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1 Introduction

Recent technological advancements in the field of transistor fabrication, such as
FinFETs and GAAFETS, have led to significant improvements in the performance
of next-generation multi-core processors but at the expense of an increased sus-
ceptibility to reliability threats such as soft errors [4, 37], aging [14], and process
variations [14]. These threats generate permanent and/or temporary faults that can
lead to unexpected system failures and can be disastrous to several safety-critical
applications such as automotive, healthcare, aerospace, etc., as well as high-
performance computing systems. Therefore, several techniques have been proposed
to detect, prevent, and mitigate these reliability threats across the computing stack
ranging from the transistor and circuit layer [27, 43] to the software/application
layer [2, 42, 44]. Oftentimes, (full-scale) redundancy is employed at the hardware
and the software layers, for example, at the software layer, by executing multiple
redundant thread versions of an application, either spatially or temporally, and at
the hardware layer, by duplicating or triplicating the pipeline, i.e., Double/Triple
Modular Redundancy (DMR/TMR) [28, 29, 32, 46]. However, these reliability
techniques exhibit several key limitations, as discussed below:

1. Ensuring temporal redundancy at the software layer, by executing multiple
redundant threads of a given application on the same core, would incur a
significant performance overhead.
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Fig. 1 Different configurations for mitigating dependability threats for traditional (homogeneous)
and heterogeneous multi-core systems, respectively

2. Executing multiple redundant threads in multiple cores concurrently, instead of a
single core, provides spatial redundancy and nullifies the performance overhead
caused by the temporal redundancy. However, due to the activation of multiple
cores, this technique incurs a significant power overhead.

3. Similarly, fabricating redundant hardware components to provide full-scale TMR
across the pipeline incurs additional area, power, and energy overheads including
additional on-chip resources for the data correction and control units.

4. Moreover, these techniques are not adaptive with respect to the dependability
requirements of the applications, as well as their inherent error tolerance, during
their execution.

To address these limitations, we proposed the reliability-heterogeneous archi-
tectures in [20, 21, 33, 34]. They offer different types of reliability modes in
different cores (i.e., the so-called reliability-heterogeneous cores), realized through
hardening of different pipeline components using different reliability mechanisms.
Hence, such processors provide a foundation for design- and run-time trade-offs in
terms of reliability, power/energy, and area. Their motivation arises from the fact
that different applications exhibit varying degrees of error tolerance and inherent
masking to soft errors due to data and control flow masking. Hence, depending
upon the executing applications, their tasks can be mapped to a set of reliability-
heterogeneous cores to mitigate soft errors, as shown in Fig. 1.

Although this solution significantly reduces the power/energy and performance
overheads, it requires a sophisticated run-time management system that performs an
appropriate code-to-core mapping of the applications, based on their requirements
and given power/performance constraints. This requires enabling certain features
across the hardware and software layers such as additional control logic, core
monitoring units at the hardware layer, and a run-time manager at the software
layer. Embedding this chapter’s content in the scope of this book and the overall
projects [11, 13], the focus of this chapter is limited to the design of such
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Fig. 2 An overview of dependable computing with heterogeneous hardening modes (adapted
from [34]). Image sources: [16, 37]

hardware/software techniques that can enable heterogeneous dependable computing
(see Fig. 3).

Typically, the hardware solutions for dependable heterogeneous architectures

consist of the following three phases (see Fig. 2):

1.

Reliability and Resilience Modeling: First, the effects of different reliability
threats (i.e., soft errors, aging, and process variations) on different components
of a given multi-core system and different applications are modeled and analyzed
based on mathematical analysis, simulation, and/or emulation.

. Hardware Techniques: Based on the vulnerability analysis of the previous step,

multiple reliability-heterogeneous core variants are developed by hardening a
combination of the pipeline and/or memory components. Similarly, an analysis
of multi-level cache hierarchies has led to the design of multiple heterogeneous
reliability cache variants and reliability-aware reconfigurable caches.

. Run-time System: Afterwards, appropriate task-to-core mapping as well as

reliable code version selection are performed, while satisfying the application’s
reliability requirement and minimizing the power/area overheads. These prob-
lems can also be formulated as constrained optimization problems.
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Fig. 3 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

2 Fault-Tolerant Heterogeneous Processors

Reliability threats not only affect the computing cores in the microprocessors,
but can also significantly affect the on-chip memory sub-systems, like multi-
level caches. This section provides an overview of our techniques for developing
reliability-heterogeneous in-order processors and multi-level cache hierarchies.
Unlike the traditional homogeneous dependable processors, the development of
reliability-heterogeneous processors not only requires design-time efforts to develop
multiple variable-reliability processor variants but also requires a run-time manage-
ment system that can efficiently cater the applications’ requirements (see Fig. 2).
Therefore, as illustrated in Fig.4, developing these hardware techniques can be
divided into two phases, namely, design-time and run-time:

1. Design-Time: At design-time, first the overall vulnerability of a processor is
analyzed. Based on this analysis, we develop hardware techniques that can be
used to design reliability-heterogeneous processor cores (see Sect.2.1). In the
next step, these hardened cores are integrated into an architectural-level simulator
to evaluate their effectiveness. Similarly, we evaluate the vulnerability of caches,
based on which hardware techniques are designed to mitigate the effects
of reliability threats in caches (see Sect.2.2). These reliability-aware caches
and multiple reliability-heterogeneous cores are used to design a reliability-
heterogeneous processor, as depicted by Design-Time in Fig. 4.

2. Run-time: To effectively use the reliability-heterogeneous processor, an adap-
tive run-time manager for soft error resilience (ASER) is used to estimate the
reliability requirements of the applications (as well as their resilience properties),
and to efficiently map their threads to a set of hardened cores while adhering to
the user and performance constraints, as depicted by Run-Time in Fig. 4.
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Fig. 4 The design- and run-time methodology to develop dependable heterogeneous processors
(adapted from [20, 34])

2.1 Hardening Embedded Processors

To design the hardened cores for reliability-heterogeneous architectures, first, we
analyze the vulnerability of these cores to different reliability threats. Based on
this vulnerability analysis, instead of enabling full-scale DMR/TMR, we design the
micro-architecture of different hardened (in-order) cores. These cores have distinct
reliability mechanisms in different pipeline components (ranging from unprotected
to fully-protected), but implement the same instruction set architecture (ISA); see
the core variant library in Fig.4. Hence, these cores provide a trade-off between
reliability, area, and power/energy consumption. Since not all transistors on a chip
can be powered-on at the same time (i.e., the dark silicon problem [7, 31, 41]),
we leverage this fact to integrate many different hardened cores to develop a
reliability-heterogeneous ISO-ISA processor [20, 21], while adhering to hardware
and user-defined constraints (e.g., area, power) considering a target domain (i.e.,
given a particular set of target applications).

To cater for the application-specific requirements at run-time, an adaptive run-
time manager for soft error resilience (ASER) determines an efficient application-to-
core mapping considering the application’s vulnerability and deadline requirements,
system performance, thermal design power (TDP), and other user-defined con-
straints. For example, Fig.5 depicts the varying reliability improvements of the
ASER run-time system approach in comparison with multiple state-of-the-art
reliability techniques such as TRO (timing dependability optimization aiming at
minimizing the deadline misses), RTO (optimizing functional as well as timing
dependability), Full-TMR (activating full TMR), and AdTMR (deactivating TMR
when the vulnerability lies below a pre-defined threshold). The reliability is
measured using the Reliability Profit Function (RPF) which is defined as follows:
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where V¢t € T, T is a set of run-time concurrently executing application tasks
(T = {Ih,Tr,....Tw)}), Z € {TRO,RTO,TMR,adTMR}, and RTP is
the Reliability-Timing Penalty [38]. Note, a higher value of RPF translates to a
better reliability. The ASER approach achieves 58-96% overall system reliability
improvements when compared to these four state-of-the-art techniques.

2.2 Reliability Techniques for Multi-Level Caches

In any microprocessor, on-chip memories play a significant role to improve the
throughput and performance of an application. Moreover, memory elements (such
as caches) are even more susceptible to soft errors compared to the computing
elements (i.e., logic) as they occupy a significant portion of the total on-chip
area [9]. Therefore, for designing dependable multi/many-core processors, different
(individual) cache levels as well as the complete cache hierarchy (considering inter-
dependency between different cache levels) have to be analyzed and optimized for
mitigating reliability threats.

2.2.1 Improving the Reliability of Last-Level Caches

Dynamic reconfiguration of the caches with respect to the running applications
has a significant impact on the vulnerability of the on-chip last-level caches, as
shown in Fig. 6. It can be observed from the vulnerability analysis of a given cache
configuration (see Fig.6) that due to different access patterns and occupancy of
last-level caches for the application, the vulnerability also varies depending on
the executing applications. This dynamic change in vulnerability at run-time can
be exploited to improve the reliability of the last-level cache. Therefore, dynamic
reconfiguration of the last-level cache is exploited to develop a reliability-aware
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Fig. 6 (a) Vulnerability analysis of different applications from the PARSEC benchmark for the
baseline case (L2 cache parameters—8 MB, 8-way, 64 B). (b) Vulnerabilities and cache misses
(MKPI) for the Ferret application for different cache configurations (adapted from [19])

reconfigurable cache architecture [19, 22]. Towards this, we aim at reducing the
vulnerability of concurrently executing applications by employing the following
features:

1. A methodology to quantify the cache vulnerability with respect to concurrently
executing applications.

2. A method for lightweight online prediction of the application vulnerability online
based on the cache utilization and performance data.

3. A methodology to dynamically reconfigure the last-level cache at run-time that
targets at minimizing the application vulnerability w.r.t. cache while keeping the
performance overhead low, or within a tolerable bound.

This reliability-aware cache reconfiguration [22] can also be applied in conjunction
with the error correcting codes (ECCs). For example, Single Error Correcting-
Double Error Detecting (SEC-DED) [6] can be combined with the reliability-aware
cache reconfiguration [22] to improve reliability in multi-bit error scenarios, or in
cases where only some of the cache partitions are ECC-protected due to the area
constraints.

2.2.2 Improving the Reliability of the Complete Cache Hierarchy

The application vulnerability towards soft errors is not only dependent on the
individual utilization or dynamic reconfiguration of the different individual cache
levels (e.g., L1 or L2). Rather, the vulnerability interdependencies across different
cache levels also have significant impact on the reliability of the system. There-
fore, the vulnerability of the concurrently executing applications with respect to
the corresponding cache configuration can further be improved by considering
these interdependencies across different cache levels. To achieve an efficient
design, we first performed an architectural design space exploration (DSE), while
considering multi-core processors with multiple cache levels executing different
multi-threaded applications. Our cache DSE methodology identifies the pareto-
optimal configurations with respect to constraints, performance overhead, and
targeted vulnerabilities [45]. Afterwards, these configurations are used at run time to
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Fig. 7 (a) and (b) Exploration time saving achieved by the proposed approach with respect to
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(¢) Vulnerability saving comparison of the proposed approach compared to non-reconfigurable
baseline cache with L1 Early WriteBack (EWB) [15] and reliability-aware last-level cache
partitioning (R2Cache) [22] schemes (adapted from [45])

perform reliability-aware cache reconfiguration for the complete cache hierarchy.
Figure 7 shows that more than 50% vulnerability saving is achieved by the proposed
solution as compared to non-reconfigurable baseline cache with L1 Early WriteBack
(EWB) [15] and Reliability-Aware Last-Level Cache Partitioning (RzCache) while
exploring less than 2% of the entire exhaustive cache configuration design space.

3 Heterogeneous Reliability Modes of Out-of-Order
Superscalar Cores

Embedded processors, although important in a wide range of applications and
scenarios, cannot cater the high throughput and performance requirements of
personal computers or high-performance computing platforms such as cloud servers
or data-centers, which are also constrained in the amount of power that can
be consumed. Such high-throughput systems deploy multi-core out-of-order (O3)
superscalar processors, such as Intel Core i7 processors in PCs, and Intel Xeon or
AMD Opteron processors in servers and data-centers worldwide. An O3 processor
executes the instructions of a program out-of-order, instead of in-order as is the
case in embedded processors (e.g., LEON3), to utilize the instruction cycles that
would otherwise be wasted in pipeline stalls. A superscalar processor, on the
other hand, implements instruction-level parallelism to execute more than one
instruction in parallel by dispatching instructions to multiple different execution
units embedded in the processor core. Therefore, an O3 superscalar processor
offers a significantly higher throughput by combining the advantages of these two
individual techniques. However, enabling such high throughput comes at the cost of
implementing additional hardware units such as the Re-order Buffer (ROB), which
keeps track of the instructions executing out-of-order.
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Fig. 8 Experimental tool-flow for vulnerability analysis of out-of-order superscalar ALPHA cores

In this section, we analyze the vulnerability of the ALPHA 21264 [17] O3
superscalar processor and design multiple reliability-heterogeneous processor cores
from which an optimal configuration can be chosen at run-time based on the
applications’ reliability requirements.

3.1 Experimental Setup

Figure 8 presents an overview of the tool-flow used to obtain the results. We utilize
a modified version of the gem5 simulator [5] extended to support the following
functionality:

1. Determine the vulnerable time of all pipeline components, which in turn is used
to compute their Architectural Vulnerability Factors (AVFs) [30],

2. Full support for simulating reliability-heterogeneous cores obtained by triplicat-
ing key pipeline components (instead of implementing full-scale TMR), and

3. Checkpoint processor state compression using techniques like DMTCP [3],
HBICT [1], and GNU zip [8].

We evaluate our reliability-heterogeneous ALPHA 21264 four-issue superscalar
processor cores using the MiBench application benchmark suite [12].

3.2 Vulnerability Analysis of Out-of-Order Superscalar
Processors

The AVF of a component C over a period of N clock-cycles is defined as the
probability of a fault that is generated in C to propagate to the final output resulting
in an erroneous application output or intermittent termination of the program [30].
It is computed using the following equation:

"= VulnerableBits

AVFe =
¢ TotalBits x N

2
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The AVF of each pipeline component is estimated using applications from the
MiBench and PARSEC application benchmark suites for single- and multi-core
ALPHA 21264 superscalar processors for key pipeline components such as: (1)
Re-order Buffer (ROB), (2) Instruction (IQ), (3) Load (LQ), (4) Store Queues
(8Q), (5) Integer Register Files (Int. RF), (6) Floating Point Register Files (FP
RF), (7) Rename Map (RM), (8) Integer ALUs (Int. ALU), (9) Floating Point
ALUs (FP ALU), (10) Integer Multiply/Divide (Int. MD), and (11) Floating Point
Multiply/Divide (FP MD). Figures 9 and 10 illustrate the results of the vulnerability
analysis experiments for both the single-core and multi-core processors.

We analyze the results obtained from the vulnerability analysis to make the
following key observations:

1. We have identified three key pipeline components (Integer ALU, Store Queue,
and Re-order Buffer) that are more vulnerable during the execution of SHA, when
compared to Bit-counts, as depicted by A in Fig. 9.
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2. The AVFs of the individual pipeline components vary for different application
workloads. For example, as shown in Fig. 10a the vulnerability of the Integer
ALU widely varies for the four application workloads evaluated (labeled B).

3. In case of multi-core processors, the size of the input data does not significantly
affect the AVF of the pipeline components, as shown by C in Fig. 10b.

The AVF of a component varies based on the type and number of instructions
present in the application and its properties such as its compute- or memory-
intensiveness, instruction-level parallelism, cache hit/miss rate, etc. For example,
components like the ROB and the SQ are more vulnerable in SHA because of higher
levels of instruction-level parallelism and more store instructions.

Therefore, based on this information, we can select certain key pipeline com-
ponents that can be hardened/triplicated to increase the reliability of the processor
for a given application workload. By hardening multiple key pipeline components
in different combinations, we design a wide range of reliability-heterogeneous
O3 superscalar ALPHA cores from which an optimal design configuration can
be selected at run-time based on an application’s reliability requirement while
minimizing the area and/or power overheads.

3.3 Methodology for Hardening Out-of-Order Superscalar
Processors

Our methodology for designing reliability-heterogeneous O3 superscalar processors
targets two key approaches: (1) Redundancy, and (2) Checkpointing. Redundancy at
the hardware layer is ensured by designing a wide range of reliability-heterogeneous
processor cores by hardening a combination of the vulnerable pipeline components,
depending on the reliability requirements of the target application. The vulnerable
components are selected based on the fault-injection experiments and the AVF
values of each component for different application workloads. Second, to further
enhance processor reliability, we investigate and analyze various compression
mechanisms that can be used to efficiently reduce the size of checkpointing data. An
overview of our methodology for hardening O3 superscalar processors is presented
in Fig. 11. First, we explain how we evaluate the vulnerability of the full processor
for a given application workload.

3.3.1 Full-Processor Vulnerability Factor

For evaluating the vulnerability of the full processor for a given application
workload, we propose to extend the AVF to estimate what we refer to as the Full-
Processor Vulnerability Factor (FPVF). It is defined as the ratio of the total
number of vulnerable bits (VulnerableBits) in the processor pipeline for the duration
they are vulnerable (VulnerableTime) to the total number of bits in the processor
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Fig. 11 Methodology for hardening out-of-order superscalar processors (adapted from [33])

pipeline (TotalBits) for the total duration of application execution (TotalTime). For
a given application workload (W), we estimate FPVF of our proposed reliability-
heterogeneous processors as:

FPVFy = ZVieComponems VulnerableBits; x VulnerableTime;

3

> vicComponents T 0tal Bits; x TotalTime;

3.3.2 Heterogeneous Reliability Modes for ALPHA Cores

Enabling full-scale TMR for all application workloads leads to 200% (or more)
area and power overheads, which might not be a feasible option in many real-
world systems. Considering the analysis presented in Sect.3.2, which illustrates
that the AVF of the pipeline components varies based on the application workload,
we propose to enable fine-grained TMR at the component-level. This involves
hardening a combination of highly vulnerable pipeline components, instead of the
full-processor pipeline to increase processor reliability while reducing the power
and area overheads associated with TMR. Hardening involves instantiating three
instances of the component with the same set of inputs and a voter circuit that is
used to elect the majority output. We propose and analyze 10 different reliability
modes (RM) for heterogeneous processors, including the baseline unprotected (U)
core. The list of components hardened in these modes are presented in Table 1.

Next, we execute the four MiBench application benchmarks on our 10 proposed
RMs to estimate the FPVF of each reliability-heterogeneous processor. We also
evaluate the area and power overheads incurred by each reliability mode. The
results of the experiments are illustrated in Fig. 12. From these results, we make
the following key observations:

1. Our initial hypothesis, which stated that hardening different combinations of
pipeline components (RMs) can reduce the vulnerability to different extents
based on the application workload being executed, was correct. We demonstrate
this further by considering the applications SHA and Dijkstra. Typically, the
vulnerability of these two applications is similar to each other, except in the cases
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Table 1 Heterogeneous reliability modes and corresponding pareto-optimal reliability modes
for MiBench applications

Reliability mode | Components hardened | Application | Pareto-optimal reliability modes

U Unprotected Bit-counts | U, RM4, RM7
RM1 RF Dijkstra U, RM4, RM7, RM8
RM2 1Q,RM Patricia U, RM4, RM7
RM3 1Q, LQ, SQ SHA U, RM1, RM6, RM7, RM8
RM4 1Q, LQ, SQ,RM, ROB | All U, RM4, RM7, RM8
RMS5 RE 1Q, LQ, SQ
RM6 RF, RM
RM7 RF, RM, ROB
RMS8 RM, ROB
RM9 RF IQ, LQ, SQ,RM
- 40
2 :T 30 B Bit-count @ Sha
Scﬁ '.é 5 20 EDijsktra O Patricia
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Fig. 12 Full-Processor Vulnerability Factor (FPVF) and power/area trade-off of the proposed
heterogeneous reliability modes for different MiBench applications (adapted from [33])

of RM2, RM6, and RM9. The full-processor vulnerability of these three RMs has
been reduced by more than 50% when executing SHA compared to Dijkstra.

2. Components such as the Rename Map and Reorder Buffer, when hardened, are
highly effective in reducing the FPVF for all four applications. This is illustrated
by the reliability modes RM4, RM7, and RMS, which have significantly lower
FPVFs compared to their counter-parts. However, these two components occupy
a significant percentage of the on-chip resources and hardening them leads
to significant area and power overheads as illustrated by Fig. 12. This leads
us to infer that hardening specific highly vulnerable pipeline components can
significantly reduce the overall processor vulnerability for a wide range of
application workloads based on their properties.

Furthermore, based on the data from these experiments, we perform an architec-
tural space exploration that trades-off FPVF, area, and power overheads to extract
the pareto-optimal reliability modes. The results of the experiments are illustrated
in Fig. 13, where the x-, y-, and z-axes depict the FPVF, area, and power overheads,
respectively. From these results, we make the following key observations:
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(a) Bit-counts

Non-Pareto Optimal
Reliability Mode

Pareto Optimal
Reliability Mode

Unprotected core that is
highly vulnerable to soft
errors

Fig. 13 Architectural space exploration of our heterogeneous reliability modes for MiBench
applications (adapted from [33])

1. The design labeled U, i.e., the unprotected core, is pareto-optimal for all
application workloads. This is expected as this reliability mode incurs zero area
and power overheads and represents the least reliable processor design.

2. Although RM7 and RMS significantly reduce the FPVF, due to their differences
in power and area overheads, RM7 lies on the pareto-front for all individual appli-
cation workloads, whereas RM8 is pareto-optimal only for SHA and Dijkstra.
Similarly, RM4 is pareto-optimal for three of the four application workloads.

3. RM4, RM7, and RMS, all lie on the pareto-front when all applications are
executed on the cores. This behavior is observed because of the varying levels
of vulnerability savings achieved by the RMs when compared to their area and
power overheads.

4. RM7 is pareto-optimal for four individual application workloads and reduces the
FPVF by 87%, on average, while incurring area and power overheads of 10%
and 43%, respectively.

3.3.3 State Compression Techniques

Reliability can also be improved at the software layer by inserting checkpoints in
the application code. When an application encounters a checkpoint, the complete
processor state, including all intermediate register and cache values, is stored in the
main memory. These checkpoint states can be used to re-initialize the processor,
which is referred to as rollback, in case a failure is detected and the next sequence
of instructions are re-executed.
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Fig. 14 Effectiveness of state compression techniques in reducing state size (adapted from [33])

The way checkpointing is implemented in gem5 leads to significant loss in
performance in case of frequent checkpoint restoration as the cache and pipeline
states are not preserved, which, in turn, leads to a higher number of instructions
being executed. Distributed Multi-Threaded Checkpointing (DMTCP) is a Linux
compatible checkpointing tool that is used to checkpoint Linux processes. The
back-end mechanism of DMTCP is accessible to programmers, via Application
Programming Interfaces (APIs), to insert checkpoints into their application code.
Inside gem5, these APIs can be used in combination with its pseudo-instructions
to offer the functionality of creating/recovering checkpoint states for the appli-
cations being simulated inside gem5. Furthermore, the size of data generated
by each checkpoint is typically large, especially in the case of O3 superscalar
processors with large multi-level cache hierarchies. Therefore, we explore various
compression strategies that can be used to efficiently compress and reduce the
checkpoint data using techniques like the Hash-Based Incremental Checkpointing
Tool (HBICT) and GNU zip (gzip). HBICT provides DMTCP support to enable
checkpoint compression using an approach called delta compression. This kind of
compression mechanism preserves only changed fragments of a program’s state,
thereby considerably reducing the size of checkpoint data. gzip is a file compression
technique based on the DEFLATE algorithm, which is a combination of lossless
data compression techniques such as LZ77 and Huffman coding. gzip can drastically
reduce the size of checkpoint data, as illustrated by the results presented in Fig. 14.
These techniques and compression algorithms are implemented in gem5, in different
combinations, to reduce the size of checkpoint data for the four aforementioned
MiBench applications, by executing them on an unprotected ALPHA processor. The
effectiveness of different combinations of compression algorithms is illustrated in
terms of checkpoint data size in Fig. 14. It can be observed that the combination of
DMTCP and gzip is highly successful in reducing the checkpoint size by ~6x. On
the other hand, a combination of DMTCP, HBICT, and gzip techniques reduces the
checkpoint size by ~5.7x.

4 Run-Time Systems for Heterogeneous Fault-Tolerance

The techniques discussed in Sects.2 and 3 also require a run-time manager for
incorporating the application vulnerabilities with respect to several reliability threats



176 F. Kriebel et al.

such as soft errors, aging, and process variation, as well as considering constraints
like dark silicon and required performance (or tolerable performance overhead).
Most of the adaptive hardware techniques exploit the application vulnerability to
map applications on appropriate cores to reduce their vulnerability. Similarly, this
concept can be applied to modify the applications with respect to the available hard-
ened core or caches, which can also be combined with other hardware techniques to
further reduce the vulnerabilities of the heterogeneous multi/many-core processors.
Therefore, several techniques have been proposed to modify the execution patterns
of the application or partitioning the application to develop a run-time system for
reliability-heterogeneous multi/many-core processors.

1. Aging- and Process Variation-Aware Redundant Multithreading [18, 36]:
dTune leverages multiple reliable versions of an application and redundant
multithreading (RMT) simultaneously for achieving high soft error resilience
under aging and process variability [36]. Based on the reliability requirements
of the executing applications, dTune performs efficient core allocation for RMT
while considering the aging state of the processor as well as process variation.
It achieves up to 63% improvement in the reliability of a given application.
Similarly, another approach [18] utilizes different software versions and RMT
to improve the reliability of a system while considering the effects of soft errors
and aging on the processor cores, to achieve an improved aging balancing.

2. Variability-aware reliability-heterogeneous processor [21]: This work
leverages techniques at the hardware and run-time system layers to mitigate
the reliability threats. In particular, this work focuses on TMR-based solutions
to (partially) harden the cores for developing a many/multi-core reliability-
heterogeneous processor. It uses a run-time controller to handle multiple
cores with different reliability modes while considering the reliability
requirements of the applications. In addition, it also exploits the dark silicon
property in multi/many-core processors to offer a wide range of different
performance-reliability trade-offs by over-provisioning the processor with
reliability-heterogeneous cores.

3. Aging-aware reliability-heterogeneous processor [10]: This technique
exploits the dark silicon property of the multi/many-core processors to design a
run-time approach for balancing the application load to mitigate the reliability
threats, i.e., temperature-dependent aging while also considering variability and
current age of the cores in order to improve the overall system performance
for a given lifetime constraint. The analysis shows that this run-time solution
can improve the overall aging of the multi/many-core processor by 6 months to
5 years depending upon the provided design constraints and power overheads.
Furthermore, this work also developed a fast aging evaluation methodology
based on multi-granularity simulation epochs, as well as lightweight run-time
techniques for temperature and aging estimation that can be used for an early
estimation of temperature-dependent aging of multi/many-core processors.

There are other techniques which can exploit the functional and timing reliability
in real-time systems to improve the application by generating the reliable application
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versions or respective thread with different performance and reliability properties
[38]. These reliable applications or respective thread can jointly be used with
hardware techniques to improve the overall reliability of the multi/many-core
heterogeneous processor. Another solution is to exploit the dynamic voltage and
frequency scaling to generate the dynamic redundancy and voltage scaling with
respect to the effects of process variations, application vulnerability, performance
overhead, and design constraints [40]. This technique demonstrates up to 60%
power reductions while improving the reliability significantly. Similarly, in addition
to redundancy, multiple voltage-frequency levels are introduced while consider-
ing the effects of dark silicon in multi/many-core heterogeneous processor [39].
This technique also considers the effects of soft errors and process variations in
their reliability management system that provides up to 19% improved reliability
under different design constraints [35]. Most of the abovementioned approaches
are focused on general purpose microprocessors; however, in application-specific
instruction set processors (ASIPs), the hardware hardening and corresponding run-
time software assisted recovery techniques can be used to improve the soft error
vulnerabilities in ASIP-based multi/many-core systems. For example, dynamic core
adaptation and application specificity can be exploited to generate a processor
configuration which performs the error (caused by soft error) recovery for a
particular application under the given area, power, and performance constraints
[24-26]. Moreover, the baseline instruction set of the targeted ASIPs can also be
modified or extended to enable the error recovery functionality [23].

5 Conclusion

This chapter discusses the building blocks of computing systems (both embedded
and superscalar processors) with different heterogeneous fault-tolerant modes for
the memory components like caches as well as for the in-order and out-of-order
processor designs. We provide a comprehensive vulnerability analysis of different
components, i.e., embedded and superscalar, processors and caches, considering
the soft errors and aging issues. We also discuss the methodologies to improve
the performance and power of such systems by exploiting these vulnerabilities. In
addition, we briefly present that a reliability-aware compiler can be leveraged to
comprehend software-level heterogeneous fault-tolerance by generating different
reliable versions of the application with respective reliability and performance
properties. Further details on reliability-driven compilation can be found in Chap. 5.
Towards the end, we also analyze fault-tolerance techniques for application-specific
instruction set processors (ASIPs).
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