
A Note on Group Representations,
Determinantal Hypersurfaces
and Their Quantizations

Igor Klep and Jurij Volčič

Abstract Recently, there have been exciting developments on the interplay
between representation theory of finite groups and determinantal hypersurfaces. For
example, a finite Coxeter group is determined by the determinantal hypersurface
described by its natural generators under the regular representation. This
short note solves three problems about extending this result in the negative.
On the affirmative side, it is shown that a quantization of a determinantal
hypersurface, the so-called free locus, correlates well with representation theory. If
A1, . . . , A� ∈ GLd(C) generate a finite group G, then the family of hypersurfaces
{X ∈ Mn(C)d : det(I + A1 ⊗ X1 + · · · + A� ⊗ X�) = 0} for n ∈ N determines G

up to isomorphism.
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1 Introduction

To A0, . . . , A� ∈ Md(C) one assigns the determinantal hypersurface

{[ξ0 : · · · : ξ�] ∈ CP
� : det(ξ0A0 + · · · + ξ�A�) = 0}. (1.1)

This is a classical object in algebraic geometry [1, 6, 10, 11], where a key question
asks which hypersurfaces admit determinantal representations. When Aj are real
symmetric matrices, determinantal hypersurfaces pertain to hyperbolic and stable
polynomials [2, 15, 18, 23, 24]. The geometry of the hypersurface (1.1) is also
explored in multivariate operator theory [3, 4, 26]. If Aj are bounded operators
on a Hilbert space and the determinant in (1.1) is replaced with the condition that
ξ0A0 + · · · + ξ�A� is not invertible, then (1.1) is known as the projective joint
spectrum of A0, . . . , A� (cf. Taylor spectrum [22] for ensembles of commuting
operators).

Through the work of Frobenius [13] and Dedekind [7] on group determinants
(see also [9]), determinantal hypersurfaces also pertain to representation theory.
Several fascinating developments in this direction [5, 14, 21] have been recently
made. This note addresses certain limitations for extensions of these results.

Let G be a finitely generated group. If T = (g1, . . . , g�) is a finite sequence of
generators for G and ρ : G → GLd(C) is a representation of G, then denote

Z1(T , ρ) =
{
ξ ∈ C

� : det (Id + ξ1ρ(g1) + · · · + ξ�ρ(g�)) = 0
}

. (1.2)

It is natural to ask what kind of information the affine hypersurface Z1(T , ρ)

carries about ρ and G. For example, if G1,G2 are finite groups with left regular
representations λ1, λ2, then Z1(G1\{1}, λ1) = Z1(G2\{1}, λ2) implies that G1,G2
are isomorphic [12]. However, one is typically interested in smaller generating sets
or in finitely generated groups which are not necessarily finite. In [14], the authors
computed the joint spectrum for the infinite dihedral group

D∞ = 〈a, t | a2 = t2 = 1〉

with respect to the generating set (1, a, t), and analyzed its properties through
the representation theory of D∞. Determinantal hypersurfaces also have a strong
connection with representation theory in the case of finite Coxeter groups [5]. A
Coxeter group is a finitely generated group on generators g1, . . . , g� satisfying

(gigj )
mij = 1

where mii = 1 and mij ≥ 2 for i 	= j . In [5] the authors first showed that if G is a
finite Coxeter group, λ is its left regular representation, and T = (g1, . . . , g�) are the
generators as above, then Z1(T , λ) determines G up to isomorphism. Furthermore,
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if G is not of exceptional type (in the Coxeter diagram sense) and ρ is an arbitrary
finite-dimensional representation of G, then Z1(T , ρ) determines ρ.

These theorems were presented during the Multivariable Spectral Theory and
Representation Theory workshop at the Banff International Research Station in
April 2019. Several problems about extending these results beyond Coxeter groups
were posed by the speakers; among them were the following.

Questions 1.1 Let G be a finite group, T a fixed generating set for G, and ρ1, ρ2
irreducible complex representations of G.

(1) Is Z1(T , ρ1) a reduced and irreducible hypersurface?
(2) If Z1(T , ρ1) = Z1(T , ρ2), are ρ1 and ρ2 equivalent?

As usual, ρ1 : G → GLd1(C) and ρ2 : G → GLd2(C) are equivalent if d1 = d2
and ρ2 = Pρ2P

−1 for some P ∈ GLd1(C). A representation ρ1 is irreducible if
its image does not admit a nontrivial common invariant subspace; equivalently, it
generates Md1(C) as a C-algebra by Burnside’s theorem [17, Corollary 1.17]. The
hypersurface Z1(T , ρ1) is reduced and irreducible (in the scheme-theoretic sense)
if its defining determinant in (1.2) is an irreducible polynomial. The main result of
this note is the following.

Theorem 1.2 Questions 1.1(1) and (2) have negative answers in general.

See Sects. 2.1 and 2.2 for concrete examples. On a more positive side, in
Sect. 3 we show that representation theory aligns well with a quantization of
the determinantal hypersurface, the free locus; see Theorem 3.1. Furthermore,
Proposition 3.4 determines whether a free locus arises from a representation of
a finite group, and Proposition 3.7 characterizes finite abelian groups from the
perspective of determinantal hypersurfaces. We conclude this note with an open
question.

2 Representations Versus Determinants

In this section we give negative answers to Questions 1.1. The representations were
found with the help of the computer algebra system GAP and the online repository
ATLAS of Finite Group Representations. Verifying equivalence and irreducibility
of representations was sometimes done symbolically with the computing system
Mathematica.

2.1 Irreducible Representation with Reducible Determinant

The alternating group G = A6 admits a presentation

G =
〈
g1, g2 | g2

1, g4
2, (g1g2)

5, (g1g
2
2)5

〉
.
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Let

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then ρ(g1) = A1 and ρ(g2) = A2 determines a faithful and irreducible
representation ρ : G → GL9(C). Indeed, we can directly check that

A2
1 = A4

2 = (A1A2)
5 = (A1A

2
2)

5 = I,

so ρ is a representation of G, and is moreover faithful since it is nontrivial and
G is simple. Furthermore, all the possible products of A1 and A2 with at most 8
factors span the whole M9(C), so ρ is irreducible. However, we claim that the curve
Z1((g1, g2), ρ) in C

2 is not irreducible. We can compute the determinant of I +
x1ρ(g1) + x2ρ(g2),

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + x1 x2 0 0 0 0 0 0 0
0 1 x1 x2 0 0 0 0 0
0 x1 1 0 x2 0 0 0 0
0 0 0 1 x1 x2 0 0 0
0 0 0 x1 1 0 x2 0 0

x2 0 0 0 0 1 0 x1 0
0 0 0 0 0 0 1 + x1 0 x2

0 0 0 0 0 x1 0 1 + x2 0
−x1 −x1 x2 − x1 −x1 −x1 −x1 −x1 −x1 1 − x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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by cofactor expansion along the rows. The reader will have no difficulty verifying
that det(I + x1ρ(g1) + x2ρ(g2)) equals

1 + x1 − 4x2
1 − 4x3

1 + 6x4
1 + 6x5

1 − 4x6
1 − 4x7

1 + x8
1 + x9

1 + x2 + 2x1x2 − 2x2
1x2

− 6x3
1x2 + 6x5

1x2 + 2x6
1x2 − 2x7

1x2 − x8
1x2 + x2

1x2
2 + x3

1x2
2 − 2x4

1x2
2 − 2x5

1x2
2

+ x6
1x2

2 + x7
1x2

2 − x2
1x3

2 + 2x4
1x3

2 − x6
1x3

2 − 2x4
2 + x2

1x4
2 − x3

1x4
2 + x4

1x4
2 + x5

1x4
2

− 2x5
2 − 2x1x

5
2 − x2

1x5
2 + x4

1x5
2 − x2

1x6
2 − x3

1x6
2 + x2

1x7
2 + x8

2 − x1x
8
2 + x9

2

which is the product of the following two irreducible polynomials:

1 + 2x1 − 2x3
1 − x4

1 + x1x2 + 2x2
1x2 + x3

1x2 − x1x
2
2 − x2

1x2
2 + x1x

3
2 − x4

2 ,

1 − x1 − 2x2
1 + 2x3

1 + x4
1 − x5

1 + x2 − x1x2 − x2
1x2 + x3

1x2 − x4
2 − x5

2 .

Some of the subsequent examples are presented in a more terse way to maintain the
focus on their intent.

Note that the above irreducible representation of A6 has dimension 9, which
is not the minimum among nontrivial complex representations of A6; namely,
A6 admits a representation σ of minimal dimension 5, and Z1((g1, g2), σ ) is
irreducible. One might thus be tempted to suggest that for a group G generated by
a finite set T and its (irreducible) representation σ of minimal dimension, Z1(T , σ )

is irreducible. However, even this weaker conjecture fails. The counterexample is
given by the Janko group J2,

J2 =
〈
g1, g2 | g2

1, g3
2, (g1g2)

7, (g1g2g
−1
1 g−1

2 )12, (g1g2(g1g2g1g
−1
2 )2)6

〉
.

This sporadic simple group of order 604800 admits two non-isomorphic complex
representations σ1, σ2 of minimal dimension 14, courtesy of ATLAS of Finite Group
Representations. As in the previous example (albeit with slightly longer calcula-
tions), one can explicitly check that the curve Z1((g1, g2), σ1) = Z1((g1, g2), σ2)

has two irreducible components.

2.2 Non-equivalent Representations with the Same
Determinant

The classical group G = GL2(Z/3Z) admits the presentation

G =
〈
g1, g2, g3 | g2

1, (g1g
−1
2 )2, (g1g

−1
3 )2, g2

2g3g
−1
2 g3, g2g

2
3g2g

−1
3

〉
.
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Let A1, A2, A3 be the matrices

( − 1√
2

− 1
2 − i

2

− 1
2 + i

2
1√
2

)
,

(
1
2 + i

2
1√
2

− 1√
2

1
2 − i

2

)
,

(
1
2 − i

2
i√
2

i√
2

1
2 + i

2

)
.

There are faithful irreducible unitary representations ρ+, ρ− : G → GL2(C) given
by

ρ±(g1) = ±A1, ρ±(g2) = A2, ρ±(g3) = A3.

It is easy to check that ρ+ and ρ− are not equivalent. On the other hand,

Z1((g1, g2, g3), ρ±) = {(ξ1, ξ2, ξ3) : 1 − ξ2
1 + ξ2 + ξ2

2 + ξ3 + ξ2
3 = 0}.

3 Free Locus Perspective

In this section we will see how representations of a finitely generated group are
determined by a noncommutative relaxation of (1.2). To A ∈ Md(C)� we associate
the monic matrix pencil LA = I + A1x1 + · · · + A�x� of size d in freely
noncommuting variables x = (x1, . . . , x�). Thus L is an affine matrix over the
free algebra C<x>. At a matrix point X ∈ Mn(C)� it evaluates as

LA(X) = Idn + A1 ⊗ X1 + · · · + A� ⊗ X� ∈ Mdn(C).

The free locus [19] of LA is the disjoint union of determinantal hypersurfaces

Z (LA) =
⊔
n∈N

Zn(LA), Zn(LA) =
{
X ∈ Mn(C)� : det LA(X) = 0

}
.

Given a group G generated by T = (g1, . . . , gn) and a complex representation
ρ : G → GLd(C), we write

Z (T , ρ) = Z
(
Lρ(g1),...,ρ(g�)

)
. (3.1)

By the definition of the free locus we see that (3.1) is indeed a quantization of (1.2).
The existing results on free loci [16, 19] readily apply to group representations.

Theorem 3.1 For i = 1, 2 let Gi be a group generated by a finite sequence Ti and
let ρi be a complex representation of Gi . Assume |T1| = |T2|.
(1) If ρi is irreducible, then there exists n0 ∈ N such that Zn(T1, ρ1) is a reduced

and irreducible hypersurface for all n ≥ n0.
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(2) If ρ1 and ρ2 are irreducible, then Z (T1, ρ1) = Z (T2, ρ2) if and only if
G1/ ker ρ1 ∼= G2/ ker ρ2 and ρ1, ρ2 are equivalent.

(3) For i = 1, 2 assume that Gi is finite and ρi is a faithful representation. Then
Z (T1, ρ1) = Z (T2, ρ2) if and only if G1 ∼= G2 via an isomorphism mapping
T1 to T2.

Proof

(1) A consequence of [16, Theorem 3.4].
(2) A consequence of [19, Theorem 3.11].
(3) Let Ti be the C-algebra generated by Ti . Since Gi is finite, its group algebra

CGi is semisimple by Maschke’s theorem [17, Theorem 1.9]. Since Ti is a
quotient of CGi , it is also semisimple. Then Z (T1, ρ1) = Z (T2, ρ2) if and
only if T1 �→ T2 induces an algebra isomorphism T1 → T2 by [19, Corollary
3.8]. This isomorphism then restricts to the group isomorphism G1 → G2. �

Remark 3.2 There is a deterministic bound on n0 in Theorem 3.1(1) that is
exponential in |T1| and the dimension of ρ1 by [16, Remark 3.5] (the bound is likely
not optimal). Similarly, to verify Z (T1, ρ1) = Z (T2, ρ2) of Theorem 3.1(2,3), it
suffices to check Zn(T1, ρ1) = Zn(T2, ρ2) for a fixed large enough n, exponential
in |Ti | and the dimension of ρi by [19, Remark 3.7].

Free loci are defined for monic pencils with arbitrary matrix coefficients; we now
describe how the geometry of the free locus Z (LA) detects whether the coefficients
A1, . . . , A� generate a finite group. See also [8] for an efficient algorithm that
determines finiteness of a finitely generated linear group.

Definition 3.3 Let �, n ∈ N. Let C ∈ GLn(Z) be the permutation matrix
corresponding to the cycle (1 2 · · · n). If {1, . . . , n} = S1 � · · · � S� and Pj is
the orthogonal projection onto span{ek : k ∈ Sj }, then the matrix point

X = (P1C, · · · , P�C) ∈ Mn(Z)�

is called a cycle partition. For given �, n we thus have �n cycle partitions.

Let μ∞ ⊂ C \ {0} be the group of all roots of unity. The next proposition shows
that if A1, . . . , A� generate a finite group, then Z (LA) intersects complex lines
through cycle partitions only in points from μ∞.

Proposition 3.4 Let A ∈ Md(C)�. Then A1, . . . , A� generate a finite group if and
only if the following hold:

(i) there is a positive definite P ∈ Md(C) such that A∗
jPAj = P for all j ;

(ii) for every cycle partition X and t ∈ C,

tX ∈ Z (LA) �⇒ t ∈ μ∞.

Proof (⇐) Every Aj is invertible by (i). Let G be a group generated by A1, . . . , A�.
Also by (i), G is a subgroup of the unitary group in GLd(C) with respect to the
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inner product 〈u, v〉 = u∗Pv. Hence every element of G is diagonalizable. By [25,
Corollary 4.9], a finitely generated subgroup of GLd(C) is finite if and only if it
is periodic (or torsion; i.e., every element has finite order). Since a diagonalizable
matrix has a finite order if and only if all its eigenvalues lie in μ∞, it suffices to
verify that eigenvalues of every element of G lie in μ∞.

To (i1, . . . , in) ∈ {1, . . . , �}n we associate the cycle partition X ∈ Mn(Z)� by
choosing Sj = {ek : ik = j}. We claim that tX ∈ Z (LA) if and only if (−t)n is an
eigenvalue of Ai1 · · ·Ain . Indeed, using Schur complements it is easy to check that

det(I − (−1)ntnAi1 · · · Ain) = det

(
I tAi1

(−1)ntn−1Ai2 · · ·Ain I

)

= det

⎛
⎝

I tAi1 0
0 I tAi2

−(−1)ntn−2Ai3 · · · Ain 0 I

⎞
⎠

= · · ·

= det

⎛
⎜⎜⎜⎝

I tAi1

. . .
. . .

I tAin−1

tAin I

⎞
⎟⎟⎟⎠

= det LA(tX).

Thus the matrix Ai1 · · · Ain has finite order if and only if tX ∈ Z (LA) implies
t ∈ μ∞, which holds by (ii).

(⇒) If A1, . . . , A� generate a finite group G, then C
d admits a G-invariant inner

product

〈u, v〉 =
∑
g∈G

(gu)∗(gv).

If P is the positive definite matrix satisfying 〈u, v〉 = u∗Pv, then (i) holds.
Furthermore, the proof of (ii) is already given in the previous paragraph. �
Remark 3.5 If additional information about A1, . . . , A� is given, say that their
entries generate a number field (finite extension of Q), then the size of the cycle
partitions, which have to be tested in Proposition 3.4, can be bounded using Schur’s
theorem on orders of finite matrix groups [17, Theorem 14.19].

Remark 3.6 Let p ∈ N be prime. If μ∞ in Proposition 3.4 is replaced by the group
of power-of-p roots of unity, one obtains a free locus characterization of matrix
tuples that generate a finite p-group.
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We also show how the free locus certifies whether its defining coefficients
generate a finite abelian group. The degree of an affine variety of codimension m

is the number of intersection points of the variety with m hyperplanes in general
position; in the case of a hypersurface, it is simply the degree of its square-free
defining polynomial.

Proposition 3.7 Let G be a finite group generated by A1, . . . , A� ∈ Md(C). Then
G is abelian if and only if the irreducible components of Zn(LA) have degree n for
all n ∈ N.

Proof Let A be the C-algebra generated by A1, . . . , A�. As in the proof of
Theorem 3.1(3) we see that A is semisimple. After a basis change (which does
not affect the structure of G or Z (LA)) we can thus assume that

Aj = A
(1)
j ⊕ · · · ⊕ A

(s)
j

where A
(k)
1 , . . . , A

(k)
� ∈ Mdk

(C) determine an irreducible representation of G for
every k = 1, . . . , s. For X ∈ Mn(C)d let us view det LA(k) (X) as a polynomial
in the entries of X. If dk = 1, then det LA(k) (X) is up to an affine change of
coordinates equal to the determinant of a generic n × n matrix, and hence an
irreducible polynomial of degree n. On the other hand, if dk > 1, then det LA(k)(X)

is a polynomial of degree dkn > n for all n, and irreducible for all large enough n

by [16, Theorem 3.4]. Since G is abelian if and only if d1 = · · · = ds = 1, and

Zn(LA) = Zn(L
(1)
A ) ∪ · · · ∪ Zn(L

(s)
A ),

it follows that G is abelian if and only if the irreducible components of Zn(LA) are
hypersurfaces of degree n. �
Remark 3.8 If � = 2 and A1, A2 are hermitian, then Z1(LA) alone determines
whether G is abelian, cf. [20].

The last two propositions offer some directions for future research. Theorem 3.1
implies that the linear group G generated by a tuple A is determined by Z (LA).
It would be interesting to know which properties of G can be deduced from the
geometry of Z (LA). For example, intersections of Z (LA) with certain lines and
hyperplanes determine whether G is finite or abelian. An open problem is how to
decide whether a finite group G is nilpotent/solvable/simple (or any other group-
theoretic property) by considering the geometry of the hypersurfaces Zn(LA).
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