
Chapter 17
Bilevel Linear Optimization Under
Uncertainty

Johanna Burtscheidt and Matthias Claus

Abstract We consider bilevel linear problems, where the right-hand side of the
lower level problems is stochastic. The leader has to decide in a here-and-now
fashion, while the follower has complete information. In this setting, the leader’s
outcome can be modeled by a random variable, which gives rise to a broad
spectrum of models involving coherent or convex risk measures and stochastic
dominance constraints. We outline Lipschitzian properties, conditions for existence
and optimality, as well as stability results. Moreover, for finite discrete distributions,
we discuss the special structure of equivalent deterministic bilevel programs and its
potential use to mitigate the curse of dimensionality.

Keywords Bilevel stochastic programming · Linear · Risk measure · Stability ·
Differentiability · Deterministic counterpart

17.1 Introduction

In this chapter we consider bilevel optimization models with uncertain parameters.
Such models can be classified based on the chronology of decision and observation
as well as the nature of the uncertainty involved. A bilevel stochastic program
arises, if the uncertain parameter is realization of some random vector with known
distribution, that can only be observed once the leader has submitted their decision.
In contrast, the follower decides under complete information.

If upper and lower level objectives coincide, the bilevel stochastic program
collapses to a classical stochastic optimization problem with recourse (cf. [1,
Chap. 2]). Relations to other mathematical programming problems are explored in
the seminal work [2] that also established the existence of solutions, Lipschitzian
properties and directional differentiability of a risk-neutral formulation of a bilevel
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stochastic nonlinear model. Moreover, gradient descent and penalization methods
were investigated to tackle discretely distributed stochastic mathematical programs
with equilibrium constraints (SMPECs).

Reference [3] studies an application to topology optimization problems in
structural mechanics. Many other applications are motivated by network related
problems that inherit a natural order of successive decision making under uncer-
tainty. Notable examples arise in telecommunications (cf. [4]), grid-based (energy)
markets (cf. [5–8]) or transportation science (cf. [9, 10]). An extensive survey on
bilevel stochastic programming literature is provided in [11, Chap. 1.4].

In two-stage stochastic bilevel programming leader and follower take two
decisions: The decision on the respective first-stage variables is made in a here-and-
now fashion, i.e. without knowledge of the realization of the random parameter. In
contrast, the respective second-stage decisions are made in a wait-and-see manner,
i.e. after observing the parameter (cf. [12]).

This chapter is organized as follows: In Sects. 17.2.1–17.2.5, we outline struc-
tural properties, existence and optimality conditions as well as stability results for
bilevel stochastic linear problems while paying special attention to the modelling
of risk-aversion via coherent or convex risk measures or stochastic dominance
constraints. Sections 17.2.6 and 17.2.7 are devoted to the algorithmic treatment
of bilevel stochastic linear problems, where the underlying distribution is finite
discrete. An application of two-stage stochastic bilevel programming in the context
of network pricing is discussed in Sect. 17.3. The chapter concludes with an
overview of potential challenges for future research.

17.2 Bilevel Stochastic Linear Optimization

While the analysis in this section is confined to the bilevel stochastic linear problems
with random right-hand side, the concepts and underlying principles can be easily
transferred to stochastic extensions of more complex bilevel programming models.

17.2.1 Preliminaries

We consider the optimistic formulation of a parametric bilevel linear program

min
x

{
c�x + min

y
{q�y | y ∈ �(x, z)} | x ∈ X

}
, P(z)

where X ⊆ R
n is a nonempty polyhedron, c ∈ R

n and q ∈ R
m are vectors, z ∈ R

s

is a parameter, and the lower level optimal solution set mapping � : Rn ×R
s ⇒ R

m

is given by

�(x, z) := Argmin
y

{d�y | Ay ≤ T x + z}
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with matrices A ∈ R
s×m, T ∈ R

s×n and a vector d ∈ R
m. Let f : Rn × R

s →
R ∪ {±∞} denote the mapping

f (x, z) := c�x + min
y

{q�y | y ∈ �(x, z)}.

Lemma 17.2.1 Assume dom f 	= ∅, then f is real-valued and Lipschitz continuous
on the polyhedron P = {(x, z) ∈ R

n × R
s | ∃y ∈ R

m : Ay ≤ T x + z}. �
Proof By Eaves [13, Sect. 3], ∅ 	= dom f ⊆ dom � implies dom � = P .
Consequently, the linear program in the definition of f (x, z) is solvable for any
(x, z) ∈ P by parametric linear programming theory (see [14, Sect. 2.3.2]).
Consider any (x, z), (x′, z′) ∈ P . Without loss of generality, assume that f (x, z) ≥
f (x′, z′) and let y′ ∈ �(x′, z′) be such that f (x′, z′) = c�x′ + q�y′. Following
[15] we obtain

|f (x, z) − f (x′, z′)| = f (x, z) − c�x′ − q�y′ ≤ c�x + q�y − c�x′ − q�y′

≤ ‖c‖‖x − x′‖ + ‖q‖‖y − y′‖

for any y ∈ �(x, z). Let B denote the Euclidean unit ball and 0 < � < ∞ a
constant, then [16, Theorem 4.2] yields

�(x′, z′) ⊆ �(x, z) + �‖(x, z) − (x′, z′)‖B

and hence |f (x, z) − f (x′, z′)| ≤ (‖c‖ + �‖q‖)‖(x, z) − (x′, z′)‖. ��
Remark 17.2.2 An alternate proof for Lemma 17.2.1 is given in [17, Theorem 1].
However, the arguments above can be easily extended to lower level problems with
convex quadratic objective function and linear constraints. �

Linear programming theory (cf. [18]) provides verifiable necessary and sufficient
condition for dom f 	= ∅:

Lemma 17.2.3 dom f 	= ∅ holds if and only if there exists (x, z) ∈ R
n × R

s such
that

a. {y | Ay ≤ T x + z} is nonempty,
b. there is some u ∈ R

s satisfying A�u = d and u ≤ 0, and
c. the function y �→ q�y is bounded from below on �(x, z).

Under these conditions,

min
y

{q�y | y ∈ �(x′, z′)}

is attained for any (x′, z′) ∈ P . �
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17.2.2 Bilevel Stochastic Linear Programming Models

A bilevel stochastic program arises if the parameter z = Z(ω) in P(z) is the
realization of a known random vector Z on some probability space (�,F ,P) and
we assume the following chronology of decision and observation:

leader decides x → z = Z(ω) is revealed → follower decides y.

Throughout the analysis, we assume the stochasticity to be purely exogenous, i.e.
the distribution of Z to be independent of x.

Let μZ := P ◦ Z−1 ∈ P(Rs) denote the Borel probability measure induced by
Z. We shall assume dom f 	= ∅ and that the lower level problem is feasible for any
leader’s decision and any realization of the randomness, i.e.

X ⊆ PZ := {x ∈ R
n | (x, z) ∈ P ∀z ∈ supp μZ}.

In two-stage stochastic programming, a similar assumption is known as rela-
tively complete recourse (cf. [1, Sect. 2.1.3]). In this setting, each leader’s decision
x ∈ X gives rise to a random variable f (x, Z(·)). We thus may fix any mapping
R : X → R, where X is a linear subspace of L0(�,F ,P) that contains the constants
and satisfies

{f (x, Z(·)) | x ∈ X} ⊆ X,

and consider the bilevel stochastic program

min
x

{R[f (x, Z(·))] | x ∈ X} . (17.2.1)

Under suitable moment or boundedness conditions on Z the classical Lp-spaces
Lp(�,F ,P) with p ∈ [1,∞] are natural choices for the domain X of R. We define

Mp
s :=

{
μ ∈ P(Rs) |

∫
Rs

‖z‖p μ(dz) < ∞
}

,

which denotes the set of Borel probability measures on R
s with finite moments of

order p ∈ [1,∞), and the set

M∞
s := {μ ∈ P(Rs) | supp μZ is bounded

}
.

Lemma 17.2.4 Assume dom f 	= ∅ and μZ ∈ Mp
s for some p ∈ [1,∞]. Then

the mapping F : PZ → L0(�,F ,P) given by F(x) := f (x, Z(·)) takes values in
Lp(�,F ,P) and is Lipschitz continuous with respect to the Lp-norm. �
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Proof We first consider the case that p is finite. By (0, 0) ∈ P and Lemma 17.2.1,
there exist a constant Lf such that

‖F(x)‖p
Lp ≤ 2p|f (0, 0)|p + 2p

∫
Rs |f (x, z) − f (0, 0)|p μZ(dz)

≤ 2p|f (0, 0)|p + 2pL
p
f ‖x‖p + 2pL

p
f

∫
Rs ‖z‖p μZ(dz) < ∞

holds for any x ∈ PZ . Furthermore, for any x, x′ ∈ PZ we have

‖F(x) − F(x′)‖Lp =
(∫

Rs

|f (x, z) − f (x′, z)|p μZ(dz)

)1/p

≤ Lf ‖x − x′‖.

For p = ∞, Lemma 17.2.1 implies that for any fixed x ∈ PZ , the mapping
f (x, ·) is continuous on supp μZ . Thus, μZ ∈ M∞

s yields

‖F(x)‖L∞ ≤ sup
z∈supp μZ

|f (x, z)| < ∞.

Moreover, for any x, x′ ∈ PZ we have

‖F(x) − F(x′)‖L∞ ≤ sup
z∈supp μZ

|f (x, z) − f (x′, z)| ≤ Lf ‖x − x′‖. ��

The mapping R in (17.2.1) can be used to measure the risk associated with the
random variable F(x).

Definition 17.2.5 A mapping R : X → R defined on some linear subspace X
of L0(�,F ,P) containing the constants is called a convex risk measure if the
following conditions are fulfilled:

a. (Convexity) For any Y1, Y2 ∈ X and λ ∈ [0, 1] we have

R[λY1 + (1 − λ)Y2] ≤ λR[Y1] + (1 − λ)R[Y2].

b. (Monotonicity) R[Y1] ≤ R[Y2] for all Y1, Y2 ∈ X satisfying Y1 ≤ Y2 with
respect to the P-almost sure partial order.

c. (Translation equivariance) R[Y + t] = R[Y ] + t for all Y ∈ X and t ∈ R.

A convex risk measure R is coherent if the following holds true:

d. (Positive homogeneity) R[tY ] = t · R[Y ] for all Y ∈ X and t ∈ [0,∞). �
Definition 17.2.6 A mapping R : X → R is called law-invariant if for all Y1, Y2 ∈
X with P ◦ Y−1

1 = P ◦ Y−1
2 we have R[Y1] = R[Y2]. �

Coherent risk measures have been introduced in [19], while the analysis of
convex risk measures dates back to [20]. A thorough discussion of their analytical
traits is provided in [21]. Below we list some risk measures that are commonly used
in stochastic programming (cf. [1, Sect. 6.3.2]).
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Examples

(a) The expectation E : L1(�,F ,P) → R,

E[Y ] =
∫

�

Y(ω) P(dω),

is a law-invariant and coherent risk measure that turns (17.2.1) into the
risk neutral bilevel stochastic program

min
x

{E[F(x)] | x ∈ X} .

(b) The expected excess of order p ∈ [1,∞) over a predefined level η ∈ R

is the mapping EEp
η : Lp(�,F ,P) → R given by

EEp
η [Y ] :=

(
E
[

max{Y − η, 0}p])1/p

.

EEp
η is law-invariant, convex and nondecreasing, but neither translation-

equivariant nor positively homogeneous (cf. [1, Example 6.22]).
(c) The mean upper semideviation of order p ∈ [1,∞) is the mapping

SDp
ρ : Lp(�,F ,P) → R defined by

SDp
ρ [Y ] := E[Y ]+ρ·EEp

E[Y ][Y ] = E[Y ]+ρ·
(
E
[

max{E[Y ]−η, 0}p])1/p

,

where ρ ∈ (0, 1] is a parameter. SDp
ρ is a law-invariant coherent risk

measure (cf. [1, Example 6.20]).
(d) The excess probability EPη : L0(�,F ,P) → R over a prescribed target

level η ∈ R given by

EPη[Y ] = P[{ω ∈ � | Y (ω) > η}],

is nondecreasing and law-invariant. However, it lacks convexity,
translation-equivariance and positive homogeneity (cf. [22, Example
2.29]).

(e) The Value-at-Risk VaRα : L0(�,F ,P) → R at level α ∈ (0, 1) defined
by

VaRα[Y ] := inf{η ∈ R | P[{ω ∈ � | Y (ω) ≤ η}] ≥ α}
(continued)
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is law-invariant, nondecreasing, translation-equivariant and positively
homogeneous, but in general not convex (cf. [23]).

(f) The Conditional Value-at-Risk CVaRα : L1(�,F ,P) → R at level
α ∈ (0, 1) given by

CVaRα[Y ] := inf{η + 1

1 − α
EE1

η[Y ] | η ∈ R}

is a law-invariant coherent risk measure (cf. [23, Proposition 2]). The
variational representation above was established in [24, Theorem 10].

(g) The entropic risk measure Entrα : L∞(�,F ,P) → R defined by

Entrα[Y ] := 1

α
ln
(
E
[

exp(αY )
])

,

where α > 0 is a parameter, is a law-invariant convex (but not coherent)
risk measure (cf. [21, Example 4.13, Example 4.34]).

(h) The worst-case risk measure Rmax : L∞(�,F ,P) → R given by

Rmax[Y ] := sup
ω∈�

Y(ω)

is law-invariant and coherent (cf. [21, Example 4.8]). This choice of R in
(17.2.1) leads to the bilevel robust problem

min
x

{Rmax[F(x)] | x ∈ X} .

Note that Rmax only depends on the so called uncertainty set Z(�) ⊆ R.
Thus, a bilevel robust problem can be formulated without knowledge of
the distribution of the uncertain parameter. In robust optimization, the
uncertainty set is often assumed to be finite, polyhedral or ellipsoidal (cf.
[25]).

Remark 17.2.7 The set of convex (coherent) risk measures on Lp(�,F ,P) is a
convex cone for any fixed p ∈ [1,∞]. In particular, if R : Lp(�,F ,P) → R is a
convex (coherent) risk measure, then so is E + ρ · R for any ρ ≥ 0. The mean-risk
bilevel stochastic programming model

min
x

{E[F(x)] + ρ · R[F(x)] | x ∈ X}

seeks to minimize a weighted sum of the expected value of the outcome and a
quantification of risk. �
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Example
Consider the bilevel stochastic problem

min {R[min �(x,Z)] | 1 ≤ x ≤ 6} ,

where �(x, z) := Argminy{−y | y ≥ 1, y ≤ x+2+z1, y ≤ −x+8.5+z2}
and assume that Z is uniformly distributed over the square [−0.5, 0.5]2.

Fig. 17.1 The bold line
depicts the graph of
�( · , (0, 0)), while the dotted
lines correspond to the graphs
of �( · , (±0.5,±0.5)) and
�( · , (∓0.5,±0.5))

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

As it can be seen in Fig. 17.1, we have

�(x, z) =
{

{x + 2 + z1} if x ≤ 3.25 + 0.5z2 − 0.5z1

{−x + 8.5 + z2} else

for any x ∈ [1, 6] and z ∈ [−0.5, 0.5]2. A straightforward calculation shows
that

E[min �(x,Z)] = ∫ 0.5
−0.5

∫ 0.5
−0.5 x + 2 + z1 dz1 dz2

= x + 2

holds for any x ∈ [1, 2.75]. Similarly, we have

E[min �(x,Z)] = ∫ 2x−6
−0.5

∫ −2x+6.5+z2
−0.5 x + 2 + z1 dz1 dz2

+ ∫ 0.5
2x−6

∫ 0.5
−0.5 x + 2 + z1 dz1 dz2

(continued)



17 Bilevel Linear Optimization Under Uncertainty 493

+ ∫ 0.5
6−2x

∫ 2x−6.5+z1
−0.5 −x + 8.5 + z2 dz2 dz1

= − 4
3x3 + 11x2 − 117

4 x + 1427
48

for x ∈ [2, 75, 3.25] and

E[min �(x,Z)] = ∫ 0.5
2x−7

∫ −2x+6.5+z2
−0.5 x + 2 + z1 dz1 dz2

+ ∫ 7−2x

−0.5

∫ 2x−6.5+z1
−0.5 −x + 8.5 + z2 dz2 dz1

+ ∫ 0.5
7−2x

∫ 0.5
−0.5 −x + 8.5 + z2 dz2 dz1

= 4
3x3 − 15x2 + 221

4 x − 989
16

for x ∈ [3.25, 3.75]. Finally, for x ∈ [3.75, 6] we calculate

E[min �(x,Z)] = ∫ 0.5
−0.5

∫ 0.5
−0.5 −x + 8.5 + z2 dz2 dz1

= −x + 8.5.

Thus, E[min �( · , Z)] is piecewise polynomial, non-convex and non-
differentiable. It is easy to check that x∗ = 6 is a global minimizer of the
risk-neutral model

min {E[min �(x,Z)] | 1 ≤ x ≤ 6} .

In this particular example, x∗ is also a global minimizer of the bilevel robust
problem

min {Rmax[min �(x,Z)] | 1 ≤ x ≤ 6} .

17.2.3 Continuity and Differentiability

Continuity properties of R carry over to Lipschitzian properties of QR : PZ → R,
QR(x) := R[F(x)].
Proposition 17.2.8 Assume dom f 	= ∅ and μZ ∈ Mp

s for some p ∈ [1,∞]. Then
the following statements hold true for any R : Lp(�,F ,P) → R :
a. QR is locally Lipschitz continuous if R is convex and continuous.
b. QR is locally Lipschitz continuous if R is convex and nondecreasing.
c. QR is locally Lipschitz continuous if R is a convex risk measure.
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d. QR is Lipschitz continuous if R is Lipschitz continuous.
e. QR is Lipschitz continuous if R is a coherent risk measure. �
Proof

a. It is well-known that any real-valued convex and continuous mapping on a
normed space is locally Lipschitz continuous (cf. [26]). The result is thus an
immediate consequence of Lemma 17.2.4.

b. Any real-valued, convex and nondecreasing functional on the Banach lattice
Lp(�,F ,P) is continuous (see e.g. [27, Theorem 4.1]).

c. By definition, any convex risk measure is convex and nondecreasing.
d. This is a straightforward conclusion from Lemma 17.2.4.
e. Any coherent risk measure on Lp(�,F ,P) is Lipschitz continuous by Inoue [28,

Lemma 2.1]. ��
Remark 17.2.9 Any coherent risk measure R : L∞(�,F ,P) → R is Lipschitz
continuous with constant 1 by Föllmer and Schied [21, Lemma 4.3]. Concrete
Lipschitz constants for continuous coherent law-invariant risk measures R :
Lp(�,F ,P) → R with p ∈ [1,∞) may be obtained from representation results
(see e.g. [29]). �

Proposition 17.2.8 allows to formulate sufficient conditions for the existence of
optimal solutions to the bilevel stochastic linear program (17.2.1):

Corollary 17.2.10 Assume dom f 	= ∅, μZ ∈ Mp
s for some p ∈ [1,∞] and let

X ⊆ PZ be nonempty and compact. Then (17.2.1) is solvable for any convex and
nondecreasing mapping R : Lp(�,F ,P) → R. �

Due to the lack of convexity, Proposition 17.2.8 and the subsequent Corollary
do not apply to the excess probability and the Value-at-Risk. However, invoking
Lemma 17.2.1, the arguments used in the proof of [30, Proposition 3.3] can adapted
to the setting of bilevel stochastic linear programming:

Proposition 17.2.11 Assume dom f 	= ∅ and fix η ∈ R, then QEPη
is lower

semicontinuous on PZ and continuous at any x ∈ PZ satisfying

μZ[{z ∈ R | f (x, z) = η}] = 0.

Furthermore, let X ⊆ PZ be nonempty and compact. Then

min
x

{
EPη[F(x)] | x ∈ X

}

is solvable. �
QVaRα

has been analyzed in [17, Theorem 2]:
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Proposition 17.2.12 Assume dom f 	= ∅ and α ∈ (0, 1), then QVaRα
is

continuous. Moreover, let X ⊆ PZ be nonempty and compact. Then

min
x

{VaRα[F(x)] | x ∈ X}

is solvable. �
For specific risk measures, sufficient conditions for differentiability of QR have

been investigated in [31].

Proposition 17.2.13 Assume dom f 	= ∅ and that μZ ∈ M1
s is absolutely

continuous with respect to the Lebesgue measure. Fix any η ∈ R, thenQE andQEE1
η

are continuously differentiable at any x0 ∈ int PZ . Furthermore, for any ρ ∈ [0, 1),
QSD1

ρ

is continuously differentiable at any x0 ∈ int PZ satisfying QE(x0) 	= 0. �
Remark 17.2.14 Theorems 3.7, 3.8 and 3.9 in [31] provide more involved sufficient
conditions for continuous differentiability of QE, QEE1

η

and QSD1
ρ

that do not

require μZ to be absolutely continuous. �
Remark 17.2.15 Note that the assumptions of Proposition 17.2.13 are not fulfilled
in the example at the end of Sect. 17.2.2: The right-hand side of the restriction
system is only partially random as the right-hand side of the restriction y ≥ 1
does not depend on Z. If we extend the system to

y ≤ x + 2 + z′
1, y ≤ −x + 8.5 + z′

2, y ≥ 1 + z′
3,

the third component of the extended random vector Z′ has to take the value 0
with probability 1. Thus, P ◦ Z′−1 is not absolutely continuous with respect to the
Lebesgue measure. �

In the presence of differentiability, necessary optimality conditions for (17.2.1)
can be formulated in terms of directional derivatives (cf. [31, Corollary 3.10]).

Proposition 17.2.16 Assume dom f 	= ∅, μZ ∈ Mp
s and X ⊆ PZ . Furthermore,

let x0 ∈ X be a local minimizer of problem (17.2.1) and assume that QR is
differentiable at x0. Then

Q′
R(x0)v ≥ 0

holds for any feasible direction

v ∈ {v ∈ R
n | ∃ε0 > 0 : x0 + εv ∈ X ∀ε ∈ [0, ε0]}. �
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17.2.4 Stability

While we have only considered QR as a functions of the leader’s decision x

so far, it also depends on the underlying probability measure μZ . In stochastic
programming, incomplete information about the true underlying distribution or the
need for computational efficiency may lead to optimization models that employ an
approximation of μZ . This section analysis deals with the behaviour of optimal
values and (local) optimal solution sets of (17.2.1) under perturbations of the
underlying distribution.

Taking into account that the support of the perturbed measure may differ from
the original support, we shall assume dom f 	= ∅ and

P = R
n × R

s

to ensure that the objective function of (17.2.1) remains well defined. The cor-
responding assumption in two-stage stochastic programming is called complete
recourse (cf. [1, Sect. 2.1.3]). Sufficient conditions for dom f 	= ∅ and P =
R

n × R
s are given in [17, Corollary 1] and [17, Corollary 2]. The following

characterization is a direct consequence of Gordan’s Lemma (cf. [32]):

Lemma 17.2.17 P = R
n × R

s holds if and only if u = 0 is the only non-negative
solution to A�u = 0. �

Throughout this section, we shall consider the situation that R : Lp(�,F ,P) →
R with p ∈ [1,∞) is law-invariant, convex and nondecreasing. Furthermore, for the
sake of notational simplicity (cf. [31, Remark 4.1]), we assume that the probability
space (�,F ,P) is atomless, i.e. for any A ∈ F with P[A] > 0 there exists some
B ∈ F with B � A and P[A] > P[B] > 0.

Then for any x ∈ X and μ ∈ Mp
s , we have (δx ⊗ μ) ◦ f −1 ∈ Mp

1 , where
δx ∈ P(Rn) denotes the Dirac measure at x. The atomlessness of (�,F ,P) ensures
that there exists some Y(x,μ) ∈ Lp(�,F ,P) such that P ◦ Y−1

(x,μ) = (δx ⊗ μ) ◦ f −1.

Thus, we may consider the mapping QR : X × Mp
s → R defined by

QR(x, μ) := R[Y(x,μ)].

Note that the specific choice of Y(x,μ) does not matter due to the law-invariance of
R.

Consider the parametric optimization problem

min
x

{QR(x, μ) | x ∈ X}. (Pμ)
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As (Pμ) may be non-convex, we shall pay special attention to sets of locally optimal
solutions. For any open set V ⊆ R

n we introduce the localized optimal value
function ϕV : Mp

s → R,

ϕV (μ) := min
x

{QR(x, μ) | x ∈ X ∩ cl V },

as well as the localized optimal solution set mapping φV : Mp
s ⇒ R

n,

φV (μ) := Argmin
x

{QR(x, μ) | x ∈ X ∩ cl V }.

It is well known that additional assumptions are needed when studying stability of
local solutions.

Definition 17.2.18 Given μ ∈ Mp
s and an open set V ⊆ R

n, φV (μ) is called a
complete local minimizing (CLM) set of (Pμ) w.r.t. V if ∅ 	= φV (μ) ⊆ V . �
Remark 17.2.19 The set of global optimal solutions φRn(μ) and any set of isolated
minimizers are CLM sets. However, sets of strict local minimizers may fail to be
CLM sets (cf. [33]). �

In the following, we shall equip P(Rs) with the topology of weak convergence,
i.e. the topology, where a sequence {μl}l∈N ⊂ P(Rs) converges weakly to μ ∈
P(Rs), written μl

w→ μ, if and only if

lim
l→∞

∫
Rs

h(t) μl(dt) =
∫
Rs

h(t) μ(dt)

holds for any bounded continuous function h : Rs → R (cf. [34]). The example
below (cf. [22, Example 3.2]) shows that even ϕRn may fail to be weakly continuous
on the entire space P(Rs).

Example
The problem

min
x

{
x +

∫
R

z μ(dz) | 0 ≤ x ≤ 1

}

arises from a bilevel stochastic linear problem, where R = E and �(x, z) =
{z} � R holds for any (x, z). Assume that μ is the Dirac measure at 0, then
the above problem can be rewritten as

min
x

{x | 0 ≤ x ≤ 1}

(continued)
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and its optimal value is 0.
However, while the sequence μl := (1 − 1

l
)δ0 + 1

l
δl converges weakly to

δ0, replacing μ with μl yields the problem

min
x

{x + 1 | 0 ≤ x ≤ 1} ,

whose optimal value is equal to 1 for any l ∈ N.

We shall follow the approach of [22, 31] and [35] and confine the stability
analysis to locally uniformly ‖ · ‖p-integrating sets.

Definition 17.2.20 A set M ⊆ Mp
s is said to be locally uniformly ‖ · ‖p-

integrating if for any ε > 0 there exists some open neighborhood N of μ w.r.t.
the topology of weak convergence such that

lim
a→∞ sup

ν∈M∩N

∫
Rs\aB

‖z‖p ν(dz) ≤ ε. �

A detailed discussion of locally uniformly ‖ · ‖p-integrating sets and their
generalizations is provided in [21, 36, 37], and [38]. The following examples
demonstrate the relevance of the concept.

Examples

(a) Fix κ, ε > 0. Then by Föllmer and Schied [21, Corollary A.47 (c)], the
set

M(κ, ε) :=
{
μ ∈ P(Rs) |

∫
Rs

‖z‖p+ε μ(dz) ≤ κ

}

of Borel probability measures with uniformly bounded moments of order
p + ε is locally uniformly ‖ · ‖p-integrating.

(b) Fix any compact set � ⊂ R
s . By Föllmer and Schied [21, Corollary A.47,

(b)], the set

{μ ∈ P(Rs) | μ[�] = 1}

of Borel probability measures whose support is contained in � is locally
uniformly ‖ · ‖p-integrating.
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The following result has been established in [31, Theorem 4.7]:

Theorem 17.2.21 Assume dom f 	= ∅ and P = R
n ×R

s . LetM ⊆ Mp
s be locally

uniformly ‖ · ‖p-integrating, then

a. QR|Rn×M is real-valued and weakly continuous.
b. ϕRn |M is weakly upper semicontinuous.

In addition, assume that μ0 ∈ M is such that φV (μ0) is a CLM set of Pμ0 w.r.t.
some open bounded set V � R

n. Then the following statements hold true:

c. ϕV |M is weakly continuous at μ0.
d. φV |M is weakly upper semicontinuous at μ0 in the sense of Berge (cf. [39]),

i.e. for any open set O ⊆ R
n with φ|V (μ0) ⊆ O there exists a weakly open

neighborhood N of μ0 such that φV (μ) ⊆ O for all μ ∈ N ∩ M.
e. There exists some weakly open neighborhoodU of μ0 such that φV (μ) is a CLM

set for (Pμ) w.r.t. V for any μ ∈ U ∩ M. �
Proof Fix any x0 ∈ R

n. By Lemma 17.2.1, f is Lipschitz continuous on R
n × R

s .
Thus, there exists a constant L > 0 such that

|f (x, z)| ≤ L‖z‖ + L‖x − x0‖ + |f (x0, 0)|

and the result follows from [35, Corollary 2.4.]. ��
Remark 17.2.22 Under the assumptions of Theorem 17.2.21d., any accumulation
point x of a sequence local optimal solutions xl ∈ φV (μl) as μl

w→ μ, μl ∈ M,
is a local optimal solution of (Pμ). A detailed discussion of Berge’s notion of upper
semicontinuity and related concepts is provided in [40, Chap. 5]. �

As any Borel probability measure is the weak limit of a sequence of measures
having finite support, Theorem 17.2.21 justifies an approach where the true
underlying measure is approximated by a sequence of finite discrete ones. It is well
known that approximation schemes based on discretization via empirical estimation
[41, 42] or conditional expectations [43, 44] produce weakly converging sequences
of discrete probability measures under mild assumptions.

Remark 17.2.23 All results of Sects. 17.2.1–17.2.4 can be easily extended to the
pessimistic approach to bilevel stochastic linear programming, where f takes the
form

f (x, z) = c�x − min
y

{−q�y | y ∈ �(x, z)}

(cf. [22, Chap. 4]). �
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17.2.5 Stochastic Dominance Constraints

One possibility to model the minimization in

min{f (x, Z(·)) | x ∈ X}

is doing it w.r.t. some risk measure that maps f (x, Z(·)) into the reals, as introduced
in Sect. 17.2. In this section, we shall discuss an alternate approach, where a
disutility function g : Rn → R is minimized over some subset of random variables
of acceptable risk:

min
x

{g(x) | x ∈ X, f (x, Z(·)) ∈ A} ,

where A ⊆ f (X,Z) := {f (x, Z(·)) | x ∈ X}. The following cases are of particular
interest (cf. [1, pp. 90–91]) :

Examples

(a) A is given by probabilistic constraints, i.e.

Apc = {h ∈ f (X,Z) | P[h ≤ βj ] ≥ pj ∀j = 1, . . . , l}

for bounds β1, . . . , βl ∈ R and safety levels p1, . . . , pl ∈ (0, 1).
(b) A is given by first-order stochastic dominance constraints, i.e.

Afo = {h ∈ f (X,Z) | P[h ≤ β] ≥ P[b ≤ β] ∀β ∈ R},

where b ∈ L0(�,F ,P) is a given benchmark variable. If b is discrete
with a finite number of realizations, it is sufficient to impose the relation
P[h ≤ β] ≥ P[b ≤ β] for any β in a finite subset of R. In this case, A
admits a description by a finite system of probabilistic constraints.

(c) A is given by second-order stochastic dominance constraints, i.e.

Aso = {h ∈ f (X,Z) | E[max{h − η, 0}] ≤ E[max{b − η, 0}] ∀η ∈ R},

where b ∈ L1(�,F ,P) is a given benchmark variable.

A discussion of general models involving probabilistic or stochastic dominance
constraints can be found in [1, Chap. 8] and [45, Chap. 8.3].

Let ν := P ◦ b−1 ∈ P(R) denote the distribution of the benchmark variable b.
Then the feasible set under first-order stochastic dominance constraints admits the
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representation

{
x ∈ X | μZ

[{z ∈ R
s | f (x, z) ≤ β}] ≥ ν

[{b ∈ R | b ≤ β}] ∀β ∈ R
}
.

Similarly, for second-order stochastic dominance constraints, μ ∈ M1
s and ν ∈ M1

1,
the feasible set takes the form
{
x ∈ X |

∫
Rs

max{f (x, z) − η, 0} μZ(dz) ≤
∫
R

max{b − η, 0} ν(db) ∀η ∈ N

}
.

In both cases, the feasibility does only depend on the distribution of the underlying
random vector. As in Sect. 17.2.4, we consider situations where μZ is replaced with
an approximation and study the behaviour of the mappings C1 : P(Rs) ⇒ R

n

defined by

C1(μ) = {x ∈ X | μ
[{z ∈ R

s | f (x, z) ≤ β}] ≥ ν
[{b ∈ R | b ≤ β}] ∀β ∈ R

}
.

and C2 : M1
s ⇒ R

n given by

C2(μ) :=
{
x ∈ X |

∫
Rs

max{f (x, z) − η, 0} μ(dz) ≤
∫
R

max{b − η, 0} ν(db) ∀η ∈ N

}
.

Invoking Lemma 17.2.1, the following result can be obtained by adapting the
proofs of [46, Proposition 2.1] and [47, Proposition 2.2] :

Proposition 17.2.24 Assume dom f 	= ∅ and P = R
n × R

s . Then the following
statements hold true:

a. The multifunction C1 is closed w.r.t. the topology of weak convergence, i.e. for

any sequences {μl}l ⊂ P(Rs) and {xl}l ⊂ R
n with μl

w→ μ ∈ P(Rs), xl → x ∈
R

n for l → ∞ and xl ∈ C1(μl) for all l ∈ N it holds true that x ∈ C1(μ).
b. Additionally assume that ν ∈ M1

1, then the multifunction C2 is closed w.r.t. the
topology of weak convergence. �
By considering the constant sequence μl = μ for all l ∈ N we obtain the

closedness of the sets C1(μ) and C2(μ) under the conditions of Proposition 17.2.24.
The closedness of the multifunctions C1 and C2 is also the key to proving the
following stability result (cf. [46, Proposition 2.5]):

Theorem 17.2.25 Assume dom f 	= ∅, P = R
n × R

s and that X is nonempty and
compact. Moreover, let g be lower semicontinuous. Then the following statements
hold true:

a. The optimal value function ϕ1 : P(Rs) → R ∪ {∞} given by

ϕ1(μ) := inf{g(x) | x ∈ C1(μ)}

is weakly lower semicontinuous on dom C1.
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b. Additionally assume ν ∈ M1
1, then the function ϕ2 : M1

s → R ∪ {∞} given by

ϕ2(μ) := inf{g(x) | x ∈ C2(μ)}

is weakly lower semicontinuous on dom C2. �

17.2.6 Finite Discrete Distributions

Throughout this section, we shall assume that the underlying random vector Z

is discrete with a finite number of realizations Z1, . . . , ZK ∈ R
s and respective

probabilities π1, . . . , πK ∈ (0, 1]. Let I denote the index set {1, . . . , K}, then PZ

takes the form

PZ = {x ∈ R
n | ∀k ∈ I ∃y ∈ R

m : Ay ≤ T x + Zk}.

Suppose that x0 ∈ X is such that {y ∈ R
m | Ay ≤ T x0 + Zk} = ∅ holds for some

k ∈ I . Then the probability of f (x0, Z(ω)) = ∞ is a least πk > 0, i.e. x0 should
be considered as infeasible for problem (17.2.1). Consequently, X ⊆ PZ can be
understood as an induced constraint. Note that X ∩ PZ is a polyhedron if X is a
polyhedron.

In this setting, the bilevel stochastic linear problem can be reduced to a standard
bilevel program, which allows to adapt optimality conditions and algorithms
designed for the deterministic case (cf. [48]).

Proposition 17.2.26 Assume dom f 	= ∅, R ∈ {E,EE1
η, SD

1
ρ,EPη,VaRα,CVaRα,

Rmax} and let X ⊆ PZ be a polyhedron. If R ∈ {EPη,VaRα}, additionally assume
that X bounded. Then for any parameter β, there exists a constant M > 0 such that
the bilevel stochastic linear problem

min
x

{R[F(x)] | x ∈ X}

is equivalent to the standard bilevel program

min
x

{
inf
η∈R︸︷︷︸

if R=CVaRα

min
w

{
a(x,w) | w ∈ �R(x)

}| x ∈ X
}
, or

min
x

{
c�x + inf

η∈R
{
η | min

w
{a(x,w) | w ∈ �R(x)} ≥ α

}| x ∈ X
}

if R = VaRα,
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Table 17.1 Equivalent bilevel linear programs

R β w a(x,w) b(x,w)

E (y1, . . . , yK) ∈ R
Km c�x +∑k∈I πkq

�yk

EE1
η η ∈ R

(y1, . . . , yK) ∈ R
Km

(v1, . . . , vK) ∈ R
K

∑
k∈I πkvk

(
vk

vk − c�x − q�yk+η

)

SD1
ρ ρ ∈

(0, 1]
(y1, . . . , yK) ∈ R

Km

(v1, . . . , vK) ∈ R
K

(1 − ρ)
∑

k∈I πkq
�yk

+ρ
∑

k∈I πkvk + c�x

(
vk − q�yk

vk −∑j∈I πj q
�yj

)

EPη η ∈ R
(y1, . . . , yK) ∈ R

Km

(θ1, . . . , θK) ∈ {0, 1}K
∑

k∈I πkθk Mθk − c�x − q�yk + η

VaRα α ∈
(0, 1)

(y1, . . . , yK) ∈ R
Km

(θ1, . . . , θK) ∈ {0, 1}K
∑

k∈I πkθk
M(1 − θk) − c�x

−q�yk + η

CVaRα α ∈
(0, 1)

(y1, . . . , yK) ∈ R
Km

(v1, . . . , vK) ∈ R
K

η + 1
1−α

∑
k∈I πkvk cf. EE1

η

Rmax (y1, . . . , yK) ∈ R
Km maxk∈I c�x + q�yk

where �R : Rn ⇒ R
dim w with

�R(x) := Argmin
w

{∑
k∈I

d�yk | Ayk ≤ T x + Zk, bk(x,w) ≥ 0 ∀k ∈ I

}
.

The specific formulations can be found in Table 17.1. �

Proof For R ∈ {E, EE1
η, SD1

ρ, CVaRα}, we refer to [31, Section 5].
For the excess probability, the first of the considered quantile-based risk mea-

sures, we have EPη[F(x)] = P
[
c�x + infy{q�y | y ∈ �(x,Z(·))} > η

]
. Fix M ∈

R such that

M > sup
{
c�x + inf

yk

{
q�yk | yk ∈ �(x,Zk)

} | x ∈ X, k ∈ I
}− η

and, for yk ∈ �(x,Zk), let

θk :=
{

0 if c�x + q�yk − η ≤ 0,

1 otherwise.

Then the excess probability is equal to

∑
k∈I

πk infyk,θk

{
θk | Mθk ≥ c�x + q�yk − η, yk ∈ �(x,Zk), θk ∈ {0, 1}}

= inf
y1,...,yK ,

θ1,...,θK

{∑
k∈I

πkθk | Mθk ≥ c�x + q�yk − η, yk ∈ �(x,Zk), θk ∈ {0, 1}

∀k ∈ I

⎫⎪⎪⎬
⎪⎪⎭

.
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Similar to the proof for R = EPη, the expression P[f (x, Z(·)) ≤ η] equals

∑
k∈I

πk inf
yk,θk

{
θk | M(1 − θk) ≥ c�x + q�yk − η, yk ∈ �(x,Zk), θk ∈ {0, 1}

}

= inf
y1,...,yK ,

θ1,...,θK

⎧⎨
⎩
∑
k∈I

πkθk | M(1 − θi) ≥ c�x + q�yk − η, yk ∈ �(x,Zk), θk ∈ {0, 1}

∀k ∈ I

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where

θk :=
{

1 if c�x + q�yk − η ≤ 0,

0 otherwise.

Thereby we get equality of VaRη[f (x, Z(·))] and

inf

⎧⎨
⎩η ∈ R | inf

y1,...,yK ,

θ1,...,θK

{∑
k∈I

πkθk | (y1, . . . , yK, θ1, . . . , θK) ∈ �VaRη
(x)

}
≥ α

⎫⎬
⎭ .

The worst-case risk measure is equal to supk∈I

{
c�x + minyk

{q�y | y∈�(x,Zk)}
}

and the result follows from �Rmax = �(x,Z1) × . . . × �(x,ZK). ��
Remark 17.2.27

a. The equivalent standard bilevel problem is linear provided that R ∈
{E, EE1

η, SD1
ρ}.

b. Analogous to [31, Remarks 5.2, 5.4], the inner minimization problems of the
standard bilevel linear programs for R ∈ {E, EE1

η, EPη,Rmax} can be decom-
posed into K scenario problems that only differ w.r.t. the right-hand side of the
constraint system. For the other models, a similar decomposition is possible after
Lagrangian relaxation of the coupling constraints involving different scenarios.

c. For R = CVaRα , every evaluation of the objective function in the standard bilevel
linear program corresponds to solving a bilevel linear problem with scalar upper
level variable η.

d. Alternate models for R = VaRα are given in [17] and [49], where the considered
bilevel stochastic linear problem is reduced to a mixed-integer nonlinear program
and a mathematical programming problem with equilibrium constraints, respec-
tively. A mean-risk model with R = CVaRα is used in [5, Sect. III]. �
Similar reformulations can be obtained for the models discussed in Sect. 17.2.5

if we assume that the disutility function is linear.
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Table 17.2 Equivalent programs, notation as in the Example in Sect. 17.2.5

A γ wj a(wj ) R δj

Apc
βj ∈ R, pj ∈ (0, 1)

with j = 1, . . . , l

(y1j , . . . , yKj ) ∈ R
Km

(θ1j , . . . , θKj ) ∈ {0, 1}K
∑

k∈I πkθkj VaRβj
pj

Afo
any finite discrete

benchmark variable

(y1j , . . . , yKj ) ∈ R
Km

(θ1j , . . . , θKj ) ∈ {0, 1}K
∑

k∈I πkθkj EPaj
āj

Aso
b with realizations

a1, . . . , al

(y1j , . . . , yKj ) ∈ R
Km

(v1j , . . . , vKj ) ∈ R
K

∑
k∈I πkvkj EE1

aj
ãj

Proposition 17.2.28 Assume dom f 	= ∅, and let X ⊆ PZ be a bounded
polyhedron. Then for any parameter γ , the problem

min
x

{
g�x | F(x) ∈ A, x ∈ X

}

is equivalent to

min
x

{
g�x | inf

wj

{
a(wj ) | wj ∈ �R(x)

} ≥ δj ∀j = 1, . . . , l, x ∈ X
}
.

The specific formulations are listed in Table 17.2, where āj := 1 − P[b ≤ aj ] and
ãj := ∫

Rs max{b(z) − aj , 0} μZ(dz).
�

17.2.7 Solution Approaches

To solve bilevel problems, it is very common to use a single level reformulation.
Often the lower level minimality condition is replaced by its Karush-Kuhn-Tucker
or Fritz John conditions and the bilevel problem is reduced to a mathematical
programming problem with equilibrium constraints (cf. [5, 17], [48, Chap. 3.5.1]).

For R ∈ {E, EE1
η, SD1

ρ, EPη,Rmax}, the equivalent standard bilevel programs in
Proposition 17.2.26 can be all restated as

min
u

{
g�u + min

w
{h�w | w ∈ �(u)} | u ∈ U

}
, (17.2.2)

where � : R
k ⇒ R

l is given by �(u) = Argminw{t�w | Ww ≤ Bu + b} for
vectors g ∈ R

k , h, t ∈ R
l and b ∈ R

r , matrices W ∈ R
r×l and B ∈ R

r×k , and
U ⊆ R

k is a nonempty polyhedron. The usage of the KKT conditions of the lower
level problem leads to the single-level problem

min
u,w,v

{
g�u + h�w

∣∣∣∣
Ww ≤ Bu + b, W�v = t, v ≤ 0,

v�(Ww − Bu − b) = 0, u ∈ U

}
. (17.2.3)
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More details as well as statements on the coincidence of optimal values and the
existence of local and global minimizers are given in [31, Sect. 6]. If the condition
v�(Ww−Bu−b) = 0 is relaxed by v�(Ww−Bu−b) ≤ ε (the resulting problem
is denoted by P(ε)), the violation of regularity conditions like (MFCQ) and (LICQ)
at every feasible point of (17.2.3) can be bypassed. A discussion of other difficulties
associated with (17.2.3) is provided in [11, Chap. 3.1.2].

In [31, Sect. 6] it is also shown that (ū, w̄) is a local minimizer of the optimistic
formulation, if (ū, w̄, v̄) is an accumulation point of a sequence {(un,wn, vn)}n∈N
of local minimizers of problem P(εn) for εn ↓ 0.

In the risk-neutral setting, problem (17.2.2) exhibits a block-structure (cf.
Remark 17.2.27 b.). Adapting the solution method for general linear complemen-
tarity problems proposed in [50], this special structure has been used in [11, Chap.
6] to construct an efficient algorithm for the global resolution of bilevel stochastic
linear problems based on dual decomposition.

Remark 17.2.29 Utilizing the lower level value function, problem (17.2.2) can be
reformulated as a single level quasiconcave optimization problem (cf. [48, Chap.
3.6.5]). Solution methods based on a branch-and-bound scheme have been proposed
in [51] and [52]. However, without modifications, these algorithms fail to exploit the
block structure arising in risk-neutral bilevel stochastic linear optimization models
(cf. [11, Chap. 4.2]). �

17.3 Two-Stage Stochastic Bilevel Programs

In two-stage stochastic bilevel programming, both leader and follower have to
make their respective first-stage decisions without knowledge of the realization
of a stochastic parameter. Afterwards, the second-stage decisions are made under
complete information. This leads to the following chronology of decision and
observation:

leader
decides x1

→ follower
decides y1

→ z = Z(ω)

is revealed
→ leader decides

x2(x1, y1, z)
→ follower decides

y2(x1, y1, x2, z)

Remark 17.3.1 The bilevel stochastic linear problems considered in Sect. 17.2 can
be understood as special two-stage bilevel programs, where the follower’s first-stage
and the leader’s second stage decision do not influence the outcome. �

In [12], a two-stage stochastic extension of the bilevel network pricing model
introduced in [53] is studied. Consider a multicommodity transportation network
(N,�,K), where (N,�) is a directed graph and each commodity k ∈ K is to be
transported from an origin O(k) ∈ N to a destination D(k) ∈ N in order to satisfy
a demand nk ∈ (0,∞). The set of arcs � is partitioned into the subsets θ and θ̄

of tariff and tariff-free arcs, respectively, and the leaders is maximizing the revenue
raised from tariffs, knowing that user flows are assigned to cheapest paths. In [53],
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this situation is modeled as a bilevel program

“ max
x

”

{∑
k∈K

x�yk | (y, ȳ) ∈ �(x)

}
,

where the lower level is given by

�(x, c, d, b) := Argmin
y,ȳ

{∑
k∈K

[
(c + x)�yk + c̄�ȳk

] ∣∣∣ y, ȳ ≥ 0,

Ayk + Āȳk = bk ∀k ∈ K

}
,

and x is the vector of tariffs controlled by the leader, yk and ȳk are the flows of
commodity k on the tariff and tariff-free arcs, respectively. Moreover, c and c̄ are the
fixed costs on θ and θ̄ , respectively, (A, Ā) denotes the node-arc incidence matrix
and the vectors bk defined by

bk
i :=

⎧⎪⎪⎨
⎪⎪⎩

nk, if i = O(k)

−nk, if i = D(k)

0, else

are used to express nodal balance. Reference [12] extends the above model to a two-
stage setting including market uncertainties: After deciding on first-stage tariffs, the
situation repeats itself on the same network but with different cost and demand
parameters. At the first-stage, only the distribution of the second-stage parameter
Z(ω) = (c2, d2, b2)(ω) is known and the stages are linked by the restriction that the
second-stage tariffs should not differ too widely from those set at the first stage. The
linking constraint is motivated by policy regulations and competitivity issues. In a
risk-neutral setting, this results in the problem

“ max
x1

”

{∑
k∈K

x�
1 yk

1 + E[�(x1, Z(·))] | (y1, ȳ1) ∈ �(x1, c1, d1, b1)

}
, (17.3.1)

where the recourse is given by

�(x1, Z(ω)) := “ max
x2

”

{∑
k∈K

x�
2 yk

2 | (x1, x2) ∈ �(δ), (y2, ȳ2) ∈ �(x2, Z(ω))

}

and the set �(δ) is defined as either

�(δ) := �A(δ) := {(x1, x2) | |x1,θ − x2,θ | ≤ δθ ∀θ ∈ �}
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if tariff changes are limited in absolute values or

�(δ) := �R(δ) := {(x1, x2) | |x1,θ − x2,θ | ≤ δθ |x1,θ | ∀θ ∈ �}

if proportional limits are considered. Assuming that the underlying random vector
Z is discrete with a finite number of realizations, a reformulation of (17.3.1) as a
single-stage bilevel program is established in [12]. Moreover, sensitivity analysis of
the optimal value function of (17.3.1) w.r.t. the parameter δ ∈ [0,∞)|�| (cf. [12,
Proposition 4.1, Proposition 4.2]) as well as numerical studies are conducted (cf.
[12, Sects. 5, 6]).

17.4 Challenges

We shall highlight some aspects of bilevel stochastic programming that are highly
deserving of future research:

Going (Further) Beyond the Risk-Neutral Case for Nonlinear Models The
first paper on bilevel stochastic programming has already outlined the basic
principles as well as existence and sensitivity results for risk neutral models (cf.
[2]). Nevertheless, so far, most of the research on bilevel stochastic nonlinear
programming is still concerned with the risk-neutral case. Notable exceptions are [5]
and [8], where models involving the Conditional Value-at-Risk are considered. In
the first paper the problem of maximizing the medium-term revenue of an electricity
retailer under uncertain pool prices, demand, and competitor prices is modeled
as a bilevel stochastic quadratic problem, while the latter explores links between
electricity swing option pricing and bilevel stochastic optimization. However, there
exists no systematic analysis of bilevel stochastic nonlinear problems in the broader
framework of coherent risk measures or higher stochastic dominance constraints.
Future research may also consider distributionally robust models (cf. [54]).

Exploiting (Quasi) Block Structures Arising in Risk-Averse Models Under
finite discrete distributions many bilevel stochastic problems can be reformulated
as standard bilevel programs. While this reformulation entails a blow-up of the
dimension which is usually linear in the number of scenarios, the resulting problems
often exhibit (quasi) block structures (cf. Remark 17.2.27b., [2]). For risk-neutral
bilevel stochastic linear problems, [11, Chap. 6] utilizes these structures to enhance
the mixed integer programming based solution algorithm of [50] resulting in a
significant speed-up. Based on the structural similarities an analogous approach
should be possible for risk-averse models after Lagrangian relaxation of coupling
constraints.

Going Beyond Exogenous Stochasticity While the analysis in the vast majority
of papers on stochastic programming is confined to the case of purely exogenous
stochasticity, this assumption is known to be unrealistic in economic models, where
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the decision maker holds market power. Therefore, models with decision dependent
distributions are of particular interest in view of stochastic Stackelberg games (cf.
[55]).
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