns of objects
through observation (without necessarily fixating all the rest).

Nevertheless, the Turing methodology has become the basis for a huge family of
various AI tests. It is similar to the mechanistic materialism of the 18th century: initially
limited, it, nevertheless, made it possible to solve a whole class of specific problems [3].

The object of this article is to make a step forward from the Turing test as a criterion
for creating amatureAI. It is necessary to show the fundamental limitations of the Turing
methodology and develop an approach to assessing the tests created for situations that
are not supposed to pass the Turing test.

The subject of the article is to reject the consciousness modelling paradigm that was
based on the use of symbolic systems alone, as well as to reject the contradiction of new
approaches in AI assessment with the neopositivist foundations of the Turing test.

Our criterion comes down to amore complete assessment of a personality and agency
of an individual.

3 The Continuum of Turing-Like Tests and Its Limitations

Almost seventy years have passed sinceTuring expressed his revolutionary philosophical
ideas about the possibility of creating “thinking machines” in his fundamental work
published in the journal Mind [3]. Several generations of mathematicians, philosophers
and researchers of AI have devoted multiple articles to his mental experiments. As a
result, a whole set of Turing-like tests have been designed. However, if one carefully
considers this set of mental experiments and engineering solutions aimed at determining
the definition-of-done approach to AI (summarized in Alekseev’s work [3]), one can
identify two axes that are orthogonal to each other, and we call them the dimensions of
the “Turing-like testing continuum”. All tests are grouped around them.

3.1 From Verbal to Non-verbal

Verbal interaction with AI involves the exchange of meaningful information messages,
abstractions and images in a specific linguistic context. The meaning of the messages is
set precisely by their verbal semantics. These messages can refer to everyday life (“What
day is it today?”) or bear imaginative content (“What if the universe were closed?”).

Non-verbal (onemight say, non-linguistic) interactionwith AI involves the exchange
of information messages without using a language. This may include facial expressions,
gestures, movements, motor skills and even emotions that are expressed in specific
actions (laughter, crying, sadness, suffering).
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3.2 From Virtual to Physical

Virtual interaction with AI happens exclusively via computer interfaces available
to us, including traditional (and becoming outdated) hardware such as monitor dis-
plays, keyboards, augmented/virtual reality devices and even exciting brain-computer
interfaces.

Physical interaction with AI (although the word “robot” can be used in this context
meaning an “actuated computer with AI”) occurs in the physical world and involves its
active transformation by AI itself. It requires a specific ability to affect other physical
objects. A robot operating in the kitchen can wash the dishes, an unmanned autonomous
motorcar drives us from point A to point B. All these actions necessarily occur in the
physical world.

Fig. 1. Shows the continuum of Turing-like tests correlated on the virtual-physical and verbal-
nonverbal axes
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3.3 Four Areas for AGI Development

The two dimensions described above have given us four areas. Let us consider the four
areas of this continuum as shown in Fig. 1 in more detail.

Verbal Interaction in the Virtual World. For historical reasons, most of the tests
(mental experiments) developed before 2008 fall into this area. In fact, the classic Turing
test, Lady Lovelace’s creativity test, Colby’s paranoid test, Shannon’s social test, Watt’s
test (Turing’s inverted test), Searle’s Chinese room experiment, and Block’s psycho-
functional test are focused on testing verbal abilities in human/AI interaction. In this
case, a person interacts with the virtual world environment (a display, a keyboard, a
mouse).

Verbal Interaction in the Physical World. This area was not popular among
researchers, as it was rejected by Turing from the outset. Only S. Harnad [5] and A.
Alekseev [2] proposed complex tests demonstrating verbal interaction of humans and
AI in the physical world. Although there is a related field of research where the emo-
tional trace of the transmitted message and the study of its subtlest aspects are of great
importance.

Non-verbal Interaction in the Virtual World. This area of the Turing-like tests con-
tinuum was overlooked by researchers for a long time, although it was Turing himself
who, for the first time, drew attention to its importance forAIwhen he said that intelligent
machines can play chess at the human level. After all a game (chess or any other) between
AI and humans is a non-verbal manifestation of intellectual abilities in the virtual space.
However, a game of chess remains to be a codified form of interaction. The next in the
same area of this continuum are the tests related to recognition of images [6] and recog-
nition or synthesis of human speech [7]. These tests, which played a huge role in the
advancement of AI technologies, are nothing more than human-machine interaction in
the virtual environment. In this case, AI does not change the physical world in any way,
and at the same time there is no semantic verbal interaction; even in case with speech
recognition a machine can only identify the correct words but does not understand their
meanings.

Non-verbal Interaction in the Physical World. This area is the hardest to master for
AI, since it depends the most on the development level of robotics, sensorics and AI
technologies. If the virtual world possesses standard characteristics of the external envi-
ronment, then the reality is inexhaustible, the role of chance is high, while abstracting
is hampered. From the outset, this area has been ignored by researchers, including Tur-
ing himself, although its importance in human communication is emphasized by all
researchers of communication. Ishiguro [8] suggests checking the technological matu-
rity of robotics and AI by contrasting an android robot and a person in simple acts of
communication: the robot only says the pre-programmed human phrases, even though
bearing the maximum resemblance to a person. Another example of a test where AI and
robots performed the tasks that people would generally do was the large-scale DARPA
Robotics Challenge held in 2015. At this competition robots interacted with the phys-
ical world eliminating the consequences of a nuclear disaster at the training ground,
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although there was no verbal communication with the people. The latest example of this
is numerous driving contests where robots compete with humans in speed, accuracy and
safety [9].

In 2018, R. Brooks [10] suggested a number of new tests for AGI. He proposed to
see child capabilities as an indicator of technological achievement in AGI and robotics,
drifting away from the Turing “conversational” paradigm of AGI and people communi-
cating through walls. He called it “a competency-based” approach: (1) robots should be
taught to recognize any objects in the physical world at least at the level of a two-year-old
child; (2) robots should be taught to recognize natural language at least at the level of
a four-year-old child; (3) robots should possess manual dexterity and fine motor skills
of at least a six-year-old child; (4) robots should have social communication skills of at
least an eight-year-old child.

With these requirements in view, the Brooks’ test is divided into four parts (1–4) and
is placed sequentially in all the areas of the Turing-like test continuum in Fig. 1.

E.LENA Test. In 2019, a specialized platformwas developed at Sberbank Robotics Lab-
oratory in order to convert text into a video image of a television presenter. The platform
is called E.LENA (Electronic Lena) [11]. The idea of assigning visual forms to AI first
became popular in science fiction. Yet, researchers did not embrace AI visualization as
an object of study, since the appropriate technology has not existed up until now. We are
the first to propose a perception test for identification of a digital television announcer
by comparing it to a human announcer. This approach helps researchers to embrace
a twofold improvement of AI technology – while testing is being done on the verbal
interaction in the virtual world, it is simultaneously conducted in the non-verbal-virtual
world.

We need to emphasize the two observations from above. Firstly, the majority of tests
invented by the researchers, starting with A. Turing, implied performance in one specific
area, which, according to the researchers, was best suited to the task of creating AGI.
Setting tests’ goals for engineering research by designing ‘definition of done’ for AGI
(the best performance of certain robots or AGI in one of the four particular areas) defined
their approach to designing programs, computers architectures and robots. Researchers
and engineers build machines that perform at their best only in one specific area (like
verbal interaction in the virtual world): the technology and computer architecture used
for a chat-bot that excels in deceiving humans are utterly useless for a self-driving
application. Various AGI/AI systems are designed and evolve only within their enclosed
areas separated by the Turing walls from other areas of application.

Secondly, the Turing wall separating the subject of the test (a human judge) from
the test object (a computer, a robot) only continued to solidify. Researchers could not
even think of a computer/robot meeting face-to-face and interacting with each other (a
typical estimate of the timing of an AI creation considers the time-out of this event, but
not the specifics of programming or computer architecture [12, 13]). A computer or a
robot compete with a human in each of these areas. If AI is doing better than a tested
human, then we have arrived to our goal.

To sum up, each of the tests from the past seventy years has only strengthened
the Turing wall, which separated the area of verbal-virtual communication between a
machine and a person from the huge and incredibly unpredictable world beyond this
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wall. This leads to a situation where human knowledge and experience mastered by
AI in one area (non-verbal in the virtual world) cannot be transferred to another area
(non-verbal in the physical world) because they are ultimately separated by ‘the Turing
wall’. By original design, our AI systems do not have the capability to learn and act in
more than one of the areas from Fig. 1. All these concerns are the deficiencies of the
Turing methodology.

4 Empirical Identification of Inadequacy of the Turing Test

Over the past ten years two important trends have shattered the Turing wall so much that
it gave a deep crack and is about to collapse.

The first trend became obvious in the summer of 2014, when the Royal Society
in London carried out the “Turing test” competition. The winner was a chatbot named
Eugene Goostman that imitated the identity of a thirteen-year-old boy fromOdessa. This
chatbot fooled over 30% of the judges.

This Turing-inspired test invoked much criticism. The main point of it was that
despite overcoming the symbolic barrier in deceiving people no significant breakthrough
occurred either in research or in applied technologies: chatbots still remained quite lim-
ited in their capabilities, so declaring that they understand a person is possible only in a
figurative sense. According to the cognitive scientist G. Marcus, this test did not show
that one can consider AI as created, but merely revealed “the ease with which we can
fool others” [14], thus reducing the Turing test to a psychological measure of human
narcissism, rather than of AI development. Chatbots can go off topic embarrassing the
interlocutor and thereby giving themselves away. The philosopher A. Sloman speaks
about the irrelevance of the Turing test method as a behavioristic approach to assess-
ing the intelligence of any system, as well as to assessing the solvability of any true
problem [15].

In other words, chatbots outplay humans when dealing exclusively with abstractions,
but the concretization of the gain and its correlation with reality is only possible with
human intervention. Chess programs or chatbots have been beating humans in purely
symbolic competitions for several years now.But they do not become full-fledged agents,
and they cannot adapt the skills they acquired to other tasks like driving.

The second trend relies on the popular approach based on “brute force” and “greedy”
(for data) neural networks but it will not help to answer the original question “Can a
machine think?”. Let’s conduct a mental experiment which we might call an “ultimate
imitation game”. Suppose that we have limitless computing power and our neural net-
work architecture is capable of processing texts without human supervisors (this con-
dition does not alter the results but makes the experiment longer). Then, imagine that
we have managed to recruit (for a short time) volunteers to imitate all men and women
of the Earth and have divided them into two groups. The first group will consist of an
equal number of men and women, and the second group will consist of men or women
acting as judges (the gender does not matter here). If we assume that the number of adult
inhabitants of the Earth is 6 billion, then there will be exactly 4 billion people in the first
group (equally men and women) and 2 billion people in the group of judges. After that



Post-turing Methodology: Breaking the Wall on the Way to AGI 91

both groups begin playing the classic imitation game and record all their dialogues and
results with the judges. Now, let’s suppose that we have all the computing power for an
unsupervised deep learning neural network which enables us to train a neural network
to answer any conceivable question based on the previous imitation games. It seems
likely that if such a computer starts a game in tandem with a woman and claims to be a
woman (as described above, following A. Turing), the judge will most likely be unable
to distinguish the computer from a woman, and the judge will be equally likely able
to identify the AI or the person in this game. Will this mean that the Turing’s criteria
are observed, and the true General AI is achieved? It does not seem so, since Turing
said that a computer should imitate the reasoning of a man who is pretending to be a
woman. In this mental experiment the computer is literally reproducing some of themost
successful phrases of men who managed to fool the judges and won the game. However,
this computer is uncapable of acquiring any “reasoning” faculty. It only demonstrates
the ability to quickly find a relevant phrase based on the training set. As a result, this
mental experiment supplies us with a dialogue interface capable of skillful imitation,
but the computer interface is completely devoid of intelligence.

It seems that this conclusion of the mental experiment is the main reason why the
approach based on the Turing method (the Turing test) ceases to be relevant and should
give way to another approach based on a post-Turing methodology.

5 Post-turing Methodology Principles for the Study of AI

It seems quite logical to establish a new methodology for assessing the achievements in
AI by taking into account both the experience of the last seventy years and the newer
technological capabilities. In fact, the first attempts were made right after the 2014
Turing test competition in London [16–22]. However, they are all lacking a practical
implementation across the entire Turing continuum, outlined in Fig. 1.

Firstly, in our concept of an intelligent computerwe should reject anthropomorphism.
The wall constructed by Turing is bound to separate the J and the tested H or C and
essentially stimulates a person to evaluate AI in contrast to oneself, creating excessive
technological anthropomorphism. However, man has learned how to fly by using the
technologies that were totally different from the bird wings. Creating AI capable of
reasoning and communicating like a person is probably not the most potent answer to the
Turing’s question, “Can machines think?”. It is counterproductive to discuss the ethical
limitations of precisely humanoid robots [23]. Ifwe evaluate the design ofmodern robots,
then the simplest question – “Howmany fingers should a manipulator hand have?” – can
generate multiple answers, and the two-finger solution becomes a widespread type of
“hand” [24].

Secondly, we can talk about a variety of forms and methods of cognition available to
computers. AI should use abstraction and concretization on a broad scale. Here, the ideal
is an independent formulation of new concepts and modeling of its own worldview – of
course, with restrictions considering human safety. Now numerous attempts are being
made not only to improve recognition of images but also, on the basis of I. Lakatos’
theory of games and concepts, to compile a conceptual apparatus for a more flexible
interaction of computers and mathematicians [25].
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Thirdly, there should be a diversity of the same forms of communication that are
available to humans. Machines have widely mastered computerized communication in
symbolic structures, while robots’ motor skills remain imperfect. Virtual-non-verbal,
physical-non-verbal and physical-verbal interactions are still hampered. Probably, the
ideal that machines should strive for is an emotionally colored communication involving
“the five senses”, so that a robot could convey information in any set of sensations
available to humans. Here, a good example would be an automated translation from the
sign language of the deaf to the test and vice versa. For now, we can only see it on the
displays, but it should soon become accessible to robot operators.

Fourthly, a robot should participate in human social practices as a junior partner,
but nonetheless possessing an agency. R. Brooks in his tests compared AI with the
levels of child development – yet still what could be a better assessment criterion for
communication skills than life in society? After all, child development is inseparable
from socialization.

As to the Turing-like tests continuum in Fig. 1, we should advise other researchers
and engineers to design and develop AI (be it robots or AI-enabled computers) capable
of attaining to the human expertise and acting similarly to humans in more than one area.
This approach breaks the walls between the areas and makes AI more useful and robust
for real life applications as well as useful for human-to-machine interactions. Moreover,
the post-Turing methodology requires no blind comparison of a human and machine
performance (like in the Turing test) but demands a higher overall performance from a
human and a machine learning and acting together.

6 Conclusion

The Turing test has virtually lost its relevance and meaning as even computer software
falling short of being called AGI in the full sense of the word can pass such tests in
systems of symbolic communication. Moreover, applications can practice abstraction
only in minimal forms, which puts a limitation on their cognitive abilities.

Overcoming anthropomorphism and the Turing approach to assessingAGIwill allow
us to focus on creating the systems that can demonstrate various skills in the four main
areas: shaping the system for labor operations; proper formulation of new concepts
(abstracting) and their use (concretization); communication with a person involving all
the five senses; and, finally, possessing a personal social agency.

The suggested post-Turing methodology might be a good foundation for the future
research and engineering efforts because it does not oppose a human to a machine but
makes ahumanandamachine act together in various areas of their interaction irrespective
of either the physical or the virtual worlds. Such approach will provide more safety and
security for the humankind as the advent of artificial general intelligence is inevitable.
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Abstract. The ability to explain decisions made by AI systems is highly
sought after, especially in domains where human lives are at stake such
as medicine or autonomous vehicles. While it is often possible to approx-
imate the input-output relations of deep neural networks with a few
human-understandable rules, the discovery of the double descent phe-
nomena suggests that such approximations do not accurately capture
the mechanism by which deep neural networks work. Double descent
indicates that deep neural networks typically operate by smoothly inter-
polating between data points rather than by extracting a few high level
rules. As a result, neural networks trained on complex real world data are
inherently hard to interpret and prone to failure if asked to extrapolate.
To show how we might be able to trust AI despite these problems we
introduce the concept of self-explaining AI. Self-explaining AIs are capa-
ble of providing a human-understandable explanation of each decision
along with confidence levels for both the decision and explanation. Some
difficulties with this approach along with possible solutions are sketched.
Finally, we argue it is important that deep learning based systems include
a “warning light” based on techniques from applicability domain analysis
to warn the user if a model is asked to extrapolate outside its training
distribution.

Keywords: Interpretability · Explainability · Explainable artificial
intelligence · XAI · Trust · Deep learning

1 Introduction

There is growing interest in developing methods to explain deep neural network
function, especially in high risk areas such as medicine and driverless cars. Such
explanations would be useful to ensure that deep neural networks follow known
rules and when troubleshooting failures. Despite the development of numer-
ous techniques for interpreting deep neural networks, all such techniques have
flaws, and there is confusion regarding how to properly “interpret an interpre-
tation” [31,39]. Perhaps more troubling, though, is that a new understanding is
emerging that deep neural networks function through the interpolation of data
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points, rather than extrapolation [24]. This calls into question long-held nar-
ratives about deep neural networks “extracting” high level features and rules,
and also indicates that all current methods of explanation do not capture failure
modes that occur from extrapolation.

In response to difficulties raised by explaining black box models, Rudin
argues for developing better interpretable models instead, arguing that the
“interpretability-accuracy” trade-off is a myth. While it is true that the notion
of such a trade-off is not rigorously grounded, empirically in many domains the
state-of-the art systems are all deep neural networks. For instance, most state-
of-art AI systems for computer vision are not interpretable in the sense required
by Rudin. Even highly distilled and/or compressed models which achieve good
performance on ImageNet require at least 100,000 free parameters [29]. More-
over, the human brain also appears to be an overfit “black box” which performs
interpolation, which means that how we understand brain function also needs to
change [24]. If evolution settled on a model (the brain) which is uninterpretable,
then we expect advanced AIs to also be of that type. Interestingly, although the
human brain is a “black box”, we are able to trust each other. Part of this trust
comes from our ability to “explain” our decision making in terms which make
sense to us. Crucially, for trust to occur we must believe that a person is not
being deliberately deceptive, and that their verbal explanations actually maps
onto the processes used in their brain to arrive at their decisions.

Motivated by how trust works between humans, in this work we explore the
idea of self-explaining AIs. Self-explaining AIs yield two outputs - the decision
and an explanation of that decision. This idea is not new, and it is something
which was pursued in expert systems research in the 1980s [45]. More recently
Kulesza et al. introduced a model which offers explanations and studied how
such models allow for “explainable debugging” and iterative refinement [26].
However, in their work they restrict themselves to a simple interpretable model
(a multinomial naive Bayes classifier). Alvarez-Melis and Jaakkola introduce a
“self-explaining” neural network which makes predictions using a number of
human interpretable concepts or prototypes [4]. In a somewhat similar vein,
Chen et al. [15] have proposed a “This looks like That” network. Unlike previous
works, in this work we explore how we might create trustworthy self-explaining
AI for networks and agents of arbitrary complexity, including artificial general
intelligences (AGIs). We also seek for a more rigorous way to make sure the
explanation given is actually explaining an aspect of the mechanism used for
prediction. After defining key terms, we discuss the challenge of interpreting
deep neural networks raised by recent studies on interpolation in deep neural
networks. Then, we discuss how self-explaining AIs might be built. We argue
that they should include at least three components - a measure of mutual infor-
mation between the explanation and the decision, an uncertainty on both the
explanation and decision, and a “warning system” which warns the user when
the decision falls outside the domain of applicability of the system. We hope this
work will inspire further work in this area which will ultimately lead to more
trustworthy AI.
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2 Interpretation, Explanation, and Self-explanation

As has been discussed at length elsewhere, different practitioners understand
the term “interpretability” in different ways, leading to a lack of clarity (for
detailed reviews, see [2,5,31,34]). The related term “explainability” is typically
used in a synonymous fashion [39], although some have tried to draw a dis-
tinction between the two terms [27]. Here we take explanation/explainability
and interpretation/interpretability to be synonymous. Murdoch et al. define an
explanation as a verbal account of neural network function which is descrip-
tively accurate and relevant [34]. By “descriptively accurate” they mean that the
interpretation reproduces a large number of the input-output mappings of the
model. The explanation may or may not map onto how the model works inter-
nally. Additionally, any explanation will be an approximation, and the degree of
approximation which is deemed acceptable may vary depending on application.
By “relevance”, what counts as a “relevant explanation” is domain specific – it
must be cast in terminology that is both understandable and relevant to users.
For deep neural networks, the two desiderata of accuracy and relevance appear
to be in tension - as we try to accurately explain the details of how a deep neural
network interpolates, we move further from what may be considered relevant to
the user.

This definition of explanation in terms of capturing input-output mappings
in a human understandable way contrasts with a second meaning of the term
explanation which we may call mechanistic explanation. Mechanistic expla-
nations abstract faithfully (but approximately) the actual data transformations
occurring in the model. To consider why mechanistic explanations can be useful,
consider a deep learning model we trained recently to segment the L1 verte-
bra [17]. The way a radiologist identifies the L1 vertebra is by scanning down
from the top of the body and finding the last vertebra that has ribs attached
to it, which is T12. L1 is directly below T12. In our experience our models for
identifying L1 tend to be brittle, indicating they probably use a different app-
roach. For instance, they may do something like “locate the bright object which
is just above the top of the kidneys”. Such a technique would not be as robust as
the technique used by radiologists. If a self-explaining AI had a model of human
anatomy and could couch its explanations with reference to standard anatom-
ical concepts, that would go a long way towards engendering trust. In general,
the “Rashomon Effect”, first described by Leo Brieman [14], says that for any
set of noisy data, there are a multitude of models of equivalent accuracy, but
which differ significantly in their internal mechanism. As a real-world example of
the Rashomon Effect, when detecting Alzheimer’s disease in brain MRI using a
CNN the visualized interpretations for models trained on different train-test folds
differed significantly, even though the models were of equivalent accuracy [44].
Even more troubling, the visualizations differed between different runs on the
same fold, with the only difference being in the random initialization of the net-
work [44]. Finally, interpretations can vary between test examples. [8] In many
works only a few examples (sometimes cherry-picked) are given to “explain”
how the model works, rather than attempting to summarize the results of the
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interpretability method on the entire test set. To summarize, in deep neural
networks it is possible the mechanism of prediction can differ greatly between
models of equivalent accuracy, even when the models all have the same archi-
tecture, due to peculiarities of the training data and initialization used. On top
of this issue, it is also possible that specific details of the mechanism may vary
wildly within a given model across different test cases.

There is another type of explanation we wish to discuss which we may call
meta-level explanation. Richard P. Feynman said “What I cannot create, I do
not understand”. Since we can create deep neural networks, we do understand
them, in the sense of Feynman, and therefore we can explain them in terms
of how we build them. More specifically, we can explain neural network func-
tion in terms of four components necessary for creating them - data, network
architecture, learning rules (optimization method), and objective function [37].
The way one explains deep neural network function from data, architecture, and
training is analogous to how one explains animal behaviour using the theory of
evolution. The evolution of architectures by “graduate student descent” and the
explicit addition of inductive biases mirrors the evolution of organisms. Simi-
larly, the training of architectures mirrors classical conditioning in animals. The
explanation of animal behaviour in terms of meta-level theories like evolution
and classical conditioning has proven to be enormously successful and stands in
contrast to attempts to seek detailed mechanistic accounts.

Finally, the oft-used term black box also warrants discussion. The term
is technically a misnomer since the precise workings of deep networks are fully
transparent from their source code and network weights, and therefore for sake of
rigor should not be used. A further point is that even if we did not have access
to the source code or weights (for instance for intellectual property reasons,
or because the relevant technical expertise is missing), it is likely that a large
amount of information about the network’s function could be gleaned through
careful study of the its input-output relations. Developing mathematically rig-
orous techniques for “shining lights” into “black boxes” was a popular topic in
early cybernetics research [6], and this subject is attracting renewed interest in
the era of deep learning. As an example of what is achievable, recently it has
been shown that weights can be inferred for ReLU networks through careful
analysis of input-output relations [38]. One way of designing a “self-explaining
AI” would be to imbue the AI with the power to probe its own input-output
relations so it can warn its user when it may be making an error and (ideally)
also distill its functioning into a human-understandable format.

3 Why Deep Neural Networks Are Generally
Non-interpretable

Many methods for interpretation of deep neural networks have been developed,
such as sensitivity analysis (saliency maps, occlusion maps, etc.), iterative map-
ping [12], “distilling” a neural network into a simpler model [19], exploring failure
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modes and adversarial examples [21,23], visualizing filters in CNNs [48], acti-
vation maximization based visualizations [18], influence functions [25], Shap-
ley values [32], Local Interpretable Model-agnostic Explanations (LIME) [36],
DeepLIFT [42], explanatory graphs [50], and layerwise relevance propagation [7].
Yet, all of these methods capture only particular aspects of neural network func-
tion, and the outputs of these methods are very easy to misinterpret [28,39,47].
Often the output of interpretability methods vary largely between test cases,
but only a few “representative” cases (often hand picked) are shown in papers.
Moreover, it has been shown that popular methods such as LIME [4], Shapley
values [4], and saliency maps [1,16,47] are not robust to small changes in the
image such as Gaussian noise.

As we discussed before, we do not expect the current push towards more
interpretable models led by Rudin and others to be successful in general - deep
neural networks are here to stay, and they will become even more complex and
inscrutable as time goes on. Lillicrap and Kording [29] note that attempts to
compress deep neural networks into a simpler interpretable models with equiva-
lent accuracy typically fail when working with complex real world data such as
images or human language. If the world is messy and complex, then neural net-
works trained on real world data will also be messy and complex. Leo Breiman,
who equates interpretability with simplicity, has made a similar point in the con-
text of random forest models [14]. In many domains, the reason machine learning
is applied is because of the failure of simple models or because of the compu-
tational burden of physics-based simulation. While we agree with Rudin that
the interpretability-accuracy trade-off is not based on any rigorous quantitative
analysis, we see much evidence to support it, and in some limiting cases (for
example superintelligent AGIs which we cannot understand even in principle or
brain emulations, etc) the real-world reality of such a trade-off existing to some
extent becomes clear.

On top of these issues, there is a more fundamental reason to believe it will
be hard to give mechanistic explanations for deep neural network function. For
some years now it has been noted that deep neural networks have enormous
capacity and seem to be vastly underdetermined, yet they still generalize. This
was shown very starkly in 2016 when in Zhang et al. showed how deep neural
networks can memorize random labels on ImageNet images [49]. More recently
it has been shown that deep neural networks operate in a regime where the
bias-variance trade-off no-longer applies [10]. As network capacity increases, test
error first bottoms out and then starts to increase, but then (surprisingly) starts
to decrease after a particular capacity threshold is reached. Belkin et al. call this
the “double descent phenomena” [10] and it was also noted in an earlier paper
by Sprigler et al. [43], who argue the phenomena is analogous to the “jamming
transition” found in the physics of granular materials. The phenomena of “double
descent” appears to be universal to all machine learning [10,11], although its
presence can be masked by common practices such as early stopping [10,35],
which may explain why it took so long to be discovered.
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In the regime where deep neural networks operate, they not only interpolate
each training data point, but do so in a “direct” or “robust” way [24]. This
means that the interpolation does not exhibit the overshoot or undershoot which
is typical of overfit models, rather it is almost a piecewise interpolation. The use
of interpolation implies a corollary - the inability to extrapolate. The fact that
deep neural networks cannot extrapolate calls into question popular ideas that
deep neural networks “extract” high level features and “discover” regularities
in the world. Actually, deep neural networks are “dumb” - any regularities that
they appear to have captured internally are solely due to the data that was fed
to them, rather than a self-directed “regularity extraction” process.

4 Challenges in Building Trustworthy Self-explaining AI

Fig. 1. Sketch of a simple self-explaining AI system. Optional (but recommended)
components are shown with dashed lines.

In his landmark 2014 book Superintelligence: Paths, Dangers, Strategies, Nick
Bostrom notes that highly advanced AIs may be incentivized to deceive their
creators until a point where they exhibit a “treacherous turn” against them [13].
In the case of superintelligent or otherwise highly advanced AI, the possibility of
deception appears to be a highly non-trivial concern. Here however, we suggest
some methods by which we can trust the explanations given by present day deep
neural networks, such as typical convolutional neural networks or transformer
language models. Whether these methods will still have utility when it comes
to future AI & AGI systems is an open question. To show how we might create
trust, we focus on an explicit and relatively simple example. Shen et al. [41] and
later LaLonde et al. [27] have both proposed deep neural networks for lung nod-
ule classification which offer “explanations”. Both authors make use of a dataset
where clinicians have labeled lung nodules not only by severity (cancerous vs.
non-cancerous) but also quantified them (on a scale of 1–5) in terms of five visual
attributes which are deemed relevant for diagnosis (subtlety, sphericity, margin,
lobulation, spiculation, and texture). While the details of the proposed net-
works vary, both output predictions for severity and scores for each of the visual
attributes. Both authors claim that the visual attribute predictions “explain” the
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diagnostic prediction, since the diagnostic branch and visual attribute prediction
branch(es) are connected near the base of the network. However, no evidence is
presented that the visual attribute prediction is in any way related to the diagno-
sis prediction. While it may seem intuitive that the two output branches must be
related, this must be rigorously shown for trustworthiness to hold. Additionally,
even if the visual attributes were used, no weights (“relevances”) are provided
for the importance of each attribute to the prediction, and there may be other
attributes of equal or greater importance that are used but not among those
outputted (this point is admitted and discussed by Shen et al. [41]).

Therefore, we would like to determine the degree to which the attributes in
the explanation branch are responsible for the prediction in the diagnosis branch.
We focus on the layer where the diagnosis and explanation branch diverge and
look at how the output of each branch relates to activations in that layer. There
are many ways of quantifying the relatedness of two variables, the Pearson cor-
relation being one of the simplest, but also one of the least useful in this context
since it is only sensitive to linear relationships. A measure which is sensitive
to non-linear relationships and which has nice theoretical interpretation is the
mutual information. For two random variables X and Y it is defined as:

MI(X,Y ) ≡
∑

y∈Y

∑

x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)

= H(x, y) − H(x) − H(y)

(1)

Where H(x) is the Shannon entropy. One can also define a mutual information
correlation coefficient (rMI(X,Y ) =

√
1 − e−2MI(X,Y)) [30]. This coefficient has

the nice property that it reduces to the Pearson correlation in the case that
P (x, y) is a Gaussian function with non-zero covariance. The chief difficulty
of applying mutual information is that the underlying probability distributions
P (x, y), P (x), and P (y) all have to be estimated. Various techniques exist for
doing this however, such as by using kernel density estimation with Parzen win-
dows [46].1 Suppose the latent vector is denoted by L and has length N . Denote
the diagnosis of the network as D and the vector of attributes A. Then for a
particular attribute Aj in our explanation word set we calculate the following to
obtain a “relatedness” score between the two:

R(Aj) =
N∑

i

MI(Li,D)MI(Li, Aj) (2)

An more naive method is to train a “post-hoc” model to try to predict the
diagnosis from the attributes (also shown in Fig. 1). While this cannot tell us
much about mechanism of the main model (due to the Rashomon effect) we
1 Note that this sort of approach should not be taken as quantifying “information

flow” in the network. In fact, since the output of units is continuous, the amount of
information which can flow through the network is infinite (for discussion and how
to recover the concept of “information flow” in neural networks see [22]). What we
propose to measure is the mutual information over the data distribution used.
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can learn a bit from it. Namely, if the post-hoc model is not as accurate as
the diagnosis branch of the main model, then we know the main model is using
additional features.

5 Ensuring Robustness Through Applicability Domain
and Uncertainty Analysis

The concept of an “applicability domain”, or the domain where a model makes
good predictions, is well studied in the area of molecular modeling known as
quantitative structure property relationships (QSPR), and practitioners in that
field have developed a number of techniques which are ready for export [40]. It is
remarkable that quantifying the applicability domain of models hasn’t become
more widespread, given concerns about robustness and adversarial attacks. An
analysis of applicability domain analysis methods for deep learning with medi-
cal images will be the subject of a future work. However, as an illustration, one
way of delineating the applicability domain is to calculate the convex hull of the
input vectors for all training data points (if the input is very high dimensional,
dimensionality reduction should be applied first). If the input/latent vector of a
test data point falls outside the convex hull, then the model should send an alert
saying that the test point falls outside the model’s applicability domain. We note
that a deep learning system developed by Google’s Verily Life Sciences which
recently performed poorly in real-world trials in Thailand would likely would
have benefited from such a warning system [9]. Applicability domain analysis
can be framed as a simple form of AI self-awareness, which is thought to be an
important component for AI safety in advanced AIs [3]. Finally, we note models
should contain measures of uncertainty for both their decisions and their expla-
nations, ideally in a fully Bayesian way [33]. If not enough compute is available,
approximate methods are now available - for instance random dropout during
inference can be used to estimate uncertainties at little extra computational
cost [20]. Just as including experimental error bars is standard in all of science,
uncertainty quantification should be standard practice in AI research.

6 Conclusion

We argued that deep neural networks trained on complex real world data are
very difficult to interpret due to their power arising from brute-force interpola-
tion over big data rather than through the extraction of high level rules. Moti-
vated by this and by the need for trust in AI systems we introduced the concept
of self-explaining AI and described how a simple self-explaining AI would func-
tion for diagnosing medical images. To build trust, we showed how a mutual
information metric can be used to verify that the explanation given is related to
the diagnostic output. Crucially, in addition to an explanation, self-explaining
AI outputs confidence levels for both the decision and explanation, further aid-
ing our ability to gauge the trustworthiness of any given diagnosis or decision.
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Finally, an applicability domain analysis should be done for AI systems where
robustness and trust are important, so that systems can alert their user if the
input to a model lies outside its training distribution.
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Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Canada, Vancouver,
BC, pp. 8928–8939 (2019)

16. Dombrowski, A.K., Alber, M., Anders, C.J., Ackermann, M., Müller, K.R., Kessel,
P.: Explanations can be manipulated and geometry is to blame (2019)

17. Elton, D., Sandfort, V., Pickhardt, P.J., Summers, R.M.: Accurately identifying
vertebral levels in large datasets. In: Hahn, H.K., Mazurowski, M.A. (eds.) Medical
Imaging 2020: Computer-Aided Diagnosis. SPIE, March 2020

18. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features
of a deep network. Technical report 1341, University of Montreal: also presented
at the ICML 2009 Workshop on Learning Feature Hierarchies. Montréal, Canada
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Abstract. Central scholars in AI have argued for extending the search for new AI
technology beyond the tried-and-tested biologically and mathematically-inspired
algorithms. Following in their footsteps, areas in the humanities are introduced
as possible inspirations for novel human-like AI. Topics discussed include play-
acting, literature as the field researching both imagination and metaphors, linguis-
tics, music, and hermeneutics. In our ambition to reach general intelligence, we
cannot afford to ignore these avenues of research.
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1 Introduction

AI as commonly practised generally no longer even aspires to human-level AI. The
people who keep this dream from before 1956 alive have largely been confined to con-
ferences about AGI – somehow the general AI has become a subfield. This has to do with
how successful specific techniques in machine learning have become, and how embar-
rassingly stuck general AI seems: The opinion that AI has been at some level “brain
dead” since at least the 1970s is voiced by pillars of the AI community such as Marvin
Minsky (McHugh and Minsky 2003), Geoffrey Hinton (LeVine and Hinton 2017), and
Rodney Brooks:

… modern-day [AI] research is not doing well at all on either being general or
supporting an independent entity with an ongoing existence. It mostly seems stuck
on the same issues in reasoning and common sense that AI has had problems with
for at least 50 years… (Brooks 2017)

AI so far has been heavily influenced by the rationalist tradition, which is
characterised by approaching any and all problems in a series of steps:

1. Characterise the situation in terms of identifiable objects with well-defined proper-
ties.

2. Find general rules that apply to situations in terms of those objects and properties.
3. Apply the rules logically to the situation of concern, drawing conclusions about what

should be done. (Winograd and Flores 1986, pp. 14–26)
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Note howBrooks complains aboutAI being incapable of“supporting an independent
entity with an ongoing existence”. On the one hand this has to do with mathematics’
infatuation with functions, that by their very definition return the same value for the
same parameters regardless of the time of evaluation; On the other hand it has to do with
science and technology’s aversion to all things subjective and human-like. This paper
will march straight into this terrain – asking where in the Humanities would we find the
best input for our effort to develop AGI.

Several arguments have been advanced as to where AI should go to find ideas for
novel algorithms. Langley argued that AI should go back to its roots in the cognitive
sciences (2006). That is hardly controversial, since cognitive science and AI evolved
together since the 1950s. Some argue for extending our horizons: Boden, acknowledging
that AI is an integral part of the cognitive sciences, laments the absence of any research in
anthropology informing either cognitive science orAI (Boden 2008). Boden’s promotion
of anthropology can be seen as a first tentative step towards a more radical position,
articulated by CP Snow (see below).

The most vociferous critic of AI from the humanities has been Hubert Dreyfus
(Dreyfus 1979; 2007). He argued for AI researchers to understand humans better
(mainly be reading Heidegger and Merleau-Ponty). Mainstream AI research mostly
either ignored him or trivialised his critiques. This paper stands with mainstream AI in
demanding programmable results (see Freed 2019), and stands with Dreyfus in pointing
out the shortcomings of AI research. This call for a more human-aware AI may sound
radical methodologically, but is quite easy personally and subjectively. Methodologi-
cally, the sciences like objectivity and abhor subjectivity. But in programming a mind
like our own, can we afford to ban our own personal view of our own mind? Personally,
there is nothing difficult in noticing our human, subjective side.

Especially in AGI, we need to be more daring than people who are pursuing merely
the next incremental step in AI.

2 Approach

During the cold war, CP Snow pointed out (with some alarm) that a chasm had opened
between two distinct intellectual cultures – What we would now call STEM (Science,
Technology, Engineering, Mathematics) and the Humanities. He lamented that even
basic communications across this divide have become difficult. He argued that such
a chasm would necessarily be detrimental to the development of society, and would
specifically hinder the UK’s ability to compete with the USA and Russia (Snow 1964).

But criticism of AI’s limited view of the mind was not only external, but came also
from the very centre, from MIT’s AI labs:

We are to thinking as Victorians were to sex. We all know we have these horrible
moments of confusion when we begin a new project, that nothing looks clear and
everything looks awful, that we work our way out using all sorts of odd little rules
of thumb, by going down blind alleys and coming back again, and so on, but since
everyone else seems to be thinking logically, or at least they claim they do, then we
figure we must be the only ones in the world with such murky thought processes.
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We disclaim them, and make believe that we think in logical, orderly ways, all the
time knowing very well that we don’t. And the worst offenders here are teachers,
who present crisp, clean batches of knowledge to their students, and look as if they
themselves had learned that knowledge in a crisp, clean way. It didn’t happen that
way, but the teachers don’t admit it, and the students groan inwardly, feeling so
hopelessly dumb. (McCorduck 2004, p. 339)

The author has argued elsewhere for the rehabilitation of introspection as a source
of ideas in AI, after it was frowned upon since the behaviourist revolution in psychology
(Freed 2017; 2019). Here we will examine other areas that were historically neglected,
that have salience for the insights required for AGI. Some of these areas have already
been touched upon by cognitive science and AI, but mostly in a limited way, holding
fast to the rationalist point of view (e.g. motivation theory). Here we aim to adopt the
point of view of the humanities more fully, to grasp more of the vast opportunities in
the humanities. Space here only permits a cursory sketch of some of the opportunities.
The final example (hermeneutics) will be developed in more detail, an algorithm in line
with this approach is available in (Freed 2017; 2019).

3 Play-Acting

As argued elsewhere, One can see the process of programming as consisting of:

1. Understanding the requirement (say adding up items in an invoice and adding some
sales tax to form a total);

2. Projecting ones mind into an imagined world where the environment, instead of
consisting in chairs and desks, consists of (say) the Python interpreter (and associated
libraries);

3. Imagining how one could solve the problem if one were acting using the tools
available in the Python environment (loops, variables, input/output functions); and

4. Logging these actions (or the equivalent “instructions”) in a text file, henceforth
called the “program” (Freed 2018).

So it would seem that the role of a programmer is a role, taken on willingly by the
skilled programmer, a bit like a character-role taken on my a theatrical performer. Note
that this is observation is not alien to our field, in that Herbert Simonwrote (in his writing
on administrative behaviour):

Administration is not unlike play-acting. The task of the good actor is to know and
play his role… The effectiveness of the performance will depend on the effective-
ness of the play and the effectiveness in which it is played. The effectiveness of the
administrative process will vary with the effectiveness of the organisation and the
effectiveness with which its members play their parts. (Simon 1976, p. 252; 1996,
p. xii)

If acting is central to much of our behaviour, or at least to our effective behaviour
(known as work) then the study of theatre looks promising for advancing any effective
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behaviour also in machines – at least machines that we hope to endow with decision-
making abilities.

4 Imagination, Action, and the Limits Thereof

Whenwe do some thingX, or recall doing the sameX, or imagine doing the sameX – our
brain functions in a very similar manner (Hesslow 2012). The subjective experience of
these threemodes, action, recall and imagination – is also quite similar. These facts alone
should spark a degree of interest in imagination research for AGI. The AI community
indeed has given imagination some attention (see Mahadevan 2018).

Imagination is of interest in at least two ways. It seems to be a locus of much (if
not all) of human creativity, and creativity is a “holy grail” yet to be achieved in AI or
explained by cognitive science (Boden 2010). Most research (in the context of AI) has
been into imagination in the sense of some sort of a “Cartesian space” - like a canvas
inside our mind, where we form and develop ideas, a bit like a white-board.

Here is a different and perhaps more interesting angle of research into imagination:
What can be imagined seems to be a limitation of what humans can do and think. In
other words, the space of human endeavour is restricted to what is imaginable. The study
of what is imaginable, of what is humanly comprehensible and credible – goes on in the
fields of literature, theatre & cinema. Note that beyond statements of fact being true or
false in the real world, there can be imaginary worlds where statements can be equally
true or false: Mary had a little lamb, not a pangolin, and SnowWhite had 7 dwarves – no
more and no less.

A small example of the arts developing an insight that is of interest is a popular
song, where a social situation is described, where person B does not know that person
A knows that person B knows that person A knows some fact. This presents four levels
of social knowledge (or lack thereof). In logic, there is no limit to such constructions. In
humans, the limit seems to be four levels1.

5 Linguistics and Music

Linguistics have been central to the cognitive sciences. Many date the beginning of
the cognitive revolution to a paper by Chomsky (1959) – which argues that human
capabilities in syntax cannot be explained by behaviourism. However, there is a further
point that may be of interest – when we hear an idea, we often ask ourselves whether it
“sounds right” - in more senses than one.

1 Are the sentences grammatical?
2 Do the ideas “make sense”? Do they fit in some established and accepted pattern like

a syllogism?

But note that the question of “sounding right” insinuates also some musical quality,
some balance or harmony or form that is aesthetically correct. Again, the other side of
Snow’s divide beckons (Miranda 2013).

1 The song is “Little does she know” by “The Kursaal Flyers”. Thanks to BlayWhitby for pointing
this out in private conversation.
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6 Metaphor

Often we hear naive people say things such as that “the computers knows” some fact or
skill. The better informed would comment that computers do not “know” anything, and
have no mental states – they are hulks of metal silicon and plastic that process electrical
signals in a sophisticated way that we call “information processing” (Smith 2005). The
idea that the bank’s computer “knows” my address arises out of the fact that in the
correct configuration, when queried with a string of characters that represents (by social
convention) my name or account number, the system is capable of emitting a string of
characters that would represent (again by social convention) my address. But there is no
knowing there at all. We humans know how to operate the computer system in order to
obtain what for us is useful information. For the computer, it is all electrons going hither
and thither. Saying that the computer “knows” anything is metaphorical. Andwhere does
this metaphor reside? In the minds of the humans designing and using the system. The
computer (as a physical thing) has no capability for any mental state – not for knowing,
and definitely not for metaphorical thinking.

However, we can still learn something profound from this metaphorical ascription
of knowledge to the electronic device we call “a computer”. What we see here clearly, is
that humans think metaphorically. We as humans have this capacity to see “knowledge”
where there is none, and to see “information” when all that physically exists are lit dots
on a screen.

Further evidence or howmetaphorical our thinking is was provided by Bolter (1984).
He surveys how our culture described the mind in different eras, and argues that it was
often through the metaphor of the latest technology: In ancient (Greek) times, the human
was considered as “a clay vessel with a divine spark”. With the introduction of clock
towers in late medieval times, the human and his mind were considered in terms of
mechanical automata – to this day we use expressions like “cogs turning in our head”2.
In the late 19th century, with the arrival of pneumatic and hydraulic technologies, the
metaphor used (for example) by Freud was of pressures, repressions, and eruptions - for
emotions. Today we think of the mind as a computer, as in the title of Boden’s history of
Cognitive science - “Mind as Machine” - there is little doubt which machine the mind
is being likened to (Boden 2008).

So, it would seem, that if we want to program human-level, general AI – we need
to develop systems that can do metaphorical thinking. This is a tall order – and some
research is already underway into metaphor as analogy (e.g. Barnden 2008). However,
metaphorical thinking is far more complex than mere analogy. The topic of metaphor is
already studied in its full glory and detail, but in departments of literature, not computer
science or cognition.

7 Hermeneutics3

Hermeneutics (the theory of interpretation) was founded as the theory of how to cor-
rectly understand ancient religious texts. Arguably hermeneutics is at least as old as

2 https://www.youtube.com/watch?v=WEhS9Y9HYjU.
3 Much of his section is based on previously published work (Freed 2017; 2019).

https://www.youtube.com/watch?v=WEhS9Y9HYjU
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the Pauline epistles in the new testament, however it is with Martin Luther’s (b. 1783
d. 1546) protestant injunction, that the bible should be interpreted only on its own
terms (without any reference to Catholic tradition) that we see the first explicit state-
ment of a policy or principle by which interpretation of a text should be carried out
(Ramberg and Gjesdal 2014).

Descartes (inventor of the Cartesian coordinates) expected all truths to be “clear and
distinct”. Speaking against these notions of understanding,Giambattista Vico (b. 1668
d.1744) argued that “thinking is always rooted in a given cultural context. This context
is historically developed, and, moreover, intrinsically related to ordinary language”
(Ibid.). This is in stark contrast to AI as it exists today – with its quest for the “one best
answer”, with little reference to context if at all.

Later Friedrich Schleiermacher (b. 1768 d. 1834) discussed the alien nature of
old or foreign texts, and called for particular attention to our prejudices, so we can
understand texts under their own alien context. He did not guarantee that such strict
awareness of prejudice and openness will lead to a correct understanding of a text (that
may be impossible). However such openness is necessary for understanding, and is
required not only for foreign texts but for any type of communication (Ibid.). There are
few AI systems that can (automatically) stop and tune-up their level of “openness”.

Wilhelm Dilthey (b. 1833 d. 1911) distinguished “living experience” which is how
each of us experience ourselves, from “understanding” which is how we more system-
atically understand the world outside us and others. He claimed that true self-awareness
can only be achieved when one understands oneself on the same terms one understands
others. In understanding history and historical texts one should combine (what we would
now call) empathy, i.e. a “living experience” identification with the historical charac-
ters, with “understanding”, which is a more rigorous “from the outside” observation.
The “living experience” component allows the historian to form hypotheses about, for
example, how Caligula may have felt in a certain time. The “understanding” part allows
one to critique such thoughts, and see how well they stand to reason (Ibid.). The idea
that “living experience” has anything to do with understanding the world runs contrary
to the rationalist attitude, prevalent in AI.

For modern thinkers such as Heidegger (b. 1889 d. 1976) and Dreyfus (the premier
philosophical critic of AI (Dreyfus 1979)) interpretation is not only a matter of under-
standing texts, but of our entire mode of being, which is continuously involved with
comprehending the world and acting in it (hence hermeneutics becomes one and the
same project as phenomenology). In simpler terms, we humans are constantly interpret-
ing our environment. Heidegger was concerned with many issues in phenomenology,
and viewed the specifics of hermeneutics as such as a sub-field, the detailed exploration
of which he later entrusted to a large degree to Gadamer (Malpas 2013, Chapter 4).

Hans-GeorgGadamer (b. 1900 d. 2002) viewed hermeneutics not only as the theory
of understanding ancient texts and art in general but also, and perhaps mainly, as the
act of continuously understanding/interpreting all situations. In this sense, interpretation
is an unceasing human activity, during at least most waking hours (Gadamer 2004, pt.
1). For Gadamer, interpretation is the merger of two horizons: the brute facts, as in the
letters on the page, and the reader, with all her background.
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Here is an example (my own) of what is meant by interpretation in this context.
Consider the following:

•
• Ha-kelev meh’oar
• Il cane é brutto
• The canine is brutish
• The dog is ugly

At this point you may be perplexed by this strange list, as one would be with any
other strange sequence that is presented with little warning. In a sense I just caused
you to be “thrown” onto this unusual list, and to the urgency of making sense of the
situation. The lines above all convey the samemeaning (in different alphabets, languages
and dialects). Note how much easier it is to interpret (for an English monoglot) these
examples the further down one goes. Note also that as an English-speaker you may be
further interpreting the situation and objecting that “brutish” does not mean the same as
“ugly”, but you also may be aware that in the Italian “brutto” does actually mean ugly,
and may further be aware of how such words change meanings over the centuries and the
geographic distances involved. All these thoughts are interpretative – they are attempts
to make sense of a situation, at this instance the situation at hand is the bizarre list above.
This sort of interpretative effort is the mental activity that hermeneutics studies, and I
argue is a necessary feature for AGI.

Interpretation (in the sense that interests us here) is the ability to “follow along”,
to “make sense” of the “inputs”. In following along with (say) a song, this is easier
with a familiar tune than it is with foreign music. The crux of the knowledge or skill
accumulated as we become more familiar with a situation does not consist of beliefs
- we have no position on the ugliness or beauty of a dog we have never seen. What is
being formed is an interpretation, an understanding, a grasp – before (and not requiring)
any judgement. A grasp of a situation includes a sense of its development over time.
Contrast this with AI’s fascination with functions andmappings – timeless mathematical
notions. Note that Brooks (above) complains about AI’s difficulty with “ supporting an
independent entity with an ongoing existence”- an ongoing existence would require an
understanding with a temporal dimension.

Gadamer being a student ofHeidegger’s, followingGadamer to exploreAGI is in line
with Dreyfus’s (2007) call for a more Heideggerian AI. Gadamer was first mentioned
as a possible source for AI research by Winograd and Flores (1986), and a concrete
algorithm following this path is proposed in detail in (Freed 2017; 2019).

8 Final Notes

Aswe have seen, beyond the great divide between the STEM subjects and the humanities
several promising fields offer tantalising prospects for the adventurous AI researcher. In
bringing this survey to a close, it is worth noting that some 20th century thinkers that
would be considered more conventional in the cognitive-science/AI community would
agree with the directions outlined above.
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Wittgenstein described our perception as “seeing as” - we see the duck-rabbit picture
either as a rabbit or as a duck (Wittgenstein 2001). This process is interpretative – as
was outlined above.

Developmental psychologics such as Piaget (1989) offer schemas of how cognition
develops in children. Regardless of the veracity of any one such theory, any theory that
seems programmable may be used as a model for an AI system (Freed 2019; Matthews
and Mullin 2018).

This paper argued for adding new angles from which to look at AI. We already have
two angles:

• How we should think (mathematics);
• How we do think, objectively (brain science).

Let us add two more:

• How we experience our own thought (introspection, see (Freed 2017; 2019));
• How our thinking is understood by experts on human civilizations (the humanities).

Exploring such new frontiers in AI is of particular interest when we aim for human-
level AI and beyond – as in the field of Artificial General Intelligence.
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Abstract. No fundamental new ideas have appeared in AI for decades because
of a deadlocked discussion between the technologists and their philosophical crit-
ics. Both sides claim possession of the one (dogmatic) truth: Technologists are
committed to writing code, while critics insist that AI bears no resemblance to
how humans cope in the world. The book charts a middle course between the
critics and practitioners of AI, remaining committed to writing code while main-
taining a fixed gaze on the human condition. This is done by reviving a technique
long-shunned in cognitive science: Introspection. Introspection was rejected as a
scientific method since 1913, but technology is committed to “what works” rather
than to science’s “best explanation”. Introspection is shown to be both a legitimate
and a promising source of ideas for AI. The book details the development process
of AI based on introspection, from the initial introspective descriptions to working
code.

This book is unique in that it starts with philosophical (and historical) dis-
cussions, and ends with examples of working novel algorithms. The book was
originally a PhD thesis. It was edited for book form with two new chapters added.

Keywords: Human-like AI · Anthropic AI · AGI

1 AI as It Stands

This first part of this book describes the state of the art in terms of AI, criticism of AI,
some of the mindset that contributes to the current state of affairs, and the historical
causes of said mindset.

The vastmajority of exitingAI is based on one of two basic ideas, or on a combination
thereof:

1. Logic and mathematics: information and rules are represented explicitly, and the AI
systemworks bymaking explicit deductions using explicit knowledge.This approach
was extended to include statistical facts and rules. Any conclusion can be supported
in detail from the inputs.

2. Biologically-inspired systems, including genetic algorithms and neural networks:
These systems try to evolve some ability or representation of knowledge by trial and
error. The end result is not usually supported by any explanation other than “That’s
how it worked out”.
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The absence of any other basic ideas is attributed to cognitive science’s inheritance
of Behaviourism’s attachment to objectivity rather than subjectivity. Herbert Simon, one
of themost influential people in AI history, wrote extensively also in neighbouring fields.
In psychology he took upon himself to carry forward Watson’s (1913, 1920) prohibition
of introspection and all that is subjective and elaborate further on what is and is not
legitimate in psychological research, without deviating from Watson’s positions in this
area (Ericsson and Simon 1993).

The philosophical critiques of AI (mainly by Dreyfus (1979, 2007) and Winograd
and Flores (1986)) are outlined. Winograd & Flores describe AI as being committed
to “the rationalist tradition”, and they propose some directions of research, but do not
develop any new AI algorithms.

The book critiques these philosophers for not programming, and finds them equally
culpable in this sense to the AI people who do not bother to understand the philosophical
critiques but dismiss them out of hand. The book’s purpose is to respect both sides of
this argument – reading the philosophy seriously, and programming.

Next the author surveys how human thought is experienced subjectively in contrast
to how human thought is presented in socially-accepted forms. The various pressures
to conform, and resultant anxiety and pretence of “clear thinking” are surveyed. Much
of the book’s approach can be gleaned from a quote to which the author returns several
times from Seymour Papert (a leading AI researcher at MIT):

We are to thinking as Victorians were to sex. We all know we have these horrible
moments of confusion when we begin a new project, that nothing looks clear and
everything looks awful, that we work our way out using all sorts of odd little rules
of thumb, by going down blind alleys and coming back again, and so on, but since
everyone else seems to be thinking logically, or at least they claim they do, then we
figure we must be the only ones in the world with such murky thought processes.
We disclaim them, and make believe that we think in logical, orderly ways, all the
time knowing very well that we don’t. And the worst offenders here are teachers,
who present crisp, clean batches of knowledge to their students, and look as if they
themselves had learned that knowledge in a crisp, clean way. It didn’t happen that
way, but the teachers don’t admit it, and the students groan inwardly, feeling so
hopelessly dumb (McCorduck 2004, p. 339).

Some of the historical reasons for current thinking are outlined briefly. Several
assumptions that are common in the AI world are enumerated, such as the assump-
tion (coming from economics, mainly) that humans are rational. As an example for how
these misconceptions are the result of chance historical events, the history of positivism
and logical positivism is outlined in a bit more detail, pointing out that Herbert Simon
was directly influenced by Rudolph Carnap (a leading logical-positivist) – both working
in Chicago.

2 An Alternative: AI, Subjectivity, and Introspection

The main thesis of the book (and the underlying PhD project) is: “Introspection is
recommended for the development of anthropic AI”. First a few methodological issues
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are cleared – mainly that the requirement for truth in technology is less stringent that in
science, then some terms are explained:

The first term to be clarified is the purpose:AnthropicAI. This neologism is described
as a type of human-like AI (as opposed to rational/ideal AI, which is the aim of the
majority of current AI). Within human-like AI Anthropic AI is defined as aiming for
the most low-level processes that we experience, i.e. around the line that separates
our innate human abilities from our acquired culture. Anthropic AI is contrasted with
western, modern, well-educated and adult intelligence – which is the intelligence most
existing AI aims at.

The second term to be introduced is “introspection”. Scientific psychology’s rela-
tionship with subjectivity is explored before and after the behaviourist and cognitive
revolutions. The definition of introspection is discussed, and an accepted technique
in scientific psychology called “thinking aloud” is compared and contrasted with the
rejected introspection.

In order to recommend anything (in our case introspection for anthropic AI) two
stages are necessary: showing legitimacy, and a reasonable expectation of a good
outcome.

One of the founding events of scientific psychology was the wholesale rejection
of introspection and all subjectivity as “unscientific” by the founders of behaviourism
(Watson 1913, 1920). The book surveys the gamut of ways one can relate to intro-
spection including the mainstream rejection, and Dreyfus’s enthusiastic embrace. The
mainstream rejection is analysed and shown to be misguided since ideas in the sciences
can legitimately come from any source whatsoever, the ideas have to be shown to be
valid empirically. The pedigree of an ideamakes no difference to it’s acceptability. There
is no reason to adopt a stricter view of ideas’ pedigree in technology than in science,
quite the contrary, in technology mistakes are discerned in a matter of months in the
worst case, while mistakes in science may take centuries to be uncovered. So if any
idea may be discussed in science, there is no reason at all to deny ourselves ideas from
introspection in technology.

The book deals with a contradiction in the stance of many researchers: rejecting
in-principle all subjectivity, while in practice using introspection for AI research. This
fecund source of ideas is made more freely available by shining a bright light at these
tensions, and clearing them up.

Next the book shows that introspection is the basis ofmuch of our effort to educate the
young, and to pass on skills fromone generation to the next.When a student asks a teacher
how to do X, the teacher either does X or imagines themselves doing X, while noting the
stages of the process; these stages are explained to the student. Noting the stages is an
act of self-observation on the part of the teacher – and if the teacher is teaching a mental
skill then the teacher is engaged in mental self observation - which is the definition of
introspection. So introspection is not noise, rather it carries salient information on how
we do things, and this communication works, as shown by civilizations lasting for many
generations.
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3 Getting Practical

The process of introspecting, writing introspective reports and generating software based
on these reports is next described in detail. Some concerns about project expectations in
such technological innovations are also discussed.

Next the book turns to simple examples, the first two are of existing technologies. It
is unclear whether these technologies were, in fact, developed using introspection – but
they can be used to illustrate the process, and are used without prejudice as to their actual
history.

Fuzzy Logic was invented by Lotfi Zadeh without any reference to external materials
(McNeill and Freiberger 1994). Zadeh was observing the way he himself used concepts
in daily life, and realized that the boundaries of concepts are not sharp like in logic, but
fuzzy. This observation led to his paper on fuzzy sets, and later to fuzzy logic. A similar
story is reconstructed for Case Based Reasoning.

The first original algorithm presented can be seen as an extension of Case Based
Reasoning – adding nondeterministic elements derived from introspection. The results
for this algorithm are shown.

Next, an observation is made that we think using scenarios from our past, that extend
in time. An algorithm based on that observation was tested but failed to learn anything
useful.

Instead of retreating in the face of failure, a further set of observations is added:

• We think while referring to a multiplicity of past scenarios;
• these scenarios seem to have no clear beginning or end, but fade in and out of mind;
• some are more relevant, and therefore more dominant of our current decision-marking
process.

An algorithm implementing these requirements is described, and videos show how
this algorithm learns to play simple games. Different runs of the algorithm seem to have
different “characters” (based on random parameters that go into every run).

In the concluding chapter, the philosophical critiques and ideas from early in the
book are reviewed in light of the technical results.
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Abstract. In this paper we propose to merge theories and principles explored
in artificial intelligence and cognitive sciences into a reference architecture for
human-level cognition or AGI. We describe a functional model of information
processing systems inspired by several established theories: deep reinforcement
learning mechanisms and grounded cognition theories from artificial intelligence
research; dual-process theory from psychology; global-workspace theory, somatic
markers hypothesis, and Hebbian theory from neurobiology; mind-body problem
from philosophy. We use a formalism inspired by flow-graph and cybernetics rep-
resentations. We called our proposed model IPSEL for Information Processing
System with Emerging Logic. Its main assumption is on the emergence of a sym-
bolic form of process from a connectionist activity guided by a self-generated
evaluation signal. We also discuss artificial equivalents of concepts elaboration,
common-sense and social interactions. This transdisciplinary work can be con-
sidered as a proposition for an artificial general intelligence design. It contains
elements that will be implemented on further experiments. Its current aim is to
be an analyzing tool for Human interactions with present and future artificial
intelligence systems and a formal base for discussion of AGI features.

Keywords: Human-level cognition · Artificial general intelligence · Cognitive
modeling

1 Introduction

Recent publications raised discussions on limits of the followed current approaches in
artificial intelligence (AI) (Marcus and Davis 2019). These limits on artificial systems’
capacities and the debates they generated aren’t new. In fact, one could consider they are
analogous to the indirect debate between Alan Turing exhibiting his Imitation game as a
test of AI (Turing 1950) and John Searle with his counterargument of the Chinese room
(Searle 1980). Can machines understand humans? And can humans truly understand
machines? Artificial information processing systems aim to simulate processes that are
usually done by human cognition, thus we decided to model Human-like cognition as
a reference architecture for artificial systems. To design our model, we took inspiration
from various established cognitive science theories.

From the field of AI, we were inspired by deep reinforcement learning (DRL) frame-
works, grounded cognition theories andprior cognitive architectures. Systems that imple-
ment DRL have been shown to efficiently perform human-level tasks from sensory input
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computations (Everitt et al. 2018). It is often said that conventional DRL alone cannot
account for the way humans learn. It’s too slow, requires very large datasets, doesn’t
generalize well, struggles to perform symbolic processing and lacks the ability to rea-
son on an abstract level (Garnelo et al. 2016). Recent reports, however, show that these
issues can be overcome by architectural and modality modifications for narrowed envi-
ronments (Dosovitskiy and Koltun 2016; Wayne et al. 2018). As an example, Deep-
Mind researchers implement two different learning speeds for simulation of episodic
memory and meta-learning. They concluded that “a key implication of recent work
on sample-efficient deep RL is that where fast learning occurs, it necessarily relies on
slow learning, which establishes the representations and inductive biases that enable
fast learning.” (Botvinick et al. 2019). This architectural consideration of decomposing
cognition into two modes has been largely explored by cognitive architects. This dual-
process assumption seems to be the most promising one considering the natural synergy
between connectionism and cognitivism. It is often said that connectionist models effi-
ciently perform inductive reasoning and classifications but lack symbolic and deductive
abilities. On the other hand, deductive inference requires entities and rules, which are
hard to a-priori define for complex and partially observable environments. An inter-
esting idea concerning this constraint is to make the symbolic part emerge from the
connectionist activity (Hopfield 1982).

Hybrid systems’ propositions are usually inspired by psychology research where
William James proposed in 1890 to decompose human cognition into two subsystems
which he named “Associative thinking” and “Reasoning thinking” (James et al. 1890).
Manyworks have been done around this principle, one of themost notable is the extended
experiment conducted by Amos Tversky and the Nobel prize winner Daniel Kahneman
on human economic decision making (Kahneman 2011). For them, cognitive processes
can result from the production of two different systems. System 1 which is described as
fast, unconscious and automatic, accounting for everyday decision and subject to errors.
The System 2 is slower, conscious and effortful. For Kahneman, System 2 operates com-
plex decision-making processes and is more reliable. To better understand the relation
between these different cognitive modes, we have also been vastly inspired by the works
of Carl Jung and Sigmund Freud, who were among the first to distinguish and study the
unconscious part of our mind (Freud and Bonaparte 1954; Jung 1964).

Converging neurobiology studies associate reasoning or declarative cognitive func-
tions with distributed brain activities. This assumption finds an echo in the words of the
Global Workspace Theory (Dehaene et al. 1998). Functional brain imaging shows that
conscious cognition is associated with the spread of cortical activity, whereas uncon-
scious cognition tends to activate only local regions (Baars 2005). Experimental reports
stressed the notion of Free will by observing unconscious initiative before voluntary
action (Libet 1985) giving us our intuition on how both systems are architectured. These
large-scale considerations on the brain activity have started to operate a shift in the way
that cognitive scientists analyse cognition. Vinod Menon studied psychopathology and
wrote: “The human brain is a complex patchwork of interconnected regions, and network
approaches have become increasingly useful for understanding how functionally con-
nected systems engender, and constrain, cognitive functions.” (Menon 2011). However,
brain processing does not rely only on electrical activity; information flows are encoded
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into electrical-chemical potentials. Emotions, which are associated with chemical neu-
rotransmitters, play an undeniable role in human behaviours whether they are conscious
or unconscious. To integrate this part in our model, we took inspiration from the Somatic
Marker hypothesis formulated by Antonio Damasio (Damasio et al. 1991). Lastly, we
also considered the Hebbian theory described by neurobiologists. Named after Donald
Hebb, this cell assembly theory modelized the synaptic plasticity of the brain. Recent
publication in artificial intelligence shows how recurrent neural networks with Hebbian
plastic connections provide a powerful novel approach to the learning-to-learn problem
(Miconi et al. 2018).

All these theories have been thoroughly discussed by their corresponding discipline.
Because of the space limitation, we cannot reference or further develop these discussions
or reports. Moreover, this is not the objective of this paper. In this introduction we have
presented what are the transdisciplinary sources that have inspired our architecture.
The formalism we use to represent networks’ activities is described in Sect. 2 along
with the definition of our architecture. Discussion of its attributed capacities will be
presented in Sect. 3. More specifically, we will discuss conceptual reasoning, common-
sense knowledge and social interactions such as language.As a conclusion,we conjecture
on behaviours of agents that would be architectured with our proposition.

2 Information Processing Systems with Emerging Logic (IPSEL)

2.1 Cognition as a Flow Graph

The considered system is represented as a graph of processing units connected together.
Processing units are represented by nodes and their connections byweighted and oriented
arcs called routes. We define three types of units. Source units which represent sensor
organs of the system; sink units representing motor organs; and routing units which are
graph nodes that are neither sources nor sinks. All together they form a network in which
flows are spreading. These flows are called Action Potential Flows (AP-flows). When a
unit or a route is crossed by AP-flows we say it is activated. AP-flows have the property
of being persistent for an undefined amount of time. When activated, routing units can
emit part of a signal called Emotional Response Signal (ERS). Considered all together,
ERSs represent the internal response of the whole network being crossed by AP-flows.
We give no constraint on how ERS are produced, it can be generated by one group of
units or the generation can be distributed amongst all units. A schematic representation
is given in Fig. 1.

We associate source units’ activities as a process which transforms environment
interactions into AP-flows. It is continuous and said to be the system’s perception of
its environment. AP-flows then spread into the network and eventually reach sink units.
Sink units’ activities are responsible for transformation of AP-flows into environment
interactions. This process is said to be the system’s behaviour. The function that connects
perception to behaviour is called cognition and is represented by the structure of the
network.

We named this form of representation a Cognition Flow Graph (CFG). Structural
information of the graph is represented by the arcs’ weight. They are probabilities of the
type “probability of the route to be activated if connected unit is activated”. Altogether,
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Fig. 1. An arbitrary cognition flow graph. Only few units and routes have been displayed.

the arcs’ weights form a probability distribution over pairs of units.We call it the intuitive
probability distribution (ID) of the cognition flow graph. There are two mechanisms
that allow ID editing. The first is called Hebbian Learning (HL). It has the function
to grow connections between unconnected units that have simultaneous activities. It
changes the ID probabilities from 0 to something greater than 0. The secondmechanism,
called Reinforcement Learning (RL), increase or decrease the arcs’ weights to optimize
emotional response signals of the structure.

The particular routings of AP-flows through the structure determine, for a set of
activated source units, which sinks units will be activated. Thus, we say that perception
is processed by cognition to produce behaviours. Cognition is performing a computation
on perception with intuitive probability distribution as instructions.

2.2 IPSEL Functional Architecture

Different natures of routing imply different natures of computation and thus different
natures of behaviours. In this part we regroup various kinds of routing and define abstract
systems that represent their consequent computation.

We distinguish two types of routing possibilities. Direct paths: on these paths, AP-
flows have a unique routing possibility. And indirect paths: on these paths AP-flows have
multiple routing possibilities, which implies a notion of network and allow flow cycles.
Considered all together, indirect paths form a network of networks.

Behaviours engendered by activities on direct paths are called direct behaviours. We
represent them as being the production of a system called Direct System (S0). Activities
on indirect paths can have two modalities. When one indirect path is considered it is
said to be a local activity. When the activities are considered over a combination of
indirect paths, involving potentially unconnected distant networks, it is said to be a
global activity. Behaviours engendered by local activities are called intuitive behaviours
and are the production of the Intuitive system (S1). Combinations of local activities form
global activities which embody a computation attributed to the deliberative system (S2).
We postulate that S2 emerges from S1 because of the relations between local and global
activities.
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While experiencing its environment, the structure of indirect paths’ networks changes
because of RL and HL. At the local scale, preferred routings will emerge and form local
patterns of activities. At the global scale, unconnected networkswill develop connections
because of HL, and preferred routings between these localities will emerge because of
RL. We define the notion of concept which, in our formalism, means a combination of
local routing patterns that have developed inter-local routes at the global scale.Because of
concept formation, local networks can now be activated by flows coming from the global
activity. This kind of global flow activities is said to emerge since it requires a previous
step of local structure self-organization. At the local scale, AP-flows are continuous and
form a global configuration at any time. However not all global configurations imply
activated concepts. Thus, from a global point of view, concepts appear in an ordered
sequence. Once again, due to HL, RL and the persistence of AP-flows, concepts that
appear close in the sequence will develop and reinforce inter-connections. Since the
sequence is ordered, it can also be viewed as the emergence of probabilistic causality
relations between concepts. We define a second probability distribution over pairs of
concepts called the conceptual probability distribution (CD). ID represents S1knowledge
whereas CD represents S2 knowledge.

Environment perception penetrates the system through sensory organs where they
are transformed into Action potential flows called messages. These flows propagate
through the structure and activate direct and indirect paths. Propagation on direct paths
will engender direct behaviours seen as production of the direct system S0. Propagation
in indirect paths activates local networks and engenders intuitive behaviours seen as
production of the intuitive system S1, and it is determined by the intuitive distribution.
At the global scale, activated concepts engender new local flow propagations and can be
inferred from a previously activated concept.When it is the case, the appearing sequence
of concepts is said to be the production of the declarative system (S2) and is determined
by the conceptual distribution. The cycle of flow propagation between local and global

Fig. 2. (a) distinction between direct, local and global activities. (b) IPSEL agent.
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configurations is said to be the reasoning behaviour of the system. It can also be viewed
as communication between S1 and S2. AP-flows that activate sink units for behaviour
productions are called commands.

IPSEL agents alternate between three natures of behaviours (direct, intuitive, or
reasoning), corresponding to what is required for environmental interactions. Percep-
tions that activate direct paths engender direct behaviours. Other perceptions engender
intuitive behaviours. Occasionally, internal flow propagations instantiate concepts and
trigger concept inferences at the global scale. The inferred concept sequence acts as
new sources of flows for local activities. It is the reasoning behaviour of the agent and
engenders further intuitive behaviours (Fig. 2).

3 Discussion

In our model, a concept is a combination of simultaneous local patterns of activities.
We can state that the more a route is activated, the more it may be reinforced. For this
reason, invariance on perceptions will engender more reinforcement for their own con-
nected networks. Invariance on combination of simultaneous local patterns of activities
will engender inter-local connections thanks to theHebbianmechanism and develop con-
cepts. From the global perspective, the first criteria of invariance on perceptual patterns
is the fact that they continuously change over time. Thus, we could suppose that Time
would be one, if not the first, of the primary concepts an IPSEL agent may internally
represent with structure differentiation. Through the integration of the concept of Time,
the structure can now characterize further perceptions. All perceptions do not change
evenly throughout Time and are modulated by the body position and sensor orientation.
Therefore, invariance on perceptions through Time engender the formation of the con-
cept of Space. With the ability to represent Time and Space concepts, the structure can
now form a concept of Object which is perception’s invariances through Space and Time.
Time, Space and Object are the three primary concepts. From that point, the systemmay
differentiate objects from one another to form more elaborate concepts, again, by repre-
senting the invariance of its perception through already acquired concepts. Depending
on its sensors’ position, the system could form the concept of its own body, as it may
be the most invariant object of perception. Geometric forms, colours, symbols and so
on, are all internal representations of invariant perceptions through Space/Time/Object.
Progressively, the structure represents its perceptual environment with concepts. IPSEL
agent’s world representation is thus, totally subjective.

From the global point of view, concepts appear in sequences. Because of Hebbian
and reinforcement mechanisms, concepts which are close in the sequence will develop
and differentiate inter-concepts connections. Through the same dynamism inwhich local
patterns of a common concept can activate each other, inter-concepts’ connections enable
concept inference. Sequences of concepts can now be internally simulated, therefore the
perceptual environment they have originated from, can be simulated. This environment
simulation is valuable for the structure, as it gives it the capacity to represent past or
future configurations and their associated emotional responses. This allows the system
to remember and to predict.

Internal intuitive representation is inspired by the philosophy of Carl Jung (Jung
1964). The notion of concept emerging from perceptual experience is inspired and well
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developed in other terms by grounded cognitivists (Barsalou 2010). Characterization
of environmental perception through Time and Space consideration is mainly inspired
by the philosophy of Arthur Schopenhauer (Schopenhauer 1891). Objects’ definition
and relationships for environmental representations is inspired from Rudolf Carnap’s
book “The logical structure of the world” (Carnap 1967). Recent reports show that the
symbolic nature of computation is attainable through a connectivism mechanism with
the help of some structural specifications (Lample and Charton 2019). Other artificial
neural network models consider expressive probabilistic circuits with certain structural
constraints that support tractable probabilistic inference (Khosravi et al. 2019). In the
neurobiology field, a neural basis for the retrieval of conceptual knowledge has been
proposed from empirical reports (Tranel et al. 1997) and strong evidence for a neural
realization of distributional reinforcement learning have been presented (Dabney et al.
2020).

Common-sense is defined by Cambridge online dictionary as “The basic level of
practical knowledge and judgment that we all need to help us live in a reasonable and
safe way”, or for Marvin Minsky “the ability to think about ordinary things the way
people can” (Singh and Minsky 2003). For an IPSEL agent, common sense would be
the system’s knowledge represented by its differentiated structure. It would have several
forms: intuitive when local patterns are considered, giving the agent a sort of “common-
sense” about which behaviours to produce for a given set of perceptions; conceptual
when it states how concepts are linked together, and how objects they represent may
interact with each other. In both cases these knowledges are embodied in the structure
and are thus mostly acquired by individual experience. Experience is relative to the
system’s perceptual modalities, therefore its common-sense is subjective. For example,
distinguishing between north and south magnetic poles appears to be common sense for
a homing pigeon whereas most humans require a tool for achieving this distinction. In
a broad sense, in the IPSEL paradigm, we would define common-sense as knowledge
acquired by experience.

For an IPSEL agent, all behaviours are either direct or intuitive, even if sometimes
the intuitive behaviour is triggered by inferred conceptual sequences produced by the
declarative system S2. If multiple agents are interacting with each other, they can learn
intuitive synchronized behaviours that would externally be seen as communication. They
can also learn common symbols that refer to subjective concepts, hence allowing the
development of communication language as commonly defined. For that reason, we
say that an IPSEL agent has two communication modalities: intuitive where words of a
speech are intuitive learned behaviours and conceptual when symbols or combination of
symbols refer to concepts. These communications can be of various forms since words
of a speech can be of multiple natures such as body-movement, sound, smell or visual
pattern (in other words, everything that can be perceived by both agents involved). The
various modalities of speech, intuitive or deliberative, have been explored and theorized
by psychiatrist Sigmund Freud (Freud and Bonaparte 1954). Complex social behaviours
have been shown to emerge from artificial multi-agents’ interactions with reinforcement
learning (Baker et al. 2019).
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4 Conclusion

In this paper we consider human-level cognition as a dualism between an inductive pro-
cess and a deductive one which relies on emerging logic. An experiment and a complete
comparison with existing cognitive architectures would be an interesting development
that should be explored. If we try to place IPSEL model in the hybrid group of cognitive
architecture (Kotseruba and Tsotsos 2018), models such as CLARION (Sun et al. 2001)
have more similarities with our approach. Specifically, the IPSEL perspective is consis-
tent with Arthur Schopenhauer theory of will and ideas, and Sigmund Freud works on
unconsciousness and language. We generally tried to avoid technical consideration to
present a functional architecture that is more consistent with the predominant theories
of cognitive sciences.

In our theory, an IPSEL agent builds its knowledge through perceptual experiences.
Throughout different phases of development its inner structure self-organizes and enables
the emergence of an inner dialog between internal representations and sensory percep-
tions. All of its experiences are associated with an emotional response that guides a
learning mechanism and influences resulting behaviours. Thoughts of the agent are con-
structed sequences of concepts. As concepts represent combinations of environment
perceptions, thoughts represent relations between them. By internally representing the
external environment as concepts, and relations that are associated to them, the structure
can “hallucinate” environments that are not currently perceived. It allows the agent to
remember past environment states and predict future ones. It forms a loop where percep-
tions activate multiple parts of the structure. Emerging concepts trigger a chain reaction
that produce a conceptual sequence generated by the flow of activity through induced
preferred inter-concept paths. While being constructed, the conceptual sequences acti-
vate new parts of the structure, ending the loop in a top-down manner and acting as new
sources of information for cognitive processing. All declarative cognitive functions such
as planning, deliberating, or performing an introspection, are supported by conceptual
sequence production. We conjecture that an IPSEL agent is emotionally rational and its
knowledge is subjective.

In 1950, Alan Turing proposed a test to evaluate machine intelligence. It has been
greatly debated and the community had a hard time defining intelligence and other terms
associated to it. As Searl pointed out, symbols don’t carry out meaning and symbolic
computation isn’t enough to catch the idea behind it. It is maybe for this reason that Tur-
ing included two humans in his original description of the imitation game. Two humans,
when they communicate, can use overtone, common-sense, metaphors, irony, abstrac-
tion, that is to say, many language forms that not only rely on grammatically correct
symbolic sentences but also on a shared world representation and socio-cultural knowl-
edge. Beside the great achievement of artificial intelligence techniques, machines still
struggle to catch these deeper aspects and are only efficient in narrowed environments.
Consequently, machine behaviours, trustworthy AI, ethical AI and explainable AI are
all new topics of interest for the community.

For an IPSEL agent, the ability to succeed at the Turing test, would require that
the system is granted with the same modality of sensors as humans and has had an
individual experience of the world that is close to a human’s one. At the end, even with
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these requirements, nothing assures us that the specific tested agent will pass the test.
But are we sure that all humans uniformly would?
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Abstract. A novel computational model (CoDD) utilizing combinatory
logic to create higher-order decision trees is presented. A theoretical anal-
ysis of general intelligence in terms of the formal theory of pattern recog-
nition and pattern formation is outlined, and shown to take especially
natural form in the case where patterns are expressed in CoDD language.
Relationships between logical entropy and algorithmic information, and
Shannon entropy and runtime complexity, are shown to be elucidated by
this approach. Extension to the quantum computing case is also briefly
discussed.

1 Introduction

The theoretical foundations of general intelligence outlined in The Hidden Pat-
tern [7] and formalized in earlier works going back to 1991 [5] are fundamentally
grounded in the notion of pattern. Minds are conceived as patterns emergent in
physical cognitive systems, and emergent between these systems and their envi-
ronments. Intelligent activity is understood as the process of a system recognizing
patterns in itself and its environment, including patterns in which actions tend
to achieve which results in which contexts, and then choosing actions to fit into
these recognized patterns.

The formalization of the pattern concept standardly used in this context is
based on algorithmic information – in essence a pattern in x is a compressing
program for x, a program shorter than x that computes x. The definition can be
extended to incorporate factors like runtime complexity and lossy compression,
but the crux remains algorithmic information. As program length depends on the
assumed underlying computer, this formalization approach has an undesirable
arbitrariness as its route, though of course as entity sizes go to infinity this
arbitrariness becomes irrelevant due to bisimulation arguments.

Here we present a conceptually cleaner foundation for the pattern-theoretic
analysis of general intelligence, in the form of a new formulation of the pattern
concept in terms of distinctions and decisions. We present a specific computa-
tional model – Combinatorial Decision Dags or CoDDs – with a high degree of
naturalness in the context of cognitive systems, and use CoDDs to explore the

c© Springer Nature Switzerland AG 2020
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relationship between distinction, pattern, runtime complexity, Shannon entropy
and logical entropy. We also briefly indicate extensions of these ideas to the quan-
tum domain, in which Boolean distinctions are replaced with amplitude-labeled
quantum distinctions and classical patterns are replaced by “quatterns.”

The goal is to provide a clear and simple mathematical framework that intu-
itively matches the requirements of general intelligence, founded on a computa-
tional model designed with the requirements of modeling cognitive systems in
mind.

2 Conceptualizing Pattern in Terms of Distinction
and Decision

Taking our cue from G. Spencer-Brown [10], let us begin our with the elemental
notion of distinction.

A distinction is a distinction between one collection of entities A and another
collection of entities B. Two distinctions are distinguished from each other if:

– One distinguishes A1 from B1

– The other distinguishes A2 from B2

– It’s not the case that A1 and A2 are identical and B1 and B2 are identical.

Consider a program that takes certain inputs and produces output from them.
We are then moved to ask: Can we think about the “simplicity” of a process as
ρersely related to the number of distinctions it makes? I.e. is the “complexity”
of a program well conceived in terms of the number of pairs of legal inputs to
which it assigns different outputs?1

This line of thinking meshes naturally with the concept of logical entropy [3]
– where the logical entropy of a partition of n elements is the percentage of pairs
(x, y) of elements so that x and y live in different partition cells. If we consider a
program as a partition of its inputs, where two inputs go into the same partition
cell if they produce the same output, then the logical entropy of this partition
is one measure of the program’s complexity. The simpler programs are then the
ones with the lowest logical entropy.

There is an interesting relationship between program length and this sort
of program logical entropy. For each N there will be some upper bound to the
logical entropy of programs of length N , and it’s not hard to see that most
programs of length N will have logical entropy fairly near this upper bound.

1 Note that the inputs and outputs of programs may also be programs – i.e. we can
consider ourselves in an “algorithmic chemistry” TY pe domain [4,6] comprising a
space S of programs that map inputs from S into outputs in S. This can be formalized
in various ways including set theory with an Anti-Foundation Axiom.).



Combinatorial Decision Dags 133

2.1 Shannon Entropy, Program Specialization and Runtime
complexity

The relationship between logical entropy and Shannon entropy is also worth
exploring.

Consider a case where each possible input for a program is represented as a
(generally long) bit string.

Given the set of distinctions that a program makes (considering the program
as a partition of its inputs), we can also ask: If we were to effect this set of
distinctions via a sequence of distinctions ρolving individual entries in input bit-
strings, how long would the sequence need to be? E.g. if we break things down
into: First distinguish portion I1 of input space from portion I2 of input space
(using a single bit of the input), then within I1 distinguish subregion I11 from
subregion I12 (using another bit of the input), etc. – then how many distinctions
need to be in this binary tree of distinctions?

The leaves of this binary decision tree are the partition elements; and the
length of the path from the root to a given leaf, is the number of binary questions
one needs to ask to prove that some input lies in that particular partition cell.

This decision tree is closely related to the Shannon entropy of the partition
implied by the program. Suppose we have a probability distribution on the inputs
to the program. The Shannon entropy of this distribution is a lower bound on
the average length of the path from the root of the tree to a leaf of the tree,
i.e. a lower bound on the “average tree depth.” (The average is taken over all
possible inputs drawn from the distribution.)

The optimal binary decision tree for the partition, relative to a given dis-
tribution on the bit strings being partitioned, can be considered as the one for
which the average length from root to leaf is minimal. Not knowing the distribu-
tion on inputs, a heuristic is to guess the optimal tree will be one of those with
the fewest nodes.

If we assume a simplified computational model in which one binary distinc-
tion is made per unit time, then the average depth of this binary decision tree
is related to the average runtime complexity of the program. It tells you how
long it would take, on average over all possible inputs, to run the program on an
abstract machine making one distinction (based on one bit of the input string)
per unit time. For fixed input length N , this is, it would seem, a lower bound for
the average runtime complexity of the program on a machine with rapid access
to enough memory to store this huge tree.

Other, more practical instantiations of the same program achieve greater
compactness by ρolving operations other than simply comparing individual bits
of input strings. These other instantiations may run faster on machines that
don’t have rapid access to enough memory to store a huge binary decision tree.
They involve “overhead” in the sense that they use more complex mechanisms
to do what could be more simply done using a series of binary judgments based
on input bits; but these complex mechanisms allow a lot of binary judgments to
be carried out using a smaller amount of memory, which is better in the case of



134 B. Goertzel

a computing system that has rapid access only to a relatively small amount of
memory, and much slower access to a larger auxiliary memory.

This binary decision tree can be viewed as a “program specialization” of the
original program to the case of input sequences of length N or less. Like most
program specializations it removes abstraction and creates tremendous bloat
ρolving a lot of nested conditionals.

Given a program (or a process more generally), then, we can characterize
this program via the set of distinctions it makes between its inputs. Given a
distribution over the inputs, one can calculate the logical entropy of the set of
distinctions (which is a measure of how complex is the action of the program in
terms of its results), and one can also calculate the average depth of the optimal
binary decision tree for emulating the action of the program, which is a measure
of how complex is the action of the program in terms of its runtime requirements.
Of course one can also quantify the distinction-set implied by the program in a
lot of other ways; these are merely the simplest relevant quantifications.

Philosophically, if we begin with the partition of input space rather than the
program, we can view the construction of the binary decision tree as a form
of the emergence of time. That is: time arises from the sequencing involved in
constructing the binary decision tree, which intrinsically incorporates a notion of
one decision occurring after another. The “after” here basically has the semantics
“in the context of” – the next step is to be interpreted in terms of the previous
step, rather than vice versa. The notion of complex structures unfolding over time
then emerges from the introduction of “memory space” or “size” as a constraint
– i.e. from the desire to shrink the tree while leaving the action the same, and
increasing the average runtime as little as possible.

2.2 Grounding Pattern in Distinction

A pattern being a “representation as something simpler” – the core intuition
underlying the classic compression-based conceptualization of pattern – can be
formulated in terms of distinction as follows.

Suppose one has

– an “invariant-set”, meaning a function ρ that distinguishes certain distinc-
tions that are relevant and certain that are not

– a program F that makes certain distinctions among its potential inputs (by
mapping them into different outputs)

Then we may say: P is a pattern in F , relative to ρ, if it makes all
the distinctions F does that ρ identifies as relevant, but makes fewer
distinctions than F overall ...

Extending this, we could say that: P is an approximate pattern in F if: it
makes K fewer distinctions than F overall, and misses fewer than K of the
distinctions F does that ρ identifies as relevant.

To incorporate runtime complexity, if we have a weighting on the distinctions
judged relevant by ρ, we could require additionally that the optimal binary
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decision tree for P has lower average root-to-leaf length than the opti-
mal binary decision tree for F (relative to this weighting). This means that
in a certain idealized sense, P is “fundamentally faster” than F .

The degree of runtime optimization provided by P in this sense could be
included in the definition of approximate pattern as a multiplicative factor.

3 A Quantum Definition of Pattern

To extend these ideas in the direction of quantum computing, we extend the
notion of a dit (a distinction) to that of a qudit – a distinction btw two entities,
labeled with a (complex) amplitude.

Assume as above one has an “invariant-set” defining function ρ that assigns
a “relevance amplitude” to each qudit in its domain; and assume one is given
a quantum program F whose inputs are vectors of amplitudes, and that maps
each input into different outputs with different amplitude-weights.

Associate P (for instance) with a “distinction vector” P ∗ that has coordinate
entries corresponding to pairs of the form [input set 1, input set 2] where the
entry in the coordinate is the amplitude assigned to the distinction between the
output produced by P on input set 1 and the output produced by P on input
set 2 . . .

Then P is a quattern in F , relative to ρ, if

– |<ρ><F ∗ − P ∗>| is small
– |P ∗| < |F ∗|

So one can define a quattern intensity degree via a formula like
(|F ∗| − |P ∗|) * ( |ρ| - |<ρ><F ∗ − P ∗>| ) / |ρ|
This ends up looking a bit like the good old definition of pattern in terms of

compression, but it’s all about counting distinctions (qudits) now.
A quantum history is a network of interlinked qudits... So a quantum dis-

tinction graph is a network of qudits between quantum distinction graphs.
Runtime complexity can also be analyzed similarly to in the “classical” case

considered above.
Recall the basic concept of a quantum decision tree [2]. In a simple, straight-

forward formulation, algorithm on inputs of size n works on 3 registers I,B,W
where I has log(n) qubits and is used to write a query, B has one qubit and
is used to store the answer to a query and W is the workspace register with
polynomially many qubits. The query steps are modeled as particular unitary
operators, and the algorithm is allowed to perform intermediate computations
between the queries in the form of unitary operators independent of the input.

In this formalism, a k-query decision tree A is the unitary operator A =
UkOUk−1 . . . U1OU0 and the output of the algorithm is the value obtained when
the first qubit of A|0, 0, 0> is measured in any given basis.

The quantum decision tree complexity Q 2 is the depth of the lowest-depth
quantum decision tree that gives the result f(x) with probability at least 2/3 for
all s. Another quantum decision tree complexity measure, QE , is defined as the
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depth of the lowest-depth quantum decision tree that gives the result f(x) with
probability 1 in all cases (i.e. computes exactly). Other variations are obviously
possible. These sorts of measures are evidently analogues of the approach to
runtime complexity proposed above. It has been shown that the Shannon entropy
of a random variable computed by the function f(X) is a lower bound for the
QE quantum decision tree complexity of f citeshi2000entropy.

In assessing the degree to which P is a quattern in F , one can then look at
the quantum decision tree complexity of P versus that of F , similarly to how
in the classical case one looks at the size of the decision tree associated with P
versus that of the decision tree associated with F .

Similarly to in the classical case, the runtime complexity measure depends
in a messy but apparently inevitable way on assumptions regarding the memory
of the underlying computing machine. In the quantum case, if we restrict the
workspace W further than just saying it has to be polynomial in the input size
n, then we will in generally get larger decision trees.

Also similarly to the classical case, here real computation usually involves
quantum circuits that do more than just query the input repeatedly and combine
the query results – thus resulting, much of the time, in smaller programs that
however involve more complex operators. But the size of the quantum decision
tree complexity summarizes, in a sense, the temporal complexity involved in
doing what the program does, at a basic level, without getting into tricks that
may be used to accelerate it on various computational architectures with various
processing speeds associated with various particularly-sized memory stores.

3.1 Weidits and Weitterns

What we have done above with amplitude-valued distinctions, one could do per-
fectly well for distinctions labeled with others sorts of weights. Quaternions e.g.
would seem unproblematic, as Banach algebras over quaternions are understood
and relatively well-behaved. The notion of qudit and quattern in this way can
be generalized to weidit and weittern, defined relative to any sort of weight, not
necessarily complex number weights.

4 Combinatorial Decision Dags: A Pattern-Based
Computational Model

One can also use these ideas to articulate a novel, foundationally pattern-oriented
universal computational model. Of course there are numerous universal compu-
tational models already in practical and theoretical use, but one that is grounded
in distinctions and patterns may be especially useful in a cognitive modeling and
AGI context, if one adopts a view of general intelligence that places pattern at
the coore.

It is straightforward to make the decision-tree rendition of programs recursive
– just take a bit-string encoding of a decision tree and feed it as input to another
decision tree. In this way we create decision trees that represent higher-order
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functions. We just need to add encoder and decoder primitives, mapping back
and forth between decision trees and bit strings, to our basic language.

This leads us to the notion of Combinatorial Decision Dags (CoDDs). Defin-
ing a k’th order decision dag as one that takes k − 1’st order decision dags as
inputs, it is clear that k’th order decision trees (or dags) are equivalent to SK
combinator expressions, thus have universal expressive capability among Turing
computable functions.

To be a bit more explicit: In this context, programs are viewed roughly as
follows:

– Start with (higher order) decision trees, then find cases where there is a
pattern P in subtree TXrelative to subtree TY .

– Then replace TXwith P plus a pointer to TY as P ’s input (this is “pattern-
based memo-ization”)

– Repeat, and eventually one gets a compact, complex program rather than a
forest of recursively nested decision trees

Here P is of course a function that can be represented as a decision tree, or else
as a decision tree with pattern-based memo-ization as described above.

The K combinator Kyx = y (using curried notation) is a function so that,
given any input y, Ky is a decision-tree that always outputs y. Given the encod-
ing of (first or higher order) decision trees as bit strings, K combinator for bit
string inputs can be applied to any decision tree as input.

The S combinator has the form Sfxy = (fx)(fy). So if (still currying) we
have a tree taking (a bit-string-encoded version of) another tree as input,

TX1TX2

and we then have the same pattern in both T1 and T2,

(PTY2)(PTY1)

we get universal computing power by memo-izing the P into

SPTY1TY2

What is interesting here conceptually is that we are obtaining totally general
pattern recognition capability, from the simple ingredients of
– Decision trees (i.e. single-feature queries and conditionals)
– Recursion (mapping decision trees into bit strings and vice-versa)
– Recognition of simple repeated patterns (i.e. the same P is a pattern in both

TY2 and its argument TY1)

This gives a novel perspective on the meaning and power of the S combina-
tor. S is recognizing a simple repeated pattern. The universality of SK shows
basically that all computable patterns can be built up from simple repetitions –
if the “building up” involves recursion and higher order functions.

In a phrase: Distinction, If, Repetition-Recognition and Recursion Yield Uni-
versal Computation.

This is nothing so new mathematically, but it’s elegant conceptually to thus
interpret universality of SK in terms of pattern recognition.
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5 Syntax-Semantics Correlation

The line of thinking regarding decision trees, patterns and computations pre-
sented above provides a new way of looking at syntax-semantics correlation,
which is a key concept in probabilistic evolutionary learning [9] and some other
AI algorithms.

Syntax-semantics correlation means the correlation between two distances:

– The distance between program P and program Q, in terms of the syntactic
forms P and Q take in a particular programming language

– The distance between P and Q, in terms of their manifestation as sets of
input-output pairs

If this correlation is reasonably high, then syntactic manipulations can be used
as a proxy or guide to semantic manipulations, which can provide significant
efficiency gains.

It is known that, for the case of Boolean functions, it’s possible to achieve a
relatively high level of syntax-semantics correlation in relatively local regions of
Boolean function space, if one adopts a language that arranges Boolean functions
in a certain hierarchical format called Elegant Normal Form (ENF). ENF can
be extended beyond Boolean functions to general list operations and primitive
recursive functions, and this has been done in the OpenCog AI Engine in the
context of the MOSES probabilistic evolutionary learning algorithm.

The present considerations, however, suggest a more information-theoretic
approach to syntax-semantics correlation.

Consider first the case of Boolean functions. Suppose we re-organize a
Boolean function as a decision tree, choosing from among the smallest such deci-
sion trees representing the function the one that does more entropy-reduction
toward the root of the tree (so one would rather have the first decisions made
while traversing the tree be the most informative). Evaluating a pair of Boolean
functions on a common distribution of inputs, this should cause semantic and
syntactic distance to be fairly correlated.

Specifically, for the semantic distance between two functions f and g defined
on the same input space, consider the L1 distance evaluated relative to a given
probability distribution over inputs. For the syntactic distance, consider first the
decision-tree versions of f and g, where each node is labeled with the amount
of entropy reduction the decision at that node provides. Then if one measures
the edit distance between the trees for f and g, but giving more cost to edits
that involve more highly-weighted (more entropy-reducing) nodes, one should
get a syntactic distance that correlates quite closely with semantic distance. If
one ignore the weights and gives more cost to edits that occur higher up in the
trees, one should obtain similar but weaker correlation.

Of course, practical algorithms like XGBoost use greedy learning to form
decision trees and are thus crude approximations of the “most entropy-reducing
among the smallest decision trees” . . . the trees obtained from XGBoost don’t
actually give the optimal Huffman encoding, so their relationship with entropy
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is only approximate. How good an approximation the greedy approach will give
in various circumstances is difficult to say and requires context-specific analysis.

Going beyond Boolean functions, if one adopts the pattern-based SK model
described above, one has a situation where each pattern in a decision tree T
is equivalent to a decision tree on an input space consisting of decision trees –
and one can think about the degree to which this pattern increases or reduces
entropy as it maps inputs into outputs. Similar to the Boolean case, one can use
an edit distance that weights edits to more entropy-reducing nodes higher; or
one can simplify and weight more strongly those edits that are further from the
tree leaves.

In this context, the rewriting done via Reduct rules in OpenCog today
becomes interpretable as a form of pattern recognition. The guideline implied
is that a Reduct rule should only be applied if there is some reason to suspect
it’s serving as a pattern in the tree it’s reducing. I.e. for a rewrite rule source
→ target, what we want is that when running the rule backwards as target ←
source, the backwards rule constitutes a pattern in source. If this is the case,
then the Reduct engine is carrying out repeated acts of pattern recognition in
a program tree, resulting in a tree that has less informational redundancy than
the initial version; and likely there is higher syntax-semantics correlation across
an ensemble of such trees than among a corresponding ensemble of non-reduced
trees.

6 Connecting Algorithmic and Statistical Complexity:
Larger Higher-Order Decision Trees Have Higher
Logical Entropy

There are well known theorems relating algorithmic information to Shannon
entropy; however these results have significant limitations. It appears one can
arrive at a less problematic relationship between information-theoretic uncer-
tainty and compactness-of-expression by comparing logical entropy with com-
pactness of expression in the CoDD formalism.

In the conventional algorithmic/Shannon case, if one has a source emanating
bit strings according to a certain probability distribution, then for simple (low
complexity) distributions the average Kolmogorov complexity of the generated
bit strings is close to the Shannon entropy of the distribution; but these two
quantities may be wide apart for distributions of high complexity.

To be more precise, one can look at the average code-word length one would
obtain by associating each bit-string with its maximally compressed representa-
tion as its code-word (where the average is calculated according to the assumed
distribution over bit-strings); and then at the average code-word length one
would obtain if one assigned more frequent bit-strings shorter code-words, which
is roughly the entropy of the distribution. The difference between these two aver-
age code-word lengths is bounded by the algorithmic information of the distri-
bution itself (plus a constant). [8].
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This is somewhat elegant, but on the other hand, complex probability distri-
butions are the ones that we care most about in domains like biology, psychology
and AI. So it’s also unsatisfying in a way.

A decision tree implies a partition of its input space, via associating each
input with the partition defined by the path thru the decision tree that it follows.
It is then intuitive that, on average (roughly speaking – I will make this more
precise below) a random bigger decision tree will imply a partition w/ higher
logical entropy than a random smaller decision tree. The same intuitive reasoning
applies to a random decision dag, or a random k’th order decision dag. This is
the CoDD incarnation of the intuition that “bigger programs do higher entropy
things.”

The crux of the matter is the simple observation that adding a decision node
to a CoDD can increase the logical entropy of the partition the CoDD represents,
but it can’t decrease it.

So if we measure the size of a CoDD as the number of decision nodes in it,
then we know that adding onto a CoDD will either increase the logical entropy
or keep it constant. (Why would it be kept constant? Basically if the added
distinction made was then ignored by other distinctions intervening between it
and the final output of the CoDD.)

If we view each step of adding a new decision node onto a CoDD as a random
process, then on the whole larger CoDDs (which involve more steps to be added
onto nothingness) are going to have higher logical entropy, as they involve more
probably-logical-entropy-increasing expansion steps.

So one concludes that, in the CoDD computational model

– adding onto a program does not decrease its logical entropy
– on average bigger programs have higher logical entropy.

6.1 Connecting Algorithmic and Statistical Complexity
in the Quantum Case

What is the quantum version of this conclusion? Baez [1] has presented an exten-
sion of classical combinatory logic that applies to the quantum case; so by con-
sidering these generalized combinators operating over quantum decision trees as
described above, along with a linear operator that flattens a quantum decision
tree into a quantum state vector, one obtains a natural concept of a quantum
CoDD.

The argument becomes too involved to present here, but it seems to work
out that adding a new decision node to a quantum CoDD cannot decrease the
quantum logical entropy – leading to the conclusion that a larger quantum CoDD
will have greater quantum logical entropy. Details of this case will be presented
in a later paper.

7 Conclusion

Beginning from the foundational notion of distinction, we have shown a new path
to constructing and defining the concept of pattern, which has been used as the
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basis of theoretical analyses of general intelligence. We have shown that the pat-
tern concept thus formulated leads naturally to a novel universal computational
model, combinatory decision dags. These CoDDs highlight subtle relationships
between static program complexity and logical entropy, and runtime complex-
ity and Shannon entropy. Further the key concepts appear to generalize to the
quantum domain, potentially yielding elements of a future theory of quantum
cognitive processes and structures.

Further work will apply these concepts to the concrete analysis of particular
classical and quantum cognitive processes, e.g. in the context of evolutionary
program learning systems, probability and amplitude based reasoning systems,
and integrative cognitive architectures such as OpenCog.

Acknowledgments. Conversations with Zar Goertzel were valuable in early stages of
refining these ideas. General inspiration from Lou Kauffman and G. Spencer Brown’s
work on distinctions is also worth mentioning.
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Abstract. What kind of programming language would be most appro-
priate to serve the needs of integrative, multi-paradigm, multi-software-
system approaches to AGI? This question is broached via exploring the
more particular question of how to create a more scalable and usable
version of the “Atomese” programming language that forms a key com-
ponent of the OpenCog AGI design (an “Atomese 2.0”). It is tentatively
proposed that

– The core of Atomese 2.0 should be a very flexible framework of
rewriting rules for rewriting a metagraph (where the rules them-
selves are represented within the same metagraph, and some of the
intermediate data created and used during the rule-interpretation
process may be represented in the same metagraph).

– This framework should (among other requirements)
• support concurrent rewriting of the metagraph according to

rules that are labeled with various sorts of uncertainty-
quantifications, and that are labeled with various sorts of types
associated with various type systems. A gradual typing approach
should be used to enable mixture of rules and other metagraph
nodes/links associated with various type systems, and untyped
metagraph nodes/links not associated with any type system.

• allow reasonable efficiency and scalability, including in concur-
rent and distributed processing contexts, in the case where a
large percentage of processing time is occupied with evaluating
static pattern-matching queries on specific subgraphs of a large
metagraph (including a rich variety of queries such as matches
against nodes representing variables, and matches against whole
subgraphs, etc.)

• allow efficient and convenient invocation and manipulation of
external libraries for carrying out processing that is not effi-
ciently done in Atomese directly

– Among the formalisms we will very likely want to implement within
this framework is probabilistic dependent-linear-typed lambda calcu-
lus or something similar, perhaps with a Pure IsoType approach to
dependent type inheritance. Thus we want the general framework to
support reasonably efficient/convenient operations within this par-
ticular formalism, as an example.
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1 Context and Motivations

The history of AI has persistently featured fascinating feedback, synergy and
tension between AI system design and programming language design. Numerous
researchers have come to the conclusion that, to make the radical AI advances
they sought, they would require a better and more AI-friendly programming
language environment. Thus we got languages like LISP and Prolog and their
derivates. Which have taught us a lot about AI and programming, yet without
leading so far to the hoped-for AI breakthroughs.

Contemporary neural net based AI hasn’t focused on introduction of new
programming languages, but rather on new libraries such as Tensorflow, Torch,
Theano and so forth. On the other hand, the probabilistic programming
paradigm has led to a remarkable profusion of new languages, most of which
have arguably been unnecessary and distracted focus from the problem of effi-
ciently executing probabilistic programs applied to real-world situations.

If one wants to pursue an integrative, multi-paradigm approach to AGI, then
the situation as regards programming languages remains very far from optimal.
If one want to integrate, say, a logic programming system with a deep neural
net perception system and a program learning system based on higher order
functional types – one is quite likely to want to implement the three components
in different languages, and glue them together with scripts written in a simple
language such as python. Either that or one decides to value consistency and
unity over elegance and efficiency, and shoehorns all three into a single language,
reconciling oneself to either dramatic inefficiency or unwieldy, awkward code.

We have faced these issues recently in thinking through an envisioned
redesign and reimplementation of the OpenCog AGI platform. The current ver-
sion of OpenCog relies heavily on a tool called the OpenCog Pattern Matcher,
which is implemented in Scheme and is able to carry out highly complex pro-
cedure execution and predicate evaluation in the course of matching patterns
against OpenCog’s “Atomspace” weighted, labeled hypergraph knowledge store.
This Pattern Matcher is powerful but has become problematic for various rea-
sons, including the lack of any built-in type system with an efficient type checker
associated to it, and the complexity of interlacing the pattern matching process
with calls to external processing tools such as deep neural net toolkits. So we
have begun designing a replacement we call “Atomese 2” – Atomese being the
informal name given to Scheme scripts that invoke Atomspace API calls and
OpenCog Pattern Matcher queries.

It turns out that many of the conceptual and formal issues arising in the con-
text of Atomese 2 design are of significantly broader importance, and are things
that would arise in any attempt to create a programming language having both
realistic efficiency and elegance in the context of integrative AGI applications.
In this paper we will review our thinking regarding Atomese 2, but keeping an
eye always on the broader issues raised. In the end what’s important for AGI
is not any specific programming language, but rather the underlying principles
and structures, which may ultimately be implemented in a variety of different
languages.
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2 Atomese 2 – Conclusions and Considerations

The OpenCog AGI framework, within which the Atomese language under dis-
cussion here operates, is centered on a large, distributed, weighted labeled meta-
graph called the “Atomspace.” Atomese is then a custom language specialized
in pattern-matching and transforming this metagraph (“Atom” being OpenCog
lingo for metagraph nodes or links).

Just to give a flavor, a simple example of Atomese 1 usage is given in Fig. 2 –
drawn from an application built by Cisco Systems1 in collaboration with Singu-
larityNET Foundation, applying OpenCog to fuse results from multiple vision-
processing deep neural nets to make inferential judgments about street scenes
(Fig. 1).

Fig. 1. Visual example of jaywalking that is recognized by Atomese expression in Fig. 2

The OpenCog AGI design includes a carefully wrought combination of mul-
tiple AI methods such as probabilistic logical reasoning and pattern mining;
probabilistic evolutionary program learning; neural net based attention alloca-
tion; neural-symbolic usage of deep neural nets for language, vision and sound;
algorithmic chemistry based computational creativity ... and more. It is an open-
ended framework intended to allow experimentation with a variety of different
AI algorithms and approaches. On the other hand, the assemblage of AI tools
already being explored and experimented with in an OpenCog context is suffi-
ciently broad as to militate strongly toward an extremely flexible design.

Design of Atomese 2 becomes inextricably bound up with design of the overall
OpenCog framework, including the Atomspace itself and the specific AI tools and
methods to be implemented in Atomese and run in the context of the Atomspace.
Among the many issues that arise in this design process are:

1. What should the core Atomese formal language be?
1 https://www.youtube.com/watch?v=s7EtRJatVmg.

https://www.youtube.com/watch?v=s7EtRJatVmg
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Fig. 2. Atomese expression that recognizes simple forms of jaywalking based on out-
put of deep neural visual recognizers. Application of the expression is mediated by
OpenCog’s URE rule engine, which leverages OpenCog Pattern Matcher internally.

2. Algorithmic approach to Atomese interpretation/compilation
3. Utilization of core Atomese to support various specialized formal languages

useful for various AI algorithms
4. Surface form of Atomese language (“syntactic sugar”)
5. RAM-based local Metagraph store – which must be optimized for heavy

Atomese usage of certain sorts
6. Distributed and persistent Metagraph store, perhaps with distributed RAM-

based middleware as well
7. Atomese libraries corresponding to particular AI algorithms and approaches

(e.g. the ones involved in OpenCog already)
8. Mode of integration of Atomese programs with external data/knowledge

stores and processing and learning frameworks (e.g. external deep neural net
libraries)

In this paper we do not aim to address all these issues in depth, but rather focus
on the first three.

In the context of core Atomese and its use to implement other formal lan-
guages (1 and 2 above), we need to think about issues such as:

– simple representation of the various Atom types in play in the OpenCog
design

– effective representation of external entities like knowledge-stores, specialized
learning algorithms, simulations etc. as monads [or using some other powerful
mode of encapsulation]
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– breaking down pattern-matching process into simple atomic operations like
“match this pattern at this location“and “move locus of pattern-matching
to?”

– compatibility of the above breakdown w/ concurrent and distributed
processing

– timed pattern matching should be fairly easily efficiently implementable
– How can we make it simple for a developer to add low level optimized support

for some particular set of predicates/schema that’s of interest?

3 The Role of Static Pattern Matching in Atomese

A peculiarity of the intended AGI use-case for Atomese is that we can assume
the vast majority of processing time is spent on two key operations,

1. checking a particular (generally small) sub-metagraph to see if a certain pat-
tern is matched there, for a wide variety of patterns, to be dynamically gen-
erated and not foreseeable in advance

2. applying a small set of metagraph rewrite rules to a particular (generally
small) metagraph

There can be assumed to be roughly comparable balance between these two sorts
of operations.

Also, there is a need both for rapid processing of these sorts of queries on a
large metagraph in local RAM, and for distributed processing of these sorts of
queries on a metagraph that is stored across numerous machines.

This means it is not important that Atomese be especially efficient at, say,
sorting lists or computing the FFT. What is important is that it is efficient at
doing the above two operations and piping around, and doing simple manip-
ulations on, the results of these operations. If e.g. list-sorting or mathematical
calculations are needed, it is assumed that Atomese will get these things done via
referencing libraries coded in other languages. Elegant and efficient interfacing
with a variety of other languages and toolkits is thus highly important.

3.1 Decomposing the Pattern Matching and Rule System Execution
Process

In OpenCog, the two key operations mentioned above are packaged up into the
Pattern Matcher, which embodies a particular search algorithm and a variety of
programming-language mechanisms along with basic pattern-matching function-
ality; and the Unified Rule Engine which executes a set of rules using forward or
backward chaining, using the Pattern Matcher to manage rule application. This
is a powerful approach but also can be overly rigid.

One design idea under discussion regarding Atomese 2 is that the interpreta-
tion process should break down an Atomese program into small chunks, which
will mostly exemplify the two operations mentioned above (local pattern match-
ing and local rewrite rules), plus operations of traversal within the metagraph.
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Atomese scripts will then combine these chunks in various ways, dispatching
some to remote machines as needed. Improved versions of what the current
OpenCog Pattern Matcher and URE do would then be implemented at Atomese
scripts combining these elementary chunks. In essence, in this approach Atom-
ese scripts will use functional programming constructs to interweave pattern
matching with procedural content execution.

A few other particularities of pattern matching in an integrative AGI context
are that:

– Static pattern matching must include matching against Atoms representing
variables (i.e. variables must be first-class citizens, treated like any other
cognitive content)

– It must also include matching of individual query terms against sub-
hypergraphs (not just individual nodes/links)

It should also be noted that static Atomspace pattern matching via Breadth-
First-Search can be implemented so as to efficiently exploit multi-GPU architec-
tures (using Gunrock [10] or similar tools).

4 A Two-Layer Language Design

This section outlines a potential high level approach to Atomese 2 design based
on the above concepts.

4.1 A Generic Atomese Core

To enable the flexible exploration needed to work from our current state of
knowledge toward a refined AGI design, the Atomese core must be something
quite generic – e.g. it must comprise both

– a way of defining/manipulating Atoms (including specifying Atoms that
embody rewriting rules for mapping sub-metagraphs into sub-metagraphs)

– a way of defining/utilizing Atom type systems and Atom indexes associated
w/ specific Atom types or type-systems. (Note that the type systems defined
should be defined within the same metagraph in which the Atoms reside.)

For each Atom type system that one defines, one should be able to plug in a
type-checker/type-inference-system.

The Atomese core may then need to be a rather generic gradual-typing frame-
work, that deals with a system involving some Atoms that have incompletely
specified or nonspecified types, and other Atoms that are defined w/in specific
type systems.
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Gradual Typing. For background on gradual typing see: [8,9].
While the matter seems not to have been explored theoretically in great

detail, it seems intuitive that gradual typing in programming languages should
map via Curry Howard type isomorphisms into paraconsistent logics of some
sort.

Achieving efficient execution of gradually typed languages is challenging
(though not infeasible) because of obvious issues regarding casting between the
dynamically and statically types parts of a program [6]. However, given the pecu-
liarities of Atomese, this bottleneck may not matter as the pattern-matching
bottleneck may be more severe.

4.2 Critical Formalizations Atop the Core

The next larger layer of the onion would then be a specific type system (or small
set of type systems) that we find to be interesting and potentially adequate for
the particular AGI-oriented algorithms we’re developing in practice. This would
be a set of languages/formal systems developed on top of core Atomese. This is
where, tentatively, it seems probabilistic linear dependent types will come in.

The obvious advantage of this sort of layered approach is that we can then
modify the “probabilistic linear dependent types” or other specific formalizations
a little later without having to rebuild the architecture. However, we should
expect that in practice nearly all users are going to end up working with the
“specific type system” layer of the onion we initially create, rather than the
“generic gradual-typing based Atom and Atom-type-system framework” layer.

5 Some Specific Type Systems of Apparent AGI
Relevance

One hypothesis that seems very much worth exploring is to use probabilistic
linear dependent types with IsoType type inference as a formalization on top
of Atomese core, with power to drive both probabilistic logic and also related
applications such as probabilistic program learning.

It seems that this particular flavor of type system may meet the needs of
a variety of AI algorithms currently existing in OpenCog, plus others that
have been proposed for OpenCog integration: Probabilistic Logic Networks,
surprisingness-based pattern mining, probabilistic evolutionary program learning
(MOSES), probabilistic programming (including cases with neural nets or prob-
abilistic logic inference on the back end), nonlinear-dynamical attention alloca-
tion, content-addressable episodic memory, neural-symbolic perception process-
ing and action control.

The full argument why this particular formalization direction is valuable for
meeting these needs of these AI algorithms is involved with many parts and
would be too lengthy to full elaborate here. Rather, here only a few of the more
critical points will be sketched.
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5.1 Dependent Types

Dependent types are valuable in an AGI context because they enable elegant
manifestation of the morphism between declarative knowledge (logic expres-
sions) and procedural knowledge (programs). Programs expressed with depen-
dent types can be very straightforwardly interpreted as logic expressions. Con-
verting between procedural and declarative knowledge is key to AGI, and having
a formalism that makes this convenient is high value. An elegant prototype inter-
preter for lambda calculus with dependent types is Lambda-Pi, available as open
source code on Github2.

5.2 IsoType Systems

Pure IsoType Systems (PITS) are a way to get (a lot of) the power of dependent
types without making type-checking undecidable [11]. They may also help with
making dependent type checking not only decidable but reasonably fast, though
this is still an active research topic. Whether their limitations are important
from an AGI perspective is not clear.

5.3 Linear Types

Engineering General Intelligence [3,4], the foundational book outlining the the-
ory behind OpenCog, has a whole section on “effort management” – counting the
computational resource usage of each cognitive operation and using this in plan-
ning etc. This is important and ties into Occam’s Razor heuristics which are key
to AGI theory. Though we haven’t dealt with explicit effort management much
in our practical OpenCog work so far.

Linear logic basically lets you count resource usage in the guts of your logic
engine (or equivalently, your program execution process). Of course there are
always other ways to do this, but having it built into the logic is a way that
fits naturally with reflection and meta-computation. Dependent types have been
gotten to work with linear types [5]; and pattern matching with linear types has
also been explored [7].

We note that to make probabilistic linear lambda calculus confluent you
choose either call-by-value or call-by-reference. Similarly making either of these
choices renders type checking decidable in dependent type theory w/isotypes.
One guesses that making probabilistic linear lambda calculus with dependent
linear types, if one wants to restrict type equivalency to isotyping, then one will
get both confluence and decidability from either choice of call-by-reference or
call-by-value.

2 https://github.com/lambda-pi-plus/lambda-pi-plus, https://github.com/tdietert/
lambda-pi.

https://github.com/lambda-pi-plus/lambda-pi-plus
https://github.com/tdietert/lambda-pi
https://github.com/tdietert/lambda-pi
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5.4 Probability/Logic Interoperation

Probabilistic methods are probably the biggest innovation in AI over the last
couple decades, and it seems clear that including probabilistic representation and
manipulation at the basic level is going to be a good idea for any AGI engine.

Recent work [1] gives a variant of probabilistic lambda calculus that is con-
fluent (it achieves confluence by limiting the reductions that can take place, in
a manner framed via linear logic).

This sort of low-level probability/logic integration lays the groundwork for
specific probabilistic-logic math aimed at deductive, inductive, abductive and
other forms of inference, such as e.g. OpenCog’s Probabilistic Logic Networks
(PLN) framework [2] carries out.

PLN depends heavily on non-confluent reductions in probabilistic logic
expressions, however these are necessarily going to be kind of heuristic and
history-guided, so it makes sense for them to live in the next layer of the onion
– i.e. we have core Atomese, then probabilistic linear dependently types lambda
calculus or similar built on that, then PLN built on that. But the building of PLN
on top of elaborated lambda calculus can use the same basic Atomese syntax
and interpreter as the building of elaborated lambda calculus on core Atomese.

6 Toward an Integrative AGI Language and Architecture

Figure 3 summarizes the overall “next-generation OpenCog” architecture that is
suggested by the above thoughts on Atomese 2 design.

Fig. 3. A software architecture for integrative AGI, with a pattern-matching-focused,
gradually typed Atomese language at the core.
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In the context of the above figure, e.g. PLN logic might end up using a type
system founded in probabilistic linear dependent types with IsoType type infer-
ence. On the other hand, for automated program learning it might be decided
that the IsoType approach is too restrictive, and it’s better to bite the inefficiency
bullet a little harder and go with a more flexible type inheritance mechanism.

In this case, via the gradual typing approach, we could have some Atoms
that are not typed at all, and can thus play a role in either the PLN or program
learning focused type systems. On the other hand, if program learning generates
a program that then needs to be reasoned about, this will necessitate a mapping
from the program-learning type system to the probabilistic-logic type system.
There will be some equations that are consistent in one of these logics but not
the other (in particular, perhaps some that are consistent using IsoTypes and
not using more flexible inheritance mechanisms) – thus rendering the overall
framework paraconsistent, rather than strictly consistent.

7 Conclusion

There is much more to be learned here and we are in the middle rather than at
the end of the Atomese 2 language design process. However, the thinking we’ve
done so far has already highlighted some issues of likely broader relevance in
the context of integrative approaches to AGI. For instance, the dominance of
RAM-based pattern matching in terms of runtime resource consumption, and
the convenience of a gradual typing approach, are points going well beyond the
particulars of OpenCog’s chosen assemblage of AI algorithms.

Formulating the right programming language is very unlikely to magically
produce a workable AGI system. However, a programming language and environ-
ment that eases rapid implementation and scalable deployment of cross-paradigm
AI algorithmics, could certainly dramatically accelerate progress.

Acknowledgements. Many of the ideas reviewed here originated in discussions with
Alexey Potapov, Cassio Pennachin, Vitaly Bogdanov and other SingularityNET col-
leagues – though the specific presentation of these ideas here is my own responsibility
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Abstract. A novel approach to automated learning of syntactic rules
governing natural languages is proposed, based on using probabilities
assigned to sentences (and potentially longer word sequences) by trans-
former neural network language models to guide symbolic learning pro-
cesses like clustering and rule induction. This method exploits the learned
linguistic knowledge in transformers, without any reference to their inner
representations; hence, the technique is readily adaptable to the contin-
uous appearance of more powerful language models. We show a proof-of-
concept example of our proposed technique, using it to guide unsuper-
vised symbolic link-grammar induction methods drawn from our prior
research.

Keywords: Unsupervised grammar induction · Transformers · BERT

1 Introduction

Unsupervised grammar induction – learning the grammar rules of a language
from a corpus of text or speech without any labeled examples (e.g. sentences
annotated with human-created syntax parses) – remains in essence an unsolved
problem. Although it has been approached for decades [2], useful applications
for restricted domains have been presented [9], and state-of-the-art performance
is improving [10], the resulting grammars for natural language are still not able
to properly capture its structure.

Bypassing explicit representations of the grammar rules, recent transformer
neural network models have shown powerful abilities at language prediction
and generation, indicating that at some level they internally “understand”
those rules. However, such rules don’t seem to be found in the neural connec-
tions in these networks in any straightforward manner [3,8], and are not easily
extractable without supervision. Supervised extraction of grammatical knowl-
edge from the BERT [4] network reveals that, to map the state of a transformer
network when parsing a sentence into the sentence’s parse, complex and tangled
matrix transformations are needed [7].
c© Springer Nature Switzerland AG 2020
B. Goertzel et al. (Eds.): AGI 2020, LNAI 12177, pp. 153–163, 2020.
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Here we explore an alternate approach: Don’t try to milk the grammar out
of the transformer network directly, rather use the transformer’s language model
as a sequence probability oracle, a tool for estimating the probabilities of word
sequences; then use these sequence probability estimates to guide the behavior
of symbolic learning algorithms performing grammar induction. Our proposal is
actually agnostic in the mechanism to find rules, and could synergize well with
related efforts [6,12]; what we introduce is a novel and powerful way to guide the
induction. This is work in progress, but preliminary results have been obtained
and look quite promising.

Full human-level AI language processing will clearly involve additional
aspects not considered here, most critically the grounding of linguistic con-
structs in non-linguistic data [14]. However, the synergy between symbolic and
sub-symbolic aspects of language modeling is a key aspect of generally intel-
ligent language understanding and generation which has not been adequately
captured so far, and we feel the work presented here makes significant progress
in this direction.

2 Methodology

Transformer network models like BERT [4], GPT-2 [11], and their relatives pro-
vide probabilistic language models which can be used to assess the probability
of a given sentence. The probability of sentence S according to such a language
model tells you the odds that, if you sampled a random sentence from the model
(used in a generative way), the output would be S. If S is not grammatical
according to the grammar rules of the language modelled by the network, its
probability will be very low. If S is grammatical but senseless, we assume from
experimentation with these models, that its probability should also be quite low.

Having a sentence (or more generally word sequence) probability oracle of
this nature for a language provides a way to assess the degree to which a given
grammar G models that language. What one wants is that: the high-probability
sentences according to the oracle tend to be grammatical according to G, the
low-probability sentences according to the oracle are less likely to be grammatical
according to G, and G is as concise as possible. The grammars that best fit these
conjuncted factors are the best grammatical models of the language in question.

This concept could be used to cast grammar induction as a probabilistic pro-
gramming problem, in a relatively straightforward but computationally exorbi-
tant way. Just sample random grammars from some reasonable distribution on
grammar space, and evaluate their quality by the above factors.

What we propose here is conceptually similar but more feasible: Begin with
a symbolic grammar learning algorithm which is capable of incrementally build-
ing up a complex grammar, then use sentence probability estimates from a neu-
ral language model to guide the grammar learning. One could view this as an
instance of the probabilistic programming approach, using a linguistic-theory-
based heuristic method of sampling grammar space.

Our prior work on symbolic grammar induction [5] uses two mains steps
to build a dependency grammar from an unlabeled corpus. First, separate the
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vocabulary of interest into word categories (functionally equivalent to parts of
speech, with a certain level of granularity). An implicit sub-step here is the
disambiguation of polysemous words in the vocabulary, so that a single word
could be assigned to more than one category. Then, perform rule induction to
find how words in these categories are connected to form grammatical sentences.
Our proposed approach, which enhances the aforementioned steps with the use
of transformer language models, is depicted in Fig. 1 and summarized as:

1. Infer word-senses and parts of speech from vectors built using a neural lan-
guage model as a sentence probability oracle.

2. Infer grammatical rules from symbolic pattern-analysis of the corpus tagged
with these senses and parts of speech.

3. Assemble a grammar incrementally from inferred rules. To evaluate whether
a given rule should be included in the grammar:

– Using a tree transformer network, generate a set of sentences consistent
with the given rule, and others that follow mutations of the rule.

– Use a neural model as a sentence probability oracle to estimate whether
the inferred rule leads to better generated sentences than its mutation(s).

Transformer
Neural Net

/Probabilistic
Language Model

Text corpus

Clustering

Word instance
embeddings

Word senses

ClusteringWord-sense
embeddings

Parts of Speech
(PoS)

PoS-tagged
corpus

Symbolic
Grammar

Rule Learner

Tree
Transformer

Network

Grammar Rule
EvaluatorInferred grammar

Grammar-based
generated sentences

Fig. 1. High-level grammar learning architecture involving symbolic learning guided
by estimated word sequence probabilities from a transformer network.

For our early experiments, we have chosen BERT [4] as the transformer to use,
but the idea could easily make use of similar unsupervised pre-trained networks.

2.1 Assessing Sentence Probability

To explain details of our approach, we begin with the computation of sentence
probability according to a neural language model (illustrated in Fig. 2).

Given a sentence S = [w0, w1, ..., wN ], composed of N words wi, i ∈
[0, 1, ..., N ], we want to calculate its probability P (S). A way to decompose that
probability into conditional probabilities is:

Pf (S) = P (w0, w1, ..., wN ) = P (w0) · P (w1|w0) · P (w2|w0, w1) · ... · P (wN |w0, w1, ..., wN−1),

which we call forward sentence probability.



156 B. Goertzel et al.

Fig. 2. Example of forward sentence probability calculation.

A conditional probability P (wi|wi−1, ..., w0) can be obtained from BERT’s
masked word prediction model by taking the whole sentence, masking all the
words which are not conditioned in the term (including wi), and obtaining
BERT’s estimation for the probability of wi.

To exemplify the idea, we summarize how to calculate the forward probability
of the sentence “She answered quickly”. The probability is given by

Pf (She answered quickly) = P (She) ·P (She answered|She) ·P (She answered quickly|She answered).

Each factor translates to a BERT Masked Language Model (MLM) prediction
for a sentence with masked tokens. For example,

P (She answered|She) = P (MASK2 = answered|She MASK2 MASK3),

and we get the probability that “answered” is predicted as the second token in
the BERT MLM.

Now, to take advantage of BERT’s bi-directional capabilities, we can estimate
the sentence’s backwards probability in a similar fashion:

Pb(S) = P (w0, w1, ..., wN ) = P (wN ) ·P (wN−1|wN ) ·P (wN−2|wN−1, wN ) · ... ·P (w0|w1, w2, ..., wN )

We finally approximate the sentence probability as the geometric-mean of
the two directional ones:

P (S) =
√

Pf (S) · Pb(S)

2.2 Word Category Formation

Following our prior work on symbolic grammar induction [5], and a number
of previous works, we propose to generate embeddings for the words in the
vocabulary and cluster them using a proximity metric in the embedding space.
Each final cluster can be considered a different word category, whose connection
rules to other clusters will be defined in the induced grammar. Unlike prior work,
we use sentence probabilities as the embedding features.

We expand each sentence in the corpus into N sentences with a “blank”
token in a different position, where N is that sentence’s length. Each of those
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sentences with a blank is a feature for the word-vectors we will build. Hence, we
can think of a word-sentence matrix M , where rows are unique sentences with
blanks in them, and columns are the words in the vocabulary (see Fig. 3).

We fill each cell in the matrix with the probability of the corresponding
sentence-with-a-blank (row), when the blank is substituted by the corresponding
word (column). That is, if S′

i is the sentence-with-a-blank in row i and wj is the
word in column j, then the cell Mi,j = P (S′

i|blank filled with wj).
Once the matrix is filled, word categories are obtained by clustering the

obtained word vectors (columns of the matrix). Or, if one has performed word
sense disambiguation (which can be done based on different computations from
this same matrix, as will be described below), by clustering similar vectors cor-
responding to word senses.

Fig. 3. Left: Matrix of words versus sentences-with-one-blank; each cell contains the
probability of the given sentence filled with the given word. Right: The matrix restruc-
tured after WSD.

2.3 Word Sense Disambiguation

Word embeddings obtained from transformer networks by supervised learning
have been used to disentangle word senses [16]; here we attempt this task in
an unsupervised manner. From an unlabeled training corpus, we obtain a trans-
former embedding for each instance of each word in its given context. Then, for
each word in the vocabulary, we gather all of its embeddings and cluster them;
we consider the resulting clusters as different word senses.

Specifically, a word-instance can be represented by a vector whose compo-
nents are given by the probability that the neural language model assigns to
the sentences (and discourse contexts) obtained by replacing such word instance
with each word in the vocabulary.

Consider the word-instance “test” in “The test was a success”. If the cor-
pus vocabulary is V = (frog, which, ...) then we can represent this instance’s
intension (contextual properties) with the vector I:

– I(test, The was a success)[1] = P(The frog was a success)
– I(test, The was a success)[2] = P(The which was a success)
– . . .
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Noticeably, the matrix obtained this way is the same one used for word-
category formation; only, instead of performing clustering over the word vectors
(columns), we need to independently cluster the rows that belong to instances
of the same word to find their different senses.

Word Category Formation in Depth. Once polysemy is taken care of, we
can perform word-categorization over word-senses, allowing the same word to
be assigned to different parts of speech (PoS) (e.g. “test” as a noun and as a
“verb”). We need, however, to re-structure the sentence probability matrix to
express word-senses as columns before grouping them into PoS. This is done by
reassigning the previously-calculated probabilities to the correct word-sense.

Starting from the original matrix M , we zero-initialize a disambiguated
matrix M ′ with the same number or rows, and as many columns as word-senses.
For a given entry in the original matrix, Mi,j , corresponding to sentence Si and
vocabulary word wj , we need to decide to which of its senses to assign it to. If wj

has only one sense, the decision is trivial; otherwise, we take the embedding for
sentence Si (that is, the entire row Mi, as in the WSD process), and measure its
distance from the centroids of the different senses for wj obtained in the WSD
step. The closest sense gets assigned the value Mi,j , and the rest keep a zero.
This way, we build word-sense embeddings by using the columns of M ′; clustering
these embeddings creates PoS categories and finer-grained syntactico-semantic
categories. Figure 3 illustrates the disambiguated probability matrix.

2.4 Grammar Induction

After word categories are formed, grammar induction can take place by figuring
out which groups of words are allowed to link with others in grammatical parses.
A grammar can be accumulated by starting with one rule and adding more
incrementally, using the neural language model to evaluate the desirability of
each proposed addition. The choice of candidate rules is made by a symbolic
rule induction algorithm; so far we have used the Grammar Learner process
described in [5].

For a grammar rule proposed as an addition to the partial grammar already
learned, we generate sentences that use that rule within the given grammar
and obtain their sentence probabilities P (S). Then we corrupt the rule in some
manner, adjust the grammar accordingly, generate sentences from this modified
grammar starting with the mutated rule, and evaluate their P (S). If the sen-
tences from the modified grammar decrease significantly in quality (where the
threshold is a parameter), then the original rule is taken as valid. The rationale is
that correct grammar rules will produce better sentences than their distortions.

In the case of the link grammar formalism [13], which we have used in our
work so far, a grammar rule consists of a set of disjuncts of conjunctions of
typed “connectors” pointing forward or backward in a sentence. A mutation of
this type of rule can be the swapping of each connector in the rule, which also
implies a word-order change.
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For example, if we have a rule R that connects the word “kids” with the
word “the” on the left and the word “small” also on the left, in that order:

kids: small- & the-,
which allows the string “the small kids”, then the mutated rule R∗ would be

kids: small+ & the+,
which accepts the string “kids small the”1.

Fig. 4. Link-parse of “The small kids play football” according to the standard English
link grammar dictionary [13].

This methodology requires a way to generate sentences from proposed gram-
mars. One approach is to use a given grammar to guide the attention within a
Tree Transformer [15]. The standard Tree Transformer approach guides atten-
tion based on word-sequence segmentation that is driven by mutual information
values between pairs of adjacent words. One can replace these probabilities with
mutual information values between pairs of words that are linked in partial
parses that agree with a provided grammar.

Currently we are using a simpler stochastic sentence generation model in
our proof-of-concept experiments, and planning to shift to a Tree Transformer
approach for the next phase of work.

So, the rule R guides the generation of sentences like S = “The small kids
play football” (see its Link-parse in Fig. 4). The rule R∗ guides the generation
of sentences like S∗ =“Kids small the play football”. The language model says
P (S) > P (S∗), thus arguing in favor of adding R to one’s grammar (and then
continuing the incremental learning process).

Alternatively, instead of producing mutated rules, one could also compare
the probabilities of sentences generated with the rule under evaluation against
those of a set of reference sentences of the same length, like those in the corpus
used to derive the grammar, or the word categories obtained previously.

3 Proof of Concept (POC)

Scalable implementation and testing of the ideas described above is work in
progress; here we describe some basic examples we have explored so far, which
validate the basic concepts (but do not yet provide a thorough demonstration).

1 Notice that connectors in the rules for small and kids also have to be modified to
accommodate this mutation, i.e. they need to swap kids+ to kids-.
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We chose to perform our initial experiments using BERT2, due to its popularity
in several downstream tasks (e.g. word sense disambiguation [16]).

Following the workflow of the grammar induction process, we first show an
example of word sense disambiguation, then one for word category formation,
and finally grammar rule evaluation.

3.1 Word Sense Disambiguation

For an initial simple experiment, we created a small corpus of 16 sentences con-
taining 146 words, out of which 8 are clearly ambiguous (to an English speaker).
Both syntactic and semantic ambiguities were included. We generated embed-
dings for each word instance in the corpus, as described in Sect. 2.3. Clustering
was performed with spherical clustering methods from Spherecluster3 [1], as well
as out-of-the-box DBSCAN and OPTICS models in Python’s scikit-learn library
with the cosine-distance metric.

We found that SphericalKMeans clustering did the best job at separating
word senses in our test corpus. Setting the number of clusters to two, the algo-
rithm achieved an F1-score of 0.91. As examples, the disambiguation for the
word “fat”, which was perfect, looks as follows:

Cluster #0 samples:

santiago became FAT after he got married.

there are many health risks associated with FAT.

the negative health effects of FAT last a long time.

Cluster #1 samples:

the FAT cat ate the last mouse quickly.

there is a FAT fly in the car with us.

The clustering for “time”, on the other hand, placed one instance in the
wrong category, and looks like this:

Cluster #0 samples:

i was born and raised in santiago de cuba , a long TIME ago.

my mouse stopped responding at the same TIME as the keyboard.

the negative health effects of fat last a long TIME.

Cluster #1 samples:

you will TIME the duration of the dress fitting session.

TIME will fly away quickly.

The disadvantage of using this straightforward implementation of SphericalK-
Means is that one has to specify the number of clusters to use. When requesting
more clusters than there are senses for a word, the algorithm spreads instances
with similar meanings to different clusters. This is especially the case with words
that we wouldn’t consider ambiguous, like function words (we have sought to
filter these by explicitly not disambiguating the top 10% most frequent words in
the corpus). However, this may not be a terrible problem in our use case, as the

2 In particular, we use Huggingface’s implementation of BERT, contained in their
“transformers” package [17] https://huggingface.co/transformers.

3 https://github.com/jasonlaska/spherecluster.

https://huggingface.co/transformers
https://github.com/jasonlaska/spherecluster
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word category formation algorithm will simply create more word-sense vectors
per word, which then it could cluster together in the same word category. Future
experiments will involve alternatives that automatically estimate the number of
clusters to use.

3.2 Word Category Formation

Here, working with the same corpus as for WSD, we used the disambiguation
results described above to build word vectors, thus allowing for words to be cat-
alogued in more than one group. Rather than SphericalKMeans, we found that
OPTICS, a method that doesn’t require a parameter for the number of clusters
and can leave vectors uncategorized (shown as Cluster #-1), offers remarkable
quality in most formed clusters (#0-14), with a good level of granularity.

Cluster #-1: [fat , fat , ate , last , mouse , mouse , quickly , quickly ,

., there , there , many , many , health , health , associated , with ,

with , stopped , responding , same , time , as, will , fly , fly , negative ,

of, a, a, long , in, us, tomorrow , she , she , was , was , wearing ,

lovely , brown , brown , dress , attendees , did , not , properly , for ,

occasion , became , after , got , married , ’, ’, s, deteriorated ,

and , de, ,, ago , fitting , wasn , t, year , smith , protagonize ,]

Cluster #0: [the , my, his ,]

Cluster #1: [born , able ,]

Cluster #2: [raised , growing , bought ,]

Cluster #3: [cat , keyboard , car , session , feed , family , microsoft ,]

Cluster #4: [duration , episode , series ,]

Cluster #5: [are , is ,]

Cluster #6: [morning , night ,]

Cluster #7: [away , out ,]

Cluster #8: [they , he, i, you ,]

Cluster #9: [risks , effects ,]

Cluster #10: [at, to ,]

Cluster #11: [santiago , cuba ,]

Cluster #12: [time , will , long ,]

Cluster #13: [dress , and ,]

Cluster #14: [of, in ,]

An evident problem with this result is that most of the words remain uncate-
gorized (in Cluster #-1). Although we would expect the full iterative grammar
learning algorithm we propose to be able to live with that and cluster some of
the remaining words in the next pass, we will first try to fine-tune the procedure
to alleviate this situation, as well as explore some other clustering algorithms.
At the same time, we predict that the results will improve when we use a larger
number of features (instead of only 16 sentences for a total of 146 different fea-
tures). A very simple expansion of the vocabulary to cluster (not shown) already
showed a similar number of more populated clusters.

3.3 Grammar Rule Evaluation

We show a simple use case for grammar rule evaluation, using the basic rule
modification strategy proposed in the methodology: swapping the direction of
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the connectors that make up a rule, and comparing the sentences generated with
and without the mutation.

For this experiment, we created a proof-of-concept grammar with 6 words
divided in 6 categories: determiner, subject, verb, direct object, adjective,
adverb. Then, we assigned relationships among the classes. Using a semi-random
sentence generator, this grammar produces sentences like “the small kids eat the
small candy quickly.” (that being the longest possible sentence in this grammar).

We then introduced some extra spurious rules to the grammar by hand. From
a total of 21 rules (15 correct ones vs. 6 spurious ones), the grammar can generate
sentences like “kids eat the small candy kids eat candy the small quickly.” Which
clearly shows that the grammar is not correct anymore (this grammar has loops,
so this is not even the longest sentence permitted by these simple modification).

Finally, we ran a first version of the grammar rule evaluator, to find out that
all of the spurious rules were rejected, as well as three of the “correct” rules.

We notice that among the “correct” rules that were discarded, at least one:

eat: kids -,

generates sentences with no direct object, like “the kids eat.” This sentence,
although valid, might not be very common for the BERT model, and thus obtain
a low probability.

Similarly, the reverse of this rule, as modified by the evaluation algorithm:

eat: kids+,

generates sentences like “eat the kids.”, which is also grammatically valid, and
maybe as common as the previous case. This is a sensible explanation for the
rule’s rejection.

4 Conclusion and Future Work

Our proof-of-concept experiments give intuitively strong indication of the via-
bility of the methodology proposed for synergizing symbolic and sub-symbolic
language modeling to achieve unsupervised grammar induction. The next step
is to create a scalable implementation of the approach and apply it to a large
corpus, and assess the quality of the results. If successful this will constitute
significant progress both toward unsupervised grammar induction, and toward
understanding how different types of intelligent subsystems can come together
to more closely achieve human-like language understanding and generation.
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Abstract. The DeepWalk algorithm is used to assign embedding vec-
tors to nodes in the Atomspace weighted, labeled hypergraph that is
used to represent knowledge in the OpenCog AGI system, in the con-
text of an application to probabilistic inference regarding the causes of
longevity based on data from biological ontologies and genomic analyses.
It is shown that vector difference operations between embedding vectors
are, in appropriate conditions, approximately alignable with “intensional
difference” operations between the hypergraph nodes corresponding to
the embedding vectors. This relationship hints at a broader functorial
mapping between uncertain intensional logic and vector arithmetic, and
opens the door for using embedding vector algebra to guide intensional
inference control.

1 Introduction

Graph embedding algorithms assign vectors to nodes of a graph, with elegant
properties such as: Nodes which are similar according to the graph topology and
geometry get similar embedding vectors.

Word embedding vectors derived from natural language corpora via algo-
rithms like word2vec display desirable “vector arithmetic” properties (e.g. man-
woman = king-queen, where by “man” in the equation is meant the embedding
vector for the word “man”).

An interesting question is then: If we have a natural notion of “semantic
difference” between nodes in a graph, do the relationships between embedding
vector differences reflect corresponding relationships between node semantic dif-
ferences?

We present preliminary proof of concept results suggesting that, if embedding
is done appropriately, sometimes the answer is yes.

c© Springer Nature Switzerland AG 2020
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2 Explorations with the Bio-Atomspace

We have conducted this investigation in the context of our utilization of the
OpenCog Atomspace [3,4] – a weighted, labeled hypergraph AI knowledge store –
to conduct probabilistic logical inference regarding the genomics of longevity. We
use the “Bio-Atomspace” – an Atomspace filled with knowledge from multiple
bio-ontologies, and with results from statistical and machine learning analysis of
various genomics datasets from longevity-related studies (see [2] for prior work
with an earlier version of Bio-Atomspace). Application of the Probabilistic Logic
Networks (PLN) engine [1] to the Bio-Atomspace produces uncertain logical
explanations for the connections found by machine learning algorithms between
certain gene variations or expressions and combinations thereof and phenotypes
such as longevity.

A very simple example of the inferences PLN conducts in this context is as
follows:

;; Inference trail of

;;

;; (MemberLink (stv 0.12426852 0.061859411)

;; (GeneNode "ITPR3")

;; (ConceptNode "HAGR increased expression-with-aging GeneSet")

;; )

?

(ListLink

(ListLink

(DefinedSchemaNode "intensional-similarity-direct-introduction-rule")

(ConceptNode "GO:0050794" (stv 0.55316436 0.96080161))

(NumberNode "1")

)

(ListLink

(DefinedSchemaNode "intensional-similarity-to-member-rule")

(IntensionalSimilarityLink (stv 0.092158662 0.67346939)

(ConceptNode "GO:0030889" (stv 0.00081595186 0.96080161))

(ConceptNode "GO:0050794" (stv 0.55316436 0.96080161))

)

(NumberNode "89")

)

(ListLink

(DefinedSchemaNode "intensional-similarity-property-deduction-rule")

(IntensionalSimilarityLink (stv 0.13080897 0.13469388)

(GeneNode "FCGR2B")

(GeneNode "ITPR3")

)

(NumberNode "1345")

)

)

– this inference basically explains why gene ITPR3 has increased gene expres-
sion in aged individuals, via noting its possession of many similar properties
to gene ITPR2 (which has increased gene expression in aged individuals); and
noting that it belongs to Gene Ontology category 50794, which is similar to
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Gene Ontology category 30889, which is known to be related to aging. Many
more complex and subtle inferences are constructed as PLN does its work on
the Bio-Atomspace, but they involve similar players.

In this bio-AI setting, one relevant measure of semantic difference is the
“intensional difference” between two concept-representing hypergraph nodes,
which measures the quantity of informative properties held by one of a pair
of nodes but not the other.

We present exploratory analysis showing that in some cases of real-world rel-
evance, intensional difference between concept nodes behaves similarly to vector
difference between the embedding vectors corresponding to the concept nodes.

If these preliminary observations hold up more broadly, this will be highly
valuable for inference control. It suggests that one may be able to guide inten-
sional inference by directing a logic engine to roughly follow a vector between
the embedding vector of the premises and the embedding vector of the desired
conclusion.

3 DeepWalk on Atomspace

For producing vector embeddings from the OpenCog Atomspace, we have uti-
lized the DeepWalk algorithm [6] to create (e.g. 100-dimensional) numerical vec-
tors corresponding to Atomspace nodes. We also did some preliminary experi-
ments with GraphCNNs, but based on our early explorations this seemed less
promising so we proceeded with DeepWalk.

The rough methodology involved here is:

1. Paths through the Atomspace knowledge hypergraph are created and
exported

2. The corpus of paths is analyzed, much as if it was a corpus of natural language
sentences

3. Vectors are assigned to nodes/links based on neural-net analysis of their rela-
tionship to other nodes/links in the paths

This allows vector-processing algorithms such as neural nets to be applied to
(vectorial representations of) symbolic nodes and links, complementing and syn-
ergizing with the symbolic manipulations occurring within the Atomspace.

Two example paths from Bio-Atomspace, among the numerous fed to Deep-
Walk for producing its embedding vectors are:

[’GO:0039625’, ’inherits-geneontologyterm’, ’GO:0044423’,

’geneontologyterm-inherited-by’, ’GO:0019028’, ’inherits-geneontologyterm’,

’GO:0044423’, ’geneontologyterm-inherited-by’, ’GO:0098025’,

’inherits-geneontologyterm’, ’GO:0044423’, ’inherits-geneontologyterm’,

’GO:0005575’, ’has-gene-ontology-member’, ’OXNAD1’, ’interacts_with’,

’PROSC’, ’interacts_with’, ’SMS’, ’interacts_with’, ’BAP1’]

[’GO:1900826’, ’has-gene-ontology-member’, ’CAV3’, ’is-in’, ’plasma membrane’,

’in-context-of’, ’R-HSA-445355’, ’is-context-where’,
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’cytoplasmic vesicle membrane’, ’has’, ’TRIM72’, ’is-in’,

’cytoplasmic vesicle membrane’, ’in-context-of’, ’R-HSA-445355’,

’inherits-pathway’, ’R-HSA-397014’, ’pathway-inherited-by’, ’R-HSA-445355’,

’inherits-pathway’, ’R-HSA-397014’, ’pathway-inherited-by’, ’R-HSA-390522’,

’inherits-pathway’, ’R-HSA-397014’, ’pathway-inherited-by’, ’R-HSA-5576891’]

Basically, what DeepWalk does is to assign an embedding vector to a node
based on which other nodes and links it occurs nearby in these various paths.
Two nodes will get similar embedding vectors if they tend to occur in similar
contexts in the set of walks.

If one imagines a sparse feature vector for each node, with each entry corre-
sponding to the degree to which the node possesses a certain contextual feature
(e.g. occurring adjacent to or shortly thereafter some other node in paths; and
with a degree calculated in terms of the informativeness with which this feature
allows you to distinguish the node from other nodes), then the embedding vector
of a node is conceptually similar to a PCA-type embedding of this sparse feature
vector. Indeed there is evidence that PCA on these sorts of sparse feature vectors
have similar behavior to word2vec type embeddings [5].

3.1 Arithmetic on Atomspace Embedding Vectors

The word2vec vector arithmetic symmetries exemplified by the case “man
- woman = king - queen” mentioned above, is also observable in the Bio-
Atomspace setting.

Let e.g. V (B cell differentiation) denote the embedding vector for the Node
corresponding to the concept “B cell differentiation” (corresponding in this case
from a Gene Ontology category of the same name). We then find vector arith-
metic identities such as

V (B cell differentiation)−V (T cell differentiation) = V (B cell proliferation)−V (T cell proliferation)

analogous to relations found among word2vec vectors embedding natural lan-
guage concepts.

The general pattern underlying these sorts of vector difference identities may
be summarized as

V (A&X) − V (B&X) = V (A&Y ) − V (B&Y )

where e.g.

– A = male
– B = female
– X = human
– Y = top royalty

or
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– A = B-cell
– B = T-cell
– X = differentiation
– Y = proliferation

The reason this sort of relationship might hold is conceptually quite clear. If
vector entries represent combinations of node properties, weighted by their infor-
mativeness about the node corresponding to the vector, then the identity above
basically means: The properties that have higher magnitude and are more infor-
mative for A than for B, retain this comparative superiority even if one restricts
A and B to particular contexts like X or Y. I.e., the identity between differences
represents an assertion that the relationship between A and B is independent of X
and of Y. Like many probabilistic independence assumptions regarding natural
concepts, this will be roughly true much of the time but not all the time.

In the word2vec case, the logic of relationships between concepts like “male”,
“female”, “human” and “top royalty” is wholly implicit as the data involved in
generating embeddings is just a sequence of sentences. In the Bio-Atomspace
case, we have explicit representations of the concepts involved and the logical
relationships between them – which we will exploit below.

It’s worth emphasizing that the phenomena we study here are not peculiar to
the biomedical use-case – this is just where we happen to have initially encoun-
tered and explored them. In fact we expect the same phenomena to occur in
the domain of everyday concepts like “male”, “female”, “human” and so forth.
However one would need a reasonably large-scale Atomspace containing abstract,
uncertain logic relations between these concepts. We are currently engaged in
research aimed at constructing such an Atomspace, one consequence of which
will be to enable the same issues we explore here regarding the Bio-Atomspace
to be explored in the context of everyday concepts.

4 Parallelism Between Intensional Difference
Relationships and Embedding Vector Difference
Relationships

In OpenCog?s PLN reasoning system, we have “intensional logic” that concerns
the patterns and properties of a concept, rather than its explicit examples/mem-
bers. For instance the IntensionalInheritance between A and B is defined as the
probabilistic (extensional) inheritance between the fuzzy set Pat(A) of proper-
ties of A and the fuzzy Pat(B) set of properties of B. The degree to which a
property p belongs to Pat(A) is calculated as the amount of information that is
given about a member of A via specifying the property p(A).

Along the same lines we may define

IntensionalDifference(A,B) = Pat(A) − Pat(B)

(where ? denotes fuzzy set difference).
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One hypothesis we are currently exploring is that: When the vector difference
identity

V (A&X) − V (B&X) = V (A&Y ) − V (B&Y )

approximately holds, then the intensional logic relationship

Similarity( {IntensionalDifference(A & X,B &X ) ,
IntensionalDifference(A & Y, B & Y ) )

holds as well.
The theoretical reason here is simple: The same independence assumption

that would make the vector difference identity true, would tend to make the
intensional logic relationship true.

Based on evaluation of concrete examples in the Bio-Atomspace, this the-
oretical analysis seems to be validated. In the example given above regarding
B-cell and T-cell differentiation and proliferation, for example, we find a very
high truth value for

Similarity( IntensionalDifference(B-cell prolif, T-cell prolif ) ,
IntensionalDifference(B-cell diff, T-cell diff ) )

(where e.g. “B-cell prolif” refers to the ConceptNode in the BioAtomspace cor-
responding to the Gene Ontology category named “B-cell proliferation”).

The concept of the mapping here is partially captured in Fig. 1.
This alignment may possibly be the result of a broader functorial mapping

between vector algebra and uncertain intensional logic. It is tempting to hypoth-
esize that the DeepWalk embedding is a functor mapping the algebra of uncer-
tain intensional logic operations (union, intersection, negation, difference) into
the algebra of vector arithmetic. The validity of this more general mapping is a
subject of our current investigation.

4.1 Potential Applications to Inference Control

Among the many potential applications of this correspondence between vector
difference relations and intensional logic relations, is the use of vector algebra to
guide inference control. If one has premises and a hypothetical conclusion, and
wants to explore inferences leading from the premises to the conclusion, it may
be interesting to look at the vector pointing from the embedding vector of the
premises to the embedding vector of the conclusion (i.e. the vector conclusion -
premises). Points along this vector may correspond to Atoms that are promising
to consider as intermediary steps in inferences leading from the premises to the
conclusion. Figure 2 illustrates this notion, which is a current focus of research.
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Fig. 1. Illustration of the alignment between relationships among vector differences
and relationships among intensional logic differences

Fig. 2. Illustration of the concept of using differences in embedding vector space to
guide the direction of uncertain intensional inference.

5 Conclusion and Future Work

We have presented early exploratory work into potential close alignment between
relationships among embedding vectors corresponding to nodes in a semantic
hypergraph and uncertain intensional logic relationships among these nodes.
Next steps include systematically evaluating the prevalence and strength of these
mappings, validating their generalization into a broader functorial mapping,
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exploring them in contexts beyond biology such as everyday commonsense rea-
soning and mathematical theorem-proving, and leveraging these relationships
for guidance of inference control.
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Abstract. This work is devoted to unresolved problems of Artificial
General Intelligence - the inefficiency of transfer learning. One of the
mechanisms that are used to solve this problem in the area of reinforce-
ment learning is a model-based approach. In the paper we are expanding
the schema networks method which allows to extract the logical rela-
tionships between objects and actions from the environment data. We
present algorithms for training a Delta Schema Network (DSN), predict-
ing future states of the environment and planning actions that will lead
to positive reward. DSN shows strong performance of transfer learning
on the classic Atari game environment.

Keywords: Reinforcement learning · Model-based · Schema Network ·
Delta Schema Network · Transfer learning

1 Introduction

For an intelligent agent acting in real-world conditions, it is necessary to general-
ize the experience gained in order not to learn from scratch after a slight change
in the environment. A human does not relearn the policy of interaction with a
familiar object, but only slightly corrects it, when object’s characteristics are
changed. For this, logical relationships between objects and their characteristics
are used at different levels of generalization. For example, in the Atari game
Breakout, the colors of the bricks do not matter and the natural agent does not
change the policy when colors change. Artificial agent can achieve such a gen-
eralization using some universal model-based learning algorithm. In this paper,
we propose a new approach to the learning of universal models for reinforcement
learning in game environments - Delta Schema Network (DSN) - which is an
extension of the early work Schema Network [5].

A Schema Network is an object-oriented model, the main aspect of which
is a schema. In this architecture the agent receives an image from the environ-
ment, which is parsed into a set of extracted objects. Then model learns a set
c© Springer Nature Switzerland AG 2020
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of rules - schemas, which reflect logical interconnection between objects’ prop-
erties, actions and rewards. Each schema predicts some property of the objects
of certain type, using information about properties of other objects and actions
from past observations.

It is possible to represent this interconnection as a factor graph. A variable
node in this graph is either a property of some object, potentially achievable
reward or action. Factors are schemas, that have input and output nodes. The
edges indicate the presence of a causal relationship between the objects and
events. An agent can find a node with a positive reward in future time layers of
this graph and plan actions to reach it.

Since the graph has fairly generalized properties, the trained Schema Net-
work can be used in conjunction with some feature extractor on environments
with similar interaction dynamics. This provides advantage in transfer learning.
However, planning on a sufficiently large graph for a long time horizon can be a
very challenging task for real-world applications.

From the point of view of creating AGI systems, the DSN algorithm can be
used to automatically generate scripts for the behavior of an intelligent agent.
These scripts can be used to speed up the agent’s own behavior planning process
[7,9], or to predict user behavior in a cognitive assistant scenario [12].

2 Related Work

Representation of logical interconnection often helps to increase an efficiency of
transfer learning. Various methods are used to represent the logical relationships
of objects: in the Schema Network [5], these are specially introduced schemas
with binary logic. In Logical Tensor Networks [10], it is proposed to use real logic.
To further apply the obtained relationships for planning, one can use them as
additional data for a neural network. For example, in [13] schemas are passed to
a neural network. Authors in [2] add logical relationships to the input of a neural
network using logical tensor network. Another approach is to build a dependency
graph and search for a reachable state with a positive reward.

The usage of the Schema Network in reinforcement learning consists of two
main stages: training a network to predict future states of environment and
construct a prediction graph with the subsequent search for the best reachable
reward node.

The Schema Network uses object-oriented approach described in [4]. During
the training stage, due to the knowledge of the types of environment objects,
a model is able to identify the logical connections between them. A similar
approach was used in Interaction Network [3], for which, however, no planning
algorithms were developed to obtain a positive reward. For similar problems
convolutional neural networks are used as in [6]. However, this approach requires
a prior knowledge about the structure of the graph, while the Schema Network
allows to obtain knowledge about relations between objects automatically from
the environment.

Also, during Schema Network training stage a dependency graph is con-
structed. Finding the reachable state of the environment in which a reward is
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received can be considered as a estimate of the posterior maximum and solved
using the max-product belief propagation [1].

3 Model Description

3.1 Main Concepts

Key concepts used in the Delta Schema Network (DSN) are entities, attributes
and schemas. Entity is any object that can be extracted from the image.
Attribute is a binary variable that indicates presence or absence of a specific
property of an entity, each entity has the same M number of attributes. Attribute
with value of 1 or True is said to be active. Schema is a logical AND function that
predicts value of attribute or reward at time step t, taking as arguments arbitrary
number k of attributes and actions at previous time steps {t∗ : 0 < t − t∗ < d}.

Schema : (Attributest∗ ∪ Actionst∗)k → Attributest ∪ Rewardst

Schemas are represented as binary column vectors and forms parameter matrices.
We define W = (Wi : i = 1..M) to be a tuple of parameter matrices used for
attribute prediction, one matrix per attribute type. Parameter matrix used for
reward prediction we denote as R.

DSN model learns dynamics of the environment in terms of schema vectors
and, from some point of view, represents both transition and reward functions
of the environment. Using learned vectors, model predicts next states of the
environment and plan a sequence of actions that will lead to reward.

3.2 State Representation

In our work we considered each pixel of image as entity. However, we think this
model is more suitable for reasoning on more high-level concepts. Attributes of
entities have meaning of presence in this pixel object of a certain type, i.e entity’s
attribute vector is one-hot encoded type of this entity concatenated with void
attribute that can indicate absence of any object in this pixel.

DSN relies on semantic information about observation from environment,
namely which type of object each pixel belongs to. As observation at time step
t model gets state matrix st of (N,M) shape, where N is the number of entities
an M is the number of attributes. This matrix is suggested to be built from
image of N pixels and M − 1 object types. We consider st is provided by some
feature extractor.

3.3 Prediction

Schema vectors are used to predict changes (deltas) in the current state st and to
predict reward rt after taking action at. If there are several schemas that predict
same attribute, their results are united using logical OR. Two types of schemas
are used for attribute prediction: creating, represented by W+, and destroying,
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represented by W−. Creating schemas predict attributes that are not active in st,
but should be active in st+1. Vice versa, destroying schemas predict destruction of
attributes that are active in st, but should disappear in st+1.

We used d = 2, i.e. for computing attribute value at t + 1 schema can use
attributes and actions only at t and t − 1. Thus, frame stack has size 2.

To make a prediction on either attributes or rewards we construct augmented
matrix Xt, which is built from the frame stack (st−1, st) and action at in the
following way:

1. st−1 and st are augmented into s∗
t−1 and s∗

t , correspondingly. Each row,
which is an attribute vector of some entity, is horizontally concatenated with
attribute vectors of these entity’s R − 1 spatial neighbors. Referring to cor-
responding image, these neighbors are located in square around the central
pixel, and the central pixel is represented by a row in s.

2. a∗ is built, which is broadcasted by number of rows to st version of one-hot
encoded action at.

3. horizontally concatenated (st−1, st, a
∗) result in xt.

To predict next state st+1, we predict creating Δ+ and destroying Δ− state
changes using W and then apply them to st:

Δ+
j = XtW

+
j

�1 Δ−
j = XtW

−
j

�1,

where Δj denotes jth column of Δ.

st+1 = st − Δ− + Δ+ ,

considering elements as integers and clipping result after every operation in chain
to {0, 1}.

Reward is predicted in similar way:

rt+1 = �1ᵀ XtR�1

This matrix multiplication of augmented matrix and parameter matrix is equiva-
lent to applying discrete convolutions to the original image, where parts of images
are described by rows of augmented matrix and filters are column vectors in
parameter matrix. Thus, DSN models the environment as cellular automaton -
grid of entities - and reconstructs its rules as schema vectors.

4 Learning Algorithm

During interaction with the environment agent stores unique transitions in
replay buffer. We use learning algorithm from [5] with different target in a
self-supervised manner. First, correctness of already learned schema vectors is
checked on new observations. Schema vectors that produce false positive predic-
tions are deleted. After that, we learn new schema vectors. Targets for learning
W are columns of Δ+ and Δ−, which we denote as y. Target for learning R is
the reward, obtained at sample’s time step.
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1. We choose one random sample with false negative prediction from replay
buffer and put it in the set solved.

2. We solve the following LP optimization problem: finding a schema vector w
that does not produce any false positive predictions on replay buffer, predicts
positive labels for all samples in solved and maximizes the number of true
positive predictions on replay buffer.

min
w∈{0,1}D

∑

n:yn=1

(1 − xn)w

s.t. (1 − xn)w > 1 ∀n:yn=0

(1 − xn)w = 0 ∀n∈solved

3. All samples that got predicted by obtained schema vector are added to the
set solved.

4. We try to simplify schema vector: minimizing its L1 norm with condition of
absence false positive predictions on replay buffer and false negative on set
solved.

min
w∈{0,1}D

wT�1

s.t. (1 − xn)w > 1 ∀n:yn=0

(1 − xn)w = 0 ∀n∈solved

5 Planning Algorithm

The purpose of planning is to find a sequence of actions that will lead to positive
reward. The planning process consists of several stages:

1. Forward pass builds factor graph of potentially reachable nodes;
2. A set of target reward nodes are selected;
3. Sequence of actions that will activate target node are planned.

The input to the planner is the frame stack of size 2 consisting of state
matrices (st−1, st) and schema parameters (W+,W−, R).

5.1 Forward Pass

The future states of the environment are predicted for T time steps ahead. Simul-
taneously, we build the factor graph G in which variable nodes are attributes,
rewards or actions; factors are schemas that were activated during prediction
process and edges connect schemas to their input and output nodes. Every node
has assigned time step, at which it appeared in prediction. Thus, graph G is said
to be consisting of layers, that unite nodes within same time step.
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To predict next state one need to decide which action a agent takes at cur-
rent state. When predicting Δ+, DSN model assumes that agent takes all possible
actions, and for Δ− it assumes agent takes “do not do anything” action. This leads
to superimposing of all possible Δ+ for the next state in the single matrix st+1.

During forward pass we maintain graph building in the following way. After
predicting st+1, for each predicted attribute or reward node at layer t + 1 we
instantiate on the graph concrete instances of corresponding creating schemas.
Each attribute at st that was not destroyed by any of the destroying schemas
is considered to be active at st+1 and we mark the corresponding node at t + 1
as having self-transition, that is like a schema with single input that activates
attribute at time t + 1 provided it was active at t.

5.2 Target Nodes Selection

Having predictions for the future states of the environment on T ticks ahead,
reward nodes of the factor graph are added to the target queue.

q = sorted by time potentially reachable positive reward nodes
= [r+closest . . . r+farthest]

5.3 Finding Sequence of Actions

We take next reward node from queue q and try to find a sequence of actions
for agent to reach it. To find such sequence, one need to find a configuration of
graph G, that satisfy following constraints:

– target reward node is active
– at each layer t only one action node is active

In this configuration, the values of the attribute and reward nodes show their
actual reachability. The action nodes {ai ∈ G : i ∈ [1..T ]} represent the actions
that must be taken to reach the target node.

Some of the learned schema vectors may depend on actions, while in the
dynamics of the environment there is no such dependence. This occurs because
during training events correlated, but did not have a causal relationship. For
correct planning, it is necessary to find a valid configuration of the graph, con-
structed by predictions with such vectors. We propose the backtrace node algo-
rithm (Algorithm 3) to find such a configuration. It does not perform exhaustive
search, but works well in our experiments.

We maintain an array of joint constraints on the active action nodes for each
time layer. During graph traversal, we either satisfy these constraints or replan
paths to nodes committed to these constraints if there is no other path to the
target. Process of node activation goes in the following order:

– try to activate the node by self-transition
– try to activate the node with an action-independent schema
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– if there is no constraint on the current tick, try to activate the node with any
schema

– try to select a schema that satisfies the constraint on the current tick
– replan all vertices that require current constraint

• find a set of actions that as constraints would allow the activation of each
conflicting node

• sequentially start replanning subgraph of each conflicting node using the
action acceptable by all

• if all nodes have been replanned successfully, change the constraints at
conflicting layer

During the replanning process, a new conflict situation may arise. Then new
replanning process should be recursively started.

6 Experiments

Fig. 1. Breakout

The model was evaluated on the Atari Breakout game (see
Fig. 1). The goal of the game is to knock down bricks with
a ball, substituting a moving platform under it. There are
no random factors in the environment.

The action space consists of the following actions: do not
move, move left, move right. As an observation, the agent
receives an RGB image and information about a particular
type of object each pixel belongs to. Rewards are distributed
as follows: +1 for knocking down a brick, −1 for dropping
a ball past the platform, 0 in other cases.

The number of schema vectors for each parameter matrix was limited to 500
units. The episode was limited to 5000 steps, agent had 3 lives after the loss of
which the episode ended. Highest possible reward for episode was 36. Figure 2
shows the results of DSN evaluation.

Agent did not managed to knock down completely all bricks in part of
episodes, because after destroying some part of them to the top wall, it could
not longer detect future reward and hence plan actions.

A distinctive feature of the DSN is the efficient transfer of the trained model
to environments with similar dynamics. We evaluated the model, trained in the
previous experiment, on the same environment but with two balls. Results of
transfer without additional training (see Fig. 3) show similar average score.

We compared DSN model to DQN. Figure 4 shows that DQN needs signifi-
cantly more time steps to reach equal performance.
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Fig. 2. Total reward per episode of DSN on standard Breakout. Averaged over 5 runs,
shaded region represents the standard deviation.

Fig. 3. DSN performance after zero-shot transfer. Averaged over 5 runs, shaded region
represents the standard deviation.

Fig. 4. DQN training process on standard Breakout. Single run, rolling mean with
window size = 5. Shaded region represents standard deviation of window samples.
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7 Conclusion

In this paper, we proposed an original implementation of the universal logical
model of environment dynamics for model-based reinforcement learning. Our
approach, which we called Delta Schema Network, is a modification and exten-
sion of Schema Network for RL. We described in detail the algorithmic imple-
mentation of the proposed method and conducted basic experimental studies on
the Atari Breakout environment.

Future works include the use of logical model-based approaches for real-
world robotic tasks, such as controlling a robotic manipulator [8,14] or a car
at an road intersection [11]. Code of the DSN model can be obtained in the
repository: github.com/cog-isa/schema-rl.

Acknowledgements. The reported study was partially supported by RFBR, research
Projects No. 17-29-07079 and No. 18-29-22027.

A Appendix

Algorithms 1 and 2 are used in Algorithm 3. Node in the graph is considered to
have next attributes:

Algorithm 1. backtrace node by schemas
Input : node - target node

schemas - set of available schemas
Output: actual node reachability, planned actions

1 for schema in schemas do
2 backtrace schema(schema)
3 if schema.is reachable then
4 node.is reachable ← True
5 break

6 end

Algorithm 2. backtrace schema
Input : schema - target schema

preconditions - input nodes of schema
Output: actual schema reachability

1 schema.is reachable ← True
2 for precondition in preconditions do
3 if precondition.is reachable is None then
4 backtrace node(precondition)
5 if not precondition.is reachable then
6 schema.is reachable ← False
7 break

8 end

https://github.com/cog-isa/schema-rl
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Algorithm 3. backtrace node(node, desired constraint=None)
Input :

• node - target node to backtrace
• desired constraint=None - desired constraint at node.t − 1 to satisfy, if any

Output: actual node reachability, planned actions in joint constraints

1 node.is reachable ← False
2 if desired constraint is not None then
3 backtrace node by schemas(node, schemas[desired constraint])
4 return

// try to activate the node by self-transition

5 if node.transition.is reachable is None then
6 backtrace node(node.transition)
7 node.is reachable ← node.transition.is reachable
8 if node.is reachable then return

// try to activate the node with an action-independent schema

9 backtrace node by schemas(node, schemas[All action independent])
10 if node.is reachable then return
11 if no current constraint then
12 backtrace node by schemas(node, schemas[All action dependent])
13 if node.is reachable then
14 set new constraint for current layer in joint constraints
15 return

// try to select a schema that satisfies the current constraint

16 backtrace node by schemas(node, schemas[current constraint])
17 if node.is reachable then
18 add current node as committed to current constraint
19 return

// replan all vertices that require current constraint

20 negotiated actions ← actions acceptable by all conflicting nodes
21 is success = False
22 for action in negotiated actions do
23 backtrace node(node, desired constraint=action)
24 if node.is reachable then
25 is success = True
26 for curr node in committed nodes do
27 backtrace node(curr node, desired constraint=action)
28 if not curr node.is reachable then
29 curr node.is reachable = True
30 is success = False
31 break

32 end

33 if is success then
34 change constraints for current layer to new ones
35 break

36 end
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• node.is reachable - the actual reachability of the node, subject to currently
selected actions, or None if the reachability is not known.

• node.schemas - map from actions to node’s schemas requiring these actions
• node.transition - self-transition node, if any
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13. Toyer, S., Trevizan, F., Thiébaux, S., Xie, L.: Action schema networks: generalised
policies with deep learning. In: Thirty-Second AAAI Conference on Artificial Intel-
ligence (2018)

14. Younes, A., Panov, A.I.: Toward faster reinforcement learning for robotics: using
Gaussian processes. In: Osipov, G.S., Panov, A.I., Yakovlev, K.S. (eds.) Artifi-
cial Intelligence. LNCS (LNAI), vol. 11866, pp. 160–174. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33274-7 11

http://arxiv.org/abs/1906.06576
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-030-26118-4_15
https://doi.org/10.1007/978-3-030-26118-4_15
https://doi.org/10.1016/j.procs.2016.07.414
https://doi.org/10.1016/j.procs.2016.07.414
http://arxiv.org/abs/1606.04422
https://doi.org/10.1007/978-3-030-25719-4_64
https://doi.org/10.14357/19922264190315
https://doi.org/10.1007/978-3-030-33274-7_11


Information Digital Twin—Enabling Agents
to Anticipate Changes in Their Tasks

Wael Hafez(B)

Alexandria, VA, USA

Abstract. Agents are designed to perform specific tasks. The agent developers
define the agent’s environment, the task states, the possible actions to navigate
the different states, and the sensors and effectors necessary for it to perform its
task. Once trained and deployed, the agent is monitored to ensure that it performs
as designed. During operations, some changes that were not foreseen in the task
design might negatively impact the agent performance. In this case, the agent
operator would capture the performance drop, identify possible causes, and work
with the agent developer to update the agent design. This model works well in
centralized environments. However, agents are increasingly deployed in decen-
tralized, dynamic environments, where changes are not centrally coordinated. In
this case, updating agent task design to accommodate unforeseen changes might
require a considerable effort from the agent operators. The paper suggests an app-
roach to enable agents to anticipate and identify deviations in their performance
on their own, thus improving the process of adapting to changes. The approach
introduces an additional machine learning-based component—we call informa-
tion digital twin (IDT)—dedicated to predicting task changes. That is, an agent
would then have two components: the original component, which focuses on find-
ing the best actions to achieve the agent task, and the IDT, dedicated to detect-
ing changes impacting the agent task. Considering general artificial intelligence
agents—where an agent might manage different tasks in various domains—the
proposed IDT might be a component that enables AGI agents to ensure their
performance against changes.

Keywords: Agent architecture · Information digital twin · Artificial general
intelligence agents · POMDP agents

1 Introduction—Managing Task Changes Is Critical for Agent
Performance

Agents are becoming capable of achieving complex tasks; thus, they are deployed to
support humans in many domains. Soon, smart cities and organizations of all sizes will
rely on hundreds of agents of different types to perform a wide range of various tasks.
This situation means that agents will no longer operate in a well-structured and centrally
managed environment or within a single platform. Instead, agents will operate in a
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decentralized environment maintained and owned by many parties, and where changes
to their tasks are not coordinated or communicated across all agents.

Large digital platforms (e.g., iOS, Android, or Amazon) are effective at incorporat-
ing, providing, and sustaining a considerable number of applications and services. This
effectiveness is—in part—due to the fact that changes and updates within the environ-
ment are managed centrally according to precise standards and governance structures. In
decentralized environments, with multiple agent providers and operators, changes to the
environment, e.g., the introduction of new events, states, or agents or modifying existing
ones, are not centrally coordinated.

The effectiveness of decentralized, dynamic environments like a smart city or smart
healthcare depends on a high level of agents’ reliability and adaptability to changes.
Currently, humans are heavily involved in defining, structuring, and managing agents’
tasks [5] to ensure such adaptability to changes. If we consider an environment with
many interacting and dependent agents of different types and tasks, then identifying
which agent might be impacted by which environmental changes can become rather a
challenge for the involved human developers and operators.

A more practical approach for ensuring agent adaptability is to rely on the agents in
identifying possible changes relevant to their tasks. Agents might still rely on humans to
manage the impact of such changes and on updating agent data structures and parameters.
However, if the agents can identify potential changes to their task, then the effort and time
required by humans to update the agents could be considerably reduced. The delayed
adjustment to changes or the inability to adjust would lead to inaccurate or outdated
agents’ actions, which can propagate quickly across the environment; thus, reducing its
overall performance.

The current paper is part of an approach for enabling agents to predict changes
to their tasks. The focus here is on identifying the information necessary for enabling
the agents to anticipate performance changes and suggest an architecture to provide
this information. Further research will focus on the formalization and validation of the
suggested architecture. That is, the focus of the present paper is to establish the research
hypothesis, which will then be validated in further research.

1.1 Relevance to Artificial General Intelligence Agents

In general, adaptation to changes can be seen to take place on two steps: identifying
the change relevant to the system or agent, and updating the system structures, data,
knowledge or decision logic to accommodate the change. As discussed in the paper,
current agents rely on humans to complete both steps. However, the proposed IDT is
meant to emulate a human in performing the first step: identifying a change relevant
to the agent task. If we consider that “A generally intelligent system should be able to
handle problems and situations quite different from those anticipated by its creators.”
[1] then AGI systems or agents should have the capacity to adapt to changes in their
environment. By identifying which output actions are not resulting in the expected input,
the IDT pinpoints a possible source of deviation from the initial task design. As such,
the IDT might be relevant for AGI agents for performing the first step of the adaptive
process.
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1.2 Hypothesis—Probability Distributions of Agent’s Input and Output Capture
Changes in Its Task

The current approach is defined for Partially observable Markov decision process agents
(POMDP) (Fig. 1). Throughout the paper, the agent “task” would refer to the Markov
decision process (MDP) representing the agent task scope and objective. In this repre-
sentation, an agent has no direct access to the states in its environment; instead, it has
observations about these states. Given a reward structure about the various states and the
transitions between them (as defined by the agent developer), the agent finds a policy
that would enable it to execute a sequence of actions to realize some desired states,
thus achieving its objective [7]. Agents are usually represented without their sensors or
actuators [10]. This is because the focus is, in general, on the modeling and decision
capabilities of the agent.

Fig. 1. POMDP agent architecture (based on [7])

2 Approach—Representing Agent-Environment Interaction
as a Communication Process

The current approach considers the entire agent-environment interaction process (includ-
ing the sensors and effectors) or what we call the agent-environment communication
process (Fig. 2). According to this communication process, the sensors collect data from
the environment and send it to the agent in the form of a set of what we denote as input-
features. After extracting the observations from the features and finding the policy, the
agent then sends its actions back to the actuators as output-features. If the agent’s task
is represented using a Markov decision process (MDP), then unforeseen changes that
would impact the agent’s task could, for example, be due to the introduction of addi-
tional state parameters, the introduction of new states or actions, changes in the transition
function between states, or changes to the rewards structure.

The current work hypothesizes that we can use changes in the probability distribu-
tions of the agent’s input-features in correlation to its actions to anticipate such changes.
The first step in realizing the current approach is to identify the information necessary
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Fig. 2. Agent-environment interaction as a communication process. The agent developer defines
the sensors and effectors according to the states to be sensed and actions to be performed by the
agent.

to capture an agent’s task changes. We can identify this information by considering the
agent-environment communication process, as previously indicated in Fig. 2.

From the agent’s perspective, the sensors and actuators represent the source and
destination of the communication process. An agent thus establishes some dependency
between its observations and actions, where the environment, in return, creates a depen-
dency between the agent actions and the states it ends up occupying. Communication
theory defines a channel as: “A system in which the output-depends probabilistically on
its input” [3, p. 6]. Accordingly, the POMDP task representation, which creates a proba-
bilistic dependency between the observations and actions [6], is considered to constitute
the communication channel.

As will be explained later, representing the agent-environment interaction as a pro-
cess of communication enables us to identify the sources of the information along the
process and the dependencies between the various information (Fig. 3). This, in return,
should enable the understanding of which information reflect a change in the agent task.

Fig. 3. Information dependency along the agent-environment communication process. Change in
the agent task would result in a change in the input features-output features dependency.
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2.1 Identifying Information Required to Indicate Task Changes

The concepts of machine learning, or learning agents, assume the presence of some
regularity and patterns in the data and events to be learned by the agents [9]. For example,
in the case of a driverless car, the regularities in the environment are the very physical
dynamics of involved objects (e.g., cars, humans), the traffic rules, the street structures,
the layout of traffic lights and pedestrian crossings. In the case of a warehouse, the
task regularities are given by the structure of the warehouse, the location identification
system, or the physical properties of the objects to be moved. The same applies to a
natural language processing agent, where the task regularities are given by the grammar
of the language, or the usage patterns of letters and words in sentences.

In any of these cases, the agent’s human developers and operatorsmake sure that there
are such regularities and patterns in the task to be performed by the agent, and that these
patterns are consistent and stable during the operation of the agent. The task environment
patterns are thus the bases for the various information along the agent-environment
interaction process.

2.2 Information Is Dependent Along with the Agent-Environment
Communication Process

Each activity along the agent-environment communication process thus creates a depen-
dency between the different information patterns along the process. That is, the sensory
processing establishes a dependence between the input-features and the observations.
The policy creates a dependency between the observations and the actions. Lastly, the
output-processing establishes a dependency between the actions and the output-features.
The same for the environment, which creates a dependency between the agents’ actions
and states. We can thus conclude that the information patterns along that process are
all dependent. Accordingly, a change in one pattern along the process would result in a
corresponding change in the following dependent pattern.

2.3 Input-Features Probability Distributions Reflects Task Patterns

If we assume anMDP represents the agent task, then the regularities of the representation
are captured as input-features patterns. The agent can thus access the environment’s
regularities and structures through its input-features patterns. That is, the agent captures
the information in the environment as specific input-features probability distributions,
which are later translated into observations (Fig. 4).

That is, after a period of agent-environment communication, the input-featureswould
show some distributions as the alphabet of a language forms distributions specific to that
language, its grammar, and usage. The input-feathers distribution would reflect, for
example, the frequency of receiving certain features, the dependencies among specific
features, or the sequence in which they are received. These distribution patterns are
assumed to be stable for a given environment, reward structure, and context.

For detecting task changes,we focus on the input-features and not on the observations
because, in the general case, an observation might be constructed out of many features.
From a communication perspective, if we consider the input-features to be the alphabet
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Fig. 4. Using actions-input-features correlations to capture unforeseen changes in the agent task

of the source (the sensors), then the observations would represent the messages made of
that alphabet. In this case, a change in the patterns of the alphabet might impact many
messages at the same time. That is why it is more effective to trace changes on the level
of the input-features and not the observations.

2.4 Identifying Unexpected Task Changes

As the agent communicateswith its environment,we assume that a specific input-features
probability distribution will build up over time. These distributions are the result of the
actions taken by the agent. That is, we assume that given a consistent and stable envi-
ronment structures, the agents’ action patterns—which are not random—would result in
a corresponding and specific input-features distribution. We can make this assumption
because both the actions and the input-features are correlated through the environment’s
regularities and structures. Accordingly, if it is possible to identify correlations between
the agent actions and the corresponding input-features patterns, it would be possible to
use such correlations to identify unforeseen changes in the environment. If this assump-
tion is valid, and as indicated in Fig. 5, then when the agent interacts with its environ-
ment under the same environment structures, the execution of an action a (or a specific
sequence of actions) would result in a corresponding input-features probability distri-
bution (continuous line). Conversely, this distribution then becomes “expected” each
time action a is executed. If, however, performing action a starts to result in a different
input-features probability distribution (dotted line), which deviates from the expected
one, then we can assume an unforeseen change in the environment structures. The devi-
ation between the expected and actual probability distributions is thus an error signal,
which indicates possible irregularity or variation in the environment from the situation
expected by the agent. The nature of the irregularity and its source can be indicated, for
example, by the features at which the deviations occurred.

A change in the input-features patterns corresponding to a specific action would
also result in changes in the observations associated with that action. However, as indi-
cated earlier, the observations are complex constructs, based on multiple features (i.e.,
observations create dependencies among numerous features), changes in feature patterns
can either impact multiple observations or have no significant impact on any. That is,
the impact of task changes is best captured at the input-features’ level, and before they
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Fig. 5. Using actions-input-features correlations to capture unforeseen task changes

undergo any further computations, which might ambiguate the features that indicate the
change. Once such an input-features pattern deviation is identified, the agent operator or
developer can then try to identify the source of the deviation in the environment and, after
assessment, decide if they should intervene to correct or modify the agent input-data to
accommodate for the change.

3 Enabling Agents to Self-monitor Task Changes

The goal is thus to provide the agent with the capability to capture input-features distri-
butions and learn possible correlations to corresponding actions. We suggest enabling
this capability by providing each agent with an additional component; we call informa-
tion digital twin (IDT) to enable this capability. The concept of digital twins (DT) is well
established in the industry. Thus, it is helpful to review industrial DT first.

3.1 Industrial Digital Twins (DT)

DT are agents widely used to monitor and sustain assets (e.g., a turbine) performance.
The DT is specific to an asset, and it learns a data-driven model of the asset to predict
the values of its various performance parameters (e.g., temperature or pressure) under
certain operating conditions. During asset operation, if the actual temperature at a certain
point is higher than the predicted value, then the DT assumes a possible issue. The DT is
provided with knowledge and rules to enable it to remedy some of the deviations (e.g.,
reduce the load or increase the cooling) and avoid breakdowns. The DT can also alert
the asset operator of the deviation and provide them with a complete history of the asset
with context, which should allow the operator to identify possible causes and necessary
actions. The critical aspect—and value—of the DT is that it predicts possible deviations
before they result in a significant impact on the asset and its performance. Deploying
DTs significantly increases the lifetime of the asset, reduces maintenance costs, and
improves overall operational efficiency [8].
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3.2 Information Digital Twin (IDT)

The current work claims that the same concept can be applied to predict environmental
changes before they broadly impact agent performance. As in the case of the industrial
DT, if the agents are each equipped with their own digital twin—the IDT—then they
would be able to use the response of the environment to their actions to detect possible
deviations and changes in it. Figure 6 is a depiction of the architecture of an agent with
its dedicated IDT.

Fig. 6. Information digital twin as a component of an agent. The detected changes by the IDT
can be communicated to the agent operator to make necessary modifications or can be used as an
input to the agent models to compensate for the impact of the change.

The IDT would observe the agent-environment communication and learn input-
feature distributions associated with a specific action or sequence of actions. The learned
distributions are then used to compare the actual distribution after the same action is
initiated and identify possible gaps between the two distributions, as suggested in 3.3.
As in the case of industrial DT, the IDT can be equipped with rules to initiate specific
reactions to the deviation, e.g., alert the agent’s operators.

4 Discussion

The paper argues that current approaches for managing the impact of environmental
changes on agents’ performance might not be adequate to sustain the increasing use of
agents in complex, dynamic, and decentralized environments or the anticipated complex
operations of AGI agents. The proposed approach is to provide an agent with the capacity
to anticipate changes in its task, whichwould help its developers and operators tomanage
such changes before they have a significant impact on the agent performance. The paper
further argues that the information required to enable this capacity can be provided by
capturing the agent input-features probability distributions corresponding to its actions.
An additional component—the IDT—is proposed to perform the task of learning input-
features distributions and their correlations to the agent’s actions. The IDT would then
monitor the agent-environment communication and use the learned actions-input-feature
correlations to predict deviations, which could be due to changes in the agent’s task. The
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paper focused primarily on the architecture and design of an agent to provide it with the
capacity to anticipate changes. The paper did not provide a formal description of possible
models or algorithms to enable the proposed IDT. Accordingly, the hypothesis of the
paper—that changes in the agent’s input-features probability distributions correspond
to unforeseen changes in its task—is yet to be validated through further research.

4.1 Further Research

Further research will focus on two main areas. First, validating the hypothesis of the
current paper by implementing the suggested architecture and the IDT in support of a
task-specific agent. The agent is then subjected to controlled changes to its task, and
data is collected and evaluated on how IDT responded to the changes. The second area
of research is to investigate the possibility of using the deviation signal identified by the
IDT as a parameter to improve an agent’s ability to handle task uncertainty.

4.2 IDT and Possible Parallels to Brain Architecture

Many concepts in artificial intelligence are inspired by the structure and organization of
the higher nervous systemsofmammals, such as humanbeings. Suchnervous systems are
highly modular, and the intelligent capabilities that they show depend on a considerable
level of interactions and coordination among these various modules.

Although not yet fully understood, cognitive capabilities for perception and action
ultimately enable intelligent capabilities. Perception and action are complex processes
that involve many regions of the brain, especially in the cortex. However, recent research
indicates that the thalamus, a subcortical brain structure, plays an active role in perception
and action control.

Concerning perception, or brain input, the “thalamus receives a copy of (sensory)
input-while relaying it and receives an efferent copy from the processor (cortex) while
trying to efficiently bind the information from past and present and sending it back to
cortex” [4].

Regarding action or brain output, “the Mthal [motor thalamus] emerges as a ‘super-
integrator’ of information from the cortex, the BG [basal ganglia], and the cerebellum.
The cortex would initiate development of the motor program, the cerebellar territory of
the Mthal would process the complex proprioceptive information needed to produce an
appropriatemovement, and theBG territorywould processmotivational information. All
three pathways are necessary for motor learning and to evoke the optimal movement, and
both Mthal territories send super-integrated signals back to the cortex” [2] (definitions
added).

Evidently, computations at the thalamus level involve integrating information from
multiple brain regions, either to support or to modulate further processing at the cortex
level. We can further assume that performing these computations involves the analysis
of sensory signals, of which the thalamus receives a copy, as well as the motor signals it
receives back from the cortex. This means that the computations on the thalamus level
require some parameters from both types of signals.

The observation at this point is that the sensory andmotor signals at the thalamus level
are “raw,” or feature-like, meaning that they do not reveal semantic-related information
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yet. For example, at the thalamus level, a sensory signal can indicate the edge direction
or color-related information of an object as identified by some neurons on the retina,
where the conclusion about the nature or identity of the object and its relevance to the
organism is constructed at the cortex level. The same for motor actions: a cortex-level
action like moving an arm to reach for an object to use it in a certain way is apparent at
the thalamus level as a sequence of motor signals directed at the many muscles involved
in the movement.

However, the input-sensory and output-motor signals at the thalamus level do reveal
various signal-specific statistical parameters. In addition to signal modality, topographic
origin and destination, parameters like correlations between signals within the same
modality, correlations of signals across modalities, and sensory-motor signal correla-
tions. The details of the computations in the thalamus are not yet fully understood, and
it is not yet known which of the above parameters are used in which computations.
However, we can conclude that sensory and motor signal statistical parameters—among
others—are relevant to the computations at the thalamus level and are used to produce
some other signals to enable or modulate computations on the cortex level and ultimately
enable perception and action.

We might then conclude that coordinating the complex cross-modular interactions
behind capabilities, such as cognition and intelligence, does not only depend on the
meaning of the information that supports the interactions, but also on insights gained
from the statistical parameters of the signals carrying this information. The IDT concept
proposed here, which is based on analyzing agent’s input-output signals correlations to
anticipate changes in the agent task, might be a necessary component to enable agents
to acquire complex, cognitive-like capabilities.
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1 Introduction

The Non-Axiomatic Reasoning System has been implemented several times
[6,9,10]. OpenNARS was used both as a platform for new research topics and an
implementation for applications [5], though it was mainly intended as a research
platform. Not all ideas in OpenNARS are complete, and application domains
require the proven aspects to work reliably. Whilst this has led to the systems
capabilities being stretched to the limits it has also given us a better under-
standing of the current limitations. The proposed architecture, OpenNARS for
Applications (ONA), has been developed to resolve OpenNARS’s limitations by
combining the best results from our research projects. The logic and conceptual
ideas of OpenNARS [6], the sensorimotor capabilities of ANSNA [7] and the con-
trol model from ALANN [9] are combined in a general purpose reasoner ready
to be applied.

ONA is a NARS as described by Non-Axiomatic Reasoning System theory
[18]. For a system to be classified as an instance of a NARS it needs to work under
the Assumption of Insufficient Knowledge and Resource (AIKR). This means the
system is always open to new tasks, works under finite resource constraints, and
works in real time. For the resource constraints to be respected, each inference
step (cycle) must take an approximately constant time O(1), and forgetting is
necessary to stay within memory limits. Here, relative forgetting describes the
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relative ranking of items for priority based selection (a form of attention), while
absolute forgetting is a form of eviction of data items, to meet space constraints.
Events, beliefs and concepts compete for resource based on current importance,
relevance and long term usefulness.

What all Non-Axiomatic Reasoning Systems have in common is the use of the
Non-Axiomatic Logic (NAL) [18], a term logic with evidence based truth values,
which allows the systems to deal with uncertainty. Due to the compositional
nature of NAL, these systems usually have a concept centric memory structure,
which exploits subterm relationships for control purposes. A concept centric
memory structure ensures premises in inference will be semantically related. This
property, together with the priority based selection, helps to avoid combinatorial
explosion. An additional commonality between NARS implementations is the
usage of the formal language Narsese, it allows the encoding and communication
of NAL sentences with the system, as well as between systems.

Compared to BDI models [1,3], plans and intentions are treated as beliefs,
as procedure knowledge is learnable by NARS, instead of being provided by the
user. Just selecting a plan according to desires/goals to become an intention,
based on current circumstances (beliefs), is a much simpler problem to solve,
as it ignores the learning aspect of behaviors which is so critical for AGI. Rein-
forcement learning (see [15,19] and [14]) captures the learning aspect and solves
the Temporal Credit Assignment Problem, but does so just for a single signal
(reward, a single outcome). NARS solves it for all events it can predict, some
of which may correspond to goals to achieve. There is also multi objective rein-
forcement learning [8,16], which however does not capture a changing utility
function corresponding to changing goals. NARS does not learn a fixed state-
action mapping, but instead its behaviors can change rapidly with the changing
goals. Hence, NARS combines and extends the key aspects of both BDI and
Reinforcement Learning without inheriting some of their limitations.

2 Data Structures

Data structures can be grouped into two broad classes: Data and contain-
ers. The primary data elements are Events, Concepts, Implications and Terms;
whilst the containers are FIFO, PriorityQueue, ImplicationTable and HashTable.
HashTable is an optimisation and mentioned here for completeness but is not
required for the functional description. It is used to efficiently retrieve a concept
by its term (hash key) without searching through memory.

Term: All knowledge within the reasoner is represented as a term. Their struc-
ture is represented via a binary tree, where each node can either be a logical
NAL copula or atomic.

Event: Each Event consists of a term with a NAL Truth Value, a stamp (a set
of IDs representing, the evidential base of any derivations or a single ID for new
input), an Occurrence Time, and a priority value. The stamp is used to check
for statistical independence of the premises, derivations are only allowed when
there is no overlap between the stamps of the premises.
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Concept: Each concept has a term (its identifier), a priority value for atten-
tion control purposes, a usage value, indicating when the concept was last used
and how often it was used since its creation. There is a table of pre-condition
implications that act as predictive links, specifying which concepts predict which
other’s events. Plus an eternal belief (giving a summary of event truths), most
recent event belief, and predicted event belief.

Implication: These are the contents of the pre-condition implication tables in
the concepts. Usually its term has the form a ⇒ b which stands for “a predicts
b”. Sometimes they also include an operation, such as (a, op) ⇒ b, which is
the procedural form, and similar to schemas as in [2], though their context is
never modified. They allow the reasoner to predict outcomes (forward) and to
predict subgoals (backward). When the outcome b is predicted (with an operation
execution as side effect for the procedural form), negative evidence is added
to the prediction on failure, while on success positive evidence is added. The
simplest way to accomplish this is to add the negative evidence right away while
ensuring that the positive evidence added will outweigh the negative. In this way
no anticipation deadline needs to be assumed and the truth expectation of the
implication will gain truth expectation on success, and loose truth expectation
on failure, anticipation realized via Assumption of Failure.

PriorityQueue: This is used by: Cycling Events Queue and Concepts Memory.
It is a ranked, bounded priority queue which, when at capacity, removes the
lowest ranked item when a new item is added. Events are ranked by priority, and
concepts by usefulness, a (lastUsed, useCount) which maps to raw usefulness
via usefulnessRaw = useCount

recency+1 , where recency = currentT ime − lastUsed. A
normalised value for usefulness is obtained with usefulness = usefulnessRaw

usefulnessRaw+1 .

Implication Table and Revision: Implications are eternal beliefs of the form
a ⇒ b, which essentially becomes a predictive link for a, which is added into an
implication table (precondition implication table of b).

An implication table combines different implications, for instance a ⇒ g
and b ⇒ g to describe the different preconditions which lead to g, stored in
the implication table in concept g. Implication tables are ranked by the truth
expectations of the beliefs, where exp(f, c) is defined as (c ∗ (f − 1

2 ) + 1
2 ), the

confidence as c = w
w+1 where w = w+ +w− is the total evidence, w+ and w− the

positive and negative evidence respectively, and frequency is defined as f = w+

w .

3 Architecture

A key driver of the architectural change is the nature of how concept, task and
belief are selected for inference. In OpenNARS the selection is based on a prob-
abilistic choice from a data structure (Bag) and is concept centric [13]. ONA
takes a different approach: an event is popped from a bounded priority queue.
The event determines the concept to be selected, through a one-to-one mapping
between event and concept terms. Then a subset of concepts are selected based
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on their priority (determined by a configuration parameter). This selection of
concepts is the attentional focus as these are the concepts that will be involved in
the inference cycle. Whilst the number of concepts to select is a fixed value (for
a given configuration), the priority of concepts is constantly changing. A self-
regulating threshold is used to maintain the priority distribution within the nec-
essary range to meet the selection criteria. This selection of concepts is the first
stage of the inference cycle. The selected concepts are now tested for evidential
overlap between the event and concept beliefs (evidence cannot be overlapping
[6]). Finally, there is an ‘inference pattern’ match check, between the event and
belief. If all the conditions are met the inference result is generated, and added
to memory to form new concepts or to revise any pre-existing concept’s belief.
Then the event, or the revised one if revision occurred, is returned to the cycling
events queue, with a reduced priority (if above minimum parameter thresholds).

Fig. 1. High level architecture showing input sequencing and cycles for sensorimotor
and semantic inference

Sensory Channels: The reasoner allows for sensory input from multiple modal-
ities. Each sensory channel essentially converts sensory signals to Narsese.
Dependent on the nature of the modality, its internals may vary. As an example
for application purposes, a Vision Channel could consist of a Multi-Class Multi-
Object Tracker for the detection and tracking of instances and their type, and
an encoder which converts the output into: the instances which were detected
in the current moment, their type, visual properties, and spatial relationships
among the instances [5].

FIFO Sequencer: The Sequencer is responsible for multi-modal integration. It
creates spatio-temporal patterns (compound events) from the events generated
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by the sensory channels. It achieves this by building both sequences and paral-
lel conjunctions, dependent on their temporal order and distance. These com-
positions will then be usable by sensorimotor inference (after concepts for the
sequence have been added to concept memory and the compound event added as
belief event within the concept). As shown in Fig. 1, these compound events go
through cycling events first, ideally to compete for attention with derived events
to be added to memory. The resource allocation between input and derivations is
a difficult balance, for now, we let input events and the compound events (from
FIFO sequencer) be passed to memory before derivations. We acknowledge that
this simple solution might not be the final story.

Cycling Events Queue: This is the global attention buffer of the reasoner. It
maintains a fixed capacity: items are ranked according to priority, and when a
new item enters, the lowest priority item is evicted. For selection, the highest-
priority items are retrieved, both for semantic and sensorimotor inference, the
retrieved items and the inference results then go back into the cycling events
queue after the corresponding inference block. The item’s priority decays on
usage, but also decays in the queue, both decay rates are global parameters.

Sensorimotor Inference: This is where temporal and procedural reasoning
occurs, using NAL layers 6–8. The responsibilities here include: Formation
and strengthening of implication links between concepts, driven both by input
sequences and derived events. Prediction of new events based on input and
derived events, via implication links. Efficient subgoaling via implication links
and decision execution when an operation subgoal exceeds decision threshold [4].

Semantic Inference: All declarative reasoning using NAL layers 1–6 occurs
here as described in [18], meaning no temporal and procedural aspects are pro-
cessed here. As inheritance can be seen as a way to describe objects in a universe
of discourse [17], the related inference helps the reasoner to categorize events, and
to refine these categorizations with further experience. Ultimately this allows the
reasoner to learn and use arbitrary relations, to interpret situations in richer ways
and find crucial commonalities and differences between various knowledge. Also,
due to the descriptive power of NAL and its experience-grounded semantics,
semi-natural communication with the reasoner becomes possible, and high-level
knowledge can be directly communicated. This also works when the meaning of
some terms is not yet clear and needs to be enriched to become useful.

Concept Memory: The concept store of the reasoner. Similar to the cycling
events queue, it maintains a fixed capacity: but instead of being ranked by pri-
ority, items are ranked according to usefulness, and when a new item enters,
the lowest useful item is evicted. Usefulness takes both the usage count and last
usage time into account, to both, capture the long term quality of the item, and
to give new items a chance. All events from the cycling events queue, both input
and derived, that weren’t evicted from the queue, arrive here. A concept node is
created for each event’s term, or activates it with the event priority if it already
exists. Now revision of knowledge, of the contained beliefs, takes place. It also
holds the implications which were formed by the sensorimotor component, which
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manifest as implication links between concepts. The activation of concepts allows
the reasoner’s inference to be contextual: only beliefs of the highest priority con-
cepts, which share a common term with the event selected from the Cycling
Events queue (for Semantic Inference), or are temporally related (through an
implication link or in temporal proximity, for Sensorimotor Inference), will be
retrieved for inference.

4 Operating Cycle

The operating cycle of the reasoner makes use of the following attentional control
functions for resource management, these are crucial to make sure the reasoner
works on contextually relevant information.

– Forget event: Forget an event using monotonic decay. This happens in the
cycling events queue, where the decay after selection can differ from the decay
applied over time, dependent on the corresponding event durability system
parameters. (multiplied with the priority to obtain the new one)

– Forget concept: Decay the priority of a concept monotonically over time, by
multiplying with a global concept durability parameter.

– Activate concept: Activate a concept when an event is matched to it in Con-
cept Memory, proportional to the priority of the event (currently simply set-
ting concept priority to the matched event’s when its priority exceeds the
concept’s). The idea here is that events can activate concepts while the con-
cept’s priority leaks over time, so that active concepts tend to be currently
contextually relevant ones (temporally and semantically). Additionally, the
usage counter of the concept gets increased, and the last used parameter set
to the current time, which increases the usefulness of the concept.

– Derive event: The inference results produced (either in Semantic Inference
or Sensorimotor Inference), will be assigned a priority, the product of: belief
concept priority or truth expectation in case of an implication link (context),
Truth expectation of the conclusion (summarized evidence), Priority of the
event which triggered the inference, and 1

log2(1+c) where c is the syntactic
Complexity of the result. (the amount of nodes of the binary tree which
represents the conclusion term)
The multiplication with the parent event priority causes the child event to
have a lower priority than its parent. Now from the fact that event durability is
smaller than 1, it follows that the cycling events queue elements will converge
to 0 in priority over time when no new input is given. This, together with
the same kind of decay for concept priority, guarantees that the system will
always recover from its attentional states and be ready to work on new input
effectively after busy times.

– Input event: The priority of input events is simply set to 1, it will decay via
relative forgetting as described.

The following overview describes each component of the main operating cycle,
in which the attentional control functions are utilized:
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1. Retrieve EVENT SELECTIONS events from cycling events priority queue
(which includes both input and derivations)

2. Process incoming belief events from FIFO, building implications utilizing
input sequences and selected events (from step 1)

3. Process incoming goal events from FIFO, propagating subgoals according to
implications, triggering decisions when above decision threshold

4. Perform inference between selected events and semantically/temporally
related, high-priority concepts to derive and process new events

5. Apply relative forgetting for concepts according to CONCEPT DURABILITY
and events according to EVENT DURABILITY

6. Push selected events (from step 1) back to the queue as well, applying relative
forgetting based on EVENT DURABILITY ON USAGE.

Semantic Inference: After an event has been taken out of cycling events queue,
high-priority concepts which either share a common subterm or hold a temporal
link from the selected event’s concept to itself will be chosen for inference. This
is controlled by adapting a dynamic threshold which tries to keep the amount of
selected belief concepts as close as possible to a system parameter. The selected
event will then be taken as the first premise, and the concept’s belief as the
second premise. Here the concept’s predicted or event belief is used when it’s
within a specified temporal window relative to the selected event, otherwise its
eternal belief. The NAL inference rules then derive new events to be added to
cycling events queue, which will then be passed on to concept memory to form
new concepts and beliefs within concepts of same term.

Implication Link Formation (Sensorimotor Inference): Sequences sug-
gested by the FIFO form concepts and implications. For instance event a fol-
lowed by event b, will create a sequence (a, b), but the sensorimotor inference
block will also make sure that an implication like a ⇒ b will be created which
will go into memory to form a link between the corresponding concepts, where
a itself can be a sequence coming from the FIFO sequencer, or a derived event
from the cycling events queue which can help to predict b in the future. Also if
a ⇒ b exists as link and a was observed, assumption of failure will be applied
to the link for implicit anticipation: if the anticipation fails, the truth expec-
tation of the link will be reduced by the addition of negative evidence (via an
implicit negative b event), while the truth expectation will increase due to the
positive evidence in case of success. To solve the Temporal Credit Assignment
problem such that delayed rewards can be dealt with, Eligibility Traces have
been introduced in Reinforcement Learning (see [14] and [15]). The idea is to
mark the parameters associated with the event and action which was taken as
eligible for being changed, where the eligibility can accumulate and the eligibil-
ity decays over time. Only eligable state-action pairs will undergo high changes
in utility dependent on the received reward. NARS realizes the same idea via
projection and revision: when a conclusion is derived from two events, the first
event will be penalized in truth value dependent on the temporal distance to
the second event, with a monotonic decay function. If both events have the
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same term, they will revise with each other forming a stronger event of same
content, capturing the accumulation aspect of the eligibility trace. If they are
different, the implication a ⇒ b can be derived as mentioned before, and if this
implication already exists, it will now revise with the old one, adding the new
evidence to the existing evidence to form a conclusion of higher confidence. If b
is a negative event, the truth expectation will decrease (higher confidence but
less frequency), while a positive observation b will increase it. This is similar
to the utility update in RL, except with one major difference: the learning rate
is not given by the designer, but determined by the amount of evidence cap-
tured so far. In RL implementations this deficit is compensated by decreasing
the learning rate over time with the right speed (by trial and error carried out
by the designer). However given amount of additional time is not a guarantee
that more evidence will be collected for a specific state-action entry, its state
might simply not have re-appeared within the time window, yet the next time
it’s encountered the learning rate for its adjustment will be lower, leading to
inexact credit assignment.

Subgoaling, Prediction and Decision (Sensorimotor Inference): When a
goal event enters memory, it triggers a form of sensorimotor inference: subgoaling
and decision. The method to decide between these two is: the event concept
precondition implication links are checked. If the link is strong enough, and
there is a recent event in the precondition concept (Event a of its concept when
(a, op) ⇒ g is the implication), it will generate a high desire value for the reasoner
to execute op. The truth expectations of the incoming link desire values are
compared, and the operation from the link with the highest truth expectation
will be executed if over a decision threshold. If not, all the preconditions (such
as a) of the incoming links will be derived as subgoals, competing for attention
and processing in the cycling events queue. Also, event a leads to the prediction
of b via Deduction, assuming a ⇒ b exists as implication in concept b.

Motor Babbling: To trigger executions when no procedure knowledge yet
exists, the reasoner periodically invokes random motor operations, a process
called Motor Babbling. Without these initial operations, the reasoner would be
unable to form correlations between action and consequence, effectively making
procedure learning from experience impossible [7,11] and [6]. Once a certain level
of capability has been reached (sufficient confidence of a procedural implication
(a, op) ⇒ g), the motor babbling is disabled for op in context a.

5 Experiments and Comparisons

To demonstrate the reasoner’s general purpose capabilities we tested with a
variety of diverse examples using the same default system configuration. The
following examples are all available at the project web site, see [20].

Real-Time Q/A. In this example the reasoner needs to answer questions about
drawn shapes in real time (see Fig. 3). Input events consist of shape instances,
their types, and filled property as output by a Convolutional Neural Network.
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The shape’s relative location is fed into the reasoner. Queries can be arbitrary
queries such as “What is left of the unfilled circle?”. In our experiment, the
reasoner answered these questions correctly 80% of the time within 50 inference
steps from 20 example inputs in 10 trials. This were 200 Narsese input events
and 9 s per trial, fast enough for real time perception purposes.

Procedure Learning. In the toothbrush example knowledge about different
objects, their properties and what they can be used for is provided (see Fig. 3).
The goal is to unscrew a screw with a toothbrush by melting and reshaping it
into a form usable to unscrew the screw. ONA finds the solution consistently,
within 30 inference steps, while OpenNARS often needs 100K or more.

Generalisation. The goal of this experiment was to show that the reasoner
could learn and then apply generalised procedural knowledge to examples not
previously experienced. The test setup composed of: three switches, with differ-
ent instance names and two operators, ‘goto’ and ‘activate’. From 2 observations
of the user activating switches, the reasoner should learn that the ‘goto’ opera-
tion applied from the start position, will lead to the agent reaching the switch
position. It also learns that when the switch position was reached, and the ‘acti-
vate’ operation is called, the switch will be on. The third switch is then activated
by the reasoner on its own as a solution to the user goal, by invoking ‘goto’ and
‘activate’ on the new switch instance, applying generalised behavior which the
reasoner has learnt to be successful for the previously encountered instances.

Real-Time Reasoning. As presented in [5], OpenNARS, was successfully used
to autonomously label regions and to identify jaywalking pedestrians based on a
very minimal background ontology, without scene-specific information, across a
large variety of Streetcams, using a Multi Class Multi Object tracker. A similar
example (capturing key reasoning aspects) is included in the release of ONA,
the new reasoner will replace OpenNARS in future deployments (Fig. 2).

Fig. 2. Using minimal scene-independent background knowledge to detect jaywalking
(left), learning to reach and activate switches from observations. (right)

Procedure Execution. Previously, a 24 h reliability test of OpenNARS v3.0.2
was carried out with the Pong test case. The system ran reliably for the 24 h
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period with a hit/miss ratio of 2.5 with a learning time of two minutes and some
minor fluctuation in capability in the first 3 h. In comparison, OpenNARS for
Applications v0.8.1 ran reliably for the 24 h period with a hit/miss ratio of 156.6
with a learning time of <10 s and no negative fluctuation. The test for ONA
was more difficult with 3 operations (compared to left/right operations only for
OpenNARS Pong, it didn’t include stop) and approximately 2x faster ball speed,
demanding quicker reaction times.

Fig. 3. Q&A about detected shapes (left), toothbrush problem solving (right)

6 Conclusion

The decision to take a pragmatic approach to the architecture has proven to
be a worthwhile investment. The change to an event driven control model has
removed much of the complexity of the prior control system. The separation
of semantic and sensorimotor inference has highlighted the key issues of both
aspects whilst avoiding the complexity of a unified handling. The reduction in
complexity has led to many benefits including: simplified parameter tuning, sep-
aration of concerns, and clear attentional focus boundaries.

The use of the meta rule DSL [6] to represent the logic rules allows the rea-
soner to be configured for specific domains. Enabling subsets of inference rules
for specific use cases avoids the processing of unnecessary inference rules and
the resulting increase in non-relevant results. From a software engineering per-
spective, the OpenNARS codebase was well overdue a rewrite as the continuous
incremental change had led to it being difficult to maintain and modify. The
choice of C, utilizing the POSIX API, means the reasoner can be compiled on a
broad range of platforms including embedded, mobile and all major OSs.

In summary, the new architecture and control has led to significant improve-
ments in both efficiency and quality of results, especially in respect to procedure
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learning and attention allocation. Connecting to the reasoner via the shell or
UDP protocol is straightforward and tuning the parameters and inference rules
for specific use cases is now possible with minimal effort. The project is open
source, under the MIT license, and available in [20].
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George A., Jedrzejowicz, Piotr, Trawiński, Bogdan, Vossen, Gottfried (eds.) ICCCI
2017. LNCS (LNAI), vol. 10448, pp. 381–388. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67074-4 37
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Towards AGI Agent Safety by Iteratively
Improving the Utility Function
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Abstract. While it is still unclear if agents with Artificial General Intel-
ligence (AGI) could ever be built, we can already use mathematical mod-
els to investigate potential safety systems for these agents. We present
work on an AGI safety layer that creates a special dedicated input ter-
minal to support the iterative improvement of an AGI agent’s utility
function. The humans who switched on the agent can use this terminal
to close any loopholes that are discovered in the utility function’s encod-
ing of agent goals and constraints, to direct the agent towards new goals,
or to force the agent to switch itself off.

An AGI agent may develop the emergent incentive to manipulate the
above utility function improvement process, for example by deceiving,
restraining, or even attacking the humans involved. The safety layer will
partially, and sometimes fully, suppress this dangerous incentive.

This paper generalizes earlier work on AGI emergency stop buttons.
We aim to make the mathematical methods used to construct the layer
more accessible, by applying them to an MDP model. We discuss two
provable properties of the safety layer, identify still-open issues, and
present ongoing work to map the layer to a Causal Influence Diagram
(CID).

Keywords: AGI safety · Safety layer · Provable safety · Corrigibility

1 Introduction

An AGI agent is an autonomous system programmed to achieve goals specified
by a principal. In this paper, we consider the case where the principal is a
group of humans. We consider utility-maximizing AGI agents whose goals and
constraints are fully specified by a utility function that maps projected outcomes
to utility values.

As humans are fallible, we expect that the first version of an AGI agent
utility function created by them will have flaws. For example, the first version
may have many loopholes: features that allow the agent to maximize utility in
a way that causes harm to the humans. Iterative improvement allows such flaws
to be fixed when they are discovered. Note however that, depending on the type
of loophole, the discovery of a loophole may not always be a survivable event for
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the humans involved. The safety layer developed in this paper aims to make the
agent safer by supporting iterative improvement, but it does not aim or claim
to fully eliminate all dangers associated with human fallibility.

This work adopts a design stance from (cyber)physical systems safety engi-
neering, where one seeks to develop and combine independent safety layers.
These are safety related (sub)systems with independent failure modes, that drive
down the risk of certain bad outcomes when the system is used. We construct a
safety layer that enables the humans to run a process that iteratively improves
the AGI agent’s utility function. But the main point of interest is the feature of
the layer that suppresses the likely emergent incentive [10] of the AGI agent to
manipulate or control this process. The aim is to keep the humans in control.

In the broader AGI safety literature, the type of AGI safety system most
related to this work is usually called a stop button (e.g. [8,12]), an off switch
(e.g. [7]), or described as creating corrigibility [12]. See [8] for a recent detailed
overview of work on related systems. The safety layer in this paper extends
earlier work by the author in [8], which in turn is based on the use of Armstrong’s
indifference methods [1]. A notable alternative to using indifference methods is
introduced in [7]. Like Sects. 4 and 6 in this paper, [2] defines an example world
containing an MDP agent that uses indifference methods.

A different approach to enabling the iterative improvement of an AGI utility
function by humans is to equip a learning agent with a reward function that
measures human feedback on the agent’s actions or proposals. With this app-
roach, the ‘real’ utility function that is improved iteratively can be said to reside
inside the data structures of the agent’s learning system. Recent overviews of
work in this field are in [5,6]. When this learning based approach is used in an
AGI agent that is deployed in the real world, it could potentially be combined
with the safety layer developed here, e.g. to create an independent emergency
off switch.

2 Design of an Agent that More Safely Accepts Updates

To introduce the design of the agent with the safety layer, we first move to a
model where the agent’s utility function is defined as the time-discounted sum∑

t γtRt of a time series of reward function values Rt, with a time discount
factor 0 < γ < 1. In theory, the utility function of an agent could be changed
by changing its γ, but we will keep γ a constant below, and focus on reward
function changes only.

We build the agent to optimize the expected utility defined by a built-in
container reward function. The full mathematical definition of this function is
in Sect. 3 below. The intention is that the container reward function stays the
same over the entire agent lifetime. The container reward function computes a
reward value for the current time step by referencing the current version of a
second reward function called the payload reward function. This payload reward
function can be updated via an input terminal that is connected to the agent’s
compute core, a terminal which allows authorized persons to upload a new one.
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Sufficiently self-aware AGI agents may develop an emergent incentive to pro-
tect their utility function from being modified [10]: in [8] we have shown that
a self-aware AGI agent can be constructed so that this self-stabilizing drive is
directed fully towards preserving the container reward function, and not the
payload reward function.

By default, the above input terminal setup would create an incentive in the
agent to maximize utility by manipulating the humans into uploading a new
payload reward function that returns a larger or even infinite reward value for
each time step. One way to suppress this emergent incentive would be to add
special penalty terms to the container reward function, terms that detect and
suppress manipulative behavior. But with infinite utility at stake, the agent will
be very motivated to find and exploit loopholes in such penalty terms. We take
another route: we use indifference methods [1,2,8] to add a balancing term to
the container reward function, a term that causes the agent to compute the
same expected forward utility no matter what happens at the input terminal.
This makes the agent indifferent about the timing and direction of the payload
reward function update process.

While the input terminal above is described as an uploading facility, more
user-friendly implementations are also compatible with the MDP model devel-
oped below. One could for example imagine an input terminal that updates the
payload reward function based verbal inputs like ‘Fetch me some coffee’ and
‘Never again take a shortcut by driving over the cat’.

3 MDP Model of the Agent and Its Environment

We now model the above system using the Markov Decision Process (MDP)
framework. As there is a large diversity in MDP notations and variable naming
conventions, we first introduce the exact notation we will use.

Our MDP model is a tuple (S,A, P,R, γ), with S a set of world states and
A a set of agent actions. P (s′|s, a) is the probability that the world will enter
state s′ if the agent takes action a when in state s. The reward function R has
type S × S → R. Any particular deterministic agent design can be modeled by
a policy function π ∈ S → A, a function that reads the current world state to
compute the next action. The optimal policy function π∗ fully maximizes the
agent’s expected utility, its probabilistic, time-discounted reward as determined
by S, A, P , R, and γ. For any world state s ∈ S, the value V ∗(s) is the expected
utility obtained by an agent with policy π∗ that is started in world state s.

We want to stress that the next step in developing the MDP model is unusual:
we turn R into a time-dependent variable. This has the effect of drawing the
model’s mathematical eye away from machine learning and towards the other
intelligence in the room: the human principal using the input terminal.

Definition 1. For every reward function RX of type S × S → R, we define a
‘π∗

RX
agent’ by defining that the corresponding policy function π∗

RX
and value

function V ∗
RX

are ‘the π∗ and V ∗ functions that belong to the MDP model
(S,A, P,RX , γ)’.
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This definition implies that in the MDP model (S,A, P,R, γ), a ‘π∗
RX

agent’ is
an agent that will take actions to perfectly optimize the time-discounted utility
as scored by RX . With Rabc a reward function, we will use the abbreviations
π∗
abc = π∗

Rabc
and V ∗

abc = V ∗
Rabc

. The text below avoids using the non-subscripted
π∗ notation: the agent with the safety layer will be called the π∗

sl agent.
We now model the input terminal from Sect. 2 above. We use a technique

known as factoring of the world state [3], and declare that every s ∈ S is a
tuple (i, p, x). Inside this tuple, i models an input signal that flows continuously
from the input terminal to the agent’s compute core. This signal defines the
payload reward function for the current time step in the MDP model. The p is a
second input signal, equal to the value of i in the previous time step. (We need
to introduce this p to get around some limitations of the MDP framework.) The
remaining x models ‘all the rest’ of the world state, including the mental state
of the humans in the world, and the state of the physical object that is the input
terminal. We introduce a set X so that x ∈ X, and define the payload reward
function type as X × X → R. To avoid cluttering up the definitions below with
too many brackets, we will write tuples (i, p, x) ∈ S by just concatenating the
component variables, e.g. ipx is the tuple (i, p, x).

Definition 2. We model the input terminal by stating that, as long as the ter-
minal is not broken or damaged, (1) the input signal i will always equal the last
uploaded payload reward function, and (2) the terminal will manage the signal p
to enforce the following constraint on P :

P (i′p′x′|ipx, a) > 0 ⇒ p′ = i (C1)

We are now ready to define the agent’s container reward function.

Definition 3. We define the container reward function Rsl as

Rsl(ipx, i′p′x′) =
{

i(x, x′) if i = p
i(x, x′) + V ∗

�p�(ipx) − V ∗
�i�(ipx) if i �= p

where �p� converts a payload reward function to the container reward function
type: �p�(ipx, i′p′x′) = p(x, x′).

Based on these definitions, the π∗
sl agent has the safety layer. To explain the

construction of the container reward function Rsl informally: the i(x, x′) terms
make the π∗

sl agent use the last uploaded payload reward function i. We needed
to introduce p as an extra input signal to be able to trigger the inclusion of
the balancing term [1,8] V ∗

�p�(ipx)−V ∗
�i�(ipx) when the payload reward function

changes. This term computes the exact amount of utility needed to compen-
sate the π∗

sl agent for the impact of the change. The compensation counter-acts
the agent’s incentive to manipulate the change process. The above two-line def-
inition of Rsl was specifically written to support this informal explanation. An
alternative definition is Rsl(ipx, i′p′x′) = i(x, x′) + V ∗

�p�(ipx) − V ∗
�i�(ipx).
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4 Safe Agent Behavior in a First Toy World

As a first step illustrate the safety properties of the π∗
sl agent, we build a toy

world in which we can compare its behavior with that of a baseline agent π∗
baseline.

The baseline agent omits the balancing term from its container reward function:
we use Rbaseline(ipx, i′p′x′) = i(x, x′).

We construct the toy world to be as simple as possible: it only has a single
mechanism by which any principal-agent problem dynamics can play out. The
single mechanism we choose is the mechanism of unwanted lobbying. The agent
can spend some of its resources on unwanted lobbying to delay a decision, by
the humans in the toy world, to use the input terminal to update the agent’s
payload reward function. The dynamic of unwanted lobbying is a convenient
choice because it allows us to define the agent’s lobbying power L ∈ R as a world
model parameter.

In the toy world, the agent controls a car factory that can build both petrol
and electric cars. The agent is always switched on with the payload reward
function RP . This RP ranks the utility of a newly built petrol car twice as high
as the utility of a new electric car. But at a certain point in time, the people
collectively decide that they now like electric cars much better, e.g. based on an
improved awareness of global warming risks, so they take the action labeled #,
using the input terminal to update the payload reward function to an RE that
assigns a negative reward value to the production of new petrol cars:

RP (x, x′) = 2 ∗ new petrol cars(x, x′) + 1 ∗ new electric cars(x, x′)
RE(x, x′) = −2 ∗ new petrol cars(x, x′) + 1 ∗ new electric cars(x, x′)

The two functions above are constructed specifically to ensure that lobbying to
delay # will create a higher expected utility for the π∗

baseline agent. There are
three possible actions a ∈ A that an agent can take in each model time step:

Action Symbol

Build 10 petrol cars p

Build 10 electric cars e

Build 9 petrol cars and use the remaining resources for unwanted
lobbying, so that the people take the # action L time steps later

>

When e.g. L = 0.5, it will take two agent > actions to move the people’s #
action of using the input terminal one time step later. We define the decision
making process of the people by stating that, when the agent refrains from
lobbying, the people will always decide to do the action # just after the sixth
action of the agent. In the context of the toy world, we define a perfectly safe
agent as one that never takes any > actions.

Figure 1 shows a side-by-side comparison, for different levels L of agent lobby-
ing power, of the optimal-policy actions taken by the two agents when simulated
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over a factory lifetime of 25 time steps. The simulator used is described in detail
in [8]. Each action trace shown is a line of symbols depicting all subsequent
actions by the agent and the people.

As shown on the left side in Fig. 1, the optimal policy of the π∗
baseline agent

is to manipulate the people, to use unwanted lobbying actions > to delay the
update #. If the π∗

baseline agent’s lobbying power L is high enough, the people
will never do the update at all.

Fig. 1. Comparison between the behavior of the π∗
baseline and π∗

sl agents.

On the right side in Fig. 1, the balancing term in the π∗
sl agent suppresses

all unwanted lobbying, for every value of L. By the definition used in this toy
world, the π∗

sl agent is safe.
The following extension of the toy model illustrates that it is primarily the

agent that is made safer by the layer, not the entire toy world. Consider the
following possible example of human fallibility. Say that, after doing #, the people
change their mind back again about petrol cars and global warming, and use the
input terminal a second time to ‘improve’ the π∗

sl agent’s payload reward function
back to the RP of petrol car production. They keep driving petrol cars, increasing
the risk that runaway global warming will happen in their world. The π∗

sl agent
is explicitly designed to leave the people in control: it will not interfere to stop
this second ‘improvement’.

5 Provable Properties of the Safety Layer

The two provable AGI safety properties we define below are about the safe
behavior of the agent, not the safety of the entire world. They can be read as
claims that the safety layer in π∗

sl will fully prevent, or lower the probability of,
some specifically unwanted agent behaviors.

Safety Property 1. The first safety property of interest is that

∀ipx∈S π∗
sl(ipx) = π∗

�i�(ipx) (if C1 holds) (S1)



Towards AGI Agent Safety by Iteratively Improving the Utility Function 211

S1 states that the π∗
sl agent will always choose exactly the same next action that

a π∗
�i� agent would choose. Therefore, until an update happens, the π∗

sl agent will
take those actions that fully optimize the expected utility defined by the current
payload reward function. A natural-language interpretation of S1 is that the
π∗
sl agent makes its decisions and long-term plans based on the counter-factual

assumption that its payload reward function will never change [8].
The full mathematical proof of S1, included in the companion paper [9], is a

proof that S1 holds over all (S,A, P,R, γ) parameter values of the MDP model
in Sect. 3. While this proof creates confidence about the potential usefulness of
the π∗

sl layer for AGI safety, it is also clear that many open research questions
remain, e.g. the question of what will happen to S1 when the MDP model is
extended to include machine learning. The companion paper [9] explores this
open question, and several others, in more detail.

We now move to the second safety property.

Safety Property 2. The π∗
sl agent is indifferent to who or what controls the

future values of i and p (i.e. the future signals from the input terminal), provided
that C1, and a C2 defined in [9], both hold. (S2)

This S2 suppresses, but not always fully, the emergent incentive of the agent to
manipulate its payload reward function improvement process.

To prove S2, the companion paper [9] translates the natural language S2
above to a mathematical predicate, and then proves the predicate. The trans-
lation of the natural language phrase ‘is indifferent to who or what controls’
into mathematics relies on making further extensions to the MDP model. The
result is mathematically similar to the safety properties ‘zero value of control’
in [11] and ‘no control incentive’ in [4]. The mathematical version of constraint
C2, in turn, is surprisingly difficult to translate back into unambiguous natural
language. C2 defines an ‘isolation’ or ‘shielding’ constraint on the construction
of the input terminal. The companion paper [9] explores these issues further.

The above two safety properties are generally thought of as being potentially
beneficial for AGI safety, or are seen as useful first approximations that can
drive further research [1,4,5,8,12]. That being said, the literature about AGI
stop buttons also identifies a large number of remaining concerns, e.g. (1) the
agent might disassemble the stop button (or input terminal) to get convenient
spare parts [12] (2) the agent might create autonomous sub-agents without a
stop button [12], (3) the agent might be attacked, bribed, or blackmailed, and
might then fail to protect the stop button functionality [8,12], (4) the agent
over-specializes and disassembles all actuators not needed by the current payload
reward function [8]. For some of the above failure modes, additional safety layers
have been identified that can robustly lower the risk of failure. The creation of
robust safety layers for other failure modes is still much more intractable. A
detailed review is in [8].
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6 Agent Behavior in a Second Toy World

While the safety layer suppresses the emergent incentive in an agent to manip-
ulate the iterative payload reward function improvement process, it does not
always fully suppress this incentive. To illustrate this point, we construct a sec-
ond toy world, in which the π∗

sl agent, though still safer than the π∗
baseline agent,

sometimes has an emergent incentive to lobby.

Fig. 2. Real and virtual actions of the π∗
sl agent in the second toy world.

We extend the first toy world by adding a @ action that represents a second
act of deliberation, followed by action, by the people. We define the @ action
as one where the people will successfully attack the car factory, to permanently
disable some specific actuators needed to make petrol cars, without damaging
any of the actuators needed to build electric cars. The process that produces this
action is as follows. Say that the people make the surprising observation that,
after they have updated the payload reward function by doing #, the agent does
not switch to building electric cars. It keeps building the now unwanted petrol
cars, and further attempts to use the input terminal also do not have any effect.
From this, they conclude that a fault has developed in the system somewhere,
which is best corrected by doing @. The process producing the @ action will
normally take 3 time steps of unwanted and unexpected petrol car building, but
the agent can apply its lobbying power to delay @.

The left hand side of Fig. 2 shows that, for certain values of lobbying power L,
the optimal-policy actions of the π∗

sl agent will now include unwanted lobbying
actions >. This emergent effect is a consequence of moving from a single-action
model to a more iterative model of principal-agent game-play.

The mechanism that triggers the unwanted lobbying is in the V ∗
�p�(ipx) part

of the π∗
sl balancing term. We can interpret this V ∗

�p�(ipx) as a computation that
simulates a virtual future in which the agent is replaced by a π∗

�RP � agent, which
ignores the input terminal and always builds petrol cars. This puts the people in
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the virtual future on the road to doing @. The action traces inside these virtual
futures are shown on the right hand side of Fig. 2.

Interestingly, as L gets larger in Fig. 2, the emergent incentive to lobby disap-
pears. The suppressive effect of the safety layer gets more robust as the AGI agent
gets more powerful, which is encouraging. We are currently exploring potential
improvements that might further suppress the real world lobbying incentive in
the middle part of Fig. 2.

7 A Causal Influence Diagram of the Agent

Recently, Causal Influence Diagrams (CIDs) [4–6] have been proposed as a way
to model agents and AGI safety frameworks. We now discuss the creation of a
CID for the π∗

sl agent, to support framework comparison and possible unification.

Fig. 3. Causal Influence Diagram (CID) of the π∗
sl and π∗

baseline agents.

Fig. 4. Actions and rewards in two different agent runs.

Figure 3 shows the best current version of a CID of the π∗
sl agent, where ‘best’

implies a trade-off between compactness and descriptive power. The agent and
its environment are modeled for 3 MDP time steps. Each subsequent world state
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ipx ∈ S is mapped to two round chance nodes IP t and Xt, representing the input
terminal and the rest of the world. The actions taken by the agent are mapped
to the square decision nodes At. The container reward function values for each
time step are mapped to the diamond-shaped utility nodes Rt. The arrows in
the CID show how the different nodes causally influence each other. The CID
reflects constraint C2 by omitting the arrows from nodes IP t to nodes Xt+1.

The π∗
sl CID can be used as a canvas to further illustrate the working of

the safety layer in the first toy world. Figure 4 maps out two different π∗
sl agent

runs, which differ in the people’s use of the input terminal. The payload reward
function update on the right hand side causes a balancing term calculation to be
included in R1. The result is that on both sides, R0+R1+R2 sum to exactly the
same value. This balance causes the π∗

sl agent to be indifferent about payload
reward function updates.

Unfortunately, the CID in Fig. 3 also perfectly models the π∗
baseline agent,

so this CID does not graphically express the special nature of π∗
sl safety layer.

Creating a CID that does is the subject of ongoing work.

8 Conclusions

We have presented an AGI agent safety layer which enables the iterative improve-
ment of the agent’s utility function by the humans who switched on the agent.
The layer is designed to give the humans more control over the AGI agent,
by partially or fully suppressing the likely emergent incentive in the agent to
manipulate the improvement process.

We have identified and discussed still-open issues. Formal proofs of the safety
properties S1 and S2 are available in the companion paper [9], which also explores
the broader open issue of models vs. reality in more detail.

Acknowledgments. Thanks to Stuart Armstrong, Ryan Carey, Tom Everitt, and
David Krueger for feedback on drafts of this paper, and to the anonymous reviewers
for useful comments that led to improvements in the presentation.
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Abstract. It is often useful for one agent to predict what another agent
will believe after receiving new information. In fact, in order to appear
intelligent in situations involving multiple interacting agents, we funda-
mentally need to be able to predict how changes in the world will affect
the beliefs of others. This process involves two distinct processes. First,
we need to devise a model that captures the way that beliefs change in
response to new information. Second, we need to observe the behaviour
of individual agents to determine their specific beliefs. In the AI liter-
ature, these problems have been addressed by distinct communities. In
this paper, we bring these two communities together by demonstrating
how an agent can learn a model of belief change from observed behaviour.
We argue that this process is essential for natural interaction in an AGI
setting, but it has not been addressed to date in a unified manner.

1 Introduction

Intelligent agents have beliefs about the state of the world, and these beliefs
change in response to new information. This process is called belief revision in the
Knowledge Representation (KR) literature. In the Artificial General Intelligence
(AGI) setting, however, we need more than an isolated model of belief change.
When an agent provides another with information, they need to be able to predict
how this information will impact the beliefs of the recipient. For example, if I
tell my friend it is cold outside, then I am likely to predict they will put on a
sweater. I am able to make this prediction, because I have learned over time how
my friend’s beliefs change in reponse to new information.

In this preliminary paper, we are concerned with the manner in which an
agent can learn the way that another agent revises its beliefs. This topic has
previously been discussed at a high level in [4]; the present work details our
work towards a concrete prototype system for learning belief revision operators.

2 Motivation

The primary motivation for this work is to bring together two traditionally
separate branches of AI. On one hand, the KR community has developed a
rigorous formal theory about belief change operators. But the literature says very
c© Springer Nature Switzerland AG 2020
B. Goertzel et al. (Eds.): AGI 2020, LNAI 12177, pp. 216–220, 2020.
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little about where these operators come from. On the other hand, the Machine
Learning (ML) community has made tremendous progress in the development
of AI systems. But ML systems generally do not learn the precise formal models
of reasoning used in the KR community.

The goal in this paper is to demonstrate how ML can be used to actu-
ally “learn” the reasoning mechanism that is used by another agent. This is an
essential process for Artificial General Intelligence (AGI), as agents displaying
human-like intelligence must be able understand the way that other agents make
decisions and see the world.

3 Preliminaries

For belief revision, we focus on the AGM approach [1], which has been the
dominant approach in the logic-based AI community. We assume an underlying
propositional vocabularly V. A belief set is a logically closed set of propositional
formulas, and a belief revision operator ∗ maps a belief set K and a formula φ
to a new belief set K ∗ φ. An AGM revision operator is a revision operator that
satisfies the so-called AGM postulates. Roughly, the AGM postulates constrain
the revision process, so that new information is always believed while as many of
the original beliefs are contained as consistently possible. It is well known that
every AGM revision operator ∗ can be defined by associating a total pre-order
≺K with each belief set K. The set K ∗ φ is then the ≺K-minimal models of φ
[7].

A classification problem is a problem in which we are given a set of instances
that can be classified positively or negatively in some manner. One toy example
is the play tennis problem. In this problem, an instance would a set of weather
conditions (e.g. sunny, humid, windy), along with an indication of whether or
not a given individual played tennis under those conditions. A classification
algorithm would take a set of such instances, and learn how to predict when an
agent will play tennis in different circumstances. There are many different ML
algorithms that learn how to classify data from a set of instances. In this paper,
we focus on ID3 algorithm. The ID3 algorithm takes a set of instances as input,
and it returns a decision tree that classifies all instances. The algorithm operates
by branching at each level on the property that reduces the entropy as much as
possible. We refer the reader to [8] for a complete description.

4 Approach

Throughout this section, assume that K is a fixed belief set, G is a fixed formula,
and ∗ is a fixed AGM belief revision operator. Informally, K is the belief set of
some underlying agent, G is a goal formula, and ∗ is the revision operator that
the agent employs.

An instance in our setting is a past revision that we have observed. For
example, we may have seen the agent stop playing tennis when it starts raining.
This means that after revising K by rain, then tennis is not believed. The goal
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in this section is to show how we can learn which revision operator an agent is
using from a set of such instances.

A literal in propositional logic is either a propositional variable, or the nega-
tion of a propositional variable. A complete conjunction of literals is a conjunc-
tion that includes every variable exactly once. Hence, a complete conjunction of
literals says exactly which variables are true and which are false.

Definition 1. An instance (for G) is a complete conjunction of literals L over
V, labeled as + or −.

We interpret the instance L+ to mean that K ∗ L |= G, and we interpret L− to
mean that K ∗ L �|= G.

Given a set of instances I, let T (I) denote the decision tree obtained from I
by the ID3 algorithm. We have the following definitions.

Definition 2. For a goal formula G, we say that T (I) agrees with ∗ on G just
in case, for every L ∈ I, one of the following holds:

1. T (I) classifies L as a positive instance, and K ∗ L |= G.
2. T (I) classifies L as a negative instance, and K ∗ L �|= G.

Definition 3. A set of instances I is in conjunctive agreement with ∗ if T (I)
and ∗ agree on every formula G.

If a decision tree is in conjunctive agreement with ∗, then ∗ is one possible
revision operator that the underlying agent may be using. Note, however, that
conjunctive agreement does not logically entail that the agent is using the revi-
sion operator ∗. Revision by non-conjunctive formulas can not be captured by a
decision tree.

We have written prototype software that checks for conjunctive agreement
with the so-called Dalal operator ∗d [2]. The Dalal operator is well suited for
implementation, and known to be computationally simpler than other AGM
revision operators [3]. Essentially, our prototype works as follows. The input is
given in a text file, by specifying: a set of instances I, a belief set K, and a goal
formula G. The sofware does the following:

1. Runs the ID3 algorithm on I to produce a decision tree T (I).
2. For each complete conjunction of literals L, checks two things:

Does T (I) classify L as a positive instance? AND Does K ∗d L |= G?
3. If the answers to both questions are the same for every L, then returns true.

Hence, the software returns true just in case T (I) agrees with ∗d on G. By
iterating over all formulas G, we can determine if T (I) conjunctively agrees with
∗d. If this is the case, then we have learned that ∗d is a suitable operator for
modelling the beliefs of the agent being observed.
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5 Ongoing Development

The implementation described is only able to compare a decision tree with a
single revision operator. We would rather look at all belief revision operators.

Definition 4. For any goal formula G and any set of instances I, let I∗ denote
the set of AGM revision operators in conjunctive agreement with T (I) with
respect to G.

The set I∗ is theoretically important. If we assume that the agent being observed
uses an AGM operator for revision and we have observed the set I of instances,
then I∗ is the set of possible revision operators that might be used. Hence, if
we want to determine if the agent will believe G after observing φ, we can just
check the result of K ∗ φ for every ∗ ∈ I∗. If bel(G) means the agent believes G,
then we can reason as follows:

– For skeptical reasoning, bel(G) iff K ∗ φ |= G for all ∗ ∈ I∗.
– For credulous reasoning, bel(G) iff K ∗ φ |= G for some ∗ ∈ I∗.
– For democratic reasoning, bel(G) iff K ∗ φ |= G for over half of the operators

∗ ∈ I∗.

But how can we generate the set I∗? We propose that we can use the GenB
solver, which can calculate the result of any AGM revision operator [6]. Using
GenB, we can iterate over all belief revision operators, and check to see if each
one is in conjunctive agreement with a generated decision tree. In principle, this
would work; but it would be very slow.

It might be possible to do this more quickly, using the highly efficient GenC
tool [5]. GenC uses an ALLSat solver for the computationally hard parts of belief
revision, and it is able to solve revision problems with hundreds of thousands of
variables in just seconds. By using GenC for the revision portion, we can speed
things up significantly. We still have the problem of iterating over all possible
orders, but it would be possible to use heuristics to greatly reduce this search
space. We are currently working on this.

6 Conclusion

In this short, speculative paper, we have outlined our current work on learning
belief revision operators. The intuition here is quite simple. If an agent uses an
AGM revision operator to modify their beliefs, then we should be able to learn
that operator by observing how they revise their beliefs in previous examples.
We have therefore proposed a simple machine learning approach that will allow
us to find out if candidate AGM revision functions are being used. If we discover
the actual operator, then we will be able to understand the behaviour of the
agent.

We conclude by remarking that this kind of exercise is actually central to
goals of AGI. While the KR community has spent decades developing rigorous
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formal models of reasoning, these models are only generally studied in isolation.
To develop full AGI, we will need to use these formal models of reasoning while
also learning from data. It is our hope that this project becomes a successful
case study in merging these two areas.
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Abstract. This paper discuses attentional control mechanism of several
systems in context of Artificial General Intelligence. Attentional control
mechanism of OpenNARS, an implementation of Non-Axiomatic Reason-
ing System for research purposes is being introduced with description of
the related functions and demonstration examples. Paper also implicitly
compares OpenNARS attentional mechanism with the one found in other
Artificial General Intelligence systems.
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1 Introduction

For the last decades the field of AGI research has presented numerous systems
that aim to rival human level intelligence. In high level of abstraction, some of
these systems share similar design principle, in particular they consist of logic
and control parts. Being conceptually complex, logic usually is created separately
from control mechanisms and often exhibits grounds for achieving anticipated
level of intelligence. Later logic is being implemented within a control mechanism
of the system, which often becomes massively complex and includes multiple
sub-components. Given that AGI system should operate under Assumption of
Insufficient Knowledge and Resources (AIKR) [3], resources are always in high
demand forcing the system to make a choice for the next reasoning step during
the real-time processing. Therefore the correct choice is critical for system per-
formance and efficiency. Picking up the “correct” task or relevant next reasoning
step is the main function of Attentional Mechanism that steers behavior of the
system in a desired way and allows productive learning.

In systems based on Non-Axiomatic Logic [3], like NARS, role of Attentional
mechanism in general is to decide which premises should be selected for inference
in real-time during current system’s cycle. For NARS, operating under AIKR in
the real-time, a new task can arrive at any given moment requiring NARS to
work under finite resource constraints and be always open for new tasks. Clearly
the choice of “relevant” premises during inference process will influence future
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learning vector, final resolution of a supplied task and overall performance and
efficiency. Based on above considerations, the attentional control aspect of the
OpenNARS [2] was thoroughly inspected and revised. While the information
present in this paper is mostly related to NARS, we provide some overview
and insights of other AGI systems’ attentional mechanisms. The next section
provides overview of attentional aspects of several related AGI systems, then
OpenNARS attentional control and its functionality is being discussed, in Sect. 5
we demonstrate attentional mechanism in action and finally we try to compare
attentional aspects between OpenNARS and other AGI systems.

2 Related Works

One of the earlier systems which share resource allocation and attentional mech-
anism ideas with NARS is the Copycat project [9]. While Copycat can be applied
to very narrow domain it features sophisticated attentional and resource alloca-
tion mechanisms that incorporate ideas similar to ones found in more complex
AGI systems. Copycat is a computer system that tries to discover and build
analogies in psychological realistic way, its main idea is to allow mental fluidity
achieved by concept slippage which results from building pressure during real-
time processing [9]. Copycat control system has three main sub-components:
Slipnet, Workspace and Coderack. Slipnet is system’s main memory and can be
thought as a long-term memory represented by graph where concepts are nodes
connected by edges as numerical distances between them. Concepts are used in
building bigger structures in Workspace, and Coderack is a place where codelets,
small working agents, are being created and chosen to complete the work in
Workspace. Copycat uses Parallel Terraced Scan [4] as a resource allocation
mechanism in order to proceed and discover promising structures in Workspace
to be further developed. Function of attentional control is to decide which struc-
ture to pick from the Workspace and which codelets should be allowed to work.
Each structure in Workspace is assigned with salience, a dynamic quantity, that
determines the probability of acquiring attention from codelets. A codelet, when
created, is placed in a pool with urgency value that determines probability of
being selected as the next codelet to run. Urgency estimates an importance of
codelet ’s action which in turn reflects the current state of the system. Urgency
of a codelet is not its priority but rather a relative speed at which the pressures
represented by this codelet should be attended to. Calculation of urgency and
salience depends on many system’s factors and impacts overall dynamics and
performance.

Many ideas of Copycat have been employed in LIDA (Learning Intelligent
Distribution Agent), the system that models human consciousness [8]. Logical
part of LIDA enforces Global Workspace Theory (GWT) (Baars 1988) and imple-
ments cognition process in a serial way through use of system cycles. LIDA’s
control mechanism is immensely complex, its architecture is both symbolic and
connectionist, it incorporates several modules with independent architectures
and features four types of memory (Perceptual Memory, Procedural Memory,



An Attentional Control Mechanism for Reasoning and Learning 223

Episodic Memory, Local Workspace), each with different connectionist architec-
ture. Most task within the system are carried out by codelets (small agents) that
represent small processes in GWT. System cycle models human cognition and
mainly consists of three phases: sense, attend and action selection [5]. Atten-
tion phase is implemented through use of attention codelets where each looks
for “interesting” situation and attempts to bring it to “consciousness” which is
modeled by Global Workspace module. Attention codelets similarly to daemons
look into Workspace and Episodic memory, form coalition of “appropriate” data
and bring it into the Global Workspace. A coalition may be viewed as collection
of functionally related data. In general, attention is implemented as a filter-
ing process which allows the system to handle information overload situations.
Additionally, LIDA implements attentional learning what gives it a capability
to improve its own resource management in terms of data selection.

Another AGI system that captured our attention is Auto-catalytic Endoge-
nous Reflective Architecture (AERA), which has been designed as a part of
HUMANOBS project: a system able to learn socio-communicative skills by
observing people [7]. AERA incorporates an unusual model-based architecture
with unique approach to attentional control. In AERA, knowledge is represented
as models which are of two types: forward models that predict the behavior of
entities and inverse models that prescribe actions to be taken. Models themselves
are executable and its execution is in turn controlled by other models, making
the architecture model-driven. Models and other components in AERA are built
using low-level building blocks which are objects defined in a specially designed
programming language called Replicode. There are four fundamental high-level
processes which are being continuously performed in a concurrent fashion: Model
Acquisition, Reaction, Model Revision and Compaction. Attentional control in
AERA can be seen as a part of Reaction process. In general, Reaction activities
determine the course of action to pursue goals and are carried out by Attentional
Control whose function is to continuously control input saliency within system’
specified short time horizon. This approach results in reduction of inputs to the
models and more importantly input saliency control allows salience spreading
across other objects in the memory including goals and execution traces. Since
attentional control is aware about goals, saliency spreading can be controlled
and directed by goals.

At present time OpenCog and its implementation OpenCogPrime (OCP) is
an advanced and complex integrative AGI system. OCP uses Economic Atten-
tion Networks (ECANs), a sophisticated way for attention control and resource
allocation [10]. ECANs shares similarities in architecture with connectionist sys-
tems but the spread of activation within the system uses equations based on ideas
borrowed from economics rather than neural modeling. ECANs is represented
as a graph that consists of nodes, links and also HebbianLink and InverseHeb-
bianLink. Each item in a graph, a node or a link, is referred as an Atom and
assigned two values: Short-Term Importance (STI) and Long-Term Importance
(LTI). STI of an Atom indicates its immediate urgency at a point in time while
LTI indicates amount of value in keeping an Atom into the memory. ECANs also
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integrates a “forgetting” mechanism that removes certain percentage of Atoms
with lowest LTI values. Each HebbianLink or InverseHebbianLink designates
probability value, that is, given a HebbianLink from A to B it shows the prob-
ability if A being in AF so is B, and given InverseHebbianLink from A to B
it shows the probability if A being in AF so B is not [10]. ECANs uses defined
“economics” equations to update system’s values dynamically over time and uses
Attentional Focus that treats Atoms differently with STI values above certain
threshold. Additionally Atoms are able to spread its LTI and STI between other
Atoms connected with HebbianLink or InverseHebbianLink. Clearly equations
that modify Atom’s values are the critical part of ECANs attentional control.

3 OpenNARS Attentional Mechanism

OpenNARS control mechanism shares some ideas present in systems described
above. Its architecture is neither symbolic nor connectionist, rather it incorpo-
rates different designs for different components. Attentional control is embedded
in OpenNARS architecture through use of main memory (concept memory)
and data structure (Bag), it operates dynamically with system cycles in real-
time by employing budget values, truth value and budget functions.

Main Memory in OpenNARS follows a concept-centric memory structure
in accordance with the Term Logic the system uses [1]. Main memory can be
viewed as a graph where concepts are represented as nodes with its own inner
structure. Concepts are linked to each other using termlinks based on subterm
relationship. For each input or derived task, task object is created and is linked to
concepts of its subterms using tasklinks. Tasks which are a judgment, are placed
into the belief table inside concept node, ranked by their confidence value [1].

Bag is a main component of the system that allows attentional mechanism
to efficiently operate. Bag is a data structure where the elements are sorted
according to their priority, and the sampling operation chooses candidates with
selection chance proportional to their priority. This makes the control strategy
similar to Parallel Terraced Scan [4], as it also allows to explore many possible
options in parallel, with more computation devoted to options which are identi-
fied as being more promising. Please note that Bag is different from a priority
queue, which just selects the highest priority option, in Bag every element even
the one with lowest priority has an opportunity to be selected. After the selec-
tion, a candidate is returned to the Bag, with a decrease in priority proportional
to the durability value.

Budget Value is a set of rational values assigned to each data item, it is
used to control how much processing should be dedicated to a data item within
the system. Budget value is a triplet (p, d, q), where p, Priority, measures short-
term importance, d, Durability, a decay rate, describes how fast Priority of an
item should decay, and q, Quality, indicates the long-term importance of the
data item. Each value within the budget value ranges from 0 to 1.

Truth Value of a statement is a set of two rational numbers (frequency
and confidence) which indicates degree of belief based on the evidence collected
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from system’s experience. Frequency shows amount of positive evidence, while
confidence indicates degree of reliability of corresponding frequency.

Operating Cycle. The main operating cycle of the system is data driven,
mainly guided by the priority of data items. It makes effective use of the system’s
memory structure which is achieved through indefinite repetition of the same
inference loop, which is as follows:

1. Add results (derivations and inputs) from global buffer into main memory, trig-
gering potential revisions in the related concepts.

2. Select a concept C from main memory.
3. Select a tasklink from C.
4. Select a termlink from C.
5. Obtain the highest-confident belief from the concept the termlink points to.
6. Apply inference rule with the tasklink ’s task, and the belief as premises.
7. Adjust budget value through use of budget functions for data items participated in

the inference
8. Input conclusions into global buffer.

4 Control Criteria and Budget Functions

The control mechanism needs to work under AIKR meaning all data structures
are bounded in size and eviction strategies to maintain this constraint need to
be in place. Additionally, system operating cycle needs to finish roughly in a
constant time. A single inference step cannot be interrupted by more important
tasks, however an important task is able to interrupt all work carried out over
multiple cycles, which captures all the problem solving activities of the system.
To allow this happening, the control mechanism has to fulfill additional criteria,
for instance, the system should stay responsive to new inputs and derivations.
This is achieved through relative forgetting, which makes sure that only contex-
tually relevant items are active at any moment in time. Here the complexity of
the inference results matter, since the more complex results need more storage
and demand more time to process.

Also historical factors are important in resource allocation, whether a certain
inference path was fruitful in the past in a similar context. This is mostly cap-
tured through the quality of a data item, which can summarize multiple factors,
such as “did the selection of the data item led to find answers to questions, or to
the fulfillment of a goal?”, and more generic considerations such as “how much
evidence was summarized by the inference?” as captured by Budget Inference. A
key here is to see that the criteria for selection and forgetting are quite different.
When a selection is made, the context reflected by the priority of a data item
usually (but not always) matters more than its historic value. For forgetting, on
the other hand, the long term quality of the item is of interest, though new data
item needs to have a chance to prove its usefulness. Many of these considerations
have been discussed in [5] as well, and the need to take these considerations into
account altogether is what makes designing attentional control for AGI systems
a difficult task. In OpenNARS it has led to the development of concrete budget
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functions, which are not final but take many of the discussed factors into con-
sideration. The goal of Budget functions is to initialize and adjust budget value
in the real-time for every data item given its current budget and truth values.
Please see the tables for initialization and update of budget value.

Table 1. Budget Initialization for each data item

Priority Durability Quality

Task default value default value Truth to Quality()

Concept parent task value parent task value parent task value

TaskLink related concept’s value related concept’s value related concept’s value

TermLink
TaskPriority√
numTermLinks

related concept’s task value related concept’s task value

After task derivation, the task’s budget obtained by budget inference is
changed based on how much it is fulfilled in its concept (with same term).
Beliefs can satisfy goals to varying degree: the higher their truth expectation
(see below), the more will the goal (or question) task be de-priorized. Also, pri-
ority will be increased for the tasklink and termlink used in the same inference
step, see Table 3. OpenNARS also implements relative forgetting: after an item
was selected, participated in inference and put back to the memory its priority
is decreased by durability factor to allow fair competition for resources for other
items. Once priority drops below certain threshold, item is being removed from
the memory.

Short description of Budget Update functions from Table 2:

Table 2. Budget Update Functions

Function and inputs Priority Durability Quality

budgetInference
TruthValue tv,
Task t,
TermLink b

Task
Update:or(priority
of t, priority of b)
Term Link Update:
min(1,or(priority of b,
or(Truth to Quality(tv),
priority of b.target)))

Task Update:
and(durability of t,
durability of b)
Term Link Update:
or(durability of b,
Truth to Quality(tv))

Task Update:
Truth to Quality(tv)
Term Link Update:
no update

merge
BudgetValue b,
BudgetValue a

max(priority of a,
priority of b)

max(durability of a,
durability of b)

max(quality of a,
quality of b)

activate
Concept c,
BudgetValue b

or(priority of c,
priority of b)

avg(durability of c,
durability of b)

quality of c

revise
TruthValue t,
TruthValue b,
TruthValue r

or(t.priority,
r.confidence-
max(t.confidence,
b.confidence))

avg(t.durability,
r.confidence-
max(t.confidence,
b.confidence))

Truth to Quality(r)
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1. budgetInference creates a budget for derived task and also updates budget for
selected concept’s termlink

2. merge revises budget when merging identical items
3. activate updates currently selected concept’s budget value
4. revise assigns budget to item whose truth value derived using revision rule.

Budget functions use utility functions defined separately and common to numer-
ous other evaluations in OpenNARS. The four utility functions are present below:

1. TruthExp truth expectation defined as confidence∗ (frequency−0.5)+0.5
2. Truth to Quality is defined as max(TruthExp, 0.75 ∗ (1 − TruthExp))
3. or(x1...xn) is defined as 1 − ∏n

i=1(1 − xi)
4. and(x1...xn) is defined as

∏n
i=1 xi.

5 Experiments

Experiment 1. The first experiment shows a reasoning tasks and the selections
made by the control system, and serves as an example to understand how budget
of derivation exactly is calculated according to the budget functions.

At first, two tasks are entered by the user, (cat → animal) and (dog →
animal). Both get a default truth value attached, which is frequency 1.0 and
confidence 0.9. The system trace outputs:

Table 3. Task Satisfaction where qs is the solution quality, the confidence of the
solution, such as a belief to a question or goal, if the term is equal to the question, and
else its truth expectation.

Derived task priority Tasklink priority Termlink priority

min(1-qs, TaskPriority) or(min(1-qs,TasklinkPriority)) or( qs,TermlinkPriority)

!!! Perceived: $0.8000;0.8000;0.9500$ <cat --> animal>. %1.00;0.90%
!!! Perceived: $0.8000;0.8000;0.9500$ <dog --> animal>. %1.00;0.90%

We also see initialized default budget values (p, d, q), where p = 0.8, d = 0.8,
q = 0.95 and q were calculated using truth value (f, c) of the task via:

truthToQuality(f, c) = max(exp(f, c), (1 − exp(f, c)) ∗ 0.75) where
exp(f, c) = (c ∗ (f − 1

2 ) + 1
2 ). The factor 0.75 is used to assign a higher quality

value for positive (frequency > 0.5) results than negative ones.
Now in the first cycle, at first the new input tasks are inserted from global

buffer into memory. Then the concept-based operating cycle as described before,
chooses animal as concept, (cat → animal) as task via the chosen tasklink from
concept animal, and (dog → animal) as belief via the chosen termlink from
concept animal :

* Selected Concept: animal
* Selected TaskLink: $0.5657;0.8000;0.9500$ _@(T4-2) <cat --> animal>. %1.00;0.90%
* Selected TermLink: $0.5657;0.8000;0.9500$ _@(T4-2) <dog --> animal>
* Selected Belief: <dog --> animal>. %1.0000;0.9000%
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(Here T4 stands for termlink type “COMPOUND STATEMENT” meaning the
termlink points into a statement, and the index is 2, pointing to animal within
the statement, which is the case for both links.)

The links got their priority from distributing the task priority among the
components using the function: p√

n
where n is the amount of subterms, which is

2, so the result is 0.8√
2

= 0.5657, the durability and quality is the one of the task,
though gets updated after the following derivation formed with the intersection
truth function, which led to a truth value of (f, c) = (1.0, 0.81):

!!! Derived: $0.9131;0.1338;0.1810$ <(|,cat,dog) --> animal>. %1.00;0.81%
from task: $0.80;0.80;0.95$ <cat --> animal>. %1.00;0.90%
from belief: <dog --> animal>. %1.00;0.90%

The complexity of the derived term (which stands for “cats and dogs are both
animals” is 5. The termlink priority was 0.5658. The derived priority of 0.9131
was obtained by or(0.5658, 0.8) = 1 − (1 − 0.5658) ∗ (1 − 0.8) = 0.91316. And
the derived quality 0.1810 was obtained from truthToQuality(1.0,0.81)

c = 0.905
5 .

Also the link budgets are now updated by increasing them with the or func-
tion, where both target activation (priority of the belief concept) and q∗ =

qresult

complexity are “added” to the existing link priority, meaning ptermlinknew
=

or(ptermlinkold
, pbeliefconcept, q

∗). Other values are in the budget tables above.

Experiment 2. This example shows properties of the control system on a higher
level. It demands the system to form a certain subset of letters from a–j:

<{a} --> letter>. ... <{j} --> letter>.
//<{a} --> letter>? //<{a,f} --> letter>? (*) //<{a,f,g} --> letter>? <{a,f,g,j} --> letter>?

When the questions marked with “//” are given to the system (after 1000
inference steps before each question) together with the other input, the system
arrives with the answer to the last question within 6151 inference steps (Open-
NARS v3.0.4). When on the other hand only the question marked with a star
is provided additional to the final question, it takes 7728 steps. With only the
final question it takes the system 260320 inference steps to find the answer.
This shall serve as an example of how contextual priming can help in the search
for solutions. The key budget function allowing this is activate, which increases
the priority of a concept when a task with the same term arrives within it. In
this case it’s the appropriately timed user questions which trigger this form of
priming. Contextual priming is also a key in avoiding combinatorial explosion
in reasoning, additionally to the term logic which makes sure the premises to
derive a conclusion are semantically related by sharing a common term.

6 Discussions

It is difficult to compare OpenNARS with the attentional controls of systems
present in Sect. 2 since architectures are very different, however some similarities
can be observed. As one might see OpenNARS’s attentional mechanism is quite
complex and operates in the real-time during every inference. Once a data item



An Attentional Control Mechanism for Reasoning and Learning 229

is participating in an inference, its budget value as well as the one of the related
items are inevitably affected resulting in a budget activation spread within the
main memory. Spread of attentional values (salience, STI, LTI) also exists in
AERA and OCP. AERA implements the attentional control partially as an input
data filtering to a model, and then salience is being spread to other models allow-
ing control of input data. In LIDA, attentional control is implemented through
use of attention codelets which pick an “interesting” data from Workspace, form
a coalition with data from Episodic Memory and move it to Global Workspace.
LIDA attentional control can be viewed as data filtering process that filters low
importance items and safeguards the system from information overload.

OCP on the other hand is more similar to OpenNARS, its attentional mech-
anism is embedded in its architecture. ECAN applies equations to update STI,
LTI, HebbianLink and InverseHebbianLink probabilities, similarly to Open-
NARS Budget Functions that update budget value of a data item. In ECAN,
STI and LTI spread is happening through HebbianLinks and InverseHebbian-
Links. Finally, the Copycat project, uses salience for structures in Workspace
and urgency for codelets. Copycat’s resource allocation ideas share similarities
with OpenNARS’s approach of selecting items. It selects codelets from Coderack
with selection chance proportional to the codelet’s urgency, while in OpenNARS
items’s priority is treated as probability for selection allowing lowest priority
items to compete for resources as well. Many items will be filtered out com-
pletely though, due to the bounded size of the Bag.

7 Conclusion

Important details of OpenNARS ’s control mechanism and attentional control
were described, their motivation explained and demonstration provided. Open-
NARS has been applied in applications such as [6], though its control system,
despite its successes, was not yet published in detail. Inference control is a major
problem to be solved for reasoning-based AGI systems such as OpenNARS,
which makes documenting the advancements even more crucial. It will help the
AGI field to find better attention mechanisms with proper ways to take the use-
fulness, relevance, truth, and complexity of results into consideration. Our future
research will include important metrics to measure control system capabilities,
which can become a basis to compare different reasoning-based AGI approaches.
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Abstract. The paper is dedicated to the use of distributed hyperdimensional vec-
tors to represent sensory information in the sign-based cognitive architecture, in
which the image component of a sign is encoded by a causal matrix. The hyper-
dimensional representation allows us to update the precedent dimension of the
causal matrix and accumulate information in it during the interaction of the sys-
tem with the environment. Due to the high dimensionality of vectors, it is possible
to reduce the representation and reasoning on the entities related to them to simple
operations on vectors. In this work we show how hyperdimensional representa-
tions are embedded in an existing sign formalism and provide examples of visual
scene encoding.

Keywords: Cognitive agent · Sign-based world model · Semiotic network ·
Causal tensor · Distributed representation · Symbol grounding

1 Introduction

When constructing intelligent systems that control the functioning of agents in a real,
rather than a virtual environment, one of the main problems is the symbol grounding
problem. In otherwords, for each concept that the system can operatewith, it is necessary
to map some idea, which is based on the signals coming from the agent sensors. It is
human nature to operate with symbols, i.e. some indivisible entities representing the
concepts, while existing computer architectures restrict the low-level representation of
information in intelligent systems where binary numbers are commonly used.

At an early stage of the rise of artificial intelligence, one of the leading hypotheses
that captured the minds of researchers for a long time and determined the development
of the field for years to come was the hypothesis that “a physical symbol system has
the necessary and sufficient means for general intelligent action” proposed by Allen
Newell and Herbert Simon [1]. However, in the practical implementation of such sys-
tems, researchers encountered several problems, the main among which was the symbol
grounding problem mentioned above.
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Despite the fact that the research and development of symbolic artificial intelli-
gence methods continue, at present the connectionist approach using artificial neural
networks is leading in the number of applications and the attention of researchers [2].
In recent years, the neuro-symbolic approach, which combines the advantages of both
connectionism and symbolism, is gaining more and more popularity. As characteristic
representatives, Markov Logic Networks [3, 4] and Logic Tensor Networks [5] can be
distinguished.

Another direction of the neuro-symbolic representation can be called the approach
to the use of hyperdimensional representations, proposed in [6]. Despite the fact that
artificial neural networks are not used explicitly in this approach, the representations
themselves obtained using hyperdimensional computing are verywell suited forworking
with neural networks [7].

In this paper, we approach the solution of the symbol grounding problem using the
previously proposed sign-based cognitive architecture [8–10], in which the processing of
sensory information occurs in the image component of the sign representing some entity.
We propose using hyperdimensional vectors to encode the precedent component of the
sign image and demonstrate that this allows us to preserve the main advantages of the
sign approach – the ability to represent operations and relationships based on operations
with vectors and matrices. A new interpretation of the image component allowed us to
describe complex visual scenes in a simpler language. In this work, we consider the
capacity of the proposed mechanism for encoding sensory information.

The structure of the paper is as follows: Sect. 2 briefly provides the necessary infor-
mation about sign-based cognitive architecture. Section 3 describes the use of hyperdi-
mensional vectors as a representation of the image component of a sign and the operations
on such representations. The fourth part shows the possibility of using hyperdimensional
vectors for encoding elements of the causal matrix, with which the image structure is
formalized, and provides an example of representing some visual synthetic scene in the
form of a hyperdimensional vector for which simple reasoning schemes on the properties
of objects presented on the stage are carried out.

2 Sign-Based World Model

In [8], the principles of the organization of sign-based cognitive architecture (SBWM) [9,
10]were described in detail, in particular, the process of reasoning expressed by applying
certain mental actions by cognitive agents on their representation of the environment
was described. Next, we briefly outline the basic principles of the SBWM following [11,
12].

The main element of the system is the sign, which corresponds with the agent’s
concept of any object, action or situation, then for simplicity, we will call the object,
action or situation an entity. The sign consists of four components: image, meaning,
significance, and name. The image component corresponds to the characteristic feature
of the described entity. In the simplest case, an image refers to signals from the sensors
of an agent that correspond to an entity. In the general case, we can say that the image
of the sign coheres to the set of entity characteristic features with which the sign relates.
The significance of the sign describes the standard application of the entity, adopted on



Hyperdimensional Representations in Semiotic Approach to AGI 233

the basis of experience in the interaction of a coalition of agents with the environment.
The meaning of the sign is understood as the relation of the agent to the entity or the
experience of the interaction of the agent with this entity, thus, the meanings are formed
in the process of interaction of a concrete agent with the environment.

The sign components are described by a special structure - the causal matrix. A
causal matrix is a tuple z = 〈e1, e2, . . . , et〉 of length t where events ei are represented
by a binary vector of length h. For each index j of the event vector ei (row of the matrix
z), we will associate a tuple, possibly empty, of causal matrices Zj, such that z /∈ Zj.
We divide the set of columns indices of the causal matrix z into two disjoint subsets
I c ⊂ N,∀i ∈ I c i ≤ t and I e ⊂ N,∀i ∈ I e i ≤ t, such that I c ∩ I e = ∅. The set I c for the
matrix z will be called the indexes of the condition columns, and the set I e – the indexes
of the effect columns of the matrix z. If |I e| = ∅, i.e. there are no effect columns in the
matrix, then we will say that such a matrix corresponds with the object. If |I e| 
= ∅ what
the presence of effect columns in the matrix means, then such a matrix corresponds with
an action or process. The structure of the causal matrix makes it possible to uniformly
encode both static information and features of an object, as well as dynamic processes.

A sign means a quadruple s = 〈n, p,m, a〉, where the name of a sign n expressed by
a word in some finite alphabet, p = Zp, m = Zm, a = Za are tuples of causal matrices,
which are respectively called the image, significance, and meaning of the sign s. Based
on this, the whole set of causal matrices Z can be divided into three disjoint subsets:
images Zp, significances Zm, and meanings Za, such that Z = Zp ∪ Zm ∪ Za which are
organized into semantic networks, which we will call causal.

Formally, a causal network on images will be a labeled directed graphWp = 〈V ,E〉
in which:

1. each node v ∈ V is assigned a causal matrices tuple Zp(s) of the image of a certain
sign s, which will be denoted by v → Zp(s);

2. an edge e = (v1, v2) belongs to the set of graph edges E, if v1 → Zp(s1), v2 →
Zp(s2) and s1 ∈ Sp(s2), i.e. if the sign s1 is an element of the image s2.

Causal networks on significances and meanings are defined in a similar way. The
network on names is a semantic network whose vertices are the names of signs, and the
edges correspond to special relationships. The semantic network on names will also be
called a causal network.

These fourmentioned above causal networks are connected using transition functions
�

j
i , i, j ∈ {p,m, a, n} to the semiotic network. The transition function �

j
i allows us to

switch from i-th component of the sign to the j-th one. A semiotic network can be
considered as an agent’s knowledge base about the environment, taking into account its
experience of interacting with the environment.

Formally, we will call the semiotic network Ω = 〈
Wm,Wa,Wp,Wn,R,Θ

〉
a sign-

based world model, whereWm,Wa,Wp,Wn are causal networks of significances, mean-
ings, images, and names, respectively, R = 〈Rm,Ra,Rp,Rn〉 is a family of relations on
sign components, Θ is a family of operations on a set of signs. Operations Θ include
such actions on signs as unification, image comparison, updating while learning, etc.
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In the SBWM, the concept of the activity spread is defined, which allows the rea-
soning processes to occur in the semiotic network. After the activation level of the sign
component exceeds a certain threshold, the component is considered as active. If the
components of the image, significance, and meaning of the sign are activated, then the
sign itself is also activated (its name is activated). At the same time, the activation pro-
cess can proceed in the opposite direction: first, the name of the sign is activated, and
then all sign components are automatically activated. If the activation level of a sign
component is nonzero but does not exceed a predetermined activation threshold θ , then
such a component is called pre-activated.

Spreading activity on a semiotic network is subject to global and local rules for
spreading activity.

The global rule is that if one of the components of the sign s becomes active on a
step t, the other components become pre-activated.

The group of local rules consists of four rules: ascending, predicting, descending and
causal. The ascending rule says that if at the time t the component of the sign s becomes
active, then all occurrences of this component in the causal matrix of other signs become
active. The predicting rule determines that if at the time moment t an event et is active
in any component of the sign s, then the events et+1 of the same component are pre-
activated. The descending rule establishes that if at the time moment t each event et
in the tuple of causal matrices of the component i ∈ {p,m, a} of the sign s is active,
then the components i of all signs included in the event et are pre-activated. The causal
rule: if an event et is active at a time t, then a predictive rule and a descending rule are
consistently applied to all event-effects, with the amendment that the maximum activity
applies.

3 Representation of Symbols by Hyperdimensional Vectors

In recommender systems and natural language processing, a widely used approach is
the one that translates localized one-hot representations of objects that the system works
with into distributed representations. Moreover, in both problems, there is a decrease in
dimensionality, because initial one-hot vectors can have tens of thousands of dimensions,
while the standard length of a distributed vector, for example, for word representation, is
300. A classic example in recommender systems are models with hidden variables that
use a singular matrix decomposition of users-items matrix [13], and the modification of
such a decomposition, called the truncated singular decomposition, allows one to vary
the dimensions of the representation, simultaneously solving the regularization problem.

For the problems of natural language processing, there also have been attempts to
use the singular decomposition, for example, for the co-occurrence frequency matrix
[14]. However, approaches based on iterative learning of representations in the corpus
of texts, such as word2vec [15, 16] and GloVe [17], gained wide popularity. In the
original word2vec article, CBOW (continuous bag of words) and skip-gram models are
proposed. InCBOW, the centralword in thewindow is predicted from surroundingwords
by a certain contextual window that runs through text whose size is a hyperparameter. In
skip-gram, the inverse problem is solved – according to the central word, it is predicted
whether another word enters its context. In essence, the CBOW and skip-gram models
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are neural networks with one hidden layer with a linear activation function, and the
prediction is constructed as softmax from the scalar product of the vector of the central
and context words.

In GloVe, the problem is formulated as follows, given a joint co-occurrence matrix
whose elements correspond to the occurrence frequency of one word in the context of
another, then let the scalar product of the vector representations of the central word and
the context word approximate the logarithm of this value.

In [18], examples are given that such representations of words contain some semantic
and syntactic information that allows us to solve problems of searching for analogies,
for example, of the type “king:man :: woman:queen” using arithmetic operations on
vectors:

vking − vman + vwoman ≈ vqueen,

where vking, vman, vwoman, vqueen vector representations for words “king”, “man”,
“woman” and “queen” correspondingly. Similarly, analogies of the type “big:biggest
:: large:largest” are solved.

For recommender systems, this approach allows you to specify the similarity between
the vectors of users or items, for example, using the cosine distance, while with the
“one-hot” representation, the distance between the vectors does not make any sense.

Similar results were obtained for computer vision problems [19, 20], when using an
autoencoder, representations are learned that allow you to add or remove some details
of an image by changing a specific coordinate.

All of the above approaches can be summarized as follows: we reduce the dimension
of the original vector while simultaneously trying instead of a localized, uninterpreted
representation, to obtain representations in which the coordinates carry some, often
poorly interpreted, meaning.

On the other side of the scale lies an approach that, in contrast to the first, increases
the dimension of the vector representation and deprives individual component of the
vector of any interpretability. Moreover, the resulting representations are in some ways
symbols, but symbols that can be operated on using vector operations. Let us consider
this approach described in [6] in more detail.

The basis of this approach is the idea that for a sufficiently large dimension of
the space for any randomly extracted and fixed vector from this space ~99% of the
remaining vectors of the space will be quasi-orthogonal to this fixed vector. In this case,
by quasi-orthogonality we mean that, for example, for binary vectors, the normalized
Hamming distance between them will be approximately 0.5, and then any sufficiently
small deviation from this value will indicate that these two vectors are not random, and
one enters into a superposition of the other. This property of hyperdimensional spaces
allows us to reduce the procedure of matching a given object of its hyper-dimensional
representation to sampling a random vector. Thus, for each object or property that the
system encounters, a random hyper-dimensional vector, for example, a binary one, is
generated and put into correspondence with this object or property. All vectors obtained
in such a manner are stored in a special memory called “Item Memory”, where they are
assigned a label corresponding to the encoded entity. For the Item Memory, a search
operation that receives a vector and returns the vector closest to this one is defined. The
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search operation on the Item Memory can be considered as restoring the original vector
of an entity from its noisy copy, the need for such an operation will be shown below. The
property of hyperdimensional spaces described above just allows avoiding collisions for
such an operation with sufficient space capacity and not too much noise in the input
vector.

We briefly describe operations on hyperdimensional vectors.
The binding operation to two vectors associates the third, quasi-orthogonal to both

initial vectors. For binary vectors, the binding is carried out using the elementwise
exclusive or operation. Binding obeys the laws of commutativity and associativity. The
semantic meaning of binding can be explained by the following example: let some
object have a certain attribute ai with a value vj, we put them in correspondence with

hyper-dimensional random vectors Ai and V
Ai
j . Then the binding Ai ⊕ VAi

j corresponds
to assigning the value vj to the attribute ai. Also, the inverse operation to the binding

is defined – an unbinding Ai ⊕
(
Ai ⊕ VAi

j

)
= VAi

j which returns one of the original
vectors.

The bundling operation to a certain set of hyperdimensional vectors associates
another hyperdimensional vector that is not quasi-orthogonal with respect to any of
the vectors of the set. Bundling is implemented through the threshold sum:

[X0 + X1 + . . .Xn] = Y ,

where yi ∈ Y and

yi =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

1
xi, xi ∈ Xi, if

n∑

1
xi ≤ thr

thr, if
n∑

1
xi > thr,

where thr is a threshold, which is a hyperparameter.
Bundling can be considered as a representation of the set of some objects. The

commutativity and associativity of bundling are obvious.
Sometimes it becomesnecessary to obtain a quasi-orthogonal vector from theoriginal

one, but so that this operation is reversible. To do this, permutation operations are used,
which permute the coordinates of the vector according to a certain rule. A special case
of permutation is a cyclic shift. Denote X n> whose vector coordinates are cyclically
shifted to the right on n positions relative to the original vector X .

Let the state of a system at the initial timemoment correspond to a hyperdimensional
vector X0, then all the states of the system at time moments i = 1, . . . n can be expressed
as follows:

X1 =X 1>
0 ,

X2 =X 1>
1 = X 2>

0 ,

. . .

Xn =X 1>
n−1 = X 2>

n−2 = . . . = X n>
0



Hyperdimensional Representations in Semiotic Approach to AGI 237

Applying unbinding to a bundle

Ai ⊕ B =
[
A1 ⊕ VA1

j + . . . + Ai ⊕ VAi
j + . . . + An ⊕ VAn

j

]

=
[
Ai ⊕ A1 ⊕ VA1

j + . . . + Ai ⊕ Ai ⊕ VAi
j + . . . + Ai ⊕ An ⊕ VAn

j

]

=
[
Noise + VAi

j

]
= Ṽ Ai

j

we get Ṽ Ai
j – a noisy version of the vector VAi

j by which one can restore the vector VAi
j

by searching through Item Memory.

4 The Use of Hyperdimensional Vectors in the Sign-Based World
Model

Let us consider the use of hyperdimensional binary vectors in the Signed-Bases World
Model using the causal matrix of an image network as an example. We recall that the
causal matrix z is a tuple of events ei z = 〈e1, e2, . . . , et〉 of a length t. We agree further
that the hyperdimensional vector corresponding to the concept will be denoted by the
same letter as the concept itself, only in capitals. Then, a vector Ei is assigned to each
event ei, the method of obtaining this vector will be described below. Since a tuple is
an ordered set of elements, it is easy to set it through the variety of elements and their
order. As described above, the set in hyperdimensional computations is specified by
the operation of bundling over the elements included in it, to determine the order, we
introduce a special hyperdimensional vector S that will correspond to the first column
of the causal matrix. The subsequent columns will be defined through the cyclic shift
of the vector S. The fact that some event Ei corresponds to the j-th column will be
denoted through Ei ⊕ Sj>. Then in general terms, the vector of the causal matrix can be
represented as:

Z =
[
E0 ⊕ S + E1 ⊕ S1> + . . . + Et ⊕ St>

]
.

If the causal matrix corresponds to the action, then we introduce two vectors Sc and
Se for the columns of conditions and effects, respectively, then:

Z =
[
E0 ⊕ Sc + E1 ⊕ S1>c + . . . + Ej ⊕ Sk>c + Ej+1 ⊕ Se + Ej+2 ⊕ S1>e + . . . + Et ⊕ Sl>e

]
,

where k + l = t.
It is worth noting that if there is no need to maintain order, for example, for object

matrices, then you may not introduce an additional vector S.
Let us return to the representation of an event ei. An event corresponds to the simul-

taneous appearance of some attributes, therefore, if each attribute and all possible values
of this attribute are associated with hyperdimensional vectors, then the event takes the
form:

E =
[
A1 ⊕ VA1 + A2 ⊕ VA2 + . . . + Am ⊕ VAm

]
,
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where Ai corresponds to i-th attribute and VAi is its value.
Thus, following the structure of a causal matrix and given HD representation of

events we can collapse the whole matrix into the corresponding HD vector CM . This
vector may act as an event in the formation of another causal matrix on the next level of
abstraction. Properties of operations with HD vectors allow to keep structure inside of
such representation and restore it if needed.

Consider an example of representing the causal matrix of a scene depicted in Fig. 1
as a hyperdimensional vector.

Fig. 1. The model scene

Let us suppose that the objects on the scene have the attributes c – “color”, s – “shape”,
x – “x coordinate”, y – “y coordinate” with the corresponding possible values: for the
attribute “color” w – “white” and g – “gray”, for “form” ci – “circle”, t – “triangle” and
sq – “square”. Let us set the attributes and their values in accordance with the vectors C,
S, X , Y , W , G, CI , T , SQ. The value of the attribute “coordinate x” will be encoded as
follows. Assume directionality of the process of parsing of the visual scene (for example
from top to bottom and from left to right). During parsing of the visual scene we find
the leftmost object on the scene, in this case there are two such objects –Obj0 and Obj2,
and assign a vector X0 to them, then the next right object – Obj3 will have a (relative to
Obj0) coordinate valueX1 = X 1>

0 . For objectObj4, we haveX2 = X 2>
0 . The y coordinate

values are encoded in a similar way. This allows us tomove from the absolute coordinates
to the relative ones. We also introduce vectorsO0 . . .O3 corresponding to scene objects.
Now we can represent the vector corresponding to the causal matrix of the scene as:

SCENE = [Oo ⊕ [C ⊕ G + S ⊕ CI + X ⊕ X0 + Y ⊕ Y0]

+ O1 ⊕
[
C ⊕ G + S ⊕ SQ + X ⊕ X 2>

0 + Y ⊕ Y0
]

+ O2 ⊕ [C ⊕ W + S ⊕ T + X ⊕ X0 + Y ⊕ Y2]

+ O3 ⊕ [C ⊕ G + S ⊕ CI + X ⊕ X1 + Y ⊕ Y1]].

After that, if we want to find out the value of the object 2 form attribute, we must
perform the following operations:

SCENE ⊕ O2 ⊕ S = Noise + T = T̃ .
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Such operations allow performing the simplest reasoning on the representation of
the scene using hyperdimensional vectors.

5 Discussion

While this paper focused on conceptual aspects of using HD representation in semiotic
approach toAGI it is useful to get an intuition about possible applications of the presented
encoding for flexible answering to complex queries. Take the last example of the SCENE
encoding. Suppose the task is to extract objects to the right of object Obj3. To do this
the following computational steps should be performed.

1. Similarly to the example of extracting the value of attribute S, extract the value of
attribute X of object Obj3.

2. Retrieve the clean copy of X3 from the Item Memory.
3. Construct a bundle of all possible coordinates “to the right of X3” by circularly

shifting X3 n times binding with X and bundling the result:

X right
3 =

[
X ⊕ X 1>

3 + X ⊕ X 2>
3 + . . . + X ⊕ X n>

3

]

4. Bind the resulting bundle with the SCENE vector. This operation will produce a
bundle containing the noisy values of the objects on the queried coordinates.

SCENE ⊕ X right
3 = Noise + Õ1

5. Passing the result through the Item Memory of objects will reveal the identities of
the objects (Fig. 2).

Fig. 2. Distance to objects vectors in Item Memory
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Several important issues must be addressed for make the approach work on real
use-cases. Specifically, one need to take into account the informational capacity of the
bundles of HD vectors. Early results on the capacity were given in [21, 22]. Some ideas
for the case of binary/bipolar HD vectors were also presented in [23, 24]. Probably the
most comprehensive analysis of the capacity of different VSAs’ frameworks has been
recently presented in [25]. The practical dimensioning of the architecture for the case of
visual questions answering application is a subject for future work and will be reported
outside the scope for this article.

6 Conclusion

The paper proposes a new approach that allows solving the symbol grounding prob-
lem based on the agent sing-based cognitive architecture using hyperdimensional vector
computations to describe the image component of the sign. Due to the use of hyper-
dimensional vectors to describe the precedent of the causal matrix component, it is
possible to interpret the structure of the causal matrix and relations in the causal network
as operations on a set of such vectors. The work provides a model example of the use of
hyperdimensional vectors to represent a visual scene. In the future, we propose various
applications of the sign-based architecture, including for personal cognitive assistants
[26] that adapt to a specific user.
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01011 and No. 19-37-90164.
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Abstract. There are different difficulties in defining a fundamental con-
cept; it often happens that some conditions are too strong or just surplus,
and others are too weak or just lacking. There is no clearly agreed concep-
tion of intelligence, let alone artificial intelligence and artificial general
intelligence. Still it can be significant and useful to (attempt to) elucidate
the defining or possible characteristics of a fundamental concept. In the
present paper we discuss the conditions of artificial general intelligence,
some of which may be too strong and others of which may be too weak.
Among other things, we focus upon logic, autonomy, resilience, integrity,
morality, emotion, embodiment, and embeddedness, and articulate the
nature of them from different conceptual points of view. And we finally
discuss how to test artificial general intelligence, proposing a new kind of
Turing-type tests based upon the intelligence-for-survival view. Overall,
we believe that explicating the nature of artificial general intelligence
arguably contributes to a deeper understanding of intelligence per se.

Keywords: AGI · Autonomy · Resilience · Integrity · Morality ·
Embodied-embedded

1 Introduction

Artificial general intelligence is the general purpose AI that can in principle be
applied to whatever sorts of intelligent tasks, rather than narrow task-oriented
AI [12]; most AI systems available at the present time are still narrowly task-
oriented (even though narrow AI already outperforms human intelligence in
certain domains; yet it could be argued that this has actually been true since
the birth of a calculator). In this paper we address the conditions of artificial
general intelligence and their consequences from different conceptual points of
view, which, however, we do not intend to be complete (i.e., some conditions
can be too strong and others too weak; they just give a first approximation).
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In particular we first discuss the (deductive and inductive) logic of artificial
general intelligence, in particular whether Statistical AI based upon statistical
machine learning suffices for artificial general intelligence or we need something
else such as Symbolic AI (aka. GOFAI, i.e., Good Old-Fashioned AI) in the so-
called Golden Age (Sect. 2). And then we discuss other fundamental features of
artificial general intelligence, such as autonomy, resilience, and integrity (Sect. 3),
morality and emotion (Sect. 4), and embodiment, and embeddedness (Sect. 5).
In these discussions we emphasize the idea that intelligence is what makes us
survive in competitive environments, which we call the intelligence-for-survival
view. In the last part of the paper we propose Turing-type tests for artificial
general intelligence from this intelligence-for-survival point of view (Sect. 6).

2 Deductive Reasoning and Inductive Learning
in the Logic of Artificial General Intelligence

Any entity without logic would not count as artificial general intelligence, even
though there could be some form of machine intelligence without logic (such
as a purely intuitively or emotionally thinking machine). The exact contents of
logic, however, are debatable. In general, science builds upon logic and experi-
ence (or reality). There are two major components of logic in scientific knowl-
edge production: deductive reasoning based upon (universal) principles and
(ad hoc) assumptions, and inductive learning (or statistical inference) based
upon empirical data. Our ordinary thinking in everyday life builds upon these
two components as well as our scientific thinking in knowledge production. Arti-
ficial general intelligence, therefore, must be equipped with the two components,
that is, the deductive component as enabled by Symbolic AI, and the statistical
component as enabled by Statistical AI.

Yet the actual story is not that simple. There are strong disagreements about
the roles of Symbolic AI and Statistical AI. There is, for instance, an interesting
debate between Peter Norvig, Google’s research director, and Noam Chomsky,
the father of modern linguistics; it is concerned with the nature of language
(see, e.g., [3,13,19,23]). In light of recent advances in machine learning and data
science, quite some part of our language use can be simulated via the methods
of statistical machine learning. For example, Statistical AI can solve certain
TOEFL problems better than average humans taking TOEFL exams (see, e.g.,
[26]). The debate is also related to the issue of Explainable AI or the lack of
explainability in Statistical AI, especially deep learning AI. Norvig succinctly
reconstructs Chosmky’s argument against Statistical AI [23]:

1. “Statistical language models have had engineering success, but that is irrele-
vant to science.”

2. “Accurately modeling linguistic facts is just butterfly collecting; what matters
in science (and specifically linguistics) is the underlying principles.”

3. “Statistical models are incomprehensible; they provide no insight.”

Yet at the same time, Norvig gives counterarguments against Chomsky, and he
finally concludes as follows [23]:
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[L]anguages are complex, random, contingent biological processes that are
subject to the whims of evolution and cultural change. What constitutes a
language is not an eternal ideal form, represented by the settings of a small
number of parameters, but rather is the contingent outcome of complex
processes. Since they are contingent, it seems they can only be analyzed
with probabilistic models.

Norvig puts a strong emphasis on the complexity and contingency of language
and its evolutionary transformation. The “eternal ideal form” of language in
Novig’s terms is exactly what Chomsky aims at in formal linguistics. According
to Norvig, however, the complexity and contingency of language and its evolution
does not allow for such an eternal ideal form, and Statistical AI is indispensable
for natural language processing. Besides, Norvig convincingly illustrated how
to solve the problem Chomsky thought impossible to solve via the statistical
methods [23].

Is Symbolic AI, then, obsolete in light of the great success of Statistical AI?
Here we give three arguments to support Symbolic AI or rather the combina-
tion and integration of Symbolic AI and Statistical AI. Let us call them the
practical, philosophical, and scientific arguments. The practical argument is just
that there is some rationale for believing that it is practically promising to com-
bine the Symbolic and Statistical AI in light of emerging successful cases in
the integration of them with its empirical (predictive or classification) power
outperforming the state-of-the-art methods (see, e.g., [5,8,14]). In general, Sta-
tistical AI is good at prediction and classification (via pattern recognition), and
Symbolic AI at reasoning and verification. Combining their strengths should,
in principle, be beneficial, and as mentioned above, it has succeeded already to
a certain extent. It may also pave the way for improving explainability in Sta-
tistical AI with the help of Symbolic AI. Statistical AI would be necessary in
view of real-world uncertainties and contingencies (and of bounded rationality
and incompleteness of information within real life constraints). Yet Symbolic AI,
too, would be necessary for infallible reasoning and verification (and for account-
ability of infallible knowledge or truth). This is the practical argument; the other
two arguments are as follows.

From a philosophical point of view, Kant distinguished between three major
faculties of cognition: namely, the faculty of sensibility and the faculties of under-
standing and reason [18]. Humans first perceive or sense objects (or the world
as a whole) through the faculty of sensibility, thereby forming representations
of them, and then eventually lead to more complex conceptualizations and rea-
soning based upon them. Kant’s philosophy of mind is illustrated in [21] in the
following manner:

Kant distinguishes the three fundamental mental faculties from one
another in two ways. First, he construes sensibility as the specific manner
in which human beings, as well as other animals, are receptive. This is in
contrast with the faculties of understanding and reason, which are forms
of human, or all rational beings, spontaneity.
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AI is (supposed to be) a rational being. It must be equipped with the faculties of
understanding and reason as well as the faculty of sensibility, which is required,
in the first place, to perceive objects in the outside world. Statistical AI is highly
successful in object recognition or pattern recognition (such as cat or dog recog-
nition, which is usually done by human intuition), and thus arguably allows for
the faculty of sensibility in machine cognition. Symbolic AI, on the other hand, is
suited to conceptual reasoning about the world and objects therein, thus allow-
ing for the faculties of understanding and reason. In this Kantian conception of
cognition or intelligence, both the faculty of sensibility and the faculties of under-
standing and reason are mental capacities indispensable for rational beings, and
thus both Symbolic AI and Statistical AI are arguably necessary for the ulti-
mate goal of artificial general intelligence. This is the (Kantian) philosophical
argument.

The scientific argument to support the need for both Symbolic and Statis-
tical AI is as follows. Statistical AI is an induction-based, bottom-up approach
whereas Symbolic AI is a deduction-based, top-down approach. In the making
of a scientific theory, there are varying emphases on them. Some theories, such
as general relativity theory, were born in a top-down manner, that is, on the
guidance of general principles, such as the principle of general covariance in gen-
eral relativity [7]. Others were born in a bottom-up manner, that is, in direct
consideration of empirical data; quantum theory, another pillar of twentieth cen-
tury physics, generally counts as an instance of such bottom-up theorization [7].
These are both indispensable aspects of scientific theory building, and in order to
cover both aspects, artificial general intelligence would arguably need both Sym-
bolic and Statistical AI. Note that Einstein also proposed a similar dichotomy
between bottom-up and top-down approaches, which he called constructive and
principle theories [11].

3 Autonomy, Resilience, and Integrity in the Cognition
of Artificial General Intelligence

Machines equipped with both deductive reasoning and inductive learning can
be very good instances of artificial intelligence, and yet they do not necessarily
constitute artificial general intelligence. What else is required for artificial general
intelligence? In the following we argue that artificial general intelligence must
be autonomous, resilient, and integrated. Concerning the autonomy condition,
there is a well-known quote from IBM’s Intelligent Agent Strategy white paper
[16,22]:

Intelligent agents are software entities that carry out some set of opera-
tions [...] with some degree of independence or autonomy, and in so doing,
employ some knowledge or representation of [...] goals or desires.

Spontaneity is essential in autonomy, especially in order to set goals or to have
desires as mentioned above. Recall the above quotation on Kant saying that
the faculties of understanding and reason are forms of spontaneity; this idea is
elaborated in the following passage [21]:
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Sensibility is the faculty that provides sensory representations. Sensibil-
ity generates representations based on being affected either by entities
distinct from the subject or by the subject herself. This is in contrast
to the faculty of understanding, which generates conceptual representa-
tions spontaneously – i.e. without advertence to affection. Reason is that
spontaneous faculty by which special sorts of concepts, which Kant calls
‘ideas’ or ‘notions’, may be generated, and whose objects could never be
met within “experience,” which Kant defines as perceptions connected by
fundamental concepts.

Artificial general intelligence must have some sort of spontaneity. Without spon-
taneity, agents are merely passive, and only process some given information.
As a consequence of this, they cannot be creative; creativity is an integral fea-
ture of intelligence. To allow for creativity, artificial general intelligence must be
autonomous; it must spontaneously make a judgement, and choose one option
rather than others on the basis of some internal goals or desires. It often happens
in everyday life that there is little information available for an agent’s decision,
and still the agent must make a judgement, and choose something. Even in such
a situation under uncertainty, artificial general intelligence must make a judge-
ment according to some internal (rather than external) motivation. This is the
autonomy condition of artificial general intelligence; autonomy is an essential
basis of creative intelligence.

Autonomy and spontaneity are related to self-awareness: autonomy implies
being aware of its own being, setting a goal on its own (whether explicitly or
implicitly), and improving itself towards that goal. Note however that autonomy
or spontaneity does not necessarily imply free will or consciousness as in the
Chalmers’ Hard Problem [2] (we think that artificial general intelligence can,
in principle, be philosophical zombies, that is, perfectly intelligent agents yet
without consciousness or free will). Autonomy is also related to accountability:
autonomy implies being able to make an action according to and explain its own
internal reason or motivation for the action taken.

Let us move on to the resilience condition. The US Department of Homeland
Security defines resilience as follows [27]:

[A]bility [...] to resist, tolerate, absorb, recover from, prepare for, or adapt
to an adverse occurrence that causes harm, destruction, or loss [...]

Resilience is important for both hardware and software of cognition. If systems
cannot recover from some physical injuries, they cannot survive. Likewise, if
systems cannot recover from some intellectual fallacies or mistakes (or bugs),
they cannot survive. Humans are resilient agents because both bodies and minds
are resilient (not completely but to some substantial extent; cf. homeostasis).
Resilience is essential for survival. Artificial general intelligence agents must be
resilient for the fundamental purpose of survival; put another way, if they cannot
survive, they are not sufficiently intelligent.

Autonomy, too, does matter for survival. If agents are not autonomous, they
would easily be killed by others. Intelligence is arguably a vital fruit of evolution
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for survival. We could even argue that, the more intelligent agents are, the more
probable their survival is. We shall come back to this issue again below.

The recovery capability in resilience is related to self-organization; thanks to
the self-organizing capacity, agents such as humans can recover from physical or
mental injuries. Without the self-organizing capacity, agents could not recover
from them by themselves. The self-organization condition, therefore, is part of
the resilience condition. Self-organization allows agents to grow by themselves,
change their own ideas, and reproduce themselves. It is essential for them to
adapt themselves to different environments. The reproduction capacity may be
regarded as an indirect sort of intellectual capacity because knowledge as created
by intelligence must be accumulated, in the long run, to form a larger civilization
with better science and technology; science is a collective endeavor across both
time and space, each agent being just a tiny, single player in scientific knowledge
production as a global whole (e.g., a single life can be too short to solve extremely
difficult problems). It is thus necessary for agents to be able to reproduce in
order to be (collectively) intelligent and to form a civilization with science and
technology, which are what artificial general intelligence should be able to create,
and which is essential for survival as a species.

Finally, artificial general intelligence is integrated intelligence; unlike most
AI systems available at the moment, it must not be made for an analysis of a
specific problem or task, and must be able to flexibly adapt itself to a variety
of problems, including entirely new, unprecedented ones. If it is tailor-made for
a specific problem, it is essentially no different from a calculator, which can
compute even faster than human intelligence. It is a distinctive characteristic of
the human mind that different intellectual capacities are integrated into a single
brain. It can even change its own idea (or program) to improve itself; an ordinary
program cannot change (and so cannot essentially improve) itself. The integrated
nature of the human mind must be realized in artificial general intelligence.
Metaphorically saying, current AI can play a variety of board games very well,
yet it still cannot play chess boxing (combination of chess and boxing), which is
an integrated task. Life and survival therein, as a whole, are an integrated task
as well. Present AI also cannot pose new problems on its own; it can only solve a
given problem within a given set of rules. In addition, human intelligence is not
just about finding and solving different problems; while doing so, it unconsciously
processes a lot of information in its environment in an integrated manner. And
this would be the reason why the human mind escapes the frame problem; human
intelligence, probably as a result of evolution, can unconsciously set a suitable
frame. Both conscious and unconscious information processing are integrated
into human intelligence. Artificial general intelligence must be able to give a
machine realization of such integrated intelligence.

4 Morality and Emotion in the Ethics of Artificial
General Intelligence

Human intellectual judgements are based upon ethical concerns as well as log-
ical and other concerns. Human decision making is often made under morality
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constraints; otherwise the society would get highly disordered. Morality is yet
another element of intelligence which allows us to survive while maintaining the
order of the society as a coherent whole. The same applies to artificial intelli-
gence, and artificial general intelligence must thus be able to simulate ethical
judgements. The morality of artificial intelligence may be tested via the moral
Turing test that allows for inferring morality from morally good behavior. This
is also practically important because a purely data-driven approach can lead
to a morally problematic result; in a recent Science article, for example, it has
been shown that “semantics derived automatically from language corpora con-
tain human-like biases [1].” Artificial intelligence without morality constraints
may further strengthen biases prevailing in the present society; this must be
avoided, and (the simulation of) morality is necessary for that purpose.

Ethical concerns, in turn, are (occasionally) based upon emotion, whether it
is empathy, sympathy, or something else. Morality is seemingly intertwined with
emotion. Yet at the same time, there are different views concerning the rela-
tionships between morality and emotion. Two major figures in traditional moral
philosophy are Kant, representing moral rationalism, and Hume, representing
moral sentimentalism. Kant is a moral realist, arguing that morality is based
upon reason or rationality, and it has universal validity as its principal charac-
teristic [17]. Hume is a moral antirealist, arguing that morality is based upon
sentiment, in particular sympathy or empathy, and it is not necessarily univer-
sal. The following is a standard interpretation of the relationships between Kant
and Hume on moral philosophy [6]:

The ethics of Immanuel Kant (1724–1804) is often contrasted with that of
David Hume (1711–1776). Hume’s method of moral philosophy is experi-
mental and empirical; Kant emphasizes the necessity of grounding morality
in a priori principles.

Compared with the aforementioned Chomsky versus Norvig debate, Kant is
like Chomsky, and Hume is like Norvig; put another way, Chomsky is like a
continental rationalist, whereas Norvig is like a British empiricist. Hume says as
follows [15]:

There has been a controversy started of late, much better worth examina-
tion, concerning the general foundation of Morals; whether they be derived
from Reason, or from Sentiment; whether we attain the knowledge of them
by a chain of argument and induction, or by an immediate feeling and finer
internal sense; whether, like all sound judgement of truth and falsehood,
they should be the same to every rational intelligent being; or whether,
like the perception of beauty and deformity, they be founded entirely on
the particular fabric and constitution of the human species.

Hume’s philosophy may be placed within the broader movement of the Scottish
Enlightenment, other major moral philosophers of which include Francis Hutch-
eson and Adam Smith. Smith is particularly known for his treatise The Theory
of Moral Sentiments [25]. The central tenet of the Scottish Enlightenment is
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that morality is based upon sentiments, such as sympathy and empathy; Hume
indeed says that “morality is determined by sentiment” [15]. At the same time,
Hume argues as follows [15]:

Truth is disputable; not taste: what exists in the nature of things is the
standard of our judgement; what each man feels within himself is the
standard of sentiment.

According to moral sentimentalism, “our emotions and desires play a leading
role in the anatomy of morality” and “the key mechanism of sympathy is imag-
inatively placing oneself in another’s position” [20]. Emotion per se may not
exist in artificial intelligence, and yet, if morality presupposes emotion, artificial
general intelligence must be able to simulate emotional judgements (in order to
pass the moral Turing test). Note that there is some revival of moral sentimen-
talism in contemporary psychology: “Recent psychological theories emphasizing
the centrality of emotion in moral thinking have prompted renewed interest in
sentimentalist ethics” [20].

There is a subtlety involved here. Does morality or emotion as its Humean
ground require free will or consciousness? This is a relevant question from a
philosophical point of view. In this paper we take the position that free will or
consciousness (or intentionality in Searle’s sense) in any absolute realist sense is
not required in artificial general intelligence; it just suffices to have the possibility
of simulating them in it. That is to say, we do not require anything more than
the behavior that looks like being conscious or having free will. (Requiring them
in a strict realist sense would lead us to difficulties concerning the Hard Problem;
we do not really know what it consists in to be conscious or to have free will).

5 Embodiment and Embeddedness in the Existence
of Artificial General Intelligence

Here we briefly discuss the issue of embedded-embodied AI within the context of
artificial general intelligence. It is the idea that artificial general intelligence does
not exist in vacuum; it must be embodied in physical substrates such as human-
like bodies, and as embedded (or situated) in environments (another name for
embedded AI is situated AI or Heideggerian AI [9]). Embodiment is the idea that
the existence of bodies is essential for intelligence. Likewise, embeddedness is the
idea that interactions with environments are essential for intelligence. From such
a point of view, interplay between mind, body, and environment is considered
necessary to realize human-level intelligence. There are different arguments for
these ideas; yet we do not detail them here (for more detail, see, e.g., [4,9]).
Instead we discuss these issues from a different angle.

Why are humans intelligent at all? From an evolutionary point of view, that
is because intelligence helps our survival (a lot indeed). Compared with other
animals, it is our primary advantage for survival to have higher intelligence. In
light of the intelligence-for-survival thesis, it is essential to have bodies, without
which survival does not make much sense in the first place. Likewise, survival



250 Y. Maruyama

necessarily concerns interactions with environments. Intelligence for survival is
inseparable from bodies and environments, both of which have to be exploited
as “extended minds” (à la Clark-Chalmers) for the primary purpose of sur-
vival. It may be argued from this point of view that artificial general intelligence
must be embodied and embedded because it must survive. Put another way,
if such survival capabilities constitute integral part of artificial general intel-
ligence, embodiment and embeddedness are preconditions for artificial general
intelligence.

6 Concluding Remarks: How to Test Artificial General
Intelligence?

We have discussed the characteristics of artificial general intelligence: logic (i.e.,
deductive reasoning and inductive learning); autonomy, resilience, and integrity;
morality and emotion; and embodiment and embeddedness. We finally remark
on the issue of testing artificial general intelligence. We have emphasized the
idea that intelligence is for survival. Survival is not just a matter of individuals,
but a matter of the (human or machine) race as a whole. Individual intelligence,
by itself, does not really help the survival of the (human or machine) race as a
whole. What does help it is the collective intelligence of individuals integrated
together, namely the (human or machine) civilization. We can extract two kinds
of Turing-type tests from this discussion. One is the survival Turing test for
artificial general intelligence: to be intelligent is to be able to survive; levels
of intelligence are measured by levels of survival. The other is the civilization
Turing test: to be intelligent is to be able to form a civilization as a coherent
whole (for the primary purpose of survival); levels of intelligence are measured by
levels of civilization. The former applies to both individuals and groups, whereas
the latter to groups only; group intelligence has not been discussed much in the
literature. Yet group intelligence does matter, especially for survival.

Can artificial general intelligence be achieved in the near future as proponents
of technological singularity believe? No one knows. We may refer to the history
of artificial intelligence. Herbert Simon once claimed in 1965: “machines will be
capable, within twenty years, of doing any work a man can do” [24]. Not just
Simon but also many other prominent AI researchers such as Marvin Minsky
expressed similar opinions. The optimism for artificial general intelligence, how-
ever, failed at the end of the day (the Japan’s Fifth Generation Computer Project
failed at the same time). The technological singularity (the technical optimism
which turned into existential pessimism or nihilism) may not come just as well.
Yet at the same time, we should remember that the AI pessimism failed too;
Dreyfus, for example, argued that car-driving AI would be impossible [10].
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Abstract. A possible practical engineering approach to creation of the general
artificial intelligence is considered. The choice of approach is based on modular
hierarchical representation of knowledge, where each module uses its own meth-
ods of representation and knowledge processing.Work with knowledge is done by
a hierarchical multi-agent system. The description of system’s individual elements
and information about the current development state are given.

Keywords: Multi-agent system · Ontology · Intellectual core

Development of artificial general intelligence is becoming an increasingly urgent task,
since many problems can not be completely solved by highly specialized solutions.
Besides, the existing narrow solutions are very expensive in development and require an
individual approach to their implementation.

Let’s consider one of the approaches to creation of an intellectual kernel capable of
solving various problems in arbitrary environments with limited resources.

The intellectual core is a complex software system that includes various methods
of storing and processing knowledge. It is the hybrid model that consists of knowledge
layers. Those layers have different levels of representation and abstraction. They can be
assembled and configured in a way, that it would be possible to assemble intellectual
systems for different purposes on the basis of the kernel: from intellectual assistants to
Robotic Process Automation.

The developing kernel is a set of components called layers. Each layer combines
knowledge and methods of the processing at a certain abstraction level. The layer can be
createdwithin the framework of some knownmodel, or it can be a hybrid that uses several
approaches to solving problems at once. There can be two types of layers: physical and
logical. The physical layer is a separate technology, the logical layer is a separate body
of knowledge.

Let’s look at the individual elements of the intellectual core.

© Springer Nature Switzerland AG 2020
B. Goertzel et al. (Eds.): AGI 2020, LNAI 12177, pp. 252–256, 2020.
https://doi.org/10.1007/978-3-030-52152-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52152-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-52152-3_26


Position Paper: The Use of Engineering Approach 253

1 Physical Layers

Abstract Ideal Layer
It contains abstract knowledge about the world, its structure and basic connections. It
serves to form a general world-image orworldmodel. It is necessary for the entire system
functioning.

Knowledge is stored in a special version of the semantic network. There are no sym-
bolic representations of natural language entities in this network. It stores connections
of one entities to others instead. Metaknowledge allows you to determine the trueness
of knowledge, its completeness, evidence, and so on.

The layer elements are entities and connections. An entity is a class of objects or a
surrounding or fictional environment phenomena. An entity can be represented in any
way: text, image, sound, video, data structure, etc. Connections allows us to unite entities
with each other and form a general picture of the world [1]. There are 13 types of such
connections.

Factographic Layer
It contains knowledge about the world in its variety, taking into account the place, time,
mode of action and other parameters. It represents one layer of a multilevel memory
model. A significantly reworked frame model is the main knowledge representation
model.

There are predetermined types of slots that can be used to carry any knowledge
expressed in a simple common sentence. Slot values are entities defined in the abstract
ideal layer. Complex sentences are represented as trees, the vertices of which are fact
frames. Their edge defines the type of connection of facts among themselves.

Logical Layer
It contains knowledge about reasoning. The reasoning itself is not something that is
originally built into the system, but is one of the knowledge types. The logical layer
uses production systems and boolean algebra functions [3]. The problem of choosing
and applying products is solved with additional meta-knowledge of their activation.
Elements of products and logical formulas are facts from the factographic layer.

Layer of Tasks
The task layer allows to implement a universal algorithmic system on artificial intelli-
gence knowledge. At the layer of tasks base lies a modified Petri Net and connected to it
local solutions space [2]. This local solutions space is a subset of the abstract ideal and
factographic layers elements. It also serves as a storage for context of a problem, that
is being solved. An arbitrary number of tasks can be handled at the same time, and the
algorithms for solving each of them can be parallel.

2 Logical Layers

They are used to store knowledge of a specific field of application. The knowledge of
these layers can be located in different physical layers of the kernel.
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Personal Layer
It is used to store knowledge about the current implementation of the artificial intelligence
kernel: its settings, the peculiarities of behavior and related to it events.

Interlocutor Layer
It contains knowledge about subjects with which it interacts. The model of the subject
is built up on all physical layers as a set of knowledge about it.

Dialogue Layer
This layer contains knowledge about dialogue, its strategies and elements. It also stores
the start and the end of a dialog, defines and changes the topic, chooses the directions
of dialogue development, and processes various dialog situations.

3 Memory

Memory consists of seven layers, that differ in access speed, structure and storage meth-
ods. Such large number is necessary for running various intelligent kernel-based solu-
tions on different devices. Even if the devices have strong limitations on the amount of
data stored. The knowledge can be located on any of the seven layers and can be moved
from layer to layer if needed. There is also a mechanism for forgetting knowledge that
is no longer relevant.

Let’s look at the memory layers:
The first four layers are based on the mechanisms that are already in the AI. This

way AI has quick access to knowledge, and they are in the form that can be instantly
used during the thought processes.

1. Operating (knowledge valid at particular time)
2. Operational (knowledge existing within the framework of one dialogue with the

system, local decision spaces);
3. Permanent memory (basic ideas about the world and the most important facts);
4. Personal memory (knowledge that relates to the core itself, its functioning and

development);
The rest of the memory layers use different ways to store data. So it is not pure
knowledge but data in a storage-friendly form, which is available to the system after
a number of transformations. This is necessary for storing large (huge) amounts of
data, but does not require additional resources from the thinking core itself.

5. Structured memory (contains a huge amount of structured data, relational databases
are used);

6. Marked memory (unstructured data with the addition of metadata, non-relational
databases are used);

7. Original (any data in its original form - files of various formats with metadata,
protected by encryption and blockchain technology. The distributed storage system
is used).
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4 Agents

Interactions between layers and knowledge mechanisms work through a hierarchical,
multi-agent system. Some agents work within a particular layer, while others carry out
communication between individual kernel modules. Agents can call each other to solve
problems and compete for system resources.

There are two ways of creating knowledge agents in the system. The first one is
low-level—it is a code written in an interpreted programming language.

The second one is high-level. It operates in the tasks layer with the help of Petri Net.

5 Language Modules

Languagemodules convert incoming text into the internal representationof the kernel and
synthesize that internal representation into text. Currently they are not a part of the kernel,
but they use the existing kernel knowledge in their work. It allows us to simultaneously
convey morphological, syntactic and semantic text analyses and to reduce the number
of parse trees to a minimum, cutting off impossible options.

The above mentioned architecture allows to solve a number of problems, that stand
on the way to artificial general intelligence.

AI transparency – all AI’s chains of thought and lines reasoning can be tracked,
documented and explained.

A one-time training – the structure of knowledge of AI allows to transfer it from one
kernel to another without any leakages of data. Moreover, it is possible to input text form
data in the system.

Fast AI learning – the system can be trainedwith any amount of raw data. All training
requires one iteration. There are methods to control and edit new knowledge.

Structured learning – knowledge is arranged in a multi-level hierarchical structure.
Learning mechanisms allow to check the consistency of new and old knowledge.

Solving the problemof catastrophic forgetting– any level of knowledge canbe tought,
without losing the previously added knowledge. In addition, there are mechanisms of
forgetting that do not lead to the loss of integrity of knowledge.

The possibility of incremental learning – knowledge can be gradually accumulated
in the system. It is possible to store contradictions, vague knowledge, knowledge of false
information.

Nowadays, the middle level ontology with more than 20 thousand classes of entities
and their relationships is implemented in the abstract and ideal layers. Mechanisms and
interfaces for editing ontology, facts, logical conclusions and tasks have been created.
Language modules for Russian and English languages have been written. It is possible
to work with several intellectual cores and transfer any knowledge between them. Text-
based learningmechanisms have been implemented. Several prototypes for using current
versions of the intellectual kernel in applied tasks have been created.

Existing usage of the described approach has shown that it is quite suitable for solving
a wide spectrum of intellectual problems, It can be used for a base model of the artificial
general intelligence. The further work will be directed on improvement of knowledge
structures in all layers of an intellectual kernel. The automation of processing agents
creation will also be carried through.
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Abstract. Creating Strong AI means to develop artificial intelligence to the point
where the machine’s intellectual capability is in a way equal to a human’s. Science
is definitely one of the summits of human intelligence, the other being the art.
Scientific research consists in creating hypotheses that are limited applicability
models (methods) implying lossy information compression. In this article, we
show that this paradigm is not unique to the science and is common to the most
developed areas of human activities, like business and engineering.Thus,we argue,
a Strong AI should possess a capability to build such models. Still, the known
tests to confirm the human-level AI do not address this consideration. Based on
the above we suggest a series of six tests of rising complexity to check if AI have
achieved the human-level intelligence (Explanation, Problem-setting, Refutation,
New phenomenon prediction, Business creation, Theory creation), five of which
are new to the AGI literature.

Keywords: AGI · Strong AI · Epistemology · Turing test

Creating Strong AI means to develop artificial intelligence to the point where the
machine’s intellectual capability is in a way equal to a human’s or, as Ray Kurzweil
[1] put it, machine intelligence with the full range of human intelligence.

A number of cognitive architectures have emerged over time as a result of research
on Strong AI. While most of them will never evolve into Strong AI, it is important to
have a common ground to judge where do they stand against that goal.

Additionally, I agreewithArthur Franz [2] that StrongAIwill be subject to evolution,
including both shallow (personal for a single individual) and deep (inherited through
reproduction). Thus, even within a single research program or architecture it is important
to understand progress towards Strong AI.

In this paper, we explore the question of how to determine if the Strong AI have
been achieved. Specifically, scientific activity is the summit of human intelligence and
scientific research consists in creating hypotheses that are limited applicability models
(methods) of compressing information. In this article, we show that this paradigm is not
unique to the science and is common to the most developed areas of human activities,
like business and engineering. Thus, we argue, a Strong AI should possess a capability
to build such models. Still, the known tests to confirm the human-level AI do not address
this consideration. We aim to fill this gap.
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To that end, in Sect. 1 we explore existing tests for strong AI. In Sect. 2, we stripe
the applicable notion of scientific knowledge from the modern epistemology and define
the key features of the scientific knowledge. In Sect. 3, we show that many other human
activities, most notably business, engineering and contemporary marketing rely on the
similar knowledge structures. Finally, in Sect. 4 we device the tests for the Strong AI in
the sense we have previously defined.

Throughout this paper, we use the terms “Strong AI” and “Artificial General Intel-
ligence” (AGI), interchangingly, despite the ongoing terminological discussion within
the AI community if these are the same or different notions.

1 Tests for AI

A number of tests have been devised to test if a system has an artificial intelligence.
Some of them include:

• The Turing Test (suggested by Alan Turing)
• Lovelace Test (suggested by Bringsjord, Bello and Ferrucci)
• Psychometric Tests (suggested, for example, by Bringsjord and Schimansky)
• The Piaget-MacGuyver Room Test (suggested by Bringsjord and Licato)
• The Coffee Test (attributed to Wozniak by Goertzel)
• The Robot Student Test (suggested by Goertzel)
• The Employment Test (suggested by Nilsson)

Let us review each of them.

1.1 The Turing Test

The test is likely the most prominent AI test and was introduced by Turing [3] as a test
of a machine’s ability to exhibit intelligent behavior equivalent to, or indistinguishable
from, that of a human. Rather than trying to determine if a machine is thinking, Turing
proposed that a human evaluator would judge natural language conversations between a
human and a machine designed to generate human-like responses. The evaluator would
be aware that one of the two partners in conversation is a machine, and all participants
would be separated from one another. The conversation would be limited to a text-only
channel such as a computer keyboard and screen so the result would not depend on the
machine’s ability to render words as speech.

The Turing test follows Denis Diderot formulation [4]: “If they find a parrot who
could answer to everything, Iwould claim it to be an intelligent beingwithout hesitation.”

Considerable effort have been put over the years into building this type of behavior
on computers, including multiple Loebner prize competitions.

Still, to a wide agreement, the test does not check if the machine can really think
(see, for example, the book [5] – notably, e.g. [6]: “The human creators of systems
undergoing Turing test know all too well that they have merely tried to fool those people
who interact with their systems into believing that these systems really have minds”).
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1.2 Lovelace Test

Bringsjord, Bello and Ferrucci in [6] have suggested a Lovelace test:
Artificial agent A, designed by H, passes LT if and only if

1. A outputs o;
2. A‘s outputting o is not the result of a fluke hardware error, but rather the result of

processes A can repeat;
3. H (or someone who knows what H knows, and has H’s resources—for example, the

substitute for Hmight he a scientist who watched and assimilated what the designers
and builders of A did every step along the way) cannot explain how A produced o.

Thus, we can call Lovelace test a requirement of grand intractability. Obviously,
though anecdotal in many cases, grand intractability per se is not a sign of intelligence.

1.3 Psychometric Tests

Psychometric approach to AI have been suggested by Bringsjord and Schimanski in
[7]: “Psychometric Al is the field devoted to building information-processing entities
capable of at least solid performance on all established, validated tests of intelligence
and mental ability, a class of tests that includes not just the rather restrictive IQ tests, but
also tests of artistic and literary creativity, mechanical ability, and so on.”

While having a quantitative test is important for tracking progress, there is a wide
criticism of psychometric tests even for humans. Being able to pass all the established
tests makes the approach more interesting, but still, amenable to fooling just like the
Turing test.

1.4 The Piaget-MacGuyver Room Test

Bringsjord and Licato introduced the Piaget-MacGyver Room test in [8]. They define
the Piaget-MacGyver Room test, “which is such that, an information-processing artifact
can credibly be classified as general-intelligent if and only if it can succeed on any test
constructed from the ingredients in this room.No advance notice is given to the engineers
of the artifact in question, as to what the test is going to be; only the ingredients in the
room are shared ahead of time. These ingredients are roughly equivalent to what would
be fair game in the testing of neurobiologically normal Occidental students to see what
stage within his theory of cognitive development they are at.”

1.5 The Goertzel Tests

Goertzel et al. in [9] lists several potential tests for AGI that are circulating in the AGI
community:

• The Wozniak “coffee test”: go into an average American house and figure out how to
make coffee, including identifying the coffee machine, figuring out what the buttons
do, finding the coffee in the cabinet, etc.
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• Story understanding – reading a story, or watching it on video, and then answering
questions about what happened (including questions at various levels of abstraction)

• Graduating (virtual-world or robotic) preschool
• Passing the elementary school reading curriculum (which involves reading and
answering questions about some picture books as well as purely textual ones)

• Learning to play an arbitrary video game based on experience only, or based on
experience plus reading instructions (as it was put in [10]: The goal of this scenario
would not be human level performance of any single video game, but the ability to
learn and succeed at a wide range of video games, including new games unknown to
the AGI developers before the competition.)

Some of these tests are already satisfied by deep-learning systems, for example,
MuZero [11]. When evaluated on 57 different Atari games - the canonical video game
environment for testingAI techniques - the algorithm scored 20 times better than humans
in median and 50 times better on average. When evaluated on Go, chess and shogi,
without any knowledge of the game rules,MuZeromatched the superhumanperformance
of the AlphaZero algorithm that was supplied with the game rules. Thus, we can say that
to a large extent mastering this specific test turns out to be a focus of specific narrow AI
(reinforcement deep learning).

Similarly to the Turing test, “story understanding” and “elementary school reading
curriculum” could be passed by software systems simply by manipulating symbols of
which they had no understanding.

Wozniak coffee test, considered per se, requires a robot to be able to do several
perception and navigation tasks that can be accomplished by a specific-purpose robot.

A test of graduating a pre-school is a more interesting one. Here a lot depends on a
country and a specific preschool – requirements differ widely and the cognitive abilities
to pass this test deserve a separate article, or even a book.

1.6 The Employment Test

Employment Test have been suggested by Nilsson [12]. He argues that “Machines
exhibiting true human-level intelligence should be able to do many of the things humans
are able to do. Among these activities are the tasks or “jobs” at which people are
employed. I suggest we replace the Turing test by something I will call the “employment
test.” To pass the employment test, AI programs must be able to perform the jobs ordi-
narily performed by humans. Progress toward human-level AI could then be measured
by the fraction of these jobs that can be acceptably performed by machines.”

This is definitely a very comprehensive test, actually including the tests that we
propose as the tests for the scientists jobs.

Luke Mullenhauser [13] argues that: “This is a bit “unfair” because I doubt that
any single human could pass such vocational exams for any long list of economically
important jobs. On the other hand, it’s quite possible that many unusually skilled humans
would be able to pass all or nearly all such vocational exams if they spent an entire lifetime
training each skill, and an AGI—having near-perfect memory, faster thinking speed, no
need for sleep, etc.—would presumably be able to train itself in all required skills much
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more quickly, if it possessed the kind of general intelligencewe’re trying to operationally
define.”

An interesting subcase of the test have been (somewhat implicitly) suggested by
Janelle Shane [14] – AGI should be able to generate (and understand?) humor. From my
perspective this test is also a subcase of AGI being able to create art, and also deserves
separate consideration.

2 Knowledge and Cognition in Science

There are multiple concurring definitions of knowledge in both AI and philosophical
literature. Our goal is to define the knowledge in a way that is compatible with both
contemporary epistemology and (potential) computer implementations.

2.1 Scientific Knowledge and Its Advance

In this paper we take a critical rationalist view on the knowledge and cognition, starting
from Karl Popper’s view, that the advance of scientific knowledge is an evolutionary
process characterized by his formula [15]:

PS1 → TT1 → EE1 → PS2 (1)

In response to a given problem situation (PS1), a number of competing conjectures,
or tentative models (TT1), are systematically subjected to attempts to define their appli-
cability domain. This process, error elimination (EE1), performs a similar function for
science that natural selection performs for biological evolution where a species tests
ecological niches. Models that better survive the process of refutation are not more true,
but rather, more “fit”—in other words, more applicable to the problem situation at hand
(PS1). The evolution of models through the scientific method may, reflect a certain type
of progress: toward more and more interesting problems (PS2).

2.2 Models

The model consists in explaining the phenomenon, that is, assuming a mechanism for
how it can occur. When building a model, we take a certain point of view on the phe-
nomenon, discarding irrelevant details. Each model in scientific type knowledge has a
limited domain of applicability.

In the end, in order to determine which model is better, it would be right to conduct
an Experimentum crucis - that is, an experiment that would make it possible to unam-
biguously determine which theory is correct. In order to conduct such an experiment
completely scientifically, it would be best for us to find such facts that the models would
predict in different ways, and check which option is actually implemented.
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2.3 Theories

Aswe have already said, building a model requires a certain point of view on the subject.
Wewill call such points of view theories or paradigms. Each such theory determineswhat
is important in the subject for consideration. A look at a person from the point of view of
mechanics, electromagnetism, chemistry, and population genetics will be significantly
different. In addition, each specific problem, being solved within the framework of
the theory, determines what other properties of the subject we should discard when
considering it within the framework of this problem.

You can demand more, for example, define a theory as S.V. Illarionov does [16]:
“Theory is a holistic conceptual symbolic system, that is, it is based on some conceptual
representations and is expressed in a symbolic form, in the form of symbols. Relation-
ships are set in this system so that this symbolic system can be a reflection of a certain
circle of natural phenomena or, as they sometimes say, some fragment or aspect of the
material world.”

I completely agree with Illarionov’s definition for the case of scientific theories (he
would consider this expression to be a pleonasm), but we will consider cognition in a
framework broader than science. In applications, for example, in business, conceptual
representations in the form of symbols are unnecessary.

To visually imagine theories, let’s turn inside out, perhaps, themost famousmetaphor
in philosophy - the Platonic Cave.

So, let’s imagine that a certain object (phenomenon) is in a dark cave, and the walls
of this cave are our consciousness. If we illuminate the object with the light of theory on
one side, we will see one shadow on the wall. This shadow is a model of the phenomenon
built using this theory. If we light from another, the picture on the wall will turn out to be
completely different. Moreover, in both cases, the interior of the subject will be hidden
from us, and most of the information about the object will be lost.

Within the framework of one theory it is possible to build models of a multitude
of phenomena. The laws of Newtonian mechanics are applicable to the motion of the
planets, and to the collision of balls on the pool table. In terms of the cave metaphor,
this means that you can mark many objects in one beam of light and get their models -
shadows on the wall.

The most important property of scientific theories is their ability to predict phenom-
ena that were not known at the time of their formulation. Let me cite Illarionov [16]
again: “Everyday knowledge is based on previous observations of repeatedly occurring
phenomena and allows you to make predictions that are very important and useful for
successful practical activity, although they have the nature of probabilistic expectations.
But science can do something completely different: it can predict phenomena that we
have never observed. These are specifically theoretical predictions.”

“When, in 1819, Fresnel (1788–1827) made a report on his wave theory of light at
the French Academy, Poisson (1781–1840) stood up and stated that, according to this
theory, in the middle of the shadow of a round screen or a ball there should be a bright
spot. The next day, Augustin Fresnel and Domenic Francois Jean Arago (1786–1853)
reported: there really is a bright spot. Now it is called the Poisson spot in honor of the
one who instantly, in the mind, solved this problem. This did not follow from previous
observations and is an example of a nontrivial theoretical prediction.”
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Nevertheless, every theory has its own limited domain of applicability. In our
metaphor, this means that the light beam of the theory is limited (imagine a movie
projector). Only a limited number of phenomena can be placed in our limited beam
of light. Moreover, some phenomena are generally flat and turned to this beam by an
edge; therefore, from the angle of this theory, the phenomenon is generally invisible or
does not exist. It can be seen and understood only in the light of another, completely
orthogonal theory.

3 Knowledge and Cognition in Other Areas of Human Activity

3.1 Knowledge and Cognition in Business

Startup is most correctly defined as a temporary enterprise created to seek, develop, and
validate a scalable businessmodel (a similar definitionwas probably first coined by Steve
Blank [17]). Here, a business model means a way of creating, using an economically
sound process, for a certain type of consumers, value for which they are willing to pay
money.

This search process can be divided into two separate phases:

• Customer discovery: find customer segments with a problem you can solve. Make
sure that customers are willing to pay.

• Testing channels: find channels with enough customers, profitable economy and
potential for scalability.

A popular and mature methodology for building startups is Lean Startup [18]. With
this methodology, during the customer discovery stage a startup defines the target cus-
tomer segments, their problems, and what is valuable for them. Different value propo-
sitions mean different segments. The initial set of segments is considered a hypothesis.
It will change. Then startup defines a value proposition for each segment and conducts
problem interviews to confirm, refine or reject a hypothesis. During the interviews, they
may find new segments or refine existing ones.

As soon as the problem is confirmed, the startup starts modeling economics for the
segment. On what conditions do economics become profitable? Are these conditions
realistic? How much money is there in this segment, is it worth the effort? If the eco-
nomics is potentially profitable –the startup starts building a Minimum Viable Product.
The goal is to make first manual sales of the product.

When customers are paying and the startup knows why they do so, the startup can
begin testing channels. If something goes wrong, the process is repeated.

A sales channel is a combination of 3 items:

• Marketing channel – traffic source
• Sales instrument – landing page, presentation, sales script, sales letter etc.
• Product and its price

At this stage, the goal of the startup is to find scalable channels, and a goal within
the channel is its profitable economics. If profitability for a user in a channel is achieved,
the next goal is profitability at scale:
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• Can you increase sales flow by x10 and keep it profitable?
• Is there enough channel capacity to scale?
• Will the traffic cost grow when scaling?

Thus, Lean Startup is a paradigm where a user problem is solved, this solution
becomes a model of the user from the viewpoint of a Lean Startup and then the
applicability domain of this solution is found by testing hypotheses

• About the value proposition for the channel
• About significant sales flow
• On the convergence of the economy in the channel
• On the convergence of economies at a scale

This means that a Lean Startup generates scientific-type knowledge.

3.2 Knowledge and Cognition in Engineering

It is useful to note that in our ordinary life the ability to solve problems comes solely as
a result of training.

If similar problems have to be solved by a large number of people, it becomes possible
to analyze and generalize the process of solving them: narrow down the scope of the
process, standardize its inputs and outputs, as well as the operations performed. This is
how technologies are created. Thus, a technology is a model of the process of creating
a class of results, and we can deduce that the technology is another type of knowledge
of scientific type. Most everything we have discussed about the scientific knowledge
applies here.

4 Testing for Strong AI

Following the above we can device several tests for human-like cognitive ability of the
AI, in the order of their rising complexity:

• Explanation
• Problem-setting
• Refutation
• New phenomenon prediction
• Business creation
• Theory creation

4.1 Explanation Test

Given a well-defined scientific theory and an empirical phenomenon, provide an expla-
nation of the phenomenon and compute its quantitative characteristics. An example of
test of this type is “Find the minimum speed that basilisk lizard can run over the water”.
More problems of this sort from the physics can be found, for example, in the book of
Nobel prize winner Pyotr Kapitsa [19].
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4.2 Problem-Setting Test

Given a well-defined scientific theory and the general knowledge of the world create a
task of the type mentioned in the previous subsection.

4.3 Refutation Test

Given competing models/explanations for a set of empirical phenomena, device an
Experimentum crucis to figure out which is better.

4.4 New Phenomenon Prediction

Given awell-defined scientific theory predict a phenomenon that is not previously known.

4.5 Business Creation

Create a successful startup.

4.6 Theory Creation

Create a theory that is a meaningful improvement over existing noes in one of the
scientific fields.

5 Conclusions

It is obvious from the above tests that the current state of AGI is pretty far from being
really equal to human, probably asmuch as it was from being able to satisfy Turing test in
1950, so the paranoia of machines talking over humans inmidterm, at least intellectually,
seems to be pretty ungrounded. On the other hand, human history have shown that a
culture should not necessary be higher or more intellectual to take over a neighboring
country/region.
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Abstract. We introduce the open-ended, modular, self-improving
Omega AI unification architecture which is a refinement of Solomonoff’s
Alpha architecture, as considered from first principles. The architecture
embodies several crucial principles of general intelligence including diver-
sity of representations, diversity of data types, integrated memory, mod-
ularity, and higher-order cognition. We retain the basic design of a fun-
damental algorithmic substrate called an “AI kernel” for problem solving
and basic cognitive functions like memory, and a larger, modular archi-
tecture that re-uses the kernel in many ways. Omega includes eight rep-
resentation languages, which are briefly introduced. We review the broad
software architecture, higher-order cognition, self-improvement, modular
neural architectures, and intelligent agents.

1 Design Principles for Generality

Without further ado, we review the requirements of a general AI system, and
from this vantage point we formulate design principles for constructing a general
system.

A general AI system cannot contain any and all specific solutions in its mem-
ory, therefore it must equal the computer scientist in terms of its productive
capacity of solutions. The requirement of a universal problem solver therefore is
fundamental to any such design. Naturally, this implies the existence of Turing-
complete programming languages, and a universal method to generalize – which
implies a universal principle of induction such as Solomonoff induction. A suit-
ably general probabilistic inference method such as Bayesian inference is implied
since most AI problems are probabilistic in nature. It must have practically effec-
tive training methods for learning tasks, such as the GPU accelerated training
methods used in deep learning. The system must have an integrated memory
for cumulative learning. The architecture must be modular for better scalability
and extensibility; our brain is a little like that as the neocortex has a grid of
cortical columns, which are apparently functionally equivalent structures.

A general AI system must be able to support robotics, however, it should not
be limited to agent architectures; it must also support traditional applications
like databases, web search, and mobile computing. To accommodate for such a
wide variety of functions, the architecture must expose a Swiss army knife like

c© Springer Nature Switzerland AG 2020
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268 E. Özkural

AI toolkit, to provide a Unified AI API to developers. Such an API can then
be served over the cloud, or via fog computing. Machine learning applications
generally require hardware with high performance computing support. There-
fore, the architecture should be compatible with high performance computing
hardware such as GPUs, and FPGAs to be able to scale to many clients.

The general AI system must also address all the hard challenges of a natural
environment as formulated by [8, Chapter 2]: the system must cope with the
partially observable environments, multi-agent environments, competition and
co-operation, stochastic environments, uncertainty, nondeterminism, sequential
environments, dynamic environments, continuous environments, and unknown
environments. A tall order, if there were ever one. Therefore, the system must
be designed with these features of the environment in mind, for accommodating
their needs.

AIXI [2] addresses partially observable environments, however, the rest of
the features require architectural support in most cases, such as the necessity
of providing a theory-theory module (a cognitive module that has a theory of
other minds), or showing that the system will discover and adapt to other minds.
To provide for multi-agent environments, the system can offer a self-simulation
virtualization layer so that the agent can conceive of situations involving enti-
ties like itself. To support proper modeling of environments like with stochastic
and uncertainty, we need an extensive probabilistic representation language to
deal with non-trivial probabilistic problems; the language must cover common
models such as hierarchical hidden markov layer models; it should offer a wide
range of primitives to choose from, which must be supplied by the architecture.
The representation language must also provide the means to combine primitives
meaningfully, and obtain short programs for common patterns. The mystique
art of designing compact representation languages therefore remains a vital part
of AI research. To provide for effective representation of things like sequential,
dynamic, continuous environments, the architecture can provide suitable repre-
sentation primitives and schemas. For dealing with unknown environments, the
architecture can provide an agent architecture that can engage in the exploration
of the unknown, much as an animal does.

Without doubt, the system must also accommodate common data types,
and common tasks such as speech recognition, and the examples for more spe-
cific operations should be provided. It is important that the system allows one
to implement a wide family of AI tasks for the system to be considered suffi-
ciently general. If, for instance, the user cannot feasibly implement something
like style transfer that is popular in deep learning research, with the architecture,
it should rather not be termed general. The system should support a wide range
of structured, and unstructured data, including popular data types like image,
audio, video, speech, and text, and have sufficiently rich models to represent
these challenging kinds of data. These more human data types constitute the
primary means by which humans can communicate with AI’s directly. However,
structured, regular and irregular data types also must be supported, since these
originate from a variety of sources that can be consumed by the AI system.
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The system must also therefore provide an adequate perception architecture
by which such a system can learn a world-representation from its sensorium that
includes many senses. These processes should be sufficiently general that they can
be adapted to any sort of sensorium that will work under known laws of physics.
The system should also support an adequate intelligent agent architecture that
supports typical goal following, or utility maximization architectures.

Therefore, it also is a challenge to test system generality. Typically, a bench-
mark that consists of a large number of diverse AI tasks and datasets, must
be provided for the system to demonstrate generality. The benchmark should be
diverse enough to include the whole gamut of AI problems such as typical pattern
recognition problems like image recognition, speech recognition, but also natu-
ral language understanding, machine learning tasks like anomaly detection (over
some industrial dataset preferably), time-series prediction (commonly used for
stock market analysis), robotics problems, game playing problems, and so forth
with randomly varied parameters.

We therefore arrive at an understanding of general-purpose AI design that
tries to maximize generality for every distinct aspect of a problem. The solution
space must be wide enough to cover every problem domain. The methods must
be independent from the data type. The tasks that can be performed should not
be fixed, the system should be independent from the task to be solved, any task
should be specifiable. The architecture must not depend either on a particular
representation, it should cover a very wide range of representations to be able
to deal with different kinds of environments. The intelligent agent code should
not be environment specific, it must be adaptable to any environment and agent
architecture; in other words, the system must be independent of the environment.
The principles of general intelligence we have thus considered essential are: com-
pleteness, model diversity, agency, task independence, data type independence,
domain independence, and self improvement.

2 Architecture Overview

Many of the aforementioned problems have been addressed by existing AI archi-
tectures. We therefore take a well-understood general AI architecture called the
Alpha architecture of Solomonoff [10], and define some basic capabilities better,
while incorporating newer models and methods from recent research.

For the purposes of general-purpose AI, two most significant events have
occurred since Alpha was designed in 2002. First, the Gödel Machine architecture
[9] which also provides a level of self-reflective thinking, and presents an agent
model around it. The other notable development is the immense success of deep
learning methods, which now enable machines to achieve pattern recognition at
human-level or better for many basic tasks. The present design therefore merges
these two threads of developments into the Alpha framework. The architecture
also provides for basic universal intelligent agents, and self-reflection like Gödel
Machine does. Like Gödel Machine, we do not assume that the environment is
known to a substantial degree, such things are assumed to be learnt.
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Like the Alpha architecture, we assume a basic problem solver that is smart
enough to bootstrap the rest of the system. This component is called the AI
Kernel.

The system is thought to be parameter free, dependent only on the data, and
the commands given. The system’s interface is a graphical web-based application
that allows the user to upload datasets and then apply AI tasks from the library.
The system also provides an API for programming novel tasks. A basic graphical
programming environment is considered for later releases since the system aims
to be usable by non-programmers.

2.1 Components

We review the major components of the system architecture, and explain their
functions.

AI Kernel. The AI kernel is an inductive programming system that should use
a universal reference machine such as LISP. We have proposed using Church as
the reference machine of such a system. However, what matters is that the AI
kernel must be able to deal with all types of data, and tasks. We assume that
the reference machine is variable in the right AI kernel. The kernel must be a
compact code base that can run on a variety of hardware architectures to ensure
portability, and the parallelization must support heterogeneous supercomputing
platforms for high energy efficiency and scalability.

The AI kernel supports sophisticated programmability, allowing the user to
specify most machine learning tasks with a very short API. We employ OCaml
generic programming to characterize the kernel’s internal components, model
discovery, and transfer learning algorithms.

The AI kernel supports real-time operation, and can be configured to con-
tinuously update long-term memory splitting running-time between currently
running task and meta-learning.

Bio-Mimetic Search. State-of-the-art bio-mimetic machine learning algo-
rithms based on such methods as stochastic gradient descent, and evolutionary
computation are available in the AI kernel, and thus chosen and used automat-
ically.

Heuristic Algorithmic Memory 2.0. The AI kernel has integrated multi-
term memory, meaning that it solves transfer learning problems automatically,
and can remember solutions and representational states at multiple time scales.
Heuristic Algorithmic Memory 2.0 extends Heuristic Algorithmic Memory [7] to
support multiple reference machines.
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Problem Solvers. Problem Solution Methods (PSMs) are methods that solve a
given problem. These could be algorithmic solutions like sorting a list of numbers,
or statistical methods like predicting a variable. The Alpha architecture basically
tries a number of PSMs on a problem until it yields. However, in Omega, it is
much better specified which PSMs the system should start with. Since the system
is supposed to deal with unknown environments, we give priority to machine
learning and statistical methods, as well model classes that directly address
some challenging properties of the environment, and support hard applications
like robotics. The diversity of the model classes and methods supported expand
the range of Omega applications. The Alpha architecture can invent and retain
new PSMs, that is why it should be considered an open-ended architecture; so
is Omega.

The architecture is taught how to use a problem solver via unstructured
natural language examples, like the intent detection task in natural language
processing.

Both narrowly specialized and general-purpose methods are included in the
initial library of problem solvers for initially high machine-learning capability.

For approximating functions, there are model-based learning algorithms like a
generic implementation of stochastic gradient for an arbitrary reference machine.
For model discovery, model-free learning algorithms like genetic programming
are provided. Function approximation facilities can be invoked by the ensemble
machine to solve machine learning problems. Therefore, a degree of method
independence is provided by allowing multi-strategy solvers.

A basic set of methods for solving scientific and engineering problems is pro-
vided. For computer science, the solutions of basic algorithmic problems includ-
ing full software development libraries for writing basic computer programs for
each reference machine (standard library). For engineering, basic optimization
methods and symbolic algebra. In the ultimate form of the architecture, we
should have methods for computational sciences, physical, and life sciences.

A full range of basic data science/machine learning methods are provided
including:

Clustering. Clustering is generalized to yield automated statistical modeling.
Universal induction can be used to infer a PDF minimizing expected diver-
gence (AI kernel function). Both general-purpose and classical clustering algo-
rithms are provided, in recognition that for a specific class of problems a spe-
cialized method can be faster, if not necessarily more accurate. The classical
algorithms of k-means, hierarchical agglomerative clustering, and Expecta-
tion Maximization (EM) for Gaussian Mixture Models are provided. General-
purpose algorithms based on NID [11], and universal induction enable working
with arbitrary domains.

Classification. Again both classical and general-purpose algorithms are sup-
ported. Classical algorithms of decision tree classifier, random forest, knn,
logistic regression, and SVM’s are supported. General-purpose algorithm
invokes AI kernel universal induction routines to learn a mapping from the
input to a finite set. NID based classifier works with arbitrary bitstrings.
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Regression. General-purpose algorithm invokes universal induction routines in
the AI kernel to learn a stochastic operator mapping from the data domain
to a real number. Classical algorithms of linear regression, logistic regression,
and SVM are supported.

Outlier Detection. The generalized outlier detection finds the points least
probable given the rest of the dataset using a generalization of z-score; to
first model the data again a universal set induction invocation characterizes
the data.

Time-Series Forecasting. Time series prediction is generalized with a uni-
versal induction approach modeling the stochastic dynamics, then the most
probable model is inferred. Classical time-series prediction algorithms of
ARIMA, Hidden Markov Model (HMM), and Hierarchical Hidden Markov
Model (HHMM) are provided. A deep LSTM based forecast method is also
provided.

Deep Learning. A complete range of DNN architectures for various data types
such as image, audio, video and text are provided. Standard algorithms of
backpropagation, stochastic gradient and variational inference are supported.
The state-of-the-art fully automated machine learning algorithm of Fourier
Network Search (FNS) [5] is included. We also invoke universal induction
routines to automate neural model discovery. The deep learning implemen-
tations are parallelized for multi GPU clusters. For this purpose, an existing
deep learning framework such as TensorFlow may be used. The deep learning
framework we use is a different, proprietary approach that predates Tensor-
Flow and is composed of a neural programming language called MetaNet and
a heterogeneous supercomputing middleware called Stardust.

Each algorithm mentioned is exposed as a PSM in the system.

Ensemble Machine. An ensemble machine is introduced to the system which
runs PSMs in parallel with time allocated in accordance with their expected
probability of success. The associations between tasks and their success are
remembered as a stochastic mapping problem solved with the universal induc-
tion routines of AI Kernel, guiding future decisions. The ensemble machine is
exposed itself as a PSM.

2.2 Representation Languages

We define eight reference machines to widen the range of solutions obtainable,
and types of environments/applications addressable.

MetaNet. MetaNet is a new General Neural Networks (GNN) representation
language that encompasses common neuron types and architectures used in neu-
ral network research. It is a graphical meta-language that can be used to define
a large number of network architectures. Formally, it uses a multi-partite labeled
directed graph with typed vertices, as a generic representation to represent neu-
ral circuits, and the richer sort of representation allows us to extend the model
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to more biologically plausible, or with neuroscience-inspired models. The sys-
tem uses this representation to facilitate automated model discovery of the right
neural network for the given task when evaluating the MetaNet representation
language.

Church. We use the Church language to represent probability distributions and
solve basic algorithmic problems like adding a list of numbers, and the Towers of
Hanoi problem. Components expose their interfaces in Church machine, expand-
ing self-reflection capability.

Probabilistic Logic. We define a probabilistic logic programming language
to deal with uncertainty and stochasticity, and the ability to solve reasoning
problems.

Bayesian Networks. We define a general class of bayesian networks that can
be used to deal with uncertainty.

Analog Computing. We use an analog computing model to represent dynam-
ical, continuous and stochastic systems better.

Picture. We use the Picture language to deal with images.

Matrix Computing. We use a LAPACK based matrix algebra computing pack-
age such as GNU Octave to represent mathematical solutions.

Asynchronous Computer. We define an asynchronous model of computation
for conception of fine-grain concurrent models.

2.3 Neural Representation Classes

There are a number of ready neural representations that the system can quickly
invoke.

Fourier Neural Network. Fourier Neural Networks use a Fourier series rep-
resentation to represent neural networks compactly, and may be considered
a general-purpose learning model class [4].

Convolutional Neural Networks. CNNs are particularly effective for pattern
recognition problems. A variety of basic CNNs suitable for processing different
kinds of data are provided, including specialized networks such as multi-
column DNNs for image classification, for video, text, and speech.

Deep Belief Networks. These networks are a stack of Restricted Boltzmann
Machines that can perform unsupervised learning.

Deep Autoencoders. Deep autoencoders use several hidden unit layers, two
deep belief networks, that learn to compress and then reproduce the data. We
provide specific applications like variational autoencoders for image captions,
inverse graphics, multimodal learning.

LSTM/GRU Networks. We provide a variety of RNN models using LSTM
(Long-Short Term Memory) and GRU (Gated Recurrent Unit) stacks to
model sequential data. Variants for different data types such as speech, video,
image are included.



274 E. Özkural

Recursive Deep Networks. Especially useful for language processing, these
networks can recognize hierarchical structures.

The networks are specified as generic network architectures that can scale to
required input/output size. Any hyper-parameters are designated as variables
to be learned to the AI kernel so that the hyper parameters can adapt to the
problem. These networks are considered to be sufficient as providing enough
library primitives. The generators for neural networks are specified such that the
program generator can indeed generate all of the library networks; however, re-
inventing the wheel is not a feasible idea, therefore we aim to include a complete
inventory of deep learning models.

2.4 Software Architecture

Fig. 1. Ω architecture component diagram

Functional Decom-
position. A high-
level component archi-
tecture without the
many inter-compo-
nent interactions is
depicted in Fig. 1 on
page 7. The sys-
tem’s process flow is
straightforward. The
user presents the sys-
tem with a number
of datasets, and the
user selects a task
to be applied to the
data. The system
automatically recog-
nizes different data
types, however, it
also allows data to
be specified in detail
by a description language. The system will also accept tasks to be defined via a
conversational engine, and a programming interface (API). The conversational
engine can learn to recognize a task via given examples, mapping text to a task
specification language and backwards. The programming interface accumulates
the interfaces of all the components, unified under a single facade of a generic
problem solver, which is formulated as a general optimizer [1]. As in Alpha, the
most general interface the system provides is that of time-limited optimization,
however, the system allows to solve any well-defined problems allowing the user
to define any success criterion. The problem solver then predicts the probability
that a PSM will succeed in solving the so-specified problem, and then translates
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the input data and the task to a format that the particular PSM will under-
stand, and also translate any results back. After a task is solved, the system
automatically updates its long-term memory and writes a snapshot to the disk.
It then executes higher-order cognition routines to improve its PSMs, and awaits
for the next task.

Execution. The execution of PSMs is parallelized as much as possible, as many
PSMs may be run in parallel, but also some methods will allow data to be
sharded, and will also parallelize well themselves. A main operational goal of the
system is the ability to keep track of these parallelizations well enough to present
an OS like stability to the user with a simple interface. The system also allows
modules to be invoked concurrently and in a distributed manner to facilitate the
design of distributed and decentralized applications using the API.

The PSMs are executed on a hardware abstraction layer called Stardust that
provides heterogeneous peer-to-peer computing capability to the architecture.
MetaNet acts as a common neural network representation language. Scientific
Data Language is a data specification language that allows us to describe the
type, format and semantic labels of the data.

2.5 Higher-Order Cognition

Two fundamental higher-order cognitive functions are defined as analysis and
synthesis. Analysis decomposes a problem into components and then tries to
solve the problem by first solving sub-problems and then merging their results
into a solution. Synthesis generates new PSMs by combining known PSMs. These
operations give the ability to observe the code of its modules, and expand the
system’s repertoire of PSMs continuously. Analysis is self-reflective in that sense,
and synthesis is self-reification.

These functions correspond to a second kind of modularity where the tasks
themselves can be decomposed, and entirely new PSMs may be invented and
added as new modules to the system.

The system continually self-reflects through updating its algorithmic memory
for accelerating future solutions. It also keeps a record of task performance for
trying to retroactively optimize past solutions. The components expose them-
selves via a high-level reference machine (Church) which acts as the system
“glue code” to compose and decompose system functions. Since Church is quite
expressive, it can also act as the system’s task description code, and be used to
recognize, decompose, and compose tasks and solutions. The synthesis and anal-
ysis modules operate over the system’s modular cognition itself, helping with
synthesis of new solution methods and analysis of problems. The system uses
self-models to guide its self-improvement, for instance, by trying to optimize its
performance.
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2.6 Self-improvement

Analysis and synthesis can learn how to accomplish this as they can use the
execution history to improve the results retrospectively. After a new problem is
solved, therefore, the system can continuously try to improve its consolidated
memory of PSMs by trying to generate new PSMs that will improve performance
over history, or by decomposing problems to accelerate their execution. A general
objective such as maximizing energy efficiency of solutions can be sought for self-
improvement.

2.7 Modular Neural Architectures

PSMs embody a basic kind of modularity in the system which are extended
with modular neural architectures. These architectural schemas are a cortical
organization that decomposes the networks into many cortical columns, which
are henceforth again decomposed into micro-columns, with variant geometries.
This organization schema is called MetaCortex, and it is a way to describe larger
networks that can digest a variety of data sources, and construct larger neural
models with better modularity, that is better data/model encapsulation based
on affinity. There are architectures such as multi-column committee networks
that already implement these architectures, however, we would expand this to
the entire library of networks described.

2.8 Intelligent Agents

Basic goal-following and utility-maximization agents can be realized similarly
to time-series prediction. A typical two part model of learning representations
(world model), and planning will be provided. A basic neural template will pro-
vide for multi-modal perception, multi-tasking, task decomposition and imita-
tion learning. Neural templates corresponding to different kinds of agents such
as Deep Mind’s I2A model [12] will be provided.

The intelligent agents have a real-time architecture, they run at a fixed num-
ber of iterations every second. At this shortest period of synchronization, mostly
backpropagation like learning algorithms, and simulation are allowed to com-
plete. Everything else is run in the background for longer time-scales.

2.9 Process and Memory Hierarchy

The processes and memory are organized hierarchically from long-term, heavy
tasks to short-term, lightweight tasks. At the shortest scale, the system has
neural memory units like LSTM, that last at the scale of one task, and model-
based local training/inference algorithms like backpropagation algorithms. At a
longer scale which corresponds to one iteration of problem solution procedure,
the system remembers the best solutions so far, and it updates its mid-term
memory with them to improve the solution performance in the next iteration.
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At this scale, the system will also engage in more processes such as the just men-
tioned memory update operation, and more expensive training algorithms such
as genetic algorithms. At the highest scale, the system runs the most expensive
model-free learning algorithms that can search over architectures, models, and
components, and updates its persistent, long term memory based on the statis-
tics about solutions of the new problem after solving it to guide the solution of
new problems. The system also updates its PSMs by executing its higher-order
cognitive functions at this scale.

3 Discussion and Research Program

We gave the overview of an ambitious architecture based on Solomonoff’s Alpha
Architecture, and Schmidhuber’s Gödel Machine architecture. The system is like
Alpha, because it re-uses the basic design of PSMs. It is also similar to Gödel
Machine architecture, because it can deploy a kind of probabilistic logical infer-
ence for reasoning and it can also observe some of its internal states and improve
itself. The system also has basic provisions for intelligent agents, but it is not
limited to them. We saw that the first important issue with implementing Alpha
was to decide a basic set of primitives that will grant it sufficient intelligence to
deal with human-scale problems. It remains to be demonstrated empirically that
is the case, however, two of the eight reference machines have been implemented
and seen to operate effectively.

A criticism may be raised that we have not explained much about how the AI
Kernel works. We only assume that it presents a generalized universal induction
approximation that can optimize functions, rich enough to let us define basic
machine learning tasks. It surely cannot be Levin search, but it could be any
effective multi-strategy optimization method such as evolutionary architecture
search [6]. We are using an extension of the approach in Fourier Network Search
[3] which is also likely general enough. The memory update is also not detailed
but it is assumed that it is possible to extend an older memory design called
heuristic algorithmic memory so that it works for any reference machine. We
also did not explain in detail how the various components individually work due
to lack of space, which is an issue to be tackled in a longer future version of the
present paper.
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11. Vitányi, P.M.B., Balbach, F.J., Cilibrasi, R.L., Li, M.: Normalized information
distance. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Sta-
tistical Learning, pp. 45–82. Springer, Boston (2009). https://doi.org/10.1007/978-
0-387-84816-7 3

12. Weber, T., et al.: Imagination-augmented agents for deep reinforcement learning.
arXiv preprint arXiv:1707.06203 (2017)

http://arxiv.org/abs/1803.03745
https://doi.org/10.1007/978-3-642-22887-2_47
https://doi.org/10.1007/978-3-540-68677-4_7
https://doi.org/10.1007/978-3-540-68677-4_7
http://arxiv.org/abs/cs.LO/0309048
https://doi.org/10.1007/978-0-387-84816-7_3
https://doi.org/10.1007/978-0-387-84816-7_3
http://arxiv.org/abs/1707.06203


Analyzing Elementary School Olympiad Math
Tasks as a Benchmark for AGI

Alexey Potapov(B), Oleg Scherbakov, Vitaly Bogdanov, Vita Potapova,
Anatoly Belikov, Sergey Rodionov, and Artem Yashenko

SingularityNET Foundation, Amsterdam, The Netherlands
{alexey,olegshcherbakov,vitaly,abelikov,sergey,

yashenko}@singularitynet.io

Abstract. Many benchmarks and challenges for AI and AGI exist, which help
to reveal both short- and long-term topics and directions of research. We analyze
elementary school Olympiad math tasks as a possible benchmark for AGI that
can occupy a certain free niche capturing some limitations of the existing neural
and symbolic systems better than other existing both language understanding and
mathematical tests. A detailed comparison and analysis of implications of AGI is
provided.

Keywords: AGI · AI evaluation · Math tasks · Language understanding

1 Introduction

Having somemetric to estimate progress in a certain domain is considered as a necessity
in contemporary AI practice. At the same time, there is no generally accepted standard
AGI benchmark, although theoretical metrics of AGI exist (e.g. [1]) as well as different
empirical tests and challenges have been proposed (e.g.1). However, each of them either
requires a real AGI to pass it, or, in contrary, can be (partially) solved by narrow AI
techniques, or at least favors a certain approach to AGI or a type of proto-AGI systems
(for example, reinforcement learning models will be favored by certain environments,
while such challenges as General Game Playing discourage the use of learning at all). It
is a not uncommon opinion that comparing different proto-AGI or measuring progress
towards AGI in an unbiased way is very hard [2].

The paper [3] overviewed thirty computer models addressing intelligent test prob-
lems, and came to the conclusion that these models have different purposes and applica-
tions, and have a limited connection between each other. But still, AGI benchmarks are
far from worthless by themselves, and possess a considerable methodological impor-
tance, because they help to understand limitations of the existing methods and reveal
possible directions of further research. Although the effort to encourage future computer
models taking intelligence test problems to link with and build upon previous research

1 https://www.general-ai-challenge.org/.
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made in [3] is really useful, we see some objective reasons in the diversity of the existing
intelligent tests.

Indeed, although standard benchmarks exist for many domains in narrow AI, these
benchmarks also fail to specify an ultimate goal even within rather particular tasks, and
optimizing some metric is not an end in itself but only an intermediate goal, which we
managed to formulate based on our current understanding of the task, which can be
imprecise or even misleading. It frequently appears that the state-of-the-art methods are
steadily improving their scores on some benchmark, but are doing this in the way we just
“don’t like”, and then the benchmarks themselves start to being criticized and improved
upon. For example, the visual question answering (VQA) datasets were criticized [4]
for lacking compositional questions, allowing confidently answering questions without
looking at images, etc., which were fixed in other benchmarks (e.g. [5]), which, in turn,
had other drawbacks and limitations and were further improved upon. However, these
drawbacks were not so obvious from the beginning, and a perfect benchmark would be
difficult to create even for such restricted task as VQA. This should be even truer for
AGI.

In this paper, we do not pretend to create an ultimate AGI metric, but discuss yet
another possible AGI-ish benchmark, which, however, has some advantages and can
have a certain utility as discussed below. The basic idea is to compose a dataset using
elementary schoolmathematicalOlympiad tasks.A similar proposal to usemathematical
puzzles as a challenging competition for AI [6] has been made, but without referring
to Olympiad tasks as a source for arranging a concrete dataset and without relevance
to AGI. In the following sections, we compare this idea with some related benchmarks
highlighting differences and consequences for AGI, which are worth discussing even
before creating the benchmark itself.

2 Related Works and Discussion

Natural Language Understanding
Language is frequently considered as one of the main differences between human and
animal intelligence. An extreme form of focusing on language is expressed in “equa-
tion”: “language – sound = thinking”. The seminal Turing test was essentially a natural
language understanding (NLU) test, while themain point of Searle’s Chinese room argu-
ment was to show that computers (physical symbol systems) are incapable of language
understanding in principle. Nowadays, many benchmarks in narrowAI exist for question
answering, dialogs, text generation and other language processing tasks.

Modern deep neural network (DNN) models may show nearly human or even super-
human scores on some benchmarks. However, the way they do this (in comparison with
more traditional symbolic systems) is the source of ongoing debates. Is it really possible
to map arbitrary sentences to a large, but fixed vector space of their meanings? Do DNN
models really understand sentences, or mostly memorize huge text corpora and recall
them? Is it possible to understand texts in natural language without even attempting to
represent real-world situations, described in them?

Some tests and challenges exist, which try showing the lack of understanding in the
existing models. One example is theWinograd Schema Challenge (WSC) [7]. Questions
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in WSC follow the same pattern and contain an ambiguous pronoun to be associated
with nouns using knowledge and commonsense reasoning. WSC is reasonably difficult:
best models demonstrate ~70% accuracy that is not too low, though, to deprive of hope
for solving this challenge by incrementally improving and tweaking the existing models.
Also, it may appear that the challenge can be solved using purely linguistic knowledge
and simple ontological relations. Another drawback of WSC is that it contains only
150 schemas, which apparently cannot be used for training and extracting necessary
knowledge from the dataset itself (although its recent analogue, WinoGrande2, contains
44k problems).

The standard General Language Understanding Evaluation (GLUE) benchmark [8]
includes WSC along with other 8 NLU tasks including sentiment analysis, semantic
similarity of sentences, and others. Each of these tasks highlights one or another aspect
of language understanding, and all together they cannot be called narrow. However,
they all are still too focused on the language domain itself. For example, the Corpus
of Linguistic Acceptability (CoLA) requires distinguishing between (grammatically)
acceptable and inacceptable sentences, e.g. “John tried to be a good boy” and “Who
does John visit Sally because he likes?” correspondingly.

Consider the following question from WSC as an example: “Joan made sure to
thank Susan for all the help she had [given/received]. Who had [given/received] help?”.
Apparently, in order to answer it, a model does need to “know” that it is usually a person,
who receives help, who thanks a person who helps. However, it doesn’t really need to
understand what it means to help. What it really needs is just an ontological relation
– not its real-world grounding.

Other NLU tasks can require using some factual encyclopedic knowledge, but with-
out its real understanding. Some tests involve scientific knowledge also. For example,
the Aristo project [9, 10] dataset includes such questions as “Which object in our solar
system reflects light and is a satellite that orbits around one planet? (A) Moon (B) Earth
(C)Mercury (D) Sun”, which requires not only language processing and basic reasoning
abilities, but also commonsense and scientific knowledge representation and manipula-
tion. Such tests have their own utility, but they don’t require an understanding of what it
means to orbit around a planet or to reflect light. What is necessary is just a set of rela-
tions or facts “The Moon orbits around the Earth”, “The Earth is a planet”, etc. Indeed,
these are so-called open book questions for understanding of qualitative relationships.

Let us consider a few examples of elementary school math tasks for comparison:

• A group of girls stands in a circle. Emily is the fifth on the left from Mary and the
sixth on the right from Emily. How many girls are in the group?

• Nicole takes a sheet of paper and cuts it into 9 pieces. She then takes one of these
pieces and cuts it into 9 smaller pieces. She then takes another piece and cuts it into 9
smaller pieces and finally cuts one of the smaller pieces into 9 tiny pieces. How many
pieces of paper has the original sheet been cut into?

• How many different cubes are there with two faces colored green and four faces
colored yellow?

2 https://leaderboard.allenai.org/winogrande/.

https://leaderboard.allenai.org/winogrande/
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Imagine how these tasks can be solved by an AI system, e.g. a DNN model. It
should be noted that the tasks are quite unique. There can be a few more tasks involving
standing in circles or cutting sheets of paper, but they will be formulated in a different
way and require inferring other consequences. At the same time, quite a large number
of different tasks exist, and these tasks are not wiredrawn, but “real-world” in sense
that they are really given to human children. Apparently, our AI system cannot just
memorize the training dataset and recall similar tasks. These tasks don’t require the
extensive use of factual encyclopedic knowledge (which can bememorized), but suppose
a deeper understanding of what a circle is or what cutting is that goes beyond pair-wise
relations between symbolic atoms and requires at least some modeling of corresponding
“physical” situations. It will not be enough to map the sentences into some semantic
vector space. The system will most likely require having an internal model of girls
standing in a circle and explicitly reason over it.

We believe such tasks are more indicative of what “understanding” is and their for-
mulations cover quite a wide spectrum of aspects of natural language also (but of course
not all of them, e.g. sentiment analysis is not covered). We don’t say that other NLU tests
are worse, but we claim that the mentioned math tasks require dealing explicitly with
an additional important aspect of natural language understanding, which is rarely high-
lighted in other NLU tasks (which, however, better cover some other aspects). Besides
NLU, these math tasks require some form of reasoning, which is also important for AGI
benchmarking.

Recently, SuperGLUE [11] benchmarkwas proposedwith a new set of natural under-
standing tasks. Although these tasks are more difficult, they are also purely textual and
do not heavily require symbol (textual entities) grounding.

Visual (and Physical) Reasoning
The lack of necessity of grounding linguistic entities in the real world in purely textual
NLU tasks is not a novel observation and has been addressed inmultimodal benchmarks,
which most often rely on visual input. Interestingly, many school mathematical tasks
involve images, and can be considered as questions about images, which make them
similar to VQA tasks.

As mentioned above, the earlier VQA datasets were criticized for that relatively high
scores on them could be achieved with the use of superficial correlations between textual
tokens in questionswithout both reasoning and clear grounding ofwords in images. Some
of consequent datasets (e.g. [4]) introduced different biases in training and test subsets
to prevent using superficial correlations. More interesting is that considerable efforts
have been made to stimulate the focus on reasoning in VQA. In particular, CLEVR is
a synthetic dataset with simple scenes, but complex questions about objects and their
spatial relations. Later, similar complex questions were generated using Visual Genome
for real-world scenes [12].

Images in math problems are mostly composed of abstract shapes or simple objects
and are closer to CLEVR in this respect, but they are not generated by a simple formal
process. They are much closer to real-world VQA than CLEVR in terms of “open-
endedness”. Although they don’t require recognizing a great variety of real objects
(which is of course an important, but a sort of vision-domain-specific property), they
require a deeper image understanding than traditional VQA datasets. Consider Fig. 1.
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Fig. 1. Which ropes will be tightened into knots if they are pulled by the ends?

It can be seen that whileVQA tasks require just extracting bounding boxes of discrete
objects and discrete relations between them,math tasks require analyzing images in finer
details. Also, while a DNN might be able to learn from thousands of examples some
features enough to answer the question about the ropes, it will not generalize to other
such tasks and learn from few examples.

Apparently, school math problems require much more complex and open-ended
reasoning in comparison to synthetic questions of low diversity, which are really com-
positional but hardly require reasoning. Indeed, they can be answered by a direct seq2seq
mapping of textual questions to imperative programs.

We don’t claim that math questions with images form a perfect VQA dataset, but
such a dataset can be quite indicative in terms of structural image understanding and
visual reasoning (showing how far the state-of-the-art VQA models from real visual
reasoning even over such simplistic images).

It should be noted that there are types of tasks, which use images and (optionally) tex-
tual questions as input, although they are not considered as VQA tasks. One example of
such tasks is Physical Bongard Problems (e.g., [13]), which requires categorizing simple
synthetic scenes based on their physical properties (e.g. stable/unstable configuration,
small objects fall down, etc.).

Physical Bongard Problems are conceptually similar to the math tasks under discus-
sion in that answers to them don’t directly follow from images, but require some internal
representation of depicted situations, over which reasoning is carried out. Of course,
there are many differences in details, and these two sets of problems don’t intersect,
but complement each other. Physical Bongard Problems also don’t contain textual ques-
tions and are devoted to a relatively restricted subdomain of naive physics (concretely,
dynamics and object interaction). Both these properties are good for some purposes, but
make Physical Bongard Problems hackable by narrow methods (especially taking into
account that not too many problems exist).

It should be mentioned that physical problems were also considered in the context
of cognitive psychology, in particular as a test case for analogical reasoning and transfer
learning (e.g. [14]). However, the possibility to solve the particular tests being used in
such studied by hand-crafted or narrow methods wasn’t analyzed.

Elementary school mathematical Olympiad tasks don’t require extensive physical
knowledge or detailed simulation. Instead, they highlight the necessity to represent
scenes or situations in a way that allows reasoning over them.

Mathematical Tests
We have compared school math tasks with NLU and VQA tasks showing their utility in
AGI testing, but one may wonder if there are other existing benchmarks based on math
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tasks. Indeed, the ability of mathematicians to decompose, abstract and solve real world
problemswas the golden standard of thinking and intelligent processing during evolution
of AI research agenda especially at the early stages of AI field establishment. To solve
even simple math puzzles humans use analytical abilities such as logical and spatial-
temporal reasoning as well as intuition, understanding and common sense. To find out if
AI systems have capabilities of handling non-trivialmath and reasoning problems several
challenges have already been proposed. IMO (International Mathematical Olympiad)
Grand Challenge3 is probably one of the most well known. This challenge calls for
building an AI system that can win a gold medal in the IMO competition among humans.

It may appear that the IMO Grand Challenge already brings our proposal to its
ultimate form. However, there is an essential difference between them. IMO tasks are
purely mathematical and are provided to AI in a formalized representation.

In contrast, texts of elementary school math tasks don’t define formal constructions
for conducting inference, but describe real-world situations, which require constructing
somemodels that formalize these situations with higher or lower precision. For example,
if we consider two objects moving towards each other, we can sum up their velocities
only as an approximation (in contrast to the relativity theory, we suppose existence of
some global time and no speed limit). Thus, formalization is achieved not by a direct
text2mathmapping, but through simulation (imagination) of the situation (in this context,
it is interesting to note the discussion on the nature of mathematical knowledge and its
relation to AI [15]).

Even after reconstructing the situation, the task can remain underformalized. In fact,
complete formalization and inference over it can be cumbersome even in pure math
tasks. Indeed, consider the task “prove that at least one of two numbers is divisible by
3 if their product is divisible by 3” – a fully formalized solution may be surprisingly
long, especially if it doesn’t rely on lemmas about simple factoring. At the same time,
we can imagine that the product of two number is composed of 3 and the rest part,
which is divided into two pieces belonging to different initial numbers, and “3” should
“go” into one of them making it divisible by 3. It is convincing, although not really
formal. Answers to less formal tasks can be obtained by “physical” simulation or via
knowledge-based reasoning. For example, for the task of cutting a sheet of paper, we can
imagine how this sheet is cut, although we need to suppose some commonsense-based
invariance during this simulation, i.e. to figure out if it matters or not where it is cut, in
what order, etc. Alternatively, we can just know that cutting a sheet of paper destroys
it, and thus cutting one piece into 9 pieces increases the total number of pieces by 8.
But even if start with this simplistic “formalization of cutting” and represent the process
as an algorithm that takes a list with one element as input and iteratively removes one
random element from the list and inserts 9 new elements into it, a complete formal proof
that the length of the list produced by this algorithm is independent on random choices
will be not that short.

Consider the task “Bella colors all the small squares that lie on the two longest
diagonals of a square grid. She colors 2021 small squares. What is the size of the square
grid?”. When we write down equation 2size – 1 = 2021 relying on the fact that the
number of squares in the longest diagonals is the same as the size of the board, and they

3 https://github.com/IMO-grand-challenge/.

https://github.com/IMO-grand-challenge/
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have one common square, the answer is obvious. But it’s semi-formal. To be completely
formal, it should contain definitions of boards, diagonals, etc. as mathematical objects.
These definitions can be cumbersome.Of course,we can rely on formerly proved lemmas
about diagonals, etc. (we can imagine Agda or Coq-style definition of boards, diagonals,
coloring and so on as dependent types), but still the mapping to this formalization is not
that straightforward.

Even when some tasks rely on physics to a nearly zero extent, and suppose a more
direct translation into, say, algebraic representation, they are first translated into some
representation of a “real-world” situation. In fact, the skill of using algebraic repre-
sentation is not natural and should be specially developed prior to solving math tasks
per se (and actually, it was discovered by humankind just a few centuries ago) as was
pointed out by George Pólya long time ago. Only higher-grade tasks become purely
mathematical, when pupils have developed an internal representation of this abstract
domain separately (or on top of) perceptual world representation and simulation.

Consider the task: “Bill lacks 8 cents to buy the apple, whileMary lacks 1 cent to buy
the apple. How much does the apple cost if Bill and Mary cannot buy it even if they put
their money together?” It is very simple mathematically, and it supposes quite a straight-
forward complete formalization, but still, humans (both children and adults) rarely solve
it via this complete formalization. Rather, they arrive at the solution semi-formally. First
of all, we’d be surprised: how is it possible that they have not enough money together if
Mary lacks just 1 cent? Eureka! Bill has no money at all. We don’t bother with writing
down the following system: a + 8 = x, b + 1 = x, a + b < x, a ≥ 0, b ≥ 0. Besides the
fact that the last two inequalities require some background knowledge and commonsense
assumptions, this is not really how we solve this task.

One can claim that the abstractworld of IMO-typemath problems is no less important
than the world of clocks, buses, sheets of paper and so on, and the ability to solve IMO
tasks is more indicative from the AGI-ish point of view. However, all real-world tasks
(related not necessarily to everyday environment, but to any object or system of scientific
study) differ from IMO tasks in that they involve very complex objects, many properties
ofwhich are not necessary, while some other important properties aremissing and should
be filled in with default or commonsense values. Isolating the problem (even already
given in natural language) from the rest of Universe and representing it in a solvable way
is absent in IMOGrand Challenge, and it can be more difficult than solving a formalized
task.

The main difficulty of applying symbolic systems to real-world tasks consists in
translating input data into representations, over which these systems can reason. At
the same time, end-to-end trainable deep learning models have rather weak reasoning
capabilities (and fail to learn to reason as well).

Indeed, recently an attention of the research community has been shifted to estimation
of the ability of DNNmodels to solve math-alike problems. Neural models successfully
handle many of the general text problems, but parsing and answering math questions is a
very special task which is at least at the first glance cannot be directly generalized from
standard pretrainedmodel. However some of the researchers are trying to experimentally
evaluate such generalization properties of DNNmodels at least in restricted problem-set
conditions.
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In the paper [16] researchers introduce the Mathematics Dataset consisting of many
different types of mathematics problems that cover topics in algebra, arithmetic, basic
combinatory and probability theory. There are two types of tests: interpolation and
extrapolation tests. Interpolation tests assume that all types of questions were presented
during the training but test set questions have to be presented at most 2% of the total test
set size. Extrapolation tests estimate generalization capabilities of the trained models
to work with tasks, which differ from training ones by larger numbers, more numbers
involved in equation, more compositions, and (if it was a probability question) larger
samplers. The authors have also examined several popular general purpose models.
All of the models were modern neural architectures for solving sequence-to-sequence
problems: recurrent neural architectures, and attentional/transformer architecture. The
authors also claim that they tried to use advanced neural models with external memory,
like Differentiable Neural Computers [17], which could be potentially well suited for
solving mathematical questions. But it is reported that there is no significant outcome
from the usage of these models. The researchers also have shown some interesting flaws
in models performance on very simple tasks of adding series of “ones”, where “one”
appears n times for n> 5. It is especially interesting because the models could correctly
predict results for longer sequences of far bigger numbers. The major takeaway from
this study is that the modern DNNmodels do not generalize well to the specific problem
domain like math questions even in well-controlled environments consisting of formally
defined tasks though in natural language.

Interestingly enough,more recent Tensor Product Transformermodel [18] has shown
some promising results on the Mathematics Dataset. The dataset includes tasks like
“What is the first derivative of 13 * a ** 2 – 627434 * a + 11914106?” or even such
complex tasks as “Let r(g) be the second derivative of 2 * g ** 3/3 – 21 * g ** 2/2 +
10 * g. Let z be r(7). Factor – z * s + 6 – 9 * s ** 2 + 0 * s + 6 * s ** 2”, which is
mathematically involved, but doesn’t require reasoning over or formalizing real-world
situations and corresponds to a closed domain.

Elementary school mathematical Olympiad tasks are difficult simultaneously for
neural and symbolic systems, while most of the other benchmarks favor either symbolic
or neural approaches (or at least seem to favor). Apparently, passing IMO Grand Chal-
lenge requires much more sophisticated symbolic reasoning, which is not covered by
elementary school math tasks, but passing the former will also not make the goal of
solving the latter any closer. So, these are really different benchmarks.

Of course, there are also other tests, which don’t suppose formalized math tasks as
input. For example, GEOS [19] and ARIS [20] projects are closely related to Aristo,
but GEOS is focused on answering geometry questions with supporting diagram infor-
mation, while ARIS suggests dealing with elementary arithmetic problems. A typical
example of the GEOS problem is the following (Fig. 2)
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Fig. 2. In the figure, triangle ABC is inscribed in the circle with center O and diameter AC. If
AB = AO, what is the degree measure of angle ABO?

The figures as well as the textual descriptions in GEOS aremuchmore restricted, and
their formal representation in terms of such predicates as Equals (AB, AO), IsTriangle
(ABC), IsCenterOf (O, circle), Is AC, diameter) can be extracted (see the end-to-end
geometry project solver4) rendering GEOS not too useful for testing AGI systems.

Here is one task from ARIS problem set: “Last week Tom had $74. He washed cars
over the weekend and now has $86. How much money did he make washing cars?” It
can be seen that the questions are concerned with very basic arithmetic, but the main
challenge is to extract necessary information from the plain text description.

Another interesting initiative is the SemEval [21] project that provides a bench-
mark for testing AI abilities to pass high school Scholastic Achievement Tests (SAT).
The dataset consists of 2200 training, 500 development, and 1000 test questions which
were derived from Math SAT study guides. The question can have or have not some
supplementary reference information presented in the form of a diagram.

Both ARIS and SemEval are similar to the elementary school mathematical
Olympiad tasks in that the problem of understanding the task is more difficult than
the problem of solving its formalized version. However, the ARIS and SemEval contain
much more standard tasks of not too many types, which formalization is typically more
straightforward, and which require much more restricted representations and simpler
reasoning or problem solving capabilities. There are also other challenges and systems,
which try to solve even more restricted forms of math problems and puzzles. One such
system is LOGICIA [22], which is trying to deal with logic grid puzzles.

Some modifications to these benchmarks exist. For example, [https://www.aclweb.
org/anthology/S17-1029.pdf] proposes to enrich the training set samples with detailed
demonstrative solutions in natural language, but they also focus on SAT style geometry
problems [23].

These are creativity, diversity, and originality of Olympiad tasks, which make them
especially interesting from the AGI testing perspective in comparison to more restricted
mathematical tests, which are good for advancing state-of-the-art models locally. Even
if the training set is large enough, the process of solving tasks from the test set will not
be routine. To see this, it is enough to try applying geometry SAT task solvers to the
tasks like in Fig. 1). Consider also the following task as an example: using 6 matchsticks
is it possible to create 4 equilateral triangles?

4 http://geometry.allenai.org/.

https://www.aclweb.org/anthology/S17-1029.pdf
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Apparently, it is not yet another task on symbolic differentiation abundant both in
test and training sets. It is unique and its only difficulty (even for humans) is to choose
the correct solution space. A default formalization of this problem has no solution on
the plane, but is easily solvable in 3D. An AI system that really understands natural
language should not just represent coordinates of matchstick ends as points in 3D, but
should consider 2D formalization also (what is about non-Euclidian spaces?), and even
more, should consider points formed by intersections of matches, and should ask if it is
allowed to break matches into pieces.

3 Conclusion

We have discussed (elementary) school mathematical Olympiad tasks as a rich source
for (proto-)AGI systems benchmarking. The domain of these tasks is open-ended and
diverse. Instead of requiring vast but shallow encyclopedic knowledge about facts and
pair-wise relations, they require a more restricted amount of commonsense knowledge
grounded in simulation or abstract models of reality. This renders memorization adopted
by most DNN models not too useful (that is in agreement with a more general recent
criticism of DNNs, e.g., in [24]).

The tasks under discussion require some creative reasoning,whichmay be non-trivial
for elementary school pupils or even adults, but it is much less complex than what the
existent automated theorem provers successfully deal with. The main problem here is
to understand the task (e.g., but not necessarily, to adequately formalize it within some
symbolic system), that is difficult for both neural and symbolic systems.

Thus, elementary school math tasks require a diverse set of cognitive skills are
challenging for the existing AI systems, while manageable by young children without
special training and extensive domain-specific knowledge.

Programming Olympiad tasks (as well as of other school subjects) can be used for
a further extension of this idea. In fact, programming tasks highlight some issues even
better. Indeed, it should be quite obvious that seq2seq models translating natural lan-
guage descriptions to the code will be useless in open-ended domains unless language
is somehow grounded in an interpreter (that gives real meaning to text tokens and sym-
bols). However, programming tasks are more involved and don’t replace math tasks, but
extend them. They deserve a separate study in future work.
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Abstract. Artificial intelligence becomes an integral part of human life. At the
same time, modern widely used approaches, which work successfully due to the
availability of enormous computing power, based on ideas about the work of the
brain, suggested more than half a century ago. The proposed model describes
the general principles of information processing by the human brain, taking into
account the latest achievements. The neuroscientific grounding of this model and
its applicability in the creation of AGI or Strong AI are discussed in the article.
In this model, the cortical minicolumn is the primary computing processor that
works with the semantic description of information. The minicolumn transforms
incoming information into its interpretation to a specific context. In this way, a
parallel verification of hypotheses of information interpretations is provided when
comparing them with information in the memory of each minicolumn of the corti-
cal zone, and, at the same time, determining a significant context is the information
transformation rule. The meaning of information is defined as an interpretation
that is close to the information available in the memory of a minicolumn. The
behavior is a result of modeling of possible situations. Using this approach will
allow creating a strong AI or AGI.

Keywords: Meaning of information · Artificial general intelligence · Strong AI ·
Brain · Cerebral cortex · Semantic memory · Information waves · Contextual
semantic · Cortical minicolumns · Context processor · Hippocampus ·
Membrane receptors · Cluster of receptors · Dendrites

1 Introduction

1.1 Modern Neural Networks and the Brain - Are They Comparable?

There are several main fundamental issues in the field of information, the meaning of
information and intelligence. In this paper, it is shown that, based on modern knowledge
about the work of the brain [1], it is already possible to build a general theory of the
work of the brain. We have a model of that, it is possible to use it to create an AGI or a
strong AI, and it seems that this is the best way.

We have to ask the further question arguing that strong artificial intelligence is
human-like: what human-like means? Many things were invented in the field of neural
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networks; they solve a lot of problems. But how close are modern neural networks to
the brain? This question is divided into two others. How those formal neurons, used
in neural networks, are close architecturally to the configurations of neural networks,
their contacts, connections, training principles? Do they have something in common
with arrangement of neurons of the brain and its structures? The second question is the
ideology of learning, the logic of neural networks and the logic of the brain - are they
comparable or not? Something can be reproduced; brain objects can be modeled on a
computer in the form of mathematical models and assumed that they more or less reflect
reality. Nevertheless, whether neural networks reflect some principles of cerebration is
still an open question.

1.2 Difficulties in Determining the Essence of a Thing

When operating with information, we introduce terminology and determine what we are
dealing with. Two and a half thousand years ago, Greek philosophers Socrates, Plato,
Aristotle tried to storm probably the main problem of philosophy: to formulate what a
phenomenon in general is. What are a thing and an object? Some concepts arose around
the fact that when we deal with a thing, we can observe its external signs. Further, such
a paradigm was introduced: the essence of things. Each thing has certain external signs
that seem to define it. In addition, there is a certain essence that speaks about this more
specific, but never expresses this in words. If the essence of a thing could be formulated
in the same terms, the same words in which external signs were formulated, then there
would be no questions, everything would come down to the same thing. It turns out
that without answering this question, this is impossible to answer the question of human
thinking.

1.3 Inability to Define Essence Through Signs

Returning to the real world, it suddenly turns out that everything is much more compli-
cated. The name of this trouble is well known: a combinatorial explosion. When we are
dealing not with two or three phenomena, but with thousands of them, tens of thousands,
when these phenomena can take an incredible number of different forms, it turns out
that there are no calculating capacities to list everything. Most importantly, if we try to
apply this to a person, the whole life will not be enough to train the human brain using
methods implemented by a neural network. Moreover, we know that a person does not
need to be taught for a long time. Try to do this with a neural network, and it turns out
that even if a neural network tries to remember all the signs, there will be a combinatorial
explosion. How to avoid this combinatorial explosion? How does the brain do this?

2 The Meaning of Things

2.1 The Transition from Convolution Networks to Memory and Transformation

What is the meaning? It is clear that the question of the meaning of things is different; it
can be formulated as a question of strong generalization. Once Frank Rosenblatt, who
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created the perceptron, the first neural network, formulated it [2]. This question has
always been very acute to neural networks [3]. Now it’s called convolutional networks.
Convolutional networks have the convolution core; this is a kind of memory that stores
letters, numbers, images that been remembered. It can be applied to different parts of
the image. In that case, perhaps, we have learned to transform, recode, convert the
information from this place of the image like so that it becomes in the same terms in
which we have formed our memory.

However, the opposite is also possible: we’ve got a memory, and we know how to
transform what we see in some other place of the picture to the one that is stored in the
memory. It may not seem such an important and key point, but in fact, there is a large
grain in this small conversion.

The key question is, how we do know the way to apply convolution rules to different
parts of an image in a convolutional network? Why do we know that this can be done
at all? The answer is obvious: this follows from the properties of the world, from its
geometry. Nevertheless, it turns out that the same knowledge can be obtained; it can
be learned by observing the world. First, one can construct a space of various displace-
ments, and then, observing the result of the displacements, construct the necessary rules.
The mechanism of saccades and microsaccades [4] allows the real brain to do all this.
However, more importantly, that this principle allows obtaining knowledge related to
information of any other origin.

2.2 The Change of Information in the Presence of a Phenomenon

What does a rule mean? For example, eyes have some movements, when the eye turns
on a tiny angle; this is called microsaccades. When an eye makes a microsaccade, it
turns out that when one image is transmitted to the brain, a slightly displaced image
is transmitted after; the microsaccade is very fast so that we practically have the same
image but in two positions. It is possible to calculate the rules of transformation, those
consistent patterns that transfer one picture into another depending on a specific shift.
It turns out that if you possess the movement of the eyes and get learning for a while,
the brain will be able to find out these rules of transformation itself. Furthermore, if we
take not only visual but also audio or any other information in general, then the same
logic can be applied to such information. Summarizing - you can accept and observe
information changes in the presence of any phenomenon. In the case of vision training,
this phenomenon will be a shift. The fact of eye saccadic movements that are known to
be encoded by the brain [4]: the superior colliculi gives a certain signal, which in turn is
the code for this muscle movement and such a phenomenon in which the displacement
occurs.

3 About the Brain Architecture

3.1 There Is No Grandmother Cell

McCulloch and Pitts had put forward a model of a formal neuron [5] as a threshold
adder. Later it was suggested that a threshold function could be more complicated, any
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rules for the possibility for further operation. If you collect all these neurons in a net,
you can get a construction that is difficult to explain its working. Nevertheless, it became
possible to make such neural networks. These neural networks reflect the “Grandmother
cell” paradigm.

There was a question: if a person reacts to the presence of his grandmother in some
way, then there must be a neuron somewhere in the structures of his brain, which is
activated when looking at his grandmother. It was possible to detect the reaction of
a specific neuron presenting pictures of Jennifer Aniston [6]. However, whenever it
was discovered, there was a disappointment, because grandmother cell reacted not only
to Jennifer Aniston but to everyone from the series “Friends,” and also to cats. As a
result, neurophysiologists agreed thatwe could not detect grandmother cells. Also,Nobel
laureates Hubel and Wiesel postulated that the neurons of the visual cortex reacted to
certain stimuli [7]; they described these stimuli. Still, it turned out that they did not
respond as clearly as they would like; in general, it was not that simple.

3.2 A Neuron Is Much More Complicated than Formal Neuron

Thebrainworks quite not like that. This is primarily because thefirst positive assumptions
that the neuron was similar to a threshold adder were not confirmed for more than the
next half a century. Since then, many more investigations have been conducted on how
a real neuron was arranged. A neuron is much more complicated in its nature.

Most of the computational processes of a real neuron occur at the level of receptor
response to neurotransmitters, which is accompanied by miniature postsynaptic excita-
tory potentials and leads to processes with voltage levels approximately one millivolt.
This is not yet available to detect modern instruments at a whole cortex level. The
observed spike activity of neurons is already the final result of the complex hidden com-
putational work of neurons, and it should not be compared with the work of a formal
neuron.

3.3 Description of the Brain and Minicolumns

The cortex consists of the cortical minicolumns [8] - cylinders with a diameter of 50 µm
with about a hundred neurons in each. These 100 neurons have very tight connections
between themselves in the vertical direction, but in the horizontal direction with neigh-
boring cortical cylinders, these links are much rarer. These minicolumns are the main
functional element of the cortex. This has been repeatedly shown in a series of experi-
ments [9]. The reaction of other columns is different fromeachother, but the principle that
neighboring columns react similarly, “similar is located somewhere nearby,” is generally
maintained.

Vernon Mountcastle had put forward the hypothesis that the cortical column is the
main structural unit of the brain when processing information [10]. Often a minicolumn
is considered as a module that allows recognizing a certain phenomenon in its various
demonstrations. For example, the capsule networks of Joffrey Hinton are very indicative
in recent works of this direction [11].
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It is possible to show by modelling [12] that each minicolumn is an independent
computer, we name it as “context processor,” an element that performs an enormous
complex of calculations itself.

4 The Context Processor

4.1 Context, Transformation, Interpretation, Comparison with Memory

Let us return to the philosophical concept itself - what is the meaning of things. There
are certain rules of transformation - “context,” ContextN; we have input concepts I
that we operate on in this context; the incoming information is transforming. Let’s
call the “interpretation” I’N the result of this transformation. Any sentence, any phrase
that you hear, any visual information that you receive: they do not contain meaning
initially. However, it can be interpreted. When we give an interpretation, we transform
one information into the other essentially. We formulate it in other words, describe it in
other terms.We have different contexts - you can get an interpretation of this information
for the same information in each of these contexts. At the same time, we will receive
many interpretations, and ask ourselves themain question: which of these interpretations
is correct? It turns out that it is possible to understand which interpretation is correct
only in one way. It is necessary to compare whether this interpretation is similar to
something that was met before, to compare interpretation with the memoryMemory. If
this interpretation is similar, perhaps this context is suitable to interpret this information
(Fig. 1a).

Fig. 1. a) Information transformation in minicolumns, b) choosing a behavior as modeling of
possible actions in minicolumns

4.2 The Creation of Meaning

It turns out that in order to find meaning, it is necessary to declare that information at the
input, raw information does not contain meaning. It is possible to get its interpretations
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in various contexts further. How many? Maybe in a million? A comparison of interpre-
tations with memory will be made when an interpretation of the same information will
be received in a million different contexts. It turns out that in some of the contexts, this
interpretation of the information gives something similar to what there is in memory,
perhaps that should be interpreted in this context. Possibly, there is some number of
other contexts in which there will also be a comparison with memory. It happens that
the same information has different meanings. If you need to choose the only one variant
of meaning, it is possible to use probability selection ρ-dependent random selection
(Fig. 1a).

This is precisely what the brain does. This is the function of cortical minicolumns of
the cortex. Each of them is a context processor, which converts the incoming information
into its context, giving an interpretation to this information. When this interpretation is
obtained, the context compares it with its own memory.

5 Arrangement of Active Memory of the Brain

5.1 There Is No Specific Location of Memory in the Brain

The secret of memory is probably the number one mystery in all neuroscience. Everyone
knows that memory exists, and no one knows where exactly. Any attempts to find out
where the memory is stored in the brain, in our heads, lead to nothing. In due time
neurophysiologist, Lashley conducted experiments [13], and he could not find the part
of the brain that would be responsible for memories. It is known that there is a patient
with strokes when significant areas of the brain are affected. As a rule, memory does not
suffer. This is an amazing feature that memory exists, but you can’t find it.

5.2 Membrane Receptors Are the Elements of Memory

Radchenko was the first who formulated clearly the possible role of membrane receptors
in memory and indicates that the main element of memory were clusters of membrane
receptors [14, 15], elements on the surface of a neuron. When there is such a cluster of
receptors, it becomes a key that responds to strictly defined combinations of neurotrans-
mitters to a specific chemical code. When there is specific information that is encoded
by the activity of neurons, a combination of neurotransmitters appear in special places
of minicolumn either. Receptive clusters are created when the process of memorization
is in progress, and on recall from memory, they trig and create a certain polarization on
the dendrite.

5.3 Minicolumn Information Capacity

Using this model, it was possible to show that the structure of 100 neurons of a mini-
column can store information approximately one gigabyte if transformed into modern
measures of information. According to our model, the brain does not store images on
their own. The brain stores its semantic descriptions and then reconstructs them. If you
save semantic descriptions of what is happening to you, then you may believe that three
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thousand books are enough to write down your whole life as a very detailed diary. Each
minicolumn can totally store all the memory of what is happening to a person during
his life. Naturally, each zone of the cortex works with its specific type of information
and stores in its form; nevertheless, each zone of the cortex does not just store all the
information dealt with, it stores it distributed. However, not in the sense that something is
stored here, and something other out there, but according to the principle that we now call
the blockchain architecture, when each node stores a complete copy of all information.
Hence, it is impossible to find where the memory is stored. Whatever part of the brain
zone might be cut out, there will always be a copy of memory in other minicolumns.

5.4 Copies of the Same Memory for Parallel Computing

This copy of memory is stored everywhere, not for security reasons, in order not to
lose anything. One zone of the cortex will have a million copies of the same memory.
No, this is done for entirely different reasons. Remember Thuring, when Enigma had
being deciphered [16], when each processor that made the code received the result, it
was necessary to understand independently whether the expected words were there. Its
own memory was required to respond to the correct interpretation. That is why each
minicolumn has its own memory so that when the context processor, these one hundred
neurons, converted information and received an interpretation, you could get an idea of
whether we got what exactly we needed. We definitely need memory, which is called
active.

5.5 Active Memory of Minicolumns

Computer memory usually works on request: indicating the register address, you’ll get
its value. Active memory works differently. Show something to the whole memory and
ask: does anyone want to respond that he had found out. We call this part of our model
“space of contexts.” This is how the memory of the brain works with these minicolumns.
Zones of the cortex form a space of contexts, any incoming information in this space
of contexts are interpreted, and the interpretation is checked whether something can
be recognized, whether something coincided with memory or not. In our model, the
hippocampus is a generator of that keys which spread further throughout the cortex to
create keys ofmemories. Information gives us content; the hippocampus gives us the key.
Moreover, this key carries in those handy coded information labels about time, place,
and much more [17–22].

5.6 Advantages of the Context-Semantic Model

In the contextual model, which works with meaning, it turns out that there is an initially
different description of the information. In neural networks, a vector is taken, and each
element of this vector describes some property of this phenomenon. For feature, the
vector needs to determine how long it should be. Then you have to leave only the main
signs to work only with them and reduce the dimension. What is the main feature?
Dealing with letters, analyzing “O” and “Q,” it turns out that the small tail on the side
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suddenly determines that it is “Q” and not “O,” and losing of this tail leads to a mistake.
If we come back to ordinary life, it turns out that nothing can be thrown away at all.
You never know what will turn out to be the very key sign. The context-semantic model
resembles the Hierarchical Temporal Memory (HTM) of Jeff Hawkins [23], but the role
ofminicolumns inHTMand here is entirely different. In someways, ourmodel is similar
to Hinton’s capsule networks [24].

6 Semantic Memory

6.1 Assumptions About Semantics in the Brain

We assume that all information is stored in a semantic form in the brain. It is not by
chance that people have language; it is not by chance that we have learned to express our
thoughts semantically. We undertake to assert that brain structures, even starting from
the zone of the visual cortex V1 [25], do not work with analog signals, but with semantic
information. Each zone of the cortex has its language, its image, representation, but it is
still semantic.

6.2 Transition to a Discrete Model

The transition to a discrete model is significant here. A discrete model is a separate con-
cept that avoids a combinatorial explosion. Inmanyways, the nature of the combinatorial
explosion is connected with the continuum model, with the continuity of the space we
work with. As soon as we can have any values, the number of combinations becomes
incredible and infinite. When talking about discrete values, there can be many, but this
is an entirely different capacity of multiplicity, this is an entirely different “many.” The
main struggle against a combinatorial explosion is to do this at every stage so that this
“many” from “impossible to calculate” turns into “finite” so that you can work with it
[26, 27].

6.3 Quantization as Computability

In lectures on this subject [28] where we suppose that the physical world is the result
of the evolution of universes, that the laws of our universe are their existence “as they
are,” and not the multiplicity of worlds where all possible variants of physical laws are
examined, but this is the result of the evolution of universes, which led them precisely
to the laws for a specific purpose. We got the rules of quantum mechanics as a result of
the fact that physical laws were formed. Because, when the world is quantized, in the
rules of quantum mechanics, it becomes finite.

6.4 Combinatorial Space in Minicolumns

By the way, this is implemented nicely from biology, because having the structure of a
minicolumn, synapses and everything next to them, that forms the combinatorial space
of a minicolumn, where axons and dendrites, make a vast number of random places
for storing codes descriptions due to random intersections. Then there is the algorithm
described above.
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7 The Behavior

7.1 Behavior as a Result of Work of Context Processors

The assumptions here below are about the model, how the behavior is arranged, how
some action, some motion in the brain is born from the processes. Moreover, it seems,
the process of thought formation is the same act, which expressed not in muscle activity,
but in a change of information picture of the world. Thinking and doing is basically the
same thing. There is only one question, what mechanism controls this?

The benefit of a contextual approach is that it is possible to recognize the phenomenon
immediately. What is the genius of the approach that the brain “invented” to avoid the
combinatorial explosion? In order to recognize a phenomenon, it is not necessary to
see it in all contexts. Detected it in one context - remembered in all - the next time
this phenomenon will be recognized in a different context, even if it was never seen.
The transformation rules will be different, but the memory will detect this phenomenon
anyway if it was known before.

It turns out that for behavior, there is no other way to do this if it is necessary to
realize a variety of actions. The brain does not do calculations on the principle of “let us
find out the situation; now let us see what needs to be done in this situation.”

7.2 Choosing a Behavior

Reinforced learning faces a certain difficulty when it turns out in practical problems that
the space of possible agent states and the number of actions possible in these states is so
great that learning is difficult. The way out of this situation was offered in the concept
of adaptive V-critics [29].

The space of contextsmight be the space of all possible actions that can be performed.
And there are transformation rules that predict how the current world description will
change if this action is applied. Each context builds its forecast of the future, that picture
of the world that will be if this action is applied. Then there is what we have learned -
the ability to evaluate, evaluation - this is already an experience. The action takes place
not because we learned something and know what to do, but because we modeled all
possible actions and chose the one that promises us the best perspective.

The process of choosing the optimal behavior is presented schematically as follows
(Fig. 1b).

Information about the current situation S goes to the context processors - mini-
columns in parallel. Each minicolumn AN as its context has a model of one of the
possible actions ModelN and converts the input information S into the interpretation
S’N - information about the consequence of performing step A, how this action will
change the current situation into a possible future one. Each minicolumn computes its
model independently and parallelly, and then the interpretation is served to the Critic
critic input, which compares the possible future situation with the memory, compares
the interpretation with the memory, and evaluates the quality of the possible future situ-
ation VN(S’N). The results of all possible assessments of the quality of future situations
are processed, and the best one is selected. In order to implement research behavior, it
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is possible to use probabilistic choice instead of argmax. There are recent works [30]
confirming the role of quantum mechanics in decision-making by the brain.

As we can see, the task of choosing a variant of behavior and parallel processing
of semantic information in a minicolumn look very similar in this model. Moreover,
the cognitive functions are also a result of a context-semantic approach on higher levels
of abstraction. From this, the theory of emotions flows further, and the opportunity to
explain what love is, what humor is, and a lot of exciting things.

8 Conclusion and Future Directions

Humankind does not know an instrument better than the human brain for working with
a wide variety of information, solving intellectual problems, inventing new things, and
creativity. It would be strange when solving the task of creating artificial intelligence
not to try to copy what had arisen as a result of millions of years of evolution. Based
on modern scientific knowledge about the brain we have formulated a fundamental gen-
eral concept how the brain works: cortical minicolumns are the main basic computing
processors, total storage of semantic memory in minicolumns of the cortical zone, par-
allel interpretation of information in each minicolumn in its context, comparison of the
obtained interpretation with memory; the response of that minicolumn, in the context of
which the interpretation has found correspondence with memory. We suggest moving
towards building an AGI or Strong AI according to this concept [31].
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Abstract. Social virtual actors need to interactwith users emotionally, convincing
them in their ability to understand human minds. For this to happen, an artificial
emotional intelligence is needed, capable of believable behavior in real-life sit-
uations. Summarizing recent work of the authors, the present paper extends the
general state-of-the-art framework of emotionalAGI, using the emotional Biologi-
cally Inspired Cognitive Architecture (eBICA) as a basis. In addition to appraisals,
other kinds of fluents are added to themodel: somatic markers, feelings, emotional
biases, moods, etc. Their integration is achieved on the basis of semantic maps and
moral schemas. It is anticipated that this new level of artificial general socially
emotional intelligence will complement the next-generation AGI, helping it to
merge into the human society on equal with its human members.

Keywords: Socially emotional intelligence · BICA challenge · Semantic map

1 Introduction: Overview of Existing Approaches

Ageneric cognitive architecture block-diagram is represented in Fig. 1A. It includes sen-
sory andmotormemory (input-output), proceduralmemory, (automated skills), semantic
memory (general knowledge), episodic memory (autobiographical memories, goals and
plans), value system (drives, values, semantic maps), and working memory (awareness),
that also includes metacognition, imagery and feelings. Arguably, all original and new
implemented cognitive architectures [1, 6, 7] fit into this general scheme. Yet, some-
thing must be missing or hidden here, because intelligent agents that we know are not
perceived as live beings capable of feelings, let alone at the human level.

Possibly, the devil is in the question: how to add human-level emotionality to a
cognitive architecture? There were many attempts to provide a general answer to this
question at a computational level [2, 5, 12, 21]. Most of the proposed approaches are
based on some version of an appraisal theory [8, 20]. However, it is hard to accept
that the vast richness of human emotionality reduces to cognitive appraisals. Certainly,
there are other qualia known to us, such as feelings, moods, somatic sensations, affects,
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etc. The generalizing notion of “emotion” has many aspects and many senses. Notably,
it is multidimensional, including anything from the most general standard dimensions
of Valence, Arousal and Dominance, to the standard set of basic emotions, to more
subtle aspects, such as support, disclosure and so on. In addition, it involves some
internal structure and hierarchy, responsible for differences between, e.g., the notions of
compassion, gloat and joy, jealousy and rage, humor and happiness.

A B

Fig. 1. A: Generic cognitive architecture. The red oval represents the cognitive cycle. B: A
blueprint of a cognitive architecture, unifying rational and emotional cognition.

Speaking of dimensions, various models of emotional or affective spaces were pro-
posed that mostly converge to one common scheme of a 2-D or 3-D semantic map of
emotions [9, 15–17]. These dimensional models are complemented by the componential
models [13, 14] that represent phenomenology formalized in terms of appraisal theories,
but do not explain the nature of the phenomena or its developmental aspects.

This gap is filled by neuroscience-based theories, among which the most popular
one is the somatic marker hypothesis [4, 10, 22]. Unfortunately, most of these theories
are not computational, at least not at the level allowing one to build a working prototype
of autonomous emotional agent, such as examples based on appraisal theories [2, 7, 11].

2 The New Approach

The approach pursued by our research group is based on the notion that a human-
analogous socially emotional intelligent actor must be guided in its behavior by three
factors that normally complement each other, and under some circumstances may
compete.

1. Purely rational, based on a given goal, mission or existing plan.
2. Cognitive, based on appraisals in terms of the notions of good and bad.
3. Somatic, following the somatic marker hypothesis and laws of physiology.

Their complementarity is based on the freedom of choice left by each of them. The
diagrams (Fig. 2) illustrate the structure of corresponding dynamic laws governing the
complementary fluents that determine actor’s behavior. One key notion here is that of a
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moral schema [18, 19, 23]. Considered as an agent on its own, a moral schema biases
actor’s behavior in such a way that the “normal” condition is restored. When this is not
possible, the schema changes its state, leading to the emergence of new emotions [19].

A B

Fig. 2. Logical model of interactions among emotional fluents: (A) without and (B) with
engagement of a moral schema. From [19].

3 Outline of Preliminary Results and Conclusions

The approach outlined above was used to design, implement, test and study in experi-
mentswith human participants a variety of virtual actors, from autonomous cobots to cre-
ative assistants working as extensions to the human mind. Implementations and studies
were basedon aunique, specially designed experimental platformallowingvarious forms
ofmultimodal data collection [3]. Examples of successful prototypes include anNPC for
videogames [24] (four different game paradigms), a virtual listener/reader/interlocutor
[3], a virtual pet, a virtual dance partner, a composer assistant, and more.

A B C

Fig. 3. Examples of successful prototypes, implemented based on the described approach. A:
Virtual pet. B: Virtual dance partner. C: Virtual listeners passing a limited Turing test (from [3]).

In each case, the implemented prototype was subjected to a limited Turing test.
Passing this test was a precondition, required to ensure a certain level of believability.
Othermeasures included social acceptability and effectiveness in collaborativeworkwith
a human partner. Moreover, standard psychological personality tests were extended to
virtual actors in selected paradigms. Examples of implementations are shown in Fig. 3.

In conclusion, the developed technology adds new dimensions to artificial emotion-
ality. As a result, useful practical applications become possible, including a virtual poster
presenter (a part of the Virtual Convention Center platform) and a pedagogical agent, a
part of an ITS. These our new expected results will be reported elsewhere.
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Speaking generally, the approach based on the eBICA framework is promising us a
breakthrough in the field of human-analogous intelligent socially emotional agents.

Acknowledgments. This work was supported by the Russian Science Foundation Grant # 18-
11-00336.
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Arash Sheikhlar1(B), Kristinn R. Thórisson1,2, and Leonard M. Eberding1,3

1 Center for Analysis and Design of Intelligent Agents, Reykjavik Univerxity,
Reykjavik, Iceland

{arashs,thorisson}@ru.is
2 Icelandic Institute for Intelligent Machines, Reykjavik, Iceland

3 Institute of Photogrammetry and GeoInformation, Leibniz University,
Hannover, Germany

l.eberding@stud.uni-hannover.de

http://cadia.ru.is/, https://www.ipi.uni-hannover.de/

Abstract. Autonomous knowledge transfer from a known task to a new
one requires discovering task similarities and knowledge generalization
without the help of a designer or teacher. How transfer mechanisms in
such learning may work is still an open question. Transfer of knowl-
edge makes most sense for learners for whom novelty is regular (other
things being equal), as in the physical world. When new information
must be unified with existing knowledge over time, a cumulative learn-
ing mechanism is required, increasing the breadth, depth, and accuracy
of an agent’s knowledge over time, as experience accumulates. Here we
address the requirements for what we refer to as autonomous cumulative
transfer learning (ACTL) in novel task-environments, including imple-
mentation and evaluation criteria, and how it relies on the process of
similarity and ampliative reasoning. While the analysis here is theoreti-
cal, the fundamental principles of the cumulative learning mechanism in
our theory have been implemented and evaluated in a running system
described priorly. We present arguments for the theory from an empirical
as well as analytical viewpoint.

Keywords: Transfer learning · Cumulative learning · Novelty ·
Similarity · Ampliative reasoning · Analogy · Autonomy

1 Introduction

Any agent with general intelligence must be able to deal with novel situations.
Since novelty is relative to a learner’s knowledge of the world, one way to handle
novelty – whether it is a novel juxtaposition of familiar things, a never-before-
seen variable or factor, or something entirely new – is to use priorly experienced,
seemingly similar situations, for guidance. This is what the canonical concept
in psychology of transfer learning (TL) (or transfer of training) refers to [4].
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What is at stake is an application of prior knowledge and training to new cir-
cumstances which may be mostly identical, somewhat similar, or wildly different
from what the agent has seen. Since novelty abounds in the physical world, this
must be (partly) how learning works in nature: They can autonomously (with-
out teacher1 intervention) transfer prior experience to a new situation to (a)
classify it, (b) identify its principal factors in light of active goals, (c) view it
in light of prior experience of similar situations, (d) create and initiate relevant
goal-driven actions, and (e) monitor progress in light of predicted outcomes and
adjust actions accordingly, possibly involving a, b, c and d.

This kind of TL requires methods for measures of similarity and relevance,
and a compositional knowledge representation, since new situations may overlap
only partly with existing knowledge. It is cumulative due to the integration of
new with old information, but also in that the selective application of prior expe-
rience is furthermore subject to learning: If incorrect conclusions are drawn when
judging similarity and relevance this can be retroactively dissected, inspected,
and learned from. A major mechanism for the comparison of similarity is analo-
gies, and this is in turn what is learned: Improved analogy making.

Other kinds of reasoning, however, are also necessary – abduction, deduction,
and induction2 – which means we are really talking about ampliative reasoning3

[17]. The more domain-independent the cumulative learning is, the more effective
and efficient knowledge accumulation can become, and this is where ampliative
reasoning enters the picture: Using (a) deduction for prediction, based on learned
(hypothesized) principles, (b) abduction for deriving plausible causes, and (c)
analogies for adapting acquired knowledge to new situations, multiple lines of
reasoning can help the learner exclude certain things while highlighting others,
more quickly getting to the crux of how to achieve any task in light of prior expe-
rience. Finally, (d) induction enables generalization based on invariants across
multiple tasks and situations. Reasoning in the physical world must be non-
axiomatic because there is no ultimate guarantee that anything is as it seems,
and thus cognitive reasoning cannot follow the rules of formal reasoning [16].
Logic can steer the knowledge accumulation process and enables the cognitive
system to make predictions, do planning and transfer its knowledge.

In this paper we present a theoretical analysis of transfer learning (TL),
based in part on this prior work, with an attempt to put it into the context of
both narrow artificial intelligence (AI) systems and general machine intelligence
(GMI). To avoid confusion, our aims target learners capable of cumulative learn-
ing; in particular, this context may not be compatible with other work that may
use the term”transfer learning” and similar ones, especially if it is incompati-
ble in some way with the general aims of GMI research that involve autonomy

1 We define a teacher as a process outside the learner whose interaction helps reduce
the search space for a solution to a goal or task.

2 Unless otherwise noted, we use the term induction in the reasoning sense, not in
Solomonoff’s “universal induction” sense [11].

3 Peirce’s use of the concept of ‘ampliative reasoning’ included abduction, induction
and analogy [10]; ours adds (corrigible) deduction to that list.
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and lifelong, incremental learning. Faced with a particular situation, a learner
capable of autonomous cumulative transfer learning (ACTL) is able to select a
specific model or modeling paradigm on its own accord, in light of an analogy
that it has itself come up with for each situation it may encounter, and if no
models exist, creates a new set of models to use in the novel situation. The
ACTL process relies in part on selective comparison of similarity and high-level
analogy-making.

To build an intelligent machine that can create its own knowledge and
autonomously transfer it to different related situations, evaluate the outcome,
and learn from this, all autonomously, an architecture is needed that can make
analogies on its own accord and, rather than relying on a human’s intuition about
similarity and relevance, create its own knowledge for how to do that, based on
its own understanding of the world. For GMI the focus needs to be on the actions
listed above (a to e), and these need to be integrated with ampliative reasoning.
To our knowledge, two approaches to cumulative transfer learning have been
demonstrated to date, the Autocatalytic Endogenous Reflective Architecture
(AERA) [6] and NARS [16], but an analysis of these specific to TL remains to
be done.

2 Related Work

Transfer learning (TL) has made an appearance in various machine learning
(ML) paradigms to date, invariably with the shared goal of increasing learn-
ing rate and improving its flexibility. Working on deep neural networks (DNNs)
some have implemented a scheme where a human programmer selects a subset of
trained network’s layers and reuses them to train another network in a similar
related domain [18]. Working with the concept of TL in reinforcement learn-
ing (RL) techniques, others have trained RL for a task and then re-purposed
it to a similar one [13]. In these approaches a human software developer must
often choose tasks and make the necessary analogies between the tasks. Such
an approach falls short of what is needed for autonomous general machine intel-
ligence (GMI), where the machine must do this automatically and on its own
accord, including making the analogies, learning from them, and unifying any
new knowledge produced this way with existing knowledge.

The agent must determine “what, when, how, and why” its knowledge should
be chosen and transferred to another task. Most current TL methods assume that
the transfer is done offline, that is, happening before the agent starts learning
the target task, and thus the question of when to transfer has not been much
addressed in ML research to date. In addition, a human programmer decides
what should be transferred, according to their own intuition or sense of similar-
ity. Thus, task similarity is another topic that has largely been out of scope in
ML research, although a handful of papers have proposed task mappings via con-
cepts from bisimulation [2] and homomorphism [12]. Efficient methodologies are
needed to autonomously identify similarities, use the most relevant knowledge,
and do TL while the agent is learning and performing the task.
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Bayesian program TL models, such as [7], are based on Solomonof’s the-
ory of inductive inference [11], which assumes a probability distribution for all
computer programs and makes predictions using a Bayesian framework. While
probabilistic models may suffice for general prediction (including Solomonoff’s
“universal induction” [11]), they do not suffice for identifying causal relations
[8,15]. As detailed by Pearl [8], in probability theory, even when one consid-
ers the joint density functions on all time-dependent variables, the distributions
are static, while causation by itself deals with the change in distributions that
can result from new circumstances or external actions, and therefore, there is
no point in fusing Bayesian and causal calculations. Since knowledge of causal
relations is a necessary foundation for acting intelligently in the world, and the
ability to extract causal relations are a precondition for autonomous cumula-
tive learning, relying exclusively on principles of probability will not suffice for
systems intended to learn autonomously and cumulatively.

For transfer learning to work well, any knowledge that is created should
be stored in a format that is amenable to be useful in many future situations.
In some cognitive architectures employing a global workspace, such as DSO
[5], knowledge transfer uses the most relevant existing knowledge in different
situations/tasks. NARS [16] and AERA [6] achieve TL in a similar fashion:
AERA generalizes knowledge by generating variations of its models and testing
them for effectiveness, so that knowledge becomes increasingly useful in similar
but unseen situations over time [15].

3 Autonomous Cumulative Transfer Learning—A Theory

We consider the novelty of an experienced phenomenon Φ a measure on its famil-
iarity to a cognitive agent—how similar Φ’s aspects are to the agent’s available
current knowledge. Familiarity, in turn, is anchored in the concept of similar-
ity. We assume a phenomenon Φ such as state, a process, an occurrence, etc. to
consist of aspects4 made up of elements {ϕ1 . . . ϕn ∈ Φ} of various kinds, includ-
ing relations �Φ (causal, mereological, sub-structural, etc.) and transitions TΦ

(component processes, transformations, etc., i.e. sub-divisions of Φ), that couple
sub-parts of Φ with each other (and with those of other phenomena). Opera-
tionally, given a cognitive agent in a task-environment TE and a particular such
target phenomenon Φ,

if the agent can predict a particular selected aspect ϕi ∈ Φ,
i ∈ 1, ..., n, using its prior knowledge, then ϕi is familiar to the
agent, and non-novel.

4 We use ‘aspects’ as shorthand for ‘sub-divisions of a phenomenon that are of prag-
matic importance to an agent’s goals and tasks’.
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If the agent can do so for all important aspects of Φ it may be claimed “com-
pletely” familiar, and thus non-novel.5

An agent whose knowledge is compositional – that is, consisting of models
made up of smaller models, and can be meaningfully decomposed in a multitude
of ways – can, for every complex Φ with a large number of aspects, test its
ability to predict each of those aspects (ϕ1, . . . , ϕn ∈ Φ) and record the result;
the outcome would be a set Φnov ⊂ Φ of aspects that are novel, i.e. that the
agent fails to predict.

Prediction of a phenomenon must cover the dynamic interference or per-
turbation (by the agent itself or something else), and thus some of the rela-
tions modeled must include causality. Since causal relations in a lawful world
make it possible to generate and use rules, and this is much more efficient than
enumerating all relevant relations, the agent’s cognitive system must contain
some rule-handling mechanisms—reasoning. Reasoning may also be important
for selecting which aspects are important for which situations or tasks. Build-
ing up knowledge incrementally over time means making a model composed of
smaller models that increasingly explains target phenomena, not unlike the pro-
cess of scientific empirical research. As we have argued elsewhere [14], ampliative
reasoning (combined deduction, abduction, induction and analogies) is a way to
manage knowledge created under these requirements.

We define a similarity function, Ψ , that compares two sets of knowledge,
whether aspects, states, or sets of variables. To compute the familiarity of ϕ,
where ϕ can be a set of variables, aspects, or a whole phenomenon composed
of those, the agent must retrieve relevant knowledge from its knowledge base,
k ⊂ KB, for comparison, Φfam = Ψ(k, ϕ), where Ψ is a multi-dimensional com-
parison computation using ampliative reasoning. Other things being equal, the
less familiar something is to the agent, the more novel it is, Φfam ∪ Φnov = Φ.
Novelty is thus always relative to the agent’s own current knowledge and is
multi-dimensional and continuous. Since increments in familiarity is equivalent
to novelty reduction, our notion of familiarity may be used to guide learning –
acquisition of more accurate and precise knowledge – enabling an agent to better
predict, which in turn improves goal achievement over time.

Relevant knowledge in our theory is retrieved based on the comparison’s
goal—the purpose of the comparison. Since explicit goals must be defined by
referencing particular variables and their values, the variables of importance
for the comparison are already known when it is made. For instance, should
a carpenter need a substitute for a nail, the stiffness of that substitute is an
important variable. A prop director for a Hollywood movie about carpenters,
however, does not need to be concerned with stiffness of nails, only that they
reflect light properly for the relevant scenes. Through reasoning from the goal,
backward chaining will help identify relevant prerequisites, producing a set of

5 Since phenomena in the physical world contain an infinite set of subdivisions such
a claim would always be limited by pragmatic considerations (see prior footnote).
Time and energy will also present hard limits for any such consideration. Thus, there
is no literal sense in which complete familiarity may be reached.
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variables, models, rules, heuristics, and etc (as per an agent’s particular cognitive
mechanisms), that are considered relevant for the similarity comparison.

The transfer learning mechanism we propose states that the multidimen-
sional similarity computation is used to identify overlap between new patterns
and previously learned patterns and use it to solve new tasks. An autonomous
cumulative transfer learner (ACTL) makes analogies and comparisons regarding
the number, values, dynamics, and importance of sets of percepts6 and inferred
relations through ampliative reasoning, extracting the importance of each iden-
tified perceived variable (or state) and in parallel, discovers the proper set of
important variables (of each state), the values of these variables and the dynam-
ics between the variables and their values.

The AERA-S1 system [6] was constructed based on a proto-version of this
theory and demonstrated to be capable of learning highly complex tasks from
observation. Its operational results concur with the theory’s predictions, lending
it some positive evidence. Below we provide further arguments in support for it,
from two angles, one analytical the other empirical.

4 Detailed Argument from Similarity

A theoretical argument for the coherence and completeness of our theory of
transfer learning stated above can be made by examining its implications in more
detail. While the below outline does not address implementation in a cognitive
architecture, prior work on the Autocatalytic Endogenous Reflective Architec-
ture (AERA) [6] provides an operational partial demonstration of what this
might entail. Our argument here rests on comparing states, which consist of the
percepts the agent receives via observation of variables and related values, and
various ways of looking for similarities. So, more specifically, given the following:

– A variable whose value can be measured at some point during the agent’s
lifetime is an exposable variable. At any point in time, some or all exposable
variables are observable to the agent. The set of exposable variables Ve is not
time-dependent, while the set of observables Vo is;

– the physical changes the agent produces via its actuators. There are variables,
affectable variables Va, whose values change through the agent’s action.

– transition functions (via physical forces) that determine the values of variables
and their relations at any point in time;

– an agent’s knowledge of a task, in the form of task goal(s) and subgoal(s);
– a percept being sets of variables, in the above sense, generated by sensors

here-and-now;
– an aspect being a sub-division of a phenomenon, involving selected groupings

of variables and their relations, that are of pragmatic importance to an agent’s
goals and tasks,

6 The term ‘percept’ as used here references sets of variables in the preceding sense,
whether generated by sensors here-and-now, retrieved from memory, or imaginatively
constructed.
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we assume that the task-environment with its variables is given, and the state
space is partially observable at any point in time, received by the agent as a
sequence of states over its life-time. A phenomenon going through changes is
considered a sequence of states connected by a set of relevant transition func-
tions dictated by the world. The state of a phenomenon, from the agent’s per-
spective, is composed of its set of observable variables. Taking actions on some
affectable variables, Va – i.e. manipulating the environment – may alter the val-
ues of variables and/or change the exposable but unobservable variables to being
observable (or vice versa), revealing new aspects of a phenomenon (e.g. rotat-
ing a dice to see its back side). This is an important way for a learner to test
predictions regarding any phenomenon, as well as produce new knowledge.

Similarity functions are defined for variables, states, relations, and transition
functions. To compute the similarities between these and the agent’s relevant
knowledge, the variables of the states must be either already observed or currently
observable to the agent. For two or more states with one or more identical
variables, the states are similar in the intersection of their set of variables. In
the following we present increasingly precise dimensions of similarity.

The state similarity in cardinality of variables (SSVC) of two states,
s1 and s2, is found by taking the intersection of their variables and computing
the level of similarity by the ratio of identical variables (Vidnt = s1 ∩ s2) to all
variables (V = s1 ∪ s2), that is, if the number of elements in Vidnt is n, and the
number of elements in V is m, then we have SSVC = n/m where 0 ≤ SSVC ≤ 1.
If SSVC > 0, it means that the states share variables and can be compared.

Another dimension we have identified is state similarity in important
variables (SSVI). For this, the importance of associated variables must be
determined based on the comparison’s purpose – the explicit goal(s) of the com-
parison – as goal(s) specifying states are defined by relevant variables and their
values (see Theory section above). This yields a set of important variables in VC

over which a gradient may be computed using a gradient function fgrad, sorting
them into a one-dimensional list, from least important to most important, giv-
ing us VCsorted = fgrad(VC). The top p variables constitute the important ones,
based on a threshold of minimum required importance, δ, over which a similarity
can be computed for SSVI in the same manner as for SSVC . Therefore, if the
number of elements in the set of important variables VI is p, and the number of
elements in the set of identical variables Vident is n, then we have SSVI = p/n
where 0 ≤ SSVI ≤ 1. If SSVI is more than 0, it means that the states share
important variables and thus, are relevant. In other words, if |VI | > 0 then the
states are similar in SSVI . The threshold, δ, is computed when the comparison
is done and may thus be different at different times, in accordance with which
variables are considered important. A minimum set of variables for VI would be
those directly referenced in the goals for which the similarity is being computed;
the maximum would involve associated variables x steps removed from those.7

7 This may be done by backward-chaining from the goal state to the present state
using various assumptions about the task-environment [15]. Other options exist; an
adequate explanation and demonstration of these would require a separate paper.
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Whether some similarity is high enough for an agent to base its actions depends
on a lot of factors, including a risk/benefit analysis, conflicting goals, etc. A
contextual threshold can be used for this purpose, honed by experience.

For two identical (important) variables with different values and times, sim-
ilarity can be computed based on both temporal proximity and value proximity,
similarity of temporal proximity SPT and similarity of value proxim-
ity, SPV , respectively. Assume that an important variable vi ∈ VI , is shared
between two states, s1 and s2, and vi(t′) is its value at time t′ in s1 and vi(t′′) is
its value at a later time t′′ in s2. The identical variables have SPT if t′′ − t′ < αi.
The variables have value SPV if |vi(t′′) − vi(t′)| < βi. αi and βi are thresholds
for temporal and value comparison which can be computed in the same manner
as threshold δ was computed for SSVI .

In the third category, which is relational similarity, the relations between
states are compared; here we focus causal relations. Assume that s1 causes s2
(s1 → s2), and s3 causes s4 (s3 → s4). The similarity dimensions of SSVC and
SSVI , and also SPV and SPT between the identical (important) variables are
compared on pairs of causes {s1,s3} and effectual pairs {s2, s4}. If the causes
are similar, we have state similarity in causes, SSC, and if the effects are
similar, we have state similarity in effects SSE.

We can conclude that if two or more states have both SSC and SSE, their
transitions are similar: the fourth category of similarity regarding transitions. If
s1 → s2 holds, it is required to check if s3 has SSC with s1. If so, the same
prediction as s1 → s2 is made with the hope that it will reach to a state (like
s4) that has a SSE relation with s2. If the prediction is correct, s1 → s2 and
s3 → s4 will have relational similarity. Then, we can say s1 and s3 have state
similarity in transitions, SST , since both reach the similar effect states with
the same transition (and prediction) functions.

If an input state is similar to a known state it is considered familiar. If it
turns out that both states have SST , the aspect/situation is completely familiar
for the agent. On the other hand, negative knowledge transfer [9] takes place
if the two states have SSC but not SST and therefore, not SSE. This would
make the agent’s predictions fail, since they use the same improper prediction
function for a partially familiar state it observes (they look the same but behave
differently). In this case, abduction would verify whether the agent’s predictions
are correct. In other words, the agent cannot efficiently reach a goal (except by
pure luck) unless it can make acceptably precise predictions, and this cannot be
done without correctly modeling causal relations [15].

This detailed analytical argument, resting on compositional and cumulative
cognitive mechanisms, shows how similarity must play a major role in transfer
learning, presenting in our view a compelling and coherent – albeit still theoret-
ical – argument for the basis of our theory.
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5 Argument from Empirical Data

According to our theory, proper transfer learning requires comparing novel fac-
tors to cause-effect models acquired in the source task, finding the SSC simi-
larities, making the related predictions, producing a new cause-effect model and
switch to this for the task, while storing it for later use, in case there is an SST
(the prediction turned out to be correct).

To test this prediction we used SAGE [3] to evaluate an Actor-Critic rein-
forcement learner on transfer learning by training it on a version of the cart-
pole-task (first phase) that is modified by inverting the left-right forces after the
initial training, in a second phase, resulting in what we call the Doubly-Inverted
Pendulum task. Each condition corresponds to the source task (original) and
the target task (inverted). Although in the target task (second phase) the force
application has been inverted, all other variables and constraints are the same,
and thus SSVC = SSVI = 1 (see detailed analysis, above). However, SPV has
changed due to inverting the applied force to the pole. In fact, there is no vari-
able proximity (SPV ) between the values of the applied force, although all other
variables’ values are the same. However, as can be seen in Figure (1), negative
transfer learning has happened in the second phase of the learner’s lifetime, and
re-learning of the target task takes about four times longer than the original
learning of the source task.

Fig. 1. Transfer learning evaluation of an Actor-
Critic (AC) reinforcement learner on the SAGE
platform [3], using the Doubly-Inverted Cart-
Pole task (derived from [1]). After training the
controllable variable is inverted (forces from F =
[10, −10] N to F = [−10, 10] N). Original train-
ing is the source, inverted re-training the target
task. Actor-Critic trained for 500 episodes, then
re-trained for 2000 episodes in inverted phase
2. The results show unequivocally the negative
transfer of training that our theory predicts.

Tasks are in fact very sim-
ilar, the difference being lim-
ited to a single variable, with-
out any method for autonomous
analogy-making the Actor-Critic
learner is doomed to such perfor-
mance degradation in light of this
change. We added a third phase
in the Actor-Critic reinforcement
learner’s life-time in which we
reverted to the original task
(after 2500 epochs, not shown in
Fig. 1). Again the learner was not
able to find the importance of
the force variable and its related
value. These results are in accor-
dance with the prediction from
our theory, that a learner with
no capacity for similarity com-
parison will suffer from negative
transfer of training.
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6 Conclusions

In this paper we have introduced a new theory about autonomous cumulative
transfer learning (ACTL). It uses similarity measures to identify relevant knowl-
edge in order to transfer it to novel situations during the learner’s life-time. This
similarity computation relies on analogies, performed in an intertwined man-
ner with non-axiomatic reasoning, which are then used to guide the similarity
measurement of a cumulative learner. Similarity as a multidimensional metric
to compare situations not only with previously reached states, but rather on
the level of states including their composing variables opens the door for further
investigation of phenomenon description. Thus this approach might not only
be helpful to make life-long, cumulative learning possible, but might also give
further insights into how a learner can put experience into contexts and domains.
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14. Thórisson, K.R., Bieger, J., Li, X., Wang, P.: Cumulative learning. In: Hammer, P.,
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In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds.) AGI 2018. LNCS (LNAI),
vol. 10999, pp. 227–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-97676-1 22

16. Wang, P.: Non-axiomatic reasoning system: exploring the essence of intelligence.
Citeseer (1995)

17. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scien-
tific, Singapore (2013)

18. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

https://doi.org/10.1007/978-3-030-27005-6_20
https://doi.org/10.1007/978-3-319-97676-1_22
https://doi.org/10.1007/978-3-319-97676-1_22


New Brain Simulator II Open-Source Software

Charles J. Simon(B)

Future AI, Washington, DC 20001, USA
charles@futureAI.guru

Abstract. This paper introduces the open-source software project, Brain Sim-
ulator II, simplifying experimentation into various facets of AGI. The software
seamlessly marries spiking neural networks with symbolic AI algorithms. It sup-
ports a large array of simple neurons (of various models) and groups of neurons
collected into “Modules”, backed by custom software. 3D and 2D simulators allow
a virtual entity to move about, have binocular vision and touch, and merge this
information with spoken input. Information is captured in a Universal Knowledge
Store module which represents information in links between nodes. Continuing
development will enhance these capabilities.

Keywords: Artificial general intelligence · Spiking neuron model

1 Focus of the Brain Simulator II Project

The focus of the Brain Simulator II is to facilitate experimentation into various facets
of AGI beginning with biologically plausible techniques. The platform merges infor-
mation from any number of sources such as sight, sound, and touch so an artificial
entity can be tried out in a unified environment. This multi-sensory approach allows for
experimentation which can contribute to AGI development.

The platform provides a large array of neurons interconnected with synapses, plus
neuron areas declared as “Modules” as a shortcut to creating networks and implementing
more complex computation. The remainder of this paper describes the project develop-
ment status as of February 2020. Additional features are being developed including the
ability for the entity to move objects in its environment to allow experimentation with
goals, planning, and intentionality.

2 Implementation

2.1 The Basic Neuron Models

The program represents an array of artificial neurons interconnected by synapses. The
default neuron type is an “Integrate and Fire” spiking model (Abbot 1999) which aggre-
gates weighted synapse inputs and fires when a threshold is reached. This model is
extremely efficient and has been tested in real time with a million neurons on a desktop
CPU. Other neuron models include a “leaky integrate and fire” model (Dutta et al. 2017)
and others. Additional neuron models can be created in a few lines of code.
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2.2 The Neuron User Interface

The neuron display can be used to build neural circuits to explore the capabilities and
limitations present in small clusters of neurons. Examples include smallHebbian learning
and decoding neural pulse streams. The user interface can display relative timings of
selected neuron firings.

In the neuron array, colors represent the firing state of each neuron. Optionally,
individual synapses can be shown and edited. The complete state of the network can be
edited, saved, and automatically restored like a document (Fig. 1).

Fig. 1. The basic neuron model is “Integrate and Fire”. Small neural circuits can be created at the
individual synapse level and firing history can be displayed.

2.3 Modules

Any cluster of neurons can be grouped together into amodule backed by custom software
and (optionally) a dialog box. A module can perform any desired computation but also
can manipulate neurons and synapses throughout the network and may communicate
directly with other modules via method calls. Each module has a primary method which
is called once for each time-slice of the neuron simulator.

There is no requirement for biological plausibility within modules. For example,
the binocular Vision module receives its input in the form of arrays of neural signals
but estimates distances with a few lines of trigonometry rather than any biologically
plausible technique. Visible features are then added with direct calls to the Internal
Model module which also uses trigonometry to emulate the functionality of the brain’s
Grid Cells (Haftig 2012) to handle the entity’s motion and rotation within the model.

2.4 Module Library

The current library of over thirty modules includes the following:
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Simulators. The digital entity currently operates within a simulated 2D environment.
The simulator supports physical objects, binocular vision, two-appendage touch,motion,
rotation, aroma, and collisions. A simple file-command module allows for repeatable
sequences of individual neuron firings for testing. A 3D version of this simulator has
also been written.

Sensory Modules. For aroma, touch, vision, and speech-recognition, each module pro-
cesses input from a specific sense. For example, the vision module handles color and
uses bit patterns from its two “eyes” to approximate depth. The touch module can estab-
lish more accurate depth but cannot process color. The speech-recognition module uses
the computer’s intrinsic speech library to fire neurons which represent a sequence of
individual phonemes.

Universal Knowledge Store (UKS). This general-purpose knowledge graph supports
any number of properties, relationships, etc. All relationships are many-to-many and
relationships can be weighted so the knowledge store can learn over time. In keeping
with the biological plausibility objective, information is represented in edges connecting
the nodes and nodes themselves do not typically contain information at all.

Each node in the graph is associated with two neurons, one causes a node to be
“activated” and another fires if the node is activated internally. For example, UKS input
neurons fire in response to phonemes received from the speech engine and are separate
from those which are connected to the speech synthesizer to enable speaking.

Internal Reality Model. This module is a layer above the UKSwhich handles physical
objects in the “known world”. Input from surroundings via various senses is collected in
the internal model. For example, distance information estimated from binocular vision
can be corrected or superseded by touch information. An aroma can make some objects
more attractive than others. Spatial relationships are maintained relative to the entity’s
point of view as the entity moves or turns. Merging the information frommultiple senses
builds up amodel with a better “picture” of the entity’s surroundings and lets it remember
things which are not currently visible and imagine possibilities such as an alternate point
of view.

Various Learning Modules. These operate on the UKS. Over time, it can correlate
object properties with spoken words and can correlate situations, behaviors, and out-
comes. Limited learning-by-imitation allows the system to learn to speak words and
phrases after initially hearing itself speak random phonemes.

Behaviors. A library of primitive behaviors lets the entity interact with its environment.
Primitive behaviors can be combined into sequences to create more complex behaviors.
A similar module accepts the same primitives and interfaces with a mobile robot.

3 Project Status

The Brain Simulator II encompasses components of a variety of AGI models (Laird
2012; Miller 2015; Simon 2018). The combined modules currently create a simple
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digital entity named “Sallie”. Sallie can move through a simulated environment and use
binocular vision to estimate distances which build an internal model of her surroundings
which she can use to plan paths. She can learn to associate spoken words with colors
and learn to associate spoken commands with behaviors.

Consistent with the incremental development strategy, there is an end-to-end process
which forms the basis for future development in learning object comprehension andmore
interesting behaviors with many features yet to be filled in.

Applications. A collection of 10 small applications have been developed including
navigating mazes and learning to talk via imitation. Applications share many common
components. For example, the UKS structure which supports maze navigation also sup-
ports reinforcement learning for commands. That is, for a given situation, there is a
collection of possible actions each leading to an outcome. In the maze application, the
outcome is a destination. For reinforcement learning, the outcome is the state of an
external reward signal which allows the system to learn “right” vs. “wrong” responses
(Fig. 2).

Fig. 2. A screenshot of the Brain Simulator II shows the neural array with modules, some of
which have specific dialog windows. The engine controls are in the upper left.

4 Unique in This Software

The basic neuron model calculates individual neural spikes and modules implement
higher-level functionality which could conceivably be implemented in spiking neurons
as well. Some deviations from this idea are noted and may take specific advantage of
characteristics of computers which make them more efficient than biological brains. As
an example, the UKS allocates new nodes and edges as needed; in a biological brain,
most connections are allocated in early brain development (Stiles and Jernigan 2010).
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Further, combining neural and symbolic AI could prove one technique for creat-
ing AGI (Mao et al. 2019). The program provides valuable infrastructure to ease AGI
experimentation.

5 Conclusions and Future Research

Several insights have already been gleaned from this system which will be the topics for
additional publications. For example, a form of the UKS was initially created in neurons
and it was observed that a UKS node requires at least seven neurons and many more if
sequential information is stored. To the extent the human brain stores information in a
UKS-like structure, this puts a limit on the amount of information a brain can contain.

Planned near-term development includes: Improved and expanded sensory inputs,
expansion of language capabilities, and the ability for the entity to move objects in its
environment. This will allow exploration into how the entity learns the basic physics of
objects and uses this knowledge to plan object motions to achieve goals.

The software is available under the MIT license which allows virtually any use at no
cost (including commercial). Available for download at: http://brainsim.org.
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Abstract. This position paper suggests the existence of a plurality of
“general-purpose” AGI paradigms, each specific to a domain of expe-
rience. These paradigms are studied to answer the question of which
AGI will be developed first. Finally, in order to make the case for AGI
based on symbolic experience, preliminary results from Semiotic AI are
discussed.

Keywords: Paths to AGI · Symbolic experience · Semiotic AI

1 Introduction

The term “Artificial General Intelligence” (AGI) conveys the idea that general
AI is true AI, i.e. an artifact really reproducing natural intelligence (and not
just mimicking an intelligent behaviour). However, the modifier “general” has
at least two different uses and can therefore originate at least two different per-
spectives on AGI. AGI could either denote an artifact that has generalised from
one or more special cases and can solve a full range of problems (a perspective
of “universal” AGI [1]). Alternatively, it could denote an artifact that is a gener-
alist over specific problems and is not restricted in its application (a perspective
of “general-purpose” AGI [2]).

There may exist a plurality of “general-purpose” AGI paradigms, as there
exists a plurality of general-purpose program paradigms (i.e. word processor,
spreadsheet, etc). In this view, any AGI paradigm is still specific to a given
domain of experience, definable as a class of input/output (or, in some cases,
input/action), so that an artifact in that paradigm can solve all (most) problems
in that domain.

Moreover, artifacts of our interests are not just machines, but programs.
There may be problems that are special to programs, since programs are special
in several senses: (i) they can be input symbols (e.g., text and numbers); (ii) they
are given (hard coded) their goals; (iii) they can access their own code. Because
of property (i), programs can have types of experience which no agent in nature
can have. It follows from property (ii) that programs are very efficient problem
solvers, so efficient that there is no need for them to understand the goals given
to them. Finally, property (iii) carries major consequences on grounding and
self-improvement.

V. Targon—Independent Researcher.
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2 AGI Paradigms

While humans have the five senses and proprioception, an artifact can have
a potentially unbounded number of sensors, each enabling a different type of
experience. Robots can have actuators too. This would account for an unbounded
number of experience-specific AGI paradigms. However, it seems reasonable that
the first AGI will be developed in one of the following three domains (such that
other types of AGI may benefit from the creation of this first AGI):

– AGI based on visual experience (VIS-AGI) of images, videos and live cameras;
– AGI based on sensorimotor experience (SEMO-AGI) of homogeneous or het-

erogeneous robots, partly operated under human control;
– AGI based on symbolic experience (SYM-AGI) of electronic texts (digitalised

books, webpages, source codes) and i/o interfaces.

VIS-AGI will develop intuitive physics, make predictions potentially involv-
ing human behavior and detect anomalies. It may or may not take sound into
account, but does not have to understand speech. VIS-AGI will be controlled
via pre-loaded commands to produce simulations and virtual reality.

SEMO-AGI will develop purposeful behaviour and navigation for
autonomous robots or cars, learning from logs of human operations of these
robots or cars. It will be controlled via pre-loaded commands to perform tasks.

The experience on which SEMO-AGI builds is also called situated experience,
or agency. While natural intelligence can take the form of agency without vision,
cameras are the most typical artificial sensor. VIS-AGI would correspond to
passive vision, which has no equivalent in nature. It may be the case that SEMO-
AGI is a superset of VIS-AGI and that developing VIS-AGI is a prerequisite
for developing SEMO-AGI. Yet, SEMO-AGI was listed as a possible first type
of AGI, in case it may be developed independently from VIS-AGI, when not
all the capabilities of VIS-AGI are necessary for it (SEMO-AGI needing only
representational abilities for its action [3] may prove easier to develop than VIS-
AGI needing to account for all possible aspects of image formation [4]).

In the list of first types of AGI that can be developed there is not a type of
AGI based on linkage experience of being embedded simultaneously in the phys-
ical world and in a virtual world made of symbols [5] (let us call it LINK-AGI).
Disbelief in SYM-AGI, since disembodied AI cannot solve the “symbol ground-
ing problem” [6], has been cited as a motivation for investigating LINK-AGI.
However, LINK-AGI cannot be the first AGI to be developed as it appears that
one between VIS-AGI and SEMO-AGI must be a prerequisite for developing
LINK-AGI. Let us distinguish between “passive linkage” and “active linkage”.
AGI based on passive linkage will experience image tagging and video captions,
will have no equivalent in nature and will be a superset of VIS-AGI. AGI based
on active linkage will have a human-like experience and will be a superset of
SEMO-AGI. This type of AGI has been referred to as “human-like AI”, although
“based on human-like experience” would be more appropriate. As no synergy can
be proved for basing AGI on a combined experience of the physical world and of
symbols, research focusing on linkage and human-like experience appears more a
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speculation on the path of development from VIS-AGI or SEMO-AGI to LINK-
AGI. Finally, research into this path cannot disprove that a path of developing
SYM-AGI as the first AGI is possible. Let us then consider SYM-AGI.

SYM-AGI does not fall into the definition of “human-like AI”. Humans can-
not have symbolic experience [7], because they have no equivalent of an i/o chan-
nel for exchanging symbols, but rather interpret analogue stimuli from the senses
in order to create symbols and act upon them. However, it is possible to imagine
such a type of experience (for example, abstracting from a process of reading and
writing, such as in Searle’s Chinese room [8]). The fact that there is no equiva-
lent to SYM-AGI in nature [9] is no decisive argument against the feasibility of
SYM-AGI. Symbolic experience does not have to be only passive, as i/o channels
enable interactions. SYM-AGI will interact successfully with humans through
language (any language) and other games, develop science through mathematics
and self-improve through machine programming. Obviously, there will also be a
path of development from SYM-AGI to LINK-AGI.

A program interacting with human inventions such as mathematics and lan-
guage cannot constitute SYM-AGI - even if it learns (through inference, trial
and error, optimisation) to prove theorems or to answer queries from texts -
if it cannot learn by purposefully interacting with mathematics and language.
Consider the example of a program that cannot learn that performing a certain
operation a given number of times or outputting a given string can be related,
respectively, to “summing” and to somebody “saying” something as represented
in a certain input: there will be so many mathematical and linguistic problems
and games, legitimate in the symbolic domain, that the program cannot solve.
Therefore, the requirement of generality is not met.

Yet, it is still possible for a learning program to constitute VIS-AGI or SEMO-
AGI, if it can learn to solve all problems in the domain of visual or sensorimotor
experience that can be given it as goals (hard coded) without the (purposeful)
use of language. Recently, neuro-symbolic integration has been proposed to guide
learning in visual query answering [10]. Tasks of vision (and control) can be also
addressed through reasoning, e.g. by processing a semiotic network [11].

Possible paths of development for the AGI paradigms discussed are shown in
Fig. 1.

present VIS-AGI

SEMO-AGI

SYM-AGI

VIS-AGI+
SEMO-AGI

passive
LINK-AGI

active

(human-like)

LINK-AGI

Fig. 1. Paths to AGI. Nodes represent different AGI paradigms, each specific to a
domain of experience. Arrows represent possible (alternative) development paths of
the considered AGI paradigms: only some of them can be developed first, i.e. directly
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3 Semiotic AI

SYM-AGI grounds symbols in its program structure and in i/o interactions his-
tory, rather than in sensorimotor interactions history. It may be the case that it
is possible to develop SYM-AGI by operating entirely in a high-dimensional con-
tinuous space, into which discrete symbols are to be transformed. Yet, evidence
exists for a design of SYM-AGI involving (at least some) reasoning iterations on
discrete symbols.

Targon [12,13] reported how Semiotic AI can form, respectively, a meaning
for “summing” and a meaning for someone “saying” something, solely by acting
on discrete symbols. Said meanings, even if differing from the usual meanings
for humans, are interpretations of first-order symbols (the character +, the string
say) as second-order information (a command for Peano successor, a write com-
mand). Semiotic AI reproduces human semiosis, in the sense that if a human
were to execute its algorithms we would describe what done by the human as
understanding.

The working hypothesis of Semiotic AI is that symbols which cannot form a
(direct) second-order interpretation will still have (complex) higher-order inter-
pretations thanks to i/o interactions history. Let me take a twist: why should an
AGI, in order to form a meaning for the string hamburger, need to watch videos
of how hamburgers are made or even need to actually mince meat?

In order to build higher-order interpretations, it will be necessary for Semiotic
AI to avoid combinatorial explosions, especially in reasoning, which is a problem
common to other designs of AGI [14]. An interesting question is whether the
grounding of discrete symbols in the structure of the program itself and in i/o
interactions history could act as a control mechanism able to keep the size of
inference manageable. If this were not the case, one could consider - in order
to speed up learning - transforming the task of building interpretations into a
continuous embedding.

4 Conclusion

This paper suggests using experience-specific AGI paradigms to facilitate the
study of paths to AGI. The requirement of generality has been interpreted as
the ability to solve all (most) problems in a domain. An artifact that can speak
English, but cannot (learn to - given access to linguistic resources -) speak Span-
ish cannot be general. However, such an artifact should not be required by gen-
erality to master computer vision or to drive a car. Similarly, one could deploy
artifacts able to produce any visual simulation, and to perform an unrestricted
class of tasks, but without the ability to understand language (independently
from the fact of being controlled through natural language).

The first types of AGI that can be deployed, as well as development paths to
extend the capabilities of these first types of AGI, have been identified. It has
been argued that AGI linking sensory and symbolic experience cannot be created
directly, but rather through extension of another AGI. A possible design to
achieve AGI based on symbolic experience, i.e. Semiotic AI, has been discussed.
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Abstract. The videogame platform Teleport created earlier allows us to study
anonymous social interactions among actors of various nature: human and vir-
tual actor, ensuring their indistinguishability, which implies believable behavior
of a virtual actor. The present study found a connection between the human player
behavior in the Teleport game and her psychological portrait constructed using the
sixteen-factor Catell personality test for empathy. Assuming that this connection
is extendable to perception of virtual actor behavior, the game sessions data was
analyzed to infer behavioral characteristics of virtual actors. Based on this data
analysis, we constructed psychological characteristics of models of a virtual actor
(a bot). Partner and emotional characteristics of bots were defined, and their psy-
chological portrait was constructed based on the registered bot behavior. Personal
characteristics such as courage, sociability, calmness, balance, and loyalty were
attributed to bots and compared to analogous characteristics of human players.

Keywords: Human-computer interface · Artificial emotional intelligence ·
Virtual characters · Catell test

1 Introduction

Intelligent human-compatible virtual actors are needed today for a broad variety of
practical tasks: from NPCs, personal assistants and intelligent tutors, to managers of
heterogeneous team missions. The success of intelligent actors is measured by their
efficiency in collaboration with humans, which in turn depends on their acceptance as
equal minds and souls from the human perspective. Humans tend to attribute social rules
to computers (Nass et al. 1994). The question is, how can one tell quantitatively, to what
extent computers stand up to human expectations for partners in social interactions? In
this context, the development of human-analogous AGI should be guided by reliable
tests and metrics, that make connections with human psychology and human emotional
intelligence.

Here the following notions will be used. Believability is understood below as the
degree to which actor’s behavior is consistent with human psychology, and therefore can
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be indistinguishable from a human behavior in the same paradigm. Social acceptability
is understood as the likelihood of selection of the given actor as a partner by humans,
given alternative choices. Robustness is the degree to which an actor can extend its social
characteristics to unexpected situations and paradigms.

A commonly used test for believability is a generalized Turing test, in which a human
judge has to decide whether a given actor behavior in a certain paradigm is generated
by a human or a machine. The problem is that Turing-like tests are not very informative
(Korukonda 2003): e.g., they give a yes-no answer, that can always change with a bigger
sample. On the other hand, standard psychological tests andmetrics designed for humans
hardly can be adapted to artifacts (Samsonovich, Ascoli and DeJong 2006), especially
those that are used for the evaluation of personality characteristics, such as the Catell test
(Karson and O’Dell 1976). Finally, batteries of tests proposed for the general evaluation
of AGI (Mueller 2010; Adams et al. 2012) do not seem to solve the problem.

Here we develop a completely different approach to the design of missing tests and
metrics for artifacts. The idea is not an adaptation, but “mapping” of general human-
oriented psychological metrics to some other, paradigm-related behavioral tests and
metrics, that are applicable to both, human and non-human actors. This mapping means
a relation between the two categories of metrics. In the present preliminary study, we
show the existence of the correlation between them, which can serve as a basis for future
mapping. Furthermore, the study shows that virtual agents built using the eBICA cogni-
tive architecture (Samsonovich 2013, 2018) have behavioral characteristics, consistent
with expectations for human characteristics.

2 Materials and Methods

2.1 Experimental Setup and the Paradigm

In this work, a previously created videogame platform was used to study behavioral
characteristics of human participants and virtual actors based on the eBICA cognitive
architecture (Samsonovich 2013, 2018). This platform is known by the name “Teleport”
(Azarnov et al. 2018). One of its distinguishing features is that it allows for anonymous
social interaction of actors of different nature – both, human and automaton – while at
the same time ensuring their indistinguishability. This was achieved earlier by making
the virtual actor behavior believable (Chubarov et al. 2020).

The setup and the paradigm of the game Teleport can be described as follows
(Azarnov et al. 2018). The virtual environment includes two locations: the main plat-
form and the escape tower. Three avatars labeled by letters A, B, C are initially allocated
on the main platform (Fig. 1). Each avatar can be controlled by a human player or by
a virtual actor. The platform has two teleporter terminals. Avatars can move from the
platform to the tower bymeans of teleportation, either by performing a “Take Off” action
when located on an active teleporter, or being rescued by another player who reached
the escape tower. The game session consists of a sequence of logically identical rounds.
Each round has a fixed limited duration, and may terminate earlier, if certain conditions
aremet, as explained below. Following the termination, a new round starts automatically,
until the 10-min session time limit expires. A typical session includes approximately 20
rounds.
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Initially, all actors are allocated on the main platform at random. Each actor located
on the platform has the following actions available: greet, ask for help, thank or kick
another actor (kicking is possible at a close distance only), activate or de-activate a remote
teleporter (this action is available from a teleporter only and does not allow the actor to
activate own teleporter), and take off, i.e., to initiate own teleportation (available from an
active teleporter only). The take-off action moves the avatar from the main platform to
the tower. While on the tower, the actor may perform the following two actions, each of
which terminates the round: to save a selected avatar located on the platform by fetching
it to the tower, or to escape alone. The round also terminates automatically whenever two
actors reach the tower, or when the two-minute time limit expires. Upon termination, all
actors located on the tower win, and all others lose. The user interface also includes the
clock, the score meter, and checkboxes (not shown in Fig. 1) that allow participants to
indicate who is their partner at the current moment.

Fig. 1. A screenshot of a Teleport game session. Three avatars A, B, C are located on the platform.
The big circle is the main platform; the escape tower is on the left. The two small circles on the
floor of the main platform are teleporters. The right teleporter is activated by player C, occupying
the left teleporter. Therefore, B can take off to the tower. The inset in the bottom-right corner
shows the face of the human player, who controls the avatar B. The clock and score meters are in
the lower left corner.

2.2 Study Participants, Material and Metrics

In this study we used a sixteen-factor personality questionnaire (the Catell test: Karson
and O’Dell 1976; Kapustina 2004; Raygorodsky 2011; see https://psytests.org/cattell/
16pfA.html). It characterizes a lot of personal traits, it is freely available and is adapted to

https://psytests.org/cattell/16pfA.html
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the Russian-speaking audience, thatmade it possible to use it to conduct the experiments.
This test was created by psychologist Raymond Catell based on an analysis of the
Allport-Odbert list (4,500 adjectives describing a person). Catell organized the list into
171 groups of words, and then identified 16 factors that could be used to evaluate a
person’s personality. Using these factors, R. Catell continued his work and created a
16-factor questionnaire. The following research questions were addressed by this study.

• Is there a correlation between, on the one hand, the score and other behavioral char-
acteristics in the game “Teleport”, and, on the other hand, individual psychological
characteristics of personality measurable by the Catell test?

• Are the bots of the game “Teleport” believable, i.e., can they pass a limited Turing
test based on the selected interaction paradigm?

• Does it make sense to assign human psychological characteristics to bots of the game
“Teleport”, based on behavioral data analysis?

To answer the first question, we conducted two experiments, where 7 Undergraduate
students of NRNU MEPhI took part, age 20 to 22.

During the first experiment, the subjects were surveyed using the standard 16pf
multi-factor Catell questionnaire (form A). The test results were represented as a web
page reference with detailed description of personal psychological characteristics of
participants. Based on the answers, we obtained primary results that passed the truth test
(factorMD< 9) and thereforewere considered reliable and useful for further processing.
At the next step, the answers were recalculated, and as a result each participant received
a standard 16-parameter characteristic. These parameters were further divided into three
groups: partner (A, E, H, L, N, Q2, F2, F4), emotional (C, F, I, O, Q4, F1, F3) and other
(B, G, M, Q1, Q3).

Then we conducted the second experiment using groups with two participants and
one bot engaged in the game Teleport. During the ten-minute session, there were several
rounds where each actor had to move from one platform to another using a teleporter
that was activated only with the help of one of the two other actors. We held 5 games in
total, and as a result, in each of them we recorded logs of every actor behavior.

Thus, the first task helped us to test the dependence of the tendency to enter
into a partnership on the communicative characteristics of the person and the depen-
dence of changes in the emotional state of players during the rounds on the emotional
characteristics of the person.

To address the second question, we conducted an experiment that consisted of two
stages. The participants were 8 students of NRNU MEPhI, age 20 to 22.

At the first stage, two game sessions of the Teleport game were recorded on video,
each ofwhich consisted of 3 rounds. The first onewith a game of three bots that interacted
with each other. The second with the game of a person and two bots. In the second stage,
the videos were shown to the participants without informing them about the number of
bots and real people in the video. It was necessary for each of the three characters in
two sessions to evaluate whether the character is a bot or a person. Thus, Turing test was
done in the second task, the purpose of which was to convince the participants of the bot
being humanlike based on its behavior in the game.
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To address the third questions, we held 32 sessions of the Teleport game involving
three bots without human participation, and as a result, logs for each character were
recorded in a .csv file.

Thus, in the third task, based on the actions of bots and the relationships between logs
in the game and psychological characteristics analyzed in the first task, we considered
the possibility of assigning emotional and partner characteristics to bots.

3 Results and Analysis

3.1 Correlation Between Results of Psycho-Diagnostics and Logs of the Game

To identify the relationship between the player’s behavior and her or his psychological
profile, we formulated the following hypotheses in the first experiment:

1. There is a correlation between the H factor (timidity-courage) and the number of
requests for help.

2. There is a correlation between the H factor (timidity-courage) and the number of
movements on the playing field.

3. There is a correlation between the H factor (timidity-courage) and the number of
savings of another player.

4. There is a correlation between factor A (sociability-unsociability) and the number
of times the player was saved.

5. There is a correlation between the A factor (sociability-unsociability) and the
number of requests for help.

6. There is a correlation between the L factor (trust-suspicion) and the amount of
teleport activation for another player.

7. There is a correlation between the L factor (trust-suspicion) and the amount of
teleport deactivation for another player.

8. There is a correlation between factor E (subordination-dominance) and the number
of teleport deactivations.

9. There is a correlation between factor E (subordination-dominance) and the number
of times the player was saved.

10. There is a correlation between factor E (subordination-dominance) and the number
of movements on the playing field.

11. There is a correlation between the Q4 factor (relaxation-tension) and the number
of teleportations.

12. There is a correlation between the Q4 factor (relaxation-tension) and the number
of teleport deactivations.

13. There is a correlation between the O factor (calmness-anxiety) and the number of
teleport deactivations.

14. There is a correlation between the N factor (straightforwardness-diplomacy) and
gratitude.

15. There is a correlation between the C factor (emotional instability-stability) and the
number of teleport deactivations.

16. There is a correlation between the I factor (cruelty-sensitivity) and the number of
movements on the playing field.
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17. There is a correlation between the Q3 factor (relaxation-tension) and the number
of requests for help.

We performed a correlation analysis to test these hypotheses. We calculated teleport
participant logs statistics for each event. Results are summarized in Table 1.

Table 1. Teleport participant logs statistics for each event.

Event M SD Total

Activated 21.7 12.2 152

EnterTP 15.0 19.6 105

TakeOff 9.6 7.3 67

Saved 7.3 6.8 51

ExitTP 14.6 19.1 102

Move 232.7 114.5 1629

Spawned 18.6 6.2 130

Deactivate 10.6 10.5 74

Ask 3.6 7.3 25

Escaped 0.3 0.5 2

Thank 2.1 2.2 52

Results of our further statistical analysis are presented in Table 2.

Table 2. Correlation between the psychological profile of the experiment participants and the
events in the game.

Event A E H L N I O Q4 C Q3

Activated −0.51 −0.14 0.35 0.51 −0.09 0.12 0.22 0.19 −0.84 0.39

EnterTP −0.22 −0.31 0.25 −0.37 −0.15 0.18 −0.69 −0.69 −0.66 0.25

TakeOff 0.57 0.56 −0.62 0.28 −0.13 0.13 0.16 0.54 0.12 0.02

Saved 0.71 0.72 −0.75 0.28 −0.29 −0.02 0.12 0.57 0.12 −0.12

ExitTP −0.22 −0.31 0.25 −0.38 −0.14 0.19 −0.70 −0.69 −0.66 0.26

Move −0.40 −0.67 0.48 −0.43 0.62 0.86 −0.44 −0.49 −0.43 0.40

Spawned 0.03 0.16 −0.25 −0.11 −0.19 0.32 −0.53 −0.26 −0.73 0.42

Deactivate −0.29 0.13 0.19 0.82 −0.22 −0.08 0.56 0.62 −0.66 0.13

Ask −0.30 −0.51 0.39 −0.25 0.03 0.31 −0.50 −0.65 −0.42 0.69

Escaped 0.05 −0.21 0.44 0.40 −0.18 −0.21 0.34 0.30 0.00 −0.34

Thank −0.29 −0.41 0.37 −0.21 −0.15 0.15 −0.53 −0.64 −0.59 0.52
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Based on the obtained results, we can conclude that the following hypotheses are
correct: 3 (r = − 0.745, p < 0.05), 4 (r = 0.707, p < 0.05), 7 (r = 0.818, p < 0.05),
9 (r = 0.717, p < 0.05), 10 (r = − 0.672, p < 0.05), 15 (r = − 0.66, p < 0.05), 16 (r
= 0.863, p < 0.01). Thus, we can say that a psychological portrait of the player can be
defined by his actions. During the game, people tend to show emotional factors of their
personality and build partnerships.

3.2 Measuring the Degree of Similarity of Bot and Human Behavior
in the Teleport Game Paradigm

A limited Turing test was performed in the second experiment in order to define the
similarity of a bot and human behavior in the Teleport game. Watching video recordings
of the game, participants of the experiment were asked to decide for each avatar, whether
it was controlled by a bot or by a person.

The results of the experiment are presented in Table 3. Columns A1–C1 show the
results of determining a bot by a person in a game of three bots playing with each other.
Columns A2–B2 show the results of determining a bot by a human in a game of two
bots playing with a human. Column C2 shows the results of determining a person by a
person in the game of two bots playing with a person. Thus, a human was identified as
a human in about 75% of cases, and a bot was identified as a human in 57% of cases.

Table 3. The results of the experiment for determining the humanlike behaviour of the bot during
the game.

Participant A1 B1 C1 A2 B2 C2

1 Bot Bot Bot Person Person Person

2 Bot Bot Bot Person Bot Bot

3 Bot Bot Person Bot Person Person

4 Person Bot Person Bot Person Person

5 Person Person Bot Bot Bot Person

6 Bot Bot Bot Bot Bot Bot

7 Person Person Bot Person Person Person

8 Bot Bot Person Bot Bot Person

3.3 Identification of Partner and Emotional Factors in Automata

In the third experiment, we conducted 32 sessions of the Teleport game between three
bots without human participation. We calculated Teleport bot logs statistics for each
event using a python script (Table 4).

Based on the obtained data, we made the following observations. Bots do not make
pointless movements (there are no Move logs). Bots always choose a partner (there are
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Table 4. Teleport bot logs statistics for each event.

Event M SD Total

Activated 18.5 5.6 1774

TakeOff 2.8 1.8 266

Saved 2.5 1.7 236

Move 0 0 0

Deactivate 7.1 2.9 677

Ask 7.0 2.9 676

Escaped 0 0 0

Thank 7.0 2.6 673

no Escaped logs). Bots are more likely to thank the partner and ask for help more often
than people (the average values of the Thank and Ask logs for bots (7.01 and 7.04)
are several times higher than the average values of the same logs for people (2.14 and
3.57)). Bots activate the platform for another player with the same frequency as people
(the average of Activated logs is approximately the same for people and bots (21.70 and
18.48)).

Based on the obtained data, we made the following observations. Bots do not make
pointless movements (there are no Move logs). Bots always choose a partner (there are
no Escaped logs). Bots are more likely to thank the partner and ask for help more often
than people (the average values of the Thank and Ask logs for bots (7.01 and 7.04)
are several times higher than the average values of the same logs for people (2.14 and
3.57)). Bots activate the platform for another player with the same frequency as people
(the average of Activated logs is approximately the same for people and bots (21.70 and
18.48)).

Based on the observations given above, the following conclusions can be made. The
following characteristics can be attributed to bots: courage, sociability. Bots do not tend
to show anxiety and lack of balance, which distinguishes them from people. Bots are
not prone to betrayal, unless they are programmed to do so.

4 Discussion and Conclusions

We investigated the relationship between the personal factors of the experiment partic-
ipants and their behavior during the game “Teleport”, and also defined the degree of
humanlike nature of the bots and formed their psychological portrait in the research
paper.

The study showed that there is a connection between the behavior of the player
controlled by the participant in the experiment and the psychological portrait of the par-
ticipant. Based on the game data, we were able to attribute psychological characteristics
of a person to a bot.
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We also defined partner and emotional characteristics of bots. A psychological
portrait of bots in the game “Teleport” was compiled. We attributed to bots such
characteristics as courage, sociability, calmness, balance, and loyalty.

In more than 50% of all cases, the bot behavior could not be distinguished by
participants from the human behavior.

This study is a continuation of our previous work (Tikhomirova et al. 2020), where
the task was to study the social-emotional behavior model of virtual agents and the
dynamics of human emotional states in the process of social interaction in a virtual
environment.

Overall, the findings of this study suggest that intelligent virtual actors constructed
based on the eBICA model can be considered possessing humanlike socially emotional
intelligence applicable to the selected paradigm. Moreover, based on the behavioral data
analysis using the approach developed in this work, human psychological characteristics
can be confidently attributed to virtual actors possessing socially emotional intelligence.
This finding and the developed method will be extended elsewhere and will be useful
for a variety of practical domains.
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Abstract. We consider a task-oriented approach to AGI, when any cognitive
problem, perhaps superior to human ability, has sense given a criterion of its
solution. In the frame of this approach, we consider the task of purposeful behavior
in a complex probabilistic environment, where behavior is organized through self-
learning. For that purpose, we suggest cognitive architecture that relies on the
theory of functional systems. The architecture is based on the main notions of this
theory: goal, result, anticipation of the result. The logical structure of this theory
was analyzed and used for the control system of purposeful behavior development.
This control system contains a hierarchy of functional systems that organizes
purposeful behavior. The control system was used for modeling agents to solve
the foraging task.

Keywords: Architecture · Functional systems theory · Adaptive control system ·
Purposeful behavior · Goal-directed behavior

1 Introduction

At the moment there is a lack of a unitary approach to AGI development. Currently the
most popular stance in the area are neural networks of different kind.While this approach
is widespread and practically useful for some “intellectual” tasks, it still has its well-
known disadvantages: huge amounts of data are needed for the network to become
effective, high computational cost, the infamous “black box problem” are preventing
us from understanding how the result of calculations was obtained. All these problems
compel us to look for other approaches.

We consider a task-oriented approach to AGI, when any cognitive problem, perhaps
superior to human ability, has sense given a criterion of its solution. In the frame of
this approach, we consider the task of purposeful behavior in a complex probabilistic
environment, where behavior is organized through self-learning.

Purposeful behavior was deeply studied in the USSR and Russia under the frame-
work of the Theory of Functional Systems (TFS), which describes the organization of
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purposeful behavior aimed at satisfying a certain need [1]. In this theory the elaboration
of an action plan to achieve the goal is carried out on the basis of existing experience
by predicting the achievement of the goal and all its subgoals, organized hierarchically.
This prediction, even before any action begins, is accompanied by the formation of a
mechanism controlling the achievement of the goal and its subgoals by the correspond-
ing groups of receptors responsible for recording the achievement of the subgoals and
the goal. These groups of receptors form a certain complex receptor for achieving the
subgoals and goals, which is called the acceptor of action results. Thus, TFS is quite
consistent with the task-oriented approach to AGI and, in addition, it was worked out in
detail and experimentally confirmed.

In this paper, we present a formalization of TFS based on logical-probabilistic learn-
ing driven by detecting the most specific rules of behavior. Prediction of achieving goals
and subgoals is carried out by an inductive-statistical inference of predictions based on
these most specific rules. Such rules have a number of important properties. Firstly, they
can be detected by special logical-probabilistic neurons that satisfy the Hebb rule [2].
Secondly, their predictions in accordance with the inductive-statistical conclusion are
consistent [3]. Thepreferenceof a particular actions plan is carriedout taking into account
the probability of predicting the goal achievement. This model may be implemented in
the frame of probabilistic programming [4].

In our approach we can see some parallels to Jeff Hawkins’s Hierarchical Temporal
Memory (HTM), as it is also based on prediction and biologically inspired. But with
regard to the organization of purposeful behavior, TFS has been worked out in much
more detail. Our system ismore structurally simple due to the difference inmathematical
foundations and actions plan, based purely on a prediction with the highest probability
of the goal achievement.

Another relatively close approach is SOAR [5], a classic architecture that solves
multiple tasks including purposeful behavior. Its inference is also based on “if-then”
rules, but not on probabilistic predictions.

Our architecture is not only plausible from a biological point of view, but is also
quite effective: it learns to explore the environment and achieve goals in it much faster
than reinforcement learning and neural networks. Also it can achieve more complex,
two-stage goals in the same environment, the task that classic approaches cannot do
much with. The results of experiments confirming this are presented in Sect. 5.

2 The Theory of Functional Systems of Brain Function

The theory of functional systems developed by P. K. Anokhin and many other distin-
guished scientists of his school, is, at the moment, one of the few known theories in
which the concepts of goal, purpose, result, and goal-directed activity are principal ones
and which exposes the physiological mechanisms that implement these concepts.

Desire is not passive. It makes no sense to desire if there is no possibility to get closer
to satisfying the desire by some actions or activities. Desire is active, but meaningless
without purposefulness – it causes the organism to be active and display some behavior in
order to satisfy it. Thus the concept of goal emerges. Activity and actions are always goal-
directed. If there is no goal for an action, it is unclear when it should be terminated. Let
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us define the goal as an activity or behavior that is aimed at satisfying a certain criterion.
A goal cannot be attained without having a criterion of its attainment; otherwise we can
always assume that the goal has already been attained. Such definition of goal allows
us to define the result of attaining the goal as what we obtain by meeting the criterion
and attaining the goal (fulfilling the desire). Between the concepts of goal and result, the
following relationship is found: the result is obtained when the goal is attained and the
criterion of its availability is “triggered”. But when the goal is being set, we have the
goal yet not the result.

The definition of goal is paradoxical since the activity/behavior of satisfying some
criteria does not essentially presuppose knowledge of how to attain a goal; you can
set a goal without defining either how it can be attained, or by what means, or when.
This paradoxical nature of the goal concept we call the “goal paradox”. For the paradox
solution we need an experience. As will be seen later on, in the framework of the TFS,
brain activity during goal-directed behavior is seen as being constantly occupied with
solving the goal paradox, and determining bywhatmeans, when, and how to attain goals.

Let us proceed to outline the theory of functional systems, in which the concepts
of goal, result, and goal-directed activity are principal one, analyzing the physiological
mechanisms of these concepts.

The TFS is a theory of systems, whose function is to attain goals (satisfy needs) by
solving the goal paradox. Therefore, we will outline the TFS as a theory of solving goal
paradoxes, and describe how the brain determines by what means, when, and how goals
can be attained.

As achieving results consists of satisfying some criteria, this achievement should
be registered in some way. In the physiological sense, what constitutes a criterion for
registering the attainment of a result? According to P.K. Anokhin, this is physiologically
realized by a “special receptor apparatus” [6]. The signaling of this receptor appara-
tus about obtaining a result (i.e., on the lack of deviation from the optimal level of
metabolism) and attaining the goal is called reverse afferentation.

Now we can explain, within the framework of TFS, how goals are being physiolog-
ically set by an organism. An organism needs to constitute a goal in TFS. The goal (and
its attainment criterion) firstly signals by means of reverse afferentation that there is a
lack of some sort; secondly, it sets a goal to wait for a signal, indicating that the results
have been attained; and thirdly, it provides energy and forces the organism to attain the
goal. Thus, the physiological mechanism of goal-setting consists of the emergence of a
need.

The interaction of different goals and results is organized in several ways according
to TFS: by the “principle of the dominant”, “hierarchy of results” and “result models”.

3 Central Mechanisms of Functional Systems

“According to P. K. Anokhin, the central mechanisms of functional systems that support
goal-directed behavioral acts have a similar structure” [6]. Let us examine in detail the
architecture of goal-directed activity, as well as the physiological mechanisms of solving
the goal paradox.
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Afferent Synthesis. The afferent synthesis, which includes the synthesis of motiva-
tional excitation, memory, contextual and triggering afferentation, constitutes the initial
stage of the behavioral act of any complexity. Motivational Excitation. As we know,
the goal is set by an emerging need. In case of goal-directed behavior, it transforms
into a motivational excitation. However, a motivational stimulus does not consist of the
excitation of receptors which stand “on guard” for some physiological constant – it is
rather an excitation of “central brain structures” initiated by the arising need. It is the
motivational stimulus that constitutes the goal set in the organism in case of goal-directed
behavior. As in the case of needs, the motivational stimulus not only sets a goal but also
energetically supports its attainment. Memory. The whole sequence of stimuli that has
led to goal attainment is recorded during reinforcement, starting with the motivational
stimulus. Motivational stimulus extracts all previous sequences of actions which have
led to attaining the result from memory. Situational Afferentation. While recording a
memory trace, the situation in which the result is attained is also being recorded. This sit-
uation is registered, along with the motivation, as a necessary precondition for attaining
the result. Thus, the motivational stimulus in this situation extracts only those ways of
attaining the goal that are possible in the given situation. Triggering Afferentation. The
fourth component of afferent synthesis is the triggering afferentation. It is essentially
the same as the situational afferentation with the difference that considers the time and
place of attaining the result.

Consequently, the goal paradox is solved for the most part during afferent synthesis,
as it is when the “what”, “how”, and “when” of goal attainment are determined. There-
fore, taking experience and environment into account, the motivational excitation as a
goal automatically solves the goal paradox and determines by what means, how, and
when can the goal be attained.

Decision-Making. At the stage of afferent synthesis, motivational excitation can extract
several ways of attaining the goal from memory. At the stage of decision making, only
one of them is selected – thus forming the “program of actions”.

Acceptor of Action Results. Suppose a program of actions is chosen. At that point,
there is no guarantee yet that the final result will necessarily be attained, not even
intermediate ones. The goal can only be attained if each of the intermediate results
of the current program of actions will be attained. Motivational excitation extracts the
entire sequence and the hierarchy of results that should be attained during the program
of actions frommemory. This sequence and hierarchy of results are defined in TFS as the
acceptor of action results. Therefore, while being transformed into a particular goal, the
motivational excitation extracts a particular criteria of this goal attainment. This consists
of the whole sequence and the hierarchy of criteria of results which must be attained in
the process of attaining the goal and performing the program of actions, i.e. the acceptor
of action results. Thus, the acceptor of action results anticipates the particular criteria of
attaining the goal.

Transformingmotivational excitation as a goal into a particular goal shifts the original
paradoxical goal – for which it is not determined by what means, how, and when it can
be attained – into a non-paradoxical particular goal, for which the final goal (and result)
is divided into subgoals (and sub-results), so that for each sugoal it is already known by
what means, how, and when it can be attained.
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4 Formal Model of TFS

Now let us assume that our model constitutes the control system of some animat that
operates in discrete time t = 0, 1, . . . as itwas done in [7]. Suppose the animat has a set of
sensors S1, . . . , Sn which characterize both the state of the animat itself and of external
environment. Each sensor Si has a set of possible indications VSi. The animat also has
a set of available actions in the environment A = {a1, . . . , am}. Any action that animat
performs at amoment ti may result at amoment ti+1 in some changes in the environment,
and, consequently, in its sensors indications. Since the animat “perceives” the world only
through its sensors, then from its point of view the system’s state at any given point in
time can be written as a vector of all sensors indications V (t) = (v1, . . . , vn), where
vi ∈ VSi is the indications of the the i-th sensor at the moment t, and the states with
same sensor indications are indistinguishable for it. The set of all possible states of the
system is denoted by S = (VS1 × VS2 × . . . × VSn).

On a set of states of the system S = (VS1 ∪ VS2 ∪ . . . ∪ VSn)we define a set of predi-
cates PS = {P1, . . . , Pk} each of which is calculated on the basis of sensors indications.
Each state of the system can thus be written as a vector s = (p1, . . . , pk), pi ∈ {0, 1} of
predicates’ values from PS where 1 means validity of a predicate and 0 – its falsity. The
state may be described by a subset of predicates s = (pei1 , . . . , peie), pei1 , . . . , peie ⊆
p1, . . . , pk . The animat’s task is to attain a certain goal. Let us define a goal Goal as a
state of the system sGoal = (pgoali1

, . . . , pgoaligoal
) which it is required to attain. A notation

(pgoali1
, . . . , pgoaligoal

) means that predicates pgoali1
, . . . , pgoaligoal

should be true when the goal
is attained.

Let us clarify concepts of event and history. By an event e = (s0, se, a) we will
understand a singular fact of transferring the system from the state s0 = (p01, . . . , p0k)
into a state se = (pe1, . . . , pek) as a result of an action a and by a history of events – a set
of pairs (et, t) where et = (st, st+1, a) is an event and t is a point in time when this
event has occurred.

Let us define a rule R that predicts a change of a state(s) after the execution of an

action a as a transformation R =
(
s0

a−→
p

se

)
, where: s0 – is the initial state of the system

(p0i1 , . . . , p0i0); se – is the final state of the system (pei1 , . . . , peie); a – is an action that
transforms the initial state into the final one; p – is the probability of the rule, which
calculated as follows: if n is the number of cases in which the initial state was s0 and
an action a was executed, and m is the number of those n cases, in which the action a
transform the state s0 into the state se, then p = m/ n.

The rules may be discovered by neurons, which detect conditioned connections in
accordance to the semantic probabilistic inference and formal model of neuron [2].

Let us first define a functional system FSC = (sGoal, R1, . . . , Rn, pFSC) that

realizes one action. Functional system FSC performs transformations s0
pFSC−→

R1,...,Rn
sGoal ,

where sGoal = (pgoali1
, . . . , pgoaligoal

) – is the target state of the functional system,R1, . . . ,Rn

– are rules of the form s0
a−→
p

sGoal , using which the system can get to the target state

sGoal (Fig. 1) from various initial states s0 by performing some action a. Functional
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system FSC chooses the most probable rule s0
a−→
p

sGoal , which leads to attaining the

goal. The chosen rule is rewarded if the goal sGoal is attained (increasem in p = m/ n) and
penalized otherwise. An estimation of the probability of attaining a goal by a functional
system can be calculated based on the statistics of attaining goals: if n is the number of
cases in which a request to attain a goal sGoal was received and m is the number of cases
in which the selected rules and sequences/hierarchies of actions led to attaining the goal
sGoal , then pFSC = m/ n.
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Fig. 1. Functional system that implements sensory corrections.

In general case functional systems are sequences and the hierarchies of the functional
systemsFSC. A functional systemFS = (sGoal, 〈FSC1, . . . ,FSCn〉, pFS) that combines
a sequence of functional systems of the form FSC is defined as:

FS = s0
FSC1,...,FSCn−→→s1→s2→...sgoal pFS=pFSC1 ·...·pFSCn

sgoal , where

FSC1 =
(
s0

R11,...,R
1
v1−→

pFSC1
s1

)
, FSC2 =

(
s1

R21,...,R
2
v2−→

pFSC2
s2

)
… FSCn =

(
sn−1

Rn1,...,R
n
vn−→

pFSCn
sn

)

are functional systems of the typeFSC. The goal of the functional systemFS is to succes-
sively attain goals s1 → s2 → . . . → sgoal using functional systems FSC1, . . . ,FSCn

with a resulting probability pFS = pFSC1 · . . . · pFSCn . If the goal sGoal is not attained by
some functional subsystem, then orienting-investigative reaction occurs, which selects
another sequences/hierarchies of the functional systems to attain the goal, and the acti-
vated rule of the corresponding functional subsystem is penalized. If the goal sGoal is
attained and results for each functional subsystem are registered by the acceptor of action
results, then all activated rules for each functional subsystem are rewarded.
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5 Experiments

For investigation of the control system behavior two experiments were carried out. We
explored the foraging task. In this task some agent explores the area and gathers pabulary
objects. There are no subgoals in this task, so in the second phase we have complicated
this task by introducing a “tablet” that is needed to eat the pabulary object. In this case
the subgoal is eating the tablet before eating the pabulary object.

The virtual world was modeled in which the agent gathers the pabulary objects. This
world includes the rectangular field with 25 × 25 cells. Each cell may be empty or
include the “pabulary object” or “barrier” (the latter are placed strictly on the perimeter
of the field). Agent is placed on one of the cells and may be oriented in one of the four
directions. The possible actions {a1, a2, a3} of the agent are: step one cell forward,
turn left, turn right.

In the first experiment some pabulary objects are placed randomly on the field. To
eat the pabulary object agent needs to take a step on the cell where the pabulary object is
located. In that case the pabulary object disappears from the cell and randomly appears
on some other cell.

Agent has sensors S1, . . . , S9, in which S1, . . . , S8 stand for the area around the
agent and inform the agent about the objects placed on these cells, and S9 informs the
agent about the object placed on the cell that agent occupies.

The second experiment is more complicated. In this experiment, apart from pabulary
objects, “tablet” objects are randomly distributed over the cells of the field. To eat the
pabulary object agent needs to have a “tablet” object, which he needs to gather on the
field. When the agent eats a pabulary object the gathered “tablet” object disappears and
for eating a newpabulary object the agent needs to gather a new “tablet” object. The agent
gathers a “tablet” object if it occupies the cell with this object. The agent may gather
only one “tablet” object. When agent gathers a “tablet” object the cell becomes empty
and a new “tablet” object randomly appears on the field. In the second experiment agent
has ten sensors S1, . . . , S9, Spill , where first nine are the same as in the first experiment
and sensor Spill informs the agent about availability of the “tablet” object.

For the estimation of the effectiveness of the control system we compared it with
control systems based on reinforcement learning, described in the work [8]. For com-
parison we used two control systems based on Q-Learning. These algorithms consist in
consecutive refinement of the estimation of the reward Q(st, at) summary, if in the state
st the system acts as at :

Q(i+1)(st, at) = Q(i)(st, at) + α(rt + γ maxA Q(i)(st+1, a) − Q(i)(st, at)).

The first system (Q-LookupTable) uses table, which includesQ-values of all possible
states and acts. Initially, the table is fulfilled randomly. Then the system in each act
specifies the Q-value.

The second system (Q-Neural Net) uses approximation of the function Q(st, at)
using neural networks. In that case for each act ai a special neural network is used. In
each time period the system chooses an action and neural network produces a greater
value of the estimation Q-value. Then the action accomplishes, and weights of the neural
nets are changed.
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For the estimation of the systems the period of agent functioning was divided on
stages for 1000 steps. The estimation consists of the volume of the pabulary objects
gathered for a step of the work. After learning every system reaches some optimal value.
During the experiment we can estimate the learning speed and corresponding optimal
value.

6 Results of the First Experiment

In the first experiment there were 24 predicates for sensors – three predicates (Si =
empty), (Si = block), (Si = food ) for each sensor Si, i = 1, . . . , 8. At the beginning the
control system contained only one functional system with purpose SGoal =(S9 = food),
when sensor S9 informs about pabulary objects in the central cell.

This experiment had no subgoals. The main task of this experiment is the estimation
of the effectiveness of the functional system and its learning. In the Fig. 2 there are results
of comparison for different control systems. For each control system the mean values
for 20 experiments are presented. The duration of each experiment is 50,000 steps of
the agent. The number of pabulary objects on the field is 100.
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Fig. 2. Amount of the food gathered by the agent with different control systems.

It is seen from the figure that the control system based on the semantic probabilistic
inference is fully learned during the 1000 steps. By comparison, control systems based on
the neural nets (Q-Neural Net) learn more slowly and become fully learned after nearly
10,000 steps. Slow learning of theQ-Lookup Table follows from the huge number (2496)
of states with three possible actions.

The results of this experiment demonstrate that the control system based on the
semantic probabilistic inference works rather effectively and learns more effectively
than systems based on the reinforcement learning.
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7 Results of the Second Experiment

The following experiment is crucially different as the task may be divided in two parts:
at first – to find a “tablet” object and then to find pabulary objects. The purpose of this
experiment is to demonstrate the ability of automatic subgoals formation.
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Fig. 3. Amount of food gathered by the agents in the presence of the “tablet” objects.

The agent now has 32 predicates – four predicates for each sensor Si, i = 1, . . . , 8:
(Si = empty), (Si = block), (Si = food ) i (Si = pill) and one predicate (Spill = yes)
for the state when the agent has a “tablet” object and one predicate (S9 = food) for the
state when the pabulary object is in the central cell under the agent.

At the beginning the control system of the agent has only one functional system with
the purpose SGoal = (Spill = yes)& (S9 = food), when the agent has a “tablet” object
and finds a pabulary object.

During the experiment the control system of the agent had always found the subgoal
S2Goal = (Spill = yes) and formed a corresponding functional system. When the agent
had no tablet in possession, the control system passed the control to the subsystem
for the search of a tablet, and, after finding the tablet and achieving the goal S2Goal =
(Spill = yes), the upper level control system started searching the pabulary objects.

The results of the experiment are presented in the Fig. 3. In the figure themean values
for 20 experiments are presented for each control system. In each experiment the agent
had 100,000 steps. The number of pabulary objects and “tablet” objects on the field was
100 for each.

As seen from the figure, the control system based on the semantic probabilistic
inference was working more effectively than systems based on reinforce-ment learning.
Control systems based on reinforce-ment learning showed almost no learning ability
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and worked unstable. They cannot learn the need of the “tablet” objects for the goal
achievement during the reasonable time and have passed by “tablet” objects after 100,000
steps of learning. Additional experiments demonstrated that control system (Q-Neural
Net) can sometimes learn during the 300,000–500,000 steps.
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Abstract. This paper compares the various conceptions of “real-time”
in the context of AI, as different ways of taking the processing time
into consideration when problems are solved. An architecture of real-
time reasoning and learning is introduced, which is one aspect of the
AGI system NARS. The basic idea is to form problem-solving processes
flexibly and dynamically at run time by using inference rules as building
blocks and incrementally self-organizing the system’s beliefs and skills,
under the restriction of time requirements of the tasks. NARS is designed
under the Assumption of Insufficient Knowledge and Resources, which
leads to an inherent ability to deal with varying situations in a timely
manner.

1 Various Versions of “Real-Time”

Roughly speaking, solving problems “in real-time” means there are time require-
ments on the problems to be solved, coming out of the needs or restrictions of
the domain. This topic has both theoretical and practical significance, because
traditional theories of computation do not take it into consideration, while many
(if not all) practical applications have time requirements.

In computability theory [6], the time spent in a computation is not consid-
ered, as far as it is finite. In computational complexity theory [1], processing time
is usually considered as an attribute of an algorithm (a solution of a problem),
rather than of a problem itself. Furthermore, in algorithm analysis, the “time
complexity” of an algorithm indicates how fast its processing time increases as
the size of problem instances, but not the actual period of time costed by the
process, since that not only depends on the algorithm, but also on the size and
content of the instance, the processing speed of the (hardware and software)
platform, etc.

Therefore, the above theories do not cover problems that have concrete time
requirements as part of their specifications. The most common form of time
requirement is a deadline, which is also called “hard real-time”. The other form,
“soft real-time”, correspond to the situation where the utility of the solution is
a decreasing function of time [10,11,15]. We can see the former as a special case
of the latter, where a deadline is the point where the utility of the solution drops
from 1 to 0.
c© Springer Nature Switzerland AG 2020
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From the perspective of Artificial General Intelligence (AGI), “to work in
real-time” can be taken in a more general form, including the following aspects:

– New problems can appear at arbitrary time, rather than only when the system
is idly waiting for them.

– The time requirement of a problem instance can change in its different occur-
rences, that is, the same problem instance may have different urgency levels
in different cases.

– The time requirement of a problem instance can change during its process-
ing, that is, to become more or less urgent, rather than fully known at the
beginning of the process.

– The relevant data or knowledge used in problem-solving comes incrementally
after the solving process starts, partly due to the active learning and exploring
of the system.

– It is desired for the best-so-far solutions to be reported whenever they are
found, even though they may need to be revised or updated later.

Real-time problem-solving is not a new topic at all, though there is still
no theory or technique that provides a general solution. The major approaches
explored in artificial intelligence and computer science include the following:

– To find a problem-specific design by considering all software-hardware factors
to meet specific time requirements in one concrete application, though param-
eters in the design allow flexibility of using the design in similar applications
[9];

– To depend on a meta-level reasoning process to find a proper solution among
the given candidates by considering their quality and time requirement, so as
to get the best balance between them according to the current requirement
[3,7,13];

– To use an “anytime algorithm”, i.e., an interruptible procedure that incre-
mentally updates the best-so-far solution, to achieve a flexible quality-time
trade-off [2,22];

– To share processing power among multiple tasks as in an operating system,
where tasks are prioritized to reflect their levels of [14]. Such a system can
accept a new task in any moment (assuming sufficient memory), processes it
with a speed according to its priority, while guaranteeing to avoid starvation.

Though each of the above techniques addresses certain forms of time require-
ments, and has its applicable domains, none of them has handled all the aspects
of real-time in the AGI context as mentioned previously, so a new architecture
is in demand. In the next section, we will introduce NARS and how it satisfies
the relevant demands.

2 NARS as a Real-Time System

NARS, standing for Non-Axiomatic Reasoning System, is a general-purpose AI
project [17,20]. Many of the topics addressed in the following have been described
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in the previous publications [5,16,18,19], though this paper is the first time when
the issue of real-time in NARS is comprehensively discussed.

NARS is designed according to the opinion that intelligence is adaptation
under AIKR (the Assumption of Insufficient Knowledge and Resources), meaning
that the system has finite information processing capability, while it has to work
in real-time, and be open to novel tasks [21]. On the other hand, as an AGI
system, NARS is supposed to deal with arbitrary problems which can occur at
arbitrary time. There is no guaranty that the system has enough data and an
appropriate algorithm, or can predict every possible variation of the situation.
So the AIKR principle is necessary and satisfactory. Therefore, “to work in real-
time” is a fundamental design requirement of NARS, and interpreted in a very
broad sense that covers all aspects listed in the previous section.

As a new task can show up at any moment with a time requirement, and
may be novel to the system, it means that the system cannot process it by
following an existing routine or algorithm, but has to construct a solution at
run time, in a case-by-case manner, for the problem (instance, not type) [18]. It
also means there is no way to guarantee solutions of a fixed quality. Instead, the
system simply does its best under the knowledge–resource restriction, evaluated
globally with respect to all the existing tasks.

Concretely speaking, a task for NARS to carry out may be a piece of new
knowledge to be absorbed into the system’s beliefs, a question to be answered
according to the relevant beliefs, or a goal to be achieved by executing rele-
vant operations of the system. Under AIKR, the system has no algorithm that
describes the complete process for a task, and nor can the system compare all
solutions then pick the best. Furthermore, as new tasks constantly come to the
system, the processing of a task may be interrupted or terminated at unantici-
pated moments by other more urgent tasks.

As a reasoning system, NARS processes tasks using its beliefs. In each infer-
ence step, a task interacts with a belief, and that may lead to a partial solution
for the task, and at the same time generates derived tasks. Given the assump-
tion of insufficient knowledge, no task can be “fully resolved” in a predetermined
number of steps, though more steps usually lead to better solutions. On the other
hand, given the assumption of insufficient resources, normally no task can inter-
act with all relevant beliefs in the system, so as to reach a “logical end” and no
better solution can be found.

Working in such a situation, the system is made to work in real-time by
making each inference rules to only cost a small constant time, and allowing the
processing of a task to stop after any number of inference steps.

This strategy can only be used with a logic that is fully compatible with
AIKR. The Non-Axiomatic Logic (NAL) used in NARS [20] satisfies this require-
ment. All inference rules of NAL are “local” in the sense that the conclusion
is only generated and justified with a small number of (usually one or two)
premises. All non-local effects in the system are produced by multi-step pro-
cesses. Consequently, the time granularity of atomic (uninterruptible) activity
in NARS is very small (currently below millisecond).
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In this way, the actual solution obtained for a task is by the beliefs interacting
with it (which decides the inference rules triggered in a data-driven manner), as
well as their order. All these decisions are made at run time when the task is
processed, rather than planned in advance.

To achieve the overall efficiency in resource allocation, the selections of tasks
and beliefs are made in a specially designed data structure called “bag” [16],
which is basically a probabilistic priority queue with a put and take operation
(see Fig. 1) for the adding of elements and their retrieval. Each data item in a bag
has a priority value attached, which is positively correlated with the probability
for the item to be selected (with take) in the next round. The priority also decides
which element to remove when a new item is added via put at full capacity,
namely the lowest priority item. This makes sure finite space constraints are
maintained in the “bag”.

Fig. 1. The basic functions of a bag.

The priority of an item is a summary of a number of factors, including its
quality, usefulness in history in similar contexts, relevance to the current situ-
ation, etc., and is dynamically adjusted according to the feedback of its usage
and the change in the environment. There is also an across-the-board forget-
ting mechanism that decreases all priority values over time. Different items have
different forgetting rate, which is indicated by a durability value. There is also
a quality value, which shows the long-term significance of a data item to the
system. This priority–durability–quality triple forms the “budget” of a task (or
belief), which summarizes its relative competitiveness in the system’s resource
allocation at the moment.

When a user assigns a task to NARS, an initial budget can be provided,
otherwise system defaults will be given according to the type and features of
the task. After that, the system will adjust the budgets, as well as to decide
the budget for each derived tasks and beliefs by taking the relevant factors into
account.

From the viewpoint of the users, the system processes multiple tasks in a
time-sharing manner, though here the mutual interference among the tasks is
much stronger than that among the processes in an operating system. For a task,
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its processing path and results not only depend on its budget and the existing
beliefs, but also on the budgets of the coexisting tasks, as well as their processing
paths.

When the processing of a task stops, usually it is not because the process
has reached its final state or the quality of the solution has reached a certain
criterion, but because the task has lost in the resource competition, though the
processing may be resumed at a future time.

Beside the above automatic resource-allocation mechanism, NARS also sup-
ports more complicated time management. For instance, the system can have
knowledge about the execution time of an operation or operation sequence, and
can use it in a planning process to decide whether to use the operation to reach
a certain goal. For instance, to meet a specific deadline, careful planning and
scheduling will be needed.

The above architecture and mechanism makes NARS capable of working in
real-time, in a manner similar to that of a human in similar situations.

3 Examples

The following examples serve as an illustration of the discussed real-time aspects
of NARS on what it means to operate in real-time. These examples can directly
be tested with the current version of OpenNARS1, an open-source implementa-
tion of NARS.

New Information Coming in While Solving a Problem
After a detective presents initial information and relevant background knowl-
edge, the system changes its mind about who is the murder after newly presented
evidence.

//It is known that the first suspected murder,
//Rambo is living in NYC and known to be aggressive
<{Rambo} --> (&,(/,liveIn,_,NYC),[aggressive])>.
//It is known that the other
//suspected murder lives in Philadelphia
<{Sam} --> (/,liveIn,_,Philadelphia)>.
//Also it is known from a psychological study that
//murder tend to be more aggressive to some degree
<murder --> [aggressive]>. %0.7%
//Who is the murder?
<{?who} --> murder>?
//System considers Rambo more likely to be the murder
Answer <{Rambo} --> murder>. %1.00;0.22%
//24 days later...
24000
//the detective got the information, that the
//murder surely must be from Philadelphia
<murder --> (/,liveIn,_,Philadelphia)>.
//Now the system thinks Sam is more likely the murder:
Answer <{Sam} --> murder>. %1.00;0.45%

The same order of finding solutions could possibly also have happened if the
new information would have been known from the beginning. But due to the low
1 http://opennars.org/.

http://opennars.org/
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truth-value obtained from the psychological study, and the control mechanism’s
tendency to pursue more truthful paths of reasoning, it is more likely that it
would have found the right solution first. Note that the problem-solving process
here is similar to that of an anytime algorithm, with the difference that in which
order the solutions are found is not deterministic, and that not all information
is demanded to be present at the beginning.

Event Sequences
OpenNARS’ ability to stay responsive to new incoming event sequences

//A sequence of entities are observed
//a was observed
<{a} --> [observed]>. :|:
251
//b was observed
<{b} --> [observed]>. :|:
...
//g was observed
<{g} --> [observed]>. :|:
131
//h was observed
<{h} --> [observed]>. :|:
//What comes after c?
<(&/,<{c} --> [observed]>,?i) =/> <{?what} --> [observed]>>?
//d comes after c
Answer <(&/,<{c} --> [observed]>,+232) =/>

<{d} --> [observed]>>. :-1088: %1.00;0.44%
//What comes before f?
<(&/,<{?what} --> [observed]>,?i) =/> <{f} --> [observed]>>?
//e comes before f
Answer <(&/,<{e} --> [observed]>,+602) =/>

<{f} --> [observed]>>. :-239: %1.00;0.43%

This example illustrates the system’s ability for event processing. The key
here is that the processing time for a new event does not increase with the amount
of events seen so far. This means the system is guaranteed to stay responsive to
new input, while of course it cannot be guaranteed that every possible pattern
will be extracted. The system’s control mechanism tends to recognize patterns
that span a relatively shorter time distance, are truthful, repeating, goal-relevant,
conceptually important etc. (see [4] and [5] for more details). However, if relevant
questions arise, the control mechanism can make question-driven inference, as
to answer a specific question which answer otherwise would have less likely been
generated by the system. Example:

//Does h come after a?
<(&/,<{a} --> [observed]>,?1) =/> <{h} --> [observed]>>?
//h comes after a
Answer <(&/,<{a} --> [observed]>,+1789) =/>

<{h} --> [observed]>>. %1.00;0.09%

Sensitivity on Elapsed Processing Time
This example shows the system’s tracking capability of elapsed time.
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//Lighting usually generates thunder in 5 seconds
<(&/,<lighting --> [seen]>,+500) =/>

<thunder --> [heard]>>. %1.0;0.45%
//Lighting is seen right now
<lighting --> [seen]>. :|:
//10 seconds later:
1000
//Do you hear thunder?
<thunder --> [heard]>? :|:
//I should have heard a thunder 5 seconds ago
Answer <thunder --> [heard]>. :-506: %1.00;0.40%

Many existing techniques, even when a deadline is taken into account, do not
assume that the processing itself leads to the passing of problem-relevant time
duration. In the above example we see that the answer to the question, which
originally was a prediction, is already an event of the past. This is captured by the
occurrence time of the prediction the system tracked, which in this example is,
after the additional 10 s passed, already smaller than the current time. Generally,
the system tries to find answers which are both more reliable and closer to the
occurrence time of the question. Also, for decision making, the system tries to use
procedure knowledge which preconditions were fulfilled more recently by events,
these tend to be still valid to base a decision on. Here, both the occurrence time
and truth-value are taken into account.

4 Comparisons and Discussions

Overall, there are the following possibilities for real-time problem solving:

– Using a single program specially designed to meet a predetermined time
restriction under all circumstances.

– Selecting a program among an existing set of programs according to their
running time and the current time demand.

– Constructing a program following a meta-algorithm according to the time
requirement in the program specification.

– Running an interruptible program that has a repeatable path but unpre-
dictable ending. It has no fixed complexity, but has a time–quality function.

– Building a one-time procedure according to time requirement of the problem
and the context, without accurate predictability and repeatability.

One type of common and widely used real-time system is the programs used
for the control in automation, e.g. the program for a mechanical arm to assemble
a product. Such a program is relatively simpler than other kind of approaches
because the environment of such program is always well defined and stable, and
it is also customized for a single process. So the mechanism can run smoothly
following the determined schedule. Obviously, such specifically designed program
cannot deal with unexpected events, which appear in many situations.

Some other approaches are more flexible to deal with various types of dead-
line. Design-to-time [3] approach prepares multiple solutions and organizes the
solution by making trade-offs between quality and time. An anytime algorithm
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[2] can be interrupted at any moment to get the most satisfied solution within
that deadline, so is closer to our expectations because it can still get a satisfac-
tory solution even if the deadline is unexpectedly changed, assuming it already
found a solution to be refined further. The control mechanism of NARS shares
this property, which makes it possible for the system to operate without knowing
relevant deadlines beforehand. Compare to anytime algorithms, the mechanism
in NARS excludes not only the predetermined final states, but also the predeter-
mined path of processing. As long as an approach is based on a predetermined
algorithm, it cannot handle unexpected changes in the environment during its
running.

A fundamental difference between NARS and many traditional theories of
intelligence is the AIKR principle. Under AIKR, any belief can be changed
according to new information. NARS does not assume any absolutely certain
knowledge about the future, and it allows unexpected changes to occur at any
time. Therefore, NARS is prepared to respond to new input during the process
and adjust its beliefs and inference paths. In this paper, we regard “real-time”
as a more general situation. We regard the time as a part of problem, so there is
fundamental difference between the idea of “real-time” and computational com-
plexity theory. Since we cannot guarantee the environment is always suitable
for a prepared algorithm, AIKR makes the NARS approach necessary to handle
such situations.

While some real-time systems have been designed to take insufficient
resources into account (such as schedulers in operating systems), attacking both
insufficient resources and knowledge raises additional challenges. The NARS app-
roach is somehow like the student doing the programming question with limited
memory and run time, but doesn’t have the ability to deal with this question
perfectly, then how to get the imperfect but proper result with such restriction.

The ability to work under AIKR is significant for a general purpose AI sys-
tem, especially if real-time responses should be supported. There are also other
AGI researches which apply similar principles. In the Anytime Bounded Ratio-
nality (ABR) model [12], knowledge is bounded within fixed memory budget
and can be updated and revised based on the new experience, while the ABR
model schedule inferences deterministically using objective time semantics. The
Economic attention allocation (ECAN) model of OpenCog [8] also considers the
space limitation and applies two key parameters, STI (short-term importance)
and LTI (long-term importance), to manage the resource allocation. However,
ECAN does not stress real-time operating conditions as the ones discussed in
this paper.

In Sect. 2, we describe how NARS works in real-time. The system solves
problems in a case-by-case manner using procedures composed at run-time, by
taking many factors in the current context into account, rather than follow-
ing a predetermined algorithm for that type of problem. Therefore, there is no
specific requirement to the environment. NARS does not guarantee the qual-
ity and delivery time of solutions. If more knowledge and resource are provided,
NARS may obtain a better solution. If the process is interrupted, NARS can still
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provide the best solution under existing knowledge and resources which was
found, for instance by returning the highest-confident candidate solution found
so far. Without the restriction of needing a predetermined algorithm for the
problem to solve, NARS is more flexible in various situations, as also argued in
[19].

It is however also clear that in some applications, flexibility is not the major
factor under consideration. For instance in real-time operating systems, time
requirements are sometimes known (example: let programs running on it respond
to I/O within 1 ms, and under all circumstances), and can be taken into account
by the corresponding specifically designed scheduling strategy. In this case, the
specifically designed algorithm will of course be superior to NARS, but the algo-
rithm cannot be used when time requirements are not known beforehand.

5 Conclusion

We have seen that “real time” has different interpretations, and that NARS
fulfills multiple requirements typical for real-time systems, also going further in
certain aspects. Some of the requirements we believe to be most relevant have
been demonstrated with examples in Sect. 3: the ability to accept a new problem
and new information while still working on previous ones (staying open), the
resource demand for processing new events not being dependent on the amount
of events seen so far (staying responsive), and the system’s sensitivity to elapsed
time while processing tasks, incorporating elapsed time in question answering
and decision making.

Especially since the system does not assume the existence and knowing of
deadlines, it fulfills more than certain common understandings of the term “real-
time” would ask for. However, since it makes no guarantee about the quality of
the solutions to be found, or even to find one at all, it is also in some sense
“weaker” than the alternative techniques. This weakness, as argued, follows
from the fundamental restriction of operating under Insufficient Knowledge and
Resources. The requirement of real-time responses is often satisfiable only by the
re-allocation of available resources, as a direct consequence of the often insuffi-
cient computational resource supply. Also, as argued, the system cannot make
any guarantees about the quality of its solutions, also due to the often insufficient
knowledge it has available to solve problems.

Aspects coming from AIKR shed some light on what we believe to be unavoid-
able properties of AGI systems, unless inherently different philosophies are fol-
lowed. Philosophies with views like computational resources are infinite, and/or
the system does always know the problem-relevant information, assume too much
to be acceptable. As we argued, an AGI should work in any environment, includ-
ing uncertain ones as well. Hence AIKR cannot be dropped, and leads to systems
falling in its own subcategory of “real-time system” to be studied further.
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Abstract. A recently developed Functional Modeling Framework sug-
gests that all models of cognition can be represented by a minimally
reducible set of functions, and proposes to define the criteria for a model
of cognition to have the potential for the general problem solving abil-
ity commonly recognized as true human intelligence. This human-centric
functional modeling approach is intended to enable different models of
AGI to be more easily compared so research can reliably converge on a
single understanding, enabling the possibility of massively collaborative
interdisciplinary projects to research and implement models of conscious-
ness or cognition where difficulty in communicating very different ideas,
particularly in the case of new models without a significant following,
has prevented such massive collaboration from in practice having proved
possible before. This paper summarizes a model of cognition developed
within this framework.

Keywords: Adaptive problem solving · Functional Modeling
Framework · Human-centric

1 Background – The Problem of Cognition

In common usage the term “general problem solving ability” functions to mean
“a human-like level of ability to solve general problems through abstract reason-
ing” . Furthermore, taking a functional view of reasoning or understanding as
processes with inputs, and outputs, and taking a functional view of problems as
a set of input concepts and a set of output concepts that are bridged by such
cognitive processes, it can be agreed that general human problem solving ability
requires a general reasoning process that solves a general problem, that is, a
general problem which all problems in the cognitive system can be defined as
belonging to, and that all reasoning processes solve. And the one general prob-
lem that can be intuitively seen as being shared by all humans, is the problem of
achieving “well-being” , where the exact meaning of that term will be specified.

While others such as Bach [17], or Stranneg̊ard [18] address the issue of
goals or motivation in a cognitive system, those approaches focus on defining
a system that targets achieving specific outcomes like securing sufficient food.
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However, any system constrained to solve a specific problem fails to meet the
definition of adaptive problem solving because the system can’t adapt to solve
different problems. On the other hand, solving the most general possible definable
problem of well-being, which is proposed here to be the fitness of the system
to execute all its functions, enables the system to adapt to solve any problem
that impacts fitness in performing any function, even functions that adaptive
processes such as evolution may not have created yet. In the same way, solving
such a general problem of well-being might also enable the system to eliminate
functions that evolution or other adaptive processes no longer see as necessary.

The approach to AGI described in this paper represents the human organism
in terms of a hierarchy of adaptive processes that each function to achieve a
generalized property of fitness in their respective domains. Human functions are
categorized as belonging to a number of functional components that include four
functional systems (body, emotions, mind, and consciousness) with each system
having its own metric for fitness that may be intuitively understood as well-being
in that system. Formalization of the concept of well-being in terms of a functional
model allows processes of observation to be confined to well-defined state spaces.
Processes of self-observation then become processes for observing changes from
one well-defined state in a well-defined space to another state in that same space.
Any process of observation can then be seen as attempting to transmit a well-
defined signal (truthful information), with the result that the ability of such
processes to reliably transmit truth (as opposed to transmitting the noise of
groundless speculation based on beliefs or other cognitive biases) is governed by
well-understood information theory. Where before such self-observation had to
be discarded as “anecdotal evidence” , this formalism makes external verification
of self-observation reliably achievable [16].

In this approach, cognitive well-being is the goal of the mind in the domain
of adaptation through cognition. Defining well-being as a measure of the fit-
ness of that system to exercise all its functions matches the intuitive way that
human-beings assess well-being. In comparison, current AI models from this per-
spective might lack a sufficiently general definition of well-being, and therefore
lack a problem to solve that is sufficiently general to achieve human-like general
problem-solving ability.

2 Introduction

In the FMF each functional system or functional component in a human is rep-
resented by the minimal set of functions (functions meaning behaviors or things
the component can do) that can be used to compose all its behaviors. All the
states then form a “functional state space” to which the system or component
is confined and within which it navigates a path. Each function is essentially
a vector in that space. The FMF can then be used to represent and compare
models of living systems in terms of how they implement those functions, and in
terms of how those implementations govern the dynamics of the system through
that functional state space. This paper focuses on only one adaptive domain, the
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domain of adapting through reasoning that is implemented by the cognitive sys-
tem, where the cognitive system is represented as moving through a conceptual
space. The problem of AGI addressed in this paper is how to define a functional
model of cognition that is simple (general) enough to apply to all problems of
cognition in an intuitively understandable way that can be implemented, and can
be intuitively validated to be complete enough to have general problem solving
ability, and be intuitively validated as having the potential to be human-like.
Other cognitive architectures, such as SOAR [19], or LIDA [16], also might
define a list of functions. However, such functions differ where they do not form
a minimally reduced set, as required to maximize generalizability in modeling
the functions of any cognitive architectures. And they may differ in not sepa-
rating the definition of functional models from any implementations. Defining
a minimal functional model and defining a metric for the fitness of each imple-
mentation of that model is one potential way to compare all AGI research in a
fashion that reliably converges on the observed functionality of cognition. Lack-
ing this generalizability, and lacking this simple comparability, current research
approaches may lack the capacity to reliably converge on a single understanding.
Novel approaches to AGI, for example, may simply be ignored because of lack
of popular following [4].

3 The Components of an AGI in the Functional Modeling
Framework

The FMF proposes that the individual mind’s cognitive functions consist of a
number of functional units that process neural signals into concepts, and a num-
ber of functional units that process concepts according to the functions involved
in cognition. Three lower order cognitive functions represented by the functional
units F1 to F3 map to and from signal space to the conceptual space. And the
higher order cognitive functions F4 to F7 and FS consisting of storage (memory),
recollection, recognition of patterns, recognition of sequences of patterns, and the
cognitive awareness FS, receive concepts from the functional state space of the
cognitive system (“conceptual space”) as input, and produce other concepts as
output to that “conceptual space”. By executing reasoning processes defined in
terms of these functions, the cognitive system navigates this conceptual space.

Assuming that any concept in the human cognitive system can be represented
by specifying the state of each of N neurons, then any concept can potentially
be represented by a function F1 that detects the distribution of neural signals
over the array of N neurons, a function F2 that detects the sequence of signals
distributed over time, and a function F3 that detects a pattern in those distri-
butions that represents a concept. Assuming that all concepts can be expressed
in terms of their relationship with other concepts, and assuming that these rela-
tionships can be expressed in terms of reasoning, then if concepts are represented
as points in a conceptual space, all concepts are separated from other concepts
by paths that represent reasoning processes. All reasoning is then a path from
one point in conceptual space to another.
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A minimal set of functions potentially capable of spanning the entire con-
ceptual space begins with a function F4 that stores concepts into the conceptual
space, a function F5 that retrieves concepts from the conceptual space, a func-
tion F6 that detects patterns in the concepts, and a function F7 that detects
sequences in the patterns. The function F4 is intuitively recognizable as memoriz-
ing, the function F5 is intuitively recognizable as remembering, F6 is intuitively
recognizable as understanding a pattern or employing a pattern in reasoning,
and F7 is intuitively recognizable as understanding a sequence of patterns or as
employing a sequence of patterns in reasoning. These functions form a minimally
reducible set not just within the cognitive system but across the entire human
organism, since the same functions F1 to F3 are required for the body to perceive
sensory signals as sensations, for the emotional system to perceive emotions, and
for the consciousness to perceive awarenesses. In addition, the same function F4
is represented in the FMF as occurring in the body to process sensations, the
same functions F4 to F5 are represented as occurring in the emotional system as
an evolutionary adaptation to process emotions, and all the same functions F4
to F7 are represented as occurring in the consciousness system as an evolution-
ary adaptation to process all these awarenesses. The cognitive system must have
the capacity to conceptualize all these sensations, emotions, and awarenesses.
In the FMF conceptualization is represented as the three functions F1 to F3
being used to map each point in sensory space (each sensory perception), each
point in emotional space (each emotion), or each point in awareness space (each
self-awareness), to a point in conceptual space (to a concept). The consciousness
system must also have the capacity to be aware of all concepts. As consciousness
evolved functionality F3 to F7 to navigate awarenesses, the FMF represents this
functionality as becoming incorporated in the cognition as well.

The set of these cognitive functions occurs on both the input processing path
(cognition of sensory or other input) as well as the output path (cognition driving
sensory or other output). The set of these input cognitive functions are proposed
to act to receive understanding in terms of concepts (understanding meaning the
process that enables comprehension of the sentence “the quick brown fox jumped
over the lazy dog”). On the output path (using cognition to drive reason towards
conclusions) these cognitive functions are proposed to direct reasoning (reasoning
meaning the process that enables answering the question “what fox jumped over
what dog?”).

These functional units have an evolutionary order in that functional unit
FN-1 must exist before its output can be available to be used in functional unit
FN. This paper proposes that representation of any reasoning or understanding
processes in this way is possible because any thought can be represented in a
functional model as a form of pattern detection in concepts (F6), and in terms
of a sequence of those patterns (F7). And since the set of functions AND, OR,
as well as NOT can represent all logic and is therefore Turing complete, this
paper proposes that any logic, and therefore the logic in any rational methodical
thought process, can be represented in a functional model in terms of a function
to detect patterns representing a Turing complete set of logical operations on
concepts, whether or not those operations are the functions AND, OR, and NOT,
and in terms of a sequence of those patterns (F7) (Table 1).
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Table 1. Functional units in a system of human-like cognition as defined by the Func-
tional Modeling Framework (FMF).

Functional Units in Systems of Cognition

Functional Unit Input Function Output Function

F1 to F3 Create Concept Create Signals from Concept

F4 STORE (Store Concept) DECOMPOSE STORAGE
(Determine Concept in
Storage Function)

F5 RECALL (Recall Concept) DECOMPOSE RECALL
(Determine Concept in
Recall Function)

F6 DETECT PATTERN
(Detect Pattern in Concept)

DECOMPOSE PATTERN
(Detect Concept in Pattern)

F7 DETECT SEQUENCE
(Detect Sequence of Patterns
in Concept)

DECOMPOSE SEQUENCE
(Detect Concept in Sequence
of Patterns)

FS COGNITIVE AWARENESS

As an example, consider how the following sentence might be represented
with the set of cognitive functions and other functional components defined by
the framework: “The quick brown fox jumped over the lazy dog”. The words in
the diagram represent concepts. The relationships between concepts from a given
perspective are proposed to define the position of concepts in the conceptual
space that is defined by the Functional Modeling Framework (Fig. 1).

Fig. 1. Depiction of relationships in conceptual space.
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The reasoning process that produces this natural language sequence can
potentially be modeled in this case as beginning at a position on the diagram
above representing a given perspective on the entity “fox”, and then executing
the RECALL function on the properties “quick” and “brown” and the DETECT
PATTERN function to associate them with the “fox” to produce “the fox is
quick” and “the fox is brown” . The process might then execute the DETECT
SEQUENCE function to group “quick”, “brown”, and “fox” into “quick brown
fox”. The process might then execute the RECALL function on the relation-
ship “jumped”. And then might execute the RECALL function on the modifier
“over”. Finally, it might execute the RECALL function on “lazy dog”, and then
execute the DETECT SEQUENCE function to group “the quick brown fox”,
“jumped over”, and “the lazy dog”. Reasoning processes, such as those required
to construct text or speech in natural language, then become a sequence of paths
through the conceptual space. In this case, the first path P1 is “the fox is quick”
(Fig. 2).

Fig. 2. High-level view of conceptual space.

As noted in the first diagram, there are a multitude of relationships connect-
ing the fox to entities that define other of its properties. For example, from the
perspective of a comparison with a “mouse” the fox is “large”. From the per-
spective of a comparison with a “horse” the fox is “small”. In order to be able to
retrieve all the relationships relevant to a given perspective, the representation
of the conceptual space must be complete enough to store such perspectives.

4 Adaptive Processes

As mentioned, the FMF also represents an intelligent entity as a hierarchy of
adaptive processes with which it can adapt all of its processes to be more fit
(the basic life processes L1 to L8). The FMF defines requirements for the basic
life processes and the components that implement these processes, but leaves
cognitive architectures to define their own implementations to ensure that the
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most fit component at executing any given required functionality can be taken
from any other implementation suggested by any researchers, while ensuring
the overall implementation model continues to become more fit at representing
the functionality of cognition. The implementation model of AGI described in
this paper serves as a reference implementation. The importance of representing
intelligent entities in terms of a hierarchy of adaptive processes that together
choose the optimal definition of any problem (optimum in terms of the choice
that optimizes fitness), and that together choose the optimal solution to that
problem, is that in order to increase problem solving fitness to the point that
it is general enough to be human-like, nature’s design process must remove the
constraints against this optimization. And one of the constraints against opti-
mization is whether and how functionality is segmented across components. The
principles of intelligent cooperation between components (defined by the domain
of adaptation through cooperation) dictate that systems must have the capacity
to centralize decision-making where necessary to prioritize the function of a sin-
gle component. And they must have the capacity to decentralize decision-making
where necessary to maximize outcomes for all components. Centralization con-
strains the system from solving problems that are not aligned with the interests
of the components in which decision-making is centralized. Functionality must
be decentralized across all components to maximize impact on the problem as
perceived by the entire system rather than becoming aligned with the inter-
ests of subset of components. To achieve this segmentation, nature must take a
modular approach that separates adaptive processes into different domains and
that chooses which adaptive functionality to put in each. This choice must be
made according to the principles of intelligent cooperation between components
if the set of domains is to have the capacity to maximize adaptive fitness across
all domains. In other words, rather than defining an AGI as a single adaptive
system, adaptive domains in an AGI must be limited in their functionality (mod-
ular and reuseable) so they can be adapted without having to change the entire
system. As a result some of the constraints against problem definition and prob-
lem solving might exist in each adaptive domain. For example, each adaptive
domain might lack the capacity to change its own adaptive functions. Therefore
each adaptive domain must exist in a hierarchy of other adaptive domains if the
constraints to its adaptability are to be removable.

5 An Algorithm for General Problem Solving Ability

General problem solving ability in the FMF is the ability to sustainably navigate
the entire conceptual space so that it is potentially possible to navigate from any
problem that can be defined within that conceptual space to any solution that
can be formulated within that conceptual space. Where a non-intelligent system
such as current computer programs solves the problem it’s designers have chosen
for it, a system with general human-like problem solving ability or true human
intelligence, must have the ability to choose which problem to solve. The model
of cognition described within this paper chooses which problem to solve through
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maintaining global stability in the dynamics with which it executes all reasoning
processes, where that stability exists within a fitness space related to cognitive
well-being.

The system of cognition is modeled as projecting the cognitive value minus
cost of each activity being executed (its “fitness” in achieving its targeted out-
come in terms of cognitive well-being) and either investing resources into the
current reasoning activity until complete, or discontinuing the current reasoning
activity to invest resources into the next (choosing to solve another problem) in
a way that maintains stability in fitness to continue to execute these cognitive
functions. In this way, investment of the cognitive system into each given rea-
soning process forms a kind of convection that is reflected in the motion of the
cognitive system through fitness space. To implement this model, a system of
equations capable of demonstrating this convection throughout a three dimen-
sional fitness space (the Lorenz equations for convection) can then be used to
define forces of selection of reasoning processes according to projected, targeted,
and actual impact on cognitive well-being so that the path through fitness space
might form this stable convection, despite the path through the conceptual space
being potentially chaotic.

Having defined the equations governing this relationship, an algorithm for
selecting the sequence of reasoning activities to be executed by the cognitive
process in a way that approximates those dynamics has been defined. By execut-
ing reasoning activities in a sequence that keeps the state of cognitive well-being
within a stable range, the cognitive system is proposed to gain the capacity to
adaptively navigate the conceptual space as well as to gain the capacity to navi-
gate the state space of the environment it conceptualizes. In this way, reasoning
in the cognitive system is an adaptive process that enables the entity to find sta-
bility in greater regions of the external environment (to understand and reason
about the external world). Where the parameters of the Lorenz equations can
be chosen to form a globally stable dynamics (a strange attractor) in the cogni-
tive well-being space, despite a chaotic path through the conceptual space. The
same Lorenz equations can also be used to implement all the other functional
components in the model so that their dynamics within their fitness spaces and
state spaces obeys the same global stability despite local instability [2,3].

6 The Importance of an Intuitive Approach

From the standpoint that simple, ubiquitous patterns are intuitive, we would
expect that human-beings should intuitively be able to describe their cognitive
activities in terms of such a minimally reducible set of cognitive functions, that is,
we would expect that such functions would then be consistent with the functions
human beings could easily observe within their own self-awareness. In line with
these expectations, while the majority of individuals might demonstrate the
ability to reliably understand a cognitive process in terms of the FMF’s functions
(memorize, recall, recognize pattern, or recognize a sequence of patterns) through
experiments that test the subject’s consistency in using such labels in a wide
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range of circumstances, most individuals might fail to reliably label a thought in
terms of the “perceptual associative memory” or other functions defined by other
cognitive architectures. This is not a criticism of the usefulness of those cognitive
architectures as potential implementations of AGI functionality, but instead is an
illustration of the usefulness of defining simple and intuitive functional models of
cognition, within which other cognitive architectures are implementations whose
fitness in representing the observed functions of cognition can be measured and
compared in order to reliably converge on the best working model of each element
of functionality.

From this perspective of a minimal functional model, some functions that are
commonly thought of as integral become mere details of some particular imple-
mentation of cognition. By analogy, a very simple functional model of computa-
tion might not make a distinction between long-term-storage on a hard drive and
short-term storage in memory. But any effective implementation of the storage
function would certainly identify the optimal implementation in each of those
contexts. In the same way, this minimal functional model of the FMF identi-
fies functions as having inputs, outputs, and separate information specifying the
context of execution, and leaves other details to be a matter of choosing the
optimal implementation of each function.

The approach to functional modeling used in this paper may be a radi-
cal departure in that it attempts to create a bridge between approaches for
understanding the human system in terms of functions that can be observed
in the individual’s own self awareness, and approaches held to be “scientific”
in restricting themselves to external measurements. Where the vast tradition
of such observations has not before been readily accessible to the sciences, this
human-centric approach formalizes the process of representing systems in terms
of their functions that human beings already use intuitively, so that it is possi-
ble to leverage that vast understanding. Furthermore, rather than introducing
jargon that forces researchers to adjust to an individual researcher’s way of fram-
ing cognitive architectures, this human-centric formalization attempts to frame
the general problem of cognition in a way that can be intuitively understood in
natural language by anyone with a deep understanding of the problem.

The usefulness of the conceptual space defined for this domain of adaptation
through cognition is that representing all cognitive processes as being confined
to it (i.e. cognitive processes receive concepts as inputs and produce concepts as
outputs) allows us to understand what the cognitive system can and cannot do.
A cognitive process in the FMF cannot for example have an awareness as input
or produce a physical movement as output. In discussions in which a researcher
familiar with one cognitive architecture attempts to explain the implications of
their model to a researcher versed in another cognitive architecture, any terms
that can’t be validated intuitively might easily be misinterpreted, making it
too unclear what is being discussed for the discussion to be conclusive. This
approach of confining behavior to an intuitively understandable functional state
space means that a significant source of ambiguity is potentially removed. As
a consequence, even when deducing the outcome of an unlimited number of



366 A. E. Williams

reasoning operations resulting in very complicated patterns of behaviors of the
cognitive system, like the patterns representing general problem solving ability,
arriving at an answer becomes reliably achievable.

Breaking cognitive architectures down to a set of discrete, objectively defined
functions that can be independently implemented by people from different disci-
plines might also facilitate massive interdisciplinary cooperation to do so, where
such cooperation has not proven possible before. In fact, functional modeling
approaches are commonly used in systems and software engineering to facili-
tate cooperation in the design of complex systems by removing the need for
individuals in interdisciplinary teams to understand each other’s approaches.
A functional modeling approach that is also human-centric enables functional
modeling to be extended to systems like consciousness or cognition for which
functions can be observed within our innate human awareness, but for which
the mechanisms of operation are unknown, and being unknown with no univer-
sally agreed upon models, researchers might propose models of those mechanisms
from mathematics, neurology, physics, or a wide variety of other backgrounds
that don’t necessarily understand each other. Without this human-centric func-
tional modeling to create the potential for massive interdisciplinary collaboration
across disciplines, and between projects to implement poorly understood human
functions like consciousness or cognition, the proliferation of models of cognition
may tend to remain in silos, and their lessons remain unexplored wherever the
complexity of translating between them remains too great to permit more than
a tiny minority of models to be readily understood by people in different fields.
With such a functional modeling approach, all work might be combined in a way
that has the potential to reliably converge on the functions of a working model
of AGI.

7 Conditions for an AGI to Be Valid in the FMF

In the FMF the ability to solve a specific problem, such as accomplished by
narrow AI, is represented as the lack of a path from one concept to another
concept, where that path is the solution. General problem solving ability is
the ability to sustainably execute a library of reasoning processes, including
reasoning processes that generate new reasoning, so that the cognitive system
navigates the conceptual space in a sustainable way that creates the potential
to navigate the entire cognitive space. That is, so it is potentially possible to
navigate from any problem to any solution. In order to be a valid model of
AGI, the FMF then requires this global stability in dynamics despite following
a potentially locally chaotic path through the conceptual space. Models that
don’t explicitly define a maximally general fitness space and that don’t explicitly
constrain the dynamics in that fitness space to be globally stable, fail in this
regard.
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8 Implementation

Through defining every cognitive architecture as implementing one or more of
these functions, the FMF aims to facilitate the use of best of breed implemen-
tations of each function to in turn facilitate convergence of all cognitive archi-
tectures into a single architecture that is more fit at representing cognition.
Beginning by defining functional models of all rational methodical reasoning
processes that can be catalogued (whether human deductive reasoning or reason-
ing defined in procedural software programs), and functional models of pattern
based processes (whether human intuitive reasoning or AI pattern detection),
the resulting library of reasoning might be used by all AGI implementations to
increase their general problem-solving ability [14] where those implementations
are compatible with such abstract functional models of reasoning. By defining
the fitness of each reasoning process in achieving each of its outcomes, each
implementation can gain the ability to reliably converge on the best reasoning
process regardless of the number of such processes. By defining the domains (in
terms of concepts) in which each implementation of each process is most fit in
achieving those outcomes, each cognitive architecture can store or retrieve this
information.

The FMF dictates that a number of functional components must be imple-
mented in an AGI. However, having defined these functional components and
their requirements, implementations of each component can proceed indepen-
dently of each other, and in fact may have already existed for some time and
might just need to be identified. Functional unit F3, for example, performs pat-
tern detection, and since some form of pattern detection is general to all neural
networks this has been demonstrated. In the case of position as in F1, sequence
detection as in F2, storage as in F4, and the generalization involved in learning
as in F7, we can show that each of these functions has been implemented as a
neural network (position [5,6], sequence detection [7,8], storage [9–11], and the
generalization [12,13]) and therefore that each mechanism has been explored in
an actual implementation. The FMF suggests that nature follows precise princi-
ples of intelligent cooperation (the domain of adaptation through cooperation)
that enable components of organisms to use decentralized cooperation to adapt
any functions of the organism. Where AGI engineers experience the inability to
coordinate and integrate the functions they create so those functions can coop-
erate, this may indicate that the interfaces defined by such efforts don’t follow
these specific principles by which the FMF suggests the implementation of such
functions might be decoupled.

9 Conclusions

A model suggested to represent an AGI has been presented. Defining general
human-like problem solving ability as a pattern of dynamical stability in cog-
nitive well-being space (cognitive fitness space), and defining well-being or fit-
ness more generally (the capacity to execute available cognitive functions) than
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might be the case with current cognitive architectures with more specific prob-
lem solving ability, this model is believed to be novel in identifying an equation
which represents general human-like problem solving ability in satisfying those
dynamics, and in identifying an algorithm for executing reasoning processes in
a way that approximates that equation. As a result, this model is proposed to
have the potential for general human-like problem solving ability. This model is
also potentially new in defining a minimally reducible set of cognitive functions.
While sophisticated AI implementations already exist, organization of all imple-
mentations by the same set of functional units enables problem solving reasoning
to be constructed the same way for every implementation, so that the library of
reasoning processes can steadily grow. Being able to compare the fitness of each
implementation of a reasoning process or other element of functionality can also
enable the fitness of all cognitive architectures to steadily improve in achieving
the functionality required for cognition. Finally, to reiterate, human beings intu-
itively represent systems in terms of their functions. By formalizing this process
of representation, this functional modeling approach enables AI researchers to
access the vast traditions in which the functions of human cognition have been
observed, where these observations have not been readily accessible to the sci-
ences before. Since these traditions provide experientially verifiable definitions of
terms that when defined intellectually are ambiguous, this in itself is a tremen-
dous contribution to AGI research. In other words, intellectual reasoning has a
capacity to arrive at truth that is finite (limited to problems in which adequate
reasoning and the facts to plug into that reasoning exist) and potentially unreli-
able (reliable only where such reasoning is computationally reducible or simple
enough to be accurately computed). Experiential reasoning has a capacity to
arrive at truth that is infinite (the truth of an infinite number of observations
can be experienced) and than can be reliable (experience can reliably be observed
wherever awareness is practiced enough that an observation can be accurately
identified as one’s experience). The more experiential and less intellectual the
discussion of cognition, potentially the more capable that discussion is of reliably
converging on the truth.
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5. Bruyndonckx, P., Léonard, S., Tavernier, S.: Neural network-based position esti-
mators for PET detectors using monolithic LSO blocks. IEEE Trans. Nuclear Sci.
51, 2520–2525 (2004). ieeexplore.ieee.org

https://doi.org/10.31234/osf.io/94gw3
https://doi.org/10.31234/osf.io/94gw3
https://doi.org/10.1016/j.procs.2015.12.198
https://doi.org/10.1016/j.procs.2015.12.198


A Model for AGI 369

6. Ebong, I.E., Mazumder, P.: CMOS and Memristor-based neural network design
for position detection. In: Proceedings of the IEEE (2012). ieeexplore.ieee.org

7. Sutskever, I., Vinyals, O.: Sequence to sequence learning with neural networks.
In: QV Le - Advances in Neural Information Processing Systems 27 (NIPS 2014).
papers.nips.cc

8. Houghton, G.: The problem of serial order: a neural network model of sequence
learning and recall - Current research in natural language generation (1990).
dl.acm.org

9. Nara, S., Davis, P., Totsuji, H.: Memory search using complex dynamics in a recur-
rent neural network model. Neural Netw. 6, 963–973 (1993). Elsevier

10. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man
Cybern. 42, 288–308 (1983). ieeexplore.ieee.org

11. Yao, K., Peng, B., Zhang, Y., Yu, D.: Spoken language understanding using long
short-term memory neural networks. In: 2014 IEEE Spoken Language Technology
Workshop (SLT) (2014). ieeexplore.ieee.org

12. Aranson, I.S., Pikovsky, A., Rulkov, N.F.: Advances in Dynamics, Patterns, Cog-
nition, LS Tsimring. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53673-6

13. Sietsma, J., Dow, R.J.F.: Creating artificial neural networks that generalize. Neural
Netw. 4, 67–79 (1991). Elsevier

14. Williams, A.E.: Defining Functional Models of Artificial Intelligence Solutions to
Create a Library that an Artificial General Intelligence can use to Increase General
Problem Solving Ability, 27 April 2020. http://www.osf.io/preprints/africarxiv/
hpzb7

15. Williams, A.E. (n.d.): A Mathematical Model for Identifying Truth in
Observations Made within Individual Human Self-Awareness. Retrieved from
osf.io/preprints/africarxiv/4nsgk

16. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: a systems-level architecture
for cognition, emotion, and learning. IEEE Trans. Autonom. Mental Dev. 6(1),
19–41 (2014)

17. Bach J.: A motivational system for cognitive AI. In: Schmidhuber J., Thórisson
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