
Chapter 2
On Stackelberg–Nash Equilibria
in Bilevel Optimization Games

Damien Bazin, Ludovic Julien, and Olivier Musy

Abstract Hierarchical games with strategic interactions such as the Stackelberg
two-stage game epitomize a standard economic application of bilevel optimization
problems. In this paper, we survey certain properties of multiple leader–follower
noncooperative games, which enable the basic Stackelberg duopoly game to
encompass a larger number of decision makers at each level. We focus notably on
the existence, uniqueness and welfare properties of these multiple leader–follower
games. We also study how this particular bilevel optimization game can be extended
to a multi-level decision setting.

Keywords Multiple leader–follower game · Stackelberg–Nash equilibrium

2.1 Introduction

Hierarchical optimization problems concern environments in which groups of
individuals decide in a sequential way. The strategic context of the agent is then
extended because the decision of each agent becomes influenced by the decisions
made by other agents in the past. The agent will also have to take into account
the consequences on these decisions of the choices that other individuals will
make in the future. In this context, two-level optimization problems correspond
to games which have two stages of interconnected decisions—the most common
category for such problems (Shi et al. [35], Dempe [12, 13], Sinha et al. [36]). In
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such environments there are at least two decision makers for which the convex set
mapping solution for the lower level problem becomes the feasible set for the upper
level problem (Bard [5]). Since this is a common feature of strategic interactions,
there are numerous applications of such optimization problems in recent literature,
for instance, in the fields of electricity markets (Hu and Ralph [19], Aussel et
al. [2, 3]), and transportation (see Dempe [13] or Dempe and Kalashnikov [14]).
Economics is the oldest field of application, as the first use of this strategic context
was proposed by Stackelberg in 1934, in his book on the study of oligopolies and
market structures (Stackelberg [38]1 ).

In the current paper, we use this initial application of bilevel optimization
problems in the study of industrial organization and market structures. More
specifically, we focus on the multiple leader–follower game, which extends the
initial Stackelberg duopoly game (restricted to one leader and one follower) to a
two-stage quantity setting noncooperative game.2 The first version of this model
was introduced by Sherali [33], and explored by Daughety [9], Ehrenmann [15],
Pang and Fukushima [31], Yu and Wang [40], DeMiguel and Xu [11], Julien [22],
and Aussel et al. [4]. This nontrivial extension to the basic duopoly game provides a
richer set of strategic interactions between several decision makers, notably because
the sequential decision making process introduces heterogeneity among firms.
Strategic interactions are more complex to handle because the game itself consists
of two Cournot simultaneous move games embedded in a Stackelberg sequential
competition game. The decision makers who interact simultaneously belong to the
same cohort, while those who interact sequentially belong to two distinct cohorts.
Decision makers are firms, and these firms are either leaders or followers. Indeed,
this model comprises strategic interactions at two levels of decisions as well as
strategic interactions at the same level of decisions.

Bearing in mind that this framework implies both simultaneous and sequential
interactions, we can define the corresponding strategic equilibrium concept as a
Stackelberg–Nash equilibrium (SNE). In this paper, we focus on the existence,
uniqueness and welfare properties of this noncooperative equilibrium, which is
still actively researched, especially in mathematical economics. We highlight three
points: first, the existence of an equilibrium is not trivial in the presence of several
followers. Second, the uniqueness of an equilibrium is based on strong technical
assumptions regarding the strict concavity of payments. Third, several properties
relating to market power and its consequences cannot be captured by the simple
duopoly model. By using examples, we also illustrate some of the main features in

1The book was published in 1934 in German, but was translated into English in 1952 by Oxford
University Press and 2011 by Springer. We refer to the 2011 version, as it corresponds to the
original 1934 book.
2To the best of our knowledge, the first extension of the Stackelberg duopoly was introduced by
Leitmann [29], who considered a model with one leader and several followers. This was further
developed by Murphy et al. [34]. It is worth noting that Stackelberg [38] had already envisaged the
possibility of several market participants (see Chap. 3).
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terms of welfare for this noncooperative equilibrium, which we then compare to the
Cournot–Nash equilibrium (CNE) and the competitive equilibrium (CE).

The remainder of the paper is structured as follows. In Sect. 2.2, we consider the
standard bilevel multiple leader–follower game and state a number of assumptions.
In Sect. 2.3, we define the Stackelberg–Nash equilibrium. Section 2.4 is devoted
to the existence and uniqueness of the Stackelberg–Nash equilibrium. Section 2.5
examines two important examples. In Sect. 2.6, we investigate some welfare proper-
ties of the Stackelberg–Nash equilibrium. In Sect. 2.7, we consider the challenging
extension to a multilevel decision setting, and in Sect. 2.8, we conclude.

2.2 The Model

We adopt the following notational conventions. Let x ∈ R
n+. Then, x ≥ 0 means

xi � 0, i = 1, . . . , n; x > 0 means there is some i such that xi > 0, with x �= 0,
and x >> 0 means xi > 0 for all i, i = 1, . . . , n. The notation f ∈ Cs(Rn)

is used to indicate that the function f has first through s-th continuous partial
derivatives on R

n. So, f ∈ C2(Rn) means f is twice-continuously differentiable.
A m dimensional vector function F is defined by F : A ⊆ R

n → B ⊆ R
m, with

F(x) = (f1(x), . . . , f2(x), . . . , fm(x)). The Jacobian matrix of F(x) with respect to

x at x̄ is denoted by JFx(x̄), with JFx(x̄) =
[

∂(f1,...,fj ,...,fm)

∂(x1,...,,xi ,...,xn)
(x̄)

]
. Its corresponding

determinant at x̄ is denoted by
∣∣JFx(x̄)

∣∣.
Let us consider a market with one divisible homogeneous product. On the

demand side, there is a large number of consumers (a continuum), whose behavior
is synthesized using a continuous market demand function, namely d : R+ → R+,
with p �−→ d(p), where p is the unit price of the good expressed in a numéraire.
Indeed, let X �−→ p(X) = d−1(X) be the market inverse demand function. This
function represents the maximum price consumers are willing to pay to buy the
quantity X. On the supply side, there is a finite number of decision makers, i.e.,
risk-neutral firms, whose finite set is F . The set of firms can be divided into two
subsets FL = {1, . . . , nL} and FF = {1, . . . , nF }, where FL is the subset of
leaders and FF the subset of followers, with FL ∪ FF = F and FL ∩ FF = ∅.
We consider |FL| � 1 and |FF | � 1, where |A| denotes the cardinality of set A.
Leaders are indexed by i, i ∈ FL, and followers are indexed by j , j ∈ FF . Firm i

(resp. j ) produces xi
L (resp. x

j
F ) units of the good. Likewise, xi

L and x
j
F represent

respectively the supply for leader i ∈ FL, and follower j ∈ FF . Each firm bears
some costs. Let Ci

L : R+ → R+, with xi
L −→ Ci

L(xi
L) be the cost function of leader

i ∈ FL. Likewise, for each j ∈ FF , we let C
j
F (x

j
F ). Thus, there is a market clearing

condition which stipulates that the demand balances the aggregate supply X, with
X ≡ ∑

i xi
L + ∑

j x
j
F .

We make the following set of assumptions regarding p(X). This we designate as
Assumption 2.2.1.
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Assumption 2.2.1 The price function p(X) satisfies:

(1a) p(X) � 0 for all X � 0, with p(X) ∈ C2(R++);
(1b) dp(X)

dX
< 0 for X � 0;

(1c) ∀x � 0, dp(X)
dX

+ kx
d2p(X)

(dX)2 � 0, where k > 0. �
(1a) indicates that the inverse demand function p(X) is positively valued, and

that it may or may not intersect the quantity axis and/or the price axis.
Therefore, (1a) does not impose too stringent a property on the demand
function: it may be strictly concave (convex) or linear, without imposing
certain boundary conditions. (1a) also indicates that p(X) is well-behaved:
it is twice continuously differentiable on the open set R++.

(1b) indicates that the market demand is strictly decreasing.
(1c) stipulates that marginal revenue for any single firm is a decreasing function

of total industry output. This formulation deserves two comments. First, we

do not impose that the price function be a concave function, i.e., d2p(X)

(dX)2 � 0,
so we do not preclude (strictly) convex market demand functions. Second, our
formulation of the decreasing marginal revenue hypothesis embodies the term
k. For any leader firm the term k satisfies k �= 1 unless leaders behave as
followers (as in the Cournot model for which k = 1).

Likewise, we designate as Assumption 2.2.2 the set of assumptions made
concerning the cost functions.

Assumption 2.2.2 The cost function Ch(xh), h ∈ F , satisfies:

(2a) ∀h ∈ F , Ch(xh) � 0 for all x � 0, with Ch(xh) ∈ C2(R++);

(2b) ∀h ∈ F , dCh(xh)

dxh > 0 and d2Ch(xh)

(dxh)2 � 0. �
(2a) stipulates that the cost functions are positive and twice continuously differen-

tiable on the open set R++.
(2b) requires that costs are increasing and convex for all firms (for a discussion on

this assumption, which may be weakened, see Julien [22]). When the costs are
concave functions, multiple optima may exist.

Let us consider now the noncooperative bilevel optimization game � associated
with this market. Let Si

L = [0,∞) be the strategy set of leader i ∈ FL, where the

supply xi
L represents the pure strategy of leader i ∈ FL. Similarly, let Sj

F = [0,∞),

where x
j
F is the pure strategy of follower j ∈ FF . Let xL = (x1

L, . . . , xi
L, . . . , x

nL

L )

be a strategy profile for all the leaders. Likewise, xF = (x1
F , . . . , x

j
F , . . . , x

nF

F )

is a strategy profile for all the followers. A strategy profile will be represented
by the vector (xL, xF ), with (xL, xF ) ∈ ∏

i∈FL
Si

L × ∏
j∈FF

Sj
F . In addition, let

x−i
L = (x1

L, . . . , xi−1
L , xi+1

L , . . . , x
nL

L ) and x−j
F = (x1

F , . . . , x
j−1
F , x

j+1
F , . . . , x

nF

F ).
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Therefore, the profits � : ∏
i∈FL

Si
L × ∏

j∈FF
Sj

F → R+ of each firm at the lower
and upper levels may be written in terms of payoffs as:

�i
L(xi

L,X−i ) = p(xi
L + X−i )xi

L − Ci
L(xi

L), i ∈ FL (2.2.1)

�
j
F (x

j
F ,X−j ) = p(x

j
F + X−j )x

j
F − C

j
F (x

j
F ), j ∈ FF , (2.2.2)

where X−i ≡ X − xi
L and X−j ≡ X − x

j
F . It is worth noting that under

Assumptions 2.2.1 and 2.2.2, the functions (2.2.1) and (2.2.2) are strictly concave.
The sequential game � displays two levels of decisions, namely 1 and 2, and

no discounting. We also assume that the timing of positions is given.3 Each leader
first chooses a quantity to sell, and each follower determines their supply based on
the residual demand. Information is again assumed to be complete. Information is
imperfect because at level 1 (resp. level 2) a leader (resp. a follower) cannot observe
what the other leaders (resp. other followers) decide: the multiple leader–follower
model is thus described by a two-stage game which embodies two simultaneous
move partial games. Indeed, the leaders play a two-stage game with the followers,
but the leaders (the followers) play a simultaneous move game together.

2.3 Stackelberg–Nash Equilibrium: A Definition

The main purpose of this section is to define the SNE. To this end, we study the
optimal behavior in each stage of the bilevel game. In this framework, strategic
interactions occur within each partial game but also between the partial games
through sequential decisions. It is worth noting that the critical difference from the
usual two-player games stem from the fact that the optimal decision made by a
follower does not necessarily coincide with their best response.4

Let us consider the second stage of the game �. Given any strategy profile for
leaders xL ∈ ∏

i Si
L and for all strategy profiles x−j

F ∈ ∏
−j S−j

F for all followers

but j , we can define φj : ∏
−j S−j

F × ∏
i Si

L → Sj
F , with x

j
F = φj (x−j

F , xL), j ∈
FF , as follower j ’s optimal decision mapping. Thus, the lower level optimization
problem for follower j may be written:5

3Hamilton and Slutsky [16] provide theoretical foundations for endogenous timing in duopoly
games and for the Stackelberg market outcome.
4One difficulty stems from the fact the followers’ optimal decision mappings may be mutually
inconsistent (Julien [22]).
5The same problem could be rewritten as follows. Let the objective of each firm be written as
−�

j
F (x

j
F ,X−j ) = C

j
F (x

j
F ) − p(x

j
F + X−j )x

j
F , for j ∈ FF . Then, the follower’s problem might

be written as φj (x−j
F , xL) := min{−�i

L(xi
L,X−i ) : (x−j

F , xL) ∈ ∏
−j

S−j
F × ∏

i

Si
L, x

j
F ∈ Sj

F }. A

Nash equilibrium has to be sought out between followers.



32 D. Bazin et al.

φj (x−j
F , xL) := max

{xj
F (.)}

{�j
F (x

j
F , x−j

F , xL) : (x−j
F , xL) ∈

∏
−j

S−j
F ×

∏
i

Si
L, x

j
F ∈ Sj

F }.

(2.3.1)

Let L(x
j
F , x−j

F , xL, λ) := �
j
F (x

j
F , x−j

F , xL) + λx
j
F be the Lagrangian, where

λ � 0 is the Kuhn–Tucker multiplier. By using Assumptions 2.2.1 and 2.2.2, the
first-order sufficient condition may be written:

∂L(x
j
F , x−j

F , xL, λ)

∂x
j
F

= p(X) + dp(X)

dX
x

j
F − dC

j
F (x

j
F )

dx
j
F

+ λ = 0 (2.3.2)

λ � 0, x
j
F � 0, with λx

j
F = 0.

With Assumptions 2.2.1 and 2.2.2, the optimal decision mapping φj (x−j
F , xL)

exists and is unique.6 Indeed, we have either φj (x−j
F , xL) = 0 or φj (x−j

F , xL) >

0. Therefore, if x
j
F > 0, then λ = 0, where x

j
F is the solution to the equation

p(X) + x
j
F

dp(X)
dX

− dC
j
F (x

j
F )

dx
j
F

= 0, which yields φj (x−j
F , xL) > 0. Now, if λ > 0,

then x
j
F = 0, which means that φj (x−j

F , xL) = 0. Then, φj (x−j
F , xL) � 0, j ∈ FF .

In addition, as for Assumptions 2.2.1 and 2.2.2, �
j
F is strictly concave in x

j
F , then,

according to Berge Maximum Theorem, φj (x−j
F , xL) is continuously differentiable.

This function is not a best response function since it also depends on the decisions
of the other followers who make their decision at the lower level. By using the
implicit function theorem, we have that:

∂φj (x−j
F , xL)

∂x
−j
F

= −
dp(X)
dX

+ x
j
F

d2p(X)

(dX)2

2 dp(X)
dX

+ x
j
F

d2p(X)

(dX)2 − d2C
j
F (x

j
F )

(dx
j
F )2

, (2.3.3)

as
∂φj (x−j

F ,xL)

∂x
−j
F

= −
∂2�

j
F

(.)

∂x
j
F

∂x
−j
F

∂2�
j
F

(.)

(∂x
j
F

)2

. We have that ∂φj (.)

∂x
−j
F

∈ (−1, 0), when φj (.) > 0, and

∂φj (.)

∂x
−j
F

= 0 when φj (.) = 0. Then, ∂φj (.)

∂x
−j
F

∈ (−1, 0], −j, j ∈ FF . In addition, it is

possible to show that ∂φj (.)

∂xi
L

∈ (−1, 0], i ∈ FL, j ∈ FF .

6The payoff function is strictly concave and the strategy set is compact and convex.
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We assume that the followers’ optimal behaviors as studied in stage 1 of the
bilevel optimization process are consistent (see Sect. 2.4).7 Then, the system of
equations which determines such best responses has a unique solution, so we can
define the best response for follower j as ϕj : ∏

i∈FL
Si

L → Sj
F , with x

j
F = ϕj (xL),

j ∈ FF .8 Let ϕ : ∏
i∈FL

Si
L → ∏

i∈FL
Sj

F , with ϕ = (
ϕ1(xL), . . . , ϕnF (xL)

)
, be

the vector of best responses. The vector function ϕ(xL) constitutes a constraint for
the decision maker at the upper level as we now have p(X) = p(xi

L + X−i
L +∑

j ϕj (xi
L + X−i

L )), where X−i
L ≡ ∑

−i,−i �=i x−i
L .

Therefore, at the upper level of the game, leader i’s optimal decision, which is
defined by ψi : ∏

−i∈FL
S−i

L → Si
L, with xi

L = ψi(x−i
L ), is the solution to the

problem:

ψi(x−i
L ) := max

{xi
L(.)}

{�i
L(xi

L, x−i
L ,ϕ(xL)) : x−i

L ∈
∏
−i

S−i
L , xi

L ∈ Si
L}. (2.3.4)

Let L(xi
L, x−i

L , μ) := �i
L(xi

L, x−i
L , ϕ(xL))+μxi

L be the Lagrangian, where μ �
0 is the Kuhn–Tucker multiplier. As p(X) = p(xi

L + X−i
L + ∑

j ϕj (xi
L + X−i

L )),
which is continuous (see Julien [22]), the Kuhn–Tucker conditions may be written:

∂L(xi
L, x−i

L , μ)

∂xi
L

= p (X) +
(

1 + νi
)

xi
L

dp(X)

dX
− dCi

L(xi
L)

dxi
L

+ μ = 0 (2.3.5)

μ � 0, xi
L � 0, with μxi

L = 0,

The term νi = ∂
∑

j ϕj (xL)

∂xi
L

, with νi � −1, represents the reaction of all followers

to leader i’s strategy, i.e., the slope of the aggregate best response to i, i ∈ FL. By
construction, νi = ν−i = ν for all i,−i ∈ FL. Let k = (1 + ν). We may have either
ψi(x−i

L ) = 0 or ψi(x−i
L ) > 0.

7This is one critical difference with the standard duopoly game in which the optimal decision of
the follower coincides with their best response. Julien [22] provides a consistency condition which
helps determine each optimal decision as a function of the strategy profile for the leaders. Indeed,
we give a sufficient nondegeneracy condition on the determinant of the Jacobian matrix associated
with the set of equations that allows us to implicitly define the best response mappings. Under this
condition, the set of equations which implicitly determines the best responses is a variety of the
required dimension, that is, the corresponding vector mapping which defines this set of equations
is a C1-diffeomorphism. Here this criterion is satisfied as long as Assumptions 2.2.1 and 2.2.2 both
hold. These assumptions can be weakened. It is worth noting that our notion of consistency differs
from the notion of price consistency in Leyffer and Munson [30] that results in a square nonlinear
complementarity problem.
8It is possible to show that the best responses are not increasing, so the game displays actions which
are strategic substitutes. Please note that the condition is sufficient, so strategic complementarities
could exist provided they are not too strong.
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By using Assumptions 2.2.1 and 2.2.2, it is possible to show that, for each i ∈ FL,
the second-order sufficient condition holds:

∂2�i
L(xi

L, x−i
L )

(∂xi
L)2

= k

(
kxi

L

d2p(X)

(dX)2
+ 2

dp(X)

dX

)
− d2Ci

L(xi
L)

(dxi
L)2

< 0. (2.3.6)

Finally, it is worth noting that
∂2�i

L(.)

∂xi
L∂x−i

L

= k
(
k

dp(X)
dX

+ xi
L

d2p(X)

(dX)2

)
� 0, for each

i ∈ FL; and, by using the implicit function theorem, we have that

∂ψi(.)

∂x−i
L

= −
∂2�i

L(.)

∂xi
L∂x−i

L

∂2�i
L(.)

∂(xi
L)2

= −
k

dp(X)
dX

+ k2xi
L

d2p(X)

(dX)2

2k
dp(X)
dX

+ k2xi
L

d2p(X)

(dX)2 − d2Ci
L(xi

L)

(dxi
L)2

, (2.3.7)

so we can deduce that ∂ψj (.)

∂x
−j
F

∈ (−1, 0], for all −i �= i, −i, i ∈ FL.

The solution to the nL equations such as (2.3.5) yields the strategy profile for
the leaders x̃L = (x̃1

L, . . . , x̃i
L, . . . , x̃

nL

L ). From the set of the best responses, i.e.,
(ϕ1(xL), . . . , ϕnF (xL)), it is possible to deduce the strategy profile for followers
x̃F = (x̃1

F , . . . , x̃
j
F , . . . , x̃

nF

F ).
We are now able to provide a definition of an SNE for this bilevel game.

Definition 2.3.1 (SNE) A Stackelberg–Nash equilibrium of � is given by a strat-
egy profile

(
x̃L,ϕ(x̃L)

) ∈ ∏
i∈FL

Si
L × ∏

j∈FF

Sj
F , with x̃F = ϕ(x̃L), where ϕ :

∏
i∈FL

Si
L → ∏

j∈FF

Sj
F , such that conditions C1 and C2 hold:

C1 ∀i ∈ FL �i
L

(
x̃i
L, x̃−i

L ,ϕ(x̃i
L, x̃−i

L )
)
� �i

L

(
xi
L, x̃−i

L ,ϕ(xi
L, x̃−i

L )
)

, ∀ϕ(xL) ∈
∏

j∈FF

Sj
F , ∀x−i

L ∈ ∏
−i∈FL

S−i
F and ∀xi

L ∈ Si
L;

C2 ∀j ∈ FF �
j
F (x̃

j
F , x̃−j

F , x̃L) � �
j
F (x

j
F , x̃−j

F , x̃L), ∀x
j
F ∈ Sj . �

2.4 Stackelberg–Nash Equilibrium: Existence
and Uniqueness

Existence and uniqueness problems are complex in this framework as there are
several decision makers at each level: strategic interactions occur within levels but
also between the two levels through sequential decisions. Indeed, the nL leaders
play a two-stage game with the nF followers, but the leaders (the followers) play
a simultaneous move game together. Therefore, the bilevel game � displays two
partial games, namely the lower level game �F and the upper level game �L.
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The equilibrium of the entire game � is a pure strategy subgame perfect Nash
equilibrium (SPNE), while the equilibria in each partial game are Nash equilibria.
We state two results which pertain to existence and uniqueness. Then, we discuss
existence and uniqueness within the literature.

The following Theorem may be stated for the bilevel game � under considera-
tion.

Theorem 2.4.1 (Existence of SNE) Let us consider the game �, and let Assump-
tions 2.2.1 and 2.2.2 be satisfied. Then, there exists a Stackelberg–Nash equilibrium.

�
Proof Here we provide heuristic proof (for more details, see notably Julien [22]
with weaker assumptions on costs). As we have many decision makers at the lower
and upper levels, we show that there exists a Nash equilibrium at each level of
the game, i.e., there exists a strategy profile (x̃L, x̃F ) ∈ ∏

i Si
L × ∏

j Sj
F such

that the leaders and followers strategic optimal plans are mutually consistent. We
define the function �L : ∏

i Si
L → ∏

i Si
L, with �L(xL) = ×nL

i=1ψ
i . The function

�(xL) is continuous (as each ψi given by the solution for (2.3.5) is continuous
under Assumptions 2.2.1 and 2.2.2 in xL on

∏
i Si

L, a compact and convex subset of
Euclidean space (as the product of compact and convex strategy sets Si

L, i ∈ FL).
Then, according to the Brouwer Fixed Point Theorem, the function �(xL) has a
fixed point x̃L ∈ ∏

i Si
L, with components x̃i

L, where x̃i
L ∈ Si

L, for each i ∈ FL.
This fixed point is a pure strategy Nash equilibrium of the subgame �L. Now let us
define �F : ∏

j Sj
F × ∏

i Si
L → ∏

j Sj
F × ∏

i Si
L, with �F (xF , xL) = ×nF

j=1φ
j ,

where, for each j , φj is the solution to (2.3.2). Given that x̃L ∈ ∏
i Si

L, we have

that �F (xF , x̃L) = ×nF

j=1φ
j (x−j

F , x̃L). A similar argument as the one made for

the leaders shows that the function �F (xF , x̃L) has a fixed point x̃F ∈ ∏
j Sj

F ,

with components x̃
j
F , where x̃

j
F ∈ Sj

F , for all j ∈ FF . This fixed point is a pure
strategy Nash equilibrium of the subgame �F . But then, the point (x̃L, x̃F ), with
(x̃L, x̃F ) ∈ ∏

i Si
L × ∏

j Sj
F exists, which constitutes a SPNE of �. ��

The existence of an equilibrium is obtained here under mild conditions for
market demand and costs. Some of these conditions could be relaxed provided
the remaining conditions are completed with additional restrictions. For instance,
convexity of costs for all firms is not necessary.

The next theorem relies on the uniqueness of the SNE (see Julien [22]).

Theorem 2.4.2 (Uniqueness of SNE) Let Assumptions 1 and 2 be satisfied. Then,
if a Stackelberg–Nash equilibrium exists, it is unique. �

Proof To show uniqueness, we consider πL =
(

∂�1
L

∂x1
L

, . . . ,
∂�i

L

∂xi
L

, . . . ,
∂�

nL
L

∂x
nL
L

)
(see

Julien [22] for more details). Let
∣∣J−πL

(x̃L, x̃F )
∣∣, with J−πL

= −
(

∂2�i
L

∂xi
L∂x−i

L

)
,

where
∂�i

L

∂xi
L

= p(X) + kxi
L

dp(X)
dX

− dCi
L(xi

L)

dxi
L

. By using Corollary 2.1 in Kolstad
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and Mathiesen [26]), as leaders in the partial game �L behave like Cournot firms,
we show this criterion is satisfied, so the SNPE in �L is unique. It is possible to
show that:

∣∣J−πL

∣∣ =
⎛
⎜⎝1 − k

∑
i∈FL

dp(X)
dX

+ kxi
L

d2p(X)

(dX)2

d2Ci
L(xi

L)

(dxi
L)2 − k

dp(X)
dX

⎞
⎟⎠

∏
i∈FL

(
d2Ci

L(xi
L)

(dxi
L)2

− k
dp(X)

dX

)
.

(2.4.1)

Then, as sign
∣∣J−πL

∣∣ = sign(1 − k
∑

i∈FL

dp(X)
dX

+kxi
L

d2p(X)

(dX)2

d2Ci
L

(xi
L

)

(dxi
L

)2
−k

dp(X)
dX

), by using the assumptions

on costs and demand, we deduce:

∣∣J−πL
(x̃L, x̃F )

∣∣ > 0. (2.4.2)

As
∣∣J−πL

(x̃L, x̃F )
∣∣ > 0 there exists a unique Nash equilibrium in the subgame �L.

Now, given a unique point x̃L, and by using a similar argument as the one made
previously for the upper level, it is possible to show that

∣∣J−πF
(x̃L, x̃F )

∣∣ > 0 at
the lower level, with k = 1, in (2.4.1). Then, there is a unique pure strategy Nash
equilibrium in the subgame �F . Then, the SPNE of � is unique, which proves the
uniqueness of the SNE. ��
Remark 2.4.3 If we assume symmetry, the condition for the sign for

∣∣J−πL
((x̃L,x̃F )

∣∣
may be rewritten as dp(X)

dX
+ kxi

L
d2p(X)

(dX)2 < 1
knL

(
d2Ci

L(xi
L)

(dxi
L)2 − k

dp(X)
dX

)
, which

would indicate that “on average” leaders’ marginal revenues could be increased

but not too much. In addition,
d2Ci

L(xi
L)

(dxi
L)2 − k

dp(X)
dX

+ nL

(
dp(X)
dX

+ kxi
L

d2p(X)

(dX)2

)
=

∂2�1
L

(∂x1
L)2 + (nL − 1)

∂2�i
L

∂xi
L∂x−i

L

< 0: the effect of a change in xi
L on i’s marginal profit

dominates the sum of the cross effects of similar changes for the supply of other
leaders. �
The uniqueness of an SNE holds under strong assumptions. It can happen that
multiple Nash equilibria exist at both levels. At the lower level as well as the upper
level, multiplicity of equilibria can be generated by strong strategic complemen-
tarities caused either by nonconvex costs or market demand functions which do
not intersect the axis. The multiplicity of Nash equilibria can lead to coordination
failures problems.

Existence and uniqueness have already been explored in the multiple leader–
follower model. Sherali [33] shows existence and uniqueness with identical convex
costs for leaders, and states some results under the assumptions of linear demand
with either linear or quadratic costs (Ehrenmann [15]). Sherali’s model is an
extension of the seminal paper by Murphy et al. [34] which covers the case of
many followers who interact with one leader. In their model the authors provide
a characterization of the SNE, along with an algorithm to compute it. They state
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a Theorem 1 which gives the properties of the aggregate best response for the
followers expressed as a function of the leader’s strategy. This determination stems
from a family of optimization programs for the followers based on a price function
which is affected by the supply of the leader. They show that this aggregate function
is convex, and then, study the problem faced by the leader. Nevertheless, they do
not study the conditions under which the followers’ optimal decisions are mutually
consistent. In the same vein, Tobin [37] provides an efficient algorithm to find a
unique SNE by parameterizing the price function by the leader’s strategy. Some
strong assumptions are made on the thrice-differentiability of the price function and
the cost to the leader.

More recently, in line with De Wolf and Smeers [10] and DeMiguel and Xu
[11] extend the work by Sherali [33] to include uncertainty with stochastic market
demand. Unlike Sherali [33] they allow costs to differ across leaders. Nevertheless,
to show that the expected profit of any leader is concave, they assume that the
aggregate best response of the followers is convex. However as this assumption does
not always hold, these authors must resort to a linear demand. Pang and Fukushima
[31], Yu and Wang [40], and Jia et al. [20] prove the existence of an equilibrium
point of a finite game with two leaders and several followers without specifying
the assumptions made on demand and costs. Kurkarni and Shanbhag [27] show that
when the leaders’ objectives admit a quasi-potential function, the global and local
minimizers of the leaders’ optimization problems are global and local equilibria
of the game. Finally, Aussel et al. [2] study the existence of an equilibrium in the
electricity markets.

2.5 The Linear and the Quadratic Bilevel Optimization
Games

In this section, we consider two standard bilevel optimization games: the linear
model with asymmetric costs and the quadratic model with symmetric costs. The
following specification holds in both models. There are nL � 1 leader(s) and
nF � 1 follower(s), with nL + nF = n. Let p(X) = a − bX, a, b > 0, where
X ≡ XL + XF , with XL ≡ ∑nL

i=1 xi
L and XF ≡ ∑nF

j=1 x
j
F .

2.5.1 The Linear Bilevel Optimization Game

The costs functions are given by Ci
L(xi

L) = ci
Lxi

L, i = 1, . . . , nL, and by C
j
F (x

j
F ) =

c
j
F x

j
F , j = 1, . . . , nF , with ci

L, c
j
F < a, for all i and all j . The strategy sets are

given by Si
L = [0, a

b
− ci

L], i ∈ FL, andSj
F = [0, a

b
− c

j
F ], j ∈ FF .

As a point of reference, when each firm is a price-taker and does not behave
strategically, the competitive equilibrium (CE), is such that the market price and
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the aggregate supply are given by p∗ = min{c1
L, . . . , c

nL

L , c1
F , . . . , c

nF

F } and
X∗ = a−c∗

b
, where c∗ = min{c1

L, . . . , c
nL

L , c1
F , . . . , c

nF

F }. The corresponding

payoffs are given by (�i
L)∗ = 0 (resp. (�

j
F )∗ = 0) when ci

L = c∗ (resp.

c
j
F = c∗). In addition, the Cournot–Nash equilibrium (CNE), in which all firms

play simultaneously, is given by x̂i
L = a+∑

−i �=i c−i
L +∑

j c
j
F −(nL+nF )ci

L

b(nL+nF +1)
, i ∈ FL,

x̂
j
F = a+∑

i ci
L+∑

−j �=j c
−j
F −(nL+nF )c

j
F

b(nL+nF +1)
, j ∈ FF , X̂ = a(nL+nF )−nLci

L−nF c
j
F

b(nL+nF +1)
, and

p̃ = a+nLci
L+nF c

j
F

nL+nF +1 , with corresponding payoffs

�̂i
L = (a − (nL + 1)ci

L + nF c
j
F )(a + ∑

−i �=i c−i
L + ∑

j c
j
F − (nL + nF )ci

L)

b(nL + nF + 1)2
, i ∈ FL,

�̂
j
F = (a + nLci

L − (nF + 1)c
j
F )(a + ∑

i ci
L + ∑

−j �=j c
−j
F − (nL + nF )c

j
F )

b(nL + nF + 1)2 , j ∈ FF .

At the lower level, follower j ’s problem may be written as follows:

φj (x−j
F , xL) : max{[a − b(x

j
F + X

−j
F + XL) − c

j
F x

j
F ]xj

F : Sj
F = [0,

a

b
− c

j
F ]}.
(2.5.1)

The optimal decision mapping for follower j corresponding to the solution to
Eq. (2.3.2) is given by:

φj (x−j
F , xL) = a − c

j
F

2b
− 1

2
(X

−j
F + XL), (2.5.2)

where X
−j
F ≡ ∑

−j �=j x
−j
F . The best response for follower j , j ∈ FF , is given by

the convex linear function:

ϕj (xL) =a + ∑
−j �=j c

−j
F − nF c

j
F

b(nF + 1)
− 1

nF + 1
XL. (2.5.3)

At the upper level, as the price function may be written as p(XL) = a+∑
j c

j
F

nF +1 −
b

nF +1XL, leader i’s optimal decision mapping ψi(x−i
L ) is the solution to the upper

level optimization problem, which may be written as follows:

ψi(x−i
L ) : max

{[
a + ∑

j c
j
F

nF + 1
− b(xi

L + X−i
L )

nF + 1
− ci

L

]
xi
L : Si

L = [0,
a

b
− ci

L]
}

.

(2.5.4)
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The optimal decision mapping of leader i is given by:

ψi(x−i
L ) = a − (nF + 1)ci

L + ∑
j c

j
F

2b
− 1

2
X−i

L . (2.5.5)

We deduce the equilibrium strategy for leader i:

x̃i
L = a − (nF + 1)ci

L + ∑
j c

j
F

b(nL + 1)
, i ∈ FL. (2.5.6)

Then, as X̃L ≡ ∑
i x̃i

L = anL+nL

∑
j c

j
F −(nF +1)

∑
i ci

L

b(nL+1)
, by using (2.5.2), we can

deduce the equilibrium strategy for follower j :

x̃
j
F = a − (nF + 1)c

j
F − nL

∑
j c

j
F + (nF + 1)

∑
i ci

L

b(nL + 1)(nF + 1)
, j ∈ FF . (2.5.7)

Therefore as X̃F ≡ ∑
j x̃

j
F = anF −(nF nL+nL+1)

∑
j c

j
F +nF (nF +1)

∑
i ci

L

b(nL+1)(nF +1)
, so the

market price is given by:

p̃ = a + (nF + 1)
∑

i ci
L + ∑

j c
j
F

(nL + 1)(nF + 1)
. (2.5.8)

The payoffs are then given by:

�̃i
L = A[a − (nF + 1)ci

L + ∑
j c

j
F ]

b(nL + 1)2(nF + 1)
, i ∈ FL; (2.5.9)

�̃
j
F = B[a − (nF + 1)c

j
F − nL

∑
j c

j
F + (nF + 1)

∑
i ci

L]
b[(nL + 1)(nF + 1)]2

, j ∈ FF , (2.5.10)

where A ≡ a + (nF +1)
∑

i ci
L +∑

j c
j
F − (nL +1)(nF +1)ci

L and B ≡ a + (nF +
1)

∑
i ci

L + ∑
j c

j
F − (nL + 1)(nF + 1)c

j
F .

Finally, consider the particular case where Ci
L(xi

L) = cxi
L, i = 1, . . . , nL, and by

C
j
F (x

j
F ) = cx

j
F , j = 1, . . . , nF , with c < a. The CE, is such that aggregate supply

and market price are given respectively by X∗ = a−c
b

, p∗ = c, and (�i)∗ = 0,

i = 1, . . . , n.9 The CNE is given by x̂i
L = x̂

j
F = a−c

b(nL+nF +1)
, X̂ = (a−c)(nL+nF )

b(nL+nF +1)
X∗,

9The CE supplies are given by ((xi
L)∗, (xj

F )∗) = (αX∗, (1 − α)X∗), with α ∈ (0, 1). In what
follows, we consider the symmetric outcome for which α = 1

2 .
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p̃ = a+c(nL+nF )
nL+nF +1 , and �̂i

L = �̂
j
F = (a−c)2

b(nL+nF +1)2 , i ∈ FL, j ∈ FF . The SNE is given

by x̃i
L = a−c

b(nL+1)
, i ∈ FL, x̃

j
F = a−c

b(nL+1)(nF +1)
, j ∈ FF , p̃ = a+c[nL(nF +1)+nF ]

(nL+1)(nF +1)
,

�̃i
L = (a−c)2

b(nL+1)2(nF +1)
, i ∈ FL, and �̃

j
F = (a−c)2

b[(nL+1)(nF +1)]2 , j ∈ FF .

We can observe that for each i ∈ FL, we have �̃i
L � �̂i

L whenever nL �√
nF + 1: any leader will achieve a higher payoff provided the number of leaders is

not too high.10 It is worth noting that limnL→∞ p̃ = c (resp. lim(nL,nF )→(∞,∞) p̃ =
c): so when the number of leaders (resp. leaders and followers) becomes arbitrarily
large the SNE market price coincides with the CE price p∗. This result holds with
the CNE in case either the number of leaders or followers goes to infinity (in the
inclusive sense!).

2.5.2 The Quadratic Bilevel Optimization Game

The costs functions are given by Ci
L(xi

L) = c
2 (xi

L)2, i = 1, . . . , nL, and by

C
j
F (x

j
F ) = c

2 (x
j
F )2, j = 1, . . . , nF , with c < a, for all i and all j . The strategy sets

are given by Si
L = [0, a

b
− c

2 (xi
L)2], i ∈ FL, andSj

F = [0, a
b

− c
2 (xi

L)2], j ∈ FF .

The CNE is given by x̂i
L = a

b(nL+nF +1)+c
, for all i ∈ FL, x̂

j
F = a

b(nL+nF +1)+c
,

for all j ∈ FF , p̂ = a(b+c)
b(nL+nF +1)+c

, and �̂i
L = a2(2b+c)

[b(nL+nF +1)+c]2 , for all i ∈ FL,

�̂
j
F = a2(2b+c)

[b(nL+nF +1)+c]2 , for all j ∈ FF .
Consider now the SNE. By following the same procedure as for the linear bilevel

game, the SNE equilibrium supplies are given by:

x̃i
L = a

b(nL + 1) + c( b
b+c

nF + 1)
, i ∈ FL; (2.5.11)

x̃
j
F = a[b + c(1 + b

b+c
nF )]

[c + b(nF + 1)][b(nL + 1) + c( b
b+c

nF + 1)] , j ∈ FF . (2.5.12)

Therefore, we deduce the market price

p̃ = a(b + c)[b + c(1 + b
b+c

nF )]
[c + b(nF + 1)][b(nL + 1) + c( b

b+c
nF + 1)] . (2.5.13)

10The welfare properties of the bilevel optimization linear game with symmetric costs are explored
in Daughety [9], Julien et al. [24, 25], and in Julien [23].
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The corresponding payoffs are given by:

�̃i
L = a2(2b2 + 3bc + c2 + bcnF )

2[c + b(nF + 1)][b(nL + 1) + c( b
b+c

nF + 1)]2
, i ∈ FL, (2.5.14)

�̃
j
F = a2(2b + c)[b + c(1 + b

b+c
nF )]2

2[c + b(nF + 1)]2[b(nL + 1) + c( b
b+c

nF + 1)]2
, j ∈ FF . (2.5.15)

It is easy to check that, as the production of any leader is higher than the
production of any follower, the payoff of any leader is higher.

2.6 Stackelberg–Nash Equilibrium: Welfare Properties

We now turn to the nonoptimality of the SNE and some of its welfare properties.
To this end, we compare the SNE market outcome with the CNE, and with the CE.
Next, we consider the relation between market concentration and surplus, and also
the relation between individual market power, payoffs and mergers.

2.6.1 The SNE, CNE and CE Aggregate Market Outcomes

We can state the following proposition, which represents a well-known result.

Proposition 2.6.1 Let X̃, X̂, and X∗ be respectively the SNE, the CNE, and the
CE aggregate supplies; and p̃, p̂, and p∗ the corresponding market prices. Then,
X̂ < X̃ < X∗, and p∗ < p̃ < p̂. �
In the bilevel optimization game, the leaders can set a higher supply. In addition, the
increment in the aggregate supply of leaders more than compensates for the decrease
in the aggregate supply of followers when the aggregate best response is negatively
sloped, whereas it goes in the same direction when the aggregate best response
increases, i.e., when strategies are complements.11 Therefore, the aggregate supply
(market price) is higher (lower) in the SNE than in the CNE, both when strategies
are substitutes and when they are complements. The following example illustrates
that the noncooperative sequential game leads to higher traded output than in the
noncooperative simultaneous game (see Daughety [9]).

11When the slope of the aggregate best response is zero, then the SNE can coincide with the CNE
(see notably Julien [21]).
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Noncooperative Sequential Game Leads to Higher Traded Output
Consider the linear bilevel game given by (2.5.1)–(2.5.10), where Ci

L(xi
L) =

cxi
L, i = 1, . . . , nL, and by C

j
F (x

j
F ) = cx

j
F , j = 1, . . . , nF , with c <

a. From (2.5.6) and (2.5.7), we can deduce X̃L = nL

nL+1X∗ and X̃F =
nF

(nL+1)(nF +1)
X∗. Then, the aggregate supply is X̃ = nLnF +nL+nF

(nL+1)(nF +1)
X∗, which

may be written as X̃(nL, n) = n+nnL−n2
L

(nL+1)(n−nL+1)
X∗. We see that X̃ < X∗.

Then, we obtain p∗ < p̃ = a+c[nL(nF +1)+nF ]
(nL+1)(nF +1)

. We can observe that X̃(0, n) =
X̃(n, n) = n

n+1X∗, which corresponds to the Cournot–Nash equilibria, and

X̃(2, n) = 4n−9
4(n−2)

< X̃(2, n) = 3n−4
3(n−1)

> X(1, n) = 2n−1
2n

> X(0, n).

Then, for fixed n, the aggregate supply is concave in nL, i.e., ∂2X(nL,n)

(∂nL)2 =
− 2X∗

(nL+1)3(n−nL+1)
< 0. Indeed, the Cournot–Nash aggregate supply is given

by X̂(nL, nF ) = nL+nF

nL+nF +1X∗. Then, we have X̂(nL, nF ) < X̃(nL, nF ).

Remark 2.6.2 When the aggregate best response for followers has a zero slope in
equilibrium, the leaders rationally expect that each strategic decision they undertake
should entail no reactions from the followers (Julien [21]). �

2.6.2 Welfare and Market Power

If we are to define welfare when studying the variation in aggregate supply for
this framework, we must take into consideration the shares of aggregate supply of
leaders and followers. In accordance with Julien [23], let ϑL ≡ XL

X
, with 0 � ϑL �

1, and ϑF ≡ XF

X
, with 0 � ϑF � 1, and where ϑL + ϑF = 1. Therefore, the social

surplus may be defined as:

S(X) :=
∫ X

0
p(z)dz − (

∑
i∈FL

Ci
L(si

LϑLX) +
∑
j∈FF

C
j
F (s

j
F ϑF X)), with X � X∗,

(2.6.1)

where si
L ≡ xi

L

XL
is leader i’s market share, and s

j
F ≡ x

j
F

XF
is follower j ’s market

share. Differentiating partially with respect to X and decomposing p(X) leads to:

∂S(X)

∂X
=

∑
i∈FL

si
LϑL(p(X) − dCi

L(xi
L)

dX
) +

∑
j∈FF

s
j
F ϑF (p(X) − dC

j
F (x

j
F )

dX
) � 0,

(2.6.2)
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as we have that
∑

i∈FL
si
LϑL + ∑

j∈FF
s
j
F ϑF = 1, and for fixed si

L, s
j
F , ϑL and ϑF ,

with ∂S(X)
∂X |X=X∗ = 0.

The social surplus is hence higher at the SNE than at the CNE, and reaches its
maximum value at the CE.12 Therefore, one essential feature of the SNE bilevel
game is that the strategic interactions between leaders and followers may be welfare
enhancing.

Remark 2.6.3 Daughety [9] shows that, if the aggregate supply is used as a measure
of welfare, welfare may be maximized when there is considerable asymmetry in the
market, whereas symmetric (Cournot) equilibria for which nL = 0 and nL = n

minimize welfare. Thus, the concentration index may no longer be appropriate for
measuring welfare. �

2.6.3 Market Power and Payoffs

We now compare the SNE payoffs with the CNE payoffs. To this end, the optimal
conditions (2.3.2) and (2.3.5) may be expressed respectively as:

p (X) = (1 + mi
L)

dCi
L(xi

L)

dxi
L

, with mi
L = 1

1 + 1+ν
ε

ϑLsi
L

− 1, i ∈ FL; (2.6.3)

p (X) = (1 + m
j
F )

dC
j
F (x

j
F )

dx
j
F

, with m
j
F = 1

1 + 1
ε
ϑF s

j
F

− 1, j ∈ FF , (2.6.4)

where mi
L and m

j
F are leader i’s and follower j ’s markups, and ε is the price

elasticity of demand, that is, ε ≡ dp(X)
dX

p
X

.
To analyze the relation between market power and individual payoffs, let us

consider:

Li
L = −1 + ν

ε
ϑLsi

L, i ∈ FL; (2.6.5)

L
j
F = −1

ε
ϑF s

j
F , j ∈ FF . (2.6.6)

12Indeed, ∂SC(X)
∂X

= −X
dp(X)
dX

> 0, with SC(X) := ∫ X

0 p(z)dz − p(X)X. In addition, if we

let SP (X) := p(X)(ϑL

∑nL

i=1 si
L + ϑF

∑nF

j=1 s
j
F )X − ∑nL

i=1 Ci
L(si

LϑLX) − ∑nF

j=1 C
j
F (s

j
F ϑF X),

then dSP (X)
dX

= p(X) + X
dp(X)
dX

− [ϑL

∑nL

i=1 si
L

dCi
L(si

LϑLX)

dX
+ ϑF

∑nF

j=1 s
j
F

dC
j
F (s

j
F ϑF X)

dX
] < 0 (from

Assumption 2.2.2b).
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where Li
L and L

j
F are the Lerner indexes for follower j and for leader i respec-

tively.13

Proposition 2.6.4 If Li
L > L

j
F , then �̃i

L > �̃
j
F , i ∈ FF , j ∈ FF . In addition, if

Li
L = L

j
F for all i ∈ FF and j ∈ FF , then, �̃i

L � �̃
j
F if and only if ν � 0, i ∈ FF ,

j ∈ FF . �
Proof Immediate from the definition of the Lerner index and by using (2.6.3)
and (2.6.4). ��
It is worth pointing out that there are certain differences in leaders’ (resp. followers’)
payoffs caused by asymmetries in costs. As this bilevel game embodies strategic
interactions among several leaders and followers, we now explore the possibility of
merging.

2.6.4 Welfare and Mergers

The strategic effects of merging on welfare depend on the noncooperative strategic
behavior which prevails in the SNE. The following example illustrates the welfare
effects of merging (see Daughety [9]).

Welfare Effects
Consider the linear bilevel game given by (2.5.1)–(2.5.10), where Ci

L(xi
L) =

cxi
L, i = 1, . . . , nL, and by C

j
F (x

j
F ) = cx

j
F , j = 1, . . . , nF , with c < a.

Let X̃(nL, n) = n+nnL−n2
L

(nL+1)(n−nL+1)
X∗. First, a merger means that one firm

disappears from the market. Consider the following three cases:

1. The merger of two leaders so that the post merger market has nL−1 leaders
but still n − nL followers;

2. The merger of two followers, so that there are nL leaders but n − nL − 1
followers; and

3. The merger of one leader and one follower, so that there are nL leaders but
n − nL − 1 followers.

(continued)

13The Lerner index for any decision maker is defined in an SNE as the ratio between the excess of

the price over the marginal cost and the price, that is, L := p(X)− dc(x)
dx

p(X)
.
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Therefore, in case 1, calculations yield

X̃(nL − 1, n − 1) − X̃(nL, n) = − (n − 1)nL(nL + 3) − 2nL + 1

nL(nL + 1)(n − nL + 1)
X∗ < 0.

In cases 2 and 3, we obtain X̃(nL, n − 1) − X̃(nL, n) =
− 1

(nL+1)(n−nL)(n−nL+1)
X∗ < 0. Thus, welfare is always reduced. Second, if

we now consider that the number of leaders increases, the comparative statics
yields:

∂X̃(nL, n)

∂nL

= n − 2nL

(nL + 1)2(n − nL + 1)2 X∗ � 0 for n � 2nL,

∂X̃(nL, n)

∂n
= 1

(nL + 1)(n − nL + 1)2
X∗ > 0,

and

∂2X̃(nL, n)

∂nL∂n
= n − 2nL

(nL + 1)2(n − nL + 1)2
X∗ � for 3nL + 1 � n.

The last effect captures the effect on welfare of changes in industry structure.
If we now consider that two followers merge and behave as a leader firm,
there are n − 1 firms with nL + 1 leaders and n − nL − 2. Using algebra leads
to X̃(nL + 1, n − 1) − X̃(nL, n) = n−3(nL+1)

(nL+1)(nL+2)(n−nL−1)(n−nL+1)
X∗ > 0

whenever nL < n
3 − 1: so, when there are few leaders, merging can increase

aggregate supply. More asymmetry is beneficial; it is socially desirable as it
enhances welfare. However when nL > n

2 , fewer leaders and more followers
could increase welfare.

The difference between the two cases can be explained by the fact that, in
the second case, the reduction of the number of followers is associated with
an increase in the number of leaders.

Remark 2.6.5 It can be shown that two firms which belong to the same cohort and
have the same market power rarely have an incentive to merge, whereas a merger
between two firms which belong to two distinct cohorts and have different levels
of market power is always profitable as the leader firm incorporates the follower
firm regardless of the number of rivals. In the SNE the merger better internalizes the
effect of the increase in price on payoffs than in the CNE: the decrease in supply is
lower than under Cournot quantity competition. �
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2.7 Extension to Multilevel Optimization

Bilevel optimization models have been extended to three-level optimization envi-
ronments (see Bard and Falk [6], Benson [7], Han et al. [17, 18], among others),
and to T -level optimization with one decision maker at each level (Boyer and
Moreaux [8], Robson [32]). The three level optimization game has been studied
in depth by Alguacil et al. [1] and Han et al. [17]. The existence of a noncooperative
equilibrium in the multilevel optimization with several decision makers at each level
remains an open problem. Nevertheless, the multiple leader–follower game may be
extended to cover a T -stage decision setting in the case of the linear model (Watt
[39], Lafay [28], and Julien et al. [24, 25]). The extended game should represent a
free entry finite horizon hierarchical game. We will focus on the computation and
on certain welfare properties. To this end, and for the sake of simplicity, we consider
an extended version of the linear model studied in Sect. 2.5, where Ci

L(xi
L) = cxi

L,

i = 1, . . . , nL, and by C
j
F (x

j
F ) = cx

j
F , j = 1, . . . , nF , with c < a.

There are now T levels of decisions indexed by t , t = 1, 2, . . . , T . Each level
embodies nt decision makers, with

∑T
t=1 nt = n. The full set of sequential levels

represents a hierarchy. The supply of firm i in level t is denoted by xi
t . The aggregate

supply in level t is given by Xt ≡ ∑nt

i=1 xi
t . The nt firms behave as leaders with

respect to all firms at levels τ > t , and as followers with respect to all firms at levels
τ < t . The price function may be written as p = p(

∑
t Xt ). Let p(X) = a − bX,

a, b > 0, where X ≡ ∑
t Xt . The costs functions are given by Ci

t (x
i
t ) = cxi

t , i =
1, . . . , nt , t = 1, . . . , T , with c < a. The strategy sets are given by Si

t = [0, a
b

− c],
i = 1, . . . , nt , t = 1, . . . , T .

Bearing in mind this framework, if firms compete as price-takers, the CE is still
given by X∗ = a−c

b
, p∗ = c, and (�i

t )
∗ = 0, i = 1, . . . , nt , t = 1, . . . , T . The

CNE is given by x̂i
t = 1∑T

t=1 nt+1
X∗, X̂ =

∑T
t=1 nt∑T

t=1 nt+1
X∗, p̂ = a+c

∑T
t=1 nt∑T

t=1 nt+1
, and

�̂i
t = (a−c)2

b
1

(
∑T

t=1 nt+1)2
, i = 1, . . . , nt , t = 1, . . . , T .

At level t , firm i’s profit is given by:

�i
t (x

i
t , X

−i
t ,

T∑
τ,τ �=t

Xτ ) = [a − b(xi
t + X−i

t +
T∑

τ,τ �=t

Xτ )]xj
F − cx

j
F . (2.7.1)

Therefore, the problem of firm i at level t may be written as follows:

max
{xi

t }
�i

t (x
i
t , X

−i
t ,

t−1∑
τ=1

Xt−τ ,

T −t∑
τ=1

Xt+τ ) := [a − c − b(xi
t + X−i

t +
t−1∑
τ=1

Xt−τ +
T −t∑
τ=1

Xt+τ )]xi
t ,

(2.7.2)
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where X−i
t ≡ Xt − xi

t , and
∑t−1

τ=1 Xt−τ and
∑T −t

τ=1 Xt+τ denote respectively the
aggregate supply of all leaders at level t −τ for τ ∈ {1, . . . , t −1} and the aggregate
supply of all followers at level t + τ for τ ∈ {1, . . . , T − t}.

The solution to this program yields the optimal decision for firm i at stage t , i.e.,
xi
t = φi

t (X
−i
t ,

∑T
τ,τ �=t Xτ ). By solving recursively from the last level T to the first

level 1, it is possible to deduce the equilibrium strategy for any firm at any stage (see
Watt [39]). Indeed, the SNE strategy of firm i at stage t may be written as follows:14

x̃i
t =

(
t∏

τ=1

1

nτ + 1

)
X∗, t = 1, . . . , T . (2.7.3)

Therefore, the aggregate supply is given by:

X̃ =
(

T∑
t=1

nt

∏t

τ=1

1

nτ + 1

)
X∗. (2.7.4)

Then, we deduce the market price:

p̃ = c + (a − c)

(
t∏

τ=1

1

nτ + 1

)
. (2.7.5)

Then, the payoffs are given by:

�̃i
t = (a − c)2

b

(
t∏

τ=1

1

(nτ + 1)2

T∏
τ=t+1

1

nτ + 1

)
, t = 1, . . . , T − 1; (2.7.6)

�̃i
T = (a − c)2

b

(
T∏

τ=1

1

(nτ + 1)2

)
. (2.7.7)

It is worth noting that the specification T = 2, nt = 1, t = 1, 2, corresponds to
the standard bilevel duopoly game. The specification T = 2, n1 = nL and n2 = nF ,
corresponds to the linear bilevel game from Sect. 2.5.

Proposition 2.7.1 Consider a market with linear demand and identical constant
marginal costs, then the T -level Stackelberg game coincides with a multilevel
Cournot game in which firms compete oligopolistically on the residual demands.

�

14For computations of the equilibrium values, see notably Watt [39], Lafay [28], Julien and Musy
[24], and Julien et al. [24, 25].
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Proof See Julien et al. [25] who show that the assumptions of linear demand
and identical (strictly positive) constant marginal costs are necessary and sufficient
conditions for Proposition 2.7.1 to hold. ��
Therefore each firm within a given stage behaves as if there were no subsequent
stages, i.e., it is as if the direct followers for firm i in stage t do not matter. This
generalizes the t-stage monopoly property of Boyer and Moreaux [8].

To explore the welfare properties of the linear T -level model, let us define ω, the
index of social welfare X̃, as:

ω =
∏T

τ=1
κtnt = 1 −

∏T

τ=1

1

nτ + 1
= 1 + κ1,T . (2.7.8)

Then, we are able to state the following two propositions (see Julien et al. [24]).

Proposition 2.7.2 When the number of firms becomes arbitrarily large, either by
arbitrarily increasing the number of firms at each stage by keeping the number of
stages T constant, i.e., ∀t , nt → ∞, given T < ∞, or by increasing the number of
stages without limit, i.e., T → ∞, the T -level SNE aggregate supply converges to
the CE aggregate supply. �
Proof Immediate from the two limits given by limT →∞(

∏T
τ=1 κtnt ) = 1 and

limnt→∞ (
∏T

τ=1 κtnt ) = 1. ��
Proposition 2.7.3 In the T -level linear economy, social welfare can be maximized
by enlarging the hierarchy or by changing the size of existing stages through the
reallocation of firms from the most populated stage until the size of all stages is
equalized. �
Proof See Julien et al. [24]. The relocation reflects the merger analysis provided
in Daughety [9] (see preceding subsection). When the number of levels is fixed, the
relocation is welfare improving until there is the same number of firms at each level.

��
Remark 2.7.4 A sequential market structure with one firm per stage Pareto domi-
nates any other market structure, including the CNE (see Watt [39]). �
Remark 2.7.5 It can be verified that the firms’ surplus in the SNE may be inferior
to the firms’ surplus in the CNE when T � 3, so the firm which chooses to be at the
upper level may be better off if the other firms are supplying simultaneously. �
The results contained in Propositions 2.7.2 and 2.7.3 may be used to analyze how
an increase in the number of decision makers affects welfare. Indeed, when a new
firm enters at level t it causes a decrease in market price as we have

p̃(

t∑
τ=1

X̃τ + x̃
nt+1
t ) − p̃(

t∑
τ=1

X̃τ ) = a − c

nt

∏T
τ=1(nτ + 1)

< 0, (2.7.9)



2 On Stackelberg–Nash Equilibria in Bilevel Optimization Games 49

where x̃
nt+1
t , with x̃

nt+1
t > 0, represents the supply of the additional firm. In

addition, the maximization of welfare implies the most asymmetric distribution
of market power. Nevertheless, these results are valid in a linear economy with
identical costs. Indeed, if costs are different, entry is affected by some relocations or
extensions. Lafay [28] uses a T -level game in which firms enter at different times or
have different commitment abilities. Here firms bear different constant marginal
costs. The linear T -level optimization game confirms the positive effect of an
increase in the number of decision makers on welfare. However, the salient feature
is that firms must now forecast future entries in the market. Indeed, asymmetric
costs could make entry inefficient. If the firm reasons backwards, and the price is
lower when there is further entry, the firm enters the market provided its costs do
not exceed the resulting market price.15

2.8 Conclusion

We have proposed a short synthesis of the application of bilevel optimization
to some simple economic problems related to oligopolistic competition. Using
standard assumptions in economics relative to the differentiability of objective
functions, we have presented some elements to characterize the Stackelberg–Nash
equilibrium of the noncooperative two-stage game, where the game itself consists
of two Cournot simultaneous move games embedded in a Stackelberg sequential
competition game.

The tractability of the model, especially when assuming linearity of costs and
demand, makes it possible to derive certain welfare implications from this bi-level
optimization structure, and to compare it with standard alternatives in terms of
market structures. Indeed, the T -level optimization game represents a challenge to
the modeling of strategic interactions.

Acknowledgements The authors acknowledge an anonymous referee for her/his helpful com-
ments, remarks and suggestions on an earlier version. Any remaining deficiencies are ours.
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2. D. Aussel, P. Bendotti, M. Pištěk, Nash equilibrium in a pay-as-bid electricity market: part
1—existence and characterization. Optimization 66(6), 1013–1025 (2017)

15Lafay [28] shows that when constant marginal costs differ among firms, the price contribution
by an additional entrant may not be negative since the strategies of all firms are modified when a
firm no longer enters the market.



50 D. Bazin et al.

3. D. Aussel, P. Bendotti, M. Pištěk, Nash equilibrium in a pay-as-bid electricity market part
2-best response of a producer. Optimization 66(6), 1027–1053 (2017)

4. D. Aussel, G. Bouza, S. Dempe, S. Lepaul, Multi-leader disjoint-follower game: formulation as
a bilevel optimization problem (2018). Preprint 2018-10, TU Bergakademie Freiberg, Fakultät
für Mathematik und Informatik

5. J.F. Bard, Convex two-level optimization. Math. Program. 40(1–3), 15–27 (1988)
6. J.F. Bard, J.E. Falk, An explicit solution to the multi-level programming problem. Comput.

Oper. Res. 9(1), 77–100 (1982)
7. H.P. Benson, On the structure and properties of a linear multilevel programming problem. J.

Optim. Theory Appl. 60(3), 353–373 (1989)
8. M. Boyer, M. Moreaux, Perfect competition as the limit of a hierarchical market game. Econ.

Lett. 22(2–3), 115–118 (1986)
9. A. F. Daughety, Beneficial concentration, The American Economic Review 80 (1990), no. 5,

1231–1237.
10. D. De Wolf, Y. Smeers, A stochastic version of a Stackelberg–Nash–Cournot equilibrium

model. Manag. Sci. 43(2), 190–197 (1997)
11. V. DeMiguel, H. Xu, A stochastic multiple-leader Stackelberg model: analysis, computation,

and application. Oper. Res. 57(5), 1220–1235 (2009)
12. S. Dempe, Foundations of Bilevel Programming (Springer, Berlin, 2002)
13. S. Dempe, Bilevel optimization: theory, algorithms and applications, in Bilevel Optimization:

Advances and Next Challenges, ed. by S. Dempe, A.B. Zemkoho (Springer, Berlin, 2019)
14. S. Dempe, V. Kalashnikov, Optimization with Multivalued Mappings: Theory, Applications

and Algorithms, vol. 2 (Springer, Berlin, 2006)
15. A. Ehrenmann, Manifolds of multi-leader Cournot equilibria. Oper. Res. Lett. 32(2), 121–125

(2004)
16. J.H. Hamilton, S.M. Slutsky, Endogenous timing in duopoly games: Stackelberg or Cournot

equilibria. Games Econ. Behav. 2(1), 29–46 (1990)
17. J. Han, J. Lu, Y. Hu, G. Zhang, Tri-level decision-making with multiple followers: model,

algorithm and case study. Inform. Sci. 311, 182–204 (2015)
18. J. Han, G. Zhang, J. Lu, Y. Hu, S. Ma, Model and algorithm for multi-follower tri-level

hierarchical decision-making, in International Conference on Neural Information Processing
(Springer, Berlin, 2014), pp. 398–406

19. X. Hu, D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with
locational prices. Oper. Res. 55(5), 809–827 (2007)

20. W. Jia, S. Xiang, J. He, Y. Yang, Existence and stability of weakly Pareto–Nash equilibrium
for generalized multiobjective multi-leader–follower games. J. Global Optim. 61(2), 397–405
(2015)

21. L.A. Julien, A note on Stackelberg competition. J. Econ. 103(2), 171–187 (2011)
22. L.A. Julien, On noncooperative oligopoly equilibrium in the multiple leader–follower game.

Eur. J. Oper. Res. 256(2), 650–662 (2017)
23. L.A. Julien, Stackelberg games, in Handbook of Game Theory and Industrial Organization, ed.

by L. Corchon, M. Marini, vol. 1 (Edward Elgar Publishing, Cheltenham, 2018), pp. 261–311
24. L. Julien, O. Musy, A. Saïdi, Do followers really matter in Stackelberg competition? Lect.

Econ. 75(2), 11–27 (2011)
25. L.A. Julien, O. Musy, A.W. Saïdi, On hierarchical competition in oligopoly. J. Econ. 107(3),

217–237 (2012)
26. C.D. Kolstad, L. Mathiesen, Necessary and sufficient conditions for uniqueness of a Cournot

equilibrium. Rev. Econ. Stud. 54(4), 681–690 (1987)
27. A.A. Kulkarni, U.V. Shanbhag UV, An existence result for hierarchical stackelberg v/s

stackelberg games. IEEE Trans. Automat. Contr. 60(12), 3379–3384 (2015)
28. T. Lafay, A linear generalization of Stackelberg’s model. Theory Decis. 69 (2010), no. 2, 317–

326.
29. G. Leitmann, On generalized Stackelberg strategies. J. Optim. Theory Appl. 26(4), 637–643

(1978)



2 On Stackelberg–Nash Equilibria in Bilevel Optimization Games 51

30. S. Leyffer, T. Munson, Solving multi-leader-common-follower games. Optimization Methods
& Software 25(4), 601–623 (2000)

31. J.-S. Pang M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and
multi-leader–follower games. Comput. Manag. Sci. 2(1), 21–56 (2005)

32. A.J. Robson, Stackelberg and Marshall. Am. Econ. Rev. 69–82 (1990)
33. H.D. Sherali, A multiple leader Stackelberg model and analysis. Oper. Res. 32(2), 390–404

(1984)
34. H.D. Sherali, A.L. Soyster, F.H. Murphy, Stackelberg–Nash–Cournot equilibria: characteriza-

tions and computations. Oper. Res. 31(2), 253–276 (1983)
35. C. Shi, G. Zhang, J. Lu, On the definition of linear bilevel programming solution. Appl. Math.

Comput. 160(1), 169–176 (2005)
36. A. Sinha, P. Malo, K. Deb, A review on bilevel optimization: from classical to evolutionary

approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)
37. R.L. Tobin, Uniqueness results and algorithm for Stackelberg–Cournot–Nash equilibria. Ann.

Oper. Res. 34(1), 21–36 (1992)
38. H. Von Stackelberg, Market Structure and Equilibrium (Springer, Berlin, 2011). Translation

from the German language edition: Marktform und Gleichgewicht (New York, 1934)
39. R. Watt, A generalized oligopoly model. Metroeconomica 53(1), 46–55 (2002)
40. J. Yu, H.L. Wang, An existence theorem for equilibrium points for multi-leader–follower

games. Nonlinear Anal. Theory Methods Appl. 69(5–6), 1775–1777 (2008)


	2 On Stackelberg–Nash Equilibria in Bilevel Optimization Games
	2.1 Introduction
	2.2 The Model
	2.3 Stackelberg–Nash Equilibrium: A Definition
	2.4 Stackelberg–Nash Equilibrium: Existence and Uniqueness
	2.5 The Linear and the Quadratic Bilevel Optimization Games
	2.5.1 The Linear Bilevel Optimization Game
	2.5.2 The Quadratic Bilevel Optimization Game

	2.6 Stackelberg–Nash Equilibrium: Welfare Properties
	2.6.1 The SNE, CNE and CE Aggregate Market Outcomes
	2.6.2 Welfare and Market Power
	2.6.3 Market Power and Payoffs
	2.6.4 Welfare and Mergers

	2.7 Extension to Multilevel Optimization
	2.8 Conclusion
	References


