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Abstract Population-based optimization algorithms, such as evolutionary algo-
rithms, have enjoyed a lot of attention in the past three decades in solving
challenging search and optimization problems. In this chapter, we discuss recent
population-based evolutionary algorithms for solving different types of bilevel opti-
mization problems, as they pose numerous challenges to an optimization algorithm.
Evolutionary bilevel optimization (EBO) algorithms are gaining attention due to
their flexibility, implicit parallelism, and ability to customize for specific problem
solving tasks. Starting with surrogate-based single-objective bilevel optimization
problems, we discuss how EBO methods are designed for solving multi-objective
bilevel problems. They show promise for handling various practicalities associated
with bilevel problem solving. The chapter concludes with results on an agro-
economic bilevel problem. The chapter also presents a number of challenging single
and multi-objective bilevel optimization test problems, which should encourage
further development of more efficient bilevel optimization algorithms.
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13.1 Introduction

Bilevel and multi-level optimization problems are omni-present in practice. This
is because in many practical problems there is a hierarchy of two or more
problems involving different variables, objectives and constraints, arising mainly
from the involvement of different hierarchical stakeholders to the overall problem.
Consider an agro-economic problem for which clearly there are at least two sets of
stakeholders: policy makers and farmers. Although the overall goal is to maximize
food production, minimize cost of cultivation, minimize water usage, minimize
environmental impact, maximum sustainable use of the land and others, clearly,
the overall solution to the problem involves an optimal design on the following
variables which must be settled by using an optimization algorithm: crops to
be grown, amount of irrigation water and fertilizers to be used, selling price of
crops, fertilizer taxes to be imposed, and others. Constraints associated with the
problem are restricted run-off of harmful chemicals, availability of limited budget
for agriculture, restricted use of land and other resources, and others. One can
attempt to formulate the overall problem as a multi-objective optimization problem
involving all the above-mentioned variables, objectives, and constraints agreeable
to both stake-holders in a single level. Such a solution procedure has at least
two difficulties. First, the number of variables, objectives, and constraints of the
resulting problem often becomes large, thereby making the solution of the problem
difficult to achieve to any acceptable accuracy. Second, such a single-level process
is certainly not followed in practice, simply from an easier managerial point of
view. In reality, policy-makers come up with fertilizer taxes and agro-economic
regulations so that harmful environmental affects are minimal, crop production is
sustainable for generations to come, and revenue generation is adequate for meeting
the operational costs. On the other hand, once a set of tax and regulation policies are
announced, farmers consider them to decide on the crops to be grown, amount and
type of fertilizers to be used, and irrigated water to be utilized to obtain maximum
production with minimum cultivation cost. Clearly, policy-makers are at the upper
level in this overall agro-economic problem solving task and farmers are at the lower
level. However, upper level problem solvers must consider how a solution (tax and
regulation policies) must be utilized optimally by the lower level problem solvers
(farmers, in this case). Also, it is obvious that the optimal strategy of the lower
level problem solvers directly depends on the tax and regulation policies declared
by the upper level problem solvers. The two levels of problems are intricately linked
in such bilevel problems, but, interestingly, the problem is not symmetric between
upper and lower levels; instead the upper level’s objectives and constraints control
the final optimal solution more than that of the lower level problem.

When both upper and lower level involve a single objective each, the resulting
bilevel problem is called a single-objective bilevel problem. The optimal solution
in this case is usually a single solution describing both upper and lower level
optimal variable values. In many practical problems, each level independently or
both levels may involve more than one conflicting objectives. Such problems are
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termed here as multi-objective bilevel problems. These problems usually have more
than one bilevel solution. For implementation purposes, a single bilevel solution
must be chosen using the preference information of both upper and lower level
problem solvers. Without any coordinated effort by upper level decision makers
with lower level decision-makers, a clear choice of the overall bilevel solution is
uncertain, which provides another dimension of difficulty to solve multi-objective
bilevel problems.

It is clear from the above discussion that bilevel problems are reality in practice,
however their practice is uncommon, simply due to the fact that the nested
nature of two optimization problems makes the solution procedure computationally
expensive. The solution of such problems calls for flexible yet efficient optimization
methods, which can handle different practicalities and are capable of finding approx-
imate optimal solutions in a quick computational manner. Recently, evolutionary
optimization methods have been shown to be applicable to such problems because
of ease of customization that helps in finding near-optimal solution, mainly due to
their population approach, use of a direct optimization approach instead of using
any gradient, presence of an implicit parallelism mechanism constituting a parallel
search of multiple regions simultaneously, and their ability to find multiple optimal
solutions in a single application.

In this chapter, we first provide a brief description of metaheuristics in Sect. 13.2
followed by a step-by-step procedure of an evolutionary optimization algorithm
as a representative of various approaches belonging to this class of algorithms.
Thereafter, in Sect. 13.3, we discuss the bilevel formulation and difficulties involved
in solving a bilevel optimization problem. Then, we provide the past studies on
population-based methods for solving bilevel problems in Sect. 13.4. Thereafter, we
discuss in detail some of the recent efforts in evolutionary bilevel optimization in
Sect. 13.5. In Sect. 13.6, we present two surrogate-assisted single-objective evolu-
tionary bilevel optimization (EBO) algorithms—BLEAQ and BLEAQ2. Simulation
results of these two algorithms are presented next on a number of challenging
standard and scalable test problems provided in the Appendix. Bilevel evolutionary
multi-objective optimization (BL-EMO) algorithms are described next in Sect. 13.7.
The ideas of optimistic and pessimistic bilevel Pareto-optimal solution sets are
differentiated and an overview of research developments on multi-objective bilevel
optimization is provided. Thereafter, in Sect. 13.8, a multi-objective agro-economic
bilevel problem is described and results using the proposed multi-objective EBO
algorithm are presented. Finally, conclusions of this extensive chapter is drawn in
Sect. 13.9.

13.2 Metaheuristics Algorithms for Optimization

Heuristics refers to relevant guiding principles, or effective rules, or partial problem
information related to the problem class being addressed. When higher level
heuristics are utilized in the process of creating new solutions in a search or
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optimization methodology for solving a larger class of problems, the resulting
methodology is called a metaheuristic. The use of partial problem information
may also be used in metaheuristics to speed up the search process in arriving at a
near-optimal solution, but an exact convergence to the optimal solution is usually
not guaranteed. For many practical purposes, metaheuristics based optimization
algorithms are more pragmatic approaches [13]. These methods are in rise due to
the well-known no-free-lunch (NFL) theorem.

Theorem 13.2.1 No single optimization algorithm is most computationally effec-
tive for solving all problems. �
Although somewhat intuitive, a proof of a more specific and formal version of the
above theorem was provided in [66]. A corollary to the NFL theorem is that for
solving a specific problem class, there exists a customized algorithm which would
perform the best; however the same algorithm may not work so well on another
problem class.

It is then important to ask a very important question: ‘How does one develop a
customized optimization algorithm for a specific problem class?’. The search and
optimization literature does not provide a ready-made answer to the above question
for every possible problem class, but the literature is full of different application
problems and the respective developed customized algorithms for solving the
problem class. Most of these algorithms use relevant heuristics derived from the
description of the problem class.

We argue here that in order to utilize problem heuristics in an optimization
algorithm, the basic structure of the algorithm must allow heuristics to be integrated
easily. For example, the well-known steepest-descent optimization method cannot
be customized much with available heuristics, as the main search must always take
place along the negative of the gradient of the objective functions to allow an
improvement or non-deterioration in the objective value from one iteration to the
next. In this section, we discuss EAs that are population-based methods belonging
to the class of metaheuristics. There exist other population-based metaheuristic
methods which have also been used for solving bilevel problems, which we do not
elaborate here, but provide a brief description below:

• Differential Evolution (DE) [59]: DE is a steady-state optimization procedure
which uses three population members to create a “mutated” point. It is then
compared with the best population member and a recombination of variable
exchanges is made to create the final offspring point. An optional selection
between offspring and the best population member is used. DE cannot force
its population members to stay within specified variable bounds and special
operators are needed to handle them as well as other constraints. DE is often
considered as a special version of an evolutionary algorithm, described later.

• Particle Swarm Optimization (PSO) [28, 31]: PSO is a generational optimiza-
tion procedure which creates one new offspring point for each parent population
member by making a vector operation with parent’s previous point, its best point
since the start of a run and the best-ever population point. Like DE, PSO cannot
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also force its population members to stay within specified variable bounds and
special operators are needed to handle them and other constraints.

• Other Metaheuristics [5, 22]: There exists more than 100 other metaheuristics-
based approaches, which use different natural and physical phenomenon. Vari-
able bounds and constraints are often handled using penalty functions or by using
special operators.

These algorithms, along with evolutionary optimization algorithms described
below, allow flexibility for customizing the solution procedure by enabling any
heuristics or rules to be embedded in their operators.

Evolutionary algorithms (EAs) are mostly synonymous to metaheuristics based
optimization methods. EAs work with multiple points (called a population) at each
iteration (called a generation). Here are the usual steps of a generational EA:

1. An initial population P0 of size N (population size) is created, usually at random
within the supplied variable bounds. Every population member is evaluated
(objective functions and constraints) and a combined fitness or a selection
function is evaluated for each population member. Set the generation counter
t = 0.

2. A termination condition is checked. If not satisfied, continue with Step 3, else
report the best point and stop.

3. Select better population members of Pt by comparing them using the fitness
function and store them in mating pool Mt .

4. Take pairs of points fromMt at a time and recombine them using a recombination
operator to create one or more new points.

5. Newly created points are then locally perturbed by using a mutation operator.
The mutated point is then stored in an offspring population Qt . Steps 4 and 5 are
continued until Qt grows to a size of N .

6. Two populations Pt and Qt are combined and N best members are saved in the
new parent population Pt+1. The generation counter is incremented by one and
the algorithm moves to Step 2.

The recombination operator is unique in EAs and is responsible for recombining
two different population members to create new solutions. The selection and
recombination operators applied on a population constitutes an implicitly parallel
search, providing their power. In the above generational EA, NTmax is the total
number of evaluations, where Tmax is the number of generations needed to terminate
the algorithm. Besides the above generational EA, steady-state EAs exist, in which
the offspring population Qt consists of a single new mutated point. In the steady-
state EA, the number of generations Tmax needed to terminate would be more than
that needed for a generational EA, but the overall number of solution evaluations
needed for the steady-state EA may be less, depending on the problem being solved.

Each of the steps in the above algorithm description—initialization (Step 1),
termination condition (Step 2), selection (Step 3), recombination (Step 4), mutation
(Step 5) and survival (Step 6)—can be changed or embedded with problem
information to make the overall algorithm customized for a problem class.
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13.3 Bilevel Formulation and Challenges

Bilevel optimization problems have two optimization problems staged in a hierar-
chical manner [55]. The outer problem is often referred to as the upper level problem
or the leader’s problem, and the inner problem is often referred to as the lower level
problem or the follower’s problem. Objective and constraint functions of both levels
can be functions of all variables of the problem. However, a part of the variable
vector, called the upper level variable vector, remains fixed for the lower level
optimization problem. For a given upper level variable vector, an accompanying
lower level variable set which is optimal to the lower level optimization problem
becomes a candidate feasible solution for the upper level optimization problem,
subject to satisfaction of other upper level variable bounds and constraint functions.
Thus, in such nested problems, the lower level variable vector depends on the upper
level variable vector, thereby causing a strong variable linkage between the two
variable vectors. Moreover, the upper level problem is usually sensitive to the quality
of lower level optimal solution, which makes solving the lower level optimization
problem to a high level of accuracy important.

The main challenge in solving bilevel problems is the computational effort
needed in solving nested optimization problems, in which for every upper level
variable vector, the lower level optimization problem must be solved to a reasonable
accuracy. One silver lining is that depending on the complexities involved in two
levels, two different optimization algorithms can be utilized, one for upper level and
one for lower level, respectively, instead of using the same optimization method
for both levels. However, such a nested approach may also be computationally
expensive for large scale problems. All these difficulties provide challenges to
optimization algorithms while solving a bilevel optimization problem with a
reasonable computational complexity.

There can also be situations where the lower level optimization in a bilevel
problem has multiple optimal solutions for a given upper level vector. Therefore, it
becomes necessary to define, which solution among the multiple optimal solutions
at the lower level should be considered. In such cases, one assumes either of the
two positions: the optimistic position or the pessimistic position. In the optimistic
position, the follower is assumed to favorable to the leader and chooses the solution
that is best for the leader from the set of multiple lower level optimal solutions.
In the pessimistic position, it is assumed that the follower may not be favorable
to the leader (in fact, the follower is antagonistic to leader’s objectives) and may
choose the solution that is worst for the leader from the set of multiple lower level
optimal solutions. Intermediate positions are also possible and are more pragmatic,
which can be defined with the help of selection functions. Most of the literature
on bilevel optimization usually focuses on solving optimistic bilevel problems. A
general formulation for the bilevel optimization problem is provided below.
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Definition 13.3.1 For the upper level objective function F : Rn × R
m → R and

lower level objective function f : Rn ×R
m → R, the bilevel optimization problem

is given by

min
xu,xl

F (xu, xl ), (13.3.1)

subject to xl ∈ argmin
xl

{f (xu, xl ) : gj (xu, xl ) ≤ 0, j = 1, . . . , J }, (13.3.2)

Gk(xu, xl ) ≤ 0, k = 1, . . . , K, (13.3.3)

where Gk : R
n × R

m → R, k = 1, . . . , K denotes the upper level constraints,
and gj : R

n × R
m → R, j = 1, . . . , J represents the lower level constraints,

respectively. Variables xu and xl are n and m dimensional vectors, respectively.
It is important to specify the position one is taking while solving the above
formulation. �

13.4 Non-surrogate-Based EBO Approaches

A few early EBO algorithms were primarily either nested approaches or used the
KKT conditions of the lower level optimization problem to reduce the bilevel
problem to a single level and then a standard algorithm was applied. In this section,
we provide a review of such approaches. It is important to note that the implicit
parallel search of EAs described before still plays a role in constituting an efficient
search within both the upper and lower level optimization tasks.

13.4.1 Nested Methods

Nested EAs are a popular approach to handle bilevel problems, where lower
level optimization problem is solved corresponding to each and every upper level
member [36, 41, 47]. Though effective, nested strategies are computationally very
expensive and not viable for large scale bilevel problems. Nested methods in the area
of EAs have been used in primarily two ways. The first approach has been to use an
EA at the upper level and a classical algorithm at the lower level, while the second
approach has been to utilize EAs at both levels. Of course, the choice between
two approaches is determined by the complexity of the lower level optimization
problem.

One of the first EAs for solving bilevel optimization problems was proposed in
the early 1990s. Mathieu et al. [35] used a nested approach with genetic algorithm at
the upper level, and linear programming at the lower level. Another nested approach
was proposed in [69], where the upper level was an EA and the lower level was
solved using Frank–Wolfe algorithm (reduced gradient method) for every upper
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level member. The authors demonstrated that the idea can be effectively utilized
to solve non-convex bilevel optimization problems. Nested PSO was used in [31] to
solve bilevel optimization problems. The effectiveness of the technique was shown
on a number of standard test problems with small number of variables, but the
computational expense of the nested procedure was not reported. A hybrid approach
was proposed in [30], where simplex-based crossover strategy was used at the
upper level, and the lower level was solved using one of the classical approaches.
The authors report the generations and population sizes required by the algorithm
that can be used to compute the upper level function evaluations, but they do
not explicitly report the total number of lower level function evaluations, which
presumably is high.

DE based approaches have also been used, for instance, in [72], authors used
DE at the upper level and relied on the interior point algorithm at the lower level;
similarly, in [3] authors have used DE at both levels. Authors have also combined
two different specialized EAs to handle the two levels, for example, in [2] authors
use an ant colony optimization to handle the upper level and DE to handle the lower
level in a transportation routing problem. Another nested approach utilizing ant
colony algorithm for solving a bilevel model for production-distribution planning
is [9]. Scatter search algorithms have also been employed for solving production-
distribution planning problems, for instance [10].

Through a number of approaches involving EAs at one or both levels, the
authors have demonstrated the ability of their methods in solving problems that
might otherwise be difficult to handle using classical bilevel approaches. However,
as already stated, most of these approaches are practically non-scalable. With
increasing number of upper level variables, the number of lower level optimization
tasks required to be solved increases exponentially. Moreover, if the lower level
optimization problem itself is difficult to solve, numerous instances of such a
problem cannot be solved, as required by these methods.

13.4.2 Single-Level Reduction Using Lower Level KKT
Conditions

Similar to the studies in the area of classical optimization, many studies in the
area of evolutionary computation have also used the KKT conditions of the lower
level to reduce the bilevel problem into a single-level problem. Most often, such
an approach is able to solve problems that adhere to certain regularity conditions
at the lower level because of the requirement of the KKT conditions. However,
as the reduced single-level problem is solved with an EA, usually the upper level
objective function and constraints can be more general and not adhering to such
regularities. For instance, one of the earliest papers using such an approach is by
Hejazi et al. [24], who reduced the linear bilevel problem to single-level and then
used a genetic algorithm, where chromosomes emulate the vertex points, to solve
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the problem. Another study [8] also proposed a single level reduction for linear
bilevel problems. Wang et al. [62] reduced the bilevel problem into a single-level
optimization problem using KKT conditions, and then utilized a constraint handling
scheme to successfully solve a number of standard test problems. Their algorithm
was able to handle non-differentiability at the upper level objective function, but
not elsewhere. Later on, Wang et al. [64] introduced an improved algorithm that
was able to handle non-convex lower level problem and performed better than
the previous approach [62]. However, the number of function evaluations in both
approaches remained quite high (requiring function evaluations to the tune of
100,000 for 2–5 variable bilevel problems). In [63], the authors used a simplex-
based genetic algorithm to solve linear-quadratic bilevel problems after reducing
it to a single level task. Later, Jiang et al. [27] reduced the bilevel optimization
problem into a non-linear optimization problem with complementarity constraints,
which is sequentially smoothed and solved with a PSO algorithm. Along similar
lines of using lower level optimality conditions, Li [29] solved a fractional bilevel
optimization problem by utilizing optimality results of the linear fractional lower
level problem. In [60], the authors embed the chaos search technique in PSO to
solve single-level reduced problem. The search region represented by the KKT
conditions can be highly constrained that poses challenges for any optimization
algorithm. To address this concern, in a recent study [57], the authors have used
approximate KKT-conditions for the lower level problem. One of the theoretical
concerns of using the KKT conditions to replace lower level problem directly is that
the associated constraint qualification conditions must also be satisfied for every
lower level solution.

13.5 Surrogate-Based EBO Approaches

The earlier approaches suffered with some drawbacks like high computational
requirements, or reliance on the KKT conditions of the lower level problem. To
overcome this, recent research has focused on surrogate-based methods for bilevel
problems. Researchers have used surrogates in different ways for solving bilevel
problems that we discuss in this section.

Surrogate-based solution methods are commonly used for optimization problems
[61], where actual function evaluations are expensive. A meta-model or surrogate
model is an approximation of the actual model that is relatively quicker to evaluate.
Based on a small sample from the actual model, a surrogate model can be trained
and used subsequently for optimization. Given that, for complex problems, it is
hard to approximate the entire model with a small set of sample points, researchers
often resort to iterative meta modeling techniques, where the actual model is
approximated locally during iterations.

Bilevel optimization problems contain an inherent complexity that leads to a
requirement of large number of evaluations to solve the problem. Metamodeling of
the lower level optimization problem, when used with population-based algorithms,
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Fig. 13.1 Graphical representation of rational reaction set (�) and lower level optimal value
function (ϕ)

offers a viable means to handle bilevel optimization problems. With good lower
level solutions being supplied at the upper level, EA’s implicit parallel search power
constructs new and good upper level solutions, making the overall search efficient.
In this subsection, we discuss three ways in which metamodeling can be applied
to bilevel optimization. There are two important mappings in bilevel optimization,
referred to as the rational reaction set and lower level optimal value function.
We refer the readers to Fig. 13.1, which provides an understanding of these two
mappings graphically for a hypothetical bilevel problem.

13.5.1 Reaction Set Mapping

One of the approaches to solve bilevel optimization problems using EAs would
be through iterative approximation of the reaction set mapping �. The bilevel
formulation in terms of the �-mapping can be written as below.

min
xu,xl

F (xu, xl ), (13.5.1)

subject to xl ∈ �(xu), (13.5.2)

Gk(xu, xl ) ≤ 0, k = 1, . . . , K. (13.5.3)



13 Approximate Bilevel Optimization with Population-Based Evolutionary. . . 371

If the �-mapping in a bilevel optimization problem is known, it effectively reduces
the problem to single level optimization. However, this mapping is seldom available;
therefore, the approach could be to solve the lower level problem for a few upper
level members and then utilize the lower level optimal solutions and corresponding
upper level members to generate an approximate mapping �̂. It is noteworthy
that approximating a set-valued �-mapping offers its own challenges and is not a
straightforward task. Assuming that an approximate mapping, �̂, can be generated,
the following single level optimization problem can be solved for a few generations
of the algorithm before deciding to further refine the reaction set.

min
xu,xl

F (xu, xl ),

subject to xl ∈ �̂(xu),

Gk(xu, xl ) ≤ 0, k = 1, . . . , K.

EAs that rely on this idea to solve bilevel optimization problems are [4, 44, 45, 50].
In some of these studies, authors have used quadratic approximation to approximate
the local reaction set. This helps in saving lower level optimization calls when
the approximation for the local reaction set is good. In case the approximations
generated by the algorithm are not acceptable, the method defaults to a nested
approach. It is noteworthy that a bilevel algorithm that uses a surrogate model for
reaction set mapping may need not be limited to quadratic models but other models
can also be used.

13.5.2 Optimal Lower Level Value Function

Another way to use metamodeling is through the approximation of the optimal
value function ϕ. If the ϕ-mapping is known, the bilevel problem can once again
be reduced to single level optimization problem as follows [68],

min
xu,xl

F (xu, xl ),

subject to f (xu, xl ) ≤ ϕ(xu),

gj (xu, xl ) ≤ 0, j = 1, . . . , J,

Gk(xu, xl ) ≤ 0, k = 1, . . . , K.

However, since the value function is seldom known, one can attempt to approximate
this function using metamodeling techniques. The optimal value function is a single-
valued mapping; therefore, approximating this function avoids the complexities
associated with set-valued mapping. As described previously, an approximate
mapping ϕ̂, can be generated with the population members of an EA and the
following modification in the first constraint: f (xu, xl ) ≤ ϕ̂(xu). Evolutionary
optimization approaches that rely on this idea can be found in [51, 56, 58].
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13.5.3 Bypassing Lower Level Problem

Another way to use a meta-model in bilevel optimization would be to completely
by-pass the lower level problem, as follows:

min
xu

F̂ (xu),

subject to Ĝk(xu) ≤ 0, k = 1, . . . , K.

Given that the optimal xl are essentially a function of xu, it is possible to construct
a single level approximation of the bilevel problem by ignoring xl completely
and writing the objective function and constraints for the resulting single level
problem as a function of only xu. However, the landscape for such a single level
problem can be highly non-convex, disconnected, and non-differentiable. Advanced
metamodeling techniques might be required to use this approach, which may be
beneficial for certain classes of bilevel problems. A training set for the metamodel
can be constructed by solving a few lower level problems for different xu. Both
upper level objective F and constraint set (Gk) can then be meta-modeled using
xu alone. Given the complex structure of such a single-level problem, it might be
sensible to create such an approximation locally.

13.5.4 Limitations and Assumptions of Surrogate-Based
Approaches

The idea of using function approximations within EAs makes them considerably
more powerful than simple random search. However, these algorithms are still
constrained by certain background assumptions, and are not applicable to arbitrary
problems. In order for the approximations to work, we generally need to impose
some constraining assumptions on the bilevel problem to even ensure the existence
of the underlying mappings that the algorithms are trying to approximate numeri-
cally.

For example, when using function approximations for the reaction set mapping
in single objective problems, we need to assume that the lower level problem is
convex with respect to the lower level variables. If the lower level problem is
not convex, the function could be composed by global as well as local optimal
solutions, and if we consider only global optimal solutions in the lower level
problem, the respective function could become discontinuous. This challenge can
be avoided by imposing the convexity assumption. Furthermore, we generally need
to require that the lower level objective function as well as the constraints are
twice continuously differentiable. For more insights, we refer to [50], where the
assumptions are discussed in greater detail in case of both polyhedral and nonlinear
constraints. When these assumptions are not met, there are also no guarantees that
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the approximation based algorithms can be expected to work any better than a nested
search.

In the next section, we describe recent surrogate-based EBO algorithms, but
would like to highlight that they are not exempt from the above convexity and
differentiability assumptions.

13.6 Single-Objective Surrogate-Based EBO Algorithms

In this section, we discuss the working of two surrogate-based EBO algorithms—
BLEAQ and BLEAQ2—that rely on the approximation of the �- and ϕ-mappings.
In a single-objective bilevel problems, both upper and lower level problems have a
single objective function: F(xu, xl ) and f (xu, xl ). There can be multiple constraints
at each level. We describe these algorithms in the next two subsections.

13.6.1 �-Approach and BLEAQ Algorithm

In the �-approach, the optimal value of each lower level variable is approximated
using a surrogate model of the upper level variable set. Thus, a total of m =
|xl | number of metamodels must be constructed from a few exact lower level
optimization results.

After the lower level problem is optimized for a few upper level variable sets,
the optimal lower level variable can be modeled using a quadratic function of upper
level variables: x∗

l,i = qi(xu). In fact, the algorithm creates various local quadratic
models, but for simplicity we skip the details here. Thereafter, upper level objective
and constraint functions can be expressed in terms of the upper level variables only
in an implicit manner, as follows:

min
xu

F (xu,q(xu)) ,

subject to Gk (xu,q(xu)) ≤ 0, k = 1, 2, . . . , K.

Note that q(xu) represents the quadratic approximation for the lower level vector.
The dataset for creating the surrogate q(xu), is constructed by identifying the
optimal lower level vectors corresponding to various upper level vectors by solving
the following problem:

x∗
l = argmin

{
f (xu, xl )

∣∣gj (xu, xl ) ≤ 0, j = 1, 2, . . . , J
}
.

The validity of the quadratic approximation is checked after a few iterations. If the
existing quadratic model does not provide an accurate approximation, new points are
introduced to form a new quadratic model. We call this method BLEAQ [45, 50].
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Note that this method will suffer whenever the lower level has multiple optimal
solutions at the lower level, and also it requires multiple models qi(xu), ∀ i ∈
{1, . . . , m}, to be created.

13.6.2 ϕ-Approach and BLEAQ2 Algorithm

Next, we discuss the ϕ-approach that overcomes the various drawbacks of the �-
approach. In the ϕ-approach, an approximation of the optimal lower level objective
function value ϕ(xu) as a function of xu is constructed that we refer to as ϕ̂(xu).
Thereafter, the following single-level problem is solved:

Minimize F (xu, xl ) ,

subject to f (xu, xl ) ≤ ϕ̂(xu),

Gk (xu, xl ) ≤ 0, k = 1, 2, . . . , K.

(13.6.1)

The above formulation allows a single surrogate model to be constructed and the
solution of the above problem provides optimal xu and xl vectors.

In the modified version of BLEAQ, that we called BLEAQ2 [58], both � and
ϕ-approaches are implemented with a check. The model that has higher level of
accuracy is used to choose the lower level solution for any given upper level vector.
Both � and ϕ models are approximated locally and updated iteratively.

13.6.3 Experiments and Results

Next, we assess the performance of three algorithms, the nested approach, BLEAQ,
and BLEAQ2 on a set of bilevel test problems. We perform 31 runs for each test
instance. For each run, the upper and lower level function evaluations required until
termination are recorded separately. Information about the various parameters and
their settings can be found in [50, 58].

13.6.3.1 Results on Non-scalable Test Problems

We first present the empirical results on eight non-scalable test problems selected
from the literature (referred to as TP1–TP8). The description for these test problems
is provided in the Appendix. Table 13.1 contains the median upper level (UL)
function evaluations, lower level (LL) function evaluations and BLEAQ2’s overall
function evaluation savings as compared to other approaches from 31 runs of the
algorithms. The overall function evaluations for any algorithm is simply the sum
of upper and lower level function evaluations. For instance, for the median run
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Table 13.1 Median function evaluations on non-scalable test problems TP1–TP8

UL func. evals. LL func. evals. BLEAQ2 savings

BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ2

Med Med Med Med Med Med vs BLEAQ vs nested

TP1 136 155 – 242 867 – 63% Large%

TP2 255 185 436 440 971 5686 40% 89%

TP3 158 155 633 224 894 6867 64% 95%

TP4 198 357 1755 788 1772 19764 54% 95%

TP5 272 243 576 967 1108 6558 8% 83%

TP6 161 155 144 323 687 1984 43% 77%

TP7 112 255 193 287 987 2870 68% 87%

TP8 241 189 403 467 913 7996 36% 92%

While computing savings, we compare the total function evaluations (sum of upper and lower level
function evaluations) of one algorithm against the other. Savings for BLEAQ2 when compared
against an algorithm A is given as (A − BLEAQ2) /A, where the name of the algorithm denotes
the total function evaluations required by the algorithm

with TP1, BLEAQ2 requires 63% less overall function evaluations as compared
to BLEAQ, and 98% less overall function evaluations as compared to the nested
approach.

All these test problems are bilevel problems with small number of variables, and
all the three algorithms were able to solve the eight test instances successfully. A
significant computational saving can be observed for both BLEAQ2 and BLEAQ,
as compared to the nested approach, as shown in the ‘Savings’ column of Table 13.1.
The performance gain going from BLEAQ to BLEAQ2 is quite significant for these
test problems even though none of them leads to multiple lower level optimal
solutions. Detailed comparison between BLEAQ and BLEAQ2 in terms of upper
and lower level function evaluations is provided through Figs. 13.2 and 13.3,
respectively. It can be observed that BLEAQ2 requires comparatively much less
number of lower level function evaluations than BLEAQ algorithm, while there
is no conclusive argument can be made for the number of upper level function
evaluations. However, since the lower level problem is solved more often, as
shown Table 13.1, BLEAQ2 requires significantly less number of overall function
evaluations to all eight problems.

13.6.3.2 Results on Scalable Test Problems

Next, we compare the performance of the three algorithms on the scalable SMD
test suite (presented in the Appendix) which contains 12 test problems [46]. The
test suite was later extend to 14 test problems by adding two additional scalable test
problems. First we analyze the performance of the algorithms on five variables, and
then we provide the comparison results on 10-variable instances of the SMD test
problems. For the five-variable version of the SMD test problems, we use p = 1,
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Fig. 13.2 Variation of upper level function evaluations required by BLEAQ and BLEAQ2
algorithms in 31 runs applied to TP1–TP8

q = 2 and r = 1 for all SMD problems except SMD6 and SMD14. For the five-
variable version of SMD6 and SMD14, we use p = 1, q = 0, r = 1 and s = 2.
For the 10-variable version of the SMD test problems, we use p = 3, q = 3 and
r = 2 for all SMD problems except SMD6 and SMD14. For the 10-variable version
of SMD6 and SMD14, we use p = 3, q = 1, r = 2 and s = 2. In their five-
variable versions, there are two variables at the upper level and three variables at
the lower level. They also offer a variety of tunable complexities to any algorithm.
For instance, the test set contains problems which are multi-modal at the upper
and the lower levels, contain multiple optimal solutions at the lower level, contain
constraints at the upper and/or lower levels, etc.

Table 13.2 provides the median function evaluations and overall savings for the
three algorithms on all 14 five-variable SMD problems. The table indicates that
BLEAQ2 is able to solve the entire set of 14 SMD test problems, while BLEAQ fails
on two test problems. The overall savings with BLEAQ2 is larger as compared to
BLEAQ for all problems. Test problems SMD6 and SMD14 which contain multiple
lower level solutions, BLEAQ is unable to handle them. Further details about the
required overall function evaluations from 31 runs are provided in Fig. 13.4.

Results for the 10-variable SMD test problems are presented in Table 13.3.
BLEAQ2 leads to much higher savings as compared to BLEAQ. BLEAQ is found
to fail again on SMD6 and also on SMD7 and SMD8. Both methods outperform
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Fig. 13.3 Variation of lower level function evaluations required by BLEAQ and BLEAQ2
algorithms in 31 runs applied to TP1–TP8

Table 13.2 Median function evaluations on five-variable SMD test problems

UL func. evals. LL func. evals. BLEAQ2 savings

BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ2

Med Med Med Med Med Med vs BLEAQ vs nested

SMD1 123 98 164 8462 13,425 104,575 37% 92%

SMD2 114 88 106 7264 11,271 74,678 35% 90%

SMD3 264 91 136 12, 452 15,197 101,044 17% 87%

SMD4 272 110 74 8600 12,469 59,208 29% 85%

SMD5 126 80 93 14, 490 19,081 73,500 24% 80%

SMD6 259 – 116 914 – 3074 Large 63%

SMD7 180 98 67 8242 12,580 56,056 34% 85%

SMD8 644 228 274 22, 866 35,835 175,686 35% 87%

SMD9 201 125 127 10, 964 16,672 101,382 34% 89%

SMD10 780 431 – 19, 335 43,720 – 54% Large

SMD11 1735 258 260 134, 916 158,854 148,520 14% 8%

SMD12 203 557 – 25, 388 135,737 – 81% Large

SMD13 317 126 211 13, 729 17,752 138,089 21% 90%

SMD14 1014 – 168 12, 364 – 91,197 Large 85%
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Fig. 13.4 Overall function evaluations needed by BLEAQ and BLEAQ2 for solving five-
dimensional SMD1–SMD14 problems

Table 13.3 Median function evaluations on 10-variable SMD test problems

UL func. evals. LL func. evals. BLEAQ2 savings

BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ2

Med Med Med Med Med Med vs BLEAQ vs nested

SMD1 670 370 760 52, 866 61,732 1,776,426 14% 97%

SMD2 510 363 652 44, 219 57,074 1,478,530 22% 97%

SMD3 1369 630 820 68, 395 90,390 1,255,015 23% 94%

SMD4 580 461 765 35, 722 59,134 1,028,802 39% 96%

SMD5 534 464 645 65, 873 92,716 1,841,569 29% 96%

SMD6 584 – 824 3950 – 1562,003 Large 99%

SMD7 1486 – – 83, 221 – – Large Large

SMD8 6551 – – 231, 040 – – Large Large

the nested method on most of the test problems. We do not provide results for
SMD9–SMD14 as none of the algorithms are able to handle these problems. It is
noteworthy that SMD9–SMD14 offer difficulties with multi-modalities and having
highly constrained search space, which none of the algorithms are able to handle
with the parameter setting used here. Details for the 31 runs on each of these test
problems are presented in Fig. 13.5.

The advantage of BLEAQ2 algorithm comes from the use of both � and
ϕ-mapping based surrogate approaches. We pick two SMD problems—SMD1
and SMD13—to show that one of the two surrogate approaches perform better
depending on their suitability on the function landscape. Figure 13.6 shows that
in SMD1 problem, ϕ-approximation performs better and Fig. 13.7 shows that �-
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Fig. 13.5 Overall function evaluations needed by BLEAQ and BLEAQ2 for solving 10-
dimensional SMD1–SMD14 problems

Fig. 13.6 Approximation error (in terms of Euclidean distance) of a predicted lower level optimal
solution when using localized� and ϕ-mapping during the BLEAQ2 algorithm on the five-variable
SMD1 test problem

approximation is better on SMD13. In these figures, the variation of the Euclidean
distance of lower level solution from exact optimal solution with generations is
shown.While both approaches reduce the distance in a noisy manner, BLEAQ2 does
it better by using the best of both approaches than BLEAQ which uses only the �-
approximation. The two figures show the adaptive nature of the BLEAQ2 algorithm
in choosing the right approximation strategy based on the difficulties involved in a
bilevel optimization problem.
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Fig. 13.7 Approximation
error (in terms of Euclidean
distance) of a predicted lower
level optimal solution when
using localized � and
ϕ-mapping during the
BLEAQ2 algorithm on the
five-variable SMD13 test
problem

13.6.4 Other Single-Objective EBO Studies

Most often, uncertainties arise from unavoidable variations in implementing an
optimized solution. Thus, the issue of uncertainty handling is of great practical
significance. Material properties, measurement errors, manufacturing tolerances,
interdependence of parameters, environmental conditions, etc. are all sources of
uncertainties, which, if not considered during the optimization process, may lead to
an optimistic solution without any practical relevance. A recent work [34] introduces
the concept of robustness and reliability in bilevel optimization problems arising
from uncertainties in both lower and upper level decision variables and parameters.
The effect of uncertainties on the final robust/reliable bilevel solution was clearly
demonstrated in the study using simple, easy-to-understand test problems, followed
by a couple of application problems. The topic of uncertainty handling in bilevel
problems is highly practical and timely with the overall growth in research in bilevel
methods and in uncertainty handling methods.

Bilevel methods may also be used for achieving an adaptive parameter tuning
for optimization algorithms, for instance [48]. The upper level problem considers
the algorithmic parameters as variables and the lower level problem uses the actual
problem variables. The lower level problem is solved using the algorithmic param-
eters described by the upper level multiple times and the resulting performance of
the algorithm is then used as an objective of the upper level problem. The whole
process is able to find optimized parameter values along with the solution of the a
number of single-objective test problems.

In certain scenarios, bilevel optimization solution procedures can also be applied
to solve single level optimization problems in a more efficient way. For example,
the optimal solution of a single-level primal problem can be obtained by solving a
dual problem constructed from the Lagranrian function of dual variables. The dual
problem formulation is a bilevel (min-max) problem with respect to two sets of
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variables: upper level involves Lagrangian multipliers or dual variables and lower
level involves problem variables or primal variables. A study used evolutionary
optimization method to solve the (bilevel) dual problem using a co-evolutionary
approach [18]. For zero duality gap problems, the proposed bilevel approach not
only finds the optimal solution to the problem, but also produces the Lagrangian
multipliers corresponding to the constraints.

13.7 Multi-Objective Bilevel Optimization

Quite often, a decision maker in a practical optimization problem is interested
in optimizing multiple conflicting objectives simultaneously. This leads us to
the growing literature on multi-objective optimization problem solving [11, 12].
Multiple objectives can also be realized in the context of bilevel problems, where
either a leader, or follower, or both might be facing multiple objectives in their own
levels [1, 25, 32, 70]. This gives rise to multi-objective bilevel optimization problems
that is defined below.

Definition 13.7.1 For the upper level objective function F : Rn × R
m → R

p and
lower level objective function f : R

n × R
m → R

q , the multi-objective bilevel
problem is given by

min
xu,xl

F (xu, xl ) = (F1(xu, xl ), . . . , Fp(xu, xl )),

subject to xl ∈ argmin
xl

{f (xu, xl ) = (f1(xu, xl ), . . . , fq(xu, xl )) :

gj (xu, xl ) ≤ 0, j = 1, . . . , J },
Gk(xu, xl ) ≤ 0, k = 1, . . . , K,

where Gk : Rn × R
m → R, k = 1, . . . , K denotes the upper level constraints, and

gj : Rn × R
m → R represents the lower level constraints, respectively. �

Bilevel problems with multiple objectives at lower level are expected to be
considerably more complicated than the single-objective case. Surrogate based
methods can once again be used, but even verification of the conditions, for instance,
when the use of approximations for the reaction set mapping are applicable, is a
challenge and requires quite many tools from variational analysis literature. Some of
these conditions are discussed in [53]. As remarked in [52], bilevel optimal solution
may not exist for all problems. Therefore, additional regularity and compactness
conditions are needed to ensure existence of a solution. This is currently an active
area of research. Results have been presented by [21], who established necessary
optimality conditions for optimistic multi-objective bilevel problems with the help
of Hiriart-Urruty scalarization function.
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13.7.1 Optimistic Versus Pessimistic Solutions
in Multi-Objective Bilevel Optimization

The optimistic or pessimistic position becomes more prominent in multi-objective
bilevel optimization. In the presence of multiple objectives at the lower level, the
set-valued mapping �(xu) normally represents a set of Pareto-optimal solutions
corresponding to any given xu, which we refer as follower’s Pareto-optimal frontier.
A solution to the overall problem (with optimistic or pessimistic position) is
expected to produce a trade-off frontier for the leader that we refer as the leader’s
Pareto-optimal frontier. In these problems, the lower level problem produces its
own Pareto-optimal set and hence the upper level optimal set depends on which
solutions from the lower level would be chosen by the lower level decision-makers.
The optimistic and pessimistic fronts at the upper level mark the best and worst
possible scenarios at the upper level, given that the lower level solutions are always
Pareto-optimal.

Though optimistic position have commonly been studied in classical [20] and
evolutionary [17] literature in the context of multi-objective bilevel optimization,
it is far from realism to expect that the follower will cooperate (knowingly or
unknowingly) to an extent that she chooses any point from her Pareto-optimal
frontier that is most suitable for the leader. This relies on the assumption that the
follower is indifferent to the entire set of optimal solutions, and therefore decides to
cooperate. The situation was entirely different in the single-objective case, where,
in case of multiple optimal solutions, all the solutions offered an equal value to the
follower. However, this can not be assumed in the multi-objective case. Solution
to the optimistic formulation in multi-objective bilevel optimization leads to the
best possible Pareto-optimal frontier that can be achieved by the leader. Similarly,
solution to the pessimistic formulation leads to the worst possible Pareto-optimal
frontier at the upper level.

If the value function or the choice function of the follower is known to the leader,
it provides an information as to what kind of trade-off is preferred by the follower.
A knowledge of such a function effectively, casually speaking, reduces the lower
level optimization problem into a single-objective optimization task, where the
value function may be directly optimized. The leader’s Pareto-optimal frontier for
such intermediate positions lies between the optimistic and the pessimistic frontiers.
Figure 13.8 shows the optimistic and pessimistic frontiers for a hypothetical multi-
objective bilevel problem with two objectives at upper and lower levels. Follower’s
frontier corresponding to x(1)

u , x(2)
u and x(3)

u , and her decisions Al , Bl and Cl are
shown in the insets. The corresponding representations of the follower’s frontier
and decisions (Au, Bu and Cu) in the leader’s space are also shown.
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Fig. 13.8 Leader’s Pareto-optimal (PO) frontiers for optimistic and pessimistic positions. Few
follower’s Pareto-optimal (PO) frontiers are shown (in insets) along with their representations in
the leader’s objective space. Taken from [55]

13.7.2 Bilevel Evolutionary Multi-Objective Optimization
Algorithms

There exists a significant amount of work on single objective bilevel optimization;
however, little has been done on bilevel multi-objective optimization primarily
because of the computational and decision making complexities that these problems
offer. For results on optimality conditions in multi-objective bilevel optimization,
the readers may refer to [21, 67]. On the methodology side, Eichfelder [19, 20]
solved simple multi-objective bilevel problems using a classical approach. The
lower level problems in these studies have been solved using a numerical optimiza-
tion technique, and the upper level problem is handled using an adaptive exhaustive
search method. This makes the solution procedure computationally demanding and
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non-scalable to large-scale problems. In another study, Shi and Xia [40] used ε-
constraint method at both levels of multi-objective bilevel problem to convert the
problem into an ε-constraint bilevel problem. The ε-parameter is elicited from the
decision maker, and the problem is solved by replacing the lower level constrained
optimization problem with its KKT conditions.

One of the first studies, utilizing an evolutionary approach for multi-objective
bilevel optimization was by Yin [69]. The study involved multiple objectives at the
upper lever, and a single objective at the lower level. The study suggested a nested
genetic algorithm, and applied it on a transportation planning and management
problem. Multi-objective linear bilevel programming algorithms were suggested
elsewhere [7]. Halter and Mostaghim [23] used a PSO based nested strategy to solve
a multi-component chemical system. The lower level problem in their application
was linear for which they used a specialized linear multi-objective PSO approach.
A hybrid bilevel evolutionary multi-objective optimization algorithm coupled with
local search was proposed in [17] (For earlier versions, refer [14–16, 43]). In
the paper, the authors handled non-linear as well as discrete bilevel problems
with relatively larger number of variables. The study also provided a suite of test
problems for bilevel multi-objective optimization.

There has been some work done on decision making aspects at upper and
lower levels. For example, in [42] an optimistic version of multi-objective bilevel
optimization, involving interaction with the upper level decision maker, has been
solved. The approach leads to the most preferred point at the upper level instead
of the entire Pareto-frontier. Since multi-objective bilevel optimization is computa-
tionally expensive, such an approach was justified as it led to enormous savings in
computational expense. Studies that have considered decision making at the lower
level include [49, 52]. In [49], the authors have replaced the lower level with a
value function that effectively reduces the lower level problem to single-objective
optimization task. In [52], the follower’s value function is known with uncertainty,
and the authors propose a strategy to handle such problems. Other work related to
bilevel multi-objective optimization can be found in [33, 37–39, 71].

13.7.3 BL-EMO for Decision-Making Uncertainty

In most of the practical applications, a departure from the assumption of an
indifferent lower level decision maker is necessary [52]. Instead of giving all
decision-making power to the leader, the follower is likely to act according to
her own interests and choose the most preferred lower level solution herself. As
a result, lower level decision making has a substantial impact on the formulation of
multi-objective bilevel optimization problems. First, the lower level problem is not
a simple constraint that depends only on lower level objectives. Rather, it is more
like a selection function that maps a given upper level decision to a corresponding
Pareto-optimal lower level solution that it is most preferred by the follower. Second,
while solving the bilevel problem, the upper level decision maker now needs to
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model the follower’s behavior by anticipating her preferences towards different
objectives. The following formulation of the problem is adapted from [52].

Definition 13.7.2 Let ξ ∈ � denote a vector of parameters describing the
follower’s preferences. If the upper level decision maker has complete knowledge of
the follower’s preferences, the follower’s actions can then be modeled via selection
mapping

σ : xu × � → xl , σ (xu, ξ) ∈ �(xu), (13.7.1)

where � is the set-valued mapping defined earlier. The resulting bilevel problem
can be rewritten as follows:

min
xu

F (xu, xl ) = (F1(xu, xl ), . . . , Fp(xu, xl ))

subject to xl = σ(xu, ξ) ∈ �(xu)

Gk(xu, xl ) ≤ 0, k = 1, . . . , K

�
To model the follower’s behavior, one approach is to consider the classical

value function framework [52]. We can assume that the follower’s preferences are
characterized by a function V : Rq ×� → R that is parameterized by the preference
vector ξ . This allows us to write σ as a selection mapping for a value function
optimization problem with xu and ξ as parameters:

σ(xu, ξ) ∈ argmin
xl

{V (f (xu, xl ), ξ) : gj (xu, xl ) ≤ 0, j = 1, . . . , J }.
(13.7.2)

When the solution is unique, the above inclusion can be treated as an equality that
allows considering σ as a solution mapping for the problem. For most purposes, it
is sufficient to assume that V is a linear form where ξ acts as a stochastic weight
vector for the different lower level objectives:

V (f (xu, xl ), ξ) =
q∑

i=1

fi(xu, xl )ξi . (13.7.3)

The use of linear value functions to approximate preferences is generally found to
be quite effective and works also in situations where the number of objectives is
large.

Usually, we have to assume that the follower’s preferences are uncertain, i.e.
ξ ∼ Dξ , the value function parameterized by ξ is itself a random mapping. To
address such problems, the leader can consider the following two-step approach
[52]: (1) First, the leader can use her expectation of follower’s preferences to
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Table 13.4 Two-objective bilevel example problem

Example Level Formulation

Variables Upper level xu

Lower level xl = (xl,1, . . . , xl,m)

Objectives Upper level
F1(xu, xl ) = (xl,1 − 1)2 +

m∑

i=2

(
xl,i

)2 + (
xu

)2

F2(xu, xl ) = (xl,1 − 1)2 +
m∑

i=2

(
xl,i

)2 + (xu − 1)2

Lower level
f1(xu, xl ) = (

xl,1
)2 +

m∑

i=2

(
xl,i

)2

f2(xu, xl ) = |xu|(xl,1 − xu)
2 +

m∑

i=2

(
xl,i

)2

Constraints Upper level −1 ≤ (xu, xl,1, . . . , xl,K) ≤ 2

Preference uncertainty Lower level V (f1, f2) = ξ1f1 + ξ2f2,

ξ ∼ N2(μξ ,�ξ ), μξ = (1, 2), �ξ =
[
0.01 0

0 0.01

]

obtain information about the location of the Pareto optimal front by solving the
bilevel problem with fixed parameters and value function V . (2) In the second
step, the leader can examine the extent of uncertainty by estimating a confidence
region around the Pareto optimal frontier corresponding to the expected value
function (POF-EVF). Based on the joint evaluation of the expected solutions and the
uncertainty observed at different parts of the frontier, the leader can make a better
trade-off between her objectives while being aware of the probability of realizing a
desired solution. Given the computational complexity of bilevel problems, carrying
out these steps requires careful design. One implementation of such algorithm is
discussed in detail in [52].

13.7.3.1 An Example

Consider an example which has two objectives at both the levels and the problem
is scalable in terms of lower level variables; see Table 13.4. Choosing m = 14 will
result in a 15 variable bilevel problem with 1 upper level variable and 14 lower level
variables. Assume the follower’s preferences to follow a linear value function with
a bi-variate normal distribution for the weights.

For any xu, the Pareto-optimal solutions of the lower level optimization problem
are given by

�(xu) = {xl ∈ R
m | xl,1 ∈ [0, xu], xl,i = 0 for i = 2, . . . , m}.
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Fig. 13.9 Upper level
pareto-optimal front (without
lower level decision making)
and few representative lower
level pareto-optimal fronts in
upper level objective space
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The best possible frontier at the upper level may be obtained when the lower level
decision maker does not have any real decision-making power; see Fig. 13.9.

Now let us consider the example with a lower level decision-maker, whose
preferences are assumed to follow V (f1, f2) = ξ1f1 + ξ2f2. The upper level front
corresponding to the expected value function is obtained by solving identifying
the Pareto optimal front corresponding to the expected value function (POF-EVF).
The outcome is shown in Fig. 13.10, where the follower’s influence on the bilevel
solution is shown as shift of the expected frontier away from the leader’s optimal
frontier. The extent of decision uncertainty is described using the bold lines around
the POF-EVF front. Each line corresponds to the leader’s confidence region Cα(xu)

with α = 0.01 at different xu. When examining the confidence regions at different
parts of the frontier, substantial variations can be observed.
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13.8 Application Studies of EBO

We consider an agri-environmental policy targeting problem for the Raccoon River
Watershed, which covers roughly 9400 km2 in West-Central Iowa. Agriculture
accounts for the majority of land use in the study area, with 75.3% of land in
crop land, 16.3% in grassland, 4.4% in forests and just 4% in urban use [26]. The
watershed also serves as the main source of drinking water for more than 500,000
people in Central Iowa. However, due to its high concentration of nitrate pollution
from intensive fertilizer and livestock manure application, nitrate concentrations
routinely exceed Federal limits, with citations dating back to the late 1980s.

Given the above issues, one of the objectives the policy maker faces is to reduce
the extent of pollution caused by agricultural activities by controlling the amount of
fertilizer used [65]. However, at the same time the policy maker does not intend to
hamper agricultural activities to an extent of causing significant economic distress
for the farmers.

Consider a producer (follower) i ∈ {1, . . . , I } trying to maximize her profits
from agricultural production through N inputs xi = {xi

1, . . . , x
i
N } and M outputs

yi = {yi
1, . . . , y

i
M }. Out of the N inputs, xi

N denotes the nitrogen fertilizer input for
each farm. The policy maker must choose the optimal spatial allocation of taxes,
τ = {τ 1, . . . , τ I } for each farm corresponding to the nitrogen fertilizer usage xN =
{x1

N, . . . , xI
N } so as to control the use of fertilizers. Tax vector τ = {τ 1, . . . , τ I }

denotes the tax policy for I producers that is expressed as a multiplier on the total
cost of fertilizers. Note that the taxes can be applied as a constant for the entire
basin, or they can be spatially targeted at semi-aggregated levels or individually
at the farm-level. For generality, in our model we have assumed a different tax
policy for each producer. The objectives of the upper level are to jointly maximize
environmental benefits, B(xN)—which consists of the total reduction of non-point
source emissions of nitrogen runoff from agricultural land—while also maximizing
the total basin’s profit �(τ , xN). The optimization problem that the policy maker
needs to solve in order to identify a Pareto set of efficient policies is given as follows:

max
τ ,x

F(τ , x) = (
�(τ , xN), B(xN)

)
(13.8.1)

s.t. xi
N ∈ argmax

xi

{πi(τ i, xi
N ) : (τ i, xi ) ∈ 
i}

xi
n ≥ 0, ∀ i ∈ {1, . . . , I }, n ∈ {1, . . . , N},

yi
m ≥ 0, ∀ i ∈ {1, . . . , I }, m ∈ {1, . . . ,M},

τ i ≥ 1, ∀ i ∈ {1, . . . , I },

The fertilizer tax, τ , serves as a multiplier on the total cost of fertilizer, so
τ i ≥ 1. The environmental benefit is the negative of pollution and therefore
can be written as the negative of the total pollution caused by the producers, i.e.
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Fig. 13.11 The obtained pareto-optimal frontiers from various methods. The lower level reaction
set mapping is analytically defined in this problem. We directly supply the lower level optimal
solutions in case of single-level optimization algorithm like NSGA-II and SPEA2 and compare the
performance. Taken from [6]

B(xN) = −∑I
i=1 p(xi

N). Similarly the total basin profit can be written as the sum

total of individual producer’s profit, i.e. �(τ , xN) = ∑I
i=1 π(τ i, xi

N ). The lower
level optimization problem for each agricultural producer can be written as:

max
xi
N

πi(τ i, xi
N ) = piyi −

N−1∑

n=1

wnx
i
n − τ iwNxi

N , (13.8.2)

s.t. yi ≤ P k(xi),

where w and p are the costs and prices of the fertilizer inputs x and crop yields y,
respectively. P i(xi) denotes the production frontier for producer i. Heterogeneity
across producers, due primarily to differences in soil type, may prevent the use of a
common production function that would simplify the solution of (13.8.1). Likewise,
the environmental benefits of reduced fertilizer use vary across producers, due to
location and hydrologic processes within the basin. This also makes the solution
of (13.8.1) more complex.

The simulation results [6] considering all 1175 farms in the Raccoon River
Watershed are shown in Fig. 13.11. The Pareto-optimal frontiers trading off the
environmental footprints and economic benefits are compared among the three
algorithms.
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13.9 Conclusions

Bilevel optimization problems are omnipresent in practice. However, these problems
are often posed as single-level optimization problems due to the relative ease
and availability of single-level optimization algorithms. While this book presents
various theoretical and practical aspects of bilevel optimization, this chapter has
presented a few viable EAs for solving bilevel problems.

Bilevel problems involve two optimization problems which are nested in nature.
Hence, they are computationally expensive to solve to optimality. In this chapter, we
have discussed surrogate modeling based approaches for approximating the lower
level optimum by a surrogate to speed up the overall computations. Moreover, we
have presented multi-objective bilevel algorithms, leading to a number of research
and application opportunities. We have also provided a set of systematic, scalable,
challenging, single-objective and multi-objective unconstrained and constrained
bilevel problems for the bilevel optimization community to develop more efficient
algorithms.

Research on bilevel optimization by the evolutionary computation researchers
has received a lukewarm interest so far, but hopefully this chapter has provided an
overview of some of the existing efforts in the area of evolutionary computation
toward solving bilevel optimization problems, so that more efforts are devoted in
the near future.

Acknowledgements Some parts of this chapter are adapted from authors’ published papers on
the topic. Further details can be obtained from the original studies, referenced at the end of this
chapter.

Appendix: Bilevel Test Problems

Non-scalable Single-Objective Test Problems from Literature

In this section, we provide some of the standard bilevel test problems used in the
evolutionary bilevel optimization studies. Most of these test problems involve only
a few fixed number of variables at both upper and lower levels. The test problems
(TPs) involve a single objective function at each level. Formulation of the problems
are provided in Table 13.5.

Scalable Single-Objective Bilevel Test Problems

Sinha-Malo-Deb (SMD) test problems [46] are a set of 14 scalable single-objective
bilevel test problems that offer a variety of controllable difficulties to an algorithm.
The SMD test problem suite was originally proposed with eight unconstrained
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Table 13.5 Standard test problems TP1–TP8

Problem Formulation Best known sol.

TP1

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2,

s.t.

y ∈ argmin
(y)

{f (x, y) = (x1 − y1)
2 + (x2 − y2)

2 :
0 ≤ yi ≤ 10, i = 1, 2},

x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15. F = 225.0

f = 100.0

TP2

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t.

y ∈ argmin
(y)

{f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2 :
x1 − 2y1 ≥ 10, x2 − 2y2 ≥ 10,

−10 ≥ yi ≥ 20, i = 1, 2},
x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.
F = 0.0

f = 100.0

TP3

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = −(x1)
2 − 3(x2)2 − 4y1 + (y2)

2,

s.t.

y ∈ argmin
(y)

{f (x, y) = 2(x1)2 + (y1)
2 − 5y2 :

(x1)
2 − 2x1 + (x2)

2 − 2y1 + y2 ≥ −3,

x2 + 3y1 − 4y2 ≥ 4,

0 ≤ yi , i = 1, 2},
(x1)

2 + 2x2 ≤ 4,

0 ≤ xi , i = 1, 2.

F = −18.6787

f = −1.0156

TP4

n = 2,
m = 3

Minimize
(x,y)

F (x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

s.t.

y ∈ argmin
(y)

{f (x, y) = x1 + 2x2 + y1 + y2 + 2y3 :
y2 + y3 − y1 ≤ 1,

2x1 − y1 + 2y2 − 0.5y3 ≤ 1,

2x2 + 2y1 − y2 − 0.5y3 ≤ 1,

0 ≤ yi , i = 1, 2, 3},
0 ≤ xi , i = 1, 2.

F = −29.2

f = 3.2
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Table 13.5 Continued.

Problem Formulation Best known sol.

TP5

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = rt (x)x − 3y1 − 4y2 + 0.5t (y)y,

s.t.

y ∈ argmin
(y)

{f (x, y) = 0.5t (y)hy − t (b(x))y :
−0.333y1 + y2 − 2 ≤ 0,

y1 − 0.333y2 − 2 ≤ 0,

0 ≤ yi , i = 1, 2},
where

h =
(
1 3

3 10

)

, b(x) =
(

−1 2

3 −3

)

x, r = 0.1,

t (·) denotes transpose of a vector.

F = −3.6

f = −2.0

TP6

n = 1,
m = 2

Minimize
(x,y)

F (x, y) = (x1 − 1)2 + 2y1 − 2x1,

s.t.

y ∈ argmin
(y)

{f (x, y) = (2y1 − 4)2 + (2y2 − 1)2 + x1y1 :
4x1 + 5y1 + 4y2 ≤ 12,

4y2 − 4x1 − 5y1 ≤ −4,

4x1 − 4y1 + 5y2 ≤ 4,

4y1 − 4x1 + 5y2 ≤ 4,

0 ≤ yi , i = 1, 2},
0 ≤ x1.

F = −1.2091

f = 7.6145

TP7

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = − (x1+y1)(x2+y2)
1+x1y1+x2y2

,

s.t.

y ∈ argmin
(y)

{f (x, y) = (x1+y1)(x2+y2)
1+x1y1+x2y2

:
0 ≤ yi ≤ xi , i = 1, 2},

(x1)
2 + (x2)

2 ≤ 100,

x1 − x2 ≤ 0,

0 ≤ xi , i = 1, 2.
F = −1.96

f = 1.96

TP8

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,
s.t.

y ∈ argmin
(y)

{f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2 :
2y1 − x1 + 10 ≤ 0,

2y2 − x2 + 10 ≤ 0,

−10 ≤ yi ≤ 20, i = 1, 2},
x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.

F = 0.0

f = 100.0

Note that xu = x and xl = y
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and four constrained problems [46], it was later extended with two additional
unconstrained test problems (SMD13 and SMD14) in [54]. Both these problems
contain a difficult ϕ-mapping, among other difficulties. The upper and lower level
functions follow the following structure to induce difficulties due to convergence,
interaction, and function dependence between the two levels. The vectors xu = x
and xl = y are further divided into two sub-vectors. The ϕ-mapping is defined by
the function f1. Formulation of SMD test problems are provided in Table 13.6.

F(x, y) = F1(x1) + F2(y1) + F3(x2, y2),
f (x, y) = f1(x1, x2) + f2(y1) + f3(x2, y2),

(13.9.1)

where, x = (x1, x2) and y = (y1, y2).

Bi-objective Bilevel Test Problems

The Deb-Sinha (DS) test suite contains five test problems with two objectives at
each level. All problems are scalable with respect to variable dimensions at both
levels. Note that xu = x and xl = y. The location and shape of respective upper and
lower level Pareto-optimal fronts can be found at the original paper [14].

DS 1

Minimize:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(x, y) = 1 + r − cos(απx1)) +
K∑

j=2
(xj − j−1

2 )2 + τ
K∑

i=2
(yi − xi)

2 − r cos
(
γ

pi
2

y1
x1

)

F2(x, y) = 1 + r − sin(απx1)) +
K∑

j=2
(xj − j−1

2 )2 + τ
K∑

i=2
(yi − xi)

2 − r sin
(
γ

pi
2

y1
x1

)

subject to:

y ∈ argmin
y

⎧
⎪⎪⎨

⎪⎪⎩

f1(x, y) = y2
1 +

K∑

i=2
(yi − xi)

2 +
K∑

i=2
10(1 − cos( π

K
(yi − xi)))

f2(x, y) =
K∑

i=1
(yi − xi)

2 +
K∑

i=2
10| sin( π

K
(yi − xi))|

yi ∈ [−K,K], i = 1, . . . , K, x1 ∈ [1, 4], xj ∈ [−K,K], j = 2, . . . , K.

Recommended parameter setting for this problem, K = 10 (overall 20 variables), r =
0.1, α = 1, γ = 1, τ = 1. This problem results in a convex upper level Pareto-optimal
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Table 13.6 SMD test problems 1–14

Formulation Variable Bounds

SMD1:

F1 = ∑p

i=1(ai)
2,

F2 = ∑q

i=1(ci )
2,

F3 = ∑r
i=1(bi)

2 + ∑r
i=1(bi − tan di)

2,

f1 = ∑p

i=1(ai)
2,

f2 = ∑q

i=1(ci)
2,

f3 = ∑r
i=1(bi − tan di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}.

SMD2:

F1 = ∑p

i=1(ai)
2,

F2 = − ∑q

i=1(ci)
2,

F3 = ∑r
i=1(bi)

2 − ∑r
i=1(bi − log di)

2,

f1 = ∑p

i=1(ai)
2,

f2 = ∑q

i=1(ci)
2,

f3 = ∑r
i=1(bi − log di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}.

SMD3:

F1 = ∑p

i=1(ai)
2,

F2 = ∑q

i=1(ci )
2,

F3 = ∑r
i=1(bi)

2 + ∑r
i=1((bi)

2 − tan di)
2,

f1 = ∑p

i=1(ai)
2,

f2 = q + ∑q

i=1

(
(ci)

2 − cos 2πci

)
,

f3 = ∑r
i=1((bi)

2 − tan di)
2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}.

SMD4:

F1 = ∑p

i=1(ai)
2,

F2 = − ∑q

i=1(ci)
2,

F3 = ∑r
i=1(bi)

2 − ∑r
i=1

(|bi | − log(1 + di)
)2

,

f1 = ∑p

i=1(ai)
2,

f2 = q + ∑q

i=1

(
(ci)

2 − cos 2πci

)
,

f3 = ∑r
i=1

(|bi | − log(1 + di)
)2

.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ [0, e], ∀ i ∈ {1, 2, . . . , r}.

SMD5:

F1 = ∑p

i=1(ai)
2,

F2 = − ∑q

i=1

(
(ci+1 − c2i ) + (ci − 1)2

)
,

F3 = ∑r
i=1 b2i − ∑r

i=1

(|bi | − d2
i

)2
,

f1 = ∑p

i=1(ai)
2,

f2 = ∑q

i=1

(
(ci+1 − c2i ) + (ci − 1)2

)
,

f3 = ∑r
i=1

(|bi | − d2
i

)2
.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD6:

F1 = ∑p

i=1(ai)
2,

F2 = − ∑q

i=1 c2i + ∑q+s

i=q+1 c2i ,

F3 = ∑r
i=1 b2i − ∑r

i=1(bi − di)
2,

f1 = ∑p

i=1(ai)
2,

f2 = ∑q

i=1 c2i + ∑q+s−1
i=q+1,i=i+2(ci+1 − ci)

2,

f3 = ∑r
i=1(bi − di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q + s},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.
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Table 13.6 Continued.

Formulation Variable bounds

SMD7:

F1 = 1 + 1
400

∑p

i=1(ai)
2 − ∏p

i=1

(
cos ai√

i

)
,

F2 = − ∑q

i=1 c2i ,

F3 = ∑r
i=1 b2i − ∑r

i=1(bi − log di)
2,

f1 = ∑p

i=1 a3i ,

f2 = ∑q

i=1 c2i ,

f3 = ∑r
i=1(bi − log di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}.

SMD8:

F1 = 20 + e − 20 exp
(

− 0.2
√

1
p

∑p

i=1(ai)2
)

− exp
(
1
p

∑p

i=1 cos 2πai

)
,

F2 = − ∑q

i=1

(
(ci+1 − c2i ) + (ci − 1)2

)
,

F3 = ∑r
i=1 b2i − ∑r

i=1(bi − d3
i )2,

f1 = ∑p

i=1 |ai |,
f2 = ∑q

i=1

(
(ci+1 − c2i ) + (ci − 1)2

)
,

f3 = ∑r
i=1(bi − d3

i )2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD9:

F1 = ∑p

i=1(ai)
2

F2 = − ∑q

i=1(ci)
2,

F3 = ∑r
i=1 b2i − ∑r

i=1(bi − log(1 + di))
2,

f1 = ∑p

i=1 a2i ,

f2 = ∑q

i=1 c2i ,

f3 = ∑r
i=1(bi − log(1 + di))

2.

G1 : ∑p

i=1 a2i + ∑r
i=1 b2i

−�∑p

i=1 a2i + ∑r
i=1 b2i + 0.5� ≥ 0

g1 : ∑p

i=1 c2i + ∑r
i=1 d2

i

−�∑p

i=1 c2i + ∑r
i=1 d2

i + 0.5� ≥ 0

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−1,−1 + e], ∀ i ∈ {1, 2, . . . , r}.

SMD10:

F1 = ∑p

i=1(ai − 2)2

F2 = − ∑q

i=1 c2i ,

F3 = ∑r
i=1(b

2
i − 2)2 − ∑r

i=1(bi − tan di)
2,

f1 = ∑p

i=1 a2i ,

f2 = ∑q

i=1(ci − 2)2,

f3 = ∑r
i=1(bi − tan di)

2.

Gj : aj − ∑p

i=1,i 
=j a3i

− ∑r
i=1 b3i ≥ 0,∀j ∈ {1, 2, . . . , p}

Gp+j : bj − ∑p

i=1,i 
=j b3i

− ∑r
i=1 b3i ≥ 0,∀j ∈ {1, 2, . . . , r}

gj : cj − ∑q

i=1,i 
=j c3i ≥ 0,∀j ∈ {1, 2, . . . , q}

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}.
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Table 13.6 Continued.

Formulation Variable Bounds

SMD11:

F1 = ∑p

i=1 a2i
F2 = − ∑q

i=1 c2i ,

F3 = ∑r
i=1 b2i − ∑r

i=1(bi − log di)
2,

f1 = ∑p

i=1 a2i ,

f2 = ∑q

i=1 c2i ,

f3 = ∑r
i=1(bi − log di)

2.

Gj : bj ≥ 1√
r

+ log dj ,∀j ∈ {1, 2, . . . , r}
gj : ∑r

i=1(bi − log di) ≥ 1

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ ( 1

e
, e), ∀ i ∈ {1, 2, . . . , r}.

SMD12:

F1 = ∑p

i=1(ai − 2)2

F2 = ∑q

i=1 c2i ,

F3 = ∑r
i=1(b

2
i − 2)2 + ∑r

i=1 tan |di |
− ∑r

i=1(bi − tan di)
2,

f1 = ∑p

i=1 a2i ,

f2 = ∑q

i=1(ci − 2)2,

f3 = ∑r
i=1(bi − tan di)

2.

G1 : bi − tan di ≥ 0,∀i ∈ {1, 2, . . . , r}
G2 : ai − ∑p

i=1,i 
=j a3i − ∑r
i=1 b3i

≥ 0,∀j ∈ {1, 2, . . . , p}
G3 : bi − ∑r

i=1,i 
=j b3i − ∑p

i=1 a3i

≥ 0,∀j ∈ {1, 2, . . . , r}
g1 : ∑r

i=1(bi − tan di)
2 ≥ 1

g2 : cj − ∑p

i=1,i 
=j c3i ,∀j ∈ {1, 2, . . . , q}

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−14.1, 14.1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−1.5, 1.5), ∀ i ∈ {1, 2, . . . , r}.

SMD13:

F1 = ∑p−1
i=1 (ai − 1)2 + (ai+1 − (ai)

2)2,

F2 = − ∑q

i=1

∑i
j=1(cj )

2,

F3 = ∑r
i=1

∑i
j=1(bj )

2 − ∑r
i=1(bi − log di)

2,

f1 = ∑p

i=1

(|ai | + 2| sin(ai)|
)
,

f2 = ∑q

i=1

∑i
j=1(cj )

2,

f3 = ∑r
i=1(bi − log di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, e], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD14:

F1 = ∑p−1
i=1 (ai − 1)2 + (ai+1 − (ai)

2)2,

F2 = − ∑q

i=1 |ci |i+1 + ∑q+s

i=q+1(ci)
2,

F3 = ∑r
i=1 i(bi)

2 − ∑r
i=1 |di |,

f1 = ∑p

i=1 �ai� ,

f2 = ∑q

i=1 |ci |i+1 + ∑q+s−1
i=q+1,i=i+2(ci+1 − ci)

2,

f3 = ∑r
i=1 |(bi)

2 − (di)
2|.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q + s},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

Note that (x1, x2) = (a,b) and (y1, y2) = (c,d)
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front in which one specific solution from each lower level Pareto-optimal front gets
associated with each upper level Pareto-optimal solution.

DS 2

Minimize:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(x, y) = v1(x1) +
K∑

j=2

[
x2
j + 10(1 − cos( π

K
xj ))

]
+τ

K∑

i=2
(yi − xi)

2−r cos
(
γ π

2
y1
x1

)

F2(x, y) = v2(x1) +
K∑

j=2

[
x2
j + 10(1 − cos( π

K
xj ))

]
+τ

K∑

i=2
(yi − xi)

2−r sin
(
γ π

2
y1
x1

)

v1(x1) =
⎧
⎨

⎩
cos(0.2π)x1 + sin(0.2π)

√|0.02 sin(5πx1)|, for 0 ≤ x1 ≤ 1;
x1 − (1 − cos(0.2π)), for x1 > 1.

v2(x1) =
⎧
⎨

⎩
− sin(0.2π)x1 + cos(0.2π)

√|0.02 sin(5πx1)|, for 0 ≤ x1 ≤ 1;
0.1(x1 − 1) − sin(0.2π), for x1 > 1.

subject to:

y ∈ argmin
y

⎧
⎪⎪⎨

⎪⎪⎩

f1(x, y) = y2
1 +

K∑

i=2
(yi − xi)

2

f2(x, y) =
K∑

i=1
i(yi − xi)

2

yi ∈ [−K,K], i = 1, . . . , K, x1 ∈ [0.001,K], xj ∈ [−K,K], j = 2, . . . , K.

Recommended parameter setting for this problem, K = 10 (overall 20 variables), r =
0.25. Due to the use of periodic terms in v1 and v2 functions, the upper level Pareto
front corresponds to only six discrete values of y1 = [0.001, 0.2, 0.4, 0.6, 0.8, 1].
Setting τ = −1 will introduces a conflict between upper and lower level problems.
For this problem, a number of contiguous lower level Pareto-optimal solutions are
Pareto-optimal at the upper level for each upper level Pareto-optimal variable vector.

DS 3

Minimize:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(x, y) = x1 +
K∑

j=3
(xj − j/2)2 + τ

K∑

i=3
(yi − xi)

2 − R(x1) cos
(
4 tan−1(

x2−y2
x1−y1

)
)
,

F2(x, y) = x2 +
K∑

j=3
(xj − j/2)2 + τ

K∑

i=3
(yi − xi)

2 − R(x1) sin
(
4 tan−1(

x2−y2
x1−y1

)
)
,
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subject to:

y ∈ argmin
y

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x, y) = y1 +
K∑

i=3
(yi − xi)

2,

f2(x, y) = y2 +
K∑

i=3
(yi − xi)

2,

subject to : g1(y) = (y1 − x1)
2 + (y2 − x2)

2 ≤ r2,

G(x) = x2 − (1 − x2
1) ≥ 0,

yi ∈ [−K,K], i = 1, . . . , K, xj ∈ [0,K], j = 1, . . . , K, x1 is a multiple of 0.1.

In this test problem, the variable x1 is considered to be discrete, thereby causing
only a few x1 values to represent the upper level Pareto front. Recommended
parameter setting for this problem: R(x1) = 0.1 + 0.15| sin(2π(x1 − 0.1)| and
use r = 0.2, τ = 1, and K = 10. Like in DS2, in this problem, parts of lower level
Pareto-optimal front become upper level Pareto-optimal.

DS 4

Minimize:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(x, y) = (1 − y1)(1 +
K∑

j=2
y2
j )x1,

F2(x, y) = y1(1 +
K∑

j=2
y2
j )x1,

subject to :

y ∈ argmin
y

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x, y) = (1 − y1)(1 +
K+L∑

j=K+1
y2
j )x1,

f2(x, y) = y1(1 +
K+L∑

j=K+1
y2
j )x1,

G(x) = (1 − y1)x1 + 1
2x1y1 − 1 ≥ 0,

1 ≤ x1 ≤ 2, −1 ≤ y1 ≤ 1, −(K + L) ≤ yi ≤ (K + L), i = 2, . . . , (K + L).

For this problem, there are a total of K + L + 1 variables. The original study
recommended K = 5 and L = 4. This problem has a linear upper level Pareto-
optimal front in which a single lower level solution from a linear Pareto-optimal
front gets associated with the respective upper level variable vector.

DS 5

This problem exactly the same as DS4, except

G(x) = (1 − y1)x1 + 1

2
x1y1 − 2 + 1

5
[5(1 − y1)x1 + 0.2] ≥ 0.



13 Approximate Bilevel Optimization with Population-Based Evolutionary. . . 399

This makes a number of lower level Pareto-optimal solutions to be Pareto-optimal
at the upper level for each upper level variable vector.
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