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Abstract. The future smart grid has to be operated by rather small and
hardly flexible energy resources. Such duty comprises different planning
tasks. Virtual power plants powered by multi-agent control are seen as a
promising aggregation scheme for coping with problem size and for gain-
ing flexibility for distributed load planning. If agents are allowed to freely
include local preferences into decision making the overall solution quality
deteriorates significantly if no control mechanism is installed. We scru-
tinized this deterioration and propose an approach based on controlled
self-organization to achieve an overall maximization of integrated local
preferences while at the same time preserving global solution quality for
grid control as much as possible. Some first results prove the applicabil-
ity of the general approach. Further research directions and questions for
future work are derived from these first results.
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1 Introduction

The structure of the energy supply within the power grid is constantly chang-
ing. The future smart grid will basically consist of small, volatile and hardly
controllable renewable decentralized energy resources (DER). In the long run,
these small generation units will have to assume responsibility for all daily grid
operation tasks and ancillary services. This can only be achieved when units pool
together (most likely with controllable load and batteries) to gain flexibility and
potential.

Virtual power plants (VPP) are a well-known instrument for aggregating and
controlling DER [2]. A VPP comprises individually operated DER loosely cou-
pled by some communication means and jointly orchestrated by some (decentral-
ized) control algorithm [6]. Integration into current market structures recently
also led to VPP systems that frequently re-configure themselves for a market
and product specific alignment [27]. In general, VPP concepts for several pur-
poses (commercial as well as technical) have already been developed. A use case
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commonly emerging within VPP control is the need for scheduling the partici-
pating DER. Independently of the specific objective at hand, a schedule (course
of energy generation) for each DER has to be found such that the schedule that
finally is assigned to a DER is operable without violating any technical constraint
[7]. For this paper we go with the example of scheduling for active power plan-
ning in day-ahead scenarios (not necessarily 24 h but for some given future time
horizon). For large scale problems, distributed (usually agent based) approaches
are currently discussed not least due to further advantages like ensured privacy
issues. Some recent implementations are [13,16,32]. Distributed organization and
self-organized control is also especially a characteristic of dynamic virtual power
plants (DVPP) [27].

Some types of VPP specialize in predictive scheduling as operational service
[26]. The goal of predictive scheduling is to select a schedule for each energy
unit – with respect to a given search space of feasible schedules with respect to
a future planning horizon – such that a global objective function (e. g. a target
power profile for the VPP) is optimized. This target profile may be a schedule
that is assigned to a VPP as a result of some trading action on an energy market.
We consider this target schedule as already given for the rest of this contribution.

For solving this problem in a decentralized way, agent-based solutions have
been developed. One approach based on a gossiping type of algorithm is given
by COHDA – the combinatorial optimization heuristic for decentralized agents
[3,15].

The key concept of COHDA is an asynchronous iterative approximate best-
response behavior, where each agent – representing a decentralized energy unit
– reacts to updated information from other agents by adapting its own selected
schedule with respect to local and global objectives. Different objectives are
handled by scalarization into a single objective as weighted sum of objectives.
As the global (main) goal is achieving a consensus on operation modes such that
the market given energy schedule is delivered as agreed on (small deviations
are acceptable), attention has to be paid to the result quality of this specific
objective. In order to ensure a minimum solution quality for the main goal,
control of the weighting of local objectives is needed.

From the perspective of individually operated decentralized energy resources
it is desirable to maximize the weight of local preferences. As different partici-
pants in the VPP have different characteristics in their flexibilities and thus have
different importance in achieving the main goal, individual maximum weight are
possible for different participants. On the other hand, the maximum local weights
should be assigned in a fair way, at least in the long run.

We propose to use the concept of controlled self-organization to steer the
individual use of local preferences based on the current composition (individual
flexibilities based on current operational state of different energy units) of the
VPP and formulate the optimization problem that has to be solved for finding
a set of best local weights.

The rest of the paper is organized as follows. We start with a recap of decen-
tralized algorithms for the scrutinized problem and controlled self-organization
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in general. We derive an architecture for controlling the local weights and present
a first solution for the emerging optimization problem based on evolution strate-
gies. Some results from a simulation study conclude the paper.

2 Related Work

In order to cope with the growing load planning and control complexity in the
future smart grid, agent-based and self-organization approaches for problem solv-
ing are most promising [36]. Examples can already be found in [1,9,10,30,32].
As a use case for this paper we use the example of decentralized predictive
scheduling [15].

The task of predictive scheduling is to plan energy production (e. g. for the
next day) of a group of generators. In the future smart grid instead a large group
of small distributed energy resources will have to be planned for appropriate
dispatch instead – probably pooled together with controllable load and batteries
for higher flexibility. Such group is commonly referred to as virtual power plant.
In many scenarios such a group trades its flexibility on some energy market and
is assigned a schedule from market that has to be operated. The target schedule
usually comprises 96 time intervals of 15 min each with a given amount of energy
(or equivalently mean active power) for each time interval, but might also be
constituted for a shorter time frame by a given energy product that the VPP has
to deliver. A schedule in this context is a real valued vector x with each element
xi denoting the respective amount of energy generated or consumed during the
i-th time interval. It is the goal of the predictive scheduling to find then exactly
one schedule for each energy unit such that

1. each schedule that is assigned to a specific energy resource can be operated
by the respective energy unit without violating any hard technical constraint,
and

2. the difference between the sum of all targets and a desired given market
schedule is minimized.

A basic formulation of the scheduling problem is given by

δ

(
m∑
i=1

xi, ζ

)
→ min; s.t. xi ∈ Fi ∀Ui ∈ U . (1)

In Eq. (1) δ denotes an (in general) arbitrary distance measure for evaluating the
difference between the aggregated schedule of the group and the desired target
schedule ζ. [14] for example uses the Manhattan distance; in [4] also measures
like excess supply minimization [11] have for example been integrated and tested.
Throughout this paper, we will use the Euclidean distance | · |2.

Fi denotes the feasible region of energy unit Ui. Feasibility of solution can
be assured by using a decoder as constraint-handling technique. Such a decoder
learns the individual set of feasible schedules of an energy unit and repairs infea-
sible solutions during optimization [8].
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For solving this optimization tasks the fully decentralized combinatorial
optimization heuristics for distributed agents (COHDA) has been developed
[13,15,27]. An agent in COHDA does not represent a complete solution as it
is the case for instance in population-based approaches. Each agent represents a
class within a multiple choice knapsack combinatorial problem [20]. Applied to
predictive scheduling, each class refers to the feasible region in the solution space
of the respective energy unit. Each agent chooses schedules as solution candidate
only from the set of feasible schedules that belongs to the DER controlled by
this agent. Each agent is connected with a rather small subset of other agents
from the multi-agent system and may only communicate with agents from this
limited neighborhood. The neighborhood (communication network) is defined by
a small world graph [35]. As long as this graph is at least simply connected, each
agent collects information from the direct neighborhood and as each received
message also contains (not necessarily up-to-date) information from the transi-
tive neighborhood, each agent may accumulate information about the choices of
other agents and thus gains his own local belief of the aggregated schedule that
the other agents are going to operate. With this belief each agent may choose
a schedule for the own controlled energy unit in a way that the coalition is put
forward best while at the same time own constraints are obeyed and own inter-
ests are pursued; what in turn – if not controlled – may lead to worse main goal
quality.

A broadly used model for implementing intelligent agents has been developed
by the Rational Agent Project at the Stanford Research Institute (https://www.
sri.com/). In this architecture, each agent possesses beliefs about his environ-
ment, has a desired goal and access to a database with plans to achieve the goal.
Due to the interplay of these beliefs, desires and intentions the architecture is
known as BDI architecture.

Without a concrete database with plans, sometimes self-organization is the
goal within multi-agent systems. Organic computing systems are highly dynamic
and bundle a huge number of changing components; not necessarily agents [23].
Orchestration is not induced from the outside or by central control, but arises
as emergent behavior [22]. This trait results in self-configuring, -adapting, and
-healing and autonomous systems. Consequently, traditional tools and methods
for design and analysis do no longer apply to such systems [34]. In order to
introduce the advantages of classical closed loop control systems into the con-
trol of emergent systems, a specific observer/ controller architecture has been
developed [33]. In this architecture the actual system is under observation of one
or more observer components. These observers scrutinize and evaluate emergent
behavior patterns inside the controlled system, aggregate information, and report
to a controller component that decides based on user allowances and machine
learning analysis of report history. In this way, a controlled self-organization is
achieved by embedding the actual system into a control loop [25,28].

Examples for implemented controlled self-organization for computer-based
applications are given in [19,29], but can also be found in chemistry [18] or
quantum physics [31].

https://www.sri.com/
https://www.sri.com/
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We want to use the concept of controlled self-organization to induce a control
entity into the multi-agent systems that may observe and keep track of the
impact of local optimization preferences and is capable to intervene by providing
a vector for individually max values for the weights that the agents may use.

3 Controlling Local Objectives

Optimization problems with different (opposing) objectives constitute a multi-
objective problem. In this case, optimality has to be defined by Pareto optimality;
i. e. improvement on one objective cannot be achieved without deterioration on
the other [24].

Thus, is seems immediately clear that in the case of predictive scheduling the
solution quality for the main goal (objective of resembling the market schedule
as close as possible) deteriorates if the agents give a too strong weighting to the
local objectives (their local preferences).

We created a simulation of different co-generation plants [21] and a multi-
agent system with one agent associated to each co-generation plant. The agents
capable of using the COHDA algorithm to conduct load planning in a decen-
tralized way. Differing from the original algorithm the agents were allowed to
use a weighted sum of two objectives for evaluating the solutions. One objec-
tive was for the global goal of achieving a close as possible resemblance of the
sum of schedules to the wanted market schedule. The second objective allowed
integrating local preferences. We use the example of maximizing the remaining
flexibility of the energy unit for trading at the market later. For this purpose we
defined

ESd
(x) =

(0.5(ϑmin + ϑmax) − ϑd)2

(ϑmax − ϑmin)2
. (2)

ESd
denotes the state of charge (SoC) error of the buffer store after operating

d intervals of the schedule by taking into account the squared deviation of the
resulting buffer temperature ϑd from the mean of the allowed temperature range
[ϑmin, ϑmax]. In this way the remaining flexibility (to trade on some future mar-
ket) for the controlled co-generation plant is maximized [5]. To this end, COHDA
in the multi-agent system was equipped with an aggregated objective

wj · ESd
(xj) + (1 − wj) · δ

(
n∑

i=0

xi, ζ

)
→ min (3)

for optimizing the global objective of minimizing the deviation of the sum of all
schedules

∑n
i=0 xi (from agents 1 to n) from the desired market schedule ζ and

the local goal of minimizing the deviation from the local mean buffer charge ESd

at the same time. Each agent aj may individually set the weight wj for the own
local objective individually.

First we tested the impact of different weights on the achieved resemblance to
the market schedule. The mean absolute percentage error measure (MAPE) was
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Fig. 1. Deterioration of the primary goal with varying (but identical for all agents)
weights for the local (private) objective.

Table 1. Mean and best results for randomly sampled weights (different for all agents)
for different normal distributions of w.

N (μ, σ) Mean Min.

(0.3,0.15) 7.246 1.738 6.378 × 10−8

(0.6,0.3) 3.805 0.922 7.973 × 10−3

used in order to guarantee comparability between different scenarios. Figure 1
shows the result for a scenario with 10 co-generation plants and the same weight
for all agents.

As expected the achieved main goal deteriorates if agents are allowed to
concurrently include local (opposing) objectives. With a growing weight the
result gets worse for the main goal. On the other hand, we scrutinized different
weights and consider that different agents with different co-generation plants
have different importance for the result within the group. Table 1 shows the
result for two different spreads of the weights within the group. We tested 1000
different random combinations of weights for each group. As can be seen (by the
growing standard deviation and the minimum results), there are combinations of
weights that still result in good primary goal results. Thus, we can conclude that
there is potential for finding good combinations of weights by an optimization
approach.

To achieve this, we propose the architecture depicted in Fig. 2. Following the
approach of controlled self-organization, a control entity will be responsible to
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interfere the self-organization process if agents choose local weights that lead to
deteriorated results when trying to achieve the global goal of jointly operating a
generation schedule that has been agreed on at some market. if the result quality
falls below some given threshold, the weights are adjusted. In our case, we chose
a mean absolute percentage error of 1%, meaning a mean deviation of 1% from
the agreed energy delivery.

4 Results

For our evaluation, we use the famous co-variance matrix adaption evolution
strategy (CMA-ES). CMA-ES is a well-known evolution strategy for solving
black box problems and aims at learning lessons from previous successful evo-
lution steps. New solution candidates are sampled from a multi variate normal
distribution N (0,C) with covariance matrix C which is adapted in a way that
maximizes the occurrence of improving steps according to previously seen dis-
tributions for good steps. Sampling is weighted by a selection of solutions of the
parent generation. In a way, a second order model of the objective function is
exploited for structure information. A comprehensive introduction can for exam-
ple be found in [12]. CMA-ES has a set of parameters that can be tweaked to
some degree for a problem specific adaption. Nevertheless, default values appli-
cable for a wide range of problems are available. We have chosen to set these
values after [12] for our experiments.

For optimizing the weight vector w we defined the following objective:

v · |w| − ∑
i=1...|w| wi

|w| + (1 − v) · c(w) + p(w) → min (4)

with

p(w) =
∑ ⎧⎪⎨

⎪⎩
w2

i , wi < 0
(wi − 1)2, wi > 1
0, 0 ≤ wi ≤ 1

(5)

and c(w) denoting the mean error of COHDA simulations runs conducted
with weight vector w measured in MAPE. Function p(w) introduces a penalty
for weight values not in [0, 1]. In our simulation we set the weight v that balances
minimization of 1-weight (thus maximizing the local weights) and minimization
of the load scheduling error resulting from the weights to v = 0.5.

We used the simulation and multi-agent system presented in Sect. 3 and
the architecture from Fig. 2. The control entity has access to the agents to set
individual weights for the agents via a control interface. A COHDA optimization
run can be started by the control entity. The multi-agent system then conducts
COHDA autonomously, but the result again can be observed by the control
entity (by subscribing to an observer interface).

Overall, the following control loop is established. The controller conducts
CMA-ES with the objective of finding a good weight vector w. During each iter-
ation CMA-ES samples new candidates of w. These candidates are evaluated



Controlled Self-organization for Multi-objective Optimization 321

MAS 

agent 2 agent 3 
agent 1 

...

controller 

CTRL 

CTRL obs 

obs obs CTRL 

optimization result 

meta-
optimization 

COHDA 

solution candidate 

set 

evaluate 

generate 

Fig. 2. Architecture for adjusting local weights in controlled self-organized global/local
multi-objective energy scheduling.
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Fig. 3. Example convergence profile for a scenario with 5 co-generation plants.

by sending the respective weight values to the respective agents and starting
COHDA. The result schedules of COHDA are collected, summed up and com-
pared with the market schedule ζ (this is repeated 5 times for each candidate
w). The mean error from COHDA serves for evaluating the candidate weights w.
In this way, good combinations of weights can be found for individually steering
the weighting of local preferences in the self-organizing load planning process of
the agents.

Figure 3 shows the convergence behavior of a first result for a scenario with 5
co-generation plants. Figure 3 shows another example with 10 units. Please note
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Table 2. Mean, min., and and best optimization results (mean MAPE achieved with
the resulting weight vector w) for different values of ε (threshold for result improve-
ments as termination condition).

ε Mean Min Max

0.1 1.7311 1.0840 0.0043 3.6410

0.01 1.3607 1.1656 0.0029 3.5628

0.001 0.9803 0.8854 0.00079 2.9657
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Fig. 4. Example convergence profile for a scenario with 10 co-generation plants.

that the primary axis denotes iterations. In each iteration a population of size
8 (for the 5 units scenario) and 10 for the large scenario has to be evaluated
respectively. Nevertheless, convergence is promising.

Table 2 shows some statistics on the result quality for the 10 units scenario
for different ε-values for convergence checks (mean improvement of two succeed-
ing iterations). A moderate ε seems to be sufficient to push the quality of the
main goal back below 1%, what is rather small compared with forecast error
e. g. in photovoltaics production as a prerequisite for the initial market trading
[17]. Overall, the results are promising enough to justify further research and
improvements (Fig. 4).

5 Conclusion

Integrating local intentions and preferences into distributed scheduling as local
objectives inevitably deteriorates the global solution quality of the primary goal.
Examples were given using the predictive scheduling use case in the smart grid
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domain. We demonstrated that depending on the current situation this deterio-
ration can be mitigated by an appropriate distribution of weights for local objec-
tives. This task constitutes a meta-optimization problem that can be solved by
an architecture for controlled self-organization that is introduced into the multi-
agent system responsible for planning. First results are promising. Nevertheless,
for a quick reaction of the proposed system further research regarding better
performance and convergence behavior of the used meta-optimization algorithm
are necessary.
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