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Abstract Veneroni maps are a class of birational transformations of projective
spaces. This class contains the classical Cremona transformation of the plane, the
cubo-cubic transformation of the space and the quarto-quartic transformation of P

4.
Their common feature is that they are determined by linear systems of forms of degree
n vanishing along n + 1 general flats of codimension 2 in P

n . They have appeared
recently in a work devoted to the so called unexpected hypersurfaces. The purpose of
this work is to refresh the collective memory of the mathematical community about
these somewhat forgotten transformations and to provide an elementary description
of their basic properties given from a modern point of view.
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1 Introduction

The aim of this note is to give a detailed description of Veneroni’s Cremona trans-
formations in P

n . They were first described by Veneroni in [13], and then discussed
for n = 4 by Todd in [12] and by Blanch in [2] and for n ≥ 3 by Snyder and Rusk in
[11] (with a focus on n = 5) and by Blanch again in [1]. The base loci of the Ven-
eroni transformations involve certain varieties swept by lines that were considered
for n = 4 by Segre in [10] and for n ≥ 3 by Eisland in [6]. Evolution in terminology
and rigor can make it a challenge to study classical papers. Our purpose here is to
bring this work together in one place, in a form accessible to a modern audience. In
order to use Bertini’s Theorem, we assume the ground field K has characteristic 0.

Consider n + 1 distinct linear subspacesΠ0, . . . , Πn ⊂ P
n of codimension 2. Let

Ln be the linear system of hypersurfaces in P
n of degree n containingΠ0 ∪ · · · ∪ Πn

and let N + 1 be the vector space dimension of Ln (we will see that N = n when
the Π j are general, hence by semi-continuity we have N ≥ n). We denote by vn :
P
n ��� P

N the rational map given byLn . If N = n and if in addition vn is birational,
we refer to vn as a Veneroni transformation. (Here we raise an interesting question:
is vn birational to its image if and only if N = n?When n = 2, it is not hard to check
that N = n always holds and that vn is always birational.)

When the Π j are general, we will see that vn is a Veneroni transformation whose
inverse is also given by a linear system of forms of degree n vanishing on n + 1
codimension 2 linear subspaces of P

n . In this situation, v2 is the standard quadratic
Cremona transformation ofP

2, v3 is a cubo-cubic Cremona transformation ofP
3 (see

[4, Example 3.4.3]) and v4 is a quarto-quartic Cremona transformation of P
4 (see

[12]). In [8] the quarto-quartic Cremona transformation was used to produce some
unexpected hypersurfaces.

The paper is organized as follows: we start in Sect. 2 with characterizing degree
n − 1 hypersurfaces in P

n , containing n general linear subspaces of codimension 2.
In Sect. 3 we investigate the linear system giving the Veneroni transformation.

When the spaces Πi are general, we prove that the dimension of Ln is n + 1, we
describe the base locus of this system, and prove that vn is birational.

In Sect. 4 we give the inverse un of vn explicitly and show that un is given by a
possibly linear subsystem of the linear system of forms of degree n vanishing on a
certain set of n + 1 codimension 2 linear subspaces.

The last section, Sect. 5, is devoted to the additional description of the intersection
of two hypersurfaces of the type described in Sect. 2.

2 Codimension 2 Linear Subspaces

Given linear subspaces �1, . . . , �s of P
n , a line intersecting them all is called a

transversal (for �1, . . . , �s).
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Proposition 2.1 Let Π1, . . . , Πn−1 be general codimension 2 linear subspaces of
P
n. For every point p ∈ P

n, there is a transversal for Π1, . . . ,Πn−1 through p. If p
is general, then there is a unique transversal, which we denote tp, and it meets Π1 ∪
· · · ∪ Πn−1 in n − 1 distinct points. If however there are at least two transversals
through p, then p lies on a subspace Tp (of dimension dp > 1) intersecting each Π j

along a subspace of dimension dp − 1, j = 1, . . . , n − 1, and Tp is the union of all
transversals for Π1, . . . ,Πn−1 through p.

Proof Let H be a general hyperplane in P
n and consider the projection πp : P

n ���
H from p ∈ P

n . If p /∈ Π j , let Π ′
j = πp(Π j ) and define

Π ′ =
⋂

1≤ j<n
p/∈Π j

Π ′
j .

The intersection Π ′ is not empty, since each Π ′
j is a hyperplane in H and Π ′ is

the intersection of at most n − 1 hyperplanes in H . Let q ∈ Π ′. Then the line L pq

is transversal to all Πi (because either q ∈ Π ′
i , and hence L pq intersects Πi , or

p ∈ Πi ). Conversely, a transversal from p intersects Π ′. Observe that for a general
p, the points π−1(q)|Π j are different, so the transversal meets Π j in different points.

Consequently, for a general p there is a unique transversal. If dim Π ′ = k > 0,
then we have a subspace Tp of the transversals of dimension k + 1. This subspace is
a cone over Π ′ and over Π j ∩ Tp as well, hence dim Π j ∩ Tp = k. �

Example 2.2 For 3 general codimension 2 linear subspaces Π1,Π2,Π3 of P
4, the

pairwise intersections Πi j = Πi ∩ Π j , i 	= j , are points. These three points span a
plane T which intersects each Πi in a line. (For Π1 this line is the line L23 through
Π12 andΠ13, and similarly forΠ2 andΠ3.) The lines L12, L13, L23 all lie in T , hence
every point p ∈ T has a pencil of transversals, namely the lines in T through p.

Remark 2.3 In the preceding example, not every transversal is in T ; this follows
from Proposition 2.1. What is more, even if a point p has a pencil of transversals, it
need not be true that p ∈ T . Take, for example, a general point p ∈ Π1. The cone on
Π2 with vertex p intersectsΠ3 in a line L . Every line through p in the plane spanned
by p and L is a transversal, so the general point p ∈ Π1 has a pencil of transversals.

Remark 2.4 We will eventually be interested in n + 1 general codimension 2
subspaces Π0, . . . ,Πn of P

n . They are defined by 2(n + 1) general linear forms
f j1, f j2, j = 0, . . . , n, where IΠ j = ( f j1, f j2). After a change of coordinates we
may assume that f j1 = x j and that f j2 = a j0x0 + · · · + a jnxn with a ji = 0 if and
only if i = j . Here the homogeneous coordinate ring R of P

n is the polynomial ring
R = K[Pn] = K[x0, . . . , xn].

Now, we establish existence and uniqueness of a hypersurface Q of degree n − 1
containing n general codimension 2 linear subspaces in P

n for n ≥ 2.
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Proposition 2.5 Let Π1, . . . ,Πn be general codimension 2 linear subspaces of P
n.

Then there exists a unique hypersurface Q of degree n − 1 containing Π j for j =
1, . . . , n. Moreover, Q is reduced and irreducible, it is the union of the transversals
for Π1, . . . ,Πn, and for each point q ∈ Q we have multq Q ≥ r , where r is the
number of indices i such that q ∈ Πi . If q is a general point of Q, then there is a
unique transversal for Π1, . . . , Πn through q.

Proof Let � be the determinantal variety in (Pn)n+1 of all (n + 1) × (n + 1) matri-
ces M of rank at most 2 whose entries are the variables xi j . It is known that � is
reduced and irreducible of dimension 3n − 1, see [9]. It consists of the locus of points
(p1, . . . , pn+1) whose span in P

n is contained in a line.
Let πi : (Pn)n+1 → P

n be projection to the i th factor (so 1 ≤ i ≤ n + 1). Now,
for 1 ≤ i ≤ n, let Π ′

i = π−1
i (Πi ). Then D = � ∩ ⋂

1≤i≤n Π ′
i has dimension (3n −

1) − 2n = n − 1. Indeed,� is irreducible, thus intersection with a divisor (preimage
of a form by π j ) drops the dimension by one (� does not lie in one summand, hence
cannot lie in the preimage). By Bertini we can do this again and again (2n times, the
dimension drops by 2 for every Π j ). We see that D is reduced and irreducible. Since
Π1 ∩ · · · ∩ Πn = ∅, we see that D is the locus of all points (p1, . . . , pn+1) such that
the span 〈p1, . . . , pn〉 is a linewith pi ∈ Πi for 1 ≤ i ≤ n and pn+1 being on that line.
Thus D = πn+1(D) is irreducible, properly contains Π1 ∪ · · · ∪ Πn and is the union
of all transversals forΠ1, . . . ,Πn . (To getΠ j in the image of the last projection, take
a point p in Π j , take a general line � through p, and (� ∩ Π1, � ∩ Π2, . . . , � ∩ Π j =
p, � ∩ Π j+1, . . . , � ∩ Πn, p) lies in D and projects to p ∈ D).

In particular, D has dimension n − 1, and since by Proposition 2.1 there is a line
through a general point meeting n − 1 of the spacesΠi in distinct points, we see that
deg D ≥ n − 1.

Below we will check that there is a hypersurface Q of degree n − 1 containing
Π1 ∪ · · · ∪ Πn . Since any such hypersurface must by Bezout contain all transversals
for Π1, . . . ,Πn , we see that deg D = n − 1 and Q = D and thus that there is a
unique hypersurface of degree n − 1 containing Π1 ∪ · · · ∪ Πn , and it is irreducible.

To show existence of Q we follow [2]. As mentioned in Remark 2.4, we may
assume that the ideal of Πk is

Ik = (xk, fk = ak,0x0 + · · · + ak,k−1xk−1 + ak,k+1xk+1 + · · · + ak,nxn),

where we write fk instead of fk,2. By generality we may assume that ai, j 	= 0 for all
i 	= j .

Now consider the n × n matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

− f1 . . . a1,k xk . . . a1,nxn
...

...
...

ak,1x1 . . . − fk . . . ak,nxn
...

...
...

an,1x1 . . . an,k xk . . . − fn

⎞

⎟⎟⎟⎟⎟⎟⎠
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and let F = det(A). Note that F is not identically 0 (since its value at the point
(1, 0, . . . , 0) is not 0) so deg F = n. It is clear, developing det(A) with respect to
the k-th column, that F ∈ Ik for every k = 1, . . . , n. For each k, adding to the kth
column of A all of the other columns of A gives a matrix Ak whose entries in the kth
column are nonzero scalar multiples of x0; in particular,

Ak =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f1 . . . a1,k−1xk−1 −a1,0x0 a1,k+1xk+1 . . . a1,nxn
...

...
...

...
...

ak−1,1x1 . . . − fk−1 −ak−1,0x0 ak−1,k+1xk+1 . . . ak−1,nxn
ak,1x1 . . . ak,k−1xk−1 −ak,0x0 ak,k+1xk+1 . . . ak,nxn
ak+1,1x1 . . . ak+1,k−1xk−1 −ak+1,0x0 − fk+1 . . . ak+1,nxn

...
...

...
...

...

an,1x1 . . . an,k−1xk−1 −an,0x0 an,k+1xk+1 . . . − fn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

so

A1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a1,0x0 a1,2x2 . . . a1,k xk . . . a1,nxn
−a2,0x0 − f2 . . . a2,k xk . . . a2,nxn

...
...

...
...

−ak,0x0 ak,2x2 . . . − fk . . . ak,nxn
...

...
...

...

−an,0x0 an,2x2 . . . an,k xk . . . − fn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus F = det(A) = det(Ak) = x0 · G for some polynomial G. Since x0 is not an
element of any Ik , it follows that G ∈ Ik for k = 1, . . . , n, hence G vanishes on
each of Π1, . . . ,Πn . Since deg F = n, we have deg(G) = n − 1. Thus G defines a
hypersurface Q of degree n − 1 containing each Πi .

Now consider a point q ∈ Q. The matrix Ak will have r columns which vanish at
q, where r is the number of indices i such that q ∈ Πi . In particular, each entry in
each such column is in the ideal Iq . Thus G = det(Ak)/x0 ∈ I rq so multq Q ≥ r .

Finally assume p is a general point ofΠn . SinceΠn is general, p is a general point
of P

n , hence by Proposition 2.1 there is a unique transversal tp for Π1, . . . ,Πn−1

through p, hence tp is also the unique transversal for Π1, . . . , Πn through p. Thus
there is an open neighborhood U of p of points q through each of which there is a
unique transversal tq forΠ1, . . . ,Πn−1, and for those pointsq ofU ∩ Q, tq alsomeets
Πn , hence for a general point q ∈ Q there is a unique transversal tq for Π1, . . . ,Πn .
�

Remark 2.6 Let p0, . . . , pn be the coordinate vertices of P
n with respect to the

variables x0, . . . , xn , so p0 = (1, 0, . . . , 0), . . . , pn = (0, . . . , 0, 1). We saw in the
proof of Proposition 2.5 that p0 /∈ Q (since F 	= 0 at p0). Let A′

k be the matrix from
the proof of Proposition 2.5 arising after dividing x0 from column k of Ak . Then Q
is defined by det(A′

k) = 0 but A′
k at pk is a matrix which, except for column k, is a

diagonal matrix with nonzero entries on the diagonal, and whose kth column has no
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zero entries. Thus det(A′
k) 	= 0 at pk so pk /∈ Q. In particular, none of the coordinate

vertices is on Q.

3 The System Ln

Let us start with some notation. Assume Π0, . . . ,Πn ⊂ P
n are general linear sub-

spaces of codimension 2. From the previous section it follows that for each subset
Π0, . . . ,Π j−1,Π j+1, . . . , Πn of n of them there is a unique hypersurface Q j of
degree n − 1 containing them. Depending on the context, we may also denote by Q j

the form defining this hypersurface. We may assume IΠi = (xi , fi ) where f j is as
given in Remark 2.4. In this case we have the (n + 1) × (n + 1) matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f0 a0,1x1 . . . a0,k xk . . . a0,nxn
a1,0x0 − f1 . . . a1,k xk . . . a1,nxn

...
...

...
...

ak,0x0 ak,1x1 . . . − fk . . . ak,nxn
...

...
...

...

an,0x0 an,1x1 . . . an,k xk . . . − fn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let Bi be the n × n submatrix obtained by deleting row i and column i of B (where
we have i run from 0 to n). The matrix A in the proof of Proposition 2.5 is thus
B0, and we have det(Bi ) = xi Qi . The next result shows that vn is the map given by
(x0, . . . , xn) → (x0Q0, . . . , xnQn).

Proposition 3.1 The polynomials xi Qi , i = 0, . . . , n, give a basis for Ln, hence
dimLn = n + 1, so vn is a rational map to P

n whose image is not contained in a
hyperplane.

Proof By Remark 2.6, no coordinate vertex p j is in Qi for any i . But xi Qi ∈ Ln for
every i , and (xi Qi )(p j ) 	= 0 if and only if i = j . Thus the polynomials xi Qi span a
vector space of dimension at least n + 1.

To show that these sections in fact give a basis, we show that dimLn = n + 1.We
proceed by induction (the proof thatL2 has three independent sections is clear, since
three general points impose independent conditions on forms of degree 2 on P

2). Let
A be a fixed hyperplane that contains Π1. There is, by Proposition 2.5, a unique
section ofLn containing A, namely AQ1. Moreover, the restrictions to A of sections
sn ofLn which do not contain A give divisors sn ∩ A of degree n, containingΠ1, and
containing A ∩ Π j , j > 1. So on A, the linear system of restrictions residual to Π1

has degree n − 1 and contains the n general subspacesΠi ∩ A, i > 1, of codimension
2. From the inductive assumption this has dimension n, so dimLn = n + 1.

We may also see the result from the exact sequence

0 → Ln(−A) → Ln → Ln|A → 0,
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where A is as above and Ln(−A) is the linear subsystem of all elements of Ln

containing A. Then, from the inductive assumption, the dimension ofLn|A is n, and
from Proposition 2.5 the dimension of Ln(−A) (which is of degree n − 1 passing
through n codimension 2 subspaces in A) is 1. �

Remark 3.2 If the hyperplanes Hj ⊃ Π j , j = 0, . . . , n are such that any n of them
intersect in a point outside all Qi and

⋂
j Hj = ∅, then Hj Q j are linearly indepen-

dent.

Proof If this is not the case, then one of them is linearly dependent of others, let it
be H0Q0. Thus, if Hj Q j vanish in some point p for j = 1, . . . , n, then H0Q0 also
does. Let then p = ⋂n

j=1 Hj . Thus, H0Q0 vanishes on p, but p /∈ H0, so p ∈ Q0, a
contradiction. �

Remark 3.3 Observe also, that up to an isomorphism of (the target) P
n , the map vn

may be defined by any set of n + 1 linearly independent elements of Ln .

Let Tn be the closure of the union of all lines transversal to Π0, . . . ,Πn , and
let Rn = Q0 ∩ · · · ∩ Qn and let Bn be the base locus of Ln (i.e., the locus where
vn : P

n ��� P
n is not defined). We note that Tn ⊆ Rn , by Proposition 2.5.

Proposition 3.4 We have Bn = Π0 ∪ · · · ∪ Πn ∪ Rn.

Proof Since vn is given by (x0, . . . , xn) → (x0Q0, . . . , xnQn), the base locus con-
sists of the common zeros of the xi Qi . Clearly each Qi (and hence each xi Qi )
vanishes on Rn (as Rn is the intersection of all Qi .) But Qi vanishes on Π j

for j 	= i and xi vanishes on Πi , so each xi Qi vanishes on Π0 ∪ · · · ∪ Πn . Thus
Π0 ∪ · · · ∪ Πn ∪ Rn ⊆ Bn .

Conversely, let p be a point in Bn not in Π0 ∪ · · · ∪ Πn . By Remarks 3.2 and 3.3,
vn may be defined by the forms Hi Qi for sufficiently general Hi . Since Hi does not
vanish on p, Qi does for all i . Thus p ∈ Rn , so Bn ⊆ Π0 ∪ · · · ∪ Πn ∪ Rn . �

Proposition 3.5 We have dim Tn = n − 2 for n ≥ 3, and Tn is irreducible for n > 3.

Proof Consider the Grassmannian V of lines in P
n and the incidence variety W =

{(v, p) ∈ V × P
n : p ∈ Lv}, where Lv is the line corresponding to a point v ∈ V .

We also have the two projections π1 : W → V and π2 : W → P
n . Then V is an

irreducible variety of dimension 2(n − 1) and degree (2(n−1))!
n!(n−1)! embedded in P

N , N =(n+1
2

) − 1, see [7], Chap. 1, Sect. 5. The condition of being incident to a codimension
2 linear space is given by a hyperplane in P

N (see p. 128 in [3]), so the intersections
of V with n + 1 general hyperplanes gives the locus ρn in V parametrizing the
lines comprising Tn; notice that π2(π

−1
1 (ρn)) = Tn . Thus dim ρn = 2(n − 1) − (n +

1) = n − 3, so dim π−1
1 (ρn) = n − 2, and by Proposition 2.1 the projection π2 is

generically injective on π−1
1 (ρn) so we have dim Tn = n − 2. Moreover, by Bertini’s

Theorem, ρn (and hence Tn) is irreducible when dim ρn > 0. �

Proposition 3.6 With the notation as above we have Tn = Rn in P
n.
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Proof Let us start with the following fact. Let L0, . . . , Lk, L be lines through a
common point p. Let L belong to the space spanned by L0, . . . , Lk, let P be
a linear subspace, such that p does not lie on P . Let L j intersect P at a point
l j , j = 0, . . . , k. Then L intersects P , as the linear combination of a projection of
some vectors is a projection of the combination.

Now we can show that the intersection of all Q j lies in Tn , the union of all
transversals. Observe, that the opposite inclusion is obvious.

Take a point p in all Q j , but not in any Π j . So for each j , there is L j through
p, transversal to all Qi except Q j . We have n + 1 such lines, but they must span a
space of dimension less than n + 1 (being in P

n).
Without loss of generality, let L0 belong to the space spanned by the others. Then

using the fact we started with, for P = Π0, we get that L0 intersects Π0 (since
L1, . . . , Ln intersect Π0), which finishes the proof.

If p ∈ Π j for some j , the proof is trivial. �

Proposition 3.7 The Veneroni transformation vn : P
n ��� P

n is injective off Q0 ∪
· · · ∪ Qn, hence it is a Cremona transformation.

Proof Let p, q be two different points off Q0 ∪ · · · ∪ Qn . Let Hj denote the unique
hyperplane through p and Π j . Then

⋂n
j=0 Hj = {p} as if the intersection of all such

Hi is not exactly p, then the intersection H0 ∩ · · · ∩ Hn is a positive dimensional
linear space, and any line through p in this space intersects each Πi and hence is a
transversal for Π0, . . . ,Πn , and so p, being on a transversal, is in Tn ⊆ Rn ⊆ Bn .
Take j0 such that q /∈ Hj0 . Then Hj0Q j0 is a non-zero section of Ln and may be
extended to a basis of Ln . Then vn defined by the sections of this basis separates p
and q. Thus vn is injective off Q0 ∪ · · · ∪ Qn . �

4 An Inverse for vn

It is of interest to determine an inverse for vn , and to observe that the inverse is again
given by forms of degree n vanishing on n + 1 codimension 2 linear subspaces.
We explicitly define such a map un and then check that it is an inverse for vn :
P
n ��� P

n . If we regard x0, . . . , xn as homogeneous coordinates on the source P
n

and y0, . . . , yn as homogeneous coordinates on the target P
n , then vn is defined by

the homomorphism h on homogeneous coordinate rings given by h(x0, . . . , xn) =
(y0, . . . , yn), where yi = xi Qi = det(Bi ), as we saw in Sect. 3.

To define un , we slightly modify matrix B from Sect. 3 by replacing the diagonal
entries − fi in B by −gi (defined below) and by replacing each entry ai, j x j in B by
ai, j y j to obtain a new matrix
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C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−g0 a0,1y1 . . . a0,k yk . . . a0,n yn
a1,0y0 −g1 . . . a1,k yk . . . a1,n yn

...
...

...
...

ak,0y0 ak,1y1 . . . −gk . . . ak,n yn
...

...
...

...

an,0y0 an,1y1 . . . an,k yk . . . −gn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To define gi , recall that since fi Qi ∈ Ln for each i and the forms x j Q j give a
basis for Ln , we can for each i and appropriate scalars bi, j write

fi Qi = bi,0x0Q0 + · · · + bi,nxnQn.

We define gi to be gi = bi,0y0 + · · · + bi,n yn , so we see that h(gi ) = fi Qi .
As an aside we also note that bi, j = 0 if and only if i = j . (To see this, recall by

Remark 2.6 that no Q j vanishes at any coordinate vertex pk , but fi vanishes at the
coordinate vertex p j if and only if i = j . Thus, evaluating fi Qi = bi,0x0Q0 + · · · +
bi,nxnQn at pi gives 0 = bi,i Qi , hence bi,i = 0, while evaluating at p j for j 	= i
gives 0 	= bi, j Q j , hence bi, j 	= 0.)

Let Ci be the matrix obtained from C by deleting row i and column i . Define a
homomorphism λ : K[x0, . . . , xn] → K[y0, . . . , yn] by λ(xi ) = det(Ci ).

The next result gives an inverse for vn .

Proposition 4.1 The homomorphism λ defines a birational map un : P
n ��� P

n

which is inverse to vn.

Proof Note that applying h to the entries of C gives the matrix obtained from BD,
where D is the diagonal matrix whose diagonal entries are Q0, . . . , Qn , from which
it is easy to see that h(det(Ci )) = det(Bi )Q0 · · · Qi−1Qi+1 · · · Qn = xi Q0 · · · Qn .

We now have h(λ(xi )) = h(det(Ci )) = xi Q0 · · · Qn , so unvn = idU , where U is
the complement of Q0 · · · Qn = 0. Since vn is a Cremona transformation, so is un
and thus un is the inverse of vn . �

Remark 4.2 We now confirm that the forms det(Ci ) defining un have degree n and
vanish on n + 1 codimension 2 linear subspaces Π∗

i ⊂ P
n . That deg(det(Ci )) = n

is clear, since Ci is an n × n matrix of linear forms.
Consider the codimension two linear spaces defined by the ideals Jk = (yk, gk) =

bk,0y0 + · · · + bk,n yn . Since the entries of column k ofC are in the ideal Jk , it follows
that det(Ci ) vanishes on Π∗

j for j 	= i . It remains to check that det(Ci ) vanishes on
Π∗

i . But let q ∈ Qi be a point where vn is defined. Note that yi (vn(q)) = h(yi )(q) =
xi Qi (q) = 0 and that gi (vn(q)) = h(gi )(q) = fi Qi (q) = 0.Thusvn|Qi gives a ratio-
nal map to Π∗

i whose image is in the zero locus of det(Ci ) since det(Ci )(vn(q)) =
(h(det(Ci )))(q) = hλ(xi )(q) = (xi Q0 · · · Qn)(q) = 0. Thus det(Ci ) vanishing on
Π∗

i will follow if we show that vn|Qi gives a dominant rational map to Π∗
i . This in

turn will follow if we show for a general q ∈ Qi that the fiber over vn(q) has dimen-
sion 1 (since Qi as dimension n − 1 and Π∗

i has dimension n − 2). But the space
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of forms in Ln vanishing on q is spanned by forms of the form Hj Q j where Hj is
a hyperplane containing q and Π j . For a general point q, since the Π j are general,
the intersection of any n − 1 of the Hj with j 	= i has dimension 1. Since the Π j

are general, the same is true for a general point q ∈ Qi except now, since there is a
transversal tq through q for Π j , j 	= i , we see that ∩ j 	=i Hj still has dimension 1 and
is thus exactly tq . Hence the locus of points on which the forms in Ln vanishing at
q vanish is exactly tq . Thus the fiber over vn(q) has dimension 1, as we wanted to
show.

It is still unclear to us whether un is itself a Veneroni transformation whenever
vn is. If we denote by L ∗

n the forms in K[y0, . . . , yn] of degree n vanishing on
Π∗

0 ∪ · · · ∪ Π∗
n , what we saw above is that un is defined by an n + 1 dimensional

linear system contained in L ∗
n ; the issue is whether the linear system is all of L ∗

n
(i.e., whether dimL ∗

n = n + 1).
In any case, when Π0, . . . ,Πn are general, we now see that vn gives a birational

map P
n ��� P

n whose restriction to Qi gives a rational map to Π∗
i for i = 0, . . . , n

and the fiber of Qi over Π∗
i generically has dimension 1. It is convenient to denote

the linear system of divisors of degree n vanishing onΠ0 ∪ · · · ∪ Πn by nH − Π0 −
· · · − Πn . Similarly, the linear system of divisors of degree n − 1 vanishing on Π j

for j 	= i is represented by (n − 1)H − Π0 − · · · − Πn + Πi . Thus, if H∗ is the
linear system of divisors of degree 1 on the target Pn for vn , then vn pulls H∗ back to
nH − Π0 − · · · − Πn , and it pullsΠ∗

i back to Qi , represented by (n − 1)H − Π0 −
· · · − Πn + Πi . We can represent the pullback by a matrix map Mn : Z

n+1 → Z
n+1

where

Mn =

⎛

⎜⎜⎜⎜⎜⎝

n n − 1 n − 1 . . . n − 1
−1 0 −1 . . . −1
−1 −1 0 . . . −1
...

...
...

...

−1 −1 −1 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
.

If in fact the spaces Π∗
i can be taken to be sufficiently general, then dimL ∗

n =
n + 1, and un pulls H back to nH∗ − Π∗

0 − · · · − Π∗
n , and it pulls Πi back to (n −

1)H∗ − Π∗
0 − · · · − Π∗

n + Π∗
i , and hence is represented by the same matrix Mn .

Since M2
n corresponds to the pullback map for unvn and unvn is the identity (where

defined), we would expect that M2
n = In , which is indeed the case.

5 Intersection of Qi and Q j

This section is devoted to investigating the intersections of Qi and Q j , assuming that
Π0, . . . ,Πn are general linear subspaces of codimension 2. These intersections were
already treated in [11] and in more detail than here, but here we use more modern
language.
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Without loss of generality assume that i = 0, j = 1, so take Q0 ∩ Q1. From the
considerations above (Proposition 3.4) we may write

Q0 ∩ Q1 = Tn ∪ Π2 ∪ · · · ∪ Πn ∪ Mn

where Mn is the closure of the complement of Tn ∪ Π2 ∪ · · · ∪ Πn in Q0 ∩ Q1.

Proposition 5.1 The complement of Tn ∪ Π2 ∪ · · · ∪ Πn in Q0 ∩ Q1 is the set of
all points q ∈ Q0 ∩ Q1 through which there is no transversal for Π0, . . . , Πn, (in
which case there is more than one transversal through q for Π2, . . . ,Πn).

Proof For n = 2 it is easy to check that Q0 ∩ Q1 = Π2 and that Tn = Mn = ∅. For
n = 3, keeping in mind that Q0 = P

1 × P
1, Q0 ∩ Q1 is a divisor on Q0 of multi-

degree (2, 2), consisting of the linesΠ2 andΠ3 together with the two transversals for
Π0, . . . ,Π3 (these two transversals give Tn); again Mn is empty. (See, for example,
the description of the cubo-cubic Cremona transformation from [4] or [5].)

So now assume that n ≥ 4. Take a point q from Q0 ∩ Q1. Suppose q is not in
Π2 ∪ · · · ∪ Πn . Since q ∈ Q0, by Proposition 2.5 there is at least one transversal
through q forΠ1, . . . ,Πn and since q ∈ Q1 there is similarly at least one transversal
through q for Π0,Π2 . . . ,Πn . If one of the transversals coming from q ∈ Q0 is also
a transversal coming from q ∈ Q1, then it follows that the transversal goes through
all Π j , so the transversal (and hence q) is contained in Tn . Otherwise, q /∈ Tn , hence
there are two lines through q transversal for Π2, . . . ,Πn . �

Example 5.2 We close by showing for n = 4 that the complement of T4 ∪ Π2 ∪
· · · ∪ Π4 in Q0 ∩ Q1 is nonempty.

Take three points pi j , where pi j = Πi ∩ Π j , for j = 2, 3, 4, i 	= j . Let π be the
plane spanned by the three points. Take a general point q on π . From the fact that
all Π j are general, we have that q, p0 := π ∩ Π0 and p1 := π ∩ Π1 are not on a
line. Then the line through q and p0 is a transversal to Π0,Π2,Π3,Π4, so it is in Q0

(and in π of course). In the same way, the line through q and p1 is a transversal to
Π1,Π2,Π3,Π4, so it is in Q1, thus q is in Q0 ∩ Q1.

To prove thatM4 	⊂ T4, take a point r not inΠ2,Π3,Π4, and consider a projection
from r to a general hyperplane. Then the intersection of the images of Π2,Π3,Π4

is either a point—and then there is only one transversal to Π2,Π3,Π4 through this
point—or this intersection is a line, and then we have a plane of transversals from
our point r . From this construction it follows that we may have at most a plane of
transversals to Π2,Π3,Π4. As Π1,Π0 are general, the generic transversal on π is
not transversal to Π1,Π0.

Remark 5.3 Snyder and Rusk in [11] assert that deg(Rn) = (n+1)(n−2)
2 and that

deg(Mn) = (n−2)(n−3)
2 . We plan a future paper explaining these results and show-

ing also precisely that the inverse of a Veneroni transformation is always a Veneroni.
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8. B. Harbourne, J. Migliore, H. Tutaj-Gasińska, New constructions of unexpected hypersurfaces

in P
N . Rev Mat Complut (2020). https://doi.org/10.1007/s13163-019-00343-w

9. M. Hochster, J.A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection
of determinantal loci. Am. J. Math. 93, 1020–1058 (1971)

10. C. Segre, Sulla varieta cubica con dieci punti doppi dello spazio a quattro dimensioni. Atti
Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. XXII, 791–801 (1887)

11. V. Snyder, E. Carroll-Rusk, The Veneroni transformation in Sn . Bull. Am. Math. Soc. 42(8),
585–592 (1936)

12. J.A. Todd, The quarto-quartic transformation of four-dimensional space associated,with certain
projectively generated loci. Proc. Camb. Philos. Soc. 26, 323–333 (1930)

13. E. Veneroni, Sopra una trasformazione birazionale fra due Sn . Istit. Lombardo Accad. Sci. Lett.
Rend. A 34(2Serie 2, Fascicolo 11-12), 1901

http://www.math.lsa.umich.edu/~idolga/cremonalect.pdf
http://www.math.lsa.umich.edu/~idolga/cremonalect.pdf
http://arxiv.org/abs/1901.03725
https://doi.org/10.1007/s13163-019-00343-w

	 Veneroni Maps
	1 Introduction
	2 Codimension 2 Linear Subspaces
	3 The System mathcalLn
	4 An Inverse for vn
	5 Intersection of Qi and Qj
	References




