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Preface

Bilevel optimization refers to the area of optimization dealing with problems having
a hierarchical structure, involving two decision-makers: a leader and a follower. This
problem originated from the field of economic game theory and was introduced
in the habilitation thesis of Heinrich Freiherr von Stackelberg (October 31, 1905,
Moscow to October 12, 1946, Madrid) completed in 1934. This thesis, written in
Cologne, on market structure and equilibrium (in German language: Marktform und
Gleichgewicht) was published in the same year by Julius Springer, Berlin and Wien
[8]. An English translation of the thesis was published in 2011 by Springer [9].

One of the central topics in von Stackelberg’s habilitation thesis is a model of
duopoly, now known as Stackelberg game. About 50 years later, mathematicians
renamed the model into the bilevel optimization (or as synonym “bilevel program-
ming” [1]) problem and its quick development within mathematical optimization
started into different directions. One of the initial points of attention was the
realization that the problem is not well-posed if the follower’s decision is not
uniquely defined. Another issue resulted from different possibilities to transform the
bilevel problem into single-level problems, which are not necessarily equivalent to
the original one. It might be worth to note that later on, two-level (as a synonym
for “bilevel”) optimization was one of the initial sparks of non-differentiable
optimization.

Nowadays, bilevel optimization has further developed into a wide number of
different directions (finite and infinite dimensional problems, instances with one
or many objective functions in the lower- and/or upper-level problem, as well as
problems with discrete or continuous variables in one or both levels). Although we
can find deterministic algorithms as well as metaheuristics suggested to solve those
problems, the bilevel optimization problem itself is NP-hard. The problem has a
huge number of applications, and there is now a strong interaction between bilevel
optimization theory and related applications.

This volume was motivated by the 85th anniversary (in 2019) of the aforemen-
tioned book “Marktform und Gleichgewicht” by von Stackelberg, which led the
way to the creation of the field of bilevel optimization. In order to appreciate how
far we have gone in the development of the area and look ahead for where there is
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still much work to be done, leading experts in bilevel optimization have contributed
to the realization of the book. Therefore, unlike other books on the subject, the
particularity of this volume is that it is essentially made of surveys of different topics
on bilevel optimization. Hence, it can serve as initial contact point for up to date
developments in the field. All chapters in the volume are peer-reviewed by experts
in mathematical optimization and have been carefully revised before publication.

We would like to take this opportunity to thank all the contributors for helping
to put this volume together. We are also very grateful to all anonymous referees for
carefully reading the chapters to help enhance the quality of the book. The support
provided by the editorial team at Springer is highly appreciated as well.

The book is organized into four parts based on the concentration of the content
of the corresponding chapters. Next, we provide a brief guided tour of each part.

Part I: Bilevel Optimization, Game Theory, and Applications
Considering the origin of bilevel optimization, the aim of this part is to present
results from the game theory perspective of the problem and some related applica-
tions. The emphasis here is on Stackelberg games, Nash games, solution concepts,
and the interconnections between them. Chapter 1 considers the optimistic and
pessimistic version of bilevel optimization problem and discusses the possible one-
level optimization approximations. For each of these approximations, relationships
with the original problems are analyzed and closely related generalized Nash equi-
librium problems are also crafted. Overall, the implications of these transformations
in solving the optimistic and pessimistic bilevel programs are studied.

Chapter 2 introduces the concept of Stackelberg–Nash games and related
properties, including existence and uniqueness results, as well as welfare properties.
Specifications of these results are given for linear and quadratic “payoff functions”
and extensions to multiobjective functions are also discussed.

A survey of multi-leader-follower bilevel optimization problems, which are two-
level problems with one or more Nash games at each level, is given in Chap. 3.
As the interaction between players at each level is governed by Nash games,
this distinguishes this class of problem from multiobjective optimization problems
studied later in Chap. 15. More generally, Chap. 3 provides a general introduction to
multi-leader-follower bilevel programs and provides an overview of this complex
class of the problem, with emphasis on existence results, reformulations, and
solution algorithms, as well as a flavor of related applications.

Chapter 4 provides an overview of the solution concepts in bilevel optimization,
including the standard ones (for the optimistic and pessimistic formulations) and the
intermediate solution concepts, as well as the subgame perfect Nash equilibrium.
Relationships between these concepts are discussed with illustrative examples. The
other main focus of the chapter is on approximation schemes to compute these
equilibria, as well as stability analysis based on various types of perturbations.

The applications of bilevel programming have grown exponentially in the
last three decades. Chapter 5 presents one major area of application of bilevel
optimization, i.e., in energy and electricity markets. In this chapter, an overview
of various practical applications and related challenges is presented, as well as
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illustrative examples in the area of strategic investment in energy generation and
storage.

To conclude this part, Chap. 6 discusses an application of bilevel optimization
in the fast-growing area of machine learning; the focus of the chapter is on
hyperparameter computation. Hyperparameters represent a key piece of information
in the selection process of machine learning models and their computation can
naturally be modeled by bilevel optimization; this chapter presents an overview
of this topic while introducing new algorithms, which can deal with the learning
problem with nonsmooth and/or nonconvex objective functions.

Various other applications of bilevel optimization can be found in Chap. 20.

Part II: Theory and Methods for Linear and Nonlinear Bilevel Optimization
Considering the nonsmooth and nonconvex nature of bilevel programs, variational
analysis has turned out to be a key tool for the analysis of the problem. The
first two chapters of this part provide overviews of techniques to derive necessary
optimality conditions for bilevel optimization problems. Chapter 7 focuses on the
use of the generalized differentiation tools [7] to derive optimality conditions for the
value function reformulation of nonsmooth bilevel programs. In the case where the
problem data is smooth, Chap. 8 explores the derivation of optimality conditions via
the Karush–Kuhn–Tucker reformulation, when the lower-level problem is convex.
In the case where the lower-level problem is nonconvex, the latter chapter combines
the Karush–Kuhn–Tucker and value function reformulation to formulate necessary
optimality conditions for smooth bilevel programs.

The second main focus of this part is on solution algorithms for bilevel
optimization problems. Considering the large number of publications on this subject
and the variations in the specific models and available tools to develop efficient
methods, we have organized the chapters based on the category of the problem
class. Hence, Chap. 9 presents solution algorithms for simple bilevel programs. Note
that a simple bilevel program is an optimization problem over the solution set of
another optimization problem [2]; the main difference here is that the follower’s
problem is not a parametric optimization problem as in the context of the general
bilevel optimization problem. After a historical review of simple bilevel programs
and some classical examples, this chapter focuses on the convergence analysis of
various solution methods dedicated to the problem.

Chapter 10 then covers solution methods tailored to bilevel programs with
linear upper- and lower-level problems. The chapter takes the reader back in time,
with a wide range of techniques introduced to solve this class of problem since
optimization experts got into contact with the field of bilevel optimization. It
might be useful to recall here that initial works on solution algorithms for bilevel
optimization essentially focused on problems of this category [1]. This chapter
covers enumerative techniques, methods based on the Karush–Kuhn–Tucker and
lower-level value function reformulations, as well as heuristic-based approaches.

Chapter 11 considers bilevel programs with quadratic upper- and lower-level
problems. For this class of problems, the authors introduce new techniques to find
local and global optimal solutions. The main tool of the analysis here is the global
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search theory, a new technique dedicated to nonconvex optimization problems. It
might be useful to recall that bilevel programs are nonconvex, even in the case where
all the functions involved in the problem are linear.

Next, Chap. 12 focuses on general bilevel programs, which are not necessarily
linear nor quadratic. To proceed with the analysis, the single-level reformulation
considered is based on the mathematical programs with equilibrium constraints
(MPEC); this is indeed a synonym for the Karush–Kuhn–Tucker reformulation of
the bilevel optimization problem. It is important to mention here that the MPEC
represents a large field of optimization in its own right [6], which provides huge
opportunities to solve bilevel programs. However, both problems are not necessarily
equivalent [3]. This chapter covers the basic MPEC theory, including constraint
qualifications and stationarity concepts, as well as MPEC-based solution methods
for bilevel optimization and related software environments.

Chapter 13 is dedicated to heuristic-type algorithms to solve bilevel programs.
Motivated, in part, by the inherent complexity of the bilevel optimization problem,
the development of this class of methods for bilevel optimization has significantly
increased over the last decade. The rise in the popularity might also be attributed
to the overall growth of such techniques in the wider field of optimization driven in
part by the no-free lunch theorem on the need for specifically tailored algorithms
for different classes of problem to enhance efficiency [10]. This chapter gives an
overview of various classes of methods, including non-surrogate and surrogate-
based evolutionary algorithms.

To end this part, Chap. 14 gives an overview of solution algorithms for pes-
simistic bilevel programs. It is worth mentioning that this class of problem is
the most difficult one in the bilevel optimization world, as it entails minimizing
a typically upper-semicontinuous function [4]; hence, it very often happens that
the pessimistic bilevel program does not have a solution, while the corresponding
optimistic version of the problem is solvable. For this reason, work on methods
dedicated to solve such problems is still at its infancy. This chapter presents penalty
and Kth-Best methods, as well as approximation and reduction approaches that have
so far been proposed to tackle the pessimistic bilevel optimization problem.

Part III: Extensions and Uncertainty in Bilevel Optimization
Various extensions of bilevel optimization are possible and a few of them have been
briefly touched on in Parts I and II. Recall, for instance, that bilevel programs involv-
ing Nash games are studied in Chap. 3 and multiobjective two-level optimization
problems are briefly discussed in Chap. 13.

Chapter 15 is uniquely dedicated to solution methods for the latter class of
problems. It presents a wide range of methods to compute solutions for multiob-
jective bilevel optimization problems, after presenting various scalarization and
optimality condition-based characterizations of the problem. It might be worth
mentioning here that considering the nature of a bilevel optimization problem, with
at least two objective functions, there has also been some interest in the literature
to establish a connection of this class of problem to multiobjective optimization.
The first successful such attempt was made in [5], in the context of linear bilevel
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optimization. This chapter also provides an overview of this topic with further
references.

Chapter 16 introduces bilevel optimal control problems, which are bilevel
programs where the upper- or lower-level problem is an optimal control problem
of ordinary or partial differential equations. Such problems extend the applicability
of bilevel optimization to another wide range of real-world problems. This also
gives rise to new challenges on top of the already difficult structure of bilevel
programs in finite dimensions. The level of difficulty typically depends on which
player is solving the optimal control problem; this chapter navigates through these
scenarios, providing the state of the literature in this relatively new area of research
while presenting some insights into practical applications and mathematical theory
involved.

Another emerging consideration in bilevel optimization is uncertainty, which is
drawing more and more attention. Chapter 17 overviews the current state of research
in stochastic bilevel optimization, with a focus on linear bilevel programs, where
uncertainty is on the right-hand side of the lower-level problems. For this class of
the problem, the theoretical details, including stability analysis and the impact of
different types of distributions, are investigated. Solution methods for stochastic
linear bilevel programs, as well as related challenges, are also discussed.

To conclude this part, Chap. 18 considers linear integer multistage stochastic
optimization problems and shows they are intertwined with linear integer multilevel
optimization. The chapter provides a thorough critical review of current works
around linear multistage optimization while proposing some novel lines of analysis.
Since the mathematical description of the problem, as well as the corresponding
linear multilevel optimization model, naturally involves value functions, the authors
propose a detailed analysis of such functions with related approximation techniques
relevant to algorithm development.

Part IV: Numerical and Research Tools for Bilevel Optimization
The last part of this volume presents two technical documents, which can be very
helpful for research in bilevel optimization. To support the development of numer-
ical methods to solve bilevel optimization problems with continuous variables,
Chap. 19 presents a collection of 173 examples with related codes prepared in
MATLAB. This Bilevel Optimization LIBrary (BOLIB) also contains the currently
known best solution for the problems, wherever possible.

Finally, Chap. 20 provides an extensive bibliography on the subject, with more
than 1500 references. This chapter covers a wide range of topics that have been
the subject of investigation of bilevel optimization in the last four decades, with
an abundance of related works. It includes an overview of theoretical properties,
solution algorithms, and applications.

Freiberg, Germany Stephan Dempe
Southampton, UK Alain Zemkoho
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Chapter 1
Interactions Between Bilevel
Optimization and Nash Games

Lorenzo Lampariello, Simone Sagratella, Vladimir Shikhman,
and Oliver Stein

Abstract We aim at building a bridge between bilevel programming and gener-
alized Nash equilibrium problems. First, we present two Nash games that turn
out to be linked to the (approximated) optimistic version of the bilevel problem.
Specifically, on the one hand we establish relations between the equilibrium
set of a Nash game and global optima of the (approximated) optimistic bilevel
problem. On the other hand, correspondences between equilibria of another Nash
game and stationary points of the (approximated) optimistic bilevel problem are
obtained. Then, building on these ideas, we also propose different Nash-like models
that are related to the (approximated) pessimistic version of the bilevel problem.
This analysis, being of independent theoretical interest, leads also to algorithmic
developments. Finally, we discuss the intrinsic complexity characterizing both the
optimistic bilevel and the Nash game models.

Keywords Optimistic bilevel problem · Pessimistic bilevel problem ·
Generalized Nash equilibrium problem · Approximation techniques ·
Constraint qualifications · Degeneracies
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4 L. Lampariello et al.

1.1 Introduction

The aim of this chapter is to provide a simple, high-level analysis of the interactions
between two fundamental paradigms in multi-agent optimization, namely bilevel
programming and Generalized Nash Equilibrium Problems (GNEP). In particular,
we point out differences and similarities between two-level hierarchical optimiza-
tion and one-level game models. Besides being of independent theoretical interest,
this study paves the way to possible algorithmic developments. While we discuss in
detail the basics of bilevel programming in this very section, in Sects. 1.2 and 1.3
we introduce different GNEP models that are proven to be tightly related to bilevel
problems. Finally, in Sect. 1.4 we investigate further aspects concerning the intrinsic
complexity of the models that are here analyzed. We stress that, in order to convey
the main ideas, we refrain from giving too many technical details: the interested
reader can refer to [7, 9–11], which most of the material in this chapter comes from.

Bilevel problems have a hierarchical structure involving two decision, upper
and lower, levels. At the lower level, the so-called follower problem consists in
minimizing the objective function f , parametric in the variables x, over the feasible
set Y :

minimize
v

f (x, v)

s.t. v ∈ Y.
(1.1.1)

Note that, for the sake of presentation, we consider the case in which the follower
problem feasible set does not depend on x, see Sects. 1.2 and 1.3. Nevertheless,
many of the results that we describe can be generalized also to the case of a
parametric feasible set (see, e.g., [9, 11]). In Sect. 1.4 we focus, in particular, on
the follower’s feasible set Y (x) given by a finite number of smooth inequality con-
straints, i.e. it is defined as

{
v
∣
∣ gj (x, v) ≥ 0, j ∈ J

}
. Assuming problem (1.1.1)

to be solvable for every x ∈ X, let ϕ be the follower optimal value function

ϕ(x) � min
v
{f (x, v) | v ∈ Y },

and let S(x) be the set of the follower optimal points.
Further, denoting by ε a positive tolerance on the optimal value of prob-

lem (1.1.1), the set of follower ε-optimal solutions is given, for every x, by {y ∈
Y | f (x, y) ≤ ϕ(x) + ε}, which, in general is not a singleton. As a consequence,
whenever, among the follower’s problem solutions, exclusively those that best suit
the leader objective F are chosen, at the upper level one obtains the so-called
original optimistic bilevel problem:

minimize
x

min
y
{F(x, y) | y ∈ Y, f (x, y) ≤ ϕ(x)+ ε}

s.t. x ∈ X.
(1.1.2)
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But other possible points of view could be taken: in fact, “less optimistic”
approaches have been considered in the literature (see [16] for a recent survey) up
to the original pessimistic case

minimize
x

max
y
{F(x, y) | y ∈ Y, f (x, y) ≤ ϕ(x)+ ε}

s.t. x ∈ X.
(1.1.3)

Problem (1.1.3) is the robust version of a bilevel program since, among the
follower’s optimal points, exclusively the worst ones (with respect to the leader
objective F ) are selected. We observe that problems (1.1.2) and (1.1.3) are solvable
under standard assumptions such as continuity of functions f and F , compactness
and nonemptiness of sets X and Y , and convexity of the follower problem (1.1.1).
Hence, we can introduce

ψo
ε (x) � min

y
{F(x, y) | y ∈ Y, f (x, y) ≤ ϕ(x)+ ε}

and

ψp
ε (x) � max

y
{F(x, y) | y ∈ Y, f (x, y) ≤ ϕ(x)+ ε}

as the leader optimistic and pessimistic optimal value functions, respectively. Here
we briefly recall that, as testified by the literature, the need for the introduction
of the positive tolerance ε emerges for solvability, regularity and stability reasons.
Moreover, “in practice, it is usually too much to ask for exact optimal solutions. The
follower may be satisfied with an almost optimal solution” [14]. Hence, in the wake
of a well-established tradition that dates back at least to [13] and [17], and for ease
of discussion, we consider directly the approximated problems (1.1.2) and (1.1.3)
rather than their exact counterparts (which are readily obtained by taking ε = 0
in (1.1.2) and (1.1.3)). Although the solution of the problems (1.1.2) and (1.1.3) with
a strictly positive perturbation parameter ε is significant and meaningful per se both
in a theoretical and in a practical perspectives, the question arises quite naturally
on what happens when ε vanishes (see e.g. [12–15] and the rather exhaustive and
recent survey [1]).

Concerning the optimistic problem, the following proposition sheds a light on
what happens to optimal points when ε goes to 0.

Proposition 1.1.1 (See e.g. [14, Theorem 4.1]) Let ε ↘ 0 and xε be the corre-
sponding sequence of optimal points for the original optimistic problem (1.1.2).
Then, any accumulation point x0 of the sequence {xε} is an optimal point of (1.1.2)
with ε = 0, i.e.,

x0 ∈ arg min
x∈X ψo

0 (x). �
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When dealing with the pessimistic version (1.1.3), the picture becomes more com-
plicated. In fact, even under our initial assumptions, the pessimistic problem (1.1.3)
with ε = 0 might not be solvable (see e.g. [11, Example 3.1]). However, also in this
unfavourable case, when ε goes to 0 the infimum of the pessimistic problem (1.1.3)
can be reached, as detailed next.

Proposition 1.1.2 (See e.g. [11, Theorem 3.6]) Let ε ↘ 0 and xε be the corre-
sponding sequence of optimal points for the original pessimistic problem (1.1.3).
Then, at any accumulation point x0 of the sequence {xε} the infimum of (1.1.3) with
ε = 0 is attained, in the sense that

clψp

0 (x0) = inf
x∈Xψ

p

0 (x),

where clψp
0 stands for the closure of ψp

0 on X. �
As customary in the literature, in order to devise practical solution methods, one
can think to move the difficulties in the objective functions for (1.1.2) and (1.1.3)
to the constraints level, obtaining the so-called standard optimistic and pessimistic
versions of the bilevel problem. Namely, regarding the standard optimistic case,

minimize
x,y

F (x, y)

s.t. x ∈ X, y ∈ Y

f (x, y) ≤ ϕ(x)+ ε,

(1.1.4)

where the constraint F(x, y) ≤ ψo
ε (x), which should be present in principle, is

omitted being redundant. Note that the optimal value function formulation (1.1.4)
with ε = 0 has been introduced in [18] and further employed in [24, 25]. As for the
standard pessimistic version that has been proposed for the first time in [11],

minimize
x,y

F (x, y)

s.t. x ∈ X, y ∈ Y

f (x, y) ≤ ϕ(x)+ ε

F (x, y) ≥ ψ
p
ε (x).

(1.1.5)

Passing from the original to the standard versions of the problems comes at a price.
In fact, local optimal points for (1.1.4) and (1.1.5) might happen not to lead to
corresponding local optimal points for (1.1.2) and (1.1.3), respectively. On the other
hand, there is a complete correspondence between global optimal points (for a more
detailed discussion on these aspects see [3, 11]).

From now on, we assume: F and f to be continuously differentiable, f convex
with respect to y for every x, and X and Y nonempty compact convex sets.

We employ standard notation. However, for the reader’s convenience, we remark
that, considering a real function h depending on two variables blocks, we denote by
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∇1h(x, y) the gradient of h(•, y) evaluated at x, while by ∇2h(x, y) the gradient
of h(x, •) evaluated at y. Furthermore, with C convex set and z ∈ C, NC(z) is the
classical normal cone (to C at z) of convex analysis (see e.g. [19, Chapter 6]). As
for the definitions of semicontinuity and other properties of single and set-valued
mappings such as lower semicontinuity, outer and inner semicontinuity, and local
boundedness, we refer the reader to [19].

1.2 Standard Optimistic Bilevel and Equilibrium Problems

We remark that problem (1.1.4) is difficult to treat since ϕ in the value function
constraint is implicitly defined; moreover, it is a nonconvex program even assuming
convexity of the defining functions and sets. In order to deal with the implicit nature
of ϕ, we propose two different ways to suitably reformulate the value function
constraint: these approaches result in two different GNEP models that are tightly
related to the standard optimistic bilevel problem (1.1.4) and where no implicitly
defined functions appear (see [9, 10]). Here, for the sake of brevity, we just recall
that GNEPs share with bilevel problems a parametric nature but, unlike them,
they are problems in which all agents act at the same level. In particular, we call
equilibrium of a GNEP a feasible solution from which no player has incentives to
deviate unilaterally. GNEPs have been extensively studied in the literature and, as
for fundamental definitions, tools and relevant bibliography, we refer the interested
reader to the survey paper [6].

The first model reads as:

minimize
x,y

F (x, y) minimize
v

f (x, v)

s.t. x ∈ X, y ∈ Y s.t. v ∈ Y.

f (x, y) ≤ f (x, v)+ ε

(1.2.1)

The second GNEP is as follows:

minimize
x,y

F (x, y) minimize
u,v

f (x, v)

s.t. x ∈ X, y ∈ Y s.t. v ∈ Y

f (x, y) ≤ f (u, v)+∇1f (u, v)T (x − u)+ ε u = x.

(1.2.2)

We say that, for both games, the player controlling x and y is the leader, while the
other player is the follower. Note that, in the leader’s problem, only the feasible
set, specifically the modified value function constraint, depends on the follower’s
variables. We observe that the follower’s problem in (1.2.1) and (1.2.2) is exactly
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the same as in (1.1.1). The presence of the modified value function constraint,
introducing in both GNEPs some degree of hierarchy in an horizontal framework,
keeps memory of the original imbalance of power between leader and follower in the
standard optimistic bilevel problem (1.1.4). Concerning the GNEP model (1.2.1),
one can show that any equilibrium of (1.2.1) leads to a corresponding optimal
solution for (1.1.4).

Theorem 1.2.1 ([9, Theorem 3.1 and Corollary 3.1]) If (x∗, y∗, v∗) is an equilib-
rium of GNEP (1.2.1), then (x∗, y∗) is a global solution of the standard optimistic
bilevel problem (1.1.4). �
When dealing with GNEP (1.2.2), to make this game tightly related to the original
bilevel problem (1.1.4), it is convenient to assume the convexity of f . We remark
that this requirement, while nonstandard, can be obtained under mild assumptions
(see [10, Example 2.2]). The main consequences of this condition are summarized
in the following result which builds upon the material in [22].

Proposition 1.2.2 ([9, Proposition 2.4]) If f is convex, then the function ϕ is
convex and continuously differentiable. Moreover, for any x, the set {∇1f (x, v) |
v ∈ S(x)} is a singleton and, for any v ∈ S(x), ∇ϕ(x) = ∇1f (x, v). �
In view of Proposition 1.2.2, letting (x, y) be feasible for (1.1.4), we say that (x, y)
is a stationary point for (1.1.4) if a scalar λ exists such that:

0 ∈ ∇1F(x, y)+ λ∇1f (x, y)− λ∇ϕ(x)+NX(x)

0 ∈ ∇2F(x, y)+ λ∇2f (x, y)+NY (y)

λ ∈ NR−(f (x, y)− ϕ(x)− ε).

(1.2.3)

We remark that, even if f is not convex, nevertheless, thanks to the Danskin’s
Theorem (see, e.g., [2, Theorem 9.13]), ϕ enjoys some useful continuity properties
along with an estimate for its set of subgradients that can be exploited in order to
generalize stationarity conditions (1.2.3) in a nonsmooth sense. We also note that,
thanks to the presence of ε, standard constraint qualifications hold for (1.1.4) (see
[10]), making relations (1.2.3) necessary conditions for optimality of (1.1.4).

Proposition 1.2.3 The Mangasarian–Fromovitz Constraint Qualification (MFCQ)
is satisfied for standard optimistic bilevel problem (1.1.4). �
Proof In order to prove the claim, suffice it to observe that for the multiplier of the
value function constraint to be positive, we must have f (x, y)− ϕ(x)− ε = 0, and
thus f (x, y) = ϕ(x)+ ε > ϕ(x). In turn, the convexity of the lower level problem
implies that y is not a lower level solution, given x. Hence, the multiplier must be
zero at any feasible point and the MFCQ is trivially satisfied. 	

As for the GNEP models, one can easily show that the properties in Proposition 1.2.4
hold.
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Proposition 1.2.4 (See [10, Remark 3.2]) If F and f are convex, then
GNEP (1.2.2) is a convex game whose equilibrium set is nonempty; furthermore,
the MFCQ holds. �
The following theorem, claiming that stationary points of (1.1.4) lead to equilibria
of (1.2.2) and vice versa, shows the deep connection between (1.1.4) and (1.2.2).

Theorem 1.2.5 ([10, Theorem 3.3]) Let F and f be convex. The following claims
hold:

(i) any equilibrium (x∗, y∗, u∗, v∗) of GNEP (1.2.2) is such that (x∗, y∗) is
stationary for the standard optimistic bilevel problem (1.1.4);

(ii) any stationary point (x∗, y∗) for the standard optimistic bilevel problem (1.1.4)
is such that (x∗, y∗, x∗, v∗) is an equilibrium of GNEP (1.2.2) for any v∗ ∈
S(x∗). �

The following example, completing the picture, emphasizes the different relations
between the two GNEP models and (1.1.4).

Example
Consider the following standard optimistic bilevel problem with ε > 0 such
that
√
ε < 1

6 :

minimize
x,y

x2 + y2

s.t. x ∈ [−1, 1], y ∈ [−1, 1]
(x + y − 1)2 ≤ ϕ(x)+ ε,

(1.2.4)

where ϕ(x) = minv{(x + v − 1)2 : v ∈ [−1, 1]}. We remark that,
while the objective functions of both the leader F and the follower f are
convex, nevertheless (1.2.4) is a nonconvex optimization problem with an
implicitly defined constraint. The unique solution of (1.2.4) is (x∗, y∗) =(

1−√ε

2 ,
1−√ε

2

)
. In this case, GNEP (1.2.1) reads as:

minimize
x,y

x2 + y2 minimize
v

(x + v − 1)2

s.t. x ∈ [−1, 1], y ∈ [−1, 1] s.t. v ∈ [−1, 1],
(x + y − 1)2 ≤ (x + v − 1)2 + ε

(1.2.5)

which, clearly is nonconvex due to the presence of the nonconvex value
function constraint in the leader’s problem. The point (x∗, y∗, v∗) =

(continued)
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(
1−√ε

2 ,
1−√ε

2 ,
1+√ε

2

)
, where v∗ = 1+√ε

2 is the unique solution of the

follower’s problem when x = x∗, is not an equilibrium for (1.2.5): suffice it to

observe that the feasible point
(
−
√
ε

2 ,
1+√ε

2 ,
1+√ε

2

)
entails a strictly smaller

value for the leader’s objective, given
√
ε < 1

6 . Since the unique solution of
problem (1.2.4) (which is a fortiori a stationary point) does not lead to an
equilibrium of (1.2.5), by Theorem 1.2.1, its set of equilibria is empty.

On the contrary, GNEP (1.2.2), that is,

minimize
x,y

x2 + y2 minimize
u,v

(x + v − 1)2

s.t. x ∈ [−1, 1], y ∈ [−1, 1] s.t. v ∈ [−1, 1]
(x + y − 1)2 ≤ (u+ v − 1)2 u = x,

+2(u+ v − 1)(x − u)+ ε

in view of Proposition 1.2.4, is convex and, by Theorem 1.2.5, the point
(x∗, y∗, x∗, v∗) is one of its equilibria.

Here we summarize the distinctive properties of (1.2.1) compared to those of (1.2.2),
pointing out their different relations with (1.1.4):

• under the full convexity of F and f , the GNEP (1.2.2) is a convex game that
certainly has an equilibrium, while the GNEP (1.2.1) is a non necessarily convex
game with a possibly empty equilibrium set;

• under the full convexity of F and f , equilibria of the GNEP (1.2.2) lead to
stationary points of the standard optimistic bilevel problem (1.1.4) and vice versa,
while stationary points of the standard optimistic bilevel problem (1.1.4) may not
lead to equilibria of the GNEP (1.2.1);

• any equilibrium of the GNEP (1.2.1) leads to a global optimal point of the
standard optimistic bilevel problem (1.1.4), while, under the full convexity of
F and f , any optimal point of the standard optimistic bilevel problem (1.1.4)
leads to an equilibrium of the GNEP (1.2.2), see the scheme below.
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The scheme above simply means that, on the one hand, the (x, y)-part of the
equilibrium set of GNEP (1.2.1) is a subset of the set of global solutions of the
standard optimistic bilevel problem (1.1.4), while, on the other hand, the (x, y)-part
of the equilibrium set of GNEP (1.2.2) turns out to be a superset of the set of global
solutions of (1.1.4).

It is worth specifying, in view of the developments to follow, the case in
which the follower’s objective f does not depend on x. The resulting model is
referred to, in the literature, as simple bilevel or pure hierarchical problem (see
[1] and the references therein). In this favourable situation, we obtain the following
strengthened properties:

• the follower’s objective f , optimal value function ϕ, and solution set map S are
trivially convex, constant, and fixed, respectively;

• assuming the full convexity of F , the standard optimistic bilevel problem (1.1.4)
turns out to be a convex program;

• both GNEPs (1.2.1) and (1.2.2) reduce to the following game:

minimize
x,y

F (x, y) minimize
v

f (v)

s.t. x ∈ X, y ∈ Y s.t. v ∈ Y.

f (y) ≤ f (v)+ ε

(1.2.6)

As a straightforward consequence, we get the following strong result.

Corollary 1.2.6 The following claims hold:

(i) any equilibrium (x∗, y∗, v∗) of GNEP (1.2.6) is such that (x∗, y∗) is global
optimal for the standard optimistic bilevel problem (1.1.4);

(ii) any global optimal point (x∗, y∗) for the standard optimistic bilevel prob-
lem (1.1.4) is such that (x∗, y∗, v∗) is an equilibrium of GNEP (1.2.6) for any
v∗ ∈ S.

�
In the light of the considerations above, in this case, the (x, y)-part of the
equilibrium sets of GNEP (1.2.1) and (1.2.2) coincide and, in turn, are equivalent to
the set of global solutions of the standard optimistic bilevel problem (1.1.4).

In summary, GNEPs (1.2.1) and (1.2.2) are complementary: in fact, (1.2.1) is
intended to provide relations between standard optimistic bilevel problems and
Nash games in terms of their global optimal solutions, while the peculiar properties
of (1.2.2), which is tailored to address stationary solutions, pave the way to
algorithmic developments for (1.1.4). In fact, the procedure that simply consists in
the alternating solution of the leader’s (plus a proximal term) and the follower’s
convex problems in GNEP (1.2.2), as detailed in the scheme below, eventually
provides with a point satisfying relations (1.2.3), i.e., a stationary point for the
standard optimistic bilevel problem (1.1.4).
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Solution Procedure for the Standard Optimistic Bilevel Problem (1.1.4)
Starting from (x0, y0, v0) ∈ X × Y × Y such that y0 = v0 ∈ S(x0), with
τ > 0, iteratively compute

(xk+1, yk+1) = arg min
(x,y)∈X×Y

{
F(x, y)+ τ

2 ‖(x, y)− (xk, yk)‖2 :
f (x, y) ≤ f (xk, vk)+∇1f (xk, vk)T (x − xk)+ ε

}
,

and vk+1 ∈ S(xk+1).

We remark that, thanks to the convexity of f , any accumulation point of the
sequence produced by the procedure above is shown to be stationary for (1.1.4), see
[10, Theorem 4.1]. We emphasize that the solution method above can be suitably
modified in order to cope with a nonconvex objective function F and a possibly
unbounded set X, also allowing for the possible inexact solution of the leader’s
problem (see [10, Appendix B]).

1.3 Standard Pessimistic Bilevel and Equilibrium Problems

When passing from optimistic to pessimistic bilevel programs, two main additional
difficulties appear. Firstly, while the original pessimistic problem (1.1.3) with
ε = 0 possesses a finite infimum under standard assumptions, the existence of
corresponding optimal points may only be guaranteed under requirements which
usually fail in practical problems. As explained above, this leads to the difference
in the statements of Proposition 1.1.1 and Proposition 1.1.2. On the other hand,
for ε > 0 the solvability of the perturbed pessimistic program is not an issue
under standard assumptions, neither in its original form (1.1.3) nor in standard
form (1.1.5).

However, for any ε ≥ 0 the second main difficulty lies in the intrinsic three level
structure of pessimistic bilevel programs, as opposed to the two level structure of
optimistic bilevel programs in standard form. Note that both the original optimistic
problem (1.1.2) and the original pessimistic problem (1.1.3) not only possess an
upper level player (the leader) who minimizes her objective function in the variable
x over the set X, and a lower level player (the follower) who minimizes her objective
function in the variable v over the set Y , but also an intermediate player who
minimizes or maximizes, respectively, the function F(x, y) in y over the ε-optimal
solutions Sε(x) of the lower level player.

When passing from the original form (1.1.2) to the standard form (1.1.4) of
an optimistic bilevel problem, the constraint F(x, y) ≤ ψo

ε (x) which models
minimality with respect to the intermediate player turns out to be redundant, so
that at this point (1.1.4) becomes a two level problem. On the contrary, in the
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pessimistic bilevel program in standard form (1.1.5) the constraintF(x, y) ≥ ψ
p
ε (x)

which models the intermediate player’s maximality requirement in general is not
redundant, so that the three level structure from the original form (1.1.3) prevails.

The standard pessimistic form (1.1.5) turns out to share with its optimistic
counterpart (1.1.4) the same vertical structure, but with an additional level. In the
light of this simple observation, the present section will focus on possibilities for
the algorithmic treatment of this three level structure. In Sect. 1.2 we have seen that
the vertical structure of a two level problem may be reformulated into the horizontal
structure of an adequately constructed equilibrium problem. In the same spirit, as for
the treatment of three level problems, three possible approaches come to mind:

• Reformulate the vertical three level problem into a horizontal three player
equilibrium problem.

• Reformulate the upper and the intermediate level into a two player equilibrium
problem, but keep the vertical structure with respect to the lower level problem.

• Reformulate the intermediate and the lower level into a two player equilibrium
problem, but keep the vertical structure with respect to the upper level problem.
This results in a two level program whose lower level is an equilibrium problem,
that is a multi follower game with two followers.

The first two reformulations of a pessimistic bilevel program, as outlined above, are
stated explicitly in the appendix of [11]. The additional assumption to obtain a one-
to-one correspondence between global solutions of the pessimistic bilevel program
and the resulting reformulations essentially turns out to be the x-independence of
the lower level ε-optimal solutions Sε(x). This requirement may only be expected to
hold in special applications. Fortunately the third approach, that is, the reformulation
of the pessimistic bilevel problem as a two level problem with an equilibrium
problem in the lower level, does not need any additional assumptions. This may
be seen as follows.

Subsequently we describe the reformulation of the standard pessimistic bilevel
problem (1.1.5) as a multi follower game (see [11] for details). The intermediate and
the lower level problem form the two level problem

maximize
y

F (x, y) s.t. y ∈ Y, f (x, y) ≤ ϕ(x)+ ε (1.3.1)

with ϕ(x) = minv{f (x, v) | v ∈ Y }. The crucial observation is that the variable x

only serves as a parameter in (1.3.1), so that with respect to its upper and lower level
decision variables y and v, respectively, we face a pure hierarchical problem. This
allows us to evoke Corollary 1.2.6 and state a strong relationship between the global
solutions of (1.3.1) and the equilibria of the GNEP

minimize
y

−F(x, y) minimize
v

f (x, v)

s.t. y ∈ Y s.t. v ∈ Y

f (x, y) ≤ f (x, v)+ ε

(1.3.2)
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where, again, x serves as a parameter. In fact, given x ∈ X, for any equilibrium
(y∗, v∗) of (1.3.2), the point y∗ is a global solution of (1.3.1), and for any global
solution y∗ of (1.3.1) and any v∗ ∈ S(x), the point (y∗, v∗) is an equilibrium
of (1.3.2).

Hence, if we denote the set of equilibria of (1.3.2) by Eε(x), the pessimistic
bilevel program in standard form (1.1.5) and the multi follower game

minimize
x,y,v

F (x, y) s.t. x ∈ X, (y, v) ∈ Eε(x) (1.3.3)

are equivalent in the following sense.

Theorem 1.3.1 ([11, Proposition 5.1]) The following relations hold:

(i) If (x∗, y∗, v∗) is global solution of (1.3.3), then (x∗, y∗) is a global solution
of (1.1.5).

(ii) If (x∗, y∗) is a global solution of (1.1.5) then for any v∗ ∈ S(x∗) the point
(x∗, y∗, v∗) is global solution of (1.3.3). �

Since the global solutions of (1.1.5) correspond to the global solutions of the original
pessimistic problem (1.1.3) in a straightforward manner, one may treat the multi
follower game (1.3.3) algorithmically to solve (1.1.3). We remark that, as it already
was the case when passing from the original to the standard version, also in passing
from (1.1.5) to (1.3.3) the relation between local solutions is more intricate [11,
Prop. 5.2]. Let us also point out that the problems (1.2.1) and (1.3.2) are structurally
different since in the former x is a decision variable, while in the latter it serves as a
parameter. This partly explains why an analogue of Theorem 1.3.1(ii) is missing in
Theorem 1.2.1.

As a next step, let us briefly discuss a promising algorithmic approach for
the solution of the multi follower game (1.3.3). One can replace the equilibrium
constraint in (1.3.3) by the equivalent Karush–Kuhn–Tucker conditions. This can
be done provided that, in addition to the initial assumptions, F is concave in y for
each x, and the set Y has a functional description as system of inequalities h ≤ 0,
where the components of the vector h are continuously differentiable and convex
functions. Furthermore, we assume the Slater condition for Y , that is, the existence
of some v̄ with h(v̄) < 0. By the Karush–Kuhn–Tucker theorem, v is a global
solution of the right hand side player’s problem in (1.3.2) if and only if there exists
a multiplier vector μ with

∇2f (x, v)+ ∇h(v)μ = 0

0 ≤ μ ⊥ −h(v) ≥ 0.

For given (x, v) also the left hand side player’s problem in (1.3.2) possesses a Slater
point, namely a sufficiently small shift of the point v towards v̄. Hence, y is a global
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solution of this problem if and only if there exist multipliers λ and ξ with

−∇2F(x, y)+∇h(y)λ+∇2f (x, y)ξ = 0

0 ≤ λ ⊥ −h(y) ≥ 0

0 ≤ ξ ⊥ f (x, v)− f (x, y)+ ε ≥ 0.

Consequently there is a strong connection between the optimal solutions of the
multi follower game (1.3.3) and the mathematical program with complementarity
constraints

minimize
x,y,v,λ,ξ,μ

F (x, y)

s.t. x ∈ X

− ∇2F(x, y)+ ∇h(y)λ+∇2f (x, y)ξ = 0

0 ≤ λ ⊥ −h(y) ≥ 0 (1.3.4)

0 ≤ ξ ⊥ f (x, v)− f (x, y)+ ε ≥ 0

∇2f (x, v)+ ∇h(v)μ = 0

0 ≤ μ ⊥ −h(v) ≥ 0.

Since passing from (1.3.3) to (1.3.4) involves lifting the decision variables into
a higher dimensional space, the connection between the local solutions of both
problems is intricate [11], while the connection between global solutions reads as
follows.

Proposition 1.3.2 ([11, Proposition 5.4]) The following claims hold:

(i) If (x∗, y∗, v∗, λ∗, ξ∗, μ∗) is a global solution of (1.3.4) then (x∗, y∗, v∗) is
globally optimal for (1.3.3).

(ii) If (x∗, y∗, v∗) is a global solution of (1.3.3) then for all corresponding
Karush–Kuhn–Tuckermultipliers (λ∗, ξ∗, μ∗) the point (x∗, y∗, v∗, λ∗, ξ∗, μ∗)
is globally optimal for (1.3.4).

�
The following scheme summarizes by which results the standard pessimistic bilevel
problem (1.1.5) may be solved via its reformulation as the mathematical program
with complementarity constraints (1.3.4).
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In turn, problem (1.3.4) can be equivalently reformulated as a mixed integer
nonlinear programming problem for which practical solution methods are available.
For an example we refer to [11], where the pessimistic version of a regulator
problem from economics is solved via the reformulation (1.3.4).

In addition, let us introduce two novel alternative approaches aimed at the
solution of the multi follower game (1.3.3). Their common feature is, as for the KKT
reformulation, that they replace the equilibrium constraint in (1.3.3) by different
characterizations.

For the equilibrium characterization by the Nikaido–Isoda approach [23], let us
define the optimal value function of the left hand side player in (1.3.2), given the
parameter x and the right hand side player’s decision v,

ψ̂p
ε (x, v) � min

y
{−F(x, y) | y ∈ Yε(x, v)}

with the left hand side player’s feasible set Yε(x, v) � {z ∈ Y | f (x, z) ≤ f (x, v)+
ε}. The corresponding right hand side player’s optimal value function, given the
parameter x (and the left hand side player’s decision y), reduces to the lower level
optimal value function ϕ(x), due to the hierarchical structure of (1.3.1). The gap
function of (1.3.2) is thus defined as

Vε(x, y, v) � −F(x, y)− ψ̂p
ε (x, v)+ f (x, v)− ϕ(x).

It may be shown to be nonnegative on the joint feasible set Wε(x) � {(y, v) ∈
Y × Y | f (x, y) ≤ f (x, v) + ε} of both players, and the equilibria of (1.3.2) are
exactly the global solutions of

minimize
y,v

Vε(x, y, v) s.t. (y, v) ∈ Wε(x)
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with minimal value zero [5, 23]. At first glance, this seems to lead to a two level
reformulation of (1.3.3), i.e.,

minimize
x,y,v

F (x, y) s.t. x ∈ X, (y, v) ∈ argmin
(η,z)∈Wε(x)

Vε(x, η, z), Vε(x, y, v) ≤ 0.

However, as the definition of Vε comprises the optimal value functions ψ̂
p
ε and

ϕ, this actually still is a three level problem. On the other hand, the above
considerations also imply

Eε(x) = {(y, z) ∈ Wε(x) |Vε(x, y, v) ≤ 0}

so that (1.3.3) may be rewritten as the two level problem

minimize
x,y,v

F (x, y) s.t. x ∈ X, y, v ∈ Y, f (x, y) ≤ f (x, v)+ε, Vε(x, y, v) ≤ 0.

Moreover, the constraint Vε(x, y, v) ≤ 0 may be reformulated as

max
η∈Yε(x,v)

(F (x, η)− F(x, y)) ≤ min
z∈Y (f (x, z)− f (x, v))

so that we arrive at the following straightforward result.

Proposition 1.3.3 The multi follower game (1.3.3) possesses the same global as
well as local solutions as the generalized semi-infinite program

minimize
x,y,v

F (x, y)

s.t. x ∈ X, y, v ∈ Y, f (x, y) ≤ f (x, v)+ ε, (1.3.5)

F(x, η)− F(x, y) ≤ f (x, z)− f (x, v) ∀η ∈ Yε(x, v), z ∈ Y. �

For introductions to generalized semi-infinite programming we refer to [20, 21].
While convexity assumptions on the player problems in (1.3.2) are not necessary

in the Nikaido–Isoda approach above, they are crucial for the following equilibrium
characterization. Recall that our blanket assumptions from Sect. 1.1 state the
continuous differentiability of F and f , the convexity of f in y for every x, and
compactness, convexity as well as nonemptiness of the sets X and Y . This implies
the convexity of the right hand side player’s problem in (1.3.2) as well as the
convexity of the left hand side player’s feasible set Yε(x, v). In the following we
shall additionally assume, as done for the KKT approach, the concavity of F in y

for each x, which makes also the left hand side player’s problem convex.
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The variational inequality reformulation of (1.3.2) bases on the variational
argument that, given (x, v), the point y ∈ Yε(x, v) is a global solution of the left
hand side player’s problem if and only if the inequalities

∇2(−F(x, y))T (η − y) ≥ 0 ∀ η ∈ Yε(x, v)

hold and that, analogously, v ∈ Y is a global solution of the right hand side player’s
problem if and only if the following inequalities are satisfied:

∇2f (x, v)T (z− v) ≥ 0 ∀ z ∈ Y.

Hence, the simultaneous validity of all these inequalities characterizes the condition
(y, v) ∈ Eε(x), and the following result is easily seen to hold.

Proposition 1.3.4 The multi follower game (1.3.3) possesses the same global as
well as local solutions as the generalized semi-infinite program

minimize
x,y,v

F (x, y)

s.t. x ∈ X, y, v ∈ Y, f (x, y) ≤ f (x, v)+ ε, (1.3.6)

(−∇2F(x, y)

∇2f (x, v)

)T ((
η

z

)
−
(
y

v

))
≥ 0, ∀ (η, z) ∈ Yε(x, v)× Y. �

We remark that in the generalized semi-infinite program (1.3.6) the index variables
η and z enter linearly in the constraint function, as opposed to their role in (1.3.5).

1.4 Intrinsic Complexity of Bilevel and Equilibrium
Problems

In this section we illustrate the intrinsic complexity of the bilevel problem (1.4.2)
and the corresponding GNEP (1.4.3) as originating from parametric optimization.
By taking the study of singularities in parametric optimization into account, the
structural analysis of bilevel feasible set and Nash equilibria is performed. It turns
out that degeneracies cannot be avoided for both problem types. In order to highlight
this phenomenon, we consider the follower problem with the feasible set Y (x)

depending on the leader variable x:

minimize
v

f (x, v)

s.t. v ∈ Y (x).
(1.4.1)
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Recall that it is given by a finite number of smooth inequality constraints:

Y (x) �
{
v
∣
∣ gj (x, v) ≥ 0, j ∈ J

}
.

The bilevel feasible set is

M � {(x, v) | v ∈ S (x) } ,

where S(x) is the set of the follower optimal points. Then, the optimistic bilevel
problem can be stated as follows:

minimize
(x,v)∈M

F(x, v). (1.4.2)

The latter is equivalent to the standard optimistic bilevel problem (1.1.4) with

ϕ(x) � min
v
{f (x, v) | v ∈ Y (x)},

and the vanishing tolerance ε = 0.
We focus here on the analysis of the bilevel feasible set M for the one-parametric

case of dim(x) = 1. In [7] a generic classification of minimizers for (1.4.1) has been
established. Namely, they differ in a possible violation of nondegeneracy occurring
at the local minimizer:

• Linear Independence Constraint Qualification (LICQ),
• Strict Complementarity (SC),
• Second Order Sufficient Condition (SOSC).

Let us denote by |J0 (x∗, v∗)| the number of active constraints at the point of interest
v∗ ∈ S

(
x∗
)
. As shown in [7], the minimizer v∗ can be of one of the following five

types :

Type 1: LICQ, SC, and SOSC are satisfied.
Type 2.1: SC is violated, and exactly one active Lagrange multiplier vanishes.
Type 4.1: LICQ is violated, and the rank of active gradients is |J0 (x∗, v∗)| − 1.
Type 5.1: LICQ is violated with |J0 (x∗, v∗)| = dim(v) + 1, and MFCQ is

violated.
Type 5.2: LICQ is violated with |J0 (x∗, v∗)| = dim(v) + 1, but MFCQ is

satisfied.

The corresponding typical branches of (possibly local) minimizers are depicted in
Fig. 1.1. Type 1 is referred to as nondegenerate, other Types 2.1, 4.1, 5.1, and 5.2
describe singularities and are referred to as degenerate cases. The derivation of
the five types is based on the classification of generalized critical points in one-
parametric programming as given in [8].
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Now, we turn our attention to the global structure of the bilevel feasible set just
around a leader’s choice x∗, i.e. to the set

Mx∗ �
{
(x, v)

∣
∣ v ∈ S (x) for x close to x∗

}
.

From the practical point of view, the description of Mx∗ is actually crucial for
the leader. Indeed, assuming that (1.4.1) is solvable in a neighborhood of x∗ it
might happen that, changing x∗, the leader forces the follower to switch to another
branch of global minimizers. This occurs if the previous branch of follower’s global
minimizers eventually ends up. Such a situation introduces a kind of a shock or
catastrophic behavior in bilevel optimization, and leads to discontinuity effects.
Moreover, it is even possible that the feasible set ends abruptly.

In what follows, we introduce several cases for the description of Mx∗ . In fact, as
we shall see in Theorem 1.4.1, they turn out to be the only ones in general. First of
all, the situations as in Type 1, 2.1, 4.1, 5.1 or 5.2 may occur. Secondly, we present
composite cases, where Mx∗ contains more than one component (see Fig. 1.2).

Let S
(
x∗
) = {

v∗1
}

consist of just one follower optimal point and v∗2 is a local
minimizer, such that locally around x∗

Mx∗ =
{
(x, v(x))

∣
∣
∣
∣ v(x) =

{
v1(x), x ≤ x∗,
v2(x), x > x∗.

}
,

or

Mx∗ =
{
(x, v(x))

∣∣
∣
∣ v(x) =

{
v∗2(x), x < x∗,
v∗1(x), x ≥ x∗.

}
.



1 Bilevel Optimization and Nash Games 21

x *

v*
1

v*
2

Type 4.1

Type 1

x

v

x *

v*
1

v*
2

Type 5.1

Type 1

x

v

x *

v*
1

v*
2

Type 1

Type 1

x

v

Fig. 1.2 Composite types

Here, v1(x), v2(x) are unique global minimizers for x in a neighborhood of x∗ with
v1 (x∗) = v∗1 , v2 (x∗) = v∗2 , according to the following cases:

Type 4.1/1: v∗1 is of Type 4.1, and v∗2 is of Type 1.
Type 5.1/1: v∗1 is of Type 5.1, and v∗2 is of Type 1.

Finally, let S
(
x∗
) = {v∗1 , v∗2 } consist of two follower optimal points, such that

Mx∗ =
{
(x, v(x))

∣
∣
∣
∣ v(x) =

{
v1(x), x ≤ x∗,
v2(x), x ≥ x∗.

}
.

Here, v1(x), v2(x) are unique global minimizers for x in a neighborhood of x∗ with
v1 (x∗) = v∗1 , v2 (x∗) = v∗2 , according to the following case:

Type 1/1: v∗1 and v∗2 are both of Type 1. Additionally, it holds:

d [f (x, v2(x))− f (x, v1(x))]

dx

∣
∣∣
∣
x=x∗

�= 0.

As we mentioned before, only the cases just introduced occur in general [4].

Theorem 1.4.1 ([4, Theorem 4.5]) Let dim(x) = 1. Generically, the bilevel
feasible set Mx∗ is either empty or given as in one of the cases Type 1, 2.1, 4.1,
5.1, 5.2, Type 4.1/1, Type 5.1/1, Type 1/1. Additionally, it holds:

F(x∗, v∗1 ) �= F(x∗, v∗2 ),

where v∗1 , v∗2 correspond to the cases Type 4.1/1, Type 5.1/1 and Type 1/1. �
Let us now apply the GNEP approach from Sect. 1.2 for Types 2.1, 4.1, 5.1, 5.2 of
bilevel problem. For that, we recall the original GNEP model from [9], where the
leader feasible set depends on the follower variable:

minimize
x,y

F (x, y) minimize
v

f (x, v)

s.t. (x, y) ∈ X × Y (x), s.t. v ∈ Y (x).

f (x, y) ≤ f (x, v)+ ε

(1.4.3)
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Note that (1.4.3) is a generalization of (1.2.1) with Y (x) ≡ Y . The crucial questions
will be whether the degeneracies of the follower problem as given in Types 2.1, 4.1,
5.1, 5.2 can be overcome at least at the corresponding equilibrium of GNEP (1.4.3),
and whether new degeneracies eventually show up in the leader problem.

Example Type 2.1
Let the data of the bilevel problem be given as follows:

F(x, v) = −x + 2v, f (x, v) = (x − v)2, g1(x, v) = v.

Its feasible set is

M = {(x,max{x, 0}) | x ∈ R} ,

and (0, 0) solves the bilevel problem (1.4.2). Note that the feasible set Y (x) =
{v | v ≥ 0} does not depend on the leader variable x. Due to Type 2.1, SC is
violated at v = 0 for the follower problem (1.4.1) with x = 0. More precisely,
the active Lagrange multiplier vanishes. The corresponding GNEP (1.4.3)
reads as:

minimize
x,y

−x + 2y minimize
v

(x − v)2

s.t. y ≥ 0, s.t. v ≥ 0.

(x − y)2 ≤ (x − v)2 + ε

(1.4.4)

The leader problem in (1.4.4) is unsolvable for every ν. Hence, though the
solution of the follower problem in (1.4.4) is

ν(x) =
{
x, if x ≥ 0,
0, if x < 0,

the set of equilibria of (1.4.4) is empty.
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Example Type 4.1
Let the data of the bilevel problem be given as follows:

F(x, v) = x + v, f (x, v) = −v, g1(x, v) = x − v2.

Its feasible set is

M = {(
x,
√
x
) ∣∣ x ≥ 0

}
,

and (0, 0) solves the bilevel problem (1.4.2). Due to Type 4.1, LICQ is
violated here at v = 0 for the follower problem (1.4.1) with x = 0. More
precisely, |J0(0, 0)| = 1, and the rank of active gradients is zero. The
corresponding GNEP (1.4.3) reads as:

minimize
x,y

x + y minimize
v

−v
s.t. x − y2 ≥ 0, s.t. x − v2 ≥ 0.

−y ≤ −v + ε

(1.4.5)
The solution of the leader problem in (1.4.5) is

(x(ν), y(ν)) =
{ (

1
4 ,− 1

2

)
, if ν ≤ ε − 1

2 ,(
(ν − ε)2, ν − ε

)
, if ν > ε − 1

2 .

The solution of the follower problem in (1.4.5) is

ν(x) =
{√

x, if x ≥ 0,
∅, if x < 0.

Hence, the unique equilibrium of (1.4.5) is (x∗, y∗, v∗) =
(

ε2

4 ,− ε
2 ,

ε
2

)
for

all sufficiently small ε > 0. Moreover, the minimizer (x∗, y∗) =
(

ε2

4 ,− ε
2

)
of

the leader problem is nondegenerate, as well as the minimizer v∗ = ε
2 of the

follower problem.
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Example Type 5.1
Let the data of the bilevel problem be given as follows:

F(x, v) = x + v, f (x, v) = v, g1(x, v) = v, g2(x, v) = x − v.

Its feasible set is

M = {(x, 0) | x ≥ 0} ,

and (0, 0) solves the bilevel problem (1.4.2). Due to Type 5.1, LICQ is
violated here at v = 0 for the follower problem (1.4.1) with x = 0.
More precisely, |J0(0, 0)| = 2, and MFCQ is violated. The corresponding
GNEP (1.4.3) reads as:

minimize
x,y

x + y minimize
v

v

s.t. y ≥ 0, x − y ≥ 0, s.t. v ≥ 0, x − v ≥ 0.

y ≤ v + ε

(1.4.6)
The solution of the leader problem in (1.4.6) is

(x(ν), y(ν)) =
{
(0, 0) , if ν + ε ≥ 0,
∅, if ν + ε < 0.

The solution of the follower problem in (1.4.6) is

ν(x) =
{

0, if x ≥ 0,
∅, if x < 0.

Hence, the unique equilibrium of (1.4.6) is (x∗, y∗, v∗) = (0, 0, 0) for
ε > 0. Moreover, the minimizer (x∗, y∗) = (0, 0) of the leader problem is
nondegenerate, but the minimizer v∗ = 0 of the follower problem remains
degenerate of Type 5.1.
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Example Type 5.2
Let the data of the bilevel problem be given as follows:

F(x, v) = −x + 2v, f (x, v) = v, g1(x, v) = v, g2(x, v) = −x + v.

Its feasible set is

M = {(x,max{x, 0}) | x ∈ R} ,

and (0, 0) solves the bilevel problem (1.4.2). Due to Type 5.2, LICQ is
violated here at v = 0 for the follower problem (1.4.1) with x = 0.
More precisely, |J0(0, 0)| = 2, and MFCQ is satisfied. The corresponding
GNEP (1.4.3) reads as:

minimize
x,y

−x + 2y minimize
v

v

s.t. y ≥ 0, −x + y ≥ 0, s.t. v ≥ 0, −x + v ≥ 0.

y ≤ v + ε

(1.4.7)
The solution of the leader problem in (1.4.7) is

(x(ν), y(ν)) =
{
(0, 0) , if ν + ε ≥ 0,
∅, if ν + ε < 0.

The solution of the follower problem in (1.4.7) is

ν(x) =
{
x, if x ≥ 0,
0, if x < 0.

Hence, the unique equilibrium of (1.4.7) is (x∗, y∗, v∗) = (0, 0, 0) for
ε > 0. Moreover, the minimizer (x∗, y∗) = (0, 0) of the leader problem is
nondegenerate, but the minimizer v∗ = 0 of the follower problem remains
degenerate of Type 5.2.

We conclude that the degeneracies of Type 2.1 in the lower level hamper the
solvability of the leader problem in GNEP (1.4.3). Degeneracies of Type 4.1
disappear by applying the proposed GNEP approach. However, those of Types
5.1 and 5.2 remain persistent. This phenomenon is stable w.r.t. sufficiently small
perturbations of data, and, hence, may unavoidably cause numerical difficulties
while solving the corresponding GNEP (1.4.3).
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Chapter 2
On Stackelberg–Nash Equilibria
in Bilevel Optimization Games

Damien Bazin, Ludovic Julien, and Olivier Musy

Abstract Hierarchical games with strategic interactions such as the Stackelberg
two-stage game epitomize a standard economic application of bilevel optimization
problems. In this paper, we survey certain properties of multiple leader–follower
noncooperative games, which enable the basic Stackelberg duopoly game to
encompass a larger number of decision makers at each level. We focus notably on
the existence, uniqueness and welfare properties of these multiple leader–follower
games. We also study how this particular bilevel optimization game can be extended
to a multi-level decision setting.

Keywords Multiple leader–follower game · Stackelberg–Nash equilibrium

2.1 Introduction

Hierarchical optimization problems concern environments in which groups of
individuals decide in a sequential way. The strategic context of the agent is then
extended because the decision of each agent becomes influenced by the decisions
made by other agents in the past. The agent will also have to take into account
the consequences on these decisions of the choices that other individuals will
make in the future. In this context, two-level optimization problems correspond
to games which have two stages of interconnected decisions—the most common
category for such problems (Shi et al. [35], Dempe [12, 13], Sinha et al. [36]). In
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such environments there are at least two decision makers for which the convex set
mapping solution for the lower level problem becomes the feasible set for the upper
level problem (Bard [5]). Since this is a common feature of strategic interactions,
there are numerous applications of such optimization problems in recent literature,
for instance, in the fields of electricity markets (Hu and Ralph [19], Aussel et
al. [2, 3]), and transportation (see Dempe [13] or Dempe and Kalashnikov [14]).
Economics is the oldest field of application, as the first use of this strategic context
was proposed by Stackelberg in 1934, in his book on the study of oligopolies and
market structures (Stackelberg [38]1 ).

In the current paper, we use this initial application of bilevel optimization
problems in the study of industrial organization and market structures. More
specifically, we focus on the multiple leader–follower game, which extends the
initial Stackelberg duopoly game (restricted to one leader and one follower) to a
two-stage quantity setting noncooperative game.2 The first version of this model
was introduced by Sherali [33], and explored by Daughety [9], Ehrenmann [15],
Pang and Fukushima [31], Yu and Wang [40], DeMiguel and Xu [11], Julien [22],
and Aussel et al. [4]. This nontrivial extension to the basic duopoly game provides a
richer set of strategic interactions between several decision makers, notably because
the sequential decision making process introduces heterogeneity among firms.
Strategic interactions are more complex to handle because the game itself consists
of two Cournot simultaneous move games embedded in a Stackelberg sequential
competition game. The decision makers who interact simultaneously belong to the
same cohort, while those who interact sequentially belong to two distinct cohorts.
Decision makers are firms, and these firms are either leaders or followers. Indeed,
this model comprises strategic interactions at two levels of decisions as well as
strategic interactions at the same level of decisions.

Bearing in mind that this framework implies both simultaneous and sequential
interactions, we can define the corresponding strategic equilibrium concept as a
Stackelberg–Nash equilibrium (SNE). In this paper, we focus on the existence,
uniqueness and welfare properties of this noncooperative equilibrium, which is
still actively researched, especially in mathematical economics. We highlight three
points: first, the existence of an equilibrium is not trivial in the presence of several
followers. Second, the uniqueness of an equilibrium is based on strong technical
assumptions regarding the strict concavity of payments. Third, several properties
relating to market power and its consequences cannot be captured by the simple
duopoly model. By using examples, we also illustrate some of the main features in

1The book was published in 1934 in German, but was translated into English in 1952 by Oxford
University Press and 2011 by Springer. We refer to the 2011 version, as it corresponds to the
original 1934 book.
2To the best of our knowledge, the first extension of the Stackelberg duopoly was introduced by
Leitmann [29], who considered a model with one leader and several followers. This was further
developed by Murphy et al. [34]. It is worth noting that Stackelberg [38] had already envisaged the
possibility of several market participants (see Chap. 3).



2 On Stackelberg–Nash Equilibria in Bilevel Optimization Games 29

terms of welfare for this noncooperative equilibrium, which we then compare to the
Cournot–Nash equilibrium (CNE) and the competitive equilibrium (CE).

The remainder of the paper is structured as follows. In Sect. 2.2, we consider the
standard bilevel multiple leader–follower game and state a number of assumptions.
In Sect. 2.3, we define the Stackelberg–Nash equilibrium. Section 2.4 is devoted
to the existence and uniqueness of the Stackelberg–Nash equilibrium. Section 2.5
examines two important examples. In Sect. 2.6, we investigate some welfare proper-
ties of the Stackelberg–Nash equilibrium. In Sect. 2.7, we consider the challenging
extension to a multilevel decision setting, and in Sect. 2.8, we conclude.

2.2 The Model

We adopt the following notational conventions. Let x ∈ R
n+. Then, x ≥ 0 means

xi � 0, i = 1, . . . , n; x > 0 means there is some i such that xi > 0, with x �= 0,
and x >> 0 means xi > 0 for all i, i = 1, . . . , n. The notation f ∈ Cs(Rn)

is used to indicate that the function f has first through s-th continuous partial
derivatives on R

n. So, f ∈ C2(Rn) means f is twice-continuously differentiable.
A m dimensional vector function F is defined by F : A ⊆ R

n → B ⊆ R
m, with

F(x) = (f1(x), . . . , f2(x), . . . , fm(x)). The Jacobian matrix of F(x) with respect to

x at x̄ is denoted by JFx(x̄), with JFx(x̄) =
[
∂(f1,...,fj ,...,fm)

∂(x1,...,,xi ,...,xn)
(x̄)

]
. Its corresponding

determinant at x̄ is denoted by
∣∣JFx(x̄)

∣∣.
Let us consider a market with one divisible homogeneous product. On the

demand side, there is a large number of consumers (a continuum), whose behavior
is synthesized using a continuous market demand function, namely d : R+ → R+,
with p �−→ d(p), where p is the unit price of the good expressed in a numéraire.
Indeed, let X �−→ p(X) = d−1(X) be the market inverse demand function. This
function represents the maximum price consumers are willing to pay to buy the
quantity X. On the supply side, there is a finite number of decision makers, i.e.,
risk-neutral firms, whose finite set is F . The set of firms can be divided into two
subsets FL = {1, . . . , nL} and FF = {1, . . . , nF }, where FL is the subset of
leaders and FF the subset of followers, with FL ∪ FF = F and FL ∩ FF = ∅.
We consider |FL| � 1 and |FF | � 1, where |A| denotes the cardinality of set A.
Leaders are indexed by i, i ∈ FL, and followers are indexed by j , j ∈ FF . Firm i

(resp. j ) produces xi
L (resp. xj

F ) units of the good. Likewise, xi
L and x

j
F represent

respectively the supply for leader i ∈ FL, and follower j ∈ FF . Each firm bears
some costs. Let Ci

L : R+ → R+, with xi
L −→ Ci

L(x
i
L) be the cost function of leader

i ∈ FL. Likewise, for each j ∈ FF , we let Cj
F (x

j
F ). Thus, there is a market clearing

condition which stipulates that the demand balances the aggregate supply X, with
X ≡∑

i x
i
L +

∑
j x

j

F .
We make the following set of assumptions regarding p(X). This we designate as

Assumption 2.2.1.
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Assumption 2.2.1 The price function p(X) satisfies:

(1a) p(X) � 0 for all X � 0, with p(X) ∈ C2(R++);
(1b) dp(X)

dX
< 0 for X � 0;

(1c) ∀x � 0, dp(X)
dX
+ kx

d2p(X)

(dX)2 � 0, where k > 0. �
(1a) indicates that the inverse demand function p(X) is positively valued, and

that it may or may not intersect the quantity axis and/or the price axis.
Therefore, (1a) does not impose too stringent a property on the demand
function: it may be strictly concave (convex) or linear, without imposing
certain boundary conditions. (1a) also indicates that p(X) is well-behaved:
it is twice continuously differentiable on the open set R++.

(1b) indicates that the market demand is strictly decreasing.
(1c) stipulates that marginal revenue for any single firm is a decreasing function

of total industry output. This formulation deserves two comments. First, we

do not impose that the price function be a concave function, i.e., d2p(X)

(dX)2 � 0,
so we do not preclude (strictly) convex market demand functions. Second, our
formulation of the decreasing marginal revenue hypothesis embodies the term
k. For any leader firm the term k satisfies k �= 1 unless leaders behave as
followers (as in the Cournot model for which k = 1).

Likewise, we designate as Assumption 2.2.2 the set of assumptions made
concerning the cost functions.

Assumption 2.2.2 The cost function Ch(xh), h ∈ F , satisfies:

(2a) ∀h ∈ F , Ch(xh) � 0 for all x � 0, with Ch(xh) ∈ C2(R++);
(2b) ∀h ∈ F , dCh(xh)

dxh > 0 and d2Ch(xh)

(dxh)2 � 0. �
(2a) stipulates that the cost functions are positive and twice continuously differen-

tiable on the open set R++.
(2b) requires that costs are increasing and convex for all firms (for a discussion on

this assumption, which may be weakened, see Julien [22]). When the costs are
concave functions, multiple optima may exist.

Let us consider now the noncooperative bilevel optimization game � associated
with this market. Let Si

L = [0,∞) be the strategy set of leader i ∈ FL, where the

supply xi
L represents the pure strategy of leader i ∈ FL. Similarly, let Sj

F = [0,∞),

where x
j
F is the pure strategy of follower j ∈ FF . Let xL = (x1

L, . . . , x
i
L, . . . , x

nL

L )

be a strategy profile for all the leaders. Likewise, xF = (x1
F , . . . , x

j
F , . . . , x

nF

F )

is a strategy profile for all the followers. A strategy profile will be represented
by the vector (xL, xF ), with (xL, xF ) ∈ ∏

i∈FL
Si

L ×
∏

j∈FF
Sj

F . In addition, let

x−iL = (x1
L, . . . , x

i−1
L , xi+1

L , . . . , x
nL

L ) and x−jF = (x1
F , . . . , x

j−1
F , x

j+1
F , . . . , x

nF

F ).
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Therefore, the profits � : ∏i∈FL
Si

L ×
∏

j∈FF
Sj

F → R+ of each firm at the lower
and upper levels may be written in terms of payoffs as:

�i
L(x

i
L,X

−i ) = p(xi
L + X−i )xi

L − Ci
L(x

i
L), i ∈ FL (2.2.1)

�
j

F (x
j

F ,X−j ) = p(x
j

F +X−j )xj

F − C
j

F (x
j

F ), j ∈ FF , (2.2.2)

where X−i ≡ X − xi
L and X−j ≡ X − x

j
F . It is worth noting that under

Assumptions 2.2.1 and 2.2.2, the functions (2.2.1) and (2.2.2) are strictly concave.
The sequential game � displays two levels of decisions, namely 1 and 2, and

no discounting. We also assume that the timing of positions is given.3 Each leader
first chooses a quantity to sell, and each follower determines their supply based on
the residual demand. Information is again assumed to be complete. Information is
imperfect because at level 1 (resp. level 2) a leader (resp. a follower) cannot observe
what the other leaders (resp. other followers) decide: the multiple leader–follower
model is thus described by a two-stage game which embodies two simultaneous
move partial games. Indeed, the leaders play a two-stage game with the followers,
but the leaders (the followers) play a simultaneous move game together.

2.3 Stackelberg–Nash Equilibrium: A Definition

The main purpose of this section is to define the SNE. To this end, we study the
optimal behavior in each stage of the bilevel game. In this framework, strategic
interactions occur within each partial game but also between the partial games
through sequential decisions. It is worth noting that the critical difference from the
usual two-player games stem from the fact that the optimal decision made by a
follower does not necessarily coincide with their best response.4

Let us consider the second stage of the game �. Given any strategy profile for
leaders xL ∈ ∏

i Si
L and for all strategy profiles x−jF ∈ ∏

−j S
−j
F for all followers

but j , we can define φj : ∏−j S−jF ×
∏

i Si
L → Sj

F , with x
j
F = φj (x−jF , xL), j ∈

FF , as follower j ’s optimal decision mapping. Thus, the lower level optimization
problem for follower j may be written:5

3Hamilton and Slutsky [16] provide theoretical foundations for endogenous timing in duopoly
games and for the Stackelberg market outcome.
4One difficulty stems from the fact the followers’ optimal decision mappings may be mutually
inconsistent (Julien [22]).
5The same problem could be rewritten as follows. Let the objective of each firm be written as
−�j

F (x
j
F ,X−j ) = C

j
F (x

j
F ) − p(x

j
F + X−j )xj

F , for j ∈ FF . Then, the follower’s problem might

be written as φj (x−jF , xL) := min{−�i
L(x

i
L,X

−i ) : (x−jF , xL) ∈ ∏

−j
S−jF ×

∏

i

Si
L, xj

F ∈ Sj
F }. A

Nash equilibrium has to be sought out between followers.
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φj (x−jF , xL) := max
{xj

F (.)}
{�j

F (x
j
F , x−jF , xL) : (x−jF , xL) ∈

∏

−j
S−jF ×

∏

i

Si
L, xj

F ∈ Sj
F }.

(2.3.1)

Let L(x
j
F , x−jF , xL, λ) := �

j
F (x

j
F , x−jF , xL) + λx

j
F be the Lagrangian, where

λ � 0 is the Kuhn–Tucker multiplier. By using Assumptions 2.2.1 and 2.2.2, the
first-order sufficient condition may be written:

∂L(x
j
F , x−jF , xL, λ)

∂x
j

F

= p(X) + dp(X)

dX
x
j

F −
dC

j
F (x

j
F )

dx
j

F

+ λ = 0 (2.3.2)

λ � 0, xj
F � 0, with λx

j
F = 0.

With Assumptions 2.2.1 and 2.2.2, the optimal decision mapping φj (x−jF , xL)

exists and is unique.6 Indeed, we have either φj (x−jF , xL) = 0 or φj (x−jF , xL) >

0. Therefore, if x
j

F > 0, then λ = 0, where x
j

F is the solution to the equation

p(X) + x
j
F

dp(X)
dX
− dC

j
F (x

j
F )

dx
j
F

= 0, which yields φj (x−jF , xL) > 0. Now, if λ > 0,

then x
j
F = 0, which means that φj (x−jF , xL) = 0. Then, φj (x−jF , xL) � 0, j ∈ FF .

In addition, as for Assumptions 2.2.1 and 2.2.2, �j
F is strictly concave in x

j
F , then,

according to Berge Maximum Theorem, φj (x−jF , xL) is continuously differentiable.
This function is not a best response function since it also depends on the decisions

of the other followers who make their decision at the lower level. By using the
implicit function theorem, we have that:

∂φj (x−jF , xL)

∂x
−j
F

= −
dp(X)
dX
+ x

j

F
d2p(X)

(dX)2

2 dp(X)
dX
+ x

j
F

d2p(X)

(dX)2 − d2C
j
F (x

j
F )

(dx
j
F )2

, (2.3.3)

as
∂φj (x−jF ,xL)

∂x
−j
F

= −
∂2�

j
F

(.)

∂x
j
F
∂x
−j
F

∂2�
j
F

(.)

(∂x
j
F
)2

. We have that ∂φj (.)

∂x
−j
F

∈ (−1, 0), when φj (.) > 0, and

∂φj (.)

∂x
−j
F

= 0 when φj (.) = 0. Then, ∂φj (.)

∂x
−j
F

∈ (−1, 0], −j, j ∈ FF . In addition, it is

possible to show that ∂φj (.)

∂xi
L

∈ (−1, 0], i ∈ FL, j ∈ FF .

6The payoff function is strictly concave and the strategy set is compact and convex.
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We assume that the followers’ optimal behaviors as studied in stage 1 of the
bilevel optimization process are consistent (see Sect. 2.4).7 Then, the system of
equations which determines such best responses has a unique solution, so we can
define the best response for follower j as ϕj :∏i∈FL

Si
L → Sj

F , with x
j
F = ϕj (xL),

j ∈ FF .8 Let ϕ : ∏i∈FL
Si

L →
∏

i∈FL
Sj

F , with ϕ = (
ϕ1(xL), . . . , ϕ

nF (xL)
)
, be

the vector of best responses. The vector function ϕ(xL) constitutes a constraint for
the decision maker at the upper level as we now have p(X) = p(xi

L + X−iL +∑
j ϕj (xi

L +X−iL )), where X−iL ≡
∑
−i,−i �=i x

−i
L .

Therefore, at the upper level of the game, leader i’s optimal decision, which is
defined by ψi : ∏−i∈FL

S−iL → Si
L, with xi

L = ψi(x−iL ), is the solution to the
problem:

ψi(x−iL ) := max
{xi

L(.)}
{�i

L(x
i
L, x−iL ,ϕ(xL)) : x−iL ∈

∏

−i
S−iL , xi

L ∈ Si
L}. (2.3.4)

Let L(xi
L, x−iL , μ) := �i

L(x
i
L, x−iL , ϕ(xL))+μxi

L be the Lagrangian, where μ �
0 is the Kuhn–Tucker multiplier. As p(X) = p(xi

L + X−iL +
∑

j ϕj (xi
L + X−iL )),

which is continuous (see Julien [22]), the Kuhn–Tucker conditions may be written:

∂L(xi
L, x−iL , μ)

∂xi
L

= p (X)+
(

1+ νi
)
xi
L

dp(X)

dX
− dCi

L(x
i
L)

dxi
L

+ μ = 0 (2.3.5)

μ � 0, xi
L � 0, with μxi

L = 0,

The term νi = ∂
∑

j ϕj (xL)

∂xi
L

, with νi � −1, represents the reaction of all followers

to leader i’s strategy, i.e., the slope of the aggregate best response to i, i ∈ FL. By
construction, νi = ν−i = ν for all i,−i ∈ FL. Let k = (1+ ν). We may have either
ψi(x−iL ) = 0 or ψi(x−iL ) > 0.

7This is one critical difference with the standard duopoly game in which the optimal decision of
the follower coincides with their best response. Julien [22] provides a consistency condition which
helps determine each optimal decision as a function of the strategy profile for the leaders. Indeed,
we give a sufficient nondegeneracy condition on the determinant of the Jacobian matrix associated
with the set of equations that allows us to implicitly define the best response mappings. Under this
condition, the set of equations which implicitly determines the best responses is a variety of the
required dimension, that is, the corresponding vector mapping which defines this set of equations
is a C1-diffeomorphism. Here this criterion is satisfied as long as Assumptions 2.2.1 and 2.2.2 both
hold. These assumptions can be weakened. It is worth noting that our notion of consistency differs
from the notion of price consistency in Leyffer and Munson [30] that results in a square nonlinear
complementarity problem.
8It is possible to show that the best responses are not increasing, so the game displays actions which
are strategic substitutes. Please note that the condition is sufficient, so strategic complementarities
could exist provided they are not too strong.
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By using Assumptions 2.2.1 and 2.2.2, it is possible to show that, for each i ∈ FL,
the second-order sufficient condition holds:

∂2�i
L(x

i
L, x−iL )

(∂xi
L)

2
= k

(
kxi

L

d2p(X)

(dX)2
+ 2

dp(X)

dX

)
− d2Ci

L(x
i
L)

(dxi
L)

2
< 0. (2.3.6)

Finally, it is worth noting that
∂2�i

L(.)

∂xi
L∂x

−i
L

= k
(
k
dp(X)
dX
+ xi

L
d2p(X)

(dX)2

)
� 0, for each

i ∈ FL; and, by using the implicit function theorem, we have that

∂ψi(.)

∂x−iL

= −
∂2�i

L(.)

∂xi
L∂x

−i
L

∂2�i
L(.)

∂(xi
L)

2

= −
k
dp(X)
dX
+ k2xi

L
d2p(X)

(dX)2

2k dp(X)
dX
+ k2xi

L
d2p(X)

(dX)2 − d2Ci
L(x

i
L)

(dxi
L)

2

, (2.3.7)

so we can deduce that ∂ψj (.)

∂x
−j
F

∈ (−1, 0], for all −i �= i, −i, i ∈ FL.

The solution to the nL equations such as (2.3.5) yields the strategy profile for
the leaders x̃L = (x̃1

L, . . . , x̃
i
L, . . . , x̃

nL

L ). From the set of the best responses, i.e.,
(ϕ1(xL), . . . , ϕ

nF (xL)), it is possible to deduce the strategy profile for followers
x̃F = (x̃1

F , . . . , x̃
j
F , . . . , x̃

nF

F ).
We are now able to provide a definition of an SNE for this bilevel game.

Definition 2.3.1 (SNE) A Stackelberg–Nash equilibrium of � is given by a strat-
egy profile

(
x̃L,ϕ(x̃L)

) ∈ ∏

i∈FL

Si
L ×

∏

j∈FF

Sj

F , with x̃F = ϕ(x̃L), where ϕ :
∏

i∈FL

Si
L →

∏

j∈FF

Sj
F , such that conditions C1 and C2 hold:

C1 ∀i ∈ FL �i
L

(
x̃i
L, x̃−iL ,ϕ(x̃i

L, x̃−iL )
)
� �i

L

(
xi
L, x̃−iL ,ϕ(xi

L, x̃
−i
L )

)
, ∀ϕ(xL) ∈

∏

j∈FF

Sj
F , ∀x−iL ∈

∏

−i∈FL

S−iF and ∀xi
L ∈ Si

L;

C2 ∀j ∈ FF �
j
F (x̃

j
F , x̃−jF , x̃L) � �

j
F (x

j
F , x̃−jF , x̃L), ∀xj

F ∈ Sj . �

2.4 Stackelberg–Nash Equilibrium: Existence
and Uniqueness

Existence and uniqueness problems are complex in this framework as there are
several decision makers at each level: strategic interactions occur within levels but
also between the two levels through sequential decisions. Indeed, the nL leaders
play a two-stage game with the nF followers, but the leaders (the followers) play
a simultaneous move game together. Therefore, the bilevel game � displays two
partial games, namely the lower level game �F and the upper level game �L.
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The equilibrium of the entire game � is a pure strategy subgame perfect Nash
equilibrium (SPNE), while the equilibria in each partial game are Nash equilibria.
We state two results which pertain to existence and uniqueness. Then, we discuss
existence and uniqueness within the literature.

The following Theorem may be stated for the bilevel game � under considera-
tion.

Theorem 2.4.1 (Existence of SNE) Let us consider the game �, and let Assump-
tions 2.2.1 and 2.2.2 be satisfied. Then, there exists a Stackelberg–Nash equilibrium.

�
Proof Here we provide heuristic proof (for more details, see notably Julien [22]
with weaker assumptions on costs). As we have many decision makers at the lower
and upper levels, we show that there exists a Nash equilibrium at each level of
the game, i.e., there exists a strategy profile (x̃L, x̃F ) ∈ ∏

i Si
L ×

∏
j S

j
F such

that the leaders and followers strategic optimal plans are mutually consistent. We
define the function �L : ∏i Si

L →
∏

i Si
L, with �L(xL) = ×nL

i=1ψ
i . The function

�(xL) is continuous (as each ψi given by the solution for (2.3.5) is continuous
under Assumptions 2.2.1 and 2.2.2 in xL on

∏
i Si

L, a compact and convex subset of
Euclidean space (as the product of compact and convex strategy sets Si

L, i ∈ FL).
Then, according to the Brouwer Fixed Point Theorem, the function �(xL) has a
fixed point x̃L ∈ ∏

i Si
L, with components x̃i

L, where x̃i
L ∈ Si

L, for each i ∈ FL.
This fixed point is a pure strategy Nash equilibrium of the subgame �L. Now let us
define �F : ∏j S

j
F ×

∏
i Si

L →
∏

j S
j
F ×

∏
i Si

L, with �F (xF , xL) = ×nF

j=1φ
j ,

where, for each j , φj is the solution to (2.3.2). Given that x̃L ∈ ∏
i Si

L, we have

that �F (xF , x̃L) = ×nF

j=1φ
j (x−jF , x̃L). A similar argument as the one made for

the leaders shows that the function �F (xF , x̃L) has a fixed point x̃F ∈ ∏
j S

j
F ,

with components x̃
j
F , where x̃

j
F ∈ Sj

F , for all j ∈ FF . This fixed point is a pure
strategy Nash equilibrium of the subgame �F . But then, the point (x̃L, x̃F ), with
(x̃L, x̃F ) ∈∏i Si

L ×
∏

j S
j

F exists, which constitutes a SPNE of �.

The existence of an equilibrium is obtained here under mild conditions for
market demand and costs. Some of these conditions could be relaxed provided
the remaining conditions are completed with additional restrictions. For instance,
convexity of costs for all firms is not necessary.

The next theorem relies on the uniqueness of the SNE (see Julien [22]).

Theorem 2.4.2 (Uniqueness of SNE) Let Assumptions 1 and 2 be satisfied. Then,
if a Stackelberg–Nash equilibrium exists, it is unique. �

Proof To show uniqueness, we consider πL =
(

∂�1
L

∂x1
L

, . . . ,
∂�i

L

∂xi
L

, . . . ,
∂�

nL
L

∂x
nL
L

)
(see

Julien [22] for more details). Let
∣
∣J−πL(x̃L, x̃F )

∣
∣, with J−πL = −

(
∂2�i

L

∂xi
L∂x

−i
L

)
,

where
∂�i

L

∂xi
L

= p(X) + kxi
L

dp(X)
dX
− dCi

L(x
i
L)

dxi
L

. By using Corollary 2.1 in Kolstad
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and Mathiesen [26]), as leaders in the partial game �L behave like Cournot firms,
we show this criterion is satisfied, so the SNPE in �L is unique. It is possible to
show that:

∣
∣J−πL

∣
∣ =

⎛

⎜
⎝1− k

∑

i∈FL

dp(X)
dX
+ kxi

L
d2p(X)

(dX)2

d2Ci
L(x

i
L)

(dxi
L)

2 − k
dp(X)
dX

⎞

⎟
⎠

∏

i∈FL

(
d2Ci

L(x
i
L)

(dxi
L)

2
− k

dp(X)

dX

)

.

(2.4.1)

Then, as sign
∣
∣J−πL

∣
∣ = sign(1− k

∑

i∈FL

dp(X)
dX +kxi

L
d2p(X)

(dX)2

d2Ci
L
(xi

L
)

(dxi
L
)2
−k dp(X)

dX

), by using the assumptions

on costs and demand, we deduce:

∣
∣J−πL(x̃L, x̃F )

∣
∣ > 0. (2.4.2)

As
∣
∣J−πL(x̃L, x̃F )

∣
∣ > 0 there exists a unique Nash equilibrium in the subgame �L.

Now, given a unique point x̃L, and by using a similar argument as the one made
previously for the upper level, it is possible to show that

∣
∣J−πF (x̃L, x̃F )

∣
∣ > 0 at

the lower level, with k = 1, in (2.4.1). Then, there is a unique pure strategy Nash
equilibrium in the subgame �F . Then, the SPNE of � is unique, which proves the
uniqueness of the SNE. 	

Remark 2.4.3 If we assume symmetry, the condition for the sign for

∣
∣J−πL((x̃L,x̃F )

∣
∣

may be rewritten as dp(X)
dX
+ kxi

L
d2p(X)

(dX)2 < 1
knL

(
d2Ci

L(x
i
L)

(dxi
L)

2 − k
dp(X)
dX

)
, which

would indicate that “on average” leaders’ marginal revenues could be increased

but not too much. In addition,
d2Ci

L(x
i
L)

(dxi
L)

2 − k
dp(X)
dX
+ nL

(
dp(X)
dX
+ kxi

L
d2p(X)

(dX)2

)
=

∂2�1
L

(∂x1
L)

2 + (nL − 1)
∂2�i

L

∂xi
L∂x

−i
L

< 0: the effect of a change in xi
L on i’s marginal profit

dominates the sum of the cross effects of similar changes for the supply of other
leaders. �
The uniqueness of an SNE holds under strong assumptions. It can happen that
multiple Nash equilibria exist at both levels. At the lower level as well as the upper
level, multiplicity of equilibria can be generated by strong strategic complemen-
tarities caused either by nonconvex costs or market demand functions which do
not intersect the axis. The multiplicity of Nash equilibria can lead to coordination
failures problems.

Existence and uniqueness have already been explored in the multiple leader–
follower model. Sherali [33] shows existence and uniqueness with identical convex
costs for leaders, and states some results under the assumptions of linear demand
with either linear or quadratic costs (Ehrenmann [15]). Sherali’s model is an
extension of the seminal paper by Murphy et al. [34] which covers the case of
many followers who interact with one leader. In their model the authors provide
a characterization of the SNE, along with an algorithm to compute it. They state
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a Theorem 1 which gives the properties of the aggregate best response for the
followers expressed as a function of the leader’s strategy. This determination stems
from a family of optimization programs for the followers based on a price function
which is affected by the supply of the leader. They show that this aggregate function
is convex, and then, study the problem faced by the leader. Nevertheless, they do
not study the conditions under which the followers’ optimal decisions are mutually
consistent. In the same vein, Tobin [37] provides an efficient algorithm to find a
unique SNE by parameterizing the price function by the leader’s strategy. Some
strong assumptions are made on the thrice-differentiability of the price function and
the cost to the leader.

More recently, in line with De Wolf and Smeers [10] and DeMiguel and Xu
[11] extend the work by Sherali [33] to include uncertainty with stochastic market
demand. Unlike Sherali [33] they allow costs to differ across leaders. Nevertheless,
to show that the expected profit of any leader is concave, they assume that the
aggregate best response of the followers is convex. However as this assumption does
not always hold, these authors must resort to a linear demand. Pang and Fukushima
[31], Yu and Wang [40], and Jia et al. [20] prove the existence of an equilibrium
point of a finite game with two leaders and several followers without specifying
the assumptions made on demand and costs. Kurkarni and Shanbhag [27] show that
when the leaders’ objectives admit a quasi-potential function, the global and local
minimizers of the leaders’ optimization problems are global and local equilibria
of the game. Finally, Aussel et al. [2] study the existence of an equilibrium in the
electricity markets.

2.5 The Linear and the Quadratic Bilevel Optimization
Games

In this section, we consider two standard bilevel optimization games: the linear
model with asymmetric costs and the quadratic model with symmetric costs. The
following specification holds in both models. There are nL � 1 leader(s) and
nF � 1 follower(s), with nL + nF = n. Let p(X) = a − bX, a, b > 0, where
X ≡ XL +XF , with XL ≡∑nL

i=1 xi
L and XF ≡∑nF

j=1 x
j
F .

2.5.1 The Linear Bilevel Optimization Game

The costs functions are given by Ci
L(x

i
L) = ciLx

i
L, i = 1, . . . , nL, and by C

j

F (x
j

F ) =
c
j

F x
j

F , j = 1, . . . , nF , with ciL, c
j

F < a, for all i and all j . The strategy sets are

given by Si
L = [0, a

b
− ciL], i ∈ FL, andSj

F = [0, a
b
− c

j
F ], j ∈ FF .

As a point of reference, when each firm is a price-taker and does not behave
strategically, the competitive equilibrium (CE), is such that the market price and
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the aggregate supply are given by p∗ = min{c1
L, . . . , c

nL

L , c1
F , . . . , c

nF

F } and
X∗ = a−c∗

b
, where c∗ = min{c1

L, . . . , c
nL

L , c1
F , . . . , c

nF

F }. The corresponding

payoffs are given by (�i
L)
∗ = 0 (resp. (�

j
F )∗ = 0) when ciL = c∗ (resp.

c
j
F = c∗). In addition, the Cournot–Nash equilibrium (CNE), in which all firms

play simultaneously, is given by x̂i
L =

a+∑−i �=i c−iL +
∑

j c
j
F−(nL+nF )ciL

b(nL+nF+1) , i ∈ FL,

x̂
j
F =

a+∑i c
i
L+

∑
−j �=j c

−j
F −(nL+nF )c

j
F

b(nL+nF+1) , j ∈ FF , X̂ = a(nL+nF )−nLc
i
L−nF c

j
F

b(nL+nF+1) , and

p̃ = a+nLc
i
L+nF c

j
F

nL+nF+1 , with corresponding payoffs

�̂i
L =

(a − (nL + 1)ciL + nF c
j
F )(a +∑

−i �=i c
−i
L +

∑
j c

j
F − (nL + nF )ciL)

b(nL + nF + 1)2
, i ∈ FL,

�̂
j
F =

(a + nLc
i
L − (nF + 1)cjF )(a +∑

i c
i
L +

∑
−j �=j c

−j
F − (nL + nF )c

j
F )

b(nL + nF + 1)2
, j ∈ FF .

At the lower level, follower j ’s problem may be written as follows:

φj (x−jF , xL) : max{[a − b(x
j
F +X

−j
F +XL)− c

j
F x

j
F ]xj

F : Sj
F = [0,

a

b
− c

j
F ]}.
(2.5.1)

The optimal decision mapping for follower j corresponding to the solution to
Eq. (2.3.2) is given by:

φj (x−jF , xL) = a − c
j
F

2b
− 1

2
(X
−j
F +XL), (2.5.2)

where X
−j
F ≡ ∑

−j �=j x
−j
F . The best response for follower j , j ∈ FF , is given by

the convex linear function:

ϕj (xL) =
a +∑

−j �=j c
−j
F − nF c

j
F

b(nF + 1)
− 1

nF + 1
XL. (2.5.3)

At the upper level, as the price function may be written as p(XL) = a+∑j c
j
F

nF+1 −
b

nF+1XL, leader i’s optimal decision mapping ψi(x−iL ) is the solution to the upper
level optimization problem, which may be written as follows:

ψi(x−iL ) : max

{[
a +∑

j c
j

F

nF + 1
− b(xi

L +X−iL )

nF + 1
− ciL

]

xi
L : Si

L = [0,
a

b
− ciL]

}

.

(2.5.4)
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The optimal decision mapping of leader i is given by:

ψi(x−iL ) = a − (nF + 1)ciL +
∑

j c
j
F

2b
− 1

2
X−iL . (2.5.5)

We deduce the equilibrium strategy for leader i:

x̃i
L =

a − (nF + 1)ciL +
∑

j c
j
F

b(nL + 1)
, i ∈ FL. (2.5.6)

Then, as X̃L ≡ ∑
i x̃

i
L =

anL+nL

∑
j c

j
F−(nF+1)

∑
i c

i
L

b(nL+1) , by using (2.5.2), we can
deduce the equilibrium strategy for follower j :

x̃
j

F =
a − (nF + 1)cjF − nL

∑
j c

j
F + (nF + 1)

∑
i c

i
L

b(nL + 1)(nF + 1)
, j ∈ FF . (2.5.7)

Therefore as X̃F ≡ ∑
j x̃

j
F =

anF−(nF nL+nL+1)
∑

j c
j
F+nF (nF+1)

∑
i c

i
L

b(nL+1)(nF+1) , so the
market price is given by:

p̃ = a + (nF + 1)
∑

i c
i
L +

∑
j c

j
F

(nL + 1)(nF + 1)
. (2.5.8)

The payoffs are then given by:

�̃i
L =

A[a − (nF + 1)ciL +
∑

j c
j

F ]
b(nL + 1)2(nF + 1)

, i ∈ FL; (2.5.9)

�̃
j
F =

B[a − (nF + 1)cjF − nL

∑
j c

j
F + (nF + 1)

∑
i c

i
L]

b[(nL + 1)(nF + 1)]2 , j ∈ FF , (2.5.10)

where A ≡ a+ (nF +1)
∑

i c
i
L+

∑
j c

j
F − (nL+1)(nF +1)ciL and B ≡ a+ (nF +

1)
∑

i c
i
L +

∑
j c

j
F − (nL + 1)(nF + 1)cjF .

Finally, consider the particular case where Ci
L(x

i
L) = cxi

L, i = 1, . . . , nL, and by

C
j

F (x
j

F ) = cx
j

F , j = 1, . . . , nF , with c < a. The CE, is such that aggregate supply
and market price are given respectively by X∗ = a−c

b
, p∗ = c, and (�i)∗ = 0,

i = 1, . . . , n.9 The CNE is given by x̂i
L = x̂

j
F = a−c

b(nL+nF+1) , X̂ = (a−c)(nL+nF )
b(nL+nF+1) X∗,

9The CE supplies are given by ((xi
L)
∗, (xj

F )∗) = (αX∗, (1 − α)X∗), with α ∈ (0, 1). In what
follows, we consider the symmetric outcome for which α = 1

2 .
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p̃ = a+c(nL+nF )
nL+nF+1 , and �̂i

L = �̂
j
F = (a−c)2

b(nL+nF+1)2 , i ∈ FL, j ∈ FF . The SNE is given

by x̃i
L = a−c

b(nL+1) , i ∈ FL, x̃j

F = a−c
b(nL+1)(nF+1) , j ∈ FF , p̃ = a+c[nL(nF+1)+nF ]

(nL+1)(nF+1) ,

�̃i
L = (a−c)2

b(nL+1)2(nF+1)
, i ∈ FL, and �̃

j
F = (a−c)2

b[(nL+1)(nF+1)]2 , j ∈ FF .

We can observe that for each i ∈ FL, we have �̃i
L � �̂i

L whenever nL �√
nF + 1: any leader will achieve a higher payoff provided the number of leaders is

not too high.10 It is worth noting that limnL→∞ p̃ = c (resp. lim(nL,nF )→(∞,∞) p̃ =
c): so when the number of leaders (resp. leaders and followers) becomes arbitrarily
large the SNE market price coincides with the CE price p∗. This result holds with
the CNE in case either the number of leaders or followers goes to infinity (in the
inclusive sense!).

2.5.2 The Quadratic Bilevel Optimization Game

The costs functions are given by Ci
L(x

i
L) = c

2 (x
i
L)

2, i = 1, . . . , nL, and by

C
j
F (x

j
F ) = c

2 (x
j
F )2, j = 1, . . . , nF , with c < a, for all i and all j . The strategy sets

are given by Si
L = [0, a

b
− c

2 (x
i
L)

2], i ∈ FL, andSj
F = [0, a

b
− c

2 (x
i
L)

2], j ∈ FF .

The CNE is given by x̂i
L = a

b(nL+nF+1)+c , for all i ∈ FL, x̂j

F = a
b(nL+nF+1)+c ,

for all j ∈ FF , p̂ = a(b+c)
b(nL+nF+1)+c , and �̂i

L = a2(2b+c)
[b(nL+nF+1)+c]2 , for all i ∈ FL,

�̂
j

F = a2(2b+c)
[b(nL+nF+1)+c]2 , for all j ∈ FF .

Consider now the SNE. By following the same procedure as for the linear bilevel
game, the SNE equilibrium supplies are given by:

x̃i
L =

a

b(nL + 1)+ c( b
b+cnF + 1)

, i ∈ FL; (2.5.11)

x̃
j
F =

a[b + c(1+ b
b+cnF )]

[c + b(nF + 1)][b(nL + 1)+ c( b
b+cnF + 1)] , j ∈ FF . (2.5.12)

Therefore, we deduce the market price

p̃ = a(b + c)[b + c(1+ b
b+c nF )]

[c + b(nF + 1)][b(nL + 1)+ c( b
b+cnF + 1)] . (2.5.13)

10The welfare properties of the bilevel optimization linear game with symmetric costs are explored
in Daughety [9], Julien et al. [24, 25], and in Julien [23].
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The corresponding payoffs are given by:

�̃i
L =

a2(2b2 + 3bc+ c2 + bcnF )

2[c+ b(nF + 1)][b(nL + 1)+ c( b
b+cnF + 1)]2 , i ∈ FL, (2.5.14)

�̃
j

F =
a2(2b + c)[b + c(1+ b

b+cnF )]2
2[c+ b(nF + 1)]2[b(nL + 1)+ c( b

b+cnF + 1)]2 , j ∈ FF . (2.5.15)

It is easy to check that, as the production of any leader is higher than the
production of any follower, the payoff of any leader is higher.

2.6 Stackelberg–Nash Equilibrium: Welfare Properties

We now turn to the nonoptimality of the SNE and some of its welfare properties.
To this end, we compare the SNE market outcome with the CNE, and with the CE.
Next, we consider the relation between market concentration and surplus, and also
the relation between individual market power, payoffs and mergers.

2.6.1 The SNE, CNE and CE Aggregate Market Outcomes

We can state the following proposition, which represents a well-known result.

Proposition 2.6.1 Let X̃, X̂, and X∗ be respectively the SNE, the CNE, and the
CE aggregate supplies; and p̃, p̂, and p∗ the corresponding market prices. Then,
X̂ < X̃ < X∗, and p∗ < p̃ < p̂. �
In the bilevel optimization game, the leaders can set a higher supply. In addition, the
increment in the aggregate supply of leaders more than compensates for the decrease
in the aggregate supply of followers when the aggregate best response is negatively
sloped, whereas it goes in the same direction when the aggregate best response
increases, i.e., when strategies are complements.11 Therefore, the aggregate supply
(market price) is higher (lower) in the SNE than in the CNE, both when strategies
are substitutes and when they are complements. The following example illustrates
that the noncooperative sequential game leads to higher traded output than in the
noncooperative simultaneous game (see Daughety [9]).

11When the slope of the aggregate best response is zero, then the SNE can coincide with the CNE
(see notably Julien [21]).
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Noncooperative Sequential Game Leads to Higher Traded Output
Consider the linear bilevel game given by (2.5.1)–(2.5.10), where Ci

L(x
i
L) =

cxi
L, i = 1, . . . , nL, and by C

j
F (x

j
F ) = cx

j
F , j = 1, . . . , nF , with c <

a. From (2.5.6) and (2.5.7), we can deduce X̃L = nL

nL+1X
∗ and X̃F =

nF

(nL+1)(nF+1)X
∗. Then, the aggregate supply is X̃ = nLnF+nL+nF

(nL+1)(nF+1)X
∗, which

may be written as X̃(nL, n) = n+nnL−n2
L

(nL+1)(n−nL+1)X
∗. We see that X̃ < X∗.

Then, we obtain p∗ < p̃ = a+c[nL(nF+1)+nF ]
(nL+1)(nF+1) . We can observe that X̃(0, n) =

X̃(n, n) = n
n+1X

∗, which corresponds to the Cournot–Nash equilibria, and

X̃(2, n) = 4n−9
4(n−2) < X̃(2, n) = 3n−4

3(n−1) > X(1, n) = 2n−1
2n > X(0, n).

Then, for fixed n, the aggregate supply is concave in nL, i.e., ∂2X(nL,n)

(∂nL)
2 =

− 2X∗
(nL+1)3(n−nL+1)

< 0. Indeed, the Cournot–Nash aggregate supply is given

by X̂(nL, nF ) = nL+nF

nL+nF+1X
∗. Then, we have X̂(nL, nF ) < X̃(nL, nF ).

Remark 2.6.2 When the aggregate best response for followers has a zero slope in
equilibrium, the leaders rationally expect that each strategic decision they undertake
should entail no reactions from the followers (Julien [21]). �

2.6.2 Welfare and Market Power

If we are to define welfare when studying the variation in aggregate supply for
this framework, we must take into consideration the shares of aggregate supply of
leaders and followers. In accordance with Julien [23], let ϑL ≡ XL

X
, with 0 � ϑL �

1, and ϑF ≡ XF

X
, with 0 � ϑF � 1, and where ϑL + ϑF = 1. Therefore, the social

surplus may be defined as:

S(X) :=
∫ X

0
p(z)dz− (

∑

i∈FL

Ci
L(s

i
LϑLX)+

∑

j∈FF

C
j

F (s
j

F ϑFX)), with X � X∗,

(2.6.1)

where siL ≡ xi
L

XL
is leader i’s market share, and s

j

F ≡ x
j
F

XF
is follower j ’s market

share. Differentiating partially with respect to X and decomposing p(X) leads to:

∂S(X)

∂X
=

∑

i∈FL

siLϑL(p(X)− dCi
L(x

i
L)

dX
)+

∑

j∈FF

s
j
F ϑF (p(X) − dC

j
F (x

j
F )

dX
) � 0,

(2.6.2)
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as we have that
∑

i∈FL
siLϑL +∑

j∈FF
s
j
F ϑF = 1, and for fixed siL, sjF , ϑL and ϑF ,

with ∂S(X)
∂X |X=X∗ = 0.

The social surplus is hence higher at the SNE than at the CNE, and reaches its
maximum value at the CE.12 Therefore, one essential feature of the SNE bilevel
game is that the strategic interactions between leaders and followers may be welfare
enhancing.

Remark 2.6.3 Daughety [9] shows that, if the aggregate supply is used as a measure
of welfare, welfare may be maximized when there is considerable asymmetry in the
market, whereas symmetric (Cournot) equilibria for which nL = 0 and nL = n

minimize welfare. Thus, the concentration index may no longer be appropriate for
measuring welfare. �

2.6.3 Market Power and Payoffs

We now compare the SNE payoffs with the CNE payoffs. To this end, the optimal
conditions (2.3.2) and (2.3.5) may be expressed respectively as:

p (X) = (1+mi
L)

dCi
L(x

i
L)

dxi
L

, with mi
L =

1

1+ 1+ν
ε

ϑLs
i
L

− 1, i ∈ FL; (2.6.3)

p (X) = (1+m
j

F )
dC

j

F (x
j

F )

dx
j
F

, with m
j

F =
1

1+ 1
ε
ϑF s

j
F

− 1, j ∈ FF , (2.6.4)

where mi
L and m

j

F are leader i’s and follower j ’s markups, and ε is the price

elasticity of demand, that is, ε ≡ dp(X)
dX

p
X

.
To analyze the relation between market power and individual payoffs, let us

consider:

Li
L = −

1+ ν

ε
ϑLs

i
L, i ∈ FL; (2.6.5)

L
j
F = −

1

ε
ϑF s

j
F , j ∈ FF . (2.6.6)

12Indeed, ∂SC(X)
∂X

= −Xdp(X)
dX

> 0, with SC(X) := ∫ X

0 p(z)dz − p(X)X. In addition, if we

let SP (X) := p(X)(ϑL

∑nL

i=1 siL + ϑF

∑nF

j=1 s
j

F )X −∑nL

i=1 Ci
L(s

i
LϑLX) −∑nF

j=1 C
j

F (s
j

F ϑFX),

then dSP (X)
dX

= p(X)+X
dp(X)
dX
− [ϑL

∑nL

i=1 siL
dCi

L
(si

L
ϑLX)

dX
+ ϑF

∑nF

j=1 s
j

F

dC
j
F
(s

j
F
ϑFX)

dX
] < 0 (from

Assumption 2.2.2b).
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where Li
L and L

j
F are the Lerner indexes for follower j and for leader i respec-

tively.13

Proposition 2.6.4 If Li
L > L

j
F , then �̃i

L > �̃
j
F , i ∈ FF , j ∈ FF . In addition, if

Li
L = L

j
F for all i ∈ FF and j ∈ FF , then, �̃i

L � �̃
j
F if and only if ν � 0, i ∈ FF ,

j ∈ FF . �
Proof Immediate from the definition of the Lerner index and by using (2.6.3)
and (2.6.4). 	

It is worth pointing out that there are certain differences in leaders’ (resp. followers’)
payoffs caused by asymmetries in costs. As this bilevel game embodies strategic
interactions among several leaders and followers, we now explore the possibility of
merging.

2.6.4 Welfare and Mergers

The strategic effects of merging on welfare depend on the noncooperative strategic
behavior which prevails in the SNE. The following example illustrates the welfare
effects of merging (see Daughety [9]).

Welfare Effects
Consider the linear bilevel game given by (2.5.1)–(2.5.10), where Ci

L(x
i
L) =

cxi
L, i = 1, . . . , nL, and by C

j

F (x
j

F ) = cx
j

F , j = 1, . . . , nF , with c < a.

Let X̃(nL, n) = n+nnL−n2
L

(nL+1)(n−nL+1)X
∗. First, a merger means that one firm

disappears from the market. Consider the following three cases:

1. The merger of two leaders so that the post merger market has nL−1 leaders
but still n− nL followers;

2. The merger of two followers, so that there are nL leaders but n − nL − 1
followers; and

3. The merger of one leader and one follower, so that there are nL leaders but
n− nL − 1 followers.

(continued)

13The Lerner index for any decision maker is defined in an SNE as the ratio between the excess of

the price over the marginal cost and the price, that is, L := p(X)− dc(x)
dx

p(X)
.
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Therefore, in case 1, calculations yield

X̃(nL − 1, n− 1)− X̃(nL, n) = − (n− 1)nL(nL + 3)− 2nL + 1

nL(nL + 1)(n− nL + 1)
X∗ < 0.

In cases 2 and 3, we obtain X̃(nL, n − 1) − X̃(nL, n) =
− 1

(nL+1)(n−nL)(n−nL+1)X
∗ < 0. Thus, welfare is always reduced. Second, if

we now consider that the number of leaders increases, the comparative statics
yields:

∂X̃(nL, n)

∂nL

= n− 2nL

(nL + 1)2(n− nL + 1)2 X
∗ � 0 for n � 2nL,

∂X̃(nL, n)

∂n
= 1

(nL + 1)(n− nL + 1)2 X
∗ > 0,

and

∂2X̃(nL, n)

∂nL∂n
= n− 2nL

(nL + 1)2(n− nL + 1)2 X
∗ � for 3nL + 1 � n.

The last effect captures the effect on welfare of changes in industry structure.
If we now consider that two followers merge and behave as a leader firm,
there are n− 1 firms with nL+ 1 leaders and n−nL− 2. Using algebra leads
to X̃(nL + 1, n − 1) − X̃(nL, n) = n−3(nL+1)

(nL+1)(nL+2)(n−nL−1)(n−nL+1)X
∗ > 0

whenever nL < n
3 − 1: so, when there are few leaders, merging can increase

aggregate supply. More asymmetry is beneficial; it is socially desirable as it
enhances welfare. However when nL > n

2 , fewer leaders and more followers
could increase welfare.

The difference between the two cases can be explained by the fact that, in
the second case, the reduction of the number of followers is associated with
an increase in the number of leaders.

Remark 2.6.5 It can be shown that two firms which belong to the same cohort and
have the same market power rarely have an incentive to merge, whereas a merger
between two firms which belong to two distinct cohorts and have different levels
of market power is always profitable as the leader firm incorporates the follower
firm regardless of the number of rivals. In the SNE the merger better internalizes the
effect of the increase in price on payoffs than in the CNE: the decrease in supply is
lower than under Cournot quantity competition. �
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2.7 Extension to Multilevel Optimization

Bilevel optimization models have been extended to three-level optimization envi-
ronments (see Bard and Falk [6], Benson [7], Han et al. [17, 18], among others),
and to T -level optimization with one decision maker at each level (Boyer and
Moreaux [8], Robson [32]). The three level optimization game has been studied
in depth by Alguacil et al. [1] and Han et al. [17]. The existence of a noncooperative
equilibrium in the multilevel optimization with several decision makers at each level
remains an open problem. Nevertheless, the multiple leader–follower game may be
extended to cover a T -stage decision setting in the case of the linear model (Watt
[39], Lafay [28], and Julien et al. [24, 25]). The extended game should represent a
free entry finite horizon hierarchical game. We will focus on the computation and
on certain welfare properties. To this end, and for the sake of simplicity, we consider
an extended version of the linear model studied in Sect. 2.5, where Ci

L(x
i
L) = cxi

L,

i = 1, . . . , nL, and by C
j
F (x

j
F ) = cx

j
F , j = 1, . . . , nF , with c < a.

There are now T levels of decisions indexed by t , t = 1, 2, . . . , T . Each level
embodies nt decision makers, with

∑T
t=1 nt = n. The full set of sequential levels

represents a hierarchy. The supply of firm i in level t is denoted by xi
t . The aggregate

supply in level t is given by Xt ≡ ∑nt

i=1 xi
t . The nt firms behave as leaders with

respect to all firms at levels τ > t , and as followers with respect to all firms at levels
τ < t . The price function may be written as p = p(

∑
t Xt ). Let p(X) = a − bX,

a, b > 0, where X ≡ ∑
t Xt . The costs functions are given by Ci

t (x
i
t ) = cxi

t , i =
1, . . . , nt , t = 1, . . . , T , with c < a. The strategy sets are given by Si

t = [0, a
b
− c],

i = 1, . . . , nt , t = 1, . . . , T .
Bearing in mind this framework, if firms compete as price-takers, the CE is still

given by X∗ = a−c
b

, p∗ = c, and (�i
t )
∗ = 0, i = 1, . . . , nt , t = 1, . . . , T . The

CNE is given by x̂i
t = 1∑T

t=1 nt+1
X∗, X̂ =

∑T
t=1 nt∑T

t=1 nt+1
X∗, p̂ = a+c∑T

t=1 nt∑T
t=1 nt+1

, and

�̂i
t = (a−c)2

b
1

(
∑T

t=1 nt+1)2
, i = 1, . . . , nt , t = 1, . . . , T .

At level t , firm i’s profit is given by:

�i
t (x

i
t , X

−i
t ,

T∑

τ,τ �=t
Xτ ) = [a − b(xi

t +X−it +
T∑

τ,τ �=t
Xτ )]xj

F − cx
j
F . (2.7.1)

Therefore, the problem of firm i at level t may be written as follows:

max
{xi

t }
�i

t (x
i
t ,X

−i
t ,

t−1∑

τ=1

Xt−τ ,
T−t∑

τ=1

Xt+τ ) := [a − c − b(xi
t +X−it +

t−1∑

τ=1

Xt−τ +
T−t∑

τ=1

Xt+τ )]xi
t ,

(2.7.2)
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where X−it ≡ Xt − xi
t , and

∑t−1
τ=1 Xt−τ and

∑T−t
τ=1 Xt+τ denote respectively the

aggregate supply of all leaders at level t−τ for τ ∈ {1, . . . , t−1} and the aggregate
supply of all followers at level t + τ for τ ∈ {1, . . . , T − t}.

The solution to this program yields the optimal decision for firm i at stage t , i.e.,
xi
t = φi

t (X
−i
t ,

∑T
τ,τ �=t Xτ ). By solving recursively from the last level T to the first

level 1, it is possible to deduce the equilibrium strategy for any firm at any stage (see
Watt [39]). Indeed, the SNE strategy of firm i at stage t may be written as follows:14

x̃i
t =

(
t∏

τ=1

1

nτ + 1

)

X∗, t = 1, . . . , T . (2.7.3)

Therefore, the aggregate supply is given by:

X̃ =
(

T∑

t=1

nt

∏t

τ=1

1

nτ + 1

)

X∗. (2.7.4)

Then, we deduce the market price:

p̃ = c + (a − c)

(
t∏

τ=1

1

nτ + 1

)

. (2.7.5)

Then, the payoffs are given by:

�̃i
t =

(a − c)2

b

(
t∏

τ=1

1

(nτ + 1)2

T∏

τ=t+1

1

nτ + 1

)

, t = 1, . . . , T − 1; (2.7.6)

�̃i
T =

(a − c)2

b

(
T∏

τ=1

1

(nτ + 1)2

)

. (2.7.7)

It is worth noting that the specification T = 2, nt = 1, t = 1, 2, corresponds to
the standard bilevel duopoly game. The specification T = 2, n1 = nL and n2 = nF ,
corresponds to the linear bilevel game from Sect. 2.5.

Proposition 2.7.1 Consider a market with linear demand and identical constant
marginal costs, then the T -level Stackelberg game coincides with a multilevel
Cournot game in which firms compete oligopolistically on the residual demands.

�

14For computations of the equilibrium values, see notably Watt [39], Lafay [28], Julien and Musy
[24], and Julien et al. [24, 25].
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Proof See Julien et al. [25] who show that the assumptions of linear demand
and identical (strictly positive) constant marginal costs are necessary and sufficient
conditions for Proposition 2.7.1 to hold. 	

Therefore each firm within a given stage behaves as if there were no subsequent
stages, i.e., it is as if the direct followers for firm i in stage t do not matter. This
generalizes the t-stage monopoly property of Boyer and Moreaux [8].

To explore the welfare properties of the linear T -level model, let us define ω, the
index of social welfare X̃, as:

ω =
∏T

τ=1
κtnt = 1−

∏T

τ=1

1

nτ + 1
= 1+ κ1,T . (2.7.8)

Then, we are able to state the following two propositions (see Julien et al. [24]).

Proposition 2.7.2 When the number of firms becomes arbitrarily large, either by
arbitrarily increasing the number of firms at each stage by keeping the number of
stages T constant, i.e., ∀t , nt →∞, given T <∞, or by increasing the number of
stages without limit, i.e., T → ∞, the T -level SNE aggregate supply converges to
the CE aggregate supply. �
Proof Immediate from the two limits given by limT→∞(

∏T
τ=1 κtnt ) = 1 and

limnt→∞ (
∏T

τ=1 κtnt ) = 1. 	

Proposition 2.7.3 In the T -level linear economy, social welfare can be maximized
by enlarging the hierarchy or by changing the size of existing stages through the
reallocation of firms from the most populated stage until the size of all stages is
equalized. �
Proof See Julien et al. [24]. The relocation reflects the merger analysis provided
in Daughety [9] (see preceding subsection). When the number of levels is fixed, the
relocation is welfare improving until there is the same number of firms at each level.

	

Remark 2.7.4 A sequential market structure with one firm per stage Pareto domi-
nates any other market structure, including the CNE (see Watt [39]). �
Remark 2.7.5 It can be verified that the firms’ surplus in the SNE may be inferior
to the firms’ surplus in the CNE when T � 3, so the firm which chooses to be at the
upper level may be better off if the other firms are supplying simultaneously. �
The results contained in Propositions 2.7.2 and 2.7.3 may be used to analyze how
an increase in the number of decision makers affects welfare. Indeed, when a new
firm enters at level t it causes a decrease in market price as we have

p̃(

t∑

τ=1

X̃τ + x̃
nt+1
t )− p̃(

t∑

τ=1

X̃τ ) = a − c

nt

∏T
τ=1(nτ + 1)

< 0, (2.7.9)
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where x̃
nt+1
t , with x̃

nt+1
t > 0, represents the supply of the additional firm. In

addition, the maximization of welfare implies the most asymmetric distribution
of market power. Nevertheless, these results are valid in a linear economy with
identical costs. Indeed, if costs are different, entry is affected by some relocations or
extensions. Lafay [28] uses a T -level game in which firms enter at different times or
have different commitment abilities. Here firms bear different constant marginal
costs. The linear T -level optimization game confirms the positive effect of an
increase in the number of decision makers on welfare. However, the salient feature
is that firms must now forecast future entries in the market. Indeed, asymmetric
costs could make entry inefficient. If the firm reasons backwards, and the price is
lower when there is further entry, the firm enters the market provided its costs do
not exceed the resulting market price.15

2.8 Conclusion

We have proposed a short synthesis of the application of bilevel optimization
to some simple economic problems related to oligopolistic competition. Using
standard assumptions in economics relative to the differentiability of objective
functions, we have presented some elements to characterize the Stackelberg–Nash
equilibrium of the noncooperative two-stage game, where the game itself consists
of two Cournot simultaneous move games embedded in a Stackelberg sequential
competition game.

The tractability of the model, especially when assuming linearity of costs and
demand, makes it possible to derive certain welfare implications from this bi-level
optimization structure, and to compare it with standard alternatives in terms of
market structures. Indeed, the T -level optimization game represents a challenge to
the modeling of strategic interactions.

Acknowledgements The authors acknowledge an anonymous referee for her/his helpful com-
ments, remarks and suggestions on an earlier version. Any remaining deficiencies are ours.
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Chapter 3
A Short State of the Art on
Multi-Leader-Follower Games

Didier Aussel and Anton Svensson

Abstract Multi-Leader-Follower games are complex optimization problems that
mix a bilevel structure with one or more Nash games. Such kinds of models have
been already described in the seminal book of H. von Stackelberg ((1934)Marktform
und Gleichgewicht. Springer, Berlin); von Stackelberg et al. ((2011) Market struc-
ture and equilibrium. Springer, Heidelberg) and are known to perfectly fit to a lot
of applications involving non cooperative situations with hierarchical interactions.
Nevertheless it is only recently that theoretical and numerical developments for
Multi-Leader-Follower problems have been made. This chapter aims to propose
a state of the art of this field of research at the frontier between optimization and
economics.

Keywords Multi-Leader-Follower games · Generalized Nash games ·
Existence · Variational reformulation · Algorithms

3.1 Introduction

A Multi-Leader-Follower Game is a model that describes quite complex interactions
between non cooperative players/decision makers and which includes a hierarchy in
their decision process. The set of players is divided into two categories, the leaders,
or upper level players, and the followers, or the lower level players.

The splitting of the set of players into these two categories is based on a
dependence criterion. The followers’ strategy is somehow passive in the sense that
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they react to what the leaders decide. Contrarily, the leaders’ strategy is active,
meaning that the leaders take into account the “future” reaction of the followers.
More precisely, a Multi-Leader-Follower problem corresponds to the problem of
the leaders and consists in choosing optimal strategies/equilibrium strategies (of the
leaders) considering a conjectured reaction of the followers.

Remark 3.1.1 In real life applications, the evaluation of these optimal strategies/
equilibrium strategies through the resolution of the associated Multi-Leader-
Follower game corresponds actually to the first step of a two steps process.
Indeed these optimal strategies/equilibrium strategies are determined based
on a conjectured reaction of the followers but as soon as these optimal
strategies/equilibrium strategies are revealed by the leaders, then, in a second step,
the followers compute the optimal response/Nash equilibrium of their parameterized
optimization problem/Nash game and this response can differ from the leader’s
conjecture in case of multiplicity of the solutions of the followers’ problem. �

The two-level structure of a Multi-Leader-Follower game has led some authors
to refer the model as a bilevel game. In particular, it is an extension of the bilevel
programming problem, where the interaction between only one leader and one
follower are considered. But in general, in a Multi-Leader-Follower game each level
have more than one player and thus under the non cooperative premise we will
assume that within the upper level, as well as within the lower level, the players’
behavior is modeled by Nash games.

The special case of leaders without followers (or equivalently absence of leaders)
trivially reduces to (Generalized Nash game). Nevertheless in this chapter we will
only concentrate our attention to cases including a bilevel structure. Now the con-
cept of Multi-Leader-Follower game can be separated into three classes/structures
of model:

(SLMFG) Single-Leader-Multi-Follower game,
(MLSFG) Multi-Leader-Single-Follower game, and
(MLMFG) Multi-Leader-Multi-Follower game.

Applications of these models can be found in industrial eco-parks and electricity
markets, as we shall shortly describe but also in other areas such as transmission
and generation expansion planning, water resource optimal allocation, demand side
management, among others.

Let us note that in these models some subtle ambiguities, which are particularly
serious in the case of MLSFG and MLMFG, can easily occur in the formulation of
the interactions between the players (see Sect. 3.2).

Nevertheless, even if the Multi-Leader-Follower models have been considered
a long time ago (see Historical comment below), theory and algorithms have
been developed only recently, say during the last decades. This is partially due to
the fact that the reformulation of these difficult problems required modern tools
of non-smooth and variational analysis like quasi-variational inequalities and/or
coderivative calculus. Our aim in this chapter is therefore to propose a short state of
art of the domain.
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In Sect. 3.2, we introduce the notations as well as two motivating examples,
one in Industrial eco-parks and another for the modelling of deregulated electricity
markets. Section 3.3 is devoted to recent developments for Single-Leader-Multi-
Follower problems while Sect. 3.4 deals with Multi-Leader-Multi-Follower models.
In both cases, existence results and reformulations are discussed as well as specific
algorithms that have been developed to solve those difficult problems. Finally, in
Sect. 3.5, we conclude and suggest possible extensions.

Historical Comments
It is not so known but the Multi-Leader-Follower concepts were actually already
considered in Chapter 2 of Stackelberg’s famous book [1] (English translation [2]).
Indeed in 1934 and considering the case of a family of players interacting in a
non cooperative way, H. von Stackelberg discussed essentially two possible relative
attitudes of two of the players (let us call them A and B) with regard to the game:

(i) “Assuming that player A views the behaviour of player B as being independent
of his (A’s) behaviour, in this case A regards B’s supply as a given variable
and he orientates himself to it. Thus the behaviour of A is dependent on the
behaviour of B. If B therefore trades based on assumptions that match reality,
he thus sees the behaviour of his rival A as being dependent on his (B’s)
behaviour.”

(ii) “Assuming that A views the behaviour of B as being dependent on his (A’s)
behaviour, if that matches reality, then it means that B is orientating himself
to A’s behaviour.”

It is easy to see that some “incompatible” situations may occur. It will be the case
when there is at least, in the family of players, a couple (A,B) of them such that A
is following an (i) policy but B does not see the behaviour of his rival A as being
dependent on his (B’s) behaviour, or vice versa.

Now in the case where there is at least one player, say B, that is following at the
same time policy (i) with regard to a player A and a positioning (ii) with regard to
another player C then the resulting interaction will lead to a (at least) trilevel model.
But this case, also considered in Stackelberg’s book, is beyond the scope of this
chapter.

Then, using the two possible interrelations (i) and (ii), Stackelberg describes,
in a systematic way, complex situations from Generalized Nash games to Multi-
Leader-Follower games. If the positioning of the players are “compatible” (not
leading to incompatible situations) and not leading to a (at least) trilevel model
then the family of players can be split into two categories: the ones considering
that a subgroup of players’ behaviour depend on their behaviour (the so-called
leaders) and a subfamily of players that position themselves as having their
decision/behaviour depending on the decisions of a subgroup of other players’
behaviour (the so-called followers).
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3.2 Notations and Examples of Applications

As emphasized in the previous section, Multi-Leader-Follower games are bilevel
models mixing the Nash-equilibrium structure of usual non cooperative game theory
within each level, and a hierarchical feature between the two levels.

So let us first recall that a generalized Nash game corresponds to a non
cooperative interaction between the players, each of them solving an optimization
problem in which the objective function and/or the constraint set depend upon the
variables of the other players. The generalized Nash equilibrium problem (GNEP,
for short) is to find a strategic combination, called a Nash equilibrium of the
game, with the property that no player can gain by deviating unilaterally from it
(Nash, J., 1951). The Nash equilibrium can be characterized by being, for each
player, a best answer, given the strategies chosen by the others. More precisely,
let us assume that we have p players and each player ν ∈ {1, 2, . . . , p} has a
strategy xν ∈ Kν ⊂ R

nν . We use the classical notation x = (xν, x−ν) in R
n

(n = n1 + · · · , np) where x−ν denotes the vector of strategies of all the players
but of ν, that is, x−ν := (x1, . . . , xν−1, xν+1, . . . , xp). Given the strategy x−ν , the
player ν chooses a strategy xν such that it solves the following optimization problem

(P (x−ν )) min
xν

θν(xν, x−ν), subject to xν ∈ Kν(x−ν),

where θν : Rn → R is a the ν-player’s objective function and θν(xν, x−ν) denotes
the loss that player ν suffers when the rival players have chosen the strategy x−ν .
A solution x̄ of the (GNEP) is a vector of

∏
ν Kν(x̄−ν) such that, for any ν, x̄ν

solves (P (x̄−ν)). There is a huge literature on (GNEP) and many problems can be
modelled as a Nash equilibrium problem, see e.g. [3] (Fig. 3.1).

Now let us go back to bilevel structures, that is, when hierarchical interrelations
link some of the players. If the game involves more than two players then the bilevel
game has a more complex structure where the set of the players is split into two
subfamilies, one (the followers) interacting between them in a non cooperative
way thus defining a Nash game which is parameterized by the decisions of the

“ min ”
x 1
y 1 , . . , y M

F1(x , y )

s.t. x1 ∈X1(x−1)
y ∈GNEP ({ {x )

. . .

“ min ”
x n
y 1 , . . , y M

FN (x , y )

s.t. xN ∈XN (x−N )
y ∈GNEP (x )

↓↑ ↓↑

miny 1 f1(y1 , x , y−1)

s.t. y1 ∈Y1(x , y−1)
. . .

miny M fM (yM , x , y−M)

s.t. yM ∈YM (x , y−M)

Fig. 3.1 MLMFG
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“ min ”
x , y 1 , . . , y M

F (x , y )

s.t. x ∈ X
y ∈GNEP(x )

miny 1 f1(y1 , x , y−1)

s.t. y1 ∈Y1(x , y−1)
. . .

miny M fM (yM , x , y−M )

s.t. yM ∈YM (x , y−M )

{

↓↑

Fig. 3.2 SLFMG

complementary subset of players (the leaders) who also play a Nash game between
them. Such structure is called a Multi-Leader-Multi-Follower game and is one of the
most complex systems of interdependent optimization problems in the literature. For
a game with N leaders and M followers, with their respective variables x1, . . . xN
and y1, . . . yM , the MLMFG can be expressed as:

But let us first concentrate on the important case where there is only one leader,
that is, Single-Leader-Multi-Follower games SLMFG. This can be represented by
the following diagram (Fig. 3.2):
where for any j = 1, . . . ,M , the set-valued map Yj (x, y−j ) expresses the
constraints, parameterized by x and y−j that the decision variable of player j must
satisfy and where GNEP(x) stands for the set of (generalized) Nash equilibria of
the non cooperative game between the followers. The notation “ min” is used here
to enlighten that this is simply a first rough definition that is not free of ambiguities.
In particular, if the reaction of the followers is not uniquely determined, the leader
cannot anticipate which (GNEP)-reaction will take place and thus the upper level
problem becomes ill-posed/ambiguous. This kind of question will be addressed in
Sect. 3.3.

As observed in [4], if none of the constraint maps Yj nor the objectives φj depend
on the decision variable of the other followers then the SLMFG admits an equivalent
reformulation as a classical bilevel problem with only one follower. This can be
seen by defining a (unique) follower’s variable as y := (y1, . . . , yM), the objective
f (x, y) := ∑M

j=1 fj (yj , x) and the aggregated constraint map Y by Y (x) :=
{y | yj ∈ Yj (x),∀ j }. Thus, under this particular structure, several analyses on the
single-leader-single-follower case can be directly extended to multiple followers,
while in general having multiple followers does bring new difficulties.

One application for which the model SLMFG has proved its efficiency is the
optimal design of industrial eco-parks (IEP). This new way to design industrial
parks is based on the sharing of fluids (water, vapor, . . . ) or of energy between
companies. The aim of such an organization of an industrial park is twofold: first
each participating company want to reduce his own production cost (in this sense
“eco” stands for economy); second, and this is the novel part, the target is to reduce
the ecological impact of the industrial park (and then “eco” stands for ecological).
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Here the ecological impact of the park is measured by the total amount of wastes
and/or of the incoming raw materials. For example and to simplify, let us consider
the case of water sharing. Assume that the companies of the park use fresh water for
some production processes and that the water is not “consumed” by the process but
get out “polluted/contaminated” with a certain contamination rate. Thus in a stand-
alone situation (no water sharing) each company would have to pay, at a quite high
price, both for the fresh water and for the contaminated water disposal. In an IEP
situation, the contaminated water of a company (possibly mixed with fresh water)
is used as incoming water flow by another company. The contamination rate of the
mixed incoming flow being of course compatible with the maximum tolerance of
the industrial process which receives this flow. Note that regeneration units can also
be included. The IEP structure (connection tubes, flows, installation of regeneration
units) is then decided in order to minimize the benefit of each company and, at the
same time the ecological impact.

This problem, already considered in the 60s, has been treated in the literature
using the multi-objective optimization approach. However, this technique has shown
its limits in particular because it requires a selection process among the obtained
Pareto points. This selection is almost always based on a prioritization scheme
between the companies (through weighted sum, goal programming, etc.) which
seriously limits its applicability. Recently in [5], a Multi-Leader-Follower approach
has been proposed with success. In such a model, the followers are the companies,
interacting in a non cooperative way (GNEP), each of them aiming to reduce their
production cost. The unique leader is the designer/manager of the industrial park
whose target is to minimize the ecological impact. The designer will also ensure
the clearance and confidentiality of the decision process. Thus for example in the
case of the design of the water network developed in [5] the variable of the designer
is the vector x of flows of clear water coming to each process of each company
while the variable of each company j is the vector yj of shared flows between the
processes of the company j and the processes of the concurrent companies. The
resulting SLMFG model is as follows

minx,y

∑
i xi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xi ≥ 0, ∀ i
∀ j, yj solution of: minzj costj (zj , x, y−j )

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

water balance equation
contamination bounds
mass balance of contaminants
other technical assumptions

Thanks to the use of this approach, an important reduction of the global water
consumption has been obtained while ensuring the reduction of the production cost
of all of the participating companies. Other recent developments of this approach
can be found in [6–8]. Note that even if historically industrial eco-parks have been
focusing on water exchanges, several other things can also be shared between the
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“ min ”
x 1, y

F1(x , y )

s.t. x1 ∈X1(x−1)
y ∈opt (x )

. . .

“ min ”
x N , y

FN (x , y )

s.t. xN ∈XN (x−N )
y ∈opt (x )

miny f (y , x )
s.t. y ∈Y (x )

↓↑

{ {

Fig. 3.3 MLSFG

companies, see e.g. [9] for an optimal design of the energy and water exchange in
an eco-park.

Symmetrically to the SLMFG, whenever the set of followers is reduced to only
one player, then the “bilevel model” leads to the so-called Multi-Leader-Single-
Follower game (Fig. 3.3):
where opt (x) denotes the set of global optima of the (unique) follower’s problem,
which depends on the decision variable of the leaders.

Those difficult models cover a very large class of applications in different real-
life fields and in particular in the management of energy. For example the MLSFG
provides a perfect model for the description of so-called day-ahead electricity
markets. In such electricity markets, that are implemented in many countries around
the world, 1 day before delivery and in the morning, suppliers and retailers make
respectively some sale offers and purchase offers. Then market bidding is closed
and then the regulator of the market, called the Independent System Operator (ISO),
computes an optimal dispatch by maximizing the total welfare of the market or
equivalently minimizing the total cost of production if the total demand is assumed
to be fixed (assumption of no elasticity on the market). He also ensures the clearance
of the decision process. This computation is usually done in the middle of the day
and then, during the afternoon and based on the acceptance/rejection of their sale
(respectively purchase) offers, the suppliers (respectively retailers) decide about the
production plan that they will use the day latter (day of delivery), this latter work
being called unit commitment.

Of course each of the suppliers/retailers aims to maximize his benefit and they
interact in a non cooperative way. A Nash model is thus well adapted. But all of the
maximization problems of this Nash game are actually depending of the decision
vector of the ISO, itself being determined by the optimization problem of the ISO
which maximizes the total welfare while ensuring the demand/offer balance. This
dependence is thus perfectly handled by a Multi-Leader-Single-Follower structure
in which the leaders are the suppliers and retailers whose decision variables xi
are market offers (usually energy/price blocks or affine bid curves) while the
unique and common follower is the ISO (see [10–18] and references therein). The
regulator/follower variable is the vector y of decisions (acceptances/rejections) of
the bids of the producers. As a by product of the resolution of the follower problem,
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the Lagrange multiplier associated to the balance constraint will be the unit marginal
price of electricity on the market. The corresponding MLSFG, in a simplified form,
is thus as follows:

For any i, minxi ,y prof it(xi, y, x−i )

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi admissible bid
y solution of: minz T otal_welf are(z, x)

s.t.

⎧
⎨

⎩

∀ k, zk decision concerning
bids of producer k

demand/offer balance

It can be clearly noticed here that if the regulator/follower’s problem admits possibly
more than one solution for a given leader strategy x, then the overall MLSFG prob-
lem is ill-posed, carrying some ambiguity; see beginning of Sect. 3.4. In electricity
market modelling, the uniqueness of the solution of the regulator/follower’s problem
is guaranteed by some strict convexity of the “total_welfare” function with regard
to variable z thanks to specific assumptions on the bid structure (strictly convex
quadratic bid curves—see e.g. [10, 13, 17, 18]) or some equity property on the
decision process (see [11, 12]).

3.3 Single-Leader-Multi-Follower Games

In this section we consider the case where there is a single leader and multiple
followers, which we refer to as a SLMFG and we use the notations of the
corresponding diagram of Sect. 3.2.

If, for any decision x of the leader, there exists (implicitly or explicitly) a unique
equilibrium y(x) = (y1(x), . . . , yM(x)) then, the SLMFG can be treated as a
classical mathematical programming problem

min
x

F (x, y(x)), with x ∈ X

where of course some good properties (semi-continuity, differentiability, convex-
ity. . . ) of the response function y(x) must be satisfied for the reformulation to be
useful. But in general case the formulation of SLMFG carries some ambiguities.
This ambiguity coming from the possible non-uniqueness of the lower level
equilibrium problem, which is already present in the case of one leader and one
follower, is in our setting of several followers an even more inevitable situation.
Indeed, since the lower level is an equilibrium problem (GNEP), the uniqueness of
an equilibrium can rarely be ensured, and it cannot be avoided simply by assuming
strict convexity, see for instance the examples in [19]. Despite this argument for
general problems, there are some cases where the lower level problem might have
unique responses as in [20] and others.
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The most common approach to tackle this ambiguity is the optimistic approach,
which consists in considering the best equilibrium reaction of the followers with
regards to the leader’s objective. It can be argued as a kind of cooperation of the
followers with the leader. In fact, it is often the case in applications that the leader
is assumed to take his decision before the followers, and thus he can after having
computed his optimal decision suggest the followers to take certain equilibrium
reaction that is convenient to him. Each of the followers will then have no incentive
to unilateral deviate from the proposed equilibrium strategy, because of the nature
of equilibria.

Definition 3.3.1 We say that (x̄, ȳ) ∈ R
n × R

m is an optimistic equilibrium of the
SLMFG if it is a solution of the following optimization problem

min
x,y

F (x, y)

{
x ∈ X,

y ∈ GNEP(x) �

An opposite approach is the pessimistic one, which consists for the leader
in minimising the worst possible equilibrium reaction with regard to the leader
objective. Thus, it is based on a minimax problem.

Definition 3.3.2 We say that (x̄, ȳ) ∈ R
n×R

m is an pessimistic equilibrium of the
SLMFG if it is a solution of the following minimax problem

min
x

max
y

F (x, y)

{
x ∈ X,

y ∈ GNEP(x) �

Apart from these two approaches, there are other possibilities based on selections
of the lower-level problem (see e.g. [13]) and on set-valued optimisation but we do
not discuss them here. Note also that an alternative approach has been developed in
[21] in a specific context.

3.3.1 Existence of Equilibria in SLMFG

Here we discuss conditions under which a SLMFG admits at least one equilibrium.
We present a positive result for the case of optimistic equilibrium. Nevertheless,
for the pessimistic case it has been shown an example of an apparently very well
behaved problem (linear and compact) which admits no equilibria (see [19, Example
3.2]).
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The mathematical tools that are often used in this analysis when the lower-
level reaction is not unique (which is mostly the case in our setting, see previous
paragraphs) are part the so-called set-valued maps theory. We recall here some basic
definitions and results of this theory concerning semi-continuity properties and refer
the reader to the book [22] for further details.

A set-valued map T : Rp ⇒ R
q is basically a function that associates to each

point x ∈ R
q a subset T (x) of Rq . The graph of the set-valued map T is defined as

gph(T ) := {(x, y) ∈ R
p × R

q : y ∈ T (x)}. Note that gph(T ) is a subset of Rn ×
R

m.The domain of the map T is denoted by domT = {x ∈ R : T (x) �= ∅} and the
map is said to be closed if gph(T ) is a closed set of Rp ×R

q .

Definition 3.3.3 The set-valued map T : Rp ⇒ R
q is said to be Lower Semi-

Continuous (LSC, for short) at x̄ ∈ R
n if for each open set V in R

m satisfying
T (x̄) ∩ V �= ∅, there exists an open neighbourhood U of x̄ such that

T (x) ∩ V �= ∅, ∀x ∈ U.

We say that T is Lower Semi-Continuous, if it is so at every x̄ ∈ X. �
We present now a slight refinement of [19, Theorem 3.1] (see also [23, Corollary

4.4] for analysis in the case of strategy sets that are subsets of reflexive Banach
spaces). It is based on continuity properties of both functions and set-valued maps
defining the SLMFG. In particular, it assumes the lower semi-continuity of the set-
valued maps that defines the feasible set of the followers, that is, for j = 1, . . . ,M
the set-valued map Yj : Rn × R

m−j ⇒ R
mj .

Theorem 3.3.4 Assume for the SLMFG that

(1) F is lower semi-continuous and X is closed,
(2) for each j = 1, . . . ,M , fj is continuous,
(3) for each j = 1, . . . ,M , Yj is lower semi-continuous relative to its non-empty

domain and has closed graph, and
(4) either F is coercive or, X is compact and at least for one j , the images of Yj

are uniformly bounded.

If the graph of the lower level GNEP is non-empty, then the SLMFG admits an
optimistic equilibrium. �
Proof As in the proof of [19, Theorem 3.1], assumptions (2) and (3) ensure the
closedness of the constraints of the leader’s problem in both variables x and y.
Thus, the classical Weierstrass theorem can be applied to prove the existence of
a minimum of the leaders’optimization problem, which constitutes an optimistic
equilibrium of the SLMFG. 	


Usually the constraints of the followers are described as level sets of certain
functions: Yj (x, y−j ) :=

{
yj ∈ R

mj : gj (x, y) ≤ 0
}
, with gj : Rn × R

m → R
pj .

We recall what is the MFCQ for the parametric optimization problems of the
followers (see, e.g. the appendix in [24]).
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Definition 3.3.5 The MFCQ for the followers’ problems is satisfied at (x̄, ȳ) if for
each j the family of gradients there exist aj ∈ R

mj such that

∇yj gjk(x̄, ȳ)aj < 0 ∨ gjk(x̄, ȳ) < 0, ∀k = 1, . . . , pj . �

We provide conditions on these data functions that ensure the existence of
optimistic equilibrium of the SLMFG. As a particular case we recover Theorem
5.2 in [25]. The forthcoming corollary is just a consequence of our previous result,
since the conditions on the data functions imply the continuity properties of the
constraint set-valued maps (see [25, Theorem 4.3]).

Corollary 3.3.6 Let us assume that

(1) F is lower semi-continuous and X is closed,
(2) for each j = 1, . . . ,M , fj is continuous,
(3) for each j = 1, . . . ,M , DomYj is non-empty, gj is continuous on R

n × R
m

and satisfy MFCQ at each feasible point, and
(4) either F is coercive or, X is compact and at least for one j , the images of Yj

are uniformly bounded.

If the graph of the lower level GNEP is nonempty, then the SLMFG admits an
optimistic equilibrium. �
Remark 3.3.7 Condition (4) in Theorem 3.3.4 and Corollary 3.3.6 is assumed to
obtain the compactness of the graph of the set-valued map GNEP which assigns to
a leader strategy x the set of solutions of the lower-level GNEP(x). �

3.3.2 Reformulations

Reformulating a SLMFG is a way of considering it within a framework where a
well-developed theory exists for either finding an equilibrium or better understand-
ing the properties of the problem.

We will restrict our discussion here to reformulations of the optimistic approach
of the SLMFG, though for the pessimistic approach corresponding reformulations
can also be considered.

Two reformulations of the SLMFG are the most classical and can be consid-
ered as particular cases of Mathematical Programs with Equilibrium Constraints
(MPECs) in certain references. In both cases the reformulation is based on the
replacement of the lower-level (generalized) Nash equilibrium problem by a related
problem.

A first possibility is to replace the lower-level problem by the (quasi)Variational
Inequality problem (VI) associated to the gradients of the objectives (assuming
the objective functions are differentiable), or the normal operator (see [26–28] for
quasiconvex objective functions), while keeping the constraints. The resulting prob-
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lem is the so-called Optimization Problem with Variational Inequality Constraints
(OPVIC).

3.3.2.1 OPQVIC Reformulation

An OPQVIC (see for instance [23, 29, 30]) is a problem of the form

min
x,y

F (x, y)

{
x ∈ X,

y ∈ QVI(T (x, ·),K(x, ·))

where QVI(T (x, ·),K(x, ·)) stands for the solutions set of the following parametric
Quasi Variational Inequality problem: find y ∈ K(x, y) such that

〈T (x, y), y − z〉 ≥ 0, ∀z ∈ K(x, y). (3.3.1)

The OPQVIC reformulation of an optimistic SLMFG consists in considering
a parametric QVI defined by T (x, y) := (∇yj fj (x, y))

M
j=1 and K(x, y) :=

∏M
j=1 Yj (x, y−j ).
In the case where the lower-level is a parametric (non-generalized) Nash

equilibrium problem, the resulting reformulation reduces to an OPVIC (Variational
Inequality Constraints). This specific problem has received much more attention
since it is a more tractable case. See for instance [31, 32].

It is easy to see that the OPQVIC reformulation is equivalent to the (optimistic)
SLMFG whenever the problems of the followers satisfy the following parametric
convexity assumption:
for each follower j the objective function fj (x, ·, y−j ) is pseudoconvex with respect
to yj and the constraint sets Yj (x, y−j ) are convex.

Thus, under these convexity assumptions the existence of optimistic equilibria
for the SLMFG could be deduced also from [33]. Note that Theorem 3.3.4 does not
require any such convexity assumption.

In some cases it is possible to write the OPVIC as a nonlinear program (see [34]),
but some usual constraint qualifications like the MFCQ, are in general not satisfied
for that nonlinear program. Therefore, some well adapted constraint qualification
for this class of optimization problems have been developed in the literature [35].

3.3.2.2 MPCC Reformulation

Another classical technique consists in replacing the lower-level GNEP by the
concatenation of the associated parametric KKT conditions of each of the followers
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and obtaining a so-called Mathematical Program with Complementarity Constraints
(MPCC).

In fact, to each follower’s problem we can associate its KKT optimality
conditions, that is (y, μj ) satisfying

{∇yj fj (x, y)+∑pj

k=1 μjk∇yj gjk(x, y) = 0

0 ≤ μj ⊥ −gj (x, y) ≥ 0

We denote by KKT (x) the set of solutions of the concatenation of KKT conditions
of all the followers, that is, (y, μ) such that, for each j = 1, . . . ,M , (yj , μj ) solves
the KKT system given the parameters (x, y−j ).

Thus the MPCC reformulation of the SLMFG consists of the following optimiza-
tion problem

min
x,y,μ

F (x, y)

{
x ∈ X,

(y,μ) ∈ KKT (x)

Numerical methods for such a reformulation can be found for instance in [36].
See also [37, 38].

An important difference between the OPVIC and the MPCC reformulations
is that in the latter a new variable, the Lagrange multipliers μ, appears as part
of the definition of the optimization problem. Moreover, to consider the MPCC
reformulation it is important to analyse constraint qualifications of the lower-level
problem for the existence of Lagrange multipliers and their well-behaviour.

To be more precise, in order to have a notion of equivalence between the global
solutions of the initial SLMFG and those of its MPCC reformulation an (in general)
infinite number of constraint qualifications have to be verified. This fact was first
noticed in [39].

We make the following basic hypotheses:

(H1) (Follower’s differentiability) For any j ∈ J and any (x, y−j ) ∈ X × R
m−j ,

fj (x, ·, y−j ) and gj (x, ·, y−j ) are differentiable;
(H2) (Follower’s player convexity) For any j ∈ J and any (x, y−j ) ∈ X×R

m−j ,
fj (x, ·, y−j ) is convex and the components of gj (x, ·, y−j ) are quasiconvex
functions.

Since the lower-level equilibrium problem is player convex the concatenated
KKT optimality conditions are sufficient. If we somehow knew that the KKT
conditions were also necessary, then it is quite simple to deduce that global solutions
of SLMFG yields solutions of the MPCC reformulation, and vice versa.

Theorem 3.3.8 Assume (H1) and (H2). The relation between solutions of SLMFG
and its MPCC reformulation are as follows.
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1. If (x̄, ȳ) ∈ SLMFG and μ̄ ∈ �(x̄, ȳ), then (x̄, ȳ, μ̄) ∈ (MPCC).
2. Assume that for each leader’s strategy x ∈ X, for each follower j ∈ J , and

for each joint strategy y = (yj , y−j ) which is feasible for all followers the
Guignard’s CQ holds for the constraint “gj (x, ·, y−j ) ≤ 0” at the point yj .
If (x̄, ȳ, μ̄) ∈ (MPCC), then (x̄, ȳ) ∈ SLMFG. �

Remark 3.3.9 Let us observe that the assumptions of Theorem 3.3.8 are not really
tractable i.e. quite hard to verify. Indeed, the Guignard’s constraint qualification
should hold true for each joint strategy being feasible for all follower, that is such
that gl(x, y) ≤ 0, for every follower l ∈ J . On the other hand these assumptions
(of Theorem 3.3.8) are in some sense minimal. Indeed, the weakest condition that
makes SLMFG equivalent to its MPCC reformulation independently of the objective
of the leader is that

GNEP(x) = KKT (x), ∀x ∈ X. (3.3.2)

Moreover, for a given x ∈ X, the weakest condition that makes GNEP(x) =
KKT (x), independently of the objectives of the followers, is in fact the huge set
of Guignard’s CQs described in the assumptions of Theorem 3.3.8. �

However, using the techniques developed in [40], we can reduce significantly the
conditions to be verified in order to have the desired equivalence, as we explain now.

Assume that the followers’ constraint functions gjk are jointly convex with
respect to the vector (x, y).

Definition 3.3.10 Let j ∈ J . An opponent strategy (x̂, ŷ−j ) ∈ R
n ×R

mj is said to
be

– an admissible opponent strategy (for player j ) if (x̂, ŷ−j ) ∈ Aj := domYj , that
is, such that there exists yj ∈ X with gj (x̂, yj , ŷ−j ) ≤ 0;

– an interior opponent strategy if it is in int (Aj );
– a boundary opponent strategy if it is in bd(Aj ). �

Theorem 3.3.11 Assume (H1), (H2) and that for each j ∈ J , the three following
properties hold:

(1) (Joint Convexity) Each gjk is jointly convex with respect to (x, y);
(2) (Joint Slater’s CQ) There exists a joint strategy (x̃(j), ỹ(j)) such that

gj (x̃(j), ỹ(j)) < 0;

(3) (Guignard’s CQs for boundary opponent strategies) For any boundary oppo-
nent strategy (x̂, ŷ−j ) ∈ bd(Aj ) Guignard’s CQ is satisfied at any feasible
point yj ∈ Yj (x̂, ŷ−j ).

If (x̄, ȳ, μ̄) ∈ (MPCC), then (x̄, ȳ) ∈ SLMFG. �
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Proof Let j ∈ J and x ∈ X, and take a y = (yj , y−j ) that is feasible
for all followers, so that (x, y−j ) is an admissible parameter. Let us now verify
that Guignard’s CQ holds for the constraint “gj (x, ·, y−j ) ≤ 0” at the point
yj . If (x, y−j ) is a boundary opponent strategy we know from Assumption (3)
that Guignard’s CQ is satisfied at yj . Otherwise, (x, y−j ) is an interior opponent
strategy. Then by Proposition 2.1 in [40], Slater’s CQ holds for this parameter,
which itself imply Guignard’s CQ at yj . Thus the conclusion follows by applying
Theorem 3.3.8.

Definition 3.3.12 We say that the lower-level of a SLMFG is fully feasible if for
any follower j ∈ J , Aj = R

n×R
m−j , that is, for any opponent strategy (x, y−j ) ∈

R
n ×R

m−j , there exists yj ∈ Yj (x, y−j ). �
The above definition does not allow boundary opponent strategies to exist. Thus,

Assumption (3.3.11) of Theorem 3.3.11 is trivially satisfied, leading to the following
corollary.

Corollary 3.3.13 Assume (H1), (H2) and that the lower level is fully feasible
(in the sense of Definition 3.3.12). For each j ∈ J we make the following
assumptions:

1. (Joint Convexity) Each gj is jointly convex with respect to (x, y);
2. (Joint Slater’s CQ) There exists a joint strategy (x̃(j), ỹ(j)) such that

gj (x̃(j), ỹ(j)) < 0.

If (x̄, ȳ, μ̄) ∈ (MPCC), then (x̄, ȳ) ∈ SLMFG. �

3.3.3 Algorithms

There exist actually very few algorithms tackling directly the SLMFG model. In
the seminal paper [20] where the case of an oligopoly was studied, a first simple
algorithm was proposed. The idea of the algorithm was first to divide the interval of
strategies of the leader into finite subinterval, in each of them a linearisation of the
lower-level reaction function is considered, and to minimize the leader’s objective
composed with the linearisation of the lower level problem in the subinterval. The
new points are added to the grid. When a termination criterion is satisfied, the best
point of the grid is the proposed approximate solution. This idea was then adapted
to the case where there is an uncertainty in the problem of the leader [41].

Apart from this direct algorithm most of the papers first start with a reformulation
and then use algorithms for solving the corresponding reformulation. In [42] an
MPCC reformulation was considered and then the problem was solved using a
smoothing approach of the complementarity constraints.

The MPCC reformulation is commonly preferred (see discussion in [19]) since it
benefits from a more explicit expression. On the other hand, the OPVIC reformula-
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tion, being a more direct one, is preferred whenever the constraint qualifications of
the lower-level problem cannot be established or are too difficult to be proven.

Numerical approaches for the OPQVIC reformulation have been considered in
[29, 30] for the general case, while OPVIC have been considered in [35].

On the other hand algorithms developed for the resolution of the MPCC
reformulation face the difficulty of the treatment of the complementarity constraints
involving the Lagrange multipliers. The main numerical techniques are the smooth-
ing, the decomposition, the penalization, and the relaxation approaches.

Simply to illustrate one of these approaches we give below the main steps of the
application of the relaxation method to SLMFG. In the KKT system, the constraints
of the form 0 ≤ μj ⊥ −gj (x, y) ≥ 0 can be described by the nonlinear system

{−μjgj (x, y) ≤ 0, ∀ j = 1, . . . ,M

μj ≥ 0, −gj (x, y) ≥ 0, ∀ j = 1, . . . ,M.

The source of main difficulties is the product constraint. One approach due to
Scholtes is to enlarge the feasible set by imposing instead −μjgj (x, y) ≤ ε. By
doing this the relaxed problem might now satisfy some CQs and some usual methods
(like interior point method used in [43]) for solving the new nonlinear problem can
be applied.

The new family of problems would be

min
x,y,μ

F (x, y)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ X,

∇yj fj (x, y)+∑pj

k=1 μjk∇yj gjk(x, y) = 0

0 ≤ μj , 0 ≤ −gj (x, y)

−μjgj (x, y) ≤ ε

with ε > 0 tending to 0.
The limit of a solution of such problems as ε tends to 0 is a C-stationary solution

of the usual MPCC, under suitable constraint qualifications, see e.g. [44].

3.4 Multi-Leader-Multi-Follower Games

Let us now focus on Multi-Leader-Follower games in which there are several
leaders. Let us first make some comments on the “a priori” most simple model
of this kind corresponding to Multi-Leader-Single-Follower games, that is the case
where there is only one (common) follower and that the rest of the players play a
GNEP game between them.
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MLMFG models intrinsically carry several ambiguities in their formulation.
First and as for Single-Leader-Multi-Follower games, for any decision vector
x = (x1, . . . , xn) of the leaders, there can exist more than one optimal response
of the follower. And thus any leader can consider either an optimistic point of
view (minxi miny ) or a pessimistic positioning (minxi maxy). Therefore a precise
formulation of MLMFG could generate either a “multi-optimistic version” or a
“multi-pessimistic” one or even any other combination of optimistic and pessimistic
positioning.

Moreover, and even if we fix a “multi-optimistic version” of MLMFG, we still
have some ambiguities in order to define precisely what should be a solution of the
problem. To see this, for any leader i = 1, . . . , n, let us denote by Si(xi, x−i ) the
set of solutions of the following problem

miny Fi(xi, x−i , y)
y ∈ opt (x)

Then if we set ϕi(x) being the value function of the above optimization problem
then the MLMFG can be reformulated as a generalized Nash game in which each of
the player’s problem is

minxi ϕi(xi, x−i )
xi ∈ Xi(x−i )

But with a given equilibrium x̄ = (x̄1, . . . , x̄n) of this GNEP, one will usually face
the unexpected situation that for i �= j , Si(x̄i , x̄−i ) and Sj (x̄j , x̄−j ) may differ, thus
making difficult to find a common y ∈ opt (x).

As a simple example one can consider the following MLMFG: let us define a
game with two leaders and a follower for which respective variables and objective
functions are x1, x2, y and F1(x1, x2, y) = (x1 − 2)2 − y, F2(x2, x1, y) =
(x2−2)2+y, f (y, x) = x1x2− (y−1)2+1. Let us assume that the only constraint
on the variables is that the three of them are non negative. Then x̄ = (2, 2) while
S1(2, 2) = {2} and S2(2, 2) = {0}. This difficulty/ambiguity which is fundamental
and intrinsically associated to MLMFG with possibly several optimal responses
for the follower’s problem, is unfortunately often neglected in the literature, in
particular in works dedicated to applications.

The same difficulties/ambiguities occur in the most general case of Multi-
Leader-Multi-Follower games MLMFG. Indeed in this case Si(xi, x−i ) is the set of
generalized Nash Equilibrium of the non cooperative game between the followers.
And it is well known that these equilibria are rarely unique. Recently, Kulkarni-
Shanbhag proposed in [45] some alternative formulations in order to avoid these
difficulties in MLMFG models.

One way to avoid such ambiguities is to satisfy conditions ensuring the unique-
ness of the optimal response (for MLSFG) or equilibrium response (for MLMFG)
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for the follower’s problem for any leaders’ decision x, thus leading to a response
function y : x �→ y(x). This choice has been done for example in [11, 12, 15–17].

3.4.1 Existence

In the literature, existence results for MLMFG games are scarce and most of them
(if not all, see for instance [46, 47]) are based on a technique that we present now.
The technique is basically to reduce the MLMFG to a Nash equilibrium problem
by ‘plugging’ the unique lower-level response into the leaders’ objectives, and then
trying to prove some good properties of the resulting Nash equilibrium problem:

minx1 F1(x, y(x))

s.t. x1 ∈ X1(x−1)
. . .

minxN FN(x, y(x))

s.t. xN ∈ XN(x−N)

The general assumptions for this technique are:

(A1) for each leaders’ profile of strategies x there exists a unique lower level
response y(x),

(A2) for any i, the leaders’ objectives Fi and the best response function y are
continuous,

(A3) for any i, there exist a nonempty, convex and compact set Ki ∈ R
ni such that

the set-valued map Xi : Ki ⇒ K−i is both upper and lower semicontinuous
with nonempty closed and convex values, where K−i :=∏

k �=i Kk ,

(A4) for any i, the composition functions F̃i (x) := Fi(x, y(x)) are quasiconvex
with respect to xi .

Proposition 3.4.1 Assume the above conditions (A1)–(A4). Then the MLMFG
admits a solution. �
Proof According to [48] the Nash equilibrium problem defined by the objectives
F̃i , i = 1, . . . , N admits an equilibrium. Thus, x̄ along with the corresponding
reaction of the followers ȳ := y(x̄) yield an equilibrium (x̄, ȳ) of the MLMFG. 	


The most intricate condition is (A4). In fact, since usually y(x) is only described
implicitly, verifying the quasiconvexity of that composition is very difficult in
general, but in some cases it is though possible as has been shown by some
researchers.

Sherali in [47, Theorem 2] provided, to the best of our knowledge, the first
existence result for a particular class of MLFG, by somehow using this technique.
In the context of an oligopolistic Stackelberg-Nash-Cournot competition, a group
of firms (the leaders) have objectives Fi(x, y) := xip(

∑
k xk +

∑
j yj ) − ci(xi)

while the rest of the firms (the followers) have objectives fj (x, y) := yjp(
∑

i xi +
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∑
l yl) − cj (yj ), where p is the inverse demand function and the ci , cj are cost

functions.
It is proved in [47, Lemma 1, Theorem 3] that under some reasonable assumption

on the inverse demand function p and on the cost functions, the F̃i ’s are convex in
xi . The corresponding existence result [47, Theorem 2] can be then expressed as
follows:

Theorem 3.4.2 Assume that p is strictly decreasing, twice differentiable and
p′(z) + zp′′(z) ≤ 0 for each z ≥ 0, and that ci and cj are non-negative, non-
decreasing, convex and twice differentiable and there exists zu > 0 such that
c′i (z) ≥ p(z) and c′j (z) ≥ p(z) for all z ∈ [0, zu]. If the map x �→ ∑

j yj (x) is
convex (if for instance, p is linear), where y(x) is the unique equilibrium response
of the followers, then the MLMFG has at least one equilibrium. �

Fukushima and Hu’s existence results (Theorems 4.3 and 4.4 in [49]) are also
obtained using the same technique but in a more general setting that considers
uncertainty in both levels and a robust approach.

A different technique has been proposed in [50] which is based on the ideas of
potential game theory, see [51]. A first possibility is again based on the uniqueness
of the lower-level responses, that is, condition (A1). A MLMFG is implicitly
potential if there exists a so-called potential function π for the game defined by
the functions F̃i , that is, for all i and for all x = (xi, x−i ) and x ′i it holds

F̃i (xi, x−i )− F̃i(x
′
i , x−i ) = π(xi, x−i )− π(x ′i , x−i ). (3.4.1)

Let us notice that, as in the previous technique, the existence of the potential for
the implicit description of the functions F̃i is also an intricate condition. A variant of
this approach was proposed also in [50], where it is not assumed that the lower-level
responses are unique. The game is said to be a quasi-potential game if there exist
functions h and π such that the functions Fi have the following structure

Fi(x, y) := φi(x)+ h(x, y) (3.4.2)

and the family of functions φi , i = 1, . . . , N , admit π as a potential function, that
is

φi(xi, x−i )− φi(x
′
i , x−i ) = π(xi, x−i )− π(x ′i, x−i ). (3.4.3)

The existence of equilibria for the MLMFG can be deduced, in the first case
from the existence of a global minimizer of the potential function, as usual in
potential games. In the second case, the existence of equilibria for MLFG can be
deduced from the minimization of π + h, which is not strictly speaking a potential
function for the Fi . In fact, π + h is defined in the space X1 × . . . × XN × Y ,
while a potential function for the quasi-potential game should be defined on the
product of the strategy spaces (X1 × Y ) × . . . × (XN × Y ), for instance as
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ψ(x1, y1, . . . , xN, yN) := π(x)+∑
i h(x, yi). We can thus call the function π + h

a quasi-potential function for the game.
The following theorem [50] shows a way of computing an equilibrium in a

pseudo potential MLMFG.

Theorem 3.4.3 Assume that the MLMFG is a pseudo-potential game, and that the
constraints set of player i is a constant set equal to a nonempty compact and convex
Ki . Then any minimizer of the pseudo potential function π + h corresponds to a
solution of the MLMFG. �

3.4.2 Reformulations

As explained previously in this section, the analysis of MLMFG in the literature is
mostly focused on the case of a unique lower-level response. Under this assumption,
the lower-level response can be plugged into the leaders objectives transforming
the initial MLMFG “simply” into a Nash equilibrium problem, though with quite
complicated objective functions, in general non-smooth and non-convex. Then, the
usual techniques used for solving Nash equilibrium problems can be used for this
formulation.

In particular, in [46, 49] the function of (unique) lower-level responses are linear
with respect to the leaders variables and can be somehow plugged into the leaders
objective because of the specific structure that is considered (there is a term in the
leaders’ objective that is also present in the followers’ objective but with negative
sign). The resulting Nash equilibrium problem is reformulated as a Variational
Inequality and a forward-backward splitting method (see [52]) is applied to solve
the variational inequality.

In the case of non-uniqueness of the lower-level problem, and considering the
(possibly inconsistent) multi-optimistic MLMFG, we can extend the approach of the
SLMFG case by replacing the lower-level equilibrium problem by the concatenation
of KKT conditions of the followers. The resulting reformulation is a so-called
Equilibrium Problem with Equilibrium Constraints (EPEC, for short).

A first question to address concerns the equivalence between the initial MLMFG
and its EPCC1 reformulation, facing similar arguments as for SLMFG, that is
requiring an infinite number of CQs to be verified. The analysis made for the case
of one leader in the previous section can be easily extended to the case of multiple
leaders as done in [19, Theorem 4.9], by considering the joint convexity of the
followers’ constraint functions and the joint Slater’s CQ.

1Equilibrium Problem with Complementarity Constraints



3 A Short State of the Art on Multi-Leader-Follower Games 73

3.4.3 Algorithms

The above mentioned EPEC reformulation of the MLMFG is an equilibrium prob-
lem (among leaders) so that we are tempted to use the machinery for equilibrium
problems to solve the MLFG. Nevertheless, considering that the specific type
of constraints (equilibrium constraints) are very ill-behaved non-convex and non-
smooth, solving the equilibrium problem is in fact extremely challenging.

If we are facing a pseudo-potential game (see previous subsection), then the
problem can be solved by minimizing the pseudo-potential function, constrained by
the equilibrium problem, thus going back to the SLMF case (see Theorem 3.4.3).

3.5 Conclusion and Future Challenges

The aim of the present chapter was to present the recent advances for different kinds
of Multi-Leader-Follower games. The cases of a single leader game SLMFG and
of a single follower MLSFG play a particular roles in applications and it is one of
the reasons why the general case MLMFG has been actually less investigated in the
literature. However we have seen that, for all the models, a special attention must
be addressed to avoid an ill-posed problem and to fix possible ambiguities. Let us
add that, as observed for MLMFG in [16], those ambiguities are even more tricky
when one deals with reformulation involving Lagrange multipliers. Applications of
MLFG are numerous and have been well explored (energy or water management,
economics, pollution control, telecommunications, metro pricing [53], etc.) but from
a theoretical point of view a lot of questions are still open concerning SLMFG,
MLSFG and of course even more for MLMFG. For example, to our knowledge,
very few papers (see e.g. [54]) consider sensitivity/stability analysis for MLFG. In
the same vein, gap functions has not been studied for this class of problems.

We restricted ourself to deterministic versions of MLFG because considering
stochastic models would have been beyond the scope of this chapter. But it is
important to mention that some models and results in settings with uncertainties
or random variables have been recently studied, see e.g. [21, 55].

Models with more than two levels were also not considered here. Some prelimi-
nary studies appeared (see e.g. [56, 57] but applications are calling for more analysis
of such models.

Finally we would like to emphasize that one keystone to push further the
analysis of MLFG could be to consider, at least as a first step, some specific struc-
tures/models like the concept of Multi-Leader-Disjoint-Follower problem presented
in [58]. Indeed in those particular interactions between leaders and followers could
intrinsically carry properties that allow to obtain more powerful results.
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16. D. Aussel, M. Červinka, M. Marechal, Deregulated electricity markets with thermal losses and
production bounds: models and optimality conditions. RAIRO Oper. Res. 50(1), 19–38 (2016)

17. E. Allevi, D. Aussel, R. Riccardi, On an equilibrium problem with complementarity constraints
formulation of pay-as-clear electricity market with demand elasticity. J. Glob. Optim. 70(2),
329–346 (2018)

18. R. Henrion, J. Outrata, T. Surowiec, Analysis of M-stationary points to an EPEC modeling
oligopolistic competition in an electricity spot market. ESAIM Control Optim. Calc. Var. 18(2),
295–317 (2012)

19. D. Aussel, A. Svensson, Some remarks about existence of equilibria, and the validity of the
EPCC reformulation for multi-leader-follower games. J. Nonlinear Convex Anal. 19(7), 1141–
1162 (2018)



3 A Short State of the Art on Multi-Leader-Follower Games 75

20. H.D. Sherali, A.L. Soyster, F.H. Murphy, Stackelberg-Nash-Cournot equilibria: characteriza-
tions and computations. Oper. Res. 31(2), 253–276 (1983)

21. W. van Ackooij, J. De Boeck, B. Detienne, S. Pan, M. Poss, Optimizing power generation in
the presence of micro-grids. Eur. J. Oper. Res. 271(2), 450–461 (2018)

22. J.-P. Aubin, H. Frankowska, Set-valued Analysis (Springer, Berlin, 2009)
23. M.B. Lignola, J. Morgan, Existence of solutions to generalized bilevel programming problem,

in Multilevel Optimization: Algorithms and Applications (Springer, Berlin, 1998), pp. 315–332
24. B. Bank, J. Guddat, D. Klatte, B. Kummer, K. Tammer, Non-linear Parametric Optimization

(Akademie, Berlin, 1982)
25. S. Dempe, Foundations of Bilevel Programming (Springer, New York, 2002)
26. D. Aussel, N. Hadjisavvas, Adjusted sublevel sets, normal operator, and quasi-convex pro-

gramming. SIAM J. Optim. 16(2), 358–367 (2005)
27. D. Aussel, J, Dutta, Generalized Nash equilibrium, variational inequality and quasiconvexity.

Oper. Res. Lett. 36(4), 461–464 (2008). [Addendum in Oper. Res. Lett. 42 (2014)]
28. D. Aussel, New developments in quasiconvex optimization, in Fixed Point Theory, Variational

Analysis, and Optimization (CRC Press, Boca Raton, 2014), pp. 171–205
29. J. Wu, L.W. Zhang, A smoothing Newton method for mathematical programs constrained by

parameterized quasi-variational inequalities. Sci. China Math. 54(6), 1269–1286 (2011)
30. J. Wu, L. Zhang, Y. Zhang, An inexact newton method for stationary points of mathematical

programs constrained by parameterized quasi-variational inequalities. Numer. Algorithm.
69(4), 713–735 (2015)

31. J. Outrata, J. Zowe, A numerical approach to optimization problems with variational inequality
constraints. Math. Prog. 68(1–3), 105–130 (1995)

32. J.J. Ye, X.Y. Ye, Necessary optimality conditions for optimization problems with variational
inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)

33. P.T. Harker, J.-S. Pang, Existence of optimal solutions to mathematical programs with
equilibrium constraints. Oper. Res. Lett. 7(2), 61–64 (1988)

34. J.J. Ye, D.L. Zhu, Q.J. Zhu, Exact penalization and necessary optimality conditions for
generalized bilevel programming problems. SIAM J. Optim. 7(2), 481–507 (1997)

35. J.J. Ye, Constraint qualifications and necessary optimality conditions for optimization problems
with variational inequality constraints. SIAM J. Optim. 10(4), 943–962 (2000)

36. L. Guo, G.-H. Lin, J. Ye Jane, Solving mathematical programs with equilibrium constraints. J.
Optim. Theory Appl. 166(1), 234–256 (2015)

37. Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints
(Cambridge University, Cambridge, 1996)

38. M. Fukushima, G.-H. Lin, Smoothing methods for mathematical programs with equilibrium
constraints, in International Conference on Informatics Research for Development of Knowl-
edge Society Infrastructure, 2004 (ICKS 2004) (IEEE, Silver Spring, 2004), pp. 206–213

39. A. Ehrenmann, Equilibrium Problems with Equilibrium Constraints and their Application to
Electricity Markets. PhD thesis (Citeseer, Princeton, 2004)

40. D. Aussel, A. Svensson, Towards tractable constraint qualifications for parametric optimisation
problems and applications to generalised Nash games. J. Optim. Theory Appl. 182(1), 404–416
(2019)

41. D. De Wolf, Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium
model. Manag. Sci. 43(2), 190–197 (1997)

42. H. Xu, An MPCC approach for stochastic Stackelberg–Nash–Cournot equilibrium. Optimiza-
tion 54(1), 27–57 (2005)

43. V. DeMiguel, M.P. Friedlander, F.J. Nogales, S. Scholtes, A two-sided relaxation scheme for
mathematical programs with equilibrium constraints. SIAM J. Optim. 16(2), 587–609 (2005)

44. S. Scholtes, Convergence properties of a regularization scheme for mathematical programs
with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

45. A.A. Kulkarni, U.V. Shanbhag, A shared-constraint approach to multi-leader multi-follower
games. Set-Valued Var. Anal. 22(4), 691–720 (2014)



76 D. Aussel and A. Svensson

46. M. Hu, M. Fukushima, Existence, uniqueness, and computation of robust Nash equilibria in a
class of multi-leader-follower games. SIAM J. Optim. 23(2), 894–916 (2013)

47. H.D. Sherali, A multiple leader Stackelberg model and analysis. Oper. Res. 32(2), 390–404
(1984)

48. T. Ichiishi, M. Quinzii, Decentralization for the core of a production economy with increasing
return. Int. Econ. Rev., 397–412 (1983)

49. M. Hu, M. Fukushima, Multi-leader-follower games: models, methods and applications. J.
Oper. Res. Soc. Japan 58(1), 1–23 (2015)

50. A.A. Kulkarni, U.V. Shanbhag, An existence result for hierarchical Stackelberg v/s Stackelberg
games. IEEE Trans. Autom. Control 60(12), 3379–3384 (2015)

51. D. Monderer, L.S. Shapley, Potential games. Games Econom. Behav. 14(1), 124–143 (1996)
52. F. Facchinei, J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity

Problems (Springer, New York, 2007)
53. A. Printezis, A. Burnetas, G. Mohan, Pricing and capacity allocation under asymmetric

information using Paris metro pricing. Int. J. Oper. Res. 5(3), 265–279 (2009)
54. W. Jia, S. Xiang, J. He, Y. Yang, Existence and stability of weakly Pareto-Nash equilibrium

for generalized multiobjective multi-leader–follower games. J. Global Optim. 61(2), 397–405
(2015)

55. L. Mallozzi, R. Messalli, Multi-leader multi-follower model with aggregative uncertainty.
Games 8(3), Paper No. 25, 14 (2017)

56. D. Aussel, L. Brotcorne, S. Lepaul, L. von Niederhäusern, A trilevel model for best response
in energy demand-side management. Eur. J. Oper. Res. 281(2), 299–315 (2020)

57. D. Aussel, S. Lepaul, L. von Niederhäusern, A multi-leader-follower game for energy demand-
side management (2019). Preprint

58. D. Aussel, G. Bouza, S. Dempe, S. Lepaul, Genericity analysis of multi-leader-follower games
(2019). Preprint



Chapter 4
Regularization and Approximation
Methods in Stackelberg Games
and Bilevel Optimization
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Abstract In a two-stage Stackelberg game, depending on the leader’s information
about the choice of the follower among his optimal responses, one can associate
different types of mathematical problems. We present formulations and solution
concepts for such problems, together with their possible roles in bilevel optimiza-
tion, and we illustrate the crucial issues concerning these solution concepts. Then,
we discuss which of these issues can be positively or negatively answered and how
managing the latter ones by means of two widely used approaches: regularizing the
set of optimal responses of the follower, via different types of approximate solutions,
or regularizing the follower’s payoff function, via the Tikhonov or the proximal
regularizations. The first approach allows to define different kinds of regularized
problems whose solutions exist and are stable under perturbations assuming suffi-
ciently general conditions. Moreover, when the original problem has no solutions,
we consider suitable regularizations of the second-stage problem, called inner
regularizations, which enable to construct a surrogate solution, called viscosity
solution, to the original problem. The second approach permits to overcome the
non-uniqueness of the follower’s optimal response, by constructing sequences of
Stackelberg games with a unique second-stage solution which approximate in some
sense the original game, and to select among the solutions by using appropriate
constructive methods.
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4.1 Introduction

In this chapter we are interested in describing interactions that could occur between
two agents (or players) which act sequentially in two stages. More precisely, we
consider that

1. in the first stage: one player, henceforth called the leader, chooses an action x

in his action set X;
2. in the second stage: one player, henceforth called the follower, observes the

action x chosen by the leader in the first stage and then chooses an action y in
his action set Y ;

3. after the two-stage interaction: the leader receives L(x, y) where L : X×Y →
R is the leader’s payoff function, and the follower receivesF(x, y) where F : X×
Y → R is the follower’s payoff function.

Such a situation defines a Stackelberg game, denoted by � = (X, Y,L, F ), which
has been modelled for the first time by von Stackelberg in [109] in an economic
framework.

Assume that players aim to minimize their payoff functions, as traditionally
used in optimization literature where the payoff functions embed players’ costs.
However, since maxf (·) = −min{−f (·)}, we could assume equivalently that
players maximize their payoff functions (which usually appears in economics
contexts, where payoff functions represent players’ profits). At the moment, we set
no assumptions on the structure of the actions sets X and Y : they could be of finite
or infinite cardinalities, subsets of finite or infinite dimensional spaces, strict subsets
or whole spaces, etc. Their nature will be specified each time in the sequel of the
chapter.

The follower, once he has seen the action x chosen by the leader, faces the
optimization problem

(Px) : min
y∈Y F (x, y),

i.e. finding y ∈ Y such that F(x, y) = infz∈Y F (x, z). Then, he reacts to the leader’s
choice by picking an optimal response to x, that is an action belonging to the set,
called the follower’s optimal reaction set

M(x) = Arg min
y∈Y

F (x, y) =
{
y ∈ Y such that F(x, y) = inf

z∈Y F (x, z)

}
.
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The set-valued map M : X ⇒ Y that assigns to any action x of the leader the set
M(x) defined above is the follower’s best reply correspondence. For sake of brevity,
it will be also called argmin map.

The leader, if he can foresee the optimal response y(x) ∈ Arg miny∈Y F (x, y)

chosen for any action x by the follower, will pick an action in the set
Arg minx∈X L(x, y(x)) according to such a forecast.

Given the informative structure of the game, predicting the follower’s optimal
responses (or, equivalently, the response function y(·) of the follower) is typically a
hard task for the leader, unless some additional information is available. Therefore,
depending on the additional information of the leader about the single-valuedness
of M or, when M is not single-valued, about how the follower chooses an optimal
response in the set M(x) for any x ∈ X, one can associate to the Stackelberg game
� different kinds of mathematical problems.

In Sect. 4.2 such mathematical problems and the related solution concepts are
presented, together with illustrative examples and their possible roles in bilevel
optimization.

In Sect. 4.3 we describe and discuss the main crucial issues arising in the
just mentioned problems, focusing on the following ones: existence of solutions,
“variational” stability, well-posedness, approximation, numerical approximation
and selection of solutions. The crucial issues negatively answered are illustrated by
counterexamples.

In order to overcome the drawbacks connected to the (negatively answered)
crucial issues, two basic and widely used approaches are identified. They lead to
two classes of regularization methods which allow to obtain key-properties for the
regularized problems which, in general, are not satisfied in the original problem.

• Regularizing the follower’s optimal reaction sets;
• Regularizing the follower’s payoff function.

In Sect. 4.4 the first of the above approaches is presented and investigated for some
of the problems defined in Sect. 4.2, and also for other types of two-stage games
where the second-stage problem to solve is defined by a variational or a quasi-
variational inequality, by a Nash equilibrium problem or by a quasi-equilibrium
problem. Such an approach permits to define different kinds of regularized problems
whose solutions exist and are stable under perturbations assuming sufficiently gen-
eral conditions. Moreover, when the original problem has no solutions, we present
suitable regularizations of the second-stage problem, called inner regularizations,
which allow to construct a surrogate solution, called viscosity solution, to the
original problem.

In Sect. 4.5 we investigate the second approach, that enables both to overcome
the non-uniqueness of the follower’s optimal response and to select among the
solutions. To get these goals, we construct sequences of Stackelberg games with
a unique second-stage solution which approximate in some sense the original game
by exploiting first the Tikhonov regularization and then the proximal regularization,
two well-known regularization techniques in convex optimization.
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A conclusive section concerns various extensions of the Stackelberg game notion
considered in this chapter.

4.2 Models and Solution Concepts

We will illustrate five problems and solution concepts connected to the Stackelberg
game defined in the previous section. The first one appears if the follower’s best
reply correspondence M is assumed to be single-valued (and the leader knows
it), whereas the others concern situations where M is not single-valued. Their
connections will be emphasized and illustrated by examples. In this section, we only
refer to seminal papers and to the first ones on regularization and approximation
methods.

4.2.1 Stackelberg Problems

When the follower’s optimal response to any choice of the leader is unique, the
leader can fully anticipate the reaction of the follower taking this into account before
choosing his action and the follower behaves answering to the leader in the optimal
(expected) way. Therefore, assumed that M is single-valued and M(x) = {m(x)}
for any x ∈ X, the leader faces the so-called Stackelberg problem

(SP )

⎧
⎨

⎩

min
x∈X L(x,m(x))

where m(x) is the solution to (Px).

The players acting in this way are often referred to be engaged in a classical
Stackelberg game, terminology due to von Stackelberg who first investigated such
an interaction in [109] where an economic model involving two firms that compete
sequentially on quantities to produce is presented. Then, properties of Stackelberg
solutions together with extensions of the classical Stackelberg games to a dynamic
framework have been investigated in [24, 105].

Let us recall the solution concepts associated to (SP ).

Definition 4.2.1 a

• The infimum value infx∈X L(x,m(x)) is the Stackelberg value of (SP ).
• A leader’s action x̄ ∈ X is a Stackelberg solution to (SP ) if

x̄ ∈ Arg min
x∈X

L(x,m(x)).
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• An action profile (x̄, ȳ) ∈ X × Y is a Stackelberg equilibrium of (SP ) if x̄ is a
Stackelberg solution and ȳ = m(x̄). �

Stackelberg Leadership Model
The Stackelberg leadership model described in [109] regards two firms in a
market which sell homogeneous products and have to choose the quantities
to produce. Firm 1, acting as the leader, chooses first a quantity q1 ≥ 0; then
firm 2, acting as the follower, observes the quantity q1 and chooses a quantity
q2 ≥ 0. The firms aim to maximize their profit functions defined on [0,+∞[2
by

L(q1, q2) = q1P(Q)− C1(q1) and F(q1, q2) = q2P(Q) − C2(q2),

respectively, where Q = q1 + q2 is the total quantity in the market, P(·) is
the inverse demand function and Ci(·) is the cost function of firm i ∈ {1, 2}.
As often happens in economics contexts, we assume linear inverse demand
function P(Q) = max{0, a − bQ} with a, b ∈]0,+∞[ and linear cost
functions Ci(qi) = cqi for any i ∈ {1, 2} with c ∈]0, a[. Hence, the optimal
response of firm 2 to any quantity chosen by firm 1 is unique and given by

m(q1) = max

{
0,

a − bq1 − c

2b

}
, for any q1 ∈ [0,+∞[

and, since Arg maxq1∈[0,+∞[ L(q1,m(q1)) = {(a − c)/2b}, the quantities
produced at equilibrium are

q̄1 = a − c

2b
and q̄2 = a − c

4b
.

In Stackelberg leadership models the equilibrium quantity of the firm acting
as the leader is always greater than equilibrium quantity of the firm acting as
the follower (analogously for the equilibrium profits).

We point out that in [67, 72, 103] the following more general Stackelberg problem
has been treated:

(GSP)

⎧
⎨

⎩

min
x∈X, g(x,m(x))≤0

L(x,m(x))

where m(x) is the solution to (Px),

where g : X×Y → R. In such a problem the leader’s constraints depend also on the
follower’s best reply function m, which makes it harder to manage than (SP ) from
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the mathematical point of view. In the sequel of the chapter we will consider only
constraints for the leader which do not depend on the actions of the follower.

From now on, in the next subsections of this section we assume that M is not
single-valued.

4.2.2 Pessimistic Leader: Weak Stackelberg Problem

Firstly, we consider an “extreme” situation where the pessimistic leader believes that
the follower could choose the worst action for him in the set of optimal responses.
The leader, who would prevent himself against the worst he can obtain when
the follower plays optimally, will face the weak Stackelberg problem, also called
pessimistic bilevel optimization problem

(PB)

⎧
⎪⎨

⎪⎩

min
x∈X sup

y∈M(x)

L(x, y)

where M(x) = Arg min
y∈Y

F (x, y).

One of the first investigations of such a problem is due to Leitmann in [46], where
it is denoted as generalized Stackelberg problem. The solution concepts associated
to (PB) are reminded below.

Definition 4.2.2 a

• The infimum value w = infx∈X supy∈M(x) L(x, y) is the security (or pessimistic)
value of (PB).

• A leader’s action x̄ ∈ X is a weak Stackelberg (or pessimistic) solution to (PB)
if

x̄ ∈ Arg min
x∈X

sup
y∈M(x)

L(x, y),

that is, supy∈M(x̄) L(x̄, y) = infx∈X supy∈M(x) L(x, y).
• An action profile (x̄, ȳ) ∈ X × Y is a weak Stackelberg (or pessimistic)

equilibrium of (PB) if x̄ is a weak Stackelberg solution and ȳ ∈ M(x̄). �
For first investigations about regularization and approximation of problem (PB) see
[51, 69, 71, 89].

4.2.3 Optimistic Leader: Strong Stackelberg Problem

In a second “extreme” situation, the leader is optimistic and believes that the
follower will choose the best action for the leader in the set of his optimal
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responses (or the leader is able to force the follower to choose, among all the
optimal responses, the best one for the leader). The leader will deal with the strong
Stackelberg problem, also called optimistic bilevel optimization problem

(OB)

⎧
⎪⎨

⎪⎩

min
x∈X inf

y∈M(x)
L(x, y)

where M(x) = Arg min
y∈Y

F (x, y).

The solution concepts associated to (OB) are reminded below.

Definition 4.2.3 a

• The infimum value s = infx∈X infy∈M(x) L(x, y) is the optimistic value of (OB).
• A leader’s action x̄ ∈ X is a strong Stackelberg (or optimistic) solution to (OB)

if

x̄ ∈ Arg min
x∈X

inf
y∈M(x)

L(x, y),

that is, infy∈M(x̄) L(x̄, y) = infx∈X infy∈M(x) L(x, y).
• An action profile (x̄, ȳ) ∈ X × Y is a strong Stackelberg (or optimistic)

equilibrium of (OB) if x̄ is a strong Stackelberg solution and ȳ ∈
Arg miny∈M(x̄) L(x̄, y). �

The use of terms “weak Stackelberg” and “strong Stackelberg” goes back to
[20] where a concept of sequential Stackelberg equilibrium in a general dynamic
games framework is introduced. For a first investigation on regularization and
approximation of problem (OB) see [52].

We point out that (x̄, ȳ) is a strong Stackelberg equilibrium of (OB) if and only
if it is a (global) solution of the following problem:

min
x∈X, y∈M(x)

L(x, y)

that is, x̄ ∈ X, ȳ ∈ M(x̄) and L(x̄, ȳ) = infx∈X, y∈M(x) L(x, y). Moreover, the value
s′ = infx∈X, y∈M(x) L(x, y) coincides with s, the optimistic value of (OB), and the
problem is frequently called “bilevel optimization problem” (for first results, see for
example [14, 26, 85, 96, 108, 111]).

The following examples show that the pessimistic and the optimistic behaviours
of the leader can design different solutions, values and equilibria.
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A Stackelberg Game with Finite Action Sets
Consider the Stackelberg game in [93, Example 2.1] where the leader has two
available actions T and B, that is X = {T ,B}, the follower has two available
actions Q and R, that is Y = {Q,R}, and the payoff functions are defined by

L(T ,Q) = 2, L(T ,R) = 3, L(B,Q) = 1, L(B,R) = 4,

F (T ,Q) = 0, F (T ,R) = 0, F (B,Q) = 0, F (B,R) = 0.

Such a game can be also described by using the following “extensive form
representation”:

leader

follower

(2, 0)

Q

(3, 0)

R

T
follower

(1, 0)

Q

(4, 0)

R

B

The follower’s best reply correspondence is defined by M(T ) = {Q,R}
and M(B) = {Q,R}. Since

x = T �⇒ sup
y∈M(x)

L(x, y) = 3 and inf
y∈M(x)

L(x, y) = 2,

x = B �⇒ sup
y∈M(x)

L(x, y) = 4 and inf
y∈M(x)

L(x, y) = 1,

then infx∈{T ,B} supy∈M(x) L(x, y) = 3 and infx∈{T ,B} infy∈M(x) L(x, y) = 1.
Therefore, the weak Stackelberg solution is T , the pessimistic value is 3 and
the weak Stackelberg equilibria are (T ,Q) and (T ,R). Whereas, the strong
Stackelberg solution is B, the optimistic value is 1 and the strong Stackelberg
equilibrium is (B,Q).
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A Stackelberg Game with Infinite Action Sets
Consider the Stackelberg game in [93, Example 3.4] where X = [−2, 2],
Y = [−1, 1],

L(x, y) = −x − y and F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(x + 7/4)y, if x ∈ [−2,−7/4[
0, if x ∈ [−7/4, 7/4[
(x − 7/4)y, if x ∈ [7/4, 2].

The follower’s best reply correspondence M is defined on [−2, 2] by

M(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{1}, if x ∈ [−2,−7/4[
[−1, 1], if x ∈ [−7/4, 7/4]
{−1}, if x ∈]7/4, 2].

On the one hand, since

sup
y∈M(x)

L(x, y) =
{
−x − 1, if x ∈ [−2,−7/4[
−x + 1, if x ∈ [−7/4, 2],

then infx∈X supy∈M(x) L(x, y) = −1. Hence, the weak Stackelberg solution
is 2, the pessimistic value is −1 and the weak Stackelberg equilibrium is
(2,−1).

On the other hand, as

inf
y∈M(x)

L(x, y) =
{
−x − 1, if x ∈ [−2, 7/4]
−x + 1, if x ∈]7/4, 2],

then infx∈X infy∈M(x) L(x, y) = −11/4. Therefore, the strong Stackelberg
solution is 7/4, the optimistic value is −11/4 and the strong Stackelberg
equilibrium is (7/4, 1).

4.2.4 Intermediate Stackelberg Problem

The problems (PB) and (OB) reflect the two possible extreme behaviours of
the leader regarding how the follower chooses his action in the second stage.
However, an intermediate situation could occur: the leader has some information
on the follower’s choice in his set of optimal responses which allows to attribute
a probability distribution reflecting his beliefs on M(x) for any x ∈ X. Assume
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here, in order to simplify, that M(x) has a finite number of elements for any x ∈ X,
namely

M(x) = {y1(x), . . . , yk(x)(x)}.

Therefore, denoted with pi(x) the probability (enforced by the leader) that the
follower chooses yi(x) in M(x) for any x ∈ X and defined D = {D(x) | x ∈ X}
where D(x) = {p1(x), . . . , pk(x)(x)}, the leader will face the so-called intermediate
Stackelberg problem with respect to D

(ISD) min
x∈X

k(x)∑

i=1

pi(x)L(x, yi(x)).

Problem (ISD) and the related solution concepts were introduced by Mallozzi and
Morgan in [82, 83] also in the general case where M(x) is not a discrete set for
any x ∈ X (see also [84] for an application to oligopolistic markets). Note that the
strong-weak Stackelberg problem proposed in [1] includes particular intermediate
problems where the leader attributes probability 0 to any point in M(x) except for
the best one and the worst one for him. Afterwards, an approach similar to [83]
has been examined in [21] where a “partial cooperative” attitude of the follower is
modelled in Stackelberg games with linear payoff functions.

Let us recall the solution concepts related to (ISD).

Definition 4.2.4 a

• The infimum value vD = infx∈X
∑k(x)

i=1 pi(x)L(x, yi(x)) is the intermediate
value of (ISD).

• A leader’s action x̄ ∈ X is an intermediate Stackelberg solution with respect to
D if

x̄ ∈ Arg min
x∈X

k(x)∑

i=1

pi(x)L(x, yi(x)).

• An action profile (x̄, ȳ) ∈ X×Y is an intermediate Stackelberg equilibrium with
respect to D if x̄ is an intermediate Stackelberg solution with respect to D and
ȳ ∈ M(x̄). �

Depending on the probability distribution D(x) on M(x) for any x ∈ X, problem
(ISD) could become (PB) or (OB). Examples on the connections among weak,
strong and intermediate Stackelberg solutions are illustrated in [83], one of which is
presented below for the sake of completeness.
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About Comparing Weak, Strong and Intermediate Stackelberg Solutions
Consider X = Y = [−1, 1], L(x, y) = x + y and F(x, y) = |y2 − x4|.
The follower’s best reply correspondence M is defined on [-1,1] by M(x) =
{x2,−x2} and let D(x) = {α, 1 − α} with α ∈ [0, 1] be the probability
distribution attributed by the leader on M(x), for any x ∈ X. Hence, the
intermediate Stackelberg solution is

Arg min
x∈X

(
αL(x, x2)+ (1− α)L(x,−x2)

)
=

⎧
⎨

⎩
{−1}, if α ∈ [0, 3/4]
{−1/2(2α − 1)}, if α ∈]3/4, 1].

We point out that the solution to (ISD) coincides with the solution to (PB) if
α = 1 and with the solution to (OB) if α ≤ 3/4. Furthermore, regarding the
values, we have

vD = inf
x∈X

(
αL(x, x2)+ (1− α)L(x,−x2)

)
=

⎧
⎨

⎩
2α − 2, if α ∈ [0, 3/4]
−1/4(2α − 1), if α ∈]3/4, 1],

and, reminded that we denoted with w and s, respectively, the pessimistic
value and the optimistic value, it follows

−2 = s ≤ vD ≤ w = −1/4

for any α ∈ [0, 1]. The inequality above relies on a general property: the
intermediate value is always between the optimistic value and the pessimistic
value (see [83, Remark 2.1]).

4.2.5 Subgame Perfect Nash Equilibrium Problem

The equilibrium concepts presented until now consist of action profiles, that is
pairs composed by one action of the leader and one action of the follower and,
moreover, they are focused primarily on the leader’s perspectives. Such concepts
are broadly used in an engineering setting or by optimization practitioners, see for
example [10, 28, 41, 81]. However, as traditional in a game-theoretical framework,
we are now interested in an equilibrium concept which takes more into account the
strategic aspects of the game. The equilibrium concept naturally fitting such goal
is the subgame perfect Nash equilibrium (henceforth SPNE), which represents the
most widely employed solution concept in an economic setting. The SPNE solution
concept was introduced by the Nobel laureate Selten in [101] who suggested that
players should act according to the so-called principle of sequential rationality:
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“the equilibria to select are those whereby the players behave optimally from any
point of the game onwards”. For the notions of strategy, subgame and SPNE in a
general game-theoretical framework and for further discussion on the behavioural
implications and procedures to find SPNEs see, for example, [39, Chapter 3] and
[87, Chapter 7].

We first recall the notion of player’s strategy only for a two-player Stackelberg
game � = (X, Y,L, F ). In such a game, the set of leader’s strategies coincides with
the set of leader’s actions X, whereas the set of follower’s strategies is the set of all
the functions from X to Y , i.e. YX = {ϕ : X→ Y }.

The set of strategy profiles is X×YX and the definition of subgame perfect Nash
equilibrium is characterized in the following way.

Definition 4.2.5 A strategy profile (x̄, ϕ̄) ∈ X × YX is an SPNE of � if the
following conditions are satisfied:

(SG1) for each choice x of the leader, the follower minimizes his payoff function,

ϕ̄(x) ∈ M(x) for any x ∈ X;

(SG2) the leader minimizes his payoff function taking into account his hierarchi-
cal advantage, i.e.

x̄ ∈ Arg min
x∈X

L(x, ϕ̄(x)).

�
Note that the denomination “subgame perfect Nash equilibrium” is due to the
following key features: first the SPNE notion is a refinement of the Nash equilibrium
solution concept (introduced by the Nobel laureate Nash in [95]), secondly the
restriction of an SPNE to any subgame constitutes a Nash equilibrium.

We emphasize that an SPNE consists of a strategy profile, that is a pair composed
by one strategy of the leader (or equivalently one action of the leader) and one
strategy of the follower (which is a function from the actions set of the leader to the
actions set of the follower), as illustrated in Definition 4.2.5 and differently from
all the equilibrium concepts defined before where only action profiles are involved.
However, we can connect SPNEs and the equilibrium notions described above in
this section, as pointed out in the following examples.

SPNEs of the Classical Stackelberg Games
The set of SPNEs of a Stackelberg game � = (X, Y,L, F ) where the
follower’s optimal response to any choice of the leader is unique can be fully
characterized in terms of the solutions to the associate problem (SP ) defined
in Sect. 4.2.1.

(continued)
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In fact, assumed that M is single-valued and set M(x) = {m(x)} for
any x ∈ X, by exploiting the Definitions 4.2.1 and 4.2.5, the following
equivalence holds:

(x̄, ϕ̄) ∈ X × YX is an SPNE of � ⇐⇒ x̄ is a solution to (SP ) and
ϕ̄(x) = m(x) for any x ∈ X

(in such a framework m is the unique function that can be chosen as follower’s
strategy in an SPNE).

Moreover

(x̄, ϕ̄) ∈ X×YX is an SPNE of � �⇒ (x̄, ϕ̄(x̄)) ∈ X×Y is a Stackelberg equilibrium.

For instance, in the Stackelberg leadership model presented in the example on
page 81, the unique SPNE is the strategy profile (q̄1, m̄) where q̄1 ∈ [0,+∞[
and m̄ : [0,+∞[→ [0,+∞[ are given by

q̄1 = a − c

2b
and m̄(q1) = max

{
0,

a − bq1 − c

2b

}
.

We remind that q̄1 is the unique Stackelberg solution and, moreover,
(q̄1, m̄(q̄1)) is the unique Stackelberg equilibrium.

Non Single-Valued Follower Best Reply: SPNEs of a Game with Finite
Action Sets
In the case where the follower’s best reply correspondence is not single-
valued, the solutions to the associate problem (PB) as well as to the associate
problem (OB) defined in Sects. 4.2.2 and 4.2.3, respectively, can be part of an
SPNE.

For instance, in the game of the example on page 84 (similarly to what is
pointed out in [93, Example 2.1]) there are two SPNEs whose first component
is a weak Stackelberg solution, namely (T , ϕ̄1) and (T , ϕ̄2) where ϕ̄1 and ϕ̄2
are the functions defined by

ϕ̄1(x) =
{
R, if x = T

R, if x = B
and ϕ̄2(x) =

{
Q, if x = T

R, if x = B,

respectively; there are two SPNEs whose first component is a strong Stackel-
berg solution, namely (B, ϕ̄3) and (B, ϕ̄4) where ϕ̄3 and ϕ̄4 are the functions

(continued)
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defined by

ϕ̄3(x) =
{
Q, if x = T

Q, if x = B
and ϕ̄4(x) =

{
R, if x = T

Q, if x = B,

respectively. Focusing on the SPNEs (T , ϕ̄1) and (B, ϕ̄3), since

{ϕ̄1(T )} = Arg max
y∈{Q,R}

L(T , y) and {ϕ̄1(B)} = Arg max
y∈{Q,R}

L(B, y),

{ϕ̄3(T )} = Arg min
y∈{Q,R}

L(T , y) and {ϕ̄3(B)} = Arg min
y∈{Q,R}

L(B, y),

such SPNEs naturally reflect the pessimistic and the optimistic behaviours of
the leader.

Therefore, having also in mind to deal with the issue of how reducing the number
of SPNEs, we will take into account these latter types of SPNEs “induced” by weak
or strong Stackelberg solutions.

Definition 4.2.6 a

• A strategy profile (x̄, ϕ̄) ∈ X × YX is an SPNE of � induced by a weak
Stackelberg solution if (x̄, ϕ̄) is an SPNE of � which satisfies

x̄ is a solution to problem (PB) and ϕ̄(x) ∈ Arg max
y∈M(x)

L(x, y) for any x ∈ X.

• A strategy profile (x̄, ϕ̄) ∈ X × YX is an SPNE of � induced by a strong
Stackelberg solution if (x̄, ϕ̄) is an SPNE of � which satisfies

x̄ is a solution to problem (OB) and ϕ̄(x) ∈ Arg min
y∈M(x)

L(x, y) for any x ∈ X.

�
Coming back to the second example on page 89, (T , ϕ̄1) is an SPNE induced by
a weak Stackelberg solution, (B, ϕ̄3) is an SPNE induced by a strong Stackelberg
solution, (T , ϕ̄2) and (B, ϕ̄4) are SPNEs that are not induced either by a weak or by
a strong Stackelberg solution and the game has no further SPNEs.

Let us provide below an example where the SPNEs induced by weak or strong
Stackelberg solutions are derived in a continuous setting, differently from the above
example.
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SPNEs Induced in a Game with Infinite Action Sets
In the game of the example on page 85, there is one weak Stackelberg solution
to (PB) and one strong Stackelberg solution to (OB) and each one induces
one SPNE: the strategy profiles (2, ϕ̄) and (7/4, ψ̄) where ϕ̄ : [−2, 2] →
[−1, 1] and ψ̄ : [−2, 2] → [−1, 1] are defined respectively by

ϕ̄(x) =
{

1, if x ∈ [−2,−7/4[
−1, if x ∈ [−7/4, 2]

and ψ̄(x) =
{

1, if x ∈ [−2, 7/4]
−1, if x ∈]7/4, 2],

are the SPNEs induced by the weak Stackelberg solution and the strong
Stackelberg solution, respectively. As in the previous example, also in this
case there are SPNEs not induced either by weak or by strong Stackelberg
solutions, like the strategy profile (2, ϑ̄) where ϑ̄ : [−2, 2] → [−1, 1] is
defined by

ϑ̄(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ [−2,−7/4[
−4x/7, if x ∈ [−7/4, 7/4[
−1, if x ∈ [7/4, 2].

4.3 Crucial Issues in Stackelberg Games

After having presented the mathematical problems associated to a Stackelberg game
interaction, we describe the main issues arising when one deals with the different
kinds of problems illustrated in the previous section. In particular, we will focus on
the following topics:

• Existence: do the solutions of the problem exist under not too restrictive assump-
tions on the actions sets and on the payoff functions (possibly discontinuous, as
not unusual in economic frameworks)?

• “Variational” stability: the data of the problem could be affected by uncertainty,
hence given a perturbation of the original problem acting on the actions sets
and/or on the payoff functions, does a sequence of solutions of the perturbed
problems converge to a solution of the original problem? And what about the
values? Such analysis, which helps to predict the “behaviour” of the game when
one is not able to deal with exact equilibria, and similar analyses that compare
outcomes before and after a change in exogenous parameters are known in
economics as comparative statics.
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• Well-posedness: does the problem have a unique solution? And does any method
which constructs an “approximating sequence” automatically allow to approach
a solution?

• Approximation: how constructing appropriate concepts of approximate solu-
tions in order to both obviate the lack of solutions of a problem and to manage
problems where infinite dimensional spaces are involved?

• Approximation via numerical methods: how transforming the original prob-
lem into a better-behaved equivalent problem? And how overcoming the numer-
ical difficulties which derive from the possible non-single-valuedness of the
follower’s best reply correspondence?

• Selection: if the problem has more than one solution, is it possible to construct a
procedure which allows to reduce the number of solutions or, better yet, to pick
just one solution? Which are the motivations that would induce the players to act
according to such a procedure in order to reach the designed solution?

Obviously the same issues appear also for the equilibria.
Now, we discuss which of the issues displayed above can be positively or

negatively answered.

4.3.1 Stackelberg Problems

Problem (SP ) is well-behaved regarding all the topics just summarized. In partic-
ular, by applying the maximum theorem in [6, 16], the existence of Stackelberg
solutions and Stackelberg equilibria is guaranteed provided that the action sets X

and Y are compact subsets of two Euclidean spaces and that the payoff functions L

and F are continuous over X × Y .

Remark 4.3.1 However, we point out that the functions involved in many real
world situations are not always continuous and in infinite dimensional frameworks
requiring the continuity is very restrictive. So, as proved in propositions 4.1 and 5.1
in [91], one can only assume that

• L is lower semicontinuous over X × Y ,
• F is lower semicontinuous over X × Y ,
• for any (x, y) ∈ X×Y and any sequence (xn)n converging to x in X, there exists

a sequence (ỹn)n in Y such that

lim sup
n→+∞

F(xn, ỹn) ≤ F(x, y).

Furthermore, it is worth to highlight that the second and the third condition stated
above do not imply the continuity of F (see, for example, [49, Example 3.1.1]). �
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As regards variational stability of the Stackelberg solution, equilibrium and value of
(SP ) under perturbations of the payoff functions, consider the perturbed problems

(SP )n

⎧
⎪⎨

⎪⎩

min
x∈X Ln(x,mn(x))

where mn(x) is the solution to min
y∈Y Fn(x, y),

with Ln and Fn real-valued functions defined on X × Y , for any n ∈ N . Then, the
following results hold.

Proposition 4.3.2 ([73, Prop. 3.1, 3.2 and 3.3]) Assume thatX and Y are compact
subsets of two Euclidean spaces and that the sequences (Ln)n and (Fn)n contin-
uously converge to L and F , respectively, i.e. for any (x, y) ∈ X × Y and any
sequence (xn, yn)n converging to (x, y) in X × Y , we have

lim
n→+∞Ln(xn, yn) = L(x, y) and lim

n→+∞Fn(xn, yn) = F(x, y).

Then, about the second-stage problem, for any sequence (xn)n converging to x in
X,

lim
n→+∞mn(xn) = m(x) and lim

n→+∞Fn(xn,mn(xn)) = F(x,m(x)).

Moreover, regarding the first-stage problem,

• for any sequence (x̄n)n such that x̄nk ∈ Arg minx∈X Lnk (x,mnk (x)) and (x̄nk )k
converges to x̄ in X for a selection of integers (nk)k , we have

x̄ ∈ Arg min
x∈X

L(x,m(x)),

• lim sup
n→+∞

(
inf
x∈X Ln(x,mn(x))

)
≤ inf

x∈X L(x,m(x)).

Finally, if (x̄n, ȳn) ∈ X × Y is a Stackelberg equilibrium of (SP )n for any n ∈ N,
then any convergent subsequence of the sequence (x̄n, ȳn)n in X × Y has a limit
(x̄, ȳ) which is a Stackelberg equilibrium of (SP ) and satisfies

lim
n→+∞Ln(x̄n, ȳn) = L(x̄, ȳ) and lim

n→+∞Fn(x̄n, ȳn) = F(x̄, ȳ). �

Remark 4.3.3 Stability results illustrated in Proposition 4.3.2 hold even by replac-
ing the convergence assumptions with weaker convergence requirements, as proved
in [73]. In particular

• the continuous convergence of (Ln)n to L can be substituted by the following
two conditions:
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(a) for any (x, y) ∈ X × Y and any sequence (xn, yn)n converging to (x, y) in
X × Y , we have

lim inf
n→+∞Ln(xn, yn) ≥ L(x, y);

(b) for any x ∈ X there exists a sequence (x̃n)n converging to x in X such that,
for any y ∈ Y and any sequence (yn)n converging to y in Y , we have

lim sup
n→+∞

Ln(x̃n, yn) ≤ L(x, y);

• whereas, the continuous convergence of (Fn)n to F can be substituted by the
following two conditions:

(c) for any (x, y) ∈ X × Y and any sequence (xn, yn)n converging to (x, y) in
X × Y , we have

lim inf
n→+∞Fn(xn, yn) ≥ F(x, y);

(d) for any (x, y) ∈ X × Y and any sequence (xn)n converging to x in X, there
exists a sequence (ỹn)n in Y such that

lim sup
n→+∞

Fn(xn, ỹn) ≤ F(x, y).

Examples and counterexamples on how conditions (a)–(d) are connected with
known convergence notions can be found in remarks 2.2 and 2.3 in [73] where
perturbations on the constraints of the leader and the follower are also considered.

�
Results on well-posedness of (SP ) can be found in [68, 91], whereas in [28,
Chapter 6] numerical approximation and algorithmic issues are widely investigated.

Concerning problem (GSP ) defined in Sect. 4.2.1, we mention that in [103] a
first approximation technique based on a barrier method has been proposed, then in
[67] a general approximation scheme involving conditions of minimal character has
been introduced together with applications to barrier methods, whereas in [72] also
external penalty methods have been considered.

4.3.2 Weak Stackelberg (or Pessimistic Bilevel Optimization)
Problem

Problem (PB) is the worst-behaved among the problems illustrated in Sect. 4.2. In
fact, the compactness of the action sets and the continuity of the payoff functions
do not guarantee, in general, the existence of weak Stackelberg solutions and weak
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Stackelberg equilibria even in a finite dimensional setting, as proved in many folk
examples in literature (see [15, 80] and [10, Remark 4.3]) and in the following one.

Weak Stackelberg Solutions May Not Exist
Consider X = Y = [−1, 1], L(x, y) = −x + y and F(x, y) = −xy. The
follower’s best reply correspondence M is defined on [-1,1] by

M(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{−1}, if x ∈ [−1, 0[
[−1, 1], if x = 0

{1}, if x ∈]0, 1].
(4.3.1)

Since

sup
y∈M(x)

L(x, y) =
{
−x − 1, if x ∈ [−1, 0[
−x + 1, if x ∈ [0, 1],

then Arg minx∈X supy∈M(x) L(x, y) = ∅. Hence such a (PB) has no solution
and no weak Stackelberg equilibrium.

Nevertheless, existence results for very special classes of problem (PB) can be
found in [2, 3, 80].

In a more general framework, to overcome the lack of solutions, for any ε > 0
the concept of ε-approximate solution of (PB) has been investigated in a sequential
setting by Loridan and Morgan in [71], where the existence of such solutions is
analyzed under mild convexity assumptions on the follower’s payoff function, and
in [74] where quasi-convexity assumptions are considered.

Then, in [76] the notion of strict ε-approximate solution has been introduced
and related existence results have been provided without requiring convexity
assumptions. A crucial property of these two concepts is the convergence of the
approximate pessimistic values towards the pessimistic value of (PB) as ε tends
to zero. We point out that all the results in the papers just mentioned have been
obtained in the case of non-parametric constraints.

Afterwards, Lignola and Morgan in [51] extensively investigated all the possible
kinds of constraints (including those defined by parametric inequalities) in a
topological setting. More recently, new notions of approximate solutions have
been introduced in [63, 64] in an easier-to-manage sequential setting which allow
to construct a surrogate for the solution of (PB) called viscosity solution. Such
concepts will be presented in Sect. 4.4 together with their properties.
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Regarding the variational stability issue of (PB), consider the following per-
turbed problems

(PB)n

⎧
⎪⎨

⎪⎩

min
x∈X sup

y∈Mn(x)

Ln(x, y)

where Mn(x) = Arg min
y∈Y

Fn(x, y),

with Ln and Fn real-valued functions defined on X × Y , for any n ∈ N . Even
requiring compactness and heavy convergence assumptions, variational stability of
the weak Stackelberg solutions and the pessimistic values under perturbations of the
payoff functions does not hold in general, as described in the example below.

Pessimistic Values May Not Converge
Consider X = Y = [−1, 1], L(x, y) = x+y, F(x, y) = 0 and let Ln(x, y) =
x + y + 1/n and Fn(x, y) = y/n for any n ∈ N.

Although the sequence of functions (Ln)n continuously converges to L and
the sequence (Fn)n continuously converges to F , the sequence of pessimistic
values of (PB)n does not converge to the pessimistic value of (PB).

In fact, since the follower’s best reply correspondences in (PB)n and in
(PB) are defined respectively by Mn(x) = {−1} and by M(x) = [−1, 1] for
any x ∈ X, then

inf
x∈X sup

y∈Mn(x)

Ln(x, y) = −2+ 1/n and inf
x∈X sup

y∈M(x)

L(x, y) = 0.

Hence

−2 = lim
n→+∞

(
inf
x∈X sup

y∈Mn(x)

Ln(x, y)

)
�= inf

x∈X sup
y∈M(x)

L(x, y) = 0.

However, convergence results of the exact solutions to (PB)n towards a solution
to (PB) have been obtained in [69] for a special class of problems.

In a more general framework, in order to obviate the lack of stability, a first
attempt to manage the stability issue (intended in the Hausdorff’s sense) of (PB)
can be found in [89] by means of approximate solutions. Afterwards, “variational”
stability (in the sense of the above example) for such approximate solutions has been
investigated under conditions of minimal character and assuming non-parametric
constraints in [71] (under mild convexity assumptions on the follower’s payoff
function) and in [74] (under quasi-convexity assumptions). For applications to
interior penalty methods see [70, Section 5] and to exterior penalty methods see
[74, Section 5].
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Then, a comprehensive analysis on all the types of follower’s constraints has been
provided in [51] for a general topological framework. Such results will be presented
in Sect. 4.4.

Furthermore, (PB) is hard to manage even regarding well-posedeness properties,
investigated in [91].

Concerning the numerical approximation issue of (PB), various regularization
methods involving both the follower’s optimal reaction set and the follower’s payoff
function have been proposed in order to approach problem (PB) via a sequence of
Stackelberg problems; for first results, see [29, 75, 77, 78, 88]. These methods, their
properties and the results achieved will be presented in Sect. 4.5.

4.3.3 Strong Stackelberg (or Optimistic Bilevel Optimization)
Problem

Problem (OB) is ensured to have strong Stackelberg solutions under the same
assumptions stated for the existence of solutions of (SP ), i.e. by assuming that the
action sets X and Y are compact subsets of two Euclidean spaces and that the payoff
functions L and F are continuous over X × Y .

Remark 4.3.4 The continuity assumptions can be weakened as in Remark 4.3.1, by
applying Proposition 4.1.1 in [49] about the lower semicontinuity of the marginal
function. �
We remind that results concerning the existence of strong Stackelberg solutions have
been first obtained in [53].

As regards to the variational stability issue of (OB), consider the following
perturbed problems

(OB)n

⎧
⎪⎨

⎪⎩

min
x∈X inf

y∈Mn(x)
Ln(x, y)

where Mn(x) = Arg min
y∈Y

Fn(x, y),

with Ln and Fn real-valued functions defined on X × Y , for any n ∈ N .
We point out that problem (OB), as well as (PB), can exhibit under perturbation

a lack of convergence of the strong Stackelberg solutions and of the optimistic
values, as illustrated in Example 4.1 in [52], rewritten below for the sake of
completeness.
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Optimistic Values May Not Converge
Consider X = Y = [0, 1], L(x, y) = x − y + 1, F(x, y) = x and let
Ln(x, y) = L(x, y) and Fn(x, y) = y/n+ x for any n ∈ N.

Though the sequences of functions (Ln)n and (Fn)n continuously converge
to L and F , respectively, the sequence of optimistic values of (OB)n does not
converge to the optimistic value of (OB).

Indeed, as the follower’s best reply correspondences in (OB)n and in (OB)
are defined respectively by Mn(x) = {0} and by M(x) = [0, 1] for any x ∈ X,
then

inf
x∈X inf

y∈Mn(x)
Ln(x, y) = 1 and inf

x∈X inf
y∈M(x)

L(x, y) = 0.

Therefore,

lim
n→+∞

(
inf
x∈X inf

y∈Mn(x)
Ln(x, y)

)
�= inf

x∈X inf
y∈M(x)

L(x, y).

However, notions of approximate solutions have been introduced and investi-
gated in [52] in order to face the lack of stability in (OB), whereas achievements on
well-posedness can be derived by applying results obtained in [54, 55].

Obviously, as well as in (PB), the non-single-valuedness of the follower’s best
reply correspondence M gives rise to difficulties from the numerical point of view
in (OB).

4.3.4 Intermediate Stackelberg Problem

Sufficient conditions for the existence of intermediate Stackelberg solutions of
(ISD) are investigated in [83, Section 3] in the general case where M(x) is not
a discrete set for at least one x ∈ X. However, we point out that problem (ISD)
inherits all the difficulties illustrated for (PB) about existence, stability, well-
posedness and approximation issues.

4.3.5 Subgame Perfect Nash Equilibrium Problem

When the follower’s best reply correspondence M is not a single-valued map,
infinitely many SPNEs could come up in Stackelberg games, as shown in the
following example.
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SPNEs May Be Infinite
Consider X = Y = [−1, 1], L(x, y) = x + y and F(x, y) = −xy. The
follower’s best reply correspondence M is given in (4.3.1). Denoted with ϕσ

the function defined on [−1, 1] by

ϕσ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if x ∈ [−1, 0[
σ, if x = 0

1, if x ∈]0, 1],

where σ ∈ [−1, 1], it follows that ϕσ (x) ∈ M(x) for any x ∈ [−1, 1] and
Arg minx∈X L(x, ϕσ (x)) = {−1}. Therefore, the strategy profile (−1, ϕσ ) is
an SPNE of � for any σ ∈ [−1, 1], so � has infinitely many SPNEs.

Hence, restricting the number of SPNEs becomes essential and the selection
issue arises. For further discussion on the theory of equilibrium selection in games,
see [40].

Remark 4.3.5 We showed via the second example on page 89 and the example on
page 91 that starting from a solution to the associated (PB) or to the associated
(OB) one can induce an SPNE motivated according to each of the two different
behaviours of the leader. Finding such SPNEs induced by weak or strong Stack-
elberg solutions, as defined in Definition 4.2.6, provides two methods to select an
SPNE in Stackelberg games. Nevertheless such methods can be exploited only in
the two extreme situations illustrated before. Anyway they require to the leader of
knowing the follower’s best reply correspondence and, at the best of our knowledge,
they do not exhibit a manageable constructive approach to achieve an SPNE. �

Furthermore, also the numerical approximation issue matters for the SPNEs
in Stackelberg games since M can be not single-valued. Therefore, it would be
desirable to design constructive methods in order to select an SPNE with the
following features: relieving the leader of knowing M , allowing to overcome
the difficulties deriving from the possible non-single-valuedness of M , providing
some behavioural motivations of the players (different from the extreme situations
described above). Results in this direction have been first obtained in [93], where
an SPNE selection method based on Tikhonov regularization is proposed, and more
recently in [22], where proximal regularization is employed.

In the rest of the chapter we will again present results under easy-to-manage
continuity or convergence assumptions, but we point out that the papers quoted
in the statements involve conditions of minimal character, as in Remarks 4.3.1
and 4.3.3.
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4.4 Regularizing the Follower’s Optimal Reaction Set
in Stackelberg Games

The first attempts for approximating a Stackelberg game � = (X, Y,L, F ) by
a general sequence of perturbed or regularized games have been carried out by
Loridan and Morgan. They started in [67, 68, 73] with the case where the second-
stage problem (Px) has a unique solution for any x and there is no difference
between the optimistic and the pessimistic bilevel optimization problem; then, they
extensively investigated in [69–71, 74–77] pessimistic bilevel problems in which the
follower’s constraints do not depend on the leader’s actions.

In this section, we illustrate regularization methods for the bilevel problems
(PB) and (OB) and also for bilevel problems in which the follower’s problem is
modeled by an equilibrium or a quasi-equilibrium problem. Due to the relevance
of inequality constraints investigation in optimization theory, we assume that the
follower’s constraints are described by a finite number of inequalities whereas, for
the sake of brevity, the leader’s constraints are assumed to be constant. Then, we set

K(x) =
k⋂

i=1

Ki(x) =
k⋂

i=1

{y ∈ Y such that gi(x, y) ≤ 0} , (4.4.1)

where X and Y are nonempty subsets of two Euclidean spaces, gi is a function from
X × Y to R for i = 1, . . . , k, and we denote by:

• S the set of solutions to the optimistic bilevel problem (OB), i.e. the set of strong
Stackelberg solutions of (OB).

• W the set of solutions to the pessimistic bilevel problem (PB), i.e. the set of
weak Stackelberg solutions of (PB).

4.4.1 Regularization of Pessimistic Bilevel Optimization
Problems

First investigations on pessimistic bilevel optimization problems mainly consisted in
trying to obviate the lack of solutions, which may arise, as shown in the example on
page 95, even in very simple models. In fact, in that example the marginal function

e(x) = sup
y∈M(x)

L(x, y)

is not lower semicontinuous and this is a possible consequence of the fact that the
map M does not enjoy an important property, namely lower semicontinuity.

Definition 4.4.1 ([6]) Let X and Y be nonempty subsets of two Euclidean spaces.
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A set-valued map T : x ∈ X ⇒ T (x) ⊆ Y is lower semicontinuous over X if
for any x ∈ X, for any sequence (xn)n converging to x in X and any y ∈ T (x) there
exists a sequence (yn)n converging to y in Y such that yn ∈ T (xn) for n sufficiently
large, that is

T (x) ⊆ Lim inf
n

T (xn).

A set-valued map T from X to Y is closed over X if the graph of T is closed in
X × Y , that is for any sequence (xn, yn)n converging to (x, y) ∈ X × Y , such that
yn ∈ T (xn) for n ∈ N, one has y ∈ T (x), equivalent to

Lim sup
n

T (xn) ⊆ T (x).

Here, Lim inf and Lim sup denote, respectively, the Painlevé-Kuratowski lower and
upper limit of a sequence of sets. �
Then, let us recall the well-known maximum theorem [6, 16].

Lemma 4.4.2 If the following assumptions are satisfied:

• the function L is lower semicontinuous over X × Y ;
• the set-valued map T : X ⇒ Y is lower semicontinuous over X;

then the marginal function defined by

sup
y∈T (x)

L(x, y)

is lower semicontinuous over X. �

4.4.1.1 Approximate and Strict Approximate Solutions

An attempt to present a complete discussion, which aimed to unify all previous
results in a general scheme, was given in [51] in the setting of topological vector
spaces and by analyzing the second-stage problem in the presence and in the absence
of general or inequality constraints. Unfortunately, using �-limits and working in a
topological setting have restricted the readability and the applicability of that paper,
so, here we recall the main idea and the principal results in a simplified form but
under more restrictive assumptions.

Let ε > 0. The ε-argmin map

Mε : x ∈ X ⇒ Mε(x) =
{
y ∈ K(x) such that F(x, y) ≤ inf

z∈K(x)
F (x, z)+ ε

}
,
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can be a potential candidate to substitute the argmin map M but, unfortunately, also
Mε may fail to be lower semicontinuous even when the constraints do not depend
on x. However, employing strict inequalities (and passing to large inequalities when
possible) is the right way to proceed in order to get the lower semicontinuity
property of the ε-minima. Indeed, denoted by M̃ε the map

M̃ε : x ∈ X ⇒ M̃ε(x) =
{
y ∈ K(x) such that F(x, y) < inf

z∈K(x)
F (x, z)+ ε

}
,

in the following example (Example 2.3 in [63]) M̃ε is lower semicontinuous even if
the maps M and Mε are not.

About Lower Semicontinuity of the ε-Minima
Let X = Y = [0, 1], K(x) = [0, 1] for any x ∈ X. Consider F(x, y) =
−y2 + (1 + x)y − x for every (x, y) ∈ [0, 1]2 and any ε ∈ [0, 1/4[. Then,
one gets:

• M(0) = {0, 1} and M(x) = {0} for every x ∈ ]0, 1];
• Mε(x) = [0, αε(x)] ∪ [βε(x), 1] , if x ∈ [0, ε];
• Mε(x) = [0, αε(x)] , if x ∈ ]ε, 1];
where αε(x) = 1

2

(
x + 1−√

(x + 1)2 − 4ε
)

,

βε(x) = 1

2

(
x + 1+

√
(x + 1)2 − 4ε

)
solve the equation

y2 − (x + 1)y + ε = 0.

So, both the maps M and Mε are not lower semicontinuous over X: M lacks
the lower semicontinuity property at the point x = 0 whereas Mε at the point
x = ε. Moreover,

• M̃ε(x) = [0, αε(x)[ ∪ ]βε(x), 1] , if x ∈ [0, ε[
• M̃ε(x) = [0, αε(x)[ , if x ∈ [ε, 1].
Then, it is easy to see that M̃ε is lower semicontinuous on whole X.

In order to prove the lower semicontinuity of M̃ε , a crucial role is played both
by the lower semicontinuity and closedness of the constraints map K and by the
continuity of the follower’s payoff function F , as shown by the next lemmas,
which concern, respectively, the continuity and convexity properties of inequality
constraints maps and the lower semicontinuity of M̃ε and Mε . The first lemma can
be found in [13, theorems 3.1.1 and 3.1.6].
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Lemma 4.4.3 If the set X is closed and the following assumption is satisfied:

(C1) for every i = 1, . . . , k, the function gi is lower semicontinuous over X × Y ;
then, the set-valued map K is closed on X.

If the following assumptions are satisfied:
(C2) for every i = 1, . . . , k and y ∈ Y , the function gi(·, y) is upper semicontinu-

ous over X
(C3) for every i = 1, . . . , k and x ∈ X, the function gi(x, ·) is strictly quasiconvex

(see [13]) and upper semicontinuous on Y , which is assumed to be convex;
(C4) for every x ∈ X there exists y ∈ Y such that max

i=1,...,k
gi(x, y) < 0;

then, the set-valued map K is lower semicontinuous and convex-valued over
X. �

Remark 4.4.4 We emphasize that the strict quasiconvexity of the function gi(x, ·)
guarantees that

Ki(x) ⊆ cl (intKi(x))

where the map Ki is defined in (4.4.1). This condition is crucial in proving the
lower semicontinuity of the map Ki , but Ki can be lower semicontinuous even if the
function gi(x, ·) is not strictly quasiconvex as it occurs, for example, with gi(x, y) =
x2 − y2. �
Lemma 4.4.5 ([51, Th. 4.3]) Under the assumptions (C1) − (C4), if the set X is
closed, the set Y is convex and compact and the functionF is continuous overX×Y ,
then the map M̃ε is lower semicontinuous over X. �
In order to get the lower semicontinuity of Mε , a crucial role is also played by
suitable convexity properties of the data which guarantee that Mε(x) ⊆ cl

(
M̃ε(x)

)

for any x ∈ X.

Lemma 4.4.6 ([51, Th. 5.4]) Under the assumptions of Lemma 4.4.5, if also the
following condition holds:

(H1) the function F(x, ·) is strictly quasiconvex on K(x), for every x ∈ X

then, the map Mε is lower semicontinuous over X. �
The next step consists in achieving the lower semicontinuity of the marginal
functions

eε : x ∈ X→ sup
y∈Mε(x)

L(x, y) ẽε : x ∈ X→ sup
y∈M̃ε(x)

L(x, y),
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using Lemma 4.4.2, and then the existence of two types of approximate solutions
for the problem (PB), Wε and W̃ε, defined by

xε ∈Wε ⇐⇒ eε(xε) = inf
x∈X eε(x)⇐⇒ sup

y∈Mε(xε)

L(xε, y) = inf
x∈X sup

y∈Mε(x)

L(x, y),

x̃ε ∈ W̃ε ⇐⇒ ẽε(̃xε) = inf
x∈X ẽε(x)⇐⇒ sup

y∈M̃ε(̃xε)

L(̃xε, y) = inf
x∈X sup

y∈M̃ε(x)

L(x, y).

Proposition 4.4.7 Assume that the set X is compact and the function L is lower
semicontinuous over X × Y .

If assumptions of Lemma 4.4.5 hold, then the approximate solutions set W̃ε is
nonempty for any ε > 0.

If assumptions of Lemma 4.4.6 hold, then the approximate solutions set Wε is
nonempty for any ε > 0. �
Now, two questions naturally arise:

• do the approximate security values wε and w̃ε , defined respectively by

wε = inf
x∈X sup

y∈Mε(x)

L(x, y) w̃ε = inf
x∈X sup

y∈M̃ε(x)

L(x, y),

converge towards the security value w of the original problem when ε tends to
zero?

• are such approximate solutions stable with respect to perturbations of the data,
for any fixed ε > 0?

The term stable should be intended in the following sense. Assume that the data
of the problem (PB) are asymptotically approached by the data of the perturbed
problems

(PB)n find xn ∈ X such that sup
y∈Mn(xn)

Ln(xn, y) = inf
x∈X sup

y∈Mn(x)

Ln(x, y),

where (Fn)n and (Ln)n are sequences of functions from X × Y to R. Let, for any
n, Mε

n is the ε-argmin map of Fn with constraints Kn. More specifically, given k

sequences of real valued functions (gi,n)n defined on X × Y , we set

Kn(x) =
k⋂

i=1

{
y ∈ Y such that gi,n (x, y) ≤ 0

}
(4.4.2)

and we denote by Mε
n the map

Mε
n : x ∈ X ⇒ Mε

n(x) =
{
y ∈ Kn(x) : Fn(x, y) ≤ inf

z∈Kn(x)
Fn(x, z)+ ε

}
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and by Wε
n the set

Wε
n =

{

x ∈ X : sup
y∈Mε

n(x)

Ln(x, y) = inf
u∈X sup

y∈Mε
n(u)

Ln(u, y) = wε
n

}

.

Then, one asks under which assumptions any convergent sequence (xε
n)n of

approximate solutions for (PB)n converges to xε ∈Wε and one has

Limsup
n

Wε
n ⊆Wε, ∀ ε > 0. (4.4.3)

The following propositions answer to both questions on the previous page.

Proposition 4.4.8 ([63, Cor. 2.2]) Under the assumptions of Lemma 4.4.5, if in
addition the function L is upper semicontinuous over X × Y , then

lim
ε→0

w̃ε = w = lim
ε→0

wε. �

We remark that:

• under the assumptions of Proposition 4.4.8, the map Mε may not be lower
semicontinuous over X, so this property is not necessary for the approximate
security values convergence;

• no convexity assumption is made on gi , F and L.

Proposition 4.4.9 ([51, Th. 7.6]) Assume that X is compact and Y is convex and
compact. If the sequences of functions (Fn)n and (gi,n)n continuously converge over
X×Y to the functions F and gi respectively, L is lower semicontinuous overX×Y ,
assumptions (C1)− (C4) and the following hold for any n ∈ N:

(C3,n) for every i = 1, . . . , k and x ∈ X, the function gi,n(x, ·) is strictly quasi-
convex on Y ;

(C4,n) for every x ∈ X there exists y ∈ Y such that max
i=1,...,k

gi,n(x, y) < 0;

(H2,n) for any (x, y) ∈ X × Y and any sequence (xn, yn)n converging to (x, y)

in X × Y one has

lim sup
n→+∞

Ln(xn, yn) ≤ L(x, y);

then, for any ε > 0, we get:

• the ε-solutions are stable, i.e. inclusion in (4.4.3) holds,
• the ε-values are stable, i.e. lim

n→+∞ wε
n = wε . �

We stress that, in general, one cannot prove a result analogous to (4.4.3) also for the
strict approximate solutions W̃ε, due to the open nature of them. A natural extension
of the previous investigations was the research of possible candidates to substitute
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the lacking weak Stackelberg solutions to (PB), which will be presented in the next
subsection.

We mention that the approximate solutions presented above have been afterwards
employed in [1, 4] (about the strong-weak Stackelberg problem, which generalizes
problems (PB) and (OB)) and in [45].

4.4.1.2 Inner Regularizations and Viscosity Solutions

The following procedure seems to be quite natural to obviate the lack of solutions
for pessimistic bilevel optimization problems:

• defining regularizing problems which have solutions under not too restrictive
conditions;

• utilizing sequences of solutions to the regularizing problems admitting conver-
gent subsequences;

• considering a limit point of one of such subsequences as a surrogate solution to
(PB) provided that the supremum values of the objective functions calculated in
such approximating solutions converge to the security value w.

To accomplish the first step, we identify the set-valued map properties that are
helpful in this regularization process.

Definition 4.4.10 ([63, Def. 2.1]) A family of set-valued maps T = {T ε, ε > 0},
where

T ε : x ∈ X ⇒ T ε(x) ⊆ Y,

is an inner regularization for the family of minimum problems {(Px), x ∈ X} if the
conditions below are satisfied:

(R1) M(x) ⊆ T ε(x) ⊆ T η(x) for every x ∈ X and 0 < ε < η;
(R2) for any x ∈ X, any sequence (xn)n converging to x in X and any sequence

of positive numbers (εn)n decreasing to zero, one has

Lim sup
n

T εn(xn) ⊆ M(x);

(R3) T ε is a lower semicontinuous set-valued map on X, for every ε > 0. �
The above definition is related to the pessimistic nature of the problem (PB) and
we are aware that different problems at the upper level would require different
definitions of inner regularizations for the family {(Px), x ∈ X}.

The strict and large ε-argmin maps, M̃ = {
M̃ε, ε > 0

}
and M = {Mε, ε > 0},

constitute inner regularization classes under appropriate conditions.

Proposition 4.4.11 ([63, Cor. 2.1]) The family M̃ is an inner regularization when-
ever the assumptions of Lemma 4.4.5 are satisfied.
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The family M is an inner regularization whenever the assumptions of
Lemma 4.4.6 are satisfied. �
Other inner regularization classes can be found in [63] and also in [64], where the
constraints of the second-stage problem are allowed to be violated. Here, we only
mention the following ones:

Mε
d : x ∈ X ⇒ Mε

d(x) =
{
y ∈ Y : d(y,K(x)) ≤ ε, F (x, y) ≤ inf

z∈K(x)
F (x, z) + ε

}
,

M̃ε
d : x ∈ X ⇒ M̃ε

d (x) =
{
y ∈ Y : d(y,K(x)) < ε, F (x, y) < inf

z∈K(x)
F (x, z)+ ε

}
.

Proposition 4.4.12 The family M̃d =
{
M̃ε

d , ε > 0
}
is an inner regularization

whenever the assumptions of Lemma 4.4.5 are satisfied.
The family Md = {

Mε
d, ε > 0

}
is an inner regularization whenever the

assumptions of Lemma 4.4.6 are satisfied. �
Proof The result follows by arguing as in [64] and using Lemma 4.4.3.

However, assumption (C4), which is crucial for the lower semicontinuity of the
constraints map K , could be not satisfied, so a good alternative to Mε

d and M̃ε
d could

be the maps:

Gε : x ∈ X ⇒ Gε(x) =
k⋂

i=1

{
y ∈ Y : gi(x, y) ≤ ε, F (x, y) ≤ inf

z∈K(x)
F (x, z)+ ε

}
,

G̃ε : x ∈ X ⇒ G̃ε(x) =
k⋂

i=1

{
y ∈ Y : gi(x, y) < ε, F(x, y) < inf

z∈K(x)
F (x, z)+ ε

}
.

Proposition 4.4.13 Assume that Y is convex and compact and F is continuous over
X × Y . Then:

• the family G̃ = {
G̃ε, ε > 0

}
is an inner regularization whenever assumptions

(C1)–(C3) and the following hold:

(C5) for every ε > 0 and x ∈ X there exists y ∈ Y such that
max

i=1,...,k
gi(x, y) < ε;

• the familyG = {Gε, ε > 0} is an inner regularization whenever the assumptions
(C1)–(C3), (C5) and (H1) are satisfied. �

Proof Assumptions (C1), (C2) and (C5) guarantee that the map

x ∈ X ⇒
k⋂

i=1

{y ∈ Y : gi(x, y) < ε}
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is lower semicontinuous over X × Y , as well assumptions (C1)–(C3) and (C5)

guarantee that the map

x ∈ X ⇒
k⋂

i=1

{y ∈ Y : gi(x, y) ≤ ε}

is lower semicontinuous over X × Y . Then, the result can be proved arguing as in
propositions 2.1, 2.2 and 2.4 in [64]. 	

The next steps consist in introducing the concept of viscosity solution for pessimistic
bilevel optimization problems related to an inner regularization class and in stating
a related existence result.

Definition 4.4.14 ([63, Def. 2.2]) Let T be an inner regularization for the family
{(Px), x ∈ X}. A point x̄ ∈ X is a T-viscosity solution for (PB) if for every
sequence (εn)n decreasing to zero there exists (xεn)n, xεn ∈ X for any n ∈ N,
such that:

(V1) a subsequence of (xεn)n converges to x̄;
(V2) sup

y∈T εn (xεn)

L(xεn, y) = inf
x∈X sup

y∈T εn (x)

L(x, y) ∀ n ∈ N;
(V3) lim

n→+∞ sup
y∈T εn (xεn)

L(xεn, y) = inf
x∈x sup

y∈M(x)

L(x, y) = w. �

Theorem 4.4.15 ([63, Prop. 4.1]) If T = {T ε, ε > 0} is an inner regularization
for the family {(Px), x ∈ X}, the sets X and Y are compact and the function L is
continuous over X × Y , then there exists a T-viscosity solution for the pessimistic
problem (PB). �
Suitable existence results of viscosity solutions with respect to each of
the families considered above can be derived from Theorem 4.4.15 and
Propositions 4.4.11, 4.4.12, and 4.4.13.

The next example illustrates the above procedure in a simple case.

Computing Viscosity Solutions
Let X = [0, 1], Y = [−1, 1], L(x, y) = x + y and F(x, y) = xy for
every (x, y) ∈ X × Y . Consider i = 1 and g1(x, y) = x2 − y2, so that
K(x) = [−1,−x] ∪ [x, 1]. If ε ∈ ]0, 2], it is easy to check that:

• the argmin map M of the minima to (Px) is not lower semicontinuous at
x = 0, since M(0) = Y and M(x) = {−1} for every x ∈ ]0, 1];

• the marginal function e(·) is not lower semicontinuous at x = 0, since
e(0) = 1 and e(x) = x − 1 for every x ∈ ]0, 1];

• the problem (PB) does not have a solution since w =
inf
x∈X sup

y∈M(x)

L(x, y) = −1 but e(x) > −1 for every x ∈ [0, 1];

(continued)
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• the map M̃ε
d is lower semicontinuous over X since M̃ε

d(x) = [−1, 1] if
x ∈ [0, ε/2[ and M̃ε

d(x) = [−1,−1+ ε/x[ if x ∈ [ε/2, 1];
• the minimum point of the marginal function supy∈M̃ε

d(·) L(·, y) is x̃ε
d =
√
ε

and

w̃ε
d = inf

x∈X sup
y∈M̃ε

d(x)

L(x, y) = −1+ 2
√
ε;

• the family M̃d is an inner regularization even if the function g1(x, ·) is not
strictly quasiconvex (see Remark 4.4.4);

• the data satisfy the conditions in Theorem 4.4.15;
• the M̃d -viscosity solution for (PB) is x = 0.

4.4.2 Regularization of Optimistic Bilevel Optimization
Problems

As we observed in Sect. 4.3.3, a strong Stackelberg equilibrium exists under not
too restrictive conditions. However, when such a problem has to be approached by a
sequence of perturbed problems (e.g. in discretization process of (OB) in an infinite
dimensional setting), the perturbed solutions may not converge towards a solution
of the original problem, that is such problems are lacking in stability in the sense
specified in Sect. 4.4.1.1.

More precisely, assume that the data of the problem (OB) are asymptotically
approached by the data of the perturbed problems

(OB)n find xn ∈ X such that inf
y∈Mn(xn)

Ln(xn, y) = inf
x∈X inf

y∈Mn(x)
Ln(x, y),

where (Fn)n and (Ln)n are sequences of functions from X × Y to R and, for any
n, Kn is defined as in (4.4.2) and Mn is the argmin map of Fn with constraints Kn.
Then, denoted by Sn the set of solutions to (OB)n, for any n ∈ N, one asks if one
has

Lim sup
n

Sn ⊆ S

and the answer is negative, in general.
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Strong Stackelberg Solutions May Not Be Stable
Let X = Y = [0, 1], K(x) = Kn(x) = Y , Fn(x, y) = y/n and Ln(x, y) =
−xy + 1/n. It is easy to see that:

• (Fn)n and (Ln)n uniformly converge, and therefore also continuously
converge, to the functions defined by F(x, y) = 0 and L(x, y) = −xy
respectively;

• M(x) = [0, 1] and, for any n ∈ N, Mn(x) = {0} for every x ∈ [0, 1];
• S = {1} and, for any n ∈ N, Sn = [0, 1].
Then, Lim sup

n
Sn �⊆ S.

Nevertheless, also in the optimistic case, regularizing the follower’s reaction set
turns out to be useful to obtain satisfactory approximation results for the strong
Stackelberg values and solutions.

In line with the pessimistic case, we define:

sε = inf
x∈X inf

y∈Mε(x)
L(x, y) and s̃ε = inf

x∈X inf
y∈M̃ε(x)

L(x, y),

Sε =
{
x ∈ X : inf

y∈Mε(x)
L(x, y) = inf

u∈X inf
y∈Mε(u)

L(u, y)

}
,

S̃ε =
{

x ∈ X : inf
y∈M̃ε(x)

L(x, y) = inf
u∈X inf

y∈M̃ε(u)
L(u, y)

}

,

Sε
n =

{
x ∈ X : inf

y∈Mε
n(x)

Ln(x, y) = inf
u∈X inf

y∈Mε
n(u)

Ln(u, y) = sεn

}
.

Proposition 4.4.16 ([52, Th. 3.2]) Under the assumptions of Lemma 4.4.5, if in
addition: the function L is lower semicontinuous over X × Y , then

lim
ε→0

sε = s = lim
ε→0

s̃ε and Lim sup
ε→0

Sε ⊆ S. �

Proposition 4.4.17 ([52, Th. 5.6]) Assume that X is compact and Y is convex and
compact. If the sequences of functions (Fn)n and (gi,n)n continuously converge over
X × Y to the functions F and gi respectively, assumptions (C1) − (C4), (C3,n),
(C4,n), (H1), (H2,n) and the following hold for any n ∈ N:

(H3,n) for any (x, y) ∈ X × Y and any sequence (xn, yn)n converging to (x, y)

in X × Y one has

L(x, y) ≤ lim inf
n→+∞ Ln(xn, yn);
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then, for any ε > 0

Lim sup
n

Sε
n ⊆ Sε and lim

n→+∞ sεn = sε.

Moreover, one has

Lim sup
ε→0

(
Lim sup

n
Sε
n

)
⊆ S. �

However, in this approximation process, the role of ε and n cannot be inverted and,
in general, one cannot get a result of the type

Lim sup
n

Sεn
n ⊆ S, (4.4.4)

with (εn)n decreasing to zero, as shown by the next example.

Caution in Regularizing and Perturbing Simultaneously
Let X = Y = [0, 1], K(x) = Kn(x) = Y , Fn(x, y) = y/n and Ln(x, y) =
x(x − y)+ 1/n. It can be computed that:

• (Fn)n and (Ln)n continuously converge on X× Y to the functions defined
by F(x, y) = 0 and L(x, y) = x(x − y) respectively;

• M(x) = Mε(x) = [0, 1] for every x ∈ X;
• for any n ∈ N, Mε

n(x) = [0, nε] if nε ≤ 1 and Mε
n(x) = [0, 1] if nε > 1;

• S = Sε = {1/2} and, for any n ∈ N, Sε
n = {nε/2} if nε ≤ 1 and

Sε
n = {1/2} if nε > 1.

Therefore,

Lim sup
ε→0

(
Lim sup

n
Sε
n

)
= S and Lim sup

n

(
Lim sup

ε→0
Sε
n

)
= {0} �⊆ S,

and we remark that Lim sup
n

Sεn
n ⊆ S if the sequence (εn)n is infinitesimal of

the first order.

It would be interesting defining suitable viscosity solutions also for optimistic
bilevel optimization problems aimed to reach an inclusion analogous to (4.4.4).

This is a still unexplored topic, but given an optimistic bilevel problem
approached by a sequence of approximating optimistic bilevel problems (OB)n, it
seems to be reasonable investigating the limit points of sequences of solutions to
(OB)n that are not so far from the solution set to (OB).
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We mention that algorithms to approach approximate solutions to (OB) have
been developed in [66], where the reformulation of (OB) via the optimal value
function is exploited, and in [44], where a reformulation of (OB) as a generalized
Nash equilibrium problem is employed.

4.4.3 Regularization of Bilevel Problems with Equilibrium
Constraints

Stackelberg games are models that can be naturally extended to the case where
there are one leader and one, or more than one, follower who solve a second-stage
problem described by a parametric variational inequality, Nash equilibrium, quasi-
variational inequality or more generally quasi-equilibrium. The critical issues of
pessimistic and optimistic approach are still present and regularizing the problem
solved by the follower(s) is useful also in this case. First we present the case where
one solves a variational inequality in the second stage. The set of solutions of such
a parametric variational inequality can be considered as the follower’s constraints in
the first stage, so traditionally the associate bilevel problem is called bilevel problem
with variational inequality constraints, and analogously for the other problems
considered in the second stage.

4.4.3.1 Variational Inequality Constraints

Assume that A is a function from X× Y to Y and consider the family of variational
inequalities {(Vx), x ∈ X}, where any problem (Vx) consists in finding, see [12],

y ∈ K(x) such that 〈A(x, y), y −w〉 ≤ 0 ∀ w ∈ K(x).

Then, the pessimistic and the optimistic bilevel problems with variational inequality
in the second stage are respectively defined by:

(PBV I) find x ∈ X such that sup
y∈V(x)

L(x, y) = inf
u∈X sup

y∈V(u)

L(u, y),

(OBV I) find x ∈ X such that inf
y∈V(x)

L(x, y) = inf
u∈X inf

y∈V(u)
L(u, y),

where, for any x, V(x) is the set of solutions to the variational inequality (Vx).
In this case, given a positive number ε, fruitful regularizations of the follower’s

reaction set consist in finding

y ∈ K(x) such that 〈A(x, y), y −w〉 ≤ ε ∀w ∈ K(x)
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or

y ∈ K(x) such that 〈A(x,w), y − w〉 ≤ ε ∀w ∈ K(x),

together with their strict versions. This double possibility of regularizing the map V
follows from using the Minty type variational inequality, which consists in finding

y ∈ K(x) such that 〈A(x,w), y −w〉 ≤ 0 ∀w ∈ K(x),

use which is essential in infinite dimensional spaces, as displayed in [12].
The above regularizations have been employed for investigating, in a theoretical

setting, well-posedness in [54] and stability properties in [50] of (OBV I) in Banach
spaces; moreover, we mention that an exact penalization scheme has been proposed
in [112] for deriving necessary optimality conditions of (OBV I). Convergence
properties of the approximate weak Stackelberg values of (PBV I) can be found
in [57] in finite dimensional spaces. They have been also considered, in applied
framework as truss topology optimization in [36] or climate regulation policy in
[34].

4.4.3.2 Nash Equilibrium Constraints

Consider Y =
l∏

j=1
Yj and l real-valued functions F1, . . . , Fl defined on X × Y .

Then, for any x ∈ X, the Nash equilibrium problem (NEx) consists in finding

y ∈ Y such that Fj (x, y) ≤ inf
uj∈Yj

Fj (x, uj , y−j ) ∀ j = 1, .., l,

where y−j = (y1, . . . , yj−1, yj+1, . . . , yl), and the pessimistic and the optimistic
bilevel problems with Nash equilibrium problem in the second stage are respectively
defined by:

(PBNE) find x ∈ X such that sup
y∈N (x)

L(x, y) = inf
u∈X sup

y∈N (u)

L(u, y),

(OBNE) find x ∈ X such that inf
y∈N (x)

L(x, y) = inf
u∈X inf

y∈N (u)
L(u, y),

where, for any x, N (x) is the set of solutions to the Nash equilibrium problem
(NEx).

Regularizing the follower’s reaction set consists, in this case, in considering:

N ε(x) =
{
y ∈ Y : Fj (x, y) ≤ inf

uj∈Yj

Fj (x, uj , y−j )+ ε ∀ j = 1, .., l

}
,
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that is the classical set of approximate Nash equilibria (see, for example, [10]), or

N̂ ε(x) =
⎧
⎨

⎩
y ∈ Y :

l∑

j=1

Fj (x, y) ≤ inf
uj∈Yj

l∑

j=1

Fj (x, uj , y−j )+ ε

⎫
⎬

⎭
,

introduced and investigated in [94]. These sets do not coincide in general, as shown
in [94, Ex. 3.6], but both can be used to study parametric well-posedness properties
of Nash equilibrium problems since, as proven in [55],

lim
ε→0

diamN ε(x) = 0 ⇐⇒ lim
ε→0

diam N̂ ε(x) = 0.

Well-posedness of optimistic bilevel problems with Nash equilibrium problem in
the second stage has been investigated in that paper, whereas viscosity solutions for
pessimistic ones have been introduced in [60] as a prototype for the concepts of
viscosity solutions for (PB) later developed.

4.4.3.3 Quasi-Variational Inequality Constraints

Assume that T is a set-valued map from X × Y to Y , A is a function from X × Y

to Y , and consider the family of quasi-variational inequalities {(Qx), x ∈ X}, where
any (Qx) consists in finding, see [12],

y ∈ Y such that y ∈ T (x, y) and 〈A(x, y), y −w〉 ≤ 0 ∀w ∈ T (x, y).

Then, the pessimistic and the optimistic bilevel problems with quasi-variational
inequality in the second stage are defined respectively by:

(PBQI) find x ∈ X such that sup
y∈Q(x)

L(x, y) = inf
u∈X sup

y∈Q(u)

L(u, y),

(OBQI) find x ∈ X such that inf
y∈Q(x)

L(x, y) = inf
u∈X inf

y∈Q(u)
L(u, y),

where, for any x, Q(x) is the set of solutions to the quasi-variational inequality
(Qx).

In this case, given a positive number ε, fruitful regularizations of the follower’s
reaction set consist in finding

y ∈ Y such that d (y, T (x, y)) ≤ ε and 〈A(x, y), y −w〉 ≤ ε ∀w ∈ T (x, y)

or

y ∈ Y such that d(y, T (x, y)) ≤ ε and 〈A(x,w), y −w〉 ≤ ε ∀w ∈ T (x, y)

together with their strict versions.
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Requiring that an approximate solution to (Qx) may violate the constraints,
provided that it remains in a neighborhood of them, is quite necessary in quasi-
variational inequality setting where a fixed-point problem is involved, as shown in
[48, Ex. 2.1]. The above regularizations have been used in [59] for establishing
convergence results of the weak Stackelberg values of (PBQI) in finite dimensional
spaces, and in [61] for a complete investigation in infinite dimensional spaces of
convergence properties of approximate solutions and values of (OBQI) problems,
there called semi-quasivariational optimistic bilevel problems.

4.4.3.4 Quasi-Equilibrium Constraints

Let h be a real-valued function defined in X × Y × Y and let T be a set-valued
map from X × Y to Y with nonempty values. For any x ∈ X, the quasi-equilibrium
problem (QEx) (also called quasi-variational problem in [58]) consists in finding
y ∈ Y such that

y ∈ T (x, y) and h(x, y,w) ≤ 0 ∀ w ∈ T (x, y).

The class of such problems encompasses several problems arising in optimization,
in game theory and in variational analysis, as illustrated in [58].

In [62], the concept of viscosity solutions relative to an inner regularization class
for the family {(QEx), x ∈ X} was introduced and it was proved that the map Q̃ε

defined by

Q̃ε(x) = { y ∈ Y : d(y, T (x, y)) < ε and h(x, y,w) < ε ∀ w ∈ T (x, y)}

generates an inner regularization class under suitable assumptions and that the large
version of Q̃ε may fail to be an inner regularization under the same hypotheses.
The results were established in infinite dimensional Banach spaces, so it had been
necessary to balance the use of weak and strong convergence in the assumptions,
but, in finite dimensional spaces, the statements can be simplified and made more
readable.

4.5 Regularizing the Follower’s Payoff Function
in Stackelberg Games

The general non-single-valuedness of the follower’s best reply correspondence M

brings out the difficulties in the numerical approximation of problems (PB) and
(OB), as mentioned in Sect. 4.3.3, as well as the need to define constructive methods
for selecting an SPNE in Stackelberg games, as emphasized in Sect. 4.3.5. For
these reasons and possibly also for behavioural motivations (see, for example,
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[22]), regularization methods involving the follower’s payoff function have been
introduced. Such methods allow to construct sequences of perturbed problems
where the solution of the second-stage problem is unique by exploiting well-known
regularization techniques in convex optimization. For the sake of brevity, we will
present only two approaches for regularizing the follower’s payoff function: the
first one is based on the Tikhonov regularization, the second one on the proximal
regularization.

In this section we assume that the leader’s and follower’s action sets X and Y are
subsets of the Euclidean spaces X and Y, respectively, and we denote by ‖·‖X and
‖·‖Y the norm of X and Y, respectively. Furthermore, for the sake of brevity, both
leader’s and follower’s constraints are assumed to be constant.

4.5.1 Regularizing the Follower’s Payoff Function via
Tikhonov Method

Let us recall preliminarily the Tikhonov regularization method for the approxima-
tion of solutions to convex optimization problems. Then, we illustrate how it has
been employed to regularize bilevel optimization problems (PB) or (OB) and to
select SPNEs.

4.5.1.1 Tikhonov Regularization in Convex Optimization

Assume we deal with the minimization problem

(P ) : min
a∈A J (a),

where J is a real-valued function defined on a subset A of a Euclidean space A

with norm ‖·‖A. In [107] Tikhonov introduced, in an optimal control framework,
the following perturbed minimization problems

(P )Tλn
: min

a∈A

(
J (a)+ 1

2λn

‖a‖2
A

)
,

where n ∈ N and λn > 0, and he proved the connections between the solutions
to problem (P )Tλn

and the solutions to problem (P ), which are recalled in the next
well-known result.

Theorem 4.5.1 Assume that the set A is compact and convex, the function J is
lower semicontinuous and convex over A and limn→+∞ λn = +∞.
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Then, problem (P )Tλn
has a unique solution āTn ∈ A, for any n ∈ N, and

the sequence (āTn )n is convergent to the minimum norm element of the set of the
minimizers of J over A, so

∣
∣
∣
∣

∣
∣
∣
∣ lim
n→+∞ āTn

∣
∣
∣
∣

∣
∣
∣
∣
A

= inf
a∈V‖a‖A,

where V = Arg minz∈A J (z). �
Therefore, the Tikhonov regularization method allows to approach a solution of a
convex minimization problem by constructing a sequence of perturbed problems, in
general better-behaved than the original problem, that have a unique solution. Fur-
thermore, the limit of the sequence generated accordingly is uniquely characterized
in the set of solutions to the original problem.

We mention that, afterwards, Tikhonov regularization has been broadly exploited
for finding Nash equilibria in one-stage games where players move simultaneously:
see [7, 47] for zero-sum games (with applications also to differential games) and
[93, Section 4], [25, 43] for general N-players games.

4.5.1.2 Tikhonov Regularization of the Follower’s Payoff Function
in Stackelberg Games

Let � = (X, Y,L, F ) be a Stackelberg game. The first attempt to regularize the
follower’s payoff function by employing Tikhonov regularization is due to Loridan
and Morgan in [77]. Having in mind to approximate problem (PB), for any x ∈ X

they considered the following Tikhonov-regularized second-stage problems

(Px)
T
λn
: min

y∈Y

(
F(x, y)+ 1

2λn

‖y‖2
Y

)
,

where n ∈ N and λn > 0. The next result states preliminarily properties about the
connections between the perturbed problems (Px)

T
λn

and problem (Px) as n goes
to +∞.

Proposition 4.5.2 ([77, Prop. 3.1]) Assume that the set Y is compact and convex,
the function F is continuous over X × Y and limn→+∞ λn = +∞.

Then, for any x ∈ X and any sequence (xn)n converging to x in X, we have

• lim
n→+∞ inf

y∈Y

(
F(xn, y)+ 1

2λn
‖y‖2

Y

)
= inf

y∈Y F (x, y);

• Lim sup
n

Arg min
y∈Y

(
F(xn, y)+ 1

2λn
‖y‖2

Y

)
⊆ M(x). �
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Remark 4.5.3 We highlight that the sequence of functions generated by Tikhonov-
regularizing the follower’s payoff function satisfies assumptions (F1), (F2) and
(F̃2) in [71, Section 4], therefore additional results involving ε-solutions and strict
ε-solutions hold by applying propositions 4.2, 4.4 and 6.1 in [71]. For instance,
the inclusion stated in Proposition 4.5.2 above is still valid even when considering
ε-argmin maps. �
More specific results concerning problems (Px)

T
λn

and the connections with (Px)

are achieved by adding a convexity assumption, usual in a Tikhonov regularization
framework.

Proposition 4.5.4 ([77, Prop. 3.2 and 3.4]) Assume that the function F(x, ·) is
convex over Y for any x ∈ X and hypotheses of Proposition 4.5.2 are satisfied.

Then, for any x ∈ X,

• problem (Px)
T
λn

has a unique solution ϕ̄T
n (x) ∈ Y for any n ∈ N, that is

{ϕ̄T
n (x)} = Arg min

y∈Y

(
F(x, y)+ 1

2λn

‖y‖2
Y

)
; (4.5.1)

• lim
n→+∞ ϕ̄T

n (x) = ϕ̂(x), where ϕ̂(x) is the minimum norm element of the setM(x),

that is

{ϕ̂(x)} = Arg min
y∈M(x)

‖y‖Y . (4.5.2)

Furthermore, for any n ∈ N and any sequence (xk)k converging to x in X, we have

lim
k→+∞ ϕ̄T

n (xk) = ϕ̄T
n (x) and lim

k→+∞ F(xk, ϕ̄
T
n (xk)) = F(x, ϕ̄T

n (x)). �

Remark 4.5.5 Under the assumptions of Proposition 4.5.4 additional results regard-
ing ε-solutions have been proved in [77, Proposition 3.3] for the Tikhonov-
regularized problem (Px)

T
λn

. �
We point out that, in general, the sequence (ϕ̄T

n )n is not continuously convergent to
ϕ̂ (for the definition of continuous convergence see Proposition 4.3.2), as shown in
[77, Remark 3.1] and in the example below.
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The Sequence (ϕ̄T
n )n May Not Be Continuously Convergent

Consider X = Y = [−1, 1] and F(x, y) = −xy. The follower’s best reply
correspondence M is given in (4.3.1). Choosing λn = n, for any x ∈ X we
obtain

ϕ̄T
n (x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if x ∈ [−1,−1/n[
nx, if x ∈ [−1/n, 1/n]
1, if x ∈]1/n, 1]

and ϕ̂(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if x ∈ [−1, 0[
0, if x = 0

1, if x ∈]0, 1].

Therefore, the sequence of functions (ϕ̄T
n )n is not continuously convergent to

ϕ̂, as the function ϕ̂ is not continuous at x = 0.

Now, let us consider the following Tikhonov-regularized bilevel problems:

(SP )Tλn

⎧
⎨

⎩

min
x∈X L(x, ϕ̄T

n (x))

where ϕ̄T
n (x) is the solution to (Px)

T
λn
.

Provided that assumptions of Proposition 4.5.4 are satisfied, (SP )Tλn
is a Stackelberg

problem for any n ∈ N since the solution to the second-stage problem is unique. Two
questions arise:

1. Are there solutions to (SP )Tλn
?

2. What happens when n→+∞?

The next proposition provides the answer to the first question.

Proposition 4.5.6 ([77, Prop. 3.5]) Assume that the setX is compact, Y is compact
and convex, the functions L and F are continuous over X × Y and the function
F(x, ·) is convex over Y for any x ∈ X.

Then, the Tikhonov-regularized Stackelberg problem (SP )Tλn
has at least one

solution, for any n ∈ N. �
As regards to investigation on the connections between (SP )Tλn

and (PB) as n goes
to +∞, the second question is addressed in the following result.

Proposition 4.5.7 ([77, Prop. 3.6]) Assume that limn→+∞ λn = +∞ and
hypotheses of Proposition 4.5.6 are satisfied. Denote with x̄Tn a solution to (SP )Tλn

for any n ∈ N.
Then, any convergent subsequence of the sequence (x̄Tn , ϕ̄T

n (x̄Tn ))n inX×Y has
a limit (x̄, ȳ) which satisfies

L(x̄, ȳ) ≤ w and ȳ ∈ M(x̄), (4.5.3)

where w is the security value of (PB) defined in Definition 4.2.2. �
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Definition 4.5.8 ([69]) An action profile (x̄, ȳ) ∈ X × Y satisfying (4.5.3) is a
lower Stackelberg equilibrium pair for problem (PB). �
The lower Stackelberg equilibrium pair solution concept was introduced in [69,
Remark 5.3] in the context of approximation of (PB) via ε-solutions. Note that
a result analogous to Proposition 4.5.7 has been obtained in [75] for the least-norm
regularization of the second-stage problem of (PB). In fact such a regularization,
which is an adaptation of the method introduced in [104] and which involves the
regularization both of the follower’s optimal reaction set and of the follower’s
payoff function, generates sequences of action profiles whose limit points are lower
Stackelberg equilibrium pairs, as proved in propositions 2.6 and 3.5 in [75].

We observe that if (x̄, ȳ) is a weak Stackelberg equilibrium of (PB), then (x̄, ȳ)

is a lower Stackelberg equilibrium pair. The converse is not true, in general, as
illustrated in the following example.

Weak Stackelberg Equilibrium and Lower Stackelberg Equilibrium Pair
May Not Coincide
Consider X = [1/2, 2], Y = [−1, 1],

L(x, y) = −x − y and F(x, y) =
{

0, if x ∈ [1/2, 1[
(x − 1)y, if x ∈ [1, 2].

The pair (1, 1) is a lower Stackelberg equilibrium, whereas the unique weak
Stackelberg equilibrium is (2,−1).

Remark 4.5.9 It is worth to emphasize that, in general, the sequence (x̄Tn )n, where
x̄Tn is a solution to (SP )Tλn

, converges neither to a weak Stackelberg (or pessimistic)
solution of (PB) nor to a strong Stackelberg (or optimistic) solution of (OB);
analogously, the sequence (x̄Tn , ϕ̄T

n (x̄Tn ))n converges, in general, neither to a weak
Stackelberg equilibrium nor to a strong Stackelberg equilibrium, as illustrated in the
next example also used in [93]. �

The Sequence (x̄Tn , ϕ̄T
n (x̄Tn ))n May Converge Neither to a Weak Stackel-

berg Equilibrium Nor to a Strong Stackelberg Equilibrium
Consider X = [−1/2, 1/2], Y = [−1, 1],

L(x, y) = −x − y and F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(x + 1/4)y, if x ∈ [−1/2,−1/4[
0, if x ∈ [−1/4, 1/4]
(x − 1/4)y, if x ∈]1/4, 1/2].

(continued)
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The sequences (x̄Tn )n and (x̄Tn , ϕ̄T
n (x̄Tn ))n converge to −1/4 and (−1/4, 1),

respectively. Instead, the strong Stackelberg solution is 1/4 and the strong
Stackelberg equilibrium is (1/4, 1), whereas the weak Stackelberg solution
and the weak Stackelberg equilibrium do not exist.

Afterwards, the Tikhonov regularization approach illustrated up to now has
been employed in [27] where, by requiring stronger assumptions on the payoff
functions, further regularity properties for the Tikhonov-regularized second-stage
problem (Px)

T
λn

have been shown. Moreover, an algorithm have been designed for

the solutions of the Tikhonov-regularized Stackelberg problem (SP )Tλn
as n goes to

+∞.
We mention that a regularization approach in the same spirit of (Px)

T
λn

consists
in considering the following perturbed second-stage problems

min
y∈Y

(
F(x, y)+ 1

2λn

L(x, y)

)
,

which have a unique solution for any n ∈ N, provided that the function L(x, ·) is
strongly convex on Y for any x ∈ X. In [29] such a Tikhonov-like approach has been
investigated for problem (OB), in order to circumvent the non-uniqueness of the
solutions to the second-stage problem, and an algorithm has been proposed. Further
discussions on this kind of regularization can be found in [28, Subsection 7.3.2].

We highlight that the idea of using the leader’s payoff function in the regulariza-
tion of the second-stage problem goes back to Molodtsov in [88]: he introduced
a “mixed” regularization method, by combining both the regularization of the
follower’s reaction set and the regularization of the follower’s payoff function,
which allows to approximate problem (PB) via a sequence of strong Stackelberg
problems. Then, more general properties of the Molodtsov regularization have been
obtained in [78], where perturbations of the data of problem (PB) have been also
considered.

4.5.1.3 Selection of SPNEs via Tikhonov Regularization

A Stackelberg game where the follower’s best reply correspondenceM is not single-
valued could have infinitely many SPNEs, as illustrated in the example on page
99. Therefore, let us focus on how restricting the number of SPNEs or, better yet,
picking just one. The first attempt to select an SPNE via a constructive approach that
allows to overcame the non-single-valuedness of M is due to Morgan and Patrone
in [93], where the Tikhonov regularization approach presented in Sect. 4.5.1.2 was
exploited.
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Let � = (X, Y,L, F ) be a Stackelberg game and consider the following
Tikhonov-regularized Stackelberg games

�T
λn
= (X, Y,L, FT

λn
),

where FT
λn
: X × Y → R is defined on X × Y by

FT
λn

(x, y) = F(x, y)+ 1

2λn

‖y‖2
Y
,

for any n ∈ N, i.e. �T
λn

is the game obtained from � by replacing the follower’s
payoff function F with the objective function of the Tikhonov-regularized problem
(Px)

T
λn

. Propositions 4.5.4 and 4.5.6 imply the following properties for �T
λn

.

Corollary 4.5.10 Under the assumptions of Proposition 4.5.6 we have, for any n ∈
N,

• the follower’s best reply correspondence in �T
λn

is single-valued;

• the game �T
λn

has at least one SPNE: the strategy profile (x̄Tn , ϕ̄T
n (·)), where

ϕ̄T
n : X → Y is defined in (4.5.1) and x̄Tn ∈ X is a solution to (SP )Tλn

, is an

SPNE of �T
λn
.

Moreover, the sequence of strategies (ϕ̄T
n )n is pointwise convergent to the function

ϕ̂ defined in (4.5.2). �
It is natural to ask if the limit of the sequence of SPNEs (x̄Tn , ϕ̄T

n (·))n, associated
to the sequence of perturbed Stackelberg games (�T

λn
)n, is an SPNE of the original

game �. The answer is negative, in general, as displayed in the example below.

The Sequence of SPNEs (x̄Tn , ϕ̄T
n (·))n May Not Converge to an SPNE of

the Original Game
Consider X, Y , L and F defined as in the example on page 95. The follower’s
best reply correspondence M is given in (4.3.1). Choosing λn = n, the SPNE
of �T

λn
is (x̄Tn , ϕ̄T

n (·)) where x̄Tn = −1/n and the function ϕ̄T
n is derived in

the example on page 119; moreover

lim
n→+∞ x̄Tn = 0 and lim

n→+∞ ϕ̄T
n (x) = ϕ̂(x) for any x ∈ X,

(continued)
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where the function ϕ̂ is derived in the example on page 119. Regarding the
strategy profile (0, ϕ̂(·)), we have

• ϕ̂(x) ∈ M(x) for any x ∈ X, so condition (SG1) in Definition 4.2.5 is
satisfied,

• 0 /∈ Arg min
x∈X

L(x, ϕ̂(x)) = ∅, so condition (SG2) in Definition 4.2.5 does

not hold,

hence, (0, ϕ̂(·)) is not an SPNE of �.

In order to achieve an SPNE of � we need to take into account the limit of the
sequence of action profiles (x̄Tn , ϕ̄T

n (x̄Tn ))n.

Theorem 4.5.11 ([93, Th. 3.1]) Assume that limn→+∞ λn = +∞ and hypotheses
of Proposition 4.5.6 are satisfied. Denote with (x̄Tn , ϕ̄T

n (·)) an SPNE of �T
λn
, as

defined in Corollary 4.5.10, for any n ∈ N.
If the sequence (x̄Tn , ϕ̄T

n (x̄Tn ))n converges to (x̄T , ȳT ) inX×Y , then the strategy
profile (x̄T , ϕ̃T (·)) where

ϕ̃T (x) =
{
ȳT , if x = x̄T

ϕ̂(x), if x �= x̄T

with ϕ̂(x) defined in (4.5.2), is an SPNE of �. �
Remark 4.5.12 Coming back to the above example, we have (x̄Tn , ϕ̄T

n (x̄Tn )) =
(−1/n,−1) for any n ∈ N and (x̄T , ȳT ) = (0,−1). Therefore, the SPNE selected
according to Theorem 4.5.11 is (0, ϕ̃T (·)) where the function ϕ̃T : X → Y is
defined on X by

ϕ̃T (x) =
{
−1, if x ∈ [−1, 0]
1, if x ∈]0, 1].

In fact, ϕ̃T (x) ∈ M(x) for any x ∈ X and 0 ∈ Arg minx∈X L(x, ϕ̃T (x)). �
The following example shows that the SPNE selected according to Theorem 4.5.11
does not coincide, in general, with the SPNEs induced by a weak or a strong
Stackelberg solution, as defined in Definition 4.2.6.
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The SPNE Selected via Tikhonov Regularization May Not Coincide with
SPNEs Induced by Weak or by Strong Stackelberg Solutions
Consider X, Y , L and F defined as in the example on page 91. The sequence
(x̄Tn , ϕ̄T

n (x̄Tn ))n converges to (7/4, 0), so the SPNE selected according to
Theorem 4.5.11 is the strategy profile (7/4, ϕ̃T (·)) where

ϕ̃T (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ [−2,−7/4[
0, if x ∈ [−7/4, 7/4]
−1, if x ∈]7/4, 2].

Such an SPNE is different from the SPNEs induced by weak and strong
Stackelberg solutions, which are given in the example on page 91. Moreover,
since � has multiple SPNEs and only one of which is obtained via the method
displayed above, the selection method for SPNEs designed via Tikhonov
regularization is effective.

The Tikhonov approach to select SPNEs presented in this subsection has been
extended also to the class of one-leader two-follower Stackelberg games in [93,
Section 4]. In this case the two followers, after having observed the action x chosen
by the leader, face a parametric two-player Nash equilibrium problem (NEx) (see
Sect. 4.4.3.2). By Tikhonov-regularizing the followers’ payoff functions in problem
(NEx), a sequence of perturbed one-leader two-follower Stackelberg games has
been defined where the solution to the Nash equilibrium problem in the second-stage
is unique. This allows to select an SPNE similarly to Theorem 4.5.11, as proved in
theorems 4.1 and 4.2 in [93].

4.5.2 Regularizing the Follower’s Payoff Function via
Proximal Method

Let us recall firstly the proximal regularization method for approximating the
solutions of a convex optimization problem. Then, we show how it can be employed
to regularize bilevel optimization problems (PB) or (OB) and to select SPNEs
involving behavioural motivations.

4.5.2.1 Proximal-Point Algorithm in Convex Optimization

Assume we deal with the minimization problem

(P ) : min
a∈A J (a),
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where J is a real-valued function defined on a subset A of a Euclidean space A with
norm ‖·‖A. The algorithm defined below has been introduced by Martinet in [86]
for regularizing variational inequalities and by Rockafellar in [99] for finding zeros
of maximal monotone operators.

Proximal point algorithm (PA)

Fix an initial point ā0 ∈ A and define for any n ∈ N

{āPn } = Arg min
a∈A

(
J (a)+ 1

2γn
‖a − āPn−1‖2A

)
,

where γn > 0 for any n ∈ N.

The well-definedness of algorithm (PA) and its convergence properties are
recalled in the following well-known result stated in [99].

Theorem 4.5.13 Assume that the set A is compact and convex, the function J is
lower semicontinuous and convex over A and

∑+∞
n=1 γn = +∞.

Then, algorithm (PA) is well-defined and the sequence (āPn )n is convergent to a
solution of problem (P ), that is

lim
n→+∞ āPn ∈ Arg min

a∈A
J (a).

�
Remark 4.5.14 We point out that algorithm (PA) and its denomination rely on the
Moreau–Yosida regularization of J with parameter γ > 0, which is the function
JP
γ : A→ [−∞,+∞] defined on A by

JP
γ (a) = inf

x∈A

(
J (x)+ 1

2γ
‖x − a‖2

A

)
,

introduced previously by Moreau in [90], and also called Moreau envelope or
proximal approximation. �
Therefore, the proximal point algorithm allows to approximate a solution of a
convex minimization problem by constructing recursively a sequence of proximal-
perturbed problems, namely

(P )Pγn : min
a∈A

(
J (a)+ 1

2γn
‖a − āPn−1‖2A

)
,

in general better-behaved than the original problem and that have a unique solution.
Looking at the differences with respect to the Tikhonov approach, we have

• the proximal-regularized problems (P )Pγn are recursively defined, differently

from the Tikhonov-regularized problems (P )Tλn
in Sect. 4.5.1.1;
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• the limit of the sequence generated by (PA) is “just” a minimizer of J over A,
while in the Tikhonov approach the limit point is characterized as the minimum
norm element in the set of minimizers of J over A;

• as regards to the assumptions ensuring the convergence of algorithm (PA)
and of Tikhonov method, the hypothesis on the sequence of parameters (γn)n
in Theorem 4.5.13 is weaker than the corresponding hypothesis on (λn)n in
Theorem 4.5.1.

In a one-stage games framework, we mention that algorithm (PA) has been used
in [86, 99] also for approximating saddle-points in zero-sum games and in [38] in
general N-player games. More recently, in [5] an alternating proximal minimization
algorithm has been proposed for two-player weighted potential games and in [17]
Moreau–Yosida regularization has been exploited to define a new equilibrium
concept to model strategic uncertainty among players.

4.5.2.2 Proximal Regularization of the Follower’s Payoff Function in
Stackelberg Games

Let � = (X, Y,L, F ) be a Stackelberg game. We first display some preliminarily
results on employing proximal regularization only in the second-stage problem
similarly as presented in Sect. 4.4.1.2 for the Tikhonov regularization. We do this
in order to make easier to illustrate the methodology for selecting an SPNE of �

we will use in the next subsection which involves the regularization of both players’
payoff functions. Consider the following approach: fixed an initial point ȳ0 ∈ Y ,
define for any n ∈ N

{ϕ̄P
n (x)} = Arg min

y∈Y

(
F(x, y)+ 1

2γn
‖y − ϕ̄P

n−1(x)‖2Y
)

for any x ∈ X,

(4.5.4)

where γn > 0 for any n ∈ N and ϕ̄P
0 (x) = ȳ0 for any x ∈ X.

Remark 4.5.15 Assume that Y is compact and convex, the function F is continuous
over X × Y , the function F(x, ·) is convex over Y for any x ∈ X and

∑+∞
n=1 γn =

+∞. From Theorem 4.5.13 it straightforwardly follows that, for any x ∈ X, the
sequence (ϕ̄P

n (x))n is well-defined and limn→+∞ ϕ̄P
n (x) ∈ M(x). �

Therefore, we can approach the follower’s problem (Px) via a sequence of proximal-
regularized second-stage problems recursively defined by

(Px)
P
γn
: Arg min

y∈Y

(
F(x, y)+ 1

2γn
‖y − ϕ̄P

n−1(x)‖2Y
)
,
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and consequently we can define the following proximal-regularized bilevel prob-
lems:

(SP )Pγn

⎧
⎨

⎩

min
x∈X L(x, ϕ̄P

n (x))

where ϕ̄P
n (x) is the solution to (Px)

P
γn

which come out to be Stackelberg problems, since the solution to the second-stage
problem of (SP )Pγn is unique for any n ∈ N. Analogously to Sect. 4.5.1.2, we are
interested in two questions.

1. Are there solutions to (SP )Pγn?
2. What happens when n→+∞?

By means of the maximum theorem, the function ϕ̄P
n : X→ Y defined in (4.5.4) is

continuous over X, so the next proposition provides the answer to the first question.

Proposition 4.5.16 Assume that the set X is compact, Y is compact and convex,
the functions L and F are continuous overX×Y and the function F(x, ·) is convex
over Y for any x ∈ X.

Then, the proximal-regularized Stackelberg problem (SP )Pγn has at least one
solution, for any n ∈ N. �
Concerning the second question, the limit of the sequence generated by the solutions
to (SP )Pγn for any n ∈ N has no connections, in general, either with weak
Stackelberg (or pessimistic) solutions to (PB) or with strong Stackelberg (or
optimistic) solutions to (OB), as illustrated in the following example also used in
[22].

The Sequence of Solutions to (SP )Pγn May Not Converge to Weak or to
Strong Stackelberg Solutions
Consider X = [1/2, 2], Y = [−1, 1],

L(x, y) = x + y and F(x, y) =
{

0, if x ∈ [1/2, 1[
(x − 1)y, if x ∈ [1, 2].

Choosing ȳ0 = 1 and γn = n, we obtain

ϕ̄P
n (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ [1/2, 1]
cn − cnx + 1, if x ∈]1, 1+ 2/cn]
−1, if x ∈]1+ 2/cn, 2],

(continued)



128 F. Caruso et al.

where the sequence (cn)n is recursively defined by c1 = 1 and cn+1 = cn +
n+ 1 for any n ≥ 1.

Hence, the solution to (SP )Pγn is

ūPn =
{

1/2, if n = 1

1+ 2/cn, if n ≥ 2.

Since limn→+∞ cn = +∞, the sequence (ūPn )n converges to 1, which is
neither a weak nor a strong Stackelberg solution. In fact, a solution to (PB)
does not exist, whereas the solution to (OB) is 1/2. Consequently, even the
sequence (ūPn , ϕ̄P

n (ūPn ))n does not converge either to a weak or to a strong
Stackelberg equilibrium.

Example above shows also that, in general, the sequence of functions (ϕ̄P
n )n is

not continuously convergent. In fact, coming back to such an example, it is sufficient
to note that the pointwise limit of (ϕ̄P

n )n defined by

lim
n→+∞ ϕ̄P

n (x) =
{

1, if x ∈ [1/2, 1]
−1, if x ∈]1, 2],

is not a continuous function.
We mention that methods involving proximal regularization have been recently

proposed in [100, 102] for solving the simple bilevel optimization problem

(SBP)

⎧
⎪⎨

⎪⎩

min
x∈E l(x)

where E = Arg min
x∈�

f (x),

with Δ convex subset of Rn and l and f real-valued convex functions defined on R
n.

Such a problem, firstly studied in [106] and labelled as “simple” in [30], involves
a non-parametric second-stage problem differently from the general definitions
of (PB) and (OB), and its solutions clearly coincide with the weak and strong
Stackelberg solutions. Consequently, problem (SBP) does not entail the same
kind of inherent difficulties that bilevel optimization problems (PB) and (OB)
exhibit regarding the regularization issue, as illustrated in this subsection and in
Sect. 4.5.1.2.
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4.5.2.3 Selection of SPNEs via Proximal Regularization

Let us present now how proximal regularization has been employed in Stackelberg
games in order to select SPNEs. Caruso, Ceparano and Morgan introduced in
[22] a behavioural motivated constructive method which involves the proximal
regularization both in the second-stage and in the first-stage problem (the additional
regularization of the leader’s payoff function has been done in order to strongly
motivate the behavioural interpretation of the method). Anyway, if the proximal
regularization is carried out only in the second-stage problem, by arguing analo-
gously as in the proofs in [22], a selection result for SPNEs can be proved even in
such a case.

Let � = (X, Y,L, F ) be a Stackelberg game and consider the following
procedure.

Stackelberg game proximal procedure (SGP)

Fix an initial point (x̄0, ȳ0) ∈ X × Y and define for any n ∈ N

(An)

⎧
⎪⎨

⎪⎩

{ϕ̄P
n (x)} = Arg min

y∈Y
FP
γn

(x, y), for any x ∈ X

x̄P
n ∈ Arg min

x∈X
LP

βn
(x, ϕ̄P

n (x))

where for any (x, y) ∈ X × Y

FP
γn

(x, y) = F(x, y) + 1
2γn
‖y − ϕ̄P

n−1(x)‖2
Y

LP
βn

(x, y) = L(x, y) + 1
2βn
‖x − x̄P

n−1‖2X,
with γn > 0 for any n ∈ N and limn→+∞ γn = +∞,
βn > 0 for any n ∈ N and limn→+∞ βn = +∞,
and ϕ̄P

0 (x) = ȳ0 for any x ∈ X.

Procedure (SGP ) allows to construct recursively a sequence of strategies
(ϕ̄P

n (·))n, where ϕ̄P
n is a function from X to Y , and a sequence of leader’s actions

(x̄Pn )n, where x̄Pn ∈ X. We point out that looking only at the follower’s stage in
procedure (SGP ), one can recognize the same approach illustrated in Sect. 4.5.2.2
(for this reason here we kept unchanged the notation ϕ̄P

n used previously).
In the next proposition, the well-definedness of procedure (SGP ) and its

regularity and convergence properties are stated.

Proposition 4.5.17 ([22, Prop. 1 and 2]) Under the assumptions of Proposi-
tion 4.5.16 we have

• procedure (SGP ) is well-defined;
• for any sequence (xk)k converging to x in X, we have

lim
k→+∞ ϕ̄P

n (xk) = ϕ̄P
n (x) for any n ∈ N;

• for any x ∈ X the sequence (ϕ̄P
n (x))n is convergent in Y to a solution of

problem (Px). �
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Thanks to the well-definedness of procedure (SGP ), we can construct recursively a
sequence of proximal-regularized Stackelberg games (�P

υn
)n where

�P
υn
= (X, Y,LP

βn
, FP

γn
)

is the game obtained from � by replacing the players’ payoff functions L and F

with the proximal-regularized functions LP
βn

and FP
γn

and υn = (βn, γn). Then,
Proposition 4.5.17 shows in particular that for any n ∈ N the follower’s best reply
correspondence in �P

υn
is single-valued and that the strategy profile (x̄Pn , ϕ̄P

n (·)) ∈
X× YX generated at step (An) of procedure (SGP ) is an SPNE of �P

υn
obtained as

update of (x̄Pn−1, ϕ̄
P
n−1(·)), SPNE of �P

υn−1
.

Before stating the SPNE selection result, we highlight that procedure (SGP ) has
a behavioural interpretation linked to the costs that players face when deviating from
their current actions, which is presented below.

Interpretation of the Procedure At the generic step (An) of procedure (SGP ),
the follower chooses his strategy ϕ̄P

n taking into account his previous strategy
ϕ̄P
n−1. In making such a choice, he finds an action that compromises between

minimizing F(x, ·) and being near to ϕ̄P
n−1(x), for any x ∈ X. The latter purpose is

motivated according to an anchoring effect, explained in [5, Subsection 1.4], which
is formulated by adding a quadratic slight cost to move that reflects the difficulty
of changing the previous action. The coefficient γn is linked to the per unit of
distance cost to move of the follower and it is related to the trade-off parameter
between minimizing F(x, ·) and minimizing the distance from ϕ̄P

n−1(x). Since the
same arguments apply for the preceding steps until going up to step (A1), it follows
that ϕ̄P

n (x) as well as the limit of ϕ̄P
n (x) embed the willingness of being near to

ȳ0. Analogous observations hold also for the leader, who chooses an action having
in mind to be near to his previous choices, and therefore even with the purpose of
being near to x̄0.

By taking into account the limit of the sequence of action profiles
(x̄Pn , ϕ̄P

n (x̄Pn ))n, the following existence result of an SPNE’s selection holds.

Theorem 4.5.18 ([22, Th. 1]) Assume that hypotheses of Proposition 4.5.16 are
satisfied and let (x̄Pn , ϕ̄P

n (·))n be the sequence of strategy profiles generated by
procedure (SGP ).

If the sequence (x̄Pn , ϕ̄P
n (x̄Pn ))n converges to (x̄P , ȳP ) inX×Y , then the strategy

profile (x̄P , ϕ̃P (·)) where

ϕ̃P (x) =
⎧
⎨

⎩

ȳP , if x = x̄P

lim
n→+∞ ϕ̄P

n (x), if x �= x̄P ,

is an SPNE of �. �
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Theorem 4.5.18 points out that the sequence (x̄Pn , ϕ̄P
n (·))n of SPNEs of the

proximal-regularized games (�P
υn
)n could not converge to an SPNE of �. This

happens because the follower’s strategy ϕ̃P in the SPNE defined according to
Theorem 4.5.18 could differ from the pointwise limit, whose existence is ensured by
Proposition 4.5.17, of sequence (ϕ̄P

n )n in one point. In fact, denoted with ϕ̄ : X→ Y

such a pointwise limit, if the two limits

lim
n→+∞ ϕ̄P

n (x̄Pn ) and lim
n→+∞ ϕ̄P

n (x̄P), (4.5.5)

where x̄P = limn→+∞ x̄Pn , coincide, then ϕ̃P(x) = ϕ̄(x) for any x ∈ X and the
strategy profile (x̄P , ϕ̄) is an SPNE of � in light of Theorem 4.5.18. Instead, if the
two limits in (4.5.5) do not coincide, then ϕ̃P(x̄P ) �= ϕ̄(x̄P) and the strategy profile
(x̄P , ϕ̄) could be not an SPNE of �, hence we need the follower’s strategy ϕ̃P as
in statement of Theorem 4.5.18 in order to get an SPNE. Examples 2 and 3 in [22]
illustrate the two cases described above: in the first one the two limits in (4.5.5) are
equal, whereas, in the second one the two limits in (4.5.5) are different and the pair
(x̄P , ϕ̄) comes out to be not an SPNE of the game. Such examples show also that,
in general, the sequence (ϕ̄P

n )n is not continuously convergent to ϕ̄.
As regards to the connections with other methods for selecting SPNEs, the

following example (examples 3, 5 and 6 in [22]) shows that the selection method
based on proximal regularization presented in this subsection, the selection method
relying on Tikhonov regularization described in Sect. 4.5.1.3 and the way of
selecting via weak and strong Stackelberg solutions illustrated in Remark 4.3.5 do
not generate, in general, the same SPNE.

The Considered Selection Methods May Select All Different SPNEs
Consider X, Y , L and F defined as in the example on page 127. We have
that

• the SPNE selected via proximal regularization is (1, ϕ̃P), where

ϕ̃P (x) =
{

1, if x ∈ [1/2, 1[

−1, if x ∈ [1, 2];

• the SPNE selected by using the Tikhonov regularization is (1, ϕ̃T ), where

ϕ̃T (x) =
{

0, if x ∈ [1/2, 1[
−1, if x ∈ [1, 2];

(continued)
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• there are no SPNEs induced by a weak Stackelberg solution, as problem
(PB) has no solutions;

• there exists one SPNE induced by the (unique) strong Stackelberg solution:
the pair (1/2, ψ̄) where ψ̄(x) = −1 for any x ∈ [1/2, 2].

Finally, we mention that convergence results involving “costs of change” and
proximal methods in Stackelberg games have been recently investigated in [37,
Section 5].

4.6 Conclusion

In this chapter we considered two-stage Stackelberg games, the natural environment
for different kinds of mathematical problems that can arise depending on the leader’s
information about the optimal responses of the follower. We discussed crucial issues
related to such problems and we provided two approaches for managing them.
The first one consists in regularizing the follower’s optimal reaction set via the
introduction of appropriate solution concepts which allowed to obviate both the lack
of existence and stability of the weak Stackelberg (or pessimistic bilevel) problem
and the lack of stability of the strong Stackelberg (or optimistic bilevel) problem.
The second one consists in regularizing the follower’s payoff function by employing
the Tikhonov and the proximal regularizations which enabled both to overcome
the non-single-valuedness of the follower’s best reply correspondence and to select
subgame perfect Nash equilibria.

We note that the issues and the approaches (for facing such issues) we focused in
this chapter are not the unique ones. For instance, the question of sensitivity analysis
for problems (PB) and (OB), has been recently investigated in [31, 32]. Moreover,
beyond the two regularizing approaches examined in this chapter, one can construct
classes of mixed regularization methods which exploit simultaneously both the idea
of regularizing the follower’s optimal reaction set and of regularizing the follower’s
payoff function; first approximation schemes of this type have been defined in [75,
78, 88].

For the sake of brevity, we dealt with Stackelberg games only in a static
framework (that is any player has actions which do not evolve over time) where
players have a single objective and just one leader acts in the first stage. However,
such a Stackelberg game model has been extended in many directions:

• Dynamic: players’ actions are functions depending on time. First results on
dynamic Stackelberg games can be found in [10, 20, 24, 68, 105, 110], while
applications to economic models are described in [11, 33].

• Multiobjective: the follower has a vector-valued payoff function or solves vector
(quasi-)variational inequalities. Methods for solving (optimistic) multiobjective
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bilevel optimization problems have been investigated in [35] (where scalarization
techniques are used) and in [113] (where a model based on set-valued optimiza-
tion is firstly proposed to manage strong Stackelberg problems and then extended
to a multiobjective setting). Concerning results on approximate solutions which
could be useful in the analysis of Stackelberg games with second stage described
by vector problems, we remind [56, 65, 79, 92]. Furthermore, a penalty scheme
has been introduced to approach (optimistic) semivectorial bilevel optimization
problems in [18] and, in a dynamic framework, existence results have been first
obtained for the (optimistic and pessimistic) semivectorial bilevel optimal control
problems in [19].

• Multileader: more than one leader acts in the first stage. For general multi-
leader-follower games see, for example, [42, 98]. The situation where each
follower can observe the action of one leader has been investigated in [97] for
an economic model and in [23] for deriving a selection result. An increasing
literature is also devoted to the class of multi-leader-common-follower games
and to its applications to electricity markets, see for example [8, 9].

We emphasize that for the situations illustrated above it would be interesting to
provide new concepts and results which derive from the analogous exploitation of
the two types of regularization approaches presented in the chapter.
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Chapter 5
Applications of Bilevel Optimization
in Energy and Electricity Markets

Sonja Wogrin, Salvador Pineda, and Diego A. Tejada-Arango

Abstract Ever since the beginning of the liberalization process of the energy sector
and the arrival of electricity markets, decision making has gone away from central-
ized planners and has become the responsibility of many different entities such as
market operators, private generation companies, transmission system operators and
many more. The interaction and sequence in which these entities make decisions
in liberalized market frameworks have led to a renaissance of Stackelberg-type
games referred to as bilevel problems, which capture the natural hierarchy in many
decision-making processes in power systems. This chapter aims at demonstrating
the crucial insights that such models can provide, and at providing a broad overview
of the plethora of the applications of bilevel programming in energy and electricity
markets. Finally, a numerical example is included for illustrative purposes.

Keywords Transmission expansion planning · Generation expansion planning ·
Energy storage systems · Strategic bidding · Electricity markets · Energy
applications

5.1 General Overview of Bilevel Programming in Energy

The liberalization of the electricity sector and the introduction of electricity markets
first emerged in the 1980s in countries like Chile, the United Kingdom, and New
Zealand. Nowadays, the vast majority of all developed countries have undergone
such a liberalization process, which has complicated the organization of the
electricity and energy sector greatly. In regulated electricity systems, many tasks—
such as expansion planning, for example—are usually carried out by a centralized
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planner who minimizes total cost while meeting a future demand forecast, reliability
constraints, and environmental requirements identified by the government. Planning
the investment and operation of such a regulated system can be regarded as stable,
relatively predictable, and essentially risk-free for all entities involved.

However, under a liberalized framework, many decisions are no longer regulated
but to a large extent, up to the responsibility of individual entities or private
companies that act strategically and might have opposing objectives. Within the
realm of strategic decision making, the hierarchy in which decisions are taken
becomes extremely important. A strategic storage investor maximizing profits is
not going to invest the same amount as a centralized planner that maximizes social
welfare, nor will the storage facility be operated in the same way. In order to
characterize this strategic behavior, bilevel models inspired by Stackelberg games
become necessary and important decision-support tools in electricity and energy
markets.

Bilevel models—which have first been used in the electricity sector to formulate
electricity markets for example by Cardell et al. [10], Berry et al. [5], Weber and
Overbye [70], Hobbs et al. [26] or Ramos et al. [56] just to name a few—allow us
to represent a sequential decision-making process as opposed to single-level models
where all decisions are considered to be taken simultaneously, which can be a gross
simplification of reality and distort model outcomes.

In energy and electricity markets, there are numerous different applications of
interesting bilevel optimization and bilevel equilibrium problems. The purpose of
this chapter is to provide a general overview of the areas in energy and electricity
markets where bilevel programming is being used in a meaningful way. Hence, the
remainder of this chapter is organized as follows. Section 5.1 contains a detailed
literature review of bilevel applications in energy. Sections 5.2 and 5.3 give a brief
outlook on existing solution techniques and pending challenges in bilevel models
in the power sector. In Sect. 5.4 , we formulate a bilevel model that takes strategic
investment decisions and compare it to a traditional model in a numerical case study.
Finally, Sect. 5.5 concludes the chapter.

Section 5.1 provides a detailed but not exhaustive literature review on many
different applications of bilevel programming in energy and electricity markets.
We first identify several important areas to which bilevel optimization is applied:
Transmission Expansion Planning, Generation Expansion Planning (conventional
and renewable), Energy Storage Systems, Strategic Bidding, Natural Gas Markets,
and Others. In the remainder of this section, we analyze each of those areas
separately and point out what type of bilevel games can be encountered in the
literature. Please note that these areas are not necessarily mutually exclusive.
Therefore, relevant references might appear more than once if applicable.
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5.1.1 Transmission Expansion Planning

At the core of every multi-level optimization or equilibrium problem, there lies a
sequential decision-making process. When it comes to transmission expansion plan-
ning (TEP) in liberalized electricity markets, the main factor of decision hierarchy
stems from the generation expansion planning (GEP). Does the transmission planner
take its decisions after the generation has been decided and sited, or do generation
companies plan their investments after transmission assets have been decided? What
comes first, the chicken or the egg? The sequence of TEP versus GEP defines two
different philosophies: proactive TEP; and, reactive TEP.

Under proactive TEP approaches, the transmission company (TRANSCO) is the
Stackelberg leader, whereas generation companies (GENCOs) are the Stackelberg
followers. This means that TRANSCO has the first-mover advantage and decides
the best possible TEP taking into account the feedback from generation companies.
In other words, the network planner can influence generation investment and,
furthermore, the spot market behavior. Note that while the market operation is
an essential part of TEP and GEP problems, and corresponding modeling details
have to be discussed in order to establish possible gaps in the literature, in terms
of decision-making sequence, market decisions happen after both GEP and TEP.
Hence, the market is not the main focus in the bilevel TEP/GEP discussion.

On the other hand, under a reactive TEP approach, the network planner assumes
that generation capacities are given (GENCOs are Stackelberg leaders), and then the
network planner optimizes transmission expansion based only on the subsequent
market operation. Reactive planning is thus represented by a model with multi-
leader GENCOs and one or several TRANSCOs as followers.

Additionally, there exist some alternative TEP approaches, such as [30], where
the upper level represents both GEP and TEP simultaneously, while the lower level
represents the market operation (MO). In [3], the authors decide optimal wind and
transmission expansion in the upper level, subject to a market-clearing. Such an
approach is more suitable for a centralized power system where the network planner
and the generation companies belong to the same decision-making agent. This is
usually not the case in liberalized electricity markets. The work of [57] explores
the interactions between an ISO with the security of supply objectives with private
profit-maximizing entities deciding GEP and TEP investment simultaneously. The
entire problem, however, is never explicitly formulated as a bilevel problem. Instead,
an iterative solution procedure is proposed. Since our main focus lies in the sequence
between TEP and GEP, we continue our detailed literature review on bilevel TEP
problems distinguishing between proactive and reactive approaches.

In practice [65], most of the TRANSCOs in the world follow a reactive TEP
approach, but most of the TEP-GEP literature is on proactive planning. However,
Pozo et al. [54] mention other approaches that are close to proactive planning.
For example, a regulation was approved in the US that includes the concept of
anticipative (proactive) transmission planning to obtain a higher social welfare
[20]. Additionally, in the current European context, ENTSOE plays the role of
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a centralized agent that proposes future planning pathways, in which regional
coordination takes place, and then nationally, generation companies can react to its
decisions. Thus, under this regulatory context, a proactive planning approach would
make more sense.

5.1.1.1 Proactive Transmission Expansion Planning

Sauma and Oren [61] present the first work on proactive TEP we want to discuss.
In [61], the authors extend their work in [60] and explore optimal transmission
expansion given different objectives. They also consider a spot market where the
distinctive ownership structures are reflected, as proposed in [78]. The authors
consider a three-level structure: first TEP, then GEP, and finally, the market. The
market equilibrium and strategic GEP already yield an equilibrium problem with
equilibrium constraints (EPEC). An additional layer of TEP is set on top of that.

Pozo et al. [52] extend the groundwork of [60, 61], and propose a first complete
model formulation of the three-level TEP problem. The three levels are still: first
TEP, then GEP, and finally, the market-clearing. In the second level (the GEP stage),
all GENCOs’ investment strategies are enumerated, expressing Nash equilibria as a
set of inequalities. While this work represents a significant step forward in terms of
actually formulating a three-level problem in closed form, the proposed model does
not seem to be computationally efficient.

Pozo et al. [53] extend their work of [52] by including uncertainty in the
demand, and apply the model to a realistic power system in Chile. The same authors
overcome the computational shortcoming of their previously proposed models in
[54] by proposing a novel column-and-row decomposition technique for solving
the arising EPECs, which ultimately yields the global optimum. Furthermore, the
authors propose a pessimistic and optimistic network planner to describe all possible
outcomes of the EPEC. The authors conclude that in practice, if multiple generation
expansion exists in the equilibrium, proactive planning does not always yield the
best welfare results, and it can even reduce social welfare.

Jin and Ryan [31] also propose a three-level TEP problem, but they extend
previous approaches by considering Cournot’s strategic decisions in the market.
They propose a hybrid approach to solve the three-level problem, which proves
computationally efficient; however, it does not guarantee to find the global optimum.

Motamedi et al. [42] present another multi-level approach to TEP. The authors
characterize their problem as a four-level problem; however, since two of those lev-
els refer to problems that are considered simultaneously, mathematically speaking,
the framework boils down to a three-level problem: TEP, GEP, and market (pairs of
price and quantity bids). The authors propose an iterative algorithm using search-
based techniques and agent-based modeling to solve the arising problem.

In Taheri et al. [67], the authors also tackle a three-level TEP problem: TEP, GEP,
and market clearing through price and offer quantities. The temporal representation
of this work resorts to a load duration curve, which does not allow for modeling
intertemporal constraints such as ramping or commitment constraints.
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Apart from the three-level proactive approaches mentioned above, there are two-
level approaches where transmission investment decisions are taken first, and then
generation investment and operation decisions are taken simultaneously. On the one
hand, the work in [29] models the perfectly competitive market clearing in the
lower level, which includes GEP investment variables as well. Additionally, they
consider a network fee so the TRANSCO can recover investments in the case of a
flow-based fee regulation typically used in the US. The authors linearize the arising
MPEC using [22] and solve it as a mixed-integer linear program (MILP)—a method
frequently used in bilevel energy applications.

Pisciella et al. [51] also present a proactive TEP approach where the TSO takes
investment decisions subject to a lower level market equilibrium of GENCOs and a
market operator that exchange price and quantity bids and a market-clearing.

Later, Weibelzahl and Märtz [71] extend the work of Jenabi and Fatemi Ghomi
[29] and choose a pessimistic TRANSCO. The authors prove some subsequent
uniqueness properties. Since their model uses chronological time steps, they
additionally consider battery expansion in their framework. In [69], the authors
present various types of TEP-GEP models, one of which represents a proactive
approach with a pessimistic TEP in the upper level, and strategic GENCOs in
the lower level. On the other hand, Maurovich et al. [39] consider a stochastic
bilevel model with a merchant investor of transmission in the upper level, and GEP
including wind expansion and a Cournot market in the lower level.

Finally, Gonzalez-Romero et al. [23] apply the same structure, but they consider
storage expansion and Cournot competition in the lower level. Both works [23, 39]
find counterintuitive results when considering Cournot competition in the lower
level compared to a perfect competition case.

5.1.1.2 Reactive Transmission Expansion Planning

One of the first reactive TEP approaches was proposed in [61], showing some
theoretical results and some practical results for fixed transmission plans. Unfor-
tunately, the subsequent research on this regard is limited. In general, under this
approach, several GENCOs are considered as the leaders and a single TRANSCO
as a follower. However, it could also be the case that only one GENCO is the leader,
and the remaining GENCOs and TRANSCO(s) are followers, yielding a one leader
multiple followers structure which is easier to solve numerically speaking.

In [69], Tohidi and Hesamzadeh propose a comparison between the proactive and
the reactive approach. In contrast to [53], authors in [69] do not consider anticipation
of market outcomes by GENCOs and propose the elimination of the multiple Nash
equilibria by considering a pessimistic or optimistic TRANSCO.

Dvorkin et al. [17] present a reactive TEP with three levels: upper level
representing a merchant storage owner; middle level that carries out centralized
TEP; and, a lower level simulating the market-clearing, to our best knowledge
mathematically speaking this is not a three-level structure as the middle (TEP), and
the lower (market) level are solved simultaneously. Mathematically speaking, this
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belongs to the bilevel structures when merchant investors are in the upper level,
and then TEP and market decisions are taken simultaneously in the lower level.
The arising problem is solved numerically efficiently using a column generation
algorithm, which is applied to a real-size case study. The authors conclude that the
co-planning of storage and transmission leads to more significant cost savings than
independent planning.

5.1.2 Generation Expansion Planning

Generation expansion planning (GEP), in general, refers to the expansion of
thermal, renewable, or storage generation capacity in a power system. As we have
discussed in the previous Sect. 5.1.1, many bilevel TEP problems include GEP in
some way or another. In this section, however, we focus on expansion planning
problems that do not include network expansion. Moreover, we also omit the
discussion of the literature regarding storage investment, as this is discussed in detail
in Sect. 5.1.3.

The emphasis on [11, 73] is on a single strategic generation company (GENCO)
that maximizes total profits deciding generation capacity investment in conventional
thermal technologies, subject to a strategic market equilibrium using conjectural
variations. The use of conjectural variations allows the authors to emulate different
degrees of strategic market behavior, ranging from perfect competition to the
Cournot oligopoly. The market equilibrium is obtained as the system of KKT
conditions of all market players, i.e., also the GENCOs, that simultaneously decide
production decisions while maximizing market profits. The hierarchy of decision
making in these problems involves separating the type of decision (investment
versus operation) and not the type of players. The upper-level player is also a lower
level player.

Wogrin et al. [74–76] extend their work of [11, 73] going from MPECs to
EPECs by including multiple strategic GENCOs that take investment decisions. The
arising EPECs are solved using digitalization, or for some small problem instances,
they are solved exactly in [76]. These models capture the fact that GENCOs that
maximize their profit have a clear incentive to under-invest, thereby manipulating
prices and revenues in the market, even if that market is perfectly competitive. Such
behavior cannot be captured with a single-level model. Moreover, other interesting
counterintuitive results are obtained: there exist cases where a perfectly competitive
market even yields lower social welfare than a Cournot-type market. This is because,
under perfect competition, prices are low, which creates an unattractive investment
environment for GENCOs as it yields minor profits.

In the work of Baringo and Conejo [4], the authors consider a strategic investor
in wind power that maximizes its total profits in the upper level, deciding capacity
investment and offers for the day-ahead markets, subject to many different scenarios
of the day-ahead market clearing in the lower level.
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Pineda and Morales [47] explore several different multi-level (bilevel and three-
level) optimization problems emphasizing stochastic power generators, for example,
wind power producers. They analyze how imbalances impact the capacity expansion
of renewable producers due to power forecast errors considering day-ahead and
balancing markets. As an example, a strategic investor maximizes total profits
deciding generation capacity subject to the impact on lower-level dispatch decisions.

In Pineda et al. [49], the authors study generation expansion in renewables;
however, the main focus of this work lies in policy analysis.

5.1.3 Energy Storage Systems

When it comes to Energy Storage Systems (ESS), there exist many topics on bilevel
applications. Some articles [17, 71] explore the interactions between ESS and the
transmission network. Others [19, 24, 44, 45] analyze the impact of hierarchical
decision making in problems of optimal bidding and scheduling involving ESS.

Nasrolahpour et al. [44] decide the optimal price and quantity bids for a strategic
profit-maximizing storage owner, subject to different scenarios of the day ahead
and balancing markets. Fang et al. [19] propose a bilevel model whose primary
objective is to maximize a load-serving entity’s profit by optimally scheduling the
ESS charging/discharging profile via an economic dispatch. Pandžić and Kuzle [45]
study the impact of a profit-maximizing storage owner in the day-ahead market.

Another important family of energy-related problems that are modeled using
bilevel programming, and that we discuss in more detail in this section, consist
of determining optimal investment decisions for generation or storage units by
anticipating the impact of such decisions on market outcomes. The discussion on
how to determine the sequence in which the involved players make their decisions
makes no sense in the problems described here, as it is evident that investments are
necessarily made before the market is cleared and electricity prices are revealed.

Most planning models to determine optimal investment decisions in liberalized
electricity markets are formulated as bilevel optimization problems. The upper
level usually maximizes the foreseen profits of potential generation of the storage
units to be built, while the lower level represents the variability of the market
conditions throughout the lifetime of such devices. We have, therefore, two types
of players that make decisions and interact with each other as follows. The GENCO
makes investment decisions first and then represents the leader in this Stackelberg
game. Afterward, the market operator (MO) clears the market to maximize the
social welfare for a given electricity demand level and subject to the available
generation capacity in the system. The market-clearing outcome would depend
on the investment decisions made by the GENCO. For instance, if GENCO’s
investment decisions result in a capacity inadequate power system, part of the
demand cannot be satisfied. Similarly, the revenue of the investments by the GENCO
is also profoundly affected by the market-clearing electricity prices.
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More recent references [16, 25, 43, 46] propose similar bilevel optimization
problems to decide the location, size, and technology of energy storage devices that
are to be operated within a decentralized market environment. Next, we explain in
more detail the similarities and differences among these research works focusing on
the storage applications.

The authors of [16] propose a bilevel optimization problem that determines
the optimal location and size of storage devices to maximize social welfare while
ensuring that storage devices collect sufficient profits to recover their investment
costs. Nasrolahpour et al. [43] extend this model to incorporate uncertainty related to
competitive offering strategies and future demand levels, then yielding a stochastic
bilevel optimization problem that is solved using Benders’ decomposition tech-
niques. In the same line, Hassan and Dvorkin [25] present a bilevel program to
decide the optimal site and size of storage units in the distribution system. Because
of the AC power flow equation, the solution procedure requires the use of second-
order cone programming. Finally, Pandžić and Bobanac [46] propose a model to
optimize investments in energy storage units that compete in the joint energy and
reserve market.

5.1.4 Strategic Operation, Bidding or Scheduling

The problems presented in this section correspond to the optimal operation of
strategic players. In particular, Ruiz and Conejo [58] formulate an MPEC problem of
a strategic producer that maximizes profits deciding the optimal price and quantity
bids subject to the market-clearing maximizing social welfare with a DC optimal
power flow (OPF). Since the lower level is a linear problem, it is replaced by its KKT
conditions and linearized by Fortuny-Amat and McCarl [22]. The bilinear term,
representing revenues, in the upper-level objective function, is elegantly replaced by
a linear equivalent employing the strong duality theorem. Ruiz, Conejo, and Smeers
[59] extend this work to an EPEC framework where there are multiple strategic
generators.

A classic paper by Hu and Ralph [27] analyzes bilevel games, pricing and
dispatch taking to account an optimal power flow. Theoretical results, as well as
diagonalization procedures are presented. Escobar and Jofre [18] and Aussel et al.
[2] assess bilevel electricity market structures including information of transmission
losses. Allevi et al. [1] model a pay-as-clear electricity market that yields an
equilibrium problem with complementarity constraints where GENCOs are the
leaders and the ISO is the follower.

Hartwig and Kockar [24] consider a strategic bidder maximizing profits deciding
price and quantity bids. However, the bidder is operating a storage facility instead
of a conventional thermal plant. The lower level represents the market-clearing and
DC power-flow constraints. The final MPEC is also solved as a MIP.

Karkados et al. [34] addresses the optimal bidding strategy problem of a
commercial virtual power plant, which comprises of distributed energy resources,



5 Applications of Bilevel Optimization in Energy and Electricity Markets 147

battery storage systems, and electricity consumers, and participates in the day-ahead
electricity market. A virtual power plant maximizes profits in the upper level and
carries out the market-clearing in the lower level.

Finally, Moiseeva et al. [40] formulate a bilevel equilibrium game (EPEC)
where strategic producers decide ramping levels in the upper level maximizing their
profits, and then choose production levels in the lower level. For simple instances,
a closed-form solution to this problem can be found. For large-scale problems,
diagonalization is employed to find equilibrium points.

5.1.5 Natural Gas Market

One of the first applications of bilevel programming to the natural gas market can
be found in De Wolf and Smeers’ work [12]. The bilevel problem is a stochastic
Stackelberg game, where a leader decides its output first, and then the followers
compete a la Cournot.

There exist several articles related to the cash-out problem in natural gas markets.
The cash-out problem reflects the shipper’s difficulties in delivering the agreed-
upon amount of gas at several points. If an imbalance (between what is actually
delivered and what should have been delivered) occurs, the shipper is penalized
by the pipeline. Hence, a shipper has to solve the problem of operation while
minimizing the incurred penalties. In the work of Dempe et al. [15], a shipper
maximizes its revenues in the upper level, subject to the pipeline’s decisions at the
lower level. The authors apply a penalty function method [72] to solve the arising
MPEC because the problem has discrete variables in the lower level, that the authors
move into the upper level. In [33], Kalashnikov et al. extend their previous work to
consider a stochastic cash-out problem in natural gas. Moreover, [32] proposes a
linearization approach to this problem, which is compared to the penalty method.

Siddiqui and Gabriel [64] propose a new SOS1-based approach to solving
MPECs and apply it to the US natural gas market. It comprises a shale gas leader
company that decides its output strategically as a Stackelberg leader maximizing its
profits. The lower level represents a Cournot equilibrium among the follower firms.

Li et al. [38] propose an interesting security-constrained bilevel economic
dispatch model for integrated natural gas and electricity systems considering wind
power and power-to-gas process. The upper-level objective function minimizes total
production cost in the economic dispatch of the electricity system, while the lower
level optimally allocates natural gas. Its KKT conditions replace the lower level and
transformed into an MIP.

In [13] del Valle et al. propose a model whose objective is to represent a realistic
decision-making process for analyzing the optimal infrastructure investments in
natural gas pipelines and regasification terminals within the EU framework under
a market perspective. In the upper level, the network planner chooses investments in
new pipelines and regasification capacity considering multiple regulatory objective
functions. The lower level is defined as a generalized Nash-Cournot equilibrium



148 S. Wogrin et al.

modeling successive natural gas trade, taking into account both the up- and the
downstream, and operation of the network infrastructure. To our knowledge, this
is the only bilevel model in natural gas that is also multi-objective. The final MPEC
is also solved using mixed-integer programming.

5.1.6 Other Bilevel Applications in Energy

In energy and electricity markets, there exist many other applications of bilevel
programming; however, the majority of these articles do not make up an entire
area of research in bilevel optimization. Therefore, we have not dedicated separate
sections to each of these applications. Instead, this section comprises an overview
of what else is out there.

Momber et al. [41] study the impact of different price signals that an aggregator
provides to customers with plug-in electric vehicles. The arising MPEC is solved
as an MIP. Another example of the bilevel programming of a retailer can be found
in Zugno et al. [81], where retailers send price signals to customers in the lower
level under price uncertainty. The final MPEC is also transformed into a MIP. In
Pineda et al. [49], the authors analyze several policy options for capacity expansion
in renewables. The hierarchy of the bilevel model arises due to the different support
schemes. Le Cadre et al. [36] analyze different coordination schemes of TSO-DSO
interaction.

5.2 Overview of Solution Methods for Bilevel Problems
in Energy

As shown in the previous section, bilevel programming allows us to model a
wide variety of situations that involve two decision-makers with their objectives
and constraints. However, the computational complexity of bilevel programming
problems is exceptionally high. The authors of [8] theoretically show that the bilevel
knapsack problem is contained in the complexity class �

p
2 . Simulation results

supporting the high computational burden of this bilevel problem are reported in
[9]. Bilevel problems are hard to solve even under linearity assumptions, and hence,
most research efforts are currently focused on solving linear bilevel problems (LBP)
[14].

Current methods to solve LBP highly depend on whether upper-level variables
are discrete or continuous. If upper-level variables are discrete and lower-level
variables continuous, then an equivalent single-level mixed-integer reformulation of
the original bilevel can be obtained using the strong-duality theorem [80]. Although
such equivalent problems belong to the NP-complete class, current commercial
optimization software can be used to compute globally optimal solutions. This
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procedure is the one used in Sect. 5.4.3 provided that investment in generation and
storage units are considered as discrete variables.

If both upper- and lower-level variables are continuous, the solution procedures
proposed in the technical literature are not as straightforward. From a practical point
of view, methods to solve LBP can be divided into two main categories. The first
category includes those methods that make use of dedicated solution algorithms
to solve bilevel problems [7, 37, 63]. While these methods are usually efficient and
ensure global optimality, they involve substantial additional and ad-hoc coding work
to be implemented in commercially available off-the-shelf optimization software.
The second category includes the methods that can be implemented in or in
combination with general-purpose optimization software without any further ado.
Most of the existing applications of bilevel programming to energy-related problems
rely on solution methods that belong to this second category, and therefore, we
explain the most commonly used ones in more detail next.

All the solution methods described next are based on reformulating the original
LBP as an equivalent single-level problem that can be solved using off-the-
shelf optimization software. Therefore, the lower-level optimization problem is
replaced by its necessary and sufficient Karush-Kuhn-Tucker (KKT) optimality
conditions. Unfortunately, the KKT equations include nonlinear complementarity
conditions, thus yielding a nonconvex single-level problem. Additionally, such
a problem violates the Mangasarian-Fromovitz constraint qualification at every
feasible point, and therefore, the computation of globally optimal solutions becomes
extraordinarily difficult. Existing methods to solve these nonconvex nonregular
optimization problems differ regarding their strategy to deal with the nonlinear
complementary conditions.

In energy-related problems, the most commonly used method first proposed in
[22] consists of reformulating the complementary constraints by an equivalent set
of linear inequalities to obtain a single-level mixed-integer problem. This strategy
has, however, two main drawbacks. Firstly, it requires a large number of extra
binary variables that increase the computational burden of the problem. Secondly,
the equivalence between the single-level reformulation and the original BLP is only
guaranteed if valid bounds on lower-level dual variables can be found. It is worth
mentioning that most research works in the technical literature do not pay much
attention to this aspect, which may lead to highly suboptimal solutions, as proven
in [48]. If investment decisions are assumed to be continuous variables, this is the
procedure used at the end of Sect. 5.4.5 to obtain the single-level reformulation of
the problem.

A related method, also based on the combinatorial nature of complementarity
conditions, has been proposed in [64]. Such a method uses particular order sets
variables, and its computational advantages are problem-dependent. Alternatively, a
regularization approach to solving the nonconvex single-level reformulation of LBP
was first introduced in [62] and further investigated in [55]. This method solves
a set of regular nonconvex optimization problems in which the complementarity
conditions are iteratively imposed easily.
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Methods based on the combinatorial aspect of the complementarity conditions
as those proposed in [22, 64] are computationally intensive but provide optimal
solutions for valid bounds on the lower-level dual variables. On the other hand, the
nonlinear-based methods investigated in [55, 62] are fast but only guarantee locally
optimal solutions. Finally, the authors of [50] propose a method that combines the
advantages of the two approaches mentioned above. Numerical simulations show
that the method significantly improves the computational tractability of LBP.

All methods previously described aim at solving bilevel programming problems
with two decision-makers. Since some of the works mentioned in Sect. 5.1 include
hierarchical programming problems that include more levels or decision-makers,
we concisely summarize next to the main strategies to solve such problems in the
energy field. For instance, the authors of [52] propose a methodology to solve a
three-level optimization problem to determine the optimal proactive transmission
expansion of a power system. They do so by assuming that generation investment
decisions are discrete and finite, which allows them to enumerate all combinations of
investment strategies. Despite its performance, this solution methodology becomes
computationally intractable for real-size problems. The related work [31] also
proposes a methodology to solve a three-level transmission expansion problem.
In this paper, the authors propose a hybrid approach to solve the three-level
problem, which takes advantage of two different ways of solving the generation
expansion equilibrium formulated in the second-level: the diagonalization method
and formulating the equilibrium as a complementarity problem. While the proposed
algorithm proves computationally efficient, it does not guarantee to find the global
optimum. Finally, reference [67] describes an alternative method to solve a three-
level optimization problem related to transmission expansion. In this case, the
single-level reformulation is obtained by applying the KKT optimality conditions
twice. The second set of KKT conditions are not sufficient for optimality, and
therefore, the authors have to carry out an ex-post validation technique to check
if the obtained point is an equilibrium, which questions the applicability of this
approach.

5.3 Challenges of Bilevel Programming in Energy

The challenges for bilevel programming in energy markets are, in general, problem-
dependent. However, there are specific topics that constitute gaps in the literature
common to many of the works discussed in this chapter. We analyze each of these
topics in the following paragraphs.

The first topic for discussion is the full optimal power flow in AC or AC-OPF.
Many of the discussed articles, [3, 23, 39], to name a few, involve the representation
of the transmission of the distribution network. The way that power flows in an
electricity network is governed by Kirchhoff’s Laws, which can be expressed
mathematically as a set on nonlinear and nonconvex equations. This problem is often
referred to as AC power flow, or if a specific objective is considered then AC-OPF.
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In terms of mathematical programming, and especially when considering bilevel
programming, taking into account the full AC-OPF constitutes a severe issue. For
example, the AC-OPF cannot be considered in the lower level of a bilevel problem
as it cannot be replaced by its KKT conditions, for example (since the problem is
nonconvex). As a solution, in the literature, the AC-OPF is replaced by its linear
and thereby convex approximation, the DC-OPF. The assumption upon which this
simplification is based can fail in low-voltage networks (like distribution systems),
or when the network is not well meshed with a high transfer of power between
areas (for example, considering the transmission network of Spain and France
which is not well-interconnected). When working with the DC-OPF formulation,
important variables such as reactive power are not captured. In a future power
system with increasing penetration of renewables and decreasing the amount of
conventional synchronous machines that are important for system stability, not
taking into account reactive power in planning models, for example, might lead to
sub-optimal solutions. As one possible solution, the DC-OPF could be replaced by a
convex quadratic problem called second-order cone program [36], which replicates
the AC-OPF exactly under specific hypotheses; however, these hypotheses need to
be evaluated very carefully for each application.

Another shortcoming of existing bilevel models, and in particular, GEP-TEP
applications, is the fact that many of them disregard storage technologies. If the
focus of the bilevel model lies on TEP, then usually the GEP corresponding
to storage is omitted, for example, in [73]. Taking into account that storage
technologies will very likely play an essential role in power systems of the future,
they should be included in these models in order to correctly capture power system
operation. Moreover, different types of storage technologies should be considered
to cover the different range of services they can supply: For example, long-term
storage technologies such as pumped hydro facilities that can carry out energy
arbitrage over long time periods; and, short-term technologies such as batteries
that have several charge and discharge cycles within 1 day. One of the practical
reasons for disregarding storage is based on the fact that many planning models
either use load periods [3, 73], representative days [17, 46] or just few sequential
hours [31, 39, 54] in order to reduce the temporal dimension which brings us to
another challenge which is appropriate representation of time in medium- and long-
term models. All previously mentioned methods have difficulties in representing
storage constraints. Traditional load period models cannot formulate short-term
storage constraints unless considering improvements such as system states [77].
Models that use representative days can formulate short-term storage well; however,
they fail to adequately represent long-term storage whose cycles go beyond the
representative day. Tejada-Arango et al. [68] fix this shortcoming by introducing
enhanced representative periods that are linked among each other.

An important issue that is also related to the previous one is the proper charac-
terization of power system operations via unit commitment (UC)-type constraints,
e.g., start-up, shut-down, ramping constraints. Such constraints either involve
binary variables (e.g., start-up or shut-down) or require sequential time steps (e.g.,
ramping). The fact that UC constraints involve binary variables makes them very
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undesirable for lower-level problems as there are no meaningful KKT conditions.
However, it is highly questionable to omit important constraints in bilevel problems
just because it makes solving them even more difficult. Apart from involving binary
variables, many UC constraints require sequential time steps, which makes them
challenging for load-period models, for example. Some attempts have been made
in the literature to tackle the issue of binary variables in equilibrium problems or
bilevel problems [28, 79]; however, this is still an open field of research with much
room for improvement.

Most current existing methods to efficiently solve bilevel problems assume that
the upper-level objective function may include both upper-level and lower-level
primal variables. However, some energy applications such as GEP are formulated
as bilevel problems in which the upper-level objective function also includes
lower-level dual variables. This happens because, following economic theory, the
electricity price must be computed as the dual variable of the power balance
equation at each network node. How to extend current solution methods to take
this particularity into account is currently an open research question.

Finally, there is a general need to develop more powerful computational methods
to solve bilevel problems more efficiently. Currently, and due to the lack of adequate
computational methods, the vast majority of bilevel applications in energy do
not classify as large-scale problems. This becomes even more important when
considering stochasticity. Many existing works in the literature, e.g., [46, 52, 67, 71],
disregard the stochastic nature of many investments and operating problems.
Therefore, introducing stochasticity in many bilevel applications, and being able to
solve them efficiently still constitutes a significant challenge in bilevel optimization.

5.4 Strategic Investment in Generation and Storage Units

This section contains a numerical example of a bilevel investment model that will
demonstrate the importance of taking into account hierarchy in decision making.
A classical application of bilevel optimization in energy consists of determining
strategic investment decisions for generation and storage units participating in
a deregulated electricity market. In such a case, the upper-level maximizes the
foreseen profits obtained by the built units. Each profit is computed anticipating
the market outcomes through a lower-level problem that maximizes social welfare
while complying with the generation, storage, and network technical constraints.

In Sect. 5.1, we have reviewed a wide variety of research works that propose
to determine strategic investment models through bilevel optimization problems.
Here, in Sect. 5.4, we present a generic formulation that covers as many of these
existing varieties of models as possible. Notwithstanding this, we also aim to keep
the proposed model simple enough to be easily understood by the initiated reader.
For these reasons, we made the following simplifying assumptions:
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– Single-bus approach. It is assumed that investment decisions are to be made for
a power system in which the network hardly never gets congested. Therefore,
all network constraints are disregarded, and a single-bus representation of the
system is considered.

– Planning horizon. The planning horizon considered spans one target year. The
power system status throughout that year varies significantly depending on the
electricity demand and the renewable generation, for example. We assume that
the planning horizon is divided into a set of time periods t , whose duration is
usually 1 h.

– Generating units. Each power generating unit g is characterized by a linear
production cost CG

g , a capacity PG
g and a capacity factor ρgt . Electricity

production of thermal-based units involves a cost (CG
g > 0) and are fully

dispatchable (ρgt = 1). Conversely, the production of renewable-based units
is free (CG

g = 0) but its capacity depends on varying weather conditions
(0 ≤ ρgt ≤ 1). The subset of existing and candidate generating units are denoted
by GE and GB , respectively.

– Storage units. Each storage unit s is characterized by a capacity (PS
s ) and an

energy capacity ηs . Similarly to generating units, the subset of existing and
candidate storage units is denoted by SE and SB , respectively.

– Investment decisions. In principle, investment decisions are modeled through
binary variables ug and vs for generating and storage units, respectively.
Then, available investment projects cannot be accepted partially. Annualized
investment costs for generating and storage projects are denoted by IG

g and IS
s ,

respectively.
– Electricity demand. For each time period t the level of inflexible electricity

demand dt is assumed known. Demand can also be shed at a very high cost CS .

In this section, we first introduce a centralized planning approach in Sect. 5.4.1
that will serve as a benchmark for the strategic bilevel investment model of
Sect. 5.4.2. Since bilevel models are, in general, nonconvex models, we also show
one way to linearize such a model in Sect. 5.4.3 in order to guarantee global
optimality of solutions. An illustrative case study is presented in Sect. 5.4.4. An
alternative formulation of the strategic MPEC is briefly mentioned in Sect. 5.4.5.

Nomenclature

Indices and Sets

g Generating unit index
s Storage unit index
t Time period index
GE Subset of existing generating units
SE Subset of existing storage units
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GB Subset of generating units to be built
SB Subset of storage units to be built

Parameters

ηs Energy capacity of storage unit s (h)
ρgt Capacity factor of generating unit g and time t (p.u.)
CG

g Linear cost parameter of generating unit g (e/MWh)
Dt Demand level at time period t (MW)
IG
g Annualized investment cost of generating unit g (e)

IS
s Annualized investment cost of storage unit s (e)
PG
g Capacity of generating unit g (MW)

PS
s Capacity of storage unit s (MW)

CS Load shedding cost (e/MWh)

Variables

pG
gt Output of generating unit g in time t (MW)

pS
st Output of storage unit s and time t . Discharge/charge if positive/negative

(MW)
dt Satisfied demand in time t (MW)
est Energy level of storage unit s and time t (MWh)
ug Binary variable equal to 1 if generating unit g already exists or is built in the

current planning period, and 0 otherwise
vs Binary variable equal to 1 if storage unit s already exists or is built in the

current planning period, and 0 otherwise
λt Electricity price at time t (e/MWh)

5.4.1 Centralized Approach

Before formulating the investment problem using bilevel optimization, let us first
discuss how the problem looks if decisions are made to centrally minimize the
total operating and investment costs for the power system. For these simplifying
assumptions, model (5.4.1) formulates the centralized version of this investment
problem as a single-level mixed-integer programming problem. The complete
notation of this problem is provided in the Appendix of this chapter.
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min
ug,vs,p

G
gt ,p

S
st ,est ,dt

∑

t,g∈G
CG

g pG
gt +

∑

g∈GB

IG
g ug +

∑

s∈SB

IS
s vs +

∑

t

CS (Dt − dt )

(5.4.1a)

s.t. ug ∈ {0, 1}, ∀g (5.4.1b)

vs ∈ {0, 1}, ∀s (5.4.1c)

ug = 1, ∀g ∈ GE (5.4.1d)

vs = 1, ∀s ∈ SE (5.4.1e)
∑

g

pG
gt +

∑

s

pS
st = dt , ∀t (5.4.1f)

0 ≤ dt ≤ Dt , ∀t (5.4.1g)

0 ≤ pG
gt ≤ ugρgtP

G
g , ∀g, t (5.4.1h)

− vsP
S
s ≤ pS

st ≤ vsP
S
s , ∀s, t (5.4.1i)

est = est−1 − pS
st , ∀s, t (5.4.1j)

0 ≤ est ≤ ηsvsP
S
s , ∀s, t (5.4.1k)

Decision variables include investment decisions in new generation and storage
units (ug, vs ), output of generating and storage units (pG

gt , p
S
st ), energy level of

storage units (est ) and satisfied demand (dt ). Objective function (5.4.1a) minimizes
total operating and investment costs. Total costs include production cost (first
term), investment costs in generating and storage units (second and third term)
and load shedding cost (fourth term). Variables ug and vs are declared as binary
in (5.4.1b) and (5.4.1c), respectively. For the sake of simplicity, constraints (5.4.1d)
and (5.4.1e) prevent the decommission of any existing generating and storage units,
respectively. The power balance at each time period t is ensured by (5.4.1f). Limits
on satisfied demand, generating levels and storage output are imposed in (5.4.1g),
(5.4.1h) and (5.4.1i), respectively. Constraint (5.4.1j) keeps track of the energy
level of each storage unit, which is in turn restricted through (5.4.1k). The single-
level mixed-integer programming problem (5.4.1) can be efficiently solved to global
optimality using commercially available optimization software such as CPLEX.

5.4.2 Strategic Bilevel Approach

Since the electricity sector was liberalized, investment decisions in generating
and storage units are not centrally made to minimize costs, and therefore, single-
level optimization problem (5.4.1) is no longer valid. Instead, merchant investors
(MI) can strategically invest in these assets to maximize the obtained profits.
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This new paradigm for investment decision making can be appropriately modeled
through bilevel optimization. For the list of simplifying assumptions presented at
the beginning of this section, the strategic investment problem of one MI can be
generically formulated using the bilevel optimization problem (5.4.2).

max
ug,vs

∑

t,g∈GB

(
λt − CG

g

)
pG
gt +

∑

t,s∈SB

λtp
S
st −

∑

g∈GB

IG
g ug −

∑

s∈SB

IS
s vs

(5.4.2a)

s.t. ug ∈ {0, 1}, ∀g (5.4.2b)

vs ∈ {0, 1}, ∀s (5.4.2c)

ug = 1, ∀g ∈ GE (5.4.2d)

vs = 1, ∀s ∈ SE (5.4.2e)

min
pG
gt ,p

S
st ,est ,dt

∑

gt

CG
g pG

gt +
∑

t

CS (Dt − dt ) (5.4.2f)

s.t.
∑

g

pG
gt +

∑

s

pS
st = dt : λt , ∀t (5.4.2g)

0 ≤ dt ≤ Dt : αt , αt , ∀t (5.4.2h)

0 ≤ pG
gt ≤ ugρgtP

G
g : βgt

, βgt , ∀g, t (5.4.2i)

− vsP
S
s ≤ pS

st ≤ vsP
S
s : γ st

, γ st , ∀s, t (5.4.2j)

est = est−1 − pS
st : κst , ∀s, t (5.4.2k)

0 ≤ est ≤ ηsvsP
S
s : μst

, μst , ∀s, t (5.4.2l)

Upper-level decision variables only include now the investment decisions in new
generation and storage units, ug and vs , respectively. Besides, objective function
(5.4.2a) maximizes now the obtained revenue from such units throughout the target
year. If the electricity price for each time period t is denoted by λt , the terms of
(5.4.2a) represent the revenue of new generating and storage units (first and second
term) and the investment cost of new generating and storage units (third and fourth
term). Constraints on investment decisions ug and vs are equal to those made in
(5.4.1). The operation of the power system for each time period t is characterized
by the lower-level problem (5.4.2f)–(5.4.2l), which represents a market-clearing
algorithm. The lower-level objective function minimizes the cost of production costs
plus load shedding costs subject to the same technical constraints of generating and
storage constraints employed in (5.4.1). Notice that dual variables for each lower-
level constraint are added to the formulation after a colon. As customary, the dual
variable of the power balance constraint represents the marginal electricity price
[66].
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Although formulation (5.4.2) may not seem very different from (5.4.1) since they
share all constraints, the procedure to obtain the optimal global solution for each
case are indeed quite different. While (5.4.1) can be solved using available mixed-
integer optimization software without any further ado, model (5.4.2) needs to be
first reformulated as an equivalent single-level optimization problem as explained
next.

For fixed values of upper-level variables ug, vs , the lower-level optimization
problem is convex and satisfies the Slater condition and therefore, the KKT
conditions are necessary and sufficient for optimality [6]. This means that the lower-
level optimization problem (5.4.2f)–(5.4.2l) can be replaced by its KKT optimality
conditions (5.4.3).

∑

g

pG
gt +

∑

s

pS
st = dt , ∀t (5.4.3a)

0 ≤ dt ≤ Dt , ∀t (5.4.3b)

0 ≤ pG
gt ≤ ugρgtP

G
g , ∀g, t (5.4.3c)

− vsP
S
s ≤ pS

st ≤ vsP
S
s , ∀s, t (5.4.3d)

est = est−1 − pS
st , ∀s, t (5.4.3e)

0 ≤ est ≤ ηsvsP
S
s , ∀s, t (5.4.3f)

− CS
g + λt − αt + αt = 0, ∀t (5.4.3g)

CG
g − λt − β

gt
+ βgt = 0, ∀g, t (5.4.3h)

− λt − γ
st
+ γ st + κst = 0, ∀s, t (5.4.3i)

κst − κst+1 − μ
st
+ μst = 0, ∀s, t < T (5.4.3j)

κsT − μ
sT
+ μsT = 0, ∀s (5.4.3k)

αt , αt , βgt
, βgt , γ st

, γ st , μst
, μst ≥ 0, ∀g, s, t (5.4.3l)

dtαt = 0, ∀t (5.4.3m)

(dt −Dt) αt = 0, ∀t (5.4.3n)

pG
gtβgt

= 0, ∀g, t (5.4.3o)
(
pG
gt − ugρgtP

G
g

)
βgt = 0, ∀g, t (5.4.3p)

(
pS
st + vsP

S
s

)
γ

st
= 0, ∀s, t (5.4.3q)

(
pS
st − vsP

S
s

)
γ st = 0, ∀s, t (5.4.3r)
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estμst
= 0, ∀s, t (5.4.3s)

(
est − ηsvsP

S
s

)
μst = 0, ∀s, t (5.4.3t)

Equations (5.4.3a)–(5.4.3f) ensure primal feasibility. The stationary conditions
for each primal variable is ensured through (5.4.3g)–(5.4.3k). Dual feasibility is
imposed by constraints (5.4.3l). Finally, constraints (5.4.3m)–(5.4.3t) represent the
complementarity conditions. It can be observed that the complementarity conditions
include the product of two continuous variables. Therefore, if the lower-level
problem (5.4.2f)–(5.4.2l) is replaced by (5.4.3), the rendered optimization problem
would be highly nonconvex and global optimality would not be guaranteed. This is
a common problem in bilevel programming.

In order to overcome this difficulty, complementarity conditions can be equiv-
alently replaced by the strong duality equation (5.4.4a) [80]. This implies that the
optimality conditions of the lower-level problem (5.4.3a)–(5.4.3t) can be replaced
by (5.4.4).

∑

gt

CG
g pG

gt +
∑

t

CS (Dt − dt ) = −
∑

t

(
αt − CS

)
Dt −

∑

gt

βgtugρgtP
G
g −

∑

st

γ
st
vsP

S
s −

∑

st

γ stvsP
S
s −

∑

st

μstvsηsP
S
s (5.4.4a)

(5.4.3a)− (5.4.3l) (5.4.4b)

5.4.3 Linearization of MPEC

Notice that strong duality equality constraint (5.4.4a) includes the product of
continuous and binary variables which can be linearized as follows assuming valid
upper and lower bounds of the continuous variables [21]:

∑

gt

CG
g pG

gt +
∑

t

CS (Dt − dt ) = −
∑

t

(
αt − CS

)
Dt −

∑

gt

(
βgt − β

aux
gt

)
ρgtP

G
g −

∑

st

(
γ

st
− γ aux

st

)
PS
s −

∑

st

(
γ st − γ aux

st

)
PS
s −

∑

st

(
μst − μaux

st

)
ηsP

S
s

(5.4.5a)

ugβ
min
gt ≤ βgt − β

aux
gt ≤ ugβ

max
gt , ∀g, t (5.4.5b)

(1− ug)β
min
gt ≤ β

aux
gt ≤ (1− ug)β

max
gt , ∀g, t (5.4.5c)

vsγ
min
st
≤ γ

st
− γ aux

st
≤ vsγ

max
st

, ∀s, t (5.4.5d)

(1− vs)γ
min
st
≤ γ aux

st
≤ (1− vs)γ

max
st

, ∀s, t (5.4.5e)



5 Applications of Bilevel Optimization in Energy and Electricity Markets 159

vsγ
min
st ≤ γ st − γ aux

st ≤ vsγ
max
st , ∀s, t (5.4.5f)

(1− vs)γ
min
st ≤ γ aux

st ≤ (1− vs)γ
max
st , ∀s, t (5.4.5g)

vsμ
min
st ≤ μst − μaux

st ≤ vsμ
max
st , ∀s, t (5.4.5h)

(1− vs)μ
min
st ≤ μaux

st ≤ (1− vs)μ
max
st , ∀s, t (5.4.5i)

(5.4.3a)− (5.4.3l) (5.4.5j)

If we now replace the lower-level problem (5.4.3a)–(5.4.3t) by its optimality
conditions (5.4.5), then the MPEC given by (5.4.2) can we written as the equivalent
single-level optimization problem (5.4.6). The mathematical format of (5.4.6) would
be a mixed integer nonlinear program (MINLP).

max
ug,vs

∑

t,g∈GB

(
λt − CG

g

)
pG
gt +

∑

t,s∈SB

λtp
S
st −

∑

g∈GB

IG
g ug −

∑

s∈SB

IS
s vs

(5.4.6a)

s.t. ug ∈ {0, 1}, ∀g (5.4.6b)

vs ∈ {0, 1}, ∀s (5.4.6c)

ug = 1, ∀g ∈ GE (5.4.6d)

vs = 1, ∀s ∈ SE (5.4.6e)

(5.4.3a)− (5.4.3l) (5.4.6f)

(5.4.5a)− (5.4.5i) (5.4.6g)

Although all constraints of (5.4.6) are now linear, the objective function includes
nonlinear terms λtp

G
gt and λtp

S
st . In order to solve this problem computationally

efficiently, it is desirable to convert the current MINLP (5.4.6) into a MILP. To that
purpose, we must linearize the nonlinear terms in the objective function.

Let us first linearize the profit obtained by each generating unit
∑

t

(
λt − CG

g

)
pG
gt

using some of the optimality conditions of the lower-level problem as follows [58]:
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gt

(5.4.3i)=
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gt
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((5.4.3o), (5.4.3p))=
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t

0+ ugβgtρgtP
G
g =

∑

t

(
βgt − β

aux
gt

)
ρgtP

G
g (5.4.7)
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Similarly, we use next other set of optimality conditions of the lower-level
problem to linearize the revenue obtained by each storage unit s as follows:

∑

t

λtp
S
st

(5.4.3i)=
∑

t

(
−γ

st
+ γ st + κst

)
pS
st
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γ st vsP
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s +
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κstp
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st
− γ aux

st

)
PS
s +

∑

t

(
γ st − γ aux

st

)
PS
s +

∑

t

κstp
S
st (5.4.8)

According to (5.4.8), the profit obtained by a storage unit s can be computed
as the sum of three terms. While the two first terms do not include any product of
variables, the third one does. We continue using optimality conditions to linearize
the last term of (5.4.8) as follows:

∑

t

κtp
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S
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κstp
S
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((5.4.3j), (5.4.3k))=
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st

)
ηsP

S
s (5.4.9)

Using (5.4.7), (5.4.8) and (5.4.9) in objective function (5.4.6a), we obtain the
following equivalent single-level MIP reformulation of the original bilevel problem
(5.4.2):

max
ug,vs
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(5.4.10a)

s.t. ug ∈ {0, 1}, ∀g (5.4.10b)

vs ∈ {0, 1}, ∀s (5.4.10c)

ug = 1, ∀g ∈ GE (5.4.10d)

vs = 1, ∀s ∈ SE (5.4.10e)

(5.4.3a)− (5.4.3l) (5.4.10f)

(5.4.5a)− (5.4.5i) (5.4.10g)
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Table 5.1 Demand and solar capacity factor profiles for the representative day

t01 t02 t03 t04 t05 t06 t07 t08 t09 t10 t11 t12

Demand (p.u.) 0.65 0.60 0.50 0.28 0.31 0.46 0.65 0.74 0.79 0.86 0.88 0.82

Solar (p.u.) 0.00 0.00 0.00 0.00 0.03 0.35 0.51 0.59 0.58 0.51 0.23 0.54

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

Demand (p.u.) 0.69 0.59 0.56 0.66 0.79 0.94 1.00 0.98 0.88 0.75 0.69 0.65

Solar (p.u.) 0.28 0.34 0.45 0.69 0.70 0.61 0.32 0.02 0.00 0.00 0.00 0.00

Given valid bounds on some dual variables of the lower-level problem, opti-
mization problem (5.4.10) is an equivalent single-level mixed-integer reformulation
of the original bilevel problem (5.4.2) and can thus be solved using commercial
software as CPLEX.1 Importantly, this reformulation does not require additional
binary variables, and then its computational complexity is comparable to that of its
centralized version formulated in (5.4.1). However, it is important to bring to light
that finding such valid bounds on dual variables is proven to be NP-hard even for
linear bilevel problems [35]. Although some heuristic methods have been proposed
to determine bounds of dual variables in a reasonable time, caution must always
be exercised when claiming that the optimal global solution of (5.4.10) is also an
optimal global solution of (5.4.2). In other words, if the selection of these bounds
artificially limits the dual variables, the equivalence between the original bilevel
problem and the single-level reformulation is no longer valid.

5.4.4 Illustrative Case Study

Next, we present an illustrative example to show the different outcomes of the
centralized investment model (5.4.1) and the strategic investment model (5.4.2).
For the sake of simplicity, the planning period spans a single target year, and the
variability of the operating conditions is captured by a single representative day.
Table 5.1 provides the electricity demand and the solar capacity factor for such
a representative day. Finally, peak demand and load shedding costs are equal to
1000 MW and 300e/MWh.

For the sake of illustration, we assume a greenfield approach, i.e., no initial
generating capacity is considered. We consider three different technologies:

• Thermal power generation consisting of combined cycle gas turbine (CCGT)
units with a capacity of 100 MW, a linear production cost of 60e/MWh, and an
annualized investment cost of 42,000e/MW. Failures of thermal units are not
considered and therefore ρgt = 1.

1The GAMS code of the linearized MPEC can be downloaded at https://github.com/datejada/
SIGASUS.

https://github.com/datejada/SIGASUS
https://github.com/datejada/SIGASUS
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• Solar power generating consisting of solar farms with a capacity of 100 MW, a
variable production cost equal to 0e/MWh, and an annualized investment cost
of 85,000e/MW. The capacity factor of these units is provided in Table 5.1.

• Energy storage consisting of Lithium-Ion batteries with a power capacity of
100 MW, the discharge time of 4 h, and an annualized investment cost of
4000e/MW, which is associated with a low-cost projection of this technology
in the following years.

Table 5.2 contains the capacities of each technology determined by the central-
ized and strategic investing models (5.4.1) and (5.4.2) together with the investment,
operating and total costs, the average price and the profit obtained by the power
producer. The numerical results collated in Table 5.2 are obtained by solving the
corresponding models with a mixed-integer optimization solver such as CPLEX.
These results allow us to draw the following conclusions:

• The MI withholds thermal and solar capacity to create scarcity in the system,
which causes the total investment costs to be higher in the centralized approach.

• The lack of capacity investment of the MI leads to some demand shedding,
which, in turn, increases the operating costs if compared with the centralized
approach.

• If the investor behaves strategically, the total cost obtained is significantly higher
due to the exercise of market power.

• In the strategic approach, the electricity price is always equal to CS due to the
load shedding actions caused by the limited investments in generation.

• The power producer profit is much higher for the strategic approach because of
the price increase caused by withholding generating capacity.

• A centralized planner would have never captured the fact that a MI strategically
withholds capacity to drive up market prices (and even cause load shedding) in
order to increase profits.

• Bilevel models provide invaluable insight when exploring the strategic behavior
of agents in electricity markets.

Table 5.2 Result
comparison for strategic and
centralized approach

Strategic Centralized

Thermal capacity (MW) 600 700

Solar capacity (MW) 300 1000

Storage capacity (MW) 400 300

Load shedding (%) 1.8 0

Investment costs (Me) 52 116

Operating costs (Me) 348 218

Total costs (Me) 400 334

Average price (e/MWh) 300 60

Power producer profit (Me) 1431 32
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5.4.5 Alternative Formulation

For the sake of simplicity, we considered discrete investment decisions in this
section. This makes sense for large thermal-based generating units that take
advantage of the economy of scale. For example, most nuclear power plants have
a capacity of 1000 MW approximately. On the contrary, investment in renewable-
based power plants such as wind or solar farms allows for a broader range of
economically profitable capacities. Hence, one may argue that investment decisions
for some projects should be considered as continuous variables. Although this may
look like a small variation, it completely changes both the procedure to obtain the
equivalent single-level optimization problem and the computational burden of the
solution strategy.

Let us revisit the strong duality condition (5.4.4a). If ug and vs are continuous
variables, the products βgtug, γ

st
vs , γ stvs and μstvs cannot be linearized as

explained in [21]. Therefore, replacing the complementarity conditions by the strong
duality condition does not imply any modeling advantage. Alternatively, we can use
the method proposed in [22] to reformulate the KKT conditions (5.4.3a)–(5.4.3t) as
follows:

(5.4.3a)− (5.4.3l) (5.4.11a)
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t α

max
t , ∀t (5.4.11b)

dt ≤ (1− v1
t )M

1, ∀t (5.4.11c)
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μst ≤ v8
stμ

max
st , ∀s, t (5.4.11p)

ηsvsP
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Additionally, the procedure to linearize the profit (5.4.2a) using optimality
conditions is not valid either. Therefore, replacing the lower-level (5.4.2f)–(5.4.2l)
by (5.4.11) leads to the following single-level optimization problem:

max
ug,vs
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g

)
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gt +

∑
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∑
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∑
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(5.4.12a)

s.t. ug ∈ {0, 1}, ∀g (5.4.12b)

vs ∈ {0, 1}, ∀s (5.4.12c)

ug = 1, ∀g ∈ GE (5.4.12d)

vs = 1, ∀s ∈ SE (5.4.12e)

(5.4.11) (5.4.12f)

Optimization problem (5.4.12) is significantly more complicated than (5.4.10)
because: it includes a nonconvex objective function and therefore, globally optimal
solutions can hardly ever be guaranteed; the nonconvex term in the objective
function could be linearized by discretizing price, for example, however, this yields
another problem of loss of feasible (and potentially optimal) solutions; it requires
a large number of additional binary variables v1

t , v2
gt , v3

gt , v4
gt , v5

st , v6
st , v7

st , v8
st ;

it requires additional valid bounds on dual variables αt , αt , β
gt
, μ

st
; it requires

additional large enough constants M1, M2, M3, M4, M5, M6, M7, M8.
Hence, investigating methods to efficiently solve single-level reformulations of

bilevel problems such as (5.4.12) is one of the current challenges discussed in
Sect. 5.3.

5.5 Conclusions

This chapter provides a general overview of the many applications of bilevel
optimization in energy and electricity markets, ranging from transmission and
generation expansion planning, to strategic scheduling and bidding, to numerous
applications involving energy storage, to natural gas markets, to TSO-DSO inter-
actions or even to electric vehicle aggregators. After a brief discussion on available
solution methods for bilevel programs, we point out the specific challenges of bilevel
optimization in energy, topics such as: handling the nonconvexity of the full AC
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OPF formulation; incorporating storage technologies and inter-temporal constraints,
which are closely linked to the representation of time in and the computational
complexity of power system models; incorporating UC constraints involving binary
variables in lower levels of bilevel problems; developing computational methods to
solve bilevel problems more efficiently; and, extending them to include stochastic-
ity.

In order to demonstrate the important insights that can be gained from bilevel
problems, we present an application of a strategic agent that can invest in thermal,
renewable and storage units while considering the feedback from a perfectly
competitive market. We formulate the arising MPEC of such a merchant investor
and show how to linearize it efficiently. In an illustrative example we compare
the strategic investment decisions to the ones of a centralized planner and identify
that a strategic agent has incentives to withhold capacity in order to raise market
prices. Such behavior could not have been captured by a centralized planning model.
This simple example perfectly illustrates that bilevel models are extremely useful
to capture trends and decisions made by strategic agents in energy and electricity
markets.
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Chapter 6
Bilevel Optimization of Regularization
Hyperparameters in Machine Learning

Takayuki Okuno and Akiko Takeda

Abstract Most of the main machine learning (ML) models are equipped with
parameters that need to be prefixed. Such parameters are often called hyperparam-
eters. Needless to say, prediction performance of ML models significantly relies on
the choice of hyperparameters. Hence, establishing methodology for properly tuning
hyperparameters has been recognized as one of the most crucial matters in ML. In
this chapter, we introduce the role of bilevel optimization in the context of selecting
hyperparameters in regression and classification problems.

Keywords Machine learning · Hyperparameter optimization · Nonsmooth
bilevel optimization · Sparse regularizer · �q -regularizer

6.1 Introduction

Bilevel optimization is to minimize a given real-valued function subject to con-
straints related to an optimal solution set of another optimization problem. Many
problems arising from various fields can be formulated as bilevel optimization
problems. In this chapter, we introduce the role of bilevel optimization in the
context of Machine Learning (ML) for, in particular, selecting regularization
hyperparameters of ML problems (or models).

One of the main tasks of ML is, from given data, to design a model, which,
thanks to the generalization mechanism, can predict the future. For this purpose, ML
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researchers have developed many efficient learning algorithms that are able to deal
with huge amounts of data and, moreover, show robust performance even when the
data contains some noise or lacks full information. Such learning algorithms often
admit parameters that are tuned by the users manually. These parameters are called
hyperparameters. They play an important role in allowing for a high prediction
performance. If the hyperparameters are tuned properly, the predictive performance
of the learning algorithms will be increased.

We can find various kinds of hyperparameters depending on ML problems. For
example, the hyperparameters of a deep learning problem can be architectures of the
deep neural networks, forms of the activation functions, and step size rules (see e.g.,
[1, 2], and the references therein). In decision tree approaches, the hyperparameters
are the total number of leaves in the tree, the height of the tree, the minimum leaf
split size, the number of leaves in each level of the tree. In this chapter, we will
pay particular attention to so-called regularization hyperparameters that appear in
regression and classification problems.

6.1.1 Regression and Classification Problems
and Regularization Hyperparameters

Regression and classification are central tasks in supervised learning aimed at
learning a mapping function from the input to the output data based on the data
already labeled. We shall start by introducing the problem setting and the notation
used throughout this chapter. Let X ⊂ R

n be the input domain and suppose
that a set of binary labels {+1,−1} and the real space R are the output domains
for classification and regression, respectively. The observed training samples are
denoted by (xi , yi) ∈ X × {+1,−1} or (xi , yi) ∈ X × R, for i = 1, . . . ,mtr with
mtr ∈ N.

A decision function fw : X → R, which is parameterized by a vector w =
(w1, w2, . . . , wn)

" ∈ R
n, is estimated from the training samples. For instance, fw

is often set to be x"w for the input vector x ∈ R
n. The classification label of the

input x is predicted by sign(fw(x)), where sign is defined by sign(ξ) := 1 if ξ ≥ 0
and −1 otherwise, while the regression output is predicted by fw(x). Then, the
goal of the classification/regression problem is to find w, i.e., fw, such that the total
prediction error for unseen test samples is minimized. Vapnik’s risk minimization
theory provides us with a deep insight into the estimation of fw from statistical
learning theory. For example, see [3].

For finding such w, we often solve optimization problems of the following form:

min
w∈C

{

g(w)+
r∑

i=1

λiRi(w)

}

, (MLopt)

where C ⊆ R
n is a closed set and g : Rn → R and Ri : Rn → R (i = 1, 2, . . . , r)

are functions called loss function and regularization functions, respectively.
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Moreover, λi > 0 (i = 1, 2, . . . , r) are the regularization hyperparameters of
our interest in this chapter. The loss function g is utilized to represent how well the
function fw fits the training samples {(xi , yi)}mtr

i=1 and it is usually constructed from
those training samples. Solely minimizing g leads to fw fitting the training samples
quite well, but possibly not other samples, thus suffering from poor generalization
capabilities. This phenomenon is often called overfitting and such fw is said to be
too complex. The regularization functions Ri (i = 1, 2, . . . , r) are given to avoid
this overfitting-effect by penalizing too complex functions fw.

The problem (MLopt) has two objectives. We want to fit the decision function fw

to the training samples well, but, on the other hand, we want to avoid too complex fw

by keeping the regularization small. The hyperparameters (λ1, λ2, . . . , λr )
" =: λ

define a trade-off between these two objectives. We illustrate how the trade-off
occurs in Fig. 6.1, where we plot the training samples (depicted by the filled circles)
together with fw (depicted by the curves) obtained by solving (MLopt) with three
values of λ. For the case of λ = 0 (the top-left figure), we can see that fw takes
a complex form so that it fits with zero error as many training samples as possible
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Fig. 6.1 Impact of the hyperparameter λ on w = (w1, w2, · · · , wn) for fitting the n (=21)-th
order polynomial fw(x) = w1 + w2x + w3x

2 + w4x
4 + . . . + wnx

n−1 via ridge regression, that
is, by solving (MLopt) with C = R

n, r = 1, g being the �2-loss function, and R1 being the �2
regularizer
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(overfitting). On the other hand, if λ > 0 (the bottom and top-right figures), the
number of sample points which fw fits decreases, but the form of fw becomes
simpler. So, to avoid overfitting the given data samples and to enhance the prediction
performance of (MLopt), a proper choice of the hyperparameters λ is needed.

There are various kinds of loss functions. Among them, typical examples of the
function g are as follows:

Examples of the Loss Function g

(A) Loss functions for regression with training samples (xi , yi) ∈ R
n×R, i =

1, . . . ,mtr :

• �2-loss: g(w) :=∑mtr

i=1(yi − fw(xi ))
2

• Huber-loss [4]: g(w) :=∑mtr

i=1 gδ
i (w), where δ > 0 is prefixed and

gδ
i (w) :=

{
(yi − fw(xi ))

2 if fw(xi ) ∈ [yi − δ, yi + δ]
2δ(|yi − fw(xi )| − δ

2 ) otherwise

for each i = 1, 2, . . . ,mtr .
• ε-insensitive loss: g(w) := ∑mtr

i=1 max(|yi − fw(xi )| − ε, 0), where
ε > 0 is prefixed.

• τ -quantile loss:

g(w) :=
mtr∑

i=1

((1− τ )max(fw(xi )− yi, 0)+ τ max(yi − fw(xi ), 0)) ,

where τ ∈ (0, 1) is prefixed.

(B) Loss functions for classification with training samples (xi , yi) ∈ R
n ×

{+1,−1}, i = 1, . . . ,mtr :

• Logistic loss: g(w) =∑mtr

i=1 log(1+ exp(−yifw(xi ))).
• Hinge loss: g(w) =∑mtr

i=1 max(1− yifw(xi ), 0).
• Smoothing Hinge loss: g(w) = ∑mtr

i=1 gi(w), where for each i =
1, 2, . . . ,mtr ,

gi(w) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if yifw(xi ) ≥ 1
1
2 − yifw(xi ) if yifw(xi ) < 0
1
2 (1− yifw(xi ))

2 otherwise
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Let us list typical examples of regularizers below. See Figs. 6.2 and 6.3 for
illustration.

Examples of
∑r

i=1 λiRi(w)

(A) Regularizers including the �p function ‖w‖pp :=∑n
i=1 |wi |p for p (> 0)

as below:

• �1 regularizer: λ1‖w‖1
• �2 regularizer: λ1‖w‖22
• �q regularizer: λ1‖w‖qq with 0 < q < 1.
• Elastic net regularizer [5]: λ1‖w‖1 + λ2‖w‖22.

(B) The following regularizers are also popular:

• SCAD (smoothly clipped absolute deviation) regularizer [6]:
λ1

∑n
j=1 r

η,a
j (wj ), where η > 0, a > 1, and

r
η,a
j (wj ) :=

⎧
⎪⎪⎨

⎪⎪⎩

η|wj | if |wj | ≤ η

−|wj |2−2aη|wj |+η2

2(a−1) if η ≤ |wj | ≤ aη

(a+1)η2

2 otherwise.

• MCP (minimax concave penalty) regularizer [7]: λ1
∑n

j=1 p
η,a
j (wj ),

where η > 0, a > 1, and

p
η,a
j (wj ) :=

⎧
⎨

⎩
η|wj | − w2

j

2a if |wj | ≤ aη
aη2

2 otherwise.

When fw(x) = x"w, g is the �2-loss function and R1 is the �2 regularizer,
the problem (MLopt) is called ridge regression model. Since the �2 regularizer has
the effect of avoiding overfitting (see Fig. 6.1 again), the ridge model is able to
achieve a high prediction accuracy as a result. But, on the other hand, this model
suffers from the drawback that it is hard to discern which feature has a significant
meaning in the generation mechanism of the data. Lasso (least absolute shrinkage
and selection operator) model [8], which is obtained by replacing the �2-regularizer
in the ridge model with the �1 regularizer, was proposed to address the issue. Indeed,
Lasso shrinks some of the coefficients , w, of the less important features to zero thus
removing some features altogether, while the �2 regularizer does not remove most
of the features.
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Fig. 6.2 �1, �2, �0.5 with n = 1 and λ1 = 1

Besides Lasso, many regularizers have been developed so far. The elastic net
regularizer was proposed in [5] to mitigate some limitations of Lasso, e.g., Lasso is
often outperformed by ridge regression if there exists some correlation among the
features. Moreover, in the last decade, nonconvex regularizers such as �q , SCAD and
MCP have attracted much attention among the researchers in ML, signal processing,
and image processing. This is because, in comparison with convex regularizers
including the �1, �2 and elastic net regularizers, these nonconvex regularizers
show superior performance in gaining a sparse solution, namely, w with many zero
components. In particular, (MLopt) equipped with such nonconvex regularizers is
often called a sparse model. For a comprehensive survey of nonconvex regularizers,
see the survey article [9].

6.1.2 Hyperparameter Optimization

In (MLopt), the solution w would differ as hyperparameter values of λ vary.
Accordingly, in predicting unseen test samples, the performance of fw changes.
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Fig. 6.3 SCAD, Elastic net, MCP with n = 1 and (λ1, λ2) = (1, 0.5)

Hence, finding good hyperparameters, in the sense that fw has high prediction
performance, is a crucial issue in ML. The task of finding as good as possible values
of the hyperparameters is often referred to as hyperparameter optimization [10].

In supervised learning, for the hyperparameter optimization, there are a few
methods as described in the next subsection. A common technique underlying those
methods is as follows (Also, see Fig. 6.4.):

1. Given a data set consisting of observed sample data, divide it into three sets:
train, validation, and test sets.

2. Consider (MLopt) with a loss function gtr , called training error function, defined
on the train set and solve it for various values of λ. For each tried λ, denote an
obtained solution of (MLopt) by wλ.

3. Consider a loss function gval defined on the validation set and select the best
(λ∗,wλ∗) such that gval(wλ), called validation error function, is minimized.

For measuring the quality of the obtained (λ∗,wλ∗), we use a loss function gte(w),
called test error function, which is defined on the test set.
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Fig. 6.4 Train set and validation set are inputs of our model

6.1.3 Existing Hyperparameter Tuning Methods

The most popular method for the hyperparameter optimization is grid search. For
example, see [10]. The method is to train a learning model using training data for
all values of the hyperparameters on a prechosen grid (i.e., a specified finite subset
of the hyperparameter space) sequentially or preferably in parallel, and choose the
best one with the highest prediction accuracy when tested on the validation data
with, e.g., cross validation [10]. Cross-Validation is performed by splitting learning
data (train set + validation set) into M subsets with almost the same size and using
one subset for validation and the other M − 1 subsets as train set. By changing
the train and validation set among M subsets, machine learning problems such as
(MLopt) can be trained M times and the best parameter values λ in terms of the
average validation error can be chosen.

There is another technique for hyperparameter optimization, random search [11],
that evaluates learning models for randomly sampled hyperparameter values or
more sophisticated method called Bayesian optimization [12, 13]. To find fwλ

with good prediction performance, it is reasonable to minimize the validation error
f̄ (λ) := gval(wλ) in hyperparameters λ. Here, wλ is regarded as a function of
λ. However, in general, we do not know an explicit expression of f̄ in terms of
λ, although we can obtain its value for given λ by computing a corresponding
wλ. Therefore, it is difficult to minimize f̄ in the λ-space using an algorithm
exploiting functional information such as the gradient of f̄ w.r.t λ. For such a black-
box (meaning unknown) objective function f̄ , Bayesian optimization algorithms
try to minimize f̄ with exploration (i.e., the acquisition of new knowledge) and
exploitation (i.e., the use of existing knowledge to drive improvement). They use
previous observations f̄ (λ) of the function at some hyperparameter values λ to
determine the next point λ+ to evaluate based on the assumption that the objective
function can be described by a Gaussian process as a prior. For more detail on the
Bayesian optimization technique used for minimizing f̄ , see, e.g., [13, 14].



6 Bilevel Optimization of Regularization Hyperparameters in Machine Learning 177

6.1.4 Formulation as a Bilevel Optimization Problem

The procedure 1–3 of hyperparameter optimization explained in Sect. 6.1.2 can be
naturally formulated as the following bilevel optimization problem comprising the
training error function gtr and validation error function gval that are defined in
procedure 2–3:

min
wλ,λ

gval(wλ)

s.t. wλ ∈ arg min
w∈C

{

gtr(w)+
r∑

i=1

λiRi(w)

}

,

λ ≥ 0.

(6.1.1)

We note that, when considering hyperparameter selection with a measure of
the validation error gval , the above bilevel problem is the optimization problem
that we aim at solving although implicitly. Crucially, many existing methods for
hyperparameter selection can be viewed as heuristic methods tackling this bilevel
problem implicitly.

The article [15] pioneered the idea of the bilevel approach for hyperparameter
optimization. Since then, many researchers have advanced in this direction for
optimizing hyperparameters in various kinds of ML models. For example, refer to
articles [16–28].

An advantage of the bilevel optimization approach is that it is able to seek
good hyperparameters continuously by means of continuous optimization methods
such as a sequential quadratic programming method [29]. On the other hand,
grid search is simple and fast, but it merely searches a finite discretized set
given by the users a priori. As to Bayesian optimization, it looks for the best
hyperparameters continuously as well as the bilevel approach. However, the number
of hyperparameters Bayesian optimization is able to handle is not so large in practice
and the method tends to be inefficient (see, e.g., [1] and Section 2.10 in [30] in
addition to the numerical examples shown in Sect. 6.3.5) because it tries to find a
global optimal solution.

6.1.5 Organization of this Chapter

The remaining part of this chapter is organized as follows. In Sect. 6.2, we
overview relevant works on bilevel approaches to the hyperparameter optimization.
In Sect. 6.3, we introduce the authors’ recent work about a bilevel approach for �p-
hyperparameter optimization with 0 < p ≤ 1 in detail. Particularly, we give scaled
bilevel Karush-Kuhn-Tucker (KKT) conditions that are optimality conditions for the
obtained bilevel optimization problem. In addition, we introduce a smoothing-type
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method generating a sequence converging to a point satisfying the scaled bilevel
KKT conditions. In Sect. 6.4, we conclude this chapter with some remarks.

6.1.6 Notations

In this chapter, we often denote the vector z ∈ R
d by z = (z1, z2, . . . , zd )

". For
a set of vectors {vi}i∈I ⊆ R

m with I := {i1, i2, . . . , ip}, we define (vi )i∈I :=
(vi1, vi2 , . . . , vip ) ∈ R

m×p.
For a differentiable function h : Rn → R, we denote the gradient function from

R
n to R

n by ∇h, i.e., ∇h(x) := (
∂h(x)
∂x1

, . . . ,
∂h(x)
∂xn

)" ∈ R
n for x ∈ R

n, where
∂h(x)
∂xi

stands for the partial differential of h with respect to xi for i = 1, 2, . . . , n. To

express the gradient of h with respect to a sub-vector x̃ := (xi)
"
i∈I of x with I :=

{i1, i2, . . . , ip} ⊆ {1, 2, . . . , n}, we write ∇x̃h(x) :=
(

∂h(x)
∂xi1

,
∂h(x)
∂xi2

, . . . ,
∂h(x)
∂xip

)" ∈
R
|I |. We often write ∇g(x)|x=x̄ (∇x̃g(x)|x=x̄) or ∇h(x̄) (∇x̃h(x̄)) to represent the

(partial) gradient value of g at x = x̄. Moreover, when h is twice differentiable, we

denote the Hessian of h by ∇2h : Rn → R
n×n, i.e., ∇2h(x) :=

(
∂2h(x)
∂xi∂xj

)

1≤i,j≤n ∈
R

n×n.

6.2 Existing Works on Bilevel Approaches
to Hyperparameter Optimization

In this section, we briefly summarize the bilevel approaches for hyperparameter
optimization that were studied in [15, 21].

6.2.1 MPEC Approach to SVR

Given the mtr training samples {(xi , yi)}mtr

i=1 ⊆ R
n × R, consider the following

support-vector-regression (SVR) problem:

min
w≤w≤w

{
mtr∑

i=1

max(|yi − x"i w| − ε, 0)+ λ

2
‖w‖22

}

,

where w,w ∈ R
n and ε > 0 are given. The parameter ε is called the tube parameter.

The second-term is the ε-insensitive loss introduced in Sect. 6.1, and λ > 0 is a
regularization hyperparameter.
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For hyperparameter selection, we use mval validation samples {(x̃i , ỹi)}mtr

i=1 ⊆
R

n ×R and set a validation error function gval(w) :=∑mval

i=1 |x̃"i w− ỹi | in (6.1.1).
Then, we obtain the following bilevel optimization problem:

min
wλ,λ

mval∑

i=1

|x̃"i wλ − ỹi |
s.t. λ ≥ 0

wλ ∈ arg min
w≤wλ≤w

{
mtr∑

i=1

max(|yi − x"i wλ| − ε, 0)+ λ

2
‖wλ‖22

}

.

(6.2.1)

Note that the lower-level problem is convex, but includes nonsmooth functions. In
particular, when λ > 0, it is strongly convex due to λ‖wλ‖22/2 and thus wλ is
uniquely determined. By use of slack variables and further replacing the lower-
level problem with its Karush-Kuhn-Tucker conditions, the problem can be finally
reformulated as a mathematical programming problem with equilibrium constraints
(MPEC) [31] such that the included functions are all smooth.

In [15], Bennett et al. further integrated the cross validation technique into the
problem (6.2.1) to obtain a more sophisticated formula. Also, the hyperparameters
they actually handled are not restricted to the class of regularization hyperpa-
rameters, i.e., λ. They also include a wider class of hyperparameters such as
upper and lower bounds w,w of the interval constraint and the tube parameter
ε. Such flexibility is a notable advantage of the bilevel formulation. They solved
the obtained MPEC via a relaxation technique transforming the problem into a
nonlinear optimization problem without complementarity constraints.

6.2.2 Newton-type Methods for �p-hyperparameter
Optimization with p = 1, 2

In the context of image processing, in [21], Kunisch and Pock considered the �p-

regularized squared regression problem minw

{
1
2‖w − f ‖22 + 1

r

∑r
i=1 λi‖Kiw‖pp

}
,

which was referred to as a variational model therein. Here, Ki ∈ R
m×n for

i = 1, 2, . . . , r and λ := (λi)
r
i=1 ∈ R

r . The term ‖Kiw‖pp can enforce a certain
structural sparsity on the coefficients in the solution w. For example, with an
appropriate Ki, ‖Kiw‖pp can express

∑n
i=2 |wi − wi−1|p, which penalizes the

absolute differences in adjacent coordinates of w. This specific ‖Kiw‖1 leads to the
so-called fused Lasso [32]. To determine an optimal λ, they derived the following
bilevel problem:
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min
wλ,λ

‖wλ − g‖22

s.t. wλ ∈ arg min
w

{
1

2
‖w − f ‖22 +

1

r

r∑

i=1

λi‖Kiw‖pp
}

λ ≥ 0.

(6.2.2)

The authors considered the above problem with p = 1, 2 and proposed algorithms
for each case. When p = 2, the lower level problem is smooth and strongly convex.
Since the lower level problem has the unique minimizer

wλ = (
2

r

∑

i=1

λiK
"
i Ki + I)−1f

with I ∈ R
n×n being an identity matrix, the problem (6.2.2) is equivalent to

min
λ≥0

⎧
⎪⎨

⎪⎩
ĝval(λ) :=

∥∥
∥
∥
∥
∥

(
2

r

∑

i=1

λiK
"
i Ki + I

)−1

f − g

∥∥
∥
∥
∥
∥

2

2

⎫
⎪⎬

⎪⎭
,

which reduces to solving the following nonsmooth equations obtained via the KKT
conditions:

∇ĝval(λ)− η = 0, η −max(η − λ, 0) = 0.

For solving this equation, the authors in [21] proposed a semismooth Newton
method and analyzed its superlinear convergence property in detail.

For the case of p = 1, the lower-level problem is strongly convex, but nons-
mooth. As a remedy, the authors employed smoothing approximation techniques
(called regularization therein) to the absolute value function | · |. Specifically, they
used the smoothing function nε : R→ R defined as

nε(t) :=
{
− 1

8ε3 t
4 + 3

ε
t2 + 3ε

8 if |t| < ε,

|t| else,

where ε > 0 is a parameter. The function nε is twice continuously differentiable
and satisfies n′′ε (t) ∈ [0, 3

2ε ] and nε ≥ 1 for all t ∈ R. Then, they considered the
problem (6.2.2) with the lower level problem replaced by

min
w

⎧
⎨

⎩
1

2
‖w − f ‖22 +

1

r

r∑

i=1

n∑

j=1

λinε((Kiw)j )

⎫
⎬

⎭
.
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The authors proposed a semismooth Newton method and a reduced Newton method
for solving certain nonsmooth equations equivalent to the first optimality conditions
for the obtained smoothed problem. Furthermore, they studied sufficient conditions
exploiting the properties of nε for the superlinear convergence. A detailed analysis
as ε→ 0 was deferred to a future work.

The proposed algorithmic framework for p = 1 can be extended to the case of
p < 1 straightforwardly. The authors exhibited the numerical results for p = 1/2.

6.3 Bilevel Optimization of �p-hyperparameter
with 0 < p ≤ 1

In this section, we focus on �p-hyperparameter optimization with 0 < p ≤ 1 and
introduce the authors’ recent work [26].

6.3.1 (MLopt) and the Bilevel Problem to be Considered

Throughout this section, we consider (MLopt) with �p-regularizer R1, with 0 <

p ≤ 1, namely,

R1(w) := ‖w‖pp.

Moreover, the other regularizers R2, · · · , Rr , and the training error function gtr are
assumed to be twice continuously differentiable functions. Furthermore, in (6.1.1),
we assume that C = R

n and the validation function gval is smooth.
As mentioned in Sect. 6.1.1, the �1 regularizer plays a meaningful role in Lasso

model. The �p regularizer with 0 < p < 1 also performs well particularly in
constructing a sparse model. We believe that this regularizer was first considered
in [33], as a generalization of the �2 regularizer. Its actual efficiency is evidenced
both theoretically and empirically in fields such as low-rank matrix completion and
signal reconstruction. For example, see [34, 35].

The �2 and logistic-loss functions are typical examples for the above loss
functions gtr and gval . For example, in this case, gtr can be defined as follows:

• �2-loss function for regression: gtr(w) =∑mtr

i=1(yi−x"i w)2 for training samples
(yi, xi ) ∈ R×R

n, i = 1, · · · ,mtr

• Logistic-loss function for classification: gtr(w) =∑mtr

i=1 log(1+ exp(−yix"i w))

for training samples (yi, xi ) ∈ {+1,−1} ×R
n, i = 1, · · · ,mtr .
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The following regularizers satisfy all the assumptions on the regularizer term∑r
i=1 λiRi(w):

• �p-regularizers (0 < p ≤ 1):
∑r

i=1 λiRi(w) = λ1‖w‖pp with r = 1
• Elastic net regularizer:

∑r
i=1 λiRi(w) = λ1‖w‖1 + λ2‖w‖22 with r = 2.

To clarify the smooth and non-smooth parts in (MLopt) under the current assump-
tions, we define the function

G(w, λ̄) := gtr(w)+
r∑

i=2

λiRi(w)

with λ̄ := (λ2, . . . , λr )
" ∈ R

r−1. In terms of this function, (MLopt) is expressed as

min
w∈Rn

{
G(w, λ̄)+ λ1R1(w)

}
. (6.3.1)

After all, we will consider the following bilevel program:

min

{
gval(wλ) s.t. λ ≥ 0,wλ ∈ arg min

w∈Rn

{
G(w, λ̄)+ λ1R1(w)

}
}
. (6.3.2)

6.3.2 Replacement of the Lower-Level Problem with Its
First-order Optimality Conditions

For tackling the problem (6.3.2), one reasonable approach is to replace the lower
level problem (6.3.1) constraint with its first-order optimality condition [36, Theo-
rem 10.1] using a general subdifferential as follows:

•> Alternative formulation of (6.3.2) using a subdifferential

min
w,λ

{
gval(w) s.t. 0 ∈ ∂w(G(w, λ̄)+ λ1R1(w)), λ ≥ 0

}
. (6.3.3)

In (6.3.3), ∂w(G(w, λ̄) + λ1R1(w)) stands for the subdifferential of G(w, λ̄) +
λ1R1(w) with respect to w. For the definition of subdifferential, see [36, Chapter 8].
Since G(w, λ̄)+ λ1R1(w) is not necessarily convex with respect to w, the feasible
region of (6.3.3) is possibly wider than that of the original problem (6.3.2). Indeed,
not only the global optimal solutions of the lower-level problem (6.3.1) but also
its local optimal solutions are feasible to (6.3.3). So, the problem (6.3.3) differs
from the original one (6.3.2). But, note that solving (6.3.3) means searching for the
best hyperparameters λ in the wider space than (6.3.2). This may, as a result, lead
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to better prediction performance for unseen test samples. In other words, we may
obtain λ with a better value of the test error function gte (see Sect. 6.1.2 for the
definition).

In [26], the authors considered the following transformation of (6.3.2) using the
scaled first-order necessary condition of the lower-level problem.

•> Alternative formulation of (6.3.2) using the scaled first-order condition

min
w,λ

{
gval(w) s.t. W∇wG(w, λ̄)+ pλ1|w|p = 0, λ ≥ 0

}
, (6.3.4)

where W := diag(w) and |w|p := (|w1|p, |w2|p, . . . , |wn|p)".

The scaled first-order optimality condition was originally presented by [34,
37, 38] for certain optimization problems admitting non-Lipschitz functions. The
equation W∇wG(w, λ̄) + pλ1|w|p = 0 is nothing but the scaled first-order
optimality condition for the problem (6.3.1) and any local optimum of (6.3.1)
satisfies this condition. As well as (6.3.3), the feasible region of (6.3.4) includes not
only the global optimal solution of the lower-level problem in the original problem
(6.3.2) but also its local solutions. Notice that the problem (6.3.4) is still nonsmooth
due to the existence of |w|q .

According to [26], the following proposition highlights the relationship between
the feasible regions of the two formulations (6.3.3) and (6.3.4).

Proposition 6.3.1 Let p ≤ 1. For w ∈ R
n and λ ≥ 0, if 0 ∈ ∂w(G(w, λ̄) +

λ1R1(w)), then W∇wG(w, λ̄) + pλ1|w|p = 0. In particular, when p < 1, the
converse is also true. �
Below, we summarize the inclusion relation among the feasible regions of (6.3.2),
(6.3.3), and (6.3.4).

•> Relationships among the feasible regions of (6.3.2), (6.3.3), and (6.3.4)

Feasible region of (6.3.2) ⊆ Feasible region of (6.3.3)
{⊆p=1

=p<1

}
Feasible region of (6.3.4)

Thus, if p < 1, (6.3.3) and (6.3.4) are exactly equivalent problems. Unfortunately, it
is a hard business to solve both the problems (6.3.3) and (6.3.4) as they are. Actually,
solving such problems that include subdifferentials or non-Lipschitz equations in
constraints seems to be beyond the capabilities of the existing algorithms.
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In [26], the authors presented new optimality conditions, named scaled bilevel
Karush-Kuhn-Tucker (SB-KKT) conditions. The conditions were proved to be nec-
essary conditions which any local optimum of (6.3.4) should satisfy under certain
constraint qualification-like assumptions. Furthermore, they proposed a smoothing-
type method for solving (6.3.3) and showed that the sequence it generates converges
to a point satisfying the SB-KKT conditions. In the subsequent sections, we will
overview those results.

6.3.3 Scaled Bilevel KKT Conditions

In this section, we introduce the scaled bilevel Karush-Kuhn-Tucker (SB-KKT)
conditions proposed in [26]. The conditions are formally defined as follows:

•> Scaled Bilevel-KKT (SB-KKT) Conditions

We say that the scaled bilevel Karush-Kuhn-Tucker (SB-KKT) conditions hold at
(w∗,λ∗) ∈ R

n × R
r for the problem (6.3.2) when there exists a pair of vectors

(ζ ∗, η∗) ∈ R
n ×R

r such that

W 2∗∇gval(w
∗)+H(w∗,λ∗)ζ ∗ = 0, (6.3.5)

W ∗∇wG(w∗, λ̄∗)+ pλ∗1|w∗|p = 0, (6.3.6)

p
∑

i /∈I (w∗) sgn(w∗i )|w∗i |p−1ζ ∗i = η∗1, (6.3.7)

ζ ∗i = 0 (i ∈ I (w∗)), (6.3.8)

∇Ri(w
∗)"ζ ∗ = η∗i (i = 2, 3, . . . , r), (6.3.9)

0 ≤ λ∗, 0 ≤ η∗, (λ∗)"η∗ = 0, (6.3.10)

where W ∗ := diag(w∗) , and we write sgn(ξ) := 0 (ξ = 0), 1 (ξ > 0), −1 (ξ < 0)
for ξ ∈ R and

H(w,λ) :=W 2∇2
wG(w, λ̄)+ λ1p(p − 1)diag(|w|p)

with W := diag(w) for w ∈ R
n and λ ∈ R

r . In addition, we define

I (w) := {i ∈ {1, 2, . . . , n} | wi = 0}, |w|q := (|w1|q, |w2|q, . . . , |wn|q
)"

for w ∈ R
n. In particular, we call a point (w∗,λ∗) ∈ R

n × R
r satisfying the above

conditions (6.3.5)–(6.3.10) an SB-KKT point for the problem (6.3.2).
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The following theorem states that the SB-KKT conditions are nothing but
necessary optimality conditions for the problem (6.3.4), i.e., by Proposition 6.3.1,
those for the problem (6.3.3) when p < 1.

Theorem 6.3.2 (SB-KKT Conditions as Necessary Optimality Conditions) Let
point (w∗,λ∗) ∈ R

n × R
r be a local optimum of (6.3.4). Then, (w∗,λ∗) together

with some vectors ζ ∗ ∈ R
n and η∗ ∈ R

r satisfies the SB-KKT conditions (6.3.5)–
(6.3.10) under an appropriate constraint qualification concerning the constraints
∂G(w,λ̄)

∂wi
+ p sgn(wi)λ1|wi |p−1 = 0 (i /∈ I (w∗)), wi = 0 (i ∈ I (w∗)), and λ ≥ 0.

�
Sketch of the Proof Notice that (w∗,λ∗) is a local optimum of the following
problem:

min
w,λ

gval(w)

s.t.
∂G(w, λ̄)

∂wi

+ p sgn(wi)λ1|wi |p−1 = 0 (i /∈ I (w∗))

wi = 0 (i ∈ I (w∗))
λ ≥ 0.

(6.3.11)

This is because (w∗,λ∗) is also feasible to (6.3.11) and the feasible region of
(6.3.4) is larger than that of (6.3.11). Hence, the KKT conditions hold for (6.3.11)
under constraint qualifications. Finally, these KKT conditions can be equivalently
transformed into the desired SB-KKT conditions. 	


6.3.4 Algorithm for Bilevel Problem with �p Regularizers

In this section, we introduce the smoothing-type algorithm proposed in [26] for
solving (6.3.2).

6.3.4.1 Smoothing Method for the Bilevel Problem (6.3.2)

The smoothing method is one of the most powerful methodologies developed
for solving nonsmooth equations, nonsmooth optimization problems, and so on.
Fundamentally, the smoothing method solves smoothed optimization problems or
equations sequentially to produce a sequence converging to a point that satisfies
some optimality conditions of the original nonsmooth problem. The smoothed
problems solved therein are obtained by replacing the nonsmooth functions with so-
called smoothing functions defined as follows. Let ϕ0 : Rn → R be a nonsmooth
function. Then, we say that ϕ : Rn × R+ → R is a smoothing function of ϕ0 when
(i) ϕ(·, ·) is continuous and ϕ(·, μ) is continuously differentiable for any μ > 0; (ii)
limw̃→w,μ→0+ ϕ(w̃, μ) = ϕ0(w) for any w ∈ R

n.
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Fig. 6.5 ϕμ with p = 0.5 and μ = 1, 0.25, 0.01, 0.001, 0

In particular, we call μ ≥ 0 a smoothing parameter. For more details on
the smoothing method, see the comprehensive survey article [39] and the relevant
articles [40, 41]. In the smoothing method [26], we replace the �p function R1(w) =
‖w‖pp in (6.3.2) by the following smoothing function (Fig. 6.5):

ϕμ(w) :=
n∑

i=1

(w2
i + μ2)

p
2 .

We then have the following bilevel problem approximating the original
one (6.3.2):

min

{
gval(wλ) s.t. wλ ∈ arg min

w∈Rn

{
G(w, λ̄)+ λ1ϕμ(w)

}
, λ ≥ 0

}

which naturally leads to the following one-level problem:

min
w,λ

gval(w)

s.t. ∇wG(w, λ̄)+ λ1∇ϕμ(w) = 0
λ ≥ 0.

(6.3.12)
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Note that the problem (6.3.12) is smooth since the function ϕμ is twice continuously
differentiable when μ �= 0.1 Since the problem (6.3.12) can be regarded as an
approximation to the problem (6.3.3), as μ → 0, a KKT point of (6.3.12) is
expected to approach a point related to (6.3.3). In fact, as shown in Sect. 6.3.4.2,
an accumulation point of the KKT points satisfies the SB-KKT conditions, namely,
necessary optimality conditions for (6.3.3) when p < 1. See Proposition 6.3.1 and
Theorem 6.3.2.

Let us explain the smoothing method [26] precisely. To this end, for a parameter
ε̂ > 0, we define an ε̂-approximate KKT point for the problem (6.3.12). We say that
(w,λ, ζ , η) ∈ R

n × R
r × R

n × R
r is an ε̂-approximate KKT point for (6.3.12) if

there exists a vector (ε1, ε2, ε3, ε4, ε5) ∈ R
n × R× R

r−1 ×R
n × R such that

∇gval(w)+ (∇2
wwG(w, λ̄)+ λ1∇2ϕμ(w)

)
ζ = ε1, (6.3.13)

∇ϕμ(w)"ζ − η1 = ε2, (6.3.14)

∇Ri(w)"ζ − ηi = (ε3)i (i = 2, 3, . . . , r), (6.3.15)

∇wG(w, λ̄)+ λ1∇ϕμ(w) = ε4, (6.3.16)

0 ≤ λ, 0 ≤ η, λ"η = ε5, (6.3.17)

and

‖(ε1, ε2, ε3, ε4, ε5)‖ ≤ ε̂,

where ∇2
wwG(w, λ̄) is the Hessian of G with respect to w. Notice that an ε̂-

approximate KKT point is nothing but a KKT point for the problem (6.3.12) if
ε̂ = 0. Hence, ζ ∈ R

n and η ∈ R
r are regarded as approximate Lagrange multiplier

vectors corresponding to the equality constraint ∇wG(w, λ̄)+ λ1∇ϕμ(w) = 0 and
the inequality constraints λ ≥ 0, respectively. The proposed algorithm produces a
sequence of ε̂-approximate KKT points for the problem (6.3.12) while decreasing ε̂

and μ to 0. It is formally described as in Algorithm 1.

Algorithm 1 Smoothing Method for Nonsmooth Bilevel Program
Require: Choose μ0 �= 0, β1, β2 ∈ (0, 1) and ε̂0 ≥ 0. Set k← 0.
1: repeat
2: Find an ε̂k-approximate KKT point (wk+1,λk+1, ζ k+1, ηk+1) for the problem (6.3.12) with

μ = μk by means of e.g. the sequential quadratic programming (SQP) method [29].
3: Update the smoothing and error parameters by μk+1 ← β1μk and ε̂k+1 ← β2ε̂k .
4: k← k + 1.
5: until convergence of (wk,λk, ζ k, ηk).

1Huber’s function [41] is a popular smoothing function of R1(·), but is not twice continuously
differentiable.
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In the numerical experiment, we used the MATLAB fmincon solver imple-
menting the SQP to compute an ε̂-approximate KKT point for (6.3.12). But,
regarding how to compute such a point, there is a lot of room to explore other
approaches.

As for practical stopping criteria of Algorithm 1, we make use of the scaled
bilevel (SB-)KKT conditions.

Needless to say, we do not require any smoothing techniques if the nonsmooth
regularizer �q is absent. In such situation, existing SQP methods for smooth
constrained optimization are directly applicable to the problem (6.3.3).

6.3.4.2 Convergence of Algorithm 1 to an SB-KKT Point

In this section, we exhibit some key propositions proved in [26]. For a precise proof
of each proposition or theorem, we refer to [26].

Hereafter, we suppose that the algorithm is well-defined in the sense that an ε̂k-
approximate KKT point of (6.3.12) can be found in Step 2 at every iteration, and it
generates an infinite number of iteration points. In addition, we make the following
assumptions:

Assumption A Let {(wk,λk, ζ k, ηk)} ⊆ R
n×Rr×Rn×Rr be a sequence produced

by the proposed algorithm. Then, the following properties hold:

A1: lim inf
k→∞ λk

1 > 0.

A2: The sequence {(wk,λk, ζ k, ηk)} is bounded.
A3: Let p = 1 and (w∗,λ∗) be an arbitrary accumulation point of the sequence

{(wk,λk)}. It then holds that λ∗1 �=
∣
∣
∣ ∂G(w∗,λ̄∗)

∂wi

∣
∣
∣ for any i ∈ I (w∗).

Assumption A1 means that the �p-regularization term, i.e., the function R1,
works effectively. In the presence of a certain assumption similar to the linear
independence constraint qualification, Assumption A2 can be weakened to the
boundedness of only {(wk,λk)}. Assumption A3 is a technical assumption for the
case of p = 1. It means that, at (w∗,λ∗), for all i ∈ I (w∗), zero is not situated on
the boundary of the subdifferential of G(w,λ)+ λ‖w‖1 w.r.t. wi . Interestingly, for
the case of p < 1, we can establish the convergence property in the absence of A3.

The next proposition plays a key role in examining the limiting behavior of a
generated sequence.

Proposition 6.3.3 Let Assumptions A1–A3 hold. Let (w∗,λ∗) be an arbitrary
accumulation point of {(wk,λk)} and {(wk,λk)}k∈K(⊆ {(wk,λk)}) be an arbitrary
subsequence converging to (w∗,λ∗). Then, there exists some γ > 0 such that

μk−1 ≥ γ |wk
i |

1
2−p (i ∈ I (w∗)) (6.3.18)

for all k ∈ K sufficiently large. �
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This proposition means that the smoothing parameter μk−1 gradually approaches 0

with a speed not faster than maxi∈I (w∗) |wk
i |

1
2−p .

Thanks to these results, the following theorem can be obtained:

Theorem 6.3.4 (Global Convergence to a SB-KKT Point) Let Assumptions A1–
A3 hold. Any accumulation point of {(wk,λk, ζ k, ηk)} satisfies the SB-KKT condi-
tions (6.3.5)–(6.3.10) for the problem (6.3.2). �

6.3.5 Numerical Examples

To demonstrate the performance of Algorithm 1, we show partial results of
the numerical experiments conducted in [26]. Algorithm 1 requires that an ε̂-
approximate KKT point of (6.3.12) is found in Step 2 at every iteration. We used
fmincon with “MaxIterations= 107” in MATLAB for solving the problem by
the SQP method. For the sake of the hot-start effect, we set the previous point
as a starting point of the SQP after the second iteration. The parameter setting
(μ0, β1) = (1, 0.95) was used for Algorithm 1. The other parameters ε̂0 and β2
were just ignored, since we solved (6.3.12) by fmincon with the default optimality
tolerance every iteration. We used (λ0

1,w
0) = (10, 0) as an initial solution for

experiments using the �p regularizer, and (λ0
1, λ

0
2,w

0) = (10, 10, 0) for the elastic
net regularizer.

The termination criteria of our method are that, at a resulting solution w∗, SB-
KKT conditions (6.3.5), (6.3.6) and (6.3.7) divided by maxi=1,...,n |w∗i | are within
the error of ε = 10−5 or max

(‖λk+1 − λk‖, μk+1
) ≤ ε. We also checked if the

other SB-KKT conditions (6.3.8)–(6.3.10) are satisfied.
We used bayesopt in MATLAB with “MaxObjectiveEvaluations=30” for

Bayesian optimization. At each iteration of bayesopt, we need to solve the lower-
level problem of (6.3.2) with a given λ. We used fmincon again for solving the
problem. We executed all numerical experiments on a personal computer with Intel
Core i7-4790 CPU 3.60 GHz and 8.00 GB memory. We implemented our proposed
algorithms as well as the one we use for comparisons with MATLAB R2017a.

6.3.6 Problem Setting and Results for UCI Datasets

In the experiment, the following bilevel problem concerning squared linear regres-
sion was solved

min
w,λ
‖Avalw − bval‖22

s.t. w ∈ argmin
ŵ

{
‖Atrŵ − bt r‖22 + λ1‖ŵ‖pp

(
+λ2‖ŵ‖22

)}

λ ≥ 0,

(6.3.19)
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where Aval ∈ R
mval×n, bval ∈ R

mval , Atr ∈ R
mtr×n, bt r ∈ R

mtr . Also, as a test
error function (see Sect. 6.1.2), the following function was utilized:

‖Atew − bte‖22,

where Ate ∈ R
mte×n and bte ∈ R

mte . The data matrices A{val,tr,te} and vectors
b{val,tr,te} were taken from the UCI machine learning repository [42]. See Table 6.1
for the data sets we utilized, in which the parts in bold are used to refer to each
data set. For each data set, Algorithm 1 and bayesopt were applied to (6.3.19),
respectively. The obtained results are shown in Tables 6.2, 6.3, 6.4, 6.5, and 6.6,
adopting the following notations (w∗: output solution):

• Errte := ‖Atew
∗ − bte‖22

• Errval := ‖Avalw
∗ − bte‖22

• p = 1, 0.8, 0, 5: �1, �0.8, �0.5-regularizers
• EN: elastic net regularizer defined by λ1‖w‖1 + λ2‖w‖22
• time(s): running time in seconds

The bold entries in Tables 6.2, 6.3, 6.4, 6.5, and 6.6 indicate the best values
of time(s) and Errte between the proposed method and bayesopt. Moreover,
the hyphen “–” indicates that an algorithm could not terminate within 27000 s.

Table 6.1 Name of data, the number of data samples(= mtr + mte + mval), the number of
features(= n)

Data ! sample ! feature (variable size n)

BlogFeedback 60,021 280

Facebook comment volume 40,949 53

Insurance company benchmark 9000 85

Student performance (math) 395 272

Communities and crime 1994 1955

Table 6.2 Facebook
(n = 280,mtr ≈ 20000)

Bilevel algorithm bayesopt

p Errte Errval Time(s) Errte Errval Time(s)

1 9.815 4.624 34.10 9.813 4.624 217.53

0.8 9.979 4.697 37.32 10.246 4.706 93.78

0.5 10.247 4.811 53.89 22.353 6.108 51.03
EN 9.806 4.634 56.78 9.812 4.624 216.17

Table 6.3 BlogFeedback
(n = 58,mtr ≈ 13500)

Bilevel algorithm bayesopt

p Errte Errval Time(s) Errte Errval Time(s)

1 6.038 5.618 1432.69 6.048 5.617 17014.32

0.8 6.028 5.626 2279.44 5.998 5.618 4886.72

0.5 6.019 5.639 2212.54 6.047 5.647 4507.78

EN 6.093 5.616 2539.26 6.188 5.62 16131.29
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Table 6.4 Insurance (n = 85,mtr ≈ 3000)

Bilevel algorithm bayesopt

p Errte Errval Time(s) Errte Errval Time(s)

1 108.192 76.737 10.52 107.876 76.576 89.32

0.8 108.368 76.921 11.94 108.071 76.436 61.69

0.5 108.206 76.936 21.23 116.313 78.305 26.43

EN 108.196 76.734 11.57 107.874 76.564 93.91

Table 6.5 Student
(n = 272,mtr ≈ 130)

Bilevel algorithm bayesopt

p Errte Errval Time(s) Errte Errval Time(s)

1 1.125 0.778 66.74 1.158 0.794 221.44

0.8 1.082 0.724 61.92 1.106 0.734 223.28

0.5 1.082 0.724 49.01 2.554 0.968 27.48
EN 1.125 0.777 32.39 1.153 0.788 180.00

Table 6.6 Communities
(n = 1955,mtr ≈ 665)

Bilevel algorithm bayesopt

p Errte Errval Time(s) Errte Errval Time(s)

1 5.523 5.733 11821.06 – – –

0.8 5.515 5.832 22387.79 – – –

0.5 5.577 5.830 25806.36 7.374 6.966 1043.97
EN 5.523 5.733 11172.45 – – –

Table 6.2 shows that our bilevel algorithm runs faster than the other method while
our prediction performance, i.e., the value of Errte seems slightly better. Especially
for ill-posed problems with n > mtr such as Student (Table 6.5) and Communities
(Table 6.6), the prediction performance improved by our algorithm. As p decreases,
non-smoothness becomes stronger and, as a result, our method tends to be superior
to bayesopt particularly in time(s).

6.4 Concluding Remarks

In this chapter, we have briefly reviewed bilevel approaches to optimize regular-
ization hyperparameters in machine learning (ML). The problem of finding the
best hyperparameters is naturally formulated as a bilevel optimization problem.
Interestingly, when considering nonsmooth regularizers such as �p with 0 < p ≤ 1,
a bilevel problem whose lower level problem is nonsmooth and possibly non-
Lipschitz naturally arises. This is not the most standard case in the literature as
far as we know. To cope with such hard bilevel problem, existing algorithms and
theory seem still weak and need to be reinforced.

One of the advantages of the bilevel approach is that it allows us to apply
state-of-the art methods for bilevel optimization to hyperparameter optimization.
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In comparison with existing ML methods including grid search and Bayesian
optimization, such sophisticated bilevel algorithms may bring us a high chance
of finding better hyperparameters more accurately and faster. On the other hand,
the bilevel approach suffers from the drawback that, as the data-size increases, the
resulting bilevel problems tend to be more intractable. However, those issues can
be expected to be settled somehow. For example, it is a promising way to solve the
unconstrained problems obtained by applying penalty functions to the constraints of
the bilevel problems.

Acknowledgements We express our gratitude to the anonymous referee for his/her valuable
comments and suggestions.
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Chapter 7
Bilevel Optimization and Variational
Analysis

Boris S. Mordukhovich

Abstract This chapter presents a self-contained approach of variational analysis
and generalized differentiation to deriving necessary optimality conditions in bilevel
optimization with Lipschitzian data. We mainly concentrate on optimistic models,
although the developed machinery also applies to pessimistic versions. Some open
problems are posed and discussed.

Keywords Bilevel optimization · Variational analysis · Nondifferentiable
programming · Generalized differentiation · Lipschitzian functions and mappings

7.1 Introduction

Bilevel optimization has been well recognized as a theoretically very challenging
and practically important area of applied mathematics. We refer the reader to
the monographs [2, 6, 14, 30, 41], the extensive bibliographies and commentaries
therein, as well as to the advanced material included in this book for various
approaches, theoretical and numerical results, and a variety of practical applications
of bilevel optimization and related topics.

One of the characteristic features of bilevel optimization problems is their
intrinsic nonsmoothness, even if their initial data are described by linear functions.
This makes natural to develop an approach of modern variational analysis and
generalized differentiation to the study and applications of major models in bilevel
optimization. It has been done in numerous publications, which are presented and
analyzed in the author’s recent book [30].

The main goal we pursue here is to overview this approach together with
the corresponding machinery of variational analysis and to apply it to deriving
necessary optimality conditions in optimistic bilevel models with Lipschitzian data
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while also commenting on other versions in bilevel optimization with posting open
questions. To make this chapter largely self-contained and more accessible for
the reader, we present here the basic background from variational analysis and
generalized differentiation, which is needed for applications to bilevel optimization.
For brevity and simplicity we confine ourselves to problems in finite-dimensional
spaces.

The rest of this work is organized as follows. In Sect. 7.2 we recall those con-
structions of generalized differentiation in variational analysis, which are broadly
used in the subsequent text. Section 7.3 presents the fundamental extremal principle
that is behind generalized differential calculus and applications to optimization in
the geometric approach to variational analysis developed in [29, 30]. Section 7.4
is devoted to deriving—via the extremal principle—the two basic calculus rules,
which are particularly useful for applications to optimality conditions. In Sect. 7.5
we establish subdifferential evaluations and efficient conditions that ensure the
local Lipschitz continuity of optimal value functions in general problems of para-
metric optimization. These results are crucial for variational applications to bilevel
programming.

To proceed with such applications, we first consider in Sect. 7.6 problems of
nondifferentiable programming with Lipschitzian data. Subdifferential necessary
optimality conditions for Lipschitzian programs are derived there by using the
extremal principle and calculus rules. Section 7.7 contains the formulation of
the bilevel optimization problems under consideration and the description of the
variational approach to their study. Based on this approach and subdifferentiation
of the optimal value functions for lower-level problems, we establish in Sect. 7.8
necessary optimality conditions for Lipschitzian bilevel programs. The other devel-
opments in this direction for bilevel optimization problems with Lipschitzian data is
presented in Sect. 7.9 by using the subdifferential difference rule based on a certain
variational technique. The concluding Sect. 7.10 discusses further perspectives of
employing concepts and techniques of variational analysis to bilevel optimization
with formulations of some open questions.

Throughout this chapter we use the standard notation and terminology of
variational analysis and generalized differentiation; see, e.g., [29, 30, 40].

7.2 Basic Constructions of Generalized Differentiation

Here we present the basic definitions of generalized normals to sets, coderivatives of
set-valued mappings, and subgradients of extended-real-valued functions initiated
by the author [26] that are predominantly used in what follows. The reader
is referred to the books [29, 30, 40] for more details. Developing a geometric
approach to generalized differentiation, we start with normals to sets, then continue
with coderivatives of (set-valued and single-valued) mappings, and finally pass to
subgradients of extended-real-valued functions.
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Given a nonempty set " ⊂ R
n, we always suppose without loss of generality

that it is locally closed around the reference point x̄ ∈ ". For each x ∈ R
n close to

x̄ consider its (nonempty) Euclidean projector to " defined by

�(x;") := {
w ∈ "

∣
∣ ‖x −w‖ = min

u∈" ‖x − u‖}.

Then the (basic, limiting, Mordukhovich) normal cone to " at x̄ is

N(x̄;") :=
{
v ∈ R

n
∣
∣
∣ ∃ xk → x̄, ∃wk ∈ �(xk;"), ∃αk ≥ 0

such that αk(xk −wk)→ v as k→∞
}
.

(7.2.1)

The normal cone (7.2.1) is always closed while may be nonconvex in standard
situations; e.g., when " is the graph of the simplest nonsmooth convex function
|x| at x̄ = (0, 0) ∈ R

2. Nevertheless, this normal cone and the associated
coderivatives of mappings and subdifferentials of functions enjoy comprehensive
calculus rules due to variational/extremal principles of variational analysis. Note
that N(x̄;") �= {0} if and only if x̄ is a boundary point of ".

There is a useful representation of the normal cone (7.2.1) in terms of convex
collections of (pre)normal vectors to " at points nearby x̄. Given x ∈ " close to x̄,
the prenormal cone to " at x (known also as the regular or Fréchet normal cone) is
defined by

N̂(x;") :=
{
v ∈ R

n
∣
∣
∣ lim sup

u
"→x

〈v, u − x〉
‖u− x‖ ≤ 0

}
, (7.2.2)

where the symbol u
"→ x means that u→ x with u ∈ ". Then the prenormal cone

(7.2.2) is always closed and convex while may collapse to {0} at boundary points
of closed sets, which in fact contradicts the very meaning of generalized normals.
If " is convex, then both normal and prenormal cones reduce to the normal cone of
convex analysis. In general we have

N(x̄;") = {
v ∈ R

n
∣
∣ ∃ xk "→ x̄, vk ∈ N̂(xk;") with vk → v as k→∞}

.

(7.2.3)

bNote that the limiting representation (7.2.3) keeps holding if the prenormal cone
(7.2.2) therein is expanded to its εk-enlargements N̂εk as εk ↓ 0, where the latter
expansions are defined by replacing 0 with εk on the right-hand side of (7.2.2).

Let F : Rn ⇒ R
m be a set-valued mapping/multifunction with values F(x) ⊂

R
m and with its domain and graph defined, respectively, by

domF := {
x ∈ R

n
∣
∣ F(x) �= ∅} and gphF := {

(x, y) ∈ R
n × R

m
∣
∣ y ∈ F(x)

}
.
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When F is single-valued, we use the standard notation F : Rn → R
m. Assuming

that the graph of F is locally closed around (x̄, ȳ) ∈ gphF , we define the
coderivative of F at this point via the normal cone (7.2.1) to the graph of F by

D∗F(x̄, ȳ)(w) := {
v ∈ R

n
∣
∣ (v,−w) ∈ N

(
(x̄, ȳ); gphF

)}
, w ∈ R

m. (7.2.4)

Thus D∗F(x̄, ȳ) : Rm ⇒ R
n is a set-valued positively homogeneous mapping,

which reduces to the adjoint/transposed Jacobian for all single-valued mappings
F : Rn→ R

m that are smooth around x̄, where ȳ = F(x̄) is dropped in this case in
the coderivative notation:

D∗F(x̄)(w) = {∇F(x̄)∗w
}

for all w ∈ R
m.

Besides a full calculus available for the coderivative (7.2.4), this construction plays
an important role in variational analysis and its applications since it provides com-
plete characterizations of fundamental well-posedness properties of multifunctions
concerning Lipschitzian stability, metric regularity, and linear openness/covering.
In this work we deal with the Lipschitz-like (Aubin, pseudo-Lipschitz) property of
F : Rn ⇒ R

m around (x̄, ȳ) ∈ gphF defined as follows: there exist neighborhoods
U of x̄ and V of ȳ and a constant � ≥ 0 such that

F(x) ∩ V ⊂ F(u)+ �‖x − u‖B for all x, u ∈ U, (7.2.5)

whereB stands for the closed unit ball of the space in question. If V = R
m in (7.2.5),

then it reduces to the classical local Lipschitzian property of F around x̄. The
coderivative characterization of (7.2.5), which is called in [40] the Mordukhovich
criterion, tells us that F is Lipschitz-like around (x̄, ȳ) if and only if we have

D∗F(x̄, ȳ)(0) = {0}. (7.2.6)

Furthermore, the exact bound (infimum) of all the Lipschitz constant {�} in (7.2.5)
is calculated as the norm ‖D∗F(x̄, ȳ)‖ of the positively homogeneous coderivative
mapping w �→ D∗F(x̄, ȳ)(w). The reader can find in [28–30, 40] different proofs
of this result with numerous applications.

Consider finally an extended-real-valued function ϕ : Rn → R := (−∞,∞]
finite at x̄ and lower semicontinuous (l.s.c.) around this point. Denote by

domϕ := {
x ∈ R

n
∣
∣ ϕ(x) <∞}

and epiϕ := {
(x, μ) ∈ R

n ×R
∣
∣ μ ≥ ϕ(x)

}

the domain and epigraph of ϕ, respectively. Given x̄ ∈ domϕ and using the normal
cone (7.2.1) to the epigraph of ϕ at (x̄, ϕ(x̄)), we define the two types of the
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subdifferentials of ϕ at x̄: the basic subdifferential and the singular subdifferential
by, respectively,

∂ϕ(x̄) := {
v ∈ R

n
∣
∣ (v,−1) ∈ N

(
(x̄, ϕ(x̄)); epiϕ

)}
, (7.2.7)

∂∞ϕ(x̄) := {
v ∈ R

n
∣
∣ (v, 0) ∈ N

(
(x̄, ϕ(x̄)); epiϕ

)}
. (7.2.8)

The basic subdifferential (7.2.7) reduces to the gradient {∇ϕ(x̄)} for smooth
functions and to the subdifferential of convex analysis if ϕ is convex. Observe that
∂ϕ(x̄) = D∗Eϕ(x̄, ϕ(x̄))(1) and ∂∞ϕ(x̄) = D∗Eϕ(x̄, ϕ(x̄))(0) via the coderivative
(7.2.4) of the epigraphical multifunction Eϕ : Rn ⇒ R defined by Eϕ(x) := {μ ∈
R| μ ≥ ϕ(x)}. Thus the coderivative characterization (7.2.6) of the Lipschitz-like
property of multifunctions implies that a lower semicontinuous function ϕ is locally
Lipschitzian around x̄ if and only if

∂∞ϕ(x̄) = {0}. (7.2.9)

Note also that, given any (closed) set " ⊂ R
n with its indicator function δ(x;") =

δ"(x) equal 0 for x ∈ " and∞ otherwise, we have that

∂δ(x̄;") = ∂∞δ(x̄;") = N(x̄;") whenever x̄ ∈ ". (7.2.10)

Both subdifferentials (7.2.7) and (7.2.8) admit limiting representations in terms of
the presubdifferential, or regular subdifferential

∂̂ϕ(x) :=
{
v ∈ R

n
∣
∣
∣ lim inf

u→x

ϕ(u)− ϕ(x)− 〈v, u− x〉
‖u− x‖ ≥ 0

}
(7.2.11)

of ϕ at points x close to x̄. Namely, we have

∂ϕ(x̄) = {
v ∈ R

n
∣∣ ∃ xk ϕ→ x̄, ∃ vk → v with vk ∈ ∂̂ϕ(xk) as k→∞}

,

(7.2.12)

∂∞ϕ(x̄) = {
v ∈ R

n
∣
∣ ∃ xk ϕ→ x̄, ∃λk ↓ 0, ∃ vk → v with

vk ∈ λk∂̂ϕ(xk) as k→∞}
, (7.2.13)

where the symbol x
ϕ→ x̄ indicates that x → x̄ with ϕ(x) → ϕ(x̄). Note that the

presubdifferential (7.2.11) is related to the prenormal cone (7.2.2) as in (7.2.7) and is
also used in variational analysis under the names of the Fréchet subdifferential and
the viscosity subdifferential. Similarly to the case of basic normals in (7.2.3) it is not
hard to observe that we still have the subdifferential representations in (7.2.12) and
(7.2.13) if the presubdifferential (7.2.11) therein is expanded by its εk-enlargements
∂̂εkϕ defined with replacing 0 on the right-hand side of (7.2.11) by −εk.
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7.3 Extremal Principle in Variational Analysis

In this section we recall, following [22], the notion of locally extremal points for
systems of finitely many sets and then derive the fundamental extremal principle,
which gives us necessary conditions for extremality of closed set systems in R

n.

Definition 7.3.1 Let "1, . . . , "s as s ≥ 2 be nonempty subsets of Rn, which are
assumed to be locally closed around their common point x̄. We say that x̄ is a
Locally Extremal Point of the set system {"1, . . . , "s} if there exist a neighborhood
U of x̄ and sequences of vectors aik ∈ R

n, i = 1, . . . , s, such that aik → 0 as
k→∞ for all i ∈ {1, . . . , s} and

s⋂

i=1

(
"i − aik

) ∩U = ∅ whenever k = 1, 2, . . . . (7.3.1)

�

Geometrically Definition 7.3.1 says that x̄ is a locally extremal point of the set
system {"1, . . . , "s} if these sets can be pushed apart from each other locally
around x̄. Observe also that for the case of two sets "1,"2 containing x̄ the above
definition can be equivalently reformulated as follows: there is a neighborhood U

of x̄ such that for any ε > 0 there exists a vector a ∈ R
n with ‖a‖ ≤ ε and

("1 − a) ∩"2 ∩ U = ∅.
It is easy to see that for a closed set " and any of its boundary points x̄, we

have that x̄ is a locally extremal point of the set system {", {x̄}}. Furthermore,
the introduced notion of set extremality covers various notions of optimality and
equilibria in problems of scalar and vector optimization. In particular, a local
minimizer x̄ of the general constrained optimization problem

minimize ϕ(x) subject to x ∈ " ⊂ R
n,

where ϕ is l.s.c. and " is closed around x̄, corresponds to the locally extremal point
(x̄, ϕ(x̄)) of the sets "1 := epiϕ and "2 := "×{ϕ(x̄)}. As we see below, extremal
systems naturally arise in deriving calculus rules of generalized differentiation.

Now we are ready to formulate and prove the basic extremal principle of
variational analysis for systems of finitely many closed sets in R

n by using the
normal cone construction (7.2.1).

Theorem 7.3.2 Let x̄ be a locally extremal point of the system {"1, . . . , "s} of
nonempty subsets of Rn, which are locally closed around x̄. Then there exist gener-
alized normals vi ∈ N(x̄;"i) for i = 1, . . . , s, not equal to zero simultaneously,
such that we have the generalized Euler equation

v1 + . . .+ vs = 0. (7.3.2)

�
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Proof Using Definition 7.3.1, suppose without loss of generality that U = R
n.

Taking the sequences {aik} therein, for each k = 1, 2, . . . consider the unconstrained
optimization problem:

minimize ϕk(x) :=
[ s∑

i=1

d2(x + aik;"i)
]1/2 + ‖x − x̄‖2, x ∈ R

n, (7.3.3)

where d(x;") indicates the Euclidean distance between x and ". Since ϕk is
continuous and the level sets of it are bounded, we deduce from the classical
Weierstrass theorem that there exists an optimal solution xk to each problem (7.3.3)
as k = 1, 2, . . .. It follows from the crucial extremality requirement (7.3.1) in
Definition 7.3.1 that

γk :=
[ s∑

i=1

d2(xk + aik;"i)
]1/2

> 0. (7.3.4)

The optimality of xk in (7.3.3) tells us that

0 < γk + ‖xk − x̄‖2 = ϕk(xk) ≤ ϕk(x̄) =
[ s∑

i=1

‖aik‖2
]1/2 ↓ 0,

and so γk ↓ 0 and xk → x̄ as k → ∞. By the closedness of the sets "i, i =
1, . . . , s, around x̄, we pick wik ∈ �(xk + aik;"i) and for each k form another
unconstrained optimization problem:

minimize ψk(x) :=
[ s∑

i=1

‖x + aik −wik‖2
]1/2 + ‖x − x̄‖2, x ∈ R

n (7.3.5)

which obviously has the same optimal solution xk. In contrast to ϕk in (7.3.3), the
function ψk in (7.3.5) is differentiable at xk due to (7.3.4). Thus applying the Fermat
rule in (7.3.5) tells us that

∇ψk(xk) =
s∑

i=1

vik + 2(xk − x̄) = 0 (7.3.6)

with vik := (xk + aik −wik)/γk, i = 1, . . . , s, satisfying

‖v1k‖2 + . . .+ ‖vsk‖2 = 1 for all k = 1, 2, . . . . (7.3.7)

Remembering the compactness of the unit sphere in R
n, we get by passing to the

limit as k → ∞ in (7.3.6) and (7.3.7) that there exist v1, . . . , vs , not equal to zero
simultaneously, for which (7.3.2) holds. Finally, it follows directly from the above
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constructions and the normal cone definition (7.2.1) that vi ∈ N(x̄;"i) for all i =
1, . . . , s. This completes the proof of the theorem. 	


Since for convex sets " the normal cone (7.2.1) reduces to the normal cone of
convex analysis

N(x̄;") := {
v ∈ R

n
∣
∣ 〈v, x − x̄〉 ≤ 0 whenever x ∈ "

}
,

the extremal principle of Theorem 7.3.2 can be treated as a variational extension of
the classical separation theorem to the case of finitely many nonconvex sets in R

n.

7.4 Fundamental Calculus Rules

Employing the extremal principle, we derive here two fundamental rules of gener-
alized differential calculus, which are broadly used in this chapter and from which
many other calculus rules follow; see [29, 30]. The first result is the intersection rule
for basic normals (7.2.1).

Theorem 7.4.1 Let "1, . . . , "s be nonempty subsets of Rn, which are locally
closed around their common point x̄. Assume the validity of the following quali-
fication condition:

[
xi ∈ N(x̄;"i), x1 + . . .+ xs = 0

] �⇒ xi = 0 for all i = 1, . . . , s. (7.4.1)

Then we have the normal cone intersection rule

N
(
x̄;

s⋂

i=1

"i

)
⊂ N(x̄;"1)+ . . .+ N(x̄;"s). (7.4.2)

�

Proof Arguing by induction, we first verify the result for s = 2. Pick any v ∈
N(x̄;"1∩"2) and use the normal cone representation (7.2.3). It gives us sequences
xk → x̄ with xk ∈ "1 ∩"2 and vk → v with vk ∈ N̂(x̄,"1 ∩"2) as k→∞. Take
any sequence εk ↓ 0 and construct the sets

#1 := "1 × R+,

#2k :=
{
(x, α)

∣
∣ x ∈ "2, 〈vk, x − xk〉 − εk‖x − xk‖ ≥ α

}
for any k = 1, 2, . . . .

These sets are obviously closed around (xk, 0) ∈ #1 ∩ #2k for all k sufficiently
large. Furthermore, it follows from the prenormal cone definition (7.2.2) that there
exists a neighborhood U of xk with

#1 ∩
(
#2k − (0, γ )

) ∩ (U × R) = ∅
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for small numbers γ > 0. Thus the pair (xk, 0) is a locally extremal point of the set
system {#1,#2k} for such k. Applying to this system the extremal principle from
Theorem 7.3.2 gives us pairs (uk, λk) from the unit sphere in R

n+1 for which

(uk, λk) ∈ N
(
(xk, 0);#1

)
and (−uk,−λk) ∈ N

(
(xk, 0);#2k

)
. (7.4.3)

Considering a subsequence of the unit vectors (uk, λk) if needed, we get (uk, λk)→
(u, λ) as k →∞ for some (u, λ) ∈ R

n+1 with ‖(u, λ)‖ = 1. Passing to the limit in
the first inclusion of (7.4.3) gives us (u, λ) ∈ N((x̄, 0);#1), which immediately
implies—by the easily verifiable product rule equality for normals to Cartesian
products (see, e.g., [29, Proposition 1.2])—that u ∈ N(x̄;"1) and λ ≤ 0. On the
other hand, the limiting procedure in the second inclusion of (7.4.3) leads us by the
structure of #2k to

(−λv − u, λ) ∈ N
(
(x̄, 0);"2 × R+

)
. (7.4.4)

To verify (7.4.4), for each k ∈ N rewrite the set #2k as

#2k =
{(

x, 〈vk, x − xk〉 − εk‖x − xk‖ − α
)∣∣ x ∈ "2, α ∈ R+

}
.

Using representation (7.2.3) of basic normals via limits of regular ones, for each
fixed k ∈ N we find sequences xkm → xk, αkm ↓ 0, ukm → uk and λkm → λk as
m→∞ such that

(−ukm,−λkm) ∈ N̂
(
(xkm, 〈vk, xkm − xk〉 − εk‖xkm − xk‖ − αkm);#2k

)

whenever m ∈ N. The latter means by definition (7.2.2) of regular normals that

lim sup

x
"2→ xkm

α
R+→ αkm

{ 〈−ukm, x − xkm〉
‖x − xkm‖(1+ ‖vk‖ + εk)+ |α − αkm|

− λkm

[〈vk, x − xkm〉 − (α − αkm)− εk(‖x − xk‖ − ‖xkm − xk‖)
]

‖x − xkm‖(1+ ‖vk‖ + εk)+ |α − αkm|

}

≤ 0.

Thus for all k ∈ N and m ∈ N we arrive at the limiting condition

lim sup

x
"2→ xkm

α
R+→ αkm

{ 〈−ukm − λkmvk, x − xkm〉 + λkm(α − αkm)

(1+ ‖vk‖ + εk)(‖x − xkm‖ + |α − αkm|)

− |λkm|εk(‖x − xkm‖ + |α − αkm|)
(1+ ‖vk‖ + εk)(‖x − xkm‖ + |α − αkm|)

}
≤ 0,
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which can be rewritten in terms of ε-enlargements of the prenormal cone as follows:

(−ukm−λkmvk, λkm) ∈ N̂εkm

(
(xkm, αkm);"2×R+

)
with εkm := |λkm|εk

1+ ‖vk‖ + εk
.

Employing the standard diagonal process and remembering the representation of
basic normals via limits of ε-enlargements of regular ones bring us to the claimed
inclusion (7.4.4).

Observe that having λ = 0 in (7.4.4) contradicts the qualification condition
(7.4.1) for s = 2. Thus λ < 0, which readily implies that v ∈ N(x̄;"1)+N(x̄;"2).

To proceed finally by induction for s > 2, we observe that the induction
assumption for (7.4.2) in the previous step yields the validity of the qualification
condition (7.4.1) needed for the current step of induction. This completes the proof
of the theorem. 	


Next we derive the subdifferential sum rules concerning both basic subdiffer-
ential (7.2.7) and singular subdifferential (7.2.8). For our subsequent applications
to bilevel optimization, it is sufficient to consider the case where all but one of the
functions involved in summation are locally Lipschitzian around the reference point.
This case allows us to obtain the subdifferential sum rules without any qualification
conditions.

Theorem 7.4.2 Let ϕ1 : Rn→ R be l.s.c. around x̄ ∈ domϕ1, and let ϕi : Rn→ R

for i = 2, . . . , s and s ≥ 2 be locally Lipschitzian around x̄. Then we have the sum
rules

∂
( s∑

i=1

ϕi

)
(x̄) ⊂

s∑

i=1

∂ϕi(x̄), (7.4.5)

∂∞
( s∑

i=1

ϕi

)
(x̄) = ∂∞ϕ1(x̄). (7.4.6)

�

Proof We consider the case where only two functions are under summation since
the general case of finitely many functions obviously follows by induction. Let us
start with the basic subdifferential sum rule (7.4.5) for s = 2 therein.

Pick any v ∈ ∂(ϕ1 + ϕ2)(x̄) and get by definition (7.2.7) that

(v,−1) ∈ N
(
(x̄, (ϕ1 + ϕ2)(x̄)); epi (ϕ1 + ϕ2)

)
.

Then construct the sets

"i :=
{
(x, μ1, μ2) ∈ R

n × R× R
∣
∣ μi ≥ ϕi(x)

}
for i = 1, 2.
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Denoting μ̄i := ϕi(x̄), i = 1, 2, we obviously have that the sets "1 and
"2 are locally closed around the triple (x̄, μ̄1, μ̄2) ∈ "1 ∩ "2. It is easy to
check that (v,−1,−1) ∈ N((x̄, μ̄1, μ̄2);"1 ∩ "2). Applying now to this set
intersection the normal cone intersection rule from Theorem 7.4.1, we observe that
the qualification condition (7.4.1) is automatically satisfied in this case due to the
singular subdifferential characterization (7.2.9) of the local Lipschitz continuity.
Hence we get pairs (vi ,−λi) ∈ N((x̄, μ̄i ); epiϕi) for i = 1, 2 satisfying the
condition

(v,−1,−1) = (v1,−λ1, 0)+ (v2, 0,−λ2),

which implies that v = v1 + v2 and λ1 = λ2 = −1. Therefore it shows that
vi ∈ ∂ϕi(x̄) for i = 1, 2, and thus the sum rule (7.4.5) is verified.

Next we proceed with the proof of (7.4.6) for s = 2 starting with verifying the
inclusion “⊂” therein. Pick v ∈ ∂∞(ϕ1 + ϕ2)(x̄) and find by definition sequences

γk ↓ 0, (xk, μk)
epi(ϕ1+ϕ2)−→ (x̄, (ϕ1 + ϕ2)(x̄)), vk → v, νk → 0, and ηk ↓ 0 such

that

〈vk, x − xk〉 + νk(μ− μk) ≤ γk(‖x − xk‖ + |μ− μk|)
whenever (x, μ) ∈ epi (ϕ1 + ϕ2) with x ∈ xk + ηkB and |μ − μk| ≤ ηk as k =
1, 2, . . .. Taking a Lipschitz constant � > 0 of ϕ2 around x̄, denote η̃k := ηk/2(�+1)

and μ̃k := μk − ϕ2(xk). Then (xk, μ̃k)
epiϕ1−→ (x̄, ϕ1(x̄)) and

(x, μ+ ϕ2(x)) ∈ epi (ϕ1 + ϕ2), |(μ+ ϕ2(x))− μk| ≤ ηk

for all (x, μ) ∈ epiϕ1, x ∈ xk + η̃kB, and |μ− μ̃k| ≤ η̃k . Therefore

〈vk, x− xk〉+ νk(μ− μ̃k) ≤ εk(‖x− xk‖+ |μ− μ̃k|) with εk := γk(1+ �)+|νk|�
if (x, μ) ∈ epiϕ1 with x ∈ xk + η̃kB and |μ − μ̃k| ≤ η̃k . It yields (vk, νk) ∈
N̂εk ((xk, μ̃k); epiϕ1) for all k = 1, 2, . . ., and so (v, 0) ∈ N((x̄, ϕ(x̄)); epiϕ1)

since εk ↓ 0 as k→∞. This verifies the inclusion “⊂” in (7.4.6). Applying it to the
sum ϕ1 = (ϕ1 + ϕ2) + (−ϕ2) yields ∂∞ϕ1(x̄) ⊂ ∂∞(ϕ2 + ϕ1)(x̄), which justifies
the equality in (7.4.6) and thus completes the proof. 	


7.5 Subdifferentials and Lipschitz Continuity of Value
Functions

In this section we consider the class of extended-real-valued functions ϑ : Rn → R

defined by

ϑ(x) := inf
{
ϕ(x, y)

∣
∣ y ∈ F(x)

}
, x ∈ R

n, (7.5.1)
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where ϕ : Rn × R
m → R is an l.s.c. function, and where F : Rn ⇒ R

m is a set-
valued mapping of closed graph. We can view (7.5.1) as the optimal value function
in the problem of parametric optimization described as follows:

minimize ϕ(x, y) subject to y ∈ F(x)

with the cost function ϕ and the constraint mapping F , where y and x are the
decision and parameter variables, respectively. Functions of this type are also known
in variational analysis under the name of “marginal functions.” A characteristic
feature of such functions is their nonsmoothness regardless of the smoothness of
the cost function ϕ and the simplicity of the constraint mapping F that may nicely
behave on the parameter x.

As seen below, functions of type (7.5.1) play a crucial role in applications to
bilevel optimization while revealing intrinsic nonsmoothness of the latter class of
optimization problems. This section presents evaluations of both basic and singular
subdifferentials of (7.5.1), which are equally important for the aforementioned
applications. Singular subdifferential evaluations are used for establishing the
Lipschitz continuity of ϑ(x) with respect to the parameter x that allows us to reduce
the bilevel model under consideration to a single-level problem of Lipschitzian
programming. On the other hand, basic subdifferential evaluations open the gate to
derive in this way necessary optimality conditions for Lipschitzian bilevel programs.

To proceed, let us consider the argminimum mapping M : Rn ⇒ R
m associated

with (7.5.1) by

M(x) := {
y ∈ F(x)

∣
∣ ϕ(x, y) = ϑ(x)

}
, x ∈ R

n, (7.5.2)

and recall that this mapping is inner semicontinuous at (x̄, ȳ) ∈ gphM if for every

sequence xk
domM−→ x̄ there exists a sequence yk ∈ M(xk) that converges to ȳ as

k → ∞. Observe that the inner semicontinuity of M at (x̄, ȳ) is implied by its
Lipschitz-like property at this point.

The following theorem gives us efficient upper estimates of both basic and
singular subdifferentials of the optimal value function ϑ needed for subsequent
applications. We confine ourselves to the case of local Lipschitz continuity of the
cost function ϕ in (7.5.1) that is sufficient to derive necessary optimality conditions
for bilevel programs in Sects. 7.8 and 7.9.

Theorem 7.5.1 Let the argminimum mapping (7.5.2) be inner semicontinuous at
the point (x̄, ȳ) ∈ gphM , and let the cost function ϕ be locally Lipschitzian around
this point. Then we have

∂ϑ(x̄) ⊂
⋃

(v,w)∈∂ϕ(x̄,ȳ)

[
v +D∗F(x̄, ȳ)(w)

]
, (7.5.3)

∂∞ϑ(x̄) ⊂ D∗F(x̄, ȳ)(0). (7.5.4)
�
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Proof To start with the verification of (7.5.3), consider the extended-real-valued
function ψ : Rn ×R

m → R defined via the indicator function of the set gphF by

ψ(x, y) := ϕ(x, y)+ δ
(
(x, y); gphF

)
for all (x, y) ∈ R

n × R
m (7.5.5)

and prove first the fulfillment of the estimate

∂ϑ(x̄) ⊂ {
v ∈ R

n
∣
∣ (v, 0) ∈ ∂ψ(x̄, ȳ)

}
. (7.5.6)

Indeed, pick any subgradient v ∈ ∂ϑ(x̄) and get from its representation in (7.2.12)

sequences xk
ϑ→ x̄ and vk → v with vk ∈ ∂̂ϑ(xk) as k → ∞. Based on definition

(7.2.11), for any sequence εk ↓ 0 there exists ηk ↓ 0 as k→∞ such that

〈vk, x−xk〉 ≤ ϑ(x)−ϑ(xk)+εk‖x−xk‖ whenever x ∈ xk+ηkB, k = 1, 2, . . . .

This ensures by using the constructions above that

〈(vk, 0), (x, y)− (xk, yk)〉 ≤ ψ(x, y)− ψ(xk, yk)+ εk
(‖x − xk‖ + ‖y − yk‖

)

for all yk ∈ M(xk) and (x, y) ∈ (xk, yk) + ηkB. This tells us that (vk, 0) ∈
∂̂εkψ(xk, yk) for all k = 1, 2, . . .. Employing further the inner semicontinuity
of the argminimum mapping M at (x̄, ȳ), we find a sequence of yk ∈ M(xk)

converging to ȳ as k → ∞. It follows from imposed convergence ϑ(xk) → ϑ(x̄)

that ψ(xk, yk)→ ψ(x̄, ȳ). Hence we arrive at (v, 0) ∈ ∂ψ(x̄, ȳ) by passing to the
limit as k →∞, which verifies therefore the validity of the upper estimate (7.5.6).
To derive from (7.5.6) the one in (7.5.3) claimed in the theorem, it remains to use
in (7.5.6) the basic subdifferential sum rule (7.4.5) from Theorem 7.4.2 combining
it with subdifferentiation of the indicator function in (7.2.10) and the coderivative
definition in (7.2.4).

Next we verify the singular subdifferential estimate

∂∞ϑ(x̄) ⊂ {
v ∈ R

n
∣
∣ (v, 0) ∈ ∂∞ψ(x̄, ȳ)

}
(7.5.7)

for optimal value function (7.5.1) in terms of the auxiliary function (7.5.5) under the
assumptions made. Picking v ∈ ∂∞ϑ(x̄) and taking any sequence εk ↓ 0, find by

(7.2.13) sequences xk
ϑ→ x̄, (vk, νk)→ (v, 0), and ηk ↓ 0 as k→∞ satisfying

〈vk, x − xk〉 + νk(μ− μk) ≤ εk
(‖x − xk‖ + |μ− μk|

)

for all (x, μ) ∈ epiϑ, x ∈ xk + ηkB, and |μ − μk| ≤ ηk . The assumed inner

semicontinuity of (7.5.2) ensures the existence of sequences yk
M(xk)−→ ȳ and μk ↓

ψ(x̄) such that

(vk, 0, νk) ∈ N̂εk

(
(xk, yk, μk); epiψ

)
for all k = 1, 2, . . . ,
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via the εk-enlargements N̂εk of the prenormal cone to the epigraph of ψ . This gives
us (7.5.7) by passing to the limit as k→∞. Applying finally to ∂∞ψ in (7.5.7) the
singular subdifferential relation (7.4.6) from Theorem 7.4.2 with taking into account
the singular subdifferential calculation in (7.2.10) together with the coderivative
definition (7.2.4), we arrive at the claimed upper estimate (7.5.4) and thus complete
the proof of the theorem. 	


As mentioned above, in our applications to bilevel programming we need to
have verifiable conditions that ensure the local Lipschitz continuity of the optimal
value function (7.5.1). This is provided by the following corollary, which is a
direct consequence of Theorem 7.5.1 and the coderivative criterion (7.2.6) for the
Lipschitz-like property.

Corollary 7.5.2 In addition to the assumptions of Theorem 7.5.1, suppose that the
constraint mapping F is Lipschitz-like around (x̄, ȳ) ∈ gphM in (7.5.2). Then the
optimal value function (7.5.1) is locally Lipschitzian around (x̄, ȳ). �
Proof We know from the coderivative criterion (7.2.6) that F is Lipschitz-like
around (x̄, ȳ) if and only if D∗F(x̄, ȳ)(0) = {0}. Applying it to (7.5.4) tells us that
the assumed Lipschitz-like property of the constraint mapping F in (7.5.1) ensures
that ∂∞ϑ(x̄) = {0}. Furthermore, it easily follows from the assumptions made that
the optimal value function is l.s.c. around x̄. Thus ϑ is locally Lipschitzian around
x̄ by the characterization of this property given in (7.2.9). 	


7.6 Problems of Lipschitzian Programming

Before deriving necessary optimality conditions in Lipschitzian problems of bilevel
optimization in the subsequent sections, we devote this section to problems of
single-level Lipschitzian programming. The results obtained here are based on
the extremal principle and subdifferential characterization of local Lipschitzian
functions while being instrumental for applications to bilevel programs given in
Sect. 7.8.

The mathematical program under consideration here is as follows:

minimize ϕ0(x) subject to
ϕi(x) ≤ 0 for all i = 1, . . . ,m,

(7.6.1)

where the functions ϕi : Rn → R, i = 0, . . . ,m, are locally Lipschitzian around
the reference point x̄. The next theorem provides necessary optimality conditions
in problem (7.6.1) of Lipschitzian programming that are expressed in terms of the
basic subdifferential (7.2.7).

Theorem 7.6.1 Let x̄ be a feasible solution to problem (7.6.1) that gives a local
minimum to the cost function ϕ0 therein. Then there exist multipliers λ0, . . . , λm
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satisfying the sign conditions

λi ≥ 0 for all i = 0, . . . ,m, (7.6.2)

the nontriviality conditions

λ0 + . . .+ λm �= 0, (7.6.3)

the complementary slackness conditions

λiϕi(x̄) = 0 whenever i = 1, . . . ,m, (7.6.4)

and the subdifferential Lagrangian inclusion

0 ∈
m∑

i=0

λi∂ϕi(x̄). (7.6.5)

Assume in addition that
[ ∑

i∈I (x̄)
λivi = 0, λi ≥ 0

]
�⇒

[
λi = 0 for all i ∈ I (x̄)

]
(7.6.6)

whenever vi ∈ ∂ϕi(x̄) with I (x̄) := {
i ∈ {1, . . . ,m}∣∣ ϕi(x̄) = 0

}
. Then the

necessary optimality conditions formulated above hold with λ0 = 1. �
Proof Supposing without loss of generality that ϕ0(x̄) = 0, consider the point
(x̄, 0) ∈ R

n × R
m+1 and form the following system of m + 2 sets in the space

R
n ×R

m+1:

"i :=
{
(x, μ0, . . . , μm) ∈ R

n × R
m+1

∣
∣(x, μi) ∈ epiϕi

}
, i = 0, . . . ,m, (7.6.7a)

"m+1 := R
n × {0}. (7.6.7b)

It is obvious that (x̄, 0) ∈ "0∩. . .∩"m+1 and that all the sets "i, i = 0, . . . ,m+1,
are locally closed around (x̄, 0). Furthermore, there exists a neighborhood U of the
local minimizer x̄ such that for any ε > 0 we find ν ∈ (0, ε) ensuring that

(
"0 + a

)m+1⋂

i=1

"i ∩
(
U ×R

m+1) = ∅, (7.6.8)

where a := (0, ν, 0, . . . , 0) ∈ R
n × R

m+1 with ν ∈ R standing at the first position
after 0 ∈ R

n. Indeed, the negation of (7.6.8) contradicts the local minimality of
x̄ in (7.6.1). Having (7.6.8) gives us (7.3.1) for the set system in (7.6.7a), (7.6.7b)
and thus verifies that (x̄, 0) is a locally extremal point of these sets. Applying now
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the extremal principle from Theorem 7.3.2 to {"0, . . . , "m+1} at (x̄, 0) with taking
into account the structures of "i , we get v0, . . . , vm ∈ R

n, λ0, . . . , λm ∈ R, and
ξ = (ξ1, . . . , ξm+1) ∈ R

m+1 satisfying the inclusions

(vi ,−λi) ∈ N
(
(x̄, 0); epiϕi

)
for all i = 0, . . . ,m (7.6.9)

together with the relationships

m∑

i=0

‖vi‖ +
m∑

i=0

|λi | + ‖ξ‖ �= 0, (7.6.10)

m∑

i=0

vi = 0, and λi = ξi+1 as i = 0, . . . ,m. (7.6.11)

It easily follows from (7.6.9) and the structure of the epigraphical sets in (7.6.9)
that the sign conditions (7.6.2) are satisfied. If we suppose while arguing by
contradiction to (7.6.3) that λ0 = . . . = λm = 0, then ξ = 0 by (7.6.11).
Furthermore, the singular subdifferential criterion (7.2.9) for the local Lipschitz
continuity of the functions ϕi as i = 0, . . . ,m being combined with the sign
conditions (7.6.2) and the definitions (7.2.7) and (7.2.8) of the basic and singular
subdifferentials, respectively, tells us that the inclusions in (7.6.9) are equivalent to

vi ∈ λi∂ϕi(x̄) for all i = 0, . . . ,m, (7.6.12)

and hence we get v0 = . . . = vm = 0. This clearly violates (7.6.10) and thus verifies
(7.6.3). The generalized Euler equation in (7.6.11) clearly reduces to the Lagrangian
inclusion (7.6.5).

To check further the complementary slackness conditions in (7.6.4), fix i ∈
{1, . . . ,m} and suppose that ϕi(x̄) < 0. Then the continuity of ϕi at x̄ ensures that
the pair (x̄, 0) is an interior point of the epigraphical set epiϕi . It readily implies
that N((x̄, 0); epiϕi) = (0, 0), and hence λi = 0. This yields λiϕi(x̄) = 0, which
justifies (7.6.4).

To complete the proof of the theorem, it remains to check that the validity of
(7.6.6) ensures that λ0 = 1 in (7.6.5). We easily arrive at this assertion while arguing
by contradiction. 	


If the constraint functions ϕi, i = 1, . . . ,m, are smooth around the reference
point x̄, condition (7.6.6) clearly reduces to the classical Mangasarian-Fromovitz
constraint qualification. It suggests us to label this condition (7.6.6) as the general-
ized Mangasarian-Fromovitz constraint qualification, or the generalized MFCQ.
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7.7 Variational Approach to Bilevel Optimization

This section is devoted to describing some models of bilevel programming and
a variational approach to them that involves nondifferentiable optimal value
functions in single-level problems of parametric optimization.

Let us first consider the following problem of parametric optimization with
respect to the decision variable y ∈ R

m under each fixed parameter x ∈ R
n:

minimize ϕ(x, y) subject to y ∈ F(x) with fixed x ∈ R
n, (7.7.1)

where ϕ : Rn × R
m → R is the cost function and F : Rn → R

m is the
constraint mapping in (7.7.1), which is called the lower-level problem of parametric
optimization. Denoting by

S(x) := argmin
{
ϕ(x, y)

∣
∣ y ∈ F(x)

}
(7.7.2)

the parameterized solution set for (7.7.1) for each x ∈ R
n and given yet another cost

function ψ : Rn × R
m → R, we consider the upper-level parametric optimization

problem of minimizing ψ(x, y) over the lower-level solution map S : Rn ⇒ R
m

from (7.7.2) written as:

minimize ψ(x, y) subject to y ∈ S(x) for each x ∈ ". (7.7.3)

The optimistic bilevel programming model is defined by

minimize μ(x) subject to x ∈ ", where μ(x) := inf
{
ψ(x, y)

∣
∣ y ∈ S(x)

}
,

(7.7.4)

and where " ⊂ R
n be a given constraint set. On the other hand, the pessimistic

bilevel programming model is defined as follows:

minimize η(x) subject to x ∈ ", where η(x) := sup
{
ψ(x, y)

∣
∣ y ∈ S(x)

}
.

(7.7.5)

We refer the reader to [5–8, 11–16, 19, 30, 45, 47, 48], and the bibliographies therein
for more details on both optimistic and pessimistic versions in bilevel programming,
their local and global solutions as well as reformulations, modifications and
relationships with other classes of optimization problems, theoretical and numerical
developments, and various applications in finite-dimensional spaces. Investigations
and applications of bilevel optimization problems in infinite dimensions can be
found, e.g., in [1, 3, 8, 15, 17, 18, 20, 21, 23, 24, 34, 36, 37, 42, 43].

The main attention in this and subsequent sections is paid to the application of
the machinery and results of variational analysis and generalized differentiation to
problems of bilevel optimization by implementing the value function approach.
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This approach is based on reducing bilevel programs to single-level problems of
mathematical programming by using the nonsmooth optimal value function ϑ(x) of
the lower-level problem defined in (7.5.1). Such a device was initiated by Outrata
[35] for a particular class of bilevel optimization problems and was used by him
for developing a numerical algorithm to solve bilevel programs. Then this approach
was strongly developed by Ye and Zhu [44] who employed it to derive necessary
optimality conditions for optimistic bilevel programs by using Clarke’s general-
ized gradients of optimal value functions. More advanced necessary optimality
conditions for optimistic bilevel programs in terms of the author’s generalized
differentiation reviewed in Sect. 7.2 were developed in [11, 12, 30, 34, 46, 47].
Optimality and stability conditions for pessimistic bilevel models were derived in
[13, 16].

We restrict ourselves in what follows to implementing variational analysis
and the aforementioned machinery of generalized differentiation within the value
function approach to optimistic bilevel models with Lipschitzian data in finite-
dimensional spaces. This allows us to most clearly communicate the basic varia-
tional ideas behind this approach, without additional technical complications. The
variational results presented in the previous sections make our presentation self-
contained and complete.

For simplicity we consider the optimistic bilevel model (7.7.4) with only
inequality constraints on the lower and upper levels described by

F(x) := {
y ∈ R

m
∣
∣ fi(x, y) ≤ 0 for i = 1, . . . , r

}
, (7.7.6)

" := {
x ∈ R

n
∣
∣ gj (x) ≤ 0 for j = 1, . . . , s

}
. (7.7.7)

The reduction of the bilevel program (7.7.4) with the constraints (7.7.6) and (7.7.7)
to a single-level problem of nondifferentiable programming and deriving in this way
necessary optimality conditions for it are given in the next section.

7.8 Optimality Conditions for Lipschitzian Bilevel Programs

The optimal value function (7.5.1) for the lower-level program (7.7.1) with the
inequality constraints specified in (7.7.6) reads as

ϑ(x) = inf
{
ϕ(x, y)

∣
∣ fi(x, y) ≤ 0, i = 1, . . . , r

}
, x ∈ R

n. (7.8.1)

With the upper-level cost function ψ given in (7.7.3) and the upper-level constraints
taken from (7.7.7), consider the following single-level mathematical program with
inequality constraints:

minimize ψ(x, y) subject to gj (x) ≤ 0, j = 1, . . . , s,
fi(x, y) ≤ 0, i = 1, . . . , r, and ϕ(x, y) ≤ ϑ(x).

(7.8.2)
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We can easily observe that global optimal solutions to (7.8.2) agree with those to
problem (7.7.4), (7.7.6), and (7.7.7). Although this is not always the case for local
minimizers, it holds under the inner semicontinuity assumption on the solution map
associated with the optimistic bilevel program (7.7.4); see [12, Proposition 6.9] for
the precise statement.

Looking at (7.8.2), observe that this problem is of type (7.6.1) for which
necessary optimality conditions are given in Theorem 7.6.1, provided that all
the functions involved are locally Lipschitzian. However, the direct application
of Theorem 7.6.1 to problem (7.8.2) is not efficient due to the structure of the
last constraint therein defined via the lower-level optimal value function (7.8.1).
Indeed, it has been realized in bilevel programming that this constraint prevents the
fulfillment of conventional constraint qualifications; in particular, the generalized
MFCQ (7.6.6). To avoid this obstacle, Ye and Zhu [44] introduced the following
property postulating an appropriate behavior of the cost function in (7.8.2) with
respect to linear perturbations of the constraint ϕ(x, y) ≤ ϑ(x). Consider the
problem:

minimize ψ(x, y) subject to gj (x) ≤ 0, j = 1, . . . , s,
fi(x, y) ≤ 0, i = 1, . . . , r, and ϕ(x, y)− ϑ(x)+ ν = 0 as ν ∈ R.

(7.8.3)

Definition 7.8.1 Problem (7.8.2) is Partially Calm at its local optimal solution
(x̄, ȳ) if there exist a constant κ > 0 and a neighborhood U of (x̄, ȳ, 0) ∈
R

n ×R
m × R such that

ψ(x, y)− ψ(x̄, ȳ)+ κ |ν| ≥ 0 (7.8.4)

for all the triples (x, y, ν) ∈ U feasible to (7.8.3). �
There are various efficient conditions, which ensure the fulfillment of the partial

calmness property for (7.8.2). They include the uniform sharp minimum condition
[44], linearity of the lower-level problem with respect to the decision variable [9],
the kernel condition [30], etc. On the other hand, partial calmness may fail in rather
common situations; see [19, 30] for more results and discussions on partial calmness
and related properties.

The main impact of partial calmness to deriving necessary optimality conditions
for (7.8.2) is its equivalence to the possibility of transferring the troublesome
constraint ϕ(x, y) ≤ ϑ(x) into the penalized cost function as in the following
proposition.
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Proposition 7.8.2 Let problem (7.8.2) be partially calm at its local optimal solution
(x̄, ȳ) with ψ being continuous at this point. Then (x̄, ȳ) is a local optimal solution
to the penalized problem

minimize ψ(x, y)+ κ
(
ϕ(x, y)− ϑ(x)

)
subject to

gj (x) ≤ 0, j = 1, . . . , s, and fi(x, y) ≤ 0, i = 1, . . . , r,
(7.8.5)

where the number κ > 0 is taken from (7.8.4). �
Proof Taking κ and U from Definition 7.8.1 and using the continuity of ψ at (x̄, ȳ),
we find γ > 0 and η > 0 with Ũ := [(x̄, ȳ)+ ηB] × (−γ, γ ) ⊂ U and

|ψ(x, y)− ψ(x̄, ȳ)| ≤ κγ for all (x, y)− (x̄, ȳ) ∈ ηB.

Let us employ it to verify that

ψ(x, y)− ψ(x̄, ȳ)+ κ
(
ϕ(x, y)− ϑ(x)

) ≥ 0 if gj (x) ≤ 0, j = 1, . . . , s,
(7.8.6)

and (x, y) ∈ [(x̄, ȳ) + ηB] ∩ gphF with F taken from (7.7.6). If (x, y, ϑ(x) −
ϕ(x, y)) ∈ Ũ , then (7.8.6) follows from (7.8.4). In the remaining case where
(x, y, ϑ(x)− ϕ(x, y)) /∈ Ũ , we get that

ϕ(x, y)− ϑ(x) ≥ γ, and hence κ
(
ϕ(x, y)− ϑ(x)

) ≥ κγ,

which also yields (7.8.6) by ψ(x, y)− ψ(x̄, ȳ) ≥ −κγ . The feasibility of (x̄, ȳ) to
(7.8.2) tells us that ϕ(x̄, ȳ)− ϑ(x̄) = 0, which thus verifies the claimed statement.

	

Thus the imposed partial calmness allows us to deduce the original problem

of optimistic bilevel optimization to the single-level mathematical program (7.8.5)
with conventional inequality constraints, where the troublesome term ϕ(x, y)−ϑ(x)

enters the penalized cost function. To derive necessary optimality conditions for
(7.8.5), let us reformulate the generalized MFCQ (7.6.6) in conventional bilevel
terms as in the case of bilevel programs with smooth data [6].

We say that (x̄, ȳ) ∈ R
n×R

m is lower-level regular if it satisfies the generalized
MFCQ in the lower-level problem (7.7.1). This means due to the structure of (7.7.1)
that

[ ∑

i∈I (x̄,ȳ)
λivi = 0, λi ≥ 0

]
�⇒

[
λi = 0 for all i ∈ I (x̄, ȳ)

]
(7.8.7)

whenever (ui, vi) ∈ ∂fi(x̄, ȳ) with some u ∈ R
n and

I (x̄, ȳ) := {
i ∈ {1, . . . , r}∣∣ fi(x̄, ȳ) = 0

}
.
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Similarly, a point x̄ ∈ R
n satisfying the upper-level constraints in (7.7.7) is upper-

level regular if

[
0 ∈

∑

j∈J (x̄)

μj ∂gj (x̄), μj ≥ 0
]
�⇒

[
μj = 0 whenever j ∈ J (x̄)

]
(7.8.8)

with the active constraint indexes J (x̄) := {
j ∈ {1, . . . , s}∣∣ gj (x̄) = 0

}
.

Now we are ready for the application of Theorem 7.6.1 to the optimistic
bilevel program in the equivalent form (7.8.5). To proceed, we have to verify
first that the optimal value function ϑ(x) in the cost function of (7.8.5) is locally
Lipschitzian around the reference point and then to be able to upper estimate the
basic subdifferential (7.2.7) of the function −ϑ(·). Since the basic subdifferential
∂ϑ(x̄) does not possess the plus-minus symmetry while its convex hull co ∂ϑ(x̄)

does, we need to convexify in the proof the set on the right-hand side of the upper
estimate in (7.5.3). In this way we arrive at the following major result.

Theorem 7.8.3 Let (x̄, ȳ) be a local optimal solution to the optimistic bilevel pro-
gram in the equivalent form (7.8.2)with the lower-level optimal value function ϑ(x)

defined in (7.8.1). Assume that all the functions ϕ,ψ, fi, gj are locally Lipschitzian
around the reference point, that the lower-level solution map S from (7.7.2) is
inner semicontinuous at (x̄, ȳ), that the lower-level regularity (7.8.7) and upper-
level regularity (7.8.8) conditions hold, and that problem (7.8.2) is partially calm
at (x̄, ȳ) with constant κ > 0. Then there exist multipliers λ1, . . . , λr , μ1, . . . , μs ,
and ν1, . . . , νr satisfying the sign and complementary slackness conditions

λi ≥ 0, λifi(x̄, ȳ) = 0 for i = 1, . . . , r, (7.8.9)

μj ≥ 0, μjgj (x̄) = 0 for j = 1, . . . , s, (7.8.10)

νi ≥ 0, νifi(x̄, ȳ) = 0 for i = 1, . . . , r, (7.8.11)

together with the following relationships, which involve some vector u ∈ co ∂ϑ(x̄) :

(u, 0) ∈ co ∂ϕ(x̄, ȳ)+
r∑

i=1

νico ∂fi(x̄, ȳ), (7.8.12)

(u, 0) ∈ ∂ϕ(x̄, ȳ)+ κ−1∂ψ(x̄, ȳ)+
r∑

i=1

λi∂fi(x̄, ȳ)+
s∑

j=1

μj

(
∂gj (x̄), 0

)
.

(7.8.13)
�

Proof It follows from Proposition 7.8.2 that (x̄, ȳ) is a local minimizer of the
mathematical program (7.8.5) with inequality constraints. To show that it belongs
to problems of Lipschitzian programming considered in Sect. 7.6, we need to check
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that the optimal value function (7.8.1) is locally Lipschitzian around x̄ under the
assumptions made. This function is clearly l.s.c. around x̄, and thus its Lipschitz
continuity around this point is equivalent to the condition ∂∞ϑ(x̄) = {0}. It
follows from the upper estimate (7.5.4) of Theorem 7.5.1 and the assumed inner
semicontinuity of the solution map (7.7.2) at (x̄, ȳ) that

∂∞ϑ(x̄) ⊂ D∗F(x̄)(0) with F(x) = {
y ∈ R

m
∣
∣ fi(x, y) ≤ 0, i = 1, . . . , r

}
.

Corollary 7.5.2 tells us that the local Lipschitz continuity of ϑ around x̄ follows
from the Lipschitz-like property of the mapping F : Rn ⇒ R

m. Since

gphF = {
(x, y) ∈ R

n × R
m
∣
∣ fi(x, y) ≤ 0, i = 1, . . . , r

}
,

we deduce that D∗F(x̄, ȳ)(0) = {0} from the assumed lower-level regularity due to
the coderivative definition and the normal come intersection rule in Theorem 7.4.1.
Thus F is Lipschitz-like around (x̄, ȳ) by the coderivative criterion (7.2.6), and the
Lipschitz continuity of ϑ(·) is verified.

Now we can apply to problem (7.8.5) the necessary optimality conditions
for Lipschitzian programs obtained in Theorem 7.6.1. The assumed lower-level
regularity and upper-level regularity clearly imply that the generalized MFCQ
condition (7.6.6) holds. Thus there are multipliers λ1, . . . , λr and μ1, · · · , μs

satisfying the sign and complementary slackness conditions in (7.8.9) and (7.8.10)
for which we have

0 ∈ ∂ψ(x̄, ȳ)+ κ∂ϕ(x̄, ȳ)+
(
κ∂(−ϑ)(x̄), 0

)

+
r∑

i=1

λi∂fi(x̄, ȳ)+
s∑

j=1

μj

(
∂gj (x̄), 0

)
.

(7.8.14)

To estimate ∂(−ϑ)(x̄) in (7.8.14), recall that

∂(−ϑ)(x̄) ⊂ ∂(−ϑ)(x̄) = −∂ϑ(x̄) = −co ∂ϑ(x̄),

where ∂ stands for Clarke’s generalized gradient of locally Lipschitzian functions
that possesses the plus-minus symmetry property [4]. Using it in (7.8.14), we get
u ∈ co ∂ϑ(x̄) such that

κ(u, 0) ∈ ∂ψ(x̄, ȳ)+∂ϕ(x̄, ȳ)+
r∑

i=1

λi∂fi(x̄, ȳ)+
s∑

j=1

(
μj∂gj (x̄), 0

)
. (7.8.15)

Applying the convexified subdifferential estimates (7.5.3) from Theorem 7.5.1 to
the optimal value function (7.8.1) allows us to find multipliers ν1, . . . , νr satisfying
the sign and complementary slackness conditions in (7.8.11) that ensure the validity
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of (7.8.12). To verify finally (7.8.13), we divide (7.8.15) by κ > 0 with keeping the
same notation for the scaled multipliers λi and μj . 	


The next section presents an independent set of necessary optimality conditions
for optimistic bilevel programs with Lipschitzian data that are obtained without
using any convexification while employing instead yet another variational device
and subdifferential calculus rule.

7.9 Bilevel Optimization via Subdifferential Difference Rule

Considering the single-level problem (7.8.5), which we are finally dealing with
while deriving necessary optimality conditions for optimistic bilevel programs, note
that the objective therein contains the difference of two nonsmooth functions. The
basic subdifferential (7.2.7) does not possesses any special rule for difference of
nonsmooth functions, but the regular subdifferential (7.2.11) does, as was first
observed in [33] by using a smooth variational description of regular subgradients.
Here we employ this approach to establish necessary optimality conditions for
Lipschitzian bilevel programs that are different from those in Theorem 7.8.3.

The derivation of these necessary optimality conditions is based on the following
two results, which are certainly of their independent interest. The first one provides
a smooth variational description of regular subgradients of arbitrary functions
ϕ : Rn → R.

Lemma 7.9.1 Let ϕ : Rn→ R be finite at x̄, and let v ∈ ∂̂ϕ(x̄). Then there exists a
neighborhood U of x̄ and a function ψ : U → R such that ψ(x̄) = ϕ(x̄), that ψ is
Fréchet differentiable at x̄ with ∇ψ(x̄) = v, and that the difference ψ − ϕ achieves
at x̄ its local maximum on U . �
Proof We proceed geometrically due to the relationship

∂̂ϕ(x̄) = {
v ∈ R

n
∣
∣ (v,−1) ∈ N̂

(
(x̄, ϕ(x̄)); epiϕ

)}
,

which reduces the claimed assertion to the following: w ∈ N̂(z̄;") if and only
if there exists a neighborhood U of z̄ and a function ψ : Rn → R such that ψ is
Fréchet differentiable at z̄ with ∇ψ(z̄) = w while achieving at z̄ its local maximum
relative to ".

To verify the latter, observe that for any ψ : U → R satisfying the listed
properties we get

ψ(z) = ψ(z̄)+ 〈w, z − z̄〉 + o(‖z− z̄‖) ≤ ψ(z̄) whenever z ∈ U.
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It shows that 〈w, z − z̄〉 + o(‖z − z̄‖) ≤ 0, and thus w ∈ N̂(z̄;") by definition
(7.2.2). Conversely, pick w ∈ N̂(z̄;") and define the function

ψ(z) :=
{

min
{
0, 〈w, z − z̄〉} if z ∈ ",

〈w, z − z̄〉 otherwise.

It is easy to check that this function enjoys all the properties listed above. 	

The second lemma gives us the aforementioned difference rule for regular

subgradients.

Lemma 7.9.2 Consider two arbitrary functions ϕ1, ϕ2 : Rn → R that are finite at
x̄ and assume that ∂̂ϕ2(x̄) �= ∅. Then we have the inclusions

∂̂(ϕ1 − ϕ2)(x̄) ⊂
⋂

v∈∂̂ϕ2(x̄)

[
∂̂ϕ1(x̄)− v

]
⊂ ∂̂ϕ1(x̄)− ∂̂ϕ2(x̄). (7.9.1)

It implies, in particular, that any local minimizer x̄ of the difference function ϕ1−ϕ2
satisfies the necessary optimality condition

∂̂ϕ2(x̄) ⊂ ∂̂ϕ1(x̄). (7.9.2)

�

Proof Starting with (7.9.1), pick v ∈ ∂̂ϕ2(x̄). Then the smooth variational
description of v from Lemma 7.9.1 gives us ψ : U → R on a neighborhood U

of x̄ that is differentiable at x̄ with

ψ(x̄) = ϕ2(x̄), ∇ψ(x̄) = v, and ψ(x) ≤ ϕ2(x) whenever x ∈ U.

Fix further an arbitrary vector w ∈ ∂̂(ϕ1 − ϕ2)(x̄) and for any ε > 0 find γ > 0
such that

〈w, x − x̄〉 ≤ ϕ1(x)− ϕ2(x)−
(
ϕ1(x̄)− ϕ2(x̄)

)+ ε‖x − x̄‖
≤ ϕ1(x)− ψ(x)− (

ϕ1(x̄)− ψ(x̄)
)+ ε‖x − x̄‖

if ‖x− x̄‖ ≤ γ . Due to the differentiability of ψ at x̄ we use the elementary sum rule
for the regular subgradients (see, e.g., [29, Proposition 1.107(i)]) and immediately
get the relationships

w ∈ ∂̂(ϕ1 − ψ)(x̄) = ∂̂ϕ1(x̄)−∇ψ(x̄) = ∂̂ϕ1(x̄)− v,
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which clearly verify both inclusions in (7.9.1). Picking further any v ∈ ∂̂ϕ2(x̄), we
deduce from (7.9.1) and the obvious Fermat stationary rule via regular subgradients
that

0 ∈ ∂̂(ϕ1 − ϕ2)(x̄) ⊂ ∂̂ϕ1(x̄)− v.

It shows that v ∈ ∂̂ϕ1(x̄) and thus verifies the fulfillment of (7.9.2). 	

Now we are in a position to derive refined necessary optimality conditions for

optimistic bilevel programs with Lipschitzian data.

Theorem 7.9.3 Let (x̄, ȳ) be a local optimal solution to the optimistic bilevel
program in the equivalent form (7.8.2) without upper level constraints. Suppose
that all the functions ϕ,ψ, fi are locally Lipschitzian around the reference point,
that the lower-level solution map S in (7.7.2) is inner semicontinuous at (x̄, ȳ),
that the lower-level regularity (7.8.7) condition holds, and that problem (7.8.2) is
partially calm at (x̄, ȳ) with constant κ > 0. Assume in addition that ∂̂ϑ(x̄) �= ∅
for the optimal value function (7.8.1). Then there exists a vector u ∈ ∂̂ϑ(x̄) together
with multipliers λ1, . . . , λr and ν1, . . . , νr for i = 1, . . . , r satisfying the sign and
complementary slackness conditions in (7.8.11) and (7.8.9), respectively, such that

(u, 0) ∈ ∂ϕ(x̄, ȳ)+
r∑

i=1

νi∂fi(x̄, ȳ), (7.9.3)

(u, 0) ∈ ∂ϕ(x̄, ȳ)+ κ−1∂ψ(x̄, ȳ)+
r∑

i=1

λi∂fi(x̄, ȳ). (7.9.4)

�

Proof We get from the partial calmness penalization in Proposition 7.8.2 employed
together with the infinite penalization of the lower-level constraints that (x̄, ȳ) a
local minimizer for the unconstrained optimization problem

minimize ψ(x, y)+ κ
(
ϕ(x, y)− ϑ(x)

)+ δ
(
(x, y); gphF

)
(7.9.5)

with the mapping F : Rn ⇒ R
m defined in (7.7.6). Then applying to (7.9.5) the

difference rule (7.9.2) from Proposition 7.9.2 gives us the inclusion

(
κ∂̂ϑ(x̄), 0

) ⊂ ∂̂
(
ψ(·)+ κϕ(·)+ δ(·; gphF)

)
(x̄, ȳ). (7.9.6)

At the same time it follows from the proof of Theorem 7.5.1 that

(
∂̂ϑ(x̄), 0

) ⊂ ∂̂
(
ϕ(·)+ δ

(·; gphF
))
(x̄, ȳ). (7.9.7)
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Replacing ∂̂ by the larger ∂ on the right-hand sides of (7.9.6) and (7.9.7) and then
using the basic subdifferential sum rule from Theorem 7.4.2 yield the inclusions

(
κ∂̂ϑ(x̄), 0

)
⊂ ∂ψ(x̄, ȳ)+ κ∂ϕ(x̄, ȳ)+N

(
(x̄, ȳ); gphF

)
,

(
∂̂ϑ(x̄), 0

)
⊂ ∂ϕ(x̄, ȳ)+N

(
(x̄, ȳ); gphF

)
.

(7.9.8)

Employing in these inclusions Theorem 7.4.1 under the lower-level regularity of
(x̄, ȳ) with the usage of the singular subdifferential characterization of Lipschitzian
functions in (7.2.9), we get

N
(
(x̄, ȳ); gphF

) ⊂
⋃{ r∑

i=1

λi∂fi(x̄, ȳ)

∣∣
∣ λi ≥ 0, λifi(x̄, ȳ) = 0 as i = 1, . . . , r

}
.

It allows us to deduce from (7.9.8) the existence of u ∈ ∂̂ϑ(x̄) ensuring the validity
of (7.9.3) and

κ(u, 0) ∈ ∂ψ(x̄, ȳ)+ κ∂ϕ(x̄, ȳ)+
r∑

i=1

λi∂fi(x̄, ȳ).

Dividing the latter by κ > 0, we arrive at (7.9.4) and thus complete the proof of the
theorem. 	


Observe that we always have ∂̂ϑ(x̄) �= ∅ if the optimal value function (7.8.1)
is convex, which is surely the case when all the functions ϕ and fi therein are
convex. If in addition the upper-level data are also convex, more general results
were derived in [17] for problems of semi-infinite programming with arbitrary
number of inequality constraints in locally convex topological vector spaces by
reducing them to problems of DC programming with objectives represented as
differences of convex functions. Note further that the necessary optimality conditions
obtained in Theorems 7.8.3 and 7.9.3 are independent of each other even in the
case of bilevel programs with smooth data. In particular, we refer the reader
to [30, Example 6.24] for illustrating this statement and for using the obtained
results to solve smooth bilevel programs. Finally, we mention the possibility to
replace the inner semicontinuity assumption on the solution map S(x) imposed in
both Theorems 7.8.3 and 7.9.3 by the uniform boundedness of this map in finite-
dimensions, or by its inner semicompactness counterpart in infinite-dimensional
spaces; cf. [11, 16, 30, 34] for similar transitions in various bilevel settings.
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7.10 Concluding Remarks and Open Questions

In this self-contained chapter of the book we described a variational approach to
bilevel optimization with its implementation to deriving advanced necessary opti-
mality conditions for optimistic bilevel programs in finite-dimensional spaces. The
entire machinery of variational analysis and generalized differentiation (including
the fundamental extremal principle, major calculus rules, and subdifferentiation of
optimal value functions), which is needed for this device, is presented here with the
proofs. The given variational approach definitely has strong perspectives for further
developments. Let us briefly discuss some open questions in this direction.

• The major difference between the optimistic model (7.7.4) and pessimistic
model (7.7.5) in bilevel programming is that the latter invokes the supremum
marginal/optimal value function instead of the infimum type in (7.7.4). Subdif-
ferentiation of the supremum marginal functions is more involved in comparison
with that of the infimum type. Some results in this vein for problems with
Lipschitzian data can be distilled from the recent papers [31, 32, 38], while their
implementation in the framework of pessimistic bilevel programs is a challenging
issue.

• The given proof of the necessary optimality conditions for bilevel programs
in Theorem 7.8.3 requires an upper estimate of ∂(−ϑ)(x̄), which cannot be
directly derived from that for ∂ϑ(x̄) since ∂(−ϑ)(x̄) �= −∂ϑ(x̄). To obtain
such an estimate, we used the subdifferential convexification and the fact that the
convexified/Clarke subdifferential of Lipschitz continuous functions possesses
the plus-minus symmetry. However, there is a nonconvex subgradient set that is
much smaller than Clarke’s one while having this symmetry. It is the symmetric
subdifferential ∂0ϑ(x̄) := ∂ϑ(x̄) ∪ (−∂(−ϑ)(x̄)), which enjoys full calculus
induced by the basic one. Efficient evaluations of ∂0ϑ(x̄) for infimum and
supremum marginal functions would lead us to refined optimality conditions for
both optimistic and pessimistic models in bilevel optimization.

• The partial calmness property used in both Theorems 7.8.3 and 7.9.3 seems to
be rather restrictive when the lower-level problem is nonlinear with respect to the
decision variable. It is a challenging research topic to relax this assumption and to
investigate more the uniform weak sharp minimum property and its modifications
that yield partial calmness.

• One of the possible ways to avoid partial calmness in bilevel programming is
as follows. Having the solution map S : Rn ⇒ R

m to the lower-level problem,
consider the constrained upper-level problem given by

minimize $(x) := ψ
(
x, S(x)

)
subject to x ∈ ", (7.10.1)

where ψ : Rn×R
m→ R is the cost function on the upper level with the upper-level

constraint set " ⊂ R
n, and where the minimization of $ : Rn ⇒ R is understood

with respect to the standard order on R. Then (7.10.1) is a problem of set-valued
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optimization for which various necessary optimality conditions of the coderivative
and subdifferential types can be found in [30] and the references therein. Evaluating
the coderivatives and subdifferentials of the composition ψ(x, S(x)) in terms of
the given lower-level and upper-level data of bilevel programs would lead us to
necessary optimality conditions in both optimistic and pessimistic models. There
are many open questions arising in efficient realizations of this approach for
particular classes of problems in bilevel optimization even with smooth initial data.
We refer the reader to the paper by Zemkoho [47] for some recent results and
implementations in this direction.

Note that a somewhat related approach to bilevel optimization was developed in
[1], where a lower-level problem was replaced by the corresponding KKT system
described by a certain generalized equation of the Robinson type [39]. Applying
to the latter necessary optimality conditions for upper-level problems with such
constraints allowed us to establish verifiable results for the original nonsmooth
problem of bilevel programming.

• Henrion and Surowiec suggested in [19] a novel approach to derive necessary
optimality conditions for optimistic bilevel programs with C2-smooth data and
convex lower-level problems. Their approach used a reduction to mathematical
programs with equilibrium constraints (MPECs) and allowed them to signif-
icantly relax the partial calmness assumption. Furthermore, in this way they
obtained new necessary optimality conditions for the bilevel programs under
consideration, which are described via the Hessian matrices of the program data.

A challenging direction of the future research is to develop the approach and
results from [19] to nonconvex bilevel programs with nonsmooth data. It would
be natural to replace in this way the classical Hessian in necessary optimality
conditions by the generalized one (known as the second-order subdifferential)
introduced by the author in [27] and then broadly employed in variational
analysis and its applications; see, e.g., [30] and the references therein.

• As it has been long time realized, problems of bilevel optimization are generally
ill-posed, which creates serious computational difficulties for their numerical
solving; see, e.g., [5, 6, 47] for more details and discussions. Furthermore, various
regularization methods and approximation procedures devised in order to avoid
ill-posedness have their serious drawbacks and often end up with approximate
solutions, which may be far enough from optimal ones. Thus it seems appealing
to deal with ill-posed bilevel programs how they are and to develop numerical
algorithms based on the obtained necessary optimality conditions. Some results
in this vein are presented in [47] with involving necessary optimality conditions
of the type discussed here, while much more work is required to be done in this
very important direction with practical applications.
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Chapter 8
Constraint Qualifications and Optimality
Conditions in Bilevel Optimization

Jane J. Ye

Abstract In this paper we study constraint qualifications and optimality condi-
tions for bilevel programming problems. We strive to derive checkable constraint
qualifications in terms of problem data and applicable optimality conditions. For
the bilevel program with convex lower level program we discuss drawbacks of
reformulating a bilevel programming problem by the mathematical program with
complementarity constraints and present a new sharp necessary optimality condition
for the reformulation by the mathematical program with a generalized equation
constraint. For the bilevel program with a nonconvex lower level program we
propose a relaxed constant positive linear dependence (RCPLD) condition for the
combined program.

Keywords Bilevel programs · Necessary optimality conditions · Constraint
qualifications

8.1 Introduction

In this paper we consider the following bilevel program:

(BP) min F(x, y)

s.t. y ∈ S(x), G(x, y) ≤ 0, H(x, y) = 0,

where S(x) denotes the solution set of the lower level program

(Px) min
y∈�(x)

f (x, y),
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where �(x) := {y ∈ R
m : g(x, y) ≤ 0, h(x, y) = 0} is the feasible region of the

lower level program, F : Rn×Rm→ R, G : Rn×Rm→ R
p and H : Rn×Rm→

R
q f : Rn × R

n → R, g : Rn × R
m → R

r , h : Rn × R
m → R

s . Throughout the
paper, for simplicity we assume that S(x) �= ∅ for all x.

In economics literature, a bilevel program is sometimes referred to as a Stack-
elberg game due to the introduction of the concept by Stackelberg [28]. Although
it can be used to model a game between the leader and the follower of a two level
hierarchical system, the bilevel program has been used to model much wider range
of applications; see e.g. [4, 5]. Recently, it has been applied to hyper-parameters
selection in machine learning; see e.g. [17, 18].

The classical approach or the first order approach to study optimality conditions
for bilevel programs is to replace the lower level problem by its Karush-Kuhn-
Tucker (KKT) conditions and minimize over the original variables as well as
the multipliers. The resulting problem is a so-called mathematical program with
complementarity constraints or mathematical program with equilibrium constraints.
The class of mathematical program with complementarity/equilibrium constraints
has been studied intensively in the last three decades; see e.g. [19, 24] and the
reference within.

There are two issues involved in using the first order approach. Firstly, since the
KKT condition is only a sufficient but not necessary condition for optimality, the
first order approach can only be used when the lower level problem is a convex
program. Secondly, even when the lower level is a convex program if the lower
level problem has more than one multiplier, the resulting problem is not equivalent
to the original bilevel program if local optimality is considered. In this paper we
discuss these issues and present some strategies to deal with this problem. These
strategies including using the value function approach, the combined approach and
the generalized equation approach.

For a stationary condition to hold at a local optimal solution, usually certain
constraint qualifications are required to hold. There are some weak constraint
qualifications which are not checkable since they are defined implicitly; e.g. Abadie
constraint qualification. In this paper we concentrate on only those checkable
constraint qualifications.

The following notation will be used throughout the paper. We denote by B(x̄; δ)
the closed ball centered at x̄ with radius δ and by B the closed unit ball centered
at 0. We denote by Bδ(x̄) the open ball centered at x̄ with radius δ. For a matrix
A, we denote by AT its transpose. The inner product of two vectors x, y is denoted
by xT y or 〈x, y〉 and by x ⊥ y we mean 〈x, y〉 = 0. The polar cone of a set " is
"◦ = {x|xT v ≤ 0 ∀v ∈ "}. For a set ", we denote by co" the convex hull of ". For
a differentiable mapping P : Rd → R

s , we denote by ∇P(z) the Jacobian matrix
of P at z if s > 1 and the gradient vector if s = 1. For a function f : Rd → R, we
denote by ∇2f (z̄) the Hessian matrix of f at z̄. Let M : Rd ⇒ R

s be an arbitrary
set-valued mapping. We denote its graph by gphM := {(z,w)|w ∈ M(z)}. o :
R+ → R denotes a function with the property that o(λ)/λ → 0 when λ ↓ 0. By

zk
"→ z we mean that zk ∈ " and zk → z.
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8.2 Preliminaries on Variational Analysis

In this section, we gather some preliminaries in variational analysis and optimization
theories that will be needed in the paper. The reader may find more details in the
monographs [3, 21, 27] and in the papers we refer to.

Definition 8.2.1 (Tangent Cone and Normal Cone) Given a set " ⊆ R
d and a

point z̄ ∈ ", the (Bouligand-Severi) tangent/contingent cone to " at z̄ is a closed
cone defined by

T"(z̄) := lim sup
t↓0

"− z̄

t
=

{
u ∈ R

d
∣
∣
∣ ∃ tk ↓ 0, uk → u with z̄+ tkuk ∈ " ∀ k

}
.

The (Fréchet) regular normal cone and the (Mordukhovich) limiting/basic normal
cone to " at z̄ ∈ " are closed cones defined by

N̂"(z̄) := (T"(z̄))◦

and N"(z̄) :=
{
z∗ ∈ R

d | ∃zk "→ z̄ and z∗k → z∗ such that z∗k ∈ N̂"(zk) ∀k
}
,

respectively. �
When the set " is convex, the regular and the limiting normal cones are equal and
reduce to the classical normal cone of convex analysis, i.e.,

N"(z̄) := {z∗|〈z∗, z − z̄〉 ≤ 0 ∀z ∈ "}.

We now give definitions for subdifferentials.

Definition 8.2.2 (Subdifferentials) Let f : R
d → R̄ be an extended value

function, x̄ ∈ R
d and f (x̄) is finite. The regular subdifferential of f at x̄ is the

set defined by

∂̂f (x̄) := {v ∈ R
d |f (x) ≥ f (x̄)+ 〈v, x − x̄〉 + o(‖x − x̄‖)}.

The limiting subdifferential of f at x̄ is the set defined by

∂f (x̄) := {v ∈ R
d |v = lim

k
vk, vk ∈ ∂̂f (xk), xk → x̄, f (xk)→ f (x̄)}.

Suppose that f is Lipschitz continuous at x̄. Then the Clarke subdifferential of f at
x̄ is the set defined by

∂cf (x̄) = conv∂f (x̄). �
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When the function f is convex, all the subdifferentials defined above are equal and
reduce to the classical subgradient of convex analysis, i.e.,

∂f (x̄) := {v ∈ R
d |f (x) ≥ f (x̄)+ 〈v, x − x̄〉}.

Definition 8.2.3 (Coderivatives) For a set-valued map % : R
d ⇒ R

s and a
point (x̄, ȳ) ∈ gph%, the Fréchet coderivative of % at (x̄, ȳ) is a multifunction
D̂∗%(x̄, ȳ) : Rs ⇒ R

d defined as

D̂∗%(x̄, ȳ)(w) :=
{
ξ ∈ R

d |(ξ,−w) ∈ N̂gph%(x̄, ȳ)
}
.

And the limiting (Mordukhovich) coderivative of % at (x̄, ȳ) is a multifunction
D∗%(x̄, ȳ) : Rs ⇒ R

d defined as

D∗%(x̄, ȳ)(w) :=
{
ξ ∈ R

d |(ξ,−w) ∈ Ngph%(x̄, ȳ)
}
. �

We now review some concepts of stability of a set-valued map.

Definition 8.2.4 (Aubin [2]) Let � : Rn ⇒ R
d be a set-valued map and (ᾱ, x̄) ∈

gph�. We say that � is pseudo-Lipschitz continuous at (ᾱ, x̄) if there exist a
neighborhood V of ᾱ, a neighborhood U of x̄ and κ ≥ 0 such that

� (α) ∩ U ⊆ �
(
α′
)+ κ

∥
∥α′ − α

∥
∥B, ∀α′, α ∈ V. �

Definition 8.2.5 (Robinson [25]) Let � : Rn ⇒ R
d be a set-valued map and ᾱ ∈

R
n. We say that � is upper-Lipschitz continuous at ᾱ if there exist a neighborhood

V of ᾱ and κ ≥ 0 such that

� (α) ⊆ � (ᾱ)+ κ ‖α − ᾱ‖B, ∀α ∈ V. �

Definition 8.2.6 (Ye and Ye [35]) Let � : Rn ⇒ R
d be a set-valued map and

(ᾱ, x̄) ∈ gph�. We say that � is calm (or pseudo upper-Lipschitz continuous) at
(ᾱ, x̄) if there exist a neighborhood V of ᾱ, a neighborhood U of x̄ and κ ≥ 0 such
that

� (α) ∩ U ⊆ � (ᾱ)+ κ ‖α − ᾱ‖B, ∀α∈ V. �

Note that the terminology of calmness was suggested by Rockafellar and Wets in
[27].

It is clear that both the pseudo-Lipschitz continuity and the upper-Lipschitz
continuity are stronger than the pseudo upper-Lipschitz continuity. It is obvious
that if � : R

n → R
d is a continuous single-valued map, then the pseudo-

Lipschitz continuity at (ᾱ, x̄) reduces to the Lipschitz continuity at ᾱ, while the



8 Constraint Qualifications and Optimality Conditions in Bilevel Optimization 231

calmness/pseudo upper-Lipschitz continuity reduces to the calmness at ᾱ, i.e., there
exist a neighborhood V of ᾱ and a constant κ ≥ 0 such that

‖�(α) − �(ᾱ)‖ ≤ κ‖α − ᾱ‖ ∀α∈ V.

Hence it is easy to see that the calmness/pseudo upper-Lipschitz continuity is a
much weaker stability condition than the pseudo-Lipschitz continuity condition.

Many optimization problems can be written in the following form:

min
x

f (x) s.t. 0 ∈ %(x), (8.2.1)

where f : Rd → R is Lipschitz continuous around the point of interest and % :
R

d ⇒ R
n is a set-valued map with a closed graph.

Let x̄ be a feasible solution for the above optimization problem. We say that
Mordukhovich (M-) stationary condition holds at x̄ if there exists η such that

0 ∈ ∂f (x̄)+D∗%(x̄, 0)(η), (8.2.2)

respectively.
We now discuss the constraint qualifications under which a local optimal solution

x̄ satisfies the M-stationary condition. For this purpose we consider the perturbed
feasible solution mapping

�(α) := %−1(α) = {x ∈ R
d |α ∈ %(x)}. (8.2.3)

The property of the calmness of set-valued map �(·) at (0, x̄) ∈ gph� is equivalent
with the property of the metric subregularity of its inverse map �−1(x) = %(x) at
(x̄, 0), cf. [9]. This justifies the terminology defined below.

Definition 8.2.7 Let 0 ∈ %(x̄). We say that the metric subregularity constraint
qualification (MSCQ) holds at x̄ if the perturbed feasible solution mapping defined
by (8.2.3) is calm at (0, x̄). �
Theorem 8.2.8 (Ye and Ye [35, Theorem 3.1]) Let x̄ be a local optimal solution
of problem (8.2.1). Suppose that MSCQ holds at x̄. Then the M-stationary condition
(8.2.2) holds at x̄. �
In the case where %(x) := (h(x), g(x) + R

r+) with g : Rn → R
r , h : Rn → R

s

being smooth, problem (8.2.1) is the nonlinear program with equality and inequality
constraints and (8.2.2) reduces to the KKT condition for the nonlinear program. We
say that a feasible solution x̄ of problem (8.2.1) satisfies the linear independence
constraint qualification (LICQ) if the gradients

{∇gi(x̄)}i∈Ig ∪ {∇hi(x̄)}si=1, Ig = Ig(x̄) := {i|gi(x̄) = 0}



232 J. J. Ye

are linearly independent. We say that the positive linear independence constraint
qualification (PLICQ) or no nonzero abnormal constraint qualification (NNAMCQ)
holds at x̄ if there is no nonzero vector (ηh, ηg) such that

0 =
∑

i∈Ig
∇gi(x̄)η

g

i +
s∑

i=1

∇hi(x̄)η
h
i , ηg ≥ 0.

By an alternative theorem, it is well-known that PLICQ/NNAMCQ is equivalent
to the Mangasarian Fromovitz constraint qualification (MFCQ): the gradients
{∇hi(x̄)}si=1 is linearly independent and ∃v ∈ R

n such that

∇gi(x̄)
T v < 0 ∀i ∈ Ig, ∇hi(x̄)

T v = 0 ∀i = 1, . . . , s.

LICQ is stronger than MFCQ which is equivalent to saying that the perturbed
feasible solution map �(·) is pseudo-Lipschitz continuous at (0, x̄) and hence
stronger than the MSCQ/calmness condition.

We will also need the following definition.

Definition 8.2.9 (Generalized Linearity Space) Given an arbitrary set C ⊆ R
d ,

we call a subspace L the generalized linearity space of C and denote it by L(C)

provided that it is the largest subspace L ⊆ R
d such that C + L ⊆ C. �

In the case where C is a convex cone, the linearity space of C is the largest subspace
contained in C and can be calculated as L(C) = (−C) ∩ C.

8.3 Bilevel Program with Convex Lower Level Program

In this section we consider the case where given x the lower level problem (Px) is
a convex program. We first discuss the challenges for such a problem and follow by
considering two special cases where the first one is a problem where the lower level
problem is completely linear and the second one is a problem where the lower level
constraint is independent of the upper level variable.

To concentrate the main idea, for simplicity in this section we omit the upper
level constraints and lower level equality constraints and consider

(BP)1 min
x,y

F (x, y)

s.t. y ∈ arg min
y ′
{f (x, y ′)|g(x, y ′) ≤ 0},

where g(x, y) is either affine in y or convex in y and the Slater condition holds, i.e.,
for each x there is y(x) such that g(x, y(x)) < 0. We assume that F : Rn × R

m→
R, is continuously differentiable, f : Rn×R

m→ R, g : Rn×R
m→ R

r are twice
continuously differentiable in variable y.
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Under the assumptions we made, the KKT condition is necessary and sufficient
for optimality. So

y ∈ S(x)⇐⇒ ∃λ s.t. 0 = ∇yf (x, y)+∇yg(x, y)
T λ, 0 ≤ −g(x, y) ⊥ λ ≥ 0.

A common approach in the bilevel program literature is to replace “∃λ” by “∀λ”
in the above and hence consider solving the following mathematical program with
complementarity constraints (MPCC) instead.

(MPCC) min
x,y,λ

F (x, y)

s.t. 0 = ∇yf (x, y)+∇yg(x, y)
T λ,

0 ≤ −g(x, y) ⊥ λ ≥ 0.

Problem (MPCC) looks like a standard mathematical program. However if one treats
it as a mathematical program with equality and inequality constraints, then the usual
constraint qualification such as MFCQ fails at each feasible solution (see Ye and
Zhu [36, Proposition 3.2]). This observation leads to the introduction of weaker
stationary conditions such as Weak (W-), Strong (S-), Mordukhovich (M-) and
Clarke (C-) stationary conditions for (MPCC); see e.g. Ye [31] for more discussions.
We recall the definitions of various stationary conditions there.

Definition 8.3.1 (Stationary Conditions for MPCC) Let (x̄, ȳ, λ̄) be a feasible
solution for problem (MPCC). We say that (x̄, ȳ, λ̄) is a weak stationary point of
(MPCC) if there exist w ∈ R

m, ξ ∈ R
r such that

0 = ∇xF (x̄, ȳ)−∇2
yxf (x̄, ȳ)w −∇2

yx(λ̄
T g)(x̄, ȳ)w +∇xg(x̄, ȳ)

T ξ,

0 = ∇yF (x̄, ȳ)−∇2
yyf (x̄, ȳ)w −∇2

yy(λ̄
T g)(x̄, ȳ)w +∇yg(x̄, ȳ)

T ξ,

ξi = 0 if gi(x̄, ȳ) < 0, λ̄i = 0, (8.3.1)

∇ygi(x̄, ȳ)
T w = 0 if gi(x̄, ȳ) = 0, λ̄i > 0. (8.3.2)

We say that (x̄, ȳ, λ̄) is a S-, M-, C- stationary point of (MPCC) if there exist w ∈
R

m, ξ ∈ R
r such that the above conditions and the following condition holds

ξi ≥ 0,∇ygi(x̄, ȳ)
T w ≤ 0 if gi(x̄, ȳ) = λ̄i = 0,

either ξi >0,∇ygi(x̄, ȳ)
T w<0 or ξi∇ygi(x̄, ȳ)

T w=0 if gi(x̄, ȳ)= λ̄i = 0,

(8.3.3)

ξi∇ygi(x̄, ȳ)
T w ≤ 0 if gi(x̄, ȳ) = λ̄i = 0,

respectively. �
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For a mathematical program, it is well-known that under certain constraint
qualification, a local optimal solution must be a stationary point and hence a
stationary point is a candidate for a local optimal solution. Unfortunately as pointed
out by Dempe and Dutta in [6], this is not true for bilevel programs even when
the lower level is convex. Precisely, it is possible that (x̄, ȳ, λ̄) is a local optimal
solution of (MPCC) but (x̄, ȳ) is not a local optimal solution of (BP)1. Note that
since (MPCC) is a nonconvex program, one usually only hope to find a local optimal
solution and hence this is very bad news. This observation indicates that extreme
care should be taken when using MPCC reformulation in the case where the lower
level problem has non-unique multipliers.

8.3.1 The Bilevel Program Where the Lower Level Program Is
Completely Linear

We now discuss the special case of (BP)1 where the lower level program is
completely linear. That is, f (x, y) = aT x + bT y and g(x, y) = Cx + Dy − q

with a ∈ R
n, b ∈ R

m, C ∈ R
r×n,D ∈ R

r×m, q ∈ R
r . It is easy to see that (BP)1

can be equivalently written as the following problem

(VP)1 min F(x, y)

s.t. aT x + bT y − V (x) ≤ 0,

Cx +Dy − q ≤ 0,

where V (x) := inf
y ′
{aT x+bT y ′ |Cx+Dy ′−q ≤ 0} is the value function of the lower

level problem. Then by convex analysis, the value function V(x) is a polyhedral
convex function and we have an explicit expression for its subgradient.

Proposition 8.3.2 (See e.g., [34, Proposition 4.1]) Let ȳ ∈ S(x̄) and suppose that
f (x, y) = aT x + bT y and g(x, y) = Cx + Dy − q . Then V (x) is convex with
∂V (x̄) �= ∅ and

∂V (x̄) =
{
a + CT ν|0 = b +DT ν, 0 ≤ ν ⊥ −(Cx̄ +Dȳ − q) ≥ 0

}
. �

Since the function aT x+bT y−V (x) is a concave function, it was shown in [30] that
the nonsmooth weak reverse constraint qualification holds for problem (VP)1 and
hence by using the nonsmooth multiplier rule and the expression for the subgradient
of the value function the following optimality condition holds.
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Theorem 8.3.3 (Ye [30, Corollary 4.1]) Let (x̄, ȳ) be a local optimal solution of
(V P)1. Then there exists δ ≥ 0, ν̄ ∈ R

r and α ∈ R
r such that

0 = ∇xF (x̄, ȳ)+ CT (α − δν̄),

0 = ∇yF (x̄, ȳ)+DT (α − δν̄),

0 ≤ α ⊥ −(Cx̄ +Dȳ − q) ≥ 0,

0 ≤ ν̄ ⊥ −(Cx̄ +Dȳ − q) ≥ 0. �

Let ξ = α − δν̄ where α, δ, ν̄ are those found in Theorem 8.3.3 and w = 0 in
Definition 8.3.1. It is easy to verify that (x̄, ȳ, ν̄) is an S-stationary point of the
corresponding (MPCC). Unlike using (MPCC) reformulation by which usually a
constraint qualification such as the MPCC LICQ is needed to ensure that a local
optimal solution is an S-stationary point (see e.g. [31]), ν̄ is a multiplier for the
lower level problem (Px) selected automatically from the subdifferential of the value
function. For this particular multiplier ν̄, the S-stationary condition holds under no
constraint qualification.

For bilevel programs where the lower level problem is not completely linear but
is convex with a convex value function, the reader is referred to [30, 32] for more
detailed discussions and results.

8.3.2 The Case Where the Lower Level Constraint Is
Independent of the Upper Level

As we see in the previous discussion, the difficulty of using the first order approach
occurs when the lower level has non-unique multipliers. In this subsection we
consider a special case where the lower level constraint �(x) = � is independent of
x. Then y ∈ S(x) if and only if the generalized equation 0 ∈ ∇yf (x, y) + N�(y)

holds. So we next consider the mathematical program with equilibrium constraints
(MPEC) which is an equivalent reformulation of (BP)1 when g is independent of
x:

(MPEC) min
x,y

F (x, y)

s.t. 0 ∈ ∇yf (x, y)+ N�(y),

where � := {y : g(y) ≤ 0} and g : Rm → R
r is either affine or convex with a

Slater point.
For problem (MPEC), Ye and Ye [35] showed that the pseudo upper-Lipschitz

continuity/calmness/MSCQ guarantees M-stationarity of solutions.
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Theorem 8.3.4 (Ye and Ye [35, Theorem 3.2]) Let (x̄, ȳ) be a local optimal
solution of (MPEC). Suppose that the perturbed feasible solution map

�(α) := {(x, y) | α ∈ ∇yf (x, y)+N�(y)}

is calm/pseudo upper-Lipschitz continuous at (0, x̄, ȳ) (i.e., MSCQ holds at (x̄, ȳ)).
Then (x̄, ȳ) is an M-stationary point of problem (MPEC), i.e., there exist w ∈ R

m

such that

0 = ∇xF (x̄, ȳ)+ ∇2
yxf (x̄, ȳ)w,

0 = ∇yF (x̄, ȳ)+ ∇2
yyf (x̄, ȳ)w +D∗N�(ȳ,−∇yf (x̄, ȳ))(w). �

In the case where ∇yf (x, y) is affine and � is a convex polyhedral set, the set-
valued map �(·) is a polyhedral multifunction which means that its graph is the
union of finitely many polyhedral convex sets. According to Robinson [26], �(·) is
upper Lipschitz continuous which implies that MSCQ holds automatically at each
feasible solution. How to check MSCQ for the general case? We now describe a
sufficient condition for MSCQ derived by Gfrerer and Ye in [12]. First we start with
some notation. Let

�̄ := {λ | 0 = ∇yf (x̄, ȳ)+∇g(ȳ)T λ, 0 ≤ −g(ȳ) ⊥ λ ≥ 0}

be the multiplier set for the lower level problem (Px̄) at ȳ. Define the critical cone
for � at ȳ as

K̄� := {v | ∇g(ȳ)v ∈ T
R

q
−(g(ȳ)),∇yf (x̄, ȳ)T v = 0}.

For every v ∈ K̄� , define the directional multiplier set at direction v as

�̄(v) := arg max
{
vT∇2(λT g)(ȳ)v | λ ∈ �̄

}
= {λ|vT∇2g(ȳ)v ∈ Nλ̄(λ)}.

Let Ī := {i | gi(ȳ) = 0} be the index of constraints active at ȳ. For every λ ∈ �̄, we
define the index set of strongly active constraints

J̄+(λ) := {i|gi(ȳ) = 0, λi > 0}.

Under our assumption of this section, the multiplier set �̄ is nonempty and hence
the critical cone for � at ȳ can be represented as

K̄� =
{
v | ∇gi(ȳ)

T v

{= 0 i ∈ J̄+(�̄)

≤ 0 i ∈ Ī \ J̄+(�̄)

}}
,
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where J̄+(�̄) := ∪λ∈�̄J̄+(λ). For every v̄ ∈ K̄� , we denote the index set of active
constraints for the critical cone at v̄ as

Ī (v̄) := {i ∈ Ī |∇gi(ȳ)
T v̄ = 0}.

Denote by Ē the collection of all the extreme points of the closed and convex set of
multipliers �̄ and recall that λ ∈ �̄ belongs to Ē if and only the family of gradients
{∇gi(ȳ)|i ∈ J̄+(λ)} is linearly independent. Specializing the result from [12] we
have the following checkable constraint qualification for problem (MPEC).

Theorem 8.3.5 ([12, Theorems 4 and 5]) Let (x̄, ȳ) be a feasible solution of
problem (MPEC). Assume that there do not exist (u, v) �= 0, λ ∈ �̄(v) ∩ Ē and
w �= 0 satisfying

−∇2
yxf (x̄, ȳ)u−∇2

yyf (x̄, ȳ)v −∇2(λT g)(ȳ)v ∈ NK̄�
(v),

∇2
xyf (x̄, ȳ)w = 0,

∇gi(ȳ)
T w = 0, i ∈ J̄+(λ), wT

(
∇2

yyf (x̄, ȳ)+∇2(λT g)(ȳ)
)
w ≤ 0.

Then MSCQ for problem (MPEC) holds at (x̄, ȳ). �
We would like to comment that recently [1] has compared the calmness condition

for the two problems (MPEC) and (MPCC). They have shown that in general
the calmness condition for (MPEC) is weaker than the one for the corresponding
(MPCC).

Now we consider the M-stationary condition in Theorem 8.3.4. The expression
of the M-stationary condition involves the coderivative of the normal cone mapping
N�(·). Precise formulae for this coderivative in terms of the problem data can be
found in [15, Proposition 3.2] if � is polyhedral, in [16, Theorem 3.1] if LICQ
holds at ȳ for the lower level problem, in [10, Theorem 3] under a relaxed MFCQ
combined with the so-called 2-regularity.

Recently Gfrerer and Ye [13] have derived a necessary optimality condition that
is sharper than the M-stationary condition under the following 2-nondegeneracy
condition.

Definition 8.3.6 Let v ∈ K̄� . We say that g is 2-nondegenerate in direction v at ȳ
if

∇2(μT g)(ȳ)v ∈ NK̄�
(v)− NK̄�

(v), μ ∈ span (�̄(v)− �̄(v)) �⇒ μ = 0. �

In the case where the directional multiplier set �̄(v) is a singleton, span (�̄(v) −
�̄(v)) = {0} and hence g is 2-nondegenerate in this direction v.

Theorem 8.3.7 ([13, Theorem 6]) Assume that (x̄, ȳ) is a local minimizer
for problem (MPEC) fulfilling MSCQ at (x̄, ȳ). Further assume that g is 2-
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nondegenerate in every nonzero critical direction 0 �= v ∈ K̄� . Then there are a
critical direction v̄ ∈ K̄� , a directional multiplier λ̄ ∈ �̄(v̄), index setsJ +, J , I+,
and I with J̄+(λ̄) ⊆ J + ⊆ J ⊆ J̄+(�̄(v̄)) ⊆ J̄+(�̄) ⊆ I+ ⊆ I ⊆ Ī (v̄) and
elements w ∈ R

m, η, ξ ∈ R
q such that

0 = ∇xF (x̄, ȳ)−∇2
xyf (x̄, ȳ)w,

0 = ∇yF (x̄, ȳ)−∇2
yyf (x̄, ȳ)w −∇2(λ̄T g)(ȳ)w +∇g(ȳ)T ξ + 2∇2(ηT g)(ȳ)v̄,

ξi = 0 if i �∈ I,

ξi ≥ 0,∇gi(ȳ)
T w ≤ 0 if i ∈ I \ I+,

∇gi(ȳ)
T w = 0 if i ∈ I+,

∇g(ȳ)T η = 0, ηi = 0, i �∈ J , ηi ≥ 0, i ∈ J \ J +. �

In the case where the multiplier set �̄ = {λ̄} is a singleton, the 2-nondegeneracy
condition holds automatically and the η in the optimality condition becomes zero.
In this case we have the following result.

Corollary 8.3.8 ([13, Corollary 1]) Assume that (x̄, ȳ) is a local minimizer for
problem (MPEC) fulfilling MSCQ at (x̄, ȳ) and the lower level multiplier is unique,
i.e., �̄ = {λ̄}. Then there are a critical direction v̄ ∈ K̄� , index sets I+ with
J̄+(λ̄) ⊆ I+ ⊆ Ī (v̄) and elements w ∈ R

m, ξ ∈ R
q such that

0 = ∇xF (x̄, ȳ)−∇2
xyf (x̄, ȳ)w,

0 = ∇yF (x̄, ȳ)−∇2
yyf (x̄, ȳ)w −∇2(λ̄T g)(ȳ)w +∇g(ȳ)T ξ,

ξi = 0 if i �∈ Ī (v̄), (8.3.4)

ξi ≥ 0,∇gi(ȳ)
T w ≤ 0 if i ∈ Ī (v̄) \ I+,

∇gi(ȳ)
T w = 0 if i ∈ I+. (8.3.5)

�

Actually we can show that the stationary condition in Theorem 8.2.8 is stronger
than the M-stationary condition for (MPCC). Suppose that (x̄, ȳ, λ̄) satisfies the
stationary condition in Theorem 8.2.8 and let w ∈ R

m, ξ ∈ R
q be those found in

Theorem 8.2.8. Then since

i �∈ Ī (v̄)⇐⇒ either gi(ȳ) = 0,∇gi(ȳ)
T v̄ < 0, λ̄i = 0

or gi(ȳ) < 0, λ̄i = 0
,

(8.3.4) and (8.3.5) imply that ξi = 0 if λ̄i = 0 and ∇gi(ȳ)
T w = 0 if λ̄i > 0.

It follows that (8.3.1), (8.3.2), (8.3.3) hold. Therefore (x̄, ȳ, λ̄) must satisfy the M-
stationary condition for (MPCC) as well. Hence in the case where the lower level
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multiplier is unique, the above stationary condition is in general stronger than the
M-stationary condition of (MPCC).

Finally in the rest of this section, we will discuss the S-stationary condition for
(MPEC). Let

N̄ := {v ∈ R
m | ∇gi(ȳ)

T v = 0 ∀i ∈ Ī }

be the nullspace of gradients of constraints active at ȳ. Define for each v ∈ N̄ , the
sets

W̄(v) :=
{
w ∈ K̄� |wT∇2((λ1 − λ2)T g)(ȳ)v = 0,∀λ1, λ2 ∈ �̄(v)

}
,

�̃(v) :=
{
�̄(v) ∩ Ē if v �= 0
conv(∪0 �=u∈K̄�

�̄(u) ∩ Ē) if v = 0, K̄� �= {0}, ,

and for each w ∈ K̄� ,

L̄(v;w) :=
{ {−∇2(λT g)(ȳ)w | λ ∈ �̃(v)} + K̄◦� if K̄� �= {0}
R

m if K̄� = {0} .

The following theorem is a slight improvement of [11, Theorem 8] in that the
assumption is weaker.

Theorem 8.3.9 Assume that (x̄, ȳ) is a local minimizer for problem (MPEC)
fulfilling MSCQ at (x̄, ȳ) and the generalized linear independence constraint
qualification holds:

∇P(x̄, ȳ)Rn+m + L
(
TgphN�

(
P(x̄, ȳ)

)) = R
2m,

where P(x, y) := (y,−∇yf (x, y)) and L(C) is the generalized linearity space of
setC as defined in Definition 8.2.9. Then (x̄, ȳ) is an S-stationary point for (MPEC),
i.e., there exists elements w such that

0 = ∇xF (x̄, ȳ)+∇2
xyf (x̄, ȳ)w,

0 ∈ ∇yF (x̄, ȳ)+∇2
yyf (x̄, ȳ)w + D̂N�(ȳ,−∇yf (x̄, ȳ))(w). (8.3.6)

In particular, we have w ∈ −⋂
v∈N̄ W̄(v) and

0 = ∇xF (x̄, ȳ)+∇2
xyf (x̄, ȳ)w,

0 ∈ ∇yF (x̄, ȳ)+∇2
yyf (x̄, ȳ)w +

⋂

v∈Ī (v)
L̄(v; −w).

�
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Proof Since (x̄, ȳ) is a local minimizer for problem (MPEC) which can be rewritten
as

(MPEC) min
x,y

F (x, y)

s.t. P(x, y) := (y,−∇yf (x, y)) ∈ D := gphN�,

by the basic optimality condition

0 ∈ ∇F(x̄, ȳ)+ N̂F (x̄, ȳ),

where F := {(x, y) : P(x, y) ∈ D}. By [11, Theorem 4], under MSCQ and the
generalized LICQ,

N̂F (x̄, ȳ) = ∇P(x̄, ȳ)T N̂D(P (x̄, ȳ))

holds. It follows that the S-stationary condition

0 ∈ ∇F(x̄, ȳ)+∇P(x̄, ȳ)T N̂D(P (x̄, ȳ))

holds. Since

∇P(x̄, ȳ)T N̂D(P (x̄, ȳ)) =
{(
∇2

xyf (x̄, ȳ)w

∇2
yyf (x̄, ȳ)w + w∗

)∣∣∣
∣
∣

(w∗,−w) ∈ N̂gphN�
(ȳ,−∇yf (x̄, ȳ))

}
,

and by definition of the co-derivative,

(w∗,−w) ∈ N̂gphN�
(ȳ,−∇yf (x̄, ȳ))⇐⇒ w∗ ∈ D̂N�(ȳ,−∇yf (x̄, ȳ))(w),

(8.3.6) follows. By Gfrerer and Outrata [11, Proposition 5], we have

N̂D(P (x̄, ȳ)) = TD(P (x̄, ȳ))◦

⊆
⎧
⎨

⎩
(w∗, w) |w ∈ −

⋂

v∈N̄
W̄(v),w∗ ∈

⋂

v∈N̄
L̄(v; −w)

⎫
⎬

⎭
.
	


8.4 Bilevel Program with Nonconvex Lower Level Program

In this section we consider the general bilevel program (BP) as stated in the
introduction and assume that F : Rn × R

m → R, G : Rn × R
m → R

p and
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H : Rn × R
m → R

q are continuously differentiable, f : Rn × R
m → R, g :

R
n × R

m → R
r , h : Rn × R

m → R
s are twice continuously differentiable in

variable y.
In the bilevel programming literature, in particular in early years, the first order

approach has been popularly used even when the lower level is nonconvex. But if
the lower level program (Px) is not convex, the optimality condition

0 ∈ ∇yf (x, y)+ N̂�(x)(y)

is only necessary but not sufficient for y ∈ S(x). That is, the inclusion

S(x) ⊆ {
y|0 ∈ ∇yf (x, y)+ N̂�(x)(y)

}

may be strict. However, It was pointed out by Mirrlees [20] that an optimal solution
of the bilevel program may not even be a stationary point of the reformulation by
the first order approach.

Ye and Zhu [36] proposed to investigate the optimality condition based on the
value function reformulation first proposed by Outrata [23]. By the value function
approach, one would replace the original bilevel program (BP) by the following
equivalent problem:

(VP) min F(x, y)

s.t. f (x, y)− V (x) ≤ 0,

g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≤ 0, H(x, y) = 0,

where

V (x) := inf
y ′
{f (x, y ′) | g(x, y ′) ≤ 0, h(x, y ′) = 0}

is the value function of the lower level program.
There are two issues involved in using the value function approach. First,

problem (VP) is a nonsmooth optimization problem since the value function V (x) is
in general nonsmooth. Moreover it is an implicit function of problem data. To ensure
the lower semi-continuity of the value function we need the following assumption.

Definition 8.4.1 (See [3, Hypothesis 6.5.1] or [14, Definition 3.8]) We say that
the restricted inf-compactness holds around x̄ if V (x̄) is finite and there exist a
compact " and a positive number ε0 such that, for all x ∈ Bε0(x̄) for which V (x) <

V (x̄)+ ε0, the problem (Px) has a solution in ". �
The restricted inf-compactness condition is very weak. It does not even require the
existence of solutions of problem (Px) for all x near x̄. A sufficient condition for the
restricted inf-compactness to hold around x̄ is the inf-compactness condition: there
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exist α > 0, δ > 0 and a bounded set C such that α > V (x̄) and

{y|g(x, y) ≤ 0, h(x, y) = 0, f (x, y) ≤ α, x ∈ Bδ(x̄)} ⊆ C.

To ensure the Lipschitz continuity of the value function, we also need the
following regularity condition.

Definition 8.4.2 For ȳ ∈ S(x̄), we say that (x̄, ȳ) is quasi-normal if there is no
nonzero vector (λg, λh) such that

0 = ∇g(x̄, ȳ)T λg +∇h(x̄, ȳ)T λh, λg ≥ 0

and there exists (xk, yk)→ (x̄, ȳ) such that

λ
g
i > 0⇒ λ

g
i gi(x

k, yk) > 0,

λh
i �= 0⇒ λh

i hi(x
k, yk) > 0. �

It is easy to see that the quasinormality is weaker than MFCQ: there is no nonzero
vector (λg, λh) such that

0 = ∇g(x̄, ȳ)T λg +∇h(x̄, ȳ)T λh,

0 ≤ −g(x̄, ȳ) ⊥ λg ≥ 0.

Now we can state a sufficient condition which ensures the Lipschitz continuity of
the value function and an upper estimate for the limiting subdifferential of the value
function. Since MFCQ is stronger than the quasi-normality and the set of quasi-
normal multipliers is smaller than the classical multipliers, the following estimate
is sharper and holds under weaker conditions than the classical counterpart in [3,
Corollary 1 of Theorem 6.5.2].

Proposition 8.4.3 ([14, Corollary 4.8]) Assume that the restricted inf-compactness
holds around x̄ and for each ȳ ∈ S(x̄), (x̄, ȳ) is quasi-normal. Then the value
function V (x) is Lipschitz continuous around x̄ with

∂V (x̄) ⊆ W̃ (x̄), (8.4.1)

where

W̃ (x̄) :=
⋃

ȳ∈S(x̄)

{
∇xf (x̄, ȳ)+∇xg(x̄, ȳ)

T λg+∇xh(x̄, ȳ)
T λh : (λg, λh) ∈M(x̄, ȳ)

}
,

(8.4.2)
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where S(x̄) denotes the solution set of the lower level program (Px̄) and M(x̄, ȳ)

is the set of quasi-normal multipliers, i.e.,

M(x̄, ȳ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λg, λh)
∣
∣

0 = ∇yf (x̄, ȳ)+∇yg(x̄, ȳ)
T λg +∇yh(x̄, ȳ)

T λh, λg ≥ 0
there exists (xk, yk)→ (x̄, ȳ) such that
λ
g
i > 0⇒ λ

g
i gi(x

k, yk) > 0,
λh
i �= 0⇒ λh

i hi(x
k, yk) > 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

In addition to the above assumptions, if W̃ (x̄) = {ζ }, then V (x) is strictly
differentiable at x̄ and ∇V (x̄) = {ζ }. �
Note that moreover if the solution map of the lower level program S(x) is semi-
continuous at (x̄, ȳ) for some ȳ ∈ S(x̄), then the union

⋃
ȳ∈S(x̄) sign can be omitted

in (8.4.2); see [21, Corollary 1.109].
Secondly, is a local optimal solution of problem (BP) a stationary point of

problem (VP)? For problem (VP), suppose that (x̄, ȳ) is a local optimal solution
and if the value function V (x) is Lipschitz continuous at x̄, then the Fritz John type
necessary optimality condition in terms of limiting subdifferential holds. That is,
there exist multipliers α ≥ 0, μ ≥ 0, λg, λh, λG, λH not all equal to zero such that

0 ∈ α∇xF (x̄, ȳ)+ μ∂x(f − V )(x̄, ȳ)

+∇xg(x̄, ȳ)
T λg +∇xh(ȳ, ȳ)

T λh +∇xG(ȳ, ȳ)T λG +∇xH(ȳ, ȳ)T λH ,

0 ∈ α∇yF (x̄, ȳ)+ μ∇yf (x̄, ȳ)

+∇yg(ȳ, ȳ)
T λg +∇yh(ȳ, ȳ)

T λh +∇yG(ȳ, ȳ)T λG +∇yH(ȳ, ȳ)T λH ,

0 ≤ −g(x̄, ȳ) ⊥ λg ≥ 0, 0 ≤ −G(x̄, ȳ) ⊥ λG ≥ 0.

However it is easy to see that every feasible solution (x, y) of (VP) must be an
optimal solution to the optimization problem

min
x ′,y ′

f (x ′, y ′)− V (x ′)

s.t. g(x ′, y ′) ≤ 0, h(x ′, y ′) = 0.

By Fritz-John type optimality condition, there exists μ̃ ≥ 0, λ̃g, λ̃h not all equal to
zero such that

0 ∈ μ̃∂(f − V )(x, y)+∇g(x, y)T λ̃g +∇h(x, y)T λ̃h

0 ≤ −g(x, y) ⊥ λ̃g ≥ 0.

This means that there always exists a nonzero abnormal multiplier (0, μ̃, λ̃g, λ̃h,

0, 0) for the problem (VP) at each feasible solution, i.e., the no nonzero abnormal
multiplier constraint qualification (NNAMCQ) fails at each feasible point of the
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problem (VP). Therefore unlike the standard nonlinear programs, we can not derive
the KKT condition (i.e., the Fritz John condition when α = 1) from lack of nonzero
abnormal multipliers. As we can see that the reason why NNAMCQ fails is the
existence of the value function constraint f (x, y) − V (x) ≤ 0. To address this
issue, Ye and Zhu [36] proposed the following partial calmness condition.

Definition 8.4.4 Let (x̄, ȳ) be a local optimal solution of problem (VP). We say
that (VP) is partially calm at (x̄, ȳ) provided that there exist δ > 0, μ > 0 such that
for all α ∈ Bδ and all (x, y) ∈ Bδ(x̄, ȳ) which are feasible for the partially perturbed
problem

(VPα) min F(x, y)

s.t. f (x, y)− V (x)+ α = 0,

g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≤ 0, H(x, y) = 0,

there holds F(x, y)− F(x̄, ȳ)+ μ‖α‖ ≥ 0. �
It is obvious that the partial calmness is equivalent to the exact penalization, i.e.,
(VP) is partially calm at (x̄, ȳ) if and only if for some μ > 0, (x̄, ȳ) is a local
solution of the penalized problem

(ṼP) min F(x, y)+ μ(f (x, y)− V (x))

s.t. g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≤ 0, H(x, y) = 0.

Since the difficult constraint f (x, y) − V (x) ≤ 0 is replaced by a penalty in the
objective function, the usual constraint qualification such as MFCQ or equivalently
NNAMCQ can be satisfied for problem (ṼP). Consequently using a nonsmooth
multiplier rule for problem (ṼP), one can derive a KKT type optimality condition
for problem (VP). Such an approach has been used to derive necessary optimality
condition of (BP) by Ye and Ye in [36] and later in other papers such as [7, 8, 22]. For
this approach to work, however, one needs to ensure the partial calmness condition.
In [36], it was shown that for the minmax problem and the bilevel program where the
lower level is completely linear, the partial calmness condition holds automatically.
In [7, Theorem 4.2], the last result was improved to conclude that the partial
calmness condition holds automatically for any bilevel program where for each x,
the lower level problem is a linear program. In [36, Proposition 5.1], the uniform
weak sharp minimum is proposed as a sufficient condition for partial calmness and
under certain conditions, the bilevel program with a quadratic program as the lower
level program is shown to satisfy the partial calmness condition in [36, Proposition
5.2] (with correction in [37]).
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Apart from the issue of constraint qualification, we may ask a question on how
likely an optimal solution of (VP) is a stationary point of (VP). In the case where
there are no upper and lower level constraints, the stationary condition of (VP) at
(x̄, ȳ) means the existence of μ ≥ 0 such that

0 ∈ ∇xF (x̄, ȳ)+ μ∂x(f − V )(x̄, ȳ),

0 = ∇yF (x̄, ȳ)+ μ∇yf (x̄, ȳ).

But this condition is very strong. It will not hold unless 0 = ∇yF (x̄, ȳ).
As suggested by Ye and Zhu in [38], we may consider the combined program

(CP) min
x,y,u,v

F (x, y)

s.t. f (x, y)− V (x) ≤ 0,

0 = ∇yL(x, y, u, v) := ∇yf (x, y) +∇yg(x, y)
T u+ ∇yh(x, y)

T v,

h(x, y) = 0, 0 ≤ −g(x, y) ⊥ u ≥ 0,

G(x, y) ≤ 0, H(x, y) = 0.

The motivation is clear since if the KKT conditions hold at each optimal solution
of the lower level problem, then the KKT condition is a redundant condition. By
adding the KKT condition we have not changed the feasible region of (BP). Note
that this reformulation requires the existence of the KKT condition at the optimal
solution of the lower level program; see [6] for examples where the KKT condition
does not hold at a lower level optimal solution.

Similarly as in the case of using MPCC to reformulate a bilevel program, when
the lower level multipliers are not unique, it is possible that (x̄, ȳ, ū, v̄) is a local
solution of (CP) but (x̄, ȳ) is not a local optimal solution of (BP).

Due to the existence of the value function constraint f (x, y) − V (x) ≤ 0,
similarly to the analysis with problem (VP), NNAMCQ will never hold at a feasible
solution of (CP) and hence in [38] the following partial calmness condition for
problem (CP) is suggested as a condition to deal with the problem.

Definition 8.4.5 Let (x̄, ȳ, ū, v̄) be a local optimal solution of problem (CP). We
say that (CP) is partially calm at (x̄, ȳ, ū, v̄) provided that there exist μ > 0 such
that (x̄, ȳ, ū, v̄) is a local solution of the partially perturbed problem:

(CPμ) min F(x, y)+ μ(f (x, y)− V (x))

s.t. 0 = ∇yL(x, y, u, v),

h(x, y) = 0, 0 ≤ −g(x, y) ⊥ u ≥ 0,

G(x, y) ≤ 0, H(x, y) = 0. �
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Since there are more constraints in (CP) than in (VP), the partial calmness for (CP)
is a weaker condition than the one for (VP).

Given a feasible vector (x̄, ȳ, ū, v̄) of the problem (CP), define the following
index sets:

IG = IG(x̄, ȳ) := {i : Gi(x̄, ȳ) = 0},
Ig = Ig(x̄, ȳ, ū) := {i : gi(x̄, ȳ) = 0, ūi > 0},
I0 = I0(x̄, ȳ, ū) := {i : gi(x̄, ȳ) = 0, ūi = 0},
Iu = Iu(x̄, ȳ, ū) := {i : gi(x̄, ȳ) < 0, ūi = 0}.

Definition 8.4.6 (M-Stationary Condition for (CP) Based on the Value Func-
tion) A feasible point (x̄, ȳ, ū, v̄) of problem (CP) is called an M-stationary point
based on the value function if there exist μ ≥ 0, β ∈ R

s, λG ∈ R
p, λH ∈

R
q, λg ∈ R

m, λh ∈ R
n such that the following conditions hold:

0 ∈ ∂F (x̄, ȳ)+ μ∂(f − V )(x̄, ȳ)+∇G(x̄, ȳ)T λG + ∇H(x̄, ȳ)T λH

+∇x,y(∇yL)(x̄, ȳ)T β + ∇g(x̄, ȳ)T λg +∇h(x̄, ȳ)T λh,

λG
i ≥ 0 i ∈ IG, λG

i = 0 i /∈ IG,

λ
g
i = 0 i ∈ Iu, (∇yg(x̄, ȳ)β)i = 0 i ∈ Ig,

either λ
g

i > 0, (∇yg(x̄, ȳ)β)i > 0, or λ
g

i (∇yg(x̄, ȳ)β)i = 0 i ∈ I0. �

In [38, Theorem 4.1], it was shown that under the partial calmness condition and
certain constraint qualifications, a local optimal solution of (CP) must be an M-
stationary point based on the value function provided the value function is Lipschitz
continuous.

Recently Xu and Ye [29] introduced a nonsmooth version of the relaxed constant
positive linear dependence (RCPLD) condition and apply it to (CP). We now
describe the RCPLD condition.

In the following definition, we rewrite all equality constraints of problem (CP)
by the equality constraint below:

0 = %(x, y, u, v) :=
⎛

⎝
∇yL(x, y, u, v)

h(x, y)

H(x, y)

⎞

⎠ .

We denote by {0}n the zero vector in R
n and by ei the unit vector with the ith

component equal to 1.

Definition 8.4.7 Suppose that the value function V (x) is Lipschitz continuous at
x̄. Let (x̄, ȳ, ū, v̄) be a feasible solution of (CP). We say that RCPLD holds at
(x̄, ȳ, ū, v̄) if the following conditions hold.
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(I) The vectors

{∇%i(x, y, u, v)}m+s+qi=1 ∪ {∇gi(x, y)× {0r+s}}i∈Ig ∪ {(0n+m, ei , 0s)}i∈Iu
have the same rank for all (x, y, u, v) in a neighbourhood of (x̄, ȳ, ū, v̄).

(II) Let I1 ⊆ {1, · · · ,m+ s + q}, I2 ⊆ Ig , I3 ⊆ Iu be such that the set of vectors
{∇%i(x̄, ȳ, ū, v̄)}i∈I1 ∪ {∇gi(x̄, ȳ)× {0}}i∈I2 ∪ {(0, ei, 0)}i∈I3 is a basis for

span
{
∇%i(x, y, u, v)}m+s+qi=1 ∪{∇gi(x̄, ȳ)× {0r+s}}i∈Ig∪{(0n+m, ei, 0s )}i∈Iu

}
.

For any index sets I4 ⊆ IG,I5,I6 ⊆ I0, the following conditions hold.

(i) If there exists a nonzero vector (λV , λ%, λG, λg, λu) ∈ R×Rm+s+q×Rp×
R

r ×R
r satisfying λV ≥ 0, λG ≥ 0 and either λg

i > 0, λu
i > 0 or λg

i λ
u
i =

0,∀i ∈ I0, ξ∗ ∈ ∂(f − V )(x̄, ȳ) such that

0 = λV ξ∗ +
∑

i∈I1

λ%
i ∇%i(x̄, ȳ, ū, v̄)+

∑

i∈I4

λG
i ∇Gi(x̄, ȳ)× {0r+s}

+
∑

i∈I2∪I5

λ
g
i ∇gi(x̄, ȳ)× {0r+s} −

∑

i∈I3∪I6

λu
i (0

n+m, ei, 0s)

and (xk, yk, uk, vk, ξk) → (x̄, ȳ, ū, v̄, ξ∗) as k → ∞, ξk ∈ ∂(f −
V )(xk, yk) then the set of vectors

{ξk} ∪ {∇%i(x
k, yk, uk, vk)}i∈I1 ∪ {∇Gi(x

k, yk)× {0r+s}}i∈I4

∪{∇gi(x
k, yk)× {0r+s}}i∈I2∪I5 ∪ {(0n+m, ei, 0s )}i∈I3∪I6 ,

where k is sufficiently large and (xk, yk, uk, vk) �= (x̄, ȳ, ū, v̄), is linearly
dependent.

(ii) If there exists a nonzero vector (λ%, λG, λg, λu) ∈ R
m+s+q×Rp×Rr×Rr

satisfying λG ≥ 0 and either λg
i > 0, λu

i > 0 or λg
i λ

u
i = 0,∀i ∈ I0 such

that

0 =
∑

i∈I1

λ%
i ∇%i(x̄, ȳ, ū, v̄)+

∑

i∈I4

λG
i ∇Gi(x̄, ȳ)× {0r+s}

+
∑

i∈I2∪I5

λ
g
i ∇gi(x̄, ȳ)× {0r+s} −

∑

i∈I3∪I6

λu
i (0

n+m, ei , 0s),

and (xk, yk, uk, vk)→ (x̄, ȳ, ū, v̄), as k→∞. Then the set of vectors

{∇%i(x
k, yk, uk, vk)}i∈I1 ∪ {∇Gi(x

k, yk)× {0r+s}}i∈I4

∪{∇gi(x
k, yk)× {0r+s}}i∈I2∪I5 ∪ {(0n+m, ei , 0s)}i∈I3∪I6,
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where k is sufficiently large and (xk, yk, uk, vk) �= (x̄, ȳ, ū, v̄), is linearly
dependent. �

Since

∂(f − V )(x̄, ȳ) ⊆ ∂c(f − V )(x̄, ȳ)

= ∇f (x̄, ȳ)− ∂cV (x̄)× {0} ⊆ ∇f (x̄, ȳ)− convW̃(x̄)× {0},

where W̃(x̄) is the upper estimate of the limiting subdifferential of the value function
at x̄ defined as in (8.4.2), we can replace the set ∂(f −V )(x̄, ȳ) by its upper estimate
∇f (x̄, ȳ)−convW̃ (x̄)×{0} in RCPLD and obtain a sufficient condition for RCPLD.
Moreover if the solution map of the lower level program S(x) is semi-continuous at
(x̄, ȳ), then the set ∂(f −V )(x̄, ȳ) can be replaced by its upper estimate∇f (x̄, ȳ)−
W̃ (x̄)× {0}.
Theorem 8.4.8 ([29]) Let (x̄, ȳ, ū, v̄) be a local solution of (CP) and suppose that
the value function V (x) is Lipschitz continuous at x̄. If RCPLD holds at (x̄, ȳ, ū, v̄),
then (x̄, ȳ, ū, v̄) is an M-stationary point of problem (CP) based on the value
function. �
In the following result, the value function constraint f (x, y) − V (x) ≤ 0 is not
needed in the verification.

Theorem 8.4.9 ([29]) Let (x̄, ȳ, ū, v̄) be a local solution of (CP) and suppose that
the value function V (x) is Lipschitz continuous at x̄. If the rank of the matrix

J ∗ =

⎡

⎢
⎢
⎣

∇(∇yf +∇yg
T ū+∇yh

T v̄)(x̄, ȳ) ∇yh(x̄, ȳ)
T ∇ygIg∪I0(x̄, ȳ)

T

∇h(x̄, ȳ) 0 0
∇H(x̄, ȳ) 0 0
∇gIg (x̄, ȳ) 0 0

⎤

⎥
⎥
⎦

is equal tom+n+r+s−|Iu|. Then RCPLD holds and (x̄, ȳ, ū, v̄) is anM-stationary
point of problem (CP) based on the value function. �

In the last part of this section we briefly summarize some necessary optimality
conditions obtained in [33] using the combined approach. For any given x̄, define
the set

W(x̄)

:=
⋃

ȳ∈S(x̄)

⎧
⎨

⎩

∇xf (x̄, ȳ)+∇xg(x̄, ȳ)
T λg +∇xh(x̄, ȳ)

T λh :
0 = ∇yg(x̄, ȳ)

T λg +∇yh(x̄, ȳ)
T λh

0 ≤ −g(x, y) ⊥ λg ≥ 0

⎫
⎬

⎭
.

It is easy to see that W̃ (x̄) ⊆ W(x̄) and under the assumption made in Proposi-
tion 8.4.3, it is an upper estimate of the limiting subdifferential of the value function.
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Definition 8.4.10 Let (x̄, ȳ, ū, v̄) be a feasible solution to (CP). We say that (CP)
is weakly calm at (x̄, ȳ, ū, v̄) with modulus μ > 0 if

[∇F(x̄, ȳ)+μ∇f (x̄, ȳ)]T (dx, dy)−μ min
ξ∈W(x̄)

ξdx ≥ 0 ∀d ∈ LMPEC((x̄, ȳ, ū, v̄); F̃ ),

where F̃ is the feasible region of problem (CPμ) and LMPEC((x̄, ȳ, ū, v̄); F̃ ) is the
MPEC linearized cone of F̃ defined by

LMPEC((x̄, ȳ, ū, v̄); F̃ )

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(dx, dy, du, dv)|
∇x,y(∇yL)(x̄, ȳ, ū, v̄)(dx, dy)+∇yg(x̄, ȳ)

T du +∇yh(x̄, ȳ)
T dv = 0

∇Gi(x̄, ȳ)
T (dx, dy) ≤ 0, i ∈ IG

∇Hi(x̄, ȳ)
T (dx, dy) = 0,

∇gi(x̄, ȳ)
T (dx, dy) = 0, i ∈ Ig

(du)i = 0, i ∈ Iu

∇gi(x̄, ȳ)
T (dx, dy) · (du)i = 0,∇gi(x̄, ȳ)

T (dx, dy) ≤ 0, (du)i ≥ 0 i ∈ I0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

�

Definition 8.4.11 (M-Stationary Condition for (CP) Based on the Upper Esti-
mate) A feasible point (x̄, ȳ, ū, v̄) of problem (CP) is called an M-stationary point
based on an upper estimate if there exist μ ≥ 0, β ∈ R

s, λG ∈ R
p, λH ∈

R
q, λg ∈ R

m, λh ∈ R
n such that the following conditions hold:

0 ∈ ∂F (x̄, ȳ)+ μ[∇f (x̄, ȳ)− convW(x̄)× {0}] + ∇G(x̄, ȳ)T λG +∇H(x̄, ȳ)T λH

+∇(∇yf +∇yg
T ū+∇yh

T v̄)(x̄, ȳ)T β +∇g(x̄, ȳ)T λg +∇h(x̄, ȳ)T λh,

λG
i ≥ 0 i ∈ IG, λG

i = 0 i /∈ IG,

λ
g

i = 0 i ∈ Iu, (∇yg(x̄, ȳ)β)i = 0 i ∈ Ig,

either λ
g

i > 0, (∇yg(x̄, ȳ)β)i > 0, or λ
g

i (∇yg(x̄, ȳ)β)i = 0 i ∈ I0. �

Let (x̄, ȳ, ū, v̄) be a feasible solution of problem (CP). By [33, Theorem 4.3],
if the set W(x̄) is nonempty and compact and (CP) is MPEC-weakly calm at
(x̄, ȳ, ū, v̄), then (x̄, ȳ, ū, v̄) is an M-stationary point of problem (CP) based on
an upper estimate. Note that it is obvious that the M-stationary condition based on
an upper estimate is weaker than the corresponding M-stationary condition based
on the value function.
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Chapter 9
Algorithms for Simple Bilevel
Programming

Joydeep Dutta and Tanushree Pandit

Abstract In this article we focus on algorithms for solving simple bilevel program-
ming problems. Simple bilevel problems consist of minimizing a convex function
over the solution set of another convex optimization problem. Though the problem is
convex the bilevel structure prevents the direct application of the standard methods
of convex optimization. Hence several algorithms have been developed in the
literature to tackle this problem. In this article we discuss several such algorithms
including recent ones.

Keywords Bilevel programming problems · Convex optimization · Projected
gradient method · Gradient Lipschitz condition · Proximal point method ·
Convex functions · Strongly convex functions

9.1 Introduction

In this article we focus on the following convex optimization problem (SBP)

min f (x)

subject to x ∈ S,

where S = arg min{g(x) : x ∈ C}.

Here f, g : Rn→ R are convex functions and C a closed convex set in R
n. However

we could consider f, g : U → R, where U is an open convex set containing
C. Further we can also assume that f : Rn → R̄ and g : Rn → R̄, where
R̄ = R ∪ {−∞,+∞} are proper, lower semi-continuous, convex functions. The
problem stated above is called (SBP) to denote the phrase Simple Bilevel Program.
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The fact that (SBP) has a bilevel structure is evident, while we call it simple
since it is represented by only one decision variable in contrast to the two-variable
representation in standard bilevel problem. For a detailed discussion on bilevel
programming see Dempe [3]. Those readers with an experience in optimization
may immediately make the following observation. In general a convex optimization
problem may have more than one solution and hence uncountably infinite number
of solutions. The decision maker usually would prefer only one among these many
solutions. A best way to pick a single solution is to devise a strongly convex
objective which is minimized over the solution set of the convex optimization. That
gives rise to a simple bilevel problem. The above discussion is explained through
the following example.

Example
Consider the following linear programming problem (LP)

min〈c, x〉
subject to Ax = b,

x ≥ 0.

In many situations one needs to find a minimum norm solution of the problem
(LP). Thus we may formulate the following simple bilevel problem

min ‖x‖22
such that x ∈ arg min{〈c, z〉 : Az = b, z ≥ 0}

On the other hand if we are seeking a sparse solution then we can formulate
the problem as

min ‖x‖1
x ∈ arg min{〈c, z〉 : Az = b, z ≥ 0}.

Solodov [22] shows that any standard convex optimization problem can be
expressed as a simple bilevel optimization problem. Consider the convex
optimization problem (CP)

min f (x)

subject to Ax = b,
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where f : Rn → R is convex, A is an m× n matrix, b ∈ R
m and each hi : Rn →

R, i = 1, 2, · · · , k is convex. Consider the following simple bilevel problem

min f (x)

subject to x ∈ arg min
Rn

g,

where g(x) = ‖Ax − b‖2 + ‖max{h(x), 0}‖2, h(x) = (h1(x), · · · , hk(x)) and the
maximum is taken component-wise i.e.

max{h(x), 0} = (max{h1(x), 0}, · · · ,max{hk(x), 0})

Let x∗ be a feasible point of (CP). Then g(x∗) = 0 and x∗ ∈ arg minRn g, since
g(x) ≥ 0 for all x ∈ R

n. This shows that if F is the feasible set of (CP), then

F ⊆ arg min
Rn

g.

Further if g(x∗) = 0, then x∗ ∈ F ; showing that F = arg minRn g. This implies that
if x̄ is a solution of (CP), then f (x̄) = min{f (x) : x ∈ arg minRn g}.

There is another class of problems where the (SBP) formulation may play
role in estimating the distance between a feasible point and the solution set of a
convex programming problem. This was discussed in Dempe et al. [7]. However for
completeness we will also discuss it here through the following example.

Example
Consider a convex programming problem (CP1)

min f (x)

x ∈ C,

where C = {x ∈ R
n : gi(x) ≤ 0; i = 1, · · · ,m}. For this problem the

solution set is given as

arg min
C

f = {x : f (x) ≤ ᾱ, g1(x) ≤ 0, · · · , gm(x) ≤ 0}, (9.1.1)

where ᾱ = inf
x∈C f . Given any x̂ ∈ R

n, suppose we want to estimate

d(x̂, arg minC f ). In general this may not be so easily done. If we consider
arg minC f as a system of convex inequalities as shown above in (9.1.1), we
can not use the error bound theory in the literature (see for example Lewis

(continued)
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and Pang [17] and the references therein) to establish an upper bound to
d(x̂, arg minC f ), as the Slater’s condition fails for this system of convex
inequalities. One way out of this is to use the simple bilevel programming to
estimate d(x̂, arg minC f ) numerically. In fact we can consider the following
problem for a given x̂ ∈ R

n,

min
y

1

2
‖y − x̂‖2

y ∈ arg min
C

f.

Since arg minC f is closed and convex if f and gi’s are finite-valued and
1
2‖y − x̂‖2 is coercive in y and thus a minimizer exists and is unique since
1
2‖y − x̂‖2 is strongly convex in y. Let y∗ be that unique solution, then

d(x̂, arg min
C

f ) = ‖y∗ − x̂‖.

Thus if we want to devise an effective stopping criteria for solving the problem
(CP1), one can estimate the distance from the solution set by using the
approach of simple bilevel programming. The key idea in developing the
algorithms for the simple bilevel programming problem rests on the idea that
we shall be able to solve the problem without separately solving the lower
level problem.

Note that if in (CP1), f is strongly convex, then an upper bound to
d(x̂, arg minC f ) can be computed using the techniques of gap function. See
for example Fukushima [24]. If f is convex but not strongly convex then the
gap function approach does not seem to work and it appears that at least at
present the simple bilevel programming approach is a nice way to estimate
d(x̂, arg minC f ).

However one may argue that if we consider a linear programming problem,
then we can simply use the celebrated Hoffman error bound to devise an upper
bound to the solution set. Consider the following linear programming problem

min cT x,

subject to 〈aj , x〉 ≥ bj , j = 1, · · · ,m
xi ≥ 0, i = 1, · · · , n;

where c ∈ R
n, aj ∈ R

n, bj ∈ R, xi is the i-th component of the vector
x ∈ R

n.

(continued)
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Note that we have the solution set given as

sol(LP ) = {x ∈ R
n : cT x ≤ α̂, 〈aj , x〉 − bj ≥ 0, j = 1, · · · ,m; xi ≥ 0, i = 1, · · · , n},

where α̂ = inf
x∈F cT x and F is the feasible set of (LP). Though we can use

the Hoffmann error bound to get an upper bound to d(x̂, arg minC f ), x̂ ∈
R

n; that upper bound will depend on α̂ which is never known before hand.
Thus even for the case of (LP) we want to argue that the approach through
the simple bilevel formulation is better to estimate d(x̂, arg minC f ). Before
we end our discussion on this issue we would like to mention that even by
using the simple bilevel formulation we are indeed providing an upper bound
to d(x̂, arg minC f ). Note that while computing the minimizer in the simple
bilevel programming formulation, we usually choose an iterate say yk ∈ C as
an approximate solution to the bilevel formulation. Hence

d(x̂, arg min
C

f ) ≤ ‖yk − x̂‖.

We hope we have been able to convince the reader about the usefulness of the simple
bilevel problem. Let us now list down the topics that we shall discuss in rest of the
article.

• Section 9.2: Optimality and links with MPCC
• Section 9.3: Algorithms for (SBP) with smooth data
• Section 9.4: Algorithms for (SBP) with non-smooth data.

Let us remind the reader in the beginning that we will discuss the algorithms for
(SBP) from the point of view of convergence analysis. We shall not study any
complexity related issues or present any numerical experimentation.

9.2 Optimality and Links with MPCC

Optimality conditions lie at the heart of any analysis of optimization problems.
In standard bilevel programming, where there are two decision vectors i.e. the
leader’s and the follower’s decision vectors, it has been a challenging task to write
optimality conditions, since standard constraint qualifications like Mangasarian-
Fromovitz constraint qualification (MFCQ) fails at each feasible point of the usual
bilevel programming problem. See for example Dempe [3], Dempe et al. [5] and
Dutta [10]. The question that arises here is whether the simple bilevel programming
problem (SBP) also faces similar hurdles. Let us now look into this issue. When we
are concerned with optimality conditions, one of the key step is to reformulate it as
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an equivalent single-level problem. Assume that the lower-level problem in (SBP)
has a finite lower bound. Let us set α = inf

x∈C g(x). Then (SBP) can be equivalently

reformulated as

min f (x)

subject to g(x) ≤ α,

x ∈ C.

Those who are well-versed with the standard bilevel programming problem would
immediately realize that above reformulation is the analogue of the value-function
reformulation in the standard case. It is simple to see that the Slater’s condition
fails here. If x̂ ∈ C such that g(x̂) < α, then it contradicts the fact that α =
inf
x∈C g(x). Since Slater’s condition fails one may doubt whether the KKT conditions

would hold. One might also feel that KKT conditions might hold under more weaker
conditions. The KKT condition for the (SBP), is defined to be the KKT condition
for the reformulated problem which we will term as (r-SBP). The KKT conditions
at any x feasible to (r-SBP) postulates the existence of λ ≥ 0, such that

1. 0 ∈ ∂f (x)+ λ∂g(x)+NC(x)

2. λ(g(x)− α) = 0

If x∗ is the solution of (SBP), then g(x∗) = α and hence (2) automatically holds.
Thus if x∗ solves (SBP), we have

0 ∈ ∂f (x∗)+ λ∂g(x)+NC(x), (9.2.1)

as the required KKT condition. This has to be both necessary and sufficient.
Proving sufficiency is not very difficult while proving necessity needs quite involved
qualification conditions. See for example Dempe et al. [6], Dhara and Dutta [9] and
Dempe et al.[7].

Since (SBP) is a convex programming problem we expect it to have a necessary
and sufficient optimality condition which ever way we approach it. However it was
shown in Dempe et al. [6], that this is not the case. Consider g to be differentiable
convex. In such a case one can equivalently write (SBP) as follows

min f (x)

subject to 0 ∈ ∇g(x)+NC(x).

It has been shown in [6] that necessary optimality condition obtained is not
sufficient.
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Let us now focus our attention to the case where the lower level problem is a
linear programming problem, i.e. consider the (SBP) given as

min f (x)

subject to x ∈ arg min{〈c, x〉 : Ax = b},

where as before c ∈ R
n, A is a m × n matrix and b ∈ R

m. For simplicity let us
assume that f is differentiable. Assume that

α = inf{〈c, x〉 : Ax = b}.

Then we can write down the associated (r-SBP) as

min f (x)

subject to 〈c, x〉 ≤ α,

Ax = b.

Since (r-SBP) has linear constraints it is well-known that there is no requirement of
a constraint qualification for KKT condition to hold. They hold automatically (see
Guler [12]).

Let x∗ be a solution of (SBP) with the lower level problem as a linear problem
as given above. Then there exists λ ≥ 0 and μ ∈ R

m such that

0 = ∇f (x∗)+ λc − AT μ

i.e.

∇f (x∗) = AT μ− λc. (9.2.2)

Let x∗ be a feasible point of (SBP) and assume that there exists μ ∈ R
m and λ ≥ 0,

such that (9.2.2) holds. Then is x∗ a solution of (SBP)? To answer this question it
is important to note that x∗ is also feasible for (r-SBP) as 〈c, x〉 = α. Now we have
the following simple steps which we provide for completeness. For any feasible x

for (SBP) we have

f (x)− f (x∗) ≥ 〈∇f (x∗), x − x∗〉,
〈c, x〉 − 〈c, x∗〉 = 〈c, x − x∗〉.

These two together imply that

f (x)− f (x∗)+ λ〈c, x〉 − λ〈c, x∗〉 ≥ 〈∇f (x∗)+ λc, x − x∗〉.
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Now as 〈c, x〉 = 〈c, x∗〉 = α, using (9.2.2) we have,

f (x)− f (x∗) ≥ 〈AT μ, x − x∗〉.

This implies that

f (x)− f (x∗) ≥ 〈μ,Ax − Ax∗〉.

Again as Ax = Ax∗ = b, we get f (x)− f (x∗) ≥ 0. Therefore

f (x) ≥ f (x∗),

which implies that x∗ is a solution of the (SBP) problem.
In particular, let f (x) = 1

2‖x‖2 and α = inf{〈c, x〉 : Ax = b}. Then x∗ is a
solution of the minimum-norm solution problem of the linear programming problem

min〈c, x〉
subject to Ax = b,

if and only if there exists μ ∈ R
n and λ ≥ 0 such that

x∗ = AT μ− λc

Ax∗ = b

〈c, x∗〉 = α.

So the key idea is to first solve the linear programming problem and find α, and then
solve the above system of equations to find the minimum norm solution.

9.2.1 Simple Bilevel Programming Problem and MPCC

This subsection focuses in the relation between simple bilevel programming
problem (9.2.3) and its corresponding MPCC problem. Here we present some
results showing that (SBP) problem exactly follows the standard optimistic bilevel
programming problem in this context (see [4] for details). We will show that if the
lower level problem of the (SBP) satisfies the Slater condition then it is equivalent
to it’s corresponding MPCC problem. Lack of Slater condition leads to counter-
examples where (SBP) and related MPCC are not connected in solution sense. The
results of this subsection were first presented in the thesis of Pandit [18].
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Let us consider the following structure of Simple Bilevel Programming (SBP)
problem

minimize f (x)

subject to (9.2.3)

x ∈ arg min{h(x) : gi(x) ≤ 0; i = 1, · · · ,m},

where f, h : Rn → R are convex functions and for each i ∈ {1, · · · ,m} the
functions gi : Rn → R are also convex functions. The corresponding MPCC is
given by

minimize f (x)

subject to

∇h(x)+
m∑

i=1

λi∇gi(x) = 0 (9.2.4)

gi(x) ≤ 0, λi ≥ 0

λigi(x) = 0 for all i ∈ {1, · · · ,m}.

(SBP) problem not only follows the optimistic bilevel programming problem, in
fact we don’t get any better results for (SBP) problem in spite of the extra convexity
properties which lacked in bilevel programming problem. Here we present some
results showing that Slater condition is sufficient to establish equivalence between
(SBP) and simple MPCC problem.

For any x ∈ R
n such that g(x) ≤ 0, let us define

�(x) := {λ ∈ R
m :λi ≥ 0, λigi(x) = 0 for all i ∈ {1, · · · ,m};

∇h(x)+
m∑

i=1

λi∇gi(x) = 0}.

Then (x, λ) for λ ∈ �(x) is a feasible point of the problem (9.2.4).

Theorem 9.2.1 Let x̄ be a global minimizer of the simple bilevel programming
problem (9.2.3) and assume that the lower level problem satisfies the Slater
condition. Then for any λ ∈ �(x̄), the point (x̄, λ) is a global minimizer of the
corresponding MPCC Problem (9.2.4). �
Proof Since x̄ is the minimizer of the (SBP) problem (9.2.3), thus it is a solution of
the lower level problem. Since the Slater condition holds for the lower level problem
in (9.2.3), we conclude that

�(x̄) �= ∅.
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This immediately shows that for any λ ∈ �(x̄), we have (x̄, λ) to be a feasible
point of the (MPCC) problem (9.2.4). Consider any (x, λ′) to be feasible point of
the (MPCC) problem (9.2.4), then it is simple to observe by noting the convexity
of h and gi ’s we conclude that x is feasible for the (SBP) problem (9.2.3). Hence
f (x) ≥ f (x̄) showing us that (x̄, λ), for any λ ∈ �(x̄) is a solution of the (MPCC).

	

Theorem 9.2.2 Assume that the Slater condition hold true for the lower level
problem of the (SBP) problem (9.2.3). Let (x̄, λ̄) is a local solution of the MPCC
problem (9.2.4). Then x̄ is a global solution of the SBP problem. �
Proof Let (x̄, λ̄) is a local minimizer of the problem (9.2.4). Then by the definition
of a local minimizer, there exists δ > 0, such that

f (x̄) ≤ f (x), for all (x, λ), with λ ∈ �(x) and ‖(x, λ)− (x̄, λ̄)‖ < δ.(9.2.5)

Since the Slater condition holds for the lower level problem, it is well-known fact
that if x and x̄ are two different global minimizers of the lower level problem
of (9.2.3), then

�(x) = �(x̄). (9.2.6)

For a proof of (9.2.6) see for example in Dhara and Dutta [9]. Since (x̄, λ̄) is feasible
for MPCC it is clear that x̄ is a solution of the lower level problem of the (SBP)
problem (9.2.3). We will now demonstrate that x̄ is a local solution of the (SBP)
problem and hence it would be a global one as (SBP) is a convex programming
problem.

Let x be feasible for the (SBP) problem (9.2.3) such that

‖x − x̄‖ < δ.

Slater condition guarantees that �(x) �= ∅. Hence by (9.2.6), λ̄ ∈ �(x). Now
consider the same δ as above. Then

‖(x, λ̄)− (x̄, λ̄)‖ < δ.

Thus from our discussion above we have f (x) ≥ f (x̄). Hence x̄ is a local minimizer
of the (SBP) problem and thus a global one. 	

Corollary 9.2.3 Let the Slater’s condition holds for the lower level problem of the
SBP (9.2.3). Then (x̄, λ̄) is a local solution of the corresponding simple MPCC
problem (9.2.4), which implies that (x̄, λ̄) is a global solution of the problem (9.2.4).

�
We omit the simple proof which is an application of Theorem 9.2.2 followed by
Theorem 9.2.1. Corollary 9.2.3 tells us that the (MPCC) problem (9.2.4) is an
example of a non-convex problem whose local minimizers are global minimizers
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also if the Slater condition holds for the lower level problem of the (SBP)
problem (9.2.3).

In the above results one must have observed the key role played by the
Slater condition. However if the Slater condition fails, the solution of one of the
problems (9.2.3) or (9.2.4) may not lead to a solution of the other.

Example
(Slater’s condition holds and the solution of SBP and simple MPCC are same).

Let

f (x) = (x − 1

2
)2

h(x) = x2

g1(x) = −x
g2(x) = x − 3

Then Slater’s condition holds as g1(2) < 0 and g2(2) < 0.
Here the feasible set for the simple MPCC problem is

{(x, λ1, λ2) : x = 0, λ1 ≥ 0, λ2 = 0}

Hence the global optimal solution for the simple MPCC problem is x = 0
with optimal value f (0) = 1

4 .
The feasible set of the SBP problem is

arg min{h(x) : 0 ≤ x ≤ 3} = {x = 0}

Therefore the global solution of the SBP problem is same as the simple MPCC
i.e. x = 0.

Example
SBP has unique solution but corresponding simple MPCC is not feasible
(Slater’s condition is not satisfied).

Let

f (x1, x2) = x1 + x2

h(x1, x2) = x1

(continued)



264 J. Dutta and T. Pandit

g1(x1, x2) = x2
1 − x2

g2(x1, x2) = x2

Clearly, g1(x1, x2) ≤ 0 and g2(x1, x2) ≤ 0 together imply that x1 = 0 = x2.
Which implies that Slater’s condition fails for the lower level problem of the
SBP.

Now, the feasible set for the SBP problem is

arg min{h(x1, x2) : x1 = 0 = x2} = {(0, 0)}

Therefore, (0, 0) is the solution of the SBP problem.
But for x1 = 0 = x2, there does not exists λ1 ≥ 0 and λ2 ≥ 0 such that

∇h(x1, x2)+ λ1∇g1(x1, x2)+ λ2∇g2(x1, x2) = 0

Therefore the simple MPCC problem is not feasible even when the SBP has
unique solution in case of the failure of Slater’s condition.

9.3 Algorithms for Smooth Data

To the best of our knowledge the first algorithmic analysis was carried out by
Solodov [22] in 2007, though the more simpler problem of finding the least norm
solution was tackled by Beck and Sabach [1] in 2014 and then a strongly convex
upper level objective was considered by Sabach and Shtern [20] in 2017. While
writing an exposition it is always a difficult task as to how to present the subject.
Shall one concentrate on the simpler problem first or shall one present in a more
historical way. After some deliberations we choose to maintain the chronological
order of the development so the significance of the simplifications would be more
clear.

Let us recall the problem (SBP) given as

min f (x)

subject to x ∈ arg min{g(z) : z ∈ C},

where f : Rn→ R and g : Rn→ R are smooth convex functions and C is a closed,
convex set.
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We shall present here the key ideas from Solodov [22] in a manner that highlights
the difficulties in developing a convergent scheme for (SBP). The key idea in
Solodov’s approach is that of penalization. He constructs the function

ϕε(x) = g(x)+ εf (x), ε > 0;

where ε varies along iteration. Hence we have sequence of positive numbers {εk},
and

lim
k→∞ εk = 0 and

∞∑

k=0

εk = +∞. (9.3.1)

In effect we are going minimize at each step functions of the form

ϕεk (x) = g(x)+ εkf (x), εk > 0

with εk satisfying (9.3.1) over the set C.
Solodov then applies the projected gradient method and develops a scheme for

(SBP). Let us try to understand why such a penalization scheme is interesting for
(SBP). We believe the key lies in the reformulated version of (SBP), i.e. (r-SBP),
which we write as

min f (x)

g(x) ≤ α

x ∈ C.

The usual penalization schemes may not work as α is involved but a direct
penalization can be done and one can write down the following penalty problem

min
x∈C f (x)+ 1

ε
(g(x)− α).

Now for each value of ε,
α

ε
is a fixed quantity, thus it is enough to minimize f (x)+

1

ε
g(x). The minimizer of this function will also minimize εf (x) + g(x) and thus

we can use this format to design algorithms for (SBP). Let us understand that this
approach will remain very fundamental to design algorithms for (SBP).
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Solodov’s Scheme (Algo-SBP-1 [22])

• Step 0: Choose parameters β̄ > 0, ϑ ∈ (0, 1) and η ∈ (0, 1). Choose an
initial point x0 ∈ C, ε > 0, k := 0.

• Step 1: Given xk, let us compute xk+1 = zk(βk); where

zk(β) = ProjC(x
k − β∇ϕεk (x

k)) (9.3.2)

and βk = ηmk β̄, where mk is the smallest non-negative integer for which
the following Armijo type criteria holds, i.e.

ϕεk(z
k(ηmk β̄)) ≤ ϕεk(x

k)+ ϑ〈∇ϕεk (x
k), zk(ηmk β̄)− xk〉. (9.3.3)

• Step 2: Set 0 < εk+1 < εk; set k := k + 1 and repeat.

The important issue is how to stop the algorithm. Of course if we have for some k,

xk = xk+1 = zk(βk) = ProjC(x
k − βk∇ϕεk (x

k)),

where βk = ηmk β̄, where mk is as given in the scheme then it is clear that xk is
the solution. However this is not the usual scenario and hence one needs to have
a stopping criteria for the above algorithm while implementing the algorithm in
practice. A good criteria may be to set a threshold ε0 > 0 and stop when for a given
k,

‖xk+1 − xk‖ < ε0.

One needs to be cautioned that this algorithm is useful for those cases of (SBP)
where the projection on the set C can be computed easily.

Let us now discuss the convergence analysis. One of the key assumptions is that
the gradients of f and g are Lipschitz continuous over bounded sets. However for
simplicity in our exposition, we shall consider ∇f and ∇g are Lipschitz continuous
on R

n with Lipschitz constant L > 0. So our assumption (B) will be as follows.

Assumption B ∇f and∇g are Lipschitz continuous on R
n with Lipschitz constant

L > 0.

For examples of functions for which the gradient is Lipschitz continuous over
R

n, see Beck and Sabach [1]).
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Further the fact that ∇f and ∇g are Lipschitz with Lipschitz constant L > 0 is
equivalent to the fact that

f (y)− f (x)− 〈∇f (x), y − x〉 ≤ L

2
‖y − x‖2,

g(y)− g(x)− 〈∇g(x), y − x〉 ≤ L

2
‖y − x‖2,

for any x, y ∈ R
n.

For the convergence analysis Solodov considers the following assumptions which
we mark here as Assumption C; which is as follows.

Assumption C f̄ > −∞, where f̄ = inf{f (x) : x ∈ C} and ḡ > −∞, where
ḡ = inf{g(x) : x ∈ C}. Also we assume that C is non-empty.

A key feature to observe is that we will generate the same iterates if instead of
ϕεk , k ∈ N, we successively minimize

ϕ̃εk (x) = (g(x)− ḡ)+ ε(f (x)− f̄ )

over the set C.
Of course we will begin by assuming that the (SBP) is solvable and hence the

second assumption in Assumption C automatically holds.
Solodov [22] begins his analysis by proving a key lemma which says that finding

the step size using the Armijo type rule indeed terminates, thus showing that
algorithm described above is well-defined. The following lemma is presented in
Solodov [22].

Lemma 9.3.1 Let C be a closed convex set and the Assumption B holds. Then there
is finite non-negative integermk , such that

βk = ηmk β̄ ≥ min{β̄, 2(1− ϑ)

(1+ εk)L
} > 0

and hence the step-size selection procedure at the k-th iteration terminates. �
Proof We shall outline the main ideas of the proof for completeness. Using (9.3.2)
from the algorithm we have

〈xk − β∇ϕεk (x
k)− zk(β), xk − zk(β)〉 ≤ 0,

implying that

‖zk(β)− xk‖2 ≤ β〈∇ϕεk (x
k), xk − zk(β)〉. (9.3.4)
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By Assumption B, ∇ϕεk is Lipschitz on R
n with Lipschitz constant (1+ εk)L. This

shows that

ϕεk(z
k(β)) ≤ ϕεk (x

k)+ (1− L(1+ εk)β

2
)〈∇ϕεk (x

k), zk(β)− xk〉.

If 1− L(1+εk)β
2 ≤ ϑ , then β ≥ 2(1−ϑ)

(1+εk)L . Now βk ≤ β̄ by construction. Hence

βk = ηmk β̄ ≥ min{β̄, 2(1− ϑ)

(1+ εk)L
}. 	


It is important to have a closer look at the last expression of the proof. If β̄ <
2(1−ϑ)
(1+εk)L , then βk ≥ β̄. But as βk ≤ β̄, in such a case βk = β̄. This case may not be
very likely in real implementation.

We shall now look into the issue of convergence analysis. We shall present the
key convergence result and then outline the key steps of proof and highlighting the
key points which are hallmark of the (SBP) problem.

Theorem 9.3.2 ([22]) Let us consider the problem (SBP), where f and g are
convex differentiable functions. Let the Assumptions B and C hold. Let the solution
set of (SBP), denoted as sol(SBP) be closed and bounded. Then for any sequence
xk generated by the algorithm (Algo-SBP-1), with the sequence {εk}, εk ↓ 0,
satisfying (9.3.2), we have

dsol(SBP)(x
k)→ 0 as k→∞.

Here dC(x) represents the distance of the set C from the point x. �
Proof (Outline of the Main Ideas) The key idea of the proof lies in replacing ϕεk

with ϕ̃εk , for each k and rewriting (Algo-SBP-1) in terms of ϕ̃εk . In such a case the
Armijo type criteria shows that

ϑ〈∇ϕ̃εk (x
k), xk − xk+1〉 ≤ ϕ̃εk (x

k)− ϕ̃εk (x
k+1).

This shows that

ϑ〈∇ϕ̃εk (x
k), xk − xk+1〉

≤ εk(f (xk)− f̄ )+ (g(xk)− ḡ)− εk(f (xk+1)− f̄ )− (g(xk+1)− ḡ),

i.e.

ϑ〈∇ϕ̃εk (x
k), xk − xk+1〉

≤ εk(f (xk)− f̄ )− εk(f (xk+1)− f̄ )+ (g(xk)− ḡ)− (g(xk+1)− ḡ).
(9.3.5)
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Now by the definition of f̄ , f̄ ≤ f (xk) for all k ∈ N as xk ∈ C. Also note that
εk+1 ≤ εk . Therefore for any k ∈ N

0 ≤ εk+1(f (xk+1)− f̄ ) ≤ εk(f (xk+1)− f̄ )

Then from (9.3.5), we get

ϑ〈∇ϕ̃εk (x
k), xk − xk+1〉

≤ εk(f (xk)− f̄ )− εk+1(f (xk+1)− f̄ )+ (g(xk)− ḡ)− (g(xk+1)− ḡ).

Since this holds for all k ∈ N, by summing over from k = 0 to k = k̂, we have

ϑ

k̂∑

k=0

〈∇ϕ̃εk (x
k), xk − xk+1〉

≤ ε0(f (x0)− f̄ )+ (g(x0)− ḡ)− εk+1(f (xk̂+1)− f̄ )− (g(xk̂+1)− ḡ)

≤ ε0(f (x0)− f̄ )+ (g(x0)− ḡ).

We urge the reader to check the above inequality themselves. Now as k̂ → ∞, we
conclude that

∞∑

k=0

〈∇ϕ̃εk (x
k), xk − xk+1〉 ≤ 1

ϑ
[ε0(f (x0)− f̄ )+ (g(x0)− ḡ)] < +∞.

Thus the series
∞∑
k=0
〈∇ϕ̃εk (x

k), xk − xk+1〉 is summable and hence

〈∇ϕ̃εk (x
k), xk − xk+1〉 → 0 as k→∞. (9.3.6)

From the point of view of convergence analysis it is important that the sequence
generated by the algorithm is bounded. In that case an effort should be made to
show that any limit point of that sequence is in the solution set of the problem
under consideration. In fact in the setting of bilevel programming it is slightly
tricky to show that {xk} is bounded. Rather it is much easier to show that if {xk}
is bounded, then every limit point will be a solution of the lower level problem. This
is the approach taken by Solodov [22] and we will outline this approach here. We
shall then show that {xk} is bounded and the accumulation points indeed belong to
sol(SBP). Our first step would be to show that for any bounded {xk} generated by
(Algo-SBP-1) a limit point is always a solution of the lower level problem. Now
from the algorithm we know that 0 < εk+1 < εk < ε0. Thus

βk ≥ min{β̄, 2(1− ϑ)

(1+ ε0)L
} = β̂ (say). (9.3.7)
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Using (9.3.4) and (9.3.6) we conclude that ‖xk − xk+1‖ → 0 and hence

xk − xk+1 → 0.

Thus by definition, as k→ 0

xk − projC(xk − βk∇ϕ̃εk (x
k))→ 0.

Hence let x̃ be an accumulation point or limit point of {xk} then as k→ 0

x̃ − projC(x̃ − β̃∇ϕ̃εk (x̃)) = 0,

where βk → β̃ > 0 (Noting that it is simple to show that βk is bounded). Hence x̃ =
projC(x̃ − β̃∇ϕ̃εk (x̃)) showing that x̃ is the solution of the lower level problem. But
before we establish that x̃ also lies in sol(SBP), we shall show that {xk} is bounded.
Using the fact that the sol(SBP) is non empty, closed and bounded; Solodov starts
the analysis of this part by considering an x̄ ∈ sol(SBP). Now convexity of ϕεk will
show us that

〈∇ϕ̃εk , x̄ − xk〉 ≤ εk(f (x̄)− f (xk)). (9.3.8)

Solodov then employs the following identity

‖xk+1 − x̄‖2 − ‖xk+1 − xk‖2 = ‖xk − x̄‖2 + 2〈xk+1 − xk, xk+1 − x̄〉. (9.3.9)

Note that,

〈xk+1 − xk, xk+1 − x̄〉
= 〈xk+1 − xk + βk∇ϕ̃εk (x

k)− βk∇ϕ̃εk (x
k), xk+1 − x̄〉

= 〈xk+1 − xk + βk∇ϕ̃εk (x
k), xk+1 − x̄〉 − βk〈∇ϕ̃εk (x

k), xk+1 − x̄〉.

Since by the algorithm

xk+1 = projC(xk − βk∇ϕ̃εk (x
k)), (9.3.10)

by the well known property of projection (see e.g. Hirriart Urruty and Lemarechal
[14]) we have

〈xk − βk∇ϕ̃εk (x
k)− xk+1, x̄ − xk+1〉 ≤ 0

i.e. 〈xk − βk∇ϕ̃εk (x
k)− xk+1, xk+1 − x̄〉 ≥ 0
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Hence from this we can deduce by noting that βk ≤ β̄ and (9.3.8),

〈xk+1 − xk, xk+1 − x̄〉 ≤ β̄〈∇ϕ̃εk (x
k)), xk − xk+1〉 + βkεk(f (x̄)− f̄ ).

Now from (9.3.9) and using the above relations, we have

‖xk+1 − x̄‖2

≤ ‖xk − x̄‖2 + 2β̄〈∇ϕ̃εk (x
k)), xk − xk+1〉 + 2βkεk(f (x̄)− f (xk)).

(9.3.11)

We need to focus on the quantity (f (x̄)− f (xk)), an information about the second
term on the right hand side is given by (9.3.6). Now one needs to look into two
separate cases formally.

Case I : There exists k0, such that one has f (x̄) ≤ f (xk), for all k ≥ k0.
Case II : For any k ∈ N, there exists k1 ∈ N and k1 ≥ k such that f (x̄) > f (xk1).

We first deal with Case I. It is shown in Solodov [22] that using case I, (9.3.11)
gives

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + 2β̄〈∇ϕ̃εk (x
k)), xk − xk+1〉 (9.3.12)

This shows that {‖xk − x̄‖2} converges since if {ak} and {bk} are sequences of non-

negative real numbers such that ak+1 ≤ ak + bk and
∞∑
k=1

bk < +∞, then {ak}
converges. Hence {xk} is bounded. Solodov [22] then proves that

lim inf
k→∞ f (xk) = f (x̄) (9.3.13)

Hence we can find a convergent subsequence of {xkj } of {xk} such that

lim inf
j→∞ f (xkj ) = f (x̄).

Let xkj → x̃ as j → ∞. Hence f (x̃) = f (x̄). We have seen before that x̃ ∈
arg minC g and thus x̃ ∈ sol(SBP).

Solodov [22] then shows that if we set x̃ = x̄, then we can demonstrate that
xk → x̃ as k→∞. Now looking at the proof above we can show that {‖xk − x̃‖2}
converges. Since xkj → x̃; there is a subsequence of {‖xk − x̃‖2} that converges
to 0. Hence the sequence {‖xk − x̃‖2} converges to 0, which implies that xk →
x̃ ∈ sol(SBP). This argument is a very crucial one as one observes. For details see
Solodov [22]. Handling the second case is more complicated since we have to deal
essentially with subsequences. One of the main tricks of this approach is to define
the following quantity ik for each k ∈ N as

ik = max{i ≤ k : f (x̄) > f (xi)}
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An important thing to observe is that for a given k one may have {i ≤ k : f (x̄) >

f (xi)} = ∅ and in that case ik can not be defined. Thus a better way to write is that
let k̂ ∈ N be first integer for which

{i ≤ k̂ : f (x̄) > f (xi)}

is non-empty. Then for all k ≥ k̂ and k ∈ N we can define

ik = max{i ≤ k : f (x̄) > f (xi)}.

Thus we shall only consider now k ≥ k̂. Also from the description of Case II, we
can conclude that ik →∞ as k→∞.

The key step now is to show that {xik }∞
k=k̂ is bounded. Let us observe that

sol(SBP) = {x ∈ arg min
C

g : f (x) ≤ f (x̄)}

= {x ∈ C : max{f (x)− f (x̄), g(x)− ḡ} ≤ 0}.

The function ψ(x) = max{f (x)−f (x̄), g(x)− ḡ} is a convex function. This shows
that

sol(SBP) = {x ∈ C : ψ(x) ≤ 0}.

Now sol(SBP) is assumed to be non empty and bounded. The level set {x ∈ C :
ψ(x) ≤ 0} = Lψ(0) of the convex function ψ is non empty and bounded. Further
it is well known that in such a case for any q ∈ R,

Lψ(q) := {x ∈ C : ψ(x) ≤ q}

is also bounded. Solodov [22] then shows that

0 ≤ ϕ̃εk+1(x
k+1) ≤ ϕ̃εk (x

k+1) ≤ ϕ̃εk (x
k).

This is a key step since it shows that the sequence {ϕ̃εk (x
k)} is non-increasing and

bounded below which establishes the fact that {ϕ̃εk (x
k)} is a convergent sequence

and hence bounded. This shows that the sequence {g(xk) − ḡ} is bounded. In the
very next step Solodov [22] uses this boundedness of {g(xk) − ḡ} in a profitable
way. Let q ≥ 0 be such that g(xk)− ḡ ≤ q for all k ∈ N.

Now from the definition of ik we have for all k ≥ k̂

εk(f (xik )− f (x̄)) < 0
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and thus

εk(f (xik )− f (x̄))+ (g(xik )− g(x̄)) ≤ q

implying that

ϕ̃εik
(xik ) ≤ q ∀ k ≥ k̂.

Hence xik ∈ Lϕ̃εik
(q) for all k ≥ k̂. Thus {xik } is bounded. Now for any k ≥ k̂, the

definition ik tells us that

f (x̄) ≤ f (xi)

for i = ik + 1, · · · , k; if k > ik. Thus from (9.3.11), we get for i = ik + 1, · · · , k

‖xi+1 − x̄‖2 ≤ ‖xi − x̄‖2 + 2β̄〈∇ϕ̃εi (x
i), xi − xi+1〉.

This holds true for all cases where k > ik . Thus we have

‖xk − x̄‖2 ≤ ‖xik − x̄‖2 + 2β̄
k−1∑

i=ik+1

〈∇ϕ̃εi (x
i), xi − xi+1〉,

for all k for which ik < k.
Let us now consider the case where ik = k. In that case we will proceed in the

following way. For any k ∈ N we have

xk+1 = projC(x
k − βk∇ϕ̃εk (x

k)).

From the definition of projection we can conclude that

‖xk+1 − xk‖2 ≤ βk〈∇ϕ̃εk (x
k), xk − xk+1〉.

Thus we have for all k ∈ N

〈∇ϕ̃εk (x
k), xk − xk+1〉 ≥ 0.

Observe however that this shows that

0 ≤ 2β̄
k−1∑

j=ik+1

〈∇ϕ̃εj (x
j ), xj − xj+1〉. (9.3.14)
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Thus for k with ik = k we have ‖xk − x̄‖2 = ‖xik − x̄‖2. Hence from (9.3.14)

‖xk − x̄‖2 ≤ ‖xik − x̄‖2 + 2β̄
k−1∑

j=ik+1

〈∇ϕ̃εj (x
j ), xj − xj+1〉.

So we conclude that for all k we have

‖xk − x̄‖2 ≤ ‖xik − x̄‖2 + 2β̄
∞∑

j=ik+1

〈∇ϕ̃εj (x
j ), xj − xj+1〉. (9.3.15)

Now ik →∞ as k→∞ we see that

∞∑

j=ik+1

〈∇ϕ̃εj (x
j ), xj − xj+1〉 → 0 as k→∞.

Thus using the boundedness of {xik } we conclude that {xk} is also bounded. We can
immediately conclude that all accumulation points of {xk} lie in arg minC g. Further
for any accumulation point x∗ of {xik } we have f (x̄) ≥ f (x∗). But this shows that
x∗ ∈ sol(SBP). In fact all accumulation points of {xik } must be in sol(SBP). If x∗ is
an accumulation point of {xik }, thus there exists a convergent subsequence {xikj } of
{xik } such that xikj → x∗ as j →∞. Further we have

d(x
ikj , sol(SBP)) ≤ ‖xikj − x∗‖.

Thus as j →∞ we have

d(x
ikj , sol(SBP))→ 0. (9.3.16)

We can also see that for any convergent subsequence of {xik } (9.3.16) holds, this
shows that

d(xik , sol(SBP))→ 0 as k→∞.

Now for each k, Solodov [22] defines

x̄k = projsol(SBP)(x
ik ).
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Now using (9.3.15) with x̄ = x̄k we have

d2(xk, sol(SBP)) ≤‖xk − x̄k‖2

≤d2(xik , sol(SBP))+ 2β̄
∞∑

j=ik+1

〈∇ϕ̃εi (x
i), xi − xi+1〉.

Now as k→∞ we have d2(xk, sol(SBP))→ 0, hence d(xk, sol(SBP))→ 0. 	

We shall now discuss a work by Beck and Sabach [1], which focuses on what

we believe as the most important class of simple bilevel problems. In this case the
upper-level objective is always strongly convex. We shall denote such problems as
(SBP-1). Thus an (SBP-1) problem is given as

minφ(x)

Subject to x ∈ S

S = arg min{g(y) : y ∈ C},

where φ : Rn → R is strongly convex with modulus ρ > 0 and differentiable, while
g : Rn → R is a convex and differentiable function with ∇g a Lipschitz function
on R

n with Lipschitz rank (or Lipschitz constant) L > 0. When φ(x) = 1
2‖x‖2, we

are talking about the minimum norm problem. Thus (SBP-1) actually encompasses
a large class of important problems.

Beck and Sabach [1] develops the Minimal norm gradient algorithm, which they
present in two different versions. For the first version the Lipschitz rank of ∇g is
known while for the second version it is assumed that the Lipschitz rank is not
known and thus an Armijo type criteria is used. In Solodov [22] in comparison an
Armijo type criteria is used even though the Lipschitz rank was known. Also note
that in Beck and Sabach [1], the Lipschitz gradient assumption is only on g and
not on φ. In fact Beck and Sabach [1] mention that a problem like (SBP-1) can be
reformulated as follows

minφ(x)

Subject to g(x) ≤ g∗

x ∈ C,

where g∗ = inf
x∈C g. We are already familiar with this reformulation and further

they mention that as the Slater condition fails and g∗ may not be known, the above
problem may not be suitable to develop numerical schemes to solve (SBP-1). They
mention that even if one could compute g∗ exactly, the fact that Slater’s condition
fails would lead to numerical problems. As a result they take a completely different
path by basing their approach on the idea of cutting planes. However we would like
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to mention that very recently in the thesis of Pandit [18], the above reformulation has
been slightly modified to generate a sequence of problems whose solutions converge
to that of (SBP) or (SBP-1), depending on the choice of the problem. The algorithm
thus presented in the thesis of Pandit [18] has been a collaborative effort with Dutta
and Rao and has also been presented in the preprint [19]. The approach in Pandit
et al. [19] has been to develop an algorithm where no additional assumption on
the upper level objective is assumed other than the fact that it is convex, where
the lower level objective is differentiable but need not have a Lipschitz gradient.
The algorithm in Pandit [18] or [19] is very simple and just relies on an Armijo
type decrease criteria. Convergence analysis has been carried out and numerical
experiments have given encouraging results. Further in Pandit et al. [19], the upper
level objective need not be strongly convex.

Let us outline the work of Beck and Sabach [1]. Let us begin by mentioning some
key tools in [1]. Let

x∗ = arg min
Rn

φ

and we call x∗ the prox-center of φ. Without loss of generality we may assume that
φ(x∗) = 0. Then strong convexity of φ tells us that

φ(x) ≥ ρ

2
‖x − x∗‖2 ∀x ∈ R

n.

A key tool in the study of Beck and Sabach [1] is the Bregman distance. This is a
non-Euclidean distance which makes the analysis a bit more involved.

Let h : Rn → R be a strictly convex function. Then the Bregman distance
generated by h is given as

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x − y〉.

It is clear that Dh(x, y) ≥ 0, ∀x, y ∈ R
n and Dh(x, y) = 0 if and only if x = y.

Further if h is strongly convex,

Dh(x, y) ≥ ρ

2
‖x − y‖2.

A key inequality associated with a Bregman distance is the well-known three point
inequality. If h is strongly convex and x, y, z ∈ R

n, then

Dh(x, y)+Dh(y, z)−Dh(x, z) = 〈∇h(z)−∇h(y), x − y〉.



9 Algorithms for Simple Bilevel Programming 277

The following two vector-valued mappings play a central role in [1]. First comes
the projected gradient mapping or proj-grad mapping. For μ > 0, the proj-grad
mapping is given as

PM(x) = projC(x − 1

M
∇g(x)), ∀x ∈ R

n.

The gradient map is defined as

GM(x) = M(x − PM(x)) = M
(
x − projC(x − 1

M
∇g(x))).

If C = R
n, then GM(x) = ∇g(x), which is thus the source of its name. Further

GM(x∗) = 0 implies that x∗ solves the lower level problem in (SBP-1). Further it
was shown in [1] that the function

g(M) = ‖GM(x)‖, M > 0;

is monotonically non-decreasing over (0,∞). The idea of their algorithm is based
on the idea of cutting planes in convex optimization. If x∗ ∈ R

n is a minimizer of a
convex function φ : Rn → R, then for any x ∈ R

n we have

〈∇φ(x∗), x − x∗〉 ≥ 0.

By monotonicity, we have

〈∇φ(x), x − x∗〉 ≥ 0.

Thus if sol(φ,Rn) denotes the solution set of the problem of minimizing φ over Rn,
then

sol(φ,Rn) ⊆ {x∗ ∈ R
n : 〈∇φ(x), x − x∗〉 ≥ 0,∀x ∈ R

n}.

Therefore, given x ∈ R
n, we can immediately eliminate the strict half space

{x∗ ∈ R
n : 〈∇φ(x), x − x∗〉 < 0}.

So one needs to check, given any x ∈ R
n, the cut at x is given by the hyperplane

Hφ
x = {z ∈ R

n : 〈∇φ(x), x − z〉 = 0}.

This is a very important approach in convex optimization, see for example the
fundamental paper by Kelley [15]. Following the idea of the cutting plane method,
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Beck and Sabach introduces the following set whose motivation will be clear as we
go along.

QM,α,x = {z ∈ R
n : 〈GM(x), x − z〉 ≥ 1

αM
‖GM(x)‖2}.

If C = R
n, then

QM,α,x = {z ∈ R
n : 〈∇g(x), x − z〉 ≥ 1

αM
‖∇g(x)‖2}.

This is what they refer to as deep cuts and play a fundamental role in their algorithm
which we describe below. The first algorithm considers the fact that the Lipschitz
constant of ∇g is known. As before let us call the Lipschitz constant as L > 0. Here
is the algorithm.

The Minimal Norm Gradient Algorithm (Lipschitz Constant Known)

• Step 0: Let L > 0 be the Lipschitz constant of ∇g. Let x0= prox-center of
φ = arg minRn φ.

• Step 1: For k = 1, 2, · · ·

xk = sol(φ,Qk ∩Wk),

where

Qk = QL,β,xk−1

and

Wk = {z ∈ R
n : 〈∇w(xk−1), z− xk−1〉 ≥ 0}.

Set β = 4
3 if C �= R

n and β = 1 if C = R
n.

The reason for setting β = 4
3 when C �= R

n i.e. C ⊂ R
n is that sol(g, C) =

arg minC g ⊂ Q
L, 4

3 ,x
and if C = R

n, β = 1 as sol(g,Rn) ⊂ QL,1,x . These facts

are proved in Lemma 2.3 and Lemma 2.4 in Beck and Sabach [1]. In Lemma 2.3 in
[1], it is shown that

〈GL(x)−GL(y), x − y〉 ≥ 3

4L
‖GL(x)−GL(y)‖2.
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If we set y = x∗ ∈ arg minC g = sol(g, C), then GL(x
∗) = 0 and hence

〈GL(x), x − x∗〉 ≥ 3

4L
‖GL(x)‖2. (9.3.17)

Thus x∗ ∈ Q
L, 4

3 ,x
. Since ∇g is Lipschitz continuous with constant L, then from [1]

we see that

〈∇g(x)−∇g(y), x − y〉 ≥ 1

L
‖∇g(x)− ∇g(y)‖2.

Putting y = x∗, where x∗ ∈ arg min
Rn g = sol(g,Rn), we have

〈∇g(x), x − x∗〉 ≥ 1

L
‖∇g(x)‖.

This shows that

arg min
Rn

g = sol(g,Rn) ⊂ QL,1,x.

If we do not have any knowledge of the Lipschitz constant of ∇g, then we use an
Armijo type criteria in the Minimal norm gradient algorithm that we state here.

The Minimal Norm Gradient Algorithm (Lipschitz Constant is Not Known)

• Step 0: Initialization: x0= prox-center of φ = arg minRn φ. Take L0 >

0, η > 1.
• Step 1: For k = 1, 2, · · ·

(a) Find the smallest non-negative integer ik such that L̄ = ηikLk−1 and
the following inequality

f (PL̄(x
k−1)) ≤ f (xk−1)+ 〈∇f (xk−1), PL̄(x

k−1)− xk−1〉

+ L̄

2
‖PL̄(x

k−1)− xk−1‖2

is satisfied. Then set Lk := L̄

(b) Set xk = sol(φ,Qk ∩Wk), where

Qk = QLk,2,xk−1 and Wk = {z ∈ R
n : 〈∇φ(xk−1), z− xk−1〉 ≥ 0}.
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We shall now show that sol(g,C) ⊆ QL̄,2,x . It has been demonstrated in Lemma 2.5
in Beck and Sabach [1] that if

g(PL̄(x)) ≤ g(x)+ 〈∇g(x), PL̄(x)− x〉 + L̄

2
‖PL̄(x)− x‖2,

then for any x∗ ∈ sol(g,C), one has

〈GM(x), x − x∗〉 ≥ 1

2L̄
‖GM(x)‖2

and thus sol(g,C) ⊆ QL̄,2,x .
Beck and Sabach [1] also shows that whichever form of the minimal norm

gradient algorithm is used one has

sol(g, C) = arg min
C

g ⊆ Qk ∩Wk, ∀k ∈ N.

We will now state below the result of Beck and Sabach [1], describing the
convergence of the minimum norm gradient algorithm.

Theorem 9.3.3 Consider the (SBP-1) problem and let {xk} be a sequence gener-
ated by any of the two forms of the minimum norm gradient algorithm. Then

(a) {xk} is bounded.
(b) for any k ∈ N,

Dφ(x
k, xk−1)+Dφ(x

k−1, x0) ≤ Dφ(x
k, x0).

(c) xk → x∗ = arg min{φ(y) : y ∈ sol(g, C)} i.e. x∗ is a solution of (SBP-1). �
Keeping in view our chronological approach to the development of algorithms

for simple bilevel programming, we shall end this section by discussing the work
of Sabach and Shtern [20], which appeared in 2017 and is in some sense a
generalization of Beck and Sabach [1]. The problem they consider is the following

minφ(x)

subject to x ∈ S,

where φ : Rn → R is a strongly convex function and

S = arg min
Rn

{f + g}

where f is continuously differentiable and g is an extended-valued proper lower
semi-continuous convex function. We shall call this problem (SBP-2). In fact strictly
speaking we should consider this problem under the category of non-smooth simple



9 Algorithms for Simple Bilevel Programming 281

bilevel problems since g can be non-smooth. However we are discussing this
problem in this section since we view (SBP-2) as a generalization of (SBP-1).
Observe that if we choose g = δC , where δC is the indicator function of a closed
convex set C, then (SBP-2) reduces to (SBP-1). Those readers who are aware of
the algorithms of convex optimization might guess that a proximal gradient type
approach needs to be used for solving (SBP-2). Indeed Sabach and Shtern [20],
does develop an algorithm based on the prox-mapping. It is important to realize that
since φ is strongly convex, (SBP-2) also has a unique minimizer which we may
mark as x∗. In fact the method developed in [20], called BiG-SAM, is simpler and
cheaper compared than the Minimal Norm Gradient (MNG) method of Beck and
Sabach [1]. In the Big-SAM method one needs to compute ∇φ only, while in the
(MNG) method one needs to compute ∇φ and also to minimize φ to compute the
prox-center.

In Sabach and Shtern [20], the following assumptions are made

(1) f has Lipschitz-gradient, i.e. ∇f is Lipschitz on R
n with Lipschitz constant

Lf .
(2) S �= ∅.
One of the key approaches to solve the lower-level problem in (SBP-2) is the
proximal gradient approach which depends on the prox-mapping. Given h : Rn →
R ∪ {+∞}, a proper lower semi-continuous prox-mapping is given as

proxh(x) = arg min{h(u)+ 1

2
‖u− x‖2 : u ∈ R

n}.

The proximal point algorithm generates the iterates for the lower level problem
using the following scheme

xk+1 = proxtg(x
k − t∇f (xk)),

where t > 0 is the step-size. If we set

Pt (x) = proxtg(x − t∇f (x)),

then x is a solution of the lower level problem if and only if x = Pt (x). Further
Pt (x) is also non-expansive (see for example Lemma 1 in [22]). In [22], it is also
assumed that the strongly convex upper level objective φ has a modulus ρ > 0 and
also a Lipschitz gradient on R

n, whose Lipschitz constant is given as Lφ . We are
now in a position to state the Big-SAM method.
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BiG-SAM Method [20]

Step 0: Initialization: t ∈ (0, 1
Lf
], β ∈ (0, 2

Lφ+ρ ) and {αk} is a sequence

satisfying αk ∈ (0, 1], for all k ∈ N; lim
k→∞ αk = 0 and

∞∑
k=1

αk = ∞ and

lim
k→∞

αk+1
αk
= 1.

Set x0 ∈ R
n as the initial guess solution.

Step 1: For k = 1, 2, · · · , do

(i) yk+1 = proxtg(x
k − t∇f (xk))

(ii) zk+1 = xk − β∇φ(xk)

(iii) xk+1 = αkz
k + (1− αk)y

k.

The key result regarding the Big-SAM method, is given in Proposition 5 in [20]
which says the iterates {xk} generated by this method converge to a point x̃ ∈ S

such that

〈∇φ(x̃), x − x̃〉 ≥ 0, ∀x ∈ C

showing that x̃ solves (SBP-2) and hence x̃ = x∗. Here BiG-SAM means Bilevel
gradient sequential averaging method, where the sequential averaging is reflected in
(iii) of Step 1 in the above algorithm.

Very recently a modification of the BiG-SAM method was presented in [21].

9.4 Algorithms for Non-smooth Data

There are not many algorithmic analysis of the (SBP) problem in the literature and
of course for the non-smooth (SBP) problem the situation is not better. The bundle
method for non-smooth (SBP) problem presented by Solodov [23] is one of the
initial work in this direction. He considered an (SBP) problem with both the upper
and lower level objective function to be non-smooth and the lower level problem is
unconstrained. The (SBP) problem considered by Solodov in [23] is given as

min f (x)

subject to x ∈ arg min
Rn

g, (9.4.1)
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where f, g : Rn → R are non-smooth convex functions. The main idea behind the
algorithm presented in [23] is to minimize the penalized function

ϕε(x) = g(x)+ εf (x)

over Rn. As ε ↓ 0, the solutions of the problem

minϕε(x) subject to x ∈ R
n (9.4.2)

tend to the solution of the (SBP) problem (9.4.1). But it is almost impossible to
calculate the solution of (9.4.2) exactly. To avoid that, Solodov’s idea was to make
one step in the descent direction of the function ϕεk from the k-th iteration xk and
then update εk to εk+1 and repeat the step. To realize the descent step Solodov
considered the bundle method for unconstrained non-smooth optimization problem
(see [16]). Also we will need ε-subdifferential to discuss the algorithm which we
present here.

The ε-subdifferential of f, ∂εf : Rn ⇒ R
n, is defined as

∂εf (x) = {v ∈ R
n : f (y) ≥ f (x)+ 〈v, y − x〉 − ε, ∀ y ∈ R

n}.

The idea of a bundle method is to store information of the past in a bundle. At any
k-th step let xk be the iteration point and yi (i = 1, 2, · · · , l − 1) are the points
generated by the algorithm so far. Note that all yi’s may not be accepted as the
iteration point in the process. Which means there may be some yi’s which are not
included in the sequence {xk}. The information about all the yi (i = 1, 2, · · · , l−1),
such as the subgradient and some quantities required in this algorithm are stored in
the bundle. Note that {xn}kn=1 is actually a finite subsequence of the finite sequence
{yi}l−1

i=1. Let there be l iterations before we choose to modify xk and εk, then k(l)

is the index of the last iteration and k = k(l). Let ξ i ∈ ∂f (yi) and ζ i ∈ ∂g(yi).
Then εkξ

i + ζ i ∈ ∂φεk (y
i). In the bundle method, a linearisation of the function ϕεk

is used (see for example [16]). Then ϕεk (x) can be approximated by the following
function

ψ(x) := max{ϕεk(x
k)+ 〈wk, x − xk〉 : wk ∈ ∂ϕεk(x

k)}.

But this includes the calculation of all the subgradients of ϕεk at xk, which is again
a tough job. So the following cutting-planes approximation ψl is used by Solodov
of the function ϕεk .

ψl(x) := max
i<l
{εkf (yi)+ g(yi)+ 〈εkξ i + ζ i, x − yi〉}. (9.4.3)
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This is a linearisation centred at yi . To reduce the storage requirements the following
expression is constructed, which is centred at xk .

ψl(x) :=max
i<l
{εkf (xk)+ g(xk)+ 〈εkξ i + ζ i, x − xk〉

− εk[f (xk)− f (yi)− 〈ξ i , xk − yi〉] − [g(xk)− g(yi)− 〈ζ i, xk − yi〉]}
=εkf (xk)+ g(xk)+max

i<l
{−εkek,if − ek,ig + 〈εkξ i + ζ i, x − xk〉}

where

e
k,i
f = f (xk)− f (yi)− 〈ξ i , xk − yi〉 (9.4.4)

and

ek,ig = g(xk)− g(yi)− 〈ζ i , xk − yi〉. (9.4.5)

Clearly, by convexity of f and g; ek,if , e
k,i
g ≥ 0. Now as ξ i ∈ ∂f (yi), for any x ∈ R

n

we have

f (x) ≥ f (yi)+ 〈ξ i , x − yi〉
= f (xk)+ 〈ξ i , x − xk〉 − e

k,i
f .

This implies that ξ i ∈ ∂
e
k,i
f
f (xk). Similarly, ζ i ∈ ∂

e
k,i
g
g(xk). Then

εkξ
i + ζ i ∈ ∂

(εke
k,i
f +ek,ig )

ϕεk (x
k).

Choose μl > 0, then the minimizer of the following convex optimization problem

min
x∈Rn

{
ψl(x)+ μl

2
‖x − xk‖2} (9.4.6)

can be taken as the next candidate point yl . Note that (9.4.6) has unique solution
since the objective function is strongly convex. If ϕεk (y

l) is sufficiently small
compared with ϕεk(x

k), then yl is considered to be a serious (or acceptable) step
and xk+1 := yl . In fact yl is considered to be a serious step if the following decrease
criteria holds, i.e.

ϕεk (y
l) ≤ ϕεk(x

k)− γ δl. (9.4.7)

For γ ∈ (0, 1), let

δl = ε̂k,l + 1

2μl

‖ĝl‖2,
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with,

ε̂k,l = ϕεk (x
k)− ϕεk (y

l)− 1

μl

‖ĝl‖2,

ĝl = μl(x
k − yl).

Therefore,

δl = ϕεk (x
k)− ϕεk(y

l)− μl

2
‖xk − yl‖2.

We can see that δl deals with the difference in the functional values of ϕεk at xk

and yl and also keeps the distance between xk and yl into account. Note that
δl ≥ 0 as ε̂k,l ≥ 0, which is shown in Lemma 2.1 [23]. If yl does not satisfy
the condition (9.4.7), then yl is considered as a null step and is not included in
the sequence of iterates. But this null step then contributes to construct a better
approximation ψl+1 of the function ϕεk using (9.4.3). Then yl+1 is generated
using (9.4.6) with μl+1 > 0, which can again be a serious step or a null step. The
process is continued until xk+1 is generated.

Let us now discuss a little about bundles, where the information about the
candidate points yl (no matter serious step or null step) is stored. In [23], Solodov
describes an efficient way to store all the information needed for the bundle method
algorithm and also ensures that the number of elements in the bundles is under some
pre-decided bound. Managing the bundle this way keeps the algorithm computa-
tionally more suitable and efficient. Solodov [23] has divided the information at any
iteration l into two parts, one is called oracle bundle denoted by Boracle

l and another
one is aggregate bundle, Bagg

l . Both the bundles contain approximated subgradients
of the objective functions f and g at xk and are defined in the following way.

Boracle
l ⊂

⋃

i<l

{
e
k,i
f , ek,ig ∈ R+, ξ i ∈ ∂

e
k,i
f
f (xk), ζ i ∈ ∂

e
k,i
g
g(xk)

}

and

B
agg

l ⊂
⋃

i<l

{
ε̂
k,i
f , ε̂k,ig ∈ R+, ξ̂ i ∈ ∂

ε̂
k,i
f
f (xk), ζ̂ i ∈ ∂

ε̂
k,i
g
g(xk)

}
,

where e
k,i
f , e

k,i
g are given by (9.4.4) and (9.4.5) and let us set

ε̂
k,l
f =

∑

i∈Boracle
l

λl
ie

k,i
f +

∑

i∈Bagg
l

λ̂l
i ε̂

k,i
f , (9.4.8)

ε̂k,lg =
∑

i∈Boracle
l

λl
ie

k,i
g +

∑

i∈Bagg
l

λ̂l
i ε̂

k,i
g , (9.4.9)

with λl
i , λ̂

l
i ≥ 0 and

∑
i∈Boracle

l
λl
i +

∑
i∈Bagg

l
λ̂l
i = 1.
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Note that ξ i ∈ ∂f (yi) and ζ i ∈ ∂g(yi), so we can see that the bundle Boracle
l

stores the subgradient information of the objective functions at some candidate
points yi . But there may not be any candidate point yj , j < l such that ξ̂ j ∈ ∂f (yj )

and ζ̂ j ∈ ∂g(yj ). Also note that the construction of ε̂
k,l
f and ε̂

k,l
g justifies the term

aggregate bundle. Even though the bundles Boracle
l and B

agg
l do not restore all the

subgradients at all the candidate points, still a cutting-plane approximation of ϕεk

can be done using these bundle information which is given by

ψl(x) :=εkf (xk)+ g(xk)

+max

{

max
i∈Boracle

l

{
−(εkek,if + ek,ig )+ 〈εkξ i + ζ i, x − xk〉

}
,

max
i∈Bagg

l

{
−(εkε̂k,if + ε̂k,ig )+ 〈εkξ̂ i + ζ̂ i , y − xk〉

}
}

(9.4.10)

As we can see the two approximations (9.4.3) and (9.4.10) of the penalized
function ϕεk are different. The connection between these two approximations are
well established in terms of the solution of the problem given in (9.4.6) and the
function (9.4.10) in the following lemma (Lemma 2.1, [23]).

Lemma 9.4.1 Let yl be the solution of (9.4.6) with ψl , as given in (9.4.10). Then

• yl = xk − 1
μl (εkξ̂

l + ζ̂ l).

• ξ̂ l =∑
i∈Boracle

l
λl
iξ

i +∑
i∈Bagg

l
λ̂l
i ξ̂

i

ζ̂ l =∑
i∈Boracle

l
λl
iζ

i +∑
i∈Bagg

l
λ̂l
i ζ̂

i ,

where λl
i , λ̂

l
i ≥ 0 and

∑
i∈Boracle

l
λl
i +

∑
i∈Bagg

l
λ̂l
i = 1.

• εkξ̂
l + ζ̂ l ∈ ∂ψl(y

l).
• ξ̂ l ∈ ∂

ε̂
k,l
f
f (xk), ζ̂ l ∈ ∂

ε̂
k,l
g
g(xk), where ε̂

k,l
f and ε̂

k,l
g are from (9.4.8) and (9.4.9).

• εkξ̂
l + ζ̂ l = ĝl ∈ ∂ε̂k,l ϕεk (x

k), where ε̂k,l = εkε̂
k,l
f + ε̂

k,l
g .

• ε̂k,l = ϕεk(x
k)− ϕεk (y

l)− 1
μl
‖ĝl‖2 ≥ 0. �

Here note that λl and λ̂l in Lemma 9.4.1 are obtained as a part of subgradient
calculation of ψl while solving the strongly convex optimization problem (9.4.6).
We have already mentioned that Solodov [23] has developed two different bundles
to maintain the bundle size under a fixed limit. Here we discuss how that is done.
Let the maximum size that the bundle can attain together be |B|max . So at any l-th
step, if

|Boracle
l ∪ B

agg
l | = |B|max,

then at least two elements are removed from Boracle
l+1 ∪ B

agg

l+1 and the aggregate

information (ε̂
k,l
f , ε̂

k,l
g , ξ̂ l , ζ̂ l) is included in B

agg
l and renamed as B

agg
l+1 . Also
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include (e
k,l
f , e

k,l
g , ξ l , ζ l) in Boracle

l and called Boracle
l+1 . Now using the bundle

information, Solodov constructed the following relations which satisfies all the
results mentioned in Lemma 9.4.1.

For i ∈ Boracle
l+1 , e

k+1,i
f = e

k,i
f + f (xk+1)− f (xk)+ 〈ξ i , xk − xk+1〉,

ek+1,i
g = ek,ig + g(xk+1)− g(xk)+ 〈ζ i, xk − xk+1〉

and for i ∈ Boracle
l+1 ε̂

k+1,i
f = ε̂

k,i
f + f (xk+1)− f (xk)+ 〈ξ̂ i , xk − xk+1〉,

ε̂k+1,i
g = ε̂k,ig + g(xk+1)− g(xk)+ 〈ζ̂ i , xk − xk+1〉 . (9.4.11)

Now we are ready to present the algorithm for (SBP) problem.

Bundle Method Algorithm: [23]

Step 0: Choose m ∈ (0, 1), an integer |B|max ≥ 2, x0 ∈ R
n, ε0 > 0 and

β0 > 0.
Set y0 := x0 and compute f (y0), g(y0), ξ0 ∈ ∂f (y0), ζ 0 ∈ ∂g(y0).
Set k = 0, l = 1, e0,0

f = e
0,0
g := 0.

Define Boracle
l := {(e0,0

f , e
0,0
g , ξ0, ζ 0)} and B

agg
l := ∅

Step 1: At any l-th step, choose μl > 0 and compute yl as the solution
of (9.4.6) with ψl , as given in (9.4.10).
Compute f (yl), g(yl), ξ l ∈ ∂f (yl), ζ l ∈ ∂g(yl) and e

k,l
f , e

k,l
g

using (9.4.4) and (9.4.5).
Step 2: If ϕεk (y

l) ≤ ϕεk(x
k) − mδl , then yl is a serious step, otherwise null

step.
Step 3: Check if |Boracle

l ∪ B
agg

l | < |B|max , otherwise manage the bundle as
mentioned earlier.

Step 4: If yl is a serious step, then set xk+1 := yl .
Choose 0 < εk+1 < εk and 0 < βk+1 < βk . Update
e
k+1,i
f , e

k+1,i
g , ε̂

k+1,i
f , ε̂

k+1,i
g using (9.4.11).

Set k = k + 1 and go to Step 5.

If max ε̂k,l, ‖ĝl‖ ≤ βkεk , choose 0 < εk+1 < εk and 0 < βk+1 < βk. Set
xk+1 := xk, k = k + 1 and go to step 5.

Step 5: Set l = l + 1 and go to Step 1.

Note that max ε̂k,l , ‖ĝl‖ ≤ βkεk works as a stopping criteria to minimize the
function ψk . The convergence result of this algorithm is presented through the
following theorem from [23].
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Theorem 9.4.2 Let f, g : Rn → R are convex functions such that f is bounded
below on Rn and the solution set of the (SBP) problem S is non-empty and bounded.
Let us choose μl, εk, βk such that the following conditions are satisfied at any
l, k ∈ N.

1. μl+1 ≤ μl and there exists μ̂, μ̄ > 0 such that

0 < μ̂ ≤ μl ≤ μ̄.

2. εk → 0 as k→ 0 and
∑∞

k=0 εk = +∞.
3. βk → 0 as k→ 0.

Then dist(xk, S) → 0 as k → 0. This also implies that any accumulation point of
the sequence {xk} is a solution of the (SBP) problem. �
Another algorithm is proposed by Dempe et al. [8] for the non-smooth simple bilevel
programming problem. In [8], we present an algorithm for the (SBP) problem in
more general scenario than that we have discussed so far. Note that in [23], the
considered (SBP) problem is unconstrained in the lower level, whereas the (SBP)
problem we consider, which given below, has constrained lower level problem.

min f (x)

x ∈ arg min
C

g,

where f, g : Rn → R are continuous, convex functions and C ⊆ R
n is closed,

convex set. Our algorithm is inspired from the penalisation approach by Solodov
[22]. But our algorithm is different from Solodov’s approach in two aspects, one is
that we don’t assume any differentiability assumption on the upper and lower level
objective functions which naturally helps us to get rid of the Lipschitz continuity
assumption on the gradient of the objective functions that is made by Solodov [22],
another one is the fact that our algorithm is based on proximal point method whereas
Solodov’s algorithm is based on projected gradient method. Our Algorithm is also
inspired by Cabot [2] and Facchinei et al. [11] but again different in the sense that
our algorithm deals with more general form of (SBP) compared with those. The
only assumption we make is that the solution set of the (SBP) problem needs to be
non-empty and bounded. This is done to ensure the boundedness of the iteration
points which will finally lead to the existence of an accumulation point and hence a
solution of the (SBP) problem.

In the proximal point algorithm that we present, we consider an approximate
solution rather than the exact solution. For this purpose we need to use ε-
subdifferential and ε-normal cone for ε > 0. We have already presented the ε-
subdifferential while discussing the last algorithm. Here we present the ε-normal
set.
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The ε-normal set of C ⊆ R
n is defined as

Nε
C(x) = {v ∈ R

n : 〈v, y − x〉 ≤ ε, ∀y ∈ C}.

Consider the following sequence of penalized functions

ϕ = g + εkf.

We aim to minimize this function approximately over the constraint set C to obtain
the iteration point at any (k + 1)-st step. Let ηk > 0 and λk > 0, then the (k + 1)-st
iterate comes from the following relation.

xk+1 ∈ ηk-argminC{ϕk + 1

2λk

‖.− xk‖2}

Considering the optimality condition for this approximate minimization problem we
get our key step to design the algorithm (for details see [8]), which is given as

− 1

λk

(xk+1 − xk) ∈ ∂η1
k
ϕk(x

k+1)+ N
η2
k

C (xk+1),

where η1
k + η2

k ≤ ηk . Now we present the algorithm formally.

Algorithm for the (SBP) Problem

Step 0. Choose x0 ∈ C, ε0 ∈ (0,∞) and let k := 0.
Step 1. Given xk, λk > 0, εk > 0 and ηk > 0, choose xk+1 ∈ C such that

−(x
k+1 − xk

λk

) ∈ ∂η1
k
(ϕk)(x

k+1)+ N
η2
k

C (xk+1)

where η1
k, η

2
k ≥ 0 and η1

k + η2
k ≤ ηk .

For the convergence analysis of this algorithm we make the following assumptions
on the sequences {εk}, {λk} and {ηk}. Then the convergence results of this algorithm
is presented in the next theorem.

• {εk} is a decreasing sequence such that lim
n→∞ εn = 0 and

∞∑
n=0

εn = +∞.

• There exists λ > 0 and λ > 0 such that λ ≤ λn ≤ λ for all n ∈ N.

•
∞∑
n=0

ηn < +∞.
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Theorem 9.4.3 ([8]) Let C ⊂ R
n be a non-empty closed convex set, g : Rn → R

and f : Rn → R be convex functions. Assume that the functions g and f are
bounded below, that the set S0 := arg min

C
g is nonempty, and that the set S1 :=

arg min
S0

f is nonempty and bounded. Let {εn}, {λn}, {ηn} be nonnegative sequences
which satisfy the assumptions mentioned above. Then any sequence {xn} generated
by the algorithm satisfies

lim
n→∞ d(xn, S1) = 0.

This also implies that any accumulation point of the sequence {xn}, is a solution of
the (SBP) problem. �

The reference [13] in the list of reference was first brought to our notice by M. V.
Solodov. In [13], the ε-subgradient is used to develop an inexact algorithmic scheme
for the (SBP) problem. however the scheme and convergence analysis developed in
[13] is very different from the one in [8]. It is important to note that in contrast to the
convergence analysis in [8], the scheme in [13] needs more stringent condition. Also
an additional assumption is made on the subgradient of the lower level objective (see
Proposition 2, [13]). They also considered the case when the upper level objective
is smooth and also has Lipschitz gradient.
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Chapter 10
Algorithms for Linear Bilevel
Optimization

Herminia I. Calvete and Carmen Galé

Abstract This chapter addresses the linear bilevel optimization problem in which
all the functions involved are linear. First, some remarks are made about the
formulation of the problem, the difficulties which can arise when defining the
concept of feasible solution or when proving the existence of optimal solution,
and about its computational complexity. Then, the chapter focuses on the main
algorithms proposed in the literature for solving the linear bilevel optimization
problem. Most of them are exact algorithms, with only a few applying metaheuristic
techniques. In this chapter, both kind of algorithms are reviewed according to the
underlying idea that justifies them.

Keywords Linear bilevel programming · Enumerative algorithms ·
Karush-Kuhn-Tucker conditions · Metaheuristic algorithms

10.1 Linear Bilevel Program Formulation

Bilevel optimization programs involve two decision makers in a hierarchical
framework. Each decision maker controls part of the variables and aims to optimize
his/her objective function subject to constraints. The lower level (LL) decision
maker optimizes his/her objective function knowing the values of the variables
controlled by the upper level (UL) decision maker. This one, in return, having
complete information on the reaction of the LL decision maker, selects the
value of his/her variables so as to optimize his/her own objective function. As
a consequence, bilevel programs are formulated as optimization problems which
involve another optimization problem in the constraint set. The name bilevel or
multilevel programming is credited to Candler and Norton [20] who present a linear
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bilevel (LB) optimization problem in an economic context. Ben-Ayed [13] and Wen
and Hsu [56] provide early reviews on LB problems.

Let x ∈ R
n1 and y ∈ R

n2 denote the variables controlled by the UL and
the LL decision makers, respectively. In a LB optimization problem all the functions
involved are linear. Thus, it can be formulated as:

min
x,y

c1x + d1y (10.1.1a)

s.t.

A1x + B1y � b1 (10.1.1b)

x � 0 (10.1.1c)

where y solves:

min
y

c2x + d2y (10.1.1d)

s.t.

A2x + B2y � b2 (10.1.1e)

y � 0 (10.1.1f)

where, for i = 1, 2, ci is a row vector of dimension n1, di is a row vector of
dimension n2, bi ∈ R

mi , Ai is an mi × n1 matrix, and Bi is an mi × n2 matrix.
Since once the UL decision maker selects the value of the variables x the first
term in the LL objective function becomes a constant, it can be removed from the
formulation of the problem.

Problem (10.1.1) is the most general formulation since constraints (10.1.1b)
involve both levels’ variables x and y, and so they are called coupling or joint
constraints. However, it is worth pointing out that most papers in the literature
consider the particular case in which those constraints only involve UL variables
or do not appear in the formulation. In fact, this is so for the pioneering paper
by Candler and Norton [20]. Constraints (10.1.1b) appeared for the first time in
a paper by Aiyoshi and Shimizu [2] dealing with nonlinear bilevel problems. It
should be noted that bilevel problems are very sensitive to the existence of coupling
constraints. Audet et al. [5] and Mersha and Dempe [45] have investigated the
consequences of shifting coupling constraints to the LL problem for LB problems.

Let R be the polyhedron defined by the UL constraints (10.1.1b)–(10.1.1c),S the
polyhedron defined by the LL constraints (10.1.1e)–(10.1.1f), and T = R ∩ S.
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For a given x, the LL decision maker solves the problem

min
y

d2y (10.1.2a)

s.t.

B2y � b2 − A2x (10.1.2b)

y � 0 (10.1.2c)

Let S(x) = {y ∈ R
n2 : (x, y) ∈ S} denote its feasible region and M(x) be the

set of optimal solutions, also called the LL rational reaction set. The feasible region
of the bilevel problem, called inducible (or induced) region IR can be written as:

IR = {(x, y) : (x, y) ∈ T , y ∈ M(x)} (10.1.3)

Any point of IR is a bilevel feasible solution. A point x ∈ R
n1 is called permissible

if a y ∈ R
n2 exists so that (x, y) ∈ IR.

Unlike general mathematical programs, bilevel optimization problems may not
possess a solution even when all the functions involved are continuous over compact
sets. In particular, difficulties may arise when the rational reaction set M(x) is
not single-valued. Multiple optima do not affect the value of the LL objective
function but can provide very different values of the UL objective function. Different
approaches have been proposed in the literature to make sure that the bilevel
problem is well posed. In the earlier papers dealing with bilevel optimization, a
common approach was to assume that, for each value of the UL variables x, there is
a unique solution to the LL problem (10.1.2), i.e., the set M(x) is a singleton for all
permissible x. Other approaches have focused on the way of selecting y ∈ M(x), in
order to evaluate the UL function, when M(x) is not a singleton. The most popular
is the optimistic rule, which assumes that the UL decision maker is able to influence
the LL decision maker so that the latter always selects the variables y to provide
the best value of the UL objective function. In fact, problem formulation (10.1.1)
assumes the optimistic approach when minimizing over x and y. The pessimistic
rule assumes that the LL decision maker always selects the optimal decision which
gives the worst value of the UL objective function. This approach is much harder to
deal with and thus less attention has been devoted to it in the literature. These and
other approaches can be found in the book by Dempe [24].

Since the initial papers on LB problems by Candler and Townsley [21], Bialas
and Karwan [15], and Bard and Falk [11], the difficulty of solving problem (10.1.1)
has been recognized due to its nonconvexity and nondifferentiability. LB problems
have been proved to be NP-hard by Jeroslow [37], Ben-Ayed and Blair [14] and
Bard [10]. Hansen et al. [32] have strengthened this result proving that they
are strongly NP-hard. Therefore, these problems are very demanding from the
computational point of view.

In the next sections we will review the main algorithms developed for specifically
solving the LB problem. Among the different taxonomies that can be chosen to
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classify them, we have selected to distinguish between exact and metaheuristic,
which is quite a natural classification. Within each category, several subcategories
have been established that address the main characteristic of the algorithm, although
there are obviously algorithms that could be classified into several subcategories.

Thus, regarding exact methods, those algorithms that take advantage of the
specific properties of the LB problem have been classified as enumerative. Another
subcategory has been established for those algorithms that transform the LB prob-
lem into a single level problem using the Karush-Kuhn-Tucker (KKT) conditions.
Finally, the third subcategory includes the algorithms that apply classical optimiza-
tion theory. Concerning metaheuristic algorithms, most are evolutionary algorithms,
so only this subcategory has been explicitly considered. The remaining algorithms
have been grouped. It is worth mentioning that bilevel programming is receiving
increasing attention in the recent years. Thus, a plethora of algorithms have been
developed. Dempe [25], in his review until 2019, collected over 1500 papers on this
topic. In this chapter, attention has been paid to algorithms specifically designed for
solving the LB problem that have set out key ideas for handling the problem which
have been applied in many subsequent works.

10.2 Enumerative Algorithms

LB problems have important properties which have allowed the development of ad-
hoc algorithms for solving them. Next we review some of these properties which
are relevant for the algorithms developed in the literature.

From the geometrical point of view, Savard [49] proved that, if there exists a
finite optimal solution of the LB problem, then

IR = R ∩ �M

where �M is the graph of M , i.e.

�M = {(x, y) : (x, y) ∈ S, y ∈ M(x)}

Since �M is the union of a finite number of polyhedra, IR is not necessarily convex
and, if there are coupling constraints, IR is not necessarily connected. Moreover,
taking into account that IR is the union of a finite number of polyhedra and the
UL objective function is linear, there exists an extreme point of IR that solves the
LB problem. Since the extreme points of IR are extreme points of T , there exists an
extreme point of T that solves problem (10.1.1).

Xu [58] achieved similar results under weaker assumptions via a penalty function
approach. Also, papers [9, 15, 21] prove the extreme point optimal solution property
assuming that no coupling constraints exist (therefore T = S), the polyhedron S is
compact and M(x) is a singleton for all x such that (x, y) ∈ S.
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The relaxed problem formulated in (10.2.1) plays an important role when solving
problem (10.1.1):

min
x,y

c1x + d1y (10.2.1a)

s.t.

A1x + B1y � b1 (10.2.1b)

A2x + B2y � b2 (10.2.1c)

x � 0, y � 0 (10.2.1d)

If the optimal solution of problem (10.2.1) is a bilevel feasible solution, then it
is an optimal solution of problem (10.1.1). Otherwise, problem (10.2.1) provides a
lower bound of the UL optimum objective function value.

Liu and Hart [42] consider LB problems without the constraints (10.1.1b) and
prove that if there exists an extreme point of S not in IR which is an optimal solution
of the relaxed problem, then there exists a boundary feasible extreme point that
solves the LB problem, where a point (x, y) ∈ IR is a boundary feasible extreme
point if there exists an edge E of S such that (x, y) is an extreme point of E, and
the other extreme point of E is not an element of IR.

The following algorithms to find an optimal solution of the LB problem are based
on an enumerative scheme and/or previous geometrical properties.

10.2.1 Enumeration of Extreme Points

The Kth best algorithm is one of the most well-known algorithms for solving
LB problems. Bearing in mind that there is an extreme point of T which solves
the LB problem, an examination of all extreme points of the polyhedron T provides
a procedure to find the optimal solution of the LB problem in a finite number of
steps. This is unsatisfactory, however, since the number of extreme points of T is,
in general, very large.

Bialas and Karwan [15] deal with the LB problem without coupling constraints
assuming that S is compact and propose the Kth best algorithm to solve it. The idea
is to select the best extreme point of S with respect to the UL objective function
which is a bilevel feasible solution.

Hence, an optimal solution to the relaxed problem (10.2.1) (x∗r , y∗r ) is first
considered. If this is a point of IR, then it is an optimal solution of the LB problem. If
this is not so, set (x[1], y[1]) = (x∗r , y∗r ) and compute the set of its adjacent extreme
points W[1].

Then, the extreme point in W = W[1] which provides the best value of the
UL objective function is selected to test if it is a point of IR. Let this extreme point
be (x[2], y[2]). If it is in IR, the algorithm finishes. If this is not so, the point is
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eliminated from W and the set of its adjacent extreme points with a worse value of
the UL objective function , W[2], is added to W .

The algorithm continues by selecting the best extreme point in W with respect to
the UL objective function and repeating the process. Note that the algorithm follows
an edge path in S from the optimal solution of the relaxed problem (x∗r , y∗r ) to an
extreme point of S which is an optimal solution of the LB problem and a boundary
feasible extreme point.

The efficiency of the Kth best algorithm depends strongly on the ‘closeness’
of the optimal solution of the relaxed problem to the optimal solution of the
LB problem.

Based also on the fact that the LB problem has an extreme point optimal solution,
Dempe [23] develops an algorithm which uses the theory of subgradients to fully
describe the feasible set in a neighborhood of a feasible point. The algorithm
combines extreme point enumeration and a descent method.

10.2.2 Enumeration of Optimal Bases of the LL Problem

Candler and Townsley [21] under the same assumptions of the Kth algorithm,
propose a more restrictive examination of extreme points, which only considers the
bases which are submatrices of B2.

Note that, if the LB problem has an optimal solution, then there exists an optimal
solution (x∗, y∗) for which y∗ is an optimal extreme point of the polyhedron S(x∗).
Hence, an optimal basis B∗ of B2 is associated with that extreme point y∗. The idea
of the algorithm is to successively identify optimal bases of the LL problem which
are of interest in the sense that they provide points in IR with better values of the
UL objective function. It is worth pointing out that the values of the UL variables
affect the feasibility of a basis B of B2, but are not involved in the optimality
condition. Therefore, each optimal basis B of B2 has associated a subset of points
x ∈ S1, where S1 is the projection of S onto R

n1 , which makes it feasible for the
corresponding LL problem. The best point of the IR associated with the optimal
basis B can be computed by solving a linear program in x. Additional conditions on
the optimal basis B are established leading to possibly better solutions and avoiding
a return to any formerly analyzed basis.

Bard [8] provides the results of a computational experiment on this algorithm
using LB instances for which the number of variables x and y ranges between 3
and 30, and the number of constraints is 16 or 25. From these results, the author
concludes that the implicit search proposed by Candler and Townsley is generally
unsatisfactory and its behavior is worse than that of the Kth best algorithm in terms
of computational time.
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10.2.3 Parametric Approach

Notice that the LL problem can be seen as an optimization problem parameterized
in the UL variables. Following this idea, Faísca et al. [26] develop a global optimiza-
tion approach for solving the LB problem based on parametric programming theory.
Variables x are considered as a parameter vector of the LL problem (10.1.2). This
problem is solved by a multiparametric programming algorithm in order to compute
a function y(x) as follows:

y(x) =
⎧
⎨

⎩

α1 + β1x, if H 1x � h1,

. . .

αK + βKx, if HKx � hK,

where, αk and hk are real vectors and βk and Hk are real matrices. The set of
permissible x is divided into a set of K regions, each one with a set of rational
sets. Including the expression y(x) in the UL problem, the following K linear
programming problems are solved:

min
x

c1x + d1(α
k + βkx1)

s.t.
Hkx � hk

Then, the optimal solution which provides the minimum UL objective function
value among the K solutions is an optimal solution of the LB problem. As indicated
by the authors, the computational efficiency of this procedure depends on the
performance of the underlying multiparametric programming algorithm.

10.3 Algorithms Based on the Karush-Kuhn-Tucker
Conditions

The most common reformulation of the LB problem as a single level problem
consists of substituting the LL problem (10.1.2) by its KKT conditions. This
transformation takes into account that, for linear optimization, KKT conditions,
also known as complementary slackness conditions, are necessary and sufficient
for optimality. Denoting by u the m2 row vector of dual variables associated with
constraints (10.1.1e), the dual problem of the LL problem (10.1.2) is:

max
u

u(A2x − b2) (10.3.1a)

s.t.

uB2 � −d2 (10.3.1b)

u � 0 (10.3.1c)
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Let U denote the feasible region of the dual problem defined by con-
straints (10.3.1b)–(10.3.1c). Note that it does not depend on x. Therefore, the
dual problems associated to all permissible x have the same feasible region.

Applying the KKT conditions, the LL problem (10.1.2) can be substituted by:

B2y � b2 − A2x

uB2 � −d2

(d2 + uB2)y = 0

u(b2 − A2x − B2y) = 0

y � 0, u � 0

Hence, the LB problem can be rewritten as:

min
x,y

c1x + d1y (10.3.2a)

s.t.

A1x + B1y � b1 (10.3.2b)

A2x + B2y � b2 (10.3.2c)

uB2 � −d2 (10.3.2d)

(d2 + uB2)y = 0 (10.3.2e)

u(b2 − A2x − B2y) = 0 (10.3.2f)

x � 0, y � 0 (10.3.2g)

u � 0 (10.3.2h)

A variety of exact algorithmic approaches have been developed for solving prob-
lem (10.3.2), which is nonlinear due to the complementary slackness condi-
tions (10.3.2e) and (10.3.2f). In the following, we describe the main ways that have
been considered in the literature to address this nonlinearity.

10.3.1 Mixed-Integer Linear Programming

One of the most common approaches to solve problem (10.3.2) takes advantage
of the disjunctive nature of the complementary slackness conditions to obtain an
equivalent mixed integer linear problem which can be solved by using well known
techniques or optimization software. This reformulation was introduced by Fortuny-
Amat and McCarl [27] for solving the bilevel quadratic programming problem, but
it can also be applied to LB programs.
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Constraints (10.3.2e) and (10.3.2f) consist of the sum of products of two terms
which are nonnegative. Therefore, each product must equal zero, and they can be
substituted by

(d2 + uB2)i � Mζi, i = 1, . . . , n2

yi � M(1− ζi), i = 1, . . . , n2

uj � Mηj , j = 1, . . . ,m2

(b2 − A2x − B2y)j � M(1− ηj ), j = 1, . . . ,m2

ζi, ηj ∈ {0, 1}, i = 1, . . . , n2, j = 1, . . . ,m2

(10.3.3)

where (d2 + uB2)i , yi stand for the ith component of vectors d2 + uB2, y,
respectively; uj , (b2 − A2x − B2y)j refer to the j th component of vectors u,
b2 − A2x − B2y, respectively; and M is a large enough positive constant. Then,
problem (10.3.2) can be rewritten as:

min
x,y

c1x + d1y (10.3.4a)

s.t.

A1x + B1y � b1 (10.3.4b)

A2x + B2y � b2 (10.3.4c)

uB2 � −d2 (10.3.4d)

(d2 + uB2)i � Mζi, i = 1, . . . , n2 (10.3.4e)

yi � M(1− ζi), i = 1, . . . , n2 (10.3.4f)

uj � Mηj , j = 1, . . . ,m2 (10.3.4g)

(b2 − A2x − B2y)j � M(1− ηj ), j = 1, . . . ,m2 (10.3.4h)

x � 0, y � 0 (10.3.4i)

u � 0 (10.3.4j)

ζi, ηj ∈ {0, 1}, i = 1, . . . , n2, j = 1, . . . ,m2 (10.3.4k)

which is a mixed 0-1 integer programming problem.
It is worth mentioning that to determine a valid value of M is a nontrivial matter.

Pineda and Morales [47] provide a counterexample to show that tuning by trial and
error, which is a common heuristic to compute a big-M , may lead to solutions which
are not optimal. The choice of M as a valid bound in order to preserve all bilevel
optimal points has been studied by Kleinert et al. [40]. Their preliminary results
encourage the determination of problem-specific bounds on the LL dual variables if
this algorithm approach is used for solving a LB problem.
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Instead of using the big-M linearization of the complementary constraints,
Fortuny and McCarl [27] propose to solve problem (10.3.2) by using the special
ordered sets (SOS) tool of some mathematical programming packages. Moreover,
this approach does not increase the number of constraints.

A different approach to overcome the difficulty of finding the appropriate value
of the big-M is addressed by Pineda et al. [48]. Note that problem (10.3.2) is a
mathematical program with complementary conditions to which a regularization
approach can be applied. Hence, they apply it for efficiently determining a local
optimal solution of problem (10.3.2). Then, this local optimal solution is used to
tune the big-M and reduce the computational effort of solving the mixed-integer
reformulation which uses constraints (10.3.3).

Audet et al. [7] develop an exact and finite branch-and-cut algorithm for
the LB problem which solves the equivalent mixed 0-1 integer programming
problem (10.3.4). The authors introduce three new classes of valid Gomory like
cuts and apply the branch-and-bound algorithm proposed by Hansen et al. [32]. A
similar approach, but using disjunctive cuts, is proposed by Audet et al. [6].

10.3.2 Branch-and-Bound Algorithms

Bard and Moore [12] develop a branch and bound algorithm, in which branching
is done on complementary slackness conditions (10.3.2e) and (10.3.2f). These
authors address the bilevel linear quadratic problem without coupling constraints,
but their algorithm is considered in the literature as one of the first branch-and-
bound algorithms developed for solving LB problems.

In the initialization step, the algorithm solves the linear program which results
from removing the nonlinear constraints from problem (10.3.2).

At each iteration, constraints (10.3.2e) and (10.3.2f) are checked in the current
solution. If they are held, the current solution is a bilevel feasible solution, the
branching process is stopped and the node is closed. Otherwise, the tree is branched
in one of the violated complementary slackness constraints and two nodes are
added to the tree. At each node, an additional constraint is included in the linear
program solved at the predecessor node which enforces that one of the terms of the
product equals 0. The procedure ends when all nodes of the tree have been closed.
The branch and bound scheme is used to implicitly examine all possible products
involved in the complementary slackness constraints.

10.3.3 Penalty Approaches

Bearing in mind that the LL problem is linear, it can be replaced either by its
KKT conditions, as done in problem (10.3.2), or by the primal and dual feasibility
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constraints together with the strong-duality equation, i.e. the duality gap enforced to
equal zero. Both sets of conditions are equivalent.

White and Anandalingam [57] propose a global optimal solution method for the
LB problem without coupling constraints which applies an exact penalty function
that uses a duality gap-penalty function. The complementary slackness terms are
penalized to obtain the following single level problem:

min
x,y

(c1x + d1y)+ μ[(d2 + uB2)y + u(b2 − A2x − B2y)] (10.3.5a)

s.t.

A2x + B2y � b2 (10.3.5b)

uB2 � −d2 (10.3.5c)

x � 0, y � 0 (10.3.5d)

u � 0 (10.3.5e)

where μ � 0 is a constant, and the coupling constraints have been removed. Taking
into account that

(d2 + uB2)y + u(b2 − A2x − B2y) = d2y − u(A2x − b2)

the penalty function (10.3.5a) can be rewritten as:

(c1x + d1y)+ μ[d2y − u(A2x − b2)] (10.3.6)

Therefore, problem (10.3.5) minimizes the UL objective function plus a term
which involves the duality gap of the LL problem. This objective function is
nonlinear, but can be properly decomposed to provide a set of linear programs.

Next, we briefly describe the main results that justify the validity of the penalty
method to solve the LB problem. Let Se and Ue be the set of extreme points of the
polyhedra S and U , feasible regions of the LL problem and its dual, respectively.
Then, for a fixed μ, there is an optimal solution of problem (10.3.5) in Se × Ue.
Moreover, there exists a finite value μ∗ � 0 for which an optimal solution of
problem (10.3.5) with μ � μ∗ provides an optimal solution of the LB problem.

As a consequence, the penalty algorithm developed by White and Anandalingam
[57] consists of successively solving problem (10.3.5) by monotonically increasing
μ. This parameter is increased until the corresponding duality gap is zero, i.e.
the optimality is reached. Nevertheless, the question of how to handle the bilinear
problem that appears when the parameter μ is fixed in problem (10.3.5) still remains.
In [57] a cone splitting algorithm is used to generate cones at local optimal solutions.

Campelo et al. [18] identify some difficulties with the penalty approach described
above, since the assumption of boundedness of polyhedra S and U cannot be
verified simultaneously. These authors obtain the same results as White and
Anandalingam [57] under a weaker assumption: the polyhedron U is nonempty and
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the relaxed problem (10.2.1) has an optimal solution. However, in order to guarantee
the convergence of the penalty algorithm it is also necessary to assume that U is
compact. These authors also detect some mistakes in the set of cuts defined by White
and Anandalingam to discard local optima, and thus redefine the cut set and the test
to provide an accurate search for the remaining better solutions. Hence, the penalty
approach proposed by White and Anandalingam [57] for the first time is justified
and well-defined by Campelo et al. [18].

Amouzegar and Moshirvaziri [3] consider the LB problem (10.1.1) without
coupling constraints and propose a penalty method that uses the exact penalty
function (10.3.6). Then, they apply a global optimization approach developed for
solving linear problems with an additional reverse convex constraint. The global
optimization approach introduces appropriate dominating cuts (hyperplanes) at local
optimal solutions, which allow the authors to reduce the complexity of the problems
solved as the penalty method proceeds.

All the methods mentioned above assume that the optimistic rule is applied in
case the LL problem has multiple optima. It is well known that both to study
the existence of optimal solutions and to develop solution methods are difficult
tasks when the pessimistic rule is adopted for dealing with bilevel optimization.
Aboussoror and Mansouri [1], under the pessimistic rule assumption, apply the
strong dual theorem of linear programming and a penalty method to prove some
results about the existence of an optimal solution and how to find it.

10.3.4 Parametric Complementary Algorithms

One of the first algorithms proposed to solve the LB problem is due to Bialas and
Karwan [16]. These authors develop the Sequential Linear Complementarity Prob-
lems (SLCP) algorithm based on the similarities existing between problem (10.3.2)
and the linear complementary problem (LCP). Júdice and Faustino [38] prove
that the SLCP is not convergent in general and so develop a modified convergent
version of this algorithm which finds a global minimum for the LB problem without
coupling constraints. It is assumed that S is bounded and the LB problem has an
optimal solution. In this method, a parameter λ is introduced and the UL objective
function is replaced by the constraint c1x + d1y � λ to obtain the following
parametric LCP(λ) problem:

θ = b2 − A2x − B2y

ϑ = d2 + uB2

γ = λ− c1x − d1y

uθ = 0

yϑ = 0

x � 0, y � 0, ϑ � 0, u � 0, θ � 0, γ � 0

(10.3.7)
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where θ and ϑ are the vectors of slack variables associated with the LL problem
and its dual, respectively. The global minimum of the LB problem considered is the
solution of the LCP(λ∗) problem, where λ∗ is the smallest value of λ for which the
LCP(λ) problem has a solution.

After a solution of problem (10.3.7) is computed, the value of λ is parametrically
decreased until the current complementary basis which solves the problem is no
longer feasible. Then, the SLCP algorithm finds another complementary basis. The
SLCP algorithm can also be seen as an implicit enumeration of the LL optimal basis.

The efficiency of these methods depends on the procedure used for solving the
LCP problem (10.3.7). Júdice and Faustino [39] propose a hybrid enumerative
method for solving it and compare the performance of the SLCP algorithm with
applying a branch-and-bound method to deal with the complementary slackness
conditions.

10.4 General Algorithmic Approaches

In addition to reformulation (10.3.2) based on the KKT conditions, other reformu-
lation of the LB problem has been proposed in the literature that uses the optimal
value function of the LL problem. Problem (10.1.1) can be written as:

min
x,y

c1x + d1y

s.t.
A1x + B1y � b1

A2x + B2y � b2

ϕ(x) � d2y

x � 0, y � 0

(10.4.1)

where ϕ(x) provides the optimal value of the LL problem given the UL decision
variable x. Problem (10.4.1) is a linear program with a facially reverse convex
constraint, since function ϕ(x) is convex.

Both reformulation (10.3.2) and reformulation (10.4.1) lead to a single level
nonconvex problem. For handling this problem, some of the algorithms included
in Sect. 10.3, such as the penalty approaches proposed by White and Anan-
dalingam [57] and Campelo et al. [18], use local optimization methods of nonlinear
programming to approach the optimal solution smoothly. In this section, we include
other algorithms which apply general global optimization techniques and take full
advantage of the specific structure of the LB problem.

Hansen et al. [32] propose a branch-and-bound algorithm which exploits neces-
sary optimal conditions expressed in terms of the tightness of some LL constraints,
similar to some conditions used in global optimization. They also analyze branching
rules based on the logical relationships which involve some binary variables
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associated with the tightness of the constraints. The authors compare this algorithm
with the algorithm in [12] and solve problems with up to 150 constraints, 250
UL decision variables and 150 LL decision variables.

Based on reformulation (10.4.1), D.C. optimization methods have also been
applied to solve the LB problem. Tuy et al. [52] rewrite the LB problem as the
reverse convex constrained problem (10.4.1) and prove that the function φ(x)

is a convex polyhedral function. They then develop an algorithm which uses a
polyhedral annexation method and exploits the bilevel structure to reduce the
dimension of the global optimization problem to be solved in a space of much
smaller dimension than n1 + n2. In a posterior paper [53], these authors propose a
branch and bound algorithm, also in a global optimization framework, based on the
reduction of problem (10.4.1) to a quasiconcave minimization problem in a space
of dimension 1 + rank(A2). Tuy and Ghannadan [51] develop a new branch and
bound method based on reformulation (10.4.1) but, unlike the previous algorithms,
the method works in the primal space. In order to numerically solve large-scale
problems without coupling constraints, Gruzdeva and Petrova [31] also apply D.C.
optimization to develop a local search method.

From the earliest days, attempts have been made in the literature to establish
a relationship between bilevel programming and biobjective programming in the
linear case. The algorithms developed by Bard [8] and Ünlü [54] and the sufficient
condition proposed by Wen and Hsu [55] were proved to be incorrect [14, 19, 22,
33, 43, 49]. In fact, the optimal solution of a LB problem is not necessarily an
efficient solution of the biobjective problem whose objective functions are the UL
and the LL objective functions. Fülöp [28] was the first to realize that more than
just two criteria are needed to establish the link between LB programming and
multiobjective programming. Based on these results, Glackin et al. [30] develop an
algorithm which uses simplex pivots on an expanded tableau. Their computational
results show that this algorithm performs better than a standard branch-and-bound
algorithm when the number of UL variables is small.

10.5 Metaheuristic Algorithms

In general, the exact algorithms described above are computationally very time
consuming and can only tackle relatively small problems. Therefore, metaheuristic
algorithms have been developed aiming to be robust in finding good solutions while
being able to solve large problems in reasonable computational time. Next, we
present some metaheuristic algorithms which have been proposed for solving the
LB problem. As with exact algorithms, some of them are based on the geometric
properties of the LB problem while others reformulate it as a single level problem.
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10.5.1 Evolutionary Algorithms

Anandalingam et al. [4] develop GABBA, a Genetic Algorithm Based Bi-level
programming Algorithm which explores the IR. GABBA (which is explained in
more detail in [44]) encodes its structures as n1 + n2 strings of base-10 digits,
which represent bilevel feasible solutions, not necessarily extreme points. The
UL variables are generated and the LL variables are obtained by solving the
corresponding LL problem. The initial population is generated within feasible lower
and upper bounds, only mutation is applied and the selection strategy is elitist, i.e.
the best members of the previous generation plus offspring plus randomly generated
new chromosomes are selected for the next generation, always maintaining the
population size. The algorithm was tested against Bard’s grid search technique [8],
and GABBA was preferred on the basis of providing a better near optimal solution.

Nishizaki et al. [46] transform the LB problem without coupling constraints into
the single level problem (10.3.2) and use the linearization of the complementary
slackness conditions given by (10.3.3). This results in a single level mixed 0-1
programming problem. In the evolutionary algorithm proposed, the chromosomes
are encoded as m2+n2 binary strings, where 1 is placed into n2 bits and 0 is placed
into the remaining bits, that represent the value of the 0-1 variables ζi , ηj . In order to
compute the fitness, problem (10.3.4) is solved performing linear scaling and taking
its inverse number. Crossover and mutation are applied and heuristic rules are given
to improve the performance of the procedure. The performance of the algorithm
is compared with the branch-and-bound algorithm proposed in [32] in problems
ranging from 10 to 60 variables.

Hejazi et al. [35] also replace the second level problem by its KKT conditions.
They then propose a genetic algorithm in which each chromosome is a string
representing a bilevel feasible extreme point, which consists of m2 + n2 binary
components. Taking into account constraints (10.3.2e) and (10.3.2f), checking the
feasibility of a chromosome is equivalent to solving two linear problems. Moreover,
bearing in mind the feasible regions of these problems, they propose rules to discard
chromosomes which are not feasible. Mutation and crossover are applied. The
crossover operator randomly selects a location in the parents and the offspring
is obtained by maintaining the left part and interchanging the right part of the
parents. The mutation operator changes one component of the randomly selected
chromosome either from one to zero or from zero to one. The elitist strategy is
applied to select the members of the next population. They compare the performance
of the algorithm with that proposed in [29]. The experimental results show the
efficiency of the algorithm both from the computational point of view and the quality
of the solutions.

Calvete et al. [17] consider the LB problem without coupling constraints and
develop an evolutionary algorithm that takes into account that an optimal solution of
the LB problem can be found at an extreme point of S. Therefore, the chromosomes
represent basic feasible solutions of the polyhedron S, encoded as m strings of
integers whose components are the indices of the basic variables. The fitness of a
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chromosome evaluates its quality, penalizing the fact that the associated extreme
point is not in IR. For the purpose of checking this, the relationship between
the LL problem and its dual are applied. Two kinds of crossover operators are
proposed. After randomly selecting a location in the parents, in the variable-to
variable crossover, the right-hand indices are interchanged. The main drawback of
this crossover operator is the possibility of getting chromosomes associated with
solutions not in S, which must be rejected. The basis-to-basis crossover avoids this
possibility by entering the variables associated with the right-hand indices one by
one using the minimum ratio test rule of the simplex algorithm to select the variable
leaving the basis. The mutation operator randomly selects a variable which is not
in the incumbent chromosome. Then, this variable enters the basis associated with
the chromosome and the minimum ratio test rule of the simplex algorithm is applied
to determine the variable leaving the basis. Some improvements are also applied in
the process of checking if a chromosome is feasible, which exploit the structure
of the problem. For selecting the next population, the elitist strategy is applied.
The computational results presented show the performance of the method in terms
of the quality of the solution (comparing it with the Kth best algorithm and the
algorithm proposed in [35]) as well as in terms of the computational time invested.
Test instances involve up to 100 variables (excluding the slack variables) and up to
80 constraints.

10.5.2 Other Metaheuristic Approaches

Apart from the evolutionary algorithms presented in the previous section, other
metaheuristic techniques (tabu search, simulated annealing, particle swarm opti-
mization and artificial neural networks) have been applied in a few algorithms.

Gendreau et al. [29] develop a hybrid tabu-ascent algorithm which consists of
three blocks: a startup phase, a local ascent phase and a tabu phase. The startup phase
generates an initial solution using the penalized problem (10.3.5). They estimate the
value of u and solve the penalized problem. If the optimal solution is not a bilevel
feasible solution, the parameter μ is increased and the procedure repeated. As the
authors indicate, this procedure performs exceptionally well providing solutions
which the search phase is not able to improve. In the tabu phase, starting at a bilevel
feasible solution, the aim is to obtain another bilevel feasible solution with the same
UL objective function value. Three types of tabu tags are maintained which refer to
entering variables, exiting variables and pivots. If the new bilevel feasible solution
is obtained, the reverse of the heuristic algorithm used in the startup phase is applied
aiming to improve it. Both, the startup phase and the tabu search are completed by
a local search step aiming to improve the UL objective function while maintaining
y in M(x). They present the results of a computational experiment dealing with
difficult test problems involving up to 200 variables and 200 constraints.

In the previously mentioned paper by Anandalingam et al. [4], the authors also
develop SABBA, a Simulated Annealing Based Bi-level programming Algorithm.
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At each iteration, a bilevel feasible solution is generated. Depending on its
quality, the solution is maintained or changed with a certain probability. During
the iterations, the temperature, which affects the above mentioned probability, is
progressively decreased. Like GABBA, SABBA was also tested against Bard’s
Grid Search technique. Comparing the three algorithms, the authors concluded that
GABBA was preferred.

Kuo and Huang [41] propose a generic particle swarm optimization algorithm to
solve the LB problem in which the particles are associated with points in IR. For this
purpose, the values of the x variables are randomly generated and then the values of
the variables y are obtained by solving the LL problem. Four small problems taken
from the literature, with either two or four variables are solved as a computational
experiment.

Shih et al. [50] propose artificial neural networks as a promising technique
for solving multilevel programming problems. In this paper, as well as in the
papers by Hu et al. [36] and He et al. [34], a neural network is applied to solve
problem (10.3.2). In all cases, only illustrative small instances are solved.

10.6 Conclusions

This chapter addresses the LB optimization problem by focusing on the essentials
of the main algorithms proposed in the literature to solve them. The intention has
been to pay attention to those algorithms that have really contributed either to better
understand the problem or to initiate the application of some technique in this field,
by giving an overview of the underlying ideas that justify them. The algorithms
developed to solve LB problems have followed two lines of thinking. On the one
hand, those methods which exploit the theoretical properties of the LB problem. On
the other hand, those procedures that, after reformulating the problem as a single
level one, apply some of the techniques of the wide and rich single level classical
optimization theory.

From the initial works on LB optimization, the literature in this field has experi-
enced a significant increase in the number of published works. This can be explained
by the ability of bilevel problems to model hierarchical frameworks which appear
very often in real systems. Thus, models involving nonlinear objective functions
and/or constraints, integer and binary variables, uncertainty in the coefficients,
multiple followers, etc. are nowadays promising lines of research.
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Chapter 11
Global Search for Bilevel Optimization
with Quadratic Data

Alexander S. Strekalovsky and Andrei V. Orlov

Abstract This chapter addresses a new methodology for finding optimistic solu-
tions in bilevel optimization problems (BOPs). In Introduction, we present our view
of the classification for corresponding numerical methods available in the literature.
Then we focus on the quadratic case and describe the reduction of BOPs with
quadratic objective functions to one-level nonconvex problems and develop methods
of local and global searches for the reduced problems. These methods are based
on the new mathematical tools of global search in nonconvex problems: the Global
Search Theory (GST). A special attention is paid to a demonstration of the efficiency
of the developed methodology for numerical solution of test BOPs.

Keywords Quadratic bilevel optimization · Optimistic solution ·
KKT-approach · Penalty approach · Global search theory · Computational
experiment

11.1 Introduction

Consider the problem of bilevel optimization in its general formulation [1, 2]:

(BP)

min
x,y

F (x, y)

s.t. (x, y) ∈ Z, y ∈ Arg min
y
{G(x, y) | y ∈ Y (x)}. (11.1.1)

It has the decision makers at the upper level (the leader) and at the lower level
(the follower). There are two most popular formulations of bilevel problems: opti-
mistic (cooperative) and guaranteed (pessimistic), which lead to the corresponding
definitions of solutions in BOPs [1]. In this paper, we will consider the optimistic
case: problem (BP).
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It is known that a bilevel problem has an implicit structural nonconvexity even
in its optimistic formulation. Moreover, this is true for the case of convexity (or
linearity) of the functions F(·), G(·), and when the feasible sets at both levels are
convex. Therefore, the study of various classes of BOPs from the theoretical point
of view is a useful and important issue of modern Operations Research. At present,
there are numerous publications in this area (see, for example, the surveys [3, 4]).
Also, bilevel problems have a lot of applications in various areas of human life (see,
for example, [1, 2, 5]). Thus, the study of BOPs from the numerical point of view, as
well as development of new approaches and methods for finding solutions, remains
a relevant and important problem.

Here we focus on works where new approaches and methods for solving BOPs
are developed and corresponding numerical results are given. Below we present our
view of the classification of approaches and methods for finding optimistic solutions
in continuous bilevel problems, based on the available literature. It is clear that it is
impossible to observe all of the works, and we mention only several papers from
each class as examples.

First, we focus on several approaches of reducing BOPs to a single-level
optimization problem ; then we look at the optimization methods that are used for
solving the reduced problems.

(I) The most popular approach of the transformation of BOPs is carried out by
replacing the convex lower level problem with its necessary and sufficient
conditions such as Karush-Kuhn-Tucker conditions [1, 6, 7]. In this case, it
yields an optimization problem with a complementarity constraint [8], which
reveals the main complexity of the optimization problem in question.

(II) The second approach implies the additional reduction of the obtained single-
level problem with the complementarity constraint to a penalized problem [2,
9–13]. Most often the penalized objective function is the sum of the upper-
level objective function and the difference of objective functions of the original
and dual function of the lower level problem with the penalty parameter (see
also [14–16]). Here the principal nonconvexity of the problem is moved into
the objective function.

(III) Next approach reduces the bilevel problem to a single-level mixed integer
optimization problem [17].

(IV) Also, we can transform BOPs to single-level problems with the help of the
optimal value function of the lower level problem [18–20]

(V) Finally, we can try to attack BOPs without any transformation of the original
formulation [2, 21–23].

The methods which are applied to the transformed problems for finding opti-
mistic solutions in BOPs can be divided into the following groups.

(1) Different local optimization algorithms which provide only a stationary point
to the problem (at best, a local solution). For example, methods of descent
directions for the upper level problem with gradient information obtained from
the lower level problem [24, 25]. Trust region methods [26–28], where the
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bilevel problem under consideration is replaced by a simpler model problem
and the latter one is solved in some given (trust) domain. Then, the resulting
solution is evaluated from the viewpoint of the original problem, and the current
trust region is changed.

(2) Local optimization methods which, in addition, use some technique of “global-
ization” in order to find at least an approximate global solution to the reduced
nonconvex problem. The author of [29, 30] use, for example, a special variant of
sequential quadratic programming method with enumeration and brunch-and-
bound techniques.

(3) Standard global optimization methods, such as the branch-and-bound method,
cuts methods etc. [31–35], which can be applied both to the problem with the
complementarity constraint and to the penalized problem. Even they can be
applied to bilevel problems directly [2, 21–23].

(4) Methods from the field of mixed integer programming which are applied to the
reduced single-level mixed integer optimization problem [17].

(5) Methods for solving bilevel problems with linear constraints at both levels by
enumerating the vertices of a polyhedron that defines the feasible set of the
bilevel problem [2, 13, 36]. In such problems, at least one solution is reached at
the extreme point of the feasible set.

(6) Methods based on ideas from the multicriteria optimization [37, 38].
(7) Methods of “parametric programming” [39], when the feasible set of upper level

problems is presented explicitly.
(8) Heuristic methods, which employ some elements of the neural networks theory

and/or evolutionary algorithms applied to the reduced one-level problem with a
complementarity constraint [40, 41].

In spite of the sufficiently wide set of developed methods, we should note that
only a few results published so far deal with numerical solution of high-dimension
bilevel problems (for example, up to 100 variables at each level for linear bilevel
problems [17, 35]).

In most of the cases, the authors consider just illustrative examples with the
dimension up to 10 (see, e.g., [11, 19, 23, 39]), which is insufficient for solving
real-life applied problems. And only the works [2, 27, 29, 30] present some results
on solving nonlinear bilevel problems of dimension up to 50 at each level. It can be
explained, for example, by the facts that (1) convex optimization methods applied
to essentially nonconvex bilevel problems directly, turn out to be inoperative, in
general, when it comes to finding a global solution; (2) when we apply heuristics
methods, we cannot guarantee that we will find a global solution to problems in
question; (3) widespread methods of global optimization, in addition, suffer the so-
called “curse of dimension”, when the volume of computations grows exponentially
along with the growth of the problem’s dimension, and these methods deny the
achievements of modern convex optimization.

To sum up, the development of new efficient numerical methods for finding
optimistic solutions, even for rather simple classes of nonlinear bilevel problems,
is now at the front edge of the recent advances in the modern mathematical
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optimization. In particular, according to J.-S. Pang [42], a distinguished expert
in optimization, the development of methods for solving various problems with
hierarchical structure is one of the three challenges faced by optimization theory
and methods in the twenty-first century together with equilibrium problems and the
dynamical optimization.

The principal objective of this paper is to present a new approach for solving
continuous bilevel optimization problems. It can be classified as an approach of
Group (II) from the above classification. Hence, we reduce the bilevel problem to
the single-level optimization problem with an explicit nonconvexity in the feasible
set.

Then, applying the exact penalty approach, we move the principal nonconvexity
to the cost function and obtain a nonconvex problem with the difference of convex
(d.c.) objective function and the convex feasible set. As for solution of the latter
problem, we apply the new Global Search Theory (GST) based on the original
Global Optimality Conditions (GOCs) developed by A.S. Strekalovsky [43–46].

This theory does not reject the achievements and methods of modern convex
optimization, but, on the contrary, actively employs them (for example, “inside”
local search). GST proposes procedures that allows us not only to escape the
local pitfalls, but also to achieve a global solution in nonconvex problems. It is
worth noting that the efficiency of global search procedures directly depends on the
efficiency of the convex optimization methods used inside these procedures.

According to the GST, an algorithm for solving a nonconvex problem should
consist of two principal stages:

(1) a special Local Search Method (LSM), which takes into account the structure
of the problem in question [43];

(2) the procedure based on the Global Optimality Conditions (GOCs) [43–46],
which allows us to improve the point provided by the LSM [43–45].

In our group we have a large and successful experience in the field of numerical
solution of numerous problems with a nonconvex structure by the GST: bimatrix
and hexamatrix games [47, 48], bilinear optimization problems [49] and many
others [43–45]. In particular, our group have an experience in solving linear bilevel
problems with up to 500 variables at each level [50] and quadratic-linear bilevel
problems of dimension up to (150× 150) [51].

In this paper, we present the process of developing local and global search
methods for finding optimistic solutions to the quadratic bilevel problems according
to the GST, and some promising numerical results for quadratic-linear and quadratic
bilevel problems (see also [52]).

The paper is organized in the following way. Section 11.2 deals with the
reduction of the original bilevel problem to the single-level nonconvex one. In
Sect. 11.3 a special Local Search Method for the reduced problem is described.
Section 11.4 is devoted to the corresponding global search procedure based on the
GOCs. Section 11.5 provides numerical results obtained for specially generated test
bilevel problems using the methods developed. Section 11.6 presents concluding
remarks.
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11.2 Quadratic Bilevel Problem and Its Reduction
to the Nonconvex Problem

Consider the following quadratic bilevel optimization problem in its optimistic
statement. In this case, according to the theory [1], the minimization at the upper
level is carried out with respect to the both variables x and y:

(QBP)

min
x,y

F (x, y) := 1

2
〈x,Cx〉 + 〈c, x〉 + 1

2
〈y,Dy〉 + 〈d, y〉

s.t. (x, y) ∈ Z := {(x, y) ∈ Rm ×Rn | Ax + By ≤ b},
y ∈ Y∗(x) := Arg min

y
{1
2
〈y,D1y〉 + 〈d1, y〉 + 〈x,Qy〉|

| y ∈ Y (x)}, Y (x)
�={y ∈ Rn|A1x + B1y ≤ b1},

(11.2.1)

where A ∈ Rp×m, B ∈ Rp×n, A1 ∈ Rq×m, B1 ∈ Rq×n, C ∈ Rm×m,
D,D1 ∈ Rn×n, Q ∈ Rm×n, c ∈ Rm, d, d1 ∈ Rn, b ∈ Rp, b1 ∈ Rq . Besides,
matrices C, D, and D1 are symmetric and positive semidefinite. Note that all of
the data in this problem are convex or linear except the term 〈x,Qy〉 at the lower
level (but it is linear when x is fixed). At the same time, as mentioned above, the
problem (QBP)–(11.2.1) is implicitly nonconvex due to its bilevel structure, even
if Q ≡ 0 ∈ Rm×n.

Let the following assumptions on the problem (QBP)–(11.2.1) hold.

(a) The set Y∗(x) is non-empty and compact for a fixed x, such that

x ∈ Pr(Z)
�= {x ∈ Rm | ∃y : (x, y) ∈ Z}.

(b) The function F(x, y) is bounded from below on the non-empty set

U := {(x, y) ∈ Rm ×Rn | Ax + By ≤ b, A1x + B1y ≤ b1},

so that

(H1) ∃F− > −∞ : F(x, y) ≥ F− ∀(x, y) ∈ U. (11.2.2)

(c) The objective function of the lower level is bounded from below on the set Y (x)

for all x ∈ Pr(Z), so that

(H2) inf
x

inf
y
{1
2
〈y,D1y〉+〈d1, y〉+〈x,Qy〉|y ∈ Y (x), x ∈ Pr(Z)}>−∞.

(11.2.3)

Note that despite the presence of the bilinear term in the objective function, for
any fixed x ∈ Pr(Z) the lower level problem is convex and the Abadie regularity
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conditions are automatically fulfilled here due to affine constraints [14]. Therefore,
the KKT-conditions [14, 15] are necessary and sufficient for the follower problem
in (QBP)–(11.2.1) ∀x ∈ Pr(Z).

By replacing the lower level problem in (QBP)–(11.2.1) with its KKT-optimality
conditions [1, 2, 51, 52], we obtain the following single-level optimization problem
with the evident nonconvexity:

(DCC)

min
x,y,v

F (x, y)

s.t. Ax + By ≤ b, A1x + B1y ≤ b1,

D1y + d1 + xTQ+ vT B1 = 0,
v ≥ 0, 〈v,A1x + B1y − b1〉 = 0.

(11.2.4)

The problem (DCC)–(11.2.4) is a problem with a nonconvex feasible set, where
the nonconvexity is generated by the latter equality constraint (the complementarity
constraint). Let us formulate the main theorem of the KKT-transformation for the
problem (QBP)–(11.2.1).

Theorem 11.2.1 ([1, 6]) For the pair (x∗, y∗) to be a global solution to (QBP)–
(11.2.1), it is necessary and sufficient that there exists a vector v∗ ∈ Rq such that
the triple (x∗, y∗, v∗) is a global solution to (DCC)–(11.2.4). �

This theorem reduces the search for an optimistic solution of the bilevel problem
(QBP)–(11.2.1) to solving the problem (DCC)–(11.2.4). Further, we use the exact
penalty method [15, 16, 46] to deal with a problem that has a nonconvex objective
function and a convex feasible set.

The complementarity constraint can be written in the equivalent form:
〈v, b1 − A1x − B1y〉 = 0. Then, obviously, ∀(x, y, v) ∈ F , where the set

F := {(x, y, v)|Ax+By ≤ b,A1x+B1y ≤ b1,D1y+d1+xTQ+vT B1 = 0, v ≥ 0}

is the convex set in Rn+m+q , and, in addition, the following inequality takes place:
〈v, b1 − A1x − B1y〉 ≥ 0. Now the penalized problem [1, 15, 16, 46] can be written
as

(DC(σ ))

min
x,y,v

%(x, y, v) := 1

2
〈x,Cx〉 + 〈c, x〉 + 1

2
〈y,Dy〉+

+〈d, y〉 + σ 〈v, b1 − A1x − B1y〉
s.t. (x, y, v) ∈ F ,

(11.2.5)

where σ > 0 is a penalty parameter. When σ is fixed, this problem belongs to the
class of d.c. minimization problems [43, 45] with a convex feasible set , since its cost
function is a sum of quadratic and bilinear terms. In what follows (in Sect. 11.4),
we demonstrate that the objective function of (DC(σ ))–(11.2.5) is represented as a
difference of two convex functions.
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It is well-known that if for some σ the triple (x(σ ), y(σ ), v(σ )) ∈ Sol(DC(σ )),
and the point (x(σ ), y(σ ), v(σ )) is feasible in the problem (DCC)–(11.2.4), i.e.
(x(σ ), y(σ ), v(σ )) ∈ F and r[σ ] := 〈v(σ ), b1 − A1x(σ)− B1y(σ)〉 = 0, then
(x(σ ), y(σ ), v(σ )) is a global solution to (DCC)–(11.2.4) [1, 15, 16, 46].

In addition, the following result holds.

Proposition 11.2.2 ([1, 14–16]) Suppose that for some σ̂ > 0 the equality
r[σ̂ ] = 0 takes place for a solution (x(σ̂ ), y(σ̂ ), v(σ̂ )) to (DC(σ ))–(11.2.5). Then
for all values of the parameter σ > σ̂ the function r[σ ] is equal to zero and the
triple (x(σ ), y(σ ), v(σ )) is a solution to (DCC)–(11.2.4). �

Thus, if the equality r[σ ] = 0 holds, then a solution to (DC(σ )) is a solution to
(DCC). And when the value of σ grows, this situation remains the same.

Hence, the key point when using the exact penalization theory here is the exis-
tence of a threshold value σ̂ > 0 of the parameter σ for which r[σ ] = 0 ∀σ ≥ σ̂ .
Due to the fact that the objective function F of the problem (DCC)–(11.2.4) satisfies
the Lipschitz property [15, 16] with respect to both variables, the following assertion
takes place.

Proposition 11.2.3 ([15, 16, 46]) Let the triple (x∗, y∗, v∗) be a global solution
to the problem (DCC)–(11.2.4). Then, there exists σ̂ > 0 such that (x∗, y∗, v∗)
is a global solution to the problem (DC(σ̂ ))–(11.2.5). Moreover, ∀σ > σ̂ any
solution (x(σ ), y(σ ), v(σ )) to the problem (DC(σ ))–(11.2.5) is feasible in the
problem (DCC)–(11.2.4), i.e. r[σ ] = 0, and, therefore, (x(σ ), y(σ ), v(σ )) is a
solution to the problem (DCC)–(11.2.4), so that Sol(DCC) ⊂ Sol(DC(σ )). The
latter inclusion implies the equality

Sol(DCC) = Sol(DC(σ )) ∀σ > σ̂ , (11.2.6)

so that the problems (DCC) and (DC(σ )) are equivalent (in the sense of
(11.2.6)). �

Therefore, combining Propositions 11.2.2 and 11.2.3 with Theorem 11.2.1, we
can conclude that these relations between the problems (DC(σ ))–(11.2.5) and
(DCC)–(11.2.4) allow us to seek for a global solution to the problem (DC(σ ))–
(11.2.5), where σ > σ̂ , in order to find an optimistic solution to the problem
(QBP)–(11.2.1) instead of a solution to the problem (DCC)–(11.2.4). The existence
of the threshold value σ̂ > 0 of the penalty parameter enables us to solve a single
problem (DC(σ ))–(11.2.5) (where σ > σ̂ ) instead of solving a sequence of prob-
lems (DC(σ ))–(11.2.5) when the penalty parameter tends to infinity (σ →+∞)

(see, for example, [14–16]).
Since the objective function of the problem (DC(σ ))–(11.2.5) is a d.c. function

for a fixed σ , we will address the problem (DC(σ ))–(11.2.5) by means of the GST
mentioned above. First, this theory implies construction of a local search procedure
that takes into consideration special features of the problem in question.
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11.3 Local Search Method

Due to the inoperability of the convex optimization methods [14–16] in nonconvex
problems, a number of various local search techniques for nonconvex problems
of different classes were invented [33, 43–45, 47, 49, 51]. These methods produce
feasible points which are called stationary or critical (with respect to the methods).
Generally speaking, a critical point may not be a local solution in the corresponding
problem, but it has additional special properties depending on the specific local
search method, and, therefore, it is not just only a stationary point (if it is proven)
[15, 16, 43].

It can be readily seen that the nonconvexity in the problem (DC(σ ))–
(11.2.5) is located in the objective function and is generated by the bilinear term
〈v, b1 − A1x − B1y〉 only. On the basis of this fact, by employing the bilinearity,
we suggest to carry out the local search in the problem (DC(σ ))–(11.2.5) using the
idea of its successive solution by splitting the variables into two groups.

Earlier this idea was successfully applied in several problems with similar
bilinear structure in the objective function: finding a Nash equilibrium in polymatrix
games [47, 48], problems of bilinear programming [49], and quadratic-linear bilevel
problems [51]. We can do it, because the problem (DC(σ ))–(11.2.5) turns into a
convex quadratic optimization problem for a fixed v and into a linear programming
(LP) problem for a fixed pair (x, y) [52].

Denote F (v) := {(x, y) ∈ Rm+n | (x, y, v) ∈ F }, F (x, y) := {v ∈ Rq |
(x, y, v) ∈ F } and describe the following Local Search Method.

Let (x0, y0, v0) ∈ F be a starting point.

XY -procedure
Step 0. Set s := 1, (xs, ys) := (x0, y0).
Step 1. Applying a suitable linear programming method, find the approximate

ρs

2
-solution vs+1 to the following LP problem:

(LP(xs, ys))
min
v
〈b1 − A1x

s − B1y
s, v〉

s.t. D1y
s + d1 + (xs)T Q+ vT B1 = 0, v ≥ 0.

(11.3.1)

Step 2. Find the approximate
ρs

2
-solution (xs+1, ys+1) to the following convex

problem

(QP(vs+1))

min
x,y

1

2
〈x,Cx〉 + 〈c, x〉 + 1

2
〈y,Dy〉 + 〈d, y〉−

−σ(
〈
(vs+1)T A1, x

〉+ 〈
(vs+1)T B1, y

〉
)

s.t. Ax + By ≤ b, A1x + B1y ≤ b1,

D1y + d1 + xT Q+ (vs+1)T B1 = 0.

(11.3.2)

Step 3. Set s := s + 1 and move to Step 1.
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Note that the name of the XY-procedure stems from the fact that we do not need
all the components of the starting point (x0, y0, v0) to launch the algorithm; using
only the pair (x0, y0) is sufficient. Herein, it is necessary to choose the components
(x0, y0, v0) so that the auxiliary problems of linear and quadratic programming
were solvable at the steps of the algorithm. The solvability can be guaranteed, for
example, by an appropriate choice of the feasible point (x0, y0, v0) ∈ F under the
conditions (H1)–(11.2.2) and (H2)–(11.2.3).

The following convergence theorem for the XY -procedure takes place.

Theorem 11.3.1 ([47, 49, 51])

(i) Let a sequence {ρs} be such that ρs > 0 for all s = 1, 2, . . . , and
∞∑
s=1

ρs < +∞.

Then the number sequence {%s := %(xs, ys, vs )} generated by the XY -
procedure converges.

(ii) If (xs, ys, vs )→ (x̂, ŷ, v̂), then the limit point (x̂, ŷ, v̂) satisfies the inequalities

%(x̂, ŷ, v̂) ≤ %(x̂, ŷ, v) ∀v ∈ F (x̂, ŷ), (11.3.3)

%(x̂, ŷ, v̂) ≤ %(x, y, v̂) ∀(x, y) ∈ F (v̂). (11.3.4)

�
Definition 11.3.2 The triple (x̂, ŷ, v̂) satisfying (11.3.3) and (11.3.4) is said to be
the critical point to the problem (DC(σ ))–(11.2.5). �

It can be readily seen that the concept of criticality in the problem (DC(σ ))–
(11.2.5) is due to the structure of the Local Search Method. And any critical point
turns out to be partly global solution to the problem (DC(σ ))–(11.2.5) with respect
to two groups of variables (x, y) and v. Such a definition of critical points is
quite advantageous when we perform a global search in problems with a bilinear
structure (see, for example, [49, 51]). Also, this new concept is tightly connected
with the classical definitions of stationarity. In particular, we can prove that for any
critical point to the problem (DC(σ ))–(11.2.5) the classical first-order optimality
conditions [14–16] hold.

At the same time, carrying out computational simulations, we have to stop after
a finite number of iterations. In this case, we can speak only about an approximate
critical point.

Definition 11.3.3 The triple (x̂, ŷ, v̂) satisfying (11.3.3) and (11.3.4) with the
tolerance τ ≥ 0, so that

%(x̂, ŷ, v̂)− τ ≤ %(x̂, ŷ, v) ∀v ∈ F (x̂, ŷ),

%(x̂, ŷ, v̂)− τ ≤ %(x, y, v̂) ∀(x, y) ∈ F (v̂),

is said to be the (approximately) τ -critical point to the problem (DC(σ ))–(11.2.5).

�
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We can prove [49, 51] that if at the iteration s (s > 1) of the XY -procedure the
following stopping criterion holds (with the tolerance τ1 > 0):

%s − %̃s ≤ τ1, (11.3.5)

where %̃s := %(xs, ys, vs+1), then the following inequalities take place:

%(xs, ys, vs )− (τ1 + ρs

2
) ≤ inf

v
{%(xs, ys, v) | v ∈ F (xs, ys)},

%(xs, ys, vs )− (τ1 + ρs−1

2
+ ρs

2
) ≤ inf

(x,y)
{%(x, y, vs) | v ∈ F (vs)}.

It is clear that if τ1 ≤ τ

2
, ρs−1 ≤ τ

4
, and ρs ≤ τ

4
, then the point (xs, ys, vs ) turns

out to be a τ -critical point to the problem (DC(σ ))–(11.2.5).
Thus, in order for the XY -procedure to be implementable, we should add the

following step to the scheme.
Step 2a. If the inequality (11.3.5) is valid for a given τ1 > 0, then Stop. Hence,

the triple (xs, ys, vs) is the approximate critical point to the problem (DC(σ ))–
(11.2.5).

Similarly, we can describe and substantiate other stopping criteria for the XY -
procedure (see also [49, 51]). In addition, to implement the local search in the
problem (DC(σ ))–(11.2.5), according to [49, 51], we can consider another variant
(V -procedure) of local search, where the auxiliary problems are solved in a different
order (initially—with respect to (x, y), and secondly—with respect to v) (see also
[52]).

The next section describes the basic elements of the Global Search for the general
d.c. minimization problem as well as for the problem (DC(σ ))–(11.2.5), where σ

is fixed. We can find the relevant value of σ at the stage of the Local Search. We
start the XY -procedure with the small value of the penalty parameter, and after
stopping it we should check the feasibility of the obtained critical point to the
problem (DCC)–(11.2.4) (r[σ ] = 0). If that is true, we can move to the Global
Search. If not, we should increase the value of the penalty parameter σ in order to
obtain a feasible critical point.

Thus, the feasibility is provided by the Local Search Method, whereas the
improvement of a current critical point is provided by the Global Search Scheme
(GSS) presented below.

11.4 Global Optimality Conditions and a Global Search

It is clear that the above local search method does not provide, in general, a global
solution even in small-dimension nonconvex problems, because it can only obtain
critical (stationary) points.
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First, consider the main elements of a global search in more detail for the
following general problem with a d.c. objective function:

(P)
min
x

ϕ(x) = g(x)− h(x)

s.t. x ∈ D,
(11.4.1)

where g(·), h(·) are convex functions, D ⊂ Rn is a convex set. Moreover, let the
function ϕ(·) be bounded below on the set D:

inf(ϕ,D) > −∞.

For the problem (P), the following Global Optimality Conditions (GOCs) are
proved.

Theorem 11.4.1 ([43–46]) Let a point z ∈ D be a global solution to the problem
(P) (ζ := ϕ(z)). Then for every pair (y, γ ) ∈ Rn ×R such that

h(y) = γ − ζ, (11.4.2)

the following inequality holds

g(x)− γ ≥ 〈∇h(y), x − y〉 ∀x ∈ D. (11.4.3)

�
Theorem 11.4.1 represents necessary conditions and reduces the investigation

of the nonconvex problem (P) to considering the family of the convex linearized
problems

(PL(y))
min
x

g(x)− 〈∇h(y), x〉
s.t. x ∈ D,

(11.4.4)

depending on the parameters (y, γ ) ∈ Rn ×R which fulfill (11.4.2).
These conditions use the idea of linearization with respect to the basic noncon-

vexity of the problem (P)–(11.4.1), and they are associated with classical optimality
conditions. In addition, they possess an algorithmic (constructive) property: if the
inequality (11.4.3) is violated, then we can construct a feasible point that is better
than the current point z, with respect to the cost function of the problem (P) [43–46].

This constructive property is the basis for building global search algorithms in
d.c. minimization problems. In particular, the procedure of escaping the provided
by LSM critical point can be represented as the following sequence of operations
(at an iteration of k) [43–45] (we will call it the Global Search Scheme (GSS)).

(1) Choose some number γ : inf(g,D) ≤ γ ≤ sup(g,D) (for example, we can
start with γ0 = g(z)).
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(2) Construct a finite approximation

Ak(γ ) = {v1, . . . , vNk | h(vi ) = γ − ζk, i = 1, . . . , Nk, Nk = Nk(γ )}

of the level surface Uk(γ ) = {x ∈ Rn | h(x) = γ − ζk} of the function h(·) that
generates a basic nonconvexity in the problem (P). This approximation can be
constructed, for example, on the basis of the preliminary given set of vectors
Dir (see e.g. [47, 49, 51]).

(3) Find a global δk-solution ui ∈ D to the linearized problem (PL(vi ))–(11.4.4),
so that:

g(ui)− 〈∇h(vi), ui〉 − δk ≤ inf
x
{g(x)− 〈∇h(vi), x〉 | x ∈ D}.

4) Find a global δk-solution wi (h(wi) = γ − ζk) to the so-called “level problem”:

〈∇h(wi), u
i −wi〉 + δk ≥ sup

v
{〈∇h(ui), ui − v〉| h(v) = γ − ζk}. (11.4.5)

(5) Compute the value ηk(γ ) := η0
k(γ )+ γ, where

η0
k(γ ) := g(uj )− 〈∇h(wj ), u

j −wj 〉 �=min
i∈Ik
{g(ui)− 〈∇h(wi), u

i −wi〉},

i ∈ Ik
�={i ∈ {1, . . . , Nk}| g(vi ) ≤ γ }. If ηk(γ ) < 0, then it can be shown that

the point uj is better than z. Then we can move to the next iteration of the global
search and perform a new local search, starting from the point uj . If ηk(γ ) ≥ 0,
then it is necessary to choose a new value of the numerical parameter γ .

Depending on the nonconvex problem under study, this GSS can be algorith-
mized in various ways. A number of its stages require some specification, which is
carried out on the basis of the statement of the problem in question and its properties
(see, for example, [44, 45, 47–49, 51, 52] and the remaining part of this paper).

In this connection, further we describe in detail the procedure of a global search
for the problem (DC(σ ))–(11.2.5) with fixed σ > σ̂ :

(DC(σ ))
min
x,y,v

%(x, y, v)
�=F(x, y)+ σ 〈v, b1 − A1x − B1y〉

s.t. (x, y, v) ∈ F .
(11.2.5)

The procedure is based on the Global Optimality Conditions (GOCs) described
above. In order to construct the global search procedure, first of all we need to obtain
an explicit d.c. representation of the objective function of the problem (DC(σ ))–
(11.2.5).
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For this purpose we use the following representation based on the well-known

property of the scalar product (〈x, y〉 = 1

4
‖x + y‖2 − 1

4
‖x − y‖2):

%(x, y, v) = G(x, y, v)−H(x, y, v), (11.4.6)

where G(x, y, v) = 1

2
〈x,Cx〉 + 〈c, x〉 + 1

2
〈y,Dy〉 + 〈d, y〉 + σ 〈b1, v〉 +

+ σ

4
‖A1x − v‖2+ σ

4
‖B1y − v‖2, H(x, y, v) = σ

4
‖A1x + v‖2+ σ

4
‖B1y + v‖2.

Note that the so-called basic nonconvexity in the problem (DC(σ ))–(11.2.5) is
generated by the function H(·) (for more detail, refer to [43–45]).

The necessary GOCs of the so-called contrapositive form have the following
statement in terms of the problem (DC(σ ))–(11.2.5) (see Theorem 3).

Theorem 11.4.2 ([43–45, 51]) If the feasible point (x∗, y∗, v∗) is not a (global)
solution to the problem (DC(σ ))–(11.2.5), then one can find a triple (z, u,w) ∈
Rm+n+q , a feasible vector (x̄, ȳ, v̄) ∈ F , and a scalar γ , such that

H(z, u,w) = γ − ζ, ζ := %(x∗, y∗, v∗), (11.4.7)

G(x, y, v) ≤ γ ≤ sup
x,y,v

(g,F ), (11.4.8)

and the following inequality takes place:

G(x̄, ȳ, v̄)− γ < 〈∇H(z, u,w), (x̄, ȳ, v̄)− (z, u,w)〉 . (11.4.9)

�
Theorem 11.4.2 express the algorithmic (constructive) property of the

GOCs (11.4.2)–(11.4.3). It means that if one was successful to find the 4-tuple
(z̄, ū, w̄, γ̄ ) satisfying (11.4.7)–(11.4.8), and the point (x̄, ȳ, v̄) ∈ F , such that
the inequality (11.4.9) holds, then due to the convexity of the function H(·) one
obtains %(x̄, ȳ, v̄) < %(x∗, y∗, v∗). It means that the triple (x̄, ȳ, v̄) is better
than the triple (x∗, y∗, v∗). One can find such a triple by changing parameters
(z, u,w, γ ) in (11.4.7)–(11.4.8) for a fixed ζ = ζk and obtaining approximate
solutions (x(z, u,w, γ ), y(z, u,w, γ ), v(z, u,w, γ )) of the linearized problems
(PL(z, u,w)) (see (PL(y))–(11.4.4) and (11.4.9)):

(PL(z, u,w))
min
x,y,v

G(x, y, v)− 〈∇H(z, u,w), (x, y, v)〉
s.t. (x, y, v) ∈ F .

(11.4.10)

Thus, we get a set of starting points to launch the Local Search Method. After that
we move to the new level ζk+1 := %(xk+1, yk+1, vk+1), (xk+1, yk+1, vk+1) :=
(x̄, ȳ, v̄) and vary the parameters (z, u,w, γ ) again.
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Hence, according to the GST [43–45], the problem (DC(σ ))–(11.2.5) can be
split into several simpler problems (linearized problems and problems with respect
to other parameters from the global optimality conditions). Taking into account the
d.c. representation (11.4.6), on the basis of Theorem 11.4.2 and the above GSS, the
Global Search Algorithm (GSA) for quadratic bilevel problems can be formulated
in the following way.

Let the following be given: a starting point (x0, y0, v0) ∈ F , numerical sequences
{τk}, {δk} with (τk, δk > 0, k = 0, 1, 2, . . . , τk ↓ 0, δk ↓ 0, (k → ∞)), a set
Dir ={(z̄1, ū1, w̄1), . . . , (z̄N , ūN , w̄N )∈Rm+n+q |(z̄i , ūi , w̄i ) �= 0, i= 1, . . . , N},
the numbers γ−

�= inf(g,F ) and γ+
�= sup(g,F ), and the algorithm’s parameters

M (a positive integer number) and μ ∈ R+.

Step 0. Set k := 0, (x̄k, ȳk, v̄k) := (x0, y0, v0), γ := γ−,
�γ = (γ+ − γ−)/M, i := 1.

Step 1. Proceeding from the point (x̄k, ȳk, v̄k) by the XY - or the V -procedure,
produce a τk-critical point (xk, yk, vk) ∈ F to the problem (DC(σ ))–(11.2.5).
Set ζk := %(xk, yk, vk).

Step 2. Using (z̄i , ūi , w̄i ) ∈ Dir , construct a point (zi , ui, wi) of the approxi-
mation Ak = {(zi, ui, wi) | H(zi, ui , wi) = γ − ζk, i = 1, . . . , N} of the
level surface U(ζk) = {(x, y, v) | H(x, y, v) = γ − ζk} of the convex function
H(x, y, z).

Step 3. If G(zi, ui , wi) > γ + μγ , then i := i + 1 and return to Step 2.
Step 4. Find a δk-solution (x̄i, ȳi , v̄i ) of the following linearized problem:

(PLi )
min
x,y,v

G(x, y, v)− 〈∇H(zi, ui, wi), (x, y, v)〉
s.t. (x, y, v) ∈ F .

(11.4.11)

Step 5. Starting at the point (x̄i , ȳi , v̄i ), produce a τk-critical point
(x̂i , ŷi , v̂i ) ∈ F to the problem (DC(σ ))–(11.2.5) by means of the LSM.

Step 6. If %(x̂i, ŷi , v̂i ) ≥ %(xk, yk, vk), i < N, then set i := i + 1 and return
to Step 2.

Step 7. If %(x̂i, ŷi , v̂i ) ≥ %(xk, yk, vk), i = N and γ < γ+, then set
γ := γ +�γ , i := 1 and go to Step 2.

Step 8. If %(x̂i, ŷi , v̂i ) < %(xk, yk, vk), then set γ := γ− as well as
(x̄k+1, ȳk+1, v̄k+1) := (x̂i, ŷi , v̂i ), k := k + 1, i := 1 and return to Step 1.

Step 9. If %(x̂i, ŷi , v̂i ) ≥ %(xk, yk, vk), i = N and γ = γ+, then stop.
(xk, yk, vk) is the obtained solution of the problem. 	

Note that the stage (2) of the GSS is realized at Step 2 of the GSA with the help

of the set Dir , stage (3)—at Step 4. Also, we add the extra local search in the GSA
at Step 5 to enhance the properties of the current point. As for solving the “level
problem” (11.4.5) and calculating the value ηk(γ ) (stages (4)–(5)), we use instead
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of this the direct comparison of the current value of the objective function with
the value of ζk. As we could see from our previous computational experience, this
variant seems to be more efficient when the objective function is easy to compute
[47, 51].

In order to construct a feasible starting point, we used the projection of
the chosen infeasible point (x0, y0, v0) onto the feasible set F by solving the
following quadratic programming problem (in this work (x0, y0, v0) = (0, 0, 0)
for simplicity):

min
x,y,v

1

2
‖(x, y, v)− (x0, y0, v0)‖2

s.t. (x, y, v) ∈ F .

(11.4.12)

The solution to the problem (11.4.12) was taken as a feasible starting point
(x0, y0, v0) ∈ F .

The value of the penalty parameter σ was chosen experimentally at the stage of
the preliminary testing of the local search method: σ = 20.

Furthermore, to carry out the LSM (see Steps 1 and 5), we use both the XY - and
V -procedures described in Sect. 11.3. Note that the tolerance for auxiliary problems
is ρs = 10−7. The tolerance of the LSM is τk = 10−5.

The selection of the algorithm parameters M and μ can be performed on the basis
of our previous experience in solving problems with a bilinear structure [44, 47–
49, 51]. The parameter μ is responsible for the tolerance of the inequality (11.4.8)
from the GOCs (in order to diminish the computer rounding errors) [44, 47–49, 51]
(Step 3). If we set, for example, μ = 0.0 then the algorithm works fast but is not
always efficient. When we increase μ, the algorithm’s quality improves. However,
the run time increases too, because the condition (11.4.8) relaxes and the number of
level surface approximation points to be investigated grows. Different values of the
parameter M are responsible for splitting the segment [γ−, γ+] into a corresponding
number of subsegments to carry out a passive one-dimensional search for γ . When
we increase the value of M , the algorithm’s accuracy grows, of course, but it
happens at the expense of the proportional increase of the run time.

In this work we use rough estimate γ− := 0.0 in all cases and the following four
sets of parameters: (1) γ+ := (m + n + q)2 ∗ σ , M = 2, μ = 0.0; (2) γ+ :=
(m + n + q) ∗ (n + q) ∗ σ , M = 5, μ = 0.05; (3) γ+ := (m + n + q) ∗ q ∗ σ ,
M = 11, μ = 0.02; (4) γ+ := (m+ n + q) ∗ σ , M = 50, μ = 0.01. These values
were found experimentally at the stage of the preliminary computational simulation.

Further, we build the approximation Ak = A(ζk) for the problem (DC(σ ))–
(11.2.5) with the help of a special sets of directions, based on our previous
experience [44, 47–49, 51]:

Dir1 = {(x, y, v)+ ei, (x, y, v)− ei, i = 1, . . . ,m+ n+ q},
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where ei ∈ Rm+n+q are the Euclidean basic vectors, (x, y, v) is a current critical
point of the problem (DC(σ ))–(11.2.5) (the number of points in the approximation,
which is based on the set Dir1, is equal to 2(m+ n+ q));

Dir2 = {((x, y)− el, v − ej ), l = 1, . . . ,m+ n, j = 1, . . . , q},

where el ∈ Rm+n, ej ∈ Rq are the Euclidean basic vectors of the appropriate
dimension, (x, y, v) is a current critical point; and

Dir3 = {((x, y)+ el, v + ej ), l = 1, . . . ,m+ n, j = 1, . . . , q}.

The number of points in the approximation, which is based on the sets Dir2 and
Dir3, is equal to (m+ n) ∗ q .

Note that Dir1 is built in the space of all variables of the problem (DC(σ ))–
(11.2.5). But Dir2 and Dir3 use different vectors from (m + n)-dimensional and
q-dimensional spaces. Therefore, the number of points in the two latter sets is rather
large (especially when the dimension of the problem grows). So, we apply a special
technique for reducing these approximations (see [44, 47]).

Now we are ready to present and discuss the numerical experiment.

11.5 Computational Experiment

For the experimental verification of the efficiency of new methods developed for
optimization problems, as well as for their comparison with existing approaches, it is
necessary to have a sufficiently wide range of test problems of different complexity
and dimension. In the present work, we use the special Calamai-Vicente generation
method of bilevel test cases proposed in [53, 54]. The idea of such generation is
based on constructing bilevel problems of arbitrary dimension with the help of
several classes of the so-called kernel problems, which are one-dimensional bilevel
problems with known local and global solutions (see also [49–51]).

At the first stage of the computational experiment, we present the results of
solving the bilevel problem (QBP)–(11.2.1), where D1 = 0, Q = 0. It is a
particular case of a quadratic bilevel problem, the so-called quadratic-linear bilevel
problem. In [51] one can find the results of solving a wide range of generated
problems of such class with different complexity and dimension up to (150× 150).
Here we describe the comparative numerical results for some complicated test
problems obtained by the Global Search Algorithm and the popular KNITRO [55]
software package (we use ver. 7.0).

A special series of 15 problems of dimension from 5×5 to 30×30 was generated.
When testing, we used a program that implements the Global Search Algorithm and
the KNITRO package (with multi-start enabled). Since the KNITRO package does
not have the ability to work with bilevel problems directly, the input to this package
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Table 11.1 Comparison of the GSA with KNITRO

KNITRO multistart Global search algorithm

Name F∗ FKms T FXY T FV T

5×5_1 −21 −21 7.7 −21 11.4 −21 7.3

5×5_2 −9 −9 8.7 −9 11.3 −9 4.7

5×5_3 −5 −5 9.9 −5 11.7 −5 4.6

10×10_1 −38 −30 77.2 −38 33.1 −38 23.7

10×10_2 −26 −26 77.0 −26 29.2 −26 12.4

10×10_3 −14 −14 82.4 −14 24.6 −14 16.0

15×15_1 −19 −19 668.5 −19 20.3 −19 19.0

15×15_2 −27 −19 343.6 −27 38.6 −27 31.5

15×15_3 −43 −35 421.2 −43 48.1 −43 35.5

20×20_1 −24 −24 1153.7 −24 26.9 −24 45.9

20×20_2 −48 −48 2000.5 −48 72.0 −48 70.9

20×20_3 −52 −32 1794.4 −52 73.1 −52 52.0

30×30_1 −142 −134 5674.9 −142 270.3 −142 106.8

30×30_2 −58 −38 5483.5 −58 86.2 −58 111.3

30×30_3 −42 −30 9555.4 −42 51.5 −42 68.9

was a problem of the form (DCC)–(11.2.4) with the necessary reformulations,
equivalent to the corresponding bilevel problem in a global sense. We use here only
the third set of algorithm’s parameters (γ+ := (m+n+q)∗q∗σ , M = 11, μ = 0.02)
and the approximation based on the set Dir1. The test results are presented in
Table 11.1, where the following notations were used:

Name is the title of the generated problem (m×n_N , where m is the dimension of
the vector x, n is the dimension of the vector y, N is the number of the problem
of this dimension);

F∗ is the known global value of the upper level objective function in the test
bilevel problem;

FKms is the value of the upper level objective function in the test bilevel problem
at the point found by the KNITRO package;

FXY (FV ) is the value of the upper level objective function at the point obtained
using the Global Search Algorithm with the XY-procedure (V-procedure);

T is the running time of the corresponding program (in seconds).

Analyzing the results of the computational experiment, we first note that with the
help of the KNITRO package that uses multi-start, global solutions were found only
in 53% of the problems with the tolerance ε = 10−3 (marked in bold in the table),
while using both variants of the program that implements the GSA, all test problems
with this tolerance were solved. Also note the remarkable advantage of the global
search in comparison with the KNITRO with respect to maximal computational time
for problems of this set: KNITRO—2.66 h, GSA with XY-procedure—4.5min, GSA
with V-procedure—1.85min).
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At this stage of the computational experiment, an approach to the search
for optimistic solutions in quadratic-linear bilevel problems, based on the GST,
demonstrated an impressive advantage over the KNITRO package for this series
of test problems, both in terms of the number of solved problems and calculation
time.

In the second stage of the computational experiment, we present the results of
the solution of a series of quadratic-quadratic problems generated by the method
mentioned above [54]. To carry out the local search, we use both the XY - and V -
procedures and choose the best of the two points obtained by them. Here we already
use all sets of parameters and all sets of directions which were applied consecutively
(see the previous section).

The results of applying the GSA to the generated problems are presented in
Table 11.2 with the following notations:

Cl1,2,3,4 are the numbers of kernel problems of each class (from 4 classes) in the
generated problem;

Series is the number of generated problems of the current structure (in the current
series);

GlobSol is the known number of global solutions in the generated problem of the
current structure;

LocSol is the number of local solutions which are not global;
LocA stands for the average number of start-ups of the LSM required to find the

approximate global solution to the problem of such a structure;
StA is the average number of different critical points obtained (the number of

GSA iterations);
TA is the average operating time of the program (in seconds).

We solved from 1 to 10,000 problems of each type of dimension from 2 to
100 variables at every level. The principal achievement here is that all generated
problems were solved globally. It is interesting that the complexity of each type
of problems does not directly depend on the number of global and local solutions.
Note that if the generation employs the fourth class of kernel problems, we get the
complicated type of problems (see the large average number of the LSM executed,
large number of critical points obtained, and large average time). If we do not use
the fourth class, most of the problems can be easily solved by the GSA, which finds
a global solution even to the problem of dimension 100 in 1 h and 7 min.

The GSA can be compared with the results presented in [29, 30], which were
obtained for the test quadratic bilevel problems with up to 30 variables at every level
generated by the same approach [54]. In [29, 30] the author used a special variant
of sequential quadratic programming method. If we compare the new result with
our previous findings [51], we can say that for a more complicated bilevel problem
with both quadratic objective functions we have reached the dimension 100 at each
level. At the same time, as was mentioned above, [51] presents the results of solving
quadratic-linear bilevel problems with 150 variables at each level.

We feel confident that our approach can be generalized to more complicated
bilevel optimization problems and it can demonstrate competitive efficiency with
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Table 11.2 The Global Search in generated quadratic problems

Name Cl1,2,3,4 Series GlobSol LocSol LocA StA TA

2×2_1 (1,0,0,1) 10,000 1 1 77.7 2.0 0.4

3×3_1 (0,1,1,1) 10,000 2 6 126.3 2.0 0.8

4×4_1 (0,4,0,0) 10,000 1 15 163.9 2.0 1.1

5×5_1 (0,2,2,1) 1000 4 28 222.3 2.0 1.6

5×5_2 (2,0,3,0) 1000 8 0 209.1 2.0 1.4

6×6_1 (0,1,0,5) 1000 1 63 2440.0 3.6 19.9

6×6_2 (4,2,0,0) 1000 1 3 251.1 2.0 1.7

8×8_1 (0,0,6,2) 1000 64 192 1708.8 2.7 17.7

8×8_2 (8,0,0,0) 1000 1 0 337.2 2.0 2.4

10×10_1 (2,3,2,3) 1000 4 252 3707.8 10.3 47.7

10×10_2 (0,0,10,0) 1000 1024 0 464.7 2.0 4.7

12×12_1 (5,2,5,0) 1000 32 96 551.4 2.0 6.4

12×12_2 (0,0,0,12) 100 1 4095 15,431.6 7.5 193.0

15×15_1 (4,4,4,3) 100 16 2032 22,018.6 66.6 323.5

15×15_2 (5,5,5,0) 100 32 992 762.3 2.0 12.0

20×20_1 (9,9,0,2) 100 1 2047 71,6211.5 276.9 1558.2

20×20_2 (5,15,0,0) 100 1 32,767 1026.1 2.0 25.7

25×25_1 (8,9,8,0) 100 256 130,816 1403.1 2.0 54.2

25×25_2 (7,6,7,5) 100 128 262,016 95,572.0 268.3 3337.1

30×30_1 (0,15,15,0) 100 32,768 1.0737 · 109 1831.4 2.0 110.0

30×30_2 (10,5,10,5) 10 1024 1,047,552 162,235.8 406.6 7279.1

40×40_1 (20,0,20,0) 10 1,048,576 0 2426.8 2.0 165.0

40×40_2 (10,10,10,10) 10 1024 1.0737 · 109 126,645.2 236.7 9689.7

50×50_1 (17,16,17,0) 10 131,072 8.5898 · 109 3004.0 2.0 622.0

50×50_2 (0,0,45,5) 10 3.5184 · 1013 1.0907 · 1015 55810.4 17.5 7384.7

60×60_1 (30,30,0,0) 10 1 1.0737 · 109 3609.4 2.8 712.7

60×60_2 (0,50,0,10) 1 1 1.1529 · 1018 269,440.0 459.0 52,730.6

75×75_1 (25,25,25,0) 1 33,554,432 1.1259 · 1015 6546.0 4.0 2357.0

75×75_2 (0,0,72,3) 1 4.7224 · 1021 3.3057 · 1022 136,382.0 41.0 42,485.8

100×100_1 (0,20,80,0) 1 1.2089 · 1024 1.2676 · 1030 6012.0 2.0 4066.0

respect to any solution methods for bilevel problems. For example, our first attempt
to attack bilevel problems with an equilibrium at the lower level can be found in
[56].

11.6 Conclusion

This paper presents a new methodology for solving optimistic bilevel optimization
problems with a demonstration of its numerical efficiency. This methodology
implies their reduction to the single-level but nonconvex optimization problems,
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which are then solved using the Global Search Theory [43–46]. The numerical
results obtained for bilevel test problems of the indicated classes demonstrate
the competitiveness of the proposed methodology in comparison with specialized
software packages (such as the KNITRO) and the results of publications known at
present.

In our future research, we are going to increase the complexity of the bilevel
models and apply our approach to practical bilevel problems. Our first attempt to
solve a special quadratic bilevel pricing problem in telecommunication networks is
presented in [57].

There are still open questions and challenges in the numerical solution of BOPs,
in particular, new ideas for handling problems with nonconvex lower level are now at
the front edge of the researches in the modern bilevel optimization (see, for example,
[22]).
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Chapter 12
MPEC Methods for Bilevel Optimization
Problems

Youngdae Kim, Sven Leyffer, and Todd Munson

Abstract We study optimistic bilevel optimization problems, where we assume
the lower-level problem is convex with a nonempty, compact feasible region and
satisfies a constraint qualification for all possible upper-level decisions. Replacing
the lower-level optimization problem by its first-order conditions results in a
mathematical program with equilibrium constraints (MPEC) that needs to be solved.
We review the relationship between the MPEC and bilevel optimization problem
and then survey the theory, algorithms, and software environments for solving the
MPEC formulations.

Keywords Bilevel optimization · Mathematical program with equilibrium
constraints · Stationarity · Algorithms

12.1 Introduction

Bilevel optimization problems model situations in which a sequential set of
decisions are made: the leader chooses a decision to optimize its objective function,
anticipating the response of the follower, who optimizes its objective function given
the leader’s decision. Mathematically, we have the following optimization problem:

minimize
x,y

f (x, y)

subject to c(x, y) ≥ 0

y ∈ arg min
v
{ g(x, v) subject to d(x, v) ≥ 0 } ,

(12.1.1)

where f and g are the objectives for the leader and follower, respectively, c(x, y) ≥
0 is a joint feasibility constraint, and d(x, y) ≥ 0 defines the feasible actions the

Y. Kim · S. Leyffer · T. Munson (�)
Argonne National Laboratory, Lemont, IL, USA
e-mail: youngdae@anl.gov; leyffer@anl.gov; tmunson@anl.gov

© Springer Nature Switzerland AG 2020
S. Dempe, A. Zemkoho (eds.), Bilevel Optimization, Springer Optimization
and Its Applications 161, https://doi.org/10.1007/978-3-030-52119-6_12

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52119-6_12&domain=pdf
mailto:youngdae@anl.gov
mailto:leyffer@anl.gov
mailto:tmunson@anl.gov
https://doi.org/10.1007/978-3-030-52119-6_12


336 Y. Kim et al.

follower can take. Throughout this survey, we assume all functions are at least
continuously differentiable in all their arguments.

Our survey focuses on optimistic bilevel optimization. Under this assumption, if
the solution set to the lower-level optimization problem is not a singleton, then the
leader chooses the element of the solution set that benefits it the most.

12.1.1 Applications and Illustrative Example

Applications of bilevel optimization problems arise in economics and engineering
domains; see [10, 24, 27–29, 78, 92, 111, 116] and the references therein. As an
example bilevel optimization problem, we consider the moral-hazard problem in
economics [72, 101] that models a contract between a principal and an agent who
works on a project for the principal. The agent exerts effort on the project by taking
an action a ∈ A that maximizes its utility, where A = {a|d(a) ≥ 0} is a convex set,
resulting in output value oq with given probability pq(a) > 0, where q ∈ Q and Q
is a finite set. The principal observes only the output oq and compensates the agent
with cq defined in the contract. The principal wants to design an optimal contract
consisting of a compensation schedule {cq}q∈Q and a recommended action a ∈ A
to maximize its expected utility.

Since the agent’s action is assumed to be neither observable nor forcible by the
principal, feasibility of the contract needs to be defined in order to guarantee the
desired behavior of the agent. Two types of constraints are specified: a participation
constraint and an incentive-compatibility constraint. The participation constraint
says that the agent’s expected utility from accepting the contract must be at least as
good as the utility U it could receive by choosing a different activity. The incentive-
compatibility constraint states that the recommended action should provide enough
incentive, such as maximizing its utility, so that the agent chooses it.

Mathematically, the problem is defined as follows:

maximize
c,a

∑

q∈Q
pq(a)w(oq − cq)

subject to
∑

q∈Q
pq(a)u(cq, a) ≥ U

a ∈ arg max
ã

⎧
⎨

⎩

∑

q∈Q
pq(ã)u(cq, ã) subject to d(ã) ≥ 0

⎫
⎬

⎭
,

where w(·) and u(·, ·) are the utility functions of the principal and the agent,
respectively. The first constraint is the participation constraint, while the second
constraint is the incentive-compatibility constraint. This problem is a bilevel
optimization problem with a joint feasibility constraint.
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12.1.2 Bilevel Optimization Reformulation as an MPEC

We assume throughout that the lower-level problem is convex with a nonempty,
compact feasible region and that it satisfies a constraint qualification for all
feasible upper-level decisions, x. Under these conditions, the Karush-Kuhn-Tucker
(KKT) conditions for the lower-level optimization problem are both necessary and
sufficient, and we can replace the lower-level problem with its KKT conditions to
obtain a mathematical program with equilibrium constraints (MPEC) [82, 90, 98]:

minimize
x,y,λ

f (x, y)

subject to c(x, y) ≥ 0

∇yg(x, y)−∇yd(x, y)λ = 0

0 ≤ λ ⊥ d(x, y) ≥ 0,

(12.1.2)

where⊥ indicates complementarity, in other words, that either λi = 0 or di(x, y) =
0 for all i.

This MPEC reformulation is attractive because it results in a single-level
optimization problem, and we show in the subsequent sections that this class of
problems can be solved successfully. We note that when the lower-level problem is
nonconvex, a solution of the MPEC may be infeasible for the bilevel problem [94,
Example 1.1]. Thus, we consider only the case where the lower-level problem is
convex when using the MPEC formulation.

In the convex case, the relationship between the original bilevel optimization
problem (12.1.1) and the MPEC formulation (12.1.2) is nontrivial, as demonstrated
in [30, 32] for smooth functions and [33] for nonsmooth functions. These papers
show that a global (local) solution to the bilevel optimization problem (12.1.1)
corresponds to a global (local) solution to the MPEC (12.1.2) if the Slater constraint
qualification is satisfied by the lower-level optimization problem. Under the Slater
constraint qualification, a global solution to the MPEC (12.1.2) corresponds to a
global solution to the bilevel optimization problem (12.1.1). A local solution to the
MPEC (12.1.2) may not correspond to a local solution to the bilevel optimization
problem (12.1.1) unless stronger assumptions guaranteeing the uniqueness of
multipliers are made, such as MPEC-LICQ, which is described in Sect. 12.2.2; see
[30, 32] for details.

By using the Fritz-John conditions, rather than assuming a constraint qualifica-
tion and applying the KKT conditions, we can ostensibly weaken the requirements
to produce an MPEC reformulation [2]. However, this approach has similar
theoretical difficulties with the correspondences between local solutions [31], and
we have observed computational difficulties when applying MPEC algorithms to
solve the Fritz-John reformulation.
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12.1.3 MPEC Problems

Generically, we write MPECs such as (12.1.2) as

minimize
z

f (z)

subject to c(z) ≥ 0

0 ≤ G(z) ⊥ H(z) ≥ 0,

(12.1.3)

where z = (x, y, λ) and where we summarize all nonlinear equality and inequality
constraints generically as c(z) ≥ 0.

MPECs are a challenging class of problem because of the presence of the com-
plementarity constraint. The complementarity constraint can be written equivalently
as the nonlinear constraint G(z)T H(z) ≤ 0, in which case (12.1.3) becomes a
standard nonlinear program (NLP). Unfortunately, the resulting problem violates
the Mangasarian-Fromowitz constraint qualification (MFCQ) at any feasible point
[108]. Alternatively, we can reformulate the complementarity constraint as a
disjunction. Unfortunately, the resulting mixed-integer formulation has very weak
relaxations, resulting in large search trees [99].

This survey focuses on practical theory and methods for solving MPECs. In the
next section, we discuss the stationarity concepts and constraint qualifications for
MPECs. In Sect. 12.3, we discuss algorithms for solving MPECs. In Sect. 12.4,
we focus on software environments for specifying and solving bilevel optimization
problems and mathematical programs with equilibrium constraints, before provid-
ing pointers in Sect. 12.5 to related topics we do not cover in this survey.

12.2 MPEC Theory

We now survey stationarity conditions, constraint qualifications, and regularity for
the MPEC (12.1.3). The standard concepts for nonlinear programs need to be
rethought because of the complementarity constraint 0 ≤ G(z) ⊥ H(z) ≥ 0,
especially when the solution to (12.1.3) has a nonempty biactive set, that is, when
both Gj(z

∗) = Hj(z
∗) = 0 for some indices j at the solution z∗.

We assume that the functions in the MPEC are at least continuously differen-
tiable. When the functions are nonsmooth, enhanced M-stationarity conditions and
alternative constraint qualifications have been proposed [119].

12.2.1 Stationarity Conditions

In this section, we define first-order optimality conditions for a local minimizer of
an MPEC and several stationarity concepts. The stationarity concepts may involve
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dual variables, and they collapse to a single stationarity condition when a local
minimizer has an empty biactive set. Unlike standard nonlinear programming, these
concepts may not correspond to the first-order optimality of the MPEC when there
is a nonempty biactive set.

One derivation of stationarity conditions for MPECs is to replace the comple-
mentarity condition with a set of nonlinear inequalities, such as Gj(z)Hj(z) ≤ 0,
and then produce the stationarity conditions for the equivalent nonlinear program:

minimize
z

f (z)

subject to ci(z) ≥ 0 ∀i = 1, . . . ,m

Gj(z) ≥ 0,Hj(z) ≥ 0,Gj(z)Hj (z) ≤ 0 ∀j = 1, . . . , p,
(12.2.1)

where z ∈ R
n. An alternative formulation as an NLP is obtained by replacing

Gj(z)Hj(z) ≤ 0 by G(z)T H(z) ≤ 0. Unfortunately, (12.2.1) violates the MFCQ at
any feasible point [108] because the constraint Gj(z)Hj (z) ≤ 0 does not have an
interior. Hence, the KKT conditions may not be directly applicable to (12.2.1).

Instead, stationarity concepts are derived from several different approaches: local
analysis of the NLPs associated with an MPEC [90, 108]; Clarke’s nonsmooth
analysis to the complementarity constraints by replacing them with the min
function [23, 108]; and Mordukhovich’s generalized differential calculus applied
to the generalized normal cone [97]. The first method results in B-, weak-, and
strong-stationarity concepts. The second and the third lead to C- and M-stationarity,
respectively. These stationarity concepts coincide with each other when the solution
has an empty biactive set.

We begin by defining the biactive index set D (or denoted by D(z) to emphasize
its dependency on z) and its partition D01 and D10 such that

D := {j | Gj(z) = Hj(z) = 0}, D = D01 ∪D10,D01 ∩D10 = ∅. (12.2.2)

If we define an NLPD01,D10

minimize
z

f (z)

subject to ci(z) ≥ 0 ∀i = 1, . . . ,m

Gj(z) = 0 ∀j : Gj (z) = 0,Hj (z) > 0

Hj(z) = 0 ∀j : Gj (z) > 0,Hj (z) = 0

Gj(z) = 0,Hj (z) ≥ 0 ∀j ∈ D01

Gj(z) ≥ 0,Hj(z) = 0 ∀j ∈ D10,

(12.2.3)
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Fig. 12.1 Feasible regions of the NLPs associated with a complementarity constraint 0 ≤
Gj(z) ⊥ Hj (z) ≥ 0 for j ∈ D. (a) Tightened NLP. (b) NLPD01 . (c) NLPD10 . (d) Relaxed NLP

then z∗ is a local solution to the MPEC if and only if z∗ is a local solution for
all the associated NLPs indexed by (D01,D10). The number of NLPs that need
to be checked is exponential in the number of biactive indices, which can be
computationally intractable.

Like many other mathematical programs, the geometric first-order optimality
conditions are defined in terms of the tangent cone. A feasible point z∗ is called
a geometric Bouligand- or B-stationary point if ∇f (z∗)T d ≥ 0,∀d ∈ TMPEC(z

∗),
where the tangent cone T (z∗) to a feasible region F at z∗ ∈ F is defined as

T (z∗) :=
{
d | d = lim

tk↓0

zk − z∗

tk
for some {zk}, zk → z∗, zk ∈ F ,∀k

}
.

(12.2.4)

To facilitate the analysis of the tangent cone TMPEC(z) at z ∈ FMPEC, we subdivide
it into a set of tangent cones of the associated NLPs:

TMPEC(z) :=
⋃

(D01,D10)

TNLPD01,D10
(z). (12.2.5)

Therefore, z∗ is a geometric B-stationary point if and only if it is a geometric B-
stationary point for all of its associated NLPs indexed by (D01,D10).

Additionally, two more NLPs, tightened [108] and relaxed [48, 108] NLPs, are
defined by replacing the last two conditions of (12.2.3) with a single condition:
tightened NLP (TNLP) is defined by setting Gj(z) = Hj(z) = 0 for all j ∈ D,
whereas relaxed NLP (RNLP) relaxes the feasible region by defining Gj(z) ≥
0,Hj(z) ≥ 0 for all j ∈ D. These NLPs provide a foundation to define constraint
qualifications for MPECs and strong stationarity.

Figure 12.1 depicts the feasible regions of the NLPs associated with a comple-
mentarity constraint 0 ≤ Gj (z) ⊥ Hj(z) ≥ 0 for j ∈ D. One can easily verify
that

TTNLP(z) ⊆ TMPEC(z) ⊆ TRNLP(z). (12.2.6)
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When D = ∅, the equality holds throughout (12.2.6), and lower-level strict
complementarity [104] holds. From (12.2.6), if z∗ is a local minimizer of RNLP(z∗),
then z∗ is a local minimizer of the MPEC, but not vice versa [108].

Algebraically, B-stationarity is defined by using a linear program with equi-
librium constraints (LPEC), an MPEC with all the functions being linear, over a
linearized cone. For a feasible z∗, if d = 0 is a solution to the following LPEC, then
z∗ is called a B-stationary (or an algebraic B-stationary) point:

minimize
z

∇f (z∗)T d

subject to d ∈ T lin
MPEC(z

∗),
(12.2.7)

where

T lin
MPEC(z

∗) := {
d | ∇ci(z∗)T d ≥ 0, ∀i : ci(z∗) = 0,

∇Gj(z
∗)T d = 0, ∀j : Gj(z

∗) = 0,Hj(z
∗) > 0,

∇Hj(z
∗)T d = 0, ∀j : Gj(z

∗) > 0,Hj (z
∗) = 0,

0 ≤ ∇Gj(z
∗)T d ⊥ ∇Hj(z

∗)T d ≥ 0, ∀j ∈ D(z∗)
}
.

(12.2.8)

As with geometric B-stationarity, B-stationarity is difficult to check because it
involves the solution of an LPEC that may require the solution of an exponential
number of linear programs, unless all these linear programs share a common
multiplier vector. Such a common multiplier vector exists if MPEC-LICQ holds,
which we define in Sect. 12.2.2.

Since TMPEC(z
∗) ⊆ T lin

MPEC(z
∗) [42], B-stationarity implies geometric B-

stationarity, but not vice versa. A similar equivalence (12.2.5) and inclusion
relationship (12.2.6) hold between the linearized cones of its associated NLPs [42].

The next important stationarity concept is strong stationarity.

Definition 12.2.1 A point z∗ is called strongly stationary if there exist multipliers
satisfying the stationarity of the RNLP. �
Note that if ν̂1j and ν̂2j are multipliers for Gj(z

∗) and Hj(z
∗), respectively, then

ν̂1j , ν̂2j ≥ 0 for j ∈ D(z∗). Strong stationarity implies B-stationarity due to (12.2.6)
and the inclusion relationship between the tangent and linearized cones. Equivalence
of stationarity between (12.2.1) and the RNLP was shown in [5, 48, 103].

Other stationarity conditions differ from strong stationarity in that the conditions
on the sign of the multipliers, ν̂1j and ν̂2j , are relaxed when Gj(z

∗) = Hj(z
∗) = 0.

One can easily associate these stationarity concepts with the stationarity conditions
for one of its associated NLPs. If we define the biactive set D∗ := D(z∗), we can
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local minimizer
geometric
B-stationarity S-stationarity

extended M-stationarity (algebraic) B-stationarity

M-stationarity

C-stationarity A-stationarity

W-stationarity

MPEC-LICQ

MPEC-GCQ

MPEC-MFCQ

∩

Fig. 12.2 Relationships between stationarity concepts where M-stationarity is the intersection of
C- and A-stationarity

state these “stationarity” concepts by replacing the sign of the multipliers in the set
D∗ as follows:

• z∗ is called weak stationary if there are no sign restrictions on ν̂1j and ν̂2j ,∀j ∈
D∗.

• z∗ is called A-stationary if ν̂1j ≥ 0 or ν̂2j ≥ 0,∀j ∈ D∗.
• z∗ is called C-stationary if ν̂1j ν̂2j ≥ 0,∀j ∈ D∗.
• z∗ is called M-stationary if either ν̂1j > 0 and ν̂2j > 0 or ν̂1j ν̂2j = 0,∀j ∈ D∗.

Of particular note is M-stationarity, which implies that if z∗ is M-stationary,
then z∗ satisfies the first-order optimality conditions for at least one of the
nonlinear programs (12.2.3). This condition seems to be the best one can achieve
without exploring the combinatorial number of possible partitions for the biactive
constraints. The extended M-stationarity in [56] extends the notion of M-stationarity
in a way that it holds at z∗ when M-stationarity is satisfied for each critical
direction d defined by d ∈ T lin

MPEC(z
∗) and ∇f (z∗)T d ≤ 0, possibly with different

multipliers. Thus, if z∗ is extended M-stationary, then z∗ satisfies the first-order
optimality conditions for all the associated NLPs. Hence it is also B-stationary.
When a constraint qualification is satisfied, B-stationarity implies extended M-
stationarity. Figure 12.2 summarizes relationships between stationarity concepts.

As in the stationarity concepts, the second-order sufficient conditions (SOSCs)
of an MPEC are defined in terms of the associated NLPs. In particular, SOSC is
defined at a strongly stationary point so its multipliers work for all the associated
NLPs. Depending on the underlying critical cone, we have two different SOSCs:
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RNLP-SOSC and MPEC-SOSC. In Definition 12.2.2, the Lagrangian L and the
critical cone for the RNLP are defined as follows:

L(z, λ, ν̂1, ν̂2) := f (z) −
∑

i∈E∪I
ci(z)λi −

p∑

j=1

Gj(z)ν̂1j −
p∑

j=1

Hj(z)ν̂2j ,

CRNLP(z
∗) := {d | ∇ci(z∗)T d = 0, ∀i : λ∗i > 0,

∇ci(z∗)T d ≥ 0, ∀i : ci(z∗) = 0, λ∗i = 0,

∇Gj(z
∗)T d = 0, ∀j : Gj(z

∗) = 0,Hj (z
∗) > 0,

∇Hj(z
∗)T d = 0, ∀j : Gj(z

∗) > 0,Hj(z
∗) = 0,

∇Gj(z
∗)T d = 0, ∀j ∈ D(z∗), ν̂∗1j > 0,

∇Gj(z
∗)T d ≥ 0, ∀j ∈ D(z∗), ν̂∗1j = 0,

∇Hj(z
∗)T d = 0, ∀j ∈ D(z∗), ν̂∗2j > 0,

∇Hj(z
∗)T d ≥ 0, ∀j ∈ D(z∗), ν̂∗2j = 0

}
.

(12.2.9)

Definition 12.2.2 RNLP-SOSC is satisfied at a strongly stationary point z∗ with its
multipliers (λ∗, ν̂∗1 , ν̂∗2 ) if there exists a constant ω > 0 such that

dT∇2
zzL(z∗, λ∗, ν̂∗1 , ν̂∗2 )d ≥ ω for all d �= 0, d ∈ CRNLP(z

∗).

If the conditions hold for CMPEC(z
∗) instead of CRNLP(z

∗), where CMPEC(z
∗) :=

CRNLP(z
∗)∩{d | min(∇Gj(z

∗)T d,∇Hj(z
∗)T d) = 0,∀j ∈ D(z∗), ν̂∗1j = ν̂∗2j = 0},

then we say that MPEC-SOSC is satisfied. �
We note that d ∈ CMPEC(z

∗) if and only if it is a critical direction of any of the
NLPD01,D10(z

∗)’s at z∗ [104, 108]. Thus, MPEC-SOSC holds at z∗ if and only if
SOSC is satisfied at z∗ for all of its associated NLPs, which leads to the conclusion
that z∗ is a strict local minimizer of the MPEC.

In a similar fashion, we define strong SOSC (SSOSC) for RNLPs. Using RNLP-
SSOSC, we can obtain stability results of MPECs by applying the stability theory
of nonlinear programs [77, 105] to the RNLP. The stability property can be used
to show the uniqueness of a solution of regularized NLPs to solve the MPEC as in
Sect. 12.3. A critical cone CS

RNLP(z
∗) is used instead of CRNLP(z

∗), which expands it
by removing the feasible directions for inequalities associated with zero multipliers:

CS
RNLP(z

∗) := {
d | ∇ci(z∗)T d = 0, ∀i : λ∗i > 0,

∇Gj(z
∗)T d = 0, ∀j : ν̂∗1j �= 0,

∇Hj(z
∗)T d = 0, ∀j : ν̂∗2j �= 0

}
.

(12.2.10)
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Definition 12.2.3 RNLP-SSOSC is satisfied at a strongly stationary point z∗ with
its multipliers (λ∗, ν̂∗1 , ν̂∗2 ) if there exists a constant ω > 0 such that

dT∇2
zzL(z∗, λ∗, ν̂∗1 , ν̂∗2 )d ≥ ω for all d �= 0, d ∈ CS

RNLP(z
∗).

�
By definition, we have an inclusion relationship between SOSCs: RNLP-SSOSC

⇒ RNLP-SOSC ⇒ MPEC-SOSC. Reverse directions do not hold in general; an
example was presented in [108] showing that MPEC-SOSC � RNLP-SOSC.

12.2.2 Constraint Qualifications and Regularity Assumptions

Constraint qualifications (CQs) for MPECs guarantee the existence of multipliers
for the stationarity conditions to hold. They are an extension of the corresponding
CQs for the tightened NLP. Among many CQs in the literature, we have selected
five. Three of them are frequently assumed in proving stationarity properties of a
limit point of algorithms for solving MPECs described in Sect. 12.3. The remaining
two are conceptual and much weaker than the first ones, but they can be used to
prove that every local minimizer is at least M-stationary.

We start with the first three CQs. Because of the space limit, we do not specify the
definition of the CQs in the context of NLPs. In Definition 12.2.4, LICQ denotes the
linear independence constraint qualification, and CPLD represents constant positive
linear dependence [102].

Definition 12.2.4 An MPEC (12.1.2) is said to satisfy MPEC-LICQ (MPEC-
MFCQ, MPEC-CPLD) at a feasible point z if the corresponding tightened NLP
satisfies LICQ (MFCQ, CPLD) at z. �
We note that MPEC-LICQ holds at a feasible point z if and only if all of its
associated NLPs satisfy LICQ at z. This statement is true because active constraints
at any feasible point do not change between the associated NLPs. For example,
MPEC-LICQ holds if and only if LICQ holds for the relaxed NLP.

Under MPEC-LICQ, B-stationarity is equivalent to strong stationarity [108]
since the multipliers are unique, thus having the same nonnegative signs for a
biactive set among the associated NLPs.

The above CQs provide sufficient conditions for the following much weaker CQs
to hold. These CQs are in general difficult to verify but provide insight into what
stationarity we can expect for a local minimizer. In the following definition, ACQ
and GCQ denote Abadie and Guignard constraint qualification, respectively, and for
a cone C its polar is defined by C◦ := {y | 〈y, x〉 ≤ 0,∀x ∈ C}.
Definition 12.2.5 The MPEC (12.1.3) is said to satisfy MPEC-ACQ (MPEC-GCQ)
at a feasible point z if TMPEC(z) = T lin

MPEC(z) (TMPEC(z)
◦ = T lin

MPEC(z)
◦). �
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Although MPEC-ACQ or MPEC-GCQ holds, we cannot directly apply the Farkas
lemma to show the existence of multipliers because the linearized cone may not be
a polyhedral convex set. However, M-stationarity is shown to hold for each local
minimizer under MPEC-GCQ by using the limiting normal cones and separating
the complementarity constraints from other constraints [43, 56].

Local preservation of constraint qualifications has been studied in [20], which
shows that for many MPEC constraint qualifications, if z∗ satisfies an MPEC
constraint qualification, then all feasible points in a neighborhood of z∗ also satisfy
that MPEC constraint qualification.

As with standard nonlinear programming, a similar implication holds between
CQs for MPECs: MPEC-LICQ⇒MPEC-MFCQ⇒MPEC-CPLD⇒MPEC-ACQ
⇒MPEC-GCQ.

12.3 Solution Approaches

In this section, we classify and outline solution methods for MPECs and summarize
their convergence results. Solution methods for MPECs such as (12.1.3) can be
categorized into three broad classes:

1. Nonlinear programming methods that rewrite the complementarity constraint
in (12.1.3) as a nonlinear set of inequalities, such as

G(z) ≥ 0, H(z) ≥ 0, and G(z)T H(z) ≤ 0, (12.3.1)

and then apply NLP techniques; see, for example, [26, 45, 74, 87, 103, 104, 109].
Unfortunately, convergence properties are generally weak for this class of
methods, typically resulting in C-stationary limits unless strong assumptions are
made on the limit point.

2. Combinatorial methods that tackle the combinatorial nature of the disjunctive
complementarity constraint directly. Popular approaches include pivoting meth-
ods [40], branch-and-cut methods [8, 9, 11], and active-set methods [57, 84, 88].
This class of methods has the strongest convergence properties.

3. Implicit methods that assume that the complementarity constraint has a unique
solution for every upper-level choice of variables. For example, if we assume that
the lower-level problem has a unique solution, then we can express the lower-
level variables y = y(x) in (12.1.2), and use the KKT conditions to eliminate
(y(x), λ(x)), resulting in a reduced nonsmooth problem

minimize
x

f (x, y(x)) subject to c(x, y(x)) ≥ 0

that can be solved by using methods for nonsmooth optimization. See the
monograph [98] and the references [63, 118] for more details.

In this survey, we do not discuss implicit methods further and instead concentrate
on the first two classes of methods.
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12.3.1 NLP Methods for MPECs

NLP methods are attractive because they allow us to leverage powerful numerical
solvers. Unfortunately, the system (12.3.1) violates a standard stability assumption
for NLP at any feasible point. In [108], the authors show that (12.3.1) violates
MFCQ at any feasible point. Other nonlinear reformulations of the complementarity
constraint (12.3.1) are possible. In [46, 83], the authors experiment with a range
of reformulations using different nonlinear complementarity functions, but they
observe that the formulation (12.3.1) is the most efficient format in the context of
sequential quadratic programming (SQP) methods. We also note that reformulations
that use nonlinear equality constraints such as G(z)T H(z) = 0 are not as efficient,
because the redundant lower bound can slow convergence.

Because traditional analyses of NLP solvers rely heavily on a constraint qualifi-
cation, it is remarkable that convergence results can still be proved. Here, we briefly
review how SQP methods can be shown to converge quadratically for MPECs,
provided that we reformulate the nonlinear complementarity constraint (12.3.1)
using slacks as

s1 = G(z), s2 = H(z) ≥ 0, s1 ≥ 0, s2 ≥ 0, and sT1 s2 ≤ 0. (12.3.2)

One can show that close to a strongly stationary point that satisfies MPEC-LICQ and
RNLP-SOSC, an SQP method applied to this reformulation converges quadratically
to a strongly stationary point, provided that all QP approximations remain feasible.
The authors [48] show that these assumptions are difficult to relax, and they give
a counterexample that shows that the slacks are necessary for convergence. One
undesirable assumption is that all QP approximations must remain feasible, but one
can show that this assumption holds if the lower-level problem satisfies a certain
mixed-P property; see, for example, [90]. In practice [45], a simple heuristic is
implemented that relaxes the linearization of the complementarity constraint.

In general, the failure of MFCQ motivates the use of regularizations within NLP
methods, such as penalization or relaxation of the complementarity constraint, and
these two classes of methods are discussed next.

12.3.1.1 Relaxation-Based NLP Methods

An attractive way to solve MPECs is to relax the complementarity constraint
in (12.3.1) by using a positive relaxation parameter, t > 0:

minimize
z,u,v

f (z)

subject to ci(z) ≥ 0

Gj(z) ≥ 0,Hj (z) ≥ 0,Gj (z)Hj (z) ≤ t ∀j = 1, . . . , p.
(12.3.3)
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This NLP then generally satisfies MFCQ for any t > 0, and the main idea is
to (approximately) solve these NLPs for a sequence of regularization parameters,
tk ↘ 0. This approach has been studied from a theoretical perspective in [104, 109].
Under the unpractical assumption that each regularized NLP is solved exactly, the
authors show convergence to C-stationary points.

More recently, interior-point methods based on the relaxation (12.3.3) have
been proposed [87, 103] in which the parameter t is chosen to be proportional
to the barrier parameter and is updated at the end of each (approximate) barrier
subproblem solve. Numerical difficulties may arise when the relaxation parameter
becomes small, because the limiting feasible set of the regularized NLP (12.3.3) has
no strict interior.

An alternative regularization scheme is proposed in [74], based on the reformu-
lation of (12.3.1) as

Gj(z) ≥ 0, Hj (z) ≥ 0, and φ(Gj (z),Hj (z), t) ≤ 0, (12.3.4)

where

φ(a, b, t) =
{
ab if a + b ≥ t

− 1
2 (a

2 + b2) if a + b < t.

In [74], convergence properties are proved when the nonlinear program is solved
inexactly, as one would find in practice. The authors show that typically, but
not always, methods converge to M-stationary points with exact NLP solves but
converge to only C-stationary points with inexact NLP solves. Other regularization
methods have been proposed, and a good theoretical and numerical comparison
can be found in [64], with later methods in [73]. Under suitable conditions, these
methods can be shown to find M- or C-stationary points for the MPEC when the
nonlinear program is solved exactly.

An interesting two-sided relaxation scheme is proposed in [26]. The scheme
is motivated by the observation that the complementarity constraint in the slack
formulation (12.3.2) can be interpreted as a pair of bounds, sij ≥ 0, or, sij ≤ 0, and
strong stationarity requires a multiplier for at most one of these bounds in each pair.
The authors propose a strictly feasible two-sided relaxation of the form

s1j ≥ −δ1j , s2j ≥ −δ2j , s1j s2j ≤ δcj .

By using the multiplier information from inexact subproblem solves, the authors
decide which parameter δ1, δ2, or δc needs to be driven to zero for each complemen-
tarity pair. The authors propose an interior-point algorithm and show convergence to
C-stationary points, local superlinear convergence, and identification of the optimal
active set under MPEC-LICQ and RNLP-SOSC conditions.
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12.3.1.2 Penalization-Based NLP Methods

An alternative regularization approach is based on penalty methods. Both exact
penalty functions and augmented Lagrangian methods have been proposed for
solving MPECs. The penalty approach for MPECs dates back to [41] and penalizes
the complementarity constraint in the objective function, after introducing slacks:

minimize
z,u,v

f (z)+ πsT1 s2

subject to ci(z) ≥ 0 ∀i = 1, . . . ,m

Gj(z)− s1j = 0,Hj(z)− s2j = 0 ∀j = 1, . . . , p

s2 ≥ 0, s1 ≥ 0

(12.3.5)

for positive penalty parameter π . If π is chosen large enough, the solution of the
MPEC can be recast as the minimization of a single penalty function problem. The
appropriate value of π is unknown in advance, however, and must be estimated
during the course of the minimization. In general, if limit points are only B-
stationary and not strongly stationary, then the penalty parameter, π , must diverge
to infinity, and this penalization is not exact.

This approach was first studied by [3] in the context of active-set SQP methods,
although it had been used before to solve engineering problems [41]. It has been
adopted as a heuristic to solve MPECs with interior-point methods in LOQO by
[15], who present very good numerical results. A more general class of exact
penalty functions was analyzed by [66], who derive global convergence results for a
sequence of penalty problems that are solved exactly, while the author in [4] derives
similar global results in the context of inexact subproblem solves.

In [85], the authors study a general interior-point method for solving (12.3.5).
Each barrier subproblem is solved approximately to a tolerance εk that is related to
the barrier parameter, μk . Under strict complementarity, MPEC-LICQ, and RNLP-
SOSC, the authors show convergence to C-stationary points that are strongly sta-
tionary if the product of MPEC-multipliers and primal variables remains bounded.
Superlinear convergence can be shown, provided that the tolerance and barrier
parameter satisfy the conditions

(ε + μ)2

ε
→ 0,

(ε + μ)2

μ
→ 0, and

μ

ε
→ 0.

A related approach to penalty functions is the elastic mode that is implemented
in SNOPT [58, 59]. The elastic approach [6] combines both a relaxation of the
constraints and penalization of the complementarity conditions to solve a sequence
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of optimization problems

minimize
z,u,v,t

f (z)+ π(t + sT1 s2)

subject to ci(z) ≥ −t ∀i = 1, . . . .m

− t ≤ Gj(z)− s1j ≤ t,−t ≤ Hj(z)− s2j ≤ t ∀j = 1, . . . , p

s1 ≥ 0, s2 ≥ 0, 0 ≤ t ≤ t̄ ,

where t is a variable with upper bound t̄ that relaxes some of the constraints and
π is the penalty term on both the constraint relaxation and the complementarity
conditions. This problem can be interpreted as a mixture of �∞ and �1 penalties.
The problem is solved for a sequence of π that may need to converge to infinity.
Under suitable conditions such as MPEC-LICQ, the method is shown to converge
to M-stationary points, even with inexact NLP solves.

An alternative to the �1 penalty-function approaches presented above are aug-
mented Lagrangian approaches, which have been adapted to MPECs [51, 69].
These approaches are related to stabilized SQP methods and work by imposing an
artificial upper bound on the multiplier. Under MPEC-LICQ one can show that if the
sequence of multipliers has a bounded subsequence, then the limit point is strongly
stationary. Otherwise, it is only C-stationary.

Remark 12.3.1 NLP methods for MPECs currently provide the most practical
approach to solving MPECs, and form the basis for the most efficient and robust
software packages; see Sect. 12.4. In general, however, NLP methods may converge
only slowly to a solution or fail to converge if the limit point is not strongly
stationary. �

The result in [74] seems to show that the best we can hope for from NLP
solvers is convergence to C-stationary points. Unfortunately, these points may
include limit points at which first-order strict descent directions exist, and which
do not correspond to stationary points in the classical sense. To the best of our
knowledge, the only way around this issue is to tackle the combinatorial nature of
the complementarity constraint directly, and in the next section we describe methods
that do so.

12.3.2 Combinatorial Methods for MPECs

Despite the success of NLP solvers in tackling a wide range of MPECs, for some
classes of problems these solvers still fail. In particular, problems whose stationary
points are B-stationary but not strongly stationary can cause NLP solvers to either
fail or exhibit slow convergence. Unfortunately, this behavior also occurs when other
pathological situations occur (such as convergence to C- or M-stationary points that
are not strongly stationary), and it is not easily diagnosed or remedied.
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This observation motivates the development of more robust methods for MPECs
that guarantee convergence to B-stationary points. Methods with this property must
resolve the combinatorial complexity of the complementarity constraint, and we
discuss these methods here.

Specialized methods for solving linear programs with linear equilibrium con-
straints (LPECs), in which all the functions, f (z), c(z),G(z), and H(z), are linear,
include methods based on disjunction for computing global solutions [11, 60,
67, 68], pivot-based methods for computing B-stationary points [40], and penalty
methods based on a difference of convex functions formulation [70]. Global
optimization methods for problems with a convex quadratic objective function
and linear complementarity constraints are found in [8]. Algorithms for problems
with a nonlinear objective function and linear complementarity constraints include
combinatorial [9], active-set [52], sequential quadratic programming [88], and
sequential linear programming [57] methods.

One early general method for obtaining B-stationary points is the branch-and-
bound method proposed in [11]. It starts by solving a relaxation of (12.1.3) obtained
by relaxing the complementarity between G(z) and H(z). If the solution satisfies
G(z)T H(z) = 0, then it is a B-stationary point. Otherwise, there exists an index
j such that Gj(z)Hj (z) > 0, and we branch on this disjunction by creating two
new child problems that set Gj(z) = 0 and Hj(z) = 0, respectively. This process
is then repeated, creating a branch-and-bound tree. A branch-and-cut approach is
described in [67] for solving LPECs. The algorithm is based on equivalent mixed-
integer reformulations and the application of Benders decomposition [14] with
linear programming (LP) relaxations. In contrast, the authors in [40] generalize LP
pivoting techniques to locally solve LPECs. The authors prove convergence to a
B-stationary point, but unlike [67] do not obtain globally optimal solutions.

The SQPEC approach extends SQP methods by taking special care of the com-
plementarity constraint [110]. This method minimizes a quadratic approximation
of the Lagrangian subject to a linearized feasible set and a linearized form of
the complementarity constraint. Unfortunately, this method can converge to M-
stationary points, rather than the desired B-stationary points, as the following
counterexample shows [84]:

minimize
x,y

(x − 1)2 + y3 + y2 subject to 0 ≤ x ⊥ y ≥ 0. (12.3.6)

Starting from (x0, y0) = (0, t) for 0 < t < 1, SQPEC generates iterates

(x(k+1), y(k+1)) =
(

0,
3y(k)2

6y(k) + 2

)

that converge quadratically to the M-stationary point (0, 0), at which we can easily
find a descent direction (1, 0) and which is hence not B-stationary.

An alternative class of methods to SQPEC methods that provide convergence to
B-stationary points is extensions of SLQP methods to MPECs; see, for example,
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[16, 17, 21, 47]. The method is motivated by considering the linearized tangent
cone, T lin

MPEC(z
∗) in (12.2.8) as a direction-finding problem. This method solves

a sequence of LPECs inside a trust region [84] with radius � around the current
point z:

LPEC(z,�)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
d

∇f (z)T d

subject to c(z)+∇c(z)T d ≥ 0,
0 ≤ G(z)+ ∇G(z)T d ⊥ H(z)+∇H(z)T d ≥ 0,
‖d‖ ≤ �.

The LPEC need be solved only locally, and the pivoting method of [40] is a practical
and efficient method of solving the LPEC. Given a solution d �= 0, we find the active
sets that are predicted by the LPEC,

Ac(z+ d) := {
i : ci(z)+∇ci(z)T d = 0

}
(12.3.7)

AG(z+ d) := {
j : Gj (z)+∇Gj(z)

T d = 0
}

(12.3.8)

AH (z+ d) := {
j : Hj(z)+ ∇Hj(z)

T d = 0
}
, (12.3.9)

and solve the corresponding equality-constrained quadratic program (EQP):

EQP(z+ d)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
d

∇f (z)T d + 1
2d

T∇2L(z)d

subject to ci(z)+ ai(z)
T d = 0, ∀i ∈ Ac(z + d)

Gj (z)+∇Gj(z)
T d = 0, ∀j ∈ AG(z+ d)

Hj (z)+ ∇Hj(z)
T d = 0, ∀j ∈ AH (z+ d).

We note that EQP(z + d) can be solved as a linear system of equations. The
goal of the EQP step is to provide fast convergence near a local minimum. Global
convergence is promoted through the use of a three-dimensional filter that separates
the complementarity error and the nonlinear infeasibility.

The SLPEC-EQP method has an important advantage over NLP reformulations:
the solution of the LPEC matches exactly the definition of B-stationarity, and we
therefore always work with the correct tangent cone. In particular, if the zero vector
solves the LPEC, then we can conclude that the current point is B-stationary. To
our knowledge, this algorithm is the only one that guarantees global convergence to
B-stationary points.

12.3.3 Globally Optimal Methods for MPECs

The methods discussed above typically guarantee convergence to a stationary point
at best. They do not guarantee convergence to a global minimum, even if the
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problem functions, f, c,G, and H are convex, because the feasible set of even the
simplest complementarity constraint, 0 ≤ x1 ⊥ x2 ≥ 0, is nonconvex.

Here, we briefly summarize existing results for obtaining global solutions to
certain classes of MPECs. We limit our discussion to cases where the lower-level
follower’s problems is convex. One approach to obtaining global solutions would be
to simply apply global optimization techniques to the nonlinear program (12.2.1).
However, state-of-the-art solvers such as BARON [107, 115] or Couenne [12]
require finite bounds on all variables to construct valid underestimators, and it is
not clear that such bounds are easy to obtain on the multipliers. If we assume that
such bounds exist, then we can apply BARON and Couenne. Unfortunately, the
effectiveness of these solvers is limited to a few dozen variables at most.

If the MPEC has some special structure, then we can employ formulations and
methods that guarantee convergence to a global minimum. One example are LPECs
(or QPECs), when f (z) is a linear (or a convex quadratic function), c(z) = Az − b

is an affine function, and the complementarity constraint is affine, i.e. 0 ≤ G(z) =
Mz− c ⊥ Nz− d = H(z) ≥ 0. Then it is possible to model the complementarity
condition using binary variables, y ∈ {0, 1}p, as

#y ≥ Mz− c ≥ 0 and (1−#)y ≥ Nz− d ≥ 0,

where # > 0 is an upper bound on Mz − c and Nz − d that can be computed
by solving an LP. Unfortunately, the resulting mixed-integer linear program often
has a very weak continuous relaxation, resulting in massive branch-and-cut trees.
Moreover, numerical issues can cause both Mz − c and Nz − d to be positive. In
[8, 67], the authors extend a logical Benders decomposition technique [65] to this
class of MPECs that avoids these pitfalls. The approach is based on a minimax
principle and derives valid inequalities from LP relaxations. These approaches
easily generalize to MPECs with more general (convex) f (x) and c(x).

12.4 Software Environments

Several modeling languages and solvers support bilevel optimization problems and
MPECs. Table 12.1 presents a list of them. GAMS/EMP [53] and Pyomo [62]
directly support bilevel optimization problems—they provide constructs that
allow users to formulate bilevel optimization problems in their natural algebraic
form (12.1.1) without applying any reformulations. GAMS introduced an extended
mathematical programming (EMP) framework in which users can annotate the
variables, functions, and constraints of a model to specify to which level, either
upper or lower, they belong. In this case, a single monolithic model is defined, and
annotations are provided via a separate text file, called the empinfo file. Pyomo
takes a different approach by requiring users to define the lower-level problem
explicitly as a model using their Submodel() construct and to link it to the upper-
level model. In this way, not only bilevel optimization problems, but also multilevel
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Table 12.1 Modeling languages and solvers that support bilevel or MPECs

Modeling language Solver

Bilevel MPECs Bilevel MPECs

GAMS/EMP [53] AMPL [50] None FilterMPEC [44]

Pyomo [62] AIMMS [106] KNITRO [7]

GAMS [55] NLPEC [55]

Julia/JuMP [79] Pyomo [61]

Pyomo [61]

problems [92] can be specified by defining submodels recursively and linking them
together.

In contrast to bilevel optimization problems, most modeling languages sup-
port MPECs by providing a dedicated construct to take complementarity con-
straints in their natural form. AMPL [50] and Julia [79] provide complements
and @complements keywords, respectively, GAMS [55] has a dot . construct,
AIMMS [106] defines ComplementarityVariables, and Pyomo [61] defines
Complementarity along with a complements expression. All these con-
structs enable complementarity constraints to be written as first-class expressions
so that users can seamlessly use them in their models.

Regarding solvers, to the best of our knowledge, no dedicated, robust, and
large-scale solvers are available for bilevel optimization problems at this time. The
aforementioned modeling languages for bilevel optimization problems transform
these problems into a computationally tractable formulation as an MPEC or gener-
alized disjunctive program and call the associated solvers. Bilevel-specific features,
such as optimal value functions, are not exploited in these solution procedures.

Although there are some recent efforts [75, 76, 94] exploiting the value function
to globally solve the bilevel problem (12.1.1) using a branch-and-bound scheme,
even in the case when the lower-level problem is nonconvex, these methods require
repeated global solutions of nonconvex subproblems to compute the lower bounds.
This requirement makes these methods unsuitable for large-scale bilevel problems.
In particular, the requirement for global optimality may not be relaxed easily as
discussed in [75].

In the case of MPECs, a few solvers are available. Most reformulate the MPECs
into nonlinear or mixed-integer programming problems by applying relaxation,
penalization, or disjunction techniques to the complementarity constraints. Fil-
terMPEC [44] and KNITRO [7] transform the given problem into an NLP and
solve it using their own algorithms by taking special care with the complementarity
constraints. NLPEC [55] and Pyomo [61] are metasolvers that apply a reformulation
and invoke an NLP solver, rather than supplying their own NLP solver. In contrast to
the NLP-based approaches, Pyomo additionally provides a disjunctive programming
method that formulates the MPEC as a mixed-integer nonlinear program. We believe
that a combination of modeling languages for bilevel programs and MPEC solvers is
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the most promising and viable approach for quickly prototyping and solving bilevel
problems when the lower-level problem is convex.

A number of bilevel optimization problems and MPECs are available online.
The GAMS/EMP library [54] contains examples of bilevel optimization problems
written by using the EMP framework. GAMS also provides MPEC examples [38].
The MacMPEC collection [81] is a set of MPEC examples written in AMPL that
are frequently used to test performance of MPEC algorithms. QPECgen [71] gen-
erates MPEC examples with quadratic objectives and affine variational inequality
constraints for lower-level problems.

12.5 Extensions

Our focus in this survey is on the optimistic bilevel optimization problem where
the lower-level optimization problem is convex for all upper-level decisions. This
approach contrasts with the pessimistic bilevel optimization problem [34, 35, 89,
117] where the leader plans for the worst by choosing an element of the solution set
leading to the worst outcome and results in a problem of the form

minimize
x,θ

θ

subject to f (x, y) ≤ θ ∀ y ∈ Y (x)

c(x, y) ≥ 0 ∀ y ∈ Y (x),

(12.5.1)

where Y (x) is the solution set of the lower-level optimization problem parameter-
ized by x. This formulation is consistent with robust optimization problems [13]
with a complicated uncertainty set Y (x). The two robustness constraints determine
the worst objective function value and guarantee satisfaction of the joint feasibility
constraint, respectively.

If the lower-level optimization problem is nonconvex, then the global solution
of the bilevel optimization problem (12.1.1) may not even be a stationary point for
the MPEC reformulation (12.1.2) because the MPEC reformulation is a relaxation
of (12.1.1) in these cases; see [93, Example 1]. In the nonconvex case, special
algorithms can be devised by a two-layer bounding scheme: bounding the optimal
value function of the lower-level problem and computing lower and upper bounds
of the upper-level problem, see [75, 76, 94]. These bounds need to be refined as the
algorithm progresses, to ensure convergence to a global solution.

Many other extensions of bilevel optimization problems were not covered in this
survey, including problems with lower-level second-order cone programs [18, 19],
stochastic bilevel optimization [1, 22], discrete bilevel optimization with integer
variables in both the upper- and lower-level decisions [36, 96], multiobjective bilevel
optimization [25, 39, 91, 100], and multilevel optimization problems [80, 86, 92,
116]. Alternatives to the MPEC reformulations also exist that we did not cover in
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this survey; see [37, 49, 95, 112–114] for semi-infinite reformulations and [32, 120]
for nonsmooth reformulations based on the value function.
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Chapter 13
Approximate Bilevel Optimization
with Population-Based
Evolutionary Algorithms

Kalyanmoy Deb, Ankur Sinha, Pekka Malo, and Zhichao Lu

Abstract Population-based optimization algorithms, such as evolutionary algo-
rithms, have enjoyed a lot of attention in the past three decades in solving
challenging search and optimization problems. In this chapter, we discuss recent
population-based evolutionary algorithms for solving different types of bilevel opti-
mization problems, as they pose numerous challenges to an optimization algorithm.
Evolutionary bilevel optimization (EBO) algorithms are gaining attention due to
their flexibility, implicit parallelism, and ability to customize for specific problem
solving tasks. Starting with surrogate-based single-objective bilevel optimization
problems, we discuss how EBO methods are designed for solving multi-objective
bilevel problems. They show promise for handling various practicalities associated
with bilevel problem solving. The chapter concludes with results on an agro-
economic bilevel problem. The chapter also presents a number of challenging single
and multi-objective bilevel optimization test problems, which should encourage
further development of more efficient bilevel optimization algorithms.
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13.1 Introduction

Bilevel and multi-level optimization problems are omni-present in practice. This
is because in many practical problems there is a hierarchy of two or more
problems involving different variables, objectives and constraints, arising mainly
from the involvement of different hierarchical stakeholders to the overall problem.
Consider an agro-economic problem for which clearly there are at least two sets of
stakeholders: policy makers and farmers. Although the overall goal is to maximize
food production, minimize cost of cultivation, minimize water usage, minimize
environmental impact, maximum sustainable use of the land and others, clearly,
the overall solution to the problem involves an optimal design on the following
variables which must be settled by using an optimization algorithm: crops to
be grown, amount of irrigation water and fertilizers to be used, selling price of
crops, fertilizer taxes to be imposed, and others. Constraints associated with the
problem are restricted run-off of harmful chemicals, availability of limited budget
for agriculture, restricted use of land and other resources, and others. One can
attempt to formulate the overall problem as a multi-objective optimization problem
involving all the above-mentioned variables, objectives, and constraints agreeable
to both stake-holders in a single level. Such a solution procedure has at least
two difficulties. First, the number of variables, objectives, and constraints of the
resulting problem often becomes large, thereby making the solution of the problem
difficult to achieve to any acceptable accuracy. Second, such a single-level process
is certainly not followed in practice, simply from an easier managerial point of
view. In reality, policy-makers come up with fertilizer taxes and agro-economic
regulations so that harmful environmental affects are minimal, crop production is
sustainable for generations to come, and revenue generation is adequate for meeting
the operational costs. On the other hand, once a set of tax and regulation policies are
announced, farmers consider them to decide on the crops to be grown, amount and
type of fertilizers to be used, and irrigated water to be utilized to obtain maximum
production with minimum cultivation cost. Clearly, policy-makers are at the upper
level in this overall agro-economic problem solving task and farmers are at the lower
level. However, upper level problem solvers must consider how a solution (tax and
regulation policies) must be utilized optimally by the lower level problem solvers
(farmers, in this case). Also, it is obvious that the optimal strategy of the lower
level problem solvers directly depends on the tax and regulation policies declared
by the upper level problem solvers. The two levels of problems are intricately linked
in such bilevel problems, but, interestingly, the problem is not symmetric between
upper and lower levels; instead the upper level’s objectives and constraints control
the final optimal solution more than that of the lower level problem.

When both upper and lower level involve a single objective each, the resulting
bilevel problem is called a single-objective bilevel problem. The optimal solution
in this case is usually a single solution describing both upper and lower level
optimal variable values. In many practical problems, each level independently or
both levels may involve more than one conflicting objectives. Such problems are



13 Approximate Bilevel Optimization with Population-Based Evolutionary. . . 363

termed here as multi-objective bilevel problems. These problems usually have more
than one bilevel solution. For implementation purposes, a single bilevel solution
must be chosen using the preference information of both upper and lower level
problem solvers. Without any coordinated effort by upper level decision makers
with lower level decision-makers, a clear choice of the overall bilevel solution is
uncertain, which provides another dimension of difficulty to solve multi-objective
bilevel problems.

It is clear from the above discussion that bilevel problems are reality in practice,
however their practice is uncommon, simply due to the fact that the nested
nature of two optimization problems makes the solution procedure computationally
expensive. The solution of such problems calls for flexible yet efficient optimization
methods, which can handle different practicalities and are capable of finding approx-
imate optimal solutions in a quick computational manner. Recently, evolutionary
optimization methods have been shown to be applicable to such problems because
of ease of customization that helps in finding near-optimal solution, mainly due to
their population approach, use of a direct optimization approach instead of using
any gradient, presence of an implicit parallelism mechanism constituting a parallel
search of multiple regions simultaneously, and their ability to find multiple optimal
solutions in a single application.

In this chapter, we first provide a brief description of metaheuristics in Sect. 13.2
followed by a step-by-step procedure of an evolutionary optimization algorithm
as a representative of various approaches belonging to this class of algorithms.
Thereafter, in Sect. 13.3, we discuss the bilevel formulation and difficulties involved
in solving a bilevel optimization problem. Then, we provide the past studies on
population-based methods for solving bilevel problems in Sect. 13.4. Thereafter, we
discuss in detail some of the recent efforts in evolutionary bilevel optimization in
Sect. 13.5. In Sect. 13.6, we present two surrogate-assisted single-objective evolu-
tionary bilevel optimization (EBO) algorithms—BLEAQ and BLEAQ2. Simulation
results of these two algorithms are presented next on a number of challenging
standard and scalable test problems provided in the Appendix. Bilevel evolutionary
multi-objective optimization (BL-EMO) algorithms are described next in Sect. 13.7.
The ideas of optimistic and pessimistic bilevel Pareto-optimal solution sets are
differentiated and an overview of research developments on multi-objective bilevel
optimization is provided. Thereafter, in Sect. 13.8, a multi-objective agro-economic
bilevel problem is described and results using the proposed multi-objective EBO
algorithm are presented. Finally, conclusions of this extensive chapter is drawn in
Sect. 13.9.

13.2 Metaheuristics Algorithms for Optimization

Heuristics refers to relevant guiding principles, or effective rules, or partial problem
information related to the problem class being addressed. When higher level
heuristics are utilized in the process of creating new solutions in a search or
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optimization methodology for solving a larger class of problems, the resulting
methodology is called a metaheuristic. The use of partial problem information
may also be used in metaheuristics to speed up the search process in arriving at a
near-optimal solution, but an exact convergence to the optimal solution is usually
not guaranteed. For many practical purposes, metaheuristics based optimization
algorithms are more pragmatic approaches [13]. These methods are in rise due to
the well-known no-free-lunch (NFL) theorem.

Theorem 13.2.1 No single optimization algorithm is most computationally effec-
tive for solving all problems. �
Although somewhat intuitive, a proof of a more specific and formal version of the
above theorem was provided in [66]. A corollary to the NFL theorem is that for
solving a specific problem class, there exists a customized algorithm which would
perform the best; however the same algorithm may not work so well on another
problem class.

It is then important to ask a very important question: ‘How does one develop a
customized optimization algorithm for a specific problem class?’. The search and
optimization literature does not provide a ready-made answer to the above question
for every possible problem class, but the literature is full of different application
problems and the respective developed customized algorithms for solving the
problem class. Most of these algorithms use relevant heuristics derived from the
description of the problem class.

We argue here that in order to utilize problem heuristics in an optimization
algorithm, the basic structure of the algorithm must allow heuristics to be integrated
easily. For example, the well-known steepest-descent optimization method cannot
be customized much with available heuristics, as the main search must always take
place along the negative of the gradient of the objective functions to allow an
improvement or non-deterioration in the objective value from one iteration to the
next. In this section, we discuss EAs that are population-based methods belonging
to the class of metaheuristics. There exist other population-based metaheuristic
methods which have also been used for solving bilevel problems, which we do not
elaborate here, but provide a brief description below:

• Differential Evolution (DE) [59]: DE is a steady-state optimization procedure
which uses three population members to create a “mutated” point. It is then
compared with the best population member and a recombination of variable
exchanges is made to create the final offspring point. An optional selection
between offspring and the best population member is used. DE cannot force
its population members to stay within specified variable bounds and special
operators are needed to handle them as well as other constraints. DE is often
considered as a special version of an evolutionary algorithm, described later.

• Particle Swarm Optimization (PSO) [28, 31]: PSO is a generational optimiza-
tion procedure which creates one new offspring point for each parent population
member by making a vector operation with parent’s previous point, its best point
since the start of a run and the best-ever population point. Like DE, PSO cannot
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also force its population members to stay within specified variable bounds and
special operators are needed to handle them and other constraints.

• Other Metaheuristics [5, 22]: There exists more than 100 other metaheuristics-
based approaches, which use different natural and physical phenomenon. Vari-
able bounds and constraints are often handled using penalty functions or by using
special operators.

These algorithms, along with evolutionary optimization algorithms described
below, allow flexibility for customizing the solution procedure by enabling any
heuristics or rules to be embedded in their operators.

Evolutionary algorithms (EAs) are mostly synonymous to metaheuristics based
optimization methods. EAs work with multiple points (called a population) at each
iteration (called a generation). Here are the usual steps of a generational EA:

1. An initial population P0 of size N (population size) is created, usually at random
within the supplied variable bounds. Every population member is evaluated
(objective functions and constraints) and a combined fitness or a selection
function is evaluated for each population member. Set the generation counter
t = 0.

2. A termination condition is checked. If not satisfied, continue with Step 3, else
report the best point and stop.

3. Select better population members of Pt by comparing them using the fitness
function and store them in mating pool Mt .

4. Take pairs of points from Mt at a time and recombine them using a recombination
operator to create one or more new points.

5. Newly created points are then locally perturbed by using a mutation operator.
The mutated point is then stored in an offspring population Qt . Steps 4 and 5 are
continued until Qt grows to a size of N .

6. Two populations Pt and Qt are combined and N best members are saved in the
new parent population Pt+1. The generation counter is incremented by one and
the algorithm moves to Step 2.

The recombination operator is unique in EAs and is responsible for recombining
two different population members to create new solutions. The selection and
recombination operators applied on a population constitutes an implicitly parallel
search, providing their power. In the above generational EA, NTmax is the total
number of evaluations, where Tmax is the number of generations needed to terminate
the algorithm. Besides the above generational EA, steady-state EAs exist, in which
the offspring population Qt consists of a single new mutated point. In the steady-
state EA, the number of generations Tmax needed to terminate would be more than
that needed for a generational EA, but the overall number of solution evaluations
needed for the steady-state EA may be less, depending on the problem being solved.

Each of the steps in the above algorithm description—initialization (Step 1),
termination condition (Step 2), selection (Step 3), recombination (Step 4), mutation
(Step 5) and survival (Step 6)—can be changed or embedded with problem
information to make the overall algorithm customized for a problem class.
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13.3 Bilevel Formulation and Challenges

Bilevel optimization problems have two optimization problems staged in a hierar-
chical manner [55]. The outer problem is often referred to as the upper level problem
or the leader’s problem, and the inner problem is often referred to as the lower level
problem or the follower’s problem. Objective and constraint functions of both levels
can be functions of all variables of the problem. However, a part of the variable
vector, called the upper level variable vector, remains fixed for the lower level
optimization problem. For a given upper level variable vector, an accompanying
lower level variable set which is optimal to the lower level optimization problem
becomes a candidate feasible solution for the upper level optimization problem,
subject to satisfaction of other upper level variable bounds and constraint functions.
Thus, in such nested problems, the lower level variable vector depends on the upper
level variable vector, thereby causing a strong variable linkage between the two
variable vectors. Moreover, the upper level problem is usually sensitive to the quality
of lower level optimal solution, which makes solving the lower level optimization
problem to a high level of accuracy important.

The main challenge in solving bilevel problems is the computational effort
needed in solving nested optimization problems, in which for every upper level
variable vector, the lower level optimization problem must be solved to a reasonable
accuracy. One silver lining is that depending on the complexities involved in two
levels, two different optimization algorithms can be utilized, one for upper level and
one for lower level, respectively, instead of using the same optimization method
for both levels. However, such a nested approach may also be computationally
expensive for large scale problems. All these difficulties provide challenges to
optimization algorithms while solving a bilevel optimization problem with a
reasonable computational complexity.

There can also be situations where the lower level optimization in a bilevel
problem has multiple optimal solutions for a given upper level vector. Therefore, it
becomes necessary to define, which solution among the multiple optimal solutions
at the lower level should be considered. In such cases, one assumes either of the
two positions: the optimistic position or the pessimistic position. In the optimistic
position, the follower is assumed to favorable to the leader and chooses the solution
that is best for the leader from the set of multiple lower level optimal solutions.
In the pessimistic position, it is assumed that the follower may not be favorable
to the leader (in fact, the follower is antagonistic to leader’s objectives) and may
choose the solution that is worst for the leader from the set of multiple lower level
optimal solutions. Intermediate positions are also possible and are more pragmatic,
which can be defined with the help of selection functions. Most of the literature
on bilevel optimization usually focuses on solving optimistic bilevel problems. A
general formulation for the bilevel optimization problem is provided below.
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Definition 13.3.1 For the upper level objective function F : Rn × R
m → R and

lower level objective function f : Rn ×R
m→ R, the bilevel optimization problem

is given by

min
xu,xl

F (xu, xl ), (13.3.1)

subject to xl ∈ argmin
xl

{f (xu, xl ) : gj (xu, xl ) ≤ 0, j = 1, . . . , J }, (13.3.2)

Gk(xu, xl ) ≤ 0, k = 1, . . . ,K, (13.3.3)

where Gk : Rn × R
m → R, k = 1, . . . ,K denotes the upper level constraints,

and gj : Rn × R
m → R, j = 1, . . . , J represents the lower level constraints,

respectively. Variables xu and xl are n and m dimensional vectors, respectively.
It is important to specify the position one is taking while solving the above
formulation. �

13.4 Non-surrogate-Based EBO Approaches

A few early EBO algorithms were primarily either nested approaches or used the
KKT conditions of the lower level optimization problem to reduce the bilevel
problem to a single level and then a standard algorithm was applied. In this section,
we provide a review of such approaches. It is important to note that the implicit
parallel search of EAs described before still plays a role in constituting an efficient
search within both the upper and lower level optimization tasks.

13.4.1 Nested Methods

Nested EAs are a popular approach to handle bilevel problems, where lower
level optimization problem is solved corresponding to each and every upper level
member [36, 41, 47]. Though effective, nested strategies are computationally very
expensive and not viable for large scale bilevel problems. Nested methods in the area
of EAs have been used in primarily two ways. The first approach has been to use an
EA at the upper level and a classical algorithm at the lower level, while the second
approach has been to utilize EAs at both levels. Of course, the choice between
two approaches is determined by the complexity of the lower level optimization
problem.

One of the first EAs for solving bilevel optimization problems was proposed in
the early 1990s. Mathieu et al. [35] used a nested approach with genetic algorithm at
the upper level, and linear programming at the lower level. Another nested approach
was proposed in [69], where the upper level was an EA and the lower level was
solved using Frank–Wolfe algorithm (reduced gradient method) for every upper
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level member. The authors demonstrated that the idea can be effectively utilized
to solve non-convex bilevel optimization problems. Nested PSO was used in [31] to
solve bilevel optimization problems. The effectiveness of the technique was shown
on a number of standard test problems with small number of variables, but the
computational expense of the nested procedure was not reported. A hybrid approach
was proposed in [30], where simplex-based crossover strategy was used at the
upper level, and the lower level was solved using one of the classical approaches.
The authors report the generations and population sizes required by the algorithm
that can be used to compute the upper level function evaluations, but they do
not explicitly report the total number of lower level function evaluations, which
presumably is high.

DE based approaches have also been used, for instance, in [72], authors used
DE at the upper level and relied on the interior point algorithm at the lower level;
similarly, in [3] authors have used DE at both levels. Authors have also combined
two different specialized EAs to handle the two levels, for example, in [2] authors
use an ant colony optimization to handle the upper level and DE to handle the lower
level in a transportation routing problem. Another nested approach utilizing ant
colony algorithm for solving a bilevel model for production-distribution planning
is [9]. Scatter search algorithms have also been employed for solving production-
distribution planning problems, for instance [10].

Through a number of approaches involving EAs at one or both levels, the
authors have demonstrated the ability of their methods in solving problems that
might otherwise be difficult to handle using classical bilevel approaches. However,
as already stated, most of these approaches are practically non-scalable. With
increasing number of upper level variables, the number of lower level optimization
tasks required to be solved increases exponentially. Moreover, if the lower level
optimization problem itself is difficult to solve, numerous instances of such a
problem cannot be solved, as required by these methods.

13.4.2 Single-Level Reduction Using Lower Level KKT
Conditions

Similar to the studies in the area of classical optimization, many studies in the
area of evolutionary computation have also used the KKT conditions of the lower
level to reduce the bilevel problem into a single-level problem. Most often, such
an approach is able to solve problems that adhere to certain regularity conditions
at the lower level because of the requirement of the KKT conditions. However,
as the reduced single-level problem is solved with an EA, usually the upper level
objective function and constraints can be more general and not adhering to such
regularities. For instance, one of the earliest papers using such an approach is by
Hejazi et al. [24], who reduced the linear bilevel problem to single-level and then
used a genetic algorithm, where chromosomes emulate the vertex points, to solve
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the problem. Another study [8] also proposed a single level reduction for linear
bilevel problems. Wang et al. [62] reduced the bilevel problem into a single-level
optimization problem using KKT conditions, and then utilized a constraint handling
scheme to successfully solve a number of standard test problems. Their algorithm
was able to handle non-differentiability at the upper level objective function, but
not elsewhere. Later on, Wang et al. [64] introduced an improved algorithm that
was able to handle non-convex lower level problem and performed better than
the previous approach [62]. However, the number of function evaluations in both
approaches remained quite high (requiring function evaluations to the tune of
100,000 for 2–5 variable bilevel problems). In [63], the authors used a simplex-
based genetic algorithm to solve linear-quadratic bilevel problems after reducing
it to a single level task. Later, Jiang et al. [27] reduced the bilevel optimization
problem into a non-linear optimization problem with complementarity constraints,
which is sequentially smoothed and solved with a PSO algorithm. Along similar
lines of using lower level optimality conditions, Li [29] solved a fractional bilevel
optimization problem by utilizing optimality results of the linear fractional lower
level problem. In [60], the authors embed the chaos search technique in PSO to
solve single-level reduced problem. The search region represented by the KKT
conditions can be highly constrained that poses challenges for any optimization
algorithm. To address this concern, in a recent study [57], the authors have used
approximate KKT-conditions for the lower level problem. One of the theoretical
concerns of using the KKT conditions to replace lower level problem directly is that
the associated constraint qualification conditions must also be satisfied for every
lower level solution.

13.5 Surrogate-Based EBO Approaches

The earlier approaches suffered with some drawbacks like high computational
requirements, or reliance on the KKT conditions of the lower level problem. To
overcome this, recent research has focused on surrogate-based methods for bilevel
problems. Researchers have used surrogates in different ways for solving bilevel
problems that we discuss in this section.

Surrogate-based solution methods are commonly used for optimization problems
[61], where actual function evaluations are expensive. A meta-model or surrogate
model is an approximation of the actual model that is relatively quicker to evaluate.
Based on a small sample from the actual model, a surrogate model can be trained
and used subsequently for optimization. Given that, for complex problems, it is
hard to approximate the entire model with a small set of sample points, researchers
often resort to iterative meta modeling techniques, where the actual model is
approximated locally during iterations.

Bilevel optimization problems contain an inherent complexity that leads to a
requirement of large number of evaluations to solve the problem. Metamodeling of
the lower level optimization problem, when used with population-based algorithms,
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Fig. 13.1 Graphical representation of rational reaction set ($) and lower level optimal value
function (ϕ)

offers a viable means to handle bilevel optimization problems. With good lower
level solutions being supplied at the upper level, EA’s implicit parallel search power
constructs new and good upper level solutions, making the overall search efficient.
In this subsection, we discuss three ways in which metamodeling can be applied
to bilevel optimization. There are two important mappings in bilevel optimization,
referred to as the rational reaction set and lower level optimal value function.
We refer the readers to Fig. 13.1, which provides an understanding of these two
mappings graphically for a hypothetical bilevel problem.

13.5.1 Reaction Set Mapping

One of the approaches to solve bilevel optimization problems using EAs would
be through iterative approximation of the reaction set mapping $ . The bilevel
formulation in terms of the $-mapping can be written as below.

min
xu,xl

F (xu, xl ), (13.5.1)

subject to xl ∈ $(xu), (13.5.2)

Gk(xu, xl ) ≤ 0, k = 1, . . . ,K. (13.5.3)
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If the $-mapping in a bilevel optimization problem is known, it effectively reduces
the problem to single level optimization. However, this mapping is seldom available;
therefore, the approach could be to solve the lower level problem for a few upper
level members and then utilize the lower level optimal solutions and corresponding
upper level members to generate an approximate mapping $̂ . It is noteworthy
that approximating a set-valued $-mapping offers its own challenges and is not a
straightforward task. Assuming that an approximate mapping, $̂, can be generated,
the following single level optimization problem can be solved for a few generations
of the algorithm before deciding to further refine the reaction set.

min
xu,xl

F (xu, xl ),

subject to xl ∈ $̂(xu),

Gk(xu, xl ) ≤ 0, k = 1, . . . ,K.

EAs that rely on this idea to solve bilevel optimization problems are [4, 44, 45, 50].
In some of these studies, authors have used quadratic approximation to approximate
the local reaction set. This helps in saving lower level optimization calls when
the approximation for the local reaction set is good. In case the approximations
generated by the algorithm are not acceptable, the method defaults to a nested
approach. It is noteworthy that a bilevel algorithm that uses a surrogate model for
reaction set mapping may need not be limited to quadratic models but other models
can also be used.

13.5.2 Optimal Lower Level Value Function

Another way to use metamodeling is through the approximation of the optimal
value function ϕ. If the ϕ-mapping is known, the bilevel problem can once again
be reduced to single level optimization problem as follows [68],

min
xu,xl

F (xu, xl ),

subject to f (xu, xl) ≤ ϕ(xu),

gj (xu, xl ) ≤ 0, j = 1, . . . , J,

Gk(xu, xl ) ≤ 0, k = 1, . . . ,K.

However, since the value function is seldom known, one can attempt to approximate
this function using metamodeling techniques. The optimal value function is a single-
valued mapping; therefore, approximating this function avoids the complexities
associated with set-valued mapping. As described previously, an approximate
mapping ϕ̂, can be generated with the population members of an EA and the
following modification in the first constraint: f (xu, xl ) ≤ ϕ̂(xu). Evolutionary
optimization approaches that rely on this idea can be found in [51, 56, 58].
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13.5.3 Bypassing Lower Level Problem

Another way to use a meta-model in bilevel optimization would be to completely
by-pass the lower level problem, as follows:

min
xu

F̂ (xu),

subject to Ĝk(xu) ≤ 0, k = 1, . . . ,K.

Given that the optimal xl are essentially a function of xu, it is possible to construct
a single level approximation of the bilevel problem by ignoring xl completely
and writing the objective function and constraints for the resulting single level
problem as a function of only xu. However, the landscape for such a single level
problem can be highly non-convex, disconnected, and non-differentiable. Advanced
metamodeling techniques might be required to use this approach, which may be
beneficial for certain classes of bilevel problems. A training set for the metamodel
can be constructed by solving a few lower level problems for different xu. Both
upper level objective F and constraint set (Gk) can then be meta-modeled using
xu alone. Given the complex structure of such a single-level problem, it might be
sensible to create such an approximation locally.

13.5.4 Limitations and Assumptions of Surrogate-Based
Approaches

The idea of using function approximations within EAs makes them considerably
more powerful than simple random search. However, these algorithms are still
constrained by certain background assumptions, and are not applicable to arbitrary
problems. In order for the approximations to work, we generally need to impose
some constraining assumptions on the bilevel problem to even ensure the existence
of the underlying mappings that the algorithms are trying to approximate numeri-
cally.

For example, when using function approximations for the reaction set mapping
in single objective problems, we need to assume that the lower level problem is
convex with respect to the lower level variables. If the lower level problem is
not convex, the function could be composed by global as well as local optimal
solutions, and if we consider only global optimal solutions in the lower level
problem, the respective function could become discontinuous. This challenge can
be avoided by imposing the convexity assumption. Furthermore, we generally need
to require that the lower level objective function as well as the constraints are
twice continuously differentiable. For more insights, we refer to [50], where the
assumptions are discussed in greater detail in case of both polyhedral and nonlinear
constraints. When these assumptions are not met, there are also no guarantees that
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the approximation based algorithms can be expected to work any better than a nested
search.

In the next section, we describe recent surrogate-based EBO algorithms, but
would like to highlight that they are not exempt from the above convexity and
differentiability assumptions.

13.6 Single-Objective Surrogate-Based EBO Algorithms

In this section, we discuss the working of two surrogate-based EBO algorithms—
BLEAQ and BLEAQ2—that rely on the approximation of the $- and ϕ-mappings.
In a single-objective bilevel problems, both upper and lower level problems have a
single objective function: F(xu, xl) and f (xu, xl ). There can be multiple constraints
at each level. We describe these algorithms in the next two subsections.

13.6.1 �-Approach and BLEAQ Algorithm

In the $-approach, the optimal value of each lower level variable is approximated
using a surrogate model of the upper level variable set. Thus, a total of m =
|xl| number of metamodels must be constructed from a few exact lower level
optimization results.

After the lower level problem is optimized for a few upper level variable sets,
the optimal lower level variable can be modeled using a quadratic function of upper
level variables: x∗l,i = qi(xu). In fact, the algorithm creates various local quadratic
models, but for simplicity we skip the details here. Thereafter, upper level objective
and constraint functions can be expressed in terms of the upper level variables only
in an implicit manner, as follows:

min
xu

F (xu,q(xu)) ,

subject to Gk (xu,q(xu)) ≤ 0, k = 1, 2, . . . ,K.

Note that q(xu) represents the quadratic approximation for the lower level vector.
The dataset for creating the surrogate q(xu), is constructed by identifying the
optimal lower level vectors corresponding to various upper level vectors by solving
the following problem:

x∗l = argmin
{
f (xu, xl )

∣
∣gj (xu, xl ) ≤ 0, j = 1, 2, . . . , J

}
.

The validity of the quadratic approximation is checked after a few iterations. If the
existing quadratic model does not provide an accurate approximation, new points are
introduced to form a new quadratic model. We call this method BLEAQ [45, 50].
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Note that this method will suffer whenever the lower level has multiple optimal
solutions at the lower level, and also it requires multiple models qi(xu), ∀ i ∈
{1, . . . ,m}, to be created.

13.6.2 ϕ-Approach and BLEAQ2 Algorithm

Next, we discuss the ϕ-approach that overcomes the various drawbacks of the $-
approach. In the ϕ-approach, an approximation of the optimal lower level objective
function value ϕ(xu) as a function of xu is constructed that we refer to as ϕ̂(xu).
Thereafter, the following single-level problem is solved:

Minimize F (xu, xl ) ,

subject to f (xu, xl ) ≤ ϕ̂(xu),

Gk (xu, xl ) ≤ 0, k = 1, 2, . . . ,K.

(13.6.1)

The above formulation allows a single surrogate model to be constructed and the
solution of the above problem provides optimal xu and xl vectors.

In the modified version of BLEAQ, that we called BLEAQ2 [58], both $ and
ϕ-approaches are implemented with a check. The model that has higher level of
accuracy is used to choose the lower level solution for any given upper level vector.
Both $ and ϕ models are approximated locally and updated iteratively.

13.6.3 Experiments and Results

Next, we assess the performance of three algorithms, the nested approach, BLEAQ,
and BLEAQ2 on a set of bilevel test problems. We perform 31 runs for each test
instance. For each run, the upper and lower level function evaluations required until
termination are recorded separately. Information about the various parameters and
their settings can be found in [50, 58].

13.6.3.1 Results on Non-scalable Test Problems

We first present the empirical results on eight non-scalable test problems selected
from the literature (referred to as TP1–TP8). The description for these test problems
is provided in the Appendix. Table 13.1 contains the median upper level (UL)
function evaluations, lower level (LL) function evaluations and BLEAQ2’s overall
function evaluation savings as compared to other approaches from 31 runs of the
algorithms. The overall function evaluations for any algorithm is simply the sum
of upper and lower level function evaluations. For instance, for the median run
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Table 13.1 Median function evaluations on non-scalable test problems TP1–TP8

UL func. evals. LL func. evals. BLEAQ2 savings

BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ2

Med Med Med Med Med Med vs BLEAQ vs nested

TP1 136 155 – 242 867 – 63% Large%

TP2 255 185 436 440 971 5686 40% 89%

TP3 158 155 633 224 894 6867 64% 95%

TP4 198 357 1755 788 1772 19764 54% 95%

TP5 272 243 576 967 1108 6558 8% 83%

TP6 161 155 144 323 687 1984 43% 77%

TP7 112 255 193 287 987 2870 68% 87%

TP8 241 189 403 467 913 7996 36% 92%

While computing savings, we compare the total function evaluations (sum of upper and lower level
function evaluations) of one algorithm against the other. Savings for BLEAQ2 when compared
against an algorithm A is given as (A− BLEAQ2) /A, where the name of the algorithm denotes
the total function evaluations required by the algorithm

with TP1, BLEAQ2 requires 63% less overall function evaluations as compared
to BLEAQ, and 98% less overall function evaluations as compared to the nested
approach.

All these test problems are bilevel problems with small number of variables, and
all the three algorithms were able to solve the eight test instances successfully. A
significant computational saving can be observed for both BLEAQ2 and BLEAQ,
as compared to the nested approach, as shown in the ‘Savings’ column of Table 13.1.
The performance gain going from BLEAQ to BLEAQ2 is quite significant for these
test problems even though none of them leads to multiple lower level optimal
solutions. Detailed comparison between BLEAQ and BLEAQ2 in terms of upper
and lower level function evaluations is provided through Figs. 13.2 and 13.3,
respectively. It can be observed that BLEAQ2 requires comparatively much less
number of lower level function evaluations than BLEAQ algorithm, while there
is no conclusive argument can be made for the number of upper level function
evaluations. However, since the lower level problem is solved more often, as
shown Table 13.1, BLEAQ2 requires significantly less number of overall function
evaluations to all eight problems.

13.6.3.2 Results on Scalable Test Problems

Next, we compare the performance of the three algorithms on the scalable SMD
test suite (presented in the Appendix) which contains 12 test problems [46]. The
test suite was later extend to 14 test problems by adding two additional scalable test
problems. First we analyze the performance of the algorithms on five variables, and
then we provide the comparison results on 10-variable instances of the SMD test
problems. For the five-variable version of the SMD test problems, we use p = 1,
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Fig. 13.2 Variation of upper level function evaluations required by BLEAQ and BLEAQ2
algorithms in 31 runs applied to TP1–TP8

q = 2 and r = 1 for all SMD problems except SMD6 and SMD14. For the five-
variable version of SMD6 and SMD14, we use p = 1, q = 0, r = 1 and s = 2.
For the 10-variable version of the SMD test problems, we use p = 3, q = 3 and
r = 2 for all SMD problems except SMD6 and SMD14. For the 10-variable version
of SMD6 and SMD14, we use p = 3, q = 1, r = 2 and s = 2. In their five-
variable versions, there are two variables at the upper level and three variables at
the lower level. They also offer a variety of tunable complexities to any algorithm.
For instance, the test set contains problems which are multi-modal at the upper
and the lower levels, contain multiple optimal solutions at the lower level, contain
constraints at the upper and/or lower levels, etc.

Table 13.2 provides the median function evaluations and overall savings for the
three algorithms on all 14 five-variable SMD problems. The table indicates that
BLEAQ2 is able to solve the entire set of 14 SMD test problems, while BLEAQ fails
on two test problems. The overall savings with BLEAQ2 is larger as compared to
BLEAQ for all problems. Test problems SMD6 and SMD14 which contain multiple
lower level solutions, BLEAQ is unable to handle them. Further details about the
required overall function evaluations from 31 runs are provided in Fig. 13.4.

Results for the 10-variable SMD test problems are presented in Table 13.3.
BLEAQ2 leads to much higher savings as compared to BLEAQ. BLEAQ is found
to fail again on SMD6 and also on SMD7 and SMD8. Both methods outperform
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Fig. 13.3 Variation of lower level function evaluations required by BLEAQ and BLEAQ2
algorithms in 31 runs applied to TP1–TP8

Table 13.2 Median function evaluations on five-variable SMD test problems

UL func. evals. LL func. evals. BLEAQ2 savings

BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ2

Med Med Med Med Med Med vs BLEAQ vs nested

SMD1 123 98 164 8462 13,425 104,575 37% 92%

SMD2 114 88 106 7264 11,271 74,678 35% 90%

SMD3 264 91 136 12, 452 15,197 101,044 17% 87%

SMD4 272 110 74 8600 12,469 59,208 29% 85%

SMD5 126 80 93 14, 490 19,081 73,500 24% 80%

SMD6 259 – 116 914 – 3074 Large 63%

SMD7 180 98 67 8242 12,580 56,056 34% 85%

SMD8 644 228 274 22, 866 35,835 175,686 35% 87%

SMD9 201 125 127 10, 964 16,672 101,382 34% 89%

SMD10 780 431 – 19, 335 43,720 – 54% Large

SMD11 1735 258 260 134, 916 158,854 148,520 14% 8%

SMD12 203 557 – 25, 388 135,737 – 81% Large

SMD13 317 126 211 13, 729 17,752 138,089 21% 90%

SMD14 1014 – 168 12, 364 – 91,197 Large 85%
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Fig. 13.4 Overall function evaluations needed by BLEAQ and BLEAQ2 for solving five-
dimensional SMD1–SMD14 problems

Table 13.3 Median function evaluations on 10-variable SMD test problems

UL func. evals. LL func. evals. BLEAQ2 savings

BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ Nested BLEAQ2 BLEAQ2

Med Med Med Med Med Med vs BLEAQ vs nested

SMD1 670 370 760 52, 866 61,732 1,776,426 14% 97%

SMD2 510 363 652 44, 219 57,074 1,478,530 22% 97%

SMD3 1369 630 820 68, 395 90,390 1,255,015 23% 94%

SMD4 580 461 765 35, 722 59,134 1,028,802 39% 96%

SMD5 534 464 645 65, 873 92,716 1,841,569 29% 96%

SMD6 584 – 824 3950 – 1562,003 Large 99%

SMD7 1486 – – 83, 221 – – Large Large

SMD8 6551 – – 231, 040 – – Large Large

the nested method on most of the test problems. We do not provide results for
SMD9–SMD14 as none of the algorithms are able to handle these problems. It is
noteworthy that SMD9–SMD14 offer difficulties with multi-modalities and having
highly constrained search space, which none of the algorithms are able to handle
with the parameter setting used here. Details for the 31 runs on each of these test
problems are presented in Fig. 13.5.

The advantage of BLEAQ2 algorithm comes from the use of both $ and
ϕ-mapping based surrogate approaches. We pick two SMD problems—SMD1
and SMD13—to show that one of the two surrogate approaches perform better
depending on their suitability on the function landscape. Figure 13.6 shows that
in SMD1 problem, ϕ-approximation performs better and Fig. 13.7 shows that $-
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Fig. 13.5 Overall function evaluations needed by BLEAQ and BLEAQ2 for solving 10-
dimensional SMD1–SMD14 problems

Fig. 13.6 Approximation error (in terms of Euclidean distance) of a predicted lower level optimal
solution when using localized $ and ϕ-mapping during the BLEAQ2 algorithm on the five-variable
SMD1 test problem

approximation is better on SMD13. In these figures, the variation of the Euclidean
distance of lower level solution from exact optimal solution with generations is
shown. While both approaches reduce the distance in a noisy manner, BLEAQ2 does
it better by using the best of both approaches than BLEAQ which uses only the $-
approximation. The two figures show the adaptive nature of the BLEAQ2 algorithm
in choosing the right approximation strategy based on the difficulties involved in a
bilevel optimization problem.
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Fig. 13.7 Approximation
error (in terms of Euclidean
distance) of a predicted lower
level optimal solution when
using localized $ and
ϕ-mapping during the
BLEAQ2 algorithm on the
five-variable SMD13 test
problem

13.6.4 Other Single-Objective EBO Studies

Most often, uncertainties arise from unavoidable variations in implementing an
optimized solution. Thus, the issue of uncertainty handling is of great practical
significance. Material properties, measurement errors, manufacturing tolerances,
interdependence of parameters, environmental conditions, etc. are all sources of
uncertainties, which, if not considered during the optimization process, may lead to
an optimistic solution without any practical relevance. A recent work [34] introduces
the concept of robustness and reliability in bilevel optimization problems arising
from uncertainties in both lower and upper level decision variables and parameters.
The effect of uncertainties on the final robust/reliable bilevel solution was clearly
demonstrated in the study using simple, easy-to-understand test problems, followed
by a couple of application problems. The topic of uncertainty handling in bilevel
problems is highly practical and timely with the overall growth in research in bilevel
methods and in uncertainty handling methods.

Bilevel methods may also be used for achieving an adaptive parameter tuning
for optimization algorithms, for instance [48]. The upper level problem considers
the algorithmic parameters as variables and the lower level problem uses the actual
problem variables. The lower level problem is solved using the algorithmic param-
eters described by the upper level multiple times and the resulting performance of
the algorithm is then used as an objective of the upper level problem. The whole
process is able to find optimized parameter values along with the solution of the a
number of single-objective test problems.

In certain scenarios, bilevel optimization solution procedures can also be applied
to solve single level optimization problems in a more efficient way. For example,
the optimal solution of a single-level primal problem can be obtained by solving a
dual problem constructed from the Lagranrian function of dual variables. The dual
problem formulation is a bilevel (min-max) problem with respect to two sets of
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variables: upper level involves Lagrangian multipliers or dual variables and lower
level involves problem variables or primal variables. A study used evolutionary
optimization method to solve the (bilevel) dual problem using a co-evolutionary
approach [18]. For zero duality gap problems, the proposed bilevel approach not
only finds the optimal solution to the problem, but also produces the Lagrangian
multipliers corresponding to the constraints.

13.7 Multi-Objective Bilevel Optimization

Quite often, a decision maker in a practical optimization problem is interested
in optimizing multiple conflicting objectives simultaneously. This leads us to
the growing literature on multi-objective optimization problem solving [11, 12].
Multiple objectives can also be realized in the context of bilevel problems, where
either a leader, or follower, or both might be facing multiple objectives in their own
levels [1, 25, 32, 70]. This gives rise to multi-objective bilevel optimization problems
that is defined below.

Definition 13.7.1 For the upper level objective function F : Rn × R
m → R

p and
lower level objective function f : Rn × R

m → R
q , the multi-objective bilevel

problem is given by

min
xu,xl

F (xu, xl) = (F1(xu, xl ), . . . , Fp(xu, xl )),

subject to xl ∈ argmin
xl

{f (xu, xl ) = (f1(xu, xl), . . . , fq(xu, xl )) :

gj (xu, xl ) ≤ 0, j = 1, . . . , J },
Gk(xu, xl) ≤ 0, k = 1, . . . ,K,

where Gk : Rn × R
m → R, k = 1, . . . ,K denotes the upper level constraints, and

gj : Rn × R
m→ R represents the lower level constraints, respectively. �

Bilevel problems with multiple objectives at lower level are expected to be
considerably more complicated than the single-objective case. Surrogate based
methods can once again be used, but even verification of the conditions, for instance,
when the use of approximations for the reaction set mapping are applicable, is a
challenge and requires quite many tools from variational analysis literature. Some of
these conditions are discussed in [53]. As remarked in [52], bilevel optimal solution
may not exist for all problems. Therefore, additional regularity and compactness
conditions are needed to ensure existence of a solution. This is currently an active
area of research. Results have been presented by [21], who established necessary
optimality conditions for optimistic multi-objective bilevel problems with the help
of Hiriart-Urruty scalarization function.
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13.7.1 Optimistic Versus Pessimistic Solutions
in Multi-Objective Bilevel Optimization

The optimistic or pessimistic position becomes more prominent in multi-objective
bilevel optimization. In the presence of multiple objectives at the lower level, the
set-valued mapping $(xu) normally represents a set of Pareto-optimal solutions
corresponding to any given xu, which we refer as follower’s Pareto-optimal frontier.
A solution to the overall problem (with optimistic or pessimistic position) is
expected to produce a trade-off frontier for the leader that we refer as the leader’s
Pareto-optimal frontier. In these problems, the lower level problem produces its
own Pareto-optimal set and hence the upper level optimal set depends on which
solutions from the lower level would be chosen by the lower level decision-makers.
The optimistic and pessimistic fronts at the upper level mark the best and worst
possible scenarios at the upper level, given that the lower level solutions are always
Pareto-optimal.

Though optimistic position have commonly been studied in classical [20] and
evolutionary [17] literature in the context of multi-objective bilevel optimization,
it is far from realism to expect that the follower will cooperate (knowingly or
unknowingly) to an extent that she chooses any point from her Pareto-optimal
frontier that is most suitable for the leader. This relies on the assumption that the
follower is indifferent to the entire set of optimal solutions, and therefore decides to
cooperate. The situation was entirely different in the single-objective case, where,
in case of multiple optimal solutions, all the solutions offered an equal value to the
follower. However, this can not be assumed in the multi-objective case. Solution
to the optimistic formulation in multi-objective bilevel optimization leads to the
best possible Pareto-optimal frontier that can be achieved by the leader. Similarly,
solution to the pessimistic formulation leads to the worst possible Pareto-optimal
frontier at the upper level.

If the value function or the choice function of the follower is known to the leader,
it provides an information as to what kind of trade-off is preferred by the follower.
A knowledge of such a function effectively, casually speaking, reduces the lower
level optimization problem into a single-objective optimization task, where the
value function may be directly optimized. The leader’s Pareto-optimal frontier for
such intermediate positions lies between the optimistic and the pessimistic frontiers.
Figure 13.8 shows the optimistic and pessimistic frontiers for a hypothetical multi-
objective bilevel problem with two objectives at upper and lower levels. Follower’s
frontier corresponding to x(1)

u , x(2)
u and x(3)

u , and her decisions Al , Bl and Cl are
shown in the insets. The corresponding representations of the follower’s frontier
and decisions (Au, Bu and Cu) in the leader’s space are also shown.
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Fig. 13.8 Leader’s Pareto-optimal (PO) frontiers for optimistic and pessimistic positions. Few
follower’s Pareto-optimal (PO) frontiers are shown (in insets) along with their representations in
the leader’s objective space. Taken from [55]

13.7.2 Bilevel Evolutionary Multi-Objective Optimization
Algorithms

There exists a significant amount of work on single objective bilevel optimization;
however, little has been done on bilevel multi-objective optimization primarily
because of the computational and decision making complexities that these problems
offer. For results on optimality conditions in multi-objective bilevel optimization,
the readers may refer to [21, 67]. On the methodology side, Eichfelder [19, 20]
solved simple multi-objective bilevel problems using a classical approach. The
lower level problems in these studies have been solved using a numerical optimiza-
tion technique, and the upper level problem is handled using an adaptive exhaustive
search method. This makes the solution procedure computationally demanding and
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non-scalable to large-scale problems. In another study, Shi and Xia [40] used ε-
constraint method at both levels of multi-objective bilevel problem to convert the
problem into an ε-constraint bilevel problem. The ε-parameter is elicited from the
decision maker, and the problem is solved by replacing the lower level constrained
optimization problem with its KKT conditions.

One of the first studies, utilizing an evolutionary approach for multi-objective
bilevel optimization was by Yin [69]. The study involved multiple objectives at the
upper lever, and a single objective at the lower level. The study suggested a nested
genetic algorithm, and applied it on a transportation planning and management
problem. Multi-objective linear bilevel programming algorithms were suggested
elsewhere [7]. Halter and Mostaghim [23] used a PSO based nested strategy to solve
a multi-component chemical system. The lower level problem in their application
was linear for which they used a specialized linear multi-objective PSO approach.
A hybrid bilevel evolutionary multi-objective optimization algorithm coupled with
local search was proposed in [17] (For earlier versions, refer [14–16, 43]). In
the paper, the authors handled non-linear as well as discrete bilevel problems
with relatively larger number of variables. The study also provided a suite of test
problems for bilevel multi-objective optimization.

There has been some work done on decision making aspects at upper and
lower levels. For example, in [42] an optimistic version of multi-objective bilevel
optimization, involving interaction with the upper level decision maker, has been
solved. The approach leads to the most preferred point at the upper level instead
of the entire Pareto-frontier. Since multi-objective bilevel optimization is computa-
tionally expensive, such an approach was justified as it led to enormous savings in
computational expense. Studies that have considered decision making at the lower
level include [49, 52]. In [49], the authors have replaced the lower level with a
value function that effectively reduces the lower level problem to single-objective
optimization task. In [52], the follower’s value function is known with uncertainty,
and the authors propose a strategy to handle such problems. Other work related to
bilevel multi-objective optimization can be found in [33, 37–39, 71].

13.7.3 BL-EMO for Decision-Making Uncertainty

In most of the practical applications, a departure from the assumption of an
indifferent lower level decision maker is necessary [52]. Instead of giving all
decision-making power to the leader, the follower is likely to act according to
her own interests and choose the most preferred lower level solution herself. As
a result, lower level decision making has a substantial impact on the formulation of
multi-objective bilevel optimization problems. First, the lower level problem is not
a simple constraint that depends only on lower level objectives. Rather, it is more
like a selection function that maps a given upper level decision to a corresponding
Pareto-optimal lower level solution that it is most preferred by the follower. Second,
while solving the bilevel problem, the upper level decision maker now needs to
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model the follower’s behavior by anticipating her preferences towards different
objectives. The following formulation of the problem is adapted from [52].

Definition 13.7.2 Let ξ ∈ & denote a vector of parameters describing the
follower’s preferences. If the upper level decision maker has complete knowledge of
the follower’s preferences, the follower’s actions can then be modeled via selection
mapping

σ : xu ×&→ xl , σ (xu, ξ) ∈ $(xu), (13.7.1)

where $ is the set-valued mapping defined earlier. The resulting bilevel problem
can be rewritten as follows:

min
xu

F (xu, xl ) = (F1(xu, xl ), . . . , Fp(xu, xl))

subject to xl = σ(xu, ξ) ∈ $(xu)

Gk(xu, xl ) ≤ 0, k = 1, . . . ,K

�
To model the follower’s behavior, one approach is to consider the classical

value function framework [52]. We can assume that the follower’s preferences are
characterized by a function V : Rq×&→ R that is parameterized by the preference
vector ξ . This allows us to write σ as a selection mapping for a value function
optimization problem with xu and ξ as parameters:

σ(xu, ξ) ∈ argmin
xl

{V (f (xu, xl), ξ) : gj (xu, xl) ≤ 0, j = 1, . . . , J }.
(13.7.2)

When the solution is unique, the above inclusion can be treated as an equality that
allows considering σ as a solution mapping for the problem. For most purposes, it
is sufficient to assume that V is a linear form where ξ acts as a stochastic weight
vector for the different lower level objectives:

V (f (xu, xl ), ξ) =
q∑

i=1

fi(xu, xl )ξi . (13.7.3)

The use of linear value functions to approximate preferences is generally found to
be quite effective and works also in situations where the number of objectives is
large.

Usually, we have to assume that the follower’s preferences are uncertain, i.e.
ξ ∼ Dξ , the value function parameterized by ξ is itself a random mapping. To
address such problems, the leader can consider the following two-step approach
[52]: (1) First, the leader can use her expectation of follower’s preferences to
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Table 13.4 Two-objective bilevel example problem

Example Level Formulation

Variables Upper level xu

Lower level xl = (xl,1, . . . , xl,m)

Objectives Upper level
F1(xu, xl ) = (xl,1 − 1)2 +

m∑

i=2

(
xl,i

)2 + (
xu
)2

F2(xu, xl ) = (xl,1 − 1)2 +
m∑

i=2

(
xl,i

)2 + (xu − 1)2

Lower level
f1(xu, xl ) =

(
xl,1

)2 +
m∑

i=2

(
xl,i

)2

f2(xu, xl ) = |xu|(xl,1 − xu)
2 +

m∑

i=2

(
xl,i

)2

Constraints Upper level −1 ≤ (xu, xl,1, . . . , xl,K ) ≤ 2

Preference uncertainty Lower level V (f1, f2) = ξ1f1 + ξ2f2,

ξ ∼ N2(μξ ,�ξ ), μξ = (1, 2), �ξ =
[

0.01 0

0 0.01

]

obtain information about the location of the Pareto optimal front by solving the
bilevel problem with fixed parameters and value function V . (2) In the second
step, the leader can examine the extent of uncertainty by estimating a confidence
region around the Pareto optimal frontier corresponding to the expected value
function (POF-EVF). Based on the joint evaluation of the expected solutions and the
uncertainty observed at different parts of the frontier, the leader can make a better
trade-off between her objectives while being aware of the probability of realizing a
desired solution. Given the computational complexity of bilevel problems, carrying
out these steps requires careful design. One implementation of such algorithm is
discussed in detail in [52].

13.7.3.1 An Example

Consider an example which has two objectives at both the levels and the problem
is scalable in terms of lower level variables; see Table 13.4. Choosing m = 14 will
result in a 15 variable bilevel problem with 1 upper level variable and 14 lower level
variables. Assume the follower’s preferences to follow a linear value function with
a bi-variate normal distribution for the weights.

For any xu, the Pareto-optimal solutions of the lower level optimization problem
are given by

$(xu) = {xl ∈ R
m | xl,1 ∈ [0, xu], xl,i = 0 for i = 2, . . . ,m}.
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Fig. 13.9 Upper level
pareto-optimal front (without
lower level decision making)
and few representative lower
level pareto-optimal fronts in
upper level objective space
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Fig. 13.10 Expected
pareto-optimal front at upper
level and lower level decision
uncertainty
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The best possible frontier at the upper level may be obtained when the lower level
decision maker does not have any real decision-making power; see Fig. 13.9.

Now let us consider the example with a lower level decision-maker, whose
preferences are assumed to follow V (f1, f2) = ξ1f1 + ξ2f2. The upper level front
corresponding to the expected value function is obtained by solving identifying
the Pareto optimal front corresponding to the expected value function (POF-EVF).
The outcome is shown in Fig. 13.10, where the follower’s influence on the bilevel
solution is shown as shift of the expected frontier away from the leader’s optimal
frontier. The extent of decision uncertainty is described using the bold lines around
the POF-EVF front. Each line corresponds to the leader’s confidence region Cα(xu)

with α = 0.01 at different xu. When examining the confidence regions at different
parts of the frontier, substantial variations can be observed.
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13.8 Application Studies of EBO

We consider an agri-environmental policy targeting problem for the Raccoon River
Watershed, which covers roughly 9400 km2 in West-Central Iowa. Agriculture
accounts for the majority of land use in the study area, with 75.3% of land in
crop land, 16.3% in grassland, 4.4% in forests and just 4% in urban use [26]. The
watershed also serves as the main source of drinking water for more than 500,000
people in Central Iowa. However, due to its high concentration of nitrate pollution
from intensive fertilizer and livestock manure application, nitrate concentrations
routinely exceed Federal limits, with citations dating back to the late 1980s.

Given the above issues, one of the objectives the policy maker faces is to reduce
the extent of pollution caused by agricultural activities by controlling the amount of
fertilizer used [65]. However, at the same time the policy maker does not intend to
hamper agricultural activities to an extent of causing significant economic distress
for the farmers.

Consider a producer (follower) i ∈ {1, . . . , I } trying to maximize her profits
from agricultural production through N inputs xi = {xi

1, . . . , x
i
N } and M outputs

yi = {yi
1, . . . , y

i
M}. Out of the N inputs, xi

N denotes the nitrogen fertilizer input for
each farm. The policy maker must choose the optimal spatial allocation of taxes,
τ = {τ 1, . . . , τ I } for each farm corresponding to the nitrogen fertilizer usage xN =
{x1

N, . . . , xI
N } so as to control the use of fertilizers. Tax vector τ = {τ 1, . . . , τ I }

denotes the tax policy for I producers that is expressed as a multiplier on the total
cost of fertilizers. Note that the taxes can be applied as a constant for the entire
basin, or they can be spatially targeted at semi-aggregated levels or individually
at the farm-level. For generality, in our model we have assumed a different tax
policy for each producer. The objectives of the upper level are to jointly maximize
environmental benefits, B(xN)—which consists of the total reduction of non-point
source emissions of nitrogen runoff from agricultural land—while also maximizing
the total basin’s profit �(τ , xN). The optimization problem that the policy maker
needs to solve in order to identify a Pareto set of efficient policies is given as follows:

max
τ ,x

F(τ , x) = (
�(τ , xN), B(xN)

)
(13.8.1)

s.t. xi
N ∈ argmax

xi

{πi(τ i , xi
N) : (τ i, xi ) ∈ "i}

xi
n ≥ 0, ∀ i ∈ {1, . . . , I }, n ∈ {1, . . . , N},

yi
m ≥ 0, ∀ i ∈ {1, . . . , I }, m ∈ {1, . . . ,M},

τ i ≥ 1, ∀ i ∈ {1, . . . , I },

The fertilizer tax, τ , serves as a multiplier on the total cost of fertilizer, so
τ i ≥ 1. The environmental benefit is the negative of pollution and therefore
can be written as the negative of the total pollution caused by the producers, i.e.
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Fig. 13.11 The obtained pareto-optimal frontiers from various methods. The lower level reaction
set mapping is analytically defined in this problem. We directly supply the lower level optimal
solutions in case of single-level optimization algorithm like NSGA-II and SPEA2 and compare the
performance. Taken from [6]

B(xN) = −∑I
i=1 p(xi

N ). Similarly the total basin profit can be written as the sum

total of individual producer’s profit, i.e. �(τ , xN) = ∑I
i=1 π(τ i, xi

N ). The lower
level optimization problem for each agricultural producer can be written as:

max
xi
N

πi(τ i, xi
N) = piyi −

N−1∑

n=1

wnx
i
n − τ iwNxi

N, (13.8.2)

s.t. yi ≤ Pk(xi),

where w and p are the costs and prices of the fertilizer inputs x and crop yields y,
respectively. P i(xi) denotes the production frontier for producer i. Heterogeneity
across producers, due primarily to differences in soil type, may prevent the use of a
common production function that would simplify the solution of (13.8.1). Likewise,
the environmental benefits of reduced fertilizer use vary across producers, due to
location and hydrologic processes within the basin. This also makes the solution
of (13.8.1) more complex.

The simulation results [6] considering all 1175 farms in the Raccoon River
Watershed are shown in Fig. 13.11. The Pareto-optimal frontiers trading off the
environmental footprints and economic benefits are compared among the three
algorithms.
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13.9 Conclusions

Bilevel optimization problems are omnipresent in practice. However, these problems
are often posed as single-level optimization problems due to the relative ease
and availability of single-level optimization algorithms. While this book presents
various theoretical and practical aspects of bilevel optimization, this chapter has
presented a few viable EAs for solving bilevel problems.

Bilevel problems involve two optimization problems which are nested in nature.
Hence, they are computationally expensive to solve to optimality. In this chapter, we
have discussed surrogate modeling based approaches for approximating the lower
level optimum by a surrogate to speed up the overall computations. Moreover, we
have presented multi-objective bilevel algorithms, leading to a number of research
and application opportunities. We have also provided a set of systematic, scalable,
challenging, single-objective and multi-objective unconstrained and constrained
bilevel problems for the bilevel optimization community to develop more efficient
algorithms.

Research on bilevel optimization by the evolutionary computation researchers
has received a lukewarm interest so far, but hopefully this chapter has provided an
overview of some of the existing efforts in the area of evolutionary computation
toward solving bilevel optimization problems, so that more efforts are devoted in
the near future.

Acknowledgements Some parts of this chapter are adapted from authors’ published papers on
the topic. Further details can be obtained from the original studies, referenced at the end of this
chapter.

Appendix: Bilevel Test Problems

Non-scalable Single-Objective Test Problems from Literature

In this section, we provide some of the standard bilevel test problems used in the
evolutionary bilevel optimization studies. Most of these test problems involve only
a few fixed number of variables at both upper and lower levels. The test problems
(TPs) involve a single objective function at each level. Formulation of the problems
are provided in Table 13.5.

Scalable Single-Objective Bilevel Test Problems

Sinha-Malo-Deb (SMD) test problems [46] are a set of 14 scalable single-objective
bilevel test problems that offer a variety of controllable difficulties to an algorithm.
The SMD test problem suite was originally proposed with eight unconstrained
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Table 13.5 Standard test problems TP1–TP8

Problem Formulation Best known sol.

TP1

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2,

s.t.

y ∈ argmin
(y)

{f (x, y) = (x1 − y1)
2 + (x2 − y2)

2 :
0 ≤ yi ≤ 10, i = 1, 2},

x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15. F = 225.0

f = 100.0

TP2

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t.

y ∈ argmin
(y)

{f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2 :
x1 − 2y1 ≥ 10, x2 − 2y2 ≥ 10,

−10 ≥ yi ≥ 20, i = 1, 2},
x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.
F = 0.0

f = 100.0

TP3

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = −(x1)
2 − 3(x2)

2 − 4y1 + (y2)
2,

s.t.

y ∈ argmin
(y)

{f (x, y) = 2(x1)
2 + (y1)

2 − 5y2 :
(x1)

2 − 2x1 + (x2)
2 − 2y1 + y2 ≥ −3,

x2 + 3y1 − 4y2 ≥ 4,

0 ≤ yi , i = 1, 2},
(x1)

2 + 2x2 ≤ 4,

0 ≤ xi , i = 1, 2.

F = −18.6787

f = −1.0156

TP4

n = 2,
m = 3

Minimize
(x,y)

F (x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

s.t.

y ∈ argmin
(y)

{f (x, y) = x1 + 2x2 + y1 + y2 + 2y3 :
y2 + y3 − y1 ≤ 1,

2x1 − y1 + 2y2 − 0.5y3 ≤ 1,

2x2 + 2y1 − y2 − 0.5y3 ≤ 1,

0 ≤ yi , i = 1, 2, 3},
0 ≤ xi , i = 1, 2.

F = −29.2

f = 3.2
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Table 13.5 Continued.

Problem Formulation Best known sol.

TP5

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = rt (x)x − 3y1 − 4y2 + 0.5t (y)y,

s.t.

y ∈ argmin
(y)

{f (x, y) = 0.5t (y)hy − t (b(x))y :
−0.333y1 + y2 − 2 ≤ 0,

y1 − 0.333y2 − 2 ≤ 0,

0 ≤ yi , i = 1, 2},
where

h =
(

1 3

3 10

)

, b(x) =
(
−1 2

3 −3

)

x, r = 0.1,

t (·) denotes transpose of a vector.

F = −3.6

f = −2.0

TP6

n = 1,
m = 2

Minimize
(x,y)

F (x, y) = (x1 − 1)2 + 2y1 − 2x1,

s.t.

y ∈ argmin
(y)

{f (x, y) = (2y1 − 4)2 + (2y2 − 1)2 + x1y1 :
4x1 + 5y1 + 4y2 ≤ 12,

4y2 − 4x1 − 5y1 ≤ −4,

4x1 − 4y1 + 5y2 ≤ 4,

4y1 − 4x1 + 5y2 ≤ 4,

0 ≤ yi , i = 1, 2},
0 ≤ x1.

F = −1.2091

f = 7.6145

TP7

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = − (x1+y1)(x2+y2)
1+x1y1+x2y2

,

s.t.

y ∈ argmin
(y)

{f (x, y) = (x1+y1)(x2+y2)
1+x1y1+x2y2

:
0 ≤ yi ≤ xi , i = 1, 2},

(x1)
2 + (x2)

2 ≤ 100,

x1 − x2 ≤ 0,

0 ≤ xi , i = 1, 2.
F = −1.96

f = 1.96

TP8

n = 2,
m = 2

Minimize
(x,y)

F (x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,
s.t.

y ∈ argmin
(y)

{f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2 :
2y1 − x1 + 10 ≤ 0,

2y2 − x2 + 10 ≤ 0,

−10 ≤ yi ≤ 20, i = 1, 2},
x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.
F = 0.0

f = 100.0

Note that xu = x and xl = y
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and four constrained problems [46], it was later extended with two additional
unconstrained test problems (SMD13 and SMD14) in [54]. Both these problems
contain a difficult ϕ-mapping, among other difficulties. The upper and lower level
functions follow the following structure to induce difficulties due to convergence,
interaction, and function dependence between the two levels. The vectors xu = x
and xl = y are further divided into two sub-vectors. The ϕ-mapping is defined by
the function f1. Formulation of SMD test problems are provided in Table 13.6.

F(x, y) = F1(x1)+ F2(y1)+ F3(x2, y2),

f (x, y) = f1(x1, x2)+ f2(y1)+ f3(x2, y2),
(13.9.1)

where, x = (x1, x2) and y = (y1, y2).

Bi-objective Bilevel Test Problems

The Deb-Sinha (DS) test suite contains five test problems with two objectives at
each level. All problems are scalable with respect to variable dimensions at both
levels. Note that xu = x and xl = y. The location and shape of respective upper and
lower level Pareto-optimal fronts can be found at the original paper [14].

DS 1

Minimize:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(x, y) = 1+ r − cos(απx1))+
K∑

j=2
(xj − j−1

2 )2 + τ
K∑

i=2
(yi − xi)

2 − r cos
(
γ

pi
2

y1
x1

)

F2(x, y) = 1+ r − sin(απx1))+
K∑

j=2
(xj − j−1

2 )2 + τ
K∑

i=2
(yi − xi)

2 − r sin
(
γ

pi
2

y1
x1

)

subject to:

y ∈ argmin
y

⎧
⎪⎪⎨

⎪⎪⎩

f1(x, y) = y2
1 +

K∑

i=2
(yi − xi)

2 +
K∑

i=2
10(1− cos( π

K
(yi − xi)))

f2(x, y) =
K∑

i=1
(yi − xi)

2 +
K∑

i=2
10| sin( π

K
(yi − xi))|

yi ∈ [−K,K], i = 1, . . . ,K, x1 ∈ [1, 4], xj ∈ [−K,K], j = 2, . . . ,K.

Recommended parameter setting for this problem, K = 10 (overall 20 variables), r =
0.1, α = 1, γ = 1, τ = 1. This problem results in a convex upper level Pareto-optimal
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Table 13.6 SMD test problems 1–14

Formulation Variable Bounds

SMD1:

F1 =∑p

i=1(ai)
2,

F2 =∑q

i=1(ci )
2,

F3 =∑r
i=1(bi)

2 +∑r
i=1(bi − tan di)

2,

f1 =∑p

i=1(ai )
2,

f2 =∑q

i=1(ci )
2,

f3 =∑r
i=1(bi − tan di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−π2 , π

2 ), ∀ i ∈ {1, 2, . . . , r}.

SMD2:

F1 =∑p

i=1(ai)
2,

F2 = −∑q

i=1(ci )
2,

F3 =∑r
i=1(bi)

2 −∑r
i=1(bi − log di)

2,

f1 =∑p

i=1(ai )
2,

f2 =∑q

i=1(ci )
2,

f3 =∑r
i=1(bi − log di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}.

SMD3:

F1 =∑p

i=1(ai)
2,

F2 =∑q

i=1(ci )
2,

F3 =∑r
i=1(bi)

2 +∑r
i=1((bi )

2 − tan di)
2,

f1 =∑p

i=1(ai )
2,

f2 = q +∑q

i=1

(
(ci )

2 − cos 2πci
)
,

f3 =∑r
i=1((bi )

2 − tan di)
2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−π2 , π

2 ), ∀ i ∈ {1, 2, . . . , r}.

SMD4:

F1 =∑p

i=1(ai)
2,

F2 = −∑q

i=1(ci )
2,

F3 =∑r
i=1(bi)

2 −∑r
i=1

(|bi | − log(1+ di)
)2
,

f1 =∑p

i=1(ai )
2,

f2 = q +∑q

i=1

(
(ci )

2 − cos 2πci
)
,

f3 =∑r
i=1

(|bi | − log(1 + di)
)2
.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ [0, e], ∀ i ∈ {1, 2, . . . , r}.

SMD5:

F1 =∑p

i=1(ai)
2,

F2 = −∑q

i=1

(
(ci+1 − c2

i )+ (ci − 1)2
)
,

F3 =∑r
i=1 b2

i −
∑r

i=1

(|bi | − d2
i

)2
,

f1 =∑p

i=1(ai )
2,

f2 =∑q

i=1

(
(ci+1 − c2

i )+ (ci − 1)2
)
,

f3 =∑r
i=1

(|bi | − d2
i

)2
.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD6:

F1 =∑p

i=1(ai)
2,

F2 = −∑q

i=1 c2
i +

∑q+s
i=q+1 c2

i ,

F3 =∑r
i=1 b2

i −
∑r

i=1(bi − di)
2,

f1 =∑p

i=1(ai )
2,

f2 =∑q

i=1 c2
i +

∑q+s−1
i=q+1,i=i+2(ci+1 − ci)

2,

f3 =∑r
i=1(bi − di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q + s},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.
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Table 13.6 Continued.

Formulation Variable bounds

SMD7:

F1 = 1+ 1
400

∑p

i=1(ai)
2 −∏p

i=1

(
cos ai√

i

)
,

F2 = −∑q

i=1 c2
i ,

F3 =∑r
i=1 b2

i −
∑r

i=1(bi − log di)
2,

f1 =∑p

i=1 a3
i ,

f2 =∑q

i=1 c2
i ,

f3 =∑r
i=1(bi − log di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}.

SMD8:

F1 = 20+ e − 20 exp
(
− 0.2

√
1
p

∑p

i=1(ai)
2
)

− exp
(

1
p

∑p

i=1 cos 2πai

)
,

F2 = −∑q

i=1

(
(ci+1 − c2

i )+ (ci − 1)2
)
,

F3 =∑r
i=1 b2

i −
∑r

i=1(bi − d3
i )

2,

f1 =∑p

i=1 |ai |,
f2 =∑q

i=1

(
(ci+1 − c2

i )+ (ci − 1)2
)
,

f3 =∑r
i=1(bi − d3

i )
2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD9:

F1 =∑p

i=1(ai)
2

F2 = −∑q

i=1(ci )
2,

F3 =∑r
i=1 b2

i −
∑r

i=1(bi − log(1+ di))
2,

f1 =∑p

i=1 a2
i ,

f2 =∑q

i=1 c2
i ,

f3 =∑r
i=1(bi − log(1+ di))

2.

G1 :∑p

i=1 a2
i +

∑r
i=1 b2

i

−)∑p

i=1 a2
i +

∑r
i=1 b2

i + 0.5* ≥ 0

g1 :∑p

i=1 c2
i +

∑r
i=1 d2

i

−)∑p

i=1 c2
i +

∑r
i=1 d2

i + 0.5* ≥ 0

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−1,−1 + e], ∀ i ∈ {1, 2, . . . , r}.

SMD10:

F1 =∑p

i=1(ai − 2)2

F2 = −∑q

i=1 c2
i ,

F3 =∑r
i=1(b

2
i − 2)2 −∑r

i=1(bi − tan di )
2,

f1 =∑p

i=1 a2
i ,

f2 =∑q

i=1(ci − 2)2,

f3 =∑r
i=1(bi − tan di)

2.

Gj : aj −∑p

i=1,i �=j a
3
i

−∑r
i=1 b3

i ≥ 0,∀j ∈ {1, 2, . . . , p}
Gp+j : bj −∑p

i=1,i �=j b3
i

−∑r
i=1 b3

i ≥ 0,∀j ∈ {1, 2, . . . , r}
gj : cj −∑q

i=1,i �=j c
3
i ≥ 0,∀j ∈ {1, 2, . . . , q}

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−π2 , π

2 ), ∀ i ∈ {1, 2, . . . , r}.
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Table 13.6 Continued.

Formulation Variable Bounds

SMD11:

F1 =∑p

i=1 a2
i

F2 = −∑q

i=1 c2
i ,

F3 =∑r
i=1 b2

i −
∑r

i=1(bi − log di)
2,

f1 =∑p

i=1 a2
i ,

f2 =∑q

i=1 c2
i ,

f3 =∑r
i=1(bi − log di)

2.

Gj : bj ≥ 1√
r
+ log dj ,∀j ∈ {1, 2, . . . , r}

gj :∑r
i=1(bi − log di) ≥ 1

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ ( 1

e
, e), ∀ i ∈ {1, 2, . . . , r}.

SMD12:

F1 =∑p

i=1(ai − 2)2

F2 =∑q

i=1 c2
i ,

F3 =∑r
i=1(b

2
i − 2)2 +∑r

i=1 tan |di |
−∑r

i=1(bi − tan di)
2,

f1 =∑p

i=1 a2
i ,

f2 =∑q

i=1(ci − 2)2,

f3 =∑r
i=1(bi − tan di)

2.

G1 : bi − tan di ≥ 0,∀i ∈ {1, 2, . . . , r}
G2 : ai −∑p

i=1,i �=j a3
i −

∑r
i=1 b3

i

≥ 0,∀j ∈ {1, 2, . . . , p}
G3 : bi −∑r

i=1,i �=j b3
i −

∑p

i=1 a3
i

≥ 0,∀j ∈ {1, 2, . . . , r}
g1 :∑r

i=1(bi − tan di)
2 ≥ 1

g2 : cj −∑p

i=1,i �=j c
3
i ,∀j ∈ {1, 2, . . . , q}

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−14.1, 14.1], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (−1.5, 1.5), ∀ i ∈ {1, 2, . . . , r}.

SMD13:

F1 =∑p−1
i=1 (ai − 1)2 + (ai+1 − (ai )

2)2,

F2 = −∑q

i=1

∑i
j=1(cj )

2,

F3 =∑r
i=1

∑i
j=1(bj )

2 −∑r
i=1(bi − log di)

2,

f1 =∑p

i=1

(|ai | + 2| sin(ai)|
)
,

f2 =∑q

i=1

∑i
j=1(cj )

2,

f3 =∑r
i=1(bi − log di)

2.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, e], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD14:

F1 =∑p−1
i=1 (ai − 1)2 + (ai+1 − (ai )

2)2,

F2 = −∑q

i=1 |ci |i+1 +∑q+s
i=q+1(ci )

2,

F3 =∑r
i=1 i(bi )

2 −∑r
i=1 |di |,

f1 =∑p

i=1 )ai* ,
f2 =∑q

i=1 |ci |i+1 +∑q+s−1
i=q+1,i=i+2(ci+1 − ci )

2,

f3 =∑r
i=1 |(bi)2 − (di )

2|.

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},
bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q + s},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

Note that (x1, x2) = (a,b) and (y1, y2) = (c,d)
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front in which one specific solution from each lower level Pareto-optimal front gets
associated with each upper level Pareto-optimal solution.

DS 2

Minimize:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(x, y) = v1(x1)+
K∑

j=2

[
x2
j + 10(1− cos( π

K
xj ))

]
+τ

K∑

i=2
(yi − xi)

2−r cos
(
γ π

2
y1
x1

)

F2(x, y) = v2(x1)+
K∑

j=2

[
x2
j + 10(1− cos( π

K
xj ))

]
+τ

K∑

i=2
(yi − xi)

2−r sin
(
γ π

2
y1
x1

)

v1(x1) =
⎧
⎨

⎩
cos(0.2π)x1 + sin(0.2π)

√|0.02 sin(5πx1)|, for 0 ≤ x1 ≤ 1;
x1 − (1− cos(0.2π)), for x1 > 1.

v2(x1) =
⎧
⎨

⎩
− sin(0.2π)x1 + cos(0.2π)

√|0.02 sin(5πx1)|, for 0 ≤ x1 ≤ 1;
0.1(x1 − 1)− sin(0.2π), for x1 > 1.

subject to:

y ∈ argmin
y

⎧
⎪⎪⎨

⎪⎪⎩

f1(x, y) = y2
1 +

K∑

i=2
(yi − xi)

2

f2(x, y) =
K∑

i=1
i(yi − xi)

2

yi ∈ [−K,K], i = 1, . . . ,K, x1 ∈ [0.001,K], xj ∈ [−K,K], j = 2, . . . ,K.

Recommended parameter setting for this problem, K = 10 (overall 20 variables), r =
0.25. Due to the use of periodic terms in v1 and v2 functions, the upper level Pareto
front corresponds to only six discrete values of y1 = [0.001, 0.2, 0.4, 0.6, 0.8, 1].
Setting τ = −1 will introduces a conflict between upper and lower level problems.
For this problem, a number of contiguous lower level Pareto-optimal solutions are
Pareto-optimal at the upper level for each upper level Pareto-optimal variable vector.

DS 3

Minimize:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(x, y) = x1 +
K∑

j=3
(xj − j/2)2 + τ

K∑

i=3
(yi − xi)

2 − R(x1) cos
(
4 tan−1(

x2−y2
x1−y1

)
)
,

F2(x, y) = x2 +
K∑

j=3
(xj − j/2)2 + τ

K∑

i=3
(yi − xi)

2 − R(x1) sin
(
4 tan−1(

x2−y2
x1−y1

)
)
,
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subject to:

y ∈ argmin
y

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x, y) = y1 +
K∑

i=3
(yi − xi)

2,

f2(x, y) = y2 +
K∑

i=3
(yi − xi)

2,

subject to : g1(y) = (y1 − x1)
2 + (y2 − x2)

2 ≤ r2,

G(x) = x2 − (1− x2
1 ) ≥ 0,

yi ∈ [−K,K], i = 1, . . . ,K, xj ∈ [0,K], j = 1, . . . ,K, x1 is a multiple of 0.1.

In this test problem, the variable x1 is considered to be discrete, thereby causing
only a few x1 values to represent the upper level Pareto front. Recommended
parameter setting for this problem: R(x1) = 0.1 + 0.15| sin(2π(x1 − 0.1)| and
use r = 0.2, τ = 1, and K = 10. Like in DS2, in this problem, parts of lower level
Pareto-optimal front become upper level Pareto-optimal.

DS 4

Minimize:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(x, y) = (1 − y1)(1 +
K∑

j=2
y2
j )x1,

F2(x, y) = y1(1+
K∑

j=2
y2
j )x1,

subject to :

y ∈ argmin
y

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x, y) = (1− y1)(1+
K+L∑

j=K+1
y2
j )x1,

f2(x, y) = y1(1 +
K+L∑

j=K+1
y2
j )x1,

G(x) = (1− y1)x1 + 1
2x1y1 − 1 ≥ 0,

1 ≤ x1 ≤ 2, −1 ≤ y1 ≤ 1, −(K + L) ≤ yi ≤ (K + L), i = 2, . . . , (K + L).

For this problem, there are a total of K + L + 1 variables. The original study
recommended K = 5 and L = 4. This problem has a linear upper level Pareto-
optimal front in which a single lower level solution from a linear Pareto-optimal
front gets associated with the respective upper level variable vector.

DS 5

This problem exactly the same as DS4, except

G(x) = (1− y1)x1 + 1

2
x1y1 − 2+ 1

5
[5(1− y1)x1 + 0.2] ≥ 0.
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This makes a number of lower level Pareto-optimal solutions to be Pareto-optimal
at the upper level for each upper level variable vector.
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Chapter 14
Methods for Pessimistic Bilevel
Optimization

June Liu, Yuxin Fan, Zhong Chen, and Yue Zheng

Abstract Pessimistic bilevel optimization represents an attractive tool to model
risk-averse hierarchy problems, and would provide strong ability of analysis for
the risk-averse leader. The goal of this chapter is to provide a extensive review on
pessimistic bilevel optimization from basic models, definitions and properties to
solution approaches. It will directly support researchers in understanding theoretical
research results, designing solution algorithms in relation to pessimistic bilevel
optimization.

Keywords Pessimistic bilevel optimization · Stackelberg game · Risk-averse

14.1 Introduction

Bilevel decision-making problems [11, 20, 46, 57], motivated by Stackelberg game
theory [50], are hierarchical optimization problems in which their constraints are
defined in part by another parametric optimization problem. The decision makers
at the upper level and the lower level are respectively termed as the leader and
the follower, and make their individual decisions in sequence with the aim of
optimizing their respective objectives. As is well-known, bilevel optimization plays
an exceedingly important role in different application fields, such as transportation,
economics, ecology, engineering and others [21]. Note that a linear bilevel program-
ming problem was proved to be strongly NP-hard [25]. Therefore, solving such a
problem is not an easy task.

J. Liu · Y. Zheng (�)
School of Management, Huaibei Normal University, Huaibei, Anhui, P.R. China

Y. Fan
Huazhong University of Science and Technology, Wuhan, P.R. China

Z. Chen
School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, P.R. China
e-mail: chenzhong@yangtzeu.edu.cn

© Springer Nature Switzerland AG 2020
S. Dempe, A. Zemkoho (eds.), Bilevel Optimization, Springer Optimization
and Its Applications 161, https://doi.org/10.1007/978-3-030-52119-6_14

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52119-6_14&domain=pdf
mailto:chenzhong@yangtzeu.edu.cn
https://doi.org/10.1007/978-3-030-52119-6_14


404 J. Liu et al.

In general, a bilevel programming problem can be stated as:

“ min
x

" F(x, y) (14.1.1)

s.t. G(x) ≤ 0, y ∈ $(x),

where $(x) is the set of solutions to the lower level problem

min
y

f (x, y)

s.t. g(x, y) ≤ 0,

Here x ∈ Rn and y ∈ Rm.
It is worthwhile noting that the lower level problem may have multiple solutions

for every (or some) fixed value of the upper level decision making variable. If the
solution of the lower level problem is not unique, it is difficult for the leader to
predict which point in $(x) the follower will choose. As a result, it is difficult to
determine the leader’s solution. That is the reason why we use the quotation marks
in problem (14.1.1).

To overcome this situation, the majority of authors used optimistic formulation
and pessimistic formulation, which represent the two different situations between
the leader and the follower. In the optimistic formulation (e.g., see Ref. [20] and
the references therein), the follower always selects a strategy in $(x) that suits
the leader best. Alternatively, pessimistic formulation (e.g., see Ref. [20] and the
references therein) refers to the case where the leader protects himself against the
worst possible situation.

There are several survey papers on bilevel/multilevel programming/decision-
making in the past 20 years. However, these surveys focus on an optimistic bilevel
optimization. For example, Ben-Ayed [12], Wen and Hsu [53] presented the basic
models, solution definitions, solution approaches and applications of the optimistic
linear bilevel optimization. Colson et al. [17, 18], Vicente and Calamai [52] focused
on traditional solution concepts and solution approaches for the optimistic bilevel
programming problems. Dempe [21] summarized the main research directions and
the main fields of applications of bilevel programming, but mainly fixed attention
on the optimistic formulation. Kalashnikov et al. [26] presented a survey of bilevel
programming and application area.

Sakawa and Nishizaki [47] reviewed interactive fuzzy programming approaches
for the optimistic bilevel/multilevel programming problems which focus on cooper-
ative decision-making in decentralised organizations. Zhang et al. [58] reviewed the
fuzzy bilevel decision-making techniques which include models, approaches and
systems.

Lu et al. [40] identified nine different kinds of relationships amongst followers
by establishing a general framework for bilevel multi-follower decision problems in
which the lower level problem has multiple followers. Furthermore, Lu et al. [41]
analyzed various kinds of relationships between decision entities in a multi-follower
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trilevel (MFTL) decision problem, and then proposed an MFTL decision making
framework, in which 64 standard MFTL decision situations and their possible
combinations are identified. Recently, Lu et al. [42] developed the latest research on
multilevel decision-making involving theoretical research results and applications.

Sinha et al. [48] presented an introduction to progress made by evolutionary
computation towards handing bilevel optimization. Sinha et al. [49] developed
a comprehensive review on bilevel optimization from classical to evolutionary
approaches, and then discussed a number of potential application problems.

The above surveys papers have provided good references on optimistic bilevel
optimization for researchers. Recently, Liu et al. [32] proposed an extensive review
on pessimistic bilevel optimization from basic definitions and properties to solution
approaches. This chapter will add some models and the latest newly published
articles of pessimistic bilevel optimization on the basis of [32].

The remainder of the chapter is organized as follows. In Sect. 14.2, we describe
the classification of pessimistic bilevel optimization. In Sects. 14.3 and 14.4, we
review definitions and properties of pessimistic bilevel optimization. In Sect. 14.5,
some solution approaches are proposed for pessimistic bilevel optimization. Finally,
we conclude this chapter and provide some future directions in Sect. 14.6.

14.2 Classification of Pessimistic Bilevel Optimization

In this section, we describe the classification of pessimistic bilevel optimization into
two main categories: pessimistic bilevel programming problems (in their general
and linear versions) and further generalizations (semivectorial and multi-follower
problems) of pessimistic bilevel optimization.

14.2.1 Pessimistic Bilevel Programming Problems

14.2.1.1 Pessimistic Linear Bilevel Programming Problems

Pessimistic linear bilevel programming problems are pessimistic bilevel optimiza-
tion problems in which the objective functions of the leader and the follower and
their constraint regions are restricted to be affine. Mathematically, pessimistic linear
bilevel programming problems are stated as follows:

min
x∈X max

y∈$(x)
c"x + d"y (14.2.1)
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where X is a closed subset of Rn, and $(x) is the set of solutions to the lower level
problem

min
y≥0

w"y

s.t. By ≤ b − Ax

where c, x ∈ Rn, d,w, y ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and b ∈ Rp.
Problem (14.2.1) is often called weak linear bilevel programming problem [4].

Note that, when the lower level problem satisfies A = 0, i.e. the follower’s feasible
region does not depend on the upper level decision variables, problem (14.2.1) can
be called a independent pessimistic linear bilevel programming problem.

14.2.1.2 General Pessimistic Bilevel Programming Problems

General pessimistic bilevel programming problems can be formulated as follows:

min
x∈X′

max
y∈$(x)

F (x, y). (14.2.2)

where X
′ := {x : G(x) ≤ 0}, and $(x) is the set of solutions to the lower level

problem

min
y

f (x, y)

s.t. g(x, y) ≤ 0,

Here x ∈ Rn and y ∈ Rm.
When the feasible set of the follower does not depend on the upper level decision

variables, i.e., g(x, y) in problem (14.2.2) is reduced to g(y), problem (14.2.2) is
referred as an independent pessimistic bilevel problem [54]. Note that it is also
called weak Stackelberg problem in Ref. [38].

14.2.2 Further Generalizations of Pessimistic Bilevel

14.2.2.1 Pessimistic Semivectorial Bilevel Programming Problems

Pessimistic semivectorial bilevel programming problems [8] are pessimistic bilevel
optimization problems in which the lower level problem is a multiobjective opti-
mization problem. Mathematically, pessimistic semivectorial bilevel programming
problems can be formulated as follows:

min
x∈X′

max
y∈$Ef (x)

F (x, y). (14.2.3)
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where $Ef (x) is the set of efficient solutions to the lower level problem

min
y

(f1(x, y), f2(x, y), · · · , fq(x, y))

s.t. g(x, y) ≤ 0.

14.2.2.2 Pessimistic Bilevel Multi-Follower Programming Problems

Pessimistic bilevel multi-follower programming problems are pessimistic bilevel
optimization problems in which the lower level problem has multiple followers.
When multiple followers are involved in a pessimistic bilevel optimization, different
relationships among these followers could cause multiple different processes for
deriving a solution for the leader. Here three decision models are established and
described respectively as follows.

(I) Uncooperative pessimistic linear bilevel multi-follower programming problem
[61]. For such a problem, M followers are involved and there is no shared
decision variable, objective function or constrain function among them.

min
x∈X [c

"x +
M∑

i=1

max
yi∈$i(x)

d"i yi] (14.2.4)

where $i(x) is the set of solutions to the ith follower’s problem

min
yi≥0

w"i yi

s.t. Aix + Biyi ≤ bi .

Here x, c ∈ Rn, yi , d i ,wi ∈ Rmi , Ai ∈ Rqi×n, Bi ∈ Rqi×mi , bi ∈ Rqi , and
i = 1, 2, . . . ,M .

(II) Pessimistic linear bilevel multi-follower programming problem with partially
shared variables among followers [62]. For such a problem, M followers are
involved and there is a partially shared decision variable v.

min
x∈X max

(yi ,v)∈$i(x)
[c"x +

M∑

i=1

d"i yi + s"v] (14.2.5)

where $i(x) is the set of solutions of the ith follower’s problem

min
yi ,v

w"i yi + z"i v

s.t. Aix + Biyi + Civ ≤ bi ,

yi , z ≥ 0.

Here s, v, zi ∈ Rl , Ci ∈ Rqi×l and i = 1, 2, . . . ,M .
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(III) Pessimistic referential-uncooperative linear bilevel multi-follower program-
ming problem. For such a problem, M followers are involved in a referential-
uncooperative situation, i.e. these followers are uncooperative and they do
cross reference information by considering other followers’ decision results
in each of their own decision objectives and constraints.

min
x
[c"x +

M∑

i=1

max
yi∈$i(x,y−i )

d"i yi ] (14.2.6)

where y−i = (y1, · · · , yi−1, yi+1, · · · , yM) and $i(x, y−i ) is the set of
solutions of the ith follower’s problem

min
yi≥0

w"i yi

s.t. Aix +
M∑

j=1

Bijyj ≤ bi .

Here Bij ∈ Rqi×mj and i = 1, 2, · · · ,M .

14.3 Definitions of Pessimistic Bilevel Optimization

To understand and analyze solution approaches of pessimistic bilevel optimization,
this section reviews the notations and definitions of problem (14.2.2).

14.3.1 Definitions

In this subsection, some important definitions of general pessimistic bilevel opti-
mization are itemized below.

Definition 14.3.1

1. Constraint region of problem (14.2.2):

S := {(x, y) : G(x) ≤ 0, g(x, y) ≤ 0}.

2. Projection of S onto the leader’s decision space:

S(X) := {x ∈ X : ∃y, such that (x, y) ∈ S}.
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3. Feasible set for the follower ∀x ∈ S(X):

Y (x) := {y : g(x, y) ≤ 0}.

4. The follower’s rational reaction set for x ∈ S(X):

$(x) := {y : y ∈ arg min[f (x, y) : y ∈ Y (x)]}.

5. Inducible region or feasible region of the leader:

IR := {(x, y) : (x, y) ∈ S, y ∈ $(x)}.

�
To introduce the concept of a solution to problem (14.2.2) (also called pessimistic

solution), one usually employs the following value function ϕ(x):

ϕ(x) := sup
y∈$(x)

F (x, y).

Definition 14.3.2 A pair (x∗, y∗) ∈ IR is called a solution to problem (14.2.2), if

ϕ(x∗) = F(x∗, y∗),

ϕ(x∗) ≤ ϕ(x), ∀ x ∈ X.

�
In the following, some definitions concerning, in particular, approximate solutions
(ε-Stackelberg solution, ε-Stackelberg equilibrium pair) to the weak Stackelberg
problem will be described.

Definition 14.3.3 (Loridan and Morgan [35]) Any point x∗ verifying v1 = ϕ(x∗)
is called a Stackelberg solution to the weak Stackelberg problem. Here, v1 :=
inf
x∈X ϕ(x). �
Definition 14.3.4 (Loridan and Morgan [35]) A pair (x∗, y∗) verifying v1 =
ϕ(x∗) and y∗ ∈ $(x∗) is called a Stackelberg equilibrium pair. �
Definition 14.3.5 (Loridan and Morgan [35]) Let ε > 0 be a given number. A
point x∗ is an ε-Stackelberg solution if and only if x∗ ∈ X and ϕ(x∗) ≤ v1 + ε. �
Definition 14.3.6 (Loridan and Morgan [35]) A pair (x∗, y∗) is an ε-Stackelberg
equilibrium pair if and only if x∗ is an ε-Stackelberg solution and y∗ ∈ $(x∗). �
In addition to the above definitions of pessimistic bilevel optimization, Alves and
Antunes[8] presented and illustrated a definition of the solution of pessimistic
semivectorial bilevel problem (14.2.3), and made comparison of optimistic solution,
pessimistic solution, deceiving solution and rewarding solution.
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14.4 Properties of Pessimistic Bilevel Optimization

According to the definitions in Sect. 14.3, we categorize the various properties of
pessimistic bilevel optimization, and then list some of the well-known properties.

14.4.1 Existence of Solutions

As is well-known, the study of existence of solutions for pessimistic bilevel
optimization is a difficult task. An initial step in this direction was developed by
Lucchetti et al. [43] who proposed some examples that fail to have a solution.
Moreover, the most studies have been devoted to the weak Stackelberg problem.
Aboussoror and Loridan [3], Aboussoror [1] have given sufficient conditions to
obtain the existence of solutions to the weak Stackelberg problem via a regularized
scheme. Any accumulation point of a sequence of regularized solutions is a solution
to the weak Stackelberg problem. Aboussoror and Mansouri [5] have deduced
the existence of solutions to the weak Stackelberg problem via d.c. problems.
Similar results using reverse convex and convex maximization problems are given
in Aboussoror et al. [6].

Loridan and Morgan [35] have obtained some results for approximate solutions
of the weak Stackelberg problem by using a theoretical approximation scheme. Any
accumulation point of a sequence of ε-approximate solutions of the approximation
problems is an ε-approximate solution to the weak Stackelberg problem. The
interested reader can refer to the references about the approximate solutions of the
weak Stackelberg problem. Furthermore, Loridan and Morgan [36] improved and
extended some properties proposed in Ref. [35]. Similar results using approximation
scheme were given in Ref. [37].

Lignola and Morgan [28] discussed a more general weak Stackelberg formulation
in which the follower’s rational reaction set $(x) is replaced by a parameterized
constraint $(t, x) (t is a parameter). Marhfour [45] have established existence and
stability results for ε-mixed solutions of weak Stackelberg problems. In particular,
the results are given under general assumptions of minimal character without any
convexity assumption.

For the pessimistic linear bilevel programming problems, using the strong dual
theorem of linear programming and penalty method, Aboussoror and Mansouri
[4] have established the existence results of solutions. Note that, the strong-weak
Stackelberg problems have been reduced the weak Stackelberg problem under some
conditions. Aboussoror and Loridan [2] have studied the existence of solutions of
strong-weak Stackelberg problems. In particular, using the regularization and the
notion of variational convergence, Aboussoror [7] have given sufficient conditions to
ensure the existence of solutions to such problems. The obtained results in Refs. [2]
and [7] can be applied to the weak Stackelberg problem by deleting some variables.
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When the pessimistic bilevel optimization problem (14.2.2) does not have a
solution which may arise even under strong assumptions, the leader can make do
with alternative solution concepts. Based on this, Lignola and Morgan [29] have
considered a concept of viscosity solution which can obviate the lack of optimal
solutions. In particular, they have given sufficient conditions using regularization
families of the solutions map to the lower level problem, ensuring the existence
of the corresponding viscosity solutions. More recently, Lignola and Morgan [30]
continue this research by considering a new inner regularizations of the lower level
problem which not necessarily satisfy the constraints, and by deriving an existence
result of related viscosity solutions to pessimistic bilevel optimization.

14.4.2 Optimality Conditions and Complexity

The optimality conditions for pessimistic bilevel optimization and pessimistic
semivectorial bilevel optimization have been proposed in the literature. A first
attempt was made by Dassanayaka [19] using implicit programming approach,
minmax programming approach and duality programming approach respectively.
Using the advanced tools of variational analysis and generalized differentiation,
Dempe [22] derived several types of necessary optimality conditions via the lower-
level value function approach and the Karush-Kuhn-Tucker (KKT) representation of
lower-level optimal solution maps. Furthermore, the upper subdifferential necessary
optimality conditions are obtained, and the links are also established between the
necessary optimality conditions of the pessimistic and optimistic versions in bilevel
programming. Using the two-level value function approach, Dempe et al. [24]
derived the results on sensitivity analysis and necessary optimality conditions of
pessimistic bilevel optimization with nonsmooth data.

In addition, Liu et al. [31] presented the first order necessary optimality
conditions of a class of pessimistic semivectorial bilevel optimization. Recently,
Lampariello et al. [27] discussed the relations among the perturbed pessimistic
bilevel problem, pessimistic bilevel optimization and the two follower game as
well as the mathematical program with complementarity constraints with respect
to their global minimal points. They also presented the connections between their
local minimal points in detail. Aussel and Svensson [9] discussed the relations of
global and local solutions of both pessimistic bilevel optimization problem and
the associated pessimistic mathematical program with complementarity constraints
problem. These various necessary optimality conditions and connections to other
optimization problems could be helpful to develop fast algorithms to obtain
solutions of pessimistic bilevel optimization.

The computational complexity of pessimistic bilevel optimization is easily
confirmed at its simplest version, i.e. pessimistic linear bilevel problem. Under
the certain assumptions, Wiesemann et al.[54] obtained that: (a) the independent
pessimistic linear bilevel programming problem (14.2.1) can be solved in polyno-
mial time; (b) if m, the number of the lower level decision variables, is constant,
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the pessimistic linear bilevel programming problem (14.2.1) can be solved in
polynomial time. If m is nonconstant, it is strongly NP-hard. These results also
imply that a general pessimistic bilevel programming problem is strongly NP-hard
if the the number of the lower level decision variables is nonconstant.

14.5 Solution Approaches of Pessimistic Bilevel Optimization

14.5.1 Penalty Method

At present, penalty methods [4, 59] were used to solve the pessimistic linear bilevel
programming problems. An initial step in this direction was developed by Abous-
soror and Mansouri [4]. Using the strong dual theory of linear programming and
penalty methods, they transformed problem (14.2.1) into a single-level optimization
problem:

min
x,t ,u

c"x + w"t + (b − Ax)"u (14.5.1)

s.t. −B"u ≤ kw − d,

Bt ≤ k(b − Ax),

x ∈ X, t,u ≥ 0,

where t ∈ Rm, u ∈ Rp and k > 0 is a penalty parameter.
Under some assumptions, Aboussoror and Mansouri [4] proved that there exists

a k∗ > 0 such that for all k > k∗, if (xk, tk,uk) is a sequence of solutions of
problem (14.5.1), xk solves problem (14.2.1). Unfortunately, no numerical results
were reported.

A more recent contribution by Zheng et al. [59], follows the ideas of Aboussoror
and Mansouri [4], who presented a new variant of the penalty method to solve
problem (14.2.1). Their method transformed it into the following penalty problem:

min
x,t ,u

c"x + kw"y + (b − Ax)"u (14.5.2)

s.t. −B"u ≤ kw − d,

By ≤ b − Ax,

x ∈ X, y,u ≥ 0,

where u ∈ Rp and k > 0 is a penalty parameter. The resulting algorithm involves
the minimization of disjoint bilinear programming problem (14.5.2) for a fixed value
of k. Two simple examples illustrate the proposed algorithm is feasible.
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Replacing the lower level problem with its Kuhn-Tucker optimality condition,
Liu et al. [33] transformed problem (14.2.1) into another single-level optimization
problem, and investigated the relation of the solution of those problems. In
addition, Zheng et al. proposed penalty methods to solve uncooperative pessimistic
linear bilevel multi-follower programming problem [61] and pessimistic linear
bilevel multi-follower programming problem with partially shared variables among
followers [62] respectively.

14.5.2 Kth-Best Algorithm

An important property of the solution to the pessimistic linear bilevel programming
problem (14.2.1) is that there exists a solution which occurs at a vertex of the
polyhedron W . Here W is the constraint region of problem (14.2.1), i.e.

W := {(x, y) : x ∈ X,By ≤ b − Ax, y ≥ 0}.

This property induces the possibility of developing algorithms which search
amongst vertices of W in order to solve the pessimistic linear bilevel optimization
problems.

Zheng et al. [60] first proposed a modified version of Kth-Best algorithm to
the pessimistic linear bilevel optimization problems. After sorting all vertices in
ascending order with respect to the value of the upper level objective function, this
algorithm selects the first vertex to check if it satisfies the terminate condition, and
the current vertex is a solution of problem (14.2.1) if it is yes. Otherwise, the next
one will be selected and checked.

14.5.3 Approximation Approach

As is well-known, approximation solution of the independent pessimistic bilevel
problems have in fact a long history that dates back at least to papers [28, 37]. For
recent surveys and improvements about this topic, see also [15, 29, 30]. These results
may provide the reader with an idea to design new algorithms for the pessimistic
bilevel programming problems, although the authors in [15, 28–30, 37] did not
present the direct algorithms.

In the following, we will consider the perturbed pessimistic bilevel programming
problems (PBPε) [27] which can be formulated as follows:

min
x∈X′

max
y∈$ε(x)

F (x, y). (14.5.3)
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where ε > 0, $ε(x) := {y : f (x, y) ≤ φ(x) + ε}. Note that φ(x) is the optimal
value function of the lower level problem

min
y

f (x, y)

s.t. g(x, y) ≤ 0.

To solve the above perturbed pessimistic bilevel programming problem, Lam-
pariello et al. [27] first presented the perturbed standard pessimistic bilevel problem
(SPBPε ):

min
x,y

F(x, y)

s.t. x ∈ X
′
, y ∈ Rε(x),

where Rε(x) is the set of ε-solutions of the following optimization problem

max
w

F(x,w)

s.t. w ∈ $ε(x),

and then by using Multi Follower Game with two followers, proposed an optimistic
bilevel problem in which the lower level is a parametric GNEP with two players
(MFGε):

min
x,y,z

F(x, y)

s.t. x ∈ X
′
, (y, z) ∈ Eε(x),

where Eε(x) is the equilibrium set of the following GNEP:

min
y
−F(x, y)

s.t. y ∈ Y (x),

f (x, y) ≤ f (x, z)+ ε,

and

min
z

f (x, z)

s.t. z ∈ Y (x).

Using the KKT conditions, (MFGε) can be transformed into a single-level Math-
ematical Program with Complementarity Constraints (MPCCε ) problem. Under
some assumptions, Lampariello et al. [27] concluded the relations among (PBPε),
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(SPBPε ), (MFGε) and (MPCCε ). This would provide the readers with a new way to
discuss the perturbed pessimistic bilevel programming problems.

When the follower’s feasible region does not depend on the upper level decision
variables, the above perturbed pessimistic bilevel programming problem also can
be called independent perturbed pessimistic bilevel programming problem. It is
formulated as follows:

min
x∈X′

sup
y∈$ε(x)

F (x, y) (14.5.4)

where ε > 0 and $ε(x) is the set of ε-solutions of the lower level problem

min
y

f (x, y)

s.t. y ∈ Y,

Several authors presented some approximation approaches. For example, Lori-
dan and Morgan [38] first presented the following strong Stackelberg problem:

min
x∈X′

inf
y∈$(x,β,γ )

F (x, y) (14.5.5)

where β, γ ≥ 0 and $(x, β, γ ) is the set of γ -solutions of the parametrized problem

min
y

l(x, y, β)

s.t. y ∈ Y,

where l(x, y, β) = f (x, y)− βF(x, y) for any x ∈ X
′

and y ∈ Y .
Based on the Molodtsov method, they computed a sequence of solutions of strong

Stackelberg problem (14.5.5) and investigated the relations with solutions to the
independent pessimistic bilevel problem. Under some assumptions, they have been
proved that a sequence of solutions of strong Stackelberg problem convergence to
a lower Stackelberg equilibrium for the independent perturbed pessimistic bilevel
problem.

On the other hand, Tsoukalas et al. [51], Wiesemann et al. [54] considered the
following independent pessimistic bilevel optimization problem:

min
x∈X H(x) (14.5.6)

s.t. g(x, y) ≤ 0,∀y ∈ arg max
y
′ ∈Y

h(x, y
′
).
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To solve the independent pessimistic bilevel optimization problem (14.5.6), they
presented an ε-approximation problem:

min
x∈X′

H(x)

s.t. g(x, y) ≤ 0,∀y ∈ Yε(x),

Yε(x) = {z ∈ Y : h(x, z) < h(x, z
′
)+ ε,∀z′ ∈ Y },

x ∈ X.

For a fixed value of ε, the above problem was reformulated as a single-level
optimization problem:

min
x,z,λ

H(x)

s.t. λ(y)[h(x, z)− h(x, y)+ ε]
+(1− λ(y))g(x, y) ≤ 0,∀y ∈ Y,

x ∈ X
′
, z ∈ Y, λ : Y −→ [0, 1],

where the function λ : Y −→ [0, 1] is a decision variable. Furthermore,
they developed an iterative solution procedure for the ε-approximation problems.
Numerical results illustrate the feasibility of the proposed ε-approximation method.

In particular, when the lower level corresponds to an equilibrium problem that
is represented as a (parametric) variational inequality or, equivalently, a generalized
equation, bilevel optimization problem can be called an MPEC (Mathematical Pro-
gram with Equilibrium Constraints). C̆ervinka et al. [16] proposed a new numerical
method, which combines two types of existing codes, a code for derivative-free
optimization under box constraints, and a method for solving special parametric
MPECs from the interactive system, to compute approximate pessimistic solutions
to MPECs.

14.5.4 Reduction Method

Again, to solve problem (14.2.2), Zeng [56] presented its relaxation problem as
follows:

min
x,ȳ

max
y∈Ỹ (x,ȳ)

F (x, y)

s.t. x ∈ X,

g(x, ȳ) ≤ 0, (14.5.7)

Ỹ (x, ȳ) := {y : g(x, y) ≤ 0, f (x, y) ≤ f (x, ȳ)}.
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Proposition 3 in Ref. [56] means that if (x∗, ȳ ′, y ′) is a solution to problem (14.5.7),
then there exists a point y∗ ∈ $(x∗) such that (x∗, y∗) solves problem (14.2.2).
In other words, this result provides the reader with an important idea to compute
the pessimistic bilevel optimization via investigating a regular optimistic bilevel
programming problem.

Moreover, Zheng et al. [64] proposed a reducibility method for a pessimistic lin-
ear bilevel programming problem which is reduced to disjoint bilinear programming
problems. For a pessimistic quadratic-linear bilevel optimization problem, Maly-
shev and Strekalovsky [44] reduced it to a series of optimistic bilevel optimization
problems and then developed the global and local search algorithms.

In addition to the above several methods, for the pessimistic linear bilevel
programming problem, Dempe et al. [23] proposed the global and local search
algorithms via the value method and the strong dual theory of linear programming;
Liu et al. [34] presented a new algorithm which embeds a penalty method into a
branch and bound algorithm. For the pessimistic bilevel mixed-integer programming
problems, Lozano and Smith [39] developed two methods (i.e. two-phase approach
and cutting-plane algorithm) based on an optimal-value-function reformulation.
Zheng et al. [63] presented a maximum entropy approach to solve a class of the
pessimistic bilevel programming problems in which the set of solutions of the lower
level problem is discrete. It should be noted that their approach need to obtain the
set of solutions of the lower level problem in advance. This is not an easy work,
but it may provide the reader with a new way to discuss the pessimistic bilevel
optimization.

14.6 Conclusions and Prospective Research Topics

Pessimistic bilevel optimization plays an exceedingly important role in different
application fields, such as second best toll pricing [10], production-distribution
planning [61], principal-agent [54] and interdiction game [13, 14, 55]. In this
chapter, we have addressed pessimistic bilevel optimization. This chapter gives an
overview on the state-of-the-art of pessimistic bilevel optimization. Based on the
above discussion, we can find that there are some directions that should be discussed
for further research.

1. The first order optimality conditions for pessimistic bilevel optimization is pro-
posed, but it has not been organically combined with the algorithm. Furthermore,
the higher order optimality conditions also should be studied. In addition, no
systematic studies have been conducted on sensitivity analysis.

2. Several existing methods can be used to solve pessimistic linear bilevel opti-
mization and independent pessimistic bilevel optimization problems. It would
be interesting to study a general pessimistic bilevel optimization which do
not possess the independence property. In particular, it would be instructive to
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investigate how pessimistic bilevel optimization can be reduced to a single-level
optimization problem and to discuss the relationship between them.

3. The ultimate goal of pessimistic bilevel optimization is to provide strong ability
of analysis and decision for the practical problems from the worst-case point
of view. In particular, those problems often appear in highly complex and
uncertainty environments. This requires further research on how intelligent
algorithms can be applied to large-scale pessimistic bilevel optimization in the
current age of big data.
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Chapter 15
Methods for Multiobjective Bilevel
Optimization

Gabriele Eichfelder

Abstract This chapter is on multiobjective bilevel optimization, i.e. on bilevel
optimization problems with multiple objectives on the lower or on the upper level,
or even on both levels. We give an overview on the major optimality notions
used in multiobjective optimization. We provide characterization results for the
set of optimal solutions of multiobjective optimization problems by means of
scalarization functionals and optimality conditions. These can be used in theoretical
and numerical approaches to multiobjective bilevel optimization.

As multiple objectives arise in multiobjective optimization as well as in bilevel
optimization problems, we also point out the results on the connection between
these two classes of optimization problems. Finally, we give reference to numerical
approaches which have been followed in the literature to solve these kind of
problems. We concentrate in this chapter on nonlinear problems, while the results
and statements naturally also hold for the linear case.

Keywords Multiobjective bilevel optimization · Semivectorial bilevel problem ·
Scalarization · Optimistic approach · Numerical methods

15.1 Introduction

In bilevel optimization one typically assumes that one has scalar-valued objective
functions in the two levels of the bilevel program. This may be, for instance, costs,
or time which has to be minimized. However, many real world problems can only
be modeled adequately by considering several, in most cases conflicting, objective
functions simultaneously, as weight and stability, or costs and time.

This occurs for instance in transportation planning [51]. We illustrate this with
an example, cf. [17]. Let us consider a city bus transportation system financed by
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the public authorities. They have as target the reduction of the money losses in this
non-profitable business. As a second target they want to motivate as many people
as possible to use the buses instead of their own cars, as it is a public mission to
reduce the overall traffic. The public authorities can decide about the bus ticket
price, but this will influence the customers in their usage of the buses. The public
has several, possibly conflicting, objectives, too, as to minimize their transportation
time and costs. Hence, the usage of the public transportation system can be modeled
on the lower level with the bus ticket price as parameter and with the solutions
influencing the objective values of the public authorities on the upper level. Thus,
such a problem can be modeled by multiobjective bilevel optimization.

In [17, 40] also a problem in medical engineering was discussed. There, the
task was the configuration of coils. In the original version, this problem was a
usual scalar-valued standard optimization problem which had to be reformulated
as a bilevel optimization problem due to the need of real-time solutions and
because of its structure. It turned out that the engineers would accept—or even
prefer—solutions which do not satisfy a previous equality constraint strictly in favor
of incorporating some additional objectives. This led to the examination of two
objective functions on both levels.

Dempe and Mehlitz consider in [11] a bilevel control problem, where the three
objective functions are approximating a given target state as good as possible,
minimizing the overall control effort, and the sparcity of the chosen control.

In case we have more than one objective function then we speak of a multiob-
jective optimization problem. Collecting for instance m objective functions in an
m-dimensional vector also leads to the name vector optimization, as now vector-
valued maps have to be optimized. In case we have a bilevel program with a
vector-valued objective on one or both of the levels we speak of a multiobjective
bilevel optimization problem. In case one has multiple functions just on one level
one also uses the name semivectorial bilevel problem.

For instance, Pilecka studies in [39] bilevel optimization problems with a single-
objective lower level and a vector-valued function on the upper level. The same
structure was assumed by Gadhi and Dempe in [23, 24] or Ye in [50]. Bonnel and co-
authors [3] study semivectorial bilevel problems with a multiobjective optimization
problem on the lower level. For optimality conditions for bilevel problems with such
a structure (multiobjective on the lower level, single-objective on the upper level),
see also Dempe and co-authors in [12].

In this chapter we will give a short introduction to multiobjective optimization.
First, an optimality concept for such optimization problems has to be formulated. By
doing that, one can define stricter or weaker concepts, which may have advantages
from applications point of view or from the theoretical or numerical point of view,
respectively.

We give scalarization results and optimality conditions which allow to character-
ize the set of optimal solutions of a multiobjective optimization problem. We also
point out some of the developments on numerical solvers. Throughout the chapter
we emphasize more on nonlinear problems. For the linear case of a multiobjective
bilevel optimization problem with multiple functions on each level see for instance
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[9] and the references therein. We will also study reformulations of the feasible
set of the upper level problem, which can be used to formulate numerical solution
approaches.

In bilevel optimization also multiple objectives arise: a function on the upper
level and a function on the lower level. Hence, we will also discuss the relationship
between multiobjective and bilevel optimization from this perspective.

15.2 Basics of Multiobjective Optimization

As we will consider bilevel optimization problems with a multiobjective optimiza-
tion problem on the lower or/and on the upper level, we start by giving an overview
on the main optimality notions typically used in multiobjective optimization.

In multiobjective optimization one studies optimization problems formally
defined by

min f (x) = (f1(x), . . . , fm(x))"
subject to the constraint

x ∈ ",

(MOP)

with a vector-valued objective function f : Rn → R
m (m, n ∈ N, m ≥ 2) and a

nonempty set of feasible points " ⊆ R
n.

For defining minimality for the multiobjective optimization problem (MOP), we
need a partial ordering in the image space. Thus one considers partial orderings
introduced by closed pointed convex cones K ⊆ R

m. A set K is a convex cone
if λ(x + y) ∈ K for all λ ≥ 0, x, y ∈ K , and K is a pointed convex cone if
additionally K ∩ (−K) = {0}. A partial ordering introduced by a pointed convex
cone is antisymmetric. The partial ordering is then defined by

x ≤K y ⇔ y − x ∈ K .

Hence, in the following, let K ⊆ R
m be a closed pointed convex cone.

For K = R
m+ we have for x, y ∈ R

m

x ≤R
m+ y ⇔ xi ≤ yi, i = 1, . . . ,m,

i.e. the componentwise ordering. Throughout the chapter, we denote by ≤ without
a subscript the componentwise ordering defined by ≤=≤R

m+. For more details on
ordering structures in vector optimization we refer to [21].

By using the concept of a partial ordering, we are now able to define two types
of optimal solutions of (MOP)
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Definition 15.2.1 A point x̄ ∈ " is called a K-minimal point, or efficient,
for (MOP) if

({f (x̄)} −K) ∩ f (") = {f (x̄)}.

Additionally, for int(K) �= ∅, a point x̄ ∈ " is called a weakly K-minimal point, or
weakly efficient, for (MOP) if

({f (x̄)} − int(K)) ∩ f (") = ∅.

�
Of course, any efficient point is also weakly efficient, in case int(K) �= ∅.

Whenever we speak of weakly efficient points, we assume that the ordering cone
K has a nonempty interior. We denote the set of all K-minimal points, i. e. of
all efficient points, as E(f ("),K), and the set of all weakly efficient points as
Ew(f ("),K). The set N(f ("),K) := {f (x) ∈ R

m | x ∈ E(f ("),K)} is called
nondominated set and the set Nw(f ("),K) := {f (x) ∈ R

m | x ∈ Ew(f ("),K)}
weakly nondominated set.

For K = R
m+ the efficient points are also denoted as Edgeworth-Pareto (EP)-

minimal points. Then the definition can also be formulated as follows: a point x̄ ∈ "

is an EP-minimal point for (MOP) if there is no x ∈ " with

fi(x) ≤ fi(x̄), i = 1, . . . ,m, and
fj (x) < fj (x̄) for at least one j ∈ {1, . . . ,m}.

Similarly, a point is called weakly EP-minimal or weakly efficient for (MOP)
w.r.t. K = R

m+ if there is no x ∈ " with

fi(x) < fi(x̄), i = 1, . . . ,m.

The weakly efficient points are in most cases more of interest from a theoretical
or numerical point of view, see, for instance, Theorem 15.3.2, or the results on
optimality conditions for a semivectorial bilevel optimization problem as given
in [12, 23, 24]. From an application point of view one would in general only
be interested in a weakly efficient point which is also efficient, as otherwise one
could improve the value of one objective function without deteriorating the others.
Nevertheless, in many studies on multiobjective bilevel optimization problems it is
assumed that the lower level decision maker would also be satisfied with a weakly
efficient solution, see, for instance, [12]. Note that in case " is convex and the
functions fi , i = 1, . . . ,m are strictly convex, i.e., if for all i = 1, . . . ,m

fi(λ x + (1− λ) y) < λfi(x)+ (1− λ) fi(y) for all x, y ∈ ", x �= y, λ ∈]0, 1[,
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then any weakly efficient point for (MOP) w.r.t. K = R
m+ is also an efficient point

of (MOP) w.r.t. K = R
m+.

For iterative numerical approaches, the following result is useful: in case the
feasible set becomes larger and one has already determined the efficient points of
the smaller set, then this can be used for determining the efficient points w.r.t. a
larger superset.

Lemma 15.2.2 ([17]) For two sets A0, A1 ⊆ R
n, and a vector-valued function

f : Rn → R
m, consider the sets

A = A0 ∪ A1 and
Ã = E(f (A0),Rm+) ∪A1.

Let f (A0) be compact. Then it holds E(f (A),Rm+) = E(f (Ã),Rm+). �
For numerical calculations, also the notion of ε-minimal solutions can be useful.

We state here a definition for the ordering cone K = R
m+, see also for instance

[30, 31, 48]:

Definition 15.2.3 Let ε ∈ R
m with εi > 0, i = 1, . . . ,m, be given. A point x̄ ∈ "

is an ε-EP-minimal solution of the multiobjective optimization problem (MOP) if
there is no x ∈ " with

fi(x)+ εi ≤ fi(x̄) for all i ∈ {1, . . . ,m}
and fj (x)+ εj < fj (x̄) for at least one j ∈ {1, . . . ,m}.

�

Example to Optimality Notions
Let " = {x ∈ R

2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1}, f : R2 → R
2 be defined

by f (x) = x for all x ∈ R
2 and K = R

2+. Then the set of efficient points is

E(f ("),K) = {x ∈ R
2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1}

and the set of weakly efficient points is

Ew(f ("),K) = {x ∈ R
2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1}

∪{(0, x2) ∈ R
2 | x2 ≥ 1} ∪ {(x1, 0) ∈ R

2 | x1 ≥ 1}.

As the objective map f is the identity we have

N(f ("),K) = E(f ("),K) and Nw(f ("),K) = Ew(f ("),K).

(continued)
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For εi = 1/4 for i = 1, 2, the point x̄ = (1/2+ 1/8, 1/2+ 1/8) is an ε-EP-
minimal solution of the multiobjective optimization problem minx∈" f (x) but
not an efficient point.

For multiobjective optimization problems also more general optimality notions
have been introduced, which use more general ordering structures. For instance,
Ye discusses in [50] semivectorial bilevel problems where the preference relation
is locally satiated and almost transitive. Moreover, the concept of using a fixed
ordering cone can be replaced by using an ordering map which associates to each
element y of the space an ordering cone K(y). This was done by Dempe and
Gadhi in [10]. They study semivectorial bilevel problems with a multiobjective
optimization problem on the upper level and where the cones K(y) are assumed to
be Bishop-Phelps-cones. For such multiobjective optimization problems also proper
nonlinear scalarizations exist, see [19], which have also been used by Dempe and
Gadhi in their approach for formulating necessary optimality conditions. Variable
ordering structures have been intensively studied, cf. [18] and, within the context
of set-optimization, in [20]. There is a strong relation between bilevel optimization
and set optimization, i.e. with optimization with a set-valued objective function.
This arises whenever the optimal solution set on the lower level is not unique, see
[39].

15.3 Characterization of Optimal Solutions of a
Multiobjective Optimization Problem

For solving problem (MOP) several methods are discussed in the literature. For
surveys see [13, 29, 35, 42]. An often used approach is to replace the vector opti-
mization problem by a suitable scalar-valued optimization problem. This fact is also
used in numerical methods for multiobjective bilevel problems to reformulate the
lower level problem by a single-objective problem or by the optimality conditions
of this reformulation.

Because of its simplicity, a widely used scalarization for multiobjective optimiza-
tion is linear scalarization. For that one uses elements of the dual cone

K∗ := {w ∈ R
m | w"y ≥ 0 for all y ∈ K}

as well as of the quasi-interior of the dual cone

K# := {w ∈ R
m | w"y > 0 for all y ∈ K \ {0}}.
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For K = R
m+ we have K∗ = R

m+ and K# = int(Rm+) = {y ∈ R
m | yi > 0, i =

1, . . . ,m}.
For convex multiobjective optimization problems one can use linear scalarization

for a full characterization of the weakly efficient points.

Theorem 15.3.1

(a) Let w ∈ K∗ \ {0} and x̄ ∈ " with

w"f (x̄) ≤ w"f (x) for all x ∈ ".

Then x̄ is a weakly efficient point for (MOP). If, additionally,w ∈ K#, then x̄ is
even efficient for (MOP).

(b) Let f (") +K be convex. Then for any weakly efficient point x̄ ∈ " of (MOP)
(and thus for any efficient point) there exists some w ∈ K∗ \ {0} with

w"f (x̄) ≤ w"f (x) for all x ∈ ".

�
Hence, in the convex case, we have a full characterization of weakly efficient

points. A similar result as in (b) does not exist for efficient points and for K#. This
is shown with the next example.

Example on Linear Scalarization
Let f : R2 → R

2 with f (x) = x, K = R
2+, and " = {x ∈ R

2 | ‖x‖2 ≤ 1}.
Then

E(f ("),R2+) = {x ∈ R
2 | ‖x‖2 = 1, x1 ≤ 0, x2 ≤ 0}.

Considering the point x̄ = (0,−1) ∈ E(f ("),R2+) there exists no w ∈ K# =
int(Rm+) with

w"f (x̄) = −w2 ≤ w"f (x) = w1x1 + w2x2 for all x ∈ ".

Only for w = (0, 1)" the point x̄ is a minimal solution of

min
x∈" w"f (x).

This characterization is often used for solving multiobjective bilevel optimization
problems. If we have multiple objectives and if the problem is convex, then the set

{x̄ ∈ " | ∃w ∈ K∗ \ {0} : w"f (x̄) ≤ w"f (x) for all x ∈ "} (15.3.1)



430 G. Eichfelder

equals the set of weakly efficient points Ew(f ("),K). Such linear scalarizations are
also called weighted-sum approach, and the components wi of the vector w ∈ K∗
are interpreted as weights of the objective function.

The approach in (15.3.1) is for instance used in [32, 33]. The authors reformulate
a linear semivectorial bilevel programming problem (with a multiobjective opti-
mization problem on the lower level) as a special bilevel programming problem,
where the lower level is a parametric linear scalar-valued optimization problem.
For characterizing the set in (15.3.1) optimality conditions from scalar-valued
optimization can be used. This approach with using the weighted sum is also
examined in [11] and it is pointed out that this is a delicate issue in case one studies
locally optimal solutions of the parameterized problem only.

Also note that from an application point of view, the weakly efficient points are
typically not so much of interest. A point x ∈ " which is a weakly EP-minimal point
of (MOP) but not an EP-minimal point of (MOP) means that there is still some x̃

which satisfies all objective functions equally good and is better with respect to one
of the objective functions. By considering instead the set

{x̄ ∈ " | ∃w ∈ K# : w"f (x̄) ≤ w"f (x) for all x ∈ "}

one only has a subset of the set of efficient points of (MOP) as the Example 15.3 has
shown. Note that there are numerical approaches for multiobjective bilevel problems
which in fact aim on the efficient instead of the weakly efficient points, see for
instance [25]

Theorem 15.3.1(b) requires the set f (") + K to be convex. This holds in case
the functions fi are convex, K = R

m+, and " is a convex set. For nonconvex
multiobjective optimization problems one has to use nonlinear scalarizations. A
widely used one is a scalarization by Pascoletti and Serafini, [38], also known as
Tammer-Weidner-functional [26, 27]. This scalarization approach allows to deter-
mine weakly efficient points for an arbitrary ordering cone K while many other well
known nonlinear scalarizations as the ε-constraint problem (see [13, 28, 34, 35])
are mainly developed for determining EP-minimal points, only. Moreover, those
can also be seen as a special case of the Pascoletti-Serafini-scalarization, see [15].
Thus, results gained for the Pascoletti-Serafini problem can be applied to these
scalarization problems, too.

Hence we consider the parameter dependent scalarization problems (according
to Pascoletti and Serafini)

min
(t,x)∈R1+n

t

subject to the constraints
a + t r − f (x) ∈ K,

x ∈ ",

t ∈ R

(15.3.2)



15 Methods for Multiobjective Bilevel Optimization 431

for parameters a, r ∈ R
m to the multiobjective optimization problem (MOP). The

main properties of this scalarization approach are the following:

Theorem 15.3.2

(a) Let x̄ be an efficient point of (MOP), then (0, x̄) is a minimal solution
of (15.3.2) with a = f (x̄), r ∈ K \ {0}.

(b) Let (t̄ , x̄) be a minimal solution of (15.3.2) for any a, r ∈ R
m, then x̄ ∈

Ew(f ("),K).

�
Thus all efficient points of the multiobjective optimization problem can be found
even for non-convex problems by choosing suitable parameters. We are even able to
restrict the choice of the parameter a to a hyper plane in the image space according
to the following theorem ([16], Theorem 3.2).

Theorem 15.3.3 Let x̄ ∈ E(f ("),K) and r ∈ K be given. We define a hyper plane
H by H = {y ∈ R

m | b"y = β} with b ∈ R
m, b"r �= 0, β ∈ R. Then there is

a parameter a ∈ H and some t̄ ∈ R such that (t̄ , x̄) is a minimal solution of the
problem (15.3.2). �

Also other scalarizations are used for deriving results on multiobjective bilevel
optimization problems. For instance, Gadhi and Dempe use in [23] the scalarization
known as signed-distance functional for deriving optimality conditions. This func-
tional evaluates the distance of a point to the negative of the ordering cone as well
as to the complement of the negative of the ordering cone.

We end this section by giving the KKT-type (i.e., Karush-Kuhn-Tucker-type)
optimality conditions for constrained multiobjective optimization problems. KKT-
conditions, and optimality conditions in general, are often used to characterize
the optimal solutions of the lower level of a bilevel optimization problem. Such
an approach was for instance named to be a classical approach by Deb and
Sinha in [6] and it was used by Chuong in [4] for a nonsmooth multiobjective
bilevel optimization problem. As it is known from single-objective optimization,
KKT-conditions typically include complementarity conditions which are difficult to
handle mathematically. Moreover, the necessary conditions require some regularity
assumptions (cf. (A2) in [33]). For more details on the sufficiency and necessity of
the optimality conditions we refer for instance to [13, 29].

We require the feasible set to be given by inequality and equality constraints
(also basic convex sets could be handled). For shortness of representation we restrict
ourselves here to inequality constraints. Thus, let gk : Rn → R, k = 1, . . . , p be
continuously differentiable functions such that

" := {x ∈ R
n | gk(x) ≤ 0, k = 1, . . . , p}. (15.3.3)

We give in the following the necessary conditions which also hold for just locally
efficient solutions, too. For a proof see for instance [13, Theorem 3.21].
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Theorem 15.3.4 (Necessary Optimality Conditions) Let " be given as
in (15.3.3) and let fj , j = 1, . . . ,m and gk , k = 1, . . . , p be continuously
differentiable. Let x̄ be a weakly efficient solution of (MOP) and assume that there
exists some d ∈ R

n such that

∇gk(x̄)
"d < 0 for all k ∈ I (x̄) := {k ∈ {1, . . . , p} | gk(x̄) = 0},

i. e. a constraint qualification is satisfied. Then there exist Lagrange multipliers λ ∈
R

m+ \ {0} and μ ∈ R
p
+ such that

∑m
j=1 λj∇fj (x̄)+∑p

k=1 μk∇gk(x̄) = 0,
μkgk(x̄) = 0, k = 1, . . . , p.

(15.3.4)

�
Under appropriate convexity assumptions we can also state sufficient conditions.

We state here a simplified version. For weaker assumptions on the convexity of the
functions, as quasiconvexity for the constraints, we refer to [29].

Theorem 15.3.5 (Sufficient Optimality Conditions) Let" be given as in (15.3.3)
and let fj , j = 1, . . . ,m and gk , k = 1, . . . , p be convex and continuously
differentiable. Let x̄ ∈ " and assume that there exist Lagrange multipliers λ ∈
R

m+ \ {0} and μ ∈ R
p
+ such that (15.3.4) is satisfied. Then, x̄ is a weakly efficient

solution of (MOP). �

15.4 Connection Between Multiobjective Optimization and
Bilevel Optimization

In bilevel optimization one has (at least) two objective functions: one on the upper
and one on the lower level. In multiobjective optimization one also studies problems
with two or more objective functions. This naturally leads to the question on how
these problem classes are related, and whether bilevel problems can be reformulated
as multiobjective optimization problems. This question was answered for nonlinear
problems by Fliege and Vicente in [22]: only by introducing a very special order
relation the optimal solutions of the bilevel problem are exactly the efficient points
of a multiobjective optimization problem. Only for continuously differentiable
problems on the lower level this order relation can be formulated as a more tractable
order relation. We give some of the basic ideas in the following, all based on
[22]. For a more recent survey and unifying results as well as a more general
characterization of the connections between single-level and bilevel multiobjective
optimization we refer to [41]. They also provide a thorough literature survey on this
topic as well as the historic sources of this approach for bilevel linear problems.
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We assume the bilevel problem to be of the form

minxu∈Rnu , x�∈Rn� fu(xu, x�)

s.t. x� ∈ argminy∈Rn� {f�(xu, y)}, (15.4.1)

where fu, f� : R
nu × R

n� → R are the upper-level and lower-level objective
functions respectively. Hence, we assume that there are no constraints in each level
and we assume the optimistic approach. The handling of constraints is also shortly
described in [22].

As a related multiobjective optimization problem, it is not enough to study
just a problem with the vector-valued function (fu(xu, x�), f�(xu, x�)), as counter
examples, which can be found in the literature, demonstrate. Instead, a possibility to
give a relation is to use a map which includes the vector xu as a component. But still,
it is not enough to use the standard componentwise partial ordering. The authors in
[22] present a complete reformulation with an ordering which is not numerically
tractable. They also formulate a weaker relation which we present in the following
but which gives a sufficient condition only.

The related vector optimization problem, which the authors from [22] finally
propose, uses as objective map F : Rnu ×R

n� → R
nu + 3 defined by

F(xu, x�) = (xu, fu(xu, x�), f�(xu, x�), ‖∇x�f�(xu, x�)‖2). (15.4.2)

In the image space, a cone K is used to define an ordering (but not a partial ordering)
by x ≤ y if and only if y − x ∈ K:

K = {(x, f1, f2, d) ∈ R
nu+3 | (x = 0 ∧ f2 > 0) ∨ (f1 > 0 ∧ d ≥ 0)} ∪ {0}.

(15.4.3)

Theorem 15.4.1 ([22, Corollary 4.2]) Let F and K be as in (15.4.2) and (15.4.3).
Let a point x̄ = (x̄u, x̄�) ∈ R

nu × R
n� be such that F(x̄) is nondominated w.r.t. K ,

i.e.

({F(x̄)} −K \ {0}) ∩ {F(x) | x ∈ R
nu ×R

n�} = ∅,

then x̄ is an optimal solution of the bilevel optimization problem (15.4.1). �
The study about the relation between multiobjective and bilevel optimization

problems is also continued and unified in [41] as already mentioned above. The
authors also study thereby multiobjective bilevel optimization problems and their
connection to multiobjective optimization. A thorough exploration of the use of
these relations for numerical approaches for bilevel problems is an open research
topic.
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15.5 A Multiobjective Bilevel Program

In this section, we introduce the multiobjective bilevel optimization problem.
We formulate the general bilevel optimization problem (see (15.5.3)). Then we
introduce the so-called optimistic approach (see (15.5.4)) which is a special case
of the general bilevel optimization problem. Next, we give a possibility on how to
describe the feasible set of such an optimistic bilevel problem as the solution set of a
specific multiobjective optimization problem. This will be used in Sect. 15.6 within
a numerical method. Then, with an example, we illustrate again what might happen
in case the lower level problem has not a unique solution, now in the setting that
there is only one objective function on the lower level but several on the upper level.

Moreover, we mention a typical approach from the literature, namely scalar-
ization. We discuss what happens in case one considers weakly efficient points of
the lower level problem instead of efficient ones, which is often done when using
scalarizations. We end the section by introducing coupling constraints between the
upper and the lower level.

As mentioned in the introduction, in bilevel optimization we have a parameter
dependent optimization problem on the lower level, which depends on the variable
y ∈ R

n2 of the upper level. In case of multiple objectives, this lower level problems
reads as

min
x∈Rn1

f (x, y)

subject to the constraint
(x, y) ∈ G

(15.5.1)

with a vector-valued function f : Rn1 × R
n2 → R

m1 and a set G ⊆ R
n1 × R

n2

(n1, n2,m1 ∈ N). The constraint (x, y) ∈ G can be replaced by

x ∈ G(y) := {x ∈ R
n1 | (x, y) ∈ G}. (15.5.2)

The variables x ∈ R
n1 of this lower level problem are called lower level variables.

For a constant y ∈ R
n2 , let x(y) be a minimal solution of (15.5.1), hence

x(y) ∈ $(y) := argminx{f (x, y) | (x, y) ∈ G} ⊂ R
n1 .

For a multiobjective optimization problem on the lower level it has to be clarified
what a minimal solution is, i.e. how the set $(y) is defined. An appropriate concept
from a practical point of view might be the set of efficient elements w.r.t. a partial
ordering, while from a theoretical point of view the set of weakly efficient points
might be more suitable.



15 Methods for Multiobjective Bilevel Optimization 435

The optimization problem of the upper level is then given by

’ min
y∈Rn2

’F(x(y), y)

subject to the constraints
x(y) ∈ $(y),

y ∈ G̃

(15.5.3)

with a vector-valued function F : Rn1 × R
n2 → R

m2 , m2 ∈ N, and a compact set
G̃ ⊂ R

n2 . Here, the constraint y ∈ G̃ is uncoupled from the lower level variable.
An even more general formulation of the bilevel problem is reached by allowing the
constraint y ∈ G̃(x) to depend on the lower level variable x, what we will discuss
shortly later. We speak of a multiobjective bilevel optimization problem if m1 ≥ 2
or m2 ≥ 2.

If the minimal solution of the lower level problem (15.5.1) is not unique, i. e.
the set $(y) consists of more than one point, the objective function F(x(·), ·) is
not well-defined for y ∈ R

n2 . That is the reason why the word ’ min ’ is written in
quotes in (15.5.3). This difficulty is in some works avoided by just assuming that
the solution of the lower level problem is unique. But in the case of a multiobjective
optimization problem (m1 ≥ 2) on the lower level this is in general not reasonable
any more.

Hence, a possible approach is to study the set-valued map

y �→ {F(x, y) | x ∈ $(y)}.

In the case of non-uniqueness, another common approach is the optimistic approach.
There it is assumed that the decision maker of the lower level chooses among all
minimal solutions that one, which is best for the upper level, i. e., which is minimal
for the objective function of the upper level. Hence, it is solved

min
x,y

F (x, y)

subject to the constraints
x ∈ $(y),

y ∈ G̃.

(15.5.4)

Thus, in the optimistic modification (15.5.4), the objective function of the upper
level is minimized w. r. t. x and y, while in the general formulation (15.5.3) it is
only minimized w. r. t. the upper level variable y. In the following, we consider the
optimistic approach only, i. e. the bilevel optimization problem as in (15.5.4).

When assuming this optimistic approach, one assumes at the same time that the
decision maker on the lower level allows the decision maker on the upper level to
utilize any solution from the set of efficient points of the lower level, which might
not be realistic. See also the discussion in [45, 47].



436 G. Eichfelder

In [45], also the case where the lower level decision maker has sufficient power
to make a deterministic decision from the set of efficient points of the lower level is
studied. This is formulated by using a value function on the objective functions of
the lower level, which needs to be known in this setting. By using a value function
the lower level problem is somehow reduced to a single-objective problem. To
overcome the difficulty of determining the lower level value function, Sinha and
co-authors suggest in [46] to handle uncertainties in the lower level value function.

For the multiobjective optimization problem on the upper level we assume that
the partial ordering is given by the closed pointed convex cone K2 ⊆ R

m2 and for
the lower level by the closed pointed convex cone K1 ⊆ R

m1 . For the case m1 ≥ 2
the set $(y) is the solution set of a multiobjective optimization problem w. r. t. the
ordering cone K1. Thus, using (15.5.2), we write instead of x ∈ $(y)

x ∈ E(f (G(y), y),K1) =: Ey(f (G),K1), (15.5.5)

with E(f (G(y), y),K1) the set of K1-minimal points of the multiobjective opti-
mization problem (15.5.1) parameterized by y. Hence we study

min
x,y

F (x, y)

subject to the constraints
x ∈ Ey(f (G),K1),

y ∈ G̃.

(15.5.6)

A helpful result, which can be used for numerical approaches, is that the set
of feasible points of the upper level problem of the considered multiobjective
bilevel optimization problem can be expressed as the set of efficient points of a
multiobjective optimization problem. We will use that in Sect. 15.6. The set of
feasible points " of the upper level problem in (15.5.6), also called induced set,
is given by

" = {(x, y) ∈ R
n1 ×R

n2 | x ∈ Ey(f (G),K1), y ∈ G̃}.

We show that the set " is equivalent to the set of K̂-minimal points of the
multiobjective optimization problem

min
x,y

f̂ (x, y) :=
(
f (x, y)

y

)

subject to the constraints
(x, y) ∈ G,

y ∈ G̃

(15.5.7)

w. r. t. the ordering cone

K̂ := K1 × {0} ⊂ R
m1 ×R

n2 .
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A point (x̄, ȳ) is thus an element of the set of feasible points " if and only if it
is a K̂-minimal point of the multiobjective optimization problem (15.5.7). This is
shown in the following theorem. There is also a close relation to the reformulation
using the function F in (15.4.2), see [41].

Theorem 15.5.1 Let Ê be the set of K̂-minimal points of the multiobjective
optimization problem (15.5.7) with K̂ = K1 × {0}. Then it holds " = Ê. �
Proof We have

(x̄, ȳ) ∈ "

⇔ x̄ ∈ Eȳ (f (G),K1) ∧ ȳ ∈ G̃

⇔ ( � ∃ x ∈ G(ȳ) with f (x̄, ȳ) ∈ f (x, ȳ)+K1 \ {0})
∧ ȳ ∈ G̃ ∧ x̄ ∈ G(ȳ)

⇔ ( � ∃ (x, y) ∈ G with f (x̄, ȳ) ∈ f (x, y)+K1 \ {0} ∧ y = ȳ
)

∧ ȳ ∈ G̃ ∧ (x̄, ȳ) ∈ G

⇔ ( � ∃ (x, y) ∈ G with(
f (x̄, ȳ)

ȳ

)
∈
(
f (x, y)

y

)
+ (K1 × {0}) \ {0}

)

∧ ȳ ∈ G̃ ∧ (x̄, ȳ) ∈ G

⇔
(
� ∃(x, y) ∈ G with f̂ (x̄, ȳ) ∈ f̂ (x, y)+ K̂ \ {0}

)

∧ ȳ ∈ G̃ ∧ (x̄, ȳ) ∈ G

⇔ (x̄, ȳ) ∈ Ê. 	


A multiobjective bilevel optimization problem is a quite challenging problem
in case there are multiple objectives on each level, as just discussed. But already
in case there are only multiple objectives on the upper level, such semivectorial
bilevel problems become quite difficult. This is even more the case when the lower
level problem does not have unique optimal solutions. We illustrate this with an
example taken from [39, Ex. 4.14]. This example also gives insight to the optimistic
approach.

Example on Semivectorial Bilevel Problem
We study a bilevel optimization problem as in (15.5.3) with the lower level
problem

min
x∈R
{max{0,−xy} | x ≤ 1}.

(continued)
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Then we have for y ∈ [0, 1]

$(y) =
⎧
⎨

⎩

] −∞, 1] if y = 0,

[0, 1] if y ∈]0, 1].

For the upper level problem we are now interested in the problem

’ min
y∈R ’F(x(y), y)

subject to the contraints
x(y) ∈ $(y),

y ∈ [0, 1]

with

F(x, y) =
(

x − y − 1
y −max{0, x}

)
.

As the lower level solutions are not unique, to each y ∈ [0, 1] we can define
the sets

F̃ (y) :=
⋃

x∈$(y)

{F(x, y)}

where

F̃ (y) =
⎧
⎨

⎩

conv({(−1, 0), (0,−1)})∪ {(u, 0) | u ∈] −∞,−1]} if y = 0

conv({(−y − 1, y), (−y, y − 1)}) if y =]0, 1]

Then (x̂, ŷ) = (x̂, 1) with x̂ ∈ $(1) = [0, 1] and F(x̂, ŷ) = (x̂ − 2, 1− x̂) is
not an optimal solution of the optimistic formulation

min
x,y

F (x(y), y)

subject to the contraints
x(y) ∈ $(y),

y ∈ [0, 1].

This can be seen by considering (x, y) = (x, 0) with x ∈ $(0)∩] −∞,−1].
These points have smaller objective function values: F(x, 0) = (x − 1, 0)".
By comparing just the nondominated elements of the sets F̃ (y), i.e. by

(continued)
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solving a set optimization problem, as proposed in [39, p. 60], there would
also be solutions with ŷ = 1. This is a hint that studying bilevel problems
with non-unique lower-level-optimal solutions by using techniques from set
optimization might lead to other solutions, which might also be of interest.

Next, we will have a look on a typical approach to multiobjective bilevel
problems. This is to scalarize the lower level problem. Thereby, one often considers
weakly efficient points of the lower level problem instead of efficient ones. We
will also discuss the impact of that. For K1 = R

m1+ , Lv and Wan use in
[32, 33] a weighted-sum approach, as discussed in Sect. 15.3, to characterize the
optimal solutions of the lower level in case the lower level problem is convex
and some regularity assumptions are satisfied. For the theoretical verification see
Theorem 15.3.1. Then, instead of (15.5.6), they study

min
x,y,w

F (x, y)

subject to the constraints
y ∈ G̃,∑m1

i=1 wi = 1,
w ∈ R

m1+ ,

x ∈ argmin
{
w"f (x, y) | (x, y) ∈ G

}
.

Hence, the weighting vector w, which is here the scalarization parameter, is
interpreted as a new upper level variable, and thus the original semivectorial bilevel
programming problem is transformed into a standard bilevel programming problem
(cf. [11, Theorem 3.1]). Thereby it is assumed that one is interested in weakly
efficient solutions of the lower level–and not in efficient solutions only. While this
approach can be done in view of globally optimal solutions, one has to take care
in case one uses locally optimal solutions on the lower level: Dempe and Mehlitz
show in [11] that the reformulation using the weighted-sum scalarization and the
additional variable w might have locally optimal solutions which are not locally
optimal for the original problem.

In a second step, in [32, 33], the constraint

x ∈ argmin
{
w"f (x, y) | (x, y) ∈ G

}

is replaced by the KKT-conditions of this scalar-valued optimization problem.
As done in these reformulations, many authors take the weakly efficient elements

instead of the efficient, i.e. they replace the condition x ∈ E(f (G(y), y),K1) from
the lower level problem by x ∈ Ew(f (G(y), y),K1). The next example shows that
this can have a strong impact. We use for this examples ideas from [11].
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Example on Weakly Efficient and Efficient Solutions
We study the optimistic semivectorial bilevel optimization problem

min
x,y

x + 2y

subject to the constraints
x ∈ $(y) = argmin {(xy, 1− x) | x ∈ [0, 1]} ,

y ∈ [0, 1].

Then we have

$(y) =
{ {1} if y = 0,
[0, 1] if y ∈ (0, 1].

The bilevel problem has no optimal solution: for y = 0 the objective function
value is 1 and for y > 0 it is 2y. In case one takes the set of weakly efficient
solutions of the lower level, which we denote by $w(y), one gets

$w(y) = [0, 1] for y ∈ [0, 1]

and as optimal value of the bilevel problem we obtain 0. The minimal solution
is then (x, y) = (0, 0). This shows that it might make a huge difference
whether weakly efficient or efficient solutions of the lower level problem are
taken into account. In the first case, the bilevel problem is even not solvable.

Instead of enlarging the feasible set by taking the weakly efficient solutions
instead of the efficient solutions, one could also use the so-called properly efficient
solutions, which are a subset of the efficient solutions. Those can completely be
characterized by linear scalarizations, at least in the convex case, by using elements
w ∈ K#. Such an approach was discussed by Gebhardt and Jahn in [25]. The
advantage is that the gained optimal values of the bilevel problem are then upper
bounds on the optimal values of the original problem, and, what is more, that the
gained optimal solutions are in fact feasible for the original problem, as any properly
efficient solution is also efficient.

Finally, we would like to draw the attention to additional difficulties which can
arise in case of constraints on the upper level which couple the upper and the
lower level variables. Thus, in the remaining of this section, we study instead of
problem (15.5.6) the more general formulation

min
x,y

F (x, y)

subject to the constraints
x ∈ Ey(f (G),K1),

(x, y) ∈ G̃

(15.5.8)
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with the constraint set G̃ ⊂ R
n1 ×R

n2 . This results in a coupling of the upper level
variable y and the lower level variable x. Then

"′ := {(x, y) ∈ R
n1 × R

n2 | x ∈ Ey(f (G),K1), (x, y) ∈ G̃}

denotes the induced set of the problem (15.5.8).
First notice that the constraint (x, y) ∈ G̃ from the upper level cannot just be

moved to the lower level as simple examples, see for instance [14, Example 7.4],
show. This has also a practical interpretation. The same constraint on the lower level
restricting the constraint set on the lower level has a different meaning as on the
upper level. There, the feasibility is restricted after the determination of the minimal
solution of the lower level and is thus an implicit constraint. For more details see [8,
pp. 25].

A generalization of the results from Theorem 15.5.1 is not possible as discussed
in [14, Chapter 7]. We also illustrate this with the following example.

Example on Coupled Constraints
We consider the biobjective bilevel optimization problem

min
y∈R F(x, y) =

(
x1 − y

x2

)

subject to the constraints

x = x(y) ∈ argminx∈R2

{
f (x, y) =

(
x1

x2

) ∣
∣
∣∣ (x, y) ∈ G

}
,

(x, y) ∈ G̃

with n1 = 2, n2 = 1, K1 = K2 = R
2+, m1 = m2 = 2,

G := {(x, y) ∈ R
3 | ‖x‖22 ≤ y2}

and

G̃ := {(x, y) ∈ R
3 | 0 ≤ y ≤ 1, x1 + x2 ≥ −1}.

Then

Ey(f (G),K1) = {x = (x1, x2) ∈ R
2 | ‖x‖22 = y2, x1 ≤ 0, x2 ≤ 0}

and thus we obtain

"′ = {(x, y) ∈ R
3 | ‖x‖22 = y2, x1 ≤ 0, x2 ≤ 0, 0 ≤ y ≤ 1, x1+x2 ≥ −1}.

(continued)
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Let Ê′ be the set of (R2+ × {0})-minimal points of the tricriteria optimization
problem

min
x,y

⎛

⎝
x1

x2

y

⎞

⎠

subject to the constraints

(x, y) ∈ G ∩ G̃ = {(x, y) ∈ R
3 | 0 ≤ y ≤ 1, x1 + x2 ≥ −1, ‖x‖22 ≤ y2}

similar to (15.5.7). While it holds "′ ⊂ Ê′ (cf. [14, Theorem 7.5]) we show
that it does not hold Ê′ ⊂ "′.

For (x̄, ȳ) = (− 1
2 ,− 1

2 , 1)" we have (x̄, ȳ) ∈ Ê′ because (x̄, ȳ) ∈ G ∩ G̃

and there is no (x, y) ∈ G ∩ G̃ with

⎛

⎝
x̄1

x̄2

ȳ

⎞

⎠ ∈
⎧
⎨

⎩

⎛

⎝
x1

x2

y

⎞

⎠

⎫
⎬

⎭
+ (R2+ × {0}) \ {0}

⇔
(
x̄1

x̄2

)
∈
{(

x1

x2

)}
+ R

2+ \ {0} ∧ y = ȳ.

The set {x ∈ R
2 | (x, y) ∈ G∩G̃, y = 1} is illustrated in Fig. 15.1. However,

(x̄, ȳ) �∈ "′ because ‖x̄‖22 = 1
2 �= ȳ2.

In this example, as the induced set can be determined explicitly, the
minimal solution set can be calculated by solving the biobjective optimization
problem minx,y{F(x, y) | (x, y) ∈ "′}. We get as solution set of the
multiobjective bilevel optimization problem:

Smin =
{
(x1, x2, y)

∣
∣
∣
∣ x1 = −1−x2, x2 = −1

2
±1

4

√
8y2 − 4, y ∈

[√
2

2
, 1

]}
.

The image
{
F(x1, x2, y) | (x1, x2, y) ∈ Smin

}
of this set is

{
(z1, z2) ∈ R

2
∣
∣
∣
∣ z1 = −1−z2−y, z2 = −1

2
± 1

4

√
8y2 − 4, y ∈

[√
2

2
, 1

]}
.

These sets are shown in Fig. 15.2.
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Fig. 15.1 The set {x ∈ R
2 | (x, y) ∈ G ∩ G̃, y = 1} of Example 15.5, cf. [14]
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Fig. 15.2 Solution set Smin of the biobjective bilevel optimization problem of Example 15.5 and
the image F(Smin)

15.6 Numerical Methods

As stated in the introduction, we concentrate in this chapter on nonlinear problems.
Procedures for solving linear multiobjective bilevel problems are presented e. g. in
[36].

Much less papers are dealing with nonlinear multiobjective bilevel problems:
Shi and Xia [43, 44] present an interactive method, also using a scalarization (the
ε-constraint scalarization, cf. [47]). Osman, Abo-Sinna et al. [1, 37] propose the
usage of fuzzy set theory for convex problems. Teng et al. [49] give an approach for
a convex multiperson multiobjective bilevel problem.

Bonnel and Morgan consider in [2] a semivectorial bilevel optimization problem
and propose a solution method based on a penalty approach. However, no numerical
results are given.

More recently, in [14, 17] Theorem 15.5.1 was used for developing a numer-
ical algorithm. There, first the efficient set of the multiobjective optimization
problem (15.5.7) was calculated (or at least approximated). According to Theo-
rem 15.5.1, this efficient set equals the feasible set of the upper level problem of
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the original bilevel problem. As the efficient set of (15.5.7) was approximated by a
finite set of points, these points can be evaluated and compared easily by the upper
level function. The approximation of the efficient set of (15.5.7) is then iteratively
refined around points which have had promising objective function values w.r.t. the
upper level functions.

Note that in general, it is not possible to determine the whole solution set of
problem (15.5.7). We can only calculate a representation or approximation of this
set. In [14, 17] it is taken care that this approximation is generated with a high
quality in the pre-image space. And then, in a second step, based on sensitivity
information, this approximation is refined depending on the behavior of the upper
level function. For determining single efficient points of problem (15.5.7) the
scalarization according to Pascoletti and Serafini, see Theorem 15.3.2, is used.
Thereby, one can also make use of the result given in Lemma 15.2.2. The approach
is suitable for low dimensions of the upper level variable only. Summing up, the
algorithm consists of the following steps:

1. Calculate an approximation of the efficient set of (15.5.7) w.r.t. the partial
ordering defined by the cone K̂ . This is done by determining equidistant
representations of the efficient sets of the multiobjective problems (15.5.1) for
various discretization points y in the set G̃.

2. Select all non-dominated points of the lower level problems being non-dominated
for the upper level problem.

3. Refine the approximation of the efficient set of the original problem by refining
the approximation of the set of feasible points of the upper level problem.

We give the numerical results of this algorithm for one example, cf. [14, Ch. 7].

Numerical Example
We consider the following multiobjective bilevel problem (assuming the
optimistic approach) with n1 = 2, n2 = 1, m1 = m2 = 2 and K1 =
K2 = R

2+.

min
x,y

(
F1(x, y)

F2(x, y)

)
=

(
x1 + x2

2 + y + sin2(x1 + y)

cos(x2) · (0.1+ y) ·
(

exp(− x1
0.1+ x2

)
)
)

subject to the constraints

x ∈ argminx∈R2

{(
f1(x, y)

f2(x, y)

)
| (x, y) ∈ G

}
,

y ∈ [0, 10]

(continued)
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with f1, f2 : R3 → R,

f1(x, y) = (x1 − 2)2 + (x2 − 1)2

4 + x2y + (5− y)2

16 + sin
(
x2
10

)
,

f2(x, y) = x2
1 + (x2 − 6)4 − 2x1y − (5− y)2

80

and

G = {(x1, x2, y) ∈ R
3 | x2

1−x2 ≤ 0, 5x2
1+x2 ≤ 10, x2−(5−y/6) ≤ 0, x1 ≥ 0}.

We apply the algorithm from [14, 17] with distance β = 0.6 for discretizing
the interval G̃ = [0, 10], i.e. we choose y ∈ {0, 0.6, 1.2, 1.8, . . . , 9.6, 10}.
For example, for y = 1.8 one obtains the representation of the efficient set of
problem (15.5.1) as shown in Fig. 15.3a. In the image space of the lower level
problem this representation is shown in Fig. 15.3b.

The representation A0 of the efficient sets of (15.5.1) for all discretization
points y of the interval [0, 10] is shown in Fig. 15.4a. The set A0 is at the
same time an approximation of the solution set of problem (15.5.7) and hence
of the set of feasible points of the upper level problem, see Theorem 15.5.1.
In Fig. 15.4b the set F(A0) is given. Here the image points under F of the set
E(F (A0),R2+) are marked with circles and are connected with lines.

In several iterations the discretization of the feasible set of the upper
level problem is refined around the efficient points which results in the
representation Af , see Fig. 15.5. Then the algorithm is stopped as only small
improvements for the approximation of the efficient set of the multiobjective
bilevel optimization problem were gained by the last iteration.

Later, another numerical deterministic approach for nonlinear problems was
proposed by Gebhardt and Jahn in [25]. They propose to use a multiobjective
search algorithm with a subdivision technique. The studied problems have multiple
objectives on both levels. The authors also discuss optimality conditions for
replacing the multiobjective problem on the lower level. Instead of taking the weakly
efficient solutions of the lower level, they suggest to take the properly efficient
solutions. By doing this the feasible set of the upper level gets smaller (instead
of larger by using weakly efficient elements) and thus one gets upper bounds, and
minimal solutions which are in fact feasible for the original problem. However, the
authors do not use this for their numerical approach. Instead, the main ingredient of
their algorithm is a subdivision technique for multiobjective problems which uses
randomly generated points in boxes, where the size is decreased when the algorithm
proceeds. It is assumed that the feasible set of the upper level variable G̃ is such
that one can easily work with a discretization of it, for instance an interval. Then the
upper level variables are fixed to these values coming from the discretization, and
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Fig. 15.3 Representation (a) of the efficient set and (b) the nondominated set of problem (15.5.1)
for y = 1.8
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Fig. 15.4 (a) Approximation A0 of the set of feasible points " and (b) the image F(A0) of this
set under F

the lower level problems are solved with an algorithm from the literature which uses
subdivision techniques. While the procedure is appropriate only for small number
of variables, it is capable of detecting globally optimal solutions also for highly
nonlinear problems.

Also, the construction of numerical test instances is an important aspect. Test
instances which are scalable in the number of variables and the number of objectives
and where the set of optimal solutions are known are important to evaluate and
compare numerical approaches. Deb and Sinha propose five of such test problems
in [5]. For the test instances the optimistic approach is chosen.

There have also been some numerical approaches for solving bilevel multiob-
jective optimization problems by using evolutionary algorithms. An attempt is for



15 Methods for Multiobjective Bilevel Optimization 447

0 0.511
2

3
4

5
0

1

2

3

4

5

6

7

8

9

x
1

x
2

y

5 10 15 20 25

−10

−8

−6

−4

−2

0

2

4

6

F
1

F
2

a b

Fig. 15.5 (a) Final approximation Af of the set of feasible points " and (b) the image F(Af ) of
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instance given by Deb and Sinha in [6]. A hybrid solver combined with a local solver
was proposed by the same authors in [7].
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Chapter 16
Bilevel Optimal Control: Existence
Results and Stationarity Conditions

Patrick Mehlitz and Gerd Wachsmuth

Abstract The mathematical modeling of numerous real-world applications results
in hierarchical optimization problems with two decision makers where at least one
of them has to solve an optimal control problem of ordinary or partial differential
equations. Such models are referred to as bilevel optimal control problems. Here, we
first review some different features of bilevel optimal control including important
applications, existence results, solution approaches, and optimality conditions.
Afterwards, we focus on a specific problem class where parameters appearing
in the objective functional of an optimal control problem of partial differential
equations have to be reconstructed. After verifying the existence of solutions,
necessary optimality conditions are derived by exploiting the optimal value function
of the underlying parametric optimal control problem in the context of a relaxation
approach.

Keywords Bilevel optimal control · Existence results · Inverse optimal control ·
Stationarity conditions

16.1 What Is Bilevel Optimal Control?

A bilevel programming problem is a hierarchical optimization problem of two
decision makers where the objective functional as well as the feasible set of the
so-called upper level decision maker (or leader) depend implicitly on the solution
set of a second parametric optimization problem which will be called lower level
(or follower’s) problem. Both decision makers act as follows: First, the leader
chooses an instance from his feasible set which then serves as the parameter in
the follower’s problem. Thus, the follower is in position to solve his problem
and passes an optimal solution back to the leader who now may compute the
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associated value of the objective functional. As soon as the lower level solution
set is not a singleton for at least one value of the upper level variable, problems
of this type may be ill-posed which is why different solution concepts including
the so-called optimistic and pessimistic approach have been developed. Bilevel
programming problems generally suffer from inherent lacks of convexity, regularity,
and smoothness which makes them theoretically challenging. The overall concept of
bilevel optimization dates back to [52] where this problem class is introduced in the
context of economical game theory. More than 80 years later, bilevel programming
is one of the hottest topics in mathematical optimization since numerous real-
world applications can be transferred into models of bilevel structure. A detailed
introduction to bilevel programming can be found in the monographs [7, 14, 16, 49]
while a satisfying overview of existing literature is given in Appendix: Bilevel
Optimization: Bibliography where more than 1350 published books, PhD-theses,
and research articles are listed.

Optimal control of ordinary or partial differential equations (ODEs and PDEs,
respectively) describes the task of identifying input quantities which control the state
function of the underlying differential equation such that a given cost functional is
minimized, see [27, 35, 50, 51] for an introduction to this topic. Noting that the
decision variables are elements of suitable function spaces, optimal control is a
particular field of programming in (infinite-dimensional) Banach spaces, see [10].

In bilevel optimal control, bilevel programming problems are considered where
at least one decision maker has to solve an optimal control problem. Thus, we
are facing the intrinsic difficulties of bilevel optimization and optimal control
when investigating this problem class. Naturally, one may subdivide bilevel optimal
control problems into three subclasses depending on which decision maker has to
perform optimal control. Each of these problem classes appears in practice and has
to be tackled with different techniques in order to infer optimality conditions or
solution algorithms.

The situation where only the upper level decision maker has to solve an optimal
control problem of ordinary differential equations while the lower level problem
explicitly depends on the terminal state of the leader’s state variable has been
considered in [8, 9]. Problems of this type arise from the topic of gas balancing in
energy networks, see [32], and can be investigated by combining tools from finite-
dimensional parametric optimization and standard optimal control. The situation
where parameters within an optimal control problem have to be estimated or
reconstructed by certain measurements is a typical example of a bilevel optimal
control problem where only the lower level decision maker has to solve an optimal
control problem. This particular instance of bilevel optimal control may therefore
be also called inverse optimal control. In [2–4, 24, 44], inverse optimal control
problems of ODEs are considered in the context of human locomotion. Some more
theoretical results for such problems are presented in [25]. First steps regarding the
inverse optimal control of PDEs have been done recently in the papers [17, 23, 28].
The paper [46] deals with the scheduling of multiple agents which are controlled at
the lower level stage. In [19], the authors discuss a bilevel optimal control problem
where airplanes are controlled at multiple lower levels in order to increase the
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fairness in air racing. Further theoretical results on bilevel optimal control problems
where only the lower level decision maker faces an optimal control problem of
ODEs are presented in [55, 56]. Finally, it is possible that leader and follower have
to solve an optimal control problem. This setting has been discussed theoretically in
[11, 36, 40, 45]. Underlying applications arise e.g. when time-dependent coupling
of container crane movements is under consideration, see [33, 34].

The optimal control of (quasi-) variational inequalities ((Q)VIs) seems to be
closely related to the subject of bilevel optimal control since the underlying
variational problem, which assigns to each control the uniquely determined state
function, can be modeled as a parametric optimization problem in function spaces.
Those problems are of hierarchical structure, but neither leader nor follower has to
solve an optimal control problem in the classical meaning. In the seminal work [43],
Mignot shows that the control-to-state map of an elliptic VI in the Sobolev space
H 1

0 (") is directionally differentiable, and (in the absence of control constraints) this
leads to an optimality system of strong-stationarity-type. If control constraints are
present, one typically uses a regularization approach for the derivation of optimality
conditions. This idea dates back to [6] and we refer to [48] for a modern treatment.
Finally, we would like to mention that a comparison of several optimality systems
and further references regarding this topic can be found in [21].

16.2 Notation and Preliminaries

Let us briefly recall some essentials of functional analysis we are going to exploit.
For a (real) Banach space X, ‖·‖X : X → R denotes its norm. Furthermore, X'

represents the topological dual of X. We use 〈·, ·〉X : X' × X → R in order to
denote the associated dual pairing. For a sequence {xk}k∈N ⊂ X and some point
x̄ ∈ X, strong and weak convergence of {xk}k∈N to x̄ will be represented by xk → x̄

and xk ⇀ x̄, respectively. Recall that in a finite-dimensional Banach space X, the
concepts of strong and weak convergence coincide. A functional j : X→ R is said
to be weakly sequentially lower (upper) semicontinuous at x̄, whenever

xk ⇀ x̄ �⇒ j (x̄) ≤ lim inf
k→∞ j (xk)

(
xk ⇀ x̄ �⇒ j (x̄) ≥ lim sup

k→∞
j (xk)

)

holds for all sequences {xk}k∈N ⊂ X. We say that j is weakly sequentially lower
(upper) semicontinuous if it possesses this property at each point from X. It is
well known that convex and continuous functionals are weakly sequentially lower
semicontinuous. If the canonical embedding X . x �→ 〈·, x〉X ∈ X'' is an
isomorphism, then X is said to be reflexive. The particular Banach space R

n is
equipped with the Euclidean norm |·|2. Furthermore, we use x · y to represent the
Euclidean inner product in R

n.
A set A ⊂ X is said to be weakly sequentially closed whenever the weak limits

of all weakly convergent sequences from A belong to A as well. We note that closed
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and convex sets are weakly sequentially closed. We call A weakly sequentially
compact whenever each sequence from A possesses a weakly convergent subse-
quence whose limit belongs to A. Each bounded, closed, and convex subset of a
reflexive Banach space is weakly sequentially compact.

For a second Banach space Y, L
[
X,Y

]
is used to denote the Banach space

of all bounded linear operators mapping from X to Y. For A ∈ L
[
X,Y

]
, A' ∈

L
[
Y',X'

]
denotes its adjoint. If X ⊂ Y holds while the associated identity in

L
[
X,Y

]
is continuous, then X is said to be continuously embedded into Y which

will be denoted by X ↪→ Y. Whenever the identity is compact, the embedding
X ↪→ Y is called compact. For a set-valued mapping � : X ⇒ Y, the sets gph� :=
{(x, y) ∈ X×Y | y ∈ �(x)} and dom� := {x ∈ X |�(x) �= ∅} represent the graph
and the domain of �, respectively.

Let A ⊂ X be nonempty and convex. Then, the closed, convex cone

A◦ := {
x' ∈ X'

∣
∣ ∀x ∈ A : 〈

x', x
〉
X ≤ 0

}

is called the polar cone of A. For a fixed point x̄ ∈ A, NA(x̄) := (A − {x̄})◦
is referred to as the normal cone (in the sense of convex analysis) to A at x̄. For
the purpose of completeness, let us set NA(x̂) := ∅ for all x̂ ∈ X \ A. Note that
whenever C ⊂ X is a closed, convex cone satisfying x̄ ∈ C, then we have the
relation

NC(x̄) = C◦ ∩ {x' ∈ X' | 〈x', x̄〉X = 0}.

Detailed information on the function spaces we are going to exploit can be found
in the monograph [1].

16.3 Bilevel Programming in Banach Spaces

Let X and Z be Banach spaces. We consider the bilevel programming problem

F(x, z) → min
x,z

x ∈ Xad

z ∈ $(x),

(BPP)

where $ : X ⇒ Z is the solution mapping of the parametric optimization problem

f (x, z) → min
z

z ∈ �(x).

(16.3.1)
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Note that we minimize the objective functional in (BPP) w.r.t. both variables which
is related to the so-called optimistic approach of bilevel programming. In this
section, we first want to discuss the existence of optimal solutions associated with
(BPP). Afterwards, we briefly present possible approaches which can be used to
infer optimality conditions for this problem class.

16.3.1 Existence Theory

In this section, we aim to characterize situations where (BPP) possesses optimal
solutions. Noting that compact sets are generally rare in infinite-dimensional spaces,
one cannot rely on classical existence results from bilevel programming. Indeed,
compactness assumptions on the feasible sets have to be relaxed in order to
guarantee applicability of possible results. As a consequence, we need to demand
more restrictive properties than (lower semi-) continuity of the appearing objective
functionals in order to balance things in a reasonable way. One may check e.g.
[30] for a detailed discussion of existence theory for optimization problems in
Banach spaces. Particularly, it is presented that each weakly sequentially lower
semicontinuous functional achieves its minimum over a nonempty and weakly
sequentially compact set. The above remarks justify the subsequently stated general
assumptions of this section.

Assumption 16.3.1 We consider Banach spaces X and Z. The objective function-
als F, f : X × Z → R are weakly sequentially lower semicontinuous. The set
Xad ⊂ X is assumed to be nonempty and weakly sequentially compact, while
� : X ⇒ Z is a set-valued mapping with Xad ⊂ dom� such that (Xad×Z)∩gph�

is weakly sequentially compact. �
In the setting where X and Z are finite-dimensional, e.g. instances of Rn, the

above assumptions reduce to the lower semicontinuity of the objective functionals
as well as some compactness assumptions on Xad and gph� which is rather standard
in bilevel programming, see e.g. [14]. For our upcoming analysis, we will exploit
the function ϕ : Xad → R defined by

∀x ∈ Xad : ϕ(x) := inf
z
{f (x, z) | z ∈ �(x)}. (16.3.2)

By definition, ϕ assigns to each parameter x ∈ Xad the optimal function value of the
lower level problem (16.3.1). Assumption 16.3.1 guarantees that the infimal value
ϕ(x) is actually attained (i.e. $(x) �= ∅) since for all x ∈ Xad, f (x, ·) : Z → R

is weakly sequentially lower semicontinuous while �(x) is nonempty and weakly
sequentially compact.

Below, we need to study the (upper) semicontinuity properties of ϕ. In order to
do that, we need to address some continuity properties of the mapping �, see [26].
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Definition 16.3.2 Fix (x̄, z̄) ∈ gph�. Then, � is called inner semicontinuous
(weakly-weakly inner semicontinuous) at (x̄, z̄) if for each sequence {xk}k∈N ⊂
dom� satisfying xk → x̄ (xk ⇀ x̄), there exists a sequence {zk}k∈N ⊂ Z satisfying
zk ∈ �(xk) for all k ∈ N as well as zk → z̄ (zk ⇀ z̄). �

It needs to be noted that the concepts of inner and lower semicontinuity of set-
valued mappings, see [5], are closely related. Particularly, the lower semicontinuity
of � at some point x̄ ∈ dom� is equivalent to its inner semicontinuity at all points
(x̄, z) with z ∈ �(x̄).

In the particular situation where the mapping � is characterized via smooth
generalized inequalities, there is an easy criterion which is sufficient for inner
semicontinuity.

Remark 16.3.3 We assume that there exists a continuously Fréchet differentiable
function g : X × Z → W, where W is a Banach space, and some nonempty,
closed, convex set C ⊂W such that � is given by

∀x ∈ X : �(x) := {z ∈ Z | g(x, z) ∈ C}.
For fixed z̄ ∈ �(x̄), we assume that the condition

g′z(x̄, z̄)Z− cone(C − {g(x̄, z̄)}) =W (16.3.3)

is valid. Then, � is inner semicontinuous at (x̄, z̄), see e.g. [10, Section 2.3.3]. We
note that (16.3.3) often is referred to as Robinson’s constraint qualification, see
[47], or Kurcyusz–Zowe constraint qualification, see [57]. In the setting of finite-
dimensional nonlinear parametric optimization, this condition simply reduces to the
Mangasarian–Fromovitz constraint qualification, see [10] for details. Let us note
that (16.3.3) trivially holds whenever the operator g′z(x̄, z̄) is surjective. �

We note that weak-weak inner semicontinuity of � is inherent whenever this map
is actually constant. A nontrivial situation is described in the following example.

Terminal State Dependence of Lower Level
For some time interval I := (0, T ) and some natural number n, we consider
the Bochner–Sobolev space X := H 1(I ;Rn), which is a Hilbert space.
Clearly, the embedding X ↪→ C(I ;Rn) is compact, see [1]. This means that
the evaluation operator X . x �→ x(T ) ∈ R

n is well-defined and compact as
well.

For some set-valued mapping ϒ : Rn ⇒ Z, we define �(x) := ϒ(x(T ))

for all x ∈ X. The above observation implies that � is weakly-weakly inner
semicontinuous at (x̄, z̄) ∈ gph� whenever ϒ is inner semicontinuous at
(x̄(T ), z̄) and the latter can be guaranteed via standard assumptions, see e.g.
Remark 16.3.3.

(continued)
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The setting in this example reflects the situation of time-dependent
coupling between upper and lower level, see [33, Section 5], or a finite-
dimensional lower level problem depending only on the terminal value of the
leader’s state variable, see [8, 9, 32].

It needs to be noted that the analysis of the above situation can be extended
to cases where X is a function space over some domain " ⊂ R

d which is
embedded compactly into C("), and the function of interest is evaluated at
finitely many points from ". This applies to the setting of the Sobolev space
X := H 2(") where " is a bounded Lipschitz domain, see [1].

In the following lemma, which is inspired by [26, Theorem 2.5], we study upper
semicontinuity properties of the function ϕ. This will be useful in order to infer
closedness properties of the feasible set associated with (BPP).

Lemma 16.3.4 Fix x̄ ∈ Xad and z̄ ∈ $(x̄).

1. Assume that f is weakly sequentially upper semicontinuous at (x̄, z̄) while �

is weakly-weakly inner semicontinuous at (x̄, z̄). Then, ϕ is weakly sequentially
upper semicontinuous at x̄.

2. Let X be finite-dimensional. Assume that f is upper semicontinuous at (x̄, z̄)
while � is inner semicontinuous at (x̄, z̄). Then, ϕ is upper semicontinuous
at x̄. �

Proof We only verify the first statement of the lemma. The second one can be shown
using analogous arguments.

Let {xk}k∈N ⊂ Xad be a sequence satisfying xk ⇀ x̄. Exploiting the weak-weak
inner semicontinuity of � at (x̄, z̄), we find a sequence {zk}k∈N ⊂ Z satisfying
zk ∈ �(xk) for all k ∈ N and zk ⇀ z̄. By definition, ϕ(xk) ≤ f (xk, zk) holds for all
k ∈ N. Now, the weak sequential upper semicontinuity of f at (x̄, z̄) yields

lim sup
k→∞

ϕ(xk) ≤ lim sup
k→∞

f (xk, zk) ≤ f (x̄, z̄) = ϕ(x̄),

and this shows the claim. 	

Now, we exploit the above lemma in order to infer the existence of optimal

solutions to (BPP).

Theorem 16.3.5 In each of the settings described below, (BPP) possesses an
optimal solution.

1. The mapping f is weakly sequentially upper semicontinuous on Xad ×Z while
� is weakly-weakly inner semicontinuous on Xad ×Z.

2. The Banach space X is finite-dimensional. The mapping f is upper semicontin-
uous on Xad ×Z while � is inner semicontinuous on Xad ×Z. �

Proof Again, we only show the theorem’s first assertion.
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For the proof, we just need to verify that the feasible set (Xad × Z) ∩ gph$

of (BPP) is nonempty and weakly sequentially compact since the objective F is
supposed to be weakly sequentially lower semicontinuous. Noting that $(x) �= ∅

holds true for all x ∈ Xad, the nonemptiness of (Xad ×Z) ∩ gph$ is obvious.
Let {(xk, zk)}k∈N ⊂ (Xad × Z) ∩ gph$ be an arbitrary sequence. Clearly, we

have {(xk, zk)}k∈N ⊂ (Xad ×Z) ∩ gph� and by Assumption 16.3.1, there exists a
subsequence (without relabeling) converging weakly to (x̄, z̄) ∈ (Xad×Z)∩gph�.
Now, the definition of the function ϕ, the weak sequential lower semicontinuity of
f , see Assumption 16.3.1, and Lemma 16.3.4 yield

ϕ(x̄) ≤ f (x̄, z̄) ≤ lim inf
k→∞ f (xk, zk) = lim inf

k→∞ ϕ(xk) ≤ lim sup
k→∞

ϕ(xk) ≤ ϕ(x̄),

which shows ϕ(x̄) = f (x̄, z̄), i.e. z̄ ∈ $(x̄) follows. This yields that the point (x̄, z̄)
belongs to (Xad ×Z) ∩ gph$ , and this shows the claim. 	


Let us apply the above theory to some example problems from bilevel optimal
control.

Inverse Nonregularized Control of Poisson’s Equation
Let " ⊂ R

d be a bounded domain with Lipschitz boundary bd". For fixed
parameters xw ∈ R

n and xs ∈ L2("), we consider the optimal control of
Poisson’s equation

1
2

∥
∥∥y −∑n

i=1x
w
i f i

∥
∥∥

2

L2(")
→ min

y,u

−�y = xs + u

ua ≤ u ≤ ub a.e. on "

where f 1, . . . , f n ∈ L2(") are fixed form functions and ua, ub ∈ L2(") are
given functions satisfying ua < ub almost everywhere on ". The variables
y and u are chosen from the respective spaces H 1

0 (") and L2("). The
underlying PDE has to be understood in weak sense in H−1(") := H 1

0 (")'.
In this regard, the source term xs + u from L2(") is embedded into H−1("),
implicitly. Noting that no regularization term w.r.t. the control appears in the
objective functional, optimal controls are promoted which take values only
at the lower and upper bound ua and ub, and such controls are referred to as
bang-bang, see [50].

Let $ : Rn × L2(") ⇒ H 1
0 (") × L2(") be the solution map associated

with the above optimal control problem. In the superordinate upper level
problem, we aim to identify the lower level desired state via correct choice

(continued)
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of the weights xw ∈ R
n and constant source xs ∈ L2(") from a nonempty,

closed, convex, and bounded set Xad ⊂ R
n × L2(") such that a resulting

optimal solution is close to observed data functions yo, uo ∈ L2("). A
suitable model for this program is given by

1
2 ‖y − yo‖2L2(")

+ 1
2 ‖u− uo‖2L2(")

→ min
x,y,u

(xw, xs) ∈ Xad

(y, u) ∈ $(xw, xs).

Due to continuity and convexity of the appearing objective functionals, they
are weakly sequentially lower semicontinuous. Furthermore, the compactness
of the embedding H 1

0 (") ↪→ L2(") even guarantees that the objective
of the lower level problem is weakly sequentially continuous. The set Xad
is nonempty and weakly sequentially compact by assumption. Exploiting
the linearity and continuity of the solution operator (−�)−1 of Poisson’s
equation, it is not difficult to see that the graph of the lower level feasible
set mapping � is convex and closed. The boundedness of Xad ensures the
boundedness of (Xad×H 1

0 (")×L2("))∩ gph�, and it is not difficult to see
that this set is weakly sequentially compact as well. Using the properties of
(−�)−1, it is easy to see that � is weakly-weakly inner semicontinuous at all
points of its graph. Now, Theorem 16.3.5 yields the existence of a solution to
the bilevel optimal control problem under consideration.

Optimal Control of ODEs with Terminal Penalty Cost
For a fixed given vector ξ ∈ R

n of parameters, we consider the parametric
optimization problem

j (ξ, z) → min
z

g(ξ, z) ≤ 0
(16.3.4)

where j : Rn×Rm→ R is continuous and g : Rn×Rm→ R
k is continuously

differentiable. Furthermore, we assume that ϒ(ξ) := {y ∈ R
m | g(ξ, y) ≤ 0}

is nonempty for each ξ ∈ R
n, that

⋃
ξ∈Rn ϒ(ξ) is bounded, and that the

Mangasarian–Fromovitz constraint qualification holds at all feasible points
associated with (16.3.4).

(continued)
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The associated upper level problem shall be given by

1
2 ‖x − xd‖2L2(I ;Rn)

+ σ
2 ‖u‖2L2(I ;Rp)

+ J (x(T ), y) → min
x,u,y

ẋ − Ax − Bu = 0

x(0) = 0

ua ≤ u ≤ ub

y ∈ $(x)

(16.3.5)

where I := (0, T ) is a time interval, xd ∈ L2(I ;Rn) is a desired state, σ ≥ 0
is a regularization parameter, J : Rn×Rm→ R is lower semicontinuous, A ∈
R

n×n as well as B ∈ R
n×p are fixed matrices, ua, ub ∈ L2(I ;Rp) are fixed

functions satisfying ua < ub almost everywhere on I , and $ : H 1(I ;Rn) ⇒
R

m assigns to each x ∈ H 1(I ;Rn) the solution set of (16.3.4) for the fixed
parameter ξ := x(T ). The controls in (16.3.5) are chosen from L2(I ;Rp).

Problem (16.3.5) describes the situation where an ODE system has to be
controlled in such a way that certain penalty cost resulting from the terminal
value of the state function as well as the distance to a desirable state are
minimized with minimal control effort. Optimization problems of this kind
arise in the context of gas balancing in energy networks and were studied
in [8, 9, 32]. Invoking Remark 16.3.3, the subsequently stated example, and
Theorem 16.3.5, we obtain the existence of an optimal solution associated
with (16.3.5).

Another typical situation arises when the lower level problem (16.3.1) is uniquely
solvable for each upper level feasible point.

Theorem 16.3.6 Assume that there exists a map ψ : Xad → Z sending weakly
convergent sequences from Xad to weakly convergent sequences in Z such that
$(x) = {ψ(x)} holds for all x ∈ Xad. Then, (BPP) possesses an optimal solution.
�
Proof The assumptions of the theorem guarantee that (BPP) is equivalent to

F(x,ψ(x)) → min
x

x ∈ Xad.

Furthermore, Xad . x �→ F(x,ψ(x)) ∈ R is weakly sequentially lower
semicontinuous on Xad since F possesses this property on X×Z while ψ preserves
weak convergence of sequences from Xad. Thus, the above problem possesses an
optimal solution x̄, i.e. (BPP) possesses the optimal solution (x̄, ψ(x̄)). 	
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The above theorem particularly applies to situations where the upper level
variable comes from a finite-dimensional Banach space while the solution operator
associated to the lower level problem is continuous. This setting has been discussed
in [17, 23] and will be of interest in Sect. 16.4.

16.3.2 How to Derive Necessary Optimality Conditions
in Bilevel Optimal Control

In order to derive necessary optimality conditions for bilevel programming prob-
lems, one generally aims to transfer the hierarchical model into a single-level
program first. Therefore, three major approaches are suggested in the literature.
First, whenever the lower level problem possesses a uniquely determined solution
for each fixed value of the upper level problem, one could use the associated solution
operator to eliminate the lower level variable from the model. This approach has
been used in [23, 38] in order to derive necessary optimality conditions for bilevel
optimal control problems. Second, it is possible to exploit the optimal value function
from (16.3.2) in order to replace (BPP) equivalently by the so-called optimal value
reformulation

F(x, z) → min
x,z

x ∈ Xad

f (x, z)− ϕ(x) ≤ 0

z ∈ �(x).

In [8, 9, 17, 55, 56], the authors exploited this idea to infer optimality conditions
in the context of bilevel optimal control. We will demonstrate in Sect. 16.4, how
a relaxation method can be combined with the optimal value approach in order
to obtain a satisfactory stationarity condition for a particular problem class from
inverse optimal control. Finally, as long as the lower level problem is convex w.r.t.
z and regular in the sense that a constraint qualification is satisfied at each feasible
point, it is possible to replace the implicit constraint z ∈ $(x) by suitable necessary
and sufficient optimality conditions of Karush–Kuhn–Tucker (KKT) type. In the
context of bilevel optimal control, this approach has been discussed in [40]. In this
section, we will briefly sketch this last approach. Therefore, we have to fix some
assumptions first.

Assumption 16.3.7 We assume that the mapping � is given as stated in
Remark 16.3.3 where C is a cone. Furthermore, we suppose that f (x, ·) : Z→ R
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is convex and that g(x, ·) : Z → W is C-convex for each x ∈ Xad. The latter
means that

∀z, z′ ∈ Z ∀γ ∈ [0, 1] : g(x, γ z+ (1− γ )z′)− γg(x, z)− (1− γ )g(x, z′) ∈ C

holds true. �
Due to the postulated assumptions, for fixed x ∈ Xad, z ∈ $(x) holds true if and

only if there exists a Lagrange multiplier λ ∈W' which solves the associated lower
level KKT system which is given as stated below:

0 = f ′z(x, z)+ g′z(x, z)'λ,

λ ∈ C◦,

0 = 〈λ, g(x, z)〉W ,

see [10, Theorem 3.9] or [57]. Here, it was essential that the lower level problem
is convex w.r.t. z while Robinson’s constraint qualification (16.3.3) is valid at all
lower level feasible points. Due to the above arguments, it is now reasonable to
investigate the so-called KKT reformulation associated with (BPP) which is given
as stated below:

F(x, z) → min
x,z,λ

x ∈ Xad

f ′z(x, z)+ g′z(x, z)'λ = 0

g(x, z) ∈ C

λ ∈ C◦

〈λ, g(x, z)〉W = 0.

(KKT)

Let us note that the lower level Lagrange multiplier λ plays the role of a variable in
(KKT). This may cause that the problems (BPP) and (KKT) are not equivalent w.r.t.
local minimizers as soon as λ is not uniquely determined for each x ∈ Xad where
$(x) �= ∅ holds, see [37]. As reported in [15], this phenomenon is already present
in standard finite-dimensional bilevel programming.

In the situation where C = {0} holds, the final two constraints in (KKT) are
trivial and can be omitted. Then, (KKT) reduces to a standard nonlinear program in
Banach spaces which can be tackled via classical arguments. Related considerations
can be found in [28]. The subsequently stated example visualizes this approach.
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Inverse Control of Poisson’s Equation
For a bounded domain " ⊂ R

d and a parameter vector x ∈ R
n, we consider

the parametric optimal control problem

1
2

∥
∥
∥y −∑n

i=1xif
i
∥
∥
∥

2

L2(")
+ σ

2 ‖u‖2L2(")
→ min

y,u

−�y = u

where f 1, . . . , f n ∈ L2(") are given form functions and σ > 0 is a
regularization parameter. For observations yo, uo ∈ L2(") and a nonempty,
convex, compact set Xad ⊂ R

n, we consider the superordinate inverse optimal
control problem

1
2 ‖y − yo‖2L2(")

+ 1
2 ‖u− uo‖2

L2(")
→ min

x,y,u

x ∈ Xad

(y, u) ∈ $(x)

(16.3.6)

where $ : Rn ⇒ H 1
0 (") × L2(") represents the solution mapping of

the aforementioned parametric optimal control problem. We can use Theo-
rem 16.3.6 in order to infer the existence of an optimal solution associated
with this bilevel optimal control problem.

Noting that −� : H 1
0 (") → H−1(") provides an isomorphism, the

associated KKT reformulation, given by

1
2 ‖y − yo‖2L2(")

+ 1
2 ‖u− uo‖2

L2(")
→ min

x,y,u,p

x ∈ Xad

y −∑n
i=1xif

i −�p = 0

σu− p = 0

−�y − u = 0,

is equivalent to the original hierarchical model. One can easily check that
Robinson’s constraint qualification is valid at each feasible point of this
program which means that its KKT conditions provide a necessary optimality
condition for the underlying inverse optimal control problem. Thus, whenever
the triplet (x̄, ȳ, ū) ∈ R

n × H 1
0 (") × L2(") is a locally optimal solution of

(continued)
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(16.3.6), then we find multipliers z̄ ∈ R
n, p̄, μ̄, ρ̄ ∈ H 1

0 ("), and w̄ ∈ L2(")

which satisfy

0 = z̄−
(〈

μ̄, f i
〉

L2(")

)n

i=1
, 0 = ȳ − yo + μ̄−�ρ̄,

0 = ū− uo + σw̄ − ρ̄, 0 = −�μ̄− w̄,

z̄ ∈ NXad(x̄), 0 = ȳ −∑n
i=1x̄if

i −�p̄,

0 = σ ū− p̄.

In case where C is a non-trivial cone, the final three constraints of (KKT) form a
so-called system of complementarity constraints, i.e. this program is a mathematical
program with complementarity constraints (MPCC) in Banach spaces. As shown in
[40], this results in the violation of Robinson’s constraint qualification at all feasible
points of (KKT) and, consequently, the KKT conditions of (KKT) may turn out to be
too restrictive in order to yield an applicable necessary optimality condition. Instead,
weaker problem-tailored stationarity notions and constraint qualifications need to be
introduced which respect the specific variational structure, see [37, 40, 53, 54]. In
bilevel optimal control, complementarity constraints are typically induced by the
cone of nonnegative functions in a suitable function space, e.g. L2("), H 1

0 ("), or
H 1("). Respective considerations can be found in [13, 20–22, 41, 42].

16.4 Stationarity Conditions in Inverse Optimal Control

In this section, we demonstrate by means of a specific class of parameter reconstruc-
tion problems how stationarity conditions in bilevel optimal control can be derived.

For a bounded domain " ⊂ R
d and a parameter x ∈ R

n+, where Rn+ denotes the
nonnegative orthant in R

n, we study the parametric optimal control problem

x · j (y)+ σ
2 ‖u‖2L2(")

→ min
y,u

Ay − Bu = 0

ua ≤ u ≤ ub a.e. on "

(P(x))
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as well as the superordinated bilevel optimal control problem

F(x, y, u) → min
x,y,u

x ∈ Xad

(y, u) ∈ $(x)

(IOC)

where $ : Rn ⇒ Y × L2(") denotes the solution set mapping of (P(x)). In (P(x)),
the state equation Ay − Bu = 0 couples the control u ∈ L2(") and the state y ∈ Y.
In this regard, A can be interpreted as a differential operator. Noting that (IOC) is
motivated by underlying applications from parameter reconstruction, it is an inverse
optimal control program.

Assumption 16.4.1 We assume that Y and W are reflexive Banach spaces. The
functional F : Rn × Y × L2(") → R is supposed to be continuously Fréchet
differentiable and convex. Let Xad ⊂ R

n+ be nonempty and compact. The functional
j : Y → R

n is assumed to be twice continuously Fréchet differentiable and its
n component functions are supposed to be convex. Moreover, we assume that
the mapping j satisfies j (Y) ⊂ R

n+. Furthermore, σ > 0 is fixed. Let linear
operators A ∈ L

[
Y,W

]
as well as B ∈ L

[
L2("),W

]
be chosen such that A is

continuously invertible while B is compact. Finally, we assume that ua, ub : "→ R

are measurable functions such that

Uad := {u ∈ L2(") | ua ≤ u ≤ ub a.e. on "}

is nonempty. �
Below, we present two illustrative examples where all these assumptions hold.

Weighted Lower Level Target-Type Objectives
We choose Y := H 1

0 ("), W := H−1("), as well as A := −� while B
represents the compact embedding L2(") ↪→ H−1("). For fixed functions
y1

d , . . . , y
n
d ∈ L2("), the lower level objective function is defined by

R
n×H 1

0 (")×L2(") . (x, y, u) �→∑n
i=1xi

∥
∥
∥y − yi

d

∥
∥
∥

2

L2(")
+ σ

2 ‖u‖2
L2(")

∈ R.

The upper level feasible set is given by the standard simplex

{x ∈ R
n | x ≥ 0,

∑n
i=1xi = 1}. (16.4.1)

(continued)
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Such bilevel optimal control problems, where the precise form of the lower
level target-type objective mapping has to be reconstructed, have been studied
in [23].

Optimal Measuring
Let " ⊂ R

d , d ∈ {2, 3}, be a bounded Lipschitz domain. We fix p ∈ (3, 6) as
in [31, Theorem 0.5]. Let us set Y := W

1,p
0 (") and W := W−1,p("). Again,

we fix A := −�, and B represents the embedding L2(") ↪→ W−1,p(") :=
W

1,p′
0 (")' where p′ = p/(p − 1) is the conjugate coefficient associated

with p. According to [31, Theorem 0.5], A is continuously invertible. Due to

the Rellich–Kondrachov theorem, the embedding from W
1,p′
0 (") to L2(") is

compact. Since B is the adjoint of this embedding, Schauder’s theorem implies
the compactness of B. Furthermore, we note that the embedding W

1,p
0 (") ↪→

C(") is compact in this setting.
Let ω1, . . . , ωn ∈ " be fixed points. We consider the lower level objective

function given by

R
n×W

1,p
0 (")×L2(") . (x, y, u) �→∑n

i=1xi (y(ω
i)−yd(ω

i ))2+ σ
2 ‖u‖2L2(")

∈ R

where yd ∈ C(") is a given desired state. Noting that the state space W
1,p
0 (")

is continuously embedded into C("), this functional is well-defined. At the
upper level stage, we minimize

R
n ×W

1,p
0 (")× L2(") . (x, y, u) �→ 1

2 ‖y − yd‖2L2(")
+ 1

2 |x|22 ∈ R

where x comes from the standard simplex given in (16.4.1). The associated
bilevel optimal control problem optimizes the measurement of the distance
between the actual state and the desired state by reduction to pointwise
evaluations.

16.4.1 The Lower Level Problem

For brevity, we denote by f : Rn × Y × L2(") → R the objective functional of
(P(x)). By construction, the map f (x, ·, ·) : Y × L2(") → R is convex for each
x ∈ R

n+.

Lemma 16.4.2 For each x ∈ R
n+, (P(x)) possesses a unique optimal solution. �
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Proof Noting that A is an isomorphism, we may consider the state-reduced problem

min
u
{f (x,Su, u) | u ∈ Uad} (16.4.2)

where S := A−1◦B ∈ L
[
L2("),Y

]
is the solution operator of the constraining state

equation. Due to the above considerations, the linearity ofS, and the continuity of all
appearing functions, the objective functional of (16.4.2) is convex and continuous.
Observing that x · j (Su) ≥ 0 holds for all u ∈ L2(") while L2(") . u �→
σ
2 ‖u‖2L2(")

∈ R is coercive, the objective of (16.4.2) is already strongly convex
w.r.t. u. Since Uad is weakly sequentially closed, (16.4.2) needs to possess a unique
solution ū. Consequently, (Sū, ū) is the uniquely determined solution of (P(x)). 	


Observing that the lower level problem (P(x)) is regular in the sense that
Robinson’s constraint qualification is valid at all feasible points, see Remark 16.3.3,
its uniquely determined solution for the fixed parameter x ∈ R

n+ is characterized by
the associated KKT system

0 = j ′(y)'x + A'p, (16.4.3a)

0 = σu− B'p + λ, (16.4.3b)

λ ∈ NUad(u) (16.4.3c)

where p ∈W' and λ ∈ L2(") are the Lagrange multipliers, see [10, Theorem 3.9]
or [57].

The finding of Lemma 16.4.2 allows us to introduce mappings ψy : Rn+ →
Y and ψu : Rn+ → L2(") by $(x) = {(ψy(x), ψu(x))} for all x ∈ R

n+.
Since A' is continuously invertible, p is uniquely determined by (16.4.3a) and,
consequently, the uniqueness of λ follows from (16.4.3b). This gives rise to the
mappings φp : Rn+ →W' and φλ : Rn+ → L2(") that assign to each x ∈ R

n+ the
lower level Lagrange multipliers p and λ which characterize the unique minimizer
(ψy(x), ψu(x)), respectively.

Next, we study the continuity properties of the mappings ψy and ψu as well as
φp and φλ.

Lemma 16.4.3 There are continuous functions Cy,Cu : Rn+ → R such that the
following estimates hold:

∀x1, x2 ∈ R
n+ :

∥
∥ψy(x1)− ψy(x2)

∥
∥
Y ≤ Cy(x1) |x1 − x2|2 ,

∥
∥ψu(x1)− ψu(x2)

∥
∥
L2(")

≤ Cu(x1) |x1 − x2|2 .

Particularly, ψy and ψu are Lipschitz continuous on Xad. �
Proof Fix x1, x2 ∈ R

n+ arbitrarily and set yi := ψy(xi) as well as ui := ψu(xi) for
i = 1, 2. Furthermore, let pi ∈W' and λi ∈ L2(") be the multipliers which solve
(16.4.3) for i = 1, 2. Testing the associated condition (16.4.3b) with u2 − u1 and
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exploiting (16.4.3c), we have

〈
σu1 − B'p1, u2 − u1

〉
L2(")

= 〈−λ1, u2 − u1〉L2(") ≥ 0,
〈
σu2 − B'p2, u1 − u2

〉
L2(")

= 〈−λ2, u1 − u2〉L2(") ≥ 0.

Adding up these inequalities yields

〈
σ(u1 − u2)− B'(p1 − p2), u2 − u1

〉
L2(")

≥ 0.

Next, we rearrange this inequality and exploit (16.4.3a), yi = (A−1 ◦B)ui , i = 1, 2,
as well as the convexity of the mapping Y . y �→ x2 · j (y) ∈ R in order to obtain

σ ‖u1 − u2‖2
L2(")

≤ 〈
B'(p1 − p2), u1 − u2

〉
L2(")

= 〈p1 − p2,B(u1 − u2)〉W = 〈p1 − p2,A(y1 − y2)〉W
= 〈

A'(p1 − p2), y1 − y2
〉
Y =

〈
j ′(y2)

'x2 − j ′(y1)
'x1, y1 − y2

〉
Y

= 〈
j ′(y1)

'(x2 − x1), y1 − y2
〉
Y

− 〈
(j ′(y1)− j ′(y2))

'x2, y1 − y2
〉
Y

≤ 〈
j ′(y1)

'(x2 − x1), y1 − y2
〉
Y

=
〈
j ′(y1)

'(x2 − x1), (A
−1 ◦ B)(u1 − u2)

〉

Y

≤ C
∥
∥j ′(y1)

∥
∥
L[Y,Rn] |x1 − x2|2 ‖u1 − u2‖L2(")

for some constant C > 0 which does not depend on xi , yi , and ui , i = 1, 2. This
way, we have

‖u1 − u2‖L2(") ≤ (C/σ)
∥
∥j ′(ψy(x1))

∥
∥
L[Y,Rn] |x1 − x2|2

which yields the estimate

∀x1, x2 ∈ R
n+ :

∥∥ψu(x1)−ψu(x2)
∥∥
L2(")

≤ (C/σ )
∥∥j ′(ψy(x1))

∥∥
L[Y,Rn] |x1 − x2|2 .

As a consequence, the map ψu is continuous everywhere on R
n+. Observing that

ψy = A−1 ◦ B ◦ ψu holds, ψy is continuous on R
n+ as well. Recalling that j is

continuously Fréchet differentiable, the desired estimates follow by setting

∀x ∈ R
n+ : Cu(x) := (C/σ)

∥
∥j ′(ψy(x))

∥
∥
L[Y,Rn] ,

Cy(x) :=
∥
∥∥A−1 ◦ B

∥
∥∥
L[L2("),Y]

Cu(x).

This completes the proof. 	
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We give an auxiliary result on j .

Lemma 16.4.4 Let X̂ ⊂ R
n+ be compact. Then, there exists a constantC > 0, such

that

∣
∣j (y2)− j (y1)− j ′(y1)(y2 − y1)

∣
∣
2 ≤ C

2 ‖y2 − y1‖2Y ,
∥
∥j ′(y2)− j ′(y1)

∥
∥
L[Y,Rn] ≤ C ‖y2 − y1‖Y

with yi := ψy(xi), i = 1, 2, holds for all x1, x2 ∈ X̂. �
Proof First, we define Ŷ := cl conv{ψy(x̂) | x̂ ∈ X̂}. This set is compact due to
the compactness of X̂ and the continuity of the mapping ψy , see Lemma 16.4.3.
Since j ′′ is continuous, we have C := sup

ŷ∈Ŷ
∥
∥j ′′(ŷ)

∥
∥ < ∞. For x1, x2 ∈ X̂, the

points yi := ψy(xi), i = 1, 2, belong to the convex set Ŷ. Thus, the Taylor estimate
follows from [12, Theorem 5.6.2] and the Lipschitz estimate on j ′ is clear. 	

Corollary 16.4.5 The multiplier mappings φp and φλ are continuous on R

n+ and
Lipschitz continuous on Xad. �
Proof The continuity of φp and φλ on R

n+ follows easily by continuity of ψy

and ψu, see Lemma 16.4.3, exploiting (16.4.3a), (16.4.3b), and the continuity
of j ′. Since the map j ′ ◦ ψy : Rn+ → L

[
Y,Rn

]
is continuous on R

n+ and, by
Lemmas 16.4.3 and 16.4.4, Lipschitz continuous on the compact set Xad, we obtain

∥∥φp(x1)− φp(x2)
∥∥
W' ≤ C

∥∥j ′(ψy(x1))
'x1 − j ′(ψy(x2))

'x2
∥∥
Y ≤ Ĉ |x1 − x2|2

for all x1, x2 ∈ Xad and some constants Ĉ, C > 0. The Lipschitz continuity of φλ

on Xad now follows from (16.4.3b). 	

We introduce a function ϕ : Rn+ → R by means of

∀x ∈ R
n+ : ϕ(x) := f (x,ψy(x), ψu(x)).

Due to the above lemma, ϕ is continuous and equals the optimal value function
associated with (P(x)). Observing that the function f is affine w.r.t. the parameter
x, it is easy to see that ϕ is concave, see [18, Proposition 3.5] as well.

Next, we are going to study the differentiability of ϕ. We are facing the problem
that ϕ is only defined on the closed set Rn+. In fact, for x ∈ R

n \ Rn+ the objective
function of (P(x)) might be non-convex or unbounded from below and (P(x)) might
fail to possess a minimizer. To circumvent this difficulty, we first prove that ϕ admits
a first-order Taylor expansion, and then we extend ϕ to a continuously differentiable
function via Whitney’s extension theorem.

Lemma 16.4.6 We define the function ϕ′ : Rn+ → R
n via

∀x̄ ∈ R
n+ : ϕ′(x̄) := j (ψy(x̄)).
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Then, ϕ′ is continuous and for each compact subset X̂ ⊂ R
n+ there exists a constant

C > 0 such that the Taylor-like estimate

∀x, x̄ ∈ X̂ : ∣∣ϕ(x)− ϕ(x̄)− ϕ′(x̄) · (x − x̄)
∣∣ ≤ C |x − x̄|22

holds. �
Proof The continuity of ϕ′ follows from Lemma 16.4.3. Now, let X̂ ⊂ R

n+ be
compact. For arbitrary x̄, x ∈ X̂, we define ȳ := ψy(x̄), ū := ψu(x̄), y := ψy(x),
as well as u := ψu(x). Then, we have

ϕ(x)− ϕ(x̄)− ϕ′(x̄) · (x − x̄)

= x · j (y)+ σ
2 ‖u‖2

L2(")
− x̄ · j (ȳ)− σ

2 ‖ū‖2L2(")
− (x − x̄) · j (ȳ)

= x · (j (y)− j (ȳ))+ σ 〈u, u− ū〉L2(") − σ
2 ‖u− ū‖2

L2(")
.

Next, we are going to employ the optimality condition (16.4.3). To this end, we set
p := φp(x) ∈W' and λ := φλ(x) ∈ L2("). Now, (16.4.3) implies

σ 〈u, u− ū〉L2(") =
〈
B'p, u− ū

〉
L2(")

− 〈λ, u− ū〉L2(")

and
〈
B'p, u− ū

〉
L2(")

= 〈p,B(u− ū)〉W = 〈p,A(y − ȳ)〉W =
〈
A'p, y − ȳ

〉
Y

= − 〈
j ′(y)'x, y − ȳ

〉
Y = −x · j ′(y)(y − ȳ).

(16.4.4)
If we set λ̄ := φλ(x̄), (16.4.3c) implies

0 ≥ − 〈λ, u− ū〉L2(") ≥
〈
λ̄− λ, u− ū

〉
L2(")

≥ − ∥∥λ− λ̄
∥∥
L2(")

‖u− ū‖L2(") .

By combining the above estimates, we get

∣∣ϕ(x)− ϕ(x̄)− ϕ′(x̄) · (x − x̄)
∣∣ ≤ |x|2

∣∣j (y)− j (ȳ)− j ′(y)(y − ȳ)
∣∣
2

+ ∥
∥λ− λ̄

∥
∥
L2(")

‖u− ū‖L2(") + σ
2 ‖u− ū‖2

L2(")
.

Now, the claim follows from Lemmas 16.4.4 and 16.4.3 as well as Corollary 16.4.5.
	


Next, we employ Whitney’s extension theorem to extend ϕ to all of Rn.

Lemma 16.4.7 There exists a continuously differentiable function ϕ̂ : Rn → R

such that ϕ̂(x) = ϕ(x) and ϕ̂′(x) = ϕ′(x) for all x ∈ Xad. Here, ϕ′ is the function
defined in Lemma 16.4.6. �
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Proof In order to apply Whitney’s extension theorem, see [29, Theorem 2.3.6], we
have to show that the function η : Xad ×Xad → R, defined via

∀x, y ∈ Xad : η(x, y) :=
{

0 if x = y,
|ϕ(x)−ϕ(y)−ϕ′(y)(x−y)|

|x−y|2 if x �= y,

is continuous on its domain. It is clear that this function is continuous at all points
(x, y) ∈ Xad ×Xad satisfying x �= y. Hence, it remains to show

lim
x→a, y→a

x,y∈Xad, x �=y

|ϕ(x)− ϕ(y)− ϕ′(y)(x − y)|
|x − y|2

= 0

for all a ∈ Xad, but this follows from Lemma16.4.6 since Xad is compact. 	

Note that we extended ϕ from Xad to R

n in Lemma 16.4.7. Technically, this
means that the extended function ϕ̂ may possess different values than the original
optimal value function ϕ on R

n+ \Xad. This, however, does not cause any trouble in
the subsequent considerations since we focus on parameters from Xad only.

16.4.2 The Optimal Value Reformulation and Its Relaxation

Based on Lemma 16.4.3, the upcoming result follows from Theorem 16.3.6 while
noting that the upper level variables are chosen from a finite-dimensional Banach
space.

Theorem 16.4.8 Problem (IOC) possesses an optimal solution. �
Our aim is to characterize the local minimizers of (IOC) by means of necessary

optimality conditions. In order to do so, we want to exploit the continuously
differentiable extension ϕ̂ : Rn→ R of the optimal value function ϕ associated with
(P(x)), see Lemma 16.4.7. Observing that ϕ̂(x) = ϕ(x) holds true for all x ∈ Xad,
(IOC) can be transferred into the equivalent problem

F(x, y, u) → min
x,y,u

x ∈ Xad

f (x, y, u)− ϕ̂(x) ≤ 0

Ay − Bu = 0

u ∈ Uad

(OVR)

where f still denotes the objective of the lower level problem (P(x)). This is
a single-level optimization problem with continuously Fréchet differentiable data
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functions, see Lemma 16.4.7. However, it is easy to check that Robinson’s constraint
qualification does not hold at the feasible points of (OVR), see e.g. [17, Lemma 5.1].
This failure is mainly caused by the fact that f (x, y, u) − ϕ̂(x) ≤ 0 is in fact an
equality constraint by definition of the optimal value function. Due to this lack of
regularity, one cannot expect that the classical KKT conditions provide a necessary
optimality condition for (OVR). Furthermore, the nonlinearity of f provokes that
the smooth mapping R

n ×Y × L2(") . (x, y, u) �→ f (x, y, u)− ϕ̂(x) ∈ R may
not serve as an exact penalty function around local minimizers of (OVR). Thus,
approaches related to partial penalization w.r.t. the constraint f (x, y, u)−ϕ̂(x) ≤ 0,
see e.g. [8, 9, 55, 56], do not seem to be promising here.

In order to overcome these difficulties, we are going to relax this critical
constraint. More precisely, for a sequence {εk}k∈N ⊂ R of positive relaxation
parameters satisfying εk ↓ 0, we investigate the programs

F(x, y, u) → min
x,y,u

x ∈ Xad

f (x, y, u)− ϕ̂(x) ≤ εk

Ay − Bu = 0

u ∈ Uad.

(OVR(εk))

One can easily check that this relaxation provokes regularity of all feasible points.
A formal proof of this result parallels the one of [17, Lemma 5.2].

We first want to state an existence result for (OVR(εk)).

Lemma 16.4.9 For each k ∈ N, (OVR(εk)) possesses an optimal solution. �
Proof Let {(xl, yl, ul)}l∈N ⊂ R

n × Y × L2(") be a minimizing sequence of
(OVR(εk)), i.e. a sequence of feasible points whose associated objective values tend
to the infimal value α ∈ R of (OVR(εk)). The compactness of Xad implies that
{xl}l∈N is bounded and, thus, converges along a subsequence (without relabelling)
to x̄ ∈ Xad. By feasibility, we have

σ
2 ‖ul‖2L2(")

≤ xl · j (yl)+ σ
2 ‖ul‖2L2(")

≤ εk + ϕ̂(xl)

for each l ∈ N. By boundedness of {xl}l∈N and continuity of ϕ̂ on Xad, we
obtain boundedness of {ul}l∈N. Consequently, the latter converges weakly (along
a subsequence without relabelling) to ū ∈ L2(") which belongs to the weakly
sequentially closed set Uad. Since B is compact, we have yl → ȳ in Y by validity
of the state equation. Here, we used ȳ := (A−1 ◦ B)ū.
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Recall that j and ϕ̂ are continuous functions. Exploiting the weak sequential
lower semicontinuity of (squared) norms, we obtain

f (x̄, ȳ, ū)− ϕ̂(x̄) ≤ lim
l→∞ xl · j (yl)+ lim inf

l→∞
σ
2 ‖ul‖2L2(")

+ lim
l→∞(−ϕ̂)(xl)

= lim inf
l→∞

(
xl · j (yl)+ σ

2 ‖ul‖2L2(")
− ϕ̂(xl)

)
≤ εk,

i.e. (x̄, ȳ, ū) is feasible to (OVR(εk)). Finally, the weak sequential lower semiconti-
nuity of F yields

F(x̄, ȳ, ū) ≤ lim inf
l→∞ F(xl, yl, ul) ≤ α,

i.e. (x̄, ȳ, ū) is a global minimizer of (OVR(εk)). 	

Next, we investigate the behavior of a sequence {(x̄k, ȳk, ūk)}k∈N of global

minimizers associated with (OVR(εk)) as k→∞.

Theorem 16.4.10 For each k ∈ N, let (x̄k, ȳk, ūk) ∈ R
n × Y × L2(") be a

global minimizer of (OVR(εk)). Then, the sequence {(x̄k, ȳk, ūk)}k∈N possesses a
subsequence (without relabelling) such that the convergences x̄k → x̄, ȳk → ȳ,
and ūk → ū hold where (x̄, ȳ, ū) is a global minimizer of (OVR) and, thus, of
(IOC). �
Proof Due to compactness of Xad, the sequence {x̄k}k∈N is bounded and converges
along a subsequence (without relabelling) to some x̄ ∈ Xad. We set ȳ := ψy(x̄) and
ū := ψu(x̄).

Let us set yk := ψy(x̄k) and uk := ψu(x̄k) for each k ∈ N. Due to the
componentwise convexity and differentiability of the mapping j , we obtain

σ
2 ‖ūk − uk‖2L2(")

= σ
2 ‖ūk‖2L2(")

− 〈σuk, ūk − uk〉L2(") − σ
2 ‖uk‖2L2(")

≤ x̄k · (j (ȳk)− j (yk)− j ′(yk)(ȳk − yk))

+ σ
2 ‖ūk‖2

L2(")
− 〈σuk, ūk − uk〉L2(") − σ

2 ‖uk‖2
L2(")

= f (x̄k, ȳk, ūk)− ϕ̂(x̄k)

− x̄k · j ′(yk)(ȳk − yk)− 〈σuk, ūk − uk〉L2(")

= f (x̄k, ȳk, ūk)− ϕ̂(x̄k)+
〈
B'φp(x̄k)− σuk, ūk − uk

〉
L2(")

= f (x̄k, ȳk, ūk)− ϕ̂(x̄k)+
〈
φλ(x̄k), ūk − uk

〉
L2(")

≤ f (x̄k, ȳk, ūk)− ϕ̂(x̄k) ≤ εk.

Here, we used feasibility of (ȳk, ūk) and optimality of (yk, uk) for (P(x)) where
x := x̄k holds, as well as (16.4.3), (16.4.4), and the definition of the normal cone.
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The above considerations as well as the continuity of ψu yield

0 ≤ lim
k→∞‖ūk − ū‖L2(") ≤ lim

k→∞
(‖ūk − uk‖L2(") + ‖uk − ū‖L2(")

)

= lim
k→∞

(
‖ūk − uk‖L2(") +

∥∥ψu(x̄k)− ψu(x̄)
∥∥
L2(")

)

≤ lim
k→∞

(√
2εk/σ +

∥
∥ψu(x̄k)− ψu(x̄)

∥
∥
L2(")

)
= 0,

i.e. ūk → ū follows. Due to ȳk = (A−1 ◦ B)ūk and ȳ = (A−1 ◦ B)ū, we also have
ȳk → ȳ.

Since each feasible point (x, y, u) ∈ R
n × Y × L2(") of (OVR) is a feasible

point of (OVR(εk)) for arbitrary k ∈ N, we have F(x̄k, ȳk, ūk) ≤ F(x, y, u) for
all k ∈ N. Taking the limit k → ∞ while observing that F is continuous, we have
F(x̄, ȳ, ū) ≤ F(x, y, u), i.e. (x̄, ȳ, ū) is a global minimizer of (OVR) and, thus, of
(IOC). 	


Clearly, the above theorem is of limited use for the numerical treatment of (IOC)
since the programs (OVR(εk)) are nonconvex optimal control problems whose
constraints comprise the implicitly known function ϕ̂. However, we can exploit
Theorem 16.4.10 for the derivation of a necessary optimality condition associated
with (IOC).

16.4.3 Derivation of Stationarity Conditions

For the derivation of a necessary optimality condition which characterizes the
local minimizers of (IOC), we will exploit the relaxation approach described in
Sect. 16.4.2. Combining the KKT systems of (OVR(εk)) as well as (P(x)) and taking
the limit k→∞while respecting Theorem 16.4.10 will lead to a stationarity system
which characterizes a particular global minimizer of (IOC). Afterwards, this result
can be extended to all local minimizers of (IOC). The overall strategy is inspired by
theory provided in [17].

As already mentioned in Sect. 16.4.2, we cannot rely on the KKT conditions
of (OVR) to be applicable necessary optimality conditions for (IOC). In order to
derive a reasonable stationarity system, we first observe that for given x ∈ Xad, we
can characterize (ψy(x), ψu(x)) to be the uniquely determined solution of the KKT
system (16.4.3) associated with (P(x)). Plugging this system into the constraints of
(IOC) in order to eliminate the implicit constraint (y, u) ∈ $(x), we arrive at the
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associated KKT reformulation

F(x, y, u) → min
x,y,u,p,λ

x ∈ Xad

Ay − Bu = 0

j ′(y)'x + A'p = 0

σu− B'p + λ = 0

(u, λ) ∈ gphNUad

(16.4.5)

where NUad : L2(") ⇒ L2(") denotes the normal cone mapping associated with
Uad. A simple calculation via pointwise inspection shows

gphNUad =
{

(u, λ) ∈ Uad × L2(")

∣
∣
∣
∣
∣

λ ≥ 0 a.e. on {ω ∈ " | u(ω) > ua(ω)}
λ ≤ 0 a.e. on {ω ∈ " | u(ω) < ub(ω)}

}

,

see [10, Lemma 6.34]. In order to infer a stationarity system for (IOC), we compute
the roots of the partial derivatives of the MPCC-Lagrangian associated with (16.4.5).
The properties of the multipliers which address the equilibrium condition (u, λ) ∈
gphNUad are motivated by the pointwise structure of this set and the theory on finite-
dimensional complementarity problems. Let us briefly mention that there exist other
ways on how to define stationarity notions for optimization problems with pointwise
complementarity constraints in function spaces, see e.g. [13, 20].

Definition 16.4.11 A feasible point (x̄, ȳ, ū) ∈ R
n × Y × L2(") of (IOC) is said

to be weakly stationary (W-stationary) whenever there exist multipliers z̄ ∈ R
n,

μ̄ ∈ Y, p̄, ρ̄ ∈W', and λ̄, w̄, ξ̄ ∈ L2(") which satisfy

0 = F ′x(x̄, ȳ, ū)+ z̄+ j ′(ȳ)μ̄, (16.4.6a)

0 = F ′y(x̄, ȳ, ū)+ A'ρ̄ + j ′′(ȳ)(μ̄)'x̄, (16.4.6b)

0 = F ′u(x̄, ȳ, ū)+ σw̄ − B'ρ̄ + ξ̄ , (16.4.6c)

0 = Aμ̄− Bw̄, (16.4.6d)

z̄ ∈ NXad(x̄), (16.4.6e)

0 = j ′(ȳ)'x̄ + A'p̄, (16.4.6f)

0 = σ ū− B'p̄ + λ̄, (16.4.6g)

λ̄ ≥ 0 a.e. on Ia+(ū), (16.4.6h)

λ̄ ≤ 0 a.e. on Ib−(ū), (16.4.6i)



476 P. Mehlitz and G. Wachsmuth

ξ̄ = 0 a.e. on Ia+(ū) ∩ Ib−(ū), (16.4.6j)

w̄ = 0 a.e. on {ω ∈ " | λ̄(ω) �= 0}. (16.4.6k)

Whenever these multipliers additionally satisfy

ξ̄ w̄ ≥ 0 a.e. on ", (16.4.7)

(x̄, ȳ, ū) is called Clarke-stationary (C-stationary). If (16.4.7) can be strengthened
to

ξ̄ ≤ 0 ∧ w̄ ≤ 0 a.e. on {ω ∈ " | λ̄(ω) = 0 ∧ ū(ω) = ua(ω)},
ξ̄ ≥ 0 ∧ w̄ ≥ 0 a.e. on {ω ∈ " | λ̄(ω) = 0 ∧ ū(ω) = ub(ω)},

then (x̄, ȳ, ū) is referred to as strongly stationary (S-stationary). Here, the measur-
able sets Ia+(ū) and Ib−(ū) are given by

Ia+(ū) := {ω ∈ " | ū(ω) > ua(ω)}, I b−(ū) := {ω ∈ " | ū(ω) < ub(ω)}.

Note that all subsets of " appearing above are well-defined up to subsets of "

possessing measure zero. �
Observe that the conditions (16.4.6f) - (16.4.6i) just provide the KKT system

(16.4.3) of (P(x)) for x := x̄ which characterizes the associated lower level
Lagrange multipliers p̄ and λ̄. This way, a feasible point of (16.4.5) is fixed and
the actual respective W-, C-, and S-stationarity conditions can be inferred.

In line with the results from [17, 23], we are going to show that the local
minimizers of (IOC) are C-stationary. In order to do that, we choose an arbitrary
sequence {εk}k∈N ⊂ R of positive penalty parameters tending to zero as k →
∞. Due to Lemma 16.4.9, the program (OVR(εk)) possesses a global minimizer
(x̄k, ȳk, ūk) ∈ R

n × Y × L2("). As we mentioned in Sect. 16.4.2, (OVR(εk)) is
regular as well as smooth at this point and, thus, we find multipliers zk ∈ R

n,
αk ∈ R, pk ∈W', and λk ∈ L2(") which solve the associated KKT system

0 = F ′x(x̄k, ȳk, ūk)+ zk + αk(j (ȳk)− ϕ̂′(x̄k)), (16.4.8a)

0 = F ′y(x̄k, ȳk, ūk)+ αkj
′(ȳk)'x̄k + A'pk, (16.4.8b)

0 = F ′u(x̄k, ȳk, ūk)+ αkσ ūk − B'pk + λk, (16.4.8c)

zk ∈ NXad(x̄k), (16.4.8d)

0 ≤ αk ⊥ f (x̄k, ȳk, ūk)− ϕ̂(x̄k)− εk, (16.4.8e)

λk ∈ NUad(ūk). (16.4.8f)
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Furthermore, an evaluation of the lower level KKT system (16.4.3) yields

0 = j ′(ψy(x̄k))
'x̄k + A'φp(x̄k), (16.4.9a)

0 = σψu(x̄k)− B'φp(x̄k)+ φλ(x̄k), (16.4.9b)

φλ(x̄k) ∈ NUad(ψ
u(x̄k)). (16.4.9c)

Recall that φp : Rn+ →W' and φλ : Rn+ → L2(") denote the Lagrange multiplier
mappings associated with the lower level problem (P(x)) which are continuous due
to Corollary 16.4.5.

Due to Theorem 16.4.10, we may assume that we have x̄k → x̄, ȳk → ȳ, and
ūk → ū where (x̄, ȳ, ū) ∈ R

n ×Y× L2(") is a global minimizer of (IOC).
Summarizing all these assumptions, we obtain the following results.

Lemma 16.4.12 There exist z̄ ∈ R
n, μ̄ ∈ Y, ρ̄ ∈W', and w̄, ξ̄ ∈ L2(") such that

the convergences

zk → z̄ inRn, (16.4.10a)

αk(ȳk − ψy(x̄k)) → μ̄ inY, (16.4.10b)

αk(ūk − ψu(x̄k)) ⇀ w̄ inL2("), (16.4.10c)

pk − αkφ
p(x̄k) → ρ̄ inW', (16.4.10d)

λk − αkφ
λ(x̄k) ⇀ ξ̄ inL2(") (16.4.10e)

hold at least along a subsequence. Furthermore, the above limits satisfy the
conditions (16.4.6a), (16.4.6b), (16.4.6c), (16.4.6d), and (16.4.6e). �
Proof We multiply (16.4.9a) by αk and subtract the resulting equation from
(16.4.8b) in order to obtain

0 = F ′y(x̄k, ȳk, ūk)+ αk(j
′(ȳk)− j ′(ψy(x̄k)))

'x̄k + A'(pk − αkφ
p(x̄k)).

(16.4.11)
Testing this equation with ȳk −ψy(x̄k) while noticing that the first-order derivative
of a convex function is a monotone operator, we have

〈
F ′y(x̄k, ȳk, ūk)+ A'(pk − αkφ

p(x̄k)), ȳk − ψy(x̄k)
〉

Y

= −αk

〈
(j ′(ȳk)− j ′(ψy(x̄k)))

'x̄k, ȳk − ψy(x̄k)
〉
Y ≤ 0.

This is used to obtain

〈
B'(pk − αkφ

p(x̄k)), ūk − ψu(x̄k)
〉
L2(")

= 〈
pk − αkφ

p(x̄k),B(ūk − ψu(x̄k))
〉
W
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= 〈
pk − αkφ

p(x̄k),A(ȳk − ψy(x̄k))
〉
W

= 〈
A'(pk − αkφ

p(x̄k)), ȳk − ψy(x̄k)
〉
Y

≤
〈
−F ′y(x̄k, ȳk, ūk), ȳk − ψy(x̄k)

〉

Y

=
〈
−F ′y(x̄k, ȳk, ūk), (A

−1 ◦ B)(ūk − ψu(x̄k))
〉

Y

≤ C
∥
∥ūk − ψu(x̄k)

∥
∥
L2(")

for some constant C > 0 since {F ′y(x̄k, ȳk, ūk)}k∈N is bounded. Next, we multiply
(16.4.9b) by αk and subtract this from (16.4.8c) in order to obtain

0 = F ′u(x̄k, ȳk, ūk)+ αkσ(ūk − ψu(x̄k))

− B'(pk − αkφ
p(x̄k))+ λk − αkφ

λ(x̄k).
(16.4.12)

Testing this with ūk − ψu(x̄k) and exploiting the above estimate as well as the
definition of the normal cone, we obtain

αkσ
∥
∥ūk − ψu(x̄k)

∥
∥2
L2(")

= 〈−F ′u(x̄k, ȳk, ūk)+ B'(pk − αkφ
p(x̄k)), ūk − ψu(x̄k)

〉
L2(")

+ 〈
αkφ

λ(x̄k)− λk, ūk − ψu(x̄k)
〉
L2(")

≤ 〈−F ′u(x̄k, ȳk, ūk)+ B'(pk − αkφ
p(x̄k)), ūk − ψu(x̄k)

〉
L2(")

≤ Ĉ
∥∥ūk − ψu(x̄k)

∥∥
L2(")

for a constant Ĉ > 0. Consequently, the sequence {αk(ūk−ψu(x̄k))}k∈N is bounded
and, therefore, possesses a weakly convergent subsequence (without relabelling)
whose weak limit will be denoted by w̄. Thus, we have shown (16.4.10c). Due to
the relation ȳk − ψy(x̄k) = (A−1 ◦ B)(ūk − ψu(x̄k)) and the compactness of B, we
obtain the strong convergence αk(ȳk − ψy(x̄k)) → μ̄ for some μ̄ ∈ Y satisfying
(16.4.6d). Thus, we have (16.4.10b).

Since j is assumed to be continuously Fréchet differentiable, j is strictly
differentiable. Noting that the strong convergences ȳk → ȳ and ψy(x̄k)→ ȳ hold,
we have

j (ȳk)− j (ψy(x̄k))− j ′(ȳ)(ȳk − ψy(x̄k))

‖ȳk − ψy(x̄k)‖Y
→ 0.

Observing that {αk(ȳk − ψy(x̄k))}k∈N is particularly bounded, we obtain

αk

(
j (ȳk)− j (ψy(x̄k))− j ′(ȳ)(ȳk − ψy(x̄k))

)→ 0.
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Since the convergence j ′(ȳ)(αk(ȳk − ψy(x̄k)))→ j ′(ȳ)μ̄ is clear from (16.4.10b),
we infer

αk(j (ȳk)− j (ψy(x̄k)))→ j ′(ȳ)μ̄. (16.4.13)

Observing that j is twice continuously Fréchet differentiable, j ′ is strictly differen-
tiable. Thus, we can reprise the above arguments in order to show the convergence

αk(j
′(ȳk)− j ′(ψy(x̄k)))

'x̄k → j ′′(ȳ)(μ̄)'x̄. (16.4.14)

Next, we combine (16.4.11), (16.4.14), and the fact that A' is continuously invertible
in order to obtain (16.4.10d) for some ρ̄ ∈ W' (along a subsequence) which
satisfies (16.4.6b). Now, we can infer (16.4.10e) for some ξ̄ ∈ L2(") from (16.4.12)
in a similar way. Taking the weak limit in (16.4.12) yields (16.4.6c). Due to
Lemmas 16.4.6 and 16.4.7, (16.4.8a) is equivalent to

0 = F ′x(x̄k, ȳk, ūk)+ zk + αk(j (ȳk)− j (ψy(x̄k))).

Due to the convergences F ′x(x̄k, ȳk, ūk) → F ′x(x̄, ȳ, ū) and (16.4.13), we infer
(16.4.10a) for some z̄ ∈ R

n along a subsequence. Particularly, we have (16.4.6a).
Finally, (16.4.6e) follows by definition of the normal cone while observing zk → z̄

and x̄k → x̄. This completes the proof. 	

In the subsequent lemma, we characterize the multipliers w̄ and ξ̄ from

Lemma 16.4.12 in more detail.

Lemma 16.4.13 Let w̄, ξ̄ ∈ L2(") be the multipliers characterized in
Lemma 16.4.12. Then, (16.4.6j), (16.4.6k), and (16.4.7) hold. �
Proof Due to the strong convergence of {ūk}k∈N and {ψu(x̄k)}k∈N to ū in L2("),
these convergences hold pointwise almost everywhere on " along a subsequence
(without relabelling). From λk ∈ NUad(ūk) and φλ(x̄k) ∈ NUad(ψ

u(x̄k)), we have

λk − αkφ
λ(x̄k) = 0 a.e. on

{

ω ∈ "

∣∣
∣
∣
∣

ua(ω) < ūk(ω) < ub(ω)

ua(ω) < ψu(x̄k)(ω) < ub(ω)

}

by definition of the normal cone. The aforementioned pointwise a.e. convergence
yields λk(ω)− αkφ

λ(x̄k)(ω)→ 0 for almost every ω ∈ Ia+(ū)∩ Ib−(ū). Since we
already have λk − αkφ

λ(x̄k) ⇀ ξ̄ from (16.4.10e), (16.4.6j) follows.
Next, we show (16.4.6k). If {αk}k∈N is bounded, then w̄ = 0 follows from

(16.4.10c) and (16.4.6k) holds trivially. Thus, we assume αk →∞. By continuity of
φp and φλ, see Corollary 16.4.5, we have φp(x̄k)→ φp(x̄) and φλ(x̄k)→ φλ(x̄).
Noting that the lower level Lagrange multipliers are uniquely determined while
observing that ψy(x̄k) → ȳ and ψu(x̄k) → ū hold, we have φp(x̄k) → p̄ and
φλ(x̄k) → λ̄. Here, p̄ ∈ W' and λ̄ ∈ L2(") satisfy the conditions (16.4.6f),
(16.4.6g), (16.4.6h), and (16.4.6i). Thus, (16.4.10e) yields the strong convergence
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α−1
k λk → λ̄. Let G ⊂ " be measurable and χG ∈ L∞(") be its characteristic

function which equals 1 on G and vanishes on " \ G. By definition of the normal
cone, we have

〈
α−1
k λk, αkχG(ūk − ψu(x̄k))

〉

L2(")
≥ 0,

〈
φλ(x̄k), αkχG(ūk − ψu(x̄k))

〉
L2(")

≤ 0.

Taking the limit k → ∞, we thus obtain
〈
λ̄, χGw̄

〉
L2(")

= 0. Since G ⊂ " was
chosen arbitrarily, (16.4.6k) follows.

Finally, we are going to prove (16.4.7). Therefore, we fix an arbitrary measurable
set G ⊂ ". We first observe that due to (16.4.10c) and (16.4.10d), we have

〈
B'(pk − αkφ

p(x̄k)), αkχG(ūk − ψu(x̄k))
〉
L2(")

→ 〈
B'ρ̄, χGw̄

〉
L2(")

.

Now, we can exploit (16.4.6c), (16.4.12), the weak sequential lower semicontinuity
of the map L2(") . u �→ 〈σu, χGu〉L2(") ∈ R, and the definition of the normal
cone in order to obtain

〈−ξ̄ , χGw̄
〉
L2(")

= 〈
F ′u(x̄, ȳ, ū)− B'ρ̄χGw̄

〉
L2(")

+ 〈σw̄, χGw̄〉L2(")

≤ lim
k→∞

〈
F ′u(x̄k, ȳk, ūk)− B'(pk − αkφ

λ(x̄k)), αkχG(ūk − ψu(x̄k))
〉
L2(")

+ lim inf
k→∞

〈
σαk(ūk − ψu(x̄k)), αkχG(ūk − ψu(x̄k))

〉
L2(")

= lim inf
k→∞

〈
αkφ

λ(x̄k)− λk, αkχG(ūk − ψu(x̄k))
〉
L2(")

≤ 0.

Noting that G ⊂ " has been chosen arbitrarily, (16.4.7) follows. 	

Above, we have shown that the particular global minimizer (x̄, ȳ, ū) which

results from the relaxation approach suggested in Sect. 16.4.2 is C-stationary. In
order to carry over this analysis to arbitrary local minimizers of (IOC), we exploit a
localization argument.

Theorem 16.4.14 Let (x̄, ȳ, ū) ∈ R
n ×Y×L2(") be a local minimizer of (IOC).

Then, it is C-stationary. �
Proof Invoking Lemma 16.4.2, there is some ε > 0 such that x̄ is the unique
globally optimal solution of

F(x,ψy(x), ψu(x))+ 1
2 |x − x̄|22 → min

x

x ∈ Xad ∩ B
ε(x̄)
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where Bε(x̄) denotes the closed ε-ball around x̄. Thus, (x̄, ȳ, ū) is the unique global
minimizer of the bilevel programming problem

F(x, y, u)+ 1
2 |x − x̄|22 → min

x,y,u

x ∈ Xad ∩ B
ε(x̄)

(y, u) ∈ $(x).

(16.4.15)

Combining Theorem 16.4.10 as well as Lemmas 16.4.12 and 16.4.13, (x̄, ȳ, ū) is
a C-stationary point of (16.4.15). Noting that the derivative of the functional Rn .
x �→ 1

2 |x − x̄|22 ∈ R vanishes at x̄ while NXad∩Bε(x̄)(x̄) = NXad(x̄) holds since x̄

is an interior point of Bε(x̄), the C-stationarity conditions of (16.4.15) and (IOC)
coincide at (x̄, ȳ, ū). This completes the proof. 	

Remark 16.4.15 The counterexample from [23, Section 3.2] shows that the local
minimizers of (IOC) are not S-stationary in general. However, it remains an open
question whether the multipliers which solve the C-stationarity system associated
with a local minimizer of (IOC) additionally satisfy

ξ̄ w̄ = 0 ∨ (ξ̄ < 0 ∧ w̄ < 0) a.e. on {ω ∈ " | λ̄(ω) = 0 ∧ ū(ω) = ua(ω)},
ξ̄ w̄ = 0 ∨ (ξ̄ > 0 ∧ w̄ > 0) a.e. on {ω ∈ " | λ̄(ω) = 0 ∧ ū(ω) = ub(ω)}.

In line with the terminology of finite-dimensional complementarity programming,
the resulting stationarity condition may be referred to as the system of (pointwise)
Mordukhovich-stationarity. We would like to briefly note that this system cannot
be obtained by computing the limiting normal cone to the set gphNUad since the
latter turns out to be uncomfortably large, see [41]. More precisely, this strategy
results in the W-stationarity system of (IOC) from Definition 16.4.11. Additionally,
one cannot rely on the limiting variational calculus in L2(") due to an inherent
lack of so-called sequential normal compactness, see [39]. Taking into account the
outstanding success of variational analysis in the finite-dimensional setting, these
observations are quite unexpected. �

References

1. R.A. Adams, J.J.F. Fournier, Sobolev Spaces (Elsevier Science, Oxford, 2003)
2. S. Albrecht, M. Ulbrich, Mathematical programs with complementarity constraints in the

context of inverse optimal control for locomotion. Optim. Methods Softw. 32(4), 670–698
(2017)

3. S. Albrecht, C. Passenberg, M. Sobotka, A. Peer, M. Buss, M. Ulbrich, Optimization Criteria
for Human Trajectory Formation in Dynamic Virtual Environments, Haptics: Generating and
Perceiving Tangible Sensations, ed. by A.M.L. Kappers, J.B.F. van Erp, W.M. Bergmann Tiest,
F.C.T. van der Helm (Springer, Berlin, 2010), pp. 257–262



482 P. Mehlitz and G. Wachsmuth

4. S. Albrecht, M. Leibold, M. Ulbrich, A bilevel optimization approach to obtain optimal cost
functions for human arm movements Numer. Algebra Control Optim. 2(1), 105–127 (2012)

5. B. Bank, J. Guddat, D. Klatte, B. Kummer, K. Tammer, Non-Linear Parametric Optimization
(Birkhäuser, Basel, 1983)

6. V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics (Pitman
Advanced Pub. Program, Boston, 1984)

7. J.F. Bard, Practical Bilevel Optimization: Algorithms and Applications (Kluwer Academic,
Dordrecht, 1998)

8. F. Benita, P. Mehlitz, bilevel optimal control with final-state-dependent finite-dimensional
lower level. SIAM J. Optim. 26(1), 718–752 (2016)

9. F. Benita, S. Dempe, P. Mehlitz, Bilevel optimal control problems with pure state constraints
and finite-dimensional lower level. SIAM J. Optim. 26(1), 564–588 (2016)

10. J.F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems (Springer, New
York, Berlin, Heidelberg, 2000)

11. D.A. Carlson, Existence of Optimal Controls for a Bi-Level Optimal Control Problem,
Advances in Dynamic Games: Theory, Applications, and Numerical Methods, ed. by V. Křivan,
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Chapter 17
Bilevel Linear Optimization Under
Uncertainty

Johanna Burtscheidt and Matthias Claus

Abstract We consider bilevel linear problems, where the right-hand side of the
lower level problems is stochastic. The leader has to decide in a here-and-now
fashion, while the follower has complete information. In this setting, the leader’s
outcome can be modeled by a random variable, which gives rise to a broad
spectrum of models involving coherent or convex risk measures and stochastic
dominance constraints. We outline Lipschitzian properties, conditions for existence
and optimality, as well as stability results. Moreover, for finite discrete distributions,
we discuss the special structure of equivalent deterministic bilevel programs and its
potential use to mitigate the curse of dimensionality.

Keywords Bilevel stochastic programming · Linear · Risk measure · Stability ·
Differentiability · Deterministic counterpart

17.1 Introduction

In this chapter we consider bilevel optimization models with uncertain parameters.
Such models can be classified based on the chronology of decision and observation
as well as the nature of the uncertainty involved. A bilevel stochastic program
arises, if the uncertain parameter is realization of some random vector with known
distribution, that can only be observed once the leader has submitted their decision.
In contrast, the follower decides under complete information.

If upper and lower level objectives coincide, the bilevel stochastic program
collapses to a classical stochastic optimization problem with recourse (cf. [1,
Chap. 2]). Relations to other mathematical programming problems are explored in
the seminal work [2] that also established the existence of solutions, Lipschitzian
properties and directional differentiability of a risk-neutral formulation of a bilevel
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stochastic nonlinear model. Moreover, gradient descent and penalization methods
were investigated to tackle discretely distributed stochastic mathematical programs
with equilibrium constraints (SMPECs).

Reference [3] studies an application to topology optimization problems in
structural mechanics. Many other applications are motivated by network related
problems that inherit a natural order of successive decision making under uncer-
tainty. Notable examples arise in telecommunications (cf. [4]), grid-based (energy)
markets (cf. [5–8]) or transportation science (cf. [9, 10]). An extensive survey on
bilevel stochastic programming literature is provided in [11, Chap. 1.4].

In two-stage stochastic bilevel programming leader and follower take two
decisions: The decision on the respective first-stage variables is made in a here-and-
now fashion, i.e. without knowledge of the realization of the random parameter. In
contrast, the respective second-stage decisions are made in a wait-and-see manner,
i.e. after observing the parameter (cf. [12]).

This chapter is organized as follows: In Sects. 17.2.1–17.2.5, we outline struc-
tural properties, existence and optimality conditions as well as stability results for
bilevel stochastic linear problems while paying special attention to the modelling
of risk-aversion via coherent or convex risk measures or stochastic dominance
constraints. Sections 17.2.6 and 17.2.7 are devoted to the algorithmic treatment
of bilevel stochastic linear problems, where the underlying distribution is finite
discrete. An application of two-stage stochastic bilevel programming in the context
of network pricing is discussed in Sect. 17.3. The chapter concludes with an
overview of potential challenges for future research.

17.2 Bilevel Stochastic Linear Optimization

While the analysis in this section is confined to the bilevel stochastic linear problems
with random right-hand side, the concepts and underlying principles can be easily
transferred to stochastic extensions of more complex bilevel programming models.

17.2.1 Preliminaries

We consider the optimistic formulation of a parametric bilevel linear program

min
x

{
c"x +min

y
{q"y | y ∈ $(x, z)} | x ∈ X

}
, P(z)

where X ⊆ R
n is a nonempty polyhedron, c ∈ R

n and q ∈ R
m are vectors, z ∈ R

s

is a parameter, and the lower level optimal solution set mapping $ : Rn×Rs ⇒ R
m

is given by

$(x, z) := Argmin
y
{d"y | Ay ≤ T x + z}



17 Bilevel Linear Optimization Under Uncertainty 487

with matrices A ∈ R
s×m, T ∈ R

s×n and a vector d ∈ R
m. Let f : Rn × R

s →
R ∪ {±∞} denote the mapping

f (x, z) := c"x +min
y
{q"y | y ∈ $(x, z)}.

Lemma 17.2.1 Assume dom f �= ∅, then f is real-valued and Lipschitz continuous
on the polyhedron P = {(x, z) ∈ R

n × R
s | ∃y ∈ R

m : Ay ≤ T x + z}. �
Proof By Eaves [13, Sect. 3], ∅ �= dom f ⊆ dom $ implies dom $ = P .
Consequently, the linear program in the definition of f (x, z) is solvable for any
(x, z) ∈ P by parametric linear programming theory (see [14, Sect. 2.3.2]).
Consider any (x, z), (x ′, z′) ∈ P . Without loss of generality, assume that f (x, z) ≥
f (x ′, z′) and let y ′ ∈ $(x ′, z′) be such that f (x ′, z′) = c"x ′ + q"y ′. Following
[15] we obtain

|f (x, z)− f (x ′, z′)| = f (x, z)− c"x ′ − q"y ′ ≤ c"x + q"y − c"x ′ − q"y ′

≤ ‖c‖‖x − x ′‖ + ‖q‖‖y − y ′‖

for any y ∈ $(x, z). Let B denote the Euclidean unit ball and 0 < � < ∞ a
constant, then [16, Theorem 4.2] yields

$(x ′, z′) ⊆ $(x, z)+�‖(x, z)− (x ′, z′)‖B

and hence |f (x, z)− f (x ′, z′)| ≤ (‖c‖ +�‖q‖)‖(x, z)− (x ′, z′)‖. 	

Remark 17.2.2 An alternate proof for Lemma 17.2.1 is given in [17, Theorem 1].
However, the arguments above can be easily extended to lower level problems with
convex quadratic objective function and linear constraints. �

Linear programming theory (cf. [18]) provides verifiable necessary and sufficient
condition for dom f �= ∅:
Lemma 17.2.3 dom f �= ∅ holds if and only if there exists (x, z) ∈ R

n × R
s such

that

a. {y | Ay ≤ T x + z} is nonempty,
b. there is some u ∈ R

s satisfying A"u = d and u ≤ 0, and
c. the function y �→ q"y is bounded from below on $(x, z).

Under these conditions,

min
y
{q"y | y ∈ $(x ′, z′)}

is attained for any (x ′, z′) ∈ P . �
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17.2.2 Bilevel Stochastic Linear Programming Models

A bilevel stochastic program arises if the parameter z = Z(ω) in P(z) is the
realization of a known random vector Z on some probability space (",F ,P) and
we assume the following chronology of decision and observation:

leader decides x → z = Z(ω) is revealed → follower decides y.

Throughout the analysis, we assume the stochasticity to be purely exogenous, i.e.
the distribution of Z to be independent of x.

Let μZ := P ◦ Z−1 ∈ P(Rs) denote the Borel probability measure induced by
Z. We shall assume dom f �= ∅ and that the lower level problem is feasible for any
leader’s decision and any realization of the randomness, i.e.

X ⊆ PZ := {x ∈ R
n | (x, z) ∈ P ∀z ∈ supp μZ}.

In two-stage stochastic programming, a similar assumption is known as rela-
tively complete recourse (cf. [1, Sect. 2.1.3]). In this setting, each leader’s decision
x ∈ X gives rise to a random variable f (x,Z(·)). We thus may fix any mapping
R : X→ R, where X is a linear subspace of L0(",F ,P) that contains the constants
and satisfies

{f (x,Z(·)) | x ∈ X} ⊆ X,

and consider the bilevel stochastic program

min
x
{R[f (x,Z(·))] | x ∈ X} . (17.2.1)

Under suitable moment or boundedness conditions on Z the classical Lp-spaces
Lp(",F ,P) with p ∈ [1,∞] are natural choices for the domain X of R. We define

Mp
s :=

{
μ ∈ P(Rs) |

∫

Rs

‖z‖p μ(dz) <∞
}
,

which denotes the set of Borel probability measures on R
s with finite moments of

order p ∈ [1,∞), and the set

M∞s :=
{
μ ∈ P(Rs ) | supp μZ is bounded

}
.

Lemma 17.2.4 Assume dom f �= ∅ and μZ ∈ Mp
s for some p ∈ [1,∞]. Then

the mapping F : PZ → L0(",F ,P) given by F(x) := f (x,Z(·)) takes values in
Lp(",F ,P) and is Lipschitz continuous with respect to the Lp-norm. �
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Proof We first consider the case that p is finite. By (0, 0) ∈ P and Lemma 17.2.1,
there exist a constant Lf such that

‖F(x)‖pLp ≤ 2p|f (0, 0)|p + 2p
∫
Rs |f (x, z)− f (0, 0)|p μZ(dz)

≤ 2p|f (0, 0)|p + 2pL
p

f ‖x‖p + 2pL
p

f

∫
Rs ‖z‖p μZ(dz) <∞

holds for any x ∈ PZ . Furthermore, for any x, x ′ ∈ PZ we have

‖F(x)− F(x ′)‖Lp =
(∫

Rs

|f (x, z)− f (x ′, z)|p μZ(dz)

)1/p

≤ Lf ‖x − x ′‖.

For p = ∞, Lemma 17.2.1 implies that for any fixed x ∈ PZ , the mapping
f (x, ·) is continuous on supp μZ. Thus, μZ ∈M∞s yields

‖F(x)‖L∞ ≤ sup
z∈supp μZ

|f (x, z)| <∞.

Moreover, for any x, x ′ ∈ PZ we have

‖F(x)− F(x ′)‖L∞ ≤ sup
z∈supp μZ

|f (x, z)− f (x ′, z)| ≤ Lf ‖x − x ′‖. 	


The mapping R in (17.2.1) can be used to measure the risk associated with the
random variable F(x).

Definition 17.2.5 A mapping R : X → R defined on some linear subspace X
of L0(",F ,P) containing the constants is called a convex risk measure if the
following conditions are fulfilled:

a. (Convexity) For any Y1, Y2 ∈ X and λ ∈ [0, 1] we have

R[λY1 + (1− λ)Y2] ≤ λR[Y1] + (1− λ)R[Y2].

b. (Monotonicity) R[Y1] ≤ R[Y2] for all Y1, Y2 ∈ X satisfying Y1 ≤ Y2 with
respect to the P-almost sure partial order.

c. (Translation equivariance) R[Y + t] = R[Y ] + t for all Y ∈ X and t ∈ R.

A convex risk measure R is coherent if the following holds true:

d. (Positive homogeneity) R[tY ] = t · R[Y ] for all Y ∈ X and t ∈ [0,∞). �
Definition 17.2.6 A mapping R : X→ R is called law-invariant if for all Y1, Y2 ∈
X with P ◦ Y−1

1 = P ◦ Y−1
2 we have R[Y1] = R[Y2]. �

Coherent risk measures have been introduced in [19], while the analysis of
convex risk measures dates back to [20]. A thorough discussion of their analytical
traits is provided in [21]. Below we list some risk measures that are commonly used
in stochastic programming (cf. [1, Sect. 6.3.2]).
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Examples

(a) The expectation E : L1(",F ,P)→ R,

E[Y ] =
∫

"

Y(ω) P(dω),

is a law-invariant and coherent risk measure that turns (17.2.1) into the
risk neutral bilevel stochastic program

min
x
{E[F(x)] | x ∈ X} .

(b) The expected excess of order p ∈ [1,∞) over a predefined level η ∈ R

is the mapping EEp
η : Lp(",F ,P)→ R given by

EEp
η [Y ] :=

(
E
[

max{Y − η, 0}p]
)1/p

.

EEp
η is law-invariant, convex and nondecreasing, but neither translation-

equivariant nor positively homogeneous (cf. [1, Example 6.22]).
(c) The mean upper semideviation of order p ∈ [1,∞) is the mapping

SDp
ρ : Lp(",F ,P)→ R defined by

SDp
ρ [Y ] := E[Y ]+ρ·EEp

E[Y ][Y ] = E[Y ]+ρ·
(
E
[

max{E[Y ]−η, 0}p]
)1/p

,

where ρ ∈ (0, 1] is a parameter. SDp
ρ is a law-invariant coherent risk

measure (cf. [1, Example 6.20]).
(d) The excess probability EPη : L0(",F ,P)→ R over a prescribed target

level η ∈ R given by

EPη[Y ] = P[{ω ∈ " | Y (ω) > η}],

is nondecreasing and law-invariant. However, it lacks convexity,
translation-equivariance and positive homogeneity (cf. [22, Example
2.29]).

(e) The Value-at-Risk VaRα : L0(",F ,P)→ R at level α ∈ (0, 1) defined
by

VaRα[Y ] := inf{η ∈ R | P[{ω ∈ " | Y (ω) ≤ η}] ≥ α}
(continued)
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is law-invariant, nondecreasing, translation-equivariant and positively
homogeneous, but in general not convex (cf. [23]).

(f) The Conditional Value-at-Risk CVaRα : L1(",F ,P) → R at level
α ∈ (0, 1) given by

CVaRα[Y ] := inf{η + 1

1− α
EE1

η[Y ] | η ∈ R}

is a law-invariant coherent risk measure (cf. [23, Proposition 2]). The
variational representation above was established in [24, Theorem 10].

(g) The entropic risk measure Entrα : L∞(",F ,P)→ R defined by

Entrα[Y ] := 1

α
ln
(
E
[

exp(αY )
])

,

where α > 0 is a parameter, is a law-invariant convex (but not coherent)
risk measure (cf. [21, Example 4.13, Example 4.34]).

(h) The worst-case risk measure Rmax : L∞(",F ,P)→ R given by

Rmax[Y ] := sup
ω∈"

Y(ω)

is law-invariant and coherent (cf. [21, Example 4.8]). This choice of R in
(17.2.1) leads to the bilevel robust problem

min
x
{Rmax[F(x)] | x ∈ X} .

Note that Rmax only depends on the so called uncertainty set Z(") ⊆ R.
Thus, a bilevel robust problem can be formulated without knowledge of
the distribution of the uncertain parameter. In robust optimization, the
uncertainty set is often assumed to be finite, polyhedral or ellipsoidal (cf.
[25]).

Remark 17.2.7 The set of convex (coherent) risk measures on Lp(",F ,P) is a
convex cone for any fixed p ∈ [1,∞]. In particular, if R : Lp(",F ,P) → R is a
convex (coherent) risk measure, then so is E+ ρ · R for any ρ ≥ 0. The mean-risk
bilevel stochastic programming model

min
x
{E[F(x)] + ρ · R[F(x)] | x ∈ X}

seeks to minimize a weighted sum of the expected value of the outcome and a
quantification of risk. �
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Example
Consider the bilevel stochastic problem

min {R[min $(x,Z)] | 1 ≤ x ≤ 6} ,

where $(x, z) := Argminy{−y | y ≥ 1, y ≤ x+2+z1, y ≤ −x+8.5+z2}
and assume that Z is uniformly distributed over the square [−0.5, 0.5]2.

Fig. 17.1 The bold line
depicts the graph of
$( · , (0, 0)), while the dotted
lines correspond to the graphs
of $( · , (±0.5,±0.5)) and
$( · , (∓0.5,±0.5))

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

As it can be seen in Fig. 17.1, we have

$(x, z) =
{
{x + 2+ z1} if x ≤ 3.25+ 0.5z2 − 0.5z1

{−x + 8.5+ z2} else

for any x ∈ [1, 6] and z ∈ [−0.5, 0.5]2. A straightforward calculation shows
that

E[min$(x,Z)] = ∫ 0.5
−0.5

∫ 0.5
−0.5 x + 2+ z1 dz1 dz2

= x + 2

holds for any x ∈ [1, 2.75]. Similarly, we have

E[min$(x,Z)] = ∫ 2x−6
−0.5

∫ −2x+6.5+z2
−0.5 x + 2+ z1 dz1 dz2

+ ∫ 0.5
2x−6

∫ 0.5
−0.5 x + 2+ z1 dz1 dz2

(continued)
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+ ∫ 0.5
6−2x

∫ 2x−6.5+z1
−0.5 −x + 8.5+ z2 dz2 dz1

= − 4
3x

3 + 11x2 − 117
4 x + 1427

48

for x ∈ [2, 75, 3.25] and

E[min$(x,Z)] = ∫ 0.5
2x−7

∫ −2x+6.5+z2
−0.5 x + 2+ z1 dz1 dz2

+ ∫ 7−2x
−0.5

∫ 2x−6.5+z1
−0.5 −x + 8.5+ z2 dz2 dz1

+ ∫ 0.5
7−2x

∫ 0.5
−0.5−x + 8.5+ z2 dz2 dz1

= 4
3x

3 − 15x2 + 221
4 x − 989

16

for x ∈ [3.25, 3.75]. Finally, for x ∈ [3.75, 6] we calculate

E[min$(x,Z)] = ∫ 0.5
−0.5

∫ 0.5
−0.5−x + 8.5+ z2 dz2 dz1

= −x + 8.5.

Thus, E[min$( · , Z)] is piecewise polynomial, non-convex and non-
differentiable. It is easy to check that x∗ = 6 is a global minimizer of the
risk-neutral model

min {E[min$(x,Z)] | 1 ≤ x ≤ 6} .

In this particular example, x∗ is also a global minimizer of the bilevel robust
problem

min {Rmax[min$(x,Z)] | 1 ≤ x ≤ 6} .

17.2.3 Continuity and Differentiability

Continuity properties of R carry over to Lipschitzian properties of QR : PZ → R,
QR(x) := R[F(x)].
Proposition 17.2.8 Assume dom f �= ∅ and μZ ∈Mp

s for some p ∈ [1,∞]. Then
the following statements hold true for any R : Lp(",F ,P)→ R :
a. QR is locally Lipschitz continuous if R is convex and continuous.
b. QR is locally Lipschitz continuous if R is convex and nondecreasing.
c. QR is locally Lipschitz continuous if R is a convex risk measure.
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d. QR is Lipschitz continuous if R is Lipschitz continuous.
e. QR is Lipschitz continuous if R is a coherent risk measure. �
Proof

a. It is well-known that any real-valued convex and continuous mapping on a
normed space is locally Lipschitz continuous (cf. [26]). The result is thus an
immediate consequence of Lemma 17.2.4.

b. Any real-valued, convex and nondecreasing functional on the Banach lattice
Lp(",F ,P) is continuous (see e.g. [27, Theorem 4.1]).

c. By definition, any convex risk measure is convex and nondecreasing.
d. This is a straightforward conclusion from Lemma 17.2.4.
e. Any coherent risk measure on Lp(",F ,P) is Lipschitz continuous by Inoue [28,

Lemma 2.1]. 	

Remark 17.2.9 Any coherent risk measure R : L∞(",F ,P) → R is Lipschitz
continuous with constant 1 by Föllmer and Schied [21, Lemma 4.3]. Concrete
Lipschitz constants for continuous coherent law-invariant risk measures R :
Lp(",F ,P) → R with p ∈ [1,∞) may be obtained from representation results
(see e.g. [29]). �

Proposition 17.2.8 allows to formulate sufficient conditions for the existence of
optimal solutions to the bilevel stochastic linear program (17.2.1):

Corollary 17.2.10 Assume dom f �= ∅, μZ ∈ Mp
s for some p ∈ [1,∞] and let

X ⊆ PZ be nonempty and compact. Then (17.2.1) is solvable for any convex and
nondecreasing mapping R : Lp(",F ,P)→ R. �

Due to the lack of convexity, Proposition 17.2.8 and the subsequent Corollary
do not apply to the excess probability and the Value-at-Risk. However, invoking
Lemma 17.2.1, the arguments used in the proof of [30, Proposition 3.3] can adapted
to the setting of bilevel stochastic linear programming:

Proposition 17.2.11 Assume dom f �= ∅ and fix η ∈ R, then QEPη
is lower

semicontinuous on PZ and continuous at any x ∈ PZ satisfying

μZ[{z ∈ R | f (x, z) = η}] = 0.

Furthermore, let X ⊆ PZ be nonempty and compact. Then

min
x

{
EPη[F(x)] | x ∈ X

}

is solvable. �
QVaRα

has been analyzed in [17, Theorem 2]:
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Proposition 17.2.12 Assume dom f �= ∅ and α ∈ (0, 1), then QVaRα
is

continuous. Moreover, let X ⊆ PZ be nonempty and compact. Then

min
x
{VaRα[F(x)] | x ∈ X}

is solvable. �
For specific risk measures, sufficient conditions for differentiability of QR have

been investigated in [31].

Proposition 17.2.13 Assume dom f �= ∅ and that μZ ∈ M1
s is absolutely

continuouswith respect to the Lebesgue measure. Fix any η ∈ R, thenQE andQEE1
η

are continuously differentiable at any x0 ∈ int PZ . Furthermore, for any ρ ∈ [0, 1),
QSD1

ρ

is continuously differentiable at any x0 ∈ int PZ satisfying QE(x0) �= 0. �
Remark 17.2.14 Theorems 3.7, 3.8 and 3.9 in [31] provide more involved sufficient
conditions for continuous differentiability of QE, QEE1

η

and QSD1
ρ

that do not

require μZ to be absolutely continuous. �
Remark 17.2.15 Note that the assumptions of Proposition 17.2.13 are not fulfilled
in the example at the end of Sect. 17.2.2: The right-hand side of the restriction
system is only partially random as the right-hand side of the restriction y ≥ 1
does not depend on Z. If we extend the system to

y ≤ x + 2+ z′1, y ≤ −x + 8.5+ z′2, y ≥ 1+ z′3,

the third component of the extended random vector Z′ has to take the value 0
with probability 1. Thus, P ◦ Z′−1 is not absolutely continuous with respect to the
Lebesgue measure. �

In the presence of differentiability, necessary optimality conditions for (17.2.1)
can be formulated in terms of directional derivatives (cf. [31, Corollary 3.10]).

Proposition 17.2.16 Assume dom f �= ∅, μZ ∈ Mp
s and X ⊆ PZ . Furthermore,

let x0 ∈ X be a local minimizer of problem (17.2.1) and assume that QR is
differentiable at x0. Then

Q′R(x0)v ≥ 0

holds for any feasible direction

v ∈ {v ∈ R
n | ∃ε0 > 0 : x0 + εv ∈ X ∀ε ∈ [0, ε0]}. �
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17.2.4 Stability

While we have only considered QR as a functions of the leader’s decision x

so far, it also depends on the underlying probability measure μZ. In stochastic
programming, incomplete information about the true underlying distribution or the
need for computational efficiency may lead to optimization models that employ an
approximation of μZ. This section analysis deals with the behaviour of optimal
values and (local) optimal solution sets of (17.2.1) under perturbations of the
underlying distribution.

Taking into account that the support of the perturbed measure may differ from
the original support, we shall assume dom f �= ∅ and

P = R
n × R

s

to ensure that the objective function of (17.2.1) remains well defined. The cor-
responding assumption in two-stage stochastic programming is called complete
recourse (cf. [1, Sect. 2.1.3]). Sufficient conditions for dom f �= ∅ and P =
R

n × R
s are given in [17, Corollary 1] and [17, Corollary 2]. The following

characterization is a direct consequence of Gordan’s Lemma (cf. [32]):

Lemma 17.2.17 P = R
n × R

s holds if and only if u = 0 is the only non-negative
solution to A"u = 0. �

Throughout this section, we shall consider the situation that R : Lp(",F ,P)→
R with p ∈ [1,∞) is law-invariant, convex and nondecreasing. Furthermore, for the
sake of notational simplicity (cf. [31, Remark 4.1]), we assume that the probability
space (",F ,P) is atomless, i.e. for any A ∈ F with P[A] > 0 there exists some
B ∈ F with B � A and P[A] > P[B] > 0.

Then for any x ∈ X and μ ∈ Mp
s , we have (δx ⊗ μ) ◦ f−1 ∈ Mp

1 , where
δx ∈ P(Rn) denotes the Dirac measure at x. The atomlessness of (",F ,P) ensures
that there exists some Y(x,μ) ∈ Lp(",F ,P) such that P ◦ Y−1

(x,μ) = (δx ⊗μ) ◦ f−1.

Thus, we may consider the mapping QR : X ×Mp
s → R defined by

QR(x, μ) := R[Y(x,μ)].

Note that the specific choice of Y(x,μ) does not matter due to the law-invariance of
R.

Consider the parametric optimization problem

min
x
{QR(x, μ) | x ∈ X}. (Pμ)
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As (Pμ) may be non-convex, we shall pay special attention to sets of locally optimal
solutions. For any open set V ⊆ R

n we introduce the localized optimal value
function ϕV :Mp

s → R,

ϕV (μ) := min
x
{QR(x, μ) | x ∈ X ∩ cl V },

as well as the localized optimal solution set mapping φV :Mp
s ⇒ R

n,

φV (μ) := Argmin
x
{QR(x, μ) | x ∈ X ∩ cl V }.

It is well known that additional assumptions are needed when studying stability of
local solutions.

Definition 17.2.18 Given μ ∈ Mp
s and an open set V ⊆ R

n, φV (μ) is called a
complete local minimizing (CLM) set of (Pμ) w.r.t. V if ∅ �= φV (μ) ⊆ V . �
Remark 17.2.19 The set of global optimal solutions φRn(μ) and any set of isolated
minimizers are CLM sets. However, sets of strict local minimizers may fail to be
CLM sets (cf. [33]). �

In the following, we shall equip P(Rs) with the topology of weak convergence,
i.e. the topology, where a sequence {μl}l∈N ⊂ P(Rs) converges weakly to μ ∈
P(Rs), written μl

w→ μ, if and only if

lim
l→∞

∫

Rs

h(t) μl(dt) =
∫

Rs

h(t) μ(dt)

holds for any bounded continuous function h : Rs → R (cf. [34]). The example
below (cf. [22, Example 3.2]) shows that even ϕRn may fail to be weakly continuous
on the entire space P(Rs).

Example
The problem

min
x

{
x +

∫

R

z μ(dz) | 0 ≤ x ≤ 1

}

arises from a bilevel stochastic linear problem, where R = E and $(x, z) =
{z} � R holds for any (x, z). Assume that μ is the Dirac measure at 0, then
the above problem can be rewritten as

min
x
{x | 0 ≤ x ≤ 1}

(continued)
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and its optimal value is 0.
However, while the sequence μl := (1 − 1

l
)δ0 + 1

l
δl converges weakly to

δ0, replacing μ with μl yields the problem

min
x
{x + 1 | 0 ≤ x ≤ 1} ,

whose optimal value is equal to 1 for any l ∈ N.

We shall follow the approach of [22, 31] and [35] and confine the stability
analysis to locally uniformly ‖ · ‖p-integrating sets.

Definition 17.2.20 A set M ⊆ Mp
s is said to be locally uniformly ‖ · ‖p-

integrating if for any ε > 0 there exists some open neighborhood N of μ w.r.t.
the topology of weak convergence such that

lim
a→∞ sup

ν∈M∩N

∫

Rs\aB
‖z‖p ν(dz) ≤ ε. �

A detailed discussion of locally uniformly ‖ · ‖p-integrating sets and their
generalizations is provided in [21, 36, 37], and [38]. The following examples
demonstrate the relevance of the concept.

Examples

(a) Fix κ, ε > 0. Then by Föllmer and Schied [21, Corollary A.47 (c)], the
set

M(κ, ε) :=
{
μ ∈ P(Rs ) |

∫

Rs

‖z‖p+ε μ(dz) ≤ κ

}

of Borel probability measures with uniformly bounded moments of order
p + ε is locally uniformly ‖ · ‖p-integrating.

(b) Fix any compact set & ⊂ R
s . By Föllmer and Schied [21, Corollary A.47,

(b)], the set

{μ ∈ P(Rs) | μ[&] = 1}

of Borel probability measures whose support is contained in & is locally
uniformly ‖ · ‖p-integrating.
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The following result has been established in [31, Theorem 4.7]:

Theorem 17.2.21 Assume dom f �= ∅ and P = R
n×R

s . LetM ⊆Mp
s be locally

uniformly ‖ · ‖p-integrating, then
a. QR|Rn×M is real-valued and weakly continuous.
b. ϕRn |M is weakly upper semicontinuous.

In addition, assume that μ0 ∈ M is such that φV (μ0) is a CLM set of Pμ0 w.r.t.
some open bounded set V � R

n. Then the following statements hold true:

c. ϕV |M is weakly continuous at μ0.
d. φV |M is weakly upper semicontinuous at μ0 in the sense of Berge (cf. [39]),

i.e. for any open set O ⊆ R
n with φ|V (μ0) ⊆ O there exists a weakly open

neighborhoodN of μ0 such that φV (μ) ⊆ O for all μ ∈ N ∩M.
e. There exists some weakly open neighborhoodU of μ0 such that φV (μ) is a CLM

set for (Pμ) w.r.t. V for any μ ∈ U ∩M. �
Proof Fix any x0 ∈ R

n. By Lemma 17.2.1, f is Lipschitz continuous on R
n × R

s .
Thus, there exists a constant L > 0 such that

|f (x, z)| ≤ L‖z‖ + L‖x − x0‖ + |f (x0, 0)|

and the result follows from [35, Corollary 2.4.]. 	

Remark 17.2.22 Under the assumptions of Theorem 17.2.21d., any accumulation
point x of a sequence local optimal solutions xl ∈ φV (μl) as μl

w→ μ, μl ∈ M,
is a local optimal solution of (Pμ). A detailed discussion of Berge’s notion of upper
semicontinuity and related concepts is provided in [40, Chap. 5]. �

As any Borel probability measure is the weak limit of a sequence of measures
having finite support, Theorem 17.2.21 justifies an approach where the true
underlying measure is approximated by a sequence of finite discrete ones. It is well
known that approximation schemes based on discretization via empirical estimation
[41, 42] or conditional expectations [43, 44] produce weakly converging sequences
of discrete probability measures under mild assumptions.

Remark 17.2.23 All results of Sects. 17.2.1–17.2.4 can be easily extended to the
pessimistic approach to bilevel stochastic linear programming, where f takes the
form

f (x, z) = c"x −min
y
{−q"y | y ∈ $(x, z)}

(cf. [22, Chap. 4]). �
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17.2.5 Stochastic Dominance Constraints

One possibility to model the minimization in

min{f (x,Z(·)) | x ∈ X}

is doing it w.r.t. some risk measure that maps f (x,Z(·)) into the reals, as introduced
in Sect. 17.2. In this section, we shall discuss an alternate approach, where a
disutility function g : Rn → R is minimized over some subset of random variables
of acceptable risk:

min
x
{g(x) | x ∈ X, f (x,Z(·)) ∈ A} ,

where A ⊆ f (X,Z) := {f (x,Z(·)) | x ∈ X}. The following cases are of particular
interest (cf. [1, pp. 90–91]) :

Examples

(a) A is given by probabilistic constraints, i.e.

Apc = {h ∈ f (X,Z) | P[h ≤ βj ] ≥ pj ∀j = 1, . . . , l}

for bounds β1, . . . , βl ∈ R and safety levels p1, . . . , pl ∈ (0, 1).
(b) A is given by first-order stochastic dominance constraints, i.e.

Afo = {h ∈ f (X,Z) | P[h ≤ β] ≥ P[b ≤ β] ∀β ∈ R},

where b ∈ L0(",F ,P) is a given benchmark variable. If b is discrete
with a finite number of realizations, it is sufficient to impose the relation
P[h ≤ β] ≥ P[b ≤ β] for any β in a finite subset of R. In this case, A
admits a description by a finite system of probabilistic constraints.

(c) A is given by second-order stochastic dominance constraints, i.e.

Aso = {h ∈ f (X,Z) | E[max{h− η, 0}] ≤ E[max{b − η, 0}] ∀η ∈ R},

where b ∈ L1(",F ,P) is a given benchmark variable.

A discussion of general models involving probabilistic or stochastic dominance
constraints can be found in [1, Chap. 8] and [45, Chap. 8.3].

Let ν := P ◦ b−1 ∈ P(R) denote the distribution of the benchmark variable b.
Then the feasible set under first-order stochastic dominance constraints admits the



17 Bilevel Linear Optimization Under Uncertainty 501

representation

{
x ∈ X | μZ

[{z ∈ R
s | f (x, z) ≤ β}] ≥ ν

[{b ∈ R | b ≤ β}] ∀β ∈ R
}
.

Similarly, for second-order stochastic dominance constraints, μ ∈M1
s and ν ∈M1

1,
the feasible set takes the form
{
x ∈ X |

∫

Rs

max{f (x, z)− η, 0} μZ(dz) ≤
∫

R

max{b − η, 0} ν(db) ∀η ∈ N

}
.

In both cases, the feasibility does only depend on the distribution of the underlying
random vector. As in Sect. 17.2.4, we consider situations where μZ is replaced with
an approximation and study the behaviour of the mappings C1 : P(Rs) ⇒ R

n

defined by

C1(μ) = {
x ∈ X | μ[{z ∈ R

s | f (x, z) ≤ β}] ≥ ν
[{b ∈ R | b ≤ β}] ∀β ∈ R

}
.

and C2 :M1
s ⇒ R

n given by

C2(μ) :=
{
x ∈ X |

∫

Rs

max{f (x, z) − η, 0} μ(dz) ≤
∫

R

max{b − η, 0} ν(db)∀η ∈ N

}
.

Invoking Lemma 17.2.1, the following result can be obtained by adapting the
proofs of [46, Proposition 2.1] and [47, Proposition 2.2] :

Proposition 17.2.24 Assume dom f �= ∅ and P = R
n × R

s . Then the following
statements hold true:

a. The multifunction C1 is closed w.r.t. the topology of weak convergence, i.e. for
any sequences {μl}l ⊂ P(Rs) and {xl}l ⊂ R

n with μl
w→ μ ∈ P(Rs), xl → x ∈

R
n for l →∞ and xl ∈ C1(μl) for all l ∈ N it holds true that x ∈ C1(μ).

b. Additionally assume that ν ∈ M1
1, then the multifunction C2 is closed w.r.t. the

topology of weak convergence. �
By considering the constant sequence μl = μ for all l ∈ N we obtain the

closedness of the sets C1(μ) and C2(μ) under the conditions of Proposition 17.2.24.
The closedness of the multifunctions C1 and C2 is also the key to proving the
following stability result (cf. [46, Proposition 2.5]):

Theorem 17.2.25 Assume dom f �= ∅, P = R
n × R

s and that X is nonempty and
compact. Moreover, let g be lower semicontinuous. Then the following statements
hold true:

a. The optimal value function ϕ1 : P(Rs)→ R ∪ {∞} given by

ϕ1(μ) := inf{g(x) | x ∈ C1(μ)}

is weakly lower semicontinuous on dom C1.
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b. Additionally assume ν ∈M1
1, then the function ϕ2 :M1

s → R ∪ {∞} given by

ϕ2(μ) := inf{g(x) | x ∈ C2(μ)}

is weakly lower semicontinuous on dom C2. �

17.2.6 Finite Discrete Distributions

Throughout this section, we shall assume that the underlying random vector Z

is discrete with a finite number of realizations Z1, . . . , ZK ∈ R
s and respective

probabilities π1, . . . , πK ∈ (0, 1]. Let I denote the index set {1, . . . ,K}, then PZ

takes the form

PZ = {x ∈ R
n | ∀k ∈ I ∃y ∈ R

m : Ay ≤ T x + Zk}.

Suppose that x0 ∈ X is such that {y ∈ R
m | Ay ≤ T x0 + Zk} = ∅ holds for some

k ∈ I . Then the probability of f (x0, Z(ω)) = ∞ is a least πk > 0, i.e. x0 should
be considered as infeasible for problem (17.2.1). Consequently, X ⊆ PZ can be
understood as an induced constraint. Note that X ∩ PZ is a polyhedron if X is a
polyhedron.

In this setting, the bilevel stochastic linear problem can be reduced to a standard
bilevel program, which allows to adapt optimality conditions and algorithms
designed for the deterministic case (cf. [48]).

Proposition 17.2.26 Assume dom f �= ∅, R ∈ {E,EE1
η, SD

1
ρ,EPη,VaRα,CVaRα,

Rmax} and let X ⊆ PZ be a polyhedron. If R ∈ {EPη,VaRα}, additionally assume
thatX bounded. Then for any parameter β, there exists a constantM > 0 such that
the bilevel stochastic linear problem

min
x
{R[F(x)] | x ∈ X}

is equivalent to the standard bilevel program

min
x

{
inf
η∈R

︸︷︷︸
if R=CVaRα

min
w

{
a(x,w) | w ∈ $R(x)

}| x ∈ X
}
, or

min
x

{
c"x + inf

η∈R
{
η | min

w
{a(x,w) | w ∈ $R(x)} ≥ α

}| x ∈ X
}

if R = VaRα,
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Table 17.1 Equivalent bilevel linear programs

R β w a(x,w) b(x,w)

E (y1, . . . , yK) ∈ R
Km c"x +∑

k∈I πkq
"yk

EE1
η η ∈ R

(y1, . . . , yK) ∈ R
Km

(v1, . . . , vK) ∈ R
K

∑
k∈I πkvk

(
vk

vk − c"x − q"yk+η

)

SD1
ρ ρ ∈

(0, 1]
(y1, . . . , yK) ∈ R

Km

(v1, . . . , vK) ∈ R
K

(1− ρ)
∑

k∈I πkq
"yk

+ρ∑k∈I πkvk + c"x

(
vk − q"yk
vk −∑

j∈I πj q
"yj

)

EPη η ∈ R
(y1, . . . , yK) ∈ R

Km

(θ1, . . . , θK) ∈ {0, 1}K
∑

k∈I πkθk Mθk − c"x − q"yk + η

VaRα α ∈
(0, 1)

(y1, . . . , yK) ∈ R
Km

(θ1, . . . , θK) ∈ {0, 1}K
∑

k∈I πkθk
M(1− θk)− c"x
−q"yk + η

CVaRα α ∈
(0, 1)

(y1, . . . , yK) ∈ R
Km

(v1, . . . , vK) ∈ R
K

η + 1
1−α

∑
k∈I πkvk cf. EE1

η

Rmax (y1, . . . , yK) ∈ R
Km maxk∈I c"x + q"yk

where $R : Rn ⇒ R
dim w with

$R(x) := Argmin
w

{
∑

k∈I
d"yk | Ayk ≤ T x + Zk, bk(x,w) ≥ 0 ∀k ∈ I

}

.

The specific formulations can be found in Table 17.1. �

Proof For R ∈ {E,EE1
η,SD1

ρ,CVaRα}, we refer to [31, Section 5].
For the excess probability, the first of the considered quantile-based risk mea-

sures, we have EPη[F(x)] = P
[
c"x + infy{q"y | y ∈ $(x,Z(·))} > η

]
. Fix M ∈

R such that

M > sup
{
c"x + inf

yk

{
q"yk | yk ∈ $(x,Zk)

} | x ∈ X, k ∈ I
}− η

and, for yk ∈ $(x,Zk), let

θk :=
{

0 if c"x + q"yk − η ≤ 0,

1 otherwise.

Then the excess probability is equal to

∑

k∈I
πk infyk,θk

{
θk | Mθk ≥ c"x + q"yk − η, yk ∈ $(x,Zk), θk ∈ {0, 1}}

= inf
y1,...,yK ,

θ1,...,θK

{
∑

k∈I
πkθk | Mθk ≥ c"x + q"yk − η, yk ∈ $(x,Zk), θk ∈ {0, 1}

∀k ∈ I

⎫
⎪⎪⎬

⎪⎪⎭
.
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Similar to the proof for R = EPη, the expression P[f (x,Z(·)) ≤ η] equals

∑

k∈I
πk inf

yk,θk

{
θk | M(1− θk) ≥ c"x + q"yk − η, yk ∈ $(x,Zk), θk ∈ {0, 1}

}

= inf
y1,...,yK ,

θ1,...,θK

⎧
⎨

⎩

∑

k∈I
πkθk | M(1− θi ) ≥ c"x + q"yk − η, yk ∈ $(x,Zk), θk ∈ {0, 1}

∀k ∈ I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where

θk :=
{

1 if c"x + q"yk − η ≤ 0,

0 otherwise.

Thereby we get equality of VaRη[f (x,Z(·))] and

inf

⎧
⎨

⎩
η ∈ R | inf

y1,...,yK ,

θ1,...,θK

{
∑

k∈I
πkθk | (y1, . . . , yK, θ1, . . . , θK) ∈ $VaRη

(x)

}

≥ α

⎫
⎬

⎭
.

The worst-case risk measure is equal to supk∈I
{
c"x +minyk {q"y | y∈$(x,Zk)}

}

and the result follows from $Rmax = $(x,Z1)× . . .×$(x,ZK). 	

Remark 17.2.27

a. The equivalent standard bilevel problem is linear provided that R ∈
{E,EE1

η,SD1
ρ}.

b. Analogous to [31, Remarks 5.2, 5.4], the inner minimization problems of the
standard bilevel linear programs for R ∈ {E,EE1

η,EPη,Rmax} can be decom-
posed into K scenario problems that only differ w.r.t. the right-hand side of the
constraint system. For the other models, a similar decomposition is possible after
Lagrangian relaxation of the coupling constraints involving different scenarios.

c. For R = CVaRα, every evaluation of the objective function in the standard bilevel
linear program corresponds to solving a bilevel linear problem with scalar upper
level variable η.

d. Alternate models for R = VaRα are given in [17] and [49], where the considered
bilevel stochastic linear problem is reduced to a mixed-integer nonlinear program
and a mathematical programming problem with equilibrium constraints, respec-
tively. A mean-risk model with R = CVaRα is used in [5, Sect. III]. �
Similar reformulations can be obtained for the models discussed in Sect. 17.2.5

if we assume that the disutility function is linear.
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Table 17.2 Equivalent programs, notation as in the Example in Sect. 17.2.5

A γ wj a(wj ) R δj

Apc
βj ∈ R, pj ∈ (0, 1)

with j = 1, . . . , l

(y1j , . . . , yKj ) ∈ R
Km

(θ1j , . . . , θKj ) ∈ {0, 1}K
∑

k∈I πkθkj VaRβj
pj

Afo
any finite discrete

benchmark variable

(y1j , . . . , yKj ) ∈ R
Km

(θ1j , . . . , θKj ) ∈ {0, 1}K
∑

k∈I πkθkj EPaj āj

Aso
b with realizations

a1, . . . , al

(y1j , . . . , yKj ) ∈ R
Km

(v1j , . . . , vKj ) ∈ R
K

∑
k∈I πkvkj EE1

aj
ãj

Proposition 17.2.28 Assume dom f �= ∅, and let X ⊆ PZ be a bounded
polyhedron. Then for any parameter γ , the problem

min
x

{
g"x | F(x) ∈ A, x ∈ X

}

is equivalent to

min
x

{
g"x | inf

wj

{
a(wj ) | wj ∈ $R(x)

} ≥ δj ∀j = 1, . . . , l, x ∈ X
}
.

The specific formulations are listed in Table 17.2, where āj := 1 − P[b ≤ aj ] and
ãj :=

∫
Rs max{b(z)− aj , 0} μZ(dz).

�

17.2.7 Solution Approaches

To solve bilevel problems, it is very common to use a single level reformulation.
Often the lower level minimality condition is replaced by its Karush-Kuhn-Tucker
or Fritz John conditions and the bilevel problem is reduced to a mathematical
programming problem with equilibrium constraints (cf. [5, 17], [48, Chap. 3.5.1]).

For R ∈ {E,EE1
η,SD1

ρ,EPη,Rmax}, the equivalent standard bilevel programs in
Proposition 17.2.26 can be all restated as

min
u

{
g"u+min

w
{h"w | w ∈ $(u)} | u ∈ U

}
, (17.2.2)

where $ : Rk ⇒ R
l is given by $(u) = Argminw{t"w | Ww ≤ Bu + b} for

vectors g ∈ R
k , h, t ∈ R

l and b ∈ R
r , matrices W ∈ R

r×l and B ∈ R
r×k , and

U ⊆ R
k is a nonempty polyhedron. The usage of the KKT conditions of the lower

level problem leads to the single-level problem

min
u,w,v

{

g"u+ h"w
∣
∣
∣∣
Ww ≤ Bu+ b, W"v = t, v ≤ 0,

v"(Ww − Bu− b) = 0, u ∈ U

}

. (17.2.3)
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More details as well as statements on the coincidence of optimal values and the
existence of local and global minimizers are given in [31, Sect. 6]. If the condition
v"(Ww−Bu−b) = 0 is relaxed by v"(Ww−Bu−b) ≤ ε (the resulting problem
is denoted by P(ε)), the violation of regularity conditions like (MFCQ) and (LICQ)
at every feasible point of (17.2.3) can be bypassed. A discussion of other difficulties
associated with (17.2.3) is provided in [11, Chap. 3.1.2].

In [31, Sect. 6] it is also shown that (ū, w̄) is a local minimizer of the optimistic
formulation, if (ū, w̄, v̄) is an accumulation point of a sequence {(un,wn, vn)}n∈N
of local minimizers of problem P(εn) for εn ↓ 0.

In the risk-neutral setting, problem (17.2.2) exhibits a block-structure (cf.
Remark 17.2.27 b.). Adapting the solution method for general linear complemen-
tarity problems proposed in [50], this special structure has been used in [11, Chap.
6] to construct an efficient algorithm for the global resolution of bilevel stochastic
linear problems based on dual decomposition.

Remark 17.2.29 Utilizing the lower level value function, problem (17.2.2) can be
reformulated as a single level quasiconcave optimization problem (cf. [48, Chap.
3.6.5]). Solution methods based on a branch-and-bound scheme have been proposed
in [51] and [52]. However, without modifications, these algorithms fail to exploit the
block structure arising in risk-neutral bilevel stochastic linear optimization models
(cf. [11, Chap. 4.2]). �

17.3 Two-Stage Stochastic Bilevel Programs

In two-stage stochastic bilevel programming, both leader and follower have to
make their respective first-stage decisions without knowledge of the realization
of a stochastic parameter. Afterwards, the second-stage decisions are made under
complete information. This leads to the following chronology of decision and
observation:

leader
decides x1

→ follower
decides y1

→ z = Z(ω)

is revealed
→ leader decides

x2(x1, y1, z)
→ follower decides

y2(x1, y1, x2, z)

Remark 17.3.1 The bilevel stochastic linear problems considered in Sect. 17.2 can
be understood as special two-stage bilevel programs, where the follower’s first-stage
and the leader’s second stage decision do not influence the outcome. �

In [12], a two-stage stochastic extension of the bilevel network pricing model
introduced in [53] is studied. Consider a multicommodity transportation network
(N,�,K), where (N,#) is a directed graph and each commodity k ∈ K is to be
transported from an origin O(k) ∈ N to a destination D(k) ∈ N in order to satisfy
a demand nk ∈ (0,∞). The set of arcs # is partitioned into the subsets θ and θ̄

of tariff and tariff-free arcs, respectively, and the leaders is maximizing the revenue
raised from tariffs, knowing that user flows are assigned to cheapest paths. In [53],
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this situation is modeled as a bilevel program

“ max
x

”

{
∑

k∈K
x"yk | (y, ȳ) ∈ $(x)

}

,

where the lower level is given by

$(x, c, d, b) := Argmin
y,ȳ

{
∑

k∈K

[
(c + x)"yk + c̄"ȳk

] ∣∣∣
y, ȳ ≥ 0,
Ayk + Āȳk = bk ∀k ∈ K

}

,

and x is the vector of tariffs controlled by the leader, yk and ȳk are the flows of
commodity k on the tariff and tariff-free arcs, respectively. Moreover, c and c̄ are the
fixed costs on θ and θ̄ , respectively, (A, Ā) denotes the node-arc incidence matrix
and the vectors bk defined by

bk
i :=

⎧
⎪⎪⎨

⎪⎪⎩

nk, if i = O(k)

−nk, if i = D(k)

0, else

are used to express nodal balance. Reference [12] extends the above model to a two-
stage setting including market uncertainties: After deciding on first-stage tariffs, the
situation repeats itself on the same network but with different cost and demand
parameters. At the first-stage, only the distribution of the second-stage parameter
Z(ω) = (c2, d2, b2)(ω) is known and the stages are linked by the restriction that the
second-stage tariffs should not differ too widely from those set at the first stage. The
linking constraint is motivated by policy regulations and competitivity issues. In a
risk-neutral setting, this results in the problem

“ max
x1

”

{
∑

k∈K
x"1 yk

1 + E[%(x1, Z(·))] | (y1, ȳ1) ∈ $(x1, c1, d1, b1)

}

, (17.3.1)

where the recourse is given by

%(x1, Z(ω)) := “ max
x2

”

{
∑

k∈K
x"2 yk

2 | (x1, x2) ∈ �(δ), (y2, ȳ2) ∈ $(x2, Z(ω))

}

and the set �(δ) is defined as either

�(δ) := �A(δ) := {(x1, x2) | |x1,θ − x2,θ | ≤ δθ ∀θ ∈ #}
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if tariff changes are limited in absolute values or

�(δ) := �R(δ) := {(x1, x2) | |x1,θ − x2,θ | ≤ δθ |x1,θ | ∀θ ∈ #}

if proportional limits are considered. Assuming that the underlying random vector
Z is discrete with a finite number of realizations, a reformulation of (17.3.1) as a
single-stage bilevel program is established in [12]. Moreover, sensitivity analysis of
the optimal value function of (17.3.1) w.r.t. the parameter δ ∈ [0,∞)|#| (cf. [12,
Proposition 4.1, Proposition 4.2]) as well as numerical studies are conducted (cf.
[12, Sects. 5, 6]).

17.4 Challenges

We shall highlight some aspects of bilevel stochastic programming that are highly
deserving of future research:

Going (Further) Beyond the Risk-Neutral Case for Nonlinear Models The
first paper on bilevel stochastic programming has already outlined the basic
principles as well as existence and sensitivity results for risk neutral models (cf.
[2]). Nevertheless, so far, most of the research on bilevel stochastic nonlinear
programming is still concerned with the risk-neutral case. Notable exceptions are [5]
and [8], where models involving the Conditional Value-at-Risk are considered. In
the first paper the problem of maximizing the medium-term revenue of an electricity
retailer under uncertain pool prices, demand, and competitor prices is modeled
as a bilevel stochastic quadratic problem, while the latter explores links between
electricity swing option pricing and bilevel stochastic optimization. However, there
exists no systematic analysis of bilevel stochastic nonlinear problems in the broader
framework of coherent risk measures or higher stochastic dominance constraints.
Future research may also consider distributionally robust models (cf. [54]).

Exploiting (Quasi) Block Structures Arising in Risk-Averse Models Under
finite discrete distributions many bilevel stochastic problems can be reformulated
as standard bilevel programs. While this reformulation entails a blow-up of the
dimension which is usually linear in the number of scenarios, the resulting problems
often exhibit (quasi) block structures (cf. Remark 17.2.27b., [2]). For risk-neutral
bilevel stochastic linear problems, [11, Chap. 6] utilizes these structures to enhance
the mixed integer programming based solution algorithm of [50] resulting in a
significant speed-up. Based on the structural similarities an analogous approach
should be possible for risk-averse models after Lagrangian relaxation of coupling
constraints.

Going Beyond Exogenous Stochasticity While the analysis in the vast majority
of papers on stochastic programming is confined to the case of purely exogenous
stochasticity, this assumption is known to be unrealistic in economic models, where
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the decision maker holds market power. Therefore, models with decision dependent
distributions are of particular interest in view of stochastic Stackelberg games (cf.
[55]).
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Chapter 18
A Unified Framework for Multistage
Mixed Integer Linear Optimization

Suresh Bolusani, Stefano Coniglio, Ted K. Ralphs, and Sahar Tahernejad

Abstract We introduce a unified framework for the study of multilevel mixed
integer linear optimization problems and multistage stochastic mixed integer linear
optimization problems with recourse. The framework highlights the common
mathematical structure of the two problems and allows for the development of a
common algorithmic framework. Focusing on the two-stage case, we investigate, in
particular, the nature of the value function of the second-stage problem, highlighting
its connection to dual functions and the theory of duality for mixed integer linear
optimization problems, and summarize different reformulations. We then present
two main solution techniques, one based on a Benders-like decomposition to
approximate either the risk function or the value function, and the other one based
on cutting plane generation.

Keywords Multilevel optimization · Multistage stochastic optimization ·
Discrete optimization · Primal and dual functions · Decomposition methods ·
Convexification-based methods

18.1 Introduction

This article introduces a unified framework for the study of multilevel mixed
integer linear optimization problems and multistage stochastic mixed integer linear
optimization problems with recourse. This unified framework provides insights into
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the nature of these two well-known classes of optimization problems, highlights
their common mathematical structure, and allows results from the wider literature
devoted to both classes to be exploited for the development of a common algorithmic
framework.

18.1.1 Motivation

Historically, research in mathematical optimization, which is arguably the most
widely applied theoretical and methodological framework for solving optimization
problems, has been primarily focused on “idealized” models aimed at informing the
decision process of a single decision maker (DM) facing the problem of making a
single set of decisions at a single point in time under perfect information. Techniques
for this idealized case are now well developed, with efficient implementations
widely available in off-the-shelf software.

In contrast, most real-world applications involve multiple DMs, and decisions
must be made at multiple points in time under uncertainty. To allow for this
additional complexity, a number of more sophisticated modeling frameworks have
been developed, including multistage and multilevel optimization. In line with the
recent optimization literature, we use the term multistage optimization to denote
the decision process of a single DM over multiple time periods with an objective
that factors in the (expected) impact at future stages of the decisions taken at the
current stage. With the term multilevel optimization, on the other hand, we refer to
game-theoretic decision processes in which multiple DMs with selfish objectives
make decisions in turn, competing to optimize their own individual outcomes in the
context of settings such as, e.g., economic markets.

Because the distinction between multistage and multilevel optimization problems
appears substantial from a modeling perspective, their development has been
undertaken independently by different research communities. Indeed, multistage
problems have arisen out of the necessity to account for stochasticity, which is done
by explicitly including multiple decision stages in between each of which the value
of a random variable is realized. Knowledge of the precise values of the quantities
that were unknown at earlier stages allows for so-called recourse decisions to be
made in later stages in order to correct possible mis-steps taken due to the lack of
precise information. On the other hand, multilevel optimization has been developed
primarily to model multi-round games (technically known as finite, extensive form
games with perfect information in the general case and Stackelberg games in the
case of two rounds) in which the decision (or strategy) of a given player at a given
round must take into account the reactions of other players in future rounds.

Despite these distinctions, these classes of problems share an important common
structure from a mathematical and methodological perspective that makes consider-
ing them in a single, unifying framework attractive. It is not difficult to understand
the source of this common structure—from the standpoint of an individual DM,
the complexity of the decision process comes from uncertainty about the future.
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From an analytical perspective, the methods we use for dealing with the uncertainty
arising from a lack of knowledge of the precise values of input parameters to later-
stage decision problems can also be used to address the uncertainty arising from a
lack of knowledge of the future actions of another self-interested player. In fact,
one way of viewing the outcome of a random variable is as a “decision” made
by a DM about whose objective function nothing is known. Both cases require
consideration of a set of outcomes arising from either the different ways in which the
uncertain future could unfold or from the different possible actions the other players
could take. Algorithms for solving these difficult optimization problems must,
either explicitly or implicitly, rely on efficient methods for exploring this outcome
space. This commonality turns out to be more than a philosophical abstraction. The
mathematical connections between multistage and multilevel optimization problems
run deep and existing algorithms for the two cases already exhibit common features,
as we illustrate in what follows.

18.1.2 Focus

In the rest of this article, we address the broad class of optimization problems that
we refer to from here on by the collective name multistage mixed integer linear
optimization problems. Such problems allow for multiple decision stages, with
decisions at each stage made by a different DM and with each stage followed by
the revelation of the value of one or more random variables affecting the available
actions at the subsequent stages. Each DM is assumed to have their own objective
function for the evaluation of the decisions made at all stages following the stage
at which they make their first decision, including stages whose decision they do
not control. Importantly, the objective functions of different DMs may (but do not
necessarily) conflict. Algorithmically, the focus of such problems is usually on
determining an optimal decision at the first stage. At the point in time when later-
stage decisions must be made, the optimization problem faced by those DMs has
the same form as the one faced by early-stage DMs but, in it, the decisions made
at the earlier stages act as deterministic inputs. Note that, while we have assumed
different DMs at each stage, it is entirely possible to model scenarios in which a
single DM makes multiple decisions over time. From a mathematical standpoint,
this latter situation is equivalent to the case in which different DMs share the same
objective function and we thus do not differentiate these situations in what follows.

Although the general framework we introduce applies more broadly, we focus
here on problems with two decision stages and two DMs, as well as stochastic
parameters whose values are realized between the two stages. We further restrict our
consideration to the case in which we have both continuous and integer variables but
the constraints and objective functions are linear. We refer to these problems as two-
stage mixed integer linear optimization problems (2SMILPs). Despite this restricted
setting, the framework can be extended to multiple stages and more general forms
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of constraints and objective functions in a conceptually straightforward way (see,
e.g., Sect. 18.3.3).

18.2 Related and Previous Work

In this section, we give a brief overview of related works. The literature on these
topics is vast and the below overview is not intended to be exhaustive by any means,
but only to give a general sense of work that has been done to date. The interested
reader should consult other articles in this volume for additional background and
relevant citations.

18.2.1 Applications

Multilevel and multistage structures, whose two level/stage versions are known as
bilevel optimization problems and two-stage stochastic optimization problems with
recourse (2SPRs), arise naturally in a vast array of applications of which we touch
on only a small sample here.

In the modeling of large organizations with hierarchical decision-making pro-
cesses, such as corporations and governments, Bard [8] discusses a bilevel corporate
structure in which top management is the leader and subordinate divisions, which
may have their own conflicting objectives, are the followers. Similarly, government
policy-making can be viewed from a bilevel optimization perspective: [10] models a
government encouraging biofuel production through subsidies to the petro-chemical
industry, while [5] models a central authority that sets prices and taxes for hazardous
waste disposal while polluting firms respond by making location-allocation and
recycling decisions.

A large body of work exists on interdiction problems, which model competitive
games where two players have diametrically opposed goals and the first player
has the ability to prevent one or more of the second player’s possible activities
(variables) from being engaged in at a non-zero level. Most of the existing literature
on these problems has focused on variations of the well-studied network interdiction
problem [47, 65, 76, 80, 81, 105, 139, 141], in which the lower-level DM is an entity
operating a network of some sort and the upper-level DM (or interdictor) attempts to
interdict the network as much as possible via the removal (complete or otherwise) of
portions (subsets of arcs or nodes) of the network. A more general case which does
not involve networks (the so-called linear system interdiction problem) was studied
in [79] and later in [52]. A related set of problems involves an attacker disrupting
warehouses or other facilities to maximize the resulting transportation costs faced
by the firm (the follower) [35, 117, 144]. A trilevel version of this problem involves
the firm first fortifying the facilities, then the attacker interdicting them, and finally
the firm re-allocating customers [34]. More abstract graph-theoretical interdiction
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problems in which the vertices of a graph are removed in order to reduce the graphs’
stability/clique number are studied in [38, 59, 113].

Multilevel problems arise in a wide range of industries. For instance, in the con-
text of the electricity industry, Hobbs and Nelson [78] applies bilevel optimization
to demand-side management while [68] formulates a trilevel problem with power
network expansion investments in the first level, market clearing in the second,
and redispatch in the third. Coniglio et al. [43] and Côté et al. [48] address the
capacity allocation and pricing problem for the airline industry. Dempe et al. [51]
presents a model for the natural-gas shipping industry. A large amount of work has
been carried out in the context of traffic planning problems, including constructing
road networks to maximize users’ benefits [16], toll revenue maximization [93],
and hazardous material transportation [84]. For a general review on these problems
and for one specialized to price-setting, the reader is referred to [92, 106]. More
applications arise in chemical engineering and bioengineering in the design and
control of optimized systems. For example, Clark and Westerberg [36] optimizes a
chemical process by controlling temperature and pressure (first-stage actions) where
the system (second stage) reaches an equilibrium as it naturally minimizes the Gibbs
free energy. Burgard et al. [25] develops gene-deletion strategies (first stage) to
allow overproduction of a desired chemical by a cell (second stage). In the area
of telecommunication networks, bilevel optimization has been used for modeling
the behavior of a networking communication protocol (second-level problem) which
the network operator, acting as first-level DM, can influence but not directly control.
The case of routing over a TCP/IP network is studied in [1–4, 39].

The literature on game theory features many works on bilevel optimization
problems naturally arising from the computation of Stackelberg equilibria in
different settings. Two main variants of the Stackelberg paradigm are typically
considered: one in which the followers can observe the action that the leader draws
from its commitment and, therefore, the commitment is in pure strategies [133],
and one in which the followers cannot do that directly and, hence, the leader’s
commitment can be in mixed strategies [45, 134]. While most of the works focus on
the case with a single leader and a single follower (which leads to a proper bilevel
optimization problem), some work has been done on the case with more than two
players: see [12–14, 31, 41, 42, 44, 104] for the single-leader multi-follower case,
[61, 95, 98, 99, 124] for the multi-leader single-follower case, or [30, 91, 96, 108]
for the multi-leader multi-follower case. Practical applications are often found
in security games, which correspond to competitive situations where a defender
(leader) has to allocate scarce resources to protect valuable targets from an attacker
(follower) [6, 87, 109, 128]. Other practical applications are found in, among others,
inspection games [7] and mechanism design [116]. The works on the computation
of a correlated equilibrium [32] as well those on Bayesian persuasion [33], where a
leader affects the behavior of the follower(s) by a signal, also fall in this category.

Finally, there are deep connections between bilevel optimization and the algorith-
mic decision framework that drives branch and bound itself, and it is likely that the
study of bilevel optimization problems may lead to improved methods for solving
single-level optimization problems. For example, the problem of determining the
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disjunction whose imposition results in the largest bound improvement within a
branch-and-bound framework and the problem of determining the maximum bound-
improving inequality are themselves bilevel optimization problems [40, 102, 103].
The same applies in n-ary branching when one looks for a branching decision
leading to the smallest possible number of child nodes [97, 115].

Multistage problems and, in particular, two-stage stochastic optimization prob-
lems with recourse, arise in an equally wide array of application areas, including
scheduling, forestry, pollution control, telecommunication and finance. Grass and
Fischer [67] surveys literature, applications, and methods for solving disaster-
management problems arising in the humanitarian context. Gupta et al. [69]
addresses network-design problems where, in the second stage, after one of a finite
set of scenarios is realized, additional edges of the network can be bought, and
provides constant-factor approximation algorithms. A number of works address the
two-stage stochastic optimization with recourse version of classical combinatorial
optimization problems: among others, [54] considers the spanning-tree problem,
[86] the matching problem, and [64, 66] the vehicle routing problem. For references
to other areas of applicability, see the books [18, 83] and, in particular, [135].

18.2.2 Algorithms

The first recognizable formulations for bilevel optimization problems were intro-
duced in the 1970s in [24] and this is when the term was also first coined. Beginning
in the early 1980s, these problems attracted increased interest. Vicente and Calamai
[131] provides a large bibliography of the early developments.

There is now a burgeoning literature on continuous bilevel linear optimization,
but it is only in the past decade that work on the discrete case has been undertaken in
earnest by multiple research groups. Moore and Bard [107] was the first to introduce
a framework for general integer bilevel linear optimization and to suggest a simple
branch-and-bound algorithm. The same authors also proposed a more specialized
algorithm for binary bilevel optimization problems in [9]. Following these early
works, the focus shifted primarily to various special cases, especially those in
which the lower-level problem has the integrality property. Dempe [49] considers
a special case characterized by continuous upper-level variables and integer lower-
level variables and uses a cutting plane approach to approximate the lower-level
feasible region (a somewhat similar approach is adopted in [50] for solving a
bilinear mixed integer bilevel problem with integer second-level variables). Wen
and Yang [137] considers the opposite case, where the lower-level problem is a
linear optimization problem and the upper-level problem is an integer optimization
problem, using linear optimization duality to derive exact and heuristic solutions.

The publication of a general algorithm for pure integer problems in [53] (based
on the groundwork laid in a later-published dissertation [52]) spurred renewed inter-
est in developing general-purpose algorithms. The evolution of work is summarized
in Table 18.1, which indicates the types of variables supported in both the first and
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Table 18.1 Evolution of
algorithms for bilevel
optimization

Citation Stage 1 variable types Stage 2 variable types

[137] B C

[9] B B

[56] B, C B, C

[114] B, C B, C

[62] B C

[52, 53] G G

[90] G or C G

[11] B, C C

[142] G G, C

[143] G, C G, C

[28] G G

[27] B B

[77] B, C B, C

[127] G, C G, C

[136] G G

[101] G G, C

[57, 58] G, C G, C

second stages (C indicates continuous, B indicates binary, and G indicates general
integer). The aforementioned network interdiction problem is a special case that
continues to receive significant attention, since tractable duality conditions exist for
the lower-level problem [47, 65, 76, 80, 81, 105, 139, 141].

As for the case of multistage stochastic optimization, the two-stage linear
stochastic optimization problem with recourse in which both the first- and second-
stage problems contain only continuous variables has been well studied both
theoretically and methodologically. Birge and Louveaux [18] and Kall and Mayer
[83] survey the related literature. The integer version of the problem was first
considered in the early 1990s by Louveaux and van der Vlerk [100] for the
case of two-stage problems with simple integer recourse. Combining the methods
developed for the linear version with the branch-and-bound procedure, Laporte
and Louveaux [94] proposed an algorithm known as the integer L-shaped method
where the first-stage problem contains only binary variables. Due to the appealing
structural properties of a (mixed) binary integer optimization problem, a substantial
amount of literature since then has been considering the case of a two-stage stochas-
tic problem with (mixed) binary variables in one or both stages [60, 120, 123]. The
case of two-stage problems with a pure integer recourse has also been frequently
visited, see [89, 119]. It must be noted that methods such as these, which are
typically developed for special cases, often rely on the special structure of the
second-stage problem, thus being often not applicable to the two-stage problem with
mixed integer restrictions. Algorithms for stochastic optimization problems with
integer recourse were proposed by Carøe and Tind [29] and Sherali and Fraticelli
[122].
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18.3 Setup and Preliminaries

The defining feature of a multistage optimization problem is that the values of the
first-stage variables (sometimes called upper-level or leader variables in the bilevel
optimization literature) must be (conceptually) fixed without explicit knowledge of
future events, the course of which can be influenced by the first-stage decision itself.
Due to this influence, the perceived “value” of the first-stage decision must take into
account the effect of this decision on the likelihood of occurrence of these future
events.

More concretely, the first-stage DM’s overall objective is to minimize the sum
of two terms, the first term representing the immediate cost of implementation of
the first-stage solution and the second term representing the desirability of the first-
stage decision in terms of its impact on the decisions taken at later stages. The
general form of a two-stage mixed integer linear optimization problem is then

min
x∈P1∩X

{cx +&(x)} , (2SMILP)

where

P1 =
{
x ∈ R

n1 | A1x ≥ b1
}

is the first-stage feasible region, with A1 ∈ Q
m1×n1 and b1 ∈ Q

m1 defining
the associated linear constraints, and X = Z

r1+ × Q
n1−r1+ representing integrality,

rationality, and non-negativity requirements on the first-stage variables, denoted by
x. Note that we require the continuous variables to take on rational values in order
to ensure that the second-stage problem defined in (SS) below has an optimal value
that is attainable when that value is finite. In practice, solvers always return such
solutions, so this is a purely technical detail. The linear function cx with c ∈ Q

n1 is
the aforementioned term that reflects the immediate cost of implementing the first-
stage solution. The function & : Qn1 → Q∪{±∞} is the risk function, which takes
only rational input for technical reasons discussed later. & is the aforementioned
term representing the first-stage DM’s evaluation of the impact of a given choice
for the value of the first-stage variables on future decisions. Similar concepts of
risk functions have been employed in many different application domains and
will be briefly discussed in Sect. 18.3.3. To enable the development of a practical
methodology for the solution of these problems, however, we now define the specific
class of functions we consider.
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18.3.1 Canonical Risk Function

Our canonical risk function is a generalization of the risk function traditionally used
in defining 2SPRs. As usual, let us now introduce a random variable U over an
outcome space " representing the set of possible future scenarios that could be
realized between the making of the first- and second-stage decisions. The values of
this random variable will be input parameters to the so-called second-stage problem
to be defined below.

As is common in the literature on 2SPRs, we assume that U is discrete, i.e., that
the outcome space " is finite, so that ω ∈ " represents which of a finite number
of explicitly enumerated scenarios is actually realized. In practice, this assumption
is not very restrictive, as one can exploit any algorithm for the case in which "

is assumed finite to solve cases where " is not (necessarily) finite by utilizing a
technique for discretization, such as sample average approximation (SAA) [121].
As U is discrete in this work, we can associate with it a probability distribution
defined by p ∈ R

|"| such that 0 ≤ pω ≤ 1 and
∑

ω∈" pω = 1.
With this setup, the canonical risk function for x ∈ Q

n1 is

&(x) = E [&ω(x)] =
∑

ω∈"
pω&ω(x), (RF)

where &ω(x) is the scenario risk function, defined as

&ω(x) = min
{
d1yω

∣
∣
∣ yω ∈ argmin{d2y | y ∈ P2(b

2
ω − A2

ωx) ∩ Y }
}
; (2SRF)

the set

P2(β) =
{
y ∈ R

n2 | G2y ≥ β
}

is one member of a family of polyhedra that is parametric w.r.t. the right-hand
side vector β ∈ R

m2 and represents the second-stage feasibility conditions; and
Y = Z

r2+ × Q
n2−r2+ represents the second-stage integrality and non-negativity

requirements. The deterministic input data defining &ω are d1, d2 ∈ Q
n2 and

G2 ∈ Q
m2×n2 . A2

ω ∈ Q
m2×n1 and b2

ω ∈ Q
m2 represent the realized values of the

random input parameters in scenario ω ∈ ", i.e., U(ω) = (A2
ω, b

2
ω).

As indicated in (RF) and (2SRF), the inner optimization problem faced by the
second-stage DM is parametric only in its right-hand side, which is determined
jointly by the value ω of the random variable U and by the chosen first-stage
solution. It will be useful in what follows to define a family of second-stage
optimization problems

inf
{
d2y

∣
∣
∣ y ∈ P2(β) ∩ Y

}
(SS)
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that are parametric in the right-hand side β ∈ R
m2 (we use “inf” instead of “min”

here because, for β �∈ Q
m2 , the minimum may not exist). By further defining

βω(x) = b2
ω − A2

ωx

to be the parametric right-hand side that arises when the chosen first-stage solution
is x ∈ X and the realized scenario is ω ∈ ", we can identify the member of the
parametric family defined in (SS) in scenario ω ∈ " when the chosen first-stage
solution is x ∈ X as that with feasible region P2(β

ω(x)) ∩ Y .
Associated with each x ∈ Q

n1 and ω ∈ " is the set of all alternative optimal
solutions to the second-stage problem (SS) (we allow for x �∈ X here because such
solutions arise when solving certain relaxations), called the rational reaction set and
denoted by

Rω(x) = argmin{d2y | y ∈ P2(b
2
ω − A2

ωx) ∩ Y }.

For a given x ∈ Q
n1 , Rω(x) may be empty if P2(b

2
ω−A2

ωx)∩Y is itself empty or if
the second-stage problem is unbounded (we assume in Sect. 18.3.2 that this cannot
happen, however).

When |Rω(x)| > 1, the second-stage DM can, in principle, choose which alter-
native optimal solution to implement. We must therefore specify in the definition of
the risk function a rule by which to choose one of the alternatives. According to our
canonical risk function (RF) and the corresponding scenario risk function (2SRF),
the rule is to choose, for each scenario ω ∈ ", the alternative optimal solution that
minimizes d1yω, which corresponds to choosing the collection {yω}ω∈" of solutions
to the individual scenario subproblems that minimizes

d1
(∑

ω∈"
pωy

ω

)
.

This is known as the optimistic or semi-cooperative case in the bilevel optimization
literature, since it corresponds to choosing the alternative that is most beneficial to
the first-stage DM. Throughout the article, we consider this case unless otherwise
specified. In Sect. 18.3.3, we discuss other forms of risk function.

Because of the subtleties introduced above, there are a number of ways one
could define the “feasible region” of (2SMILP). We define the feasible region for
scenario ω (with respect to both first- and second-stage variables) as

F ω = {(x, yω) ∈ X × Y | x ∈ P1, y
ω ∈ Rω(x)} (FR)

and members of F ω as feasible solutions for scenario ω. Note that this definition of
feasibility does not prevent having (x, yω) ∈ F ω but d1yω > &ω(x). This will not
cause any serious difficulties, but is something to keep in mind.
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We can similarly define the feasible region with respect to just the first-stage
variables as

F 1 =
⋂

ω∈"
projx(F ω). (FS-FR)

Since &(x) = ∞ for x ∈ Q
n1 if the feasible region P2(β

ω(x))∩Y of the second-
stage problem (SS) is empty for some ω ∈ ", we have that, for x ∈ P1 ∩ X, the
following are equivalent:

x ∈ F 1 ⇔ x ∈
⋂

ω∈"
projx(F ω)⇔ Rω(x) �= ∅ ∀ω ∈ "⇔ &(x) <∞.

Finally, it will be convenient to define Pω to be the feasible region of the
relaxation of the deterministic two-stage problem under scenario ω ∈ " that is
obtained by dropping the optimality requirement for the second-stage variables yω,
as well as any integrality restrictions. Formally, we have:

Pω =
{
(x, yω) ∈ R

n1+n2+ | x ∈ P1, y
ω ∈ P2(b

2
ω − A2

ωx)
}
.

Later in Sect. 18.7, we will use these sets to define a relaxation for the entire problem
that will be used as the basis for the development of a branch-and-cut algorithm.

18.3.2 Technical Assumptions

We now note the following assumptions made in the remainder of the article.

Assumption 18.3.1 Pω is bounded for all ω ∈ ". �
This assumption, which is made for ease of presentation and can be relaxed, results
in the boundedness of (2SMILP).

Assumption 18.3.2 All first-stage variables with at least one non-zero coefficient
in the second-stage problem (the so-called linking variables) are integer, i.e.,

L = {
i ∈ {1, . . . , n1}

∣
∣ aω

i �= 0 for some ω ∈ "
} ⊆ {1, . . . , r1} ,

where aω
i represents the i th column of matrix A2

ω. �
These two assumptions together guarantee that an optimal solution exists whenever
(2SMILP) is feasible [132]. It also guarantees that the convex hull of F ω is a
polyhedron, which is important for the algorithms we discuss later. Note that, due to
the assumption of optimism, we can assume w.l.o.g. that all first-stage variables are
linking variables by simply interpreting the non-linking variables as belonging to the
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second stage. While this may seem conceptually inconsistent with the intent of the
original model, it is not difficult to see that the resulting model is mathematically
equivalent, since these variables do not affect the second-stage problem and thus,
the optimistic selection of values for those variables will be the same in either case.

Before closing this section, we remark that, in this article, we do not allow
second-stage variables in the first-stage constraints. While this case can be handled
with techniques similar to those we describe in the article from an algorithmic
perspective, it does require a more complicated notation which, for the sake of
clarity, we prefer not to adopt. Detailed descriptions of algorithms for this more
general case in the bilevel setting are provided in [23, 127].

18.3.3 Alternative Models

18.3.3.1 Alternative Form of (2SMILP)

For completeness, we present here an alternative form of (2SMILP) that is closer
to the traditional form in which bilevel optimization problems are usually specified
in the literature. Adopting the traditional notation, (2SMILP) can be alternatively
written as

min
x,{yω}ω∈"

cx +
∑

ω∈"
pωd

1yω

s.t. A1x ≥ b1

x ∈ X

yω ∈ argminy d2y

s.t. A2
ωx +G2y ≥ b2

ω

y ∈ Y

⎫
⎬

⎭
∀ω ∈ ".

(2SMILP-Alt)

Note that, in the first stage, the minimization is carried out with respect to both x

and y. This again specifies the optimistic case discussed earlier, since the above
formulation requires that, for a given x ∈ X, we select {yω}ω∈" such that

d1
(∑

ω∈"
pωy

ω

)

is minimized.
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18.3.3.2 Pessimistic Risk Function

As already pointed out, the canonical risk function defined in (RF) assumes the
optimistic case, since it encodes selection of the alternative optimal solution to the
second-stage problem that is most beneficial to the first-stage DM. This is the case
we focus on in the remainder of the article. The pessimistic case, on the other hand,
is easily modeled by defining the scenario risk function to be

&ω(x) = max
{
d1yω

∣∣
∣ yω ∈ argmin{d2y | y ∈ P2(β

ω(x)) ∩ Y }
}
.

We remark that, while the optimistic and pessimistic cases may coincide in some
cases (e.g., when (SS) admits a single optimal solution for every x), this coincidence
is rarely observed in practice and would be hard to detect in any case. In general,
the pessimistic case is more difficult to solve, though the algorithms discussed in
Sect. 18.7 can be modified to handle it.

18.3.3.3 Recursive Risk Functions

Although we limit ourselves to problems with two stages in this article, we briefly
mention that more general risk functions can be defined by recursively defining
risk functions at earlier stages in terms of later-stage risk functions. This is akin to
the recursive definition of the cost-to-go functions that arise in stochastic dynamic
programming (see [17]). With such recursive definitions, it is possible to generalize
much of the methodology described here in a relatively straightforward way, though
the algorithm complexity grows exponentially with the addition of each stage. It is
doubtful exact algorithms can be made practical in such cases.

18.3.3.4 Other Risk Functions

Other forms of risk function have been used in the literature, especially in finance.
In robust optimization, for example, one might consider a risk function of the form

&(x) = max
ω∈"
{&ω(x)} ,

which models the impact on the first-stage DM of the worst-case second-stage
realization of the random variables. A popular alternative in finance applications
that is slightly less conservative is the conditional value at risk, the expected value
taken over the worst α-percentile of outcomes [112, 129]. While it is possible to
incorporate such risk functions into the general algorithmic framework we present
here, for the purposes of limiting the scope of the discussion, we focus herein only
on risk functions in the canonical form (RF).



526 S. Bolusani et al.

18.3.4 Related Classes

With & defined as in (RF), the problem (2SMILP) generalizes several well-known
classes of optimization problems.

18.3.4.1 Single-Stage Problems

When d1 = d2 and |"| = 1, the two stages of (2SMILP) can be collapsed into a sin-
gle stage and the problem reduces to a traditional mixed integer linear optimization
problem (MILP). It is natural that algorithms for (2SMILP) rely heavily on solving
sequences of related single-stage MILPs and we discuss parametric versions of this
class in later sections. For continuity, we utilize the notation for the second-stage
variables and input data throughout. The case of r2 = 0 (in which there are no
integer variables) further reduces to a standard linear optimization problem (LP).

18.3.4.2 Bilevel Problems

When |"| = 1 and assuming that we may have d1 �= d2, (2SMILP) takes the
form of a mixed integer bilevel linear optimization problem (MIBLP). Dropping the
scenario super/subscript for simplicity, this problem is more traditionally written as

min
x∈P1∩X,y∈Y

⎧
⎪⎨

⎪⎩
cx + d1y

∣
∣∣ y ∈ arg min{d2y | y ∈ P2(b

2 − A2x) ∩ Y }
︸ ︷︷ ︸

R(x)

⎫
⎪⎬

⎪⎭
. (MIBLP)

Note that this formulation implicitly specifies the optimistic case since, if R(x) is not
a singleton, it requires that, among the alternative optima, the solution minimizing
d1y be chosen. In this setting, the bilevel risk function can be written as

&(x) = min
{
d1y | y ∈ R(x)

}
.

18.3.4.3 Two-Stage Stochastic Optimization Problems with Recourse

When d1 = d2, either the inner or the outer minimization in (2SRF) is redundant and
(2SMILP) takes the form of a two-stage stochastic mixed integer linear optimization
problem with recourse. In this case, for each scenario ω ∈ " we can write the
scenario risk function more simply as

&ω(x) = min
{
d1yω | yω ∈ P2(b

2
ω − A2

ωx) ∩ Y
}
.
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The second-stage solution yω corresponding to scenario ω ∈ " is usually called
the recourse decision. These problems involve a single DM optimizing a single
objective function, but capable of controlling two sets of variables: the first-stage
here-and-now variables x and the second-stage wait-and-see variables yω, whose
value is set after observing the realization of the random event ω.

18.3.4.4 Zero-Sum and Interdiction Problems

For d1 = −d2 (and typically, |"| = 1), (2SMILP) subsumes the case of zero-
sum problems, which model competitive games in which two players have exactly
opposing goals. An even more specially-structured subclass of zero-sum problems
are interdiction problems, in which the first-stage variables are in one-to-one
correspondence with those of the second stage and represent the ability of the first-
stage DM to “interdict” (i.e., forcing to take value zero) individual variables of
the second-stage DM. Formally, the effect of interdiction can be modeled using
a variable upper-bound constraint

y ≤ u(e − x)

in the second-stage problem, where u ∈ R
n is a vector of natural upper bounds on

the vector of variables y and e is an n-dimensional column vector of ones (here,
n = n1 = n2). Formally, the mixed integer interdiction problem is

max
x∈P1∩X

min
y∈P2(x)∩Y

d2y,

where (abusing notation slightly), we have

P2(x) =
{
y ∈ R

n2 | G2y ≥ b2, y ≤ u(e − x)
}
.

18.4 Computational Complexity

Within the discrete optimization community, the framework typically used for
assessing problem complexity is based primarily on the well-known theory of NP-
completeness, which has evolved from the foundational work of [46, 63, 85]. This
has led to the ubiquitous practice of classifying optimization problems as being
either in the class P or the class NP-hard, the latter being an all-encompassing and
amorphous class that includes essentially all optimization problems not known to
be polynomially solvable. This categorization lacks the refinement necessary for
consideration of classes such as those described in this article. It is indeed easy to
show that multistage optimization problems are NP-hard in general [15, 26, 73, 82],
but this merely tells us that these problems are not in P (assuming P �= NP), which
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is not surprising. What we would really like to know is for which complexity class
(the decision versions of) these problems are complete.

In the presence of a hierarchical structure with k levels (and when " is a
singleton), the natural complexity class to consider is �P

k , i.e., the kth level of the
polynomial hierarchy. From an optimization perspective, this hierarchy (originally
introduced in [125]) is a scheme for classifying multilevel decision problems beyond
the usual classes P and NP. The class P (which contains all decision problems that
can be solved in polynomial time) occupies the 0th level, also known as �P

0 . The first
level, �P

1 , is the class also known as NP, which consists of all problems for which
there exists a certificate verifiable in polynomial time or, equivalently, all problems
that can be solved in non-deterministic polynomial time. The kth level, �P

k , contains
all problems with certificates that can be verified in polynomial time (equivalently,
all problems solvable in non-deterministic polynomial time), assuming the existence
of an oracle for solving problems in the class �P

k−1. While it is clear that �P
k ⊆ �P

�

for any k, � ∈ N ∪ {0} with k ≤ �, �P
k ⊂ �P

� is conjectured to hold for all
k, � ∈ N∪{0}with k < � (the well-knownP �= NP conjecture is a special case). It is
also known that �P

k = �P
k+1 would imply �P

k = �P
� for all � ≥ k+1, which would

cause the polynomial hierarchy to collapse to level k (for k = 0, we would have P
= NP). The notions of completeness and hardness commonly used for NP translate
directly to �P

k . A proof that k-level optimization problems with binary variables,
linear constraints, and linear objective functions are hard for �P

k is contained in [82].
Such result suffices to show that the multistage problems with k stages treated in
this article are (in their optimization version) �P

k -hard (and those with k = 2 stages
are �P

2 -hard). A compendium of �P
2 -complete/hard problems, somewhat similar in

spirit to [63], can be found in [118], with more recent updates available online.
For the case of two-stage stochastic optimization problems with recourse with

linear constraints, linear objective functions, and mixed integer variables, the
assumption of a finite outcome space " of either fixed or polynomially bounded
size suffices to guarantee that the decision version of such a problem is NP-
complete. Indeed, when |"| is considered a constant or is bounded by a polynomial
in the total number of variables and constraints, one can directly introduce a block-
structured reformulation of the problem with one block per scenario ω ∈ " that
contains the coefficients of the constraints that yω should satisfy (we discuss such a
reformulation in Sect. 18.6). As such reformulation is of polynomial size, solutions
to the corresponding optimization problem can clearly be certified in polynomial
time by checking that they satisfy all the polynomially-many constraints featured in
the formulation, which, in turn, implies that the problem belongs to NP. When the
outcome space " is continuous, the problem becomes #P-hard in general [55, 72].
While a single sample average approximation problem with a finite or polynomially-
bounded number of samples can be used to approximate a continuous problem by
solving a single discrete optimization problem of polynomial size, Hanasusanto et
al. [72] shows that even finding an approximate solution using the SAA method is
#P-hard. New results on the complexity of 2SPRs featuring a double-exponential
algorithm can be found in [88].



18 A Unified Framework for Multistage Mixed Integer Linear Optimization 529

18.5 Duality and the Value Function

Virtually all algorithms for the exact solution of optimization problems produce a
proof of optimality that depends on the construction of a solution to a strong dual.
Although the duality theory for MILPs is not widely known, the most effective
algorithms for solving MILPs (which are variants of the well-known branch-and-
bound algorithm) do produce a solution to a certain dual problem. A natural
approach to solving (2SMILP) is therefore to embed the production of the “dual
proof” of optimality of the second-stage problem (SS) into the formulation of the
first-stage problem, reducing the original two-stage problem to a traditional single-
stage optimization problem.

The reformulations and algorithmic approaches that we present in Sects. 18.6
and 18.7 all use some variant of this strategy. In particular, the algorithms we
describe are based on iteratively strengthening an initial relaxation in a fashion
reminiscent of many iterative optimization algorithms. The strengthening operation
essentially consists of the dynamic construction of both a proof of optimality of the
second-stage problem and of corresponding first- and second-stage solutions.

In the remainder of the section, we introduce the central concepts of a duality the-
ory for mixed integer linear optimization problems (and more general discrete opti-
mization problems), emphasizing its connection to solution methods for (2SMILP).
This introduction is necessarily brief and we refer the reader to [71, 74, 75] for
more details specific to the treatment here and to [138, 140] for earlier foundational
work on IP duality. Although the “dual problem” is usually a fixed (non-parametric)
optimization problem associated with a fixed (non-parametric) “primal problem,”
the typical concepts of duality employed in constructing dual proofs of optimality
and in designing solution algorithms inherently involve parametric families of
optimization problems. This makes the tools offered by this theory particularly
suitable for employment in this setting. To preserve the connection with the material
already introduced, we consider the family of MILPs parameterized on the right-
hand side β ∈ R

m2 that was introduced earlier as (SS) and use the same notation.
We reproduce it here for convenience:

inf
{
d2y

∣∣
∣ y ∈ P2(β) ∩ Y

}
, (SS)

where

P2(β) =
{
y ∈ R

n2 | G2y ≥ β
}

and β ∈ R
m2 is the input parameter. When we want to refer to a (fixed) generic

instance in this parametric family, the notation b will be used to indicate a fixed (but
arbitrary) right-hand side. We also refer to specific right-hand sides arising in the
solution of (2SMILP) using the notation defined earlier.
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18.5.1 Value Functions

Among possible notions of duality, the one most relevant to the development of
optimization algorithms is one that also has an intuitive interpretation in terms of
familiar economic concepts. This theory rests fundamentally on an understanding
of the so-called value function, which we introduce below. The value function of an
MILP has been studied by a number of authors and a great deal is known about its
structure and properties. Early work on the value function includes [19–22], while
the material here is based on the work in [70, 71, 74, 75].

As a starting point, consider an instance of (SS) with fixed right-hand side b

and let us interpret the values of the variables as specifying a numerical “level of
engagement” in certain activities in an economic market. Further, let us interpret
the constraints as corresponding to limitations imposed on these activities due to
available levels of certain scarce resources (it is most natural to think of “≤”
constraints in this interpretation). In each row j of the constraint matrix, the
coefficient G2

ij associated with activity (variable) i can then be thought of as
representing the rate at which resource j is consumed by engagement in activity
i. In this interpretation, the optimal primal solution then specifies the level of each
activity in which one should engage in order to maximize profits (it is most natural
here to think in terms of maximization), given the fixed level of resources b.

Assuming that additional resources were available, how much should one be
willing to pay? The intuitive answer is that one should be willing to pay at most the
marginal amount by which profits would increase if more of a particular resource
were made available. Mathematically, this information can be extracted from the
value function φ : Rm2 → R ∪ {±∞} associated with (SS), defined by

φ(β) = inf
y∈P2(β)∩Y

d2y, (2SVF)

for β ∈ R
m2 . Since this function returns the optimal profit for any given basket

of resources, its gradient at b (assuming φ is differentiable at b) tells us what the
marginal change in profit would be if the level of resources available changed in
some particular direction. Thus, the gradient specifies a “price” on that basket of
additional resources.

The reader familiar with the theory of duality for linear optimization problems
should recognize that the solution to the usual dual problem associated with an LP
of the form (SS) (i.e., assuming r2 = 0) provides exactly this same information. In
fact, we describe below that the set of optimal solutions to the LP dual are precisely
the subgradients of its associated value function. This dual solution can hence be
interpreted as a linear price on the resources and is sometimes referred to as a vector
of “dual prices.” The optimal dual prices allow us to easily determine whether it will
be profitable to enter into a particular activity i by comparing the profit d2

i obtained
by entering into that activity to the cost uG2

i of the required resources, where u is a
given vector of dual prices and G2

i is the i-th column of G2. The difference d2
i −uG2

i
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between the profit and the cost is the reduced profit/cost in linear optimization. It is
easily proven that the reduced profit of each activity entered into at a non-zero level
(i.e., reduced profits of the variables with non-zero value) must be non-negative
(again, in the case of maximization) and duality provides an intuitive economic
interpretation of this result.

Although the construction of the full value function is challenging even in the
simplest case of a linear optimization problem, approximations to the value function
in the local area around b can still be used for sensitivity analysis and in optimality
conditions. The general dual problem we describe next formalizes this idea by
formulating the problem of constructing a function that bounds the value function
from below everywhere but yields a strong approximation near a fixed right-hand
side b. Such a so-called “dual function” can yield approximate “prices” and its
iterative construction can also be used in a more technical way to guide the evolution
of an algorithm by providing gradient information helpful in finding the optimal
solution, as well as providing a proof of its optimality.

18.5.2 Dual Functions

The above discussion leads to the natural concept of a dual (price) function from
which we can derive a general notion of a dual problem.

Definition 18.5.1 A dual function F : Rm2 → R is one that satisfies F(β) ≤ φ(β)

for all β ∈ R
m2 . We call such a function strong at b ∈ R

m2 if F(b) = φ(b). �
Dual functions are naturally associated with relaxations of the original problem, as
the value function of any relaxation yields a feasible dual function. In particular, the
value function of the well-known LP relaxation is the best convex under-estimator
of the value function.

Also of interest are functions that bound the value function from above, which
we refer to as primal functions.

Definition 18.5.2 A primal function H : Rm2 → R is one that satisfies H(β) ≥
φ(β) for all β ∈ R

m2 . We call such a function strong at b if H(b) = φ(b). �
In contrast to dual functions, primal functions are naturally associated with restric-
tions of the original problem and the value function of any such restriction yields a
valid primal function.

It is immediately evident that a pair of primal and dual functions yields optimality
conditions. If we have a primal function H ∗ and a dual function F ∗ such that
F ∗(b) = γ = H ∗(b) for some b ∈ R

m2 , then we must also have φ(b) = γ .
Proofs of optimality of this nature are produced by many optimization algorithms.
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18.5.3 Dual Problems

The concepts we have discussed so far further lead us to the definition of a
generalized dual problem, originally introduced in [71], for an instance of (SS) with
right-hand side b ∈ R

m2 . This problem simply calls for the construction of a dual
function that is strong for a particular fixed right-hand side b ∈ R

m2 by determining

max
F∈ϒm2

{F(b) : F(β) ≤ φ(β), ∀β ∈ R
m2}, (MILPD)

where ϒm2 ⊆ {f | f : Rm2 → R}. Here, ϒm2 can be taken to be a specific
class of functions, such as linear or subadditive, to obtain specialized dual problems
for particular classes of optimization problems. It is clear that (MILPD) always
has a solution F ∗ that is strong, provided that the value function is real-valued
everywhere (and hence belongs to ϒm2 , however it is defined), since φ itself is a
solution whenever it is finite everywhere.1

Although it may not be obvious, this notion of a dual problem naturally
generalizes existing notions for particular problem classes. For example, consider
again a parametric family of LPs defined as in (SS) (i.e., assuming r2 = 0). We
show informally that the usual LP dual problem with respect to a fixed instance with
right-hand side b can be derived by taking ϒm2 to be the set of all non-decreasing
linear functions in (MILPD) and simplifying the resulting formulation. First, let a
non-decreasing linear function F : Rm2 → R be given. Then, ∃u ∈ R

m2+ such that
F(β) = uβ for all β ∈ R

m2 . It follows that

F(β) = uβ ≤ uG2y =
n2∑

j=1

uG2
j yj ∀β ∈ R

m2 .

From the above, it then follows that, for any β ∈ R
m2 , we have

uG2
j ≤ d2

j ∀j ∈ {1, . . . , n2} ⇒ uβ ≤ uG2y ≤ d2y ∀y ∈ P2(β) ∩ Y

⇒ uβ ≤ min
y∈P2(β)∩Y

d2y

⇒ uβ ≤ φ(β)

⇒ F(β) ≤ φ(β).

The conditions on the left-hand side above are exactly the feasibility conditions for
the usual LP dual and the final condition on the right is the feasibility condition

1When the value function is not real-valued everywhere, we have to show that there is a real-
valued function that coincides with the value function when it is real-valued and is itself real-valued
everywhere else, but is still a feasible dual function (see [140]).
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for (MILPD). Hence, the usual dual feasibility conditions ensure that u defines a
linear function that bounds the value function from below and is a dual function in
the sense we have defined. The fact that the epigraph of φ is a convex polyhedral
cone in this case (it is the max of linear functions associated with extreme points of
the feasible region of the dual problem) is enough to show that the dual (MILPD)
is strong in the LP case, even when we take ϒm2 to be the set of (non-decreasing)
linear functions. Furthermore, it is easy to show that any subgradient of φ at b is an
optimal solution (and in fact, the set of all dual feasible solutions is precisely the
subdifferential of the value function at the origin).

The concepts just discussed can be easily seen in the following small example
(note that this example is equality-constrained, in which case most of the above
derivation carries through unchanged, but the dual function no longer needs to be
non-decreasing).

Dual Function of an LP

min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = b

y1, y2, y3 ∈ R+.

The solution to the dual of this LP is unique whenever b is non-zero and can
be easily obtained by considering the ratios cj /aj of objective coefficient to
constraint coefficient for j = 1, 2, 3, which determine which single primal
variable will take a non-zero value in the optimal basic feasible solution.
Depending on the sign of b, we obtain one of two possible dual solutions:

u∗ =
{

6/2 = 3 if b > 0

7/(−7) = −1 if b < 0.

Thus, the value function associated with this linear optimization problem is
as shown in Fig. 18.1. Note that, when b = 0, the dual solution is not unique
and can take any value between −1 and 3. This set of solutions corresponds
to the set of subgradients at the single point of non-differentiability of the
value function. This function has one of two gradients for all points that are
differentiable, and these gradients are equal to one of the two dual solutions
derived above.
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Fig. 18.1 Value function of
the LP in the example
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18.5.4 Structure of the Value Function

As we mentioned previously, solution methods for (2SMILP) inherently involve
the explicit or implicit approximation of several functions, including the value
function φ in (2SVF) and the risk function & in (RF), which ultimately derives
its structure from φ. Here, we summarize the results described in the series of
papers [70, 71, 75]. Most importantly, the function is piecewise polyhedral, lower
semi-continuous, subadditive, and has a discrete structure that is derivative of the
structure of two related value functions which we now introduce.

Let yC , d2
C , and G2

C be the parts of each of the vectors/matrices describing the
second-stage problem (SS) that are associated with the continuous variables and let
yI , d2

I , and G2
I be likewise for the integer variables. The continuous restriction (CR)

is the LP obtained by dropping the integer variables in the second-stage problem (or
equivalently, setting them to zero). This problem has its own value function, defined
as

φC(β) = min
yC∈Rn2−r2+

{d2
CyC | G2

CyC ≥ β}. (CRVF)

On the other hand, if we instead drop the continuous variables from the problem,
we can then consider the integer restriction (IR), which has value function

φI (β) = min
yI∈Zr2+

{d2
I yI | G2

I yI ≥ β}. (IRVF)

To illustrate how these two functions combine to yield the structure of φ and to
briefly summarize some of the important results from the study of this function
carried out in the aforementioned papers, consider the following simple example
of a two-stage stochastic mixed integer linear optimization problem with a single
constraint. Note that, in this example, d1 = d2 and we are again considering the
equality-constrained case in order to make the example a bit more interesting.
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Value Function of a 2SMILP
We consider the 2SMILP

min $(x1, x2) = −3x1 − 4x2 + E[φ(b2
ω − 2x1 − 0.5x2)]

s.t. x1 ≤ 5, x2 ≤ 5

x1, x2 ∈ R+,

where

φ(β) = min 6y1 + 4y2 + 3y3 + 4y4 + 5y5 + 7y6

s.t. 2y1 + 5y2 − 2y3 − 2y4 + 5y5 + 5y6 = β

y1, y2, y3 ∈ Z+, y4, y5, y6 ∈ R+,

with " = {1, 2}, b2
1 = 6, and b2

2 = 12. Figure 18.2 shows the objective
function $ and the second-stage value function φ for this example.

Examining Fig. 18.2, it appears that φ is comprised of a collection of
translations of φC , each of which has a structure that is similar to the value
function of the LP in the Example on page 533. At points where φ is
differentiable, the gradient always corresponds to one of the two solutions
to the dual of the continuous restriction (precisely as in the Example on
page 533, dual solutions are the ratios of objective function coefficients to
constraint coefficients for the continuous variables), which are in turn also
the gradients of φC . The so-called points of strict local convexity are the
points of non-differentiability that are the extreme points of the epigraphs
of the translations of φC and are determined by the solutions to the integer
restriction. In particular, they correspond to points at which φI and φ are
coincident. For instance, observe that, in the example, φI (5) = φ(5) = 4.

Finally, we can observe in Fig. 18.2 how the structure of φ translates into
that of $ .
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Fig. 18.2 Illustration of the functions from the example, with the second-stage value function
φ(β) (left) and the objective function $(x1, x2) (right)

Although the case illustrated in the example is of a single constraint, these
properties can be made rigorous and do generalize to higher dimension with roughly
the same intuition. The general principle is that the value function of an MILP is
the minimum of translations of the value function of the continuous restriction φC ,
where the points of translation (the aforementioned points of strict local convexity)
are determined by the value function of the integer restriction φI .

Theorem 18.5.3 ([75]) Under the assumption that {β ∈ R
m2 | φI (β) < ∞} is

compact and epi(φC) is pointed, there exists a finite set S ⊆ Y such that

φ(β) = min
yI∈S
{d2

I yI + φC(β −G2
I yI )}. �

Under the assumptions of the theorem, this result provides a finite description of φ.

18.5.5 Approximating the Value Function

Constructing functions that bound the value function of an MILP is an important
part of solution methods for both traditional single-stage optimization problems and
their multistage counterparts. Functions bounding the value function from below are
exactly the dual functions defined earlier and arise from relaxations of the original
problem (such as the LP relaxation, for instance). They are naturally obtained as by-
products of common solution algorithms, such as branch and bound, which itself
works by iteratively strengthening a given relaxation and produces a dual proof of
optimality.

Functions that bound the value function from above are the primal functions
defined earlier and can be obtained by considering the value function of a restriction
of the original problem. While it is a little less obvious how to obtain such functions
in general (solution algorithms generally do not produce practically useful primal



18 A Unified Framework for Multistage Mixed Integer Linear Optimization 537

functions), they can be obtained by taking the minimum over the value functions of
restrictions obtained by fixing the values of integer variables, as we describe below.

Both primal and dual functions can be iteratively improved by producing new
such functions and combining them with existing ones by taking the maximum over
several bounding functions in the dual case or the minimum over several bounding
functions in the primal case. When such functions are iteratively constructed to
be strong at different right-hand side values, such as when solving a sequence of
instances with different right-hand sides, such a technique can yield an approxima-
tion with good fidelity across a larger part of the domain than any singly constructed
function could—this is, in fact, the principle implicitly behind the algorithms we
describe in Sect. 18.7.1.

18.5.5.1 Dual Functions from Branch and Bound

Dual functions can be obtained from most practical solution algorithms for solving
the MILP associated with (2SVF) with input β = b2

ω − A2
ωx, i.e., for computing

φ(b2
ω − A2

ωx). This is because their existence is (at least implicitly) the very source
of the proof of optimality produced by such algorithms. To illustrate, we show how a
dual function can be obtained as the by-product of the branch-and-bound algorithm.

Branch and bound is an algorithm that searches the feasible region by partitioning
it and then recursively solving the resulting subproblems. Implemented naively,
this results in an inefficient complete enumeration, but this potential inefficiency
is avoided by utilizing lower and upper bounds computed for each subproblem
to intelligently “prune” the search. The recursive partitioning process can be
envisioned as a process of searching a rooted tree, each of whose nodes corresponds
to a subproblem. Although it is not usually described this way, the branch-and-
bound algorithm can be interpreted as constructing a function feasible to (MILPD),
thus producing not only a solution but also a dual proof of its optimality.

To understand this interpretation, suppose we evaluate φ(b) for b ∈ R
m2 by

solving the associated MILP using a standard branch-and-bound algorithm with
branching done on elementary (a.k.a. variable) disjunctions of type yj ≤ π0 ∨ yj ≥
π0 + 1 for some j ∈ {1, . . . , r2} and π0 ∈ Z. Because the individual subproblems
in the branch-and-bound tree differ only by the bounds on the variables, it will be
convenient to assume that all integer variables have finite initial lower and upper
bounds denoted by the vectors l, u ∈ Z

r2 (such bounds exist by Assumption 1, even
if they are not part of the formulation). In this case, we have that

P2(β) = {y ∈ R
n2 | G2y ≥ β, yI ≥ l,−yI ≥ −u}.

The solution of (SS) by branch and bound for right-hand side b yields a branch-
and-bound tree whose leaves, contained in the set T , are each associated with the
subproblem

min{d2y | y ∈ Pt
2(b) ∩ Y },
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where

Pt
2(β) = {y ∈ R

n2 | G2y ≥ β, yI ≥ lt ,−yI ≥ −ut }

is the parametric form of the polytope containing the feasible points associated with
subproblem t ∈ T , with lt , ut ∈ Z

r2+ being the modified bounds on the integer
variables imposed by branching.

Assuming that no pruning took place, the validity of the overall method comes
from the fact that valid methods of branching ensure that

⋃

t∈T
Pt

2(b) ∩ Y = P2(b) ∩ Y,

so that the feasible regions of the leaf nodes constitute a partition of the original
feasible region. This partition can be thought of as a single logical disjunction that
serves to strengthen the original LP relaxation. The proof of optimality that branch
and bound produces derives from global lower and upper bounds derived from local
bounds associated with each node t ∈ T . We denote by Lt and Ut , respectively, the
lower and upper bounds on the optimal solution value of the subproblem, where

Lt = φt
LP(b), Ut = d2yt ,

in which φt
LP is as defined in (NVF) below and yt ∈ Y is the best solution known

for subproblem t ∈ T (Ut = ∞ if no solution is known). Assuming (SS) is solved
to optimality and y∗ ∈ Y is an optimal solution, we must have

L := min
t∈T Lt = d2y∗ = min

t∈T Ut =: U,

where L and U are the global lower and upper bounds.
From the information encoded in the branch-and-bound tree, the overall dual

function can be constructed by deriving a parametric form of the lower bound,
combining dual functions for the individual subproblems in set T . For this purpose,
we define the value function

φLP(β, λ, ν) = min{d2y | y ∈ P2(β), λ ≤ yI ≤ ν, yC ≥ 0} (PNVF)

of a generic LP relaxation, which captures the bounds on the integer variables as also
being parametric. Using (PNVF), the value function of the LP relaxation associated
with a particular node t ∈ T (only parametric in the original right-hand side) can be
obtained as

φt
LP(β) = φLP(β, l

t , ut ). (NVF)
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For all t ∈ T such that φt
LP(b) < ∞, let (vt , vt , v̄t ) be an optimal solution to the

dual of the LP relaxation at node t ∈ T , where vt , vt , and v̄t are, respectively, the
dual variables associated with the original inequality constraints, the lower bounds
on integer variables, and the upper bounds on integer variables. Then, by LP duality
we have that

φt
LP(b) = vtb + vt lt − v̄t ut .

For each node t ∈ T for which φt
LP(b) = ∞ (the associated subproblem is

infeasible), we instead let (vt , vt , v̄t ) be a dual feasible solution that provides a finite
bound exceeding U (such can be found by, e.g., adding some multiple of the dual
ray that proves infeasibility to the feasible dual solution found in the final iteration
of the simplex algorithm).

Finally, from the above we have that

φt

LP
(β) = vtβ + vt lt − v̄t ut (NDF)

is a dual function w.r.t. the LP relaxation at node t that is strong at b. Finally, we can
combine these individual dual functions together to obtain

φT (β) = min
t∈T φt

LP
(β) = min

t∈T {v
tβ + vt lt − v̄t ut }, (BB-DF)

a dual function for the second-stage problem yielded by the tree T and which is also
strong at the right-hand side b, i.e., φT (b) = φ(b).

In principle, a stronger dual function can be obtained by replacing the single
linear dual function (which is strong at b for the LP relaxation) associated with each
subproblem above by its full value function φt

LP to obtain

φT
∗ (β) = min

t∈T φt
LP(β). (BB-DF-BIS)

In practice, constructing a complete description of φT
∗ is not practical (even

evaluating it for a given β requires the solution of |T | LPs). We can instead construct
a function that bounds it from below (and hence is also a dual function for the
original problem) by exploiting the entire collection of dual solutions arising during
the solution process. For example, let

φ
LP

(β, λ, ν) = max
t∈T {v

tβ + vtλ− v̄t ν},

which consists of an approximation of the full value function φLP using the optimal
dual solutions at each leaf node. Replacing φt

LP
(β) with φ

LP
(β, lt , ut ) in (BB-DF)

results in a potentially stronger but still practical dual function. Of course, it is also
possible to add dual solutions found at non-leaf nodes, as well as other suboptimal
dual solutions arising during the solution process, but there is an obvious trade-off
between strength and tractability. More details on this methodology are contained
in [71, 74].
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18.5.5.2 Iterative Refinement

In iterative algorithms such as those we introduce in Sect. 18.7, the single dual
function (BB-DF) we get by evaluating the value function for one right-hand side
can be iteratively augmented by taking the maximum over a sequence of similarly
derived dual functions. Taking this basic idea a step further, [70, 110, 111] developed
methods of warm starting the solution process of an MILP. Such methods may
serve to enhance tractability, though this is still an active area of research. When
evaluating φ repeatedly for different values in its domain, we do not need to solve
each instance from scratch—it is possible to use the tree resulting from a previous
solve as a starting point and simply further refine it to obtain a dual function that
remains strong for the previous right-hand side of interest and is made to be strong
for a new right-hand side.

Hassanzadeh and Ralphs [74] shows how to use this iterative-refinement
approach to construct a lower approximation of the value function of an MILP
in the context of a Benders-like algorithm for two-stage stochastic optimization
within a single branch-and-bound tree. In fact, with enough sampling this method
can be used to construct a single tree whose associated dual function is strong at
every right-hand side (provided the set of feasible right-hand sides is finite). The
following example illustrates the concept of using this iterative refinement approach
in approximating the value function of the example on page 535.

Approximating the Value Function
Consider the value function of the example on page 535, reported in Fig. 18.2.
The sequence of evaluations of the value function in this example are the ones
arising from first-stage solutions generated by solving the master problem in
a generalized Benders algorithm, such as the one described in Sect. 18.7.1.
Here, we only illustrate the way in which the dual function is iteratively
refined in each step.

We first evaluate φ(3.5) by branch and bound. Figure 18.3 shows both the
tree obtained (far left) and the value function itself (in blue). The dual function
arises from the solution to the dual of the LP relaxation in each of the nodes in
the branch-and-bound tree. We exhibit the values of the dual solution for each
node in the tree in Table 18.2. Explicit upper and lower bounds were added
with upper bounds initially taking on a large value M , representing infinity.
Note that the dual values associated with the bound constraints are actually
nothing more than the reduced costs associated with the variables.

The dual function associated with this first branch-and-bound tree is the
minimum of the two linear functions shown in Fig. 18.3 in green and labeled
as “Node 1” and “Node 2.” Formally, this dual function is

φT1 = min{φ1
LP

, φ2
LP
},

(continued)
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where the nodal dual functions for the three nodes are

φ0
LP

(β) = 0.8β

φ1
LP

(β) = β

φ2
LP

(β) = −1.5β + 11.5.

In other words, we have v1
0 = 1 (the value of the dual variable associated

with the single equality constraint in Node 1), while v1l1 − v̄1u1 = 0 (this is
the contribution from the dual value corresponding to the bound constraints,
which we take to be a constant here, as in (NDF)). Similarly, v2

0 = −1.5 and

v1l1 − v̄1u1 = 11.5. The dual function φ
T1
LP is strong in the interval [0, 5], but

yields a weaker lower bound outside this interval. If we subsequently evaluate
the right-hand side 9.5, we see that

φT1
LP

(9.5) = min{9.5,−2.75} = −2.75 �= φ(9.5) = 8.5.

To obtain a strong dual function for the new right-hand side, we identify that
node 2 is the node whose bound needs to be improved by further refining the
tree by branching (this is the linear function yielding the bound in this part of
the domain). By further partitioning the subproblem associated with node 2,
we obtain the tree pictured to the right of the first tree in Fig. 18.3. We obtain
the dual function

φT2
LP
= min{φ1

LP
, φ3

LP
, φ4

LP
},

which is strong at the right-hand side 9.5.
Note that this new function is no longer strong at the initial right-hand

side of 3.5. To ensure that this single dual function remains strong for
all previously evaluated right-hand sides, we must take the max over the
collection of dual functions found at each iteration. This function is still
obtained from the single tree, but we are effectively strengthening the leaf
node dual functions by taking the max over all dual solutions arising on the
path from the root subproblem (this is still a bound on the optimal solution
value to the LP relaxation). In this case, we get the strengthened function

min
{

max
{
φ1

LP
, φ0

LP

}
,max

{
φ3

LP
, φ2

LP
, φ0

LP

}
,max

{
φ4

LP
, φ2

LP
, φ0

LP

}}
.

This can be seen as an approximation of φT∗ by replacing the full value
function at each node with an approximation made of just the dual solutions
arising on the path to the root node.
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Fig. 18.3 Approximation of the value function of the 2SMILP instance in the
example on page 535

Table 18.2 Dual solutions for each node in the branch-and-bound tree

t vt vt v̄t

0 0.8 4.4 0.0 4.6 5.6 1.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0

1 1.0 4.0 0.0 5.0 6.0 0.0 2.0 0.0 −1.0 0.0 0.0 0.0 0.0

2 −1.5 9.0 11.5 0.0 1.0 12.5 14.5 0.0 0.0 0.0 0.0 0.0 0.0

18.5.5.3 Primal Functions

Upper approximations of φ can be obtained by considering the value functions of
the second-stage problem (SS) obtained by fixing variables. For example, consider
the integer-fixing value function

φ̄ŷ(β) = d2
I ŷI + φC(β − A2

ωI ŷI ) (IFVF)

obtained by fixing the integer part ŷI ∈ Z
r2 to be equal to that from some previously

found second-stage solution ŷ ∈ Y , where φC is as defined in (CRVF). Then, we
have φ̄ŷI (β) ≥ φ(β) for all β ∈ R

m2 . If ŷ is an optimal solution to the second-
stage problem with respect to a given first-stage solution x ∈ P1 ∩ X and a given
realized value of ω, then we have ŷ ∈ argminy∈P2(b2

ω−A2
ωx)∩Y d2y and φ̄ŷ is strong

at β = b2
ω − A2

ωx.
In a fashion similar to a cutting plane method, we can iteratively improve the

global upper bounding function by taking the minimum of all bounding functions
of the form (IFVF) found so far, i.e.,

φ̄(β) = min
y∈R φ̄y(β),

whereR is the set of all second-stage solutions that have been found when evaluating
φ(β) for different values of β.

A pictorial example of this type of upper bounding function is shown in Fig. 18.4,
where each of the labeled cones shown is the value function of a restriction of the
original MILP. The upper bounding function is the minimum over all of these cones.
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Fig. 18.4 Upper bounding functions obtained at right-hand sides βi, i = 1, . . . , 5

18.5.6 Reaction and Risk Functions

Because it is particularly relevant in the present context, we also now introduce a
function known as the second-stage (optimistic) reaction function. This function is
closely related to the risk function but its input is a second stage right-hand side,
rather than a first-stage solution. Although this function, like the second-stage value
function φ, takes a right-hand side β as its input, it can nevertheless be used to
evaluate a first-stage solution x ∈ X in scenario ω ∈ " by evaluating it with respect
to βω(x). The function is defined as

ρ(β) = inf
{
d1y | y ∈ argmin{d2y | y ∈ P2(β) ∩ Y }}, (ReF)

for β ∈ R
m2 . Note that, although the evaluation of this function appears to require

solving a bilevel optimization problem, its evaluation is actually equivalent to
solving a lexicographic optimization problem, a somewhat easier computational
task.

The importance of the function ρ is to enable us to see that, for (2SMILP), the
scenario risk functions &ω defined in (2SRF) are not in fact completely independent
functions but, rather, are connected, since

&ω(x) = ρ(βω(x)).

Thus, these functions only differ from each other in the affine map βω(x) = b2
ω −

A2
ωx that is applied to x.
The structure of the functions ρ and & derives from that of φ and can be

understood through a somewhat more involved application of the same principles
used to derive the function φ. Their structure, though combinatorially much more
complex, is nevertheless also piecewise polyhedral. Approximations of & can be



544 S. Bolusani et al.

derived easily from approximation of ρ in a straightforward way, since & = E [&ω]
and the scenario risk functions are themselves defined in terms of ρ, as discussed
earlier. The approximation of ρ is quite involved, but it can be obtained by methods
that are natural generalizations of those used to approximate φ. The main challenge
is that the evaluation of ρ(β) for a particular value of β itself reduces to the solution
of a lexicographic optimization problem, which in turn requires knowledge of φ.
We may approximate ρ by repeatedly evaluating it, extracting primal and dual
information from the solution algorithm as we do with φ, but this requires repeatedly
evaluating φ, which is itself expensive.

In the algorithms we discuss in Sect. 18.7, we approach this difficulty by
constructing a single approximation of φ in tandem with the approximation of ρ.
We need only ensure that the approximation of φ is guaranteed to be strong (i.e.,
equal to the value function) exactly in the region needed to properly evaluate ρ. The
result is an approximation of ρ that is strong in the region of a given right-hand
side and this is exactly what is needed for a Benders-type algorithm to converge.
More details regarding the Benders-type algorithm are contained next in Sect. 18.7.
Further details on the structure of and methods for approximating ρ and & can be
found in [23], which describes a Benders-type algorithm for solving (2SMILP).

18.5.7 Optimality Conditions

To solidify the connection between the notion of duality described in this section and
captured in the dual problem (MILPD), we end this section by formally stating both
the weak and strong duality properties arising from this theory. These properties are
a proper generalization of the well-known ones from linear optimization and can be
used to derive optimality conditions that generalize those from LP duality. These
are, in turn, the conditions that can be used to derive the reformulations presented
in Sect. 18.6.

Theorem 18.5.4 (Weak Duality) If F ∈ ϒm2 is feasible for (MILPD) and y ∈
P2(b) ∩ Y , then F(b) ≤ d2y. �
Theorem 18.5.5 (Strong Duality) Let b ∈ R

m2 be such that φ(b) < ∞. Then,
there exists both F ∈ ϒm2 that is feasible for (MILPD) and y∗ ∈ P2(b) ∩ Y such
that F(b) = φ(b) = d2y∗. �
The form of the dual (MILPD) makes these properties rather self-evident, but
Theorem 18.5.5 nevertheless yields optimality conditions that are useful in practice.
In particular, the dual functions arising from branch-and-bound algorithms that were
described earlier in Sect. 18.5.5.1 are the strong dual functions that provide the
optimality certificates for the solutions produced by such algorithms and are the
basis on which the algorithms described in Sect. 18.7.1 are developed.
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18.6 Reformulations

A crucial step in deriving solution algorithms is to consider some conceptual
reformulations that underlie the problems under study, each of which suggests
a particular algorithmic strategy. These formulations are heavily based on the
duality theory and methodology in the previous section, as we better clarify in the
following. In all cases, the goal is to derive, from some initial problem description,
a formulation that is, at least in principle, a single-stage mathematical optimization
problem that can be tackled with (possibly generalized versions of) the standard
algorithmic approaches used for solving mathematical optimization problems. In
this case, as in the solution of single-stage MILPs, the main tools are cutting plane
methods (branch and cut) and decomposition methods (Benders’ algorithm and the
exploitation of the block structure using a Dantzig-Wolfe decomposition).

18.6.1 Value-Function (Optimality-Based) Reformulation

The first reformulation we describe is a variation on (2SMILP-Alt), the standard
formulation used in most of the bilevel optimization literature. This formulation
introduces the second-stage variables explicitly and formulates the problem in the
form of a classical mathematical optimization problem using a technique that is
standard—replacing the requirement that the solution to the second-stage problem
be optimal with explicit optimality conditions. To achieve this, we introduce a
constraint involving the value function φ, as well as the second-stage feasibility
conditions. This is roughly equivalent to imposing primal and dual feasibility along
with equality of the primal and dual objectives in the linear optimization case (the
constraint involving the value function must be satisfied at equality, though it is
stated as an inequality). The formulation is as follows.

min cx +
∑

ω∈"
pωd

1yω

s.t. A1x ≥ b1 (VFRa)

G2yω ≥ b2
ω − A2

ωx ∀ω ∈ " (VFRb)

d2yω ≤ φ(b2
ω − A2

ωx) ∀ω ∈ " (VFRc)

x ∈ X (VFRd)

yω ∈ Y ∀ω ∈ ". (VFRe)

It is clear that this formulation cannot be constructed explicitly, but rather, must be
solved by the iterative approximation of the constraints involving the value function
(which we refer to as the second-stage optimality constraints). This reformulation
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suggests a family of methods described in Sect. 18.7 in which we replace φ with a
primal function φ̄, as defined in Definition 18.5.2.

Notice that, when r2 = 0, so that the second-stage problem (SS) is a linear
optimization problem, we can exploit the fact that the optimality conditions for
this problem involve linear functions. This allows for, in essence, substituting for
φ the objective function of the classical LP dual of (SS), after introducing the
corresponding variables and constraints. This, overall, leads to a tractable primal-
dual reformulation—the technique is applied, for instance, in [40]. The alternative
idea of, rather than the dual of (SS), introducing its KKT conditions, is arguably
more popular and has been often exploited in a number of “classical” works on
mixed integer bilevel optimization problems, including, among others [93]. Note,
however, that while there is an analog of this reformulation that applies in the setting
of (2SMILP) (see [52]), it has so far proved not to be practical and, therefore, we
will not present any algorithms for its solution in Sect. 18.7.

18.6.2 Risk-Function (Projection-Based) Reformulation

The next reformulation we consider exploits the finiteness of " and avoids
introducing the second-stage variables explicitly. It reads as follows.

min c1x +
∑

ω∈"
pωz

ω

s.t. zω ≥ &ω(x) ω ∈ "

x ∈ P1 ∩X

zω ∈ R ω ∈ ".

(RFR)

This reformulation mirrors the original formulation implicitly adopted when we first
defined (2SMILP), in which the second-stage variables are not (explicitly) present.
However, we can also interpret it as a projection onto the X-space of the value-
function reformulation described in the previous section. In fact, it is not hard to
see that the set {x ∈ P1 | &(x) < ∞} is exactly F 1 (the projection of the feasible
region onto the space of the first-stage variables) as defined in (FS-FR). As such,
this formulation is a natural basis for a Benders-type algorithm that we describe
in Sect. 18.7.1, in which we replace & with an under-estimator to obtain a master
problem which is then iteratively improved until convergence.
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18.6.3 Polyhedral (Convexification-Based) Reformulation

An apparently unrelated reformulation generalizes the notion of convexification
used heavily in the polyhedral theory that underlies the solution methodology of
standard MILPs. Convexification considers the following conceptual reformulation:

min cx +
∑

ω∈"
pωd

1yω

s.t. (x, yω) ∈ conv(F ω) ∀ω ∈ ",

(POLY-R)

where F ω is the feasible region under scenario ω, defined as in (FR). Under our
earlier assumptions, the convex hull of F ω is a polyhedron whose extreme points are
members of F ω. Thus, due to the linearity of the objective function, we can w.l.o.g.
replace the requirement that (x, yω) ∈ F ω with the requirement that (x, yω) ∈
conv(F ω), thereby convexifying the feasible region.

With this reformulation, we have transformed the requirement that the second-
stage solution be optimal for the parameterized second-stage problem (SS) into
a requirement that the combination of first- and second-stage solutions lie in
a polyhedral feasible region. This reformulation suggests a different class of
algorithms based on the dynamic generation of valid inequalities, such as those so
successfully employed in the case of MILPs. We describe an algorithm of such class
in Sect. 18.7.2.

18.6.4 Deterministic Equivalent (Decomposition-Based)
Reformulation

Finally, we remark that the finiteness of " allows for solving the problem via
a block-angular reformulation based on the formulation (2SMILP-Alt) presented
earlier, which is in the spirit of the so-called deterministic equivalent reformulation
used in two-stage stochastic optimization. This renders the stochastic problem as a
deterministic MIBLP, which can then be solved via standard methods for that case
with the requisite further reformulations (of course, exploiting the block structure
of the resulting matrices). For details, see [126].

18.7 Algorithmic Approaches

We now summarize a range of methodologies that arise naturally from the reformu-
lations of the previous section. Any practical method of solving (2SMILP) must
have as a fundamental step the evaluation of φ(β) for certain fixed values of
β ∈ R

m2 , an operation which can be challenging in itself, since the corresponding
problem is NP-hard. From the evaluation of φ, both primal and dual information
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is obtained, which can be used to build approximations. While some methods
explicitly build such approximations, other methods do it only implicitly. In all
cases, information about the value function that is built up through repeated
evaluations can be exploited.

Similarly, in the dual methods that we describe below, the function & is also
evaluated for various values of x ∈ X (or rather the function ρ) and, similarly,
approximations of this function can be built from primal and dual information
obtained during its evaluation. In order to develop computationally tractable
methods, a key aspect is to limit the number of such function evaluations as much as
possible and to exploit to the maximum extent possible the information generated
as a by-product of these single function evaluations.

18.7.1 Decomposition Methods

Decomposition methods are based on generalizations of Benders’ original method
of decomposing a given mathematical optimization problem by splitting the vari-
ables into two subsets and forming a master problem by projecting out one subset.
More concretely, we are simply solving a reformulation of the form (RFR).

18.7.1.1 Continuous Problems

For illustration, we consider the simplest case in which we have only continuous
variables in both stages (r1 = r2 = 0) and d1 = d2. Since the first- and second-
stage objectives are the same in this case, the full problem is nothing more than a
standard linear optimization problem, but Benders’ approach nevertheless applies
when either fixing the first stage variables results in a more tractable second-stage
LP (such as a min-cost flow problem). In the Benders approach, we (conceptually)
rewrite the LP as

min

{

cx +
∑

ω∈"
pωφ(βω(x))

∣∣
∣
∣
∣
x ∈ P1

}

,

where φ is the value function (2SVF). Note that, because &(x) = ∑
ω∈" pωφ

(βω(x)), this is just a simplification of the original formulation implicitly adopted
when we first defined (2SMILP). As we observed earlier, the value function in the
LP case is the maximum of linear functions associated with the dual solutions.
Recalling that we can restrict the description to only the extreme points of the dual
feasible region, we can further rewrite the LP as

min

⎧
⎨

⎩
cx +

∑

ω∈"
pωz

ω

∣∣
∣
∣
∣
∣

x ∈ P1

zω ≥ uβω(x), u ∈ E, ω ∈ "

zω ∈ R, ω ∈ "

⎫
⎬

⎭
, (LP)
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where E is the set of such extreme points of the dual of the second-stage LP (which
we assumed to be bounded and nonempty). Thus, the linear constraints involving
the variable zω (along with the fact that zω is minimized) are precisely equivalent to
requiring zω = φ(b2

ω−A2
ωx), so this reformulation is exactly the formulation (RFR)

specialized to this case.
A straightforward solution approach is then to solve (LP) by a cutting plane

algorithm, which results in the classical L-shaped method for solving (continuous)
stochastic linear optimization problems [130]. From the point of view we have taken
in this article, this method can be interpreted as one that approximates the value
function from below as the maximum of the strong dual functions generated in
each iteration. The strong dual functions arise from the solutions to the dual of the
second-stage problem and yield what are typically called Benders cuts (inequalities
of the form imposed in (LP)). The Benders approach is then to iteratively improve
this approximation until convergence.

The case d1 �= d2 is more complex. The epigraph of the value function of the
second-stage problem is no longer necessarily a polyhedral cone, and the function
itself is no longer necessarily convex. Formulating the equivalent of (LP) thus
requires integer variables. Alternative formulations using the related complementary
slackness optimality conditions are also commonly used (see [37]).

18.7.1.2 Discrete Problems

For the case in which there are integer variables, the approach just described can
be applied by simply replacing the linear strong dual functions (Benders’ cuts)
with strong under-estimators of the risk function constructed from dual functions
arising from solution algorithms for the second-stage problem, such as those based
on branch and bound described in Sect. 18.5.5.1. In this approach, we work directly
with the reformulation (RFR), employing the generalized Benders-type algorithm
summarized in Fig. 18.5 and a master problem defined as follows.

min c1x +
∑

ω∈"
pωz

ω

s.t. zω ≥ &ω(x) ω ∈ "

x ∈ P1

zω ∈ R ω ∈ ".

(MASTER)

When d1 = d2, the approximation of the scenario risk function and of the
risk function itself reduces to the direct approximation of the second-stage value
function, and the algorithm can be described rather succinctly. A basic version
was originally proposed as the integer L-shaped algorithm for two-stage stochastic
optimization problems with integer recourse by Laporte and Louveaux [94] and
Carøe and Tind [29]. The version based on dual functions from branch and bound
that we describe here is described in [74].



550 S. Bolusani et al.

Step 0. Initialize k ←1, Ξ0
ω (x ) = −∞ for all x ∈ Qn 1 , ω ∈ Ω.

Step 1. Solve the Master Problem

a) Set Ξω = max
i=0, . . . , k −1

Ξiω for ω ∈ Ω.

b) Solve (MASTER) to obtain an optimal solution (x k , {zωk }ω∈Ω).

Step 2. Solve the Subproblem

a) Evaluate Ξω (x k ) to obtain an optimal solution yω, k for ω ∈ Ω and the strong under-

estimator Ξkω .

b) Termination check: Is zωk = d 1yω, k for ω ∈ Ω?

1. If yes, STOP. x k is an optimal solution to (RFR).

2. If no, set k k + 1 and go to Step 1.←

Fig. 18.5 Generalized Benders algorithm for solving 2SMILPs

To briefly summarize, as in the LP case, we rewrite (2SMILP) as

min

⎧
⎨

⎩
cx +

∑

ω∈"
pωz

ω

∣
∣
∣
∣
∣∣

x ∈ P1 ∩X

zω ≥ φ(βω(x)) ω ∈ "

zω ∈ R ω ∈ "

⎫
⎬

⎭
.

By replacing φ with the maximum of a set Gω of dual functions associated with
scenario ω ∈ " (alternatively, we can employ one universal set of dual functions, as
indicated in (LP) above), we obtain a convergent Benders-like algorithm based on
iteratively solving a master problem of the form

min

⎧
⎨

⎩
cx +

∑

ω∈"
pωz

ω

∣
∣
∣∣
∣
∣

x ∈ P1 ∩X

zω ≥ F(βω(x)) F ∈ Gω, ω ∈ "

zω ∈ R ω ∈ "

⎫
⎬

⎭
,

which generalizes (LP). The key to making this approach work in practice is that
the dual functions we need be easily available as a by-product of evaluating the
second-stage value function φ for a fixed value of β.

The most general case in which d1 �= d2 is conceptually no more complex than
that described above, but the details of the methodology for approximating & and in
linearizing the master problem are quite involved. The reader is referred to [23] for
the details.

18.7.2 Convexification-Based Methods

Primal algorithms are based on the implicit solution of (POLY-R) and generalize the
well-known framework of branch and cut that has been so successful in the MILP
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case. This class of algorithms is based on the iterative approximation of conv(F ω)

beginning with the approximation Pω, the feasible region in scenario ω of the fol-
lowing relaxation obtained by dropping both the value-function constraint (VFRc)
and the integrality requirements (VFRd) and (VFRe) from (VFR).

min cx +
∑

ω∈"
pωd

1yω

s.t. A1x ≥ b1 (LPRa)

G2yω ≥ b2
ω − A2

ωx ∀ω ∈ " (LPRb)

x ∈ R
n1+ (LPRc)

yω ∈ R
n2+ ∀ω ∈ ". (LPRd)

Being an LP, this relaxation is easily solved, but it is not difficult to see, however,
that it is rather weak (see, e.g., the example on page 552). A straightforward way to
strengthen it is simply by including the integrality constraints (VFRd) and (VFRe)
from (VFR). This leads to an MILP relaxation with feasible set

Sω = Pω ∩ (X × Y )

in scenario ω ∈ ", which, while stronger, is clearly more difficult to solve and
also still potentially weak—whether adopting it is a computationally good idea
is a purely empirical question. When the number of scenarios is large, dropping
constraints (LPRb) from the relaxation may also be advantageous, since this may
reduce the size of the relaxation.

As in cutting plane methods for MILPs, the idea is to improve this initial
formulation with the addition of inequalities valid for Sω , F ω,

⋃
ω∈" F ω, or even

F 1. In some cases, inequalities may first be derived with respect to Sω or F ω

for some particular scenario ω ∈ " and then lifted to become valid for a larger
set. Inequalities valid for Sω (which can be referred to as feasibility cuts) can be
generated using any number of well-known procedures associated with cutting plane
algorithms for mixed integer linear programming. Inequalities valid for F ω (which
can be referred to as optimality cuts) are the more interesting case because they can
incorporate information about the value function in order to eliminate members of
Pω that are not two-stage feasible.

In early work on these methods, the authors of [53] developed inequalities valid
for F ω in the case for which " is a singleton and the variables must all be integer
(r1 = n1 and r2 = n2), which illustrate the basic principles. When the input data
are integer, a very simple argument can be used to generate an inequality valid for
F ω but violated by (x̂, ŷ), an extreme point of Pω not in F ω, by taking advantage
of the discrete nature of the feasible set. Assuming the solution of the LP relaxation
is an extreme point of Pω, there is thus a hyperplane supporting Pω and inducing a
face of dimension 0. As such, there exist f ∈ R

n1 , g ∈ R
n2 , and γ ∈ R such that
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the hyperplane {(x, y) ∈ R
n1+n2 | f x + gy = γ } intersects Pω in the unique point

(x̂, ŷ). Hence, we have that f x+gy ≤ γ for all (x, y) ∈ Pω. Finally, since the face
of Pω induced by this inequality does not contain any other members of Sω, we can
“push” the hyperplane until it meets the next integer point without separating any
additional members of F ω. Hence,

f x + gy ≤ γ − 1

is valid for F ω. This procedure is similar in spirit to the Gomory procedure for
standard MILPs. It is used, for instance, in [50]. We next describe the method with
a brief example.

Example of Valid Inequalities
Consider the instance

max
x

min
y
{y | −x + y ≤ 2,−2x − y ≤ −2, 3x − y ≤ 3, y ≤ 3, x, y ∈ Z+} ,

with |"| = 1, whose feasible region is the set F = {(0, 2), (1, 0), (2, 3)}
shown in Fig. 18.6. Solving the LP relaxation yields the point (1, 3), which is
not feasible. This point is eliminated by the addition of the inequality x−2y ≥
−4, which is valid for the feasible region F and is obtained as a strengthening
of the inequality x − 2y ≥ −5, which is valid for the LP relaxation itself.

Fig. 18.6 Example of a valid
inequality

1 2 3

2

3

1

x

y

−x + 2y ≤ 4

−x + 2y ≤ 5

F
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This cut generation procedure is enough to yield a converging algorithm in this
case, but it amounts to removing infeasible points one by one and is not scalable
in general. An important observation is that this cut only exploits integrality of the
solutions and does not take into account any information about the second-stage
value function.

A generalized version of this basic methodology has since been described
in [127] and enhanced with additional classes of inequalities, including those valid
for the general mixed integer case described in [57, 58]. Inequalities valid for more
general discrete probability spaces are derived in [60] for the case d1 = d2.

Stronger cuts can be obtained by using disjunctive arguments based on knowl-
edge of the value function. In particular, an option is to add constraints of the form

d2yω ≤ φ̄(b2
ω − A2

ωx),

where φ̄ is a primal function, as defined in Definition 18.5.2. Such primal functions
can take many forms and imposing such constraints may be expensive. In general,
the form of such functions will be either affine or piecewise polyhedral (“standard”
disjunctive programming techniques can be used to obtain a reformulation which
only involves linear functions).

18.8 Conclusions

We have introduced a unified framework for multistage mixed integer linear
optimization problems which encompasses both multilevel mixed integer linear
optimization problems and multistage mixed integer linear optimization problems
with recourse. Focusing on the two-stage case, we have investigated the nature of the
value function of the second-stage problem and highlighted its connection to dual
functions and the theory of duality for mixed integer linear optimization problems.
We have summarized different reformulations for this broad class of problems,
which rely on either the risk function, the value function, or on their polyhedral
nature. We have then presented the main solution techniques for problems of this
class, considering both dual- and primal-type methods, the former based on a
Benders-like decomposition to approximate either the risk function or the value
function, and the latter based on a cutting plane technique that relies on the
polyhedral nature of these problems. While much work is still to be done for
solving multistage mixed integer linear optimization problems with techniques
that are (mutatis mutandis, given their intrinsic harder nature) of comparable
efficiency to those for solving single-level problems, we believe that the theoretical
understanding of multistage mixed integer linear problems is now sufficiently
mature to make this an achievable objective.



554 S. Bolusani et al.

References

1. E. Amaldi, A. Capone, S. Coniglio, L.G. Gianoli, Energy-aware traffic engineering with
elastic demands and MMF bandwidth allocation, in Proc of 18th IEEE Int. Workshop on
Computer Aided Modeling and Design of Communication Links and Networks (CAMAD
2013) (IEEE, Piscataway, 2013), pp. 169–174

2. E. Amaldi, A. Capone, S. Coniglio, L.G. Gianoli, Network optimization problems subject to
max-min fair flow allocation. IEEE Commun. Lett. 17(7), 1463–1466 (2013)

3. E. Amaldi, S. Coniglio, L.G. Gianoli, C.U. Ileri, On single-path network routing subject to
max-min fair flow allocation. Electron Notes Discrete Math. 41, 543–550 (2013)

4. E. Amaldi, S. Coniglio, L. Taccari, Maximum throughput network routing subject to fair flow
allocation, in Proc. of Int. Symp. on Combinatorial Optimization (ISCO 2014) (Springer,
Berlin, 2014), pp. 1–12

5. M.A. Amouzegar, K. Moshirvaziri, Determining optimal pollution control policies: an
application of bilevel programming. Eur. J. Oper. Res. 119(1), 100–120 (1999)

6. B. An, J. Pita, E. Shieh, M. Tambe, C. Kiekintveld, J. Marecki, Guards and protect: next
generation applications of security games. ACM SIGecom Exch. 10(1), 31–34 (2011)

7. R. Avenhaus, A. Okada, S. Zamir, Inspector leadership with incomplete information, in Game
Equilibrium Models IV (Springer, Berlin, 1991), pp. 319–361

8. J. Bard, An algorithm for solving the general bilevel programming problem. Math. Oper.
Res. 8(2), 260–272 (1983)

9. J. Bard, J.T. Moore, An algorithm for the discrete bilevel programming problem. Nav. Res.
Logist. 39(3), 419–435 (1992)

10. J.F. Bard, J. Plummer, J.C. Sourie, A bilevel programming approach to determining tax credits
for biofuel production. Eur. J. Oper. Res. 120, 30–46 (2000)

11. L. Baringo, A.J. Conejo, Transmission and wind power investment. IEEE Trans. Power Syst.
27(2), 885–893 (2012)

12. N. Basilico, S. Coniglio, N. Gatti, Methods for finding leader-follower equilibria with
multiple followers (extended abstract), in Proc. of 2016 Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2016) (2016), pp. 1363–1364

13. N. Basilico, S. Coniglio, N. Gatti, A. Marchesi, Bilevel programming approaches to the
computation of optimistic and pessimistic single-leader-multi-follower equilibria, in Proc. of
16th Int. Symp. on Experimental Algorithms (SEA 2017) (Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Wadern, 2017)

14. N. Basilico, S. Coniglio, N. Gatti, A. Marchesi, Bilevel programming methods for computing
single-leader-multi-follower equilibria in normal-form and polymatrix games. EURO J.
Comput. Optim. 8, 3–31 (2020)

15. O. Ben-Ayed, C. Blair, Computational difficulties of bilevel linear programming. Oper. Res.
38, 556–560 (1990)

16. O. Ben-Ayed, C. Blair, D. Boyce, L. LeBlanc, Construction of a real-world bilevel linear
programming model of the highway network design problem. Ann. Oper. Res. 34(1), 219–
254 (1992)

17. D.P. Bertsekas, Dynamic Programming and Optimal Control (Athena Scientific, Belmont,
2017)

18. J.R. Birge, F. Louveaux, Introduction to Stochastic Programming (Springer Science &
Business Media, New York, 2011)

19. C.E. Blair, A closed-form representation of mixed-integer program value functions. Math.
Program. 71(2), 127–136 (1995)

20. C.E. Blair, R.G. Jeroslow, The value function of a mixed integer program: I. Discret. Math.
19(2), 121–138 (1977)

21. C.E. Blair, R.G. Jeroslow, The value function of a mixed integer program: II. Discret. Math.
25(1), 7–19 (1979)



18 A Unified Framework for Multistage Mixed Integer Linear Optimization 555

22. C.E. Blair, R.G. Jeroslow, Constructive characterizations of the value-function of a mixed-
integer program I. Discret. Appl. Math. 9(3), 217–233 (1984)

23. S. Bolusani, T.K. Ralphs, A framework for generalized Benders’ decomposition and its
application to multilevel optimization. Technical report 20T-004, COR@L Laboratory,
Lehigh University, 2020. http://coral.ie.lehigh.edu/~ted/files/papers/MultilevelBenders20.pdf

24. J. Bracken, J.T. McGill, Mathematical programs with optimization problems in the
constraints. Oper. Res. 21(1), 37–44 (1973)

25. A.P. Burgard, P. Pharkya, C.D. Maranas, OptKnock: a bilevel programming framework for
identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng.
84, 647–657 (2003)

26. P. Calamai, L. Vicente, Generating quadratic bilevel programming problems. ACM Trans.
Math. Softw. 20, 103–119 (1994)

27. A. Caprara, M. Carvalho, A. Lodi, G. Woeginger, Bilevel knapsack with interdiction
constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

28. M. Caramia, R. Mari, Enhanced exact algorithms for discrete bilevel linear problems. Optim.
Lett. 9(7), 1447–1468 (2015)

29. C.C. Carøe, J. Tind, L-shaped decomposition of two-stage stochastic programs with integer
recourse. Math. Program. 83(1), 451–464 (1998)

30. M. Castiglioni, A. Marchesi, N. Gatti, Be a leader or become a follower: the strategy to
commit to with multiple leaders, in Proc. of 28th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2019) (2019)

31. M. Castiglioni, A. Marchesi, N. Gatti, S. Coniglio, Leadership in singleton congestion games:
what is hard and what is easy. Artif. Intell. 277, 103–177 (2019)

32. A. Celli, S. Coniglio, N. Gatti, Computing optimal ex ante correlated equilibria in two-player
sequential games, in Proc. of 18th Int. Conf. on Autonomous Agents and MultiAgent Systems
(AAMAS 2019) (International Foundation for Autonomous Agents and Multiagent Systems,
Richland, 2019), pp. 909–917

33. A. Celli, S. Coniglio, N. Gatti, Private Bayesian persuasion with sequential games, in Proc.
of 34th AAAI Conf. on Artificial Intelligence (AAAI 2020) (AAAI Press, New York, 2020),
pp. 1–8

34. R.L. Church, M.P. Scaparra, Protecting critical assets: the r-interdiction median problem with
fortification. Geogr. Anal. 39(2), 129–146 (2006)

35. R.L. Church, M.P. Scaparra, R.S. Middleton, Identifying critical infrastructure: the median
and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)

36. P.A. Clark, A.W. Westerberg, Bilevel programming for steady-state chemical process design
I. Fundamentals and algorithms. Comput. Chem. Eng. 14(1), 87–97 (1990)

37. B. Colson, P. Marcotte, G. Savard, Bilevel programming: a survey. 4OR 3(2), 87–107 (2005)
38. S. Coniglio, S. Gualandi, On the separation of topology-free rank inequalities for the max

stable set problem, in Proc. of 16th Int. Symp. on Experimental Algorithms (SEA 2017)
(Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern, 2017)

39. S. Coniglio, L.G. Gianoli, E. Amaldi, A. Capone, Elastic Traffic Engineering Subject to a Fair
Bandwidth Allocation via Bilevel Programming, in IEEE/ACM Transactions on Networking,
https://doi.org/10.1109/TNET.2020.3007572

40. S. Coniglio, M. Tieves, On the generation of cutting planes which maximize the bound
improvement, in Proc. of 14th Int. Symp. on Experimental Algorithms (SEA 2015) (Springer,
Berlin, 2015), pp. 97–109

41. S. Coniglio, N. Gatti, A. Marchesi, Pessimistic leader-follower equilibria with multiple
followers, in Proc. of 26th Int. Joint Conf. on Artificial Intelligence (IJCAI 2017) (AAAI
Press, New York, 2017), pp. 171–177

42. S. Coniglio, N. Gatti, A. Marchesi, Computing a pessimistic Stackelberg equilibrium with
multiple followers: the mixed-pure case. Algorithmica 82, 1189–1238 (2020)

43. S. Coniglio, M. Sirvent, M. Weibelzahl, Airport capacity extension, fleet investment,
and optimal aircraft scheduling in a multi-level market model: quantifying the costs of
imperfect markets (2020, under review). http://www.optimization-online.org/DB_HTML/
2017/05/5989.html

http://coral.ie.lehigh.edu/~ted/files/papers/MultilevelBenders20.pdf
https://doi.org/10.1109/TNET.2020.3007572
http://www.optimization-online.org/DB_HTML/2017/05/5989.html
http://www.optimization-online.org/DB_HTML/2017/05/5989.html


556 S. Bolusani et al.

44. V. Conitzer, D. Korzhyk, Commitment to correlated strategies, in Proc. of 25th AAAI Conf.
on Artificial Intelligence (AAAI 2011) (2011), pp. 632–637

45. V. Conitzer, T. Sandholm, Computing the optimal strategy to commit to, in Proc. of 7th ACM
Conf. on Electronic Commerce (EC 2006) (2006), pp. 82–90

46. S.A. Cook, The complexity of theorem-proving procedures, in Proc. of 3rd Annual ACM
Symposium on Theory of Computing (ACM, New York, 1971), pp. 151–158

47. K.J. Cormican, D.P. Morton, R.K. Wood, Stochastic network interdiction. Oper. Res. 46(2),
184–197 (1998)

48. J.-P. Côté, P Marcotte, G. Savard, A bilevel modelling approach to pricing and fare
optimisation in the airline industry. J. Revenue Pricing Manag. 2(1), 23–36 (2003)

49. S. Dempe, Discrete bilevel optimization problems. Technical Report D-04109, Institut fur
Wirtschaftsinformatik, Universitat Leipzig, Leipzig, 2001

50. S. Dempe, F. Mefo Kue, Solving discrete linear bilevel optimization problems using the
optimal value reformulation. J. Glob. Optim. 68(2), 255–277 (2017)

51. S. Dempe, V. Kalashnikov, R.Z. Rios-Mercado, Discrete bilevel programming: application to
a natural gas cash-out problem. Eur. J. Oper. Res. 166(2), 469–488 (2005)

52. S. DeNegre, Interdiction and discrete bilevel linear programming. PhD, Lehigh University,
2011 http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf

53. S. DeNegre, T.K. Ralphs, A branch-and-cut algorithm for bilevel integer programming, in
Proc. of 11th INFORMS Computing Society Meeting (2009), pp. 65–78. http://coral.ie.lehigh.
edu/~ted/files/papers/BILEVEL08.pdf

54. K. Dhamdhere, R. Ravi, M. Singh, On two-stage stochastic minimum spanning trees,
in International Conference on Integer Programming and Combinatorial Optimization
(Springer, Berlin, 2005), pp. 321–334

55. M. Dyer, L. Stougie, Computational complexity of stochastic programming problems. Math.
Program. 106(3), 423–432 (2006)

56. N.P. Faísca, V. Dua, B. Rustem, P.M. Saraiva, E.N. Pistikopoulos, Parametric global
optimisation for bilevel programming. J. Glob. Optim. 38, 609–623 (2007)
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Chapter 19
BOLIB: Bilevel Optimization LIBrary
of Test Problems

Shenglong Zhou, Alain B. Zemkoho, and Andrey Tin

Abstract This chapter presents the Bilevel Optimization LIBrary of the test
problems (BOLIB–for short), which contains a collection of test problems, with
continuous variables, to help support the development of numerical solvers for
bilevel optimization. The library contains 173 examples with 138 nonlinear, 24
linear, and 11 simple bilevel optimization problems. This BOLIB collection is
probably the largest bilevel optimization library of test problems. Moreover, as the
library is computation-enabled with the MATLAB m-files of all the examples, it
provides a uniform basis for testing and comparing algorithms. The library, together
with all the related codes, is freely available at https://biopt.github.io/bolib/.

Keywords Bilevel optimization · Test problems · Numerical methods · Library
of examples · MATLAB codes

19.1 Introduction

The bilevel optimization problem can take the form

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0,
y ∈ S(x) := arg min

y
{f (x, y) | g(x, y) ≤ 0 } ,

(19.1.1)

where the functions G : Rnx × R
ny → R

nG and g : Rnx × R
ny → R

ng define the
upper-level and lower-level constraints, respectively. As for F : Rnx × R

ny → R

and f : Rnx × R
ny → R, they denote the upper-level and lower-level objective

functions, respectively. The set-valued map S : R
nx ⇒ R

ny represents the
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optimal solution/argminimum mapping of the lower-level problem. Further recall
that problem (19.1.1) as a whole is often called upper-level problem.

Our aim is to propose a computation-enabled library of test problems to help
accelerate the development of numerical methods for bilevel programs in the form
(19.1.1). Note that the bilevel optimization problems in this library, that we classify
into the following three categories, only involve continuous variables:

• Nonlinear bilevel programs, which are problems in the form (19.1.1) with at least
one of the functions involved being nonlinear.

• Linear bilevel programs are problems in the form (19.1.1) with functions F , f ,
and all the components of G and g being linear.

• Simple bilevel programs (term coined in [20]) are optimization problems where
the feasible set is partly defined by the optimal solution set of a second
optimization problem. But unlike in (19.1.1), the lower-level problem is not a
parametric optimization problem. More precisely, a simple bilevel optimization
has the form:

min
y

F (y)

s.t. G(y) ≤ 0,
y ∈ S := arg min

y
{f (y) | g(y) ≤ 0 } ,

(19.1.2)

where, similarly to (19.1.1), G : Rny → R
nG and g : Rny → R

ng describe
the upper-level and lower-level constraints, respectively, while the real-valued
function F (resp. f ), defined R

ny , represents the upper-level (resp. lower-level)
objective function. The expression “simple bilevel program” is used in [45] to
refer to bilevel optimization problems of the form (19.1.1), where y (resp. x) is
not involved in the upper-level (resp. lower-level) constraints.

The main contributions of the library are three-fold. First, BOLIB provides
MATLAB codes for 173 examples, including 138 nonlinear, 24 linear, and 11 simple
bilevel programs, ready to be used to test numerical algorithms. Secondly, it puts
together the true or best known solutions and the corresponding references for all
the examples included. Hence, can serve as a benchmark platform for numerical
accuracy evaluation for methods designed to solve problem (19.1.1). Thirdly, all
examples as well as their gradients and Hessians are programmed and stored in
the MATLAB m-files. Thus, facilitating the use of the examples and corresponding
derivatives in the implementation of numerical methods, where such information is
necessary.

To the best of our knowledge, this is the largest library of test examples for bilevel
optimization, especially for the nonlinear class of the problem. It includes bilevel
optimization problems from Colson’s BIPA [17], Leyffer’s MacMPEC [44], as well
as from Mitsos and Barton’s technical report [53]. We would like to emphasize that
the fundamental objective that we hope to achieve with BOLIB is the acceleration
of numerical software development for bilevel optimization, as it is our opinion that
the level of expansion of applications of the problem has outpaced the development
rate for numerical solvers, especially for the nonlinear class of the problem.
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In the next section, we describe the library with details on the inputs and outputs
of the codes, as well as some useful insights on the examples. In the subsequent
section, a guideline is given on how to access the library.

19.2 Description of the Library

This section describes the structure of the library, while focusing on the inputs and
outputs of each example, as well as the list of all examples together with their true
or best known solutions and corresponding references. Before we proceed, note
that each m-file contains information about the corresponding example, which
include the first and second order derivatives of the input functions. For the upper-
level objective function F : Rnx×Rny → R, these derivatives are defined as follows

∇xF (x, y) =
⎡

⎢
⎣

∇x1F
...

∇xnx F

⎤

⎥
⎦ ∈ R

nx ,

∇2
xxF (x, y) =

⎡

⎢⎢
⎣

∇2
x1x1

F · · · ∇2
xnx x1

F

...
. . .

...

∇2
x1xnx

F · · · ∇2
xnx xnx

F

⎤

⎥⎥
⎦ ∈ R

nx×nx ,

∇2
xyF (x, y) =

⎡

⎢
⎢
⎣

∇2
x1y1

F · · · ∇2
xnx y1

F

...
. . .

...

∇2
x1ynx

F · · · ∇2
xnx ynx

F

⎤

⎥
⎥
⎦ ∈ R

ny×nx .

(19.2.1)

Similar expressions are valid for ∇yF (x, y) ∈ R
ny , ∇2

yyF (x, y) ∈ R
ny×ny , and the

lower-level objective function f . As the constraint functions are vector-valued, we
use the following notations to refer to derivative information in the context of the
upper-level constraint function G : Rnx × R

ny → R
nG , for instance:

∇xG(x, y) =
⎡

⎢
⎣

∇xG1
...

∇xGnG

⎤

⎥
⎦ =

⎡

⎢
⎣

∇x1G1 · · · ∇xnx G1
...

. . .
...

∇x1GnG · · · ∇xnx GnG

⎤

⎥
⎦ ∈ R

nG×nx ,

∇2
xxG(x, y) =

⎡

⎢
⎣

∇2
xxG1
...

∇2
xxGnG

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

∇2
x1x1

G1 · · · ∇2
xnx x1

G1
...

. . .
...

∇2
x1xnx

G1 · · · ∇2
xnx xnx

G1
...

. . .
...

∇2
x1x1

GnG · · · ∇2
xnx x1

GnG

...
. . .

...

∇2
x1xnx

GnG · · · ∇2
xnx xnx

GnG

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

∈ R
(nGnx )×nx ,
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∇2
xyG(x, y) =

⎡

⎢
⎣

∇2
xyG1
...

∇2
xyGnG

⎤

⎥
⎦ =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

∇2
x1y1

G1 · · · ∇2
xnx y1

G1
...

. . .
...

∇2
x1yny

G1 · · · ∇2
xnx yny

G1

...
. . .

...

∇2
x1y1

GnG · · · ∇2
xnx y1

GnG

...
. . .

...

∇2
x1yny

GnG · · · ∇2
xnx yny

GnG

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

∈ R(nGny)×nx .

(19.2.2)

Similar formulas are also valid for ∇yG(x, y) ∈ R
nG×ny , ∇2

yyG(x, y) ∈ R
nGny×ny ,

and the lower-level constraint g. It is important to emphasize that in the context of
the constraints, ∇xG(x, y) ∈ R

1×nx , for example, is a row vector when nG = 1.
However, ∇xF (x, y) ∈ R

nx and ∇xf (x, y) ∈ R
nx are column vectors.

19.2.1 Inputs and Outputs

The BOLIBver2 folder (see Sect. 19.3 on how to access the library), which
contains all the library material, includes 3 sub-folders named Nonlinear,
Linear, and Simple. In the Nonlinear subfolder, there are 138 MATLAB
m-files. Each one specifies a nonlinear bilevel optimization test example, named by
a combination of authors’ surnames, year of publication, and when necessary, the
order of the example in the corresponding reference. For example, as in following
figure (showing a partial list of the examples), AiyoshiShimizu1984Ex2.m
stands for Example 2 in the paper by Aiyoshi and Shimizu published in 1984
[1]. However, for a few examples (DesignCentringP1, NetworkDesignP1,
etc.), the problem naming is based on previous use in the literature and therefore
could help to easily recognize them.
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In folder Linear, there are 24 MATLAB m-files defining 24 liner bilevel optimiza-
tion test examples. The rule of naming each example is same as in the nonlinear case.
Similarly, folder Simple contains 11 simple bilevel optimization test examples.

Now we describe the inputs and outputs of the m-file of a given example. Each
file has the function handle named in the following way:

w = example_name(x, y, keyf, keyxy). (19.2.3)

For the inputs, we have

x ∈ R
nx , y ∈ R

ny ,

keyf ∈ {‘F’, ‘G’, ‘f’, ‘g’},
keyxy ∈ {[ ],‘x’, ‘y’, ‘xx’, ‘xy’, ‘yy’},

where ‘F’, ‘G’, ‘f’, and ‘g’, respectively stand for the four functions involved
in (19.1.1). ‘x’ and ‘y’ represent the first order derivative with respect to x

and y, respectively. Finally, ‘xx’, ‘xy’, and ‘yy’ correspond to the second
order derivative of the function F , G, f , and g, with respect to xx, xy, and yy,
respectively.

For the outputs, w=example_name(x,y,keyf) or w = example_name
(x,y, keyf,[]) returns the function value of keyf while w=example_name
(x,y,keyf, keyxy) can additionally return the first or second order derivative
of keyf w.r.t. the choice of keyxy as described above. We summarize all the
scenarios in Table 19.1:

For the dimension of w in each scenario, see (19.2.1)–(19.2.2). If nG = 0 (or
ng = 0), all outputs related to G (or g) should be empty, namely, w = [ ]. To further
clarify the outputs, let us look at some specific usage:

• w = example_name(x, y,‘F’) or w = example_name(x, y,‘F’, [ ])
returns the function value of F , i.e., w = F(x, y); this is similar for G, f , and g;

• w = example_name(x, y,‘F’,‘x’) returns the partial derivative of F with
respect to x, i.e., w = ∇xF (x, y);

• w = example_name(x, y,‘G’,‘y’) returns the Jacobian matrix of G with
respect to y, i.e., w = ∇yG(x, y);

Table 19.1 Input–output scenarios from the m-files containing the examples

keyf/keyxy [ ] ‘x’ ‘y’ ‘xx’ ‘xy’ ‘yy’

‘F’ F(x, y) ∇xF (x, y) ∇yF (x, y) ∇2
xxF (x, y) ∇2

xyF (x, y) ∇2
yyF (x, y)

‘G’ G(x, y) ∇xG(x, y) ∇yG(x, y) ∇2
xxG(x, y) ∇2

xyG(x, y) ∇2
yyG(x, y)

‘f’ f (x, y) ∇xf (x, y) ∇yf (x, y) ∇2
xxf (x, y) ∇2

xyf (x, y) ∇2
yyf (x, y)

‘g’ g(x, y) ∇xg(x, y) ∇yg(x, y) ∇2
xxg(x, y) ∇2

xyg(x, y) ∇2
yyg(x, y)
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• w = example_name(x, y,‘f’,‘xy’) returns the Hessian matrix of f with
respect to xy, i.e., w = ∇2

xyf (x, y);
• w = example_name(x, y,‘g’,‘yy’) returns the second order derivative of

g with respect to yy, i.e., w = ∇2
yyg(x, y).

We now use two examples to illustrate the definitions above. The first one is
nonlinear while the second one is a simple bilevel program.

Example
Shimizu et al. (1997), see [65], considered the bilevel program (19.1.1) with

F(x, y) := (x − 5)2 + (2y + 1)2,

f (x, y) := (y − 1)2 − 1.5xy,

g(x, y) :=
⎡

⎣
−3x + y + 3
x − 0.5y − 4
x + y − 7

⎤

⎦ .

Here, we have dimensions nx = 1, ny = 1, nG = 0, and ng = 3.
The m-file is named by ShimizuEtal1997a (i.e., exmaple_name
= ShimizuEtal1997a) and was coded in MATLAB as it can be seen in
Table 19.2. If we are given some inputs (as in left column of the table below),
then ShimizuEtal1997a will return us corresponding results as in the
right column:

Inputs Outputs
x = 4 x = 4

y = 0 y = 0

F = ShimizuEtal1997a(x,y,’F’) F = 2

Fx = ShimizuEtal1997a(x,y,’F’,’x’) Fx = -2

Gy = ShimizuEtal1997a(x,y,’G’,’y’) Gy = []

fxy = ShimizuEtal1997a(x,y,’f’,’xy’) fxy = -1.5

gyy = ShimizuEtal1997a(x,y,’g’,’yy’) gyy = [0;0;0]
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Table 19.2 Matlab code for ShimizuEtal1997a

function w=ShimizuEtal1997a(x,y,keyf,keyxy)
if nargin<4 || isempty(keyxy)

switch keyf
case ‘F’; w = (x-5)^2+(2*y+1)^2;
case ‘G’; w = [];
case ‘f’; w = (y-1)^2-1.5*x*y;
case ‘g’; w = [-3*x+y+3; x-0.5*y-4; x+y-7];
end

else
switch keyf
case ‘F’

switch keyxy
case ‘x’ ; w = 2*(x-5);
case ‘y’ ; w = 4*(2*y+1);
case ‘xx’; w = 2;
case ‘xy’; w = 0;
case ‘yy’; w = 8;
end

case ‘G’
switch keyxy
case ‘x’ ; w = [];
case ‘y’ ; w = [];
case ‘xx’; w = [];
case ‘xy’; w = [];
case ‘yy’; w = [];
end

case ‘f’
switch keyxy
case ‘x’ ; w = -1.5*y;
case ‘y’ ; w = 2*(y-1)-1.5*x;
case ‘xx’; w = 0;
case ‘xy’; w = -1.5;
case ‘yy’; w = 2;
end

case ‘g’
switch keyxy
case ‘x’ ; w = [-3; 1; 1];
case ‘y’ ; w = [ 1;-0.5; 1];
case ‘xx’; w = [ 0; 0; 0];
case ‘xy’; w = [ 0; 0; 0];
case ‘yy’; w = [ 0; 0; 0];
end

end
end
end
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Example
Franke et al. (2018), see [31], considered the bilevel program (19.1.1) with

F(y) := −y2,

f (y) := y3,

g(y) :=
⎡

⎣
y2

1 − y3

y2
1 + y2

2 − 1
−y3

⎤

⎦ .

Here, we have dimensions nx = 0, ny = 3, nG = 0, and ng = 3.
The m-file is named FrankeEtal2018Ex513 (i.e., exmaple_name =
FrankeEtal2018Ex513) and is equally coded in MATLAB as described
in Table 19.3.

Remark 19.2.1 It is worth mentioning that despite the lack of variable x in the
latter example, we still treat it as an input, for the sake of unifying the inputs of
the function handle as in (19.2.3). Hence, for all the simple bilevel optimization
examples, we input x as a scalar. In this way, x has no impact on the example itself.
�

19.2.2 Useful Details on the Examples

The details related to each example presented in the BOLIB library are in a column
of Table 19.4 below. As we mentioned before, those examples are classified into
3 categories: nonlinear, linear and simple bilevel optimisation test examples. The
first column of the table provides the list of problems, as they appear in the
Examples subfolder of the BOLIBver2 folder. The second column gives the
reference in the literature where the example might have first appeared. The third
column combines the labels corresponding to the nature of the functions involved in
(19.1.1). Precisely, “N” and “L” will be used to indicate whether the functions F , G,
f , and g are nonlinear (N) or linear (L), while “O” is used to symbolize that there is
either no function G or g present in problem (19.1.1). Then follows the column with
nx and ny for the upper and lower-level variable dimensions, as well as nG (resp.
ng) to denote the number of components of the upper (resp. lower)-level constraint
function. On the other hand, F ∗ and f ∗ denote the best known optimal upper and
lower-level objective function values, respectively, according to the reference that is
listed in the last column.
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Table 19.3 Matlab code for FrankeEtal2018Ex513

function w=FrankeEtal2018Ex513(x,y,keyf,keyxy)
if nargin<4 || isempty(keyxy)

switch keyf
case ‘F’; w = -y(2);
case ‘G’; w = [];
case ‘f’; w = y(3);
case ‘g’; w = [y(1)^2-y(3); y(1)^2+y(2)^2-1; -y(3)];
end

else
switch keyf
case ‘F’

switch keyxy
case ‘x’ ; w = 0;
case ‘y’ ; w = [0; -1; 0];
case ‘xx’; w = 0;
case ‘xy’; w = zeros(3,1);
case ‘yy’; w = zeros(3,3);
end

case ‘G’
switch keyxy
case ‘x’ ; w = [];
case ‘y’ ; w = [];
case ‘xx’; w = [];
case ‘xy’; w = [];
case ‘yy’; w = [];
end

case ‘f’
switch keyxy
case ‘x’ ; w = 0;
case ‘y’ ; w = [0; 0; 1];
case ‘xx’; w = 0;
case ‘xy’; w = zeros(3,1);
case ‘yy’; w = zeros(3,3);
end

case ‘g’
switch keyxy
case ‘x’ ; w = zeros(3,1);
case ‘y’ ; w = [2*y(1) 0 -1; 2*y(1) 2*y(2) 0; 0 0 -1];
case ‘xx’; w = zeros(3,1);
case ‘xy’; w = zeros(9,1);
case ‘yy’; w = [2 0 0;0 0 0;0 0 0;2 0 0; 0 2 0;zeros(4,3)];
end

end
end
end
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Table 19.4 List of bilevel programs with related labels and known solutions

Example name RefI F -G-f -g nx ny nG ng F ∗ f ∗ RefII

Nonlinear bilevel programs

AiyoshiShimizu1984Ex2 [1] L-L-N-L 2 2 5 6 5 0 [1]

AllendeStill2013 [2] N-L-N-N 2 2 5 2 1 −0.5 [2]

AnEtal2009 [3] N-L-N-L 2 2 6 4 2251.6 565.8 [3]

Bard1988Ex1 [6] N-L-N-L 1 1 1 4 17 1 [6]

Bard1988Ex2 [6] N-L-N-L 4 4 9 12 −6600 54 [17]

Bard1988Ex3 [6] N-N-N-N 2 2 3 4 −12.68 −1.02 [18]

Bard1991Ex1 [7] L-L-N-L 1 2 2 3 2 12 [7]

BardBook1998Ex832 [8] N-L-L-L 2 2 4 7 0 5

CalamaiVicente1994a [12] N-O-N-L 1 1 0 3 0 0 [12]

CalamaiVicente1994b [12] N-O-N-L 4 2 0 6 0.3125 −0.4063 [12]

CalamaiVicente1994c [12] N-O-N-L 4 2 0 6 0.3125 −0.4063 [12]

CalveteGale1999P1 [13] L-L-L-N 2 3 2 6 −29.2 0.31 [13, 33]

ClarkWesterberg1990a [15] N-L-N-L 1 1 2 3 5 4 [61]

Colson2002BIPA1 [17] N-L-N-L 1 1 3 3 250 0

Colson2002BIPA2 [17] N-L-N-L 1 1 1 4 17 2 [18]

Colson2002BIPA3 [17] N-L-N-L 1 1 2 2 2 24.02 [18]

Colson2002BIPA4 [17] N-L-N-L 1 1 2 2 88.79 −0.77 [18]

Colson2002BIPA5 [17] N-L-N-N 1 2 1 6 2.75 0.57 [18]

Dempe1992a [19] L-N-N-N 2 2 1 2 × ×
Dempe1992b [19] N-O-N-N 1 1 0 1 31.25 4 [18]

DempeDutta2012Ex24 [21] N-O-N-N 1 1 0 1 0 0 [21]

DempeDutta2012Ex31 [21] L-N-N-N 2 2 4 2 −1 4 [21]

DempeEtal2012 [25] L-L-N-L 1 1 2 2 −1 −1 [25]

DempeFranke2011Ex41 [22] N-L-N-L 2 2 4 4 5 −2 [22]

DempeFranke2011Ex42 [22] N-L-N-L 2 2 4 3 2.13 −3.5 [22]

DempeFranke2014Ex38 [23] L-L-N-L 2 2 4 4 −1 −4 [23]

DempeLohse2011Ex31a [24] N-O-N-L 2 2 0 4 −5.5 0 [24]

DempeLohse2011Ex31b [24] N-O-N-L 3 3 0 5 −12 0

DeSilva1978 [26] N-O-N-L 2 2 0 4 −1 0 [18]

FalkLiu1995 [28] N-O-N-L 2 2 0 4 −2.1962 0 [18]

FloudasEtal2013 [29] L-L-N-L 2 2 4 7 0 200 [69]

FloudasZlobec1998 [30] N-L-L-N 1 2 2 6 1 −1 [33, 53]

GumusFloudas2001Ex1 [33] N-L-N-L 1 1 3 3 2250 197.75 [53]

GumusFloudas2001Ex3 [33] L-L-N-L 2 3 4 9 −29.2 0.31 [53]

GumusFloudas2001Ex4 [33] N-L-N-L 1 1 5 2 9 0 [53]

GumusFloudas2001Ex5 [33] L-L-N-N 1 2 2 6 0.19 −7.23 [53]

HatzEtal2013 [34] L-O-N-L 1 2 0 2 0 0 [34]

HendersonQuandt1958 [36] N-L-N-L 1 1 2 1 −3266.7 −711.11 [36]

HenrionSurowiec2011 [37] N-O-N-O 1 1 0 0 −c2/4 −c2/8 [27]

(continued)
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Table 19.4 (continued)

Example name RefI F -G-f -g nx ny nG ng F ∗ f ∗ RefII

IshizukaAiyoshi1992a [39] N-L-L-L 1 2 1 5 0 −M [39]

KleniatiAdjiman2014Ex3 [40] L-L-N-L 1 1 2 2 −1 0 [40]

KleniatiAdjiman2014Ex4 [40] N-N-N-N 5 5 13 11 −10 −3.1 [40]

LamparSagrat2017Ex23 [41] L-L-N-L 1 2 2 2 −1 1 [41]

LamparSagrat2017Ex31 [42] N-L-L-L 1 1 1 1 1 0 [42]

LamparSagrat2017Ex32 [42] N-O-N-O 1 1 0 0 0.5 0 [42]

LamparSagrat2017Ex33 [42] N-L-L-L 1 2 1 3 0.5 0 [42]

LamparSagrat2017Ex35 [42] N-L-L-L 1 1 2 3 0.8 −0.4 [42]

LucchettiEtal1987 [48] N-L-N-L 1 1 2 2 0 0 [48]

LuDebSinha2016a [47] N-L-N-O 1 1 4 0 1.14 1.69 [47]

LuDebSinha2016b [47] N-L-N-O 1 1 4 0 0 1.66 [47]

LuDebSinha2016c [47] N-L-N-O 1 1 4 0 1.12 0.06 [47]

LuDebSinha2016d [47] L-N-L-N 2 2 11 3 × ×
LuDebSinha2016e [47] N-L-L-N 1 2 6 3 × ×
LuDebSinha2016f [47] L-N-N-O 2 1 9 0 × ×
MacalHurter1997 [49] N-O-N-O 1 1 0 0 81.33 −0.33 [49]

Mirrlees1999 [52] N-O-N-O 1 1 0 0 1 0.06 [52]

MitsosBarton2006Ex38 [53] N-L-N-L 1 1 4 2 0 0 [53]

MitsosBarton2006Ex39 [53] L-L-N-L 1 1 3 2 −1 −1 [53]

MitsosBarton2006Ex310 [53] L-L-N-L 1 1 2 2 0.5 −0.1 [53]

MitsosBarton2006Ex311 [53] L-L-N-L 1 1 2 2 −0.8 0 [53]

MitsosBarton2006Ex312 [53] N-L-N-L 1 1 2 2 0 0 [53]

MitsosBarton2006Ex313 [53] L-L-N-L 1 1 2 2 −1 0 [53]

MitsosBarton2006Ex314 [53] N-L-N-L 1 1 2 2 0.25 −0.08 [53]

MitsosBarton2006Ex315 [53] L-L-N-L 1 1 2 2 0 −0.83 [53]

MitsosBarton2006Ex316 [53] L-L-N-L 1 1 2 2 −2 0 [53]

MitsosBarton2006Ex317 [53] N-L-N-L 1 1 2 2 0.19 −0.02 [53]

MitsosBarton2006Ex318 [53] N-L-N-L 1 1 2 2 −0.25 0 [53]

MitsosBarton2006Ex319 [53] N-L-N-L 1 1 2 2 −0.26 0 [53]

MitsosBarton2006Ex320 [53] N-L-N-L 1 1 2 2 0.31 −0.08 [53]

MitsosBarton2006Ex321 [53] N-L-N-L 1 1 2 2 0.21 −0.07 [53]

MitsosBarton2006Ex322 [53] N-L-N-N 1 1 2 3 0.21 −0.07 [53]

MitsosBarton2006Ex323 [53] N-N-L-N 1 1 3 3 0.18 −1 [53]

MitsosBarton2006Ex324 [53] N-L-N-L 1 1 2 2 −1.75 0 [53]

MitsosBarton2006Ex325 [53] N-N-N-N 2 3 6 9 −1 −2 [53]

MitsosBarton2006Ex326 [53] N-N-N-L 2 3 7 6 −2.35 −2 [53]

MitsosBarton2006Ex327 [53] N-N-N-N 5 5 13 13 2 −1.1 [53]

MitsosBarton2006Ex328 [53] N-N-N-N 5 5 13 13 −10 −3.1 [53]

MorganPatrone2006a [54] L-L-N-L 1 1 2 2 −1 0 [54]

MorganPatrone2006b [54] L-O-N-L 1 1 0 4 −1.25 0 [54]

(continued)
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Table 19.4 (continued)

Example name RefI F -G-f -g nx ny nG ng F ∗ f ∗ RefII

MorganPatrone2006c [54] L-O-N-L 1 1 0 4 −1 −0.25 [54]

MuuQuy2003Ex1 [55] N-L-N-L 1 2 2 3 −2.08 −0.59 [55]

MuuQuy2003Ex2 [55] N-L-N-L 2 3 3 4 0.64 1.67 [55]

NieEtal2017Ex34 [56] L-L-N-N 1 2 2 2 2 0 [56]

NieEtal2017Ex52 [56] N-N-N-N 2 3 5 2 −1.71 −2.23 [56]

NieEtal2017Ex54 [56] N-N-N-N 4 4 3 2 −0.44 −1.19 [56]

NieEtal2017Ex57 [56] N-N-N-N 2 3 5 2 −2 −1 [56]

NieEtal2017Ex58 [56] N-N-N-N 4 4 3 2 −3.49 −0.86 [56]

NieEtal2017Ex61 [56] N-N-N-N 2 2 5 1 −1.02 −1.08 [56]

Outrata1990Ex1a [57] N-O-N-L 2 2 0 4 −8.92 −6.05 [57]

Outrata1990Ex1b [57] N-O-N-L 2 2 0 4 −7.56 −0.58 [57]

Outrata1990Ex1c [57] N-O-N-L 2 2 0 4 −12 −112.71 [57]

Outrata1990Ex1d [57] N-O-N-L 2 2 0 4 −3.6 −2 [57]

Outrata1990Ex1e [57] N-O-N-L 2 2 0 4 −3.15 −16.29 [57]

Outrata1990Ex2a [57] N-L-N-L 1 2 1 4 0.5 −14.53 [57]

Outrata1990Ex2b [57] N-L-N-L 1 2 1 4 0.5 −4.5 [57]

Outrata1990Ex2c [57] N-L-N-L 1 2 1 4 1.86 −10.93 [57]

Outrata1990Ex2d [57] N-L-N-N 1 2 1 4 0.92 −19.47 [57]

Outrata1990Ex2e [57] N-L-N-N 1 2 1 4 0.90 −14.94 [57]

Outrata1993Ex31 [58] N-L-N-N 1 2 1 4 1.56 −11.67 [58]

Outrata1993Ex32 [58] N-L-N-N 1 2 1 4 3.21 −20.53 [58]

Outrata1994Ex31 [59] N-L-N-N 1 2 2 4 3.21 −20.53 [59]

OutrataCervinka2009 [60] L-L-N-L 2 2 1 3 0 0 [60]

PaulaviciusEtal2017a [61] N-L-N-L 1 1 4 2 0.25 0 [61]

PaulaviciusEtal2017b [61] L-L-N-L 1 1 4 2 −2 −1.5 [61]

SahinCiric1998Ex2 [62] N-L-N-L 1 1 2 3 5 4 [62]

ShimizuAiyoshi1981Ex1 [64] N-L-N-L 1 1 3 3 100 0 [64]

ShimizuAiyoshi1981Ex2 [64] N-L-N-L 2 2 3 4 225 100 [64]

ShimizuEtal1997a [65] N-O-N-L 1 1 0 3 × ×
ShimizuEtal1997b [65] N-L-N-L 1 1 2 2 2250 197.75 [65]

SinhaMaloDeb2014TP3 [66] N-N-N-N 2 2 3 4 −18.68 −1.02 [66]

SinhaMaloDeb2014TP6 [66] N-L-N-L 1 2 1 6 −1.21 7.62 [66]

SinhaMaloDeb2014TP7 [66] N-N-N-L 2 2 4 4 −1.96 1.96 [66]

SinhaMaloDeb2014TP8 [66] N-L-N-L 2 2 5 6 0 100 [66]

SinhaMaloDeb2014TP9 [66] N-O-N-L 10 10 0 20 0 1 [66]

SinhaMaloDeb2014TP10 [66] N-O-N-L 10 10 0 20 0 1 [66]

TuyEtal2007 [69] N-L-L-L 1 1 2 3 22.5 −1.52 [69]

Vogel2002 [72] N-L-N-L 1 1 2 1 1 −2 [72]

WanWangLv2011 [73] N-O-L-L 2 3 0 8 10.63 −0.5 [73]

YeZhu2010Ex42 [75] N-L-N-L 1 1 2 1 1 −2 [75]

YeZhu2010Ex43 [75] N-L-N-L 1 1 2 1 1.25 −2 [75]

Yezza1996Ex31 [76] N-L-N-L 1 1 2 2 1.5 −2.5 [76]

(continued)



19 BOLIB: Bilevel Optimization LIBrary of Test Problems 575

Table 19.4 (continued)

Example name RefI F -G-f -g nx ny nG ng F ∗ f ∗ RefII

Yezza1996Ex41 [76] N-O-N-L 1 2 0 2 0.5 2.5 [76]
Zlobec2001a [77] N-O-L-L 1 2 0 3 −1 −1 [77]
Zlobec2001b [77] L-L-L-N 1 1 2 4 No Solution [77]
DesignCentringP1 [67] N-N-N-N 3 6 3 3 × ×
DesignCentringP2 [67] N-N-N-N 4 6 5 3 × ×
DesignCentringP3 [67] N-N-N-N 6 6 3 3 × ×
DesignCentringP4 [67] N-N-N-N 4 6 3 12 × ×
NetworkDesignP1 [17] N-L-N-L 5 5 5 6 300.5 419.8 [18]
NetworkDesignP2 [17] N-L-N-L 5 5 5 6 142.9 81.95 [18]
OptimalControl [50] N-N-N-L 2 ny 3 2ny × ×
RobustPortfolioP1 [67] L-N-N-N N+1 N N+3 N+1 1.15 0 [67]
RobustPortfolioP2 [67] L-N-N-N N+1 N N+3 N+1 1.15 0 [67]
TollSettingP1 [17] N-L-N-L 3 8 3 18 −7 12 [18]
TollSettingP2 [17] N-L-N-L 3 18 3 38 −4.5 32 [18]
TollSettingP3 [17] N-L-N-L 3 18 3 38 −3.5 32 [18]
TollSettingP4 [17] N-O-N-L 2 4 0 8 −4 14 [18]
TollSettingP5 [17] N-O-N-L 1 4 0 8 −2.5 14 [18]
Linear bilevel programs
AnandalinghamWhite1990 [4] L-L-L-L 1 1 1 6 −49 15 [4]
Bard1984a [5] L-L-L-L 1 1 1 5 28/9 −60/9 [5]
Bard1984b [5] L-L-L-L 1 1 1 5 −37.6 1.6 [5]
Bard1991Ex2 [7] L-L-L-L 1 2 1 5 −1 −1 [7]
BardFalk1982Ex2 [9] L-L-L-L 2 2 2 5 −3.25 −4 [9]
Ben-AyedBlair1990a [10] L-L-L-L 1 2 2 4 −2.5 −5 [10]
Ben-AyedBlair1990b [10] L-L-L-L 1 1 1 4 −6 5 [10]
BialasKarwan1984a [11] L-L-L-L 1 2 1 7 −2 −0.5 [11]
BialasKarwan1984b [11] L-L-L-L 1 1 1 6 −11 11 [11]
CandlerTownsley1982 [14] L-L-L-L 2 3 2 6 −29.2 3.2 [14]
ClarkWesterberg1988 [16] L-O-L-L 1 1 0 3 −37 14 [16]
ClarkWesterberg1990b [15] L-L-L-L 1 2 2 5 −13 −4 [15]
GlackinEtal2009 [32] L-L-L-L 2 1 3 3 6 0 [32]
HaurieSavardWhite1990 [35] L-O-L-L 1 1 0 4 27 −3 [35]
HuHuangZhang2009 [38] L-L-L-L 1 2 1 5 −76/9 −41/9 [38]
LanWenShihLee2007 [43] L-L-L-L 1 1 1 7 −85.09 50.17 [43]
LiuHart1994 [46] L-L-L-L 1 1 1 4 −16 4 [46]
MershaDempe2006Ex1 [51] L-L-L-L 1 1 1 5 × × [51]
MershaDempe2006Ex2 [51] L-L-L-L 1 1 2 2 −20 −6 [51]
TuyEtal1993 [68] L-L-L-L 2 2 3 4 −3.25 −6 [68]
TuyEtal1994 [70] L-L-L-L 2 2 3 3 6 0 [70]
TuyEtal2007Ex3 [69] L-L-L-L 10 6 12 13 −467.46 −11.62 [69]
VisweswaranEtal1996 [71] L-L-L-L 1 1 1 5 28/9 −60/9 [71]
WangJiaoLi2005 [74] L-L-L-L 1 2 2 2 −1000 −1 [74]

(continued)
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Table 19.4 (continued)

Example name RefI F -G-f -g nx ny nG ng F ∗ f ∗ RefII

Simple bilevel programs

FrankeEtal2018Ex53 [31] N-L-N-L 0 2 4 4 1 1 [31]

FrankeEtal2018Ex511 [31] N-O-L-L 0 3 0 4 3 0 [31]

FrankeEtal2018Ex513 [31] L-O-L-N 0 3 0 3 −1 0 [31]

FrankeEtal2018Ex521 [31] L-O-L-N 0 2 0 3 −1 0 [31]

MitsosBarton2006Ex31 [53] L-L-L-L 0 1 2 2 1 −1 [53]

MitsosBarton2006Ex32 [53] L-L-L-L 0 1 3 2 No Solution [53]

MitsosBarton2006Ex33 [53] L-L-N-N 0 1 2 3 −1 1 [53]

MitsosBarton2006Ex34 [53] L-L-N-L 0 1 2 2 1 −1 [53]

MitsosBarton2006Ex35 [53] L-L-N-L 0 1 2 2 0.5 −1 [53]

MitsosBarton2006Ex36 [53] L-L-N-L 0 1 2 2 −1 −1 [53]

ShehuEtal2019Ex42 [63] N-O-N-O 0 ny 0 0 × ×

Note that examples Zlobec2001b and MitsosBartonEx32 have
no optimal solutions. There are 4 examples involving parameters; i.e.,
CalamaiVicente1994a with ρ ≥ 1 (its F ∗ and f ∗ listed in the table are
under ρ = 1, other cases can be found in [12]), HenrionSurowiec2011 with
c ∈ R, IshizukaAiyoshi1992a with M > 1 and RobustPortfolioP1
with δ ∈ [1,+∞] (its F ∗ and f ∗ listed in the table are under δ = 2). Dimensions
nx , ny , nG or ng of examples OptimalControl, RobustPortfolioP1,
RobustPortfolioP2, and ShehuEtal2019Ex42 can be altered to get
problems of different sizes, as necessary.

Remark 19.2.2 It is worth pointing out that some examples involve equality con-
straints in the upper or lower-level problems. As only 8% of the BOLIB problems
have such constraints, we preserve the uniformity in the structure of the codes by
converting equalities constraints into inequalities. For the sake of clarity, we list all
the examples with equality constraints below (Table 19.5). �

19.3 How to Access the Library?

The library can be accessed through the dedicated website https://biopt.github.
io/bolib/. Under this link, you will find the zipped folder named BOLIBver2
containing all the relevant files for the version of the library presented in this paper.
The folder contains the subfolder named Examples, which contains all the m-files
with the codes of the examples, as described in the previous section. The pdf file
named Formulas collects all the mathematical formulas of all the examples in
this library. To start with the library, it is advised to consult the readme file for
some further useful instructions on how to use it.

https://biopt.github.io/bolib/
https://biopt.github.io/bolib/
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Table 19.5 List of bilevel programs with equalities constraints

Example name Ref. F -G-H -f -g-h nx ny nG nH ng nh

DempeDutta2012Ex31 [21] L-L-N-N-N-O 2 2 2 1 2 0

DempeFranke2011Ex41 [22] N-L-L-N-L-O 2 2 2 1 4 0

DempeFranke2011Ex42 [22] N-L-L-N-L-O 2 2 2 1 3 0

Zlobec2001b [77] L-L-O-L-L-N 1 1 2 0 2 1

NetworkDesignP1 [17] N-L-O-N-O-L 5 5 5 0 0 3

NetworkDesignP2 [17] N-L-O-N-O-L 5 5 5 0 0 3

OptimalControl [50] N-N-O-N-L-L 2 ny 3 0 ny
1
2ny

RobustPortfolioP1 [67] L-N-L-N-N-O N+1 N N+1 1 N+1 0

RobustPortfolioP2 [67] L-N-L-N-N-O N+1 N N+1 1 N+1 0

TollSettingP1 [17] N-L-O-N-L-L 3 8 3 0 8 5

TollSettingP2 [17] N-L-O-N-L-L 3 18 3 0 18 10

TollSettingP3 [17] N-L-O-N-L-L 3 18 3 0 18 10

TollSettingP4 [17] N-O-O-N-L-L 2 4 0 0 2 4

TollSettingP5 [17] N-O-O-N-L-L 1 4 0 0 2 4
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60. J.V. Outrata, M. Červinka, On the implicit programming approach in a class of mathematical
programs with equilibrium constraints. Control Cybern. 38(4B), 1557–1574 (2009)

61. R. Paulavicius, P.M. Kleniati, C.S. Adjiman, BBASBL: Branch-And-Sandwich BiLevel solver.
Implementation and computational study with the BASBLib test set. Comput. Chem. Eng. 132,
106609 (2020)

https://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC
http://www.egr.msu.edu/kdeb/papers/c2016026.pdf
http://www.egr.msu.edu/kdeb/papers/c2016026.pdf
http://www.avt.rwthaachen.de/cms/AVT/Forschung/Software/~dfyqp
http://www.avt.rwthaachen.de/cms/AVT/Forschung/Software/~dfyqp


580 S. Zhou et al.

62. K.H. Sahin, A.R. Ciric, A dual temperature simulated annealing approach for solving bilevel
programming problems. Comput. Chem. Eng. 23(1), 11–25 (1998)

63. Y. Shehu, P.T. Vuong, A.B. Zemkoho, An inertial extrapolation method for convex simple
bilevel optimization. Optim. Methods Softw. (in press). Available online at https://www.
tandfonline.com/doi/full/10.1080/10556788.2019.1619729

64. K. Shimizu, E. Aiyoshi, A new computational method for Stackelberg and min-max problems
by use of a penalty method. IEEE Trans. Autom. Control 26(2), 460–466 (1981)

65. K. Shimizu, Y. Ishizuka, J.F. Bard, Nondifferentiable and Two-Level Mathematical Program-
ming (Kluwer Academic Publishers, 1997)

66. A. Sinha, P. Malo, K. Deb, An improved bilevel evolutionary algorithm based on quadratic
approximations, in 2014 IEEE Congress Evolutionary Computation (CEC), pp. 1870–1877
(2014)

67. O. Stein, G. Still, Solving semi-infinite optimization problems with interior point techniques.
SIAM J. Control Optim. 42(3), 769–688 (2003)

68. H. Tuy, A. Migdalas, P. Värbrand, A global optimization approach for the linear two-level
program. J. Global Optim. 3(1), 1–23 (1993)

69. H. Tuy, A. Migdalas, N.T. Hoai-Phuong, A novel approach to bilevel nonlinear programming.
J. Global Optim. 38(4), 527–554 (2007)

70. H. Tuy, A. Migdalas, P. Värbrand, A quasiconcave minimization method for solving linear
two-level programs. J. Global Optim. 4, 243–263 (1994)

71. V. Visweswaran, C.A. Floudas, M.G. Ierapetritou, E.N. Pistikopoulos, A decomposition-based
global optimization approach for solving bi-level linear and quadratic programs, in State of the
Art in Global Optimization, ed. by C.A. Floudas, P.M. Pardalos. Nonconvex Optimization and
Its Applications, vol. 7, pp. 139–162 (Springer, New York, 1996)

72. S. Vogel, Zwei-Ebenen-Optimierungsaufgaben mit nichtkonvexer Zielfunktion in der unteren
Ebene, PhD thesis, Department of Mathematics and Computer Science, TU Bergakademie
Freiberg, Freiberg, Germany, 2012

73. Z.P. Wan, G.M. Wang, Y.B. Lv, A dual-relax penalty function approach for solving nonlinear
bilevel programming with linear lower level problem. Acta Math. Sci. 31(2), 652–660 (2011)

74. Y. Wang, Y.C. Jiao, H. Li, A evolutionary algorithm for solving nonlinear bilevel programming
based on a new contraint-handling scheme. IEEE Trans. Syst. Man Cybern. C 35(2), 221–232
(2005)

75. J.J. Ye, D.L. Zhu, New necessary optimality conditions for bilevel programs by combining the
mpec and value function approaches. SIAM J. Optim. 20(4), 1885–1905 (2010)

76. A. Yezza, First-order necessary optimality conditions for general bilevel programming prob-
lems. J. Optim. Theory Appl. 89(1), 189–219 (1996)

77. S. Zlobec, Bilevel programming: optimality conditions and duality, in Encyclopedia of
Optimization, pp. 180–185, ed. by C. Floudas, P. Pardalos (Springer, New York, 2001)

https://www.tandfonline.com/doi/full/10.1080/10556788.2019.1619729
https://www.tandfonline.com/doi/full/10.1080/10556788.2019.1619729


Chapter 20
Bilevel Optimization: Theory,
Algorithms, Applications
and a Bibliography

Stephan Dempe

Abstract Bilevel optimization problems are hierarchical optimization problems
where the feasible region of the so-called upper level problem is restricted by the
graph of the solution set mapping of the lower level problem. Aim of this article
is to collect a large number of references on this topic, to show the diversity of
contributions and to support young colleagues who try to start research in this
challenging and interesting field.

Keywords Bilevel optimization · Mathematical programs with complementarity
constraints · Optimality conditions · Applications · Necessary optimality
conditions · Solution algorithms · Metaheuristics · Optimistic and pessimistic
bilevel optimization problems

20.1 Introduction

Bilevel optimization problems are hierarchical optimization problems of two or
more players. For defining them consider first a parametric optimization problem

min
y
{f (x, y) : g(x, y) ≤ 0, y ∈ Y }, (20.1.1)

where f, gi : R
m × R

n → R, i = 1, . . . , p and Y ⊆ R
n. Here, equality

constraints can be added if the regularity conditions are adapted accordingly. This
is the problem of the lower-level decision maker, sometimes called the follower’s
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problem. If problems with more than one decision maker in the lower level are
considered, then e.g. a Nash equilibrium is searched for between them. Let

ϕ(x) := min
y
{f (x, y) : g(x, y) ≤ 0, y ∈ Y } (20.1.2)

denote the optimal value function of problem (20.1.1) and

$(x) := {y ∈ Y : g(x, y) ≤ 0, f (x, y) ≤ ϕ(x)} (20.1.3)

the solution set mapping of problem (20.1.1). If gph$ := {(x, y) : y ∈ $(x)} is
used to abbreviate the graph of the solution set mapping $ , the bilevel optimization
problem

’ min
x

’{F(x, y) : G(x) ≤ 0, (x, y) ∈ gph$, x ∈ X} (20.1.4)

can be formulated with X ⊆ R
m, F : Rm × R

n → R, Gj : Rm → R, j =
1, . . . , q . Sometimes, this problem is called the upper level optimization problem
or the problem of the leader. Here we used quotation marks to indicate that this
problem is not well-defined in case of multiple lower-level optimal solutions.

For simplicity we assume that $(x) �= ∅ for all x ∈ X with G(x) ≤ 0. This
assumption can be weakened and is only used to guarantee that the optimal value
function (20.1.2) and the solution set mapping defined in (20.1.3) are well defined.

20.2 History

Problem (20.1.1), (20.1.4) has been formulated for the first time in an economic
context by v. Stackelberg [1245]. Many economic articles investigate related
principal-agency problems, see some references below. Hence, it is sometimes
called Stackelberg game and its solution a Stackelberg equilibrium. About 40
years later, this problem has been introduced into the mathematical community
[208, 273, 274, 522, 761, 981]. Since then a large number of articles illustrating
different views on the topic, investigating various questions both from theoretical
or numerical point-of-view or numerous applications of the problem appeared. It is
our aim here to give the reader some insight into the topic and its investigations.
Citations in this article refer to items in the bibliography given at the end of this
chapter. Without any doubt, this bibliography cannot be complete. Also, due to
space limitations, not all items in the large list of references can be mentioned in
the text. This, of course, does not mean that the items not used in the text are of less
importance.

Bilevel optimization problems are nonconvex and nondifferentiable optimization
problems even if all their defining functions are convex and smooth, see [326].
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20.3 Overviews and Introductions

Well formulated introductory texts on bilevel optimization can be found in [66, 311,
336, 646, 755, 782, 1311]. Reference [1220] gives an overview over evolutionary
methods. In [1084], the authors compare Nash, Cournot, Bertrand and Stackelberg
games, describe ideas for solving them as well as some applications, see also
[171, 1410]. An overview over the investigations at the Montreal school in the years
before 2008 is given in [218]. An overview over solution algorithms for (mixed-
integer) linear bilevel optimization problems can be found in [1143], and for general
bilevel optimization problems in [1076]. Structural properties of the feasible set of
mixed-integer bilevel optimization problems can be found in [138].

Monographs, textbooks and edited volumes on the topic are Bard [131], Dempe
[385], Dempe et al. [413], Dempe and Kalashnikov [397], Kalashnikov et al. [710],
Migdalas et al. [961], Mesanovic et al. [955], Sakawa [1146], Sakawa and Nishizaki
[1151], Shimizu et al. [1200], Stein [1249], Talbi [1270], Xu et al. [1388], Zhang et
al. [1458]. Bilevel optimization problems are the topic of a chapter in the monograph
[479].

Bilevel optimization problems with many followers and the three-level optimiza-
tion problem have been investigated in [40, 64, 600–602, 604, 817, 889, 894, 1035].
A comment to [64] can be found in [1227].

We have used constraints in the upper-level problem of the form G(x) ≤
0. Sometimes upper-level constraints of the form G(x, y) ≤ 0, so-called joint
constraints, are investigated. These problems are not easy to interpret in a game
theoretic context since then, the leader has to select first his / her decision and gives
it to the follower. The latter then computes one optimal reply on the leader’s choice
and gives it back to the leader, who only now is able to check if his / her initial
selection was a feasible one. If the follower’s selection was not unique, feasibility
of the leader’s selection also depends on the response of the follower. This was the
motivation of the authors in [1192] to suggest to move joint upper-level constraints
into the lower level to derive a “correct” definition. This approach is shown to be
not correct in [101, 952] since it changes the problem seriously. Joint constraints can
make the feasible set of the bilevel optimization problem empty even if $(x) �= ∅
for all x ∈ X, or disconnected even if gph$ is connected, see [952].

The three-level problem is investigated in [126, 362, 517]. The articles [128,
158, 1131] explain the geometry of bilevel and multilevel optimization problems.
A global optimal solution of multilevel optimization problems is approximated
in [726]. In [517], three different types of optimistic formulations of three-level
optimization problems are suggested and compared. The electrical network defense
is formulated as a three-level mixed-integer linear programming model [1411].
Necessary optimality conditions and assumptions guaranteeing the existence of an
optimal solution for the three-level optimization problem can be found in [817].

Examples showing nonexistence of optimal solutions can be found in [130].
Survey papers are [148, 335, 384, 387, 435, 707, 713, 884, 934, 935, 960, 1360].

A survey for the pessimistic bilevel optimization problems is [858].
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First bibliographies can be found in [386, 1312, 1333].
The formulation of problems with an infinite number of lower-level decision

makers as a stochastic bilevel optimization problem is given in [895].

20.4 Theoretical Properties and Relations to Other
Optimization Problems

20.4.1 Formulation of the Bilevel Optimization Problem

20.4.1.1 Optimistic vs. Pessimistic Formulation

The formulation of the bilevel optimization problem as given in (20.1.1), (20.1.4) is
not clear in case of multiple lower-level optimal solutions for some of the selections
of the upper-level decision maker. In that case, the leader may assume that the
follower can be motivated to select a best optimal solution in $(x) with respect to
the leader’s objective function. This is the so-called optimistic or weak formulation
of the bilevel optimization problem, investigated in most of the references:

min{ϕo(x) : G(x) ≤ 0, x ∈ X},

where

ϕo(x) = min
y
{F(x, y) : y ∈ $(x)}. (20.4.1)

This problem is almost equivalent to

min
x,y
{F(x, y) : G(x) ≤ 0, x ∈ X, (x, y) ∈ gph$}, (20.4.2)

see [385]. If the upper-level objective function is of a special type the optimistic
bilevel optimization problem can be interpreted as an inverse optimization problem
[23, 670, 1470].

Relations to generalized semi-infinite optimization problems can be found in
[1250].

If this optimistic assumption is not possible or even not allowed the leader
is forced to bound the damage resulting from an unwelcome selection of the
follower resulting in the pessimistic or strong formulation of the bilevel optimization
problem:

min{ϕp(x) : G(x) ≤ 0, x ∈ X}, (20.4.3)
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where

ϕp(x) = max
y
{F(x, y) : y ∈ $(x)}. (20.4.4)

The formulation of the pessimistic Stackelberg game is given in [805, 986]. The
existence of a pessimistic (strong) or an optimistic (weak) optimal solution is
considered in [5, 14, 15, 893], the same based on d.c. optimization is investigated
in [8]. For the existence and stability of pessimistic solutions in general spaces, the
reader is referred to [833, 834, 836, 840]. Topic of the article [1068] is the existence
of solutions in Banach spaces if the solution of the lower-level problem is strongly
stable. The possible nonexistence of pessimistic optimal solutions is shown in [893].

In [1370], the pessimistic bilevel optimization problem with an objective function
not depending on the lower-level variable is formulated as

min{F(x) : x ∈ X, G(x, y) ≤ 0 ∀ y ∈ $(x)}. (20.4.5)

The relations between this formulation and pessimistic bilevel optimization as given
in (20.4.3) are investigated in [1370]. In the same vein, the optimistic bilevel
optimization problem reads as

min{F(x) : x ∈ X, G(x, y) ≤ 0 ∃ y ∈ $(x)}.

Using an idea in [787], the pessimistic bilevel optimization is formulated as an
optimistic one with a two follower Nash game in the lower level [789]. Since
the pessimistic bilevel optimization problem does not have an optimal solution in
general, the authors replace the solution set mapping of the lower-level problem with
the ε-optimal solutions. They show that the resulting perturbed pessimistic bilevel
optimization problem and the optimistic bilevel problem with the two follower Nash
game in the lower level are equivalent with respect to global optimal solutions.

20.4.1.2 Optimization over the Efficient Set

The search for a “best” efficient solution of a multicriterial optimization problem
can be formulated as a bilevel optimization problem [159, 160, 188, 189, 194, 472,
644, 645, 695, 738, 843, 993, 994, 1241, 1281, 1283, 1296], see also the overview
in [1399].

Properties of the problem and the replacement of the upper-level objective
function 〈d, x〉 by a constraint 〈d, x〉 ≤ t for an unknown t in the lower-level
problem can be found in [157]. The “best” efficient solution is obtained for the
smallest t for which the resulting problem has an optimal solution.

A special model is the simple bilevel optimization problem in [392], where a
“best” solution of an optimization problem is searched for. Optimality conditions
for that problem can be found in [392], a solution algorithm is given in [1135, 1235,
1236].
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Stochastic problems of this type are topic of [193].

20.4.1.3 Semivectorial Bilevel Optimization: Vector-Valued Lower-Level
Problems and Problems with Multiobjective Upper-Level
Problems

Bilevel optimization problems where the lower-level problem is a multiobjective
optimization problem are often called semivectorial bilevel optimization problems
[36, 87, 192, 196, 198, 259, 409, 533, 818, 904, 1011, 1105].

Here, the scalarization approach is often used to transform the semivectorial
bilevel optimization problem into an optimistic bilevel problem, see e.g. [409]. For
that, the scalarization vector appears as new variable in the upper-level problem. In
the case that local optimal solutions are computed for the resulting bilevel problem,
this is a delicate issue [424].

Using the scalarization approach and indicator functions as terms in the upper-
level objective function the semivectorial bilevel optimization problem is trans-
formed into a single-level one for which the nonsmooth Mangasarian-Fromovitz
constraint qualification can be satisfied, see [534].

The use of utility functions as well as optimistic and pessimistic approaches to
investigate linear bilevel problems with multiobjective functions in both the leader’s
and the follower’s problems can be found in [1015], for the same in the case of
stochastic data see [1017].

Multiobjective optimization in the upper level of a linear bilevel optimization
problem is the topic of [890, 905], fuzzy optimization approaches are applied in this
case in [202]. Problems with multiobjective upper-level problems are investigated
in [1418] using a combination of the KKT and the optimal value function approach
to transform the bilevel optimization problem into a single-level one.

Optimality conditions for nonlinear bilevel vector optimization problems and a
global solver can be found in [551].

20.4.1.4 Fuzzy Bilevel Optimization Problems

The investigation of bilevel optimization problems with fuzzy lower-level problems
can be found in [432, 657, 850, 1453, 1457].

The fuzzy linear bilevel optimization problem is transformed into a crisp problem
and then solved using a k-th best algorithm in [1100, 1147, 1148, 1454] or using the
KKT approach [1449, 1452]. Solving this problem using an interactive approach has
been the topic of [1109, 1148, 1152, 1154–1156]. A solution algorithm for fuzzy
bilevel optimization problems using α-cuts is given in [225, 542, 544].

For the computation of a satisfactory solution see [786, 1085, 1086, 1127, 1140].
Here, in some sense, an approach is used which is related to multiobjective
optimization, see remarks in [388]. The transformation of a bilevel optimization
problem using ideas from fuzzy optimization into the problem of maximizing
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membership functions related to both the objective functions of the leader’s and
the follower’s problem at the same time is not a possible approach for solving the
bilevel optimization problem, see [388].

Fuzzy (random) bilevel optimization has been applied

1. in the Shuibuya hydropower project [1385],
2. in logistics planning [702],
3. to model the water exchange in eco-industrial parks [112].

20.4.1.5 Stochastic Problems

The model of stochastic bilevel optimization and solution algorithms can be found
in [41, 285, 320, 368, 412, 536, 639, 668, 669, 717, 762, 892, 1052, 1054, 1055,
1078]. Stochastic bilevel multi-leader multi-follower problems are investigated in
[367, 1384]. In [367] the authors show uniqueness of the stochastic multi-leader
Stackelberg-Nash-Cournot equilibrium and suggest an algorithm for computing it.

The transformation of two-stage stochastic bilevel optimization problems into
mixed-discrete optimization problems can be found in [1409].

20.4.1.6 Bilevel Optimization Problems with Fixed-Point Constraints

Existence theorems for bilevel optimization problems with fixed-point constraints
are the topic of [847]. Special cases are MPECs and semi-infinite optimization
problems.

Robust polynomial bilevel optimization problems are investigated in [322].
Robust Stackelberg problems are the topic of [864].

20.4.1.7 Bilevel Equilibrium Problems

A bilevel equilibrium problem has been formulated in [990] which has been the
topic of investigations of many articles since then, see e.g. [888, 1308]. This problem
is an hierarchical problem where both the upper and the lower-level problems are
formulated as variational inequalities. As in bilevel optimization, the solution of the
upper-level problem is a parameter of the lower-level problem and the solution of
the lower-level problem is used to formulate the constraint in the upper-level one.

20.4.2 Dependence on Data Perturbations

The dependence of optimal solutions of bilevel optimization problems on data
perturbations has been investigated by some authors, see e.g. [13, 1341]. The authors
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of [12] replace the lower-level problem using ε-optimal solutions and consider
convergence of the solutions for ε ↓ 0. Stability considerations can be found in
[399, 511, 681, 833–836, 919], the same using the transformation by an inclusion
constraint is given in [448, 449].

A surprising fact is that, global optimal solutions of the bilevel optimization
problem need not to remain globally optimal if a constraint is added to the lower-
level problem which is inactive at the optimal solution [421, 910].

The structure of the feasible set of bilevel optimization problems has been the
topic of [411, 457, 694], see also [1440]. The Mangasarian-Fromovitz constraint
qualification is not generically satisfied in the lower-level problem at optimal
solutions of (optimistic) bilevel optimization problems. If it is violated for some
values of the upper-level variable, the feasible set of the KKT transformation is in
general no longer closed. That encouraged the authors of [43] to replace the lower-
level problem using the F.-John necessary optimality conditions. Generic properties
of an optimal solution of the resulting problem can be found in [43], see [402] with
a comment to that approach.

Upper and lower bounds for the optimal objective function value of bilevel prob-
lems with interval coefficients are computed in [254]. Bilevel linear programming
problems with interval coefficients have also been considered in [1102, 1110, 1162].

An important result related to this is well-posedness of bilevel optimization
problems [78].

20.4.3 Possible Transformations

To investigate properties, for the formulation of optimality conditions and solution
algorithms, the bilevel optimization problem needs to be transformed into a single-
level problem. For this, different approaches are possible. Assume that Y = R

n in
this subsection.

20.4.3.1 Use of the Karush-Kuhn-Tucker Conditions of the Lower-Level
Problem

If the functions y �→ f (x, y), y �→ gi(x, y), i = 1, . . . , p, are differentiable and
a regularity condition is satisfied for the lower-level problem for all (x, y) ∈ gph$ ,
problem (20.4.2) can be replaced by

min
x,y,u
{F(x, y) : G(x) ≤ 0, x ∈ X,

∇y{f (x, y)+ u"g(x, y)} = 0,

u ≥ 0, g(x, y) ≤ 0, u"g(x, y) = 0}.
(20.4.6)
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It is shown in [967] that this approach is only possible if the lower-level problem
is a convex one. Problem (20.4.6) is a so-called mathematical program with
equilibrium (or complementarity) constraints (MPEC), see [897]. This problem is a
nonconvex optimization problem for which the Mangasarian-Fromovitz constraint
qualification is violated at every feasible point [1169]. This transformation is the
most often used one, MPECs have intensively been investigated. In [103, 522, 532]
the complementarity constraint in the Karush-Kuhn-Tucker (KKT) transformation
(20.4.6) is replaced using Boolean variables. Problem (20.4.3) is compared with its
transformation using the KKT conditions of the lower-level problem in [110].

Relations between the KKT and the optimal value transformations as well as
between the KKT transformation and the original bilevel optimization problem
are highlighted in [393]. A similar question is investigated in [1248] for global
optimal solutions of the bilevel optimization problem and its KKT transformation
formulated as a mixed Boolean optimization problem. The combination of the
KKT and the optimal value function approaches for the transformation of bilevel
optimization problems (with nonconvex lower-level problems) has been suggested
in [1073, 1420]. The MPEC-LICQ is generically satisfied for MPECs [1172]. An
example showing that the MPEC-LICQ can be violated for the KKT transformation
of a bilevel optimization problem, even if LICQ and a strong sufficient optimality
condition of second order are satisfied at the optimal solution of the lower-level
problem, can be found in [614] together with a lifting approach to satisfy this
regularity condition for the perturbed problems.

20.4.3.2 Use of Necessary Optimality Conditions Without Lagrange
Multipliers

Let, for x ∈ X,

M(x) := {y : g(x, y) ≤ 0}

denote the feasible set of the lower-level problem, assume that y �→ f (x, y) is a
convex function and, for arbitrary, fixed x ∈ X, M(x) ⊆ R

m is a convex set. Then,
y ∈ $(x) if and only if 0 ∈ ∂yf (x, y)+NM(x)(y), where

NA(z) = {d : d"(w − z) ≤ 0 ∀ w ∈ A}

denotes the normal cone in the sense of convex analysis to a closed set A and it is
assumed that NA(z) = ∅ if z �∈ A. Thus, (20.4.2) can be replaced by

min{F(x, y) : G(x) ≤ 0, x ∈ X, 0 ∈ ∂yf (x, y)+NM(x)(y)}. (20.4.7)

Problem (20.4.7) is fully equivalent to (20.4.2). Problem (20.4.7) is also called an
optimization problem with a generalized equation or with a variational inequality, it
has been studied in [435, 982, 983, 985, 1419].
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20.4.3.3 Use of the Optimal Value Function

Problem (20.4.2) can be equivalently replaced by

min{F(x, y) : G(x) ≤ 0, x ∈ X, g(x, y) ≤ 0, f (x, y) ≤ ϕ(x)}. (20.4.8)

This transformation has first been used in [1037, 1038]. Problem (20.4.8) is a non-
smooth optimization problem since the optimal value function ϕ(x) is, even under
restrictive assumptions, in general not differentiable. Moreover, the nonsmooth
Mangasarian-Fromovitz constraint qualification is violated at every feasible point,
see [1072, 1422].

20.4.3.4 Transformation Using a Variational Inequality

If the definition of the normal cone is used, problem (20.4.7) is

min{F(x, y) :G(x) ≤ 0, x ∈ X, y ∈ M(x),

〈∇yf (x, y), z− y〉 ≥ 0 ∀ z ∈ M(y)}, (20.4.9)

where the problem

find y ∈ M(x) such that 〈∇yf (x, y), z− y〉 ≥ 0 ∀z ∈ M(x)

is often called a generalized variational inequality. Here, f is assumed to be
differentiable, see [1424].

The problem of minimizing some objective function subject to the solution
of a parametric variational inequality is called a generalized bilevel optimization
problem in [835].

Bilevel variational inequalities have been introduced in [714, 1320] and solved
e.g. in [164, 832].

The existence of solutions for bilevel variational inequalities, where both the
upper- and lower-level problems are formulated using variational inequalities, is
topic in [835, 837, 838].

The investigation of bilevel variational inequalities under invexity assumptions
can be found in [298].

The application of bilevel optimization to solve fuzzy variational inequalities is
suggested in [500].

20.4.3.5 Formulation as a Set-Valued Optimization Problem

Using

F (x) :=
⋃

y∈$(x)

F (x, y),
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problem (20.4.2) can be replaced with

" min "{F (x) : G(x) ≤ 0, x ∈ X}. (20.4.10)

This formulation has been the topic of [428, 1074]. For this approach, the notion of
an optimal solution needs to be defined first.

20.4.4 General Properties

Optimal solutions of certain bilevel optimization problems can be found at vertices
of the feasible set [128, 177, 241–243, 250, 255, 865, 942, 943].

Since the bilevel optimization problem can be interpreted as a hierarchical game
it is interesting to ask if it is beneficial to act as leader, see [53, 701, 704, 1290, 1441].

Optimal solutions of the bilevel optimization problem are in general not Pareto
optimal if optimization is done w.r.t. the objective functions of both levels at the
same time [388, 1234]. The relationship between the bilevel problem and bicriterial
optimization is illustrated in [271, 932, 959, 1359]. The correct formulation of
multicriterial optimization problems which are equivalent to the bilevel problem
can be found in [516, 531, 667, 1070, 1132]. An application of these results to solve
linear bilevel optimization problems is given in [562].

In [1361, 1362, 1366], a possible transformation of an optimal solution of the
bilevel optimization problem into a Pareto optimal solution is investigated.

For problems with multiple followers see [692, 1450], problems with multi-
ple leaders have been investigated in [109, 368, 1186]. Nine different kinds of
relationships between followers in bilevel optimization problems with multiple
followers can be found in [885]. For a variational inequality formulation of problems
with multiple leaders we refer to [649]. The existence of optimal solutions for
problems with multiple leaders as well as the relation of this problem to its KKT
transformation (both with respect to global and local optimal solutions) has been
investigated in [109].

Phenomena of inverse Stackelberg problems are described in [1027, 1028].
NP-hardness of bilevel optimization problems has been shown in [130, 185,

439, 676]. Computational complexity of the bilevel knapsack problems is the topic
of [278].

Relations to mixed-integer optimization problems are topic of [523]. The
investigation of a special problem which is polynomially solvable can be found in
[748, 749, 1081].
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20.4.5 Problems in Infinite Dimensional Spaces

Bilevel optimization problems in general spaces are considered in [450, 757, 944,
946].

For the investigation of semivectorial bilevel optimization on Riemannian mani-
folds the reader is referred to [200]. The existence of Stackelberg equilibrium points
on strategy sets which are geodesic convex in certain Riemannian manifolds has
been shown in [766].

The KKT transformation is applied to the bilevel optimization problem in
infinite dimensional spaces in [944]. For the optimal value transformation, regularity
conditions and optimality conditions see [1416]

Necessary optimality conditions in form of M-stationarity conditions for prob-
lems with second order cone programming problems in the lower-level can be found
in [310, 1469]. The robust optimization method for bilevel optimization problems
with uncertain data in the lower-level problem can lead to a bilevel programming
problem with a second-order cone program in the lower-level [309].

The existence of optimal solutions has been investigated for problems in Banach
spaces [837] and for problems in locally convex Hausdorff topological vector spaces
[846].

Stackelberg games go back to the original definition by H.v. Stackelberg [1245]
and refer to problems where the feasible set of the lower level does not depend on
the upper-level variable. Recently investigated related problems are:

1. closed-loop Stackelberg games [734, 976, 1205, 1289],
2. dynamic Stackelberg problems [962, 974, 1012, 1013],
3. reverse Stackelberg problems [578–582]: a special point is the computation of

optimal incentive functions resulting in realization of the leader’s aim by the
follower.

4. Stackelberg differential games [1041]
5. Stackelberg equilibria in an oligopoly [139].

Bilevel optimal control problems are another rather recent area of research.
Here, two optimal control problems are combined in a hierarchical sense. Such
problems have been considered in [152, 154, 162, 745, 757, 948]. An application
of Stackelberg games to optimal control problems can be found in [987]. Pursuit-
evasion games are discretized and transformed into a bilevel programming problem
in [478].

20.4.6 Discrete Bilevel Optimization Problems

A general introduction into discrete bilevel optimization problems can be found in
[1315]. For the special case, when the lower level problem is a parametric knapsack
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problem see [214, 215, 429, 1089] or a matroid problem [503]. For nonlinear integer
bilevel optimization problems see [455, 675].

A transformation of bilevel optimization problems with mixed-integer lower-
level problems into a single-level problem using minima of optimal value functions
of (partial) lower-level problems is suggested in [813].

Using a special penalization approach, the mixed-discrete bilevel optimization
problem can be transformed into a continuous one. Assuming partial calmness,
optimality conditions for both the optimistic and the pessimistic problems are
derived in [418].

Complexity of a bilevel perfect matching problem is the topic of [549], for the
bilevel minimum spanning tree problem see [282, 283].

Optimality conditions for problems with discrete parametric lower-level prob-
lems using the radial subdifferential can be found in [501] or, in case of a parametric
matroid problem in the lower-level, in [503].

Multi-leader-follower games are investigated in [769, 812, 1048, 1292]. The
existence for equilibria in such problems is investigated in [1433]. A Gauss–Seidel
method for solving the EPEC transformation of such problems has been developed
in [643].

20.5 Optimality Conditions

20.5.1 Strongly Stable Lower-Level Optimal Solution

For necessary optimality conditions and solution algorithms using strongly station-
ary solutions in the lower-level problem see [370, 371, 373–375, 381, 382, 854,
1038, 1039]. Necessary optimality conditions using the implicit function theorem
and variational analysis can be found in [1440]. Here the author verifies that the
posed necessary optimality conditions are generically satisfied at local minima of
smooth bilevel optimization problems and that partial calmness is often violated.
Reference [635] describes an idea to formulate necessary (and sufficient) optimality
conditions after deleting some inequality constraints in (20.4.6).

20.5.2 Use of the KKT Transformation

Necessary optimality conditions using the KKT transformation are formulated in
[434, 436, 1340] and using a generalized equation in [17, 434].

The transformation using the F.-John conditions applied to the lower-level
problem in place of the KKT conditions is investigated in [43], see [402] for an
example with a nonconvex lower-level problem where the global optimum cannot
be computed with this approach.
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Using Boolean variables, the resulting mathematical program with complemen-
tarity constraints is transformed into a mixed integer optimization problem in
[103], bounds for the sufficiently large constants (big-M) can be found in [445].
Verifying that a given big-M does not cut off any feasible vertex of the linear bilevel
optimization problem cannot be done in polynomial time unless P = NP, see [741].

20.5.3 Transformation Using the Optimal Value Function

The generalized derivative of the optimal value function of the lower-level problem,
violation of the MFCQ, and necessary optimality conditions can be found in
[302]. Calmness properties of the transformed problem can be found in [633], see
also [1037]. Optimality conditions using the optimal value transformation for the
optimistic bilevel optimization problem are derived in [394–396, 425, 433, 469, 854,
984, 1422, 1427]. For the case when the lower-level problem is an optimal control
problem, see [1413, 1415]. For optimality conditions for infinite and semi-infinite
bilevel optimization problems see [452].

Necessary and sufficient optimality conditions based on Fenchel-Lagrange dual-
ity are investigated in [6].

Optimality conditions using variational analysis for the pessimistic problem are
the topic of [426].

Problems with multiobjective upper-level problems have been investigated in
[405, 408, 480]. Convexificators and exhausters can be used to study extremum
problems involving functions which are not convex, quasidifferentiable or locally
Lipschitz continuous. They are used to derive necessary optimality conditions in
[783].

20.5.4 Set-Valued Optimization Approach

Optimality conditions using the formulation of the bilevel optimization problem as a
set-valued optimization problem can be found in [428, 1444]. Optimality conditions
are derived applying the coderivative of Mordukhovich [982] to the graph of the
solution set mapping $ , see [1474, 1475].

20.5.5 Transformation into a Semi-infinite Optimization
Problem

Optimality conditions using a semi-infinite transformation of the bilevel optimiza-
tion problem can be found in [127]. A counterexample to this result is given in
[323].
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20.5.6 Optimality Conditions for Semivectorial Bilevel
Problems

Optimality conditions for the pessimistic semivectorial bilevel optimization problem
using variational analysis and the transformation using the optimal value function
of the lower-level problem can be found in [853]. Application of the scalarization
approach to the lower-level problem followed by the KKT or the optimal value
transformation of the resulting problem leads to necessary optimality conditions,
see [818].

20.5.7 Optimality Conditions for the Simple Bilevel
Optimization Problem

The problem of finding a special point in the set of optimal solutions of a convex
optimization problem is called a simple bilevel optimization problem. In some
sense, this problem parallels the aim to find a “best” (weak) Pareto optimal solution
of a multiobjective optimization problem. Optimality conditions for a simple bilevel
optimization problem are given in [26, 392].

20.5.8 Optimality Conditions for the Three-Level Optimization
Problem

In [832] the lower level is first transformed using the KKT conditions and then,
optimality conditions for the resulting problem are formulated using variational
analysis.

20.5.9 Other Approaches

The formulation of necessary optimality conditions exploiting convexificators can
be found in [115, 404, 1265].

The extremal principle [982] is used for describing necessary optimality con-
ditions in [140, 407]. For problems with set-valued optimization problems in both
levels, optimality conditions using the variational principle can be found in [410].

Different optimality conditions and transformations are collected in [415].
Necessary and sufficient optimality conditions using a linearization of the

inducible region [296] and by using a description of the tangent cone to the feasible
set [1313] have been derived.

Input optimization is used in [1293].
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For necessary and sufficient optimality conditions under generalized invexity
assumptions see [205].

Necessary conditions for a global optimal solution using a bilevel Farkas lemma
can be found in [679].

20.5.10 Second-Order Optimality Conditions

Second order necessary and sufficient optimality conditions for the optimistic
bilevel optimization problem are obtained in [406].

20.6 Solution Algorithms

20.6.1 Pessimistic Problem

Properties, existence and stability of the pessimistic bilevel problem are investigated
in [423, 770, 873–882].

Using ε-optimal solutions in the lower-level problem, convergence to a pes-
simistic solution for ε ↓ 0 is shown in [918].

In [16] the duality gap of the linear lower-level problem is penalized in the upper-
level objective function to solve the pessimistic bilevel optimization problem. Some
incorrectness in this article is found and corrected in [1483]. The pessimistic linear
bilevel optimization problem with multiple followers is solved using a penalization
of the duality gap in [1495]. Here, the different followers share some of the
resources.

An algorithm for solving the pessimistic bilevel optimization problem using a
regularization approach can be found in [170]. For using an entropy approach see
[1496].

For use of the k-th best algorithm to solve the pessimistic linear bilevel problem
see [1483].

Partial cooperation between the leader and the follower (i.e. weighted sum of the
optimistic and the pessimistic approaches) for linear bilevel optimization problems
is the topic of [276, 1487].

20.6.2 Optimistic Problem

20.6.2.1 Enumeration

Properties and an algorithm for linear bilevel optimization problems can be found
in [1129, 1130].
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Enumeration of the basic matrices of the lower-level problem in linear bilevel
optimization is suggested in [275, 1000]. Using this idea it is shown in [866] that
the algorithm is of polynomial time if the number of variables in the lower-level
problem is fixed.

Vertex enumeration plus a descent algorithm is used in [599]. Convergence to
a local optimum for linear bilevel optimization problems by investigating adjacent
extreme points is shown in [177, 179, 369]. A simplex-type algorithm applied to
an exactly penalized problem is suggested in [269]. A descent algorithm computing
a local optimal solution for linear-quadratic bilevel optimization problems can be
found in [1257, 1260].

The k-th best algorithm has originally been published in [1356], see also
[247, 1483]. The same algorithm for bilevel problems with partially shared variables
between followers is given in [1193]. For an application of the k-th best algorithm
to three-level optimization problems the reader is referred to [600, 1459].

The use of the solution package Pyomo [1087] for solving the optimistic bilevel
optimization problem is described in [610].

20.6.2.2 Use of KKT Transformation

Solution algorithms using the Karush-Kuhn-Tucker transformation can be found in
[122, 123, 125, 129, 132, 697–699, 886]. Solving the KKT transformation using
branch-and-bound is suggested in [133, 522]. Gomory-like cuts in a branch-and-
cut algorithm solving the KKT transformation of the bilevel problem are applied in
[105].

A penalty function algorithm for problems with quadratic lower-level problems
can be found in [916].

Solution algorithm for the problem (20.4.6) after replacing the complementarity
constraint using Boolean variables can be found in [104, 608].

Branch-and-bound algorithm is applied in [179, 474, 487, 608], and for problems
with multiple followers in [887].

Penalization of the duality gap for bilevel problems with linear lower-level
problem is done in [68, 245, 265, 266, 902, 1368, 1397, 1488–1490], for nonlinear
lower level problems see [938].

A penalty function approach to the lower-level problem is applied in [24, 25,
1367] to derive an unconstrained optimization problem which can be replaced by its
gradient. Similar ideas for problems with connecting upper-level constraints can be
found in [659, 950].

Penalization of the complementarity constraint for the linear bilevel optimization
problem is done in [1030], the results of this article are corrected in [267], see
also [268, 270]. Exact penalization of the complementarity constraint under partial
calmness is used in [856].

An approximate global optimal solution is searched for in [1484].
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The authors of [634] solve the KKT-transformation by implicit use of the
inequality constraints. The complementarity constraints are replaced by concave
inequalities in [30].

A successive approximation of the feasible set of the KKT transformation is
obtained in [1269].

The use of approximations for both the complementarity constraint and the y-
gradient of the Lagrange function of the lower-level problem make the computation
of local or global optimal solutions of the bilevel optimization problem possible, see
[403] and [953] for an earlier approach. A similar approximation has been used in
[1225] in combination with an evolutionary algorithm.

Application of disjunctive cuts to the KKT transformation of the bilevel opti-
mization problem can be found in [102].

Benders decomposition algorithm is realized in [521] for problems with discrete
upper and linear lower level problems.

20.6.3 If the Lower-Level Problem Has a Strongly Stationary
Solution

Solution algorithms using strong stability of the lower-level optimal solution
can be found in [378, 441, 496, 497]. Investigation of large problems is done
in [756]. Comparison of different solution algorithms (Hooke-Jeeves algorithm,
bilevel descent algorithm, MINOS and others) can be found in [1263].

After inserting the (optimal) solution function of the lower-level problem into the
upper-level problem, a nonsmooth optimization problem arises which can be solved
using various solution algorithms.

1. An interior point algorithm is applied in [807],
2. a trust region algorithm is the choice in [855],
3. an inexact restoration algorithm where the lower-level problem is solved at each

iteration, can be found in [71],
4. a bundle algorithm is suggested in [383, 384, 391]. This approach is generalized

to the case of nonunique optimal solutions in the lower-level problem in [430].
5. A feasible direction method is used in [954],
6. a steepest descent algorithm can be found in [1166, 1314],
7. Reference [451] use an extragradient cutting-plane-method,
8. a pattern search method has been described in [456].

20.6.4 Use of the Optimal Value Function of the Lower-Level
Problem

Solution algorithms using the optimal value function transformation can be found
in [400, 402, 975, 1199].
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Smooth upper approximations of the optimal value function of the lower-level
problem are used in [100] and in [970, 971] for solving mixed-discrete bilevel
problems. If the optimal value function of the lower level problem is convex or
concave these properties can be applied for an upper estimation of the feasible set
of problem (20.4.8). This has been done for the computation of global and local
optimal solutions in [400, 402].

Kriging is used in [1210] for an interpolation of the optimal value function.
The optimal value transformation is used to find relations between Stackelberg

and Nash equilibria in [787]. A related algorithm solving bilevel optimization prob-
lems where the lower-level problem is fully convex with a parameter independent
feasible set is suggested in [788].

A cutting plane approach is applied to a reverse-convex transformation of the
problem in [11, 57, 60, 995, 1297–1301].

An algorithm for the computation of an approximate global optimal solution of
the optimal value transformation for bilevel optimization problems with nonconvex
lower-level problems and a global optimal solution for ones with convex lower-level
problems using semidefinite optimization is presented in [322, 678]. A smoothing
SQP method for solving these problems is suggested in [1392], a smoothing
augmented Lagrangian method in [1390, 1391] and a smoothing projected gradient
method in [845].

If all functions describing the bilevel optimization problem are polynomials and
the bilevel optimization problem is transformed equivalently into a semi-infinite
optimization problem, a combination of the exchange technique with Lasserre-type
semidefinite relaxations [1009] can be used to solve the problem. If the constraints
in the lower-level problem do not depend on the leader’s variables, this algorithm
converges to a global optimal solution [1010].

20.6.5 Global Optimization

In [586], focus is on global optimization using the αBB approach.
A branch-and-sandwich algorithm can be found in [742–744, 1057].
Global optimization of the KKT-transformation is done in [1318].
For global optimization using sensitivity analysis in the lower-level problem see

[493, 495, 1079].
If the lower-level problem is replaced by a variational inequality, an active set

algorithm is suggested in [1342].
An algorithm for the computation of a global optimal solution for bilevel

problems with quadratic upper and linear lower-level problems can be found in
[1258, 1261, 1262]. Using a transformation with d.c. constraints, the same problems
can be solved globally, see [61, 585].
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20.6.6 Metaheuristics

Different metaheuristics have been applied to bilevel optimization problems:

1. Different genetic algorithms [67, 256–258, 263, 537, 597, 627, 759, 819, 822,
827, 852, 940, 941, 1016, 1149, 1150, 1153, 1214, 1223, 1346, 1403, 1471].

2. Memetic algorithm [37, 660, 663].
3. Ant colony systems [259].
4. Tabu search algorithm [552].
5. Particle swarm optimization [46, 536, 541, 543, 602, 603, 725, 775, 908, 1324,

1462, 1463, 1477, 1478]. This algorithm is used for solving bilevel linear
optimization problems with multiple objective functions in the upper-level
problem [48]. In [46] the algorithm is used to approximate the set of Pareto
optimal solutions of the multiobjective, nonlinear bilevel optimization problem
with linear optimization problems in the lower-level problem which are solved
exactly for each particle in the swarm.

6. Evolutionary algorithm [261, 355–357, 820, 914, 1218, 1221, 1347]. Evolu-
tionary algorithm applied to multiobjective bilevel optimization problems using
quadratic fibres to approximate the set of Pareto optimal solutions of the lower-
level problem [1217].

7. Differential evolution algorithm for problems with multiobjective upper-level
problem [826] and for problems with linear equality constraints [784]. The
differential evolution algorithm for general bilevel optimization problems is
formulated in[74, 75].

8. Simulated annealing [690, 1060, 1144, 1375].
9. Estimation of distribution algorithm [1322].

10. Neural network algorithm [619, 650, 790, 900, 903, 1119, 1195].
11. Fruit fly algorithm [911, 1330].

20.6.7 Special Algorithms

Solution algorithms for special problems can be found in [141, 233, 1135, 1236].

1. Direct search algorithm [953, 1446].
2. Combination of the simplex algorithm with projected gradients [1252].
3. A trust-region algorithm [331, 334, 937].
4. Application of ideas from bicriterial optimization for solving bilevel optimization

problems [1304], comment on this algorithm in [271, 1359].
5. Transformation into multicriterial optimization problem using certain mem-

bership functions [483]. References [149, 617] show that the algorithms in
[125] (Grid search algorithm) and in [180] (parametric complementary pivot
algorithm) fail in general.
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6. Use of fuzzy optimization to compute a satisfactory solution [95, 654, 969, 1157,
1194, 1485].

7. Use of derivative-free solution algorithms [337].

20.6.8 Integer Bilevel Problems

Solution algorithms for mixed-integer bilevel optimization problems are suggested
in [280, 438, 455, 475, 587, 760, 980, 1142, 1363, 1395]. The watermelon algorithm
proposed in [1335] is an exact algorithm solving discrete linear bilevel optimization
problems using disjunction cuts to remove infeasible solutions for the bilevel
problem from the search space. An efficient cutting plane algorithm can be found
in [512–514]. A cutting plane algorithm for special discrete bilevel optimization
problem is given in [629].

The solution of Boolean bilevel optimization problems using the optimal value
reformulation and a cutting plane algorithm has been investigated in [417], see also
[883]. An interactive approach to integer bilevel optimization problems can be found
in [484]. An extended version of the k-th best algorithm can be found in [1188,
1189]. For a mixture of cutting plane and k-th best algorithm for integer fractional
bilevel optimization problems, see [201, 1282].

The exact solution of bilevel assignment problems is topic of [145], special cases
of this NP-hard problem can be solved in polynomial time.

For solving integer bilevel optimization problems different solution algorithms
have been suggested:

1. Some kind of a k-th best algorithm [1282], see the remarks to that algorithm in
[244].

2. A cutting plane approach [380, 587, 1183].
3. A branch and bound algorithm [134].
4. Other approaches can be found in [504].

A polynomial-time algorithm for the bilevel time minimization (or bottleneck)
transportation problem can be found in [1182, 1238, 1239, 1380].

20.6.9 Related Problems

Problems where the upper-level constraints and objective function depend on the
optimal value function of the lower-level problem can be found in [1199].
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20.7 Bilevel Problems with Multiobjective Functions in the
Lower or Upper Level, or with Multiple Followers

Problems with vector-valued objective function in the upper-level problem are
considered in [252]. For problems with multiple followers the reader is referred
to [249, 357]. Semivectorial bilevel optimization problems, i.e. bilevel optimization
problems where the lower-level problem has a vector-valued objective function are
topic of [192, 196–198, 409, 899, 1486].

In [1491], multiobjective (linear) problems in both levels are considered. The
lower-level problem is replaced using Benson’s approach. The authors compute a
satisfactory solution applying certain k-th best approach.

Application of the idea in [531] to problems with multiobjective linear optimiza-
tion problems in both levels is realized in [1071].

20.8 Applications

Here, we give only topics of diverse applications.

1. Agricultural economics [272, 274], support of biofuel production [135, 136].
2. Agricultural credit distribution to improve rural income [1031].
3. Aid distribution after the occurrence of a disaster [262].
4. Airline revenue management [339].
5. Aircraft structural design [607].
6. Aluminium production [1006–1008].
7. Analysis of the possible mechanisms of optimization of biodiversity [38].
8. Autonomous cars driving [1480].
9. Bioengineering and biotechnology [229, 1067], optimization of bioprocess

productivity based on metabolic-genetic network models [671], optimization
of low-carbon product family and its manufacturing process [1379].

10. Capacity (expansion) planning [517, 547].
11. Chemical equilibria [324, 1233].
12. Contact shape optimization [634].
13. Control of container cranes in high rack warehouses [745].
14. Credit allocation [1137].
15. Critical infrastructure protection planning [1167].
16. Deception in games [814].
17. Defense applications [59, 209, 808]. Interdiction problems below describe also

applications related to defense problems. Electric grid defense planning [40,
1411].

18. Discount decisions for the retailer [729].
19. Dynamic storage pricing strategy in supply hub in industrial park [1088].
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20. Ecological problems: Greenhouse gas emissions [618, 637, 803, 891, 1369],
water exchange in eco-industrial parks [112, 1273].

21. Electron tomography [1504].
22. Electricity markets and networks [20, 106–108, 120, 172, 184, 498, 546, 615,

616, 636, 639–641, 652, 794, 898, 1256, 1307, 1326, 1354, 1438].

a. Control of renewable energy generation [1267].
b. Optimal location and size of storage devices in transmission networks [470].
c. Bids of wind power producers in the day-ahead market with stochastic market

[804]. Real-time pricing schemes in electricity markets [1505]. Optimal
strategic bidding of energy producers [632, 765].

d. Electricity swing option pricing [763].
e. Local electricity markets under decentralized and centralized designs [799].
f. Power system vulnerability analysis [96].
g. Pay-as-clear electricity market with demand elasticity [44].
h. Transmission-Distribution System Operator Coordination [234].
i. Three-level model to optimize the operating costs by the system operator

[561].

23. Environmental policy [379, 589].
24. Evacuation planning [89, 1114, 1381, 1428, 1481].
25. Facility location and production problem [1, 165, 167–169, 187, 286, 442, 630,

746, 767, 939, 963, 1016, 1080, 1117, 1145, 1264, 1465], facility location and
freight transportation problem [350, 596], production planning problem [896].
Best location of stone industrial parks which pollute the environment [536].
Location-allocation problem [917]. Facility location problem with customer’s
patronization [287]. Competitive facility location problems [758].

26. Fisheries management [1044].
27. Flow shop scheduling problems [2].
28. Gas cash-out problem [414, 716, 720], entry-exit gas market [575].
29. Global investment strategies with financial intermediation [153].
30. Hazardous materials transportation [264, 486].
31. Health insurance problem [1446].
32. Human arm movements [32, 33, 977].
33. Identification of enzymatic capacity constraints [1407].
34. Image segmentation [1096], image reconstruction [446, 1499].
35. Incentive systems [377, 1482], Principal-agent problems [291, 535, 583, 584,

677, 735, 793, 1003, 1097, 1098, 1125, 1128, 1207, 1492].
36. Inferring oncoenzymes [1377].
37. Interdiction problems [29, 40, 116, 119, 219–222, 277, 554, 871, 1004, 1020,

1061, 1118, 1138, 1168, 1232, 1373, 1374, 1378]. Many interdiction problems
are formulated as three-level optimization problems, some of the references
describe especially tailored solution algorithms. Heuristic algorithms for gen-
eralized interdiction problems, where the assumption that the objective function
of the leader is opposite to that of the follower is removed, can be found
in [515]. In this article the authors report also very extensive computational



604 S. Dempe

results. Optimal resource allocation for the critical infrastructure protection
[1019].

38. Inverse optimization [464].
39. Local access networks (LAN) [263].
40. Machine learning problems [156, 306, 307, 773, 1066], statistical learning

methods [155], parameter learning in image applications [352, 1023, 1024].
41. Material transportation at the Lancang River Hydropower Base [909].
42. Maximally violated valid inequality generation often has a natural interpreta-

tion as a bilevel program [868].
43. Misclassification minimization [924–926, 933].
44. Mechanics [1046].
45. Network problems:

a. Highway network design [99, 147, 150, 151, 315, 566, 778, 779, 800, 927, 930,
1339, 1342]. Complexity of the highway pricing problem [444, 624]. Network
design problem [521, 527–529, 545, 703, 844, 1159, 1266], the same with
uncertain travel demand [290, 317]. Sensitivity analysis is used to solve the
network design problem in [696]. The algorithm in [800] has been shown not
to converge in [929]. Network design problem with congestion effects [928].

b. The mathematical structure of the strategic pricing problem is investigated in
[936].

c. O-D adjustment problem [303, 328, 458, 519, 1181, 1405], O-D demands
estimation [1115], optimal tolls in transportation networks [204, 206, 216,
217, 223, 398, 401, 422, 431, 445, 447, 467, 574, 798, 931]. The same with a
real application in Hong Kong [1400].

d. Solution algorithms for an application in a traffic network [327] with some
comments in [329].

e. Traffic network signal control [605, 724, 1244, 1303, 1406]. Use of traffic flow
guidance systems [1202].

f. Hierarchical transportation network with transshipment facilities [341, 342].
Expansion of a highway network [77].

g. An overview over pricing problems in transportation and marketing is given
in [625]. Multiobjective pricing problems are considered in [1334].

h. Interaction of public and private sections using the example of Korea [737].
Model for public-private partnerships [795–797].

i. Review of related problems [958], bilevel traffic management [1053]. Investi-
gation of an approximation algorithm for the toll setting problem [574, 1123].
Different models for traffic assignment problems [870]. A comparison of
algorithms for solving a bi-level toll setting problem can be found in [703].

j. Public Rail Transportation under Incomplete Data [1059].
k. Computational complexity of the problem is investigated and a cutting plane

approach is suggested in [626].
l. Pricing toll roads under uncertainty [453].
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m. In [991] the problem is transformed using the KKT transformation, the com-
plementarity conditions are replaced using the Fischer-Burmeister function
and the resulting problems are solved globally.

n. Load balancing in mobile networks [491].
o. Rank pricing problem [240].
p. Transportation of hazardous materials [50, 181, 461, 486, 721, 732].
q. Two-level stochastic optimization problem over transportation network [41].
r. Trajectory planning for a robot [949].
s. Location of hydrogen filling stations to promote the use of electric cars [21,

965].
t. Vehicle routing problem [940].
u. Hub arc location model [1163], the same under competition [343, 344, 912,

1164].
v. Railway transport hub planning [733].
w. School bus routing [1051].

46. Newsboy problem [346, 680, 1500].
47. New product design [1251].
48. Optimal drug combination causing minimal side effects in biomedicine [492].
49. Optimal partial hedging in discrete markets [988].
50. Optimal standardization [567–569].
51. Optimizing bus-size and headway in transit networks [338, 359].
52. Parameter estimation in chemical engineering [191, 973].
53. Physical layer security in cognitive radio networks [499].
54. Pipe network design [1472].
55. Predatory pricing in a multiperiod Stackelberg game [998].
56. Prediction of underground blast-induced ground vibration amplitudes [1047].
57. Price-based market clearing under marginal pricing [506, 507, 509].
58. Price setting problems [780, 781], in part related to toll setting problems in

transportation networks. Price setting problems on a network [559] and on an
oligopolistic market [1120].

59. Process design problem [324, 325].
60. Product selection with partial exterior financing [750].
61. Profitability of merger in Stackelberg markets [655].
62. Quantitative policy analysis [212].
63. Real-time path planning approach for unmanned aerial vehicles [862].
64. Relations between central economic units and subunits: [4, 121, 124, 128, 289,

740, 806], hazardous waste management [56, 58], applications in economics
[211, 227, 228, 251].

65. Resource allocation model [289, 598, 1001, 1002, 1338], special model for HIV
control [728] and in wireless networks [233]. Problems with resource allocation
constraints lead to minimization problems over the efficient set [1279].

66. Scheduling problems [723].
67. Set invariance characterization of dynamical systems affected by time-delay

[792].
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68. Stackelberg-Nash-Cournot equilibria [511, 1187, 1287, 1288, 1434]. A stochas-
tic problem of this type is investigated in [354, 1384]. A critical comment to
some of the results in [1187] can be found in [477]. Under some conditions,
the Stackelberg equilibrium is also a Cournot equilibrium [701]. Stackelberg
Equilibria of Linear Strategies in Risk-Seeking Insider Trading [564]. Stackel-
berg solution in static and dynamic nonzero-sum two-player games (open-loop
Stackelberg solution) [576, 1205].

69. Supply chain configuration [256, 774, 1139, 1158, 1403], corporate social
responsibility in a supply chain [54, 731], supply chain management [672,
849, 864, 1161, 1336, 1396]. Different metaheuristics are applied to a location-
allocation problem related to a supply chain problem. Timberlands supply chain
model is investigated in [1425, 1426].

70. Support vector machines are solved as bilevel optimization problem [772].
71. Truss topology optimization [526].
72. Uncapacitated lot-sizing problem [739].
73. Virtual power plants [722, 1448].
74. Water conflict problem between India and Bangladesh [65, 183], water allo-

cation issues [653, 1387, 1389], water distribution system [1231], water rights
trading [1349]. Water integration in eco-industrial parks [1095].

20.9 Test Problems

Methods to generate test problems can be found for linear bilevel optimization
problems in [989], for more general problems in [236–239, 1034, 1213], see
also Chapter 9 of [520]. A bilevel optimization problem library can be found on
the internet page http://coral.ise.lehigh.edu/data-sets/bilevel-instances/. For another
test set see [972]. The seemingly most comprehensive set of test problems can be
found in [1497], see also [1498] in this volume.
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