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Abstract We consider the Sommerfeld problem of diffraction by an opaque
half-plane interpreting it as the limiting case as t → ∞ of the corresponding
non-stationary diffraction problem. We prove that the Sommerfeld formula for the
solution is the limiting amplitude of the solution of this non-stationary problem
which belongs to a certain functional class and is unique in it. For the proof of
the uniqueness of solution to the non-stationary problem we reduce this problem,
after the Fourier–Laplace transform in t , to a stationary diffraction problem with a
complex wave number. This permits us to use the proof of the uniqueness in the
Sobolev space H 1 as in (Castro and Kapanadze, J Math Anal Appl 421(2):1295–
1314, 2015). Thus we avoid imposing the radiation condition from the beginning
and instead obtain it in a natural way.
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1 Introduction

The main goal of this paper is to prove the uniqueness of a solution to the Som-
merfeld half-plane problem [23, 32, 33] with a real wave number, proceeding from
the uniqueness of the corresponding time-dependent problem in a certain functional
class. The existence and uniqueness of solutions to this problem was considered in
many papers, for example in [8, 12, 25]. However, in our opinion, the problem of
uniqueness is still not solved in a satisfactory form from the point of view of the
boundary value problems (BVPs). The fact is that this problem is a homogeneous
BVP boundary value problem which admits various nontrivial solutions. Usually the
“correct” solutions are chosen by physical reasoning [23, 25, 32, 33], for example,
using the Sommerfeld radiation conditions and regularity conditions at the edge.

The question is: from where do the radiation and regularity conditions arise,
from the mathematical point of view?

Our goal is to show that they arise automatically from the non-stationary
problem. This means the following: we prove that the Sommerfeld solution is a
limiting amplitude of a solution to the corresponding non-stationary problem which
is unique in an appropriate functional class. Since the Sommerfeld solution, as is
well-known, satisfies the radiation and regularity conditions, our limiting amplitude
also satisfies them. Of course, the limiting amplitude principle (LAP) is very well-
known for the diffraction by smooth obstacles, see e.g. [28, 29], but we are unaware
of its rigorous proof in the case of diffraction by a half-plane.

The literature devoted to diffraction by wedges including the Sommerfeld
problem is enormous (see e.g. the review in [20]), and we will only indicate some
papers where the uniqueness is treated. In paper [25] a uniqueness theorem was
proven for the Helmholtz equation (� + 1)u = 0 in two-dimensional regions D of
half-plane type. These regions can have a finite number of bounded obstacles with
singularities on their boundaries. In particular, the uniqueness of solution u to the
Sommerfeld problem was proven by means of the decomposition of the solution into
the sum u = g+h, where g describes the geometrical optics incoming and reflected
waves and h satisfies the Sommerfeld radiation condition (clearly, u should also
satisfy the regularity conditions at the edge).

In paper [8] exact conditions were found for the uniqueness in the case of
complex wave number. The problem was considered in Sobolev spaces for a wide
class of generalized incident waves, and for DD and NN boundary conditions. In
paper [12] the same problem was considered also for the complex wave number and
for DN boundary conditions. In both papers the Wiener-Hopf method has been used.
Time-dependent scattering by wedges was considered in many papers although their
number is not so large as the number of papers devoted to the stationary scattering
by wedges. We indicate here the following papers: [1–4, 13, 14, 24, 26–31]. The
detailed description of these papers is given in [19].

In [6, 7, 10, 17–20, 22], the diffraction by a wedge of magnitude φ (which can be
a half-plane in the case φ = 0 as in [20]) with real wavenumber was considered as
a stationary problem which is the “limiting case” of a non-stationary one. More
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precisely, we seek the solutions of the classical diffraction problems as limiting
amplitudes of solutions to corresponding non-stationary problems, which are unique
in some appropriate functional class. We also, like in [25], decomposed the solution
of non-stationary problem separating a “bad” incident wave, so that the other part
of solution belongs to a certain appropriate functional class. Thus we avoided the
a priori use of the radiation and regularity conditions and instead obtained them in
a natural way. In papers [10, 17, 19] we considered the time-dependent scattering
with DD, DN and NN boundary conditions and proved the uniqueness of solution
in an appropriate functional class. But these results were obtained only for φ �= 0
because in the proof of uniqueness we used the Method of Complex Characteristics
[15, 16, 21] which “works” only for φ �= 0.

For φ = 0 we need to use other methods, namely, the reduction of the
uniqueness problem for the stationary diffraction to the uniqueness problem for the
corresponding non-stationary diffraction, which, in turn, is reduced to the proof of
uniqueness of solution of the stationary problem but with a complex wavenumber,
see e.g. [5].

Note that in [18] we proved the LAP for φ �= 0 and for the DD boundary
conditions. Similar results for the NN and DN boundary conditions were obtained
in [6, 7, 10]. A generalization of these results to the case of generalized incident
wave (cf. [8]) was given in [19]. This approach (stationary diffraction as the limit
of time-dependent one) permits us to justify all the classical explicit formulas
[13, 14, 20, 28–31] and to prove their coincidence with the explicit formulas given
in [17, 19, 22]. In other words, all the classical formulas are limiting amplitudes
of solutions to non-stationary problems as t → ∞. For the Sommerfeld problem,
this was proven in [20], except for the proof of the uniqueness of the solution to
the non-stationary problem in an appropriate class. This paper makes up for this
omission.

Our plan is as follows. The non-stationary diffraction problem is reduced by
means of the Fourier–Laplace transform with respect to time t to a stationary one
with a complex wave number. For this problem the uniqueness theorems can be
proven more easily in Sobolev classes (see an important paper [5]) and do not
use the radiation conditions. Then we prove that the Fourier–Laplace transforms of
solutions to non-stationary diffraction half-plane problem, whose amplitude tends
to the Sommerfeld solution, also belong to a Sobolev space for a rather wide class
of incident waves. This permits us to reduce the problem to the case of [5].

Let us pass to the problem setting. We consider the two-dimensional time-
dependent scattering of a plane wave by the half-plane

W 0 :=
{
(x1, x2) ∈ R

2 : x2 = 0, x1 ≥ 0
}

.

(Obviously, W 0 is a half-line in R
2, but if one recalls that the initial problem is

three-dimensional, W 0 becomes a half-plane; the third coordinate is suppressed in
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all what follows.) The non-stationary incident plane wave in the absence of obstacles
reads

ui(x, t) = e−iω0(t−n·x)f (t − n · x), x ∈ R
2, t ∈ R, (1.1)

where

ω0 > 0, n = (n1, n2) = (cos(π + α), sin(π + α)), (1.2)

and f is “a profile function”, such that f ∈ L1
loc(R), and

f (s) = 0, s < 0, sup(1 + |s|)p|f (s)| < ∞ for some p ∈ R, lim
s→+∞ f (s) = 1.

(1.3)

Remark 1.1 Obviously, these functions satisfy the D’Alembert equation
�ui(x, t) = 0 in the sense of distributions.

For definiteness, we assume that

π

2
< α < π. (1.4)

In this case the front of the incident wave ui reaches the half-plane W 0 for the first
time at the moment t = 0 and at this moment the reflected wave ur(x, t) is born
(see Fig. 1). Thus

ur(x, t) ≡ 0, t < 0.

Note that for t → ∞ the limiting amplitude of ui is exactly equal to the Sommerfeld
incident wave [33] by (1.3), cf. also (2.1) below.

The time-dependent scattering with the Dirichlet boundary conditions is
described by the mixed problem

{
�u(x, t) := (∂2

t − �)u(x, t) = 0, x ∈ Q

u(x1,±0, t) = 0, x1 > 0

∣∣∣∣∣ t ∈ R, (1.5)

where Q := R
2 \ W 0. The “initial condition” reads

u(x, t) = ui(x, t), x ∈ Q, t < 0, (1.6)

where ui is the incident plane wave (1.1).
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Fig. 1 Time-dependent diffraction by a half-plane

Introduce the non-stationary “scattered” wave us as the difference between u and
ui ,

us(x, t) := u(x, t) − ui(x, t), x ∈ Q, t ∈ R. (1.7)

Since �ui(x, t) = 0, (x, t) ∈ Q × R, we get from (1.6), (1.5) that

�us(x, t) = 0, (x, t) ∈ Q × R, (1.8)

us(x, t) = 0, x ∈ Q, t < 0, (1.9)

us(x1,±0, t) = −ui(x1, 0, t), x1 > 0, t > 0. (1.10)

Denote

ϕ± := π ± α. (1.11)

Everywhere below we assume that

x1 = r cos ϕ, x2 = r sin ϕ, 0 ≤ ϕ < 2π. (1.12)

Let us define the nonstationary incident wave in the presence of the obstacle W 0,
which is the opaque screen,

u0
i (ρ, ϕ, t) :=

{
ui(ρ, ϕ, t), 0 < ϕ < ϕ+,

0, ϕ+ < ϕ < 2π.
(1.13)
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Remark 1.2 The function us has no physical sense, since ui �= u0
i . The wave us

coincides with the scattered wave u0
s := u − u0

i in the zone {(ρ, ϕ) : 0 < ϕ < ϕ+},
but in the zone {(ρ, ϕ) : ϕ+ < ϕ ≤ 2π} we have u0

s = us + ui .

The goal of the paper is to prove that the Sommerfeld solution of half-plane
diffraction problem is the limiting amplitude of the solution to time-dependent
problem (1.5), (1.6) (with any f satisfying (1.3)) and this solution is unique in an
appropriate functional class.

The paper is organized as follows. In Sect. 2 we recall the Sommerfeld solution.
In Sect. 3 we reduce the time-dependent diffraction problem to a “stationary” one
and define a functional class of solutions. In Sect. 4 we give an explicit formula
for the solution of time-dependent problem and prove that the Sommerfeld solution
is its limiting amplitude. In Sect. 5 we prove that the solution belongs to a certain
functional class. Finally, in Sect. 6 we prove the uniqueness.

2 Sommerfeld’s Diffraction

Let us recall the Sommerfeld solution [23, 33]. The stationary incident wave (rather,
the incident wave limiting amplitude) in the presence of the obstacle is

A0
i (ρ, ϕ) =

{
e−iω0ρ cos(ϕ−α), ϕ ∈ (0, ϕ+),

0, ϕ ∈ (ϕ+, 2π).
(2.1)

We denote this incident wave as A0
i since it is the limiting amplitude of the non-

stationary incident wave u0
i given by (1.13):

A0
i (ρ, ϕ) = lim

t→∞ eiω0t u0
i (x, t),

in view of formula (1.1), see Remark 1.2. The Sommerfeld half-plane diffraction
problem can be formulated as follows: find a function A(x), x ∈ Q, such that

{
(� + ω2

0)A(x) = 0, x ∈ Q,

A(x1,±0) = 0, x1 > 0,
(2.2)

A(x) = A0
i (x) + Ar (x) + Ad(x), x ∈ Q, (2.3)

where Ar (x) is the reflected wave,

Ar (x) =
{

−e−iω0ρ cos(ϕ+α), ϕ ∈ (0, ϕ−),

0, ϕ ∈ (ϕ−, 2π),
(2.4)
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and Ad(x) is the wave diffracted by the edge,

Ad(x) → 0, |x| → ∞. (2.5)

A. Sommerfeld [33] found the solution of this problem in the form

A(ρ, ϕ) = 1

4π

∫

C
ζ(γ, ϕ)e−iωρ cos γ dγ, ρ ≥ 0, ϕ ∈ [0, 2π ],

where

ζ(γ, ϕ) :=
(

1 − ei(−γ+ϕ−α)/2
)−1 −

(
1 − ei(−γ+ϕ+α)/2

)−1
, γ ∈ C (2.6)

and C is the Sommerfeld contour (see [20, formula (1.1) and Fig. 3]).
In the rest of the paper we prove that this solution is the limiting amplitude of the

solution of time-dependent problem (1.5) and is unique in an appropriate functional
class.

The Sommerfeld diffraction problem can also be considered for NN and DN
half-plane. The corresponding formulas for the solution can be found in [19].

Sommerfeld obtained his solution using an original method of solutions of the
Helmholtz equation on a Riemann surface. Note that a similar approach was used
for the diffraction by a wedge of rational angle [9], where well-posedness in suitable
Sobolev space was proved.

3 Reduction to a “Stationary” Problem: Fourier–Laplace
Transform

Let ĥ(ω), ω ∈ C
+, denote the Fourier–Laplace transform Ft→ω of h(t),

ĥ(ω) = Ft→ω[h(t)] =
∞∫

0

eiωth(t) dt, h ∈ L1(R
+); (3.1)

Ft→ω is extended by continuity to S′(R+). Assuming that us(x, t) belongs to
S′(R2 ×R+) (see (1.9) and Definition 3.1), we apply this transform to system (1.8)–
(1.10), and obtain

{
(� + ω2)̂us(x, ω) = 0, x ∈ Q,

ûs(x1,±0, ω) = −ûi (x1,±0, ω), x1 > 0

∣∣∣∣∣ ω ∈ C
+. (3.2)
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Let us calculate ûi (x, ω). Changing the variable t − n · x = τ , and using the fact
that suppf ⊂ R+ we obtain from (1.1) and (1.2) that

ûi (x, ω) = eiωn·xf̂ (ω − ω0). (3.3)

Hence,

ûi (x1, 0, ω) = eiωn1x1 f̂ (ω − ω0), x1 > 0,

and the boundary condition in (3.2) is ûs(x1, 0, ω) = −g(ω)eiωn1x1 . Therefore we
come to the following family of BVPs depending on ω ∈ C

+: find ûs(x, ω) such
that

{
(� + ω2)̂us(x, ω) = 0, x ∈ Q,

ûs(x1,±0, ω) = −g(ω)eiωn1x1, x1 > 0.
(3.4)

We are going to prove the existence and uniqueness of solution to problem (1.5),
(1.6) such that us given by (1.7) belongs to the space M, which is defined as follows:

Definition 3.1 M is the space of functions u(x, t) ∈ S′(R2 × R+) such that its
Fourier–Laplace transform û(x, ω) is a holomorphic function on ω ∈ C

+ with
values in C2(Q) and

û(·, ·, ω) ∈ H 1(Q) (3.5)

for any ω ∈ C
+.

Remark 3.2 We use the classical definition [11] of the space H 1(Q) as the
completion of the space of smooth functions on Q with respect to the corresponding
norm. This definition does not coincide with the frequently used definition of
H 1(Q) as the space restrictions of distributions from H 1(R) to Q. In our case these
definitions lead to different spaces; in particular, the latter definition does not allow
for functions which are discontinuous across W 0. In [34], another space allowing for
the same class of functions was introduced; the proof of uniqueness of the solution
to our problem in that space is an open question.

Remark 3.3 Note that ui(x, t)
∣∣
R2×R+ /∈ M, where for ϕ ∈ D(R2),

〈
ui(x, t)

∣∣
R2×R+ , ϕ

〉
:=

∫

R2×R+

u(x, t)ϕ(x, t) dx dt.

In fact,
∣∣eiωn·x∣∣ = eω2ρ cos(ϕ−α) and, for α − π/2 < ϕ < α + π/2, ω ∈ C

+ it grows
exponentially as ρ → ∞, and hence does not satisfy (3.5); because of this we use
system (1.8)–(1.10) instead of (1.5) (they are equivalent by (1.6)) since (1.8)–(1.10)
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involves only the values of ui on the boundary and the latter possess the Fourier–
Laplace transforms which do not grow exponentially.

Remark 3.4 Since for a (weak) solution of the Helmholtz equation us ∈ H 1(Q)

the Dirichlet and Neumann data exist in the trace sense and in the distributional
sense, respectively (see, e.g., [5]), problem (3.4) is well-posed. Hence, problem
(1.8)–(1.10) is well-posed too.

4 Connection Between the Non-stationary Diffraction
Problem (1.5) and (1.6) and the Sommerfeld Half-Plane
Problem

In paper [20] we solved problem (1.5) and (1.6). Let us recall the corresponding
construction. First we define the non-stationary reflected wave [20, formula (26)]:

ur(x, t) =
{

−e−iω0(t−n·x)f (t − n · x), ϕ ∈ (0, ϕ−)

0, ϕ ∈ (ϕ−, 2π)

∣∣∣∣∣ t ≥ 0, (4.1)

where n := (n1,−n2) = (− cos α, sin α) (see Fig. 1).
Note that its limiting amplitude coincides with (2.4) similarly to the incident

wave.
Second, we define the non-stationary diffracted wave (cf. [20, formula (31) for

φ = 0]). Let

Z(β, ϕ) := Z(β + 2πi − iϕ), (4.2)

and

ud(ρ, ϕ, t) = i

8π

∫

R

Z(β, ϕ)F (t − ρ cosh β) dβ, (4.3)

where ϕ ∈ (0, 2π), ϕ �= ϕ±; t ≥ 0,

F(s) = f (s)e−iω0s , (4.4)

Z(z) = −U
(

− iπ

2
+ z

)
+ U

(
− 5iπ

2
+ z

)
, (4.5)

U(ζ ) = coth
(
q(ζ − i

π

2
+ iα)

)
− coth

(
q(ζ − i

π

2
− iα)

)
, q = 1

4
(4.6)

for the Dirichlet boundary conditions. Below in Lemma 8.1 we give the necessary
properties of the function Z , from which the convergence of integral (4.3) follows.
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Obviously, the condition supp F ⊂ [0,∞) (see (3.1)) implies that supp ud(·, ·, t) ⊂
[0,+∞).

Remark 4.1 The function U(γ + ϕ) essentially coincides with the Sommerfeld
kernel (2.6). This is for a reason. In paper [17] it was proven that the solution to the
corresponding time-dependent diffraction problem by an arbitrary angle φ ∈ (0, π ]
belonging to a certain class similar to M necessarily has the form of the Sommerfeld
type integral with the Sommerfeld type kernel.

Finally, we proved [20, Th. 3.2, Th 4.1] the following.

Theorem 4.2

(i) For f ∈ L1
loc(R) the function

u(ρ, ϕ, t) := u0
i (ρ, ϕ, t) + ur(ρ, ϕ, t) + ud(ρ, ϕ, t), ϕ �= ϕ± (4.7)

belongs to L1
loc(Q × R

+). It is continuous up to ∂Q × R and satisfies the
boundary and initial conditions (1.5), (1.6). The D’Alembert equation in (1.5)
holds in the sense of distributions.

(ii) The LAP holds for Sommerfeld’s diffraction by a half-plane:

lim
t→∞ eiω0t u(ρ, ϕ, t) = A(ρ, ϕ), ϕ �= ϕ±

(the limit here and everywhere else is pointwise).

Since the main object of our consideration will be the “scattered” wave us(x, t)

given by (1.7), we clarify the connection between us and the Sommerfeld solution
A.

Corollary 4.3 Define Ai (x) = e−iω0ρ cos(ϕ+α), which is the limiting amplitude of
ui(x, t) given by (1.1). The limiting amplitude of us(x, t) is the function

As(x) = A(x) − Ai (x), (4.8)

i.e. limt→∞ eiω0t us(x, t) = As(x).

Proof The statement follows from (1.7). ��
Remark 4.4 The function As is the limiting amplitude of the scattered non-
stationary wave us(x, t) and As satisfies the following nonhomogeneous BVP:

{
(� + ω2

0)As(x) = 0, x ∈ Q,

As(x1,±0) = −Ai (x1, 0), x1 > 0.
(4.9)

This BVP (as well as (2.2)) is ill-posed since the homogeneous problem admits
many solutions (i.e., the solution is nonunique).
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Remark 4.5 As can be decomposed similarly to (2.3). Namely, by (4.8) and (2.3),
we have

As = A0
i + Ar (x) + Ad(x) − Ai (x) = Ar (x) + Ad(x) − A1

i (x), (4.10)

where A1
i (x) = Ai (x) − A0

i (x). Obviously, problems (4.9), (4.10) and (2.2), (2.3)
with condition (2.5) are equivalent, but the first problem is more convenient as we
will see later.

5 Solution of the “Stationary” Problem

In this section we will obtain an explicit formula for the solution of (3.4) and prove
that it belongs to H 1(Q) for all ω ∈ C

+.
Let Z(β, ϕ) be given by (4.2). First, we will need the Fourier–Laplace transforms

of the reflected and diffracted waves (4.1), (4.3).

Lemma 5.1 The Fourier–Laplace transforms of ur and ud are

ûr (x, ω) =
{

−f̂ (ω − ω0)e
−iωρ cos(ϕ+α), ϕ ∈ (0, ϕ−),

0, ϕ ∈ (ϕ−, 2π),
(5.1)

ûd (ρ, ϕ, ω) = i

8π
f̂ (ω−ω0)

∫

R

Z(β, ϕ) eiωρ cosh β dβ, ω ∈ C
+, ϕ �= ϕ±. (5.2)

Proof From (4.1) we have

ûr (x, ω) =
{

−Ft→ω

[
e−iω0(t−n·x)f (t − n · x)

]
, ϕ ∈ (0, ϕ−),

0, ϕ ∈ (ϕ−, 2π).

Further,

−Ft→ω

[
e−iω0(t−n·x)f (t − n · x)

]
= −eiω0(n·x)

∞∫

0

ei(ω−ω0)t f (t − n · x) dt.

Changing the variable t − n · x = τ , we obtain

ûr (x, ω) = −eiω n·x
∞∫

−n·x
ei(ω−ω0)τ f (τ ) dτ, ϕ ∈ (0, ϕ−).
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Moreover, by (4.1),

−n · x = ρ cos(ϕ − α) ≤ c < 0, ϕ ∈ (0, ϕ−),

since π/2 < α < ϕ + α < π by (1.4) and (1.11). Hence, we obtain (5.1), since
suppf ⊂ R+. The second formula in (5.1) follows from definition (4.1) of ur .

Let us prove (5.2). Everywhere below we put ω = ω1 + iω2, ω1,2 ∈ R, ω2 > 0,
for ω ∈ C

+. By Lemma 8.1(i), (1.3) and (4.4) we have

∣∣∣eiωtZ(β, ϕ)F (t − ρ cosh β)

∣∣∣ ≤ Ce−ω2t e−β/2(1+ t)−p, ρ < 0, ϕ �= ϕ±, β ∈ R.

Hence, by the Fubini Theorem there exists the Fourier–Laplace transform of
ud(·, ·, t) and

ûd (ρ, ϕ, ω) = i

8π

∫

R

Z(β, ϕ)Ft→ω

[
F(t − ρ cosh β)

]
dβ, ϕ �= ϕ±. (5.3)

We have

G(ρ, β, ω) := Ft→ω

[
F(t − ρ cosh β)

]
=

∞∫

0

eiωtF (t − ρ cosh β) dt, ω ∈ C
+.

Making the change of the variable τ = t − ρ cosh β in the last integral and
using the fact that supp F ⊂ [0,∞) and F̂ (ω) = f̂ (ω − ω0) by (4.4), we get
G(ρ, β, ω) = eiωρ cosh βf̂ (ω−ω0). Substituting this expression into (5.3) we obtain
(5.2). Lemma 5.1 is proven. ��

5.1 Estimates for ûr, ∂ρûr, ∂ϕûr

Lemma 5.2 For any ω ∈ C, there exist C(ω), c(ω) > 0, such that both functions
ûr and ∂ρûr admit the same estimate

∣∣∣̂ur(ρ, ϕ, ω)

∣∣∣ ≤ C(ω)e−c(ω)ρ

∣∣∣∂ρûr (ρ, ϕ, ω)

∣∣∣ ≤ C(ω)e−c(ω)ρ

∣∣∣∣∣∣
ρ > 0, ϕ ∈ (0, 2π), ϕ �= ϕ±. (5.4)

and ∂ϕûr (ρ, ϕ, ω) admits the estimate

|∂ϕûr (ρ, ϕ, ω)| ≤ C(ω)ρ e−c(ω)ρ, ρ > 0. (5.5)
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Proof By (1.4) there exits c(ω) > 0 such that

∣∣∣e−iωρ cos(ϕ+α)
∣∣∣ = eω2ρ cos(ϕ+α) ≤ e−c(ω)ρ, 0 < ϕ < ϕ−

by (1.4). Therefore (5.4) holds for ûr . Hence, differentiating (5.1) we obtain (5.4)
for ∂ρûr and (5.5) for ∂ϕûr , for ϕ �= ϕ−. ��

5.2 Estimates for ûd

Proposition 5.3 There exist C(ω), c(ω) > 0 such that the function ûd , and ∂ρûd ,
∂ϕûd admit the estimates

∣∣∣̂ud(ρ, ϕ, ω)

∣∣∣ ≤ C(ω)e−c(ω)ρ,
∣∣∣∂ρûd(ρ, ϕ, ω)

∣∣∣ ≤ C(ω)e−c(ω)ρ(1 + ρ−1/2),
∣∣∣∂ϕûd(ρ, ϕ, ω)

∣∣∣ ≤ C(ω)e−c(ω)ρρ(1 + ρ−1/2)

(5.6)

for ρ > 0, ϕ ∈ (0, 2π), ϕ �= ϕ±.

Proof

(I) By (5.2), in order to prove (5.6) for ûd it suffices to prove that

|A(ρ, ϕ, ω)| ≤ C(ω)e−c(ω)ρ, (5.7)

where

A(ρ, ϕ, ω) :=
∫

R

Z(β, ϕ)eiωρ cosh β dβ, ϕ �= ϕ±. (5.8)

Represent A as A = A1 + A2, where

A1(ρ, ϕ, ω) :=
1∫

−1

Z(β, ϕ)eiωρ cosh β dβ

A2(ρ, ϕ, ω) :=
∫

|β|≥1

Z(β, ϕ)eiωρ cosh β dβ

∣∣∣∣∣∣∣∣∣∣∣

ϕ ∈ (0, 2π), ϕ �= ϕ±.

(5.9)
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The estimate (5.7) for A2 follows from (8.1) (see Appendix 1). It remains to
prove the same estimate for the function A1. Let

ε± := ϕ± − ϕ. (5.10)

Representing A1 as

A1(ρ, ϕ, ω) = −4K0(ρ,w, ε+) + 4K0(ρ,w, ε−) +
1∫

−1

Ž(β, ϕ)eiωρ cosh β dβ,

where K0 is defined by (8.7), we obtain (5.7) for A1 from Lemma 8.2 (i) and
(8.3).

(II) Let us prove (5.6) for ∂ρûd . By (5.2) it suffices to prove that

|B(ρ, ϕ, ω)| ≤ C(ω)e−c(ω)ρ(1 + ρ1/2), ϕ �= ϕ±, (5.11)

where

B(ρ, ϕ, ω) :=
∫

R

Z(β, ϕ) cosh β eiωρ cosh β dβ.

Represent B as B1 + B2, where B1,2(ρ, ϕ, ω) are defined similarly to (5.9),

B1(ρ, ϕ, ω) :=
1∫

−1

Z(β, ϕ) cosh βeiωρ cosh β dβ,

B2(ρ, ϕ, ω) :=
∫

|β|≥1

Z(β, ϕ) cosh βeiωρ cosh β dβ, ϕ �= ϕ±.

From (8.1) for Z we have

|B2(ρ, ϕ, ω)| ≤ C1

∞∫

1

eβ/2e− 1
2 ω2ρeβ

dβ.

Making the change of the variable ξ := ρeβ , we get

|B2(ρ, ϕ, ω)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1(ω)ρ−1/2, ρ ≤ 1,

∞∫

ρ

e−ω2ξ/2

ξ1/2
dξ, ρ ≥ 1.
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Since for ρ ≥ 1,

∞∫

ρ

e−ω2ξ/2

ξ1/2
dξ ≤ 2

ω2
e−ω2ρ/2,

Equation (5.11) is proved for B2.
It remains to prove estimate (5.11) for B1. Using (8.2) and (8.8) we write

B1(ρ, ϕ, ω) = −4K1(ρ, ω, ε+) + 4K1(ρ, ω, ε−) +
1∫

−1

Ž(β, ϕ) · cos β eiωρ cosh β dβ.

Hence, B1 satisfies (5.7) (and, therefore, (5.11)) by Lemma 8.2 (i) and (8.3).
(III) Let us prove (5.6) for ∂ϕûd . By (5.2) it suffices to prove this estimate for ∂ϕA,

where A is given by (5.8). From (9.3) we have

∂ϕA(ρ, ϕ, ω) = −ωρA3(ρ, ϕ, ω),

A3(ρ, ϕ, ω) =
∫

R

Z(β, ϕ) sinh β eiωρ cosh β dβ, ϕ �= ϕ±.
(5.12)

Similarly to the proof of estimate (5.11) for B, we obtain the same estimate
for A3, so, by (5.12), the estimate (5.6) follows. Proposition 5.3 is proven.

��
Now define the function

u0
s (ρ, ϕ, t) = u(ρ, ϕ, t) − u0

i (ρ, ϕ, t), ϕ �= ϕ+, t > 0, (5.13)

where u0
i is given by (1.13). Then by (4.7),

u0
s (ρ, ϕ, t) = ur(ρ, ϕ, t) + ud(ρ, ϕ, t), ϕ �= ϕ±, t > 0, (5.14)

where ur is given by (4.1) and ud is given by (4.3).

Corollary 5.4 Let û0
s (ρ, ϕ, ω) be the Fourier–Laplace transform of the function

u0
s (ρ, ϕ, t). Then the functions û0

s , ∂ρû0
s and ∂ϕû0

s satisfy (5.6).

Proof From (5.14) we have

û0
s (ρ, ϕ, ω) = ûr (ρ, ϕ, ω) + ûd (ρ, ϕ, ω), ϕ �= ϕ±, ω ∈ C

+, (5.15)

where ûr and ûd are defined by (5.1) and (5.2), respectively. Hence the statement
follows from Lemma 5.2 and Proposition 5.3. ��
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5.3 Estimates for ûs(x, ω)

To estimate ûs it is convenient to introduce one more “part” u1
i of the non-stationary

incident wave ui , namely the difference between ui and u0
i .

From (1.7) and (5.13) it follows that

us(ρ, ϕ, t) = u0
s (ρ, ϕ, t) − u1

i (ρ, ϕ, t), ϕ �= ϕ± (5.16)

where u1
i (ρ, ϕ, t) := ui(ρ, ϕ, t) − u0

i (ρ, ϕ, t). From (1.1) and (1.13) it follows that

u1
i (ρ, ϕ, t) =

{
0, 0 < ϕ < ϕ+,

−ui(ρ, ϕ, t), ϕ+ < ϕ < 2π.
(5.17)

By (3.3),

û1
i (ρ, ϕ, ω) =

{
0, 0 < ϕ < ϕ+,

−f̂ (ω − ω0) eiωn·x, ϕ+ < ϕ < 2π.
(5.18)

Lemma 5.5 There exist C(ω), c(ω) > 0 such that û1
i , ∂ρû1

i satisfy (5.4) and ∂ϕû1
i

satisfies (5.5) for ϕ ∈ (0, 2π), ϕ �= ϕ±.

Proof By (3.3) it suffices to prove the statement for eiωn·x when ϕ ∈ (ϕ+, 2π).
Since |eiωn·x | = eω2ρ cos(ϕ−α), ϕ ∈ (ϕ+, 2π) we have

∂ρeω2ρ cos(ϕ−α) = ω2 cos(ϕ − α)eω2ρ cos(ϕ−α),

∂ϕeω2ρ cos(ϕ−α) = −ω2ρ sin(ϕ − α)eω2ρ cos(ϕ−α),
(5.19)

and for ϕ ∈ (ϕ+, 2π), we have |eω2ρ cos(ϕ−α)| ≤ e−cω2ρ , c > 0, ϕ ∈ (ϕ+, 2π),
because cos(ϕ − α) ≤ −c < 0 by (1.4). Hence the statement follows from (5.19).

��
Corollary 5.6 The functions ûs , ∂ρûs and ∂ϕûs satisfy (5.6) for ϕ ∈ (0, 2π), ϕ �=
ϕ±.

Proof From (5.16) it follows that

ûs(ρ, ϕ, ω) = û0
s (ρ, ϕ, ω) − û1

i (ρ, ϕ, ω). (5.20)

Thus the statement follows from Corollary 5.4 and Lemma 5.5. ��
It is possible to get rid of the restriction ϕ �= ϕ± in Corollary 5.6.
Let l± = {(ρ, ϕ) : ρ > 0, ϕ = ϕ±}.
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Proposition 5.7 The functions ûs(·, ·, ω), ∂ρûs(·, ·, ω) and ∂ϕûs(·, ·, ω) belong to
C2(Q), and satisfy (5.6) in Q (including l+ ∪ l−), and

(� + ω2)̂us(ρ, ϕ, ω) = 0, (ρ, ϕ) ∈ Q, ω ∈ C
+. (5.21)

Proof The function ûs(ρ, ϕ, ω) satisfies (5.21) in Q \ (l+ ∪ l−). This follows
directly from the explicit formulas (5.20). In fact, (5.20) and (5.15) imply

ûs = ûr + ûd − û1
i . (5.22)

The function ûr satisfies (5.21) for ϕ �= ϕ±, û1
i satisfies (5.21) for ϕ �= ϕ± by

(5.17) and (3.3) and ûd satisfies (5.21) for ϕ �= ϕ± by (5.2), see Appendix 2. It
remains only to prove that ûs ∈ C2(Q), because this will mean that (5.6) holds by
Corollary 5.6 (and continuity) and (5.21) holds in Q including l±.

Let us prove this for ϕ close to ϕ−. The case of ϕ close to ϕ+ is analyzed
similarly.

Let h(s) be defined in (C\R)∩B(s∗), where B(s∗) is a neighborhood of s∗ ∈ R.
Define the jump of h at the point s∗ as

J (h, s∗) := lim
ε→0+ h(s∗ + iε) − lim

ε→0+ h(s∗ − iε).

We have J (̂ur (ρ, ϕ, ω), ϕ−) = f̂ (ω − ω0)e
−iωρ by (5.1).

Similarly,

J (
∂ϕûr (ρ, ϕ, ω), ϕ−

) = 0, J (
∂ϕϕûr (ρ, ϕ, ω), ϕ−

) = −f̂ (ω − ω0)(iωρ)eiωρ.

From (5.2), (5.10), (8.2), and (8.3) we have

J (̂ud(ρ, ϕ, ω), ϕ−) = i

8π
f̂ (ω − ω0)

∫ 1

−1

4

β + iε
eiωρ cosh β dβ

∣∣∣∣
ε−=−0

ε−=+0

= −J (̂ur (ρ, ϕ, ω), ϕ−) . (5.23)

Further, by (8.4),

J (
∂ϕûd(ρ, ϕ, ω), ϕ−

) = 0 = −J (
∂ϕûr (ρ, ϕ, ω), ϕ−

)
.

Finally, consider

M := J (
∂ϕϕûd(ρ, ϕ, ω), ϕ−

)
.
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Similarly to (5.23), expanding eiωρ cos β in the Taylor series in β (at 0) and noting

that all the terms
∫ βk dβ

(β+iε−)3 , k �= 2, are continuous, we obtain

M = − i

π
f̂ (ω − ω0)

1∫

−1

eiωρ cos β

(β + iε−)3 dβ

∣∣∣∣
ε−=−0

ε−=+0

= −if̂ (ω − ω0)(iωρ)eiωρ

2π

1∫

−1

β2

(β + iε−)3
dβ

∣∣∣∣
ε−=−0

ε−=+0

.

Hence,

M = f̂ (ω − ω0)(iωρ)eiωρ = −J (̂ur (ρ, ϕ, ω), ϕ−) .

Since ûi
i (ρ, ϕ, ω) is smooth on l− by (5.18), we obtain from (5.22) that ûs ∈ C2(l−).

Similarly using (5.1), (5.17) and (1.1) we obtain ûs ∈ C2(l+). So ûs ∈ C2(Q).
Proposition 5.7 is proven. ��
Corollary 5.8

(i) The function ûs(·, ·, ω) belongs to the space H 1(Q) for any ω ∈ C
+.

(ii) The function us(x, t) ∈ M.

Proof

(i) Everywhere below x = (ρ, ϕ) ∈ Q \ (l1 ∪ l2). It suffices to prove that

us(·, ·, ω), ∂xk
us(·, ·, ω) ∈ L2(Q), k = 1, 2, ω ∈ C

+. (5.24)

First, by Proposition 5.7, ûs(x, ω) satisfies (5.6). Hence, ûs(·, ω) ∈ L2(Q) for
any ω ∈ C

+. Further, using (1.12), we have

|∂x1us(·, ·, ω)|2 ≤ | cos ϕ|2|∂ρus(·, ·, ω)|2 + | sin ϕ|2
ρ2

|∂ϕus(·, ·, ω)|2.

Hence, by Proposition 5.7,

|∂x1us(·, ·, ω)|2 ≤ C(ω)e−2c(ω)

(
1 + 1

ρ

)
.

This implies that ∂x1us ∈ L2(Q), since c(ω) > 0. Similarly, ∂x2us(·, ·, ω) ∈
L2(Q). (5.24) is proven.

(ii) The statement follows from Definition 3.1. ��
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6 Uniqueness

In Sect. 5 we proved the existence of solution to (1.8)–(1.10) belonging to M. In
this section prove the uniqueness of this solution in the same space.

Recall that we understand the uniqueness of the time-dependent Sommerfeld
problem (1.5)–(1.6) as the uniqueness of the solution us given by (1.7) of the mixed
problem (1.8)–(1.10) in the space M.

The following theorem is the main result of the paper.

Theorem 6.1

(i) Problem (1.8)–(1.10) admits a solution belonging to the space M. Its limiting
amplitude exists and is the solution of problem (4.9). The connection between
this limiting amplitude and the Sommerfeld solution is given by (4.8).

(ii) Problem (1.8)–(1.10) admits a unique solution in the space M.

Proof The statements contained in item (i) follow from Corollary 5.8, Corollary 4.3,
and Remark 4.4.

(ii) Let us prove the uniqueness. We follow closely the proof of Theorem 2.1
from [5]. Suppose that there exist two solutions us(x, t) and vs(x, t) of system
(1.8)–(1.10) belonging to M. Consider ws(x, t) := us(x, t) − vs(x, t).

Then ŵs(·, ·, ω) = ûs(·, ·, ω) − v̂s(·, ·, ω), where ûs , v̂s (and, therefore, ŵs)
satisfy all the conditions of Proposition 5.7 and ŵs |W 0 = 0 by (3.4).

Let us prove that ŵs(·, ·, ω) ≡ 0. Let R be a sufficiently large positive number
and B(R) be the open disk centered at the origin with radius R. Set QR := Q ∩
B(R). Note that QR has a piecewise smooth boundary SR and denote by n(x) the
outward unit normal vector at the non-singular points x ∈ SR .

The first Green identity for ws(ρ, ϕ, ·) and its complex conjugate ws in the
domain QR , together with zero boundary conditions on SR , yield

∫

QR

[
|∇ŵs |2 − ω2|ŵs |2

]
dx =

∫

∂B(R)∩Q

(
∂nŵs

)
·
(
ws

)
dSR.

From the real and imaginary parts of the last identity, we obtain

∫

QR

[
|∇ŵs |2 + (

Im ω
)2|ŵs |2

]
dx = Re

∫

∂B(R)∩Q

(
∂nŵs

)(
ŵs

)
dSR (6.1)

for Re ω = 0 and

− 2
(
Re ω

)(
Im ω

) ∫

QR

|ŵs |2 dx = Im
∫

∂B(R)∩Q

(
∂nws

)(
ws

)
dSR (6.2)



474 A. Merzon et al.

for Re ω �= 0. Recall that we consider the case Im k �= 0. Now, note that since
ω̂s ∈ H 1(Q), there exist a monotonic sequence of positive numbers {Rj } such that
Rj → ∞ as j → ∞ and

lim
j→∞

∫

∂B(Rj )∩Q

[
∂nŵs

][
ŵs

]
dSRj

= 0. (6.3)

Indeed, in polar coordinates (ρ, ϕ), we have that the integrals

∞∫

0

⎛
⎝R

2π∫

0

|ŵs(ρ, ϕ)|2dϕ

⎞
⎠ dR and

∞∫

0

⎛
⎝R

2π∫

0

|∂nŵs(ρ, ϕ)|2dϕ

⎞
⎠ dR

are finite. This fact, in particular, implies that there exist a monotonic sequence of
positive numbers Rj such that Rj → ∞ as j → ∞ and

2π∫

0

|ŵs(Rj , ϕ)|2dϕ = o(R−1
j ),

2π∫

0

|∂nŵs(Rj , ϕ)|2dϕ = o(R−1
j ) as j → ∞.

Further, applying the Cauchy-Schwarz inequality for every Rj , we get

∣∣∣∣∣∣

2π∫

0

∂nŵs(Ri, ϕ)ŵs(Ri, ϕ)dϕ

∣∣∣∣∣∣
≤

2π∫

0

|∂nŵs(Ri, ϕ)ŵs(Ri, ϕ)|dϕ

≤
⎛
⎝

2π∫

0

|∂nŵs(Ri, ϕ)|2dϕ

⎞
⎠

1/2 ⎛
⎝

2π∫

0

|ŵs(Ri, ϕ)|2dϕ

⎞
⎠

1/2

= o(R−1
j ) as j → ∞,

and therefore we obtain (6.3).
Since the expressions under the integral sign in the left hand sides of equalities

(6.1) and (6.2) are non-negative, we have that these integrals are monotonic with
respect to R. This observation together with (6.3) implies

∫

Q

[
|∇ŵs |2 + (

Im ω
)2|ŵs |2

]
dϕ = lim

R→∞

∫

QR

[
|∇ŵs |2 + (

Im ω
)2|ŵs |2

]
dϕ = 0
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Fig. 2 Uniqueness

for Re ω = 0 and
∫

Q

|ŵs |2 dϕ = lim
R→∞

∫

QR

|ŵs |2 dϕ = 0

for Re ω �= 0. Thus, it follows from the last two identities that ŵs = 0 in Q (Fig. 2).
��

7 Conclusion

We proved that the Sommerfeld solution to the half-plane diffraction problem
for a wide class of incident waves is the limiting amplitude of the solution of
the corresponding time-dependent problem in a functional class of generalized
solutions. The solution of the time-dependent problem is shown to be unique in
this class. It is also shown that the limiting amplitude automatically satisfies the
Sommerfeld radiation condition and the regularity condition at the edge.
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8 Appendix 1

Lemma 8.1

(i) The functions Z (given by (4.2)) and ∂ϕZ admit uniform with respect to ϕ ∈
[0, 2π ] estimates

|Z(β, ϕ)| ≤ Ce−|β|/2, |∂ϕZ(β, ϕ)| ≤ Ce−|β|/2, |β| ≥ 1. (8.1)

(ii) The function Z admits the representation

Z(β, ϕ) = − 4

β + iε+
+ 4

β + iε−
+ Ž(β, ϕ), ε± �= 0 (8.2)
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with

Ž(β, ϕ) ∈ C∞(R × [0, 2π ]), |Ž(β, ϕ)| ≤ C, β ∈ R × [0, 2π ]. (8.3)

(iii) The function ∂ϕZ admits the representation

∂ϕZ = − 4i

(β + iε+)2 + 4i

(β + iε−)2 + Ž1(β, ϕ), ε± �= 0, (8.4)

with

Ž1(β, ϕ) ∈ C∞(R×[0, 2π ]), |Ž1(β, ϕ)| ≤ C, β ∈ R×[0, 2π ]. (8.5)

Proof

(i) For a = im, b = in, we have

coth a − coth b = − sinh(α/2)

sinh(b) sinh(a)
.

Hence for m = −π/8+a/4 and n = −π/8−a/4 we obtain the estimate (8.1)
for U(ζ ) given by (4.6) with respect to ζ . So (8.1) for Z follows from (4.5)
and (4.2).

(ii) From (4.5) and (4.6) it follows that the function Z admits the representation

Z(β, ϕ) = Z+(β, ϕ) + Z−(β, ϕ) + Z+(β, ϕ) + Z−(β, ϕ),

where

Z±(β, ϕ) = ± coth

(
β + i(ϕ± − ϕ)

4

)
,

Z±(β, ϕ) = ± coth

(
β − i

(
ϕ± + ϕ

)

4

)
.

(8.6)

Further, since | coth z − 1/z| ≤ C, |Im z| ≤ π , z �= 0, we have

Z±(β, ϕ) = ± 4

β + iε±
+ Ž±(β, ϕ), ϕ �= ϕ±,

and

Ž±(β, ϕ) ∈ C∞(R × [0, 2π ]), |Ž±(β, ϕ)| ≤ C, (β, ϕ) ∈ R × [0, 2π ].
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Finally, by (1.4),

Z±(β, ϕ) ∈ C∞(R × [0, 2π ]), |Z±(β, ϕ)| ≤ C, (β, ϕ) ∈ R × [0, 2π ].

Therefore, (8.2) and (8.3) are proven.
(iii) From (8.2) and (5.10) we get (8.4). Finally, by (8.6),

∂ϕZ±(β, ϕ) ∈ C∞(R × [0, 2π ]), |∂ϕZ±(β, ϕ)| ≤ C, (β, ϕ) ∈ R × [0, 2π ].

Moreover, since

∂ϕZ±(β, ϕ) ± [4i/(β + ε±)2] ∈ C∞([R × [0, 2π ]),

and is bounded in the same region, (8.5) holds.
��

For ε, β ∈ R, ε �= 0, ρ > 0, ω ∈ C
+, let

K0(β, ρ, ω, ε) := eiωρ cosh β

β + iε
, K0(ρ, ω, ε) :=

1∫

−1

K(β, ρ, ω, ε) dβ, (8.7)

K1(β, ρ, ω, ε) := cosh β · eiωρ cosh β, K1(ρ, ω, ε):=
1∫

−1

K1(β, ρ, ω, ε) dβ,

(8.8)

K2(β, ρ, ϕ, ε) := eiωρ cosh β

(β + iε)2 , K2(ρ, ω, ε) :=
1∫

−1

K2(β, ρ, ω, ε) dβ dβ.

Lemma 8.2 There exist C(ω) > 0, c(ω) > 0 such that the functions K0, K1, and
K2 satisfy the estimates

|K0,1,2(ρ, ω, ε)| ≤ C(ω)e−c(ω)ρ, ρ > 0, ϕ ∈ (0, 2π), ε �= 0. (8.9)

Proof It suffices to prove (8.9) for 0 < ε < ε0, since the functions K0,K1,K2 are
odd with respect to ε, and for ε ≥ ε0 > 0 they satisfy the estimate

∣∣∣K0,1,2(β, ρ, ω, ε)

∣∣∣ ≤ C(ε0)

1∫

−1

e−ω2ρ dβ ≤ 2C(ε0)e
−ω2ρ.
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(I) Let us prove (8.9) for K0. Let

cosh β := 1 + h(β), β ∈ C. (8.10)

Define ε0 = ε0(ω) such that

|h(β)| <
1

4
, |ω1||h(β)| ≤ ω2

4
for |β| ≤ 2ε0 := r, (8.11)

and define the contour

γr := {β = reiθ , −π < θ < 0}. (8.12)

Then we have by the Cauchy Theorem

K0(ρ, ω, ε) = I1(ρ, ω, ε) + I2(ρ, ω, ε) − 2πi Resβ=−iε K0(β, ρ, ω, ε),

where

I1(ρ, ω, ε) =
∫

γr

K0(β, ρ, ω, ε) dβ, I2(ρ, ω, ε) =
( −r∫

−1

+
1∫

r

)
K0(β, ρ, ω, ε) dβ

and 0 < ε < ε0. First,

| Resβ=−iε K0(β, ρ, ω, ε)| = e−ω2ρ cos ε ≤ e− 1
2 ω2ρ, 0 < ε < ε0,

(8.13)
by (8.11). Further, from (8.10) we have

∣∣I1(ρ, ω, ε)
∣∣ ≤

∫

γr

∣∣∣e−ω2ρ
(

1+h(β)
)
e
iω1ρ

(
1+h(β)

)∣∣∣
|β + iε| |dβ|

≤ 1

ε0
e−ω2ρ

∫

γr

∣∣e−ω2ρ h(β)+iω1ρ h(β)
∣∣ ∣∣dβ

∣∣, (8.14)

since for β ∈ γr we have |β + iε| ≥ |β| − ε = 2ε0 − ε > ε0, see Fig. 3.
Let h(β) := h1(β) + ih2(β). Then

|I1(ρ, ω, ε)| ≤ 1

ε0
e−ω2ρ

∫

γr

eω2ρ |h1(β)| e|ω1|ρ |h2(β)| dβ ≤ 2πe−ω2ρ/2,

(8.15)
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Fig. 3 Contour γr

by (8.11). Finally,

|I2(ρ, ω, ε)| ≤
∫

[−1,−r]∪[r,1]

∣∣∣∣
e−ω2ρ cosh β+iω1ρ cosh β

β + iε

∣∣∣∣ dβ ≤ e−ω2ρ

2ε0(ω)
,

(8.16)

since |β + iε| ≥ 2ε0, β ∈ [−1,−r] ∪ [r, 1]. From (8.14)–(8.16), we obtain
(8.9) for K0.

(II) Let us prove (8.9) for K1. Let h(β), ε0(ω), γr be defined by (8.10)–(8.12).
Then we have by the Cauchy Theorem

K1(ρ, ω, ε) :=
∫

γr∪[−1,r]∪[r,1]
K1(β, ρ, ω, ε) dβ

− 2πi Resβ=−iε K1(β, ρ, ω, ε), 0 < ε < ε0. (8.17)

First, similarly to (8.13), we obtain

∣∣ Resβ=−iε K1(β, ρ, ω, ε)
∣∣ ≤ |ω|e− ω2ρ

2 ,

by (8.11). Further, by (8.11) similarly to the proof of (8.14), (8.15), and using
(8.10), we get

∣∣∣∣
∫

γr

K1(β, ρ, ω, ε) dβ

∣∣∣∣ ≤ |ω|
ε0

· 5

4
e−ω2ρ

∫

γr

|e−ω2ρ h(β) eiω1ρ h(β)| |dβ|

≤ C(ω)e− ω2ρ

2 . (8.18)
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Finally, similarly to the proof of (8.16) we get the estimate

∣∣∣∣
∫

[−1,−r]∪[r,1]
K1(β, ρ, ω, ε) dβ

∣∣∣∣ ≤ C(ω) e−ω2ρ. (8.19)

From (8.17)–(8.19), we obtain (8.9) for K1.
(III) Estimate (8.9) for K2 is proved similarly to the same estimate for K0 and K1

with obvious changes. Lemma 8.2 is proven. ��

9 Appendix 2

Lemma 9.1 We have
(
� + ω2

)
ud(ρ, ϕ, ω) = 0, ϕ �= ϕ±, ω ∈ C

+. (9.1)

Proof By (5.2) it suffices to prove (9.1) for

Ad(ρ, ϕ, ω) :=
∫

R

Z(β, ϕ)eiωρ cosh β dβ. (9.2)

Since ω ∈ C
+ the integral (9.2) converges after differentiation with respect to ρ and

ϕ. We have

∂ρAd(ρ, ϕ, ω) = (iω)

∫

R

Z(β, ϕ) cosh β eiωρ cosh β dβ,

∂2
ρAd(ρ, ϕ, ω) = −ω2

∫

R

Z(β, ϕ) cosh2 β eiωρ cosh β dβ.

Integrating by parts, we have by (4.2) and (8.1)

∂ϕAd(ρ, ϕ, ω) =
∫

R

∂ϕ

(
Z0(β + 2πi − iϕ)

)
eiωρ cosh β dβ

= −ωρ

∫

R

Z(β, ϕ) sinh β eiωρ cosh β dβ, ϕ �= ϕ±. (9.3)
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Hence, similarly to (9.3)

∂2
ϕϕAd(ρ, ϕ, ω) = −iωρ

∫

R

Z(β, ϕ)
[

cosh β + iωρ sinh2 β
]
eiωρ cosh β dβ,

and

(� + ω2)ud(ρ, ϕ, ω) =∂2
ρAd(ρ, ϕ, ω) + 1

ρ
∂ρAd(ρ, ϕω)

+ 1

ρ2 ∂2
ϕAd(ρ, ϕ, ω) + ω2Ad(ρ, ϕ, ω) = 0. ��
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