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Abstract Mercer’s inequality for convex functions is a variant of Jensen’s inequal-
ity, with an operator version that is still valid without operator convexity. This
paper is two folded. First, we present a Mercer-type inequality for operators
without assuming convexity nor operator convexity. Yet, this form refines the known
inequalities in the literature. Second, we present a log-convex version for operators.
We then use these results to refine some inequalities related to quasi-arithmetic
means of Mercer’s type for operators.
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1 Introduction

Recall that a function f : I ⊆ R → R is said to be convex on the interval I , if it
satisfies the Jensen inequality

f

(
n∑

i=1

wixi

)
≤

n∑
i=1

wif (xi), (1.1)

for all choices of positive scalars w1, . . . , wn with
∑n

i=1 wi = 1 and xi ∈ I . It is
well known that this general form is equivalent to the same inequality when n = 2.

In 2003, Mercer found a variant of (1.1), which reads as follows.

Theorem 1.1 ([7, Theorem 1.2]) If f is a convex function on [m,M], then

f

(
M + m −

n∑
i=1

wixi

)
≤ f (M) + f (m) −

n∑
i=1

wif (xi), (1.2)

for all xi ∈ [m,M] and all wi ∈ [0, 1] (i = 1, . . . , n) with
∑n

i=1 wi = 1.

There are many versions, variants and generalizations for the inequality (1.2);
see for example [1, 2, 9].

It is customary in the field of Mathematical inequalities to extend scalar
inequalities, like (1.1) and (1.2), to operators on Hilbert spaces. For this end, we
adopt the following notations. Let H and K be Hilbert spaces, B (H ) and B (K )

be the C∗-algebras of all bounded operators on the appropriate Hilbert space. An
operator A ∈ H is called self-adjoint if A = A∗, where A∗ denotes the adjoint
operator of A. If A ∈ H , the notation A ≥ 0 will be used to declare that A is
positive, in the sense that 〈Ax, x〉 ≥ 0 for all x ∈ H . If 〈Ax, x〉 > 0 for all non
zero x ∈ H , we write A > 0, and we say than that A is positive definite. On the
class of self-adjoint operators, the ≤ partial order relation is well known, where we
write A ≤ B if B − A ≥ 0, when A,B are self-adjoint.

In studying operator inequalities, the notion of spectrum cannot be avoided. If
A ∈ H , the spectrum of A is defined by

σ(A) = {λ ∈ C : A − λ1H is not invertible},

where 1H denotes the identity operator on H . Finally, in these terminologies, a
linear map � : B (H ) → B (K ) is said to be positive if �(A) ≥ 0 whenever
A ≥ 0 and � is called unital if �(1H ) = 1K .

Recall that a continuous function f : I → R is said to be operator convex if

f

(
A + B

2

)
≤ f (A) + f (B)

2
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for all self-adjoint A,B ∈ B (H ) and σ(A), σ (B) ⊂ I. This is equivalent to the
Jensen operator inequality, valid for the self-adjoint operators Ai whose spectra are
in the interval I ,

f

(
n∑

i=1

wiAi

)
≤

n∑
i=1

wif (Ai), wi > 0,

n∑
i=1

wi = 1. (1.3)

It is evident that a convex function is not necessarily operator convex, and the
function f (x) = x4 provides such an example. Thus, a convex function does not
necessarily satisfy the operator Jensen inequality (1.3). However, it turns out that
a convex function satisfies the following operator version of the Mercer inequality
(1.2).

Theorem 1.2 ([5, Theorem 1]) LetA1, . . . , An ∈ B (H ) be self-adjoint operators
with spectra in [m,M] and let �1, . . . , �n : B (H ) → B (K ) be positive linear
maps with

∑n
i=1 �i (1H ) = 1K . If f : [m,M] ⊆ R → R is a convex function,

then

f

(
(M + m) 1K −

n∑
i=1

�i (Ai)

)

≤ (f (M) + f (m)) 1K −
n∑

i=1

�i(f (Ai)). (1.4)

Further, in the same reference, the following series of inequalities was proved

f

(
(M + m)1K −

n∑
i=1

�i(Ai)

)

≤ (f (M) + f (m)) 1K

+
∑n

i=1 �i (Ai) − M1K
M − m

f (m) + m1K − ∑n
i=1 �i (Ai)

M − m
f (M)

≤ (f (M) + f (m))1K −
n∑

i=1

�i(f (Ai)).

Later, related and analogous results have been established in [3, 4, 6].
Our main goal of this article is to present a refinement of the operator inequality

(1.4) without using convexity of f . Rather, using the idea by Mićić et al. [8], we
assume a boundedness condition on f ′′. Then a discussion of log-convex version of
Mercer’s operator inequality will be presented.
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2 Main Results

In this section we present our main results in two parts. In the first part, we discuss
the twice differentiable case, then we discuss the log-convex case.

2.1 Twice Differentiable Functions

We begin with the non-convex version of Theorem 1.2. We use the following symbol
in this paper.

(i) Asa = (A1, . . . , An), where Ai ∈ B (H ) are self-adjoint operators with
σ (Ai) ⊆ [m,M] for some scalars 0 < m < M .

(ii) �+ = (�1, . . . , �n), where �i : B (H ) → B (K ) are positive linear maps.

Theorem 2.1 Let A1, . . . , An ∈ B (H ) be self-adjoint operators with spectra in
[m,M] and let �1, . . . , �n : B (H ) → B (K ) be positive linear maps with∑n

i=1 �i (1H ) = 1K . If f : [m,M] ⊆ R → R is a continuous twice differentiable
function such that α ≤ f ′′ ≤ β with α, β ∈ R, then

(f (M) + f (m)) 1K −
n∑

i=1

�i (f (Ai)) − βJ (m,M,Asa,�+)

≤ f

(
(M + m)1K −

n∑
i=1

�i(Ai)

)
(2.1)

≤ (f (M) + f (m)) 1K −
n∑

i=1

�i (f (Ai)) − αJ (m,M,Asa,�+), (2.2)

where

J (m,M,Asa,�+) := (M + m)

n∑
i=1

�i(Ai) − Mm1K

− 1

2

⎛
⎝(

n∑
i=1

�i (Ai)

)2

+
n∑

i=1

�i

(
A2

i

)⎞
⎠ ≥ 0.

Proof Notice that for any convex function f and m ≤ t ≤ M , we have

f (t) = f

(
M − t

M − m
m + t − m

M − m
M

)
≤ Lf (t) , (2.3)
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where

Lf (t) := M − t

M − m
f (m) + t − m

M − m
f (M). (2.4)

Letting

gα(t) := f (t) − α

2
t2 (m ≤ t ≤ M),

we observe that g is convex noting the assumption α ≤ f ′′. Applying (2.3) to the
function g, we have g(t) ≤ Lg(t), which leads to

f (t) ≤ Lf (t) − α

2

{
(M + m) t − Mm − t2

}
. (2.5)

Since m ≤ M + m − t ≤ M , we can replace t in (2.5) with M + m − t , to get

f (M + m − t) ≤ L0 (t) − α

2

{
(M + m) t − Mm − t2

}
,

where

L0(t) := L(M + m − t) = f (M) + f (m) − Lf (t).

Using functional calculus for the operator

m1K ≤
n∑

i=1

�i (Ai) ≤ M1K ,

we infer that

f

(
(M + m)1K −

n∑
i=1

�i(Ai)

)

≤ L0

(
n∑

i=1

�i(Ai)

)

− α

2

⎧⎨
⎩(M + m)

n∑
i=1

�i(Ai) − Mm1K −
(

n∑
i=1

�i(Ai)

)2
⎫⎬
⎭ . (2.6)

On the other hand, by applying functional calculus for the operator

m1H ≤ Ai ≤ M1H
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in (2.5), we get

f (Ai) ≤ Lf (Ai) − α

2

{
(M + m)Ai − Mm1H − A2

i

}
.

Applying the positive linear maps �i and adding in the last inequality yield

n∑
i=1

�i(f (Ai))

≤ L0

(
n∑

i=1

�i(Ai)

)

− α

2

{
(M + m)

n∑
i=1

�i(Ai) − Mm1K −
n∑

i=1

�i(A
2
i )

}
. (2.7)

Combining the two inequalities (2.6) and (2.7), we get (2.2).
Finally we give the proof of J (m,M,�i,Ai) ≥ 0. Since

m1H ≤ Ai ≤ M1H ,

we have

(M1H − Ai)(Ai − m1H ) ≥ 0

which implies

(M + m)Ai − mM1H − A2
i ≥ 0.

Thus we have

(M + m)�(Ai) − mM�(1H ) − �(A2
i ) ≥ 0.

Taking a summation on i = 1, · · · , n of this inequality with taking an account for∑n
i=1 �i(1H ) = 1K , we obtain

(M + m)

n∑
i=1

�i(Ai) − Mm1K −
n∑

i=1

�(A2
i ) ≥ 0. (2.8)

Further, noting that m ≤ ∑n
i=1 �i(Ai) ≤ M, we also have

(M + m)

n∑
i=1

�i(Ai) − mM1K −
(

n∑
i=1

�i(Ai)

)2

≥ 0. (2.9)
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Adding (2.8) and (2.9) and dividing by 2, we obtain J (m,M,Asa,�+) ≥ 0.

The inequality (2.1) follows similarly by taking into account that

Lf (t) − β

2

{
(M + m)t − Mm − t2

}
≤ f (t), m ≤ t ≤ M.

The details are left to the reader. This completes the proof. �
In the following example, we present the advantage of using twice differentiable
functions in Theorem 2.1.

Example 2.2 Let f (t) = sin t (0 ≤ t ≤ 2π),

A =
(

π
4 0
0 π

2

)

and �(A) = 1
2T r [A]. Actually the function f (t) = sin t is concave on [0, π ].

Letting m = π
4 and M = π

2 , we obtain

0.9238 ≈ f ((M + m) − �(A)) ≮ f (M) + f (m) − �(f (A)) ≈ 0.8535.

That is, (1.4) may fail without the convexity assumption. However, by considering
the weaker assumptions assumed in Theorem 2.1, we get

0.9238 ≈f ((M + m) − �(A))

�f (M) + f (m) − �(f (A))

− α

{
(M + m)�(A) − Mm − 1

2

{
�(A)2 + �(A2)

}}

≈0.9306,

since f ′′(t) = − sin t which gives α = −1.

To better understand the relation between Theorems 1.2 and 2.1, we present
the following remark, where we clarify how the first theorem is retrieved from the
second.

Remark 2.3 The inequality (2.2) in Theorem 2.1 with an assumption on a twice
differentiable function f such that α ≤ f ′′ ≤ β for α, β ∈ R gives a better upper
bound of

f

(
(M + m) 1K −

n∑
i=1

�i (Ai)

)
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than that in (1.4), since J (m,M,Asa,�+) ≥ 0, if we take α ≥ 0. Additionally to
this result, we obtained a reverse type inequality (2.1) which gives a lower bound of

f

(
(M + m) 1K −

n∑
i=1

�i (Ai)

)
.

2.2 Log-Convex Functions

We conclude this section by presenting Mercer-type operator inequalities for log-
convex functions. Recall that a positive function defined on an interval I (or, more
generally, on a convex subset of some vector space) is called log-convex if log f (x)

is a convex function of x. We observe that such functions satisfy the elementary
inequality

f ((1 − v) a + vb) ≤ [f (a)]1−v [f (b)]v , 0 ≤ v ≤ 1

for any a, b ∈ I . f is called log-concave if the inequality above is reversed (that is,
when 1

f
is log-convex). By virtue of the arithmetic-geometric mean inequality, we

have

f ((1 − v)a + vb) ≤ [f (a)]1−v [f (b)]v ≤ (1 − v)f (a) + vf (b), (2.10)

which implies convexity of log-convex functions. This double inequality is of
special interest since (2.10) can be written as

f (t) ≤ [f (m)]
M−t
M−m [f (M)]

t−m
M−m ≤ Lf (t) , m ≤ t ≤ M (2.11)

where Lf (t) is as in (2.4).
Manipulating the inequality (2.11), we have the following extension of Theo-

rem 1.2 to the context of log-convex functions. The proof is left to the reader.

Theorem 2.4 Let all the assumptions of Theorem 1.2 hold except that f :
[m,M] → (0,∞) is log-convex. Then

f

(
(M + m)1K −

n∑
i=1

�i(Ai)

)

≤ [f (m)]
∑n

i=1 �i (Ai )−m1K
M−m [f (M)]

M1K −∑n
i=1 �i (Ai )

M−m

≤ (f (M) + f (m)) 1K −
n∑

i=1

�i(f (Ai)).
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3 Applications

In this section, we present some applications of the main results that we have shown
so far. First, we review and introduce the notations.

(i) A+ = (A1, . . . , An), where Ai ∈ B (H ) are positive invertible operators with
σ (Ai) ⊆ [m,M] for some scalars 0 < m < M .

(ii) �+ = (�1, . . . , �n), where �i : B (H ) → B (K ) are positive linear maps.
(iii) C ([m,M]) is the set of all real valued continuous functions on an interval

[m,M].

We also need to remind the reader that a function f ∈ C([m,M]) is called operator
monotone increasing (or operator increasing for short) if f (A) ≤ f (B) whenever
A,B are self-adjoint operators with spectra in [m,M] and such that A ≤ B. That
is, when f preserves the order of self-adjoint operator. A function f ∈ C([m,M])
is said to be operator decreasing if −f is operator monotone.

The so called operator quasi-arithmetic mean of Mercer’s type was defined in [5]
as follows:

M̃ϕ

(
A+,�+) := ϕ−1

(
(ϕ (M) + ϕ (m)) 1K −

n∑
i=1

�i (ϕ (Ai))

)
.

In this reference, the following result was shown.

Theorem 3.1 Let ϕ,ψ ∈ C ([m,M]) be two strictly monotonic functions.

(i) If either ψ ◦ ϕ−1 is convex and ψ−1 is operator increasing, or ψ ◦ ϕ−1 is
concave and ψ−1 is operator decreasing, then

M̃ϕ

(
A+,�+) ≤ M̃ψ

(
A+,�+)

. (3.1)

(ii) If either ψ ◦ ϕ−1 is concave and ψ−1 is operator increasing, or ψ ◦ ϕ−1 is
convex and ψ−1 is operator decreasing, then the inequality in (3.1) is reversed.

By virtue of Theorem 2.1, we have the following extension of this result.

Theorem 3.2 Let ϕ,ψ ∈ C ([m,M]) be two strictly monotonic functions and ψ ◦
ϕ−1 is twice differentiable function.

(i) If α ≤ (
ψ ◦ ϕ−1

)′′
with α ∈ R and ψ−1 is operator monotone, then

M̃ϕ

(
A+,�+)

≤ ψ−1 {
ψ

(
M̃ψ

(
A+,�+)) − αK

(
m,M, ϕ,A+,�+)}

, (3.2)



492 H. R. Moradi et al.

where

K
(
m,M, ϕ,A+,�+)
:= (ϕ(M) + ϕ(m))

n∑
i=1

�i(ϕ(Ai)) − ϕ(M)ϕ(m)1K

− 1

2

⎛
⎝(

n∑
i=1

�i(ϕ(Ai))

)2

+
n∑

i=1

�i

(
ϕ(Ai)

2
)⎞
⎠ .

(ii) If
(
ψ ◦ ϕ−1

)′′ ≤ β with β ∈ R and ψ−1 is operator monotone, then the reverse
inequality is valid in (3.2) with β instead of α.

Proof Let f = ψ ◦ ϕ−1 in (2.2) and replace Ai , m and M with ϕ (Ai), ϕ (m) and
ϕ (M) respectively. This implies

ψ
(
M̃ϕ

(
A+,�+)) ≤ ψ

(
M̃ψ

(
A+,�+)) − αK

(
m,M, ϕ,A+,�+)

.

Since ψ−1 is operator monotone, the first conclusion follows immediately. The other
case follows in a similar manner from (2.1). �

Similarly, Theorem 2.4 implies the following version.

Theorem 3.3 Let ϕ,ψ ∈ C([m,M]) be two strictly monotonic functions. Ifψ◦ϕ−1

is log-convex function and ψ−1 is operator increasing, then

M̃ϕ(A+,�+)

≤ ψ−1
{
[ψ(m)]

∑n
i=1 �i (ϕ(Ai ))−ϕ(m)1K

ϕ(M)−ϕ(m) [ψ(M)]
ϕ(M)1K −∑n

i=1 �i (ϕ(Ai ))

ϕ(M)−ϕ(m)

}

≤ M̃ψ

(
A+,�+)

.

Remark 3.4 By choosing appropriate functions ϕ and ψ , and making suitable
substitutions, the above results imply some improvements of certain inequalities
governing operator power mean of Mercer’s type. We leave the details of this idea
to the interested reader as an application of our main results.

In the end of the article, we show the example such that there is no relationship
between inequalities in Theorems 3.2 and 3.3. Here, we restrict ourselves to the
power function f (t) = tp with p < 0.
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Example 3.5 It is sufficient to compare (2.5) and the first inequality of (2.11). We
take m = 1 and M = 3. Setting

g(t) = M − t

M − m
mp + t − m

M − m
Mp − p(p − 1)Mp−2

2

{
(M + m)t − Mm − t2

}

−
(
m

M−t
M−m M

t−m
M−m

)p

.

Some calculations show that g(2) ≈ −0.0052909 when p = −0.2, while g(2) ≈
0.0522794 when p = −1. We thus conclude that there is no ordering between the
RHS of inequality in (2.5) and the RHS of first inequality of (2.11).
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