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A Unified Framework for Multistage
Mixed Integer Linear Optimization

Suresh Bolusani, Stefano Coniglio, Ted K. Ralphs, and Sahar Tahernejad

Abstract We introduce a unified framework for the study of multilevel mixed
integer linear optimization problems and multistage stochastic mixed integer linear
optimization problems with recourse. The framework highlights the common
mathematical structure of the two problems and allows for the development of a
common algorithmic framework. Focusing on the two-stage case, we investigate, in
particular, the nature of the value function of the second-stage problem, highlighting
its connection to dual functions and the theory of duality for mixed integer linear
optimization problems, and summarize different reformulations. We then present
two main solution techniques, one based on a Benders-like decomposition to
approximate either the risk function or the value function, and the other one based
on cutting plane generation.

Keywords Multilevel optimization · Multistage stochastic optimization ·
Discrete optimization · Primal and dual functions · Decomposition methods ·
Convexification-based methods

18.1 Introduction

This article introduces a unified framework for the study of multilevel mixed
integer linear optimization problems and multistage stochastic mixed integer linear
optimization problems with recourse. This unified framework provides insights into
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the nature of these two well-known classes of optimization problems, highlights
their common mathematical structure, and allows results from the wider literature
devoted to both classes to be exploited for the development of a common algorithmic
framework.

18.1.1 Motivation

Historically, research in mathematical optimization, which is arguably the most
widely applied theoretical and methodological framework for solving optimization
problems, has been primarily focused on “idealized” models aimed at informing the
decision process of a single decision maker (DM) facing the problem of making a
single set of decisions at a single point in time under perfect information. Techniques
for this idealized case are now well developed, with efficient implementations
widely available in off-the-shelf software.

In contrast, most real-world applications involve multiple DMs, and decisions
must be made at multiple points in time under uncertainty. To allow for this
additional complexity, a number of more sophisticated modeling frameworks have
been developed, including multistage and multilevel optimization. In line with the
recent optimization literature, we use the term multistage optimization to denote
the decision process of a single DM over multiple time periods with an objective
that factors in the (expected) impact at future stages of the decisions taken at the
current stage. With the term multilevel optimization, on the other hand, we refer to
game-theoretic decision processes in which multiple DMs with selfish objectives
make decisions in turn, competing to optimize their own individual outcomes in the
context of settings such as, e.g., economic markets.

Because the distinction between multistage and multilevel optimization problems
appears substantial from a modeling perspective, their development has been
undertaken independently by different research communities. Indeed, multistage
problems have arisen out of the necessity to account for stochasticity, which is done
by explicitly including multiple decision stages in between each of which the value
of a random variable is realized. Knowledge of the precise values of the quantities
that were unknown at earlier stages allows for so-called recourse decisions to be
made in later stages in order to correct possible mis-steps taken due to the lack of
precise information. On the other hand, multilevel optimization has been developed
primarily to model multi-round games (technically known as finite, extensive form
games with perfect information in the general case and Stackelberg games in the
case of two rounds) in which the decision (or strategy) of a given player at a given
round must take into account the reactions of other players in future rounds.

Despite these distinctions, these classes of problems share an important common
structure from a mathematical and methodological perspective that makes consider-
ing them in a single, unifying framework attractive. It is not difficult to understand
the source of this common structure—from the standpoint of an individual DM,
the complexity of the decision process comes from uncertainty about the future.
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From an analytical perspective, the methods we use for dealing with the uncertainty
arising from a lack of knowledge of the precise values of input parameters to later-
stage decision problems can also be used to address the uncertainty arising from a
lack of knowledge of the future actions of another self-interested player. In fact,
one way of viewing the outcome of a random variable is as a “decision” made
by a DM about whose objective function nothing is known. Both cases require
consideration of a set of outcomes arising from either the different ways in which the
uncertain future could unfold or from the different possible actions the other players
could take. Algorithms for solving these difficult optimization problems must,
either explicitly or implicitly, rely on efficient methods for exploring this outcome
space. This commonality turns out to be more than a philosophical abstraction. The
mathematical connections between multistage and multilevel optimization problems
run deep and existing algorithms for the two cases already exhibit common features,
as we illustrate in what follows.

18.1.2 Focus

In the rest of this article, we address the broad class of optimization problems that
we refer to from here on by the collective name multistage mixed integer linear
optimization problems. Such problems allow for multiple decision stages, with
decisions at each stage made by a different DM and with each stage followed by
the revelation of the value of one or more random variables affecting the available
actions at the subsequent stages. Each DM is assumed to have their own objective
function for the evaluation of the decisions made at all stages following the stage
at which they make their first decision, including stages whose decision they do
not control. Importantly, the objective functions of different DMs may (but do not
necessarily) conflict. Algorithmically, the focus of such problems is usually on
determining an optimal decision at the first stage. At the point in time when later-
stage decisions must be made, the optimization problem faced by those DMs has
the same form as the one faced by early-stage DMs but, in it, the decisions made
at the earlier stages act as deterministic inputs. Note that, while we have assumed
different DMs at each stage, it is entirely possible to model scenarios in which a
single DM makes multiple decisions over time. From a mathematical standpoint,
this latter situation is equivalent to the case in which different DMs share the same
objective function and we thus do not differentiate these situations in what follows.

Although the general framework we introduce applies more broadly, we focus
here on problems with two decision stages and two DMs, as well as stochastic
parameters whose values are realized between the two stages. We further restrict our
consideration to the case in which we have both continuous and integer variables but
the constraints and objective functions are linear. We refer to these problems as two-
stage mixed integer linear optimization problems (2SMILPs). Despite this restricted
setting, the framework can be extended to multiple stages and more general forms
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of constraints and objective functions in a conceptually straightforward way (see,
e.g., Sect. 18.3.3).

18.2 Related and Previous Work

In this section, we give a brief overview of related works. The literature on these
topics is vast and the below overview is not intended to be exhaustive by any means,
but only to give a general sense of work that has been done to date. The interested
reader should consult other articles in this volume for additional background and
relevant citations.

18.2.1 Applications

Multilevel and multistage structures, whose two level/stage versions are known as
bilevel optimization problems and two-stage stochastic optimization problems with
recourse (2SPRs), arise naturally in a vast array of applications of which we touch
on only a small sample here.

In the modeling of large organizations with hierarchical decision-making pro-
cesses, such as corporations and governments, Bard [8] discusses a bilevel corporate
structure in which top management is the leader and subordinate divisions, which
may have their own conflicting objectives, are the followers. Similarly, government
policy-making can be viewed from a bilevel optimization perspective: [10] models a
government encouraging biofuel production through subsidies to the petro-chemical
industry, while [5] models a central authority that sets prices and taxes for hazardous
waste disposal while polluting firms respond by making location-allocation and
recycling decisions.

A large body of work exists on interdiction problems, which model competitive
games where two players have diametrically opposed goals and the first player
has the ability to prevent one or more of the second player’s possible activities
(variables) from being engaged in at a non-zero level. Most of the existing literature
on these problems has focused on variations of the well-studied network interdiction
problem [47, 65, 76, 80, 81, 105, 139, 141], in which the lower-level DM is an entity
operating a network of some sort and the upper-level DM (or interdictor) attempts to
interdict the network as much as possible via the removal (complete or otherwise) of
portions (subsets of arcs or nodes) of the network. A more general case which does
not involve networks (the so-called linear system interdiction problem) was studied
in [79] and later in [52]. A related set of problems involves an attacker disrupting
warehouses or other facilities to maximize the resulting transportation costs faced
by the firm (the follower) [35, 117, 144]. A trilevel version of this problem involves
the firm first fortifying the facilities, then the attacker interdicting them, and finally
the firm re-allocating customers [34]. More abstract graph-theoretical interdiction
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problems in which the vertices of a graph are removed in order to reduce the graphs’
stability/clique number are studied in [38, 59, 113].

Multilevel problems arise in a wide range of industries. For instance, in the con-
text of the electricity industry, Hobbs and Nelson [78] applies bilevel optimization
to demand-side management while [68] formulates a trilevel problem with power
network expansion investments in the first level, market clearing in the second,
and redispatch in the third. Coniglio et al. [43] and Côté et al. [48] address the
capacity allocation and pricing problem for the airline industry. Dempe et al. [51]
presents a model for the natural-gas shipping industry. A large amount of work has
been carried out in the context of traffic planning problems, including constructing
road networks to maximize users’ benefits [16], toll revenue maximization [93],
and hazardous material transportation [84]. For a general review on these problems
and for one specialized to price-setting, the reader is referred to [92, 106]. More
applications arise in chemical engineering and bioengineering in the design and
control of optimized systems. For example, Clark and Westerberg [36] optimizes a
chemical process by controlling temperature and pressure (first-stage actions) where
the system (second stage) reaches an equilibrium as it naturally minimizes the Gibbs
free energy. Burgard et al. [25] develops gene-deletion strategies (first stage) to
allow overproduction of a desired chemical by a cell (second stage). In the area
of telecommunication networks, bilevel optimization has been used for modeling
the behavior of a networking communication protocol (second-level problem) which
the network operator, acting as first-level DM, can influence but not directly control.
The case of routing over a TCP/IP network is studied in [1–4, 39].

The literature on game theory features many works on bilevel optimization
problems naturally arising from the computation of Stackelberg equilibria in
different settings. Two main variants of the Stackelberg paradigm are typically
considered: one in which the followers can observe the action that the leader draws
from its commitment and, therefore, the commitment is in pure strategies [133],
and one in which the followers cannot do that directly and, hence, the leader’s
commitment can be in mixed strategies [45, 134]. While most of the works focus on
the case with a single leader and a single follower (which leads to a proper bilevel
optimization problem), some work has been done on the case with more than two
players: see [12–14, 31, 41, 42, 44, 104] for the single-leader multi-follower case,
[61, 95, 98, 99, 124] for the multi-leader single-follower case, or [30, 91, 96, 108]
for the multi-leader multi-follower case. Practical applications are often found
in security games, which correspond to competitive situations where a defender
(leader) has to allocate scarce resources to protect valuable targets from an attacker
(follower) [6, 87, 109, 128]. Other practical applications are found in, among others,
inspection games [7] and mechanism design [116]. The works on the computation
of a correlated equilibrium [32] as well those on Bayesian persuasion [33], where a
leader affects the behavior of the follower(s) by a signal, also fall in this category.

Finally, there are deep connections between bilevel optimization and the algorith-
mic decision framework that drives branch and bound itself, and it is likely that the
study of bilevel optimization problems may lead to improved methods for solving
single-level optimization problems. For example, the problem of determining the
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disjunction whose imposition results in the largest bound improvement within a
branch-and-bound framework and the problem of determining the maximum bound-
improving inequality are themselves bilevel optimization problems [40, 102, 103].
The same applies in n-ary branching when one looks for a branching decision
leading to the smallest possible number of child nodes [97, 115].

Multistage problems and, in particular, two-stage stochastic optimization prob-
lems with recourse, arise in an equally wide array of application areas, including
scheduling, forestry, pollution control, telecommunication and finance. Grass and
Fischer [67] surveys literature, applications, and methods for solving disaster-
management problems arising in the humanitarian context. Gupta et al. [69]
addresses network-design problems where, in the second stage, after one of a finite
set of scenarios is realized, additional edges of the network can be bought, and
provides constant-factor approximation algorithms. A number of works address the
two-stage stochastic optimization with recourse version of classical combinatorial
optimization problems: among others, [54] considers the spanning-tree problem,
[86] the matching problem, and [64, 66] the vehicle routing problem. For references
to other areas of applicability, see the books [18, 83] and, in particular, [135].

18.2.2 Algorithms

The first recognizable formulations for bilevel optimization problems were intro-
duced in the 1970s in [24] and this is when the term was also first coined. Beginning
in the early 1980s, these problems attracted increased interest. Vicente and Calamai
[131] provides a large bibliography of the early developments.

There is now a burgeoning literature on continuous bilevel linear optimization,
but it is only in the past decade that work on the discrete case has been undertaken in
earnest by multiple research groups. Moore and Bard [107] was the first to introduce
a framework for general integer bilevel linear optimization and to suggest a simple
branch-and-bound algorithm. The same authors also proposed a more specialized
algorithm for binary bilevel optimization problems in [9]. Following these early
works, the focus shifted primarily to various special cases, especially those in
which the lower-level problem has the integrality property. Dempe [49] considers
a special case characterized by continuous upper-level variables and integer lower-
level variables and uses a cutting plane approach to approximate the lower-level
feasible region (a somewhat similar approach is adopted in [50] for solving a
bilinear mixed integer bilevel problem with integer second-level variables). Wen
and Yang [137] considers the opposite case, where the lower-level problem is a
linear optimization problem and the upper-level problem is an integer optimization
problem, using linear optimization duality to derive exact and heuristic solutions.

The publication of a general algorithm for pure integer problems in [53] (based
on the groundwork laid in a later-published dissertation [52]) spurred renewed inter-
est in developing general-purpose algorithms. The evolution of work is summarized
in Table 18.1, which indicates the types of variables supported in both the first and
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Table 18.1 Evolution of
algorithms for bilevel
optimization

Citation Stage 1 variable types Stage 2 variable types

[137] B C

[9] B B

[56] B, C B, C

[114] B, C B, C

[62] B C

[52, 53] G G

[90] G or C G

[11] B, C C

[142] G G, C

[143] G, C G, C

[28] G G

[27] B B

[77] B, C B, C

[127] G, C G, C

[136] G G

[101] G G, C

[57, 58] G, C G, C

second stages (C indicates continuous, B indicates binary, and G indicates general
integer). The aforementioned network interdiction problem is a special case that
continues to receive significant attention, since tractable duality conditions exist for
the lower-level problem [47, 65, 76, 80, 81, 105, 139, 141].

As for the case of multistage stochastic optimization, the two-stage linear
stochastic optimization problem with recourse in which both the first- and second-
stage problems contain only continuous variables has been well studied both
theoretically and methodologically. Birge and Louveaux [18] and Kall and Mayer
[83] survey the related literature. The integer version of the problem was first
considered in the early 1990s by Louveaux and van der Vlerk [100] for the
case of two-stage problems with simple integer recourse. Combining the methods
developed for the linear version with the branch-and-bound procedure, Laporte
and Louveaux [94] proposed an algorithm known as the integer L-shaped method
where the first-stage problem contains only binary variables. Due to the appealing
structural properties of a (mixed) binary integer optimization problem, a substantial
amount of literature since then has been considering the case of a two-stage stochas-
tic problem with (mixed) binary variables in one or both stages [60, 120, 123]. The
case of two-stage problems with a pure integer recourse has also been frequently
visited, see [89, 119]. It must be noted that methods such as these, which are
typically developed for special cases, often rely on the special structure of the
second-stage problem, thus being often not applicable to the two-stage problem with
mixed integer restrictions. Algorithms for stochastic optimization problems with
integer recourse were proposed by Carøe and Tind [29] and Sherali and Fraticelli
[122].
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18.3 Setup and Preliminaries

The defining feature of a multistage optimization problem is that the values of the
first-stage variables (sometimes called upper-level or leader variables in the bilevel
optimization literature) must be (conceptually) fixed without explicit knowledge of
future events, the course of which can be influenced by the first-stage decision itself.
Due to this influence, the perceived “value” of the first-stage decision must take into
account the effect of this decision on the likelihood of occurrence of these future
events.

More concretely, the first-stage DM’s overall objective is to minimize the sum
of two terms, the first term representing the immediate cost of implementation of
the first-stage solution and the second term representing the desirability of the first-
stage decision in terms of its impact on the decisions taken at later stages. The
general form of a two-stage mixed integer linear optimization problem is then

min
x∈P1∩X

{cx + �(x)} , (2SMILP)

where

P1 =
{
x ∈ R

n1 | A1x ≥ b1
}

is the first-stage feasible region, with A1 ∈ Q
m1×n1 and b1 ∈ Q

m1 defining
the associated linear constraints, and X = Z

r1+ × Q
n1−r1+ representing integrality,

rationality, and non-negativity requirements on the first-stage variables, denoted by
x. Note that we require the continuous variables to take on rational values in order
to ensure that the second-stage problem defined in (SS) below has an optimal value
that is attainable when that value is finite. In practice, solvers always return such
solutions, so this is a purely technical detail. The linear function cx with c ∈ Q

n1 is
the aforementioned term that reflects the immediate cost of implementing the first-
stage solution. The function � : Qn1 → Q∪ {±∞} is the risk function, which takes
only rational input for technical reasons discussed later. � is the aforementioned
term representing the first-stage DM’s evaluation of the impact of a given choice
for the value of the first-stage variables on future decisions. Similar concepts of
risk functions have been employed in many different application domains and
will be briefly discussed in Sect. 18.3.3. To enable the development of a practical
methodology for the solution of these problems, however, we now define the specific
class of functions we consider.
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18.3.1 Canonical Risk Function

Our canonical risk function is a generalization of the risk function traditionally used
in defining 2SPRs. As usual, let us now introduce a random variable U over an
outcome space � representing the set of possible future scenarios that could be
realized between the making of the first- and second-stage decisions. The values of
this random variable will be input parameters to the so-called second-stage problem
to be defined below.

As is common in the literature on 2SPRs, we assume that U is discrete, i.e., that
the outcome space � is finite, so that ω ∈ � represents which of a finite number
of explicitly enumerated scenarios is actually realized. In practice, this assumption
is not very restrictive, as one can exploit any algorithm for the case in which �

is assumed finite to solve cases where � is not (necessarily) finite by utilizing a
technique for discretization, such as sample average approximation (SAA) [121].
As U is discrete in this work, we can associate with it a probability distribution
defined by p ∈ R

|�| such that 0 ≤ pω ≤ 1 and
∑

ω∈� pω = 1.
With this setup, the canonical risk function for x ∈ Q

n1 is

�(x) = E [�ω(x)] =
∑
ω∈�

pω�ω(x), (RF)

where �ω(x) is the scenario risk function, defined as

�ω(x) = min
{
d1yω

∣∣∣ yω ∈ argmin{d2y | y ∈ P2(b
2
ω − A2

ωx) ∩ Y }
}

; (2SRF)

the set

P2(β) =
{
y ∈ R

n2 | G2y ≥ β
}

is one member of a family of polyhedra that is parametric w.r.t. the right-hand
side vector β ∈ R

m2 and represents the second-stage feasibility conditions; and
Y = Z

r2+ × Q
n2−r2+ represents the second-stage integrality and non-negativity

requirements. The deterministic input data defining �ω are d1, d2 ∈ Q
n2 and

G2 ∈ Q
m2×n2 . A2

ω ∈ Q
m2×n1 and b2ω ∈ Q

m2 represent the realized values of the
random input parameters in scenario ω ∈ �, i.e., U(ω) = (A2

ω, b2ω).
As indicated in (RF) and (2SRF), the inner optimization problem faced by the

second-stage DM is parametric only in its right-hand side, which is determined
jointly by the value ω of the random variable U and by the chosen first-stage
solution. It will be useful in what follows to define a family of second-stage
optimization problems

inf
{
d2y

∣∣∣ y ∈ P2(β) ∩ Y
}

(SS)
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that are parametric in the right-hand side β ∈ R
m2 (we use “inf” instead of “min”

here because, for β 	∈ Q
m2 , the minimum may not exist). By further defining

βω(x) = b2ω − A2
ωx

to be the parametric right-hand side that arises when the chosen first-stage solution
is x ∈ X and the realized scenario is ω ∈ �, we can identify the member of the
parametric family defined in (SS) in scenario ω ∈ � when the chosen first-stage
solution is x ∈ X as that with feasible region P2(β

ω(x)) ∩ Y .
Associated with each x ∈ Q

n1 and ω ∈ � is the set of all alternative optimal
solutions to the second-stage problem (SS) (we allow for x 	∈ X here because such
solutions arise when solving certain relaxations), called the rational reaction set and
denoted by

Rω(x) = argmin{d2y | y ∈ P2(b
2
ω − A2

ωx) ∩ Y }.

For a given x ∈ Q
n1 , Rω(x) may be empty if P2(b

2
ω −A2

ωx)∩Y is itself empty or if
the second-stage problem is unbounded (we assume in Sect. 18.3.2 that this cannot
happen, however).

When |Rω(x)| > 1, the second-stage DM can, in principle, choose which alter-
native optimal solution to implement. We must therefore specify in the definition of
the risk function a rule by which to choose one of the alternatives. According to our
canonical risk function (RF) and the corresponding scenario risk function (2SRF),
the rule is to choose, for each scenario ω ∈ �, the alternative optimal solution that
minimizes d1yω, which corresponds to choosing the collection {yω}ω∈� of solutions
to the individual scenario subproblems that minimizes

d1
( ∑

ω∈�

pωyω

)
.

This is known as the optimistic or semi-cooperative case in the bilevel optimization
literature, since it corresponds to choosing the alternative that is most beneficial to
the first-stage DM. Throughout the article, we consider this case unless otherwise
specified. In Sect. 18.3.3, we discuss other forms of risk function.

Because of the subtleties introduced above, there are a number of ways one
could define the “feasible region” of (2SMILP). We define the feasible region for
scenario ω (with respect to both first- and second-stage variables) as

F ω = {(x, yω) ∈ X × Y | x ∈ P1, y
ω ∈ Rω(x)} (FR)

and members of F ω as feasible solutions for scenario ω. Note that this definition of
feasibility does not prevent having (x, yω) ∈ F ω but d1yω > �ω(x). This will not
cause any serious difficulties, but is something to keep in mind.
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We can similarly define the feasible region with respect to just the first-stage
variables as

F 1 =
⋂
ω∈�

projx(F ω). (FS-FR)

Since �(x) = ∞ for x ∈ Q
n1 if the feasible region P2(β

ω(x))∩Y of the second-
stage problem (SS) is empty for some ω ∈ �, we have that, for x ∈ P1 ∩ X, the
following are equivalent:

x ∈ F 1 ⇔ x ∈
⋂
ω∈�

projx(F ω) ⇔ Rω(x) 	= ∅ ∀ω ∈ � ⇔ �(x) < ∞.

Finally, it will be convenient to define Pω to be the feasible region of the
relaxation of the deterministic two-stage problem under scenario ω ∈ � that is
obtained by dropping the optimality requirement for the second-stage variables yω,
as well as any integrality restrictions. Formally, we have:

Pω =
{
(x, yω) ∈ R

n1+n2+ | x ∈ P1, y
ω ∈ P2(b

2
ω − A2

ωx)
}

.

Later in Sect. 18.7, we will use these sets to define a relaxation for the entire problem
that will be used as the basis for the development of a branch-and-cut algorithm.

18.3.2 Technical Assumptions

We now note the following assumptions made in the remainder of the article.

Assumption 18.3.1 Pω is bounded for all ω ∈ �. 
This assumption, which is made for ease of presentation and can be relaxed, results
in the boundedness of (2SMILP).

Assumption 18.3.2 All first-stage variables with at least one non-zero coefficient
in the second-stage problem (the so-called linking variables) are integer, i.e.,

L = {
i ∈ {1, . . . , n1}

∣∣ aω
i 	= 0 for some ω ∈ �

} ⊆ {1, . . . , r1} ,

where aω
i represents the ith column of matrix A2

ω. 
These two assumptions together guarantee that an optimal solution exists whenever
(2SMILP) is feasible [132]. It also guarantees that the convex hull of F ω is a
polyhedron, which is important for the algorithms we discuss later. Note that, due to
the assumption of optimism, we can assume w.l.o.g. that all first-stage variables are
linking variables by simply interpreting the non-linking variables as belonging to the
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second stage. While this may seem conceptually inconsistent with the intent of the
original model, it is not difficult to see that the resulting model is mathematically
equivalent, since these variables do not affect the second-stage problem and thus,
the optimistic selection of values for those variables will be the same in either case.

Before closing this section, we remark that, in this article, we do not allow
second-stage variables in the first-stage constraints. While this case can be handled
with techniques similar to those we describe in the article from an algorithmic
perspective, it does require a more complicated notation which, for the sake of
clarity, we prefer not to adopt. Detailed descriptions of algorithms for this more
general case in the bilevel setting are provided in [23, 127].

18.3.3 Alternative Models

18.3.3.1 Alternative Form of (2SMILP)

For completeness, we present here an alternative form of (2SMILP) that is closer
to the traditional form in which bilevel optimization problems are usually specified
in the literature. Adopting the traditional notation, (2SMILP) can be alternatively
written as

min
x,{yω}ω∈�

cx +
∑
ω∈�

pωd1yω

s.t. A1x ≥ b1

x ∈ X

yω ∈ argminy d2y

s.t. A2
ωx + G2y ≥ b2ω

y ∈ Y

⎫⎬
⎭∀ω ∈ �.

(2SMILP-Alt)

Note that, in the first stage, the minimization is carried out with respect to both x

and y. This again specifies the optimistic case discussed earlier, since the above
formulation requires that, for a given x ∈ X, we select {yω}ω∈� such that

d1
( ∑

ω∈�

pωyω

)

is minimized.
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18.3.3.2 Pessimistic Risk Function

As already pointed out, the canonical risk function defined in (RF) assumes the
optimistic case, since it encodes selection of the alternative optimal solution to the
second-stage problem that is most beneficial to the first-stage DM. This is the case
we focus on in the remainder of the article. The pessimistic case, on the other hand,
is easily modeled by defining the scenario risk function to be

�ω(x) = max
{
d1yω

∣∣∣ yω ∈ argmin{d2y | y ∈ P2(β
ω(x)) ∩ Y }

}
.

We remark that, while the optimistic and pessimistic cases may coincide in some
cases (e.g., when (SS) admits a single optimal solution for every x), this coincidence
is rarely observed in practice and would be hard to detect in any case. In general,
the pessimistic case is more difficult to solve, though the algorithms discussed in
Sect. 18.7 can be modified to handle it.

18.3.3.3 Recursive Risk Functions

Although we limit ourselves to problems with two stages in this article, we briefly
mention that more general risk functions can be defined by recursively defining
risk functions at earlier stages in terms of later-stage risk functions. This is akin to
the recursive definition of the cost-to-go functions that arise in stochastic dynamic
programming (see [17]). With such recursive definitions, it is possible to generalize
much of the methodology described here in a relatively straightforward way, though
the algorithm complexity grows exponentially with the addition of each stage. It is
doubtful exact algorithms can be made practical in such cases.

18.3.3.4 Other Risk Functions

Other forms of risk function have been used in the literature, especially in finance.
In robust optimization, for example, one might consider a risk function of the form

�(x) = max
ω∈�

{�ω(x)} ,

which models the impact on the first-stage DM of the worst-case second-stage
realization of the random variables. A popular alternative in finance applications
that is slightly less conservative is the conditional value at risk, the expected value
taken over the worst α-percentile of outcomes [112, 129]. While it is possible to
incorporate such risk functions into the general algorithmic framework we present
here, for the purposes of limiting the scope of the discussion, we focus herein only
on risk functions in the canonical form (RF).
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18.3.4 Related Classes

With � defined as in (RF), the problem (2SMILP) generalizes several well-known
classes of optimization problems.

18.3.4.1 Single-Stage Problems

When d1 = d2 and |�| = 1, the two stages of (2SMILP) can be collapsed into a sin-
gle stage and the problem reduces to a traditional mixed integer linear optimization
problem (MILP). It is natural that algorithms for (2SMILP) rely heavily on solving
sequences of related single-stage MILPs and we discuss parametric versions of this
class in later sections. For continuity, we utilize the notation for the second-stage
variables and input data throughout. The case of r2 = 0 (in which there are no
integer variables) further reduces to a standard linear optimization problem (LP).

18.3.4.2 Bilevel Problems

When |�| = 1 and assuming that we may have d1 	= d2, (2SMILP) takes the
form of a mixed integer bilevel linear optimization problem (MIBLP). Dropping the
scenario super/subscript for simplicity, this problem is more traditionally written as

min
x∈P1∩X,y∈Y

⎧⎪⎨
⎪⎩

cx + d1y

∣∣∣ y ∈ argmin{d2y | y ∈ P2(b
2 − A2x) ∩ Y }︸ ︷︷ ︸

R(x)

⎫⎪⎬
⎪⎭

. (MIBLP)

Note that this formulation implicitly specifies the optimistic case since, ifR(x) is not
a singleton, it requires that, among the alternative optima, the solution minimizing
d1y be chosen. In this setting, the bilevel risk function can be written as

�(x) = min
{
d1y | y ∈ R(x)

}
.

18.3.4.3 Two-Stage Stochastic Optimization Problems with Recourse

When d1 = d2, either the inner or the outer minimization in (2SRF) is redundant and
(2SMILP) takes the form of a two-stage stochastic mixed integer linear optimization
problem with recourse. In this case, for each scenario ω ∈ � we can write the
scenario risk function more simply as

�ω(x) = min
{
d1yω | yω ∈ P2(b

2
ω − A2

ωx) ∩ Y
}
.
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The second-stage solution yω corresponding to scenario ω ∈ � is usually called
the recourse decision. These problems involve a single DM optimizing a single
objective function, but capable of controlling two sets of variables: the first-stage
here-and-now variables x and the second-stage wait-and-see variables yω, whose
value is set after observing the realization of the random event ω.

18.3.4.4 Zero-Sum and Interdiction Problems

For d1 = −d2 (and typically, |�| = 1), (2SMILP) subsumes the case of zero-
sum problems, which model competitive games in which two players have exactly
opposing goals. An even more specially-structured subclass of zero-sum problems
are interdiction problems, in which the first-stage variables are in one-to-one
correspondence with those of the second stage and represent the ability of the first-
stage DM to “interdict” (i.e., forcing to take value zero) individual variables of
the second-stage DM. Formally, the effect of interdiction can be modeled using
a variable upper-bound constraint

y ≤ u(e − x)

in the second-stage problem, where u ∈ R
n is a vector of natural upper bounds on

the vector of variables y and e is an n-dimensional column vector of ones (here,
n = n1 = n2). Formally, the mixed integer interdiction problem is

max
x∈P1∩X

min
y∈P2(x)∩Y

d2y,

where (abusing notation slightly), we have

P2(x) =
{
y ∈ R

n2 | G2y ≥ b2, y ≤ u(e − x)
}

.

18.4 Computational Complexity

Within the discrete optimization community, the framework typically used for
assessing problem complexity is based primarily on the well-known theory of NP-
completeness, which has evolved from the foundational work of [46, 63, 85]. This
has led to the ubiquitous practice of classifying optimization problems as being
either in the class P or the class NP-hard, the latter being an all-encompassing and
amorphous class that includes essentially all optimization problems not known to
be polynomially solvable. This categorization lacks the refinement necessary for
consideration of classes such as those described in this article. It is indeed easy to
show that multistage optimization problems are NP-hard in general [15, 26, 73, 82],
but this merely tells us that these problems are not in P (assuming P 	= NP), which
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is not surprising. What we would really like to know is for which complexity class
(the decision versions of) these problems are complete.

In the presence of a hierarchical structure with k levels (and when � is a
singleton), the natural complexity class to consider is �P

k , i.e., the kth level of the
polynomial hierarchy. From an optimization perspective, this hierarchy (originally
introduced in [125]) is a scheme for classifying multilevel decision problems beyond
the usual classes P and NP. The class P (which contains all decision problems that
can be solved in polynomial time) occupies the 0th level, also known as�P

0 . The first
level, �P

1 , is the class also known as NP, which consists of all problems for which
there exists a certificate verifiable in polynomial time or, equivalently, all problems
that can be solved in non-deterministic polynomial time. The kth level, �P

k , contains
all problems with certificates that can be verified in polynomial time (equivalently,
all problems solvable in non-deterministic polynomial time), assuming the existence
of an oracle for solving problems in the class �P

k−1. While it is clear that �P
k ⊆ �P

�

for any k, � ∈ N ∪ {0} with k ≤ �, �P
k ⊂ �P

� is conjectured to hold for all
k, � ∈ N∪{0} with k < � (the well-known P 	= NP conjecture is a special case). It is
also known that �P

k = �P
k+1 would imply �P

k = �P
� for all � ≥ k +1, which would

cause the polynomial hierarchy to collapse to level k (for k = 0, we would have P
= NP). The notions of completeness and hardness commonly used for NP translate
directly to �P

k . A proof that k-level optimization problems with binary variables,
linear constraints, and linear objective functions are hard for�P

k is contained in [82].
Such result suffices to show that the multistage problems with k stages treated in
this article are (in their optimization version) �P

k -hard (and those with k = 2 stages
are �P

2 -hard). A compendium of �P
2 -complete/hard problems, somewhat similar in

spirit to [63], can be found in [118], with more recent updates available online.
For the case of two-stage stochastic optimization problems with recourse with

linear constraints, linear objective functions, and mixed integer variables, the
assumption of a finite outcome space � of either fixed or polynomially bounded
size suffices to guarantee that the decision version of such a problem is NP-
complete. Indeed, when |�| is considered a constant or is bounded by a polynomial
in the total number of variables and constraints, one can directly introduce a block-
structured reformulation of the problem with one block per scenario ω ∈ � that
contains the coefficients of the constraints that yω should satisfy (we discuss such a
reformulation in Sect. 18.6). As such reformulation is of polynomial size, solutions
to the corresponding optimization problem can clearly be certified in polynomial
time by checking that they satisfy all the polynomially-many constraints featured in
the formulation, which, in turn, implies that the problem belongs to NP. When the
outcome space � is continuous, the problem becomes #P-hard in general [55, 72].
While a single sample average approximation problem with a finite or polynomially-
bounded number of samples can be used to approximate a continuous problem by
solving a single discrete optimization problem of polynomial size, Hanasusanto et
al. [72] shows that even finding an approximate solution using the SAA method is
#P-hard. New results on the complexity of 2SPRs featuring a double-exponential
algorithm can be found in [88].
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18.5 Duality and the Value Function

Virtually all algorithms for the exact solution of optimization problems produce a
proof of optimality that depends on the construction of a solution to a strong dual.
Although the duality theory for MILPs is not widely known, the most effective
algorithms for solving MILPs (which are variants of the well-known branch-and-
bound algorithm) do produce a solution to a certain dual problem. A natural
approach to solving (2SMILP) is therefore to embed the production of the “dual
proof” of optimality of the second-stage problem (SS) into the formulation of the
first-stage problem, reducing the original two-stage problem to a traditional single-
stage optimization problem.

The reformulations and algorithmic approaches that we present in Sects. 18.6
and 18.7 all use some variant of this strategy. In particular, the algorithms we
describe are based on iteratively strengthening an initial relaxation in a fashion
reminiscent of many iterative optimization algorithms. The strengthening operation
essentially consists of the dynamic construction of both a proof of optimality of the
second-stage problem and of corresponding first- and second-stage solutions.

In the remainder of the section, we introduce the central concepts of a duality the-
ory for mixed integer linear optimization problems (and more general discrete opti-
mization problems), emphasizing its connection to solution methods for (2SMILP).
This introduction is necessarily brief and we refer the reader to [71, 74, 75] for
more details specific to the treatment here and to [138, 140] for earlier foundational
work on IP duality. Although the “dual problem” is usually a fixed (non-parametric)
optimization problem associated with a fixed (non-parametric) “primal problem,”
the typical concepts of duality employed in constructing dual proofs of optimality
and in designing solution algorithms inherently involve parametric families of
optimization problems. This makes the tools offered by this theory particularly
suitable for employment in this setting. To preserve the connection with the material
already introduced, we consider the family of MILPs parameterized on the right-
hand side β ∈ R

m2 that was introduced earlier as (SS) and use the same notation.
We reproduce it here for convenience:

inf
{
d2y

∣∣∣ y ∈ P2(β) ∩ Y
}

, (SS)

where

P2(β) =
{
y ∈ R

n2 | G2y ≥ β
}

and β ∈ R
m2 is the input parameter. When we want to refer to a (fixed) generic

instance in this parametric family, the notation b will be used to indicate a fixed (but
arbitrary) right-hand side. We also refer to specific right-hand sides arising in the
solution of (2SMILP) using the notation defined earlier.
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18.5.1 Value Functions

Among possible notions of duality, the one most relevant to the development of
optimization algorithms is one that also has an intuitive interpretation in terms of
familiar economic concepts. This theory rests fundamentally on an understanding
of the so-called value function, which we introduce below. The value function of an
MILP has been studied by a number of authors and a great deal is known about its
structure and properties. Early work on the value function includes [19–22], while
the material here is based on the work in [70, 71, 74, 75].

As a starting point, consider an instance of (SS) with fixed right-hand side b

and let us interpret the values of the variables as specifying a numerical “level of
engagement” in certain activities in an economic market. Further, let us interpret
the constraints as corresponding to limitations imposed on these activities due to
available levels of certain scarce resources (it is most natural to think of “≤”
constraints in this interpretation). In each row j of the constraint matrix, the
coefficient G2

ij associated with activity (variable) i can then be thought of as
representing the rate at which resource j is consumed by engagement in activity
i. In this interpretation, the optimal primal solution then specifies the level of each
activity in which one should engage in order to maximize profits (it is most natural
here to think in terms of maximization), given the fixed level of resources b.

Assuming that additional resources were available, how much should one be
willing to pay? The intuitive answer is that one should be willing to pay at most the
marginal amount by which profits would increase if more of a particular resource
were made available. Mathematically, this information can be extracted from the
value function φ : Rm2 → R ∪ {±∞} associated with (SS), defined by

φ(β) = inf
y∈P2(β)∩Y

d2y, (2SVF)

for β ∈ R
m2 . Since this function returns the optimal profit for any given basket

of resources, its gradient at b (assuming φ is differentiable at b) tells us what the
marginal change in profit would be if the level of resources available changed in
some particular direction. Thus, the gradient specifies a “price” on that basket of
additional resources.

The reader familiar with the theory of duality for linear optimization problems
should recognize that the solution to the usual dual problem associated with an LP
of the form (SS) (i.e., assuming r2 = 0) provides exactly this same information. In
fact, we describe below that the set of optimal solutions to the LP dual are precisely
the subgradients of its associated value function. This dual solution can hence be
interpreted as a linear price on the resources and is sometimes referred to as a vector
of “dual prices.” The optimal dual prices allow us to easily determine whether it will
be profitable to enter into a particular activity i by comparing the profit d2

i obtained
by entering into that activity to the cost uG2

i of the required resources, where u is a
given vector of dual prices andG2

i is the i-th column ofG2. The difference d2
i −uG2

i
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between the profit and the cost is the reduced profit/cost in linear optimization. It is
easily proven that the reduced profit of each activity entered into at a non-zero level
(i.e., reduced profits of the variables with non-zero value) must be non-negative
(again, in the case of maximization) and duality provides an intuitive economic
interpretation of this result.

Although the construction of the full value function is challenging even in the
simplest case of a linear optimization problem, approximations to the value function
in the local area around b can still be used for sensitivity analysis and in optimality
conditions. The general dual problem we describe next formalizes this idea by
formulating the problem of constructing a function that bounds the value function
from below everywhere but yields a strong approximation near a fixed right-hand
side b. Such a so-called “dual function” can yield approximate “prices” and its
iterative construction can also be used in a more technical way to guide the evolution
of an algorithm by providing gradient information helpful in finding the optimal
solution, as well as providing a proof of its optimality.

18.5.2 Dual Functions

The above discussion leads to the natural concept of a dual (price) function from
which we can derive a general notion of a dual problem.

Definition 18.5.1 A dual function F : Rm2 → R is one that satisfies F(β) ≤ φ(β)

for all β ∈ R
m2 . We call such a function strong at b ∈ R

m2 if F(b) = φ(b). 
Dual functions are naturally associated with relaxations of the original problem, as
the value function of any relaxation yields a feasible dual function. In particular, the
value function of the well-known LP relaxation is the best convex under-estimator
of the value function.

Also of interest are functions that bound the value function from above, which
we refer to as primal functions.

Definition 18.5.2 A primal function H : Rm2 → R is one that satisfies H(β) ≥
φ(β) for all β ∈ R

m2 . We call such a function strong at b if H(b) = φ(b). 
In contrast to dual functions, primal functions are naturally associated with restric-
tions of the original problem and the value function of any such restriction yields a
valid primal function.

It is immediately evident that a pair of primal and dual functions yields optimality
conditions. If we have a primal function H ∗ and a dual function F ∗ such that
F ∗(b) = γ = H ∗(b) for some b ∈ R

m2 , then we must also have φ(b) = γ .
Proofs of optimality of this nature are produced by many optimization algorithms.
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18.5.3 Dual Problems

The concepts we have discussed so far further lead us to the definition of a
generalized dual problem, originally introduced in [71], for an instance of (SS) with
right-hand side b ∈ R

m2 . This problem simply calls for the construction of a dual
function that is strong for a particular fixed right-hand side b ∈ R

m2 by determining

max
F∈ϒm2

{F(b) : F(β) ≤ φ(β), ∀β ∈ R
m2}, (MILPD)

where ϒm2 ⊆ {f | f : R
m2 → R}. Here, ϒm2 can be taken to be a specific

class of functions, such as linear or subadditive, to obtain specialized dual problems
for particular classes of optimization problems. It is clear that (MILPD) always
has a solution F ∗ that is strong, provided that the value function is real-valued
everywhere (and hence belongs to ϒm2 , however it is defined), since φ itself is a
solution whenever it is finite everywhere.1

Although it may not be obvious, this notion of a dual problem naturally
generalizes existing notions for particular problem classes. For example, consider
again a parametric family of LPs defined as in (SS) (i.e., assuming r2 = 0). We
show informally that the usual LP dual problem with respect to a fixed instance with
right-hand side b can be derived by taking ϒm2 to be the set of all non-decreasing
linear functions in (MILPD) and simplifying the resulting formulation. First, let a
non-decreasing linear function F : Rm2 → R be given. Then, ∃u ∈ R

m2+ such that
F(β) = uβ for all β ∈ R

m2 . It follows that

F(β) = uβ ≤ uG2y =
n2∑

j=1

uG2
j yj ∀β ∈ R

m2 .

From the above, it then follows that, for any β ∈ R
m2 , we have

uG2
j ≤ d2

j ∀j ∈ {1, . . . , n2} ⇒ uβ ≤ uG2y ≤ d2y ∀y ∈ P2(β) ∩ Y

⇒ uβ ≤ min
y∈P2(β)∩Y

d2y

⇒ uβ ≤ φ(β)

⇒ F(β) ≤ φ(β).

The conditions on the left-hand side above are exactly the feasibility conditions for
the usual LP dual and the final condition on the right is the feasibility condition

1When the value function is not real-valued everywhere, we have to show that there is a real-
valued function that coincides with the value function when it is real-valued and is itself real-valued
everywhere else, but is still a feasible dual function (see [140]).
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for (MILPD). Hence, the usual dual feasibility conditions ensure that u defines a
linear function that bounds the value function from below and is a dual function in
the sense we have defined. The fact that the epigraph of φ is a convex polyhedral
cone in this case (it is the max of linear functions associated with extreme points of
the feasible region of the dual problem) is enough to show that the dual (MILPD)
is strong in the LP case, even when we take ϒm2 to be the set of (non-decreasing)
linear functions. Furthermore, it is easy to show that any subgradient of φ at b is an
optimal solution (and in fact, the set of all dual feasible solutions is precisely the
subdifferential of the value function at the origin).

The concepts just discussed can be easily seen in the following small example
(note that this example is equality-constrained, in which case most of the above
derivation carries through unchanged, but the dual function no longer needs to be
non-decreasing).

Dual Function of an LP

min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = b

y1, y2, y3 ∈ R+.

The solution to the dual of this LP is unique whenever b is non-zero and can
be easily obtained by considering the ratios cj /aj of objective coefficient to
constraint coefficient for j = 1, 2, 3, which determine which single primal
variable will take a non-zero value in the optimal basic feasible solution.
Depending on the sign of b, we obtain one of two possible dual solutions:

u∗ =
{
6/2 = 3 if b > 0

7/(−7) = −1 if b < 0.

Thus, the value function associated with this linear optimization problem is
as shown in Fig. 18.1. Note that, when b = 0, the dual solution is not unique
and can take any value between −1 and 3. This set of solutions corresponds
to the set of subgradients at the single point of non-differentiability of the
value function. This function has one of two gradients for all points that are
differentiable, and these gradients are equal to one of the two dual solutions
derived above.
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Fig. 18.1 Value function of
the LP in the example
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18.5.4 Structure of the Value Function

As we mentioned previously, solution methods for (2SMILP) inherently involve
the explicit or implicit approximation of several functions, including the value
function φ in (2SVF) and the risk function � in (RF), which ultimately derives
its structure from φ. Here, we summarize the results described in the series of
papers [70, 71, 75]. Most importantly, the function is piecewise polyhedral, lower
semi-continuous, subadditive, and has a discrete structure that is derivative of the
structure of two related value functions which we now introduce.

Let yC , d2
C , and G2

C be the parts of each of the vectors/matrices describing the
second-stage problem (SS) that are associated with the continuous variables and let
yI , d2

I , and G2
I be likewise for the integer variables. The continuous restriction (CR)

is the LP obtained by dropping the integer variables in the second-stage problem (or
equivalently, setting them to zero). This problem has its own value function, defined
as

φC(β) = min
yC∈Rn2−r2+

{d2
CyC | G2

CyC ≥ β}. (CRVF)

On the other hand, if we instead drop the continuous variables from the problem,
we can then consider the integer restriction (IR), which has value function

φI (β) = min
yI ∈Zr2+

{d2
I yI | G2

I yI ≥ β}. (IRVF)

To illustrate how these two functions combine to yield the structure of φ and to
briefly summarize some of the important results from the study of this function
carried out in the aforementioned papers, consider the following simple example
of a two-stage stochastic mixed integer linear optimization problem with a single
constraint. Note that, in this example, d1 = d2 and we are again considering the
equality-constrained case in order to make the example a bit more interesting.
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Value Function of a 2SMILP
We consider the 2SMILP

min �(x1, x2) = −3x1 − 4x2 + E[φ(b2ω − 2x1 − 0.5x2)]
s.t. x1 ≤ 5, x2 ≤ 5

x1, x2 ∈ R+,

where

φ(β) = min 6y1 + 4y2 + 3y3 + 4y4 + 5y5 + 7y6

s.t. 2y1 + 5y2 − 2y3 − 2y4 + 5y5 + 5y6 = β

y1, y2, y3 ∈ Z+, y4, y5, y6 ∈ R+,

with � = {1, 2}, b21 = 6, and b22 = 12. Figure 18.2 shows the objective
function � and the second-stage value function φ for this example.

Examining Fig. 18.2, it appears that φ is comprised of a collection of
translations of φC , each of which has a structure that is similar to the value
function of the LP in the Example on page 533. At points where φ is
differentiable, the gradient always corresponds to one of the two solutions
to the dual of the continuous restriction (precisely as in the Example on
page 533, dual solutions are the ratios of objective function coefficients to
constraint coefficients for the continuous variables), which are in turn also
the gradients of φC . The so-called points of strict local convexity are the
points of non-differentiability that are the extreme points of the epigraphs
of the translations of φC and are determined by the solutions to the integer
restriction. In particular, they correspond to points at which φI and φ are
coincident. For instance, observe that, in the example, φI (5) = φ(5) = 4.

Finally, we can observe in Fig. 18.2 how the structure of φ translates into
that of �.
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Fig. 18.2 Illustration of the functions from the example, with the second-stage value function
φ(β) (left) and the objective function �(x1, x2) (right)

Although the case illustrated in the example is of a single constraint, these
properties can be made rigorous and do generalize to higher dimension with roughly
the same intuition. The general principle is that the value function of an MILP is
the minimum of translations of the value function of the continuous restriction φC ,
where the points of translation (the aforementioned points of strict local convexity)
are determined by the value function of the integer restriction φI .

Theorem 18.5.3 ([75]) Under the assumption that {β ∈ R
m2 | φI (β) < ∞} is

compact and epi(φC) is pointed, there exists a finite set S ⊆ Y such that

φ(β) = min
yI ∈S

{d2
I yI + φC(β − G2

I yI )}. 

Under the assumptions of the theorem, this result provides a finite description of φ.

18.5.5 Approximating the Value Function

Constructing functions that bound the value function of an MILP is an important
part of solution methods for both traditional single-stage optimization problems and
their multistage counterparts. Functions bounding the value function from below are
exactly the dual functions defined earlier and arise from relaxations of the original
problem (such as the LP relaxation, for instance). They are naturally obtained as by-
products of common solution algorithms, such as branch and bound, which itself
works by iteratively strengthening a given relaxation and produces a dual proof of
optimality.

Functions that bound the value function from above are the primal functions
defined earlier and can be obtained by considering the value function of a restriction
of the original problem. While it is a little less obvious how to obtain such functions
in general (solution algorithms generally do not produce practically useful primal
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functions), they can be obtained by taking the minimum over the value functions of
restrictions obtained by fixing the values of integer variables, as we describe below.

Both primal and dual functions can be iteratively improved by producing new
such functions and combining them with existing ones by taking the maximum over
several bounding functions in the dual case or the minimum over several bounding
functions in the primal case. When such functions are iteratively constructed to
be strong at different right-hand side values, such as when solving a sequence of
instances with different right-hand sides, such a technique can yield an approxima-
tion with good fidelity across a larger part of the domain than any singly constructed
function could—this is, in fact, the principle implicitly behind the algorithms we
describe in Sect. 18.7.1.

18.5.5.1 Dual Functions from Branch and Bound

Dual functions can be obtained from most practical solution algorithms for solving
the MILP associated with (2SVF) with input β = b2ω − A2

ωx, i.e., for computing
φ(b2ω − A2

ωx). This is because their existence is (at least implicitly) the very source
of the proof of optimality produced by such algorithms. To illustrate, we show how a
dual function can be obtained as the by-product of the branch-and-bound algorithm.

Branch and bound is an algorithm that searches the feasible region by partitioning
it and then recursively solving the resulting subproblems. Implemented naively,
this results in an inefficient complete enumeration, but this potential inefficiency
is avoided by utilizing lower and upper bounds computed for each subproblem
to intelligently “prune” the search. The recursive partitioning process can be
envisioned as a process of searching a rooted tree, each of whose nodes corresponds
to a subproblem. Although it is not usually described this way, the branch-and-
bound algorithm can be interpreted as constructing a function feasible to (MILPD),
thus producing not only a solution but also a dual proof of its optimality.

To understand this interpretation, suppose we evaluate φ(b) for b ∈ R
m2 by

solving the associated MILP using a standard branch-and-bound algorithm with
branching done on elementary (a.k.a. variable) disjunctions of type yj ≤ π0 ∨ yj ≥
π0 + 1 for some j ∈ {1, . . . , r2} and π0 ∈ Z. Because the individual subproblems
in the branch-and-bound tree differ only by the bounds on the variables, it will be
convenient to assume that all integer variables have finite initial lower and upper
bounds denoted by the vectors l, u ∈ Z

r2 (such bounds exist by Assumption 1, even
if they are not part of the formulation). In this case, we have that

P2(β) = {y ∈ R
n2 | G2y ≥ β, yI ≥ l,−yI ≥ −u}.

The solution of (SS) by branch and bound for right-hand side b yields a branch-
and-bound tree whose leaves, contained in the set T , are each associated with the
subproblem

min{d2y | y ∈ Pt
2(b) ∩ Y },
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where

Pt
2(β) = {y ∈ R

n2 | G2y ≥ β, yI ≥ lt ,−yI ≥ −ut }

is the parametric form of the polytope containing the feasible points associated with
subproblem t ∈ T , with lt , ut ∈ Z

r2+ being the modified bounds on the integer
variables imposed by branching.

Assuming that no pruning took place, the validity of the overall method comes
from the fact that valid methods of branching ensure that

⋃
t∈T

Pt
2(b) ∩ Y = P2(b) ∩ Y,

so that the feasible regions of the leaf nodes constitute a partition of the original
feasible region. This partition can be thought of as a single logical disjunction that
serves to strengthen the original LP relaxation. The proof of optimality that branch
and bound produces derives from global lower and upper bounds derived from local
bounds associated with each node t ∈ T . We denote by Lt and Ut , respectively, the
lower and upper bounds on the optimal solution value of the subproblem, where

Lt = φt
LP(b), Ut = d2yt ,

in which φt
LP is as defined in (NVF) below and yt ∈ Y is the best solution known

for subproblem t ∈ T (Ut = ∞ if no solution is known). Assuming (SS) is solved
to optimality and y∗ ∈ Y is an optimal solution, we must have

L := min
t∈T Lt = d2y∗ = min

t∈T Ut =: U,

where L and U are the global lower and upper bounds.
From the information encoded in the branch-and-bound tree, the overall dual

function can be constructed by deriving a parametric form of the lower bound,
combining dual functions for the individual subproblems in set T . For this purpose,
we define the value function

φLP(β, λ, ν) = min{d2y | y ∈ P2(β), λ ≤ yI ≤ ν, yC ≥ 0} (PNVF)

of a generic LP relaxation, which captures the bounds on the integer variables as also
being parametric. Using (PNVF), the value function of the LP relaxation associated
with a particular node t ∈ T (only parametric in the original right-hand side) can be
obtained as

φt
LP(β) = φLP(β, lt , ut ). (NVF)
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For all t ∈ T such that φt
LP(b) < ∞, let (vt , vt , v̄t ) be an optimal solution to the

dual of the LP relaxation at node t ∈ T , where vt , vt , and v̄t are, respectively, the
dual variables associated with the original inequality constraints, the lower bounds
on integer variables, and the upper bounds on integer variables. Then, by LP duality
we have that

φt
LP(b) = vtb + vt lt − v̄t ut .

For each node t ∈ T for which φt
LP(b) = ∞ (the associated subproblem is

infeasible), we instead let (vt , vt , v̄t ) be a dual feasible solution that provides a finite
bound exceeding U (such can be found by, e.g., adding some multiple of the dual
ray that proves infeasibility to the feasible dual solution found in the final iteration
of the simplex algorithm).

Finally, from the above we have that

φt

LP
(β) = vtβ + vt lt − v̄t ut (NDF)

is a dual function w.r.t. the LP relaxation at node t that is strong at b. Finally, we can
combine these individual dual functions together to obtain

φT (β) = min
t∈T φt

LP
(β) = min

t∈T {vtβ + vt lt − v̄t ut }, (BB-DF)

a dual function for the second-stage problem yielded by the tree T and which is also
strong at the right-hand side b, i.e., φT (b) = φ(b).

In principle, a stronger dual function can be obtained by replacing the single
linear dual function (which is strong at b for the LP relaxation) associated with each
subproblem above by its full value function φt

LP to obtain

φT
∗ (β) = min

t∈T φt
LP(β). (BB-DF-BIS)

In practice, constructing a complete description of φT
∗ is not practical (even

evaluating it for a given β requires the solution of |T | LPs). We can instead construct
a function that bounds it from below (and hence is also a dual function for the
original problem) by exploiting the entire collection of dual solutions arising during
the solution process. For example, let

φ
LP

(β, λ, ν) = max
t∈T

{vtβ + vtλ − v̄t ν},

which consists of an approximation of the full value function φLP using the optimal
dual solutions at each leaf node. Replacing φt

LP
(β) with φ

LP
(β, lt , ut ) in (BB-DF)

results in a potentially stronger but still practical dual function. Of course, it is also
possible to add dual solutions found at non-leaf nodes, as well as other suboptimal
dual solutions arising during the solution process, but there is an obvious trade-off
between strength and tractability. More details on this methodology are contained
in [71, 74].
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18.5.5.2 Iterative Refinement

In iterative algorithms such as those we introduce in Sect. 18.7, the single dual
function (BB-DF) we get by evaluating the value function for one right-hand side
can be iteratively augmented by taking the maximum over a sequence of similarly
derived dual functions. Taking this basic idea a step further, [70, 110, 111] developed
methods of warm starting the solution process of an MILP. Such methods may
serve to enhance tractability, though this is still an active area of research. When
evaluating φ repeatedly for different values in its domain, we do not need to solve
each instance from scratch—it is possible to use the tree resulting from a previous
solve as a starting point and simply further refine it to obtain a dual function that
remains strong for the previous right-hand side of interest and is made to be strong
for a new right-hand side.

Hassanzadeh and Ralphs [74] shows how to use this iterative-refinement
approach to construct a lower approximation of the value function of an MILP
in the context of a Benders-like algorithm for two-stage stochastic optimization
within a single branch-and-bound tree. In fact, with enough sampling this method
can be used to construct a single tree whose associated dual function is strong at
every right-hand side (provided the set of feasible right-hand sides is finite). The
following example illustrates the concept of using this iterative refinement approach
in approximating the value function of the example on page 535.

Approximating the Value Function
Consider the value function of the example on page 535, reported in Fig. 18.2.
The sequence of evaluations of the value function in this example are the ones
arising from first-stage solutions generated by solving the master problem in
a generalized Benders algorithm, such as the one described in Sect. 18.7.1.
Here, we only illustrate the way in which the dual function is iteratively
refined in each step.

We first evaluate φ(3.5) by branch and bound. Figure 18.3 shows both the
tree obtained (far left) and the value function itself (in blue). The dual function
arises from the solution to the dual of the LP relaxation in each of the nodes in
the branch-and-bound tree. We exhibit the values of the dual solution for each
node in the tree in Table 18.2. Explicit upper and lower bounds were added
with upper bounds initially taking on a large value M , representing infinity.
Note that the dual values associated with the bound constraints are actually
nothing more than the reduced costs associated with the variables.

The dual function associated with this first branch-and-bound tree is the
minimum of the two linear functions shown in Fig. 18.3 in green and labeled
as “Node 1” and “Node 2.” Formally, this dual function is

φT1 = min{φ1
LP

, φ2
LP

},
(continued)
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where the nodal dual functions for the three nodes are

φ0
LP

(β) = 0.8β

φ1
LP

(β) = β

φ2
LP

(β) = −1.5β + 11.5.

In other words, we have v10 = 1 (the value of the dual variable associated
with the single equality constraint in Node 1), while v1l1 − v̄1u1 = 0 (this is
the contribution from the dual value corresponding to the bound constraints,
which we take to be a constant here, as in (NDF)). Similarly, v20 = −1.5 and

v1l1 − v̄1u1 = 11.5. The dual function φ
T1
LP is strong in the interval [0, 5], but

yields a weaker lower bound outside this interval. If we subsequently evaluate
the right-hand side 9.5, we see that

φT1
LP

(9.5) = min{9.5,−2.75} = −2.75 	= φ(9.5) = 8.5.

To obtain a strong dual function for the new right-hand side, we identify that
node 2 is the node whose bound needs to be improved by further refining the
tree by branching (this is the linear function yielding the bound in this part of
the domain). By further partitioning the subproblem associated with node 2,
we obtain the tree pictured to the right of the first tree in Fig. 18.3. We obtain
the dual function

φT2
LP

= min{φ1
LP

, φ3
LP

, φ4
LP

},

which is strong at the right-hand side 9.5.
Note that this new function is no longer strong at the initial right-hand

side of 3.5. To ensure that this single dual function remains strong for
all previously evaluated right-hand sides, we must take the max over the
collection of dual functions found at each iteration. This function is still
obtained from the single tree, but we are effectively strengthening the leaf
node dual functions by taking the max over all dual solutions arising on the
path from the root subproblem (this is still a bound on the optimal solution
value to the LP relaxation). In this case, we get the strengthened function

min
{
max

{
φ1
LP

, φ0
LP

}
,max

{
φ3
LP

, φ2
LP

, φ0
LP

}
,max

{
φ4
LP

, φ2
LP

, φ0
LP

}}
.

This can be seen as an approximation of φT∗ by replacing the full value
function at each node with an approximation made of just the dual solutions
arising on the path to the root node.
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= −1.5β + 11.5

Node 1

φ1
LP
= β

x2 = 0 x2 ≥ 1

Node 0

φ0
LP
= 0.8β

Node 2

φ2
LP
= −1.5β + 11.5

Node 4

φ 4
LP
= −1.5β + 23

Node 3

φ 3
LP
= β − 1

x2 = 1 x2 ≥ 2

Node 1

φ1
LP
= β

x2 = 0 x2 ≥ 1

16 

14 

12 

10 

8 

6 

4 

2

-2
2 4 6 8 

Node 1 
Node 3 

Node4 

10 

Node2 

φ(β)

β

Fig. 18.3 Approximation of the value function of the 2SMILP instance in the
example on page 535

Table 18.2 Dual solutions for each node in the branch-and-bound tree

t vt vt v̄t

0 0.8 4.4 0.0 4.6 5.6 1.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0

1 1.0 4.0 0.0 5.0 6.0 0.0 2.0 0.0 −1.0 0.0 0.0 0.0 0.0

2 −1.5 9.0 11.5 0.0 1.0 12.5 14.5 0.0 0.0 0.0 0.0 0.0 0.0

18.5.5.3 Primal Functions

Upper approximations of φ can be obtained by considering the value functions of
the second-stage problem (SS) obtained by fixing variables. For example, consider
the integer-fixing value function

φ̄ŷ (β) = d2
I ŷI + φC(β − A2

ωI ŷI ) (IFVF)

obtained by fixing the integer part ŷI ∈ Z
r2 to be equal to that from some previously

found second-stage solution ŷ ∈ Y , where φC is as defined in (CRVF). Then, we
have φ̄ŷI

(β) ≥ φ(β) for all β ∈ R
m2 . If ŷ is an optimal solution to the second-

stage problem with respect to a given first-stage solution x ∈ P1 ∩ X and a given
realized value of ω, then we have ŷ ∈ argminy∈P2(b

2
ω−A2

ωx)∩Y d2y and φ̄ŷ is strong

at β = b2ω − A2
ωx.

In a fashion similar to a cutting plane method, we can iteratively improve the
global upper bounding function by taking the minimum of all bounding functions
of the form (IFVF) found so far, i.e.,

φ̄(β) = min
y∈R φ̄y(β),

whereR is the set of all second-stage solutions that have been found when evaluating
φ(β) for different values of β.

A pictorial example of this type of upper bounding function is shown in Fig. 18.4,
where each of the labeled cones shown is the value function of a restriction of the
original MILP. The upper bounding function is the minimum over all of these cones.
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Fig. 18.4 Upper bounding functions obtained at right-hand sides βi, i = 1, . . . , 5

18.5.6 Reaction and Risk Functions

Because it is particularly relevant in the present context, we also now introduce a
function known as the second-stage (optimistic) reaction function. This function is
closely related to the risk function but its input is a second stage right-hand side,
rather than a first-stage solution. Although this function, like the second-stage value
function φ, takes a right-hand side β as its input, it can nevertheless be used to
evaluate a first-stage solution x ∈ X in scenario ω ∈ � by evaluating it with respect
to βω(x). The function is defined as

ρ(β) = inf
{
d1y | y ∈ argmin{d2y | y ∈ P2(β) ∩ Y }}, (ReF)

for β ∈ R
m2 . Note that, although the evaluation of this function appears to require

solving a bilevel optimization problem, its evaluation is actually equivalent to
solving a lexicographic optimization problem, a somewhat easier computational
task.

The importance of the function ρ is to enable us to see that, for (2SMILP), the
scenario risk functions �ω defined in (2SRF) are not in fact completely independent
functions but, rather, are connected, since

�ω(x) = ρ(βω(x)).

Thus, these functions only differ from each other in the affine map βω(x) = b2ω −
A2

ωx that is applied to x.
The structure of the functions ρ and � derives from that of φ and can be

understood through a somewhat more involved application of the same principles
used to derive the function φ. Their structure, though combinatorially much more
complex, is nevertheless also piecewise polyhedral. Approximations of � can be
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derived easily from approximation of ρ in a straightforward way, since � = E [�ω]
and the scenario risk functions are themselves defined in terms of ρ, as discussed
earlier. The approximation of ρ is quite involved, but it can be obtained by methods
that are natural generalizations of those used to approximate φ. The main challenge
is that the evaluation of ρ(β) for a particular value of β itself reduces to the solution
of a lexicographic optimization problem, which in turn requires knowledge of φ.
We may approximate ρ by repeatedly evaluating it, extracting primal and dual
information from the solution algorithm as we do with φ, but this requires repeatedly
evaluating φ, which is itself expensive.

In the algorithms we discuss in Sect. 18.7, we approach this difficulty by
constructing a single approximation of φ in tandem with the approximation of ρ.
We need only ensure that the approximation of φ is guaranteed to be strong (i.e.,
equal to the value function) exactly in the region needed to properly evaluate ρ. The
result is an approximation of ρ that is strong in the region of a given right-hand
side and this is exactly what is needed for a Benders-type algorithm to converge.
More details regarding the Benders-type algorithm are contained next in Sect. 18.7.
Further details on the structure of and methods for approximating ρ and � can be
found in [23], which describes a Benders-type algorithm for solving (2SMILP).

18.5.7 Optimality Conditions

To solidify the connection between the notion of duality described in this section and
captured in the dual problem (MILPD), we end this section by formally stating both
the weak and strong duality properties arising from this theory. These properties are
a proper generalization of the well-known ones from linear optimization and can be
used to derive optimality conditions that generalize those from LP duality. These
are, in turn, the conditions that can be used to derive the reformulations presented
in Sect. 18.6.

Theorem 18.5.4 (Weak Duality) If F ∈ ϒm2 is feasible for (MILPD) and y ∈
P2(b) ∩ Y , then F(b) ≤ d2y. 
Theorem 18.5.5 (Strong Duality) Let b ∈ R

m2 be such that φ(b) < ∞. Then,
there exists both F ∈ ϒm2 that is feasible for (MILPD) and y∗ ∈ P2(b) ∩ Y such
that F(b) = φ(b) = d2y∗. 
The form of the dual (MILPD) makes these properties rather self-evident, but
Theorem 18.5.5 nevertheless yields optimality conditions that are useful in practice.
In particular, the dual functions arising from branch-and-bound algorithms that were
described earlier in Sect. 18.5.5.1 are the strong dual functions that provide the
optimality certificates for the solutions produced by such algorithms and are the
basis on which the algorithms described in Sect. 18.7.1 are developed.
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18.6 Reformulations

A crucial step in deriving solution algorithms is to consider some conceptual
reformulations that underlie the problems under study, each of which suggests
a particular algorithmic strategy. These formulations are heavily based on the
duality theory and methodology in the previous section, as we better clarify in the
following. In all cases, the goal is to derive, from some initial problem description,
a formulation that is, at least in principle, a single-stage mathematical optimization
problem that can be tackled with (possibly generalized versions of) the standard
algorithmic approaches used for solving mathematical optimization problems. In
this case, as in the solution of single-stage MILPs, the main tools are cutting plane
methods (branch and cut) and decomposition methods (Benders’ algorithm and the
exploitation of the block structure using a Dantzig-Wolfe decomposition).

18.6.1 Value-Function (Optimality-Based) Reformulation

The first reformulation we describe is a variation on (2SMILP-Alt), the standard
formulation used in most of the bilevel optimization literature. This formulation
introduces the second-stage variables explicitly and formulates the problem in the
form of a classical mathematical optimization problem using a technique that is
standard—replacing the requirement that the solution to the second-stage problem
be optimal with explicit optimality conditions. To achieve this, we introduce a
constraint involving the value function φ, as well as the second-stage feasibility
conditions. This is roughly equivalent to imposing primal and dual feasibility along
with equality of the primal and dual objectives in the linear optimization case (the
constraint involving the value function must be satisfied at equality, though it is
stated as an inequality). The formulation is as follows.

min cx +
∑
ω∈�

pωd1yω

s.t. A1x ≥ b1 (VFRa)

G2yω ≥ b2ω − A2
ωx ∀ω ∈ � (VFRb)

d2yω ≤ φ(b2ω − A2
ωx) ∀ω ∈ � (VFRc)

x ∈ X (VFRd)

yω ∈ Y ∀ω ∈ �. (VFRe)

It is clear that this formulation cannot be constructed explicitly, but rather, must be
solved by the iterative approximation of the constraints involving the value function
(which we refer to as the second-stage optimality constraints). This reformulation
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suggests a family of methods described in Sect. 18.7 in which we replace φ with a
primal function φ̄, as defined in Definition 18.5.2.

Notice that, when r2 = 0, so that the second-stage problem (SS) is a linear
optimization problem, we can exploit the fact that the optimality conditions for
this problem involve linear functions. This allows for, in essence, substituting for
φ the objective function of the classical LP dual of (SS), after introducing the
corresponding variables and constraints. This, overall, leads to a tractable primal-
dual reformulation—the technique is applied, for instance, in [40]. The alternative
idea of, rather than the dual of (SS), introducing its KKT conditions, is arguably
more popular and has been often exploited in a number of “classical” works on
mixed integer bilevel optimization problems, including, among others [93]. Note,
however, that while there is an analog of this reformulation that applies in the setting
of (2SMILP) (see [52]), it has so far proved not to be practical and, therefore, we
will not present any algorithms for its solution in Sect. 18.7.

18.6.2 Risk-Function (Projection-Based) Reformulation

The next reformulation we consider exploits the finiteness of � and avoids
introducing the second-stage variables explicitly. It reads as follows.

min c1x +
∑
ω∈�

pωzω

s.t. zω ≥ �ω(x) ω ∈ �

x ∈ P1 ∩ X

zω ∈ R ω ∈ �.

(RFR)

This reformulation mirrors the original formulation implicitly adopted when we first
defined (2SMILP), in which the second-stage variables are not (explicitly) present.
However, we can also interpret it as a projection onto the X-space of the value-
function reformulation described in the previous section. In fact, it is not hard to
see that the set {x ∈ P1 | �(x) < ∞} is exactly F 1 (the projection of the feasible
region onto the space of the first-stage variables) as defined in (FS-FR). As such,
this formulation is a natural basis for a Benders-type algorithm that we describe
in Sect. 18.7.1, in which we replace � with an under-estimator to obtain a master
problem which is then iteratively improved until convergence.
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18.6.3 Polyhedral (Convexification-Based) Reformulation

An apparently unrelated reformulation generalizes the notion of convexification
used heavily in the polyhedral theory that underlies the solution methodology of
standard MILPs. Convexification considers the following conceptual reformulation:

min cx +
∑
ω∈�

pωd1yω

s.t. (x, yω) ∈ conv(F ω) ∀ω ∈ �,

(POLY-R)

where F ω is the feasible region under scenario ω, defined as in (FR). Under our
earlier assumptions, the convex hull ofF ω is a polyhedron whose extreme points are
members of F ω. Thus, due to the linearity of the objective function, we can w.l.o.g.
replace the requirement that (x, yω) ∈ F ω with the requirement that (x, yω) ∈
conv(F ω), thereby convexifying the feasible region.

With this reformulation, we have transformed the requirement that the second-
stage solution be optimal for the parameterized second-stage problem (SS) into
a requirement that the combination of first- and second-stage solutions lie in
a polyhedral feasible region. This reformulation suggests a different class of
algorithms based on the dynamic generation of valid inequalities, such as those so
successfully employed in the case of MILPs. We describe an algorithm of such class
in Sect. 18.7.2.

18.6.4 Deterministic Equivalent (Decomposition-Based)
Reformulation

Finally, we remark that the finiteness of � allows for solving the problem via
a block-angular reformulation based on the formulation (2SMILP-Alt) presented
earlier, which is in the spirit of the so-called deterministic equivalent reformulation
used in two-stage stochastic optimization. This renders the stochastic problem as a
deterministic MIBLP, which can then be solved via standard methods for that case
with the requisite further reformulations (of course, exploiting the block structure
of the resulting matrices). For details, see [126].

18.7 Algorithmic Approaches

We now summarize a range of methodologies that arise naturally from the reformu-
lations of the previous section. Any practical method of solving (2SMILP) must
have as a fundamental step the evaluation of φ(β) for certain fixed values of
β ∈ R

m2 , an operation which can be challenging in itself, since the corresponding
problem is NP-hard. From the evaluation of φ, both primal and dual information
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is obtained, which can be used to build approximations. While some methods
explicitly build such approximations, other methods do it only implicitly. In all
cases, information about the value function that is built up through repeated
evaluations can be exploited.

Similarly, in the dual methods that we describe below, the function � is also
evaluated for various values of x ∈ X (or rather the function ρ) and, similarly,
approximations of this function can be built from primal and dual information
obtained during its evaluation. In order to develop computationally tractable
methods, a key aspect is to limit the number of such function evaluations as much as
possible and to exploit to the maximum extent possible the information generated
as a by-product of these single function evaluations.

18.7.1 Decomposition Methods

Decomposition methods are based on generalizations of Benders’ original method
of decomposing a given mathematical optimization problem by splitting the vari-
ables into two subsets and forming a master problem by projecting out one subset.
More concretely, we are simply solving a reformulation of the form (RFR).

18.7.1.1 Continuous Problems

For illustration, we consider the simplest case in which we have only continuous
variables in both stages (r1 = r2 = 0) and d1 = d2. Since the first- and second-
stage objectives are the same in this case, the full problem is nothing more than a
standard linear optimization problem, but Benders’ approach nevertheless applies
when either fixing the first stage variables results in a more tractable second-stage
LP (such as a min-cost flow problem). In the Benders approach, we (conceptually)
rewrite the LP as

min

{
cx +

∑
ω∈�

pωφ(βω(x))

∣∣∣∣∣ x ∈ P1

}
,

where φ is the value function (2SVF). Note that, because �(x) = ∑
ω∈� pωφ

(βω(x)), this is just a simplification of the original formulation implicitly adopted
when we first defined (2SMILP). As we observed earlier, the value function in the
LP case is the maximum of linear functions associated with the dual solutions.
Recalling that we can restrict the description to only the extreme points of the dual
feasible region, we can further rewrite the LP as

min

⎧⎨
⎩cx +

∑
ω∈�

pωzω

∣∣∣∣∣∣
x ∈ P1

zω ≥ uβω(x), u ∈ E, ω ∈ �

zω ∈ R, ω ∈ �

⎫⎬
⎭ , (LP)
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where E is the set of such extreme points of the dual of the second-stage LP (which
we assumed to be bounded and nonempty). Thus, the linear constraints involving
the variable zω (along with the fact that zω is minimized) are precisely equivalent to
requiring zω = φ(b2ω−A2

ωx), so this reformulation is exactly the formulation (RFR)
specialized to this case.

A straightforward solution approach is then to solve (LP) by a cutting plane
algorithm, which results in the classical L-shaped method for solving (continuous)
stochastic linear optimization problems [130]. From the point of view we have taken
in this article, this method can be interpreted as one that approximates the value
function from below as the maximum of the strong dual functions generated in
each iteration. The strong dual functions arise from the solutions to the dual of the
second-stage problem and yield what are typically called Benders cuts (inequalities
of the form imposed in (LP)). The Benders approach is then to iteratively improve
this approximation until convergence.

The case d1 	= d2 is more complex. The epigraph of the value function of the
second-stage problem is no longer necessarily a polyhedral cone, and the function
itself is no longer necessarily convex. Formulating the equivalent of (LP) thus
requires integer variables. Alternative formulations using the related complementary
slackness optimality conditions are also commonly used (see [37]).

18.7.1.2 Discrete Problems

For the case in which there are integer variables, the approach just described can
be applied by simply replacing the linear strong dual functions (Benders’ cuts)
with strong under-estimators of the risk function constructed from dual functions
arising from solution algorithms for the second-stage problem, such as those based
on branch and bound described in Sect. 18.5.5.1. In this approach, we work directly
with the reformulation (RFR), employing the generalized Benders-type algorithm
summarized in Fig. 18.5 and a master problem defined as follows.

min c1x +
∑
ω∈�

pωzω

s.t. zω ≥ �ω(x) ω ∈ �

x ∈ P1

zω ∈ R ω ∈ �.

(MASTER)

When d1 = d2, the approximation of the scenario risk function and of the
risk function itself reduces to the direct approximation of the second-stage value
function, and the algorithm can be described rather succinctly. A basic version
was originally proposed as the integer L-shaped algorithm for two-stage stochastic
optimization problems with integer recourse by Laporte and Louveaux [94] and
Carøe and Tind [29]. The version based on dual functions from branch and bound
that we describe here is described in [74].
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Step 0. Initialize k ←1, Ξ0ω (x ) = −∞ for all x ∈ Qn 1 , ω ∈ Ω.

Step 1. Solve the Master Problem

a) Set Ξω = max
i=0, . . . , k −1

Ξiω for ω ∈ Ω.

b) Solve (MASTER) to obtain an optimal solution (x k , {zωk }ω∈Ω).

Step 2. Solve the Subproblem

a) Evaluate Ξω (x k ) to obtain an optimal solution yω, k for ω ∈ Ω and the strong under-

estimator Ξkω .

b) Termination check: Is zωk = d
1yω, k for ω ∈ Ω?

1. If yes, STOP. x k is an optimal solution to (RFR).
2. If no, set k k + 1 and go to Step 1.←

Fig. 18.5 Generalized Benders algorithm for solving 2SMILPs

To briefly summarize, as in the LP case, we rewrite (2SMILP) as

min

⎧⎨
⎩cx +

∑
ω∈�

pωzω

∣∣∣∣∣∣
x ∈ P1 ∩ X

zω ≥ φ(βω(x)) ω ∈ �

zω ∈ R ω ∈ �

⎫⎬
⎭ .

By replacing φ with the maximum of a set Gω of dual functions associated with
scenario ω ∈ � (alternatively, we can employ one universal set of dual functions, as
indicated in (LP) above), we obtain a convergent Benders-like algorithm based on
iteratively solving a master problem of the form

min

⎧⎨
⎩cx +

∑
ω∈�

pωzω

∣∣∣∣∣∣
x ∈ P1 ∩ X

zω ≥ F(βω(x)) F ∈ Gω, ω ∈ �

zω ∈ R ω ∈ �

⎫⎬
⎭ ,

which generalizes (LP). The key to making this approach work in practice is that
the dual functions we need be easily available as a by-product of evaluating the
second-stage value function φ for a fixed value of β.

The most general case in which d1 	= d2 is conceptually no more complex than
that described above, but the details of the methodology for approximating � and in
linearizing the master problem are quite involved. The reader is referred to [23] for
the details.

18.7.2 Convexification-Based Methods

Primal algorithms are based on the implicit solution of (POLY-R) and generalize the
well-known framework of branch and cut that has been so successful in the MILP
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case. This class of algorithms is based on the iterative approximation of conv(F ω)

beginning with the approximation Pω, the feasible region in scenario ω of the fol-
lowing relaxation obtained by dropping both the value-function constraint (VFRc)
and the integrality requirements (VFRd) and (VFRe) from (VFR).

min cx +
∑
ω∈�

pωd1yω

s.t. A1x ≥ b1 (LPRa)

G2yω ≥ b2ω − A2
ωx ∀ω ∈ � (LPRb)

x ∈ R
n1+ (LPRc)

yω ∈ R
n2+ ∀ω ∈ �. (LPRd)

Being an LP, this relaxation is easily solved, but it is not difficult to see, however,
that it is rather weak (see, e.g., the example on page 552). A straightforward way to
strengthen it is simply by including the integrality constraints (VFRd) and (VFRe)
from (VFR). This leads to an MILP relaxation with feasible set

Sω = Pω ∩ (X × Y )

in scenario ω ∈ �, which, while stronger, is clearly more difficult to solve and
also still potentially weak—whether adopting it is a computationally good idea
is a purely empirical question. When the number of scenarios is large, dropping
constraints (LPRb) from the relaxation may also be advantageous, since this may
reduce the size of the relaxation.

As in cutting plane methods for MILPs, the idea is to improve this initial
formulation with the addition of inequalities valid for Sω, F ω,

⋃
ω∈� F ω, or even

F 1. In some cases, inequalities may first be derived with respect to Sω or F ω

for some particular scenario ω ∈ � and then lifted to become valid for a larger
set. Inequalities valid for Sω (which can be referred to as feasibility cuts) can be
generated using any number of well-known procedures associated with cutting plane
algorithms for mixed integer linear programming. Inequalities valid for F ω (which
can be referred to as optimality cuts) are the more interesting case because they can
incorporate information about the value function in order to eliminate members of
Pω that are not two-stage feasible.

In early work on these methods, the authors of [53] developed inequalities valid
for F ω in the case for which � is a singleton and the variables must all be integer
(r1 = n1 and r2 = n2), which illustrate the basic principles. When the input data
are integer, a very simple argument can be used to generate an inequality valid for
F ω but violated by (x̂, ŷ), an extreme point of Pω not in F ω, by taking advantage
of the discrete nature of the feasible set. Assuming the solution of the LP relaxation
is an extreme point of Pω, there is thus a hyperplane supporting Pω and inducing a
face of dimension 0. As such, there exist f ∈ R

n1 , g ∈ R
n2 , and γ ∈ R such that
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the hyperplane {(x, y) ∈ R
n1+n2 | f x + gy = γ } intersects Pω in the unique point

(x̂, ŷ). Hence, we have that f x +gy ≤ γ for all (x, y) ∈ Pω. Finally, since the face
of Pω induced by this inequality does not contain any other members of Sω, we can
“push” the hyperplane until it meets the next integer point without separating any
additional members of F ω. Hence,

f x + gy ≤ γ − 1

is valid for F ω. This procedure is similar in spirit to the Gomory procedure for
standard MILPs. It is used, for instance, in [50]. We next describe the method with
a brief example.

Example of Valid Inequalities
Consider the instance

max
x

min
y

{y | −x + y ≤ 2,−2x − y ≤ −2, 3x − y ≤ 3, y ≤ 3, x, y ∈ Z+} ,

with |�| = 1, whose feasible region is the set F = {(0, 2), (1, 0), (2, 3)}
shown in Fig. 18.6. Solving the LP relaxation yields the point (1, 3), which is
not feasible. This point is eliminated by the addition of the inequality x−2y ≥
−4, which is valid for the feasible region F and is obtained as a strengthening
of the inequality x − 2y ≥ −5, which is valid for the LP relaxation itself.

Fig. 18.6 Example of a valid
inequality

1 2 3

2

3

1

x

y

−x + 2y ≤ 4

−x + 2y ≤ 5

F
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This cut generation procedure is enough to yield a converging algorithm in this
case, but it amounts to removing infeasible points one by one and is not scalable
in general. An important observation is that this cut only exploits integrality of the
solutions and does not take into account any information about the second-stage
value function.

A generalized version of this basic methodology has since been described
in [127] and enhanced with additional classes of inequalities, including those valid
for the general mixed integer case described in [57, 58]. Inequalities valid for more
general discrete probability spaces are derived in [60] for the case d1 = d2.

Stronger cuts can be obtained by using disjunctive arguments based on knowl-
edge of the value function. In particular, an option is to add constraints of the form

d2yω ≤ φ̄(b2ω − A2
ωx),

where φ̄ is a primal function, as defined in Definition 18.5.2. Such primal functions
can take many forms and imposing such constraints may be expensive. In general,
the form of such functions will be either affine or piecewise polyhedral (“standard”
disjunctive programming techniques can be used to obtain a reformulation which
only involves linear functions).

18.8 Conclusions

We have introduced a unified framework for multistage mixed integer linear
optimization problems which encompasses both multilevel mixed integer linear
optimization problems and multistage mixed integer linear optimization problems
with recourse. Focusing on the two-stage case, we have investigated the nature of the
value function of the second-stage problem and highlighted its connection to dual
functions and the theory of duality for mixed integer linear optimization problems.
We have summarized different reformulations for this broad class of problems,
which rely on either the risk function, the value function, or on their polyhedral
nature. We have then presented the main solution techniques for problems of this
class, considering both dual- and primal-type methods, the former based on a
Benders-like decomposition to approximate either the risk function or the value
function, and the latter based on a cutting plane technique that relies on the
polyhedral nature of these problems. While much work is still to be done for
solving multistage mixed integer linear optimization problems with techniques
that are (mutatis mutandis, given their intrinsic harder nature) of comparable
efficiency to those for solving single-level problems, we believe that the theoretical
understanding of multistage mixed integer linear problems is now sufficiently
mature to make this an achievable objective.
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