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Preface

This volume is dedicated to the 30th International Workshop on Operator Theory
and its Applications, IWOTA 2019, where a wide range of topics on the recent
developments in Operator Theory and Functional Analysis was presented and
discussed.

The book is composed of 30 articles covering the different scientific areas of
IWOTA 2019. Namely:

• Group representations and determinantal hypersurfaces. Dilation theory of com-
pletely positive maps and semigroups as well as the operator algebraic approach
to dilation theory. Tight and cover-to-join representations of semilattices and
inverse semigroups. Compact sequences in quasifractal algebras. Representable
and continuous functionals of Banach quasi *-algebras. Langlands reciprocity for
C∗-algebras.

• Tau functions and linear systems. Bishop operators, spectral properties, and
spectral invariant subspaces. The operator Jensen–Mercer inequality. Birkhoff–
James orthogonality.

• Extended Heinz and Jensen type inequalities and rearrangements. d-Modified
Riesz potentials on central Campanato spaces. K-inner functions and K-
contractions for unitarily invariant reproducing kernel functions. Products of
unbounded block functions. Riesz–Fischer maps and frames in rigged Hilbert
spaces.

• Minimality properties of Sturm–Liouville problems. Solutions of inhomoge-
neous ill-posed problems in Banach space. Quantum graph with Rashba Hamil-
tonian. Unbounded operators on the Segal–Bargmann space. Solvability of the
Caffarelli–Silvestre extension problem.

• Semiclassical elliptic pseudodifferential operators and periodic coherent states
decomposition. Time-dependent approach to the Sommerfeld solution of a
diffraction problem. A numerical approach for approximating variable-order
fractional integral operator. Inner–outer factorization of rational matrix valued
functions.

v
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• Toeplitz plus Hankel operators and their close relatives. Fourier convolution
operators with slowly oscillating symbols. Singular integral operators with
Cauchy and Mellin kernels. Noncommutative C∗-algebras generated by Toeplitz
operators on the unit sphere.

• Groups of orthogonal matrices, all orbits of which generate lattices. The inverse
characteristic polynomial problem for trees.

IWOTA 2019 was held from 22nd to 26th of July 2019 at Instituto Superior
Técnico, University of Lisbon, Portugal. It was focused on the latest developments
in Functional Analysis, Operator Theory, and related fields and was organized by M.
Amélia Bastos (IST, UL), António Bravo (IST, UL), Catarina Carvalho (IST, UL),
Luís Castro (UA), Alexei Karlovich (FCT, UNL), and Helena Mascarenhas (IST,
UL).

IWOTA 2019 had 471 participants from all over the world. The program
consisted of 11 plenary lectures:

• J. Ball, Input/State/Output Linear Systems and Their Transfer Functions: From
Single-Variable to Multivariable to Free Noncommutative Function Theory;

• A. Böttcher, Lattices from Equiangular Tight Frames;
• K. Davidson, Noncommutative Choquet Theory;
• R. Exel, Statistical Mechanics on Markov Spaces with Infinitely Many States;
• H. Feichtinger, Classical Fourier Analysis and the Banach Gelfand Triple;
• R. Kaashoek, Inverting Structured Operators and Solving Related Inverse Prob-

lems;
• I. Klep, Bianalytic Maps between Matrix Convex Sets;
• L.-E. Persson, My Life with Hardy and His Inequalities;
• P. Semrl, Automorphisms of Effect Algebras;
• B. Silbermann, Invertibility Issues for Toeplitz Plus Hankel Operators;
• C. Tretter, Spectra and Essential Spectra of Non-Self-Adjoint Operators;

16 semi-plenary lectures:

• P. Ara, Separated Graphs and Dynamics;
• S. Belinschi, Analytic Transforms of Noncommutative Distributions;
• G. Blower, Linear Systems in Random Matrix Theory;
• A. Caetano, Function Spaces Techniques in Problems of Scattering by Fractal

Screens;
• A. B. Cruzeiro, On Some Stochastic Partial Differential Equations Obtained by

a Variational Approach;
• R. Duduchava, Boundary Value Problems on Hypersurfaces and �-Convergence;
• P. Freitas, Spectral Determinants of Elliptic Operators: Dependence on Spatial

Dimension and Order of the Operator;
• E. Gallardo, Invariant Subspaces for Bishop Operators and Beyond;
• Yu. Karlovich, Algebras of Singular Integral Operators with Piecewise Quasi-

continuous Coefficients and Non-Smooth Shifts;
• S. Petermichl, Change of Measure;
• S. Roch, On Quasifractal Algebras;
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• O. M. Shalit, Dilation Theory: Fresh Directions with New Applications;
• F.-O. Speck, Advances in General Wiener–Hopf Factorization;
• I. Spitkovsky, One Hundred Years of. . . Numerical Range;
• N. Vasilevski, Algebras Generated by Toeplitz Operators on the Hardy Space

H 2(S2n−1);
• N. Zorboska, Toeplitz Operators on the Bergman Space with BMOp Symbols

and the Berezin Transform;

and more than 400 contributed talks distributed among 22 special sessions:

• Analysis and Algebraic Geometry for Operator Variables (organized by I. Klep
and V. Vinnikov);

• Analysis and Synthesis for Operator Algebras (organized by A. Dor-On, R. Exel,
E. Katsoulis, and D. Pitts);

• Free Analysis and Free Probability (organized by S. Belinschi, M. Popa, and
R. Speicher);

• Functional Calculus, Spectral Sets and Constants (organized by L. Kosinski,
F. Schwenninger, and M. Wojtylak);

• Gabor Analysis and Noncommutative Geometry (organized by F. Luef and
I. Nikolaev);

• Geometry of Linear Operators and Operator Algebras (organized by K. Paul and
D. Sain);

• Hypercomplex Analysis and Operator Theory (organized by D. Alpay,
F. Colombo, and U. Kähler);

• Integral Operators and Applications (organized by R. Hagger, K.-M. Perfekt, and
J. Virtanen);

• Linear Operators and Function Spaces (organized by M. C. Câmara and M. Ptak);
• Matrix Theory and Control (organized by M. Dodig and S. M. Furtado);
• Multivariable Operator Theory (organized by J. Ball and V. Bolotnikov);
• Operators of Harmonic Analysis, Related Function Spaces, and Applications —

dedicated to Lars-Erik Persson on his 75th birthday (organized by H. Rafeiro and
N. Samko);

• Operators on Reproducing Kernel Hilbert Spaces (organized by N. Vasilevski
and K. Zhu);

• Operator Theoretical Methods in Mathematical Physics (organized by L. Castro
and F.-O. Speck);

• Orders Preserving Operators on Cones and Applications (organized by M. Akian,
S. Gaubert, A. Peperko, and G. Vigeral);

• Preserver Problems in Operator Theory and Functional Analysis (organized by
F. Botelho and G. Geher);

• Random Matrix Theory (organized by H. Hedenmalm and J. Virtanen);
• Representation Theory of Algebras and Groups (organized by C. André,

S. Lopes, and A. P. Santana);
• Semigroups and Evolution Equations (organized by C. Budde and C. Seifert);
• Spectral Theory and Differential Operators (organized by A. Khrabustovskyi,

O. Post, and C. Trunk);
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• Toeplitz Operators, Convolution Type Operators, and Operator Algebras —
dedicated to Yuri Karlovich on his 70th birthday (organized by M. A. Bastos
and A. Karlovich);

• Truncated Moment Problems (organized by M. Infusino and S. Kuhlmann).

Finally, the editors of this volume express their gratitude to the IWOTA
2019 sponsors: the Center for Functional Analysis, Linear Structures and
Applications supported by the projects CEAFEL-UID/MAT/04721/2013,
UID/MAT/04721/2019; the Center for Research and Development in Mathematics
and Applications supported by the project CIDMA-UID/MAT/04106/2019;
the Centre for Mathematics and Applications supported by the project CMA-
UID/MAT/00297/2019; and to the Rector of Lisbon University and the Portuguese
Foundation for Science and Technology.

Lisboa, Portugal M. Amélia Bastos
Aveiro, Portugal Luís Castro
Lisboa, Portugal Alexei Yu. Karlovich
May 2020
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Extended Heinz and Jensen Type
Inequalities and Rearrangements

Shoshana Abramovich

Dedicated to Lars-Erik Persson on the occasion of his 75th
birthday.

Abstract In this paper we extend the well known Heinz inequality which says that
2
√
a1a2 ≤ H(t) ≤ a1+a2, a1, a2 > 0, 0 ≤ t ≤ 1, where H(t) = at

1a
1−t
2 +a1−t

1 at
2.

We discuss the bounds of H(t) in the intervals t ∈ [1, 2] and t ∈ [2,∞) using the
subquadracity and the superquadracity of ϕ(x) = xt , x ≥ 0 respectively. Further,

we extend H(t) to get results related to
∑n

i=1 Hi(t) =∑n
i=1

(
at
i a

1−t
i+1 + a1−t

i at
i+1

)
,

an+1 = a1, ai > 0, i = 1, . . . , n, where H1(t) = H(t). These results, obtained
by using rearrangement techniques, show that the minimum and the maximum
of the sum

∑n
i=1 Hi(t) for a given t , depend only on the specific arrangements

called circular alternating order rearrangement and circular symmetrical order
rearrangement of a given set (a) = (a1, a2, . . . , an), ai > 0, i = 1, 2, . . . , n. These
lead to extended Heinz type inequalities of

∑n
i=1 Hi(t) for different intervals of

t . The results may also be considered as special cases of Jensen type inequalities
for concave, convex, subquadratic and superquadratic functions, which are also
discussed in this paper.

Keywords Rearrangements · Heinz inequality · Jensen inequality · Convexity ·
Superquadracity
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2 S. Abramovich

1 Introduction and Basic Results

In this paper we extend the well known Heinz inequality

2
√
a1a2 ≤ H(t) ≤ a1 + a2, a1, a2 > 0, 0 ≤ t ≤ 1, (1.1)

where

H(t) = at
1a

1−t
2 + a1−t

1 at
2.

In the past few years attention has been put toward refining or reversing this
inequality. Recently, in 2019, new refinements of (1.1) have been proved in [5].

We start by discussing the bounds of H(t) in the intervals t ∈ [1, 2] and
t ∈ [2,∞) using the subquadracity and the superquadracity of ϕ(x) = xt , x ≥ 0
respectively.

Then, we continue extending H(t) to get results related to

n∑

i=1

Hi(t) =
n∑

i=1

(
at
i a

1−t
i+1 + a1−t

i at
i+1

)
, an+1 = a1, ai > 0, i = 1, . . . , n,

where H1(t) = H(t) and t ∈ R.
These results, obtained by using rearrangement techniques, show that the mini-

mum and the maximum of the sum
∑n

i=1 Hi(t) for a specific t , depend only on the
specific arrangements called circular alternating order rearrangement and circular
symmetrical order rearrangement of a given set (a) = (a1, a2, . . . , an), ai > 0,
i = 1, 2, . . . , n. These lead to extended Heinz type inequalities of

∑n
i=1 Hi(t) for

different intervals of t . The results may also be considered as special cases of Jensen
type inequalities for concave, convex, subquadratic and superquadratic functions,
which are also discussed in this paper.

We start with a lemma which easily leads to (1.1):

Lemma 1.1 Let ϕ : R+ → R+ be a non-negative increasing function and let
Gp(a, b) be the function

Gp(a, b) = a

(
b

a

)p

ϕ

(
b

a

)

+ b
(a

b

)p
ϕ
(a

b

)
, p ≥ 1

2
, a, b > 0.

Then,

Gp(a, b) ≥ a
1
2 b

1
2

(

ϕ

(
b

a

)

+ ϕ
(a

b

))

. (1.2)
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Proof Computing the derivative of Gp(a, b) we see that

∂Gp(a, b)

∂p
=
(

a

(
b

a

)p

ϕ

(
b

a

)

− b
(a

b

)p
ϕ
(a

b

))

ln
b

a
≥ 0, (1.3)

when without loss of generality we assume that b ≥ a > 0. Therefore (1.2) follows
from (1.3). 	

When ϕ (x) ≡ 1 we get from Lemma 1.1:

Corollary 1.2 Let a, b, t ∈ R and let the symmetric function around t = 1
2 be

H (t) = a1−tbt + atb1−t , a, b > 0.

Then H(t) is symmetric around t = 1
2 , increasing when t ≥ 1

2 , decreasing when
t < 1

2 and the inequality

H(t) = a1−tbt + atb1−t ≥ 2a
1
2 b

1
2

holds for any t ∈ R.
Also, because of the monotonicity and the symmetry of H(t) we get that for

a, b > 0,

2a
1
2 b

1
2 ≤ a1−tbt + atb1−t ≤ a + b, 0 < t < 1.

When n ≤ t ≤ n+ 1 and n = 1, 2, . . . ,

a1−nbn + anb1−n ≤ a1−t bt + atb1−t ≤ a−nbn+1 + an+1b−n.

When n ≤ t ≤ n+ 1 and n = −1,−2, . . . ,

an+1b−n + a−nbn+1 ≤ a1−tbt + atb1−t ≤ anb−n+1 + a−n+1bn.

In order to obtain more Heinz type inequalities we introduce the definitions of
superquadratic and subquadratic functions (see for instance [2, 4] and [7]) which
include the functions f (x) = xt , x ≥ 0, when t ≥ 2 and 1 ≤ t ≤ 2, respectively.

Definition 1.3 A function ϕ : [0, B)→ R, 0 < B ≤ ∞ is superquadratic provided
that for all x ∈ [0, B) there exists a constant Cϕ(x) ∈ R such that the inequality

ϕ(y) ≥ ϕ(x)+ Cϕ(x)(y − x)+ ϕ(|y − x|)

holds for all y ∈ [0, B), (see [2, Definition 2.1], there [0,∞) instead [0, B)).
The function ϕ is called subquadratic if −ϕ is superquadratic.
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Proposition 1.4 Suppose that f is superquadratic. Let 0 ≤ xi < B, i = 1, . . . , n
and let x =∑n

i=1 aixi , where ai ≥ 0, i = 1, . . . , n and
∑n

i=1 ai = 1. Then

n∑

i=1

aif (xi)− f (x) ≥
n∑

i=1

aif (|xi − x|) . (1.4)

If f is non-negative, it is also convex and the inequality refines Jensen’s inequality.
In particular, the functions f (x) = xr , x ≥ 0, r ≥ 2 are superquadratic and convex,
and equality holds in inequality (1.4) when r = 2.

Similarly, suppose that f is subquadratic. Let 0 ≤ xi < B, i = 1, . . . , n and let
x =∑n

i=1 aixi , where ai ≥ 0, i = 1, . . . , n and
∑n

i=1 ai = 1. Then

n∑

i=1

aif (xi)− f (x) ≤
n∑

i=1

aif (|xi − x|) . (1.5)

In Theorem 1.5 we employ for t ≥ 2 the inequality satisfied by the superquadratic
function φ (x) = xt .

Theorem 1.5 Let a, b > 0 and t ≥ 2. Then

atb1−t + a1−tbt ≥ (a + b)+
(
a1−t + b1−t

)
|b − a|t

≥ max

{

(a + b)

(

1 +
(

2|b − a|
a + b

)t)

,
a2

b
+ b2

a

}

. (1.6)

Proof From the superquadracity of φ (x) = xt , t ≥ 2, n = 2, we get that

b
(a

b

)t + a

(
b

a

)t

= atb1−t + a1−t bt

≥ (a + b)

(

1 + a

a + b

∣
∣
∣
∣
b

a
− 1

∣
∣
∣
∣

t

+ b

a + b

∣
∣
∣1 − a

b

∣
∣
∣
t
)

= (a + b)

(

1 + a1−t + b1−t

a + b
|b − a|t

)

≥ max

{

(a + b)

(

1 +
(

2|b − a|
a + b

)t)

,
a2

b
+ b2

a

}

. (1.7)

Indeed, the first inequality in (1.7) follows from the superquadracity of φ(x) = xt ,
t ≥ 2, x ≥ 0. The second inequality follows from the convexity of φ(x) = xt ,
t ≥ 1, x ≥ 0, and the monotonicity of atb1−t + a1−t bt .

The proof is complete. 	
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It is easy to verify that there are cases by which the superquadratic property leads to
a better result in (1.6) than the monotonicity property of H(t) and vice versa.

In Theorem 1.6 we employ for 1 ≤ t ≤ 2 the inequality satisfied by the
subquadratic function φ (x) = xt .

Theorem 1.6 Let a, b > 0 and 1 < t < 2. Then

a + b ≤ atb1−t + a1−tbt

≤ min

{

(a + b)+
(
a1−t + b1−t

)
|b − a|t , a

2

b
+ b2

a

}

(1.8)

holds.

Proof The left hand-side of (1.8) follows from the monotonicity of atb1−t+a1−tbt ,
x ≥ 0, t ≥ 1

2 . The right hand-side follows from the subquadracity of φ (x) = xt ,
x ≥ 0, 1 ≤ t ≤ 2, and the monotonicity of atb1−t + a1−tbt , 1 ≤ t ≤ 2.

The proof is complete. 	

In the sequel we use the following lemma.

Lemma 1.7 Let ϕ be a continuous function on x ≥ 0 which is twice differentiable
on x > 0, with ϕ(0) = 0 and

lim
x→0+

xϕ′(x) = 0.

If ϕ is convex, then xϕ′(x)− ϕ(x) ≥ 0 on x > 0.
If ϕ is concave, then xϕ′x)− ϕ(x) ≤ 0 on x > 0.

Proof Assuming ϕ is convex, we have ϕ′′(x) ≥ 0 for x > 0, hence

(xϕ′(x)− ϕ(x))′ = xϕ′′(x) ≥ 0

for x > 0, and xϕ′ (x)− ϕ (x) is increasing. Also

lim
x→0+

(xϕ′(x)− ϕ(x)) = 0,

and therefore xϕ′(x)− ϕ(x) ≥ 0 when x > 0.
Similarly we prove the concavity case. 	
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2 Rearrangements and New Jensen and Heinz Type
Inequalities

In [3] the authors deal with Jensen type inequalities and rearrangements. The
following definitions appear first in [6]. Theorem 2.6 below appears in [3].

Definition 2.1 ([6]) An ordered set (x) = (x1, . . . , xn) of n real numbers is
arranged in symmetrical decreasing order if

x1 ≤ xn ≤ x2 ≤ · · · ≤ x[(n+2/2)]

or if

xn ≤ x1 ≤ xn−1 ≤ · · · ≤ x[(n+1/2)].

Definition 2.2 ([6]) A circular rearrangement of an ordered set (x) is a cyclic
rearrangement of (x) or a cyclic rearrangement followed by inversion.

For example, the circular rearrangements of the ordered set (1, 2, 3, 4) are the sets

(1, 2, 3, 4) , (2, 3, 4, 1) , (3, 4, 1, 2) , (4, 1, 2, 3) ,

(4, 3, 2, 1) , (1, 4, 3, 2) , (2, 1, 4, 3) , (3, 2, 1, 4) .

Definition 2.3 ([6]) A set (x) is arranged in circular symmetrical order if one of its
circular rearrangements is symmetrically decreasing.

The alternating order of (x) as defined in Definition 2.4 below was introduced and
proved in [8] to be the minimum of

∑n
i=1 xixi+1 under rearrangement. Here the

minimum and maximum of

n∑

i=1

(

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

))

and of

n∑

i=1

(
xt
i x

1−t
i+1 + x1−t

i xt
i+1

)

under rearrangement of (x) is obtained, which leads to Heinz and Jensen type
inequalities.
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Definition 2.4 An ordered set (x) = (x1, . . . , xn) of n real numbers is arranged in
alternating order if

x1 ≤ xn−1 ≤ x3 ≤ xn−3 ≤ · · · ≤ x[ n+1
2

] ≤ · · · ≤ x4 ≤ xn−2 ≤ x2 ≤ xn, (2.1)

or if

xn ≤ x2 ≤ xn−2 ≤ x4 ≤ · · · ≤ x[ n+1
2

] ≤ · · · ≤ xn−3 ≤ x3 ≤ xn−1 ≤ x1. (2.2)

Definition 2.5 A set (x) is arranged in circular alternating order if one of its
circular rearrangements is arranged in an alternating order.

Theorem 2.6 ([3]) Let F(u, v) be differentiable and symmetric real function
defined on (α, β), −∞ ≤ α < β ≤ ∞ and α ≤ u, v,w ≤ β. Assume that

∂F (v, u)

∂v
≤ ∂F (v,w)

∂v

for u ≤ min{w, v}. Then, for any set (x) = (x1, x2, . . . , xn), α ≤ xi ≤ β, i =
1, . . . , n given except its arrangements

n∑

i=1

F (xi, xi+1) , xn+1 = x1

is maximal if (x) is arranged in circular symmetrical order and minimal if (x) is
arranged in circular alternating order as defined above.

It is proved in [1] that the maximal arrangement of
∑n

i=1 F (xi, xi+1), xn+1 = x1 is
attained when (x) is arranged in circular symmetrical order.

An outline of the minimal arrangement of
∑n

i=1 F (xi, xi+1), xn+1 = x1 as stated
in Theorem 2.6 and proved in [3] is as follows:

We denote a given set of n real numbers according to their increasing order (a) =
(a1, a2, . . . , an−1, an), where a1 ≤ a2 ≤ · · · ≤ an−1 ≤ an. We start with an
arbitrary permutation of (a) called (b) = (b1, . . . , bn). As F(u, v) is symmetric
and we are interested in

∑n
i=1 F (bi, bi+1), bn+1 = b1, which is clearly invariant

under all circular rearrangements, we can assume that b1 = a1. Now we go through
three permutations which bring us from (b) → (c) → (d) → (e) in which

n∑

i=1

F (bi, bi+1) ≥
n∑

i=1

F (ci, ci+1) ≥
n∑

i=1

F (di, di+1) ≥
n∑

i=1

F (ei , ei+1) ,

and we make sure that the two first and two last numbers in (e) are e1 = a1, e2 =
an−1, en−1 = a2, en = an which are already the two first and the two last in the
rearrangements of the alternating order of type (2.1). We realize also that when we
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check (e2, e3, . . . , en−2, en−1) we already have that e2 and en−1 are the largest and
the smallest numbers respectively in (e2, e3, . . . , en−2, en−1).

Now we use the induction procedure: We assume the validity of Theorem 2.6
for the set of n − 2 numbers and show that this implies its validity for the set
of n numbers. More specifically, the n − 2 numbers if rearranged in alternating
order of (2.2) give, according to the induction hypothesis, the smallest value of∑n−2

i=2 F (ei, ei+1) and in the same time we get that (e1, . . . , en) is arranged in
alternating order too, this time according to (2.1) and therefore the proof by
induction for n numbers is obtained.

In Theorem 2.7 we introduce the symmetric functionF (u, v) = uϕ
(
v
u

)+vϕ
(
u
v

)

and show when it satisfies Theorem 2.6. Similarly, in Theorem 2.8 we introduce the
symmetric function F (u, v) = usvt +utvs and show when it satisfies Theorem 2.6.

We denote in the sequel (̃x) = (̃x1, x̃2, . . . , x̃n) and (̂x) = (̂x1, x̂2, . . . , x̂n)

to be the circular alternating order rearrangement and circular symmetrical order
rearrangement of a given set (x) = (x1, x2, . . . , xn) ∈ R

n.

Theorem 2.7 Assume ϕ is a concave differentiable function on R+ and

lim
x→0+

(xϕ′(x)− ϕ(x)) = 0.

Then the inequalities

n∑

i=1

(

x̃iϕ

(
x̃i+1

x̃i

)

+ x̃i+1ϕ

(
x̃i

x̃i+1

))

≤
n∑

i=1

(

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

))

≤
n∑

i=1

(

x̂iϕ

(
x̂i+1

x̂i

)

+ x̂i+1ϕ

(
x̂i

x̂i+1

))

(2.3)

hold where xi > 0, i = 1, 2, . . . , n and x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1.
Assume ϕ is a convex differentiable function on R+ and

lim
x→0+

(xϕ′(x)− ϕ(x)) = 0.

Then the reverse of inequalities (2.3) hold.

Proof Using Theorem 2.6 we define

F (u, v) = uϕ
(v

u

)
+ vϕ

(u

v

)
.
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Then, for u ≤ v,w

∂F (u, v)

∂v
= ϕ′

(v

u

)
+ ϕ

(u

v

)
− u

v
ϕ′
(u

v

)

≤ ϕ′
( v

w

)
+ ϕ

(w

v

)
− w

v
ϕ′
(w

v

)
= ∂F (w, v)

∂v
.

Indeed, ϕ is concave, that is, ϕ′ is decreasing, and

ϕ′
(v

u

)
≤ ϕ′

( v

w

)
.

Moreover,

ϕ
(u

v

)
− u

v
ϕ′
(u

v

)
≤ ϕ

(w

v

)
− w

v
ϕ′
(w

v

)

according to Lemma 1.7. Hence, according to Theorem 2.6 inequalities (2.3) hold.
Similarly, we get that the reversed (2.3) hold when ϕ is convex. 	


Theorem 2.6 above is used in Theorem 2.8 to prove an extension of Heinz type
inequalities.

Theorem 2.8 Let F(x, y) = xsyt + xtys .

(a) If x, y, s, t ∈ R+, then for (x) ∈ R
n+, the inequalities

n∑

i=1

(
x̃t
i x̃

s
i+1 + x̃t

i+1x̃
s
i

) ≤
n∑

i=1

(
xs
i x

t
i+1 + xt

i+1x
s
i

)

≤
n∑

i=1

(
x̂t
i x̂

s
i+1 + x̂t

i+1x̂
s
i

)
, (2.4)

hold, where x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1, and (̃x) is the circular
alternating order rearrangement of (x) and (̂x) is the circular symmetrical
order rearrangement of (x). In particular, (2.4) holds when t + s = 1 and
0 ≤ t ≤ 1.

(b) If s ≤ 0, t ≥ 0 and xi > 0, i = 1, 2, . . . , n, the reverse of (2.4) holds. In
particular, the reverse of (2.4) holds when t + s = 1 and t ≥ 1.

Proof We use Theorem 2.6, which guarantees that (2.4) holds for F(x, y) = xsyt+
xtys if

∂F (u, v)

∂v
≤ ∂F (w, v)

∂v
when u ≤ min (v,w) .
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Since

∂F (u, v)

∂v
= ∂

(
usvt + utvs

)

∂v
= tusvt−1 + sut vs−1,

we have to show that

tusvt−1 + sut vs−1 ≤ twsvt−1 + swtvs−1 when u ≤ min (v,w) .

This holds because

tvt−1 (us −ws
) ≤ 0 ≤ svs−1 (wt − ut

)
when u ≤ min (v,w) . (2.5)

This proves Case (a).
In the same way as Case (a) is proved for s, t > 0, we see that in Case (b) we get

the reverse of (2.5) and therefore we get the reverse of (2.4).
The proof is complete. 	


Remark 2.9 Inequalities (2.4) when 0 ≤ t ≤ 1 and t + s = 1, and the reverse of
inequalities (2.4) when t ≥ 1 and t + s = 1 follow also from Theorem 2.7 when the
function is ϕ(x) = xt , x > 0.

In Theorem 2.10 we combine the results obtained in Theorem 2.7 concerning
rearrangement with inequalities satisfied by concave functions, convex functions,
subquadratic functions and superquadratic functions to get new Jensen type inequal-
ities.

Theorem 2.10 Let xi > 0, i = 1, 2, . . . , n and let (̃x) and (̂x) be the circular
alternating order rearrangement and the circular symmetrical order rearrangement
respectively of (x) = (x1, x2, . . . , xn). Let x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1.
Then

(a) For a concave function ϕ : R+ → R the following inequalities hold:

n∑

i=1

(

x̃iϕ

(
x̃i+1

x̃i

)

+ x̃i+1ϕ

(
x̃i

x̃i+1

))

≤
n∑

i=1

(

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

))

≤
n∑

i=1

(

x̂iϕ

(
x̂i+1

x̂i

)

+ x̂i+1ϕ

(
x̂i

x̂i+1

))

≤ 2ϕ(1)
n∑

i=1

xi. (2.6)
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(b) For a convex and subquadratic function ϕ the inequalities

2ϕ(1)
n∑

i=1

x̃i +
n∑

i=1

x̃iϕ

(∣
∣
∣
∣
x̃i − x̃i+1

x̃i

∣
∣
∣
∣

)

+ x̃i+1ϕ

(∣
∣
∣
∣
x̃i − x̃i+1

x̃i+1

∣
∣
∣
∣

)

≥
n∑

i=1

x̃iϕ

(
x̃i+1

x̃i

)

+ x̃i+1ϕ

(
x̃i

x̃i+1

)

≥
n∑

i=1

x
i
ϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

)

≥
n∑

i=1

x̂iϕ

(
x̂i+1

x̂i

)

+ x̂i+1ϕ

(
x̂i

x̂i+1

)

≥ 2ϕ (1)
n∑

i=1

xi (2.7)

hold.
(c) For a superquadratic function ϕ the inequalities

n∑

i=1

(

x̃iϕ

(
x̃i+1

x̃i

)

+ x̃i+1ϕ

(
x̃i

x̃i+1

))

≥
n∑

i=1

(

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

))

≥
n∑

i=1

(

x̂iϕ

(
x̂i+1

x̂i

)

+ x̂i+1ϕ

(
x̂i

x̂i+1

))

≥
n∑

i=1

(

x̂iϕ

(∣
∣
∣
∣
x̂i − x̂i+1

x̂i

∣
∣
∣
∣

)

+ x̂i+1ϕ

(∣
∣
∣
∣
x̂i − x̂i+1

x̂i+1

∣
∣
∣
∣

))

+2ϕ(1)
n∑

i=1

x̂i (2.8)

hold.

Proof We start with the proof of Case (a). From the concavity of ϕ we get that

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

)

≤ ϕ(1) (xi + xi+1) , i = 1, . . . , n, xn+1 = x1.
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Therefore,

n∑

i=1

(

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

))

≤ 2ϕ(1)
n∑

i=1

xi.

Together with Theorem 2.7 we get inequalities (2.6).
Case (b): Inequality (1.5) says that for n = 2 when ϕ is subquadratic, the

inequality

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

)

≤ (xi + xi+1) ϕ (1)+ xiϕ

(∣
∣
∣
∣1 −

xi+1

xi

∣
∣
∣
∣

)

+ xi+1ϕ

(∣
∣
∣
∣1 −

xi

xi+1

∣
∣
∣
∣

)

holds. Therefore summing up, we get

2ϕ(1)
n∑

i=1

xi +
n∑

i=1

(

xiϕ

(∣
∣
∣
∣1 −

xi+1

xi

∣
∣
∣
∣

)

+ xi+1ϕ

(∣
∣
∣
∣1 −

xi

xi+1

∣
∣
∣
∣

))

≥
n∑

i=1

(

xiϕ

(
xi+1

xi

)

+ xi+1ϕ

(
xi

xi+1

))

,

and together with Theorem 2.7 we get that inequalities (2.7) hold.
Case (c) follows similarly from (1.4) and Theorem 2.7. The proof is complete.

	

Theorem 2.11 combines the results related to rearrangements proved in Theorem 2.7
with the concavity of xt , x ≥ 0, 0 < t ≤ 1, convexity and subquadracity properties
of xt , x ≥ 0, for 1 ≤ t ≤ 2 and its superquadracity properties for t ≥ 2, to get what
we call: “Extended Heinz type inequalities”.

Alternatively the results of Theorem 2.11 can also be obtained from Theorem 2.8
for 0 ≤ t < 1, s = 1 − t and for t ≥ 1 and s = 1 − t , combined with the concavity
of xt , x ≥ 0, 0 < t ≤ 1, convexity and subquadracity properties of xt , x ≥ 0, for
1 ≤ t ≤ 2 and its superquadracity properties for t ≥ 2, to get the “Extended Heinz
type inequalities”.

Theorem 2.11 Let (x) ∈ R
n+, (̃x) and (̂x) its circular alternating order rearrange-

ment and its circular symmetrical order rearrangement respectively, then when
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x̃n+1 = x̃1, xn+1 = x1, x̂n+1 = x̂1, we get three cases of Extended Heinz type
inequalities:

(a) For 0 ≤ t < 1, the inequalities

2
n∑

i=1

x̃
1
2
i x̃

1
2
i+1 ≤

n∑

i=1

(
x̃t
i x̃

1−t
i+1 + x̃t

i+1x̃
1−t
i

)

≤
n∑

i=1

(
xt
i x

1−t
i+1 + xt

i+1x
1−t
i

)

≤
n∑

i=1

(
x̂t
i x̂

1−t
i+1 + x̂t

i+1x̂
1−t
i

)

≤
n∑

i=1

2xi

hold.
(b) For 1 ≤ t ≤ 2 and xi > 0, i = 1, 2, . . . , n, the inequalities

2
n∑

i=1

x̃i +
n∑

i=1

(
x̃1−t
i + x̃1−t

i+1

)
(|̃xi − x̃i+1|)t ≥

n∑

i=1

(
x̃t
i x̃

1−t
i+1 + x̃t

i+1x̃
1−t
i

)

≥
n∑

i=1

(
x1−t
i xt

i+1 + xt
i+1x

1−t
i

)

≥
n∑

i=1

(
x̂t
i x̂

1−t
i+1 + x̂t

i+1x̂
1−t
i

)

≥ 2
n∑

i=1

xi

hold.
(c) For t ≥ 2 and xi > 0, i = 1, 2, . . . , n, the inequalities

n∑

i=1

(
x̃t
i x̃

1−t
i+1 + x̃t

i+1x̃
1−t
i

)
≥

n∑

i=1

(
x1−t
i xt

i+1 + xt
i+1x

1−t
i

)

≥
n∑

i=1

(
x̂t
i x̂

1−t
i+1 + x̂t

i+1x̂
1−t
i

)

≥ 2
n∑

i=1

x̂i +
n∑

i=1

(
x̂1−t
i + x̂1−t

i+1

)
(|̂xi − x̂i+1|)t

hold.



14 S. Abramovich

Proof From (2.6) in Theorem 2.10 for ϕ(x) = xt , 0 ≤ t ≤ 1 together with the left
hand-side inequality (1.1) we get that Case (a) holds.

From (2.7) in Theorem 2.10 for ϕ(x) = xt , 1 ≤ t ≤ 2 we get that Case (b) holds.
From (2.8) in Theorem 2.10 for ϕ(x) = xt , t ≥ 2 we get that Case (c) holds.
Alternatively we obtain the result of the theorem using Theorem 2.8 and the

concavity, convexity, subquadracity and superquadracity of xt , x > 0 in the relevant
intervals of t . The proof is complete. 	
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On Some Applications of Representable
and Continuous Functionals of Banach
Quasi *-Algebras

Maria Stella Adamo

Abstract This survey aims to highlight some of the consequences that repre-
sentable (and continuous) functionals have in the framework of Banach quasi
*-algebras. In particular, we look at the link between the notions of *-semisimplicity
and full representability in which representable functionals are involved. Then,
we emphasize their essential role in studying *-derivations and representability
properties for the tensor product of Hilbert quasi *-algebras, a special class of
Banach quasi *-algebras.
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Weak derivations on Banach quasi *-algebras · Tensor product of Hilbert quasi
*-algebras
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1 Introduction and Preliminaries

The investigation of (locally convex) quasi *-algebras was undertaken around the
beginning of the ’80s, in the last century, to give a solution to specific problems
concerning quantum statistical mechanics and quantum field theory, that required
instead a representation of observables as unbounded operators, see, e.g., [9, 28].
They were introduced by G. Lassner in the series of papers [21] and [22] in 1988.

A particular interest has been shown for the theory of *-representations of
quasi *-algebras in a specific family of unbounded densely defined and closable
operators. In this framework, a central role is played by representable functionals,
i.e., those functionals that admit a GNS-like construction. In the process of looking
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at structural properties of locally convex quasi *-algebras, *-semisimplicity and
full representability are the critical notions involved, making an extensive use of
representable (and continuous) functionals [4, 7, 15, 30].

The goal of this survey is to point out some of the various connections that
representable and continuous functionals for Banach quasi *-algebras have and
examine their applications, e.g., the study of unbounded *-derivations and tensor
products. The importance of investigating these themes stem from the study of
physical phenomena. Moreover, very little is known about unbounded *-derivations
and tensor products in the framework of unbounded operator algebras. The reader
is referred to as [16–18, 31–33].

Banach quasi *-algebras constitute a particular subclass of locally convex
*-algebras. In this context, the interesting question is to understand whether repre-
sentable functionals are continuous. The reasons to get to know about the continuity
of these functionals are several. Among them, the continuity is a crucial feature for
representable functionals, since it would reflect on the sesquilinear forms and the *-
representations associated with them through the GNS-like construction (see [30]).
Furthermore, no example of representable functional that is not continuous is known
in the literature.

A positive answer to this question has been given for the space L2(I, dλ), where
I = [0, 1] and λ is the Lebesgue measure, over continuous or essentially bounded
functions, and more in general, for commutative Hilbert quasi *-algebras under
certain conditions. In the case of Lp-spaces for p ≥ 1, we observe a discontinuous
behaviour in the quantity of representable and continuous functional when p ≥ 1
gets bigger. For p ≥ 2, the Lp-spaces turn out to be fully representable and *-
semisimple Banach quasi *-algebras and in this case these notions coincide (see
Sect. 2, [4, 7, 8, 10, 15]).

Hilbert quasi *-algebras constitute a class of *-semisimple and fully repre-
sentable quasi *-algebras. In this case, representable and continuous functionals
are in 1-1 correspondence with weakly positive and bounded elements. This result
allows us to get the representability for the tensor product of two representable
and continuous functionals in the framework of tensor product of Hilbert quasi *-
algebras (refer to [2, 3]).

*-Semisimplicity allows us to define a proper notion of *-derivation in the case of
Banach quasi *-algebras and prove a result characterizing infinitesimal generators
of one-parameter group of *-automorphisms in the Banach quasi *-algebras case,
extending results of Bratteli–Robinson for C*-algebras (see, e.g., [11]).

The survey is structured as follows. Firstly, we give some preliminaries about
(Banach) quasi *-algebras, representable (and continuous) functionals and the
GNS-construction. For these quasi *-algebras, in Sect. 2 we recall the notions
of *-semisimplicity and full representability, summing up the main results about
their link in the Banach case and the characterization we have for Hilbert quasi
*-algebras. In Sect. 3, we concentrate on the case of *-semisimple Banach quasi *-
algebras and deal with weak *-derivations and related results. In the last section, we
look at the construction of the tensor product Hilbert quasi *-algebra and look at the
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properties of tensor products of representable functionals and the sesquilinear forms
involved in the definition of *-semisimplicity.

For the reader’s convenience, we recall some preliminary notions for future use.
Further details can be found in [7].

Definition 1.1 A quasi *-algebra (A,A0) (or over A0) is a pair consisting of a
vector space A and a *-algebra A0 contained in A as a subspace and such that

(i) the left multiplication ax and the right multiplication xa of an element a ∈ A
and x ∈ A0 are always defined and bilinear;

(ii) (xa)y = x(ay) and a(xy) = (ax)y for each x, y ∈ A0 and a ∈ A;
(iii) an involution ∗, which extends the involution of A0, is defined in A with the

property (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ for all a ∈ A and x ∈ A0.

We say that a quasi *-algebra (A,A0) has a unit, if there is an element in A0,
denoted by 1, such that a1 = a = 1a for all a ∈ A. If a unit exists, then it is always
unique.

Definition 1.2 Let (A,A0) be a quasi *-algebra. A linear functional ω : A → C

satisfying

(L.1) ω(x∗x) ≥ 0 for all x ∈ A0;
(L.2) ω(y∗a∗x) = ω(x∗ay) for all x, y ∈ A0, a ∈ A;
(L.3) for all a ∈ A, there exists γa > 0 such that

|ω(a∗x)| ≤ γaω(x∗x)
1
2 , ∀x ∈ A0,

is called representable on the quasi *-algebra (A,A0).
The family of all representable functionals on the quasi *-algebra (A,A0) will be

denoted by R(A,A0).

This definition is justified by the following Theorem 1.4, proving the existence of
a GNS-like construction of a *-representation πω and a Hilbert space Hω for a
representable functional ω on A.

Let H be a Hilbert space and let D be a dense linear subspace of H. We denote
by L†(D,H) the following family of closable operators:

L†(D,H) = {
X : D → H : D(X) = D,D(X∗) ⊃ D

}
.

L†(D,H) is a C-vector space with the usual sum and scalar multiplication. If we
define the involution † and partial multiplication � as

X �→ X† ≡ X∗ �D and X�Y = X†∗Y,

then L†(D,H) is a partial *-algebra defined in [7].
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Definition 1.3 A *-representation of a quasi *-algebra (A,A0) is a *-homomor-
phism π : A → L†(Dπ ,Hπ), where Dπ is a dense subspace of the Hilbert space
Hπ , with the following properties:

(i) π(a∗) = π(a)† for all a ∈ A;
(ii) if a ∈ A and x ∈ A0, then π(a) is a left multiplier of π(x) and

π(a)�π(x) = π(ax).

A *-representation π is

• cyclic if π(A0)ξ is dense in Hπ for some ξ ∈ Dπ ;
• closed if π coincides with its closure π̃ defined in [30, Section 2].

If (A,A0) has a unit 1, then we suppose that π(1) = ID , the identity operator of D.

Theorem 1.4 ([30]) Let (A,A0) be a quasi *-algebra with unit 1 and let ω be a
linear functional on (A,A0) that satisfies the conditions (L.1)–(L.3) of Definition
1.2. Then, there exists a closed cyclic *-representation πω of (A,A0), with cyclic
vector ξω such that

ω(a) = 〈πω(a)ξω|ξω〉 , ∀a ∈ A.

This representation is unique up to unitary equivalence.

1.1 Normed Quasi *-Algebras

Definition 1.5 A quasi *-algebra (A,A0) is called a normed quasi *-algebra if a
norm ‖ · ‖ is defined on A with the properties

(i) ‖a∗‖ = ‖a‖, ∀a ∈ A;
(ii) A0 is dense in A;

(iii) for every x ∈ A0, the map Rx : a ∈ A→ ax ∈ A is continuous in A.

The continuity of the involution implies that

(iii’) for every x ∈ A0, the map Lx : a ∈ A → xa ∈ A is continuous in A.

Definition 1.6 If (A, ‖ ·‖) is a Banach space, we say that (A,A0) is a Banach quasi
*-algebra.

The norm topology of A will be denoted by τn.
An important class of Banach quasi *-algebras is given by Hilbert quasi *-

algebras.

Definition 1.7 Let A0 be a *-algebra which is also a pre-Hilbert space with respect
to the inner product 〈·|·〉 such that:
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(1) the map y �→ xy is continuous with respect to the norm defined by the inner
product;

(2) 〈xy|z〉 = 〈y|x∗z〉 for all x, y, z ∈ A0;
(3) 〈x|y〉 = 〈y∗|x∗〉 for all x, y ∈ A0;
(4) A2

0 is total in A0.

Such a *-algebra A0 is said to be a Hilbert algebra. If H denotes the Hilbert space
completion of A0 with respect to the inner product 〈·|·〉, then (H,A0) is called a
Hilbert quasi *-algebra.

2 Analogy Between *-Semisimplicity and Full
Representability

Representable functionals constitute a valid tool for investigating structural prop-
erties of Banach quasi *-algebras. Indeed, the notions of *-semisimplicity and full
representability are strongly related to these functionals. They turn out to be the
same notion when dealing with Banach quasi *-algebras that verify the condition
(P ). For further reading, see [4, 7, 8, 15, 30].

If ω ∈ R(A,A0), then we can associate with it the sesquilinear form ϕω defined
on A0 × A0 as

ϕω(x, y) := ω(y∗x), x, y ∈ A0. (2.1)

If (A[τn],A0) is a normed quasi *-algebra, we denote by Rc(A,A0) the subset
of R(A,A0) consisting of continuous functionals.

Let ω ∈ Rc(A,A0). Then ω is continuous on A, but ϕω is not necessarily
continuous on A0 × A0. ϕω is said to be closable if for every sequence of elements
{xn} in A0 such that

xn
τn−→ 0 and ϕω(xn − xm, xn − xm) → 0 as n →∞ (2.2)

then ϕω(xn, xn) → 0 as n →∞.
By the condition (2.2), the closure of ϕω, denoted by ϕω, is a well-defined

sesquilinear form on D(ϕω)×D(ϕω) as

ϕω(a, a) := lim
n→∞ ϕω(xn, xn),

where D(ϕω) is the following dense domain

D(ϕω) = {a ∈ A : ∃{xn} ⊂ A0 s.t. xn
τn−→ a and

ϕω(xn − xm, xn − xm) → 0}.
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For a locally convex quasi *-algebra (A,A0), ϕω always exists, [15]. Neverthe-
less, it is unclear whether D(ϕω) is the whole space A. We show in Proposition 2.1
below that D(ϕω) is A in the case of a Banach quasi *-algebra.

Proposition 2.1 ([4]) Let (A,A0) be a Banach quasi *-algebra with unit 1, ω ∈
Rc(A,A0) and ϕω the associated sesquilinear form on A0 × A0 defined as in (2.1).
Then D(ϕω) = A; hence ϕω is everywhere defined and bounded.

Set now

A+
0 :=

{
n∑

k=1

x∗k xk, xk ∈ A0, n ∈ N

}

.

Then A+
0 is a wedge in A0 and we call the elements of A+

0 positive elements of A0.

As in [15], we call positive elements ofA the elements ofA+
0

τn
. We set A+ := A+

0

τn
.

Definition 2.2 A linear functional on A is positive if ω(a) ≥ 0 for every a ∈ A+.
A family of positive linear functionals F on (A,A0) is called sufficient if for every
a ∈ A+, a �= 0, there exists ω ∈ F such that ω(a) > 0.

Definition 2.3 A normed quasi ∗-algebra (A,A0) is called fully representable if
Rc(A,A0) is sufficient and D(ϕω) = A for every ω in Rc(A,A0).

We denote by QA0(A) the family of all sesquilinear forms � : A × A → C such
that

(i) �(a, a) ≥ 0 for every a ∈ A;
(ii) �(ax, y) = �(x, a∗y) for every a ∈ A, x, y ∈ A0;

We denote by SA0(A) the subset ofQA0(A) consisting of all continuous sesquilinear
forms having the property that also

(iii) |�(a, b)| ≤ ‖a‖‖b‖, for all a, b ∈ A.

Definition 2.4 A normed quasi *-algebra (A,A0) is called *-semisimple if, for
every 0 �= a ∈ A, there exists � ∈ SA0(A) such that �(a, a) > 0.

Proposition 2.1 is useful to show the following result, clarifying the link between
*-semisimplicity and full representability. We need first to introduce the following
condition of positivity

a ∈ A and ω(x∗ax) ≥ 0 ∀ω ∈ Rc(A,A0) and x ∈ A0 ⇒ a ∈ A+. (P)

Theorem 2.5 ([4]) Let (A,A0) be a Banach quasi *-algebra with unit 1. The
following statements are equivalent.

(i) Rc(A,A0) is sufficient.
(ii) (A,A0) is fully representable.
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If the condition (P ) holds, (i) and (ii) are equivalent to the following

(iii) (A,A0) is *-semisimple.

The condition (P ) is not needed to show (iii) ⇒ (ii) of Theorem 2.5.
Theorem 2.5 shows the deep connection between full representability and *-

semisimplicity for a Banach quasi *-algebra. Under the condition of positivity (P ),
the families of sesquilinear forms involved in the definitions of full representability
and *-semisimplicity can be identified.

For a Hilbert quasi *-algebra (H,A0), representable and continuous functionals
are in 1-1 correspondence with a certain family of elements in H.

Definition 2.6 Let (H,A0) be a Hilbert quasi *-algebra. An element ξ ∈ H is
called

(i) weakly positive if the operatorLξ : A0 → H defined as Lξ (x) := ξx is positive.
(ii) bounded if the operator Lξ : A0 → H is bounded.

The set of all weakly positive (resp. bounded) elements will be denoted as H+
w (resp.

Hb ), see [4, 29].

Theorem 2.7 ([4]) Suppose that (H,A0) is a Hilbert quasi *-algebra. Then ω ∈
Rc(H,A0) if, and only if, there exists a unique weakly positive bounded element
η ∈ H such that

ω(ξ) = 〈ξ |η〉 , ∀ξ ∈ H.

2.1 Case of Lp(I, dλ) for p ≥ 1

Consider A0 to be L∞(I, dλ), where I is a compact interval of the real line and λ is
the Lebesgue measure. Let τn be the topology generated by the p-norm

‖f ‖p :=
(∫

I

|f |pdλ
) 1

p

, ∀f ∈ L∞(I, dλ),

for p ≥ 1. Then, the completion of L∞(I, dλ) with respect to the ‖ · ‖p-norm is
given by Lp(I, dλ).

We conclude that, for p ≥ 1, (Lp(I, dλ), L∞(I, dλ)) is a Banach quasi *-
algebra. The same conclusion holds if we consider the *-algebra of continuous
functions over I = [0, 1], denoted by C(I).

For p ≥ 2, (Lp(I, dλ), L∞(I, dλ)) and (Lp(I, dλ), C(I)) are fully repre-
sentable and *-semisimple Banach quasi *-algebras. For 1 ≤ p < 2, we have
Rc(L

p(I, dλ),A0) = {0} for both A0 = L∞(I, dλ) or A0 = C(I). Note that the
Banach quasi *-algebras (Lp(I, dλ), L∞(I, dλ)) and (Lp(I, dλ), C(I)) verify the
condition (P ) for all p ≥ 1.
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The absence of representable and continuous functionals that we observe passing
the threshold p = 2 and the lack in the literature of an example of representable
functional that is not continuous led us to pose the following question.

Question Is every representable functional on a Banach quasi *-algebra continu-
ous?

The answer to this question is positive in the case of the Hilbert quasi *-algebras
(L2(I, dλ), L∞(I, dλ)) and (L2(I, dλ), C(I)), see [4].

Theorem 2.8 ([4]) Let ω be a representable functional on the Hilbert quasi
*-algebra (L2(I, dλ), L∞(I, dλ)). Then there exists a unique bounded finitely
additive measure ν on I which vanish on subsets of I of zero λ-measure and a
unique bounded linear operator S : L2(I, dλ) → L2(I, dν) such that

ω(f ) =
∫

I

(Sf )dν, ∀f ∈ L2(I, dλ).

The operator S satisfies the following conditions:

S(f φ) = (Sf )φ = φ(Sf ) ∀f ∈ L2(I, dλ), φ ∈ L∞(I, dλ);
Sφ = φ, ∀φ ∈ L∞(I, dλ).

Thus, every representable functional ω on
(
L2(I, dλ), L∞(I, dλ)

)
is continuous.

Theorem 2.9 ([4]) Let ω be a representable functional on the Hilbert quasi *-
algebra (L2(I, dλ), C(I)). Then there exists a unique Borel measure μ on I and
a unique bounded linear operator T : L2(I, dλ) → L2(I, dμ) such that

ω(f ) =
∫

I

(Tf )dμ, ∀f ∈ L2(I, dλ).

The operator T satisfies the following conditions:

T (f φ) = (Tf )φ = φ(Tf ) ∀f ∈ L2(I, dλ), φ ∈ C(I);
T φ = φ, ∀φ ∈ C(I).

Thus, every representable functional ω on
(
L2(I, dλ), C(I)

)
is continuous. More-

over, μ is absolutely continuous with respect to λ.

The above theorems can be extended to the case of a commutative Hilbert quasi
*-algebra, under certain hypotheses.

Theorem 2.10 ([4]) Let (H,A0) be a commutative Hilbert quasi *-algebra with
unit 1. Assume that A0[‖ · ‖0] is a Banach *-algebra and that there exists an
element x of A0 such that the spectrum σ(Rx) of the bounded operator Rx of right
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multiplication by x consists only of its continuous part σc(Rx). If ω is representable
on (A,A0), then ω is bounded.

The main tools to get these results are the Riesz-Markov Representation Theorem
for continuous functions on a compact space and the intertwining theory on Hilbert
spaces (see [26]). Unfortunately, these tools turn out to be unsuitable to the case of
a (non-commutative) Hilbert quasi *-algebra or a Banach quasi *-algebra.

3 First Application: Derivations and Their Closability

*-Derivations have been widely employed to describe the dynamics for a quantum
phenomenon. For a quantum system of finite volume V , the Hamiltonian belongs
to the local C*-algebra and implements the inner *-derivation for the dynamics.
Nevertheless, the thermodynamical limit in general fails to exist, see [7].

Under some assumptions, the limit turns out to be a weak *-derivation generating
a one parameter group of weak *-automorphisms, defined for a *-semisimple
Banach quasi *-algebra, as we will investigate in the following section. For detailed
discussion, see [5, 6, 20].

The derivation δ : A0[‖ · ‖] → A[‖ · ‖] is densely defined. If δ is closable, then
its closure δ as a linear map is not a derivation in general.

• In this section, we only consider *-semisimple Banach quasi *-algebras, if not
otherwise specified.

For these Banach quasi *-algebras, define a weaker multiplication in A as in [29].

Definition 3.1 Let (A,A0) be a Banach quasi *-algebra. Let a, b ∈ A. We say that
the weak multiplication a�b is well-defined if there exists a (necessarily unique)
c ∈ A such that:

ϕ(bx, a∗y) = ϕ(cx, y), ∀ x, y ∈ A0, ∀ϕ ∈ SA0(A).

In this case, we put a�b := c.

Let a ∈ A. The space of right (resp. left) weak multipliers of a, i.e., the space of
all the elements b ∈ A such that a�b (resp. b�a) is well-defined, will be denoted as
Rw(a) (resp. Lw(a)). We indicate by Rw(A) (resp. Lw(A)) the space of universal
right (resp. left) multipliers of A, i.e., all the elements b ∈ A such that b ∈ Rw(a)

(resp. b ∈ Lw(a)) for every a ∈ A. Clearly, A0 ⊆ Rw(A) ∩ Lw(A).
Let (A,A0) be a Banach quasi *-algebra. For every a ∈ A, two linear operators

La and Ra are defined in the following way

La : A0 → A La(x) = ax ∀x ∈ A0 (3.1)

Ra : A0 → A Ra(x) = xa ∀x ∈ A0. (3.2)
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An element a ∈ A is called bounded if the operators La and Ra defined in (3.1)
and (3.2) are ‖ · ‖-continuous and thus extendible to the whole space A. As for
Hilbert quasi *-algebras in Definition 2.6, the set of all bounded elements will be
denoted by Ab .

Lemma 3.2 ([5, Lemma 2.16]) If (A,A0) is a *-semisimple Banach quasi *-algeb-
ra with unit1, the set Ab of bounded elements coincides with the set Rw(A)∩Lw(A).

Let θ : A → A be a linear bijection. We say that θ is a weak *-automorphism of
(A,A0) if

(i) θ(a∗) = θ(a)∗, for every a ∈ A;
(ii) θ(a)�θ(b) is well defined if, and only if, a�b is well defined and, in this case,

θ(a�b) = θ(a)�θ(b).

Definition 3.3 Let βt be a weak *-automorphism of A for every t ∈ R. If

(i) β0(a) = a, ∀a ∈ A
(ii) βt+s(a) = βt(βs(a)), ∀a ∈ A

then we say that βt is a one-parameter group of weak *-automorphisms of (A,A0).
If τ is a topology on A and the map t �→ βt(a) is τ -continuous, for every a ∈ A, we
say that βt is a τ -continuous weak *-automorphism group.

In this case

D(δτ ) =
{

a ∈ A : lim
t→0

βt(a)− a

t
exists in A[τ ]

}

and

δτ (a) = τ − lim
t→0

βt(a)− a

t
, a ∈ D(δτ ).

Then δτ is called the infinitesimal generator of the one-parameter group {βt } of
weak *-automorphisms of (A,A0).

Definition 3.4 ([5]) Let (A,A0) be a *-semisimple Banach quasi *-algebra and δ

a linear map of D(δ) into A, where D(δ) is a partial *-algebra with respect to the
weak multiplication �. We say that δ is a weak *-derivation of (A,A0) if

(i) A0 ⊂ D(δ)

(ii) δ(x∗) = δ(x)∗, ∀x ∈ A0

(iii) if a, b ∈ D(δ) and a�b is well defined, then a�b ∈ D(δ) and

ϕ(δ(a�b)x, y) = ϕ(bx, δ(a)∗y)+ ϕ(δ(b)x, a∗y),

for all ϕ ∈ SA0(A), for every x, y ∈ A0.
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Analogously to the case of a C*-algebra, to a uniformly bounded norm continu-
ous weak *-automorphisms group there corresponds a closed weak *-derivation that
generates the group (see [11]).

Theorem 3.5 ([5]) Let δ : D(δ) → A[‖ · ‖] be a weak *-derivation on a *-
semisimple Banach quasi *-algebra (A,A0). Suppose that δ is the infinitesimal
generator of a uniformly bounded, τn-continuous group of weak *-automorphisms
of (A,A0). Then δ is closed; its resolvent set ρ(δ) contains R \ {0} and

‖δ(a)− λa‖ ≥ |λ| ‖a‖, a ∈ D(δ), λ ∈ R.

Theorem 3.6 ([5]) Let δ : D(δ) ⊂ Ab → A[‖ · ‖] be a closed weak *-derivation on
a *-semisimple Banach quasi *-algebra (A,A0). Suppose that δ verifies the same
conditions on its spectrum of Theorem 3.5 and A0 is a core for every multiplication
operator L̂a for a ∈ A, i.e. L̂a = La . Then δ is the infinitesimal generator of a
uniformly bounded, τn-continuous group of weak *-automorphisms of (A,A0).

In Theorem 3.6, we assumed further conditions, for instance that the domain D(δ)

of the weak *-derivation is contained in Ab , which turns out to be satisfied in some
interesting situations such as the weak derivative in Lp-spaces.

Example 3.7 (Inner Weak *-Derivations for Unbounded Hamiltonian h) Let
(A,A0) be a *-semisimple Banach quasi *-algebra. Let h ∈ A be a self-adjoint
unbounded element, i.e., h = h∗ and σ(h) ⊂ R. We define the following derivation

δh : A0 → A, defined as δh(x) = i[h, x], x ∈ A0.

Then, for every fixed t ∈ R, βt(a) = eith�a�e−ith is a well-defined weak
*-automorphism of (A,A0) since eith, e−ith are bounded elements in A (see
[5]) and thus (eith�a)�e−ith = eith�(a�e−ith) for every a ∈ A. Moreover, βt

is a uniformly bounded norm continuous group of weak *-automorphisms. The
infinitesimal generator is given by

δh(a) := lim
t→0

βt (a)− a

t
= lim

t→0

eith�a�e−ith − a

t
= i[h�a − a�h],

when a is bounded.

In the following Proposition, the *-semisimplicity is automatically given by
assuming the existence of a representable and continuous functional with associated
faithful *-representation (see [1, 11]).

Proposition 3.8 ([1]) Let (A,A0) be a Banach quasi *-algebra with unit 1 and
let δ be a weak *-derivation of (A,A0) such that D(δ) = A0. Suppose that there
exists a representable and continuous functional ω with ω(δ(x)) = 0 for x ∈ A0

and let (Hω, πω, λω) be the GNS-construction associated with ω. Suppose that πω
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is a faithful *-representation of (A,A0). Then there exists an element H = H † of
L†(λω(A0)) such that

πω(δ(x)) = −i[H,πω(x)], ∀x ∈ A0

and δ is closable.

4 Second Application: Tensor Product of Hilbert Quasi
*-Algebras

In this section, we recall the construction of the tensor product Hilbert quasi
*-algebra of two given Hilbert quasi *-algebras (H1,A0) and (H2,B0), giving
some results about the relationship between the representability properties for the
tensor product and those for the factors. For further reading on the algebraic and
topological tensor product, see [12–14, 19, 23, 24], for the tensor product Hilbert
quasi *-algebras refer to [2, 3].

For convenience, we assume that (H1,A0) and (H2,B0) are unital Hilbert quasi
*-algebras.

The algebraic tensor product A0 ⊗ B0 is the tensor product *-algebra of A0

and B0, it is endowed with the canonical multiplication and involution and it is
considered as a subspace of the tensor product vector space H1 ⊗H2.

If H1 and H2 are endowed with the inner product 〈·|·〉1 and 〈·|·〉2 respectively,
then A0 ⊗ B0 satisfies the requirements of Definition 1.7 if we endow it with the
following well-defined inner product

〈
z|z′〉

h
:=

n∑

i=1

m∑

j=1

〈
xi |x ′j

〉

1

〈
yi |y ′j

〉

2
, ∀z, z′ ∈ A0 ⊗B0, (4.1)

where z = ∑n
i=1 xi ⊗ yi and z′ = ∑m

j=1 x
′
j ⊗ y ′j (see [24, 25, 27]). Then, the

completion of A0 ⊗B0 with respect to the norm ‖ · ‖h induced by the inner product
in (4.1) is a Hilbert quasi *-algebra. Since A0, B0 are respectively dense in H1, H2
and ‖ · ‖h is a cross-norm, i.e. ‖x ⊗ y‖h = ‖x‖1‖y‖2 for all x ⊗ y ∈ A0 ⊗B0, the
tensor product *-algebra A0 ⊗B0 is ‖ · ‖h-dense in H1 ⊗h H2. We conclude that

A0⊗̂hB0 ≡ H1⊗̂hH2

and (H1⊗̂hH2,A0 ⊗B0) is a Hilbert quasi *-algebra, see [2, 3].
For the tensor product Hilbert quasi *-algebra (H1⊗̂hH2,A0⊗B0) we can apply

all the known results for Banach quasi *-algebras about representability presented in
Sect. 2, see also [4, 5]. In particular, we know that (H1⊗̂hH2,A0⊗B0) is always a *-
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semisimple and fully representable Hilbert quasi *-algebra, applying Theorems 2.5
and 2.7.

Employing Theorem 2.7 and Lemma 4.1 in [2], we can give an alternative proof
for Theorem 4.1. The proof will be given below after the proof of Theorem 4.2.

Theorem 4.1 ([2]) Let (H1⊗̂hH2,A0 ⊗B0) be the tensor product Hilbert quasi *-
algebra of (H1,A0) and (H2,B0). Then, if ω1, ω2 are representable and continuous
functionals on H1 and H2 respectively, then ω1⊗ω2 extends to a representable and
continuous functional � on the tensor product Hilbert quasi *-algebra H1⊗̂hH2.

We now look at what happens to the sesquilinear forms in SA0(H1) and
SB0(H2).

Theorem 4.2 Let (H1⊗̂hH2,A0 ⊗ B0) be the tensor product Hilbert quasi *-
algebra of (H1,A0) and (H2,B0). Let φ1 ∈ SA0(H1) and φ2 ∈ SB0(H2). Then,

φ1⊗̂φ2 ∈ SA0⊗B0(H1⊗̂hH2), i.e., it satisfies the conditions (i), (ii) and (iii) after
the Definition 2.3.

Proof Let φ1 ∈ SA0(H1) and φ2 ∈ SB0(H2). These sesquilinear forms are
continuous, thus by the representation theorem for bounded sesquilinear forms
over a Hilbert space, there exist unique bounded operators T1 : H1 → H1 and
T2 : H2 → H2 such that

φ1(ξ, ξ
′) = 〈

ξ |T1ξ
′〉 and φ2(η, η

′) = 〈
η|T2η

′〉 ,

for all ξ, ξ ′ ∈ H1, η, η′ ∈ H2, and ‖Ti‖ = ‖φi‖ ≤ 1 for i = 1, 2. Moreover, T1 and
T2 are positive operators on H1 and H2 respectively.

On the pre-completion H1 ⊗h H2, define the tensor product of φ1 and φ2 as

φ1 ⊗ φ2(ζ, ζ
′) :=

n∑

i,j=1

φ1(ξi, ξ
′
j )φ2(ηi, η

′
j )

for all ζ =∑n
i=1 ξi ⊗ ηi , ζ ′ =∑n

j=1 ξ
′
j ⊗ η′j in H1 ⊗h H2.

By [19], it is known that T1 ⊗ T2 extends to a bounded operator T1⊗̂T2 on the
completion H1⊗̂hH2 such that ‖T1⊗̂T2‖ ≤ ‖T1‖‖T2‖ ≤ 1.

We show that φ1 ⊗ φ2 is represented by T1 ⊗ T2 on H1 ⊗h H2. Thus, φ1 ⊗ φ2

is continuous and can be extended to H1⊗̂hH2. Its extension will be denoted by
φ1⊗̂φ2 and it corresponds to the bounded operator T1⊗̂T2. Indeed, by the definition
of φ1 ⊗ φ2, we have

φ1 ⊗ φ2(ζ, ζ
′) =

n∑

i,j=1

φ1(ξi , ξ
′
j )φ2(ηi , η

′
j )

=
n∑

i,j=1

〈
ξi |T1ξ

′
j

〉 〈
ηi, T2η

′
j

〉

= 〈
ζ |(T1 ⊗ T2)ζ

′〉 .
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To conclude the proof, we show that φ1⊗̂φ2 is in SA0⊗B0(H1⊗̂hH2). Indeed,
φ1⊗̂φ2 is a positive sesquilinear form, since T1⊗̂T2 is a positive operator as a tensor
product of positive operators on a Hilbert space. Thus, the condition (i) is verified.

The condition (ii) can be easily verified using the corresponding properties of φ1
and φ2. For (iii), we know that

‖φ1⊗̂φ2‖ = ‖T1⊗̂T2‖ ≤ ‖T1‖‖T2‖ ≤ 1.

Hence, all the conditions for φ1⊗̂φ2 to belong to SA0⊗B0(H1⊗̂hH2) are verified.
	


Using the same argument as in Theorem 2.5 (refer to [4] for a complete proof), the
sesquilinear form ϕω associated with a representable and continuous functional ω
in a Hilbert quasi *-algebra (H,A0) with unit 1 is bounded and in QA0(H). Hence,
it is represented by a bounded operator Sω such that

ω(ξ) = ϕω(ξ,1) = 〈ξ |Sω1〉 , ξ ∈ H.

We want to show that Sω1 is a weakly positive and bounded element. Indeed, for all
x ∈ A0, we have

〈
x|RSω1x

〉 = 〈x|x(Sω1)〉 =
〈
x∗x|Sω1

〉 = ω(x∗x) ≥ 0,

thus Sω1 is weakly positive. Moreover, Sω1 is bounded by the condition (L.3) of
representability in Definition 1.2. Indeed, (L.3) means that for every ξ ∈ H, there
exists γξ > 0 such that

∣
∣ω(ξ∗x)

∣
∣ ≤ γξω(x∗x)

1
2 ,

for all x ∈ A0. By Proposition 2.1, ϕω is everywhere defined and bounded, hence

∣
∣ω(ξ∗x)

∣
∣ = ∣

∣ϕω(x, ξ)
∣
∣ ≤ cξ‖x‖,

for some positive constant cξ . Hence, by the Riesz representation theorem, there
exists χξ ∈ H such that ω(ξ∗x) = 〈

x|χξ

〉
for all x ∈ A0. Therefore, the weak

product (in the sense of [4, Definition 4.4]) ξ�Sω1 is well-defined for all ξ ∈ H.
Indeed, for x, y ∈ A0, we have

〈
ξ∗x|Sω1y

〉 = 〈
ξ∗xy∗|Sω1

〉 = 〈
xy∗|χξ

〉 = 〈
x|χξy

〉
.

A similar argument shows that Sω1�ξ is well-defined for all ξ ∈ H. Recall that an
element ξ ∈ H is bounded if, and only if, Rw(ξ) = Lw(ξ) = H, where Rw(ξ)

(resp. Lw(ξ)) is the space of universal right (resp. left) weak multipliers of ξ (see
[4, Proposition 4.10]). Then, Sω1 is a bounded element.
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By Theorem 2.7, we have that Sω1 is the weakly positive and bounded element
in H corresponding to the representable and continuous functional ω.

For what we just argued, we can give an alternative proof of Theorem 4.1.
The proof tells us explicitly what the elements in H1⊗̂hH2 are corresponding to
representable and continuous functionals of the form ω1⊗̂ω2 for ω1 ∈ Rc(H1,A0),
ω2 ∈ Rc(H2,B0).

Proof of Theorem 4.1 Let ω1, ω2 be representable and continuous functionals on
H1, H2 respectively. Then, for what we discussed above, ω1(ξ) =

〈
ξ |Sω11H1

〉
for

all ξ ∈ H1 and ω2(η) =
〈
η|Sω21H2

〉
for η ∈ H2.

Looking at their tensor product on H1 ⊗h H2, we have

ω1 ⊗ ω(ζ ) =
n∑

i=1

〈
ξi ⊗ ηi |Sω11H1 ⊗ Sω21H2

〉
,

for every ζ =∑n
i=1 ξi ⊗ ηi in H1 ⊗h H2.

Since ϕω1
and ϕω2

are in QA0(H1) and QB0(H2) respectively, with the
same argument of Theorem 4.2, ϕω1

⊗̂ϕω2
is continuous and belongs to

QA0⊗B0(H1⊗̂hH2). Furthermore, it is represented by Sω1⊗̂Sω2 . Hence

Sω1 ⊗ Sω2(1H1 ⊗ 1H2) = Sω11H1 ⊗ Sω21H2

is weakly bounded and positive. Hence, by Theorem 2.7, ω1 ⊗ ω2 is representable
and continuous. Furthermore, the continuous extension of ω1 ⊗ω2 is representable.
Indeed, let us denote this extension as �, then

�(ψ) = lim
n→+∞ω1 ⊗ ω2 (zn)

= lim
n→+∞

〈
zn|Sω1 ⊗ Sω2(1H1 ⊗ 1H2)

〉

= 〈
ψ|Sω1 ⊗ Sω2(1H1 ⊗ 1H2)

〉
,

where {zn} is a sequence of elements in A0 ⊗B0 ‖ · ‖h-converging to ψ ∈ H1⊗̂H2.
	


It would be of interest to look at the same questions in the more general
framework of Banach quasi *-algebras. This is work in progress with Maria
Fragouloupoulou. In this case, we need further assumptions on the considered cross-
norm to get some of the properties that we showed in this work, see [3].

Acknowledgments The author is grateful to the organizers of the International Workshop on
Operator Theory and its Applications 2019, especially to the Organizers of the section entitled
“Linear Operators and Function Spaces”, for this interesting and delightful conference and the
Instituto Superior Técnico of Lisbon for its hospitality. The author was financially supported by
the ERC Advanced Grant no. 669240 QUEST “Quantum Algebraic Structures and Models”.



30 M. S. Adamo

The author wishes to thank the anonymous referees for their useful suggestions that improved
the presentation of this manuscript.

References

1. M.S. Adamo, The interplay between representable functionals and derivations on Banach
quasi *-algebras, in Proceedings of the International Conference on Topological Algebras and
Their Applications – ICTAA 2018, ed. by M. Abel. Mathematics Studies (Tartu), 7 (Estonian
Mathematical Society, Tartu, 2018), pp. 48–59

2. M.S. Adamo, About tensor product of Hilbert quasi *-algebras and their representability,
(accepted for publication in the Proceedings of OT27, Theta 2020)

3. M.S. Adamo, M. Fragoulopoulou, Tensor products of normed and Banach quasi *-algebras. J.
Math. Anal. Appl. 490, 2 (2020)

4. M.S. Adamo, C. Trapani, Representable and continuous functionals on a Banach quasi ∗-
algebra. Mediterr. J. Math. 14, 157 (2017)

5. M.S. Adamo, C. Trapani, Unbounded derivations and *-automorphisms groups of Banach
quasi *-algebras. Ann. Mat. Pura Appl. (4) 198, 1711–1729 (2019)

6. J.-P. Antoine, A. Inoue, C. Trapani, O*-dynamical systems and *-derivations of unbounded
operator algebras. Math. Nachr. 204, 5–28 (1999)

7. J.-P. Antoine, A. Inoue, C. Trapani, Partial *-Algebras and Their Operator Realizations
(Kluwer Academic, Dordrecht, 2003)

8. F. Bagarello, C. Trapani, CQ∗-algebras: structure properties. Publ. RIMS Kyoto Univ. 32, 85–
116 (1996)

9. F. Bagarello, C. Trapani, The Heisenberg dynamics of spin systems: a quasi *-algebra
approach. J. Math. Phys. 37, 4219–4234 (1996)

10. F. Bagarello, C. Trapani, Lp-spaces as quasi *-algebras. J. Math. Anal. Appl. 197, 810–824
(1996)

11. O. Bratteli, D.W. Robinson, Unbounded derivations of C*-algebras. Commun. Math. Phys. 42,
253–268 (1975)

12. L. Chambadal, J.L. Ovaert, Algèbre Linéaire et Algèbre Tensorielle (Dunod Université, Paris,
1968)

13. A. Defant, K. Floret, Tensor Norms and Operator Ideals (North-Holland, Amsterdam, 1993)
14. M. Fragoulopoulou, Topological Algebras with Involution (North-Holland, Amsterdam, 2005)
15. M. Fragoulopoulou, C. Trapani, S. Triolo, Locally convex quasi *-algebras with sufficiently

many *-representations. J. Math. Anal. Appl. 388, 1180–1193 (2012)
16. M. Fragoulopoulou, A. Inoue, M. Weigt, Tensor products of generalized B∗-algebras. J. Math.

Anal. Appl. 420, 1787–1802 (2014)
17. M. Fragoulopoulou, A. Inoue, M. Weigt, Tensor products of unbounded operator algebras.

Rocky Mt. 44, 895–912 (2014)
18. W.-D. Heinrichs, Topological tensor products of unbounded operator algebras on Frèchet

domains. Publ. RIMS Kyoto Univ. 33, 241–255 (1997)
19. A.Ya. Helemskii, Lectures and Exercises on Functional Analysis (American Mathematical

Society, Providence, 2006)
20. E. Hille, R. Phillips, Functional Analysis and Semi-groups (American Mathematical Society,

Providence, 1996)
21. G. Lassner, Topological algebras and their applications in quantum statistics. Wiss. Z. KMU-

Leipzig, Math. Naturwiss. R. 30, 572–595 (1981)
22. G. Lassner, Algebras of unbounded operators and quantum dynamics. Physica A 124, 471–480

(1984)
23. K.B. Laursen, Tensor products of Banach algebras with involution. Trans. Am. Math. Soc. 136,

467–487 (1969)



On Some Applications of Representable and Continuous Functionals 31

24. A. Mallios, Topological Algebras. Selected Topics (North-Holland, Amsterdam, 1986)
25. G.J. Murphy, C*-Algebras and Operator Theory (Academic, Boston, 2014)
26. A.M. Sinclair, Automatic Continuity of Linear Operators. London Mathematical Society,

Lecture Notes Series 21 (Cambridge University Press, Cambridge, 1976)
27. M. Takesaki, Theory of Operator Algebras I (Springer, New York, 1979)
28. C. Trapani, Quasi *-algebras of operators and their applications. Rev. Math. Phys. 7, 1303–

1332 (1995)
29. C. Trapani, Bounded elements and spectrum in Banach quasi *-algebras. Stud. Math. 172,

249–273 (2006)
30. C. Trapani, *-Representations, seminorms and structure properties of normed quasi *-algebras.

Stud. Math. 186, 47–75 (2008)
31. M. Weigt, Derivations of τ -measurable operators. Oper. Theory Adv. Appl. 195, 273–286

(2009)
32. M. Weigt, I. Zarakas, Unbounded derivations of GB*-algebras. Oper. Theory Adv. Appl. 247,

69–82 (2015)
33. M. Weigt, I. Zarakas, Derivations of Fréchet nuclear GB*-algebras. Bull. Aust. Math. Soc. 92,

290–301 (2015)



Minimality Properties of Sturm-Liouville
Problems with Increasing Affine
Boundary Conditions

Yagub N. Aliyev

Abstract We consider Sturm-Liouville problems with a boundary condition lin-
early dependent on the eigenparameter. We concentrate the study on the cases where
non-real or non-simple (multiple) eigenvalues are possible. We prove that the system
of root (i.e. eigen and associated) functions of the corresponding operator, with an
arbitrary function removed, form a minimal system in L2(0, 1), except some cases
where this system is neither complete nor minimal. The method used is based on
the determination of the explicit form of the biorthogonal system. These minimality
results can be extended to basis properties in L2(0, 1).

Keywords Sturm-Liouville · Eigenparameter-dependent boundary conditions ·
Minimal system · Root functions

Mathematics Subject Classification (2010) Primary 34B24; Secondary 34L10

1 Introduction

Consider the following spectral problem

− y ′′ + q(x)y = λy, 0 < x < 1, (1.1)

y(0) cosβ = y ′(0) sinβ, 0 ≤ β < π, (1.2)

y(1) = (cλ+ d)y ′(1), (1.3)
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where c, d are real constants and c > 0, λ is the spectral parameter, q(x) is a real
valued and continuous function over the interval [0, 1].

The present article is about the minimality properties in L2(0, 1) of the system
of root functions of the boundary value problem (1.1)–(1.3).

It was proved in [2] (see also [3]) that the eigenvalues of the boundary value
problem (1.1)–(1.3) form an infinite sequence accumulating only at +∞ and only
the following cases are possible:

(a) all the eigenvalues are real and simple;
(b) all the eigenvalues are real and all, except one double, are simple;
(c) all the eigenvalues are real and all, except one triple, are simple;
(d) all the eigenvalues are simple and all, except a conjugate pair of non-real, are

real.

Let {vn}∞n=0 be a sequence of elements from L2(0, 1) and Vk the closure (in the
norm of L2(0, 1)) of the linear span of {vn}∞n=0, n�=k . The system {vn}∞n=0 is called
minimal in L2(0, 1) if vk /∈ Vk for all k = 0, 1, 2, . . ..

The eigenvalues λn (n ≥ 0) will be considered to be listed according to non-
decreasing real part and repeated according to algebraic multiplicity. Asymptotics of
eigenvalues and oscillation of eigenfunctions of the boundary value problem (1.1)–
(1.3), with linear function in the boundary condition, replaced by general rational
function, were studied in paper [3]. The case c < 0 in our problem does not involve
any non-real or non-simple eigenvalues and can be found as a special case in papers
[5, 6].

The main objective of the present paper is to show that the set of root functions
with an arbitrary function removed form a minimal system in L2(0, 1), except some
cases where this system is neither complete nor minimal. In more general form this
result was obtained in [8, 9]. The main advantage of the current method is that it does
not use any heavy machinery or extensions into more general operators defined over
L2 ⊕C. Also the special associated functions y∗k+1, y

#
k+1, y

#
k+2, which are called in

the paper as auxiliary associated functions and used to describe the necessary and
sufficient conditions for minimality in a nice way, are very helpful when a concrete
boundary value problem is studied. One such worked out example is given at the
end of the current paper. The mere number of possibilities that arise in the simple
case of linear dependence shows how different the minimality properties are from
corresponding properties in the cases of boundary conditions free of any eigenvalue
parameters. These minimality results can be used to prove basis properties of the
root functions in L2(0, 1).

2 Inner Products and Norms of Eigenfunctions

The proofs in this and subsequent sections are similar to the corresponding results
in [1] so we will skip some of them. Let y(x, λ) be a non-zero solution of (1.1),
satisfying initial conditions y(0) = sinβ and y ′(0) = sinβ. Then we can write the
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characteristic equation as

�(λ) = y(1, λ)− (cλ+ d)y ′(1, λ). (2.1)

By (1.3), λn is an eigenvalue of (1.1)–(1.3) if �(λn) = 0. It is a simple
eigenvalue if �(λn) = 0 �= � ′(λn). Similarly, λk is a double eigenvalue if

�(λk) = � ′(λk) = 0 �= � ′′(λk),

and a triple eigenvalue if

�(λk) = � ′(λk) = � ′′(λk) = 0 �= � ′′′(λk).

We also note that y(x, λ) → y(x, λn), uniformly, for x ∈ [0, 1], as λ → λn, and
the function yn(x) = y(x, λn) is an eigenfunction of (1.1)–(1.3) corresponding to
eigenvalue λn.

By (1.1)–(1.3) we have,

−y ′′n + q(x)yn = λnyn, y ′n(0) sinβ = yn(0) cosβ, yn(1) = (cλn + d)y ′n(1).

We denote by (·, ·) the inner product in L2(0, 1).

Lemma 2.1 Let yn, ym be eigenfunctions corresponding to eigenvalues λn, λm
(λn �= λm). Then

(yn, ym) = cy ′n(1)y ′m(1). (2.2)

Proof To begin we note that

d

dx
(y(x, λ)y ′(x, μ)− y ′(x, λ)y(x, μ)) = (λ− μ)y(x, λ)y(x, μ).

By integrating this identity from 0 to 1, we obtain

(λ− μ)(y(·, λ), y(·, μ)) = (y(x, λ)y ′(x, μ)− y ′(x, λ)y(x, μ))

∣
∣
∣
1

0
. (2.3)

From (1.2), we obtain

y(0, λ)y ′(0, μ)− y ′(0, λ)y(0, μ) = 0. (2.4)

By (2.1),

y(1, λ)y ′(1, μ)− y ′(1, λ)y(1, μ)

= c(λ− μ)y ′(1, λ)y ′(1, μ)− y ′(1, λ)�(μ)+ y ′(1, μ)�(λ). (2.5)
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From (2.3)–(2.5), it follows that for λ �= μ,

(y(·, λ), y(·, μ)) = cy ′(1, λ)y ′(1, μ)− y ′(1, λ)�(μ)

λ− μ
+ y ′(1, μ)

�(λ)

λ− μ
. (2.6)

Note the fact that �(λn) = �(λm) = 0. The required equality (2.2) is now obvious
if we substitute the parameters λ,μ by λn, λm, respectively. 	

Remark 2.2 Since λn, λm are the eigenvalues of (1.1)–(1.3), it is also possible to
prove (2.2) by letting λ → λn (μ �= λn) and then letting μ → λm in (2.6). It is also
possible to substitute the parameters λ,μ, respectively by λn, λm at the beginning of
the proof, in (2.3). Then the proof would be much simpler. But we chose the present
proof because we will need (2.6) in the subsequent arguments.

In the remaining part of this section we will collect some simple facts about the
inner products and norms of the eigenfunctions.

Lemma 2.3 If λn is a real eigenvalue then

‖yn‖2
2 = (yn, yn) = cy ′n(1)

2 + y ′n(1)� ′(λn). (2.7)

Corollary 2.4 If λk is a multiple eigenvalue then

‖yk‖2
2 = (yk, yk) = cy ′k(1)

2
. (2.8)

An immediate corollary of (2.2) is the following.

Corollary 2.5 If λr is a non-real eigenvalue then

‖yr‖2
2 = c|y ′r (1)|2. (2.9)

For the eigenfunction yn define

Bn = ‖yn‖2
2 − c|y ′n(1)|2. (2.10)

The following corollary of (2.7)–(2.9) will be needed (cf. [2, Theorem 4.3]).

Corollary 2.6 Bn �= 0 if and only if the corresponding eigenvalue λn is real and
simple.

If λk is a multiple (double or triple) eigenvalue (λk = λk+1) then Bk =
y ′k(1)ω′(λk) = 0 and Bk+1 is not defined, so we set Bk+1 = y ′k(1)ω′′(λk)/2. If
λk is a triple eigenvalue (λk = λk+1 = λk+2) then Bk+1 = 0 and Bk+2 is not
defined, so we set Bk+2 = y ′k(1)ω′′′(λk)/6.

We conclude this section with the following.
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Lemma 2.7 If λr and λs = λr are a conjugate pair of non-real eigenvalues then

(yr, ys) = cy ′r (1)
2 + y ′r (1)� ′(λr ). (2.11)

Since in the following text � ′(λr ) will appear in denominators of some of the
fractions, it is useful to note here that all non-real eigenvalues of (1.1)–(1.3) are
simple and therefore � ′(λr ) �= 0 in (2.11).

3 Inner Products and Norms of Associated Functions

In the previous section we collected some simple facts about the inner products and
norms of the eigenfunctions. But in the case of multiple eigenvalues there are also
some associated functions. In this section we will find formulae for inner products
and norms involving associated functions. These cases appear only for the real
eigenvalues so, throughout these sections we assume that all the eigenvalues and
eigenfunctions are real. In particular, we will not write complex conjugate sign that
appeared in the previous formulae.

If λk is a multiple eigenvalue (λk = λk+1) then for a first order associated
function yk+1 corresponding to the eigenfunction yk , following relations hold true
[7, p. 28]:

−y ′′k+1 + q(x)yk+1 = λkyk+1 + yk,

yk+1(0) cosβ = y ′k+1(0) sinβ,

yk+1(1) = (cλk + d)y ′k+1(1)+ cy ′k(1).

If λk is a triple eigenvalue (λk = λk+1 = λk+2) then together with the first order
associated function yk+1 there exists a second order associated function yk+2 for
which

−y ′′k+2 + q(x)yk+2 = λkyk+2 + yk+1,

yk+2(0) cosβ = y ′k+2(0) sinβ,

yk+2(1) = (cλk + d)y ′k+2(1)+ cy ′k+1(1).

The following well known properties of the associated functions play an
important role in our investigation. The functions yk+1+Cyk and yk+2+Dyk, where
C and D are arbitrary constants, are also associated functions of the first and second
order, respectively. Next, we observe that if we replace the associated function yk+1
by yk+1 + Cyk , then the associated function yk+2 changes to yk+2 + Cyk+1.



38 Y. N. Aliyev

By differentiating (1.1), (1.2) and (2.1) with respect to λ we obtain

−y ′′λ(x, λ)+ q(x)yλ(x, λ) = λyλ(x, λ)+ y(x, λ),

yλ(0, λ) cosβ = y ′λ(0, λ) sinβ,

� ′(λ) = yλ(1, λ)− (cλ+ d)y ′λ(1, λ)− cy ′(1, λ),

where the subscript denotes differentiation with respect to λ.
Let λk be a multiple (double or triple) eigenvalue of (1.1)–(1.3). Since �(λk) =

� ′(λk) = 0, it follows that y(x, λ)→ yk, yλ(x, λ) → ỹk+1, uniformly with respect
to x ∈ [0, 1], as λ → λk , where ỹk+1 is one of the associated functions of the first
order, and it is obvious that ỹk+1 = yk+1 + C̃yk , for a certain constant C̃. Note that
C̃ = (ỹ ′k+1(1)− y ′k+1(1))/y

′
k(1).

Similarly, if we differentiate (1.1), (1.2) and (2.1) with respect to λ again we
obtain

−y ′′λλ(x, λ)+ q(x)yλλ(x, λ) = λyλλ(x, λ)+ 2yλ(x, λ),

yλλ(0, λ) cosβ = y ′λλ(0, λ) sin β,

� ′′(λ) = y ′λλ(1, λ)− (cλ+ d)y ′λλ(1, λ)− 2cy ′λ(1, λ).

We note again that if λk is a triple eigenvalue of (1.1)–(1.3) then � ′′(λk) = 0,
hence yλλ → 2ỹk+2, uniformly with respect to x ∈ [0, 1], as λ → λk , where
ỹk+2 is one of the associated functions of the second order corresponding to the first
associated function ỹk+1, and it is obvious that ỹk+2 = yk+2 + C̃yk+1 + D̃yk , for a
certain constant D̃. Note that D̃ = (ỹ ′k+2(1)− y ′k+2(1)− C̃y ′k+1(1))/y

′
k(1).

Lemma 3.1 If λk is a multiple eigenvalue and λn �= λk then

(yk+1, yn) = cy ′k+1(1)y
′
n(1). (3.1)

Proof Differentiating (2.6) with respect to λ we obtain

(yλ(·, λ), y(·, μ)) =cy ′λ(1, λ)y ′(1, μ)− y ′λ(1, λ)
�(μ)

λ− μ
+ y ′(1, λ) �(μ)

(λ− μ)2

+ y ′(1, μ)
� ′(λ)
λ− μ

− y ′(1, μ)
�(λ)

(λ− μ)2 . (3.2)

Letting μ → λn (λ �= λn) and then λ → λk in (3.2) we obtain that (3.1) is true
(cf. [1]). We used the fact that the differentiation and the subsequent passage to
the limit within the integrals are meaningful because all the involved functions are
continuous with respect to both x and λ [4, Ch. 3, §4, Theorems 1, 2]. 	
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The same result can be achieved if we started with the identity

d

dx

(
yk+1y

′
n − y ′k+1yn

) = (λk − λn)yk+1yn + ykyn,

which can be easily derived using the definition of yk+1. By integrating this equality
from 0 to 1 we will obtain

(λk − λn)(yk+1, yn)+ (yk, yn) =
(
yk+1y

′
n − y ′k+1yn

)∣
∣1
0.

By using the boundary conditions for yk+1 and yn, and the fact that (yk, yn) =
cy ′k(1)y ′n(1) we obtain (3.1) again.

Lemma 3.2 If λk is a multiple eigenvalue then

(yk+1, yk) = cy ′k+1(1)y
′
k(1)+ y ′k(1)

� ′′(λk)
2

. (3.3)

Let us apply the procedure mentioned in the comments following the proof of (3.1)
to the functions yk+1 and yk. By integrating the identity

d

dx

(
yk+1y

′
k − y ′k+1yk

) = y2
k ,

from 0 to 1, we will obtain

‖yk‖2
2 =

(
yk+1y

′
k − y ′k+1yk

)∣
∣1
0.

By using the boundary conditions for yk+1 and yk in the last equality we obtain (2.8)
again.

Lemma 3.3 If λk is a multiple eigenvalue then

‖yk+1‖2
2 = cy ′k+1(1)

2 + ŷ ′k+1(1)
� ′′(λk)

2
+ y ′k(1)

� ′′′(λk)
6

. (3.4)

where ŷk+1 = yk+1 − C̃yk.

Proof Differentiating (3.2) with respect to μ we obtain

(yλ(·, λ), yμ(·, μ)) = cy ′λ(1, λ)y ′μ(1, μ)− y ′λ(1, λ)
� ′(μ)

λ− μ
− y ′λ(1, λ)

�(μ)

(λ− μ)2

+ y ′(1, λ) � ′(μ)

(λ− μ)2 + y ′(1, λ) 2�(μ)

(λ− μ)3 + y ′μ(1, μ)
� ′(λ)
λ− μ

+ y ′(1, μ)
� ′(λ)

(λ− μ)2 − y ′μ(1, μ)
�(λ)

(λ− μ)2 − y ′(1, μ)
2�(λ)

(λ− μ)3 .

Letting μ → λk (λ �= λk) (cf. [1]) and then λ → λk we obtain (3.4). 	
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Lemma 3.4 If λk is a triple eigenvalue and λn �= λk then

(yk+2, yn) = cy ′k+2(1)y
′
n(1). (3.5)

Proof Differentiating (3.2) with respect to λ, letting λ → λk (μ �= λk) we obtain

(ỹk+2, y(·, μ)) =cỹ ′k+2(1)y
′(1, μ)− ỹ ′k+2(1)

�(μ)

λk − μ

+ ỹ ′k+1(1)
�(μ)

(λk − μ)2
− y ′k(1)

�(μ)

(λk − μ)3
,

from which (3.5) easily follows (cf. [1]). 	

Again, the same result can be achieved if we started with the identity

d

dx

(
yk+2y

′
n − y ′k+2yn

) = (λk − λn)yk+2yn + yk+1yn,

which can be again easily derived using the definition of yk+2. By integrating this
equality from 0 to 1 we will obtain

(λk − λn)(yk+2, yn)+ (yk+1, yn) =
(
yk+2y

′
n − y ′k+2yn

)∣
∣1
0.

By using the boundary conditions for yk+2 and yn, and (3.1) we obtain a new proof
for (3.5).

Lemma 3.5 If λk is a triple eigenvalue then

(yk+2, yk) = cy ′k+2(1)y
′
k(1)+ y ′k(1)

� ′′′(λk)
6

. (3.6)

Again, by applying the above mentioned procedure to the functions yk+2 and yk
we obtain

d

dx

(
yk+2y

′
k − y ′k+2yk

) = yk+1yk.

By integrating this equality from 0 to 1 we will obtain

(yk+1, yk) =
(
yk+2y

′
k − y ′k+2yk

)∣
∣1
0.

By using the boundary conditions for yk+2 and yk, we obtain

(yk+1, yk) = cy ′k+1(1)y
′
k(1),
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which is in perfect agreement with (3.3), because in triple eigenvalue case
� ′′(λk) = 0.

Lemma 3.6 If λk is a triple eigenvalue then

(yk+2, yk+1) = cy ′k+2(1)y
′
k+1(1)+ ŷ ′k+1(1)

� ′′′(λk)
6

+ y ′k(1)
�IV (λk)

24
.

By applying the above mentioned procedure one more time but now to the functions
yk+2 and yk+1 we obtain

d

dx

(
yk+2y

′
k+1 − y ′k+2yk+1

) = y2
k+1 − yk+2yk.

Integration of this equality from 0 to 1 will give us

‖yk+1‖2
2 − (yk+2, yk) =

(
yk+2y

′
k+1 − y ′k+2yk+1

)∣
∣1
0.

By using the boundary conditions for yk+2 and yk+1, we obtain

‖yk+1‖2
2 − (yk+2, yk) = cy ′k+1(1)

2 − cy ′k+2(1)y
′
k(1),

which is again in perfect agreement with (3.4) and (3.6), because � ′′(λk) = 0.

Lemma 3.7 If λk is a triple eigenvalue then

‖yk+2‖2
2 =cy ′k+2(1)

2 + ŷ ′k+2(1)
� ′′′(λk)

6

+ ŷ ′k+1(1)
�IV (λk)

24
+ y ′k(1)

�V (λk)

120
,

where ŷk+2 = yk+2 − C̃ŷk+1 − D̃yk .

4 Existence of Auxiliary Associated Functions

By comparing the equalities in Sects. 2 and 3 we can see that there are some
fundamental differences between the formulae for the inner products and norms of
the eigenfunctions and the corresponding formulae for the associated functions. In
this section we will prove that it is possible to find special associated functions (we
call them auxiliary associated functions) whose properties in inner products make
them more close to the eigenfunctions than the other associated functions. In the
last section, these functions will play a crucial role in our description of minimality
properties.
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Lemma 4.1 If λk is a double eigenvalue then there exists an associated function
y∗k+1 = yk+1 + C1yk, where

C1 = −y ′k(1)� ′′′(λk)+ 3ŷ ′k+1(1)�
′′(λk)

3y ′k(1)� ′′(λk)
,

such that

(y∗k+1, yk+1) = c(y∗k+1)
′(1)y ′k+1(1). (4.1)

Here, it should be pointed out that (y∗k+1)
′(1) = 0 if and only if

� ′′′(λk) = 3C̃� ′′(λk).

Before proceeding, we also note that for λn �= λk ,

(y∗k+1, yn) = c(y∗k+1)
′(1)y ′n(1), (4.2)

(y∗k+1, yk) = c(y∗k+1)
′(1)y ′k(1)+ y ′k(1)

� ′′(λk)
2

.

We shall now concentrate on the triple eigenvalue case. Although we will not
need the function y∗k+1 in the triple eigenvalue case, it is still worthwhile to note that
such a function does not exist in this case. Instead, we will need other associated
functions of yk which will be denoted by y#

k+1 and y#
k+2.

Lemma 4.2 If λk is a triple eigenvalue then there exists an associated function
y#
k+1 = yk+1 + C2yk, where

C2 = −y ′k(1)�IV (λk)+ 4ŷ ′k+1(1)�
′′′(λk)

4y ′k(1)� ′′′(λk)
,

for which

(y#
k+1, yk+2) = c(y#

k+1)
′(1)y ′k+2(1).

It is worthwhile to note that (y#
k+1)

′(1) = 0 if and only if �IV (λk) = 4C̃� ′′′(λk).
We now indicate some relations between y#

k+1 and the other root functions:

(y#
k+1, yn) = c(y#

k+1)
′(1)y ′n(1), (n �= k + 1, k + 2),

(y#
k+1, yk+1) = c(y#

k+1)
′(1)y ′k+1(1)+ y ′k(1)

� ′′′(λk)
6

.



Minimality Properties of Sturm-Liouville Problems 43

Note that the function y∗k+2, defined by y∗k+2 = yk+2 + C2yk+1, where C2 is the
same constant, also enjoys similar properties:

(y∗k+2, yk+1) = c(y∗k+2)
′(1)y ′k+1(1), (4.3)

(y∗k+2, yn) = c(y∗k+2)
′(1)y ′n(1), (n �= k, k + 1, k + 2), (4.4)

(y∗k+2, yk) = c(y∗k+2)
′(1)y ′k(1)+ y ′k(1)

� ′′′(λk)
6

. (4.5)

Lemma 4.3 If λk is a triple eigenvalue then there exists an associated function
y#
k+2 = y∗k+2 +D1yk, where D1 is a constant, for which

(y#
k+2, yk+1) = c(y#

k+2)
′(1)y ′k+1(1), (4.6)

(y#
k+2, yk+2) = c(y#

k+2)
′(1)y ′k+2(1). (4.7)

Proof Note first that

(y∗k+2, yk+2) = c(y∗k+2)
′(1)y ′k+2(1)+Qk,

where

Qk =ŷ ′k+2(1)
� ′′′(λk)

6
+ ŷ ′k+1(1)

�IV (λk)

24
+ y ′k(1)

�V (λk)

120

+ C2

(

ŷ ′k+1(1)
� ′′′(λk)

6
+ y ′k(1)

�IV (λk)

24

)

.

It is not difficult to check that for the function y#
k+2 = y∗k+2 +D1yk , where

D1 = − 6Qk

y ′k(1)� ′′′(λk)
,

both equalities (4.6) and (4.7) hold true. 	

Note also that for the function y#

k+2, equalities like (4.4), (4.5) are also true:

(y#
k+2, yn) = c(y#

k+2)
′(1)y ′n(1), (n �= k, k + 1, k + 2);

(y#
k+2, yk) = c(y#

k+2)
′(1)y ′k(1)+ y ′k(1)

� ′′′(λk)
6

.

We remark that (y#
k+2)

′(1) = 0 if and only if

5�IV (λk)
(
�IV (λk)− 4C̃� ′′′(λk)

)
= 4� ′′′(λk)

(
�V (λk)− 20D̃� ′′′(λk)

)
.
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5 Minimality of the System of Root Functions

In this section we will consider all possible cases of the choice of the root function
which will be deleted from the system to obtain a minimal system. In each case we
will construct explicitly a biorthogonal system.

5.1 Case (a)

Theorem 5.1 If all the eigenvalues of (1.1)–(1.3) are real and simple then the
system

{yn} (n = 0, 1, . . . ; n �= l), (5.1)

where l is a non-negative integer, is minimal in L2(0, 1).

Proof It suffices to show the existence of a system

{un} (n = 0, 1, . . . ; n �= l), (5.2)

biorthogonal to the system (5.1). Noting the relation Bn �= 0 we define elements of
the system (5.2) by

un(x) = 1

Bny
′
l (1)

∣
∣
∣
∣
yn(x) y

′
n(1)

yl(x) y ′l (1)

∣
∣
∣
∣ . (5.3)

It remains to see, noting (2.2), (2.7) and (2.10), that

(un, ym) = δnm,

where δnm (n, m = 0, 1, . . . ; n, m �= l) denotes as usually, Kronecker’s symbol:
δnm = 0 if n �= m and δnn = 1. 	


5.2 Case (b)

Theorem 5.2 If λk is a double eigenvalue then the system

{yn} (n = 0, 1, . . . ; n �= k + 1),

is minimal in L2(0, 1).
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Proof In this case the biorthogonal system is defined by

un(x) = 1

Bny
′
k(1)

∣
∣
∣
∣
yn(x) y

′
n(1)

yk(x) y ′k(1)

∣
∣
∣
∣ (n �= k, k + 1), (5.4)

uk(x) = 1

Bk+1y
′
k(1)

∣
∣
∣
∣
yk+1(x) y

′
k+1(1)

yk(x) y ′k(1)

∣
∣
∣
∣ . 	


Theorem 5.3 If λk is a double eigenvalue, and if (y∗k+1)
′(1) �= 0 then the system

{yn} (n = 0, 1, . . . ; n �= k), (5.5)

is minimal in L2(0, 1).

Proof The elements of the biorthogonal system are defined as follows

un(x) = 1

Bn(y
∗
k+1)

′(1)

∣
∣
∣
∣
yn(x) y ′n(1)

y∗k+1(x) (y
∗
k+1)

′(1)

∣
∣
∣
∣ (n �= k, k + 1),

uk+1(x) = 1

Bk+1(y
∗
k+1)

′(1)

∣
∣
∣
∣
yk(x) y ′k(1)

y∗k+1(x) (y
∗
k+1)

′(1)

∣
∣
∣
∣ . 	


Before proceeding we comment on the condition (y∗k+1)
′(1) �= 0 above. Let

(y∗k+1)
′(1) = 0, then by (4.1), (4.2) the function y∗k+1 is orthogonal to all the

elements of the system (5.5). Therefore the system (5.5) is not complete in L2(0, 1).

Theorem 5.4 If λk is a double eigenvalue then the system

{yn} (n = 0, 1, . . . ; n �= l),

where l �= k, k + 1 is a non-negative integer, is minimal in L2(0, 1).

Proof The biorthogonal system is given by the formula (5.3) for n �= k, k + 1, and

uk+1(x) = 1

Bk+1y
′
l (1)

∣
∣
∣
∣
yk(x) y

′
k(1)

yl(x) y ′l (1)

∣
∣
∣
∣ ,

uk(x) = 1

Bk+1y
′
l (1)

∣
∣
∣
∣
y∗k+1(x) (y

∗
k+1)

′(1)
yl(x) y ′l (1)

∣
∣
∣
∣ .

	


5.3 Case (c)

Theorem 5.5 If λk is a triple eigenvalue then the system

{yn} (n = 0, 1, . . . ; n �= k + 2),

is minimal in L2(0, 1).
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Proof The biorthogonal system is given by the formula (5.4) for n �= k, k+1, k+2,
and

uk+1(x) = 1

Bk+2y
′
k(1)

∣
∣
∣
∣
yk+1(x) y

′
k+1(1)

yk(x) y ′k(1)

∣
∣
∣
∣ ,

uk(x) = 1

Bk+2y
′
k(1)

∣
∣
∣
∣
y#
k+2(x) (y

#
k+2)

′(1)
yk(x) y ′k(1)

∣
∣
∣
∣ . 	


Theorem 5.6 If λk is a triple eigenvalue, and if (y#
k+1)

′(1) �= 0 then the system

{yn} (n = 0, 1, . . . ; n �= k + 1), (5.6)

is minimal in L2(0, 1).

Proof In this case the elements of the biorthogonal system are

un(x) = 1

Bn(y
#
k+1)

′(1)

∣
∣
∣
∣
yn(x) y ′n(1)

y#
k+1(x) (y

#
k+1)

′(1)

∣
∣
∣
∣ (n �= k, k + 1, k + 2),

uk+2(x) = 1

Bk+2(y
#
k+1)

′(1)

∣
∣
∣
∣
yk(x) y ′k(1)

y#
k+1(x) (y

#
k+1)

′(1)

∣
∣
∣
∣ ,

uk(x) = 1

Bk+2(y
#
k+1)

′(1)

∣
∣
∣
∣
∣

y#
k+2(x) (y

#
k+2)

′(1)
y#
k+1(x) (y

#
k+1)

′(1)

∣
∣
∣
∣
∣
. 	


In analogy with Theorem 5.3, we may show that if (y#
k+1)

′(1) = 0 then the function
y#
k+1(x) is orthogonal to all the elements of the system (5.6); hence the system (5.6)

is not complete.

Theorem 5.7 If λk is a triple eigenvalue, and if (y#
k+2)

′(1) �= 0 then the system

{yn} (n = 0, 1, . . . ; n �= k), (5.7)

is minimal in L2(0, 1).

Proof We define the elements of the biorthogonal system by

un(x) = 1

Bn(y
#
k+2)

′(1)

∣
∣
∣
∣
yn(x) y ′n(1)

y#
k+2(x) (y

#
k+2)

′(1)

∣
∣
∣
∣ (n �= k, k + 1, k + 2),

uk+2(x) = 1

Bk+2(y
#
k+2)

′(1)

∣
∣
∣
∣
yk(x) y ′k(1)

y#
k+2(x) (y

#
k+2)

′(1)

∣
∣
∣
∣ ,

uk+1(x) = 1

Bk+2(y
#
k+2)

′(1)

∣
∣
∣
∣
∣

yk+1(x) y ′k+1(1)
y#
k+2(x) (y

#
k+2)

′(1)

∣
∣
∣
∣
∣
. 	


If (y#
k+2)

′(1) = 0 then the system (5.7) is not complete.
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Theorem 5.8 If λk is a triple eigenvalue then the system

{yn} (n = 0, 1, . . . ; n �= l),

where l �= k, k + 1, k + 2 is a non-negative integer, is minimal in L2(0, 1).

Proof The elements of the biorthogonal system can be defined by (5.3) for n �=
k, k + 1, k + 2, l and

uk+2(x) = 1

Bk+2y
′
l (1)

∣
∣
∣
∣
yk(x) y

′
k(1)

yl(x) y ′l (1)

∣
∣
∣
∣ ,

uk+1(x) = 1

Bk+2y
′
l (1)

∣
∣
∣
∣
y#
k+1(x) (y

#
k+1)

′(1)
yl(x) y ′l (1)

∣
∣
∣
∣ ,

uk(x) = 1

Bk+2y
′
l (1)

∣
∣
∣
∣
y#
k+2(x) (y

#
k+2)

′(1)
yl(x) y ′l (1)

∣
∣
∣
∣ . 	


5.4 Case (d)

Theorem 5.9 If λr and λs = λr are a conjugate pair of non-real eigenvalues then
each of the systems

{yn} (n = 0, 1, . . . ; n �= r), (5.8)

{yn} (n = 0, 1, . . . ; n �= l), (5.9)

where l �= r, s is a non-negative integer, is minimal in L2(0, 1).

Proof The biorthogonal system of (5.8) is as follows

un(x) = 1

Bny ′s(1)

∣
∣
∣
∣
yn(x) y

′
n(1)

ys(x) y ′s(1)

∣
∣
∣
∣ (n �= r, s),

us(x) = 1

y ′r (1)y ′s(1)� ′(λr )

∣
∣
∣
∣
yr(x) y

′
r (1)

ys(x) y ′s(1)

∣
∣
∣
∣ .

The biorthogonal system of (5.9) is defined by (5.3) for n �= r, s, l and

ur(x) = 1

y ′s(1)y ′l (1)� ′(λs)

∣
∣
∣
∣
ys(x) y

′
s(1)

yl(x) y ′l (1)

∣
∣
∣
∣ ,

us(x) = 1

y ′r (1)y ′l (1)� ′(λr )

∣
∣
∣
∣
yr(x) y

′
r (1)

yl(x) y ′l (1)

∣
∣
∣
∣ . 	
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Remark 5.10 Using the method of the paper [5] these minimality results can also
be extended to basis properties. Then the sufficient conditions

(y∗k+1)
′(1) �= 0, (y#

k+1)
′(1) �= 0, (y#

k+2)
′(1) �= 0

in Theorems 5.3, 5.6 and 5.7, respectively, will be necessary conditions, too.

6 Example

As an illustration of the above theory, we present a particular result for the following
problem

−y ′′ = λy, 0 < x < 1, y(0) = 0, y(1) =
(
λ

3
+ 1

)

y ′(1).

For this problem λ0 = λ1 = 0 is a double eigenvalue. The other eigenvalues λ2 <

λ3 < . . . are the solutions of the equation tan
√
λ = √

λ
(
λ
3 + 1

)
. Eigenfunctions

are y0 = x, yn = sin
√
λnx (n ≥ 2) and an associated function corresponding to

y0 is y1 = − 1
6x

3 + Cx, where C is an arbitrary constant. We look for an auxiliary
associated function of the form y∗1 = − 1

6x
3 + C′x. In other words, C1 = C′ − C.

By (4.1),

∫ 1

0

(

−1

6
x3 + Cx

)(

−1

6
x3 + C′x

)

dx = 1

3

(

−1

2
+ C

)(

−1

2
+ C′

)

.

From this equality we obtain that C′ = −C + 25
42 , so

(y∗1 )′(x) = −1

6
x3 +

(

−C + 25

42

)

x.

Consequently, (y∗1 )′(1) = 2
21 − C. Therefore the above condition (y∗1 )′(1) �= 0 in

Theorem 5.3 is equivalent to C �= 2
21 . So, the system

{yn} (n = 1, 2, . . .) =
{

sin
√
λnx

}
(n = 2, 3, . . .) ∪

{

−1

6
x3 + Cx

}

,

from which only the eigenfunction y0 is excluded but the associated function y1 is
included, is minimal in L2(0, 1) if C �= 2

21 .
We shall now apply a different method to this problem. Note that for this

problem y(x, λ) = sin
√
λx√
λ

. We need
√
λ in the denominator to make sure that
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limλ→0 y(x, λ) = y0 = x. Then

yλ(x, λ) = x cos
√
λx

2λ
− sin

√
λx

2λ
√
λ

and therefore ỹ1 = limλ→0 yλ(x, λ) = − x3

6 . Let y1 = − 1
6x

3 + C. Then C̃ = −C.
Note also that �(λ) = sin

√
λ− (λ3 + 1

)√
λ cos

√
λ, then

�(0) = lim
λ→0

�(λ) = 0, � ′(0) = lim
λ→0

� ′(λ) = 0,

� ′′(0) = lim
λ→0

� ′′(λ) = 4/15, � ′′′(0) = lim
λ→0

� ′′′(λ) = −8/105.

As was pointed out in the comments following the proof of Lemma 4.1, the
condition (y∗1 )′(1) �= 0 is equivalent to � ′′′(λk) �= 3C̃� ′′(λk). Since C = −C̃,
we obtain, once again, C �= 2

21 .

If C = 2
21 then we obtain y∗1 (x) = − x3

6 + x
2 which is orthogonal to all the

elements of the system {yn} (n = 1, 2, . . .).
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Scattering, Spectrum and Resonance
States Completeness for a Quantum
Graph with Rashba Hamiltonian

Irina V. Blinova, Igor Y. Popov, and Maria O. Smolkina

Abstract Quantum graphs consisting of a ring with two semi-infinite edges
attached to the same point of the ring is considered. We deal with the Rashba
spin-orbit Hamiltonian on the graph. A theorem concerning to completeness of
the resonance states on the ring is proved. Due to use of a functional model, the
problem reduces to factorization of the characteristic matrix-function. The result is
compared with the corresponding completeness theorem for the Schrödinger, Dirac
and Landau quantum graphs.

Keywords Spectrum · Resonance · Completeness · Spin-orbit interaction
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1 Introduction

The problem of resonances was studied during a long time starting with the
famous Rayleigh work on the Helmholtz resonator. The completeness problem for
resonance states is younger. Mathematicians dealt with it during a half of century.
The problem is related to the stability of the completeness under some perturbation.
Namely, one starts with a system with purely discrete spectrum and complete system
of eigenstates, e.g., a closed resonator. Then one perturbs the system in such a way
that eigenvalues turn to resonances and eigenstates—to resonance states, e.g., the
resonator with a boundary window [2, 7, 8, 10]. Correspondingly, a natural question
appears: is the system of quasi-eigenstates complete? One of the approaches to this
problem is related to the Sz.-Nagy functional model [14, 21, 25]. Starting with work
[1], it is known that the scattering matrix is the same as the characteristic function
from the functional model. In particular, root vectors in the functional model
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correspond to resonance states in scattering theory. The completeness problem for
the system of root vectors is related to the factorization problem for the characteristic
function as a function from the Hardy space. We will use this relation to study the
completeness. Particularly, for the finite-dimensional case, this approach gives one
an effective completeness criterion [21].

The simplest model for an open resonator is based on a quantum graph, well-
developed model in quantum theory [3, 9, 18]. The corresponding completeness
problem was considered in [4, 11, 23, 24].

Spin-orbit interaction attracts great attention last time due to possible perspec-
tives of applications in nanoelectronics, particularly, in spintronics and quantum
computing [5, 6, 13, 15, 16, 19, 20]. Full spin-orbit Hamiltonian is very complicated
even for quantum graph. Usually, theoreticians consider its particular cases, Rashba
or Dresselhaus Hamiltonians. In this paper we deal with the Rashba Hamiltonian.
We investigate this operator on a quantum graph with loop imbedded in a plane in
R

3. The graph is posed in a constant magnetic field orthogonal to the graph plane.
We choose such type of the graph (a loop touching a line) because the Schrödinger,
Dirac and Landau operators on such graph lead to incompleteness of the resonance
states [12]. In some sense, this graph presents a degenerate case and any small
perturbation, e.g., point-like potential at the vertex, restores the completeness. It
is interesting that the Rashba Hamiltonian leads to the completeness.

1.1 Scattering, Functional Model and Completeness Criterion

It is convenient to consider resonances in the framework of the Lax-Phillips scat-
tering theory [17]. It is based on non-stationary problem. Let H be the Hamiltonian
for the quantum graph, i.e. the Rashba Hamiltonian on the ring and the Schrödinger
operator on the half-axes. The wave function is a two-component vector. Different
components correspond to different spin directions. Consider the Cauchy problem
for the time-dependent problem on the graph �:

{
ih̄u′t = Hu,

u(x, 0) = u0(x), x ∈ �.

Below, we will use the system of units in which h̄ = 1. The standard Lax-
Phillips approach is applied to the wave (acoustic) equation. There is a close relation
between the Schrödinger and wave cases. We will describe it briefly following [17,
Section 6.4]. Namely, it is necessary to consider the operator A2 (here A is the
generator of the evolution group U(t) for the wave equation, see below):

A2 =
(
H 0
0 H

)

.
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One can see that A2 acts as the Hamiltonian H on each component of the data
of the acoustic problem. This allows one to use the “acoustic” construction for the
Schrödinger case and, as a result, comes to the relation between the Schrödinger
(SSchr ) and the acoustic (S) scattering matrices:

SSchr (z) = S(
√
z).

Let us describe briefly the acoustic case. Consider the Cauchy problem for the wave
equation

{
u′′t t = u′′xx,
u(x, 0) = u0(x), u

′
t (x, 0) = u1(x), x ∈ �.

(1.1)

Here u, u0, u1 are two-component vectors. Let E be the Hilbert space of four-
component functions (u0, u1) on the graph with finite energy

‖(u0, u1)‖2
E = 2−1

∫

�

(|u′0|2 + |u1|2)dx.

The pair (u0, u1) is called the Cauchy data. The unitary (in E) group U(t),
U(t)(u0, u1) = (u(x, t), u′t (x, t)), solves the problem (1.1). The unitary group
U(t)|t∈R has two orthogonal (in E) subspaces, D− and D+, called, correspondingly,
incoming and outgoing subspaces.

Definition 1.1 The outgoing (incoming) subspace D+(D−) is a subspace of E
having the following properties:

(a) U(t)D+ ⊂ D+ for t > 0; U(t)D− ⊂ D− for t < 0,
(b) ∩t>0U(t)D+ = {0}; ∩t<0U(t)D− = {0}
(c) ∪t<0U(t)D+ = E , ∪t>0U(t)D− = E .

The existence of the incoming and outgoing subspaces is related to the spectral
properties of the operator H . The property (c) from the definition is fulfilled if the
spectrum of the operator is continuous [17]. The operator H is self-adjoint. Using
the spectral expansion, one can obtain the continuous subspace Ec by removing the
discrete subspace (i.e. eigenspaces) from E . Below we will deal with H |Ec

(we will
not introduce a new notation for this operator with the continuous spectrum). The
choice of incoming and outgoing subspaces is not unique. For the graph �, one
can choose the subspace D+ containing four-component functions vanishing at the
ring �0 and satisfying the radiation condition on all leads (infinite edges). Due to
the radiating condition, one has only outgoing exponential at the edges. It gives
one properties (a), (b) for the subspace. As for (c), it takes place for Ec due to the
self-adjointness of the operator H :

∪t<0U(t)D+ = Ec.
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The definition of the subspace D− is analogous. Property (c) for D− takes the form

∪t>0U(t)D− = Ec.

Let P± be the orthogonal projection of E onto the orthogonal complement of D±.
Consider the semigroup {Z(t)}|t≥0 of operators on E defined by

Z(t) = P+U(t)P−, t ≥ 0.

The square roots of the eigenvalues of the generator B of Z(t) are resonances. The
following subspace K = E � (D− ⊕ D+) is very important for the construction.
The operators {Z(t)}|t≥0 map the subspace K into itself. Lax and Phillips proved
the following theorem [17].

Theorem 1.2 There is a pair of isometric maps T± : E → L2(R, N) (the
outgoing and incoming spectral representations), N is an auxiliary space, having
the following properties:

T±U(t) = eiktT±, T±D± = H 2±(N), T−D+ = SH 2+(N),

where H 2±(N) is the Hardy space in the upper (lower) half-plane, the matrix-
function S is an inner function in C+, and

K− = T−K = H 2+ � SH 2+, T−Z(t)|K = PK−e
iktT−|K− .

Remark 1.3 S is known in functional analysis as characteristic function. At the
same time, it is the well-known physical object—the S-matrix.

We deal with the completeness of the system of resonance states (i.e. root vectors
of B). There is an interesting relation between the completeness problem and the
factorization of the scattering matrix. Namely, as an inner operator-function, S can
be represented in the form S = ��, where � is a Blaschke-Potapov product and �

is a singular inner function [14, 21, 25]. The next theorem shows this relation.

Theorem 1.4 (Completeness Criterion from [21]) The following statements are
equivalent:

1. The system of root vectors of the operator B is complete;
2. The system of root vectors of the operator B∗ is complete;
3. S is a Blaschke-Potapov product.

There is a simple criterion for the absence of the singular inner factor in the case
dimN < ∞ (in the general operator case there is no such simple criterion).
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Theorem 1.5 ([21]) Let dimN < ∞. The following statements are equivalent:

1. S is a Blaschke-Potapov product;
2.

lim
r→1

∫

Cr

ln |detS(k)| 2i

(k + i)2 dk = 0, (1.2)

where Cr is the image of |ζ | = r under the inverse Cayley transform.

Remark 1.6 The theorem in [21] is formulated for the unit disk. We use the Cayley
transform which maps the upper half-plane to the unit disk:

W(z) = z− i

z+ i
,

whereas the inverse Cayley transform maps the unit disk to the upper half-plane:

w(ζ ) = i
1 + ζ

1 − ζ
.

One notable property of the Cayley transform is that it injectively maps R into
the unit circle. Another important property we are going to use is that the Cayley
transform preserves circles.

The integration curve can be parameterized as

Cr = {R(r)eit + iC(r) | t ∈ [0, 2π)}
where

C(r) = 1 + r2

1 − r2 , R(r) = 2r

1 − r2 .

It should be noted that R→∞ corresponds to r → 1.
For brevity, we define

s(k) = |detS(k)| ,

and after throwing away constants which are irrelevant for convergence, we obtain
the final form of the criterion (1.2), which is convenient for us and will be used
afterwards:

lim
r→1

2π∫

0

R(r) ln(s(R(r)eit + iC(r)))

(R(r)eit + iC(r)+ i)2 eit dt = 0. (1.3)

Our main theorem is as follows.
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Theorem 1.7 The system of resonance states is complete on L2(�0)⊕ L2(�0).

Remark 1.8 We recall that two components correspond to two directions of spin
in respect to magnetic field. It is interesting to compare the result with the
corresponding theorems for other operators. If one deals with the same geometric
graph with the Shrödinger operator, the Dirac operator or the Landau operator (the
Schrödinger operator with a magnetic field) and the Kirchhoff coupling condition
at the vertex then there is an incompleteness. But small perturbation of the coupling
condition (delta-potential at the vertex) restores the completeness. In our case the
spin-orbit interaction plays a role of such perturbation.

2 Scattering for Rashba Hamiltonian

2.1 Rashba Operator

We consider a quantum graph shown in Fig. 1. The quantum ring of radius
a is located in the plane xy in the presence of Rashba spin-orbit interaction
and a perpendicular magnetic field B. We assume that the magnetic field B is
relatively weak. In such case the interaction between the electron spin and the field
(Zeeman term) can be treated as a perturbation and the corresponding dimensionless
Hamiltonian reads

Ĥ =
[(

−i
∂

∂ϕ
+ ωSO

2�
σr − �

�0

)2

− ω2
SO

4�2

]

+ ωL

�
σz,

where ϕ is the azimuthal angle of a point on the ring, � denotes the magnetic
flux encircled by the ring, �0 = h̄

e
, e is the electron charge, ωSO = α

h̄a
is the

frequency associated with the spin-orbit interaction (with interaction constant α),

Fig. 1 Task 1 (upper row), Task 2 (lower row); directions of edges are shown
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h̄� = h̄2

2m∗a2 , m∗ is the effective mass of the electron. The radial spin operator is

given by

σr = σx cosϕ + σy sin ϕ =
(

0 e−iϕ

eiϕ 0

)

.

The constant in Zeeman term is as follows ωL = g∗eB
4m with g∗ and m being the

effective gyromagnetic ratio and the free electron mass, respectively.

2.2 Solution on the Line

To construct the scattering matrix for the graph � we solve two scattering problems
differing in solutions on the lines.

Task 1:

ψe1↑(x) =
(

1
0

)

eikx +
(
R↑↑
R↑↓

)

e−ikx , ψe2↑(x) =
(
T↑↑
T↑↓

)

eikx .

Task 2:

ψe1↓(x) =
(

0
1

)

eikx +
(
R↓↑
R↓↓

)

e−ikx , ψe2↓(x) =
(
T↓↑
T↓↓

)

eikx .

2.3 Solution on the Ring

For the both tasks one has the following form of the solution on the ring:

ψ(ϕ) =
∑

μ=1,2

∑

j=1,2

a
μ
j eK

μ
j ϕ

χ(μ)(ϕ),

where

χ(1)(ϕ) = 1√
2π

(
e−i

ϕ
2 cos θ

2

ei
ϕ
2 sin θ

2

)

, χ(2)(ϕ) = 1√
2π

(
e−i

ϕ
2 sin θ

2

−ei
ϕ
2 cos θ

2

)

.

Here θ = arctan(−α),

K
μ
j = 1

2
+ �

μ
AC

2π
+ �

2π
+ (−1)μ+j+1

[
α2

4
+ E

h̄�

]1/2

, k =
(

2m∗E
h̄2

)1/2

.
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The value of j = 1 and j = 2 corresponds to the clockwise and counterclockwise
motions of an electron through the ring, respectively. Finally,

�
μ
AC = −π[1 + (−1)μ

√
1 + α2]

is the so-called Aharonov-Casher (AC) phase.

2.4 Vertex Coupling Conditions

We assume the standard coupling condition at vertex v for the spin-orbit Hamilto-
nian: the continuity of the wave functions and vanishing net spin current densities
[22]. For our graph (see Fig. 1) it has the following form:

∑

ej

(−1)[ej ]Djψj (v) = 0, ψe1(v) = ψe2(v) = · · · = ψej (v),

where summation is over all edges ej adjacent to the vertex v, [ej ] = 0 for the
outgoing edge and [ej ] = 1 for the incoming edge. The third edge (see Fig. 1) gives
one two terms (outgoing and incoming) with

Dj =
(

∂

∂ϕ
− i

(
α

2
σ r − �

�0

))

, σ r =
(

0 e−iϕ

eiϕ 0

)

(in our case for the third edge, one has φ = 0 for the outgoing term and φ = 2π for
the incoming term). For straight semi-infinite edges (the first and the second edges
in Fig. 1) Dj = d

dx
.

Remark 2.1 From mathematical point of view, these conditions ensure the self-
adjointness of the operator on the graph. In physical literature the conditions are
known as Griffith conditions (see, e.g., [13, 20]).

These conditions take the following form for our graph.

For Task 1:

ψ
e1↑
1 (0) = ψ

e2↑
1 (0) = ψ

e3
1 (0) = ψ

e3
1 (2πa),

ψ
e1↑
2 (0) = ψ

e2↑
2 (0) = ψ

e3
2 (0) = ψ

e3
2 (2πa),

∂ψ(0)

∂ϕ
−βψ(0)− ∂ψ(2πa)

∂ϕ
+βψ(2πa)−ik

(
1
0

)

+ik

(
T↑↑
T↑↓

)

+ik

(
R↑↑
R↑↓

)

= 0,
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where

β = i

(
α

2
σ r − �

�0

)

,

ψ1 and ψ2 denote, correspondingly, the first and the second component of the
vector ψ , 2πa is the length of the ring.

For Task 2:

ψ
e1↓
1 (0) = ψ

e2↓
1 (0) = ψ

e3
1 (0) = ψ

e3
1 (2πa),

ψ
e1↓
2 (0) = ψ

e2↓
2 (0) = ψ

e3
2 (0) = ψ

e3
2 (2πa),

∂ψ(0)

∂ϕ
−βψ(0)− ∂ψ(2πa)

∂ϕ
+βψ(2πa)+ik

(
T↓↑
T↓↓

)

−ik

(
0
1

)

+ik

(
R↓↑
R↓↓

)

= 0.

2.5 S-Matrix

Solutions of Task 1 and Task 2 give us the entries of the S-matrix (see [13]):

S(k) =

⎛

⎜
⎜
⎝

R↑↑ R↓↑ T↑↑ T↓↑
R↑↓ R↓↓ T↑↓ T↓↓
T↑↑ T↓↑ R↑↑ R↓↑
T↑↓ T↓↓ R↑↓ R↓↓

⎞

⎟
⎟
⎠

where

R↑↑ = �(1) cos2 θ

2
+ �(2) sin2 θ

2
− 1,

R↑↓ = (�(1) − �(2)) sin
θ

2
cos

θ

2
,

R↓↑ = R↑↓,
R↓↓ = �(1) sin2 θ

2
+ �(2) cos2 θ

2
− 1

(2.1)

and

T↑↑ = τ (1) cos2 θ

2
+ τ (2) sin2 θ

2
,

T↑↓ = (τ (1) − τ (2)) sin
θ

2
cos

θ

2
,

T↓↑ = T↑↓,
T↓↓ = τ (1) sin2 θ

2
+ τ (2) cos2 θ

2
,

(2.2)



60 I. V. Blinova et al.

where

�(μ) = 4k2a2

ŷ(μ)
iq(μ) sin(2q(μ)π), τ (μ) = 4ikaq(μ)

ŷ(μ)
sin(2πq(μ)),

ŷ(μ) = 4ikaq(μ) sin(2q(μ)π)− 4(q(μ))2 cos

((

(−1)μ+1ω − 2
�

�0

)

π

)

− 4(q(μ))2 cos(2q(μ)π),

q(μ) =
√

q2 + (−1)μ
ωL

�

1

ω
, q =

√
(ωSO

2�

)2 + E

h̄�
, E = h̄2k2

2m∗ ,

ω =
√

1 + ω2
SO

�2 ωL = g∗eB
4m

, ωSO = α

h̄a
.

2.6 Completeness

The completeness criterion (see above) is related to the absence or presence of
an exponential in k factor in det S(k). Such a factor gives one a linear growth of
ln det S(k) for k → ∞ (i.e. r → 1) which leads to the destroying of integral
convergence to zero in (1.3), i.e. to incompleteness of resonance states. One more
possible reason for destroying of such convergence is the possibility for singularities
of ln det S(k) to be placed at the integration curve. These singularities are roots and
singularities of det S(k). Taking into account the obtained expressions for the entries
of the matrix S(k), one concludes that det S(k) is a ratio of two analytic functions.
Correspondingly, the roots have no accumulation points on the complex plane. It
means that there are not more than a finite number of singularities of ln detS(k) at
the integration curve. Moreover, these singularities are logarithmic, i.e. integrable.
Hence, these singularities do not destroy the convergence (1.3). To reveal whether
there is an exponential factor in det S(k), one can look after the behaviour of detS(k)
on the imaginary axis. If there is an exponential factor, one has an exponential
growth at one of the imaginary half-axes. One can check that all entries of the S-
matrix (see the explicit expressions (2.1) and (2.2)) have no exponential growth.
It means that one has the convergence (1.3) in the completeness criterion and,
correspondingly, the system of resonance states is complete. This finalizes the proof
of Theorem 1.7.
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Fig. 2 Behaviour of the integrand of (1.3)

2.7 Numerical Results

Having explicit expression for the S-matrix, one can simply demonstrate the
behaviour of the integrand of (1.3) at infinity. It is shown in Fig. 2 for the main
part of the integrand:

F(k) = ln(|det (S(k))|)
|k| .
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Tau Functions Associated with Linear
Systems

Gordon Blower and Samantha L. Newsham

Abstract Let (−A,B,C) be a linear system in continuous time t > 0 with input
and output space C and state space H . The function φ(x)(t) = Ce−(t+2x)AB

determines a Hankel integral operator �φ(x)
on L2((0,∞);C); if �φ(x)

is trace class,
then the Fredholm determinant τ (x) = det(I + �φ(x)

) defines the tau function
of (−A,B,C). Such tau functions arise in Tracy and Widom’s theory of matrix
models, where they describe the fundamental probability distributions of random
matrix theory. Dyson considered such tau functions in the inverse spectral problem
for Schrödinger’s equation −f ′′ + uf = λf , and derived the formula for the

potential u(x) = −2 d2

dx2 log τ (x) in the self-adjoint scattering case (Commun Math
Phys 47:171–183, 1976). This paper introduces a operator function Rx that satisfies
Lyapunov’s equation dRx

dx
= −ARx − RxA and τ (x) = det(I + Rx), without

assumptions of self-adjointness. When −A is sectorial, and B,C are Hilbert–
Schmidt, there exists a non-commutative differential ring A of operators in H and
a differential ring homomorphism ! " : A → C[u, u′, . . . ] such that u = −4!A",
which extends the multiplication rules for Hankel operators considered by Pöppe
and McKean (Cent Eur J Math 9:205–243, 2011).

Keywords Integrable systems · Fredholm determinant · Inverse scattering

Mathematics Subject Classification (2010) Primary 47B3; Secondary 5, 34B27

1 Introduction

This paper is concerned with Fredholm determinants which arise in the theory of
linear systems and their application to inverse spectral problem for Schrödinger’s
equation. For φ ∈ L2((0,∞);R), the Hankel integral operator corresponding to φ
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is �φ where

�φf (x) =
∫ ∞

0
φ(x + y)f (y) dy (f ∈ L2((0,∞);C).

Using the Laguerre system of orthogonal functions as in [30], one can express �φ as
a matrix [γj+k]∞j,k=1 on �2, which has the characteristic shape of a Hankel matrix,

and one can establish criteria for the operator to be bounded on L2((0,∞);C).
Megretskii et al. [25] determined the possible spectrum and spectral multiplicity
function that can arise from a bounded and self-adjoint Hankel operator. Thus
they characterized the class of bounded self-adjoint Hankel operators up to unitary
equivalence. Their method involved introducing suitable linear systems on a state
space H , and this motivated the approach of our paper.

Following earlier works by Faddeev and others in the Russian literature, Dyson
[8] considered the inverse spectral problem for Schrödinger’s equation−f ′′ +uf =
λf , for u ∈ C2(R;R) that decays rapidly as x → ±∞. From the asymp-
totic solutions, he introduced a scattering function φ, considered the translations
φ(x)(y) = φ(y + 2x), and established connections with eigenvalue distributions in
random matrix theory which are described in [37]. He showed that the potential can
be recovered from the scattering data by means of the formula

u(x) = −2
d2

dx2 log det(I + �φ(x)
), (1.1)

These results were developed further by Ercolani and McKean [10] and others
[13, 38, 39] to describe the inverse spectral problem for self-adjoint Schrödinger
operators on R. Grudsky and Rybkin [17] describes the inverse scattering theory of
the KdV equation in terms of Hankel and Toeplitz operators. The latter paper uses
Sarason’s algebra H∞ + C on the unit disc to describe compact Hankel operators.
In the current paper, we use Hankel operators within the setting of linear systems in
continuous time.

Remarkably, some of the methods of inverse scattering theory do not really need
self-adjointness. However, a significant obstacle in this approach is that Hankel
operators do not have a natural product structure, so it is unclear as to how one
can fully exploit the multiplicative properties of determinants. This paper seeks
to address this issue, by realizing Hankel operators from linear systems, and then
introducing algebras of operators on state space that reflect the properties of Hankel
operators and their Fredholm determinants. As in [25], the Lyapunov differential
equation is fundamental to the development of the theory.

Definition 1.1 (Lyapunov Equation)

(i) Let H be a complex Hilbert space, known as the state space, and L(H) the
algebra of bounded linear operators on H with the usual operator norm. Let
(e−tA)t≥0 be a strongly continuous (C0) semigroup of bounded linear operators
on H such that ‖e−tA‖L(H) ≤ M for all t ≥ 0 and some M < ∞. Let D(A)
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be the domain of the generator−A so that D(A) is itself a Hilbert space for the
graph norm

‖ξ‖2
D(A) = ‖ξ‖2

H + ‖Aξ‖2
H ,

and let A† be the adjoint of A. Let R : (0,∞) → L(H) be a differentiable
function. The Lyapunov equation is

− dRz

dz
= ARz + RzA (z > 0), (1.2)

where the right-hand side is to be interpreted as a bounded bilinear form on
D(A)×D(A†). (This is a modified form of the version in [30, p. 502].)

(ii) (Operator ideals). Let L2(H) be the space of Hilbert–Schmidt operators on
H , and L1(H) be the space of trace class operators on H , so L1(H) = {T :
T = VW ;V,W ∈ L2(H)} and let det be the Fredholm determinant defined on
{I + T : T ∈ L1(H)}; see [24].

Definition 1.2

(i) (Linear system). Let H0 be a complex separable Hilbert space which serves as
the input and output spaces; let B : H0 → H and C : H → H0 be bounded
linear operators. The continuous-time linear system (−A,B,C) is

dX

dt
= −AX + BU, Y = CX.

(ii) (Scattering function). The scattering function is φ(x) = Ce−xAB, which
is a bounded and weakly continuous function φ : (0,∞) → L(H0). The
terminology is justified by [10, p. 493]. In control theory, the transfer function
is the Laplace transform of φ; see [30, p. 467].

(iii) (Hankel operator). Suppose that φ ∈ L2((0,∞);L(H0)). Then the corre-
sponding Hankel operator is �φ on L2((0,∞);H0), where

�φf (x) =
∫ ∞

0
φ(x + y)f (y) dy;

see [28, 30] for boundedness criteria.

Definition 1.3 (Admissible Linear System) Let (−A,B,C) be a linear system as
above; suppose furthermore that the observability operator �0 : L2((0,∞);H0) →
H is bounded, where

�0f =
∫ ∞

0
e−sA†

C†f (s) ds; (1.3)
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suppose that the controllability operator �0 : L2((0,∞);H0) → H is also
bounded, where

�0f =
∫ ∞

0
e−sABf (s) ds.

(i) Then (−A,B,C) is an admissible linear system. See [30, p. 469].
(ii) Suppose furthermore that �0 and �0 belong to the ideal L2 of Hilbert–Schmidt

operators. Then we say that (−A,B,C) is (2, 2)-admissible.

The scattering map associates to any (2, 2) admissible linear system (−A,B,C) the
corresponding scattering function φ(x) = Ce−xAB. The inverse scattering problem
involves recovering data about u from φ, as in (1.1). In Sect. 2 of this paper, we
analyze the existence and uniqueness problem for the Lyapunov equation, and show
that for any (2, 2) admissible linear system, the operator, as in [1, 5],

Rx =
∫ ∞

x

e−tABCe−tA dt

is trace class and gives the unique solution to (1.2) with the initial condition

(dRx

dx

)

x=0
= −AR0 − R0A = −BC. (1.4)

Also, Rx ∈ L1(H) and the Fredholm determinant satisfies

det(I + λRx) = det(I + λ�φ(x)
) (x > 0, λ ∈ C). (1.5)

Definition 1.4 (Tau Function) Given a (2, 2) admissible linear system (−A,B,C),
we define

τ (x) = det(I + Rx).

Using this general definition of τ , we can unify several results from the scattering
theory of ordinary differential equations. Under circumstances discussed in [17] and
[34], this becomes the well-known Hitota tau function of soliton theory. Such tau
functions are also strongly analogous to the tau functions introduced by Miwa et al.
[26] to describe the isomonodromy of rational differential equations and generalize
classical results on theta functions. The connection between Fredholm determinants
and rational differential equations is further described in [11] and [37]; see also [20].

The Gelfand–Levitan–Marchenko equation [12] provides the linkage between φ and
u via Rx . Consider

T (x, y)+�(x + y)+ μ

∫ ∞

x

T (x, z)�(z+ y) dz = 0 (0 < x < y) (1.6)
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where T (x, y) and �(x + y) are m×m matrices with scalar entries. In the context
of (−A,B,C) we assume that �(x) = Ce−xAB is known and aim to find T (x, y).
In section two, we use Rx to construct solutions to the associated Gelfand–Levitan
equation (1.6), and introduce a potential

u(x) = −2
d2

dx2 log det(I + Rx).

In section three, we obtain a differential equation linking �(x) to u(x). In examples
of interest in scattering theory, one can calculate det(I + λRx) more easily than
the Hankel determinant of ��(x)

directly [10], since Rx has additional properties
that originate from Lyapunov’s equation. In section four, we introduce a differential
algebra of operators on the state space, and a homomorphism to the differential
algebra C[u, u′, . . . ] that is generated by the potential. In section five, we describe
the connection between this algebra and the stationary KdV hierarchy. There is a
fundamental connection between theta functions and equations of KdV and KP type;
see [27].

2 τ Functions in Terms of Lyapunov’s Equation
and the Gelfand–Levitan Equation

The following section proves existence and uniqueness of solutions of the Lyapunov
equation (1.2), in a style suggested by Peller [30, p. 503]. Peller discusses
scattering functions that produce bounded self-adjoint Hankel operators �φ , and
their realization in terms of continuous time linear systems. He observes that in
some cases one needs a bounded semigroup with unbounded generator (−A). We
prove the uniqueness results for bounded and strongly continuous semigroups, then
specialize to holomorphic semigroups. The main application is to the Gelfand–
Levitan equation (1.6), and associated determinants.

Proposition 2.1 Let (e−tA)t≥0 be a strongly continuous and weakly asymptotically
stable semigroup on a complex Hilbert space H , so e−tAf → 0 weakly as t →∞
for all f ∈ H . Then

(i) St : R �→ e−tARe−tA for t ≥ 0 defines a strongly continuous semigroup on
L1(H), which has generator (−L), with dense domain of definition D(L) such
that

L(R) = AR + RA (R ∈ D(L)).
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(ii) The linear operator L : D(L) → L1(H) is injective, and for each R0 ∈ D(L)

with L(R0) = X, there exists a weakly convergent integral

R0 =
∫ ∞

0
e−tAXe−tA dt. (2.1)

(iii) Suppose moreover that ‖e−t0A‖L(H) < 1 for some t0 > 0. Then L : D(L) →
L1(H) is surjective, the integral (2.1) converges absolutely in L1(H) and R0
gives the unique solution to AR0 + R0A = X.

Proof

(i) First observe that by the uniform boundedness theorem, there exists M such
that ‖e−tA‖L(H) ≤ M for all t ≥ 0, so (e−tA)t≥0 is uniformly bounded. Also,

the adjoint semigroup (e−tA†
)t≥0 is also strongly continuous and uniformly

bounded, so A and A† have dense domains D(A) and D(A†) in H . Now
L1(H) = H ⊗̂H , the projective tensor product, so for all X ∈ L1(H), there
exists a nuclear decomposition

X =
∞∑

j=1

BjCj

where Bj ,Cj ∈ H satisfy ‖X‖L1(H) =
∑∞

j=1 ‖Bj‖H ‖Cj‖H . Then

St (X)−X =
∞∑

j=1

(e−tABjCj e
−tA − BjCj e

−tA)+
∞∑

j=1

(BjCje
−tA − BjCj )

where (e−tA) is bounded, ‖e−tABj −Bj‖H → 0 and ‖e−tA†
Cj −Cj‖H → 0

as t → 0+; so ‖St (X) − X‖L1(H) → 0 as t → 0+; so (St )t≥0 is strongly
continuous on L1(H). By the Hille–Yoshida theorem [15, p. 16], there exists
a dense linear subspace D(L) of L1(H) such that St (R) is differentiable at
t = 0+ for all R ∈ D(L), and (d/dt)t=0+St (R) = −AR − RA, so the
generator is (−L), where L(R) = AR + RA.

(ii) Certainly D(L) contains D(A†)⊗̂D(A) in L1(H) = H ⊗̂H . Choosing f ∈
D(A) and g ∈ D(A†), we find that

d

dt

〈
e−tAR0e

−tAf, g
〉 = −〈e−tA(AR0 + R0A)e−tAf, g

〉 = −〈e−tAXe−tAf, g
〉

a continuous function of t > 0; so integrating we obtain

〈
R0f, g

〉− 〈e−sAR0e
−sAf, g

〉 =
∫ s

0

〈
e−tAXe−tAf, g

〉
dt.
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We extend this identity to all f, g ∈ H by joint continuity; then we let s →
∞ and observe that R0 : H → H is trace class and hence is completely
continuous, hence R0 maps the weakly null family (e−sAf )s→∞ to the norm
convergent family (R0e

−sAf )s→∞, so 〈e−sAR0e
−sAf, g〉 → 0 as s → ∞;

hence we have a weakly convergent improper integral

〈
R0f, g

〉 = lim
s→∞

∫ s

0

〈
e−tAXe−tAf, g

〉
dt (f, g ∈ H).

(iii) The function t �→ e−tAXe−tA takes values in the separable space L1(H)

and is weakly continuous, hence strongly measurable, by Pettis’s theorem.
By considering the spectral radius, Engel and Nagel [9] show that there exist
δ > 0 and Mδ > 0 such that ‖e−tA‖L(H) ≤ Mδe

−δt for all t ≥ 0; hence (2.1)
converges as a Bochner–Lebesgue integral with

‖Rx‖L1(H) ≤
∫ ∞

x

M2
δ ‖X‖L1(H)e

−2δt dt ≤ M2
δ

2δ
‖X‖L1(H)e

−2δx.

Furthermore, A is a closed linear operator and satisfies

A

∫ s

x

e−tAXe−tA dt +
∫ s

x

e−tAXe−tA dtA =
∫ s

x

− d

dt

(
e−tAXe−tA

)
dt

= e−xAXe−xA − e−sAXe−sA

→ e−xAXe−xA

as s →∞ where
∫ s

x

e−tAXe−tAdt → Rx;

so ARx + RxA = e−xAXe−xA for all x ≥ 0. We deduce that x �→ Rx is a
differentiable function from (0,∞) to L1(H) and that the modified Lyapunov
equation (1.2) holds. 	


The hypotheses (i) and (ii) are symmetrical under the adjoint (A,R0) �→ (A†, R
†
0);

however, the hypothesis (iii) is rather stringent, and in many applications one only
needs existence of the integral (2.1).

Definition 2.2 ((2, 2) Admissible Linear Systems)

(i) Let H be a complex Hilbert space and let � = (−A,B,C) be a linear system
with state space H . Suppose that the integral

Wc =
∫ ∞

0
e−tABB†e−tA†

dt
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converges weakly and defines a bounded linear operator on H ; then Wc is the
controllability Gramian. Suppose further that the integral

Wo =
∫ ∞

0
e−tA†

C†Ce−tA dt

converges weakly and defines a bounded linear operator on H ; then Wo is the
observability Gramian.

(ii) Then as in [5, p. 318] we define Rx to be the bounded linear operator on H

determined by the weakly convergent integral

Rx =
∫ ∞

x

e−tABCe−tA dt. (2.2)

(iii) Then � satisfying (i) is said to be balanced if Wc = Wo and ker(Wc) = 0; see
[30, p. 499].

(iv) Also, � satisfying (i) is said to be (2, 2) admissible if Wc and Wo are trace
class, or equivalently �0 and �0 are Hilbert-Schmidt; see [5].

(v) We introduce the scattering function φ(t) = Ce−tAB and the shifted
scattering function φ(x)(t) = φ(t + 2x) for x, t > 0.

(vi) (Sectorial operator). For 0 < θ ≤ π , we introduce the sector

Sθ = {z ∈ C \ {0} : | arg z| < θ}.

A closed and densely defined linear operator −A is sectorial [9, 15] if there
exists π/2 < θ < π such that Sθ is contained in the resolvent set of −A and
|λ|‖(λI + A)−1‖L(H) ≤ M for all λ ∈ Sθ . Let D(A) be the domain of A and
D(A∞) = ∩∞n=0D(An). See [15, p. 37].

(vii) For π/2 < δ < π , we introduce Xδ = {ζ ∈ Sδ : −ζ ∈ Sδ} which is an open
set, symmetrical about iR and bounded by lines passing through 0.

Theorem 2.3 Let (−A,B,C) be a linear system such that ‖e−t0A‖L(H) < 1
for some t0 > 0, and that B and C are Hilbert–Schmidt operators such that
‖B‖L2(H0;H)‖C‖L2(H ;H0)

≤ 1. Suppose further that −A is sectorial on Sθ for some
π/2 < θ < π .

(i) Then (−A,B,C) is (2, 2)-admissible, so the trace class operators (Rx)x>0
give the solution to Lyapunov’s equation (1.2) for x > 0 that satisfies the
initial condition (1.4), and the solution to (1.2) with (1.4) is unique.

(ii) The function τ (x) = det(I + Rx) is differentiable for x ∈ (0,∞).
(iii) Then Rz extends to a holomorphic function that satisfies (1.2) on Sθ−π/2, and

Rz → 0 as z →∞ in Sθ−ε−π/2 for all 0 < ε < θ − π/2.

Proof

(i) Since BC ∈ L1(H), the integrand of (2.2) takes values in L1(H), and we can
apply Proposition 2.1(iii) to X = BC.
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(ii) The Fredholm determinantR �→ det(I+R) is a continuous function onL1(H).
Also the integral

Rx =
∫ ∞

x

e−tABCe−tA dt

belongs to D(L) and gives a differentiable function of x > 0 with values in
L1(H).

(iii) By classical results of Hille [15, p. 34], (e−zA)z∈Sθ−π/2 defines an analytic
semigroup on Sθ−π/2, bounded on Sν for all 0 < ν < θ−π/2, so we can define
Rz = e−zAR0e

−zA and obtain an analytic solution to Lyapunov’s equation. For
all 0 < ε < θ−π/2, there exists M ′

ε such that ‖e−zA‖L(H) ≤ M ′
ε for all z ∈ Sδ

where δ = θ − ε − π/2. Now for z ∈ Sδ/2, we write z = x/2 + (x/2 + iy)

with x/2 + iy ∈ Sδ and use the bound

‖e−zA‖L(H) ≤ ‖e−xA/2‖L(H)‖e−(x/2+iy)A‖L(H)

to obtain ‖e−zA‖L(H) ≤ M ′2
ε ‖e−t0A‖x/(4t0)L(H)

, so ‖e−zA‖L(H) → 0 exponentially
fast as z → ∞ in the sector Sδ/2. Hence Rz is holomorphic and bounded on
S(θ−ε−π/2) and by (2.2), Rz → 0 as z →∞ in S(θ−ε−π/2)/2. 	


Example

(i) Let ! = −d2/dx2 be the usual Laplace operator which is essentially self-
adjoint and non-negative on C∞

c (R;C) in L2(R;C). We introduce A =√
I +! which is given by the Fourier multiplier FAf (ξ) = √

1+ ξ2Ff (ξ).
Then (e−zA) and (e−zA2

) give bounded holomorphic semigroups on H , as in
Theorem 2.3, on the right half-plane {z ∈ C : #z ≥ 0}, which is the closure
of Sπ/2. On the imaginary axis, we have unitary groups (eitA) and (e−itA2

). By
classical results from wave equations, we can write eitA + e−itA = 2 cos(tA)

where u(x, t) = cos(tA)f (x) for f ∈ C∞
c (R;C) is given by

u(x, t) = 1

2

(
f (x + t)+ f (x − t)

)+ t

2

∫ x+t

x−t

f (y)
J ′0(
√
t2 − (x − s)2)

√
t2 − (x − s)2

ds,

where J0 is Bessel’s function of the first kind of order zero, and u satisfies

∂2u

∂x2
− ∂2u

∂t2
= u(x, t), u(x, 0) = f (x),

∂u

∂t
(x, 0) = 0.

See [15, p. 121]. Note that (exp(t (iA)2j−1)) gives a unitary group on H

for j = 0, 1, 2, . . . . This can be used to deform the linear system in the
sense of Proposition 2.5(iii). Unitary deformation groups for tau functions are
considered in [26]
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(ii) In section 4 of [5], we introduced linear systems to describe Schrödinger’s
equation when the potential is smooth and localized. In [17], the authors obtain
detailed results about the corresponding Hankel operator.

Definition 2.4 (Block Hankel Operators)

(i) Say that � ∈ L(H) is block Hankel if there exists 1 ≤ m < ∞ such that
� is unitarily equivalent to the block matrix [Aj+k−2]∞j,k=1 on �2(Cm) where
Aj ∈ C

m×m for j = 0, 1, . . . .
(ii) Let (−A,B,C) be a (2, 2) admissible linear system with input and output

space H0, where the dimension of H0 over C is m < ∞. Then m is the number
of outputs of the system, and systems with finite m > 1 are known as MIMO
for multiple input, multiple output, and give rise to block Hankel operators
with �(x) = Ce−xAB.

(iii) The Gelfand–Levitan integral equation for (−A,B,C) as in (ii) is (1.6), where
T (x, y) and �(x + y) are m×m matrices with scalar entries, and μ ∈ C. We
proceed to obtain a solution.

Proposition 2.5

(i) In the notation of Theorem 2.3, there exists x0 > 0 such that

Tμ(x, y) = −Ce−xA(I + μRx)
−1e−yAB

satisfies the integral equation (1.6) for x0 < x < y and |μ| < 1.
(ii) The determinant satisfies det(I + μRx) = det(I + μ��(x)

) and

μ traceTμ(x, x) = d

dx
log det(I + μRx).

(iii) Suppose that t �→ U(t) is a continuous function [0, 1] → L(H) such that
U(t)A = AU(t) and ‖U(t)‖L(H) ≤ 1. Then there is a family of (2, 2)
admissible linear systems

�(t) = (−A,U(t)B,CU(t)) (t ∈ [0, 1]);

the corresponding tau function τ (x, t) is continuous for (x, t) ∈ (0,∞) ×
[0, 1].

Proof

(i) We choose x0 so large that eδx0 ≥ Mδ/2δ, then by Theorem 2.3(iii), we have
|μ|‖Rx‖L(H) < 1 for x > x0, so I + μRx is invertible. Substituting Tμ(x, y)

into the integral equation (1.6), we obtain

Ce−(x+y)AB − Ce−xA(I + μRx)
−1e−yAB

− μCe−xA(I + μRx)
−1
∫ ∞

x

e−zABCe−zA dze−yAB



Tau Functions Associated with Linear Systems 73

= Ce−(x+y)AB − Ce−xA(I + μRx)
−1e−yAB

− μCe−xA(I + μRx)
−1Rxe

−yAB

= 0.

(ii) As in (1.3), the operator �x : L2(0,∞) → H is Hilbert–Schmidt; likewise
�x : L2(0,∞) → H is Hilbert–Schmidt; so (−A,B,C) is (2, 2)-admissible.
Hence ��(x)

= �
†
x�x and Rx = �x�

†
x are trace class, (I + μRx) is a

holomorphic function of x on some sector Sδ as in Theorem 2.3 and

det(I + μRx) = det(I + μ�x�
†
x) = det(I + μ�†

x�x) = det(I + μ��(x)
).

By the Riesz functional calculus, (I + μRx)
−1 is meromorphic for x in some

Sδ . Correcting a typographic error in [5, p. 324], we rearrange terms and
calculate the derivative

μTμ(x, x) = −μtrace
(
Ce−xA(I + μRx)

−1e−xAB
)

= −μtrace
(
(I + μRx)

−1e−xABCe−xA
)

= μtrace
(
(I + μRx)

−1 dRx

dx

)

= d

dx
trace log(I + μRx).

This identity is proved for |μ| < 1 and extends by analytic continuation to the
maximal domain of Tμ(x, x).

(iii) Since A commutes with U(t), the domain D(A) is invariant under U(t), and
the multiplications B �→ U(t)B and C �→ CU(t) preserve the hypotheses of
Theorem 2.3, so (−A,U(t)B,CU(t)) is (2, 2) admissible. By commutativity,
we have τ (x, t) = det(I + U(t)RxU(t)), which depends continuously on
(x, t). 	


3 The Baker–Akhiezer Function of an Admissible Linear
System

In this section, we consider the Darboux addition rule for potentials and analyze
the transformation (−A,B,C) �→ (−A,B,−C) and the effect on the ratios and
derivatives of τ functions. This generalizes [10, section 3.4], and allows us to
introduce a version of the Baker–Akhiezer function for a family of linear systems
with properties that are similar to the classical case, as presented in [3] and [22].
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Definition 3.1 (Baker–Akhiezer Function)

(i) Let (−A,B,C) be as in Theorem 2.3, and let

�ζ = (−A, (ζ I + A)(ζ I − A)−1B,C) (ζ ∈ C ∪ {∞} \ Spec(A))

so that �ζ defines a (2, 2) admissible linear systems for ζ in an open subset
of C ∪ {∞} which includes {ζ ∈ C : −ζ ∈ Sθ } for some π/2 < θ < π . We
identify �∞ with (−A,B,C), and �0 with (−A,B,−C).

(ii) Let τζ be the tau function of �ζ , and let the Baker–Akhiezer function for the
family of linear systems be

ψζ (x) = τζ (x)

τ∞(x)
exp

(
ζx
)
. (3.1)

(iii) Let τ ∗ζ (x) = τζ̄ (x̄) as in Schwarz’s reflection principle, and let

�∗
ζ = (−A†, C†, B†(ζ I + A†)(ζ I − A†)−1) (ζ ∈ C ∪ {∞} \ Spec(A†))

so �ζ �→ �∗
ζ is an involution, and �∗

ζ has tau function τ ∗.

The following result introduces a family of solutions of Schrödinger equation
corresponding to the �ζ with an addition rule in the style of Darboux.

Proposition 3.2 Let (−A,B,C) be as in Theorem 2.3.

(i) Then for −ζ ∈ Sθ , the linear system �ζ is also (2, 2) admissible, and the
Baker–Akhiezer function satisfies

− d2

dx2 ψζ (x)+ u∞(x)ψζ (x) = −ζ 2ψζ (x). (3.2)

(ii) There exist hj ∈ C∞((0,∞);C) such that there is an asymptotic expansion

ψζ (x) $ eζx
(

1 + h1(x)

ζ
+ h2(x)

ζ 2 + . . .
)

as ζ → ±i∞, and the expansion is uniform for x in compact subsets of (0,∞).

Proof

(i) For all ζ ∈ C \ Spec(A), there exists x0(ζ ) such that

‖(ζ I + A)(ζ I − A)−1Rx‖L1(H) < 1

for all x > x0(ζ ), so that τζ (x) is continuously differentiable and non-zero as a
function of x ∈ (x0(ζ ),∞). In particular, suppose that #ζ < 0, then −ζ ∈ Sθ
so ζ I − A is invertible. Using the R function for �ζ , we write
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τζ (x)

τ∞(x)
= det

(
I + (ζ I + A)(ζ I − A)−1Rx

)

det
(
I + Rx

)

= det
(
I + (ζ I − A)−1((ζ I − A)Rx + ARx + RxA)

)

det
(
I + Rx

)

= det
(
I + Rx + (ζ I − A)−1(ARx + RxA)

)

det
(
I + Rx

) (3.3)

so that when ARx+RxA has rank one, the perturbing term (ζ I −A)−1(ARx+
RxA) has rank one; continuing we find

τζ (x)

τ∞(x)
= det

(
I + (ζ I − A)−1e−xABCe−xA(I + Rx)

−1)

= det
(
I + Ce−xA(I + Rx)

−1(ζ I − A)−1e−xAB
)

= 1 + Ce−xA(I + Rx)
−1(ζ I − A)−1e−xAB,

since B : C→ H and C : H → C have rank one. Hence

ψζ (x) = τζ (x)

τ∞(x)
exp

(
ζx
)

= exp
(
ζx
)+ Ce−xA(I + Rx)

−1(ζ I − A)−1e−xAB exp
(
ζ
)

= exp
(
ζx
)−

∫ ∞

x

Ce−xA(I + Rx)
−1e−yAB exp

(
ζy
)
dy

= exp
(
ζx
)+

∫ ∞

x

T (x, y) exp
(
ζy
)
dy.

Here T satisfies the Gelfand–Levitan equation, and by integrating by parts, we
see that

∂2T

∂x2 − ∂2T

∂y2 = u(x)T (x, y)

where u(x) = −2 d2

dx2 log τ (x). Then by integrating by parts, we see that ψζ

satisfies Schrödinger’s equation.
The solutions of the differential equation depend analytically on ζ at those

points where the potential depends analytically on ζ ; note that ζ �→ τζ (x) is
holomorphic and non zero for ‖Rx‖ < 1 and −ζ ∈ Sθ . Then we continue the
solutions analytically to all −ζ in the sector Sθ , on which ψζ (x) is holomorphic
as a function of ζ for x > 0.

(ii) Observe that Xθ = Sθ ∩ (−Sθ ) contains iR \ {0}. For ζ ∈ Sθ ∩ (−Sθ ), by (i)
there exist solutions ψζ (x) and ψ−ζ (x) to (3.2). In particular, ψik and ψ−ik(x)
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are solutions for k > 0. We integrate by parts repeatedly

e−xA(ζ I − A)−1 =e−xA

∫ ∞

0
eζse−sA ds

=e−xA

ζ
+ Ae−xA

ζ 2
+ · · · + Ak−1e−xA

ζ k

+
∫ ∞

0

Ake−xA

ζ k
eζse−sA ds,

where the integral converges by the hypothesis of Theorem 2.3. Also, (e−zA) is
an analytic semigroup in the sector Sθ−π/2, so D(Aj ) is a dense linear subspace
of H for all j = 1, 2, . . . and Aje−xA ∈ L(H) and by Cauchy’s estimates
there exists C > 0 such that ‖Aje−xA‖L(H) ≤ Cj !/xj for all x > 0. So we can
generate an asymptotic expansion of (3.3) with terms

hj (x) = Ce−xA(I + Rx)
−1Aj−1e−xAB

which are bounded on compact subsets of (0,∞). 	

Definition 3.3 (Darboux Transforms) Let (−A,B,C) be a (2, 2) admissible
linear system with tau function τ∞(x;μ) = det(I + μRx). Define the Dar-
boux transform of (−A,B,C) to be (−A,B,−C) with tau function transform
τ0(x;μ) = det(I − μRx). Let

v = 1

μ

d

dx
log

τ∞
τ0

, w = 1

μ

d

dx
log

(
τ0τ∞

)
,

u∞ = − 2

μ2

d2

dx2 log τ∞, u0 = − 2

μ2

d2

dx2 log τ0.

In the following result, we show how products and quotients of τ functions can be
linked by the Gelfand–Levitan equation for 2× 2 matrices, and satisfy the identities
usually associated with Darboux transforms in the theory of integrable systems. See
[23].

Theorem 3.4 Let (−A,B,C) be a (2, 2)-admissible linear system with input and
output spaces C, and let φ(x) = Ce−xAB.

(i) Then there exists δ > 0 such that for all μ ∈ C such that |μ| < δ, the Gelfand-
Levitan equation (1.6) with

T (x, y) =
[
W(x, y) V (x, y)

V (x, y) W(x, y)

]

, �(x + y) =
[

0 φ(x + y)

φ(x + y) 0

]
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has a solution such that

W(x, x) = 1

2μ

d

dx
log

(
τ∞(x;μ)τ0(x;μ)

)
, V (x, x) = 1

2μ

d

dx
log

τ∞(x;μ)

τ0(x;μ)

and

1

2μ

d

dx
W(x, x) = −V (x, x)2;

(ii) also Toda’s equation holds in the form

τ ′′0 τ∞ − 2τ ′0τ ′∞ + τ0τ
′′∞ = 0. (3.4)

Proof

(i) Let

T∞(x, y) = −Ce−xA(I + μRx)
−1e−yAB,

T0(x, y) = Ce−xA(I − μRx)
−1e−yAB

and

�(x) =
[

0 φ(x)

φ(x) 0

]

.

Now let

T (x, y) = 1

2

[
T∞ + T0 T∞ − T0

T∞ − T0 T∞ + T0

]

so that

T (x, y) = −
[
C 0
0 C

] [
e−xA 0

0 e−xA

] [
I μRx

μRx I

]−1 [
e−yA 0

0 e−yA

] [
0 B

B 0

]

hence T satisfies the Gelfand–Levitan equation (1.6).
(ii) As in Proposition 2.5,

T∞(x, x) = 1

μ

d

dx
log τ∞(x), T0(x, x) = 1

μ

d

dx
log τ0(x);

hence (3.4) is equivalent to the condition

d

dx
T0(x, x)+ μ

(
T0(x, x)− T∞(x, x)

)2 + d

dx
T∞(x, x) = 0, (3.5)
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which we now verify. The left-hand side of (3.5) equals

Ce−xA
(
− A(I − μRx)

−1 − (I − μRx)
−1μ(ARx + RxA)(I − μRx)

−1

− (I − μRx)
−1A

)
e−xAB

+ Ce−xA
(
(I − μRx)

−1 + (I + μRx)
−1
)
e−xAμBCe−xA

×
(
(I − μRx)

−1 + (I + μRx)
−1
)
e−xA

+ Ce−xA
(
A(I + μRx)

−1 − (I + μRx)
−1μ(ARx + RxA)(I + μRx)

−1

+ (I + μRx)
−1A

)
e−xAB. (3.6)

All of the terms begin with Ce−xA and end with e−xAB, and we can replace
e−xAμBCe−xA by μ(ARx + RxA) to obtain

(3.6) = Ce−xA
(
− 2(I − μRx)

−1A(I − μRx)
−1

+ 4(I − μ2R2
x)
−1μ(ARx + RxA)(I − μ2R2

x)
−1

+ 2(I + μRx)
−1A(I + μRx)

−1
)
e−xAB

= 0.

This proves (3.5), and one can easily check that (3.4) is equivalent to

u0(x) = 1

μ

dv

dx
+ v(x)2, v(x)2 = − 1

μ

dw

dx
.

The entries of T satisfy the pair of coupled integral equations

0 = W(x, y)+ μ

∫ ∞

x

V (x, s)φ(s + y) ds

0 = V (x, y)+ φ(x + y)+ μ

∫ ∞

x

W(x, s)φ(s + y) ds;

so W satisfies

0 = −W(x, z)+ μ

∫ ∞

x

φ(x + y)φ(y + z) dy

+ μ2
∫ ∞

x

W(x, s)

∫ ∞

x

φ(s + y)φ(y + z) dyds,

which explains how μ2�2
φ enters into several determinant formulas [37]. 	
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Definition 3.5 (Darboux Addition)

(i) For −ζ ∈ Sθ ∪ {0} we define the Darboux addition rule on (2, 2) admissible
linear systems by

Mζ : (−A,B,C) �→ (−A, (ζ I + A)(ζ I − A)−1B,C)

and correspondingly on potentials by

u∞ �→ uζ = u∞ − 2(logψζ )
′′.

(ii) Let Wr(ϕ,ψ) be the Wronskian of ψ, ϕ ∈ C1((0,∞);C).

Corollary 3.6 The set {Mζ , (ζ ∈ Xθ),M0,M∞ = I } generates a group such that
M2

0 = I , MζM−ζ = I and MζMη corresponds to adding

−2
d2

dx2 log Wr(ψζ , ψη)

to the potential.

Proof The definition is consistent with [10, p. 484]. In particular, ψ0(x) =
τ0(x)/τ∞(x), and u0(x) = u∞(x)− 2 d2

dx2 logψ0(x), which is consistent with (3.5).
For ζ1 �= ζ2, let "(x) = Wr(ψζ1 , ψζ2)/ψζ2 , and observe that

" ′′ = (
ζ 2

2 + u∞ − 2(logψζ1)
′′)".

This gives the basic composition rule for Mζ2Mζ1 . The other statements follow from
Proposition 3.2 and Theorem 3.4. See [24]. 	


4 The State Ring Associated with an Admissible Linear
System

Gelfand and Dikii [11] considered the algebra Au = C[u, u′, u′′, . . . ] of complex
polynomials in a smooth potential u and its derivatives. They showed that if u

satisfies the stationary higher order KdV equations (5.1), then Au is a Noetherian
ring [2] and the associated Schrödinger equation is integrable by quadratures; see
[7]. In this section, we introduce an analogue A� for an admissible linear system.

We develop a calculus for Rx which is the counterpart of Pöppe’s functional
calculus for Hankel operators from [24, 31, 32]. As we see in other papers, our
theory of state rings has wider scope for generalization.
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Definition 4.1 (Differential Rings)

(1) Let R be a ring with ideal J , and let ∂ : R → R be a derivation. Then
RJ = {r ∈ R : ∂(r) ∈ J } gives a subring of R, the ring of constants relative
to J . When R is an algebra over C and J = (0), we call R0 the constants; see
[33].

(2) (State ring of a linear system). Let (−A,B,C) be a linear system such that
A ∈ L(H). Suppose that:

(i) S is a differential subring of C∞((0,∞);L(H));
(ii) I,A and BC are constant elements of S;

(iii) e−xA, Rx and Fx = (I + Rx)
−1 belong to S.

Then S is a state ring for (−A,B,C).

Lemma 4.2 Suppose that (−A,B,C) is a linear system with A ∈ L(H) and that
Rx gives a solution of Lyapunov’s equation (1.2) such that I + Rx is invertible
for x > 0 with inverse Fx . Then the free associative algebra S generated by
I, R0, A, F0, e

−xA,Rx and Fx is a state ring for (−A,B,C) on (0,∞). For all
t > 0, there exists a ring homomorphism St : S → S given by St : G(x) �→
G(x + t) such that St commutes with d/dx.

Proof We can regard S as a subring of Cb((0,∞),L(H))), so the multiplication is
well defined. Then we note that BC = AR0 + R0A belongs to S, as required. We
also note that (d/dx)e−xA = −Ae−xA and that Lyapunov’s equation (1.2) gives

d

dx
(I + Rx)

−1 = (I + Rx)
−1(ARx + RxA)(I + Rx)

−1,

which implies

dFx

dx
= AFx + FxA− 2FxAFx,

with the initial condition

AF0 + F0A− 2F0AF0 = F0BCF0.

Hence S is a differential ring.
We can map I �→ I , e−xA �→ e−(x+t )A, R0 �→ e−tAR0e

−tA, Rx �→ e−tARxe
−tA

and Fx �→ (I + e−tARxe
−tA)−1, and thus produce a ring homomorphism G(x) �→

G(x + t) which satisfies

(d/dx)StG(x) = G′(x + t) = St (d/dx)G(x). 	
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Definition 4.3 (Products and Brackets)

(i) Given a state ring S for (−A,B,C), let B be any differential ring of functions
from (0,∞) → L(H0). Let

A� = span
C
{An1, An1FxA

n2 . . . FxA
nr : nj ∈ N}.

(ii) On S we introduce the associative product ∗ by

P ∗Q = P(AF + FA− 2FAF)Q (P,Q ∈ S),

which is distributive over the standard addition, and the derivation ∂ : S → S
by

∂P = A(I − 2F)P + dP

dx
+ P(I − 2F)A (P ∈ S). (4.1)

(iii) Let ! · " : S → B be the linear map

!Y " = Ce−xAFxYFxe
−xAB (Y ∈ S),

so that x �→ !Y " is a differentiable function (x0,∞) → L(H0).

For x0 ≥ 0 and 0 < φ < π , let Sx0
δ be the translated sector

S
x0
δ = {z = x0 + w : w ∈ C \ {0}; | argw| < δ}

and let H∞(S
x0
δ ) the bounded holomorphic complex functions on S

x0
δ . Then let

H∞∞ = ∪x0>0H
∞(S

x0
δ ) be the algebra of complex functions which are bounded on

some translated sector Sx0
δ , with the usual pointwise multiplication.

Theorem 4.4 Let (−A,B,C) be a (2, 2)-admissible linear system with H0 = C as
in Theorem 2.3, so (e−zA) for z ∈ S0

φ is a bounded holomorphic semigroup on H .
Let �0 = {P ∈ A� : !P " = 0}.

(i) Then (A�, ∗, ∂) is a differential ring with bracket !·";
(ii) there is a homomorphism of differential rings ! · " : (A�, ∗, ∂) →

(H∞∞ , ·, d/dz);
(iii) �0 is a differential ideal in (A�, ∗, ∂) such that A�/�0 is a commutative

differential ring, and an integral domain.

Proof

(i) We can multiply elements in S by concatenating words and taking linear
combinations. Since all words in A� begin and end with A, we obtain
words of the required form, hence A� is a subring of S. To differentiate
a word in A� we add words in which we successively replace each Fx by
AFx + FxA− 2FxAFx , giving a linear combination of words of the required
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form. The basic observation is that dF/dx = AF + FA− 2FAF , so one can
check that

∂(P ∗Q) = (∂P ) ∗Q+ P ∗ (∂Q); (4.2)

hence (S, ∗, ∂) is a differential ring with differential subring (A�, ∗, ∂).
(ii) Now we verify that there is a homomorphism of differential rings

(A�, ∗, ∂) → (B, ·, d/dx) given by P �→ !P ". From the definition of
Rx , we have ARx + RxA = e−xABCe−xA, and hence

Fxe
−xABCe−xAFx = AFx + FxA− 2FxAFx,

which implies

⌊
P
⌋⌊

Q
⌋ = Ce−xAFxPFxe

−xABCe−xAFxQFxe
−xAB

= Ce−xAFxP (AFx + FxA− 2FxAFx)QFxe
−xAB

= ⌊
P(AFx + FxA− 2FxAFx)Q

⌋

= !P ∗Q".

Moreover, the first and last terms in !P " have derivatives

d

dx
Ce−xAFx = Ce−xAFxA(I − 2Fx),

d

dx
Fxe

−xAB = (I − 2Fx)AFxe
−xAB,

so the bracket operation satisfies

d

dx

⌊
P
⌋ =

⌊
A(I − 2Fx)P + dP

dx
+ P(I − 2Fx)A

⌋
= !∂P ". (4.3)

In this case A is possibly unbounded as an operator, so we use the holomorphic
semigroup to ensure that products (4.1) and brackets (4.2) are well defined.
We observe that A� has a grading A� = ⊕∞

n=1An, where An is the span of
the elements that have total degree n when viewed as products of A and F .
For Xn ∈ An and Ym ∈ Am, we have Xn ∗ Ym ∈ An+m+2 ⊕ An+m+3 and
∂Xn ∈ An+1 ⊕ An+2.

Also we have Ake−zA ∈ L(H) for all z ∈ S0
φ and ‖Ake−zA‖L(H) → 0

as z → ∞ in S0
φ ; hence RzA

k → 0 and AkRz → 0 in L(H) as z → ∞
in S0

φ . Hence there exists an increasing positive sequence (xk)
∞
k=0 such that

AkFz−Ak ∈ L(H) for all z ∈ S
xk
φ and AkFz−Ak → 0 in L(H) as z →∞ in

S
xk
φ . Let Xn ∈ An and consider a typical summand AFzA

kFz . . . A in Xn; we

replace each factor like AkFz by the sum of Ak(Fz − I) and Ak where k ≤ n;
then we observe that there in an initial factor Ce−zA and a final factor e−zAB

in !Xn"; hence !Xn" determines an element of H∞(S
xn
φ ).
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We can identify H∞∞ with the algebraic direct limit

H∞∞ = lim
n→∞H∞(S

x0+n
φ ).

By the principle of isolated zeros, the multiplication on H∞∞ is consistently
defined, and H∞∞ is an integral domain. Now each f ∈ H∞∞ gives f ∈
H∞(S

x0
φ ) so f ′ ∈ H∞(S

x0+1
φ ) by Cauchy’s estimates, so f ′ ∈ H∞∞ . From

(i) we deduce that

! · " : ⊕∞
n=1An → ∪∞n=1H

∞(S
xn
φ )

is well-defined and the bracket is multiplicative with respect to ∗, and behaves
naturally with respect to differentiation.

(iii) We check that ! · " is commutative on (A�, ∗, ∂), by computing

!P ∗Q" = trace
(
Ce−xAFPFe−xABCe−xAFQFe−xAB

)

= trace
(
Ce−xAFQFe−xABCe−xAFPFe−xAB

)

= !Q ∗ P ".

Hence �0 contains all the commutators P ∗Q −Q ∗ P , and �0 is the kernel
of the homomorphism ! · ", hence is an ideal for ∗. Also, we observe that for
all Q ∈ �0, we have ∂Q ∈ �0 since !∂Q" = (d/dx)!Q" = 0. Hence �0
is a differential ideal which contains the commutator subspace of (A�, ∗), so
A�/�0 is a commutative algebra. Also, ∂ determines a unique derivation ∂̄ on
A�/�0 by ∂̄Q = ∂Q + �0 for all Q ∈ A�; hence A�/�0 is a differential
algebra. We can identifyA�/�0 with a subalgebra of H∞∞ , which is an integral
domain. 	


Remark 4.5 Pöppe [31] introduced a linear functional & . ' on Fredholm kernels
K(x, y) on L2(0,∞) by &K' = K(0, 0). In particular, let K,G,H,L be integral
operators on L2(0,∞) that have smooth kernels of compact support, let � = �φ(x)

have kernel φ(s+ t+2x), let �′ = d
dx

� and G = �ψ(x)
be another Hankel operator;

then the trace satisfies

&�' = − d

dx
trace�, (4.4)

&�KG' = −1

2

d

dx
trace�KG, (4.5)

&(I + �)−1�' = −trace
(
(I + �)−1�′

)
, (4.6)

&K�'&GL' = −1

2
&K(�′G+ �G′)L', (4.7)
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where (4.7) is known as the product formula. The easiest way to prove (4.4)–(4.7)
is to observe that �′G+ �G′ is the integral operator with kernel −2φ(x)(s)ψ(x)(t),
which has rank one. These ideas were subsequently revived by McKean [24], and are
implicit in some results of [37]. Our formulas (4.2) and (4.3) incorporate a similar
idea, and are the basis of the proof of Theorem 4.4. The results we obtain appear to
be more general than those of Pöppe, and extend to periodic linear systems [6].

For the remainder of this section, we let A be a n × n complex matrix with
eigenvalues λj (j = 1, . . . ,m) with geometric multiplicity nj such that λj+λk �= 0
for all j, k ∈ {1, . . . ,m}; let K = C(e−λ1t , . . . , e−λmt , t). Also, let B ∈ C

n×1

and C ∈ C
1×n. The formula (4.9) resembles the expressions used to obtain soliton

solutions of KdV, as in [19, (14.12.11)] and [16]. In [17, (6.25)], there is a discussion
of how the scattering data evolve under the time evolution associated with the KdV
flow.

Proposition 4.6

(i) There exists a solution Rt to Lyapunov’s equation (1.2) with R0 = BC, such
that the entries of Rt belong to K, and τ (t) ∈ K;

(ii) φ ∈ K satisfies a linear differential equation with constant coefficients.
(iii) Suppose further that all the eigenvalues of A are simple. Then there exists an

invertible matrix S such that

S−1B = (bj )
n
j=1 ∈ C

n×1, CS = (cj )
n
j=1 ∈ C

1×n

and the tau function is given by

τ (t) =1 +
n∑

j=1

bjcj e
−2λj t

2λj

+
∑

(j,k),(m,p):j �=m;k �=p

(−1)j+k+m+p bjbmckcpe
−(λj+λk+λm+λp)t

(λj + λm)(λk + λp)
+ . . .

+
n∏

j=1

bj cj

2λj

∏

1≤j<k≤n

(λj − λk)
2

(λj + λk)2 e
−2

∑n
j=1 λj t .

Proof

(i) By the hypothesis, we can introduce a chain of circles C that go once round
each λj in the positive sense and have all the points−λk in their exterior. Then
by [4], the matrix

R0 = −1

2πi

∫

C
(A+ λI)−1BC(A− λI)−1dλ



Tau Functions Associated with Linear Systems 85

gives a solution to Sylvester’s equation in the form −AR0 −R0A = −BC. To
see this, one considers (A + λI)R0 + R0(A − λI) and then uses the calculus
of residues. By the Riesz functional calculus, we also have

e−tA = 1

2πi

∫

C
(
λI − A

)−1
e−tλdλ;

hence by Cauchy’s residue theorem, there exist complex polynomials pj and
qj , and integers mj ≥ 0 such that

e−tA =
m∑

j=1

qj (t)e
−tλj pj (A), (4.8)

where qj (t) is constant if the corresponding eigenvalue is simple. We let
Rt = e−tAR0e

−tA, which gives a solution to Lyapunov’s equation with
initial condition −BC. From (4.8), we see that all the entries of Rt belong
to K. By the Laplace expansion of the determinant, we see that all entries of
τ (t) = det(I + Rt) also belong to K.

(ii) We have φ(t) = Ce−tAB ∈ K by (4.8). Also, we introduce the characteristic
polynomial of (−A) by det(λI + A) = ∑n

j=0 ajλ
j . Then by the Cayley–

Hamilton theorem,
∑n

j=0 ajφ
(j)(t) = 0.

(iii) There exists an invertible matrix S such that SAS−1 is the n×n diagonal matrix
D = diag(λ1, . . . , λn), and we observe that

Rt =
[bj cke

−(λj+λk)t

λj + λk

]n

j,k=1

satisfies

d

dt
Rt = −[bjcke−(λj+λk)t ]nj,k=1, −DRt − RtD = −[bj cke−(λj+λk)t ]nj,k=1;

so Rt gives a solution of the Lyapunov equation with generator−D and initial
condition given by the rank-one matrix −S−1BCS = −[bjck]nj,k=1. Hence
the tau function is given by τ (t) = det(I + Rt ) for this matrix, and there is an
expansion

det
[
δjk + bj cke

−(λj+λk)x

λj + λk

]n

j,k=1
=

∑

σ⊆{1,...,n}
det
[bj cke

−λjx−λkx

λj + λk

]

j,k∈σ
(4.9)
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in which each subset σ of {1, . . . , n} of order #σ , contributes a minor indexed
by j, k ∈ σ . From the Cauchy determinant formula, we obtain the identity

det
[bj cke

−λjx−λkx

λj + λk

]

j,k∈σ =
∏

j∈σ

bj cj e
−2λjx

2λj

∏

j,k∈σ :j �=k

λj − λk

λj + λk
. 	


5 Diagonal Green’s Function and Stationary KdV Hierarchy

In this section, we obtain properties of A� in terms of the brackets of odd powers of
A. Thus we obtain some sufficient conditions for some differential equations to be
integrable. Throughout this section, we suppose that the hypotheses of Theorem 4.4
are in force, so that any finite set of elements of A� are holomorphic functions on a
some sector � containing (x0,∞) for some x0 ≥ 0. We do not generally require u to
be real valued, although in Theorem 5.4(iv) we impose this further condition so that
we can compare our results with the classical spectral theory for the Schrödinger
equation on the real line.

Definition 5.1 (Stationary KdV Hierarchy)

(i) Let f0 = 1 and f1 = (1/2)u. Then the KdV recursion formula is

4
d

dx
fm+1(x) = 4f1(x)

d

dx
fm(x)+4

d

dx

(
f1(x)fm(x)

)− d3

dx3 fm(x). (5.1)

(ii) If u satisfies fm = 0 for all m greater than or equal to some m0, then u satisfies
the stationary KdV hierarchy and is said to be an algebro-geometric (finite
gap) potential; see [10, 11, 13, 29, 35].

(iii) Suppose that u(x) → 0 as x → ∞, and likewise for all the partial derivatives
∂�u/∂x�; suppose further that fj (x) → 0 as x → 0 as x → ∞ for
all j = 1, 2, . . . . Then we say that the fj are homogeneous solutions of
the KdV hierarchy, and we consider cases where the system of differential
equations (5.1) has no arbitrary constants of integration.

Proposition 5.2 Let A� be as in Theorem 4.4]. Then

fm = (−1)m2!A2m−1", m = 1, 2, . . .

satisfies the stationary KdV hierarchy (Novikov’s equations), since

4
d

dx
!A2m+3" = d3

dx3 !A2m+1" + 8
( d

dx
!A"

)
!A2m+1"

+ 16!A"
( d

dx
!A2m+1"

)
. (5.2)
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Proof

(i) We have the basic identities

!A(I − 2F)A(I − 2F)X" = !A2X" − 2!A"!X"; (5.3)

−2A(AF + FA− 2FAF) = A(I − 2F)A(I − 2F)− A2 (5.4)

and their mirror images. Hence

d

dx
!A2m+1" = !A(I − 2F)A2m+1 + A2m+1(I − 2F)A",

so

d2

dx2 !A2m+1" = !A(I − 2F)A(I − 2F)A2m+1 + 2A(I − 2F)A2m+1(I − 2F)A

+ A2m+1(I − 2F)A(I − 2F)A

− 2A(AF + AF − 2FAF)A2m+1

− 2A2m+1(AF + FA− 2FAF)A"
= !A(I − 2F)A(I − 2F)A2m+1 + 2A(I − 2F)A2m+1(I − 2F)A

+ A2m+1(I − 2F)A(I − 2F)A

+ A(I − 2F)A(I − 2F)A2m+1 − A2m+3

+ A2m+1(I − 2F)A(I − 2F)A− A2m+3"

and by the basic identities (5.3) and (5.4)

d2

dx2
!A2m+1" = 2!A(I − 2F)A2m+1(I − 2F)A" − 2!A2m+3"

+ 2!A(I − 2F)A(I − 2F)A2m+1"
+ 2!A2m+1(I − 2F)A(I − 2F)A"

= 2!A(I − 2F)A2m+1(I − 2F)A" + 2!A2m+3"
− 4!A2m+1"!A" − 4!A"!A2m+1".

Now we differentiate the first summand of the final term

d

dx
2!A(I − 2F)A2m+1(I − 2F)A"

= 2!A(I − 2F)A(I − 2F)A2m+1(I − 2F)A"
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+ 2!A(I − 2F)A2m+1(I − 2F)A(I − 2F)A"
− 4!A(AF + FA− 2FAF)A2m+1(I − 2F)A"
− 4!A(I − 2F)A2m+1(AF + FA− 2FAF)A"

= 2!A(I − 2F)A(I − 2F)A2m+1(I − 2F)A"
+ 2!A(I − 2F)A2m+1(I − 2F)A(I − 2F)A"
+ 2!A(I − 2F)A(I − 2F)A2m+1(I − 2F)A"
− 2!A2m+3(I − 2F)A"
+ 2!A(I − 2F)A2m+1(I − 2F)A(I − 2F)A"
− 2!A(I − 2F)A2m+3"

thus we obtain

d2

dx2
!A2m+1" = 4!A(I − 2F)A(I − 2F)A2m+1(I − 2F)A"

+ 4!A(I − 2F)A2m+1(I − 2F)A(I − 2F)A"
− 2!A(I − 2F)A2m+3 + A2m+3(I − 2F)A"

= −8!A"!A2m+1(I − 2F)A" + 4!A2m+3(I − 2F)A"
− 8!A"!A(I − 2F)A2m+1"

+ 4!A(I − 2F)A2m+3" − 2
d

dx
!A2m+3"

= −8!A"!A(I − 2F)A2m+1 + A2m+1(I − 2F)A"

+ 4!A(I − 2F)A2m+3 + A2m+3(I − 2F)A" − 2
d

dx
!A2m+3"

= −8!A" d

dx
!A2m+1" + 2

d

dx
!A2m+3";

hence

d3

dx3 !A2m+1" = −8!A" d

dx
!A2m+1" + 4

d

dx
!A2m+3" − 8

d

dx

(
!A"!A2m+1"

)
;

which gives the stated result (5.2). 	
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Definition 5.3 (Diagonal Green’s Function) Let (−A,B,C) be as in Theo-
rem 2.3. Then the diagonal Green’s function is g0(x; ζ )/√ζ where

g0(x; ζ ) = (1/2)+ !A(ζ I − A2)−1". (5.5)

The notation g0(x; ζ ) is chosen to indicate a generating function and also the
diagonal of a Green’s function; now in Theorem 5.4(iv) we explain the latter
connection. Let C+ = {λ ∈ C : (λ > 0}.
Theorem 5.4 Let (−A,B,C) be as in Theorem 2.3.

(i) Then g0(x; ζ ) is bounded and continuously differentiable in x and has a unique
asymptotic expansion depending on the bracketed odd powers of A,

g0(x; ζ ) $ 1

2
+ !A"

ζ
+ !A3"

ζ 2 + !A5"
ζ 3 + . . . (ζ →−∞); (5.6)

(ii) g0(x; ζ ) satisfies Drach’s equation

d3g0

dx3 = 4(u+ ζ )
dg0

dx
+ 2

du

dx
g0 (x > x0; −ζ > ω); (5.7)

(iii) there exists x1 > 0 such that

ψ±(x, ζ ) =
√
g0(x,−ζ ) exp

(
∓√−ζ

∫ x

x1

dy

2g0(y; −ζ )

)
(5.8)

satisfies Schrödinger’s equation

−ψ ′′±(x; ζ )+ u(x)ψ±(x, ζ ) = ζψ±(x; ζ ) (x > x1, ζ > ω).

(iv) Suppose that u is a continuous real function that is bounded below, and that ψ±
from (iii) satisfy ψ+(x; ζ ) ∈ L2((0,∞);C) and ψ−(x; ζ ) ∈ L2((−∞, 0);C)

for all ζ ∈ C+. Then L = − d2

dx2 + u(x) defines an essentially self-adjoint

operator in L2(R;C), and the Green’s function G(x, y; ζ ) which represents
(ζ I − L)−1 has a diagonal that satisfies

G(x, x; ζ ) = g0(x; −ζ )√−ζ
.

Proof

(i) Let π − θ < argλ < θ , so λ and −λ both lie in Sθ , hence ζ = λ2 satisfies
2π − 2θ < arg ζ < 2θ , so ζ lies close to (−∞, 0). Then ζ I −A2 is invertible
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and |ζ |‖(ζ I − A2)−1‖L(H) ≤ M . The function

g0(x; ζ ) = 1

2
+Ce−xA(I +Rx)

−1A(ζ I −A2)−1(I +Rx)
−1e−xAB (x > 0)

is well defined by Theorem 2.3(iii).
To obtain the asymptotic expansion, we note that e−xA(I +Rx)

−1 and (I +
Rx)e

−xA involve the factor e−xA, where (e−zA) is a holomorphic semigroup
on Sθ−π/2. Hence A2j+1e−xA ∈ L(H) and by Cauchy’s estimates there exist
δ, x0,M0 > 0 such that ‖A2j+1e−xA‖L(H) ≤ M0(2j + 1)! for all x ≥ x0 > 0,
and ‖e−sA‖L(H) ≤ M0e

−sδ. As in Proposition 3.2, we have an asymptotic
expansion of

e−zA
(
(λI − A)−1 − (λI + A)−1)

= −e−zA

∫ ∞

0
eλse−sA ds − e−zA

∫ ∞

0
e−λse−sA ds

= e−zA
( A

λ2 +
A3

λ4 + · · · + A2j−1

λ2j

)

+ e−zA

λ2j+1

∫ ∞

0
A2j+1e−sA(esλ − e−λs) ds,

in which all the summands are in L(H) due to the factor e−zA for z ∈ Sθ−π/2.
Hence

Ce−xA(I+Rx)
−1
∫ ∞

0
A2j+1e−sA(esλ−e−sλ) ds(I+Rx)

−1e−xAB → 0 (x > 0)

as λ → i∞, or equivalently ζ →−∞, so

g0(x, ζ ) = Ce−xA(I + Rx)
−1
(A

ζ
+ A3

ζ 2 + · · · + A2j−1

ζ j

)
(I + Rx)

−1e−xAB

+ 1

2
+O

( 1

ζ j+1

)
.

This gives the asymptotic series; generally, the series is not convergent since
the implied constants in the term O(ζ−(j+1)) involve (2j + 1)!.

(ii) From Proposition 5.2 we have

4
d

dx

∞∑

m=0

!A2m+3"
ζm+1

= d3

dx3

∞∑

m=0

!A2m+1"
ζm+1

+ 8
( d

dx
!A"

) ∞∑

m=0

!A2m+1"
ζm+1

+ 16!A" d

dx

∞∑

m=0

!A2m+1"
ζm+1 ;

the required result follows on rearranging.
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Conversely, suppose that g0 as defined in (5.5) has an asymptotic expansion
with coefficients in C∞((0,∞);C) as ζ → −∞ and that g0(x; ζ ) satis-
fies (5.7). Then the coefficients of ζ−j satisfy a recurrence relation which is
equivalent to the systems of differential equations (5.1).

The asymptotic expansion is unique in the following sense. Suppose
momentarily that t �→ !Ae−tA2" is bounded and repeatedly differentiable on
(0,∞), with M,ω > 0 such that |!Ae−tA2"| ≤ Meωt for t > 0, and that there
is a Maclaurin expansion

!Ae−tA2" = !A" − !A3"t + !A5"t2

2! − · · · +O(tk)

on some neighbourhood of 0+. Then by Watson’s Lemma [36, p. 188], the
integral

∫ ∞

0
!Ae−tA2"etζ dt

has an asymptotic expansion as ζ → −∞, where the coefficients give the
formula (5.6).

(iii) Since (e−tA)t>0 is a contraction semigroup on H , we have D(A2) ⊆ D(A)

and ‖Af ‖2
H ≤ 2‖A2f ‖H ‖f ‖H for all f ∈ D(A2) by the Hardy-Littlewood-

Landau inequality [15, p. 65], so ‖ζf + A2f ‖H ≥ √
ζ‖Af ‖H for ζ > 0. We

deduce that A2 − 2A+ ζ I is invertible for ζ > 9 and generally for all ζ ∈ C

such that #ζ is sufficiently large. By Proposition 5.2 and the multiplicative
property of the bracket, we have

1

2g0(x; −ζ )
= 1 + ⌊2A(ζ I + A2 − 2A)−1⌋,

and we observe that g0(x; −ζ )→ 1/2 as x →∞, so there exists x1 > 0 such
that g0(x,−ζ ) > 0 for all x > x1 and the differential equation integrates to

g0
d2g0

dx2 − 1

2

(dg0

dx

)2 = 2(u− ζ )g2
0 +

ζ

2
. (5.9)

So one can define ψ(x; ζ ) as in (5.8), and then one verifies the differential
equation for ψ(x; ζ ) by using (5.9).

(iv) By a theorem of Weyl [18, 10.1.4], L is of limit point type at ±∞, and
there exist nontrivial solutions ψ±(x; ζ ) to −ψ ′′±(x; ζ ) + u(x)ψ±(x; ζ ) =
ζψ±(x; ζ ) such that ψ+(x; ζ ) ∈ L2(0,∞) and ψ−(x; ζ ) ∈ L2(−∞, 0),
and these are unique up to constant multiples. Also the inverse operator
(−ζ I + L)−1 may be represented as an integral operator in L2(R;C) with
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kernel G(x, y; ζ ), which has diagonal

G(x, x; ζ ) = ψ+(x; ζ )ψ−(x; ζ )
Wr(ψ+( ; ζ ), ψ−( ; ζ )) ((ζ > 0).

Given ψ∓ as in (iii), we can compute ψ+(x; ζ )ψ−(x; ζ ) = g0(x; −ζ ) and
their Wronskian is Wr(ψ+, ψ−) = √−ζ , hence the result. 	


Remark 5.5

(i) The importance of the diagonal Green’s function is emphasized in [14].
Gesztesy and Holden [13] obtain an asymptotic expansion of the diagonal
G(x, x; ζ ) which is consistent with Theorem 5.4(i). Under conditions dis-
cussed in Theorem 5.4, we have similar asymptotics as −ζ →∞.

(ii) Drach observed that one can start with the differential equation (5.7), and
produce the solutions (5.8); see [7]. He showed that Schrödinger’s equation
is integrable by quadratures, if and only if (5.7) can be integrated by quadra-
tures for typical values of ζ , and Brezhnev translated his results into the
modern theory of finite gap integration [7]. Having established integrability
of Schrödinger’s equation by quadratures, one can introduce the hyperelliptic
spectral curve E with g < ∞ and proceed to express the solution in terms of
the Baker–Akhiezer function. Hence one can integrate the equation and express
the solution in terms of the Riemann’s theta function on the Jacobian of E , as
in [3, 10, 13].

(iii) Kotani [21] has introduced the Baker–Akhiezer function and the τ function
via the Weyl m-function for a suitable class of potentials that included multi-
solitons and algebro-geometric potentials. There is a determinant formula for
τ corresponding to (1.5) and (3.1), and the theory develops themes from [35].

(iv) The deformation theory for rational differential equations is discussed in [20].

Acknowledgments GB thanks Henry McKean for helpful conversations. SLN thanks EPSRC for
financially supporting this research. The authors thank the referee for drawing attention to recent
literature.
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Groups of Orthogonal Matrices All
Orbits of Which Generate Lattices

Albrecht Böttcher

Abstract There are infinitely many finite groups of orthogonal matrices all orbits
of which, including those of irrational vectors, span lattices, that is, discrete additive
subgroups of the underlying Euclidean space. We show that, both up to isomorphism
and up to orthogonal similarity, exactly eight of these groups are irreducible: the
two trivial groups in one dimension, the cyclic groups of orders 3, 4, 6 in two
dimensions, and the quaternion, binary dihedral, binary tetrahedral groups in four
dimensions.
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1 Introduction and Main Results

Let k ≥ 1 and let G be a finite subgroup of O(k), that is, let G be a finite group
of orthogonal k × k matrices. Suppose the order of G is n ≥ 1 and write G =
{G1, . . . ,Gn}. We think of Rk as a column space. For f ∈ Rk , consider the k × n

matrix
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whose columns are the orbit of f under G. We denote by $(G, f ) ⊂ Rk the set of
all linear combinations of the columns of F with integer coefficients,

$(G, f ) = spanZ{G1f, . . . ,Gnf } = spanZ{Gf : G ∈ G}
= {Fx : x ∈ Zn} = FZn.

Inspired by Fukshansky et al. [2], we are interested in whether $(G, f ) is a lattice,
that is, a discrete additive subgroup of Rk . Since $(G, f ) is always a subgroup
of Rk , the problem is its discreteness. Clearly, whether $(G, f ) is a lattice or not
depends on both G and f . In contrast to [2], we here embark on the question whether
there are groups G for which $(G, f ) is a lattice independently of f . We call such
groups lattice generating. Thus, G is lattice generating if $(G, f ) is a lattice for
every f ∈ Rk.

Obviously, the two subgroups {1} and {1,−1} of O(1) are lattice generating. The
trivial group {I } ⊂ O(k) is also lattice generating. The interesting cases are k ≥ 2
and n ≥ 2.

For each Gj , we have

Gj$(G, f ) = Gj spanZ{Gf : G ∈ G} = spanZ{GjGf : G ∈ G}
= spanZ{Gf : G ∈ G} = $(G, f ).

It follows that if $(G, f ) is a nontrivial lattice for at least one f , then each Gj ∈ G
must leave this lattice invariant. This indicates that we have to search for lattice
generating groups within the crystallographic point groups.

The 10 crystallographic point groups in R2 are the rotation groups C� for � =
1, 2, 3, 4, 6 and the dihedral groups D� for � = 1, 2, 3, 4, 6. It is not difficult to
check that the 7 groups C1, C2, C3, C4, C6,D1,D2 are lattice generating, whereas
the groups D3,D4,D6 are not lattice generating. It can be shown that exactly half
of the 32 crystallographic point groups in R3 are lattice generating. The table lists
the 32 groups (in Schoenflies notation). The 16 groups in boldface are the lattice
generating groups, the other 16 groups are not lattice generating.

C1,C2,C3,C4,C6,

C1h,C2h,C3h,C4h,C6h,

C2v, C3v, C4v, C6v,

D2,D3,D4,D6,D2h,D3h,D4h,D6h,D2d ,D3d ,

S2,S4,S6,

T , Td , Th,O,Oh.

Thus, taking direct sums of these 2 + 7 + 16 = 25 lattice generating groups
we obtain lots of lattice generating groups in every dimension. However, the truly
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interesting groups are the irreducible ones. A finite group G ⊂ O(k) is said to be
irreducible if the members of the group do not share a common invariant subspace
except for {0} and all of Rk . Equivalently, G is irreducible if and only if spanR{Gf :
G ∈ G} = Rk for every f �= 0, which in turn is equivalent to the requirement
that the rank of the matrix (1) is k for every f �= 0. An irreducible group must in
particular have n ≥ k elements.

The direct sums of the 25 lattice generating groups we found do not yield
irreducible groups. But what about these groups themselves? It turns out that
C3, C4, C6 are the only irreducible lattice generating subgroups of O(2) and that
none of the 16 lattice generating subgroups of O(3) is irreducible (because each of
the latter leaves a rotation axis invariant). Tensor products behave better with regard
to irreducibility. Do we obtain more lattice generating groups in this way? Herewith
our first result.

Theorem 1.1 The tensor product of two irreducible and lattice generating groups
acting on at least two-dimensional spaces is never both irreducible and lattice
generating.

Note that the theorem is not true but becomes a triviality if one of the groups
acts on R1: we have {1} ⊗ G = G and {1,−1} ⊗ G = −G ∪ G. Clearly, −G ∪ G is
irreducible if and only if so is G, and −G ∪ G is lattice generating if and only if G
has this property. Thus, to search for irreducible lattice generating groups we have
to proceed differently.

All unitary irreducible representations of a finite abelian group are in U(1) and
hence all irreducible representations of a finite abelian group in O(k) must have
degree k ≤ 2. Consequently, if k ≥ 3, the O(k) does not contain irreducible
finite abelian groups and thus all the more does not contain irreducible and lattice
generating abelian groups. So we are left with non-abelian groups.

Theorem 1.2 If k ≥ 2 and a subgroup of O(k) is irreducible and lattice generating,
then it is actually contained in SO(k).

In particular, irreducible Coxeter (reflection) groups are never lattice generating.

Theorem 1.3 If k ≥ 3 is odd, then SO(k) does not contain irreducible lattice
generating groups.

Eventually we have the following.

Theorem 1.4 If k ≥ 6 is even, then there are no irreducible and lattice generating
groups in SO(k). If a subgroup of SO(4) is irreducible and lattice generating, then it
is either isomorphic to the quaternion group Q8 of order 8 or to the binary dihedral
group Q12 of order 12 or to the binary tetrahedral group 2T of order 24. The
groups Q8,Q12, 2T have faithful irreducible and lattice generating representations
in SO(4).

The quaternion group Q8 may be given by 〈a, b, c : a2 = b2 = c2 = abc〉. The
binary dihedral group Q12 also goes under the notations Dic12, Dic6, or Dic3. It has
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the group presentation

〈a, b, c : a3 = b2 = c2 = abc〉.

The binary tetrahedral group 2T is isomorphic to SL(2, 3), that is, to the 2 × 2
matrices over the field F3 with determinant 1. It is also isomorphic to the group of
units in the ring of Hurwitz integers. A group presentation of 2T is

〈a, b, c : a2 = b3 = c3 = abc〉.

We will construct faithful irreducible and lattice generating representations of these
three groups in SO(4) when proving Theorem 1.4.

Two subgroups G and H of SO(k) are said to be orthogonally similar (or simply
to be equivalent) if the there is an orthogonal matrix U such that G �→ UGU−1

is a bijection of G onto H. From the character tables of Q8, Q12, 2T which
can be found in [4, 6] it follows that the faithful irreducible representations of
Q8 and Q12 in SO(4) are all orthogonally similar but that 2T has exactly two
classes of orthogonally similar faithful representations in SO(4), which are called
the quaternionic and the complex representations. We here prove the following.

Theorem 1.5 The quaternionic representations of 2T in SO(4) are lattice generat-
ing whereas the complex representations of 2T in SO(4) are not lattice generating.

Thus, not only up to isomorphism but also up to orthogonal similarity, there exist
exactly eight irreducible and lattice generating groups.

The results on groups we will use in the following are all well known and can be
found in the basic literature. All we use from representation theory is some general
facts that are in the classic [7] or in the recent text [3], for example, and two character
tables of real representations which are explicitly given in [4, 6].

2 Proofs

We denote by (·, ·) and ‖·‖ the usual scalar product and norm in the Euclidean space
Rk . The transpose of a matrix A is denoted by A′.

Assertion (a) of the following theorem is Corollary 10.5 of [8]. The other
assertions of the theorem were established in [1] for k ∈ {2, 3} and subsequently
in [2] for general k ≥ 2. For the reader’s convenience, we include the proof from [2].

Theorem 2.1 Suppose n ≥ k ≥ 2. Let G ⊂ O(k) be a finite irreducible group of
order n, let f ∈ Rk \ {0}, and let F be the k × n matrix (1). Then the following
hold.

(a) The matrix FF ′ is a nonzero scalar multiple of the identity matrix,

FF ′ = γ I.
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(b) The set $(G, f ) is a lattice if and only if the Gram matrix

F ′F = ((Gjf,Gkf ))nj,k=1

is a scalar multiple of a rational matrix.
(c) In case $(G, f ) is a lattice, we actually have F ′F ∈ γQn×n.
(d) If ‖f ‖ = 1, then $(G, f ) is a lattice if and only if F ′F is a rational matrix.

Proof

(a) Corollary 10.5 of [8] states that if G is a finite irreducible subgroup of O(k),
then the matrix F is a tight frame for every f ∈ Rk \ {0}, which is equivalent to
saying that FF ′ = γ I with some nonzero real γ .

(b) Suppose μF ′F ∈ Qn×n for some nonzero μ ∈ R. Then μdF ′F ∈ Zn×n for
some positive integer d . It follows that

μ2d2‖Fx‖2 = μd(μdF ′Fx, x) ∈ μdZ

for all x ∈ Zn. Hence, if x ∈ Zn, then either Fx = 0 of ‖Fx‖2 ≥ 1/(μd). This
proves that $(G, f ) = FZn is discrete and thus a lattice.

Conversely, suppose $(G, f ) is a lattice. We know from (a) that FF ′ = γ I .
This implies that (1/

√
γ )F is built by the first k rows of an orthogonal matrix,

and hence the rank of F is k. Thus, the columns of F span all of Rk . Let B ∈
Rk×k be a basis matrix for $(G, f ), that is, B is invertible and $(G, f ) =
{Bx : x ∈ Zk}. It follows that there is a matrix Z ∈ Zk×n such that F = BZ.
We obtain that BZZ′B ′ = FF ′ = γ I and hence ZZ′ = γB−1(B ′)−1 =
γ (B ′B)−1. Consequently, F ′F = Z′B ′BZ = Z′(γ (ZZ′)−1)Z ∈ γQn×n.

(c) We just showed that if $(G, f ) is a lattice, then F ′F ∈ γQn×n.
(d) If f has norm 1, then 1 = (f, f ) is an entry of F ′F ∈ γQn×n, which implies

that γ must be rational. Thus, F ′F ∈ Qn×n. 	

Every orthogonal matrix G is of the form G = USU ′ with an orthogonal matrix

U and a real block-diagonal matrix S. The blocks of S are either 2 × 2 matrices of
the form

(
α −β

β α

)

with α2 + β2 = 1, β > 0 (2)

or the 1 × 1 matrices (±1). Note that since

(
α −β

β α

)

=
(

0 1
1 0

)(
α β

−β α

)(
0 1
1 0

)

,

the restriction β > 0 can always be achieved by changing U . We say that G has
equal blocks if all blocks of S are equal to each other. The trivial cases are G =
UIU ′ = I and G = U(−I)U ′ = −I .
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Lemma 2.2 If G is an irreducible and lattice generating subgroup of O(k), then
each matrix in G has equal blocks.

Proof Let G = {G1, . . . ,Gn}. From Theorem 2.1(c) we infer that

(Gjf,Gkf ) ∈ γf Q

with some γf �= 0 for every f and all j, k. Taking Gk = I , we arrive at the
conclusion that (Gf, f ) ∈ γf Q for every G ∈ G and every f . It follows that
(Gf, f )/(f, f ) ∈ Q for all f �= 0. Let now G = USU ′. Since

(Gf, f )

(f, f )
= (USU ′f, f )

(UU ′f, f )
= (SU ′f,U ′f )

(U ′f,U ′f )
,

and every h �= 0 is of the form U ′f with f �= 0, we conclude that (Sh, h)/(h, h)
must be rational for every h �= 0.

Thus, if G = USU ′, then (Sh, h) must be rational for every h ∈ Rk of norm 1.
Suppose S has two 2 × 2 blocks

B =
(
α −β

β α

)

, C =
(
γ −δ

δ γ

)

.

We may without loss of generality assume that these are the first two blocks of S,
that is, S = diag(B,C, . . .). We take h = (f1, f2, g1, g2, 0, . . . , 0)′ ∈ Rk of norm
1 and put f = (f1, f2)

′, g = (g1, g2)
′. Thus, ‖h‖2 = ‖f ‖2 + ‖g‖2 = 1. Then

(Sh, h) = (Bf, f )+ (Cg, g) = α(f 2
1 + f 2

2 )+ γ (g2
1 + g2

2)

= α‖f ‖2 + γ ‖g‖2 = γ + (α − γ )‖f ‖2,

and if α �= γ , we may clearly choose f so that γ + (α − γ )‖f ‖2 is irrational.
Thus, we must have α = γ . Since β2 = δ2 = 1 − α2 and β, δ > 0, it follows that
β = δ. If S has only one 2 × 2 block, S = diag(B,±1, . . .), we get analogously
with h = (f1, f2, g, 0, . . .)′ and f 2

1 + f 2
2 + g2 = 1 that

(Sh, h) = (Bf, f )± g2 = α(f 2
1 + f 2

2 )± g2 = α − (α ∓ 1)g2.

Since −1 < α < 1, there are g such that this is irrational. Thus, the presence of
one 1 × 1 block forces all blocks to be 1 × 1. Finally, if S has two different 1 × 1
blocks, S = diag(1,−1, . . .), then h = (f, g, 0, . . .)′ with f 2 + g2 = 1 gives
(Sh, h) = f 2 − g2 = 2f 2 − 1, which may also be irrational. 	

Proof of Theorems 1.2 and 1.3 Let G ⊂ O(k) be irreducible and lattice generating.
If detG = −1 for some G = USU ′ ∈ G, then S must contain a 1 × 1 block (−1),
so Lemma 2.2 implies that G = −I , and thus G = {I,−I }. But this group is not
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irreducible. If k is an odd number, then S must have a 1 × 1 block (±1) and we
arrive again at the reducible groups G = {I } or G = {I,−I }. 	


If G ⊂ O(k) is a finite group, then each element G ∈ G is of finite order (as an
element of the group). If G = USU ′ has equal blocks, then G is of finite order if and
only if G ∈ {I,−I } or if the block is (2) with α ∈ {−1/2, 0, 1/2} (Niven’s theorem;
see [5, pp. 37–41]). In these cases the order of G is 1, 2, 3, 4, 6, respectively. Let us
denote the blocks with α = −1/2, 0, 1/2 by !3,!4,!6, respectively.

Corollary 2.3 Let G ⊂ O(k) be irreducible and lattice generating. If −I /∈ G, then

G = {I, B1, . . . , Bq } (3)

where each Bj is of order 3. If −I ∈ G, then

G = {I,−I,A1, . . . , As,−A1, . . . ,−As,B1, . . . , Bq,−B1, . . . ,−Bq} (4)

(s, q ≥ 0, s + q > 0) where the ±Aj are of order 4 and satisfy (±Aj)
2 = −I and

−Aj = A3
j , each Bj is of order 6 and satisfies B3

j = −I , and each −Bj is of order

3 and satisfies −Bj = B4
j .

Proof We know from Lemma 2.2 that each G ∈ G\{I } has equal blocks. This block
is (−1), !6, !4, or !3. If −I /∈ G, then the block cannot be !6 or !4, since then
G3 or G2 would be −I . Thus, in this case G is of the form (3) in which the matrices
Bj have the block !3. Now suppose −I ∈ G and let G ∈ G \ {I,−I }. If the block
of G is !4, then G is of order 4 with G2 = −I and G3 = −G, which gives us the
elements ±Aj in (4). If the block is !6, then G is of order 6 and we have G3 = −I

and G4 = −G. These elements G are the ±Bj in (4). Matrices with the block !3
are of the order 3. The map G �→ −G is a bijection of every group containing I and
−I and it changes the orders 4 and 3 to the orders 4 and 6, respectively. Thus, the
number r of elements of order 3 is equal to the number q of elements of the order
6, and since the elements −B1, . . . ,−Bq have the order 3, it follows that G must be
among these elements. 	

Proof of Theorem 1.1 By virtue of Theorem 1.3 we may suppose that the groups
are subgroups of O(2m) and O(2k) with m, k ≥ 1. Lemma 2.2 shows that the trace
of an element G of an irreducible and lattice generating subgroup of O(2�) is �

if the order of G is 6, equals 0 if G has the order 4, and is −� if G is of order
3. Let G ⊂ O(2m) and H ⊂ O(2k) be irreducible and lattice generating groups.
Assume G ⊗ H is an irreducible and lattice generating subgroup of O(4mk). We
have tr (G⊗H) = (trG)(trH) for G ∈ G and H ∈ H. Thus if both G and H contain
elements G,H of orders 3 or 6, then tr (G⊗H) = ±mk whereas the possible traces
of elements of G ⊗ H are ±4mk (for I,−I ), ±2mk, and 0. It follows that at least
one of the groups, say G, has no elements of the orders 3 and 6. By Corollary 2.3, G
contains a G of order 4 such that G2 = −I . If in the other group there is an element
H of order 3 or 6, then G⊗H has the order 12, which is impossible. Consequently,
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again by Corollary 2.3, the other group has an H of order 4 satisfying H 2 = −I .
But then G ⊗ H satisfies (G ⊗ H)2 = (−I) ⊗ (−I) = I ⊗ I , which shows that
G ⊗H has two elements of order 2. However, Corollary 2.3 tells us that this cannot
happen. 	

Lemma 2.4 An irreducible lattice generating group cannot contain a subgroup
isomorphic to Z2

3.

Proof Let G be irreducible and lattice generating and H be a subgroup isomorphic
to Z2

3. Let X be a nontrivial invariant subspace of H. Since all matrices in H are
orthogonal, X⊥ is also a nontrivial invariant subspace of H. Choose orthonormal
bases in X and X⊥, take their union, and represent the matrices in H in this new
bases. The new matrices are composed by two diagonal blocks (of the same sizes for
all members of H), are again orthogonal and result from the original matrices by a
transformation H �→ WHW ′ with an orthogonal matrix W . Such a transformation
leads to an isomorphic group, and it does not violate irreducibility or the property
of being lattice generating. By repeating this construction until all blocks are
irreducible, we eventually have an orthogonal matrix W and numbers mj ≥ 1 such
that the matrices in WHW ′ are all of the form diag(H1, . . . , H�) with Hj ∈ O(mj ).
The map H → O(mj ) given by H �→ Hj is a group homomorphism. Hence the
image of this map is a subgroup Mj of O(mj ). This subgroup is irreducible, lattice
generating, and isomorphic to a subgroup of Z2

3.
Since all Mj are abelian, we conclude that mj ≤ 2 for all j . Now the fact that G

is both irreducible and lattice generating comes into play. Lemma 2.2 implies that all
matrices in G, and in particular those in H, must have equal blocks. Consequently,
if mj = 1 for one j , then mj = 1 for all j and it follows that WHW ′ ⊂ {I,−I },
which is impossible because WHW ′ is isomorphic to Z2

3. Hence mj = 2 for all j ,
and for each H ∈ H the blocks of Hj are !3. Let A and B be two generators of H.
We so have

WAW ′ = diag(Uj!3U
′
j ), WBW ′ = diag(Vj!3V

′
j ).

Put U = diag(Uj ). Then

A := U ′WAW ′U = diag(!3) =: diag(Aj ),

B := U ′WBW ′U = diag(Zj!3Z
′
j ) =: diag(Bj )

with Zj ∈ O(2). But if Z ∈ O(2), then Z!3Z
′ = !3 if detZ = 1 and Z!3Z

′ = !2
3

if detZ = −1. It follows that each block Bj is !3 or !2
3. If Bj = !3, then the j th

block of U ′W ′ABW ′U is AjBj = !3·!3 = !2
3, while if Bj = !2

3, the j th block of
U ′W ′ABW ′U is AjBj = !3 ·!2

3 = I . Thus, as the number of blocks is at least two,
AB does not have equal blocks if B contains two different blocks. Therefore either
B = diag(!3) or B = diag(!2

3). We arrive at the conclusion that H is isomorphic
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to the group generated by !3 alone, that is, to Z3. Since H is isomorphic to Z2
3, this

is a contradiction. 	

The following lemma proves part of Theorem 1.4.

Lemma 2.5 If k ≥ 4 is even andG ⊂ SO(k) is an irreducible and lattice generating
group, the G is either isomorphic to the quaternion group Q8 of order 8 or to the
binary dihedral group Q12 of order 12 or to the binary tetrahedral group 2T of
order 24.

Proof If G is a finite group and a prime number p divides the order of G, then G
contains an element of order p (Cauchy’s theorem). By Corollary 2.3, the orders of
the elements of our group are 3, 4, 6, and hence the order of G must be n = 2r3s . The
Sylow theorems imply that if G is a finite group and p� is a prime power dividing
the order of G, then G has at least one subgroup of order p�. Thus, if r ≥ 4, then
G contains a subgroup of order 16. The groups Q16 and Z16 have an element of
order 8 and the other 8 groups of order 16 all have at least two elements of order
2. By Corollary 2.3, this is impossible. If s ≥ 2, the G contains a subgroup of
order 9. Lemma 2.4 shows that this subgroup cannot be isomorphic to Z2

3, and it is
also impossible that it is isomorphic to Z9, which contains elements of order 9. The
remaining possible orders are {2, 3, 4, 6, 8, 12, 24}. In what follows we permanently
employ Corollary 2.3 without mentioning this each time.

n = 2, 3, 4 These groups are abelian and hence not irreducible.
n = 6 C6 is abelian and the symmetric group S3 has 3 elements of order 2.
n = 8 C8, C4 × C2, C3

2 are abelian and D4 has more than one element of order
2. The only group remaining is Q8.
n = 12 We could rule out the abelian groups immediately, but with the case n =
24 in mind, we argue as follows: C12 contains an element of order 12 and C3×C2

2
has 3 elements of order 2. The three non-abelian groups are A4, the dihedral
group D6, and the binary dihedral group Q12. The first two of them have more
than one element of order 2, so that only Q12 is left.
n = 24 We may exclude the three abelian groups. There are 12 non-abelian
groups. Except for 2T , each of the remaining 11 groups contains a subgroup
of order 12. From our arguments to settle the case n = 12 we know that, this
time with the exception of Q12, each of these subgroups has an element of order
12 or more than one element of order 2. The only of the 11 groups having Q12
as a subgroup is Q12 × C2. But this group has at least three elements of order 2.
Thus, 2T is the only possible group. 	


Lemma 2.6 If k ≥ 6 is even and a group G ⊂ O(k) is isomorphic to Q8, Q12, or
2T , then G is reducible.

Proof The degrees of the irreducible representations over C of the three groups
Q8,Q12, 2T are

Q8 : 1, 1, 1, 1, 2, Q12 : 1, 1, 1, 1, 2, 2, 2T : 1, 1, 1, 2, 2, 2, 3, (5)
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and degrees of the irreducible representations over R of these groups are

Q8 : 1, 1, 1, 1, 4, Q12 : 1, 1, 2, 2, 4 2T : 1, 2, 3, 4, 4. (6)

The assertion of the lemma is therefore immediate from (6). The lists (5) and the
list for Q8 in (6) are well known. The lists for Q12 and 2T in (6) are explicitly on
the website [4] and in the lecture notes [6]. An alternative proof of the lemma based
solely on (5) and the list for Q8 in (6) is as follows.

If, for a finite group, the maximal degree of an irreducible representation
over C is �, then the maximal degree k of an irreducible representation over
R, that is, in O(k), satisfies k ≤ 2�. It follows that Q8 and Q12 have no
irreducible representations in O(k) for even k ≥ 6 and that 2T has no irreducible
representations in O(k) for even k ≥ 8. So consider 2T ⊂ O(6).

Let H be a subgroup of O(6) which is isomorphic to Q8. We claim that
this group has a 5-dimensional invariant subspace. The degrees of the irreducible
representations of Q8 in O(k) are 1, 1, 1, 1, 4. Thus, H is reducible in dimensions
different from 1 and 4. Taking this into account, we may proceed as in the proof of
Lemma 2.4 to get an orthogonal matrix W such that each element of WHW ′ is of the
form diag(H1, . . . , H�) with Hj ∈ O(mj ) and mj ∈ {1, 4} for all j . Accordingly,

R6 = X1 ⊕ · · · ⊕X�, (7)

where each Xj is an mj -dimensional invariant subspace of WHW ′. Since m1 +
· · · + m� = 6, we necessarily have mj = 1 for some j . Replacing the Xj on the
right of (7) by {0}, we get a 5-dimensional invariant subspace V of WHW ′, and
hence W ′V is a 5-dimensional subspace of H.

Suppose now G ⊂ O(6) is isomorphic to 2T . It is well known that 2T ∼= Q8�Z3,
that is, every G ∈ G may (uniquely) be written as G = HC

j

3 with j ∈ {0, 1, 2}, H
in a subgroup H isomorphic to Q8, and an element C3 ∈ G of order 3. From what
was just proved we conclude that the subgroup H has a 5-dimensional invariant
subspace U := W ′V ⊂ R6. The image space C3U ⊂ R6 also has the dimension 5.
Consequently, dim(U ∩ C3U) ≥ 4. As C2

3U is of dimension 5 as well, it follows
that U ∩ C3U ∩ C2

3U is of dimension at least 3. Take u = C3v = C2
3w �= 0 from

U ∩C3U ∩C2
3U . For every H ∈ H we then have Hu ∈ U , HC3u = Hw ∈ U , and

HC2
3u = Hv ∈ U . Consequently, the orbit of u does not span R6, which proves

that G ∼= 2T cannot be irreducible in O(6). 	

We finally prove the second half of Theorem 1.4.

Lemma 2.7 The groups Q8,Q12, 2T have faithful irreducible and lattice generat-
ing representations in SO(4).
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Proof The quaternion group Q8 is faithfully represented in SO(4) by

(
1 0
0 1

)

,

(
0 −1
1 0

)

,

(
0 i

i 0

)

,

(−i 0
0 i

)

,

(−1 0
0 −1

)

,

(
0 1

−1 0

)

,

(
0 −i

−i 0

)

,

(
i 0
0 −i

)

with

1 =
(

1 0
0 1

)

, i =
(

0 −1
1 0

)

.

This group contains I,−I and six elements of order 4. This is the case s = 3 and
q = 0 in (4). For f = (a, b, c, d)′ ∈ R4 \ {0} the matrix

F = (
G1f G2f . . . G8f

)

is

F =

⎛

⎜
⎜
⎝

a −c −d b −a c d −b

b −d c −a −b d −c a

c a −b −d −c −a b d

d b a c −d −b −a −c

⎞

⎟
⎟
⎠ .

Multiplying F from the right by ξ = (x, y, z,w, p, q, r, s)′ ∈ Z8 and putting

X = x − p, Y = y − q, Z = z− r, W = w − s,

we get after some elementary computations that

Fξ =

⎛

⎜
⎜
⎝

a −c −d b

b −d c −a

c a −b −d

d b a c

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

X

Y

Z

W

⎞

⎟
⎟
⎠ =: Av.

The matrix A is
√
a2 + b2 + c2 + d2 times an orthogonal matrix and therefore

invertible. Thus,

‖Fξ‖2 = ‖Av‖2 ≥ m‖v‖2

with some m > 0, and since m‖v‖2 does not assume values in (0,m), it follows that
FZ8 is a lattice. Finally, the span of {Gf : G ∈ G} is the span of the columns of F .
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The first four columns form the matrix A, and since this matrix is invertible, F has
the rank 4, which shows that the columns of F span all of R4. Thus, G is irreducible.

The group Q12 ⊂ SO(4) is faithfully represented by the 12 matrices

I =
(

1 0
0 1

)

, −I =
(−1 0

0 −1

)

,

A1 =
(

0 −1
1 0

)

, −A1 =
(

0 1
−1 0

)

,

A2 =
(

0 −ω

−ω2 0

)

, −A2 =
(

0 ω

ω2 0

)

,

A3 =
(

0 −ω2

−ω 0

)

, −A3 =
(

0 ω2

ω 0

)

,

B =
(

ω 0
0 −ω2

)

, B2 =
(

ω2 0
0 −ω

)

,

B4 =
(−ω 0

0 ω2

)

, B5 =
(−ω2 0

0 ω

)

,

where

1 =
(

1 0
0 1

)

, ω =
(
α −β

β α

)

, α = 1

2
, β = −

√
3

2
.

This group contains I,−I , six elements of order 4, two elements of order 6 (B and
B5), and two elements of order 3 (B2 and B4), that is, we have the situation s = 3
and q = 2 in (4).

That Q12 is irreducible and lattice generating can be proved as for Q8. Given
f = (a, b, c, d)′ ∈ R4 \ {0}, let F be the matrix

F = (
G1f G2f . . . G12f

)
,

where the ordering G1, . . . ,G12 is

I,A1, A2, A3,−A1,−A2,−A3, B,B2, B3 = −I, B4, B5.

The first four columns of F are a scalar multiple of an orthogonal matrix, which
implies that F has rank 4 and hence that Q12 is irreducible. If

ξ = (g, x, y, z, p, q, r, s, t, u, v,w)′ ∈ Z12,
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then, again after elementary calculations,

Fξ =

⎛

⎜
⎜
⎝

a c d b

b d −c −a

c −a b −d

d −b −a c

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

X

Y

Z

W

⎞

⎟
⎟
⎠ =: CV

with

X = g − u+ α(s +w − t − v), Y = p − x + α(z + q − y − r),

Z = β(y + z − q − r), W = β(v +w − s − t).

The matrix C is a scalar multiple of an orthogonal matrix. It follows that

‖Fξ‖2 = ‖CV ‖2 ≥ m‖V ‖2

with some m > 0. But

‖V ‖2 =X2 + Y 2 + Z2 +W 2

=3

4
(q + r − y − z)2 + 3

4
(s + t − v − w)2

+
(

g − u+ 1

2
(s +w − t − v)

)2

+
(

p − x + 1

2
(z+ q − y − r)

)2

is either 0 or at least 1/4, which shows that FZ12 is discrete and thus a lattice.
The group 2T is faithfully represented in SO(4) by the eight matrices

I =
(

1 0
0 1

)

, A1 =
(

0 −1
1 0

)

, −I, −A1,

A2 =
(

0 i

i 0

)

, A3 =
(−i 0

0 i

)

, −A2, −A3,

with

1 =
(

1 0
0 1

)

, i =
(

0 −1
1 0

)

and by the sixteen matrices

1

2
(±I ± A1 ± A2 ± A3).
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We let B1, . . . , B8 denote the latter matrices with I having the + sign and ordered
according the lexicographic order+++,++−,+−+,+−−, . . . of the remaining
signs. The other eight matrices then are−B1, . . . ,−B8. With these notations we are
in the situation of Corollary 2.3 with s = 3 and q = 8. The rest of the proof is as
for Q8 and Q12. Given f = (a, b, c, d)′ ∈ R4 \ {0}, let F be the matrix

F = (
G1f G2f . . . G24f

)

where G1, . . . ,G24 are the matrices

I,A1, A2, A3, B1, . . . , B8,−I,−A1,−A2,−A3,−B1, . . . ,−B8

in this order. The first four columns of F are the same as the first four columns we
had for Q8. Thus, they form scalar multiple of an orthogonal matrix, which implies
that F has rank 4 and hence that G is irreducible. Let ξ ∈ Z24 be the vector

ξ =(g1, x1, y1, z1, p1, q1, r1, s1, t1, u1, v1, w1,

g2, x2, y2, z2, p2, q2, r2, s2, t2, u2, v2, w2)
′

and put

g = g1 − g2, x = x1 − x2, . . . , w = w1 −w2.

After elementary calculations we arrive at the equality

2Fξ =

⎛

⎜
⎜
⎝

a c d b

b d −c −a

c −a b −d

d −b −a c

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

X

Y

Z

W

⎞

⎟
⎟
⎠ =: CV

with

X = 2g + p + q + r + s + t + u+ v + w,

Y = −2x − p − q − r − s + t + u+ v +w,

Z = −2y − p − q + r + s − t − u+ v +w,

W = 2z+ p − q + r − s + t − u+ v −w.

The matrix C is a scalar multiple of an orthogonal matrix. It follows that

4‖Fξ‖2 = ‖CV ‖2 ≥ m‖V ‖2
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with some m > 0 and since ‖V ‖2 is either 0 or at least 1, we see that FZ24 is
discrete and thus a lattice. 	


As said, Lemmas 2.5, 2.6, 2.7 prove Theorem 1.4.

Proof of Theorem 1.5 The representation of 2T we used in the proof of Theo-
rem 1.4 is the quaternionic representation. The complex representation over R can
be constructed as follows. Put

E =
(

1 0
0 1

)

, I =
(

0 −1
1 0

)

, J =
(

0 i

i 0

)

, K =
(−i 0

0 i

)

and let B1, . . . , B8 be the matrices (1/2)(E ± I ± J ± K) listed according the
lexicographic order of + and −. Thus,

B1 = 1

2
(E+I+J +K), B2 = 1

2
(E+I+J −K), B2 = 1

2
(E+I−J +K), . . . .

Then the 24 matrices ±E,±I,±J,±K,±B1, . . . ,±B8 are a faithful irreducible
representation of 2T in U(2). We denote this matrix group simply by 2T . The seven
conjugacy classes are {E}, {−E}, {±I,±J,±K},

C1 := {B1, B4, B6, B7}, C2 := {B2, B3, B5, B8},

and −C1,−C2. Let ω = −1/2+ i
√

3/2 and let � : 2T → C be the homomorphism
sending ±E,±I,±J,±K to 1, the elements of −C1 ∪ C1 to ω, and the elements
of −C2 ∪ C2 to ω2. This is a representation of 2T in U(1). It follows that the map
τ : 2T → U(2), G �→ �(G)G is a faithful representation of 2T . The representing
matrices are complex of the form A+ iB. Replacing each such matrix by

(
A −B

B A

)

,

we get a faithful representation σ : 2T → O(4). This is what is called a complex
representation of 2T over R. The matrices σ(E), σ (I), σ (J ), σ (K) are

σ(E) =
(
E 0
0 E

)

, σ (I) =
(
I 0
0 I

)

,

σ (J ) =
(

0 −W

W 0

)

, σ (K) =
(

0 −S

S 0

)

with

W =
(

0 1
1 0

)

, S =
(−1 0

0 1

)

.
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The matrix σ(B1) equals

σ(B1) =

⎛

⎜
⎜
⎝

δ −δ −γ γ

−γ −γ −δ −δ

γ −γ δ −δ

δ δ −γ −γ

⎞

⎟
⎟
⎠ , γ =

√
3 + 1

4
, δ =

√
3 − 1

4
.

Now consider the matrix

F = (
σ(E)f σ(I)f σ(J )f σ(K)f σ(B1)f . . .

)

with f = (a, b, c, d)′ ∈ R4. (Incidentally, again the first columns of F form
an orthogonal matrix, which shows that σ(2T ) is irreducible.) Taking f equal to
(1, 0, 0, 0)′ we get

F =

⎛

⎜
⎜
⎝

1 0 0 0 δ . . .

0 1 0 0 −γ . . .

0 0 0 −1 γ . . .

0 0 1 0 δ . . .

⎞

⎟
⎟
⎠ .

Multiplying F from the right by ξ = (x, y, z,w, p, 0, . . . , 0)′ ∈ Z24 we obtain

Fξ = (x + δp, y − γp,−w + γp, z + δp)′.

By Kronecker’s theorem, μZ modulo 1 is dense in (0, 1) whenever μ is irrational.
Consequently, given m ∈ N, there are

ξm = (xm, ym, zm,wm, pm, 0, . . . , 0)′ ∈ Z24

such that ‖Fξm‖ ∈ (0, 1/m), which shows that FZ24 is not discrete and proves that
σ(2T ) is not lattice generating. 	


3 Groups of Unitary Matrices

The topic is trivial for unitary matrices, that is, for finite subgroups of U(k). A
group G ⊂ U(k) of order n is said to be lattice generating if, with F given by (1),
$(G, f ) = FZ[i]n is a discrete additive subgroup of Ck for every f ∈ Ck .

Theorem 3.1 The only irreducible and lattice generating subgroups of U(k) are
G = {1, i,−1,−i} ⊂ U(1) and its subgroups {1} and {1,−1}.
Proof Let G ⊂ U(k) be an irreducible and lattice generating group. In the complex
case, Theorem 2.1 reads as follows. Suppose n ≥ k ≥ 1. Let G ⊂ U(k) be a finite
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irreducible group of order n, let f ∈ Ck \ {0}, and let F be the k × n matrix (1).
Then the following hold.

(a) We have FF ∗ = γ I with some real γ > 0.
(b) The set $(G, f ) is a lattice if and only if the Gram matrix F ∗F =

((Gjf,Gkf ))nj,k=1 belongs to μQ[i]n×n for some nonzero μ ∈ C.
(c) In case $(G, f ) is a lattice, we actually have F ∗F ∈ γQ[i]n×n.
(d) If ‖f ‖ = 1, then $(G, f ) is a lattice if and only if F ∗F ∈ Q[i]n×n.

The reasoning of the proof of Lemma 2.2 shows that if G = USU∗ with a diagonal
matrix S, then S must have equal entries, that is, S = ωI with some ω ∈ T.
Consequently, G is composed of scalar multiples of the identity matrix. It follows
that G = {I, ωI, . . . , ωn−1I } with ω = e2πi/n, which is reducible for k ≥ 2. So let
k = 1. For |f | = 1, the Gram matrix is F ∗F = (ωkωj )n−1

j,k=0. Since ω is an entry
of this matrix, it must be in Q[i]. The only such roots of unity are ω = 1,−1, i.
Conversely, it is clear, that the (irreducible) subgroups of {1, i,−1,−i} are indeed
lattice generating. 	
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Abstract The paper describes various approaches to the invertibility of Toeplitz
plus Hankel operators in Hardy and lp-spaces, integral and difference Wiener-
Hopf plus Hankel operators and generalized Toeplitz plus Hankel operators. Special
attention is paid to a newly developed method, which allows to establish necessary,
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1 Introduction

Toeplitz T (a) and Hankel H(b) operators appear in various fields of mathematics,
physics, statistical mechanics and they have been thoroughly studied [7, 42, 47].
Toeplitz plus Hankel operators T (a)+H(b) and Wiener-Hopf plus Hankel operators
W(a)+H(b) play an important role in random matrix theory [1, 6, 30] and scattering
theory [34–36, 43, 45, 46, 56]. Although Fredholm properties and index formulas
for such operators acting on different Banach and Hilbert spaces are often known—
cf. [7, 13, 38–41, 48–52], their invertibility is little studied. So far progress has
been made only in rare special cases. In this work, we want to present an approach,
which allows to treat invertibility problem for a wide classes of Toeplitz plus Hankel
operators on classic Hardy spaces and also for their close relatives: Toeplitz plus
Hankel operators on lp-spaces, generalized Toeplitz plus Hankel operators and
integral and difference Wiener-Hopf plus Hankel operators. The operators acting
on classical Hardy spaces are discussed in more details, whereas for other classes of
operators we only provide a brief overview of the corresponding results.

2 Toeplitz and Hankel Operators on Hardy Spaces

Let T := {t ∈ C : |t| = 1} be the counterclockwise oriented unit circle in the
complex plane C and let p ∈ [1,∞]. Consider the Hardy spaces

Hp = Hp(T) := {f ∈ Lp(T) : f̂n = 0 for all n < 0},
Hp = Hp(T) := {f ∈ Lp(T) : f̂n = 0 for all n > 0},

where f̂n, n ∈ N are the Fourier coefficients of function f . Moreover, let I denote
the identity operator, P : Lp(T) → Hp(T) the projection defined by

P :
∞∑

n=−∞
f̂ne

inθ �→
∞∑

n=0

f̂ne
inθ

and Q = I −P . If p ∈ (1,∞), the Riesz projection P is bounded and imP = Hp.
Note that here we consider operators acting on the spaces Lp , Hp or lp. In this
connection, let us agree that whenever p and q appears in the text, they are related
as 1/p + 1/q = 1.

On the space Hp, 1 < p < ∞, any function a ∈ L∞ generates two operators—
viz. the Toeplitz operator T (a) : : f �→ Paf and the Hankel operator H(a) : f �→
PaQJf , where J : Lp �→ Lp is the flip operator,

(Jf )(t) := t−1f
(
t−1
)
, t ∈ T.
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We note that

J 2 = I, JPJ = Q, JQJ = P, JaJ = ã, ã(t) := a(1/t),

and the operators T (a) and H(b) are related to each other as follows

T (ab) = T (a)T (b)+H(a)H (̃b),

H(ab) = T (a)H(b)+H(a)T (̃b).
(2.1)

We now consider the invertibility of Toeplitz plus Hankel operators T (a)+H(b)

generated by L∞-functions a and b and acting on a Hardy space Hp(T). Observe
that the matrix representation of such operators in the standard basis {tn}∞n=0 of
Hp(T) is

T (a)+H(b) ∼ (̂ak−j + b̂k+j+1)
∞
k,j=0.

There are a variety of approaches to the study of their invertibility and we briefly
discuss some of them.

2.1 Classical Approach: I. Gohberg, N. Krupnik
and G. Litvinchuk

Let L(X) and F(X) be, respectively, the sets of linear bounded and Fredholm
operators on the Banach space X. Besides, if A is a unital Banach algebra, then
GA stands for the group of all invertible elements in A.

Assume that a ∈ GL∞, b ∈ L∞ and set

V (a, b) :=
(
a − bb̃̃a−1 d

−c ã−1

)

,

where c := b̃ã−1, d := bã−1. Writing T (a)±H(b)+Q for (T (a)±H(b))P+Q, we
consider the operator diag (T (a)+H(b)+Q,T (a)−H(b)+Q) on Lp(T)×Lp(T)

and represent it in the form

(
T (a)+H(b)+Q 0

0 T (a)−H(b)+Q

)

= A(T (V (a, b))+ diag (Q,Q))B (2.2)
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with invertible operators A and B. More precisely,

B =
(

I 0
b̃I ãI

)(
I I

J −J

)

.

and the operator A is also known but its concrete form is not important now.
An immediate consequence of Eq. (2.2) is that both operators T (a) ± H(b) are

Fredholm if and only if the block Toeplitz operator T (V (a, b)) is Fredholm. This
representation is of restricted use because there are piecewise continuous functions
a, b such that only one of the operators T (a)±H(b) is Fredholm. In addition, both
operators T (a)±H(b) can be Fredholm but may have different indices. Therefore,
more efficient methods for studying Toeplitz plus Hankel operators are needed,
especially for discontinuous generating functions a and b.

Let us recall that there is a well-developed Fredholm theory for the operators
T (a) + H(b) with generating functions a, b from the set of piecewise continuous
functions PC = PC(T)—cf. [7] for operators acting on the space H 2 and [50] for
the ones on Hp, p �= 2. However, the defect numbers of these operators, conditions
for their invertibility, and inverse operators can be rarely determined directly from
Eq. (2.2).

2.2 Basor-Ehrhardt Approach

This approach is aimed at the study of defect numbers of T (a) + H(b) ∈ F(Hp)

by means of a factorization theory. It is well-known that for b = 0, the problem can
be solved by Wiener-Hopf factorization. Since this notion is important for what
follows, we recall the definition here. Note that from now on, all operators are
considered in the spaces Lp or Hp for p ∈ (1,∞). Recall that p and q are related
as 1/p + 1/q = 1.

Definition 2.1 We say that a function a ∈ L∞ admits a Wiener-Hopf factorization
in Lp if it can be represented in the form

a = a−χma+, (2.3)

where a+ ∈ Hq , a−1+ ∈ Hp, a− ∈ Hp, a−1− ∈ Hq , χm(t) := tm, m ∈ Z, the term
a−1+ P(a+ϕ) belongs to Lp for any ϕ from the set of all trigonometrical polynomials
P = P(T) and there is a constant cp such that

||a−1+ P(a+ϕ)||p ≤ cp||ϕ||p for all ϕ ∈ P .
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Theorem 2.2 (Simonenko [53]) If a ∈ L∞, then T (a) ∈ F(Hp) if and only if
a ∈ GL∞ and admits the Wiener-Hopf factorization (2.3) in Lp. In this case

ind T (a) = −m.

This result extends to the case of matrix-valued generating functions as follows.

Theorem 2.3 If a ∈ L∞N×N , then T (a) ∈ F(H
p

N) if and only if a ∈ GL∞N×N and
admits a factorization a = a−da+, where

a+ ∈ H
q
N×N , a−1+ ∈ H

p
N×N , a− ∈ H

p

N×N , a−1− ∈ H
q

N×N ,

d = diag (χk1 , χk2, · · · , χkN ), κ1, κ2, · · · , κN ∈ Z,

the term a−1+ P(a+ϕ) belongs to L
p
N for any ϕ ∈ PN and there is a constant cp such

that

||a−1+ P(a+ϕ)||p ≤ cp||ϕ||p for all ϕ ∈ PN.

Moreover, if T (a) ∈ F(H
p
N), then

dim kerT (a) = −
∑

κj<0

κj , dim cokerT (a) = −
∑

κj>0

κj .

The numbers κj , called partial indices, are uniquely defined. Moreover, in some
sense, the Wiener-Hopf factorization is unique if it exists. For example, for N = 1
the uniqueness of factorization can be ensured by the condition a−(∞) = 1. We
also note that if T (a) ∈ F(Hp) and indT (a) ≥ 0 (indT (a) ≤ 0) then T (a) is
right-invertible (left-invertible) and if κ := ind T (a) > 0, the functions

a−1+ χj , j = 0, . . . , κ − 1

form a basis in the space kerT (a) and one of the right-inverses has the form
T −1(aχκ)T (χκ).

A comprehensive information about Wiener-Hopf factorization is provided in
[11, 44] and in books, which deal with singular integral and convolution operators
[7, 32, 32, 33]. In particular, Wiener-Hopf factorization furnishes conditions for
invertibility of related operators. However, generally there are no efficient methods
for constructing such factorizations and computing partial indices even for contin-
uous matrix-functions. Therefore, in order to study the invertibility of Toeplitz plus
Hankel operators, we have to restrict ourselves to suitable classes of generating
functions.

In the beginning of this century, Ehrhardt [28, 29] developed a factorization
theory to study invertibility for large classes of convolution operators with flips.
Toeplitz plus Hankel operators are included in this general framework. In particular,
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it was shown that an operator T (a)+H(b), a ∈ GL∞, b ∈ L∞ is Fredholm if and
only if the matrix-function

V τ (a, b) =
(
bã−1 a − bb̃̃a−1

ã−1 −ã−1b̃

)

admits a certain type of antisymmetric factorization. Moreover, the defect numbers
of the operator T (a)+H(b) can be expressed via partial indices of this factorization.
However, it is not known how the partial indices of general matrix-functions can be
determined.

It was already mentioned that there are functions a, b ∈ L∞ such that the
operator T (a) + H(b) is Fredholm but T (a) − H(b) is not. In this case we can
use the representation (2.2) and conclude that the matrix V τ (a, b) does not admit
a Wiener-Hopf factorization. Thus, if V (a, b) admits a Wiener-Hopf factorization,
then V τ (a, b) has the antisymmetric factorization mentioned but not vice versa.

This discussion shows that one has to select a class of generating functions a

and b such that the defect numbers of operators T (a) + H(b) ∈ F(Hp) can be
determined. An important class of suitable generating functions a ∈ GL∞(T), b ∈
L∞(T) is given by the condition

aã = bb̃. (2.4)

This class of pairs of functions first appears in [4] and [13]. Equation (2.4) was
latter called the matching condition and the corresponding duo (a, b) a matching
pair—cf. [16]. Let us note that Toeplitz plus Hankel operators of the form

T (a)±H(a), T (a)−H(at−1), T (a)+H(at) (2.5)

appear in random ensembles [1, 6, 30] and in numerical methods for singular integral
equations on intervals [37]. The generating functions of the operators (2.5) clearly
satisfy the matching condition (2.4).

It is notable that the Fredholmness of the operator T (a) + H(b) implies that
a ∈ GL∞(T). Therefore, the term b in the matching pair (a, b) is also invertible in
L∞(T) and one can introduce another pair (c, d), called the subordinated pair for
(a, b), with the functions c and d defined by

c := a/b = b̃/̃a, d := a/b̃ = b/̃a.

An important property of these functions is that c̃c = dd̃ = 1. In what follows, any
function g ∈ L∞(T) satisfying the equation gg̃ = 1 is referred to as a matching
function.

Let us point out that the sets of matching functions and matching pairs are quite
large. In particular, we have:
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1. Let T+ := {t ∈ T : (t > 0} be the upper half-circle. If an element g0 ∈ GL∞,
then

g(t) :=
{
g0(t) if t ∈ T

+
g−1

0 (1/t) if t ∈ T \ T+ ,

is a matching function.
2. If g1, g2 are matching functions, then the product g = g1g2 is also a matching

function.
3. If g is a matching function, then for any a ∈ GL∞ the duo (a, ag) is a matching

pair.
4. Any matching pair (a, b), a ∈ GL∞ can be represented in the form (a, ag),

where g = ãb̃−1 is a matching function.

In this section we discuss the Basor-Ehrhardt approach to the study of defect
numbers of the operators T (a) + H(b) ∈ F(Hp(T)) if a and b are piecewise
continuous functions satisfying the condition (2.4). Then we present an explicit
criterion for the Fredholmness of such operators. Recall that the circle T is
counterclockwise oriented and f ∈ PC if and only if for any t ∈ T, the one-sided
limits

f±(t) := lim
ε→±0

f (teiε)

exist. Without loss of generality we assume that a, b ∈ GPC.

Theorem 2.4 (Basor and Ehrhardt [4]) Let a, b ∈ GPC form a matching pair
and let (c, d) be the subordinated pair. The operator T (a)+ H(b) is Fredholm on
the space Hp if and only if the following conditions hold:

1

2π
arg c−(1) /∈

{
1

2
+ 1

2p
+ Z

}

,
1

2π
arg d̃−(1) /∈

{
1

2
+ 1

2q
+ Z

}

, (2.6)

1

2π
arg c−(−1) /∈

{
1

2p
+ Z

}

,
1

2π
arg d̃−(−1) /∈

{
1

2q
+ Z

}

, (2.7)

1

2π
arg

(
c−(τ )
c+(τ )

)

/∈
{

1

p
+Z

}

,
1

2π
arg

(
(d̃)−(τ )
(d̃)+(τ )

)

/∈
{

1

q
+Z

}

, ∀τ ∈ T
+. (2.8)

The definition of d in [4] differs from the one used here. In fact, d in [4]
corresponds to d̃ here. We keep this notation for sake of easy comparability of the
results.

Theorem 2.4 already shows the exceptional role of the endpoints +1 and −1 of
the upper semicircle T

+. To establish the index formula mentioned in [4], a more
geometric interpretation of the Fredholm conditions (2.6)–(2.8) is needed. Here
there are a few details from [4].
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For z1, z2 ∈ C and θ ∈ (0, 1), we consider the open arc A(z1, z2, θ) connecting
the points z1 and z2 and defined by

A(z1, z2, θ) :=
{

z ∈ C \ {z1, z2} : 1

2π
arg

(
z− z1

z− z2

)

∈ {θ + Z}
}

.

For θ = 1/2 this arc becomes a line segment and if z1 = z2 it is an empty set.
Assuming that a, b ∈ GPC, aã = bb̃ and using the auxiliary functions c and d̃ ,
one can show that the conditions (2.6)–(2.8) mean that any of the arcs

A
(

1, c+(1); 1

2
+ 1

2p

)

, A
(

c−(τ ), c+(τ ); 1

p

)

, A
(

c−(−1), 1; 1

2p

)

,

A
(

1, (d̃)+(1); 1

2
+ 1

2q

)

, A
(

(d̃)−(τ ), (d̃)+(τ ); 1

q

)

, A
(

(d̃)−(−1), 1; 1

2q

)

,

where τ ∈ T
+, does not cross the origin. It is clear that one has to take into account

only the jump discontinuity points since c, d̃ ∈ GPC and consequently c±(τ ) �= 0
and (d̃)±(τ ) �= 0.

The functions c and d̃ satisfy the condition c̃c = dd̃ = 1, so that they are
effectively defined by their values on T

+ only. If we let τ run along T
+ from

τ = 1 to τ = −1, the image of the function c is the curve with possible
jump discontinuities, starting at the point c+(1) and terminating at c−(−1). We
now add the arcs A(c−(τ ), c+(τ ); 1/p) to any discontinuity point τ of c located
on T

+. Besides, if necessary we also add the arcs A(1, c+(1); 1/2 + 1/(2p))
and A(c−(−1), 1; 1/(2p)) connecting the endpoints c+(1) and c−(−1) with the
point τ = 1, respectively. That way, we obtain a closed oriented curve. If the
operator T (a) + H(b) is Fredholm, the curve does not cross the origin and we
consider its winding number wind (c#,p) ∈ Z. Similar constructions lead to the
curve d̃#,q with a winding number wind (d̃#,q) ∈ Z. Now we can conclude that
T (a) + H(b) ∈ F(Hp) if and only if the origin does not belong to the curve c#,p

or d̃#,q .

Theorem 2.5 (Basor and Ehrhardt [4]) Assume that a, b ∈ GPC is a matching
pair with the subordinated pair (c, d) such that the conditions (2.6)–(2.8) hold. Then
T (a)+H(b) ∈ F(Hp) with the Fredholm index

ind (T (a)+H(b)) = wind (d̃#,q)− wind (c#,p).

For what follows we need a definition.

Definition 2.6 (Basor and Ehrhardt [4]) A matching pair (a, b), a, b ∈ L∞ with
the subordinated pair (c, d) satisfies the basic factorization condition in Hp if c and
d admit the factorization of the form

c(t) = c+(t)t2nc−1+ (t−1), n ∈ Z, (2.9)

d̃(t) = (d̃)+(t)t2m(d̃)−1+ (t−1), m ∈ Z (2.10)
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and

(1 + t)c+(t) ∈ Hq, (1 − t)c−1+ (t) ∈ Hp,

(1 + t)(d̃)+(t) ∈ Hp, (1 − t)(d̃)−1+ (t) ∈ Hq.

Note that the indices m,n are uniquely determined and the functions c+ and d+
are also unique up to a multiplicative constant. The representations (2.9), and (2.10)
are called antisymmetric factorization of the functions c and d̃ , respectively.

Theorem 2.7 (Basor and Ehrhardt [4]) If (a, b), a, b ∈ PC is a matching pair
and T (a)+H(b) ∈ F(Hp), then (a, b) satisfies the basic factorization condition.

The next result allows to determine the defect numbers of the operators T (a)+
H(b) in certain situations.

Theorem 2.8 (Basor and Ehrhardt [4]) Assume that the matching pair (a, b),
a, b ∈ L∞ satisfies the basic factorization condition in Hp with m,n ∈ Z. If
T (a)+H(b) ∈ F(Hp), then

dim ker(T (a)+H(b)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if n > 0,m ≤ 0,

− n if n ≤ 0,m ≤ 0,

m− n if n ≤ 0,m > 0,

dim kerAn,m if n > 0,m > 0,

dim ker(T (a)+H(b))∗ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if m > 0, n ≤ 0,

−m if m ≤ 0, n ≤ 0,

n−m if m ≤ 0, n > 0,

dim ker(An,m)
ᵀ if m > 0, n > 0,

Therein, in case n > 0, m > 0,

An,m := [
ρi−j + ρi+j

]n−1,m−1
i=0,j=0

and

ρ(t) := t−m−n(1 + t)(1 + t−1)̃c+d̃+b−1 ∈ L1(T).

In particular, the Fredholm index of T (a)+H(b) is m− n.

Let us now briefly discuss the notion of the adjoint operator used in [4]. If we
identify the dual to Hp with Hq via the mapping g ∈ Hq �→< g, · >∈ (Hp)′,

< g, f >:= 1

2π

∫ 2π

0
g(e−iθ )f (eiθ ) dθ,
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then the adjoint operator to T (a)+H(b) has the form T (̃a)+H(b), so that

dim ker(T (a)+H(b))∗ = dim ker(T (̃a)+H(b)).

A natural question to ask is whether the Fredholmness of T (a)+H(b), a, b ∈ L∞
implies the existence of the antisymmetric factorizations of the functions c and d̃ .
This problem has been also discussed in [4] and an example there shows that this is
not true in general.

The theory above has been used to examine the operators (2.5) and also the
operators I + H(b) with matching functions b. We are not going to discuss this
approach here. However, in what follows, we present a simple method to handle
these operators.

2.3 Classical Approach Revisited

Now we turn attention to another method based on the classical approach and
recently developed by the authors of this paper. Let us start with a special factor-
ization of the operator T (V (a, b)) for generating functions a and b constituting a
matching pair. If a ∈ GL∞(T), b ∈ L∞(T) satisfy the matching condition (2.4),
the matrix function V (a, b) in (2.2) has the form

V (a, b) =
(

0 d

−c ã−1

)

, c = a

b
, d = a

b̃
. (2.11)

It follows that the corresponding block Toeplitz operator T (V (a, b)) with the
generating matrix-function (2.11) can be represented in the form

T (V (a, b)) =
(

0 T (d)

−T (c) T (̃a−1)

)

=
(−T (d) 0

0 I

)(
0 −I

I T (̃a−1)

)(−T (c) 0
0 I

)

, (2.12)

with the invertible operator

(
0 −I

I T (̃a−1)

)

: Hp ×Hp → Hp ×Hp.

This representations turns out to be extremely useful in the study of Toeplitz plus
Hankel operators. To show this we start with the Coburn-Simonenko theorem. For
Toeplitz operators this theorem indicates that for any non-zero a ∈ L∞(T) one has

min{dim kerT (a), dim cokerT (a)} = 0.
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It follows that Fredholm Toeplitz operators with index zero are invertible. However,
in general for block-Toeplitz and for Toeplitz plus Hankel operators, Coburn-
Simonenko theorem is not true. This causes serious difficulties when studying the
invertibility of the operators involved. Nevertheless, the following theorem holds.

Theorem 2.9 Let a ∈ GL∞(T) and A refer to one of the operators T (a) +
H(at), T (a)−H(at−1), T (a)±H(a). Then

min{dim kerA, dim cokerA} = 0.

Proof For a ∈ PC(T) this result goes back to Basor and Ehrhardt [2, 3, 28] with
involved proofs. However, there is an extremely simple proof—cf. [16], based on
the representation (2.2) and valid for generating functions a ∈ GL∞. We would
like to sketch this proof here. Thus one of the consequences of Eq. (2.2) is that
there is an isomorphism between the kernels of the operators T (V (a, b)) and
diag (T (a) + H(b), T (a) − H(b)). Let us start with the operators T (a) ± H(a).
The corresponding subordinated pairs (c, d) have the form (±1, aã−1), the third
operator in Eq. (2.12) is diag (∓I, I), so that it does not influence the kernel and
the image of T (V (a,±a)). Considering the two remaining operators in (2.12), we
note that the Coburn-Simonenko theorem is valid for the block Toeplitz operator
T (V (a,±a)) and hence for T (a)±H(a).

Consider now the operators T (a) + H(at). The duo (a, at) is a matching pair
with the subordinated pair (t−1, d), d = aã−1t . The operator T (t−1) is Fredholm
and indT (t−1) = 1, so that imT (t−1) = Hp. Besides, a direct check shows that
the function e := e(t) = 1, t ∈ T belongs to the kernels of both operator T (t−1)

and T (a)−H(at). Assuming that dim kerT (d) > 0 and using Coburn-Simonenko
theorem for Toeplitz operators, we note that imT (d) is dense in Hp. On the other
hand, the factorization (2.12) and Eq. (2.2) yield that both spaces im T (V (a, at))

and im diag (T (a)+H(at), T (a)−H(at)) are dense in Hp ×Hp. Hence,

coker (T (a)+H(at)) = coker (T (a)−H(at) = {0}.

Passing to the case dim kerT (d) = 0, we first note that

1 = dim kerT (t−1)) = dim ker diag ((T (a)+H(at), T (a)−H(at)),

and since the kernel of the operator T (a)−H(at) contains the function e(t) = 1, it
follows that

ker(T (a)+H(at)) = {0}.

Thus if dim kerT (aã−1t) > 0, then coker (T (a) + H(at)) = {0}, otherwise
ker(T (a) + H(at)) = {0} and the Coburn-Simonenko theorem is proved for
the operators T (a) + H(at). The operators T (a) − H(at−1) can be considered
analogously [16]. 	
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Theorem 2.9 can be extended in a few directions—cf. Proposition 3.9 and
Corollary 3.10 below. It is also valid for Toeplitz plus Hankel operators acting
on lp-spaces [14] and for Wiener-Hopf plus Hankel integral operators acting on
Lp(R+)-spaces [21].

3 Kernel Representations

As was already mentioned, Eq. (2.2) is of limited use in studying the Fredholmness
of the operators T (a)+H(b). However, if the generating functions a and b satisfy
the matching condition, the representation (2.2) allows to determine defect numbers
and obtain efficient representations for the kernels and cokernels of Toeplitz plus
Hankel operators. In order to present the method, we recall relevant results for oper-
ators acting on Hardy spaces—cf. [16]. Let us start with the connections between
the kernels of Toeplitz plus/minus operators and the kernels of the corresponding
block Toeplitz operators. The following lemma is a direct consequence of Eq. (2.2)
and is valid even if a and b do not constitute a matching pair.

Lemma 3.1 If a ∈ GL∞, b ∈ L∞ and the operators T (a)±H(b) are considered
on the space Hp, 1 < p < ∞, then the following relations hold:

• If (ϕ,ψ)T ∈ kerT (V (a, b)), then

(�,")T =1

2
(ϕ − JQcϕ + JQã−1ψ, ϕ + JQcϕ − JQã−1ψ)T (3.1)

∈ ker diag (T (a)+H(b), T (a)−H(b)).

• If (�,")T ∈ ker diag (T (a)+H(b), T (a)−H(b)), then

(�+",P (̃b(�+")+ ãJP (�−"))T ∈ kerT (V (a, b)). (3.2)

Moreover, the operators

E1 : kerT (V (a, b))→ ker diag (T (a)+H(b), T (a)−H(b)),

E2 : ker diag (T (a)+H(b), T (a)−H(b))→ kerT (V (a, b)),

defined, respectively, by Eqs. (3.1) and (3.2) are mutually inverses to each other.

3.1 Subordinated Operators and Kernels of T (a) + H(b)

Thus, if the kernel of the operator T (V (a, b)) is known, the kernels of both operators
T (a)+H(b) and T (a)−H(b) can be also determined. However, the kernels of the
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operators T (V (a, b)) are known only for a few special classes of matrices V (a, b),
and in the case of general generating functions a, b ∈ L∞ the kernel T (V (a, b)) is
not available. The problem becomes more manageable if a and b form a matching
pair. In this case, V (a, b) is a triangular matrix—cf. (2.11) and the subordinated
functions c and d satisfy the equations

c̃c = 1, dd̃ = 1.

Moreover, it follows from Eq. (2.12) that for any function ϕ ∈ kerT (c), the vector
(ϕ, 0)ᵀ belongs to the kernel of the operator T (V (a, b)) and the first assertion in
Lemma 3.1 shows that

ϕ − JQcPϕ ∈ ker(T (a)+H(b)),

ϕ + JQcPϕ ∈ ker(T (a)−H(b)).
(3.3)

Another remarkable fact is that both functions ϕ + JQcPϕ and ϕ − JQcPϕ also
belong to the kernel of the operator T (c). In order to show this, we need an auxiliary
result.

Lemma 3.2 Let g ∈ L∞ satisfy the relation gg̃ = 1 and f ∈ kerT (g). Then

JQgPf ∈ kerT (g) and (JQgP)2f = f. (3.4)

Proof We only check the first relation (3.4)). Thus

T (g)(JQgPf ) = PgPJQgPf = JQg̃QgPf = JQg̃gPf − JQg̃PgPf = 0,

so that JQgPf ∈ kerT (g). 	

Considering the operators P±g : kerT (g) → kerT (g),

P±g := 1

2
(I ± JQgP)

∣
∣
∣
ker T (g)

,

we observe that according to Lemma 3.2, one has (P±g )2 = P±g . Therefore, P±g
are complementary projections. This property and Eqs. (3.3) lead to the following
conclusion.

Corollary 3.3 If (c, d) is the subordinated pair for the matching pair (a, b) ∈
L∞ × L∞, then

kerT (c) = im P−c � im P+c ,

im P−c ⊂ ker(T (a)+H(b)),

im P+c ⊂ ker(T (a)−H(b)).
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Corollary 3.3 shows the impact of the operator T (c) on the kernels of T (a) +
H(b) and T (a) − H(b). The impact of the operator T (d) on ker(T (a)± H(b)) is
much more involved. Thus if T (c) is right-invertible and s ∈ kerT (d), then

(T −1
r (c)T (̃a−1)s, s)ᵀ ∈ kerT (V (a, b)),

where T −1
r (c) is one of the right-inverses for T (c).

We now can obtain the following representation of the kernel of the operator
T (V (a, b)).

Lemma 3.4 Let (a, b) be a matching pair such that the operator T (c) is invertible
from the right. Then

kerT (V (a, b)) = �(c)� �̂(d)

where

�(c) :=
{
(ϕ, 0)T : ϕ ∈ kerT (c)

}
,

�̂(d) :=
{
(T −1

r (c)T (̃a−1)s, s)T : s ∈ kerT (d)
}
.

Taking into account this representation and using the first assertion in Lemma 3.1,
we obtain that if s ∈ kerT (d), then

2ϕ±(s) = T −1
r (c)T (̃a−1)s ∓ JQcPT −1

r (c)T (̃a−1)s ± JQã−1s

∈ ker(T (a)±H(b))
(3.5)

The operators ϕ± can be referred as transition operators, since they transform the
kernel of T (d) into the kernels of the operators T (a)±H(b). An important property
of these operators ϕ± is expressed by the following lemma.

Lemma 3.5 Let (c, d) be the subordinated pair for a matching pair (a, b) ∈
L∞ × L∞. If the operator T (c) is right-invertible, then for every s ∈ kerT (d)

the following relations

(P b̃P + P ãJP )ϕ+(s) = P+d (s),

(P b̃P − P ãJP )ϕ−(s) = P−d (s),

hold. Thus the transition operators ϕ+ and ϕ− are injections on the spaces im P+d
and im P−d , respectively.

Using Lemmas 3.1–3.5, one can obtain a complete description for the kernel of
the operator T (a)+H(b) if (a, b) is a matching pair and T (c) is right-invertible.
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Proposition 3.6 (VD and BS [16]) Let (c, d) be the subordinated pair for the
matching pair (a, b) ∈ L∞ × L∞. If the operator T (c) is right-invertible, then
the kernels of the operators T (a)±H(b) can be represented in the form

ker(T (a)+H(b)) = ϕ+(im P+d )� im P−c ,

ker(T (a)−H(b)) = ϕ−(im P−d )� im P+c .

Remark 3.7 It was shown in [16] that the operators ϕ+ and ϕ− send the elements
of the spaces im P−d and im P+d into im P−c and im P+c , respectively. Therefore,

ϕ+ : im P−d → im P−c , ϕ− : im P+d → im P+c

are well-defined linear operators. If im P−c = {0} (im P+c = {0}), then ϕ+(s−) = 0
for all s− ∈ im P−d (ϕ−(s+) = 0 for all s+ ∈ im P+d ), which yields

ϕ−(s−) = T −1
r (c)T (̃a−1)s−, s− ∈ im P−d ,

(
ϕ+(s+) = T −1

r (c)T (̃a−1)s+, s+ ∈ im P+d
)
.

Indeed, assume for instance that s− ∈ im P−d . Then ϕ+(s−) = 0 leads to

0 = 2ϕ+(s−) = T −1
r (c)T (̃a−1)s− − JQcPT −1

r (c)T (̃a−1)s− + JQã−1s−.

Hence,

T −1
r (c)T (̃a−1)s− = JQcPT −1

r (c)T (̃a−1)s− − JQã−1s−.

Thus

2ϕ−(s−) = T −1
r (c)T (̃a−1)s− + JQcPT −1

r (c)T (̃a−1)s− − JQã−1s−

= 2T −1
r (c)T (̃a−1)s−

and the claim follows.
These representations of the transition operators are simpler than (3.5) and

it would be interesting to find out which conditions ensure that the restrictions

ϕ+
∣
∣
∣im P−d

and ϕ−
∣
∣
∣im P+d

become zero functions.

Thus in order to obtain an efficient description of the spaces ker(T (a) + H(b))

and ker(T (a)−H(b)), one has to characterize the projections P±c and P±d first. Such
a characterization can be derived from the Wiener-Hopf factorization (2.3) of the
subordinated functions c and d . The Wiener-Hopf factorization of these functions
can be described in more details, which yields a very comprehensive representation
of the kernels of T (c), T (d) and the related projections P±c ,P±d .
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We first consider related constructions for a matching function g such that the
operator T (g) is Fredholm on Hp with the index n. One can show that under the
condition g−(∞) = 1, the factorization (2.3) takes the form

g = σ (g)g+t−ng̃−1+ , (3.6)

where σ (g) = g+(0) = ±1 and g− = σ (g)g̃−1+ . The term σ (g) is called
factorization signature. The finding of σ (g) is a non-trivial problem but if T (g)

is invertible and g is continuous at t = 1 or t = −1, then n = 0 and σ (g) = g(1) or
σ (g) = g(−1), respectively. For piecewise continuous functions g, the term σ (g)

can be also determined.
Notice that T (a) − H(b) can be also written as Toeplitz plus Hankel operator

T (a) + H(−b). Thereby, the duo (a,−b) is again a matching pair with the
subordinated pair (−c,−d) and for the factorization signatures we have σ (−c) =
−σ (c), σ (−d) = −σ (d). This observation shows that we can restrict ourselves
to the study of Toeplitz plus Hankel operators. Nevertheless, in some cases it is
preferable to consider the operator T (a)−H(b) too. But then the leading role still
belongs to the operator T (a)+H(b) since the notions of matching pair, subordinated
pair and factorization signature are associated with this operator.

Let g stand for the subordinated function c or d , so that gg̃ = 1. If T (g)

is Fredholm, then the factorization (3.6) exists with a function g+ satisfying the
conditions for factorization (2.3) and we can describe the spaces im P±g . This
description depends on the evenness of the index of T (g).

Theorem 3.8 (VD and BS [16]) Assume that g is a matching function, the operator
T (g) is Fredholm, ind T (g) = n ≥ 0 and g+ is the plus factor in the Wiener-Hopf
factorization (3.6) of g in Hp. Then

• For n = 2r , r ∈ N, the systems of functions

B±(g) := {g−1+ (tr−k−1 ± σ (g)tr+k) : k = 0, 1, · · · , r − 1},

form bases in the spaces im P±g and dim ker P±g = r .
• For n = 2r + 1, r ∈ Z+, the systems of functions

B±(g) := {g−1+ (tr+k ± σ (g)tr−k) : k = 0, 1, · · · , r} \ {0},

form bases in the spaces im P±g and dim ker P±g = r + (1 ± σ (g))/2.

Thus if T (c), T (d) are Fredholm and T (c) is right-invertible, Proposition 3.6
provides complete description of the spaces ker(T (a)± H(b)). On the other hand,
if T (c) is Fredholm but not right-invertible, the representation

T (a)+H(b) = (T (at−n)+H(btn))T (tn)
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can be used to study ker(T (a)+H(b)). This is because for any matching pair (a, b)
the duo (at−n, btn) is also a matching pair with the subordinated pair (ct−2n, d). A
suitable choice of n leads to the right-invertibility of the operator T (ct−2n) and we
consequently obtain

ker(T (a)+H(b)) = ker(T (at−n)+H(btn)) ∩ imT (tn). (3.7)

The representation (3.7) has been used in [16], to derive the description of the
kernels of the operators T (a) ± H(b). It can be also employed to study one-sided
or generalized invertibility of Toeplitz plus Hankel operators and to construct the
corresponding one-sided and generalized inverses [17, 19, 22]. In the forthcoming
sections, invertibility problems will be discussed in more details. In this connection,
we note that the (familiar) adjoint operator (T (a) + H(b))∗ can be identified with

the operator T (a) + H(̃b) acting on the space Hq , 1/p + 1/q = 1. It is easily

seen that for any matching pair (a, b), the duo (a, b̃) is also a matching pair with
the subordinated pair (d, c) and σ (c) = σ (c), σ (d) = σ (d). Therefore, cokernel
description can be determined directly from the previous results for the kernels of
Toeplitz plus Hankel operators.

In some cases the approach above allows omitting the condition of Fredholmness
of the operator T (d). We note a few results, which can be viewed as an extension of
Coburn-Simonenko Theorem 2.9.

Proposition 3.9 (VD and BS [16]) Let (a, b) ∈ L∞×L∞ be a matching pair with
the subordinated pair (c, d), and let T (c) be a Fredholm operator. Then:

(a) If ind T (c) = 1 and σ (c) = 1, then

min{dim ker(T (a)+H(b)), dim coker (T (a)+H(b))} = 0.

(b) If ind T (c) = −1 and σ (c) = 1, then

min{dim ker(T (a)−H(b)), dim coker (T (a)−H(b))} = 0.

(c) If ind T (c) = 0, then

min{dim ker(T (a)±H(b)), dim coker (T (a)±H(b))} = 0.

An immediate consequence of Proposition 3.9 concerns the Toeplitz plus Hankel
operators of the form I ±H(b).

Corollary 3.10 Let b ∈ L∞ be a matching function such that T (̃b) is a Fredholm
operator. Then:

(a) If indT (̃b) = 1 and σ (̃b) = 1, then

min{dim ker(I +H(b)), dim coker (I +H(b))} = 0.
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(b) If ind T (̃b) = −1 and σ (̃b) = 1, then

min{dim ker(I −H(b)), dim coker (I −H(b))} = 0.

(c) If indT (̃b) = 0, then

min{dim ker(I ±H(b)), dim coker (I ±H(b))} = 0.

3.2 Kernels of T (a) + H(b) for Piecewise Continuous
Generating Functions

If more information about generating functions is available, then the kernel of
the Fredholm operator T (a) + H(b) ∈ L(Hp) can be studied under weaker
conditions. Thus for piecewise continuous functions a and b, the assumption that
the subordinated operators T (c), T (d) ∈ L(Hp) are Fredholm can be dropped. In
order to show this we need a few facts from [16].

Let A be an operator defined on all spaces Lp for 1 < p < ∞. Consider the set

AF := {p ∈ (1,∞) such that the operator A : Hp → Hp is Fredholm}.

Proposition 3.11 (Šneı̆berg [54]) The set AF is open. Moreover, for each con-
nected component γ ∈ AF , the index of the operator A : Lp → Lp, p ∈ γ is
constant.

This result also holds for operators A acting on the spaces Hp, 1 < p < ∞,
since any operator A : Hp → Hp can be identified with the operator AP + Q

acting already on Lp. For Toeplitz operators the structure of the set AF can be
characterized as follows.

Proposition 3.12 (Spitkovskiı̆ [55]) Let G be an invertible matrix–function with
entries from PC and let A := T (G). Then there is an at most countable subset
SA ⊂ (1,∞) with the only possible accumulation points t = 1 and t = ∞ such
that AF = (1,∞) \ SA.

Clearly, if G is piecewise continuous with only a finite number of discontinuities,
then SA is at most finite. This result can be used to describe the corresponding set
AF for Toeplitz plus Hankel operators with PC-generating functions.

Corollary 3.13 Let a, b ∈ PC and

A := diag (T (a)+H(b), T (a)−H(b)) : Hp ×Hp → Hp ×Hp.

Then there is at most countable subset SA ⊂ (1,∞) with only possible accumula-
tion points t = 1 and t = ∞ such that AF = (1,∞) \ SA.



Invertibility Issues for Toeplitz Plus Hankel Operators 131

Proof It follows directly from Proposition 3.12 since diag (T (a) + H(b), T (a) −
H(b)) is Fredholm if and only if so is the operator T (V (a, b)). 	


Thus if a, b ∈ PC and the operator T (a) + H(b) is Fredholm on Hp, there is
an interval (p′, p′′) containing p such that T (a)+ H(b) is Fredholm on all spaces
Hr , r ∈ (p′, p′′) and the index of this operator does not depend on r . Moreover,
there is an interval (p, p0) ⊂ (p′, p′′), p < p0 such that T (a)−H(b) is Fredholm
on Hr , r ∈ (p, p0) and its index does not depend on r . Recalling that for ν < s

the space Hs is continuously embedded into Hν , we note that the kernel of T (a)+
H(b) : Hr → Hr does not depend on r ∈ (p′, p′′). The same is also true for
ker(T (a)−H(b)), r ∈ (p, p0). We want to note that both claims are based on the
following well-known result.

Lemma 3.14 (Gohberg and Feldman [31]) Let a Banach space B1 be continu-
ously and densely embedded into a Banach space B2. Further, let A1 and A2 be
bounded Fredholm operators which respectively act on B1 and B2 and have equal
indices. If A2 is an extension of A1, then

kerA1 = kerA2.

Hence, the kernel of the operator T (a)+H(b) acting on the space Hp coincides
with the kernel of this operator acting on the space Hr for r ∈ (p, p0) and the
latter can be studied by the approach above. Therefore, if T (a)+H(b) ∈ L(Hp) is
Fredholm and a, b ∈ PC form a matching pair, the kernel of the operator T (a) +
H(b) can be described.

4 Generalized Invertibility, One-Sided Invertibility,
and Invertibility

Let a, b ∈ L∞ be a matching pair with the subordinated pair (c, d). The pair is
called a Fredholm matching pair (with respect to Hp) if the operators T (c), T (d) ∈
L(Hp) are Fredholm. We write T (a)+H(b) ∈ Fp

TH (κ1, κ2) if (a, b) is a Fredholm
matching pair with the subordinated pair (c, d) such that ind T (c) = κ1, ind T (d) =
κ2. It was first noted in [15] that if κ1 ≥ 0, κ2 ≥ 0 or if κ1 ≤ 0, κ2 ≤ 0, then (2.2)
and (2.12) yield one-sided invertibility of the operator T (a) + H(b). However, if
κ1κ2 < 0, the invertibility issues become more involved. We start this section by
considering the generalized invertibility of the operators T (a)+H(b), a, b ∈ L∞.
Set

B := PV (a, b)P +Q,

where P := diag (P, P ), Q := diag (Q,Q).
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Theorem 4.1 (VD and BS [17]) Assume that (a, b) is a matching pair with the
subordinated pair (c, d) and B is generalized invertible operator, which has a
generalized inverse B−1 of the form

B−1 =
(

A B
D 0

)

+Q, (4.1)

where A,B and D are operators acting in the space Hp. Then the operator T (a)+
H(b) : Hp → Hp is also generalized invertible and one of its generalized inverses
has the form

(T (a)+H(b))−1
g = −H(̃c)(A(I −H(d))− BH(̃a−1))

+H(a−1)D(I −H(d))+ T (a−1).

This result can now be used to construct generalized inverses for the operator
T (a)+H(b) in the following cases—cf. [17]:

(a) If κ1 ≥ 0 and κ2 ≥ 0, then B has generalized inverse of the form (4.1) with
A = T −1

r (c)T (̃a−1)T −1
r (d), B = −T −1

r (c) and D = T −1
r (d).

(b) If κ1 ≤ 0 and κ2 ≤ 0, then B has generalized inverse of the form (4.1) with
A = T −1

l (c)T (̃a−1)T −1
l (d), B = −T −1

l (c) and D = T −1
l (d).

(c) If κ1 ≥ 0 and κ2 ≤ 0, then B has generalized inverse of the form (4.1) with
A = T −1

r (c)T (̃a−1)T −1
l (d), B = −T −1

r (c) and D = T −1
l (d).

It is clear that in the cases (a) and (b), generalized inverses are, respectively, right
and left inverses. We also note that under conditions of assertion (a), a right inverse
of T (a)+H(b) can be written in a simpler form—cf. [19]

B := (I −H(̃c))T −1
r (c)T (̃a−1)T −1

r (d)+H(a−1)T −1
r (d). (4.2)

The proof of this result is straightforward—i.e. one can use the relations (2.1) to
verify that (T (a) + H(b))B = I . On the other hand, under conditions of (b), a
simpler representation of the left-inverse of T (a)+H(b) can be derived from (4.2)
by passing to the adjoint operator.

In addition to the cases considered, there is one more situation—viz.

(d) κ1 < 0, κ2 > 0.

This case is much more involved and we will deal with it later on. At the moment,
we focus on invertibility of operators from Fp

TH (κ1, κ2), 1 < p < ∞.

Theorem 4.2 (VD and BS [19]) Assume that T (a) + H(b) ∈ Fp
TH (κ1, κ2) is

invertible. Then:

(i) If κ1 ≥ κ2 or κ1κ2 ≥ 0, then

|κ1| ≤ 1, |κ2| ≤ 1. (4.3)
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(ii) If κ1 < 0 and κ2 > 0, then

(a) If κ1 and κ2 are even numbers, then κ2 = −κ1.
(b) If κ1 is an odd number and κ2 is an even one, then κ2 = −κ1 + σ (c).
(c) If κ1 is an even number and κ2 is an odd one, then κ2 = −κ1 − σ (d).
(d) If κ1 and κ2 are odd numbers, then κ2 = −κ1 + σ (c)− σ (d).

Our next goal is to obtain sufficient invertibility conditions for the invertibility
of the operators from Fp

TH (κ1, κ2) and to provide effective representations for their
inverses. We assume first that κ1 and κ2 satisfy conditions (4.3).

Theorem 4.3 (VD and BS [19]) Assume that T (a)+H(b) ∈ Fp
TH (κ1, κ2) and the

indices of the subordinated operators T (c), T (d) and the factorization signatures
of c and d satisfy one of the following conditions:

(i) κ1 = 0, κ2 = 0;
(ii) κ1 = 1, κ2 = 0 and σ (c) = 1;

(iii) κ1 = 0, κ2 = 1 and σ (d) = −1;
(iv) κ1 = 1, κ2 = 1 and σ (c) = 1, σ (d) = −1;
(v) κ1 = 0, κ2 = −1 and σ (d) = 1;

(vi) κ1 = −1, κ2 = 0 and σ (c) = −1;
(vii) κ1 = −1, κ2 = −1 and σ (c) = −1, σ (d) = 1;

(viii) κ1 = 1, κ2 = −1 and σ (c) = 1, σ (d) = 1;
(ix) κ1 = −1, κ2 = 1 and σ (c) = −1, σ (d) = −1.

Then the operator T (a)+H(b) is invertible. Moreover, we have:

1. Under conditions (i)–(iv), the inverse operator has the form (4.2), where right-
inverses of T (c) or/and T (d) shall be replaced by the corresponding inverses.

2. Under conditions (v)–(vii), the inverse operator has the form

(T (a)+ H(b))−1 =−H(̃c)(T −1
l (c)T (̃a−1)T −1

l (d)(I −H(d))

+ T −1
l (c)H (̃a−1))+H(a−1)T −1

l (d)(I −H(d)) + T (a−1).

3. Under condition (viii), the inverse operator has the form

(T (a)+ H(b))−1 =−H(̃c)(T −1
r (c)T (̃a−1)T −1

l (d)(I −H(d))

+ T −1
r (c)H (̃a−1))+H(a−1)T −1

l (d)(I −H(d)) + T (a−1).

4. Under condition (ix), the inverse operator has the form

(T (a)+H(b))−1 = T (t−1)(I − c−1+ tQt−1)

× [(I −H(t2c̃))T −1
r (t−2c)T (̃a−1t−1)T −1

r (d)+H(a−1t)T −1
r (d)],

where c+ is the plus factor in factorization (3.6) for the function c.
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Theorem 4.3 is, in fact, the collection of various results from [19]. On the other
hand, conditions (i)–(ix) are not necessary for the invertibility of T (a) + H(b) in
the case (4.3). Thus if κ1 = −1, κ2 = 1, then the operator T (a) + H(b) can be
invertible even if σ (c) and σ (d) do not satisfy condition (ix). This case, however,
requires special consideration and has been not yet studied.

Consider now the situation (ix) in more detail. This is a subcase of assertion (ii)
in Theorem 4.2 and a closer inspection shows substantial difference from the other
cases in Theorem 4.3. What makes it very special is the presence of the factorization
factor of c in the representation of the inverse operator. It is also worth noting that
the construction of (T (a) + H(b))−1 is more involved and requires the following
result.

Lemma 4.4 (VD and BS [19, 22]) Let C,D be operators acting on a Banach space
X. If A = CD is an invertible operator, then C and D are, respectively, right- and
left-invertible operators. Moreover, the operator D : X → imD is invertible and
if D−1

0 : imD → X is the corresponding inverse, then the operator A−1 can be
represented in the form

A−1 = D−1
0 P0C

−1
r ,

where P0 is the projection from X onto imD parallel to kerC and C−1
r is any right-

inverse of C.

Theorem 4.2(ii) provides necessary conditions for the invertibility of T (a) +
H(b) ∈ Fp

TH (κ1, κ2) for negative κ1 and positive κ2. In the next section, we take a
closer look at the condition (iia). The related ideas can be seen as a model to study
invertibility in cases (iib)–(iid) of Theorem 4.2.

Now we would like to discuss a few examples.

Example 4.5 Let us consider the operator T (a)+H(b) in the case where a = b. In
this situation c(t) = 1 and d(t) = a(t )̃a−1(t). Hence, H(̃c) = 0, T (c) = I and if
ind T (d) = 0, then the operator T (a)+H(a) is also invertible and

(T (a)+H(a))−1 = (T (̃a−1)+H(a−1))T −1(aã−1).

Example 4.6 Similar approach show that the operator T (a)+ H(̃a) is invertible if
T (c), c(t) = a(t )̃a−1(t) is invertible and

(T (a)+H(̃a))−1 = (I −H(̃aa−1))T −1(aã−1)T (̃a−1)+H(a−1).

Example 4.7 Consider the operator I+H(φ0b), where b(t )̃b(t) = 1 and φ0(t) = t ,
φ0(t) = −t−1 or ϕ0(t) = ±1 for all t ∈ T. Assume that the operator T (̃b) is
Fredholm. Corollary 3.10 indicates that if one of the conditions

(a) indT (̃b) = 0 and ϕ0(t) = ±1,
(b) ind T (̃b) = 0, σ (̃b) = 1 and ϕ0(t) = t ,
(c) indT (̃b) = 0, σ (̃b) = 1 and ϕ0(t) = −t−1,
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holds, then

min{dim ker(I +H(ϕ0b)), dim coker (I +H(ϕ0b))} = 0.

Therefore, if I+H(ϕ0b) is Fredholm with index zero, then this operator is invertible.
However, for b ∈ PC, the Fredholmness of the operators T (̃b) and I +H(ϕ0b) can
be studied by Theorems 2.4 and 2.5. It is also possible to construct the inverse
operator using the corresponding results on the factorization of PC-functions.
However, instead of going into details, we would like to observe that if T (b),
b ∈ L∞ is invertible, then I + T (ϕ0b) is also invertible under the conditions of
Theorem 4.3(i), (viii), and (ix), respectively. Moreover, the inverse operator can be
explicitly constructed.

Using a distinct method, Basor and Ehrhardt [5] also proved the invertibility
of this operator on H 2 under the condition that T (̃b) : H 2 → H 2 is invertible.
For the H 2-space, the invertibility of T (b) automatically follows from that of
T (̃b). However, if p �= 2, this is not true and the corresponding examples can be
found already among operators with piecewise continuous generating functions. It
is interesting enough that in each case ϕ0(t) = ±1, ϕ0(t) = t or ϕ0(t) = −t−1, the
inverse operator can be represented in the form

(I +H(ϕ0b))
−1 = (T (̃b)+H(ϕ0))

−1(I +H(ϕ0b̃))(T (b)+H(ϕ0))
−1.

5 Invertibility of Operators from Fp

T H
(−2n, 2n), n ∈ N

Theorem 4.2(ii) provides necessary conditions for invertibility of the operator
T (a)+H(b) ∈ Fp

TH (κ1, κ2) if κ1 < 0 and κ2 > 0. There are four different situations
to consider. Here we focus only on the case T (a)+H(b) ∈ Fp

TH (−2n, 2n), n ∈ N,
but the reader can handle the remaining cases using the ideas below. Let us start with
the simplest case T (a) + H(b) ∈ Fp

TH (−2, 2) and let (c, d) be the subordinated
pair for the matching pair (a, b) ∈ L∞×L∞. In passing note that if T (a)+H(b) ∈
Fp

TH (−2, 2), then the adjoint operator (T (a)+H(b))∗ = T (a)+H(̃b) belongs to
the set Fq

TH (−2, 2).
According to (3.6), the Wiener-Hopf factorization of the function d is

d(t) = σ (d)d+(t) t−2 d̃−1+ (t).

It is easily seen that the operator T (a)+H(b) can be represented in the form

T (a)+H(b) = (T (a1)+H(b1))T (t), (5.1)

where a1 = at−1 and b1 = tb. The duo (a1, b1) = (at−1, bt) is a matching pair
with the subordinated pair (c1, d1) = (ct−2, d). Hence, T (a1)+H(b1) ∈ Fp

TH (0, 2)
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and we note that T (c1) is invertible. The invertibility of T (c1) implies that both
projections P+c1

are P−c1
are the zero operators. According to Remark 3.7, the

functions ϕ± admit the representations

ϕ±(s±) = T −1
r (c)T (̃a−1)s±, s± ∈ im P±d .

so that

ker(T (a1)±H(b1)) = T −1
r (c1)T (̃a−1

1 )(im P±d ).

Further, we also note that

im P±d = {νd−1+ (1 ± σ (d)t : ν ∈ C}

is a one-dimensional subspace of kerT (d).
By ωa,b,± we denote the functions

ωa,b,±(t) = T −1(ct−2)T (̃a−1t−1)(d−1+ (t)± σ (d)d−1+ (t)t), (5.2)

which respectively belong to the kernels of the operators T (a1)±H(b1). It is clear
that ωa,b,± also depend on p.

Representation (5.1) shows that T (a)+H(b) has trivial kernel if and only if

ker(T (a1)+H(b1)) ∩ imT (t) = {0}.

It is possible only if

ω̂
a,b,+
0 �= 0,

where ω̂
a,b,+
0 is the zero Fourier coefficient of the function ωa,b,+(t). Similar result

is valid for the operator T (a)− H(b). Note that if T (a)+H(b) belongs to the set
Fp

TH (−2, 2), then so is the operator T (a) − H(b), since T (a) − H(b) = T (a) +
H(−b).

Theorem 5.1 (VD and BS [22]) Let T (a)+H(b) ∈ Fp
TH (−2, 2).

(a) The operator T (a) + H(b) (T (a) − H(b)) is left-invertible if and only if
ω̂
a,b,+
0 �= 0 (ω̂

a,b,−
0 �= 0).

(b) The operator T (a) + H(b) (T (a) − H(b)) is right-invertible if and only if

ω̂
a,̃b,+
0 �= 0 (ω̂

a,̃b,−
0 �= 0).

(c) The operator T (a)+H(b) (T (a)−H(b)) is invertible if and only if ω̂
a,b,+
0 �= 0

and ω̂
a,̃b,+
0 �= 0 (ω̂

a,b,−
0 �= 0 and ω̂

a,̃b,−
0 �= 0).

(d) If ω̂a,b,+
0 �= 0 and ω̂

a,b,−
0 �= 0, then both operators T (a) + H(b) and T (a) −

H(b) are invertible.
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Let us sketch the proof of Assertion (d). It follows from the representations (2.2)
and (2.12) that

ind (T (a)+H(b))+ ind (T (a)−H(b)) = 0. (5.3)

By Assertion (a), both operators T (a)+H(b) and T (a)−H(b) are left-invertible.
Therefore, ind (T (a)+H(b)) ≤ 0, ind (T (a)−H(b)) ≤ 0 and taking into account
(5.3), we obtain that

ind (T (a)+H(b)) = ind (T (a)−H(b)) = 0,

which yields the invertibility of both operators under consideration.
If an operator T (a) + H(b) ∈ Fp

TH (−2, 2) is invertible, we can construct its
inverse by using Lemma 4.4. In particular, we have.

Theorem 5.2 (VD and BS [22]) If T (a)+H(b) ∈ Fp
TH (−2, 2) is invertible, then

the inverse operator can be represented in the form

(T (a)+H(b))−1

= T (t−1)

(

I − 1

ω̂
a,b,+
0

T −1(ct−2)T (̃a−1t−1)d−1+ (t)(1 + σ (d)t)tQt−1

)

×
(
(I −H(t2c̃))T −1(t−2c)T (̃a−1t−1)T −1

r (d)+H(a−1t)T −1
r (d)

)
. (5.4)

Example 5.3 We now consider the operator A = T (a)+ H(t−2a), defined by the
function

a(t) := (1 − γ t−1)(1 − γ t)−1,

where γ is a fixed number in the interval (0, 1).

The duo (a, at−2) is a matching pair with the subordinated pair (c, d) =
(t2, a−1t2) and A ∈ Fp

TH (−2, 2). The corresponding Wiener-Hopf factorizations
of a and d are the same in all Hp. More precisely, we have

a(t) = a+(t )̃a−1+ (t), a+(t) = (1 − γ t)−1,

d(t) = 1 · d+(t)t−2d̃−1+ (t), d+(t) = (1− γ t)−2.

Hence, σ (d) = 1 and computing the zero Fourier coefficients of the corresponding
functions (5.2), we obtain

ŵ
a,at−2,+
0 = ŵ

a,at−2,−
0 = γ 2 − γ + 1.
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It is easily seen that for any γ ∈ (0, 1) these coefficients are not equal to zero, so that
by Theorem 5.1(c), the operator T (a) + H(at−2) is invertible. The corresponding
inverse operator, which is constructed according to the representation (5.4), has the
form

(T (a)+H(t−2a))−1

= T (t−1)

(

I − 1

γ 2 − γ + 1
P
(
(1 − γ t−1)(1 − γ t)(1 + t)

)
Qt−1

)

×
(

T

(
(1 − γ t−1)t−1

1 − γ t

)

+H

(
(1 − γ t)t

1 − γ t−1

))

× T ((1 − γ t)2)T ((1 − γ t−1)−2)T (t2).

Consider now the invertibility of the operators T (a) + H(b) from the set
Fp

TH (−2n, 2n) for n greater than 1. Thus we assume that the subordinated operator
T (c) = T (ab−1) and T (d) = T (ab̃−1) are Fredholm and

ind T (c) = −2n, ind T (d) = 2n, n > 1.

Considering the functions

ω
a,b
k (t) := T −1(ct−2n)T (̃a−1t−n)d−1+ (t)(tn−k−1 + σ (d)tn+k)

for k = 0, 1, · · · , n− 1, we introduce the matrix

Wn(a, b) = (ω
a,b
jk )n−1

k,j=0,

with the entries

ω
a,b
jk = 1

2π

∫ 2π

0
ω
a,b
k (eiθ )e−ijθ dθ, j, k = 0, 1, · · · , n− 1,

and the terms d+ and σ (d) defined by the Wiener-Hopf factorization

d(t) = σ (d)d+(t) t−2n d̃−1+ (t),

with respect to Lp. Notice that the functions ωa,b
k form a basis in ϕ+(im P+d ), where

ϕ+ : im P+d → ker(T (a1)+H(b1)) is defined by

ϕ+ = T −1(ct−2n)T (̃a−1t−n)).

The invertibility of the operators from Fp

TH (−2n, 2n) is described by the following
theorem.
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Theorem 5.4 (VD and BS [22]) If T (a)+H(b) ∈ Fp
TH (−2n, 2n), then:

(a) T (a)+H(b) is left-invertible if and only if Wn(a, b) is a non-degenerate matrix.

(b) T (a) + H(b) is right-invertible if and only if Wn(a, b̃) is a non-degenerate
matrix.

(c) T (a) + H(b) is invertible if and only if Wn(a, b) and Wn(a, b̃) are non-
degenerate matrices.

(d) If Wn(a, b) and Wn(a,−b) are non-degenerate matrices, then both operators
T (a)+H(b) and T (a)−H(b) are invertible.

Example 5.5 Consider operator T (a)+H(at−2n), n ∈ N and

a(t) = 1 − γ t−1

1 − γ t
, γ ∈ (0, 1). (5.5)

It was shown in [22] that for any n ∈ N, the above operator is left-invertible in any
space Hp, 1 < p < ∞. Moreover, since H(at−2n) is compact and ind T (a) = 0,
the operator at hand is even invertible. The inverse of T (a) + H(at−2n) can be
constructed in explicit form.

Remark 5.6 If m,n ∈ N and m �= n, the set Fp

TH (−2m, 2n) does not contain
invertible operators, but it still includes one-sided invertible operators.

6 Toeplitz Plus Hankel Operators on lp-Spaces

A substantial portion of the results presented in Sects. 2–5 can be extended to
Toeplitz plus Hankel operators acting on lp-spaces, 1 < p < ∞. Such an extension
is highly non-trivial because many tools perfectly working in classical Hardy spaces
Hp, are not available for operators on lp-spaces. In particular, a big problem is the
absence of a Wiener-Hopf factorization, which plays outstanding role in the study
of Toeplitz plus Hankel operators on classical Hp-spaces.

6.1 Spaces and Operators

Let lp(Z) denote the complex Banach space of all sequences ξ = (ξn)n∈N of
complex numbers with the norm

||ξ ||p =
(
∑

n∈Z
|ξn|p

)1/p

, 1 ≤ p < ∞.
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As usual, Z denotes the set of all integers. If we replace Z by the set of all non-
negative integers Z+, we get another Banach space lp(Z+). It can be viewed as a
subspace of lp(Z) and we will often write lp for lp(Z+). By P , we now denote the
canonical projection from lp(Z) onto lp(Z+) and let Q := I − P . Further, let J
refer to the operator on lp(Z) defined by

(J ξ)n = ξ−n−1, n ∈ Z.

The operators J, P and Q are connected with each other by the relations

J 2 = I, JPJ = Q, JQJ = P.

For each a ∈ Lp = Lp(T), let (̂ak)k∈Z be the sequence of its Fourier coefficients.
The Laurent operator L(a) associated with a ∈ L∞(T) acts on the space l0(Z) of
all finitely supported sequences on Z by

(L(a)x)k :=
∑

m∈Z
âk−mxm, (6.1)

where the sum in the right-hand side of (6.1) contains only a finite number of non-
zero terms for every k ∈ Z. We say that a is a multiplier on lp(Z) if L(a)x ∈ lp(Z)

for any x ∈ l0(Z) and if

||L(a)|| := sup{||L(a)x||p : x ∈ l0(Z), ||x||p = 1}

is finite. In this case, L(a) extends to a bounded linear operator on lp(Z), which is
again denoted by L(a). The set Mp of all multipliers on lp(Z) is a Banach algebra
under the norm ||a||Mp := ||L(a)||—cf. [7]. It is well-known that M2 = L∞(T).
Moreover, every function a ∈ L∞(T) with bounded total variation Var (a) is in Mp

for every p ∈ (1,∞) and the Stechkin inequality

||a||Mp ≤ cp(||a||∞ + Var (a))

holds with a constant cp independent of a. In particular, every trigonometric
polynomial and every piecewise constant function on T are multipliers on any space
lp(Z), p ∈ (1,∞). By Cp and PCp we, respectively, denote the closures of algebras
of all trigonometric polynomials E and all piecewise constant functions PC in Mp.
Note that C2 is just the algebra C(T) of all continuous functions on T, and PC2 is
the algebra PC(T) of all piecewise continuous functions on T. We also note that
the Wiener algebra W of the functions with absolutely converging Fourier series is
also a subalgebra of Mp and

W ⊂ Cp ⊂ PCp ⊂ PC and Mp ⊂ L∞.
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For this and other properties of multiplier cf. [7]. We also recall the equation
JL(a)J = L(̃a) often used in what follows.

Let a ∈ Mp. The operators T (a) : lp → lp, x �→ PL(a)x and H(a) : lp → lp,
x �→ PL(a)Jx = PL(a)QJ are, respectively, called Toeplitz and Hankel operators
with generating function a. It is well-known that ||T (a)|| = ||a||Mp and ||H(a)|| ≤
||a||Mp for every multiplier a ∈ Mp. In this section we also use the notation Tp(a)

or Hp(a) in order to underline that the corresponding Toeplitz or Hankel operator
is considered on the space lp for a fixed p ∈ (1,∞). The action of the operators
Tp(a) and Hp(a) on the elements from lp can be written as follows

T (a) : (ξj )j∈Z+ →
⎛

⎝
∑

k∈Z+
âj−kξk

⎞

⎠

j∈Z+
,

H(a) : (ξj )j∈Z+ →
⎛

⎝
∑

k∈Z+
âj+k+1ξk

⎞

⎠

j∈Z+
.

Let GMp denote the group of invertible elements in Mp.

Lemma 6.1 (cf. Ref. [7]) Let p ∈ (1,∞).

1. If Tp(a) is Fredholm, then a ∈ GMp.
2. If a ∈ Mp, then one of the kernels of the operators Tp(a) or T ∗

q (a), 1/p+1/q =
1 is trivial.

3. If a ∈ GMp, the operator Tp(a) is Fredholm, and ind Tp(a) = 0, then T (a) is
invertible on lp.

6.2 Kernels of a Class of Toeplitz Plus Hankel Operators

The goal of this subsection is to present a method on how to study certain problems
for Toeplitz plus Hankel operator Tp(a) + Hp(b) defined on lp via known results
obtained in Sects. 2–5. Since Mp ⊂ L∞(T), for any given elements a, b ∈ Mp the
operator Tp(a) + Hp(b) ∈ L(lp) generates the operator Ts (a)+ Hs(b) ∈ L(H s),
1 < s < ∞ in an obvious manner. We denote by Lp,q(lp) the collection of
all Toeplitz plus Hankel operators acting on the space lp such that the following
conditions hold:

(a) a, b ∈ Mp.
(b) Tp(a)+Hp(b) ∈ L(lp) is Fredholm.
(c) Tq(a)+ Hq(b) ∈ L(Hq), 1/p + 1/q = 1 is Fredholm.
(d) Both operators acting on the spaces mentioned have the same Fredholm index.
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The following observation is crucial for what follows. The famous Hausdorff-Young
Theorem connects the spaces lp and Hq , 1/p + 1/q = 1 via Fourier transform
F(a) = (̂an)n∈Z, a ∈ Hq .

Theorem 6.2 (Hausdorff and Young [27])

(a) If g ∈ Hp and 1 ≤ p ≤ 2, then Fg ∈ lq and

||Fg||q ≤ ||g||p.

(b) If ϕ = (ϕn)n∈Z ∈ lp(Z) and 1 ≤ p ≤ 2, then the series
∑

ϕne
int converges in

Lq to a function ϕ̆ and

||ϕ̆||q ≤ ||ϕ||p.

Theorem 6.2 gives rise to the following construction. Let Ĥ p, p ∈ (1,∞) be
the set of all sequences (χn)n∈Z+ such that there exists a function h ∈ Hp with
the property Fh = (χn)n∈Z+ . The set Ĥ p equipped with the norm ||(gk)k∈Z+|| :=
||g||Hp , becomes a Banach space isometrically isomorphic to Hp. Part (a) of the
Hausdorff-Young Theorem assures that Ĥ p is densely continuously embedded in
the space lq and part (b) claims that lp , 1 ≤ p ≤ 2 is continuously and densely
embedded into Ĥ q .

Theorem 6.3 (VD and BS [21]) Let p ∈ (1,∞). If Tp(a) + Hp(b) ∈ Lp,q , then
the Fourier transform F is an isomorphism between the spaces ker(Tq (a)+Hq(b))

and ker(Tp(a)+Hp(b)).

Let us give a sketch of the proof. The matrix representation [Tq(a)+ Hq(b)] of
the operator Tq (a)+Hq(b) in the standard basis (tn)n∈Z+ induces a linear bounded
operator on Ĥ q , so that

[Tq (a)+ Hq(b)] = (̂ai−j + b̂i+j+1)
∞
i,j=0

The operators Tq(a) + Hq(b) ∈ L(Hq) and [Tq(a) + Hq(b)] ∈ L(Ĥ q) have the
same Fredholm properties as Tp(a)+Hp(b) ∈ L(lp) for 1 < q ≤ 2. Moreover, the
operator Tp(a)+Hp(b) ∈ L(lp) is the extension of [Tq(a)+Hq(b)] with the same
index. However, in this case Lemma 3.14 then indicates that

ker[Tq(a)+ Hq(b)] = ker(Tp(a)+Hp(b)), Tp(a)+Hp(b) ∈ L(lp),

and for p ≥ 2 the assertion follows. The case 1 < p ≤ 2 can be treated analogously.
Thus the main problem in using Theorem 6.2 is whether it is known that Tp(a)+

Hp(b) ∈ Lp,q . This is a non-trivial fact but the following result holds.

Proposition 6.4 (VD and BS [21]) Let a, b ∈ PCp , 1 < p < ∞. If the operator
Tp(a)+Hp(b) ∈ L(lp) is Fredholm, then Tp(a)+Hp(b) ∈ Lp,q .
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The proof of this proposition can be carried out using ideas from [50] and [51].
However, a simpler proof can be obtained if the generating function a and b satisfy
the matching condition aã = bb̃ and the operators Tp(c), Tp(d) are Fredholm say
in lp. Then Tp(c), Tp(d) ∈ Lp,q—cf. [7, Chapters 4 and 6], and using classical
approach, which also works in lp situation, one obtains the result.

Thus, it is now clear how to extend the results of Sects. 2–5 to Toeplitz plus
Hankel operators acting on spaces lp. Let us formulate just one such result without
going into much details.

Theorem 6.5 Let (a, b) ∈ PCp × PCp be a Fredholm matching pair with the
subordinated pair (c, d), and let ĉ−1

+,j , j ∈ Z+ be the Fourier coefficients of the

function c−1+ , where c+ is the plus factor in the Wiener-Hopf factorization (3.6) of
the function c in Hq . If κ1 := ind Tp(c) > 0, κ2 := ind Tp(d) ≤ 0, then the kernel
of the operator Tp(a)+Hp(b) admits the following representation:

(a) If κ1 = 1 and σ(c) = 1, then

ker(Tp(a)+Hp(b)) = {0}.

(b) If κ1 = 1 and σ(c) = −1, then

ker(Tp(a)+Hp(b)) = lin span{(̂c−1
+,j )j∈Z+}.

(c) If κ1 > 1 is odd, then

ker(Tp(a)+Hp(b)) = lin span{(̂c−1
+,j−(κ1−1)/2−l − σ (c)̂c−1

+,j−(κ1−1)/2+l)j∈Z+ :
l = 0, · · · , (κ1 − 1)/2}.

(d) If κ1 is even, then

ker(Tp(a)+Hp(b)) = lin span{(̂c−1
+,j−κ1/2+l+1 − σ (c)̂c−1

+,j−κ1/2−l)j∈Z+ :
l = 0, 1, · · · , κ1/2 − 1}.

Remark 6.6 Sometime the study of invertibility of Toeplitz plus Hankel operators
Tp(a) + Hp(b) can be carried out even if it is not known, whether this operator
belongs to Lp,q . Thus lp-versions of Theorem 2.9, Proposition 3.9 and Corol-
lary 3.10 can be directly proved.

7 Wiener-Hopf Plus Hankel Operators

This section is devoted to Wiener-Hopf plus Hankel operators. Let χE refer to the
characteristic function of the subset E ⊂ R and let F and F−1 be the direct and
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inverse Fourier transforms—i.e.

Fϕ(ξ) :=
∫ ∞

−∞
eiξxϕ(x) dx, F−1ψ(x) := 1

2π

∫ ∞

−∞
e−iξxψ(ξ) dξ, x ∈ R.

In what follows, we identify the spaces Lp(R+) and Lp(R−), 1 ≤ p ≤ ∞ with the
subspaces P(Lp(R)) and Q(Lp(R)) of the space Lp(R), where P and Q are the
projections in Lp(R) defined by Pf := χR+f and Q := I − P , respectively.

Consider the set G of functions g having the form

g(t) = (Fk)(t)+
∑

j∈Z
gj e

iδj t , t ∈ R, (7.1)

where k ∈ L(R), δj ∈ R, gj ∈ C and the series in the right-hand side
of (7.1) is absolutely convergent. Any function g ∈ G generates an operator
W 0(a) : Lp(R) → Lp(R) and operators W(g),H(g) : Lp(R+) → Lp(R+)
defined by

W 0(g) := F−1gFϕ, W(g) := PW 0(g), H(g) := PW 0(g)QJ.

Here and throughout this section, J : Lp(R) → Lp(R) is the reflection operator
defined by Jϕ := ϕ̃ and ϕ̃(t) := ϕ(−t) for any ϕ ∈ Lp(R), p ∈ [1,∞]. Operators
W(g) and H(g) are, respectively, called Wiener-Hopf and Hankel operators on the
semi-axis R+. It is well-known [31] that for g ∈ G, all three operators above are
bounded on any space Lp, p ∈ [1,∞).

In particular, the operator W(g) has the form

W(g)ϕ(t) =
∞∑

j=−∞
gjBδj ϕ(t)+

∫ ∞

0
k(t − s)ϕ(s) ds, t ∈ R

+,

where

Bδj ϕ(t) = ϕ(t − δj ) if δj ≤ 0,

Bδj ϕ(t) =
{

0, 0 ≤ t ≤ δj

ϕ(t − δj ), t > δj
if δj > 0.

Moreover, for g = Fk the operator H(a) acts as

H(g)ϕ(t) =
∫ ∞

0
k(t + s)ϕ(s) ds
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and for g = eδt , one has H(a)ϕ(t) = 0 if δ ≤ 0 and

H(g)ϕ(t) =
{
ϕ(δ − t), 0 ≤ t ≤ δ,

0, t > δ,

if δ > 0.
For various classes of generating functions, the Fredholm properties of operators

W(a) are well studied [7, 8, 12, 24–26, 31]. In particular, Fredholm and semi-
Fredholm Wiener-Hopf operators are one-sided invertible, and for a ∈ G there
is efficient description of the kernels and cokernels of W(a) and formulas for the
corresponding one-sided inverses.

The study of Wiener-Hopf plus Hankel operators

W(a, b) = W(a)+H(b), a, b ∈ L∞(R). (7.2)

is much more involved. The invertibility and Fredholmness of such operators in
the space L2 is probably first considered by Lebre et al. [43]. In particular, the
invertibility of W(a, b) has been connected with the invertibility of a block Wiener-
Hopf operator W(G). Assuming that a admits canonical Wiener-Hopf factorization
in L2 and the Wiener-Hopf factorization of the matrix G is known, Lebre et al.
provided a formula for W−1(a, b). Nevertheless, the difficulties with Wiener-Hopf
factorization of matrix G influence the efficiency of the method. For piecewise
continuous generating functions, the conditions of Fredholmness are obtained in
[51]. A different method, called equivalence after extension, has been applied to
Wiener-Hopf plus Hankel operators W(a, a) = W(a) + H(a) with generating
function a belonging to various functional classes [9, 10]. The Fredholmness,
one-sided invertibility and invertibility of such operators are equivalent to the
corresponding properties of the Wiener-Hopf operator W(aã−1). Therefore, known
results about the invertibility and Fredholmness of W(aã−1) can be retranslated to
the operator W(a, a). On the other hand, the equivalence after extension has not
been used to establish any representations of the corresponding inverses. Another
approach has been exploited in [38, 39] to study the essential spectrum and the
index of the operators I +H(b).

We now consider Wiener-Hopf plus Hankel operators (7.2) with generating
functions a, b ∈ G satisfying the matching condition (2.4), where ã(t) and b̃(t)

denote the functions a(−t) and b(−t), respectively. Thus we now assume that

a(t)a(−t) = b(t)b(−t) (7.3)

and define the subordinated functions c and d by

c(t) := a(t)b−1(t), d(t) := a(t )̃b−1(t) = a(t)b−1(−t), t ∈ R.
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The assumption (7.3) allows us to employ the method developed in Sects. 2–5 and
establish necessary and also sufficient conditions for invertibility and one-sided
invertibility of the operators under consideration and obtain efficient representations
for the corresponding inverses. Note that here we only provide the main results. For
more details the reader can consult [14, 20, 23].

Let G+ ⊂ G and G− ⊂ G denote the sets of functions, which admit holomorphic
extensions to the upper and lower half-planes, respectively. If g ∈ G is a matching
function—i.e. gg̃ = 1, then according to [14, 20], it can be represented in the form

g(t) =
(
σ (g) g̃−1+ (t)

)
eiνt

( t − i

t + i

)n
g+(t),

where ν = ν(g) ∈ R, n = n(g) ∈ N, σ (g) = (−1)ng(0), g̃±1+ (t) ∈ G− and
g̃+(∞) = 1. This representation is unique and the numbers ν(g) and n(g) in the
representation (7.1) are defined as follows:

ν(g) := lim
l→∞

1

2l
[argg(t)]l−l , n(g) := 1

2π
[arg(1 + g−1(t)(Fk)(t)]∞t=−∞.

Moreover, following the considerations of Sects. 2–3, for any right-invertible oper-
ator W(g) generated by a matching function g, we can introduce complementary
projections P±g on kerW(g). More precisely, if ν < 0 or if ν = 0 and n < 0, then
W(g) is right-invertible and the projections P±g are defined by

P±g := (1/2)(I ± JQPW 0(g)P ) : kerW(g) → kerW(g).

In addition, we also need the translation operator ϕ+ defined by the subordinated
functions c and d . Assume that W(c) is right-invertible operator. Let W−1

r (c) be any
of its right-inverses and consider the following function:

ϕ+ = ϕ+(a, b) := 1

2
(W−1

r (c)W(ã−1)− JQW 0(c)PW−1
r (c)W(ã−1))

+ 1

2
JQW 0(ã−1),

We are ready to discuss the invertibility of Wiener-Hopf plus Hankel operators
starting with necessary conditions in the case where at least one of the indices
ν1 := ν(c) or ν2 := ν(d) is not equal to zero. The situation ν1 = ν2 = 0 will
be considered later on. Let n1 and n2 denote the indices n(c) and n(d), respectively.

Theorem 7.1 (VD and BS [23]) If a, b ∈ G, the operator W(a) + H(b) is one-
sided invertible in Lp(R+) and at least one of the indices ν1 or ν2 is not equal to
zero, then:

(i) Either ν1ν2 ≥ 0 or ν1 > 0 and ν2 < 0.
(ii) If ν1 = 0 and ν2 > 0, then n1 > −1 or n1 = −1 and σ (c) = −1.

(iii) If ν1 < 0 and ν2 = 0, then n2 < 1 or n2 = 1 and σ (d) = −1.
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Consider now the case ν1 > 0 and ν2 < 0 in more detail. It can be specified as
follows.

Theorem 7.2 (VD and BS [23]) Let ν1 > 0, ν2 < 0, n1 = n2 = 0 and N
p
ν , ν > 0

denote the set of functions f ∈ Lp(R+) such that f (t) = 0 for t ∈ (0, ν).

(i) If the operator W(a) + H(b) : Lp(R+) → Lp(R+), 1 < p < ∞ is invertible
from the left, then

ϕ+(P+d ) ∩N
p

ν1/2 = {0},

where ϕ+ = ϕ+(ae−iν1t/2, beiν1t/2).
(ii) If the operator W(a) + H(b) : Lp(R+) → Lp(R+), 1 < p < ∞ is invertible

from the right, then

ϕ+(P+c ) ∩N
p

−ν2/2 = {0}, (7.4)

where ϕ+ = ϕ+(aeiν2t/2, b̃e−iν2t/2).

Passing to the case ν1 = ν2 = 0, we note that now the indices n1 and n2 take
over.

Theorem 7.3 (VD and BS [23]) Let a, b ∈ G, ν1 = ν2 = 0 and the operator
W(a)+H(b) is invertible from the left. Then:

(i) In the case n2 ≥ n1, the index n1 satisfies the inequality

n1 ≥ −1

and if n1 = −1, then σ (c) = −1 and n2 > n1.
(ii) In the case n1 > n2, the index n1 satisfies the inequality

n1 ≥ 1,

and the index n2 is either non-negative or n2 < 0 and n1 ≥ −n2.

The necessary conditions of the right-invertibility have similar form and we refer
the reader to [23] for details. The proof of the above results is based on the analysis
of the kernel and cokernel of the operatorW(a)+T (b). In particular, if W(a)+T (b)

is left-invertible and one of the corresponding conditions is not satisfied, then this
operator should have a non-zero kernel, which cannot be true.

The sufficient conditions of one-sided invertibility can be also formulated in
terms of indices ν1, ν2, n1 and n2. For example, the following theorem holds.
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Theorem 7.4 (VD and BS [23]) Let a, b ∈ G and indices ν1, ν2, n1 and n2 satisfy
any of the following conditions:

(i) ν1 < 0 and ν2 < 0.
(ii) ν1 > 0, ν2 < 0, n1 = n2 = 0, operator W(a) + H(b) is normally solvable

and satisfies the condition (7.4).
(iii) ν1 < 0, ν2 = 0 and n2 < 1 or n2 = 1 and σ (d) = −1.
(iv) ν1 = 0, n1 ≤ 0 and ν2 < 0.
(v) ν1 = 0 and ν2 = 0

(a) n1 ≤ 0, n2 < 1;
(b) n1 ≤ 0, n2 = 1 and σ (d) = −1;

Then the operator W(a)+H(b) is right-invertible.

The sufficient conditions for left-invertibility of W(a) + H(b) can be obtained
by passing to the adjoint operator. Here we are not going to discuss this problem
in whole generality. However, we use assumptions, which allow to derive simple
formulas for left- or right-inverses. These conditions are not necessary for one-
sided invertibility and the corresponding inverses can be also constructed even if
the conditions above are not satisfied.

Theorem 7.5 (VD and BS [23]) Let (a, b) ∈ G×G be a matching pair. Then:

1. If W(c) and W(d) are left-invertible, the operator W(a) + H(b) is also left-
invertible and one of its left-inverses has the form

(W(a)+H(b))−1
l =W−1

l (c)W(ã−1)W−1
l (d)(I −H(d̃))

+W−1
l (c)H(ã−1). (7.5)

2. If W(c) and W(d) are right-invertible, the operator W(a)+H(b) is also right-
invertible and one of its right-inverses has the form

(W(a)+H(b))−1
r =(I −H(c̃))W−1

r (c)W(ã−1)W−1
r (d)

+H(a−1)W−1
r (d). (7.6)

For g ∈ G, the corresponding one-sided inverse of the operator W(g) can
be written by using Wiener-Hopf factorization of g [31]. We also note that if
W(c) and W(d) are invertible, formulas (7.5) and (7.6) can be used to write
the inverse operator for W(a) + H(b). They also play an important role when
establishing inverse operators in a variety of situations not covered by Theorem 7.5.
The corresponding proofs run similar to considerations of Sects. 4 and 5, but there
are essential technical differences because the corresponding kernel spaces can be
infinite dimensional.

It is worth noting that the generalized invertibility of the operators W(a)+H(b)

can also be studied—cf. [23].
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8 Generalized Toeplitz Plus Hankel Operators

Here we briefly discuss generalized Toeplitz plus Hankel operators. These operators
are similar to classical Toeplitz plus Hankel operators considered in Sect. 2, but the
flip operator J is replaced by another operator Jα generated by a linear fractional
shift α. It turns out that the classical approach of Sects. 2–5 can also be used but
the application of the method is not straightforward and requires solving various
specific problems. Therefore, in this section we mainly focus on the description of
the kernels and cokernels of the corresponding operators. These results lay down
foundation for the invertibility study. We also feel that the Basor-Ehrhardt method
can be realized in this situation, but we are not going to pursue this problem here.

The following construction is based on the considerations of [18]. Let S denote
the Riemann sphere. We consider a mapping α : S→ S defined by

α(z) := z− β

βz− 1
, (8.1)

where β is a complex number such that |β| > 1.
Let us recall basic properties of α.

1. The mapping α : S2 → S
2 is one-to-one, α(T) = T, and if D := {z ∈ C : |z| <

1} is the interior of the unite circle T and D := D ∪ T, then

α(D) = S
2 \ D, α(S2 \ D) = D.

We note that α is an automorphism of the Riemann sphere and the mappings
Hp → Hp, h �→ h ◦ α and Hp → Hp, h �→ h ◦ α are well-defined
isomorphisms.

2. The mapping α : T → T changes the orientation of T, satisfies the Carleman
condition α(α(t)) = t for all t ∈ T, and possesses two fixed points—viz.

t+ = (1 + λ)/β and t− = (1 − λ)/β, (8.2)

where λ := i
√|β|2 − 1.

3. The mapping α admits the factorization

α(t) = α+(t) t−1 α−(t)

with the factorization factors

α+(t) = t − β

λ
, α−(t) = λt

βt − 1
.
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4. On the space Lp , 1 < p < ∞, the mapping α generates a bounded linear
operator Jα , called weighted shift operator and defined by

Jαϕ(t) := t−1α−(t)ϕ(α(t)), t ∈ T.

Further, for a ∈ L∞ let aα denote the composition of the functions a and α—i.e.

aα(t) := a(α(t)), t ∈ T.

The operators Jα , P , Q and aI are connected with each other by the equations

J 2
α = I, JαaI = aαJα, JαP = QJα, JαQ = PJα,

and for any n ∈ Z, one has (an)α = (aα)
n := an

α. In addition to the Toeplitz
operator T (a), any element a ∈ L∞ defines another operator Hα := PαQJα ,
called generalized Hankel operator. Generalized Hankel operators are similar to
classical Hankel operators H(a). For example, analogously to (2.1) operators Hα

are connected with Toeplitz operators by the relations

T (ab) = T (a)T (b)+Hα(a)Hα(bα),

Hα(ab) = T (a)Hα(b)+Hα(a)T (bα).

On the space Lp, we now consider the operators of the form T (a)+Hα(b) and call
them generalized Toeplitz plus Hankel operators generated by the functions a, b and
the shift α.

The classical approach of Sect. 2 can be also employed to describe the kernels and
cokernels of T (a)+Hα(b). To this aim we develop a suitable framework, which is
not a straightforward extension of the methods of Sect. 2. Let us now assume that
a belongs to the group of invertible elements GL∞ and the duo a, b satisfy the
condition

aaα = bbα. (8.3)

Relation (8.3) is again called the matching condition and the duo (a, b) are α-
matching functions. To each matching pair, one can assign another α-matching
pair (c, d) := (ab−1, ab−1

α ) called the subordinated pair for (a, b). It is easily
seen that ccα = ddα = 1. In what follows, any element g ∈ L∞ satisfying the
relation ggα = 1 is referred to as α-matching function. The functions c and d can
also be expressed in the form c = bαa

−1
α , d = b−1

α a. Besides, if (c, d) is the
subordinated pair for an α-matching pair (a, b), then (d, c) is the subordinated pair
for the matching pair (a, bα), which defines the adjoint operator

(T (a)+Hα(b))
∗ = T (a)+Hα(bα).
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Rewrite the operator Jα : Lp �→ Lp in the form

Jαϕ(t) := χ−1(t)ϕ(α(t)),

where χ(t) = t/(α−(t)), and note that if α is the shift (8.1), then:

1. χ ∈ H∞ is an α-matching function and windχ = 1, where windχ denotes the
winding number of the function χ with respect to the origin.

2. The function χα ∈ H∞ and χα(∞) = 0.
3. If a, b ∈ L∞ and n is a positive integer, then

T (a)+Hα(b) = (T (aχ−n)+Hα(bχ
n))T (χn).

These properties allow us to establish the following version of the Coburn-
Simonenko Theorem for generalized Toeplitz plus Hankel operators.

Theorem 8.1 Let a ∈ GL∞ and let A denote any of the operators T (a) −
Hα(aχ

−1), T (a)+Hα(aχ), T (a)+Hα(a), T (a)−Hα(a). Then

min{dim kerA, dim cokerA} = 0.

Further development runs similar to the one presented in Sect. 2.3 and all results
are valid if the operator H(b) is replaced by Hα(b), ã by aα and b by bα. For
example, if (a, b) is an α-matching pair with the subordinated pair (c, d), then the
block Toeplitz operator T (V (a, b)) with the matrix function

V (a, b) =
(

0 d

−c a−1
α

)

,

can be represented in the form

T (V (a, b)) =
(

0 T (d)

−T (c) T (a−1
α )

)

=
(−T (d) 0

0 I

)(
0 −I

I T (a−1
α )

)(−T (c) 0
0 I

)

.

Moreover, assuming that T (c) is invertible from the right and T −1
r (c) is one of the

right inverses, we can again represent the kernel of T (V (a, b)) as the direct sum

kerT (V (a, b)) = �(c)� �̂(d),
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where

�(c) :=
{
(ϕ, 0)T : ϕ ∈ kerT (c)

}
,

�̂(d) :=
{
(T −1

r (c)T (a−1
α )s, s)T : s ∈ kerT (d)

}
.

Further, we observe that the operators

P±α (c) :=
1

2
(I ± JαQcP) : kerT (c)→ kerT (c),

P±α (d) :=
1

2
(I ± JαQdP) : kerT (d) → kerT (d),

are projections on the corresponding spaces and consider the translation operators

ϕ±α : P±α (d) → ker(T (a)±Hα(b)),

which are defined similar to (3.5), but with J and ã−1 replaced by Jα and a−1
α ,

respectively.
In this situation, Proposition 3.6 reads as follows.

Proposition 8.2 Assume that (a, b) ∈ L∞ × L∞ is a Fredholm matching pair. If
the operator T (c) is right-invertible, then

ker(T (a)+Hα(b)) = im P−α (c)� ϕ+α (im P+α (d)),

ker(T (a)−Hα(b)) = im P+α (c)� ϕ−α (im P−α (d)).

Thus there is a one-to-one correspondence between ker T (V (a, b)) and
ker diag (T (a) + Hα(b), T (a) − Hα(b)) and in order to establish the latter, we
need an efficient description of the spaces im P+α (c) and im P+α (d).

Let g stand for one of the functions c or d . Then g is a matching function and
T (g) is a Fredholm Toeplitz operator. We may assume that ind T (g) > 0, since
only in this case at least one of the spaces im P+α (g) or im P−α (g) is non-trivial. The
following factorization result is crucial for the description of im P±α (g).

Theorem 8.3 If g ∈ L∞ satisfies the matching condition ggα = 1 and wind g = n,
n ∈ Z, then g can be represented in the form

g = ξg+χ−n(g−1+ )α ,

where g+ and n occur in the Wiener-Hopf factorization

g = g−t−ng+, g−(∞) = 1,
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of the function g, whereas ξ ∈ {−1, 1} and is defined by

ξ =
(
λ

β

)n

g−1+
(

1

β

)

. (8.4)

Definition 8.4 The number ξ in (8.4) is called the α-factorization signature, or
simply, α-signature of g and is denoted by σα(g).

The α-signature is used to describe the kernels of the operators T (a) + Hα(b)

and for certain classes of generating functions it can be defined with relative ease.
For example, assuming that the operator T (g) is Fredholm, n := ind T (g) and g is
Hölder continuous at the fixed point t+ or t− of (8.2), one can show that σα(g) =
g(t+) or σα(g) = g(t−)(−1)n. For piecewise continuous functions, the situation is
more complicated but still can be handled—cf. [18].

Theorem 8.5 Let g ∈ L∞ be an α-matching function such that the operator T (g) :
Hp → Hp is Fredholm and n := ind T (g) > 0. If g = g−t−ng+, g−(∞) = 1 is
the corresponding Wiener–Hopf factorization of g in Hp, then the following systems
of functions B±α (g) form bases in the spaces im P±α (g):

1. If n = 2m, m ∈ N, then

B±α (g) := {g−1+ (χm−k−1 ± σα(g)χ
m+k) : k = 0, 1, · · · ,m− 1},

and dim im P±α (g) = m.
2. If n = 2m+ 1, m ∈ Z+, then

B±α (g) := {g−1+ (χm+k ± σα(g)χ
m−k) : k = 0, 1, · · · ,m} \ {0},

dim im P±α (g) = m+ (1 ± σα(g))/2 ,

and the zero element belongs to one of the sets B+α (g) or B−α (g)—viz. for k = 0
one of the terms χm(1 ± σα(g)) is equal to zero.

The above considerations provide a powerful tool for the study of invertibility of
generalized Toeplitz plus Hankel operators and it should be clear that the results
obtained in Sects. 4 and 5 can be extended to this class of operators. However,
additional studies may be needed in certain situations. Nevertheless, let us mention
one of such results here.

Proposition 8.6 Assume that (a, b) ∈ L∞ × L∞ is a Fredholm matching pair and
the operators T (c) and T (d) are right-invertible. Then T (a)+ Hα(b) and T (a)−
Hα(b) are also right-invertible and corresponding right inverses are given by

(T (a)±Hα(b))
−1
r = (I ∓Hα(cα))T

−1
r (c)T (a−1

α )T −1
r (d)±Hα(a

−1)T −1
r (d).
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In conclusion of this section, we note the works [40, 41] where more general
operators with the shift (8.1) are considered. However, the conditions imposed on
coefficient functions are more restrictive and the results obtained are less complete.

9 Final Remarks

We considered various approaches to the study of invertibility of Toeplitz plus
Hankel operators and their close relatives. Before concluding this survey, we
would like to mention two more problems of special interest. The first one is the
construction of Wiener-Hopf factorizations for multipliers acting on the spaces
lp and also for those on Lp(R)-spaces. Some ideas on how to proceed with this
problem in the lp-context have been noted in [21].

Another problem of interest is the study of the kernels and cokernels of Wiener-
Hopf plus Hankel operators acting on Lp(R)-spaces, p �= 2 and generated by
multipliers from sets more involved than the set G considered in Sect. 7, such as
piecewise continuous multipliers, for example.

In should be clear that the list of open problems in the theory of Toeplitz plus
Hankel operators is not limited to those mentioned in this work and it is up to the
interested reader to single out a one for further consideration.

Acknowledgments The authors express their sincere gratitude to anonymous referees for insight-
ful comments and suggestions that helped to improve the paper.
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Abstract For a large class of unitarily invariant reproducing kernel functions
K on the unit ball Bd in C

d , we characterize the K-inner functions on Bd as
functions admitting a suitable transfer function realization. We associate with each
K-contractionT ∈ L(H)d a canonical operator-valuedK-inner function and extend
a uniqueness theorem of Arveson for minimal K-dilations to our setting. We thus
generalize results of Olofsson for m-hypercontractions on the unit disc and of the
first named author for m-hypercontractions on the unit ball.
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Let Bd ⊂ C
d be the open Euclidean unit ball and let

k : D→ C, k(z) =
∞∑

n=0

anz
n

be an analytic function without zeros on the unit disc D in C such that a0 = 1, an >

0 for all n ∈ N and such that
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n∈N

an
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Since k has no zeros, the reciprocal function 1/k ∈ O(D) admits a Taylor expansion

(1/k)(z) =
∞∑

n=0

cnz
n (z ∈ D).

The reproducing kernel

K : Bd × Bd → C,K(z,w) = k(〈z,w〉)

defines an analytic functional Hilbert space HK such that the row operator
Mz : Hd

K → HK is bounded and has closed range [2, Theorem A.1]. Typical
examples of functional Hilbert spaces of this type on the unit ball Bd are the Drury–
Arveson space, the Dirichlet space, the Hardy space and the weighted Bergman
spaces.

Let T = (T1, . . . , Td) ∈ L(H)d be a commuting tuple of bounded linear
operators on a complex Hilbert space H and let σT : L(H) → L(H) be the map
defined by σT (X) =∑d

i=1 TiXT ∗
i . The tuple T is called a K-contraction if the limit

1

K
(T ) = SOT−

∞∑

n=0

cnσ
n
T (1H) = SOT− lim

N→∞
∑

|α|≤N

c|α|γαT αT ∗α

exists and defines a positive operator. Here and in the following we use the
abbreviation γα = |α|!/α! for α ∈ N

d .
If K(z,w) = 1/(1 − 〈z,w〉) is the Drury–Arveson kernel, then under a

natural pureness condition the K-contractions coincide with the commuting row
contractions of class C·0. If m is a positive integer and Km(z,w) = 1/(1−〈z,w〉)m,
then the pure Km-contractions are precisely the row-m-hypercontractions of class
C·0 [17, Theorem 3.49] and [12, Lemma 2].

An operator-valued analytic function W : Bd → L(E∗,E ) with Hilbert spaces
E and E∗ is called K-inner if the map E∗ → HK(E ), x �→ Wx, is a well-defined
isometry and

(WE∗) ⊥ Mα
z (WE∗) for all α ∈ N

d \ {0}.

Here HK(E ) is the E -valued functional Hilbert space on Bd with reproducing kernel
KE : Bd × Bd → L(E ), (z,w) �→ K(z,w)1E . A well known more explicit
description of the functional Hilbert space HK(E ) is given by

HK(E ) =
{

f =
∑

α∈Nd

fαz
α ∈ O(Bd ,E ); ‖f ‖2 =

∑

α∈Nd

‖fα‖2

a|α|γα
< ∞

}

.
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It was shown by Olofsson [13] that, for d = 1 and the Bergman-type kernel

Km : D× D→ C, Km(z,w) = 1

(1− zw)m
(m ∈ N \ {0}),

the Km-inner functions W : D→ L(E∗,E ) are precisely the functions of the form

W(z) = D + C

m∑

k=1

(1 − zT ∗)−kB,

where T ∈ L(H) is a pure m-hypercontraction on some Hilbert space H and B ∈
L(E∗,H), C ∈ L(H,E ) and D ∈ L(E∗,E ) are bounded operators satisfying the
operator equations

C∗C = (1/Km)(T ), D∗C + B∗!T T
∗ = 0, D∗D + B∗!TB = 1E∗ .

Here (1/Km)(T ) is the m-th order defect operator of T and

!T =
m−1∑

k=0

(−1)k
(

m

k + 1

)

T kT ∗k.

The single variable results of Olofsson were extended in a system theoretic
framework by Ball and Bolotnikov in [6] (see also [5]) to a large class of kernels
K(z,w) = ∑

n≥0 an(zw)n on the unit disc D in C. In [6] Beurling–Lax type
representations for Mz-invariant subspaces M ⊂ Hk(E ) in terms of suitable K-
inner function families (θk)k≥0 together with transfer function realizations for the
functions θk are obtained and operator models using K-inner characteristic function
families are developed for quite general kernels K on the unit disc.

In [10] the result of Olofsson was extended to the unit ball by showing that a
corresponding characterization holds for functions W : Bd → L(E∗,E ) that are
Km-inner with respect to the generalized Bergman kernels

Km : Bd × Bd → C, Km(z,w) = 1/(1− 〈z,w〉)m(m ∈ N \ {0}).

In the present note we show that results of Olofsson from [13, 14] hold true for a
large class of kernels

K : Bd × Bd → C, K(z,w) =
∞∑

n=0

an〈z,w〉n

including all complete Nevanlinna–Pick kernels and powers Kν(z,w) = 1/(1 −
〈z,w〉)ν of the Drury–Arveson kernel with positive real exponents. To prove that
each K-inner function admits a transfer function realization as described above we
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extend a uniqueness result for minimal K-dilations due to Arveson to our class of
kernels.

2 Wandering Subspaces

Let T = (T1, . . . , Td) ∈ L(H)d be a K-contraction, that is, a commuting tuple of
bounded linear operators on a complex Hilbert space H such that the limit

1

K
(T ) = SOT−

∞∑

n=0

cnσ
n
T (1H) = SOT− lim

N→∞
∑

|α|≤N

c|α|γαT αT ∗α

exists and defines a positive operator. A K-contraction T ∈ L(H)d is said to be
pure if

SOT− lim
N→∞ 1H −

N∑

n=0

anσ
n
T (

1

K
(T )) = 0.

Let us define the defect operator and the defect space of a K-contraction T by

C = 1

K
(T )

1
2 and D = ImC.

We call an isometric linear map j : H → HK(E ) which intertwines the tuples T ∗ ∈
L(H)d and M∗

z ∈ L(HK(E ))d componentwise a K-dilation of T . By definition
a K-dilation j : H → HK(E ) is minimal if the only reducing subspace of Mz ∈
L(HK(E ))d that contains the image of j is HK(E ).

Exactly as for row-m-hypercontractions of class C.0, one can construct a
canonical K-dilation for each K-contraction.

Theorem 2.1 Let T ∈ L(H)d be a pure K-contraction. Then

j : H → HK(D), j (h) =
∑

α∈Nd

a|α|γαCT ∗αhzα

is a well-defined isometry such that jT ∗
i = M∗

zi
j for i = 1, . . . , d .

For a proof, see [17, Theorem 2.15].
For h ∈ H and f =∑

α∈Nd fαz
α ∈ HK(D),

〈
h, j∗f

〉 =
∑

α∈Nd

〈
CT ∗αh, fα

〉 =
∑

α∈Nd

〈
h, T αCfα

〉
.
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An application of the uniform boundedness principle shows that the adjoint
j∗ : HK(D) → H of the isometry j acts as

j∗
⎛

⎝
∑

α∈Nd

fαz
α

⎞

⎠ =
∑

α∈Nd

T αCfα.

Since j intertwines T ∗ and M∗
z componentwise, the space

M = HK(D)� Im j ⊂ HK(D)

is invariant for Mz ∈ L(HK(D))d .
In the following we show that the wandering subspace of Mz restricted to M can

be described in terms of a suitable K-inner function. Recall that a closed subspace
W ⊂ H is called a wandering subspace for a commuting tuple S ∈ L(H)d if

W ⊥ SαW (α ∈ N
d \ {0}).

The space W is called a generating wandering subspace for S if in addition H =∨
(SαW; α ∈ N

d ). For each closed S-invariant subspace L ⊂ H , the space

WS(L) = L�
d∑

i=1

SiL

is a wandering subspace for S, usually called the wandering subspace associated
with S on L. If W is a generating wandering subspace for S, then an elementary
argument shows that necessarily W = WS(H).

In the following we write

W(M) = M �
(

d∑

i=1

MziM

)

for the wandering subspace associated with the restriction of Mz to the invariant
subspace M = HK(D)� Im j . Our main tool will be the matrix operator

M∗
zMz = (M∗

zi
Mzj )1≤i,j≤d ∈ L(HK(D)d ).

Since the row operator Mz : HK(D)d → HK(D) has closed range [2, Theorem
A.1], the operator

M∗
z Mz : ImM∗

z → ImM∗
z
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is invertible. We denote its inverse by (M∗
zMz)

−1. In the following we make
essential use of the operators

δ : HK(D) → HK(D), δ

⎛

⎝
∞∑

n=0

∑

|α|=n

fαz
α

⎞

⎠ = f0 +
∞∑

n=1

an

an−1

∑

|α|=n

fαz
α

and

! : HK(D) → HK(D), !

⎛

⎝
∞∑

n=0

∑

|α|=n

fαz
α

⎞

⎠ =
∞∑

n=0

an+1

an

∑

|α|=n

fαz
α.

By definition δ and ! are diagonal operators with respect to the orthogonal
decomposition HK(D) = ⊕∞

n=0 Hn(D) of HK(D) into the spaces Hn(D) of all
D-valued homogenous polynomials of degree n. Our hypotheses on the sequence
(an/an+1) imply that δ and ! are invertible positive operators on HK(D). An
elementary calculation shows that

δMzi = Mzi!

for i = 1, . . . , d .

Lemma 2.2 For f ∈ HK(D), we have

(M∗
zMz)

−1(M∗
z f ) = M∗

z δf = (⊕!)M∗
z f.

In particular the row operator

δMz : HK(D)d → HK(D)

defines the trivial extension of the operator

Mz

(
M∗

z Mz

)−1 : ImM∗
z → HK(D).

Proof Since the column operator M∗
z annihilates the constant functions, to prove

the first identity, we may suppose that f (0) = 0. With respect to the orthogonal
decomposition HK(D) =⊕∞

n=0 Hn(D) the operator MzM
∗
z acts as (Lemma 4.3 in

[11])

MzM
∗
z

( ∞∑

n=0

fn

)

=
∞∑

n=1

(
an−1

an

)

fn.
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Hence MzM
∗
z δf = f and

(
M∗

z Mz

)−1
M∗

z f = (
M∗

z Mz

)−1 (
M∗

z Mz

)
M∗

z δf = M∗
z δf = (⊕!)M∗

z f.

Since any two diagonal operators commute, it follows in particular that
Mz

(
M∗

z Mz

)−1
M∗

z = δ
(
MzM

∗
z

)
. Thus also the second assertion follows. 	


The preceding proof shows in particular that the orthogonal projection of HK(D)

onto ImMz acts as

PImMz = Mz(M
∗
zMz)

−1M∗
z = δ(MzM

∗
z ) = PHK(D)�D ,

where D ⊂ HK(D) is regarded as the closed subspace consisting of all constant
functions. As in the single-variable case we call the operator defined by M ′

z =
δMz ∈ L(HK(D)d,HK(D)) the Cauchy dual of the multiplication tuple Mz.

We use the operator !T ∈ L(H) defined by

!T = j∗!j

to give a first description of the wandering subspace W(M) of Mz restricted to the
invariant subspace M = (Im j)⊥.

Theorem 2.3 A function f ∈ HK(D) is an element of the wandering subspace
W(M) of M = (Im j)⊥ ∈ Lat(Mz,HK(D)) if and only if

f = f0 +M ′
z(jxi)

d
i=1

for some vectors f0 ∈ D , x1, . . . , xd ∈ H with (jxi)
d
i=1 ∈ M∗

z HK(D) and

Cf0 + T (!T xi)
d
i=1 = 0.

In this case (jxi)
d
i=1 = M∗

z f .

Proof Note that a function f ∈ HK(D) belongs to the wandering subspace
W(M) = M � ∑d

i=1 ziM of Mz on M = Ker j∗ ∈ Lat(Mz,HK(D)) if and
only if j∗f = 0 and (1HK(D) − jj∗)M∗

zi
f = 0 for i = 1, . . . , d . Using the

remark following Lemma 2.2, we obtain, for (xi)di=1 ∈ Hd and f ∈ HK(D) with
(jxi)

d
i=1 = M∗

z f ,

j∗f = j∗(f (0)+ δMzM
∗
z f )

= Cf (0)+ j∗Mz(!jxi)
d
i=1

= Cf (0)+ T (j∗!jxi)
d
i=1

= Cf (0)+ T (!T xi)
d
i=1.



164 J. Eschmeier and S. Toth

Thus if f ∈ W(M), then (xi)
d
i=1 = (j∗M∗

zi
f )di=1 defines a tuple in Hd with

(jxi)
d
i=1 = M∗

z f such that Cf (0)+ T (!T xi)
d
i=1 = j∗f = 0 and

f = f (0)+ (f − f (0)) = f (0)+Mz(M
∗
zMz)

−1M∗
z f = f (0)+M ′

z(jxi)
d
i=1.

Conversely, if f = f0 +M ′
z(jxi)

d
i=1 with f0 ∈ D , x1, . . . , xd as in Theorem 2.3,

then using Lemma 2.2 we find that

M∗
z f = M∗

z Mz(M
∗
z Mz)

−1(jxi)
d
i=1 = (jxi)

d
i=1.

Since j is an isometry, it follows that jj∗M∗
zi
f = jxi = M∗

zi
f for i = 1, . . . , d .

Since j∗f = Cf (0)+ T (!T xi)
d
i=1 = 0, we have shown that f ∈ W(M). 	


Lemma 2.4 Let T ∈ L(H)d be a pure K-contraction and let

f = f0 +M ′
z(jxi)

d
i=1

be a representation of a function f ∈ W(M) as in Theorem 2.3. Then we have

‖f ‖2 = ‖f0‖2 +
d∑

i=1

〈!T xi, xi〉.

Proof Since by Lemma 2.2

ImM ′
z = Mz(M

∗
z Mz)

−1M∗
z HK(D) = ImMz = HK(D)�D,

it follows that

‖f ‖2 − ‖f0‖2 = ‖M ′
z(jxi)

d
i=1‖2

= 〈(M∗
z Mz)

−1M∗
z f, (jxi)

d
i=1〉

= 〈(⊕j∗)M∗
z δf, (xi)

d
i=1〉

= 〈(j∗!jxi)
d
i=1, (xi)

d
i=1〉.

Since by definition !T = j∗!j , the assertion follows. 	

Let T ∈ L(H)d be a pure K-contraction. Then !T = j∗!j is a positive operator

with

〈!T x, x〉 = ‖! 1
2 jx‖2 ≥ ‖!− 1

2 ‖−2‖jx‖2 = ‖!−1‖−1‖x‖2
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for all x ∈ H . Hence !T ∈ L(H) is invertible and

(x, y) = 〈!T x, y〉

defines a scalar product on H such that the induced norm ‖ · ‖T is equivalent to the
original norm with

‖! 1
2 ‖‖x‖ ≥ ‖x‖T ≥ ‖!− 1

2 ‖−1‖x‖

for x ∈ H . We write H̃ for H equipped with the norm ‖ · ‖T . Then

IT : H → H̃ , x �→ x

is an invertible bounded operator such that

〈I∗T x, y〉 = 〈!T x, y〉 (x ∈ H̃ , y ∈ H).

Hence I∗T x = !T x for x ∈ H̃ . Let T̃ = (T̃1, . . . , T̃d ) : H̃ d → H be the row
operator with components T̃i = Ti ◦ I∗T ∈ L(H̃ ,H). Then

T̃ T̃ ∗ =
d∑

i=1

Ti(I
∗
T IT )T

∗
i = σT (!T ) = σT (j

∗!j) = j∗Mz(⊕!)M∗
z j

= j∗(δMzM
∗
z )j = j∗PHK(D)�Dj

and hence T̃ is a contraction. As in [13] we use its defect operators

DT̃ = (1H̃ d − T̃ ∗T̃ )1/2 ∈ L(H̃ d),

D
T̃ ∗ = (1H − T̃ T̃ ∗)1/2 = (j∗PD j)1/2 = C ∈ L(H).

Here the identity (j∗PDj)1/2 = C follows from the definition of j and the
representation of j∗ explained in the section following Theorem 2.1. We write

DT̃ = DT̃ H̃
d ⊂ H̃ d and DT̃ ∗ = DT̃ ∗H = D for the defect spaces of T̃ . As in

the classical single-variable theory of contractions it follows that T̃ DT̃ = DT̃ ∗ T̃
and that

U =
(

T̃ DT̃ ∗
DT̃ −T̃ ∗

)

: H̃ d ⊕DT̃ ∗ → H ⊕DT̃

is a well-defined unitary operator. In the following we define an analytically
parametrized family WT (z) ∈ L(D̃,D) (z ∈ B) of operators on the closed subspace

D̃ = {y ∈ DT̃ ; (⊕jI−1
T )DT̃ y ∈ M∗

z HK(D)} ⊂ DT̃
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such that

W(M) = {WT x; x ∈ D̃},

where WT x : Bd → D acts as (WT x)(z) = WT (z)x. We equip D̃ with the norm
‖y‖ = ‖y‖H̃ d that it inherits as a closed subspace D̃ ⊂ H̃ d .

Lemma 2.5 Let T ∈ L(H)d be a pure K-contraction. Then a function f ∈ HK(D)

belongs to the wandering subspace W(M) of

M = (Im j)⊥ ∈ Lat(Mz,HK(D))

if and only if there is a vector y ∈ D̃ with

f = −T̃ y +M ′
z(⊕jI−1

T )DT̃ y.

In this case ‖f ‖2 = ‖y‖2
H̃ d

.

Proof By Theorem 2.3 a function f ∈ HK(D) belongs to W(M) if and only if it is
of the form

f = f0 +M ′
z(jxi)

d
i=1

with f0 ∈ D and x1, . . . , xd ∈ H such that (jxi)di=1 ∈ M∗
z HK(D) and

T̃ (IT xi)
d
i=1 +DT̃ ∗f0 = 0.

Then y = DT̃ (IT xi)
d
i=1 − T̃ ∗f0 ∈ DT̃ is a vector with

U

(
(IT xi)

f0

)

=
(

0
y

)

,

or equivalently, with

(
(IT xi)

f0

)

= U∗
(

0
y

)

=
(
DT̃ y

−T̃ y

)

.

But then y ∈ D̃ and f = −T̃ y+M ′
z(⊕jI−1

T )DT̃ y. Conversely, if f is of this form,

then using the definitions of T̃ , D̃ and the intertwining relation T̃ DT̃ = DT̃ ∗ T̃ one
can easily show that the vectors defined by

f0 = −T̃ y ∈ D and (xi)
d
i=1 = (⊕I−1

T )DT̃ y ∈ Hd
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yield a representation f = f0 +M ′
z(jxi)

d
i=1 as in Theorem 2.3. By Lemma 2.4 and

the definition of the scalar product on H̃ we find that

‖f ‖2 = ‖f0‖2 +
d∑

i=1

〈!T xi, xi〉 = ‖T̃ y‖2 +
d∑

i=1

‖IT xi‖2
H̃

= ‖T̃ y‖2 + ‖DT̃ y‖2
H̃ d = ‖y‖2

H̃ d . 	


Recall that the reproducing kernel K : Bd × Bd → C is defined by K(z,w) =
k(〈z,w〉), where

k : D→ C, k(z) =
∞∑

n=0

anz
n

is an analytic function with a0 = 1, an > 0 for all n such that

0 < inf
n

an

an+1
≤ sup

n

an

an+1
< ∞.

Let us suppose in addition that the limit

r = lim
n→∞

an

an+1

exists. Then r ∈ [1,∞) is the radius of convergence of the power series defining k

and by Theorem 4.5 in [11] the Taylor spectrum of Mz ∈ L(HK(D))d is given by

σ(Mz) = {z ∈ C
d ; ‖z‖ ≤ √

r}.

If T ∈ L(H)d is a pure K-contraction, then T ∗ is unitarily equivalent to a restriction
of M∗

z and hence

σ(T ∗) ⊂ {z ∈ C
d; ‖z‖ ≤ √

r}.

The function F : Dr(0) → C, F (z) = ∑∞
n=0 an+1z

n, is analytic on the open disc
Dr(0) with radius r and center 0 and satisfies

F(z) = k(z)− 1

z
(z ∈ Dr(0) \ {0}).

For z ∈ Bd , let us denote by Z : Hd → H, (hi)
d
i=1 �→ ∑d

i=1 zihi , the row
operator induced by z. As a particular case of a much more general analytic spectral
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mapping theorem for the Taylor spectrum [9, Theorem 2.5.10] we find that

σ(ZT ∗) = {
d∑

i=1

ziwi; w ∈ σ(T ∗)} ⊂ Dr(0)

for z ∈ Bd . Thus we can define an operator-valued function FT : Bd → L(H),

FT (z) = F(ZT ∗) =
∞∑

n=0

an+1

⎛

⎝
∑

|α|=n

γαT
∗αzα

⎞

⎠ .

Lemma 2.6 For (xi)
d
i=1 ∈ Hd and z ∈ Bd ,

CF(ZT ∗)Z(xi)
d
i=1 = (δMz(jxi)

d
i=1)(z).

Proof For (xi)di=1 ∈ Hd ,

δMz(jxi)
d
i=1 =

d∑

i=1

δMzi

∞∑

n=0

an

⎛

⎝
∑

|α|=n

γαCT ∗αxizα
⎞

⎠

=
d∑

i=1

∞∑

n=0

anδ

⎛

⎝
∑

|α|=n

γαCT ∗αxizα+ei

⎞

⎠

=
d∑

i=1

∞∑

n=0

an+1

∑

|α|=n

γαCT ∗αxizα+ei ,

where the series converge in HK(D). Since the point evaluations are continuous on
HK(D), we obtain

(
δMz(jxi)

d
i=1

)
(z) =

∞∑

n=0

an+1

∑

|α|=n

γαCT ∗α
(

d∑

i=1

zixi

)

zα

= CF(ZT ∗)Z(xi)
d
i=1

for all z ∈ Bd . 	

By Lemma 2.6 the map WT : Bd → L(D̃,D),

WT (z)(x) = −T (⊕!T I
−1
T )x + CF(ZT ∗)Z(⊕I−1

T )D
T̃
x

= −T̃ x + CF(ZT ∗)Z(⊕I−1
T )DT̃ x

defines an analytic operator-valued function.



K-Inner Functions and K-Contractions 169

Theorem 2.7 Let T ∈ L(H)d be a pure K-contraction. Then

W(M) = {WT x; x ∈ D̃}

and ‖WT x‖ = ‖x‖ for x ∈ D̃ .

Proof For x ∈ D̃ , Lemma 2.6 implies that

WT = −T̃ x + δMz(⊕jI−1
T )DT̃ x = −T̃ x +M ′

z(⊕jI−1
T )DT̃ x.

Thus the assertion follows from Lemma 2.5. 	

Since W(M) is a wandering subspace for Mz, the map WT : Bd → L(D̃,D)

is an operator-valued analytic function such that D̃ → HK(D), x �→ WT x, is an
isometry and

WT (D̃) ⊥ Mα
z

(
WT (D̃)

)
for all α ∈ N

d \ {0}.

Thus WT : Bd → L(D̃,D) is a K-inner function with WT (D̃) = W(M). In
the case that Mz ∈ L(HK)d is a row contraction one can show that each K-inner
function W : Bd → L(Ẽ ,E ) defines a contractive multiplier

MW : H 2
d (E ) → HK, f �→ Wf

from the E -valued Drury–Arveson space H 2
d (E ) to HK(Ẽ ) [3, Theorem 6.2].

3 K-Inner Functions

In the previous section we saw that the K-inner function WT : Bd → L(D̃,D)

associated with a pure K-contraction T ∈ L(H)d has the form

WT (z) = D + CF(ZT ∗)ZB,

where C =
(

1
K
(T )

) 1
2 ∈ L(H,D), D = −T̃ ∈ L(D̃,D) and B = (⊕I−1

T )DT̃ ∈
L(D̃,Hd). An elementary calculation using the definitions and the intertwining
relation T̃ DT̃ = DT̃ ∗ T̃ shows that the operators T , B, C, D satisfy the conditions

(K1) C∗C = 1

K
(T ),

(K2) D∗C + B∗(⊕!T )T
∗ = 0,
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(K3) D∗D + B∗(⊕!T )B = 1D̃ ,

(K4) Im((⊕j)B) ⊂ M∗
z HK(D).

If E is a Hilbert space and C ∈ L(H,E ) is any operator with C∗C = 1
K
(T ), then

exactly as in the proof of Proposition 2.6 from [17] it follows that

jC : H → HK(E ), jC(x) =
∑

α∈Nd

a|α|γα(CT ∗αx)zα

is a well defined isometry that intertwines the tuples T ∗ ∈ L(H)d and M∗
z ∈

L(HK(E ))d componentwise. As in the section following Theorem 2.1 one can show
that

j∗Cf =
∑

α∈Nd

T αC∗fα

for f =∑
α∈Nd fαz

α ∈ HK(E ). Hence we find that

j∗C!jCx = j∗C!
∑

α∈Nd

a|α|γα(CT ∗αx)zα

= j∗C
∑

α∈Nd

a|α|+1γα(CT ∗αx)zα

=
∑

α∈Nd

a|α|+1γα(T
αC∗CT ∗αx)

=
∑

α∈Nd

a|α|+1γα(T
α 1

K
(T )T ∗αx)

for all x ∈ H . By performing the same chain of calculations with jC replaced by
the canonical K-dilation j of T from Theorem 2.1 we obtain that

j∗C!jC = j∗!j = !T .

Our next aim is to show that any matrix operator

(
T ∗ B

C D

)

: H ⊕ E∗ → Hd ⊕ E ,

where T is a pure K-contraction and T , B, C, D satisfy the conditions (K1)–(K3)
with (D̃,D) replaced by (E∗,E ) and

(K4) Im((⊕jC)B) ⊂ M∗
z HK(E )
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gives rise to a K-inner function W : Bd → L(E∗,E ) defined as

W(z) = D + CF(ZT ∗)ZB

and that, conversely, under a natural condition on the kernel K each K-inner
function is of this form.

Theorem 3.1 Let W : Bd → L(E∗,E ) be an operator-valued function between
Hilbert spaces E∗ and E such that

W(z) = D + CF(ZT ∗)ZB (z ∈ Bd),

where T ∈ L(H)d is a pure K-contraction and the matrix operator

(
T ∗ B

C D

)

: H ⊕ E∗ → Hd ⊕ E

satisfies the condition (K1)–(K4). Then W is a K-inner function.

Proof The space M = HK(E ) � Im jC ⊂ HK(E ) is a closed Mz-invariant
subspace. Let x ∈ E∗ be a fixed vector. By condition (K4) there is a function
f ∈ HK(E ) with (⊕jC)Bx = M∗

z f . Exactly as in the proof of Lemma 2.6 it
follows that

CF(ZT ∗)ZBx = δMz(⊕jC)Bx(z) = δMzM
∗
z f (z)

for all z ∈ Bd . Since δ(MzM
∗
z ) = PImMz is an orthogonal projection and since

δMz = Mz(⊕!), we find that

‖Wx‖2
HK(E ) − ‖Dx‖2 = 〈δMzM

∗
z f, f 〉HK(E )

= 〈⊕(j∗C!jC)Bx,Bx〉Hd

= 〈(⊕!T )Bx,Bx〉Hd

= 〈(1E∗ −D∗D)x, x〉
= ‖x‖2 − ‖Dx‖2.

Hence the map E∗ → HK(E ), x �→ Wx, is a well-defined isometry. Using the
second part of Lemma 2.2 we obtain

M∗
z (Wx) = M∗

z δMzM
∗
z f = M∗

z f = (⊕jC)Bx
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and hence that PMM∗
zi
(Wx) = (1HK(E ) − jCj

∗
C)M

∗
zi
(Wx) = 0 for i = 1, · · · , d .

To see that WE∗ ⊂ M note that with x and f as above

j∗C(Wx) = C∗Dx + j∗C(δMzM
∗
z f )

= C∗Dx + j∗C(Mz(⊕!)M∗
z f )

= C∗Dx + T (⊕j∗C!jC)Bx

= C∗Dx + T (⊕!T )Bx

= 0.

Thus we have shown that WE∗ ⊂ M �∑d
i=1 ziM which implies that

WE∗ ⊥ zα(WE∗)

for all α ∈ N
d \ {0}. 	


To prove that conversely each K-inner function W : Bd → L(E∗,E ) has
the form described in Theorem 3.1 we make the additional assumption that the
multiplication tuple Mz ∈ L(HK)d is a K-contraction. This hypothesis is satisfied,
for instance, if HK is a complete Nevanlinna–Pick space such as the Drury–Arveson
space or the Dirichlet space or if K is a power

Kν : Bd × Bd → C, Kν(z,w) = 1

(1 − 〈z,w〉)ν (ν ∈ (0,∞))

of the Drury–Arveson kernel (see the discussion following Theorem 4.2). In the
proof we shall use a uniqueness result for minimal K-dilations whose proof we
postpone to Sect. 4.

Theorem 3.2 Let Mz ∈ L(HK)d be a K-contraction. If W : Bd → L(E∗,E ) is a
K-inner function, then there exist a pure K-contraction T ∈ L(H)d and a matrix
operator

(
T ∗ B

C D

)

∈ L(H ⊕ E∗,Hd ⊕ E )

satisfying the conditions (K1)–(K4) such that

W(z) = D + CF(ZT ∗)ZB (z ∈ Bd ).

Proof Since W is K-inner, the space

W = WE∗ ⊂ HK(E )
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is a generating wandering subspace for Mz ∈ L(HK(E ))d restricted to

S =
∨

α∈Nd

Mα
z W ⊂ HK(E ).

The compression T = PHMz|H of Mz ∈ L(HK(E ))d to the M∗
z -invariant subspace

H = HK(E ) �S is easily seen to be a pure K-contraction [17, Proposition 2.12
and Lemma 2.21]. Let R ⊂ HK(E ) be the smallest reducing subspace for Mz ∈
L(HK(E ))d that contains H . By Lemma 4.4

R =
∨

α∈Nd

zα(R ∩ E ) = HK(R ∩ E ).

Thus the inclusion map i : H → HK(R ∩ E ) is a minimal K-dilation for T . Let
j : H → HK(D) be the K-dilation of the pure K-contraction T ∈ L(H)d defined
in Theorem 2.1. Since also j is a minimal K-dilation for T (Corollary 4.5), by
Corollary 4.3 there is a unitary operator U : D → R ∩ E such that

i = (1HK ⊗U)j.

Define Ê = E � (R ∩ E ). By construction

HK(Ê ) = HK(E )�HK(R ∩ E ) = HK(E )�R ⊂ S

is the largest reducing subspace for Mz ∈ L(HK(E ))d contained in S . In particular,
the space S admits the orthogonal decomposition

S = HK(Ê )⊕ (S ∩HK(Ê )⊥) = HK(Ê )⊕ (HK(R ∩ E )�S ⊥).

We complete the proof by comparing the given K-inner function W : Bd →
L(E∗,E ) with the K-inner function WT : Bd → L(D̃,D) associated with the pure
K-contraction T ∈ L(H)d . For this purpose, let us define the Mz-invariant subspace

M = HK(D)� Im j

and its wandering subspace

W(M) = M �
(

d∑

i=1

ziM

)

as in Sect. 2. Using the identity i = (1HK ⊗ U)j one obtains that

1HK ⊗ U : M → HK(R ∩ E )�S ⊥ = HK(R ∩ E ) ∩S
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defines a unitary operator that intertwines the restrictions of Mz to both sides
componentwise. Consequently we obtain the orthogonal decomposition

W = WMz(S ) = WMz(HK(Ê ))⊕WMz(HK(R ∩ E ) ∩S )

= Ê ⊕ (1HK ⊗ U)W(M).

Let WT : Bd → L(D̃ ,D) be the K-inner function associated with the pure K-
contraction T ∈ L(H)d . Then there is a matrix operator

(
T ∗ B

C D

)

∈ L(H ⊕ D̃,Hd ⊕D)

such that

WT (z) = D + CF(ZT ∗)ZB (z ∈ Bd )

and W(M) = {WT x; x ∈ D̃} (see the beginning of Sect. 3 and Theorem 2.7). Let
us denote by

P1 : W → Ê and P2 : W → (1HK ⊗ U)W(M)

the orthogonal projections. The K-inner functions W : Bd → L(E∗,E ) and
WT : Bd → L(D̃ ,D) induce unitary operators

E∗ → W , x �→ Wx

and

D̃ → W(M) x �→ WT x.

We define surjective bounded linear operators by

U1 : E∗ → Ê , U1x = P1Wx

and

U2 : E∗ → D̃, U2x = x̃ if (1HK ⊗U)WT x̃ = P2Wx.

By construction the column operator

(U1, U2) : E∗ → Ê ⊕ D̃
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defines an isometry such that

W(z)x = U1x + UWT (z)U2x = (U1 + UDU2)x + (UC)F(ZT ∗)Z(BU2)x

holds for z ∈ Bd and x ∈ E∗. To complete the proof we show that the operators

T ∈ L(Hd,H), B̃ = BU2 ∈ L(E∗,Hd), C̃ = UC ∈ L(H,E )

and D̃ = U1 + UDU2 ∈ L(E∗,E )

satisfy the conditions (K1)–(K4). To see this note that

C̃∗C̃ = C∗U∗UC = C∗C = 1

K
(T )

and

D̃∗C̃ = U∗
2 D

∗U∗UC = U∗
2 D

∗C

= −U∗
2 B

∗ (⊕!T ) T
∗ = −B̃∗ (⊕!T ) T

∗.

To verify condition (K3) note that D̃ acts as the column operator

D̃ = (U1, UDU2) : E∗ → E = Ê ⊕ (R ∩ E ).

Thus we obtain that

D̃∗D̃ = U∗
1 U1 + U∗

2 D
∗U∗UDU2

= U∗
1 U1 + U∗

2 U2 − U∗
2 B

∗ (⊕!T )BU2

= 1E∗ − B̃∗ (⊕!T ) B̃.

Since jC̃ = UjC , it follows that

(⊕jC̃

)
B̃x = (⊕U)(⊕jC)B(U2x) ∈ M∗

z HK(E )

holds for all x ∈ E∗. Thus the K-inner functionW : Bd → L(E∗,E ) admits a matrix
representation of the claimed form. 	


4 Minimal K-Dilations

Let A be a unital subalgebra of a unital C∗-Algebra B. A completely positive unital
map ϕ : B → L(H) is called an A-morphism if ϕ(ax) = ϕ(a)ϕ(x) for a ∈ A and
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x ∈ B. Under the condition that B is the norm-closed linear span

B = span‖·‖{AA∗}

Arveson proved in [1, Lemmma 8.6] that every unitary operator that intertwines
two A-morphisms ϕi : B → L(Hi) (i = 1, 2) pointwise on A extends to a unitary
operator that intertwines the minimal Stinespring representations of ϕ1 and ϕ2.

Straightforward modifications of the arguments given in [1] show that Arveson’s
result remains true if B is a von Neumann algebra which is the w∗-closed linear
span

B = spanw∗ {AA∗}

and if the A-morphisms ϕi : B → L(Hi) (i = 1, 2) are supposed to be w∗-
continuous.

Theorem 4.1 Let B be a von Neumann algebra and let A ⊂ B be a unital
subalgebra such that

B = spanw∗{AA∗}.

For i = 1, 2, let ϕi : B → L(Hi) be a w∗-continuous A-morphism and let
(πi, Vi,Hπi ) be the minimal Stinespring representations for ϕi . For every unitary
operator U : H1 → H2 with

Uϕ1(a) = ϕ2(a)U (a ∈ A),

there is a unique unitary operator W : Hπ1 → Hπ2 with WV1 = V2U and
Wπ1(x) = π2(x)W for all x ∈ B.

Since this version of Arveson’s result follows in exactly the same way as the
original one [1, Lemma 8.6], we leave the details to the reader. As an application of
Theorem 4.1 we show that, under suitable conditions on the kernel K : Bd × Bd →
C, minimal K-dilations are uniquely determined. Recall that a commuting tuple
T ∈ L(H)d on a Hilbert space H is called essentially normal if TiT

∗
i − T ∗

i Ti

is compact for i = 1, . . . , d . If T ∈ L(H)d is essentially normal, then by the
Fuglede–Putnam theorem also all cross commutators TiT ∗

j −T ∗
j Ti (i, j = 1, . . . , d)

are compact. For our multiplication tuple Mz ∈ L(HK)d , essential normality is
equivalent to the condition that [11, Corollary 4.4]

lim
n→∞

(
an

an+1
− an−1

an

)

= 0.
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Theorem 4.2 Suppose that Mz ∈ L(HK)d is an essentially normal K-contraction.
Then the von Neumann algebra generated by Mz1 , . . . ,Mzd is given by

W∗(Mz) = spanw∗ {Mα
z M

∗β
z ; α, β ∈ N

d}.

Proof Define L = spanw∗ {Mα
z M

∗β
z ; α, β ∈ N

d }. Obviously L ⊂ W∗(Mz).
Since Mz is supposed to be a K-contraction,

PC = τSOT −
∞∑

n=0

cnσ
n
Mz

(1HK ) ∈ L .

For α, β ∈ N
d and w ∈ Bd , we obtain

Mα
z PCM

∗β
z (K(·, w)) = wβzα = zα ⊗ zβ(K(·, w)).

Since the multiplication on L(HK) is separately w∗-continuous, it follows that L
contains all compact operators

K(HK) = span‖·‖{zα ⊗ zβ; α, β ∈ N
d} ⊂ L .

But then the hypothesis that Mz is essentially normal implies that L ⊂ L(HK) is
a subalgebra. Since the involution on L(HK) is w∗-continuous, the algebra L ⊂
L(HK) is a von Neumann algebra and hence L = W∗(Mz). 	


The tuple Mz ∈ L(HK)d is known to be a K-contraction if there is a natural
number p ∈ N such that cn ≥ 0 for all n ≥ p or cn ≤ 0 for all n ≥ p [7, Lemma
2.2] or [17, Proposition 2.10]. The latter condition holds, for instance, if HK is a
complete Nevanlinna–Pick space or if K is a kernel of the form

Kν : Bd × Bd → C, Kν(z,w) = 1

(1 − 〈z,w〉)ν

with a positive real number ν > 0 (see [8, Lemma 2.1] and [17, Section 1.5.2] for
these results and further examples).

Let T ∈ L(H)d be a commuting tuple and let j : H → HK(E ) be a K-dilation
of T . We denote by B = W∗(Mz) ⊂ L(HK) the von Neumann algebra generated
by Mz and set A = {p(Mz); p ∈ C[z]}. The unital C∗-homomorphism

π : B → L(HK(E )), X �→ X ⊗ 1E

together with the isometry j : H → HK(E ) is a Stinespring representation for the
completely positive map

ϕ : B → L(HK(E )), ϕ(X) = j∗(X ⊗ 1E )j.
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The map ϕ is an A-morphism, since

ϕ(p(Mz)X) = j∗(p(Mz ⊗ 1E )X ⊗ 1E )j = j∗p(Mz ⊗ 1E )(jj
∗)(X ⊗ 1E )j

= ϕ(p(Mz))ϕ(X)

for all p ∈ C[z] and X ∈ B. Standard duality theory for Banach space operators
shows that π is w∗-continuous. Indeed, as an application of Krein–Smulian’s
theorem (Theorem IV. 6.4 in [16]) one only has to check that τw∗−limα(Xα⊗1E ) =
X ⊗ 1E for each norm-bounded net (Xα) in B with τw∗ − limα Xα = X. To
complete the argument it suffices to recall that on norm-bounded sets the w∗-
topology and the weak operator topology coincide. Thus we have shown that ϕ is
a w∗-continuous A-morphism with Stinespring representation π . By definition the
K-dilation j : H → HK(E ) is minimal if and only if

∨

X∈W∗(Mz)

π(X)(jH) = HK(E ),

hence if and only if π as a Stinespring representation of ϕ is minimal.

Corollary 4.3 Suppose that Mz ∈ L(HK)d is an essentially normal K-contraction.
If ji : H → HK(Ei ) (i = 1, 2) are two minimal K-dilations of a commuting tuple
T ∈ L(H)d , then there is a unitary operator U ∈ L(E1,E2) with j2 = (1HK ⊗U)j1

Proof As before we denote by B = W∗(Mz) ⊂ L(HK) the von Neumann algebra
generated by Mz1 , . . . ,Mzd ∈ L(HK) and define A = {p(Mz);p ∈ C[z]}. The
remarks preceding the corollary show that the maps

ϕi : B → L(H), ϕi(X) = j∗i (X ⊗ 1Ei
)ji (i = 1, 2)

are w∗-continuous A-morphisms with minimal Stinespring representations

πi : B → L(HK(Ei )), πi(X) = X ⊗ 1Ei
(i = 1, 2).

Since

ϕi(p(Mz)) = j∗p(Mz ⊗ 1E )j = p(T )

for all p ∈ C[z] and i = 1, 2, Theorem 4.1 implies that there is a unitary operator
W : HK(E1) → HK(E2) with Wj1 = j2 and W(X ⊗ 1E1) = (X ⊗ 1E2)W for all
X ∈ B. In particular, the unitary operator W satisfies the intertwining relations

W(Mzi ⊗ 1E1) = (Mzi ⊗ 1E2)W (i = 1, . . . , d)
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A standard characterization of multipliers on reproducing kernel Hilbert spaces [4,
Theorem 2.1] shows that there exist operator-valued functions A : Bd → L(E1,E2)

and B : Bd → L(E2,E1) such that Wf = Af and W∗g = Bg for f ∈ HK(E1) and
g ∈ HK(E2) (see also [17, Proposition 4.5]). It follows that A(z)B(z) = 1E2 and
B(z)A(z) = 1E1 for z ∈ Bd . Since

K(z,w)x = (WW∗K(·, w)x)(z) = A(z)K(z,w)A(w)∗x

for z,w ∈ Bd and x ∈ E2, we find that A(z)A(w)∗ = 1E2 for z,w ∈ Bd . But then
the constant value A(z) ≡ U ∈ L(E1,E2) is a unitary operator with W = 1HK ⊗U .

	

We conclude this section by showing that the canonical K-dilation of a K-

contraction T ∈ L(H)d defined in Theorem 2.1 is minimal. To prepare this result
we first identify the Mz-reducing subspaces of HK(E ).

Lemma 4.4 Let M ⊂ HK(E ) be a closed linear subspace. If M is reducing for
Mz ∈ L(HK(E ))d , then PEM ⊂ M and

M =
∨

α∈Nd

zα(M ∩ E ) = HK(M ∩ E ).

Proof The hypothesis implies that M is reducing for the von Neumann algebra
W∗(Mz) ⊂ L(HK(E )) generated by Mz1, . . .Mzd ∈ L(HK(E )). Standard results
on von Neumann algebras (Corollary 17.6 and Proposition 24.1 in [18]) show that

PE = P⋂KerM∗
zi
∈ W∗(Mz).

Hence PEM ⊂ M . Let f = ∑
α∈Nd fαz

α ∈ HK(E ) be arbitrary. An elementary
calculation yields that

PE (M
∗β
z f ) ∈ (C \ {0})fβ (β ∈ N

d ).

Hence, if f ∈ M , then fβ ∈ M ∩ E for all β ∈ N
d and the observation that

f =
∑

α∈Nd

fαz
α ∈

∨

α∈Nd

zα(M ∩ E ) = HK(M ∩ E )

completes the proof. 	

Corollary 4.5 Let T ∈ L(H)d be a pure K-contraction. Then the K-dilation

j : H → HK(D), j (x) =
∑

α∈Nd

a|α|γα(CT ∗αx)zα

defined in Theorem 2.1 is minimal.
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Proof Let Im j ⊂ M be a reducing subspace for Mz ∈ L(HK(D))d . We know from
Lemma 4.4 that

M =
∨

α∈Nd

zα(M ∩D)

and that

CH = PD (Im j) ⊂ PD (M) ⊂ M ∩D .

It follows that D = CH = M ∩D and that M =∨
α∈Nd zαD = HK(D). 	


It should be interesting to compare the uniqueness result proved in this section
with a related result proved by Olofsson [15, Theorem 7.6] for single contractions
T ∈ L(H) satisfying a slightly different K-contractivity condition. In [15] it is
shown that even in the non-pure case each dilation factors through a canonical
defined dilation of T .
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Tight and Cover-to-Join Representations
of Semilattices and Inverse Semigroups

Ruy Exel

Abstract We discuss the relationship between tight and cover-to-join representa-
tions of semilattices and inverse semigroups, showing that a slight extension of the
former, together with an appropriate selection of codomains, makes the two notions
equivalent. As a consequence, when constructing universal objects based on them,
one is allowed to substitute cover-to-join for tight and vice-versa.
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Cover-to-join · Boolean algebra · Non-degenerate representation · Universal
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1 Introduction

Exactly 12 years ago, to be precise on March 7, 2007, I posted a paper on the
arXiv [3] describing the notion of tight representations of semilattices and inverse
semigroups, which turned out to have many applications and in particular proved
to be useful to give a unified perspective to a significant number of C*-algebras
containing a preferred generating set of partial isometries [1, 2, 4, 6–8, 12, 13].

The notion of tight representations (described below for the convenience of the
reader) is slightly involving as it depends on the analysis of certain pairs of finite
sets X and Y , but it becomes much simplified when X is a singleton and Y is empty
(see [4, Proposition 11.8]). In this simplified form it has been rediscovered and
used in many subsequent works (e.g. [2, 9–11]) under the name of cover-to-join
representations.
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The notion of cover-to-join representations, requiring a smaller set of conditions,
is consequently weaker and, as it turns out, strictly weaker, than the original notion
of tightness. Nevertheless, besides being easier to formulate, the notion of cover-to-
join representations has the advantage of being applicable to representations taking
values in generalized Boolean algebras, that is, Boolean algebras without a unit.
Explicitly mentioning the operation of complementation, tight representations only
make sense for unital Boolean algebras.

The goal of this note is to describe an attempt to reconcile the notions of tight
and cover-to-join representations: slightly extending the former, and adjusting for
the appropriate codomains, we show that, after all, the two notions coincide.

One of the main practical consequences of this fact is that the difference between
the two notions becomes irrelevant for the purpose of constructing universal objects
based on them, such as the completion of an inverse semigroup recently introduced
in [11]. We are moreover able to fix a slight imprecision in the proof of [2, Theorem
2.2], at least as far as its consequence that the universal C*-algebras for tight
vs. cover-to-join representations are isomorphic.

2 Generalized Boolean Algebras

We begin by recalling the well known notion of generalized Boolean algebras.

Definition 2.1 ([14, Definition 5]) A generalized Boolean algebra is a set B

equipped with binary operations ∧ and ∨, and containing an element 0, such that
for every a, b and c in B, one has that

(i) (commutativity) a ∨ b = b ∨ a, and a ∧ b = b ∧ a,
(ii) (associativity) (a ∧ b) ∧ c = a ∧ (b ∧ c),

(iii) (distributivity) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
(iv) a ∨ 0 = a,
(v) (relative complement) if a = a ∧ b, there is an element x in B, such that

x ∨ a = b, and x ∧ a = 0,
(vi) a ∨ a = a = a ∧ a.

It follows that (ii) and (iii) also hold with ∨ and ∧ interchanged, meaning that ∨
is associative [14, Theorems 55 & 14], and that ∨ distributes over ∧ [14, Theorems
55 & 11].

When a = a ∧ b, as in (v), one writes a ≤ b. It is then easy to see that ≤ is a
partial order on B.

The element x referred to in (v) is called the relative complement of a in b, and
it is usually denoted b \ a.

Definition 2.2 (cf. [14, Theorem 56]) A generalized Boolean algebra B is called a
Boolean algebra if there exists an element 1 in B, such that a ∧ 1 = a, for every a

in B.
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For Boolean algebras, the complement of an element a relative to 1 is often
denoted ¬a.

Recall that an ideal of a generalized Boolean algebra B is any nonempty subset
C of B which is closed under ∨, and such that

a ≤ b ∈ C ⇒ a ∈ C.

Such an ideal is evidently also closed under ∧ and under relative complements, so
it is a generalized Boolean algebra in itself.

Given any nonempty subset S of B, notice that the subset C defined by

C = {
a ∈ B : a ≤∨

z∈Z z, for some nonempty finite subset Z ⊆ S
}
,

is an ideal of B and it is clearly the smallest ideal containing S, so we shall call it
the ideal generated by S, and we shall denote it by

〈
S
〉
.

3 Tight and Cover-to-Join Representations of Semilattices

From now on let us fix a meet semilattice E (always assumed to have a zero
element).

Definition 3.1 A representation of E in a generalized Boolean algebra B is any
map π : E → B, such that

(i) π(0) = 0, and
(ii) π(x ∧ y) = π(x)∧ π(y), for every x and y in E.

In order to spell out the definition of the notion of tight representations,
introduced in [4], let F be any subset of E. We then say that a given subset Z ⊆ F

is a cover for F , if for every nonzero x in F , there exists some z in Z, such that
z ∧ x �= 0.

Furthermore, if X and Y are finite subsets of E, we let

EX,Y = {z ∈ E : z ≤ x, ∀x ∈ X, and z ⊥ y, ∀y ∈ Y }.

Definition 3.2 (cf. [4, Definition 11.6]) A representation π of E in a Boolean
algebra B is said to be tight if, for any finite subsets X and Y of E, and for any
finite cover Z for EX,Y , one has that

∨

z∈Z
π(z) =

∧

x∈X
π(x) ∧

∧

y∈Y
¬π(y). (3.1)
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Observe that if Y is empty and X is a singleton, say X = {x}, then

EX,Y = E{x},∅ = {z ∈ E : z ≤ x},

and if Z is a cover for this set, then (3.1) reads

∨

z∈Z
π(z) = π(x). (3.2)

To check that a given representation is tight, it is not enough to verify (3.2), as
it is readily seen by considering the example in which E = {0, 1} and B is any
Boolean algebra containing an element x �= 1. Indeed, the map π : E → B given
by π(0) = 0, and π(1) = x, satisfies all instances of (3.2) even thought it is not
tight. The reader might wonder if the fact that π fails to preserve the unit is playing
a part in this counter-example, but it is also easy to find examples of cover-to-join
representations of non-unital semilattices which are not tight.

Representations π satisfying (3.2) whenever Z is a cover for E{x},∅ have
been considered in [4, Proposition 11.8], and they have been called cover-to-join
representations in [2].

It is a trivial matter to prove that a cover-to-join representation satisfies (3.1)
whenever X is nonempty (see the proof of [4, Lemma 11.7]), so the question of
whether a cover-to-join representation is indeed tight rests on verifying (3.1) when
X is empty. In this case, and assuming that Z is a cover for E∅,Y , it is easy to see
that Z ∪ Y is a cover for the whole of E. Should we be dealing with a semilattice
not admitting any finite cover, this situation will therefore never occur, that is, one
will never be required to check (3.1) for an empty set X, hence every cover-to-join
representation is automatically tight.

This has in fact already been observed in [4, Proposition 11.8], which says that
every cover-to-join representation is tight in case E does not admit any finite cover,
as we have just discussed, but also if E contains a finite set X such that

∨

x∈X
π(x) = 1. (3.3)

The latter condition is useful for dealing with characters, i.e. with representations
of E in the Boolean algebra {0, 1}, because the requirement that a character
be nonzero immediately implies (3.3), so again cover-to-join suffices to prove
tightness.

On the other hand, an advantage of the notion of cover-to-join representations is
that it makes sense for representations in generalized Boolean algebras, while the
reference to the unary operation¬ in (3.1) precludes it from being applied when the
target algebra lacks a unit, that is, for a representation into a generalized Boolean
algebra.

Again referring to the occurrence of ¬ in (3.1), observe that if X is nonempty,
then the right hand side of (3.1) lies in the ideal of B generated by the range of
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π . This is because, even though ¬π(y) is not necessarily in
〈
π(E)

〉
, this term will

appear besides π(x), for some x in X, and hence

π(x)∧ ¬π(y) = π(x) \ (π(x)∧ π(y)
) ∈ 〈π(E)

〉
.

This means that:

Proposition 3.3 If E is a semilattice not admitting any finite cover then, whenever
X and Y are finite subsets of E, and Z is a finite cover of EX,Y , the right hand side
of (3.1) lies in

〈
π(E)

〉
.

As a consequence we see that Definition 3.2 may be safely applied to a
representation of E in a generalized Boolean algebra, as long as E does not admit
a finite cover: despite the occurrence of ¬ in (3.1), once its right hand side is
expanded, it may always be expressed in terms of relative complements, hence
avoiding the use of the missing unary operation ¬.

We may therefore consider the following slight generalization of the notion of
tight representations:

Definition 3.4 A representation π of E in a generalized Boolean algebra B is
said to be tight if, either B is a Boolean algebra and π is tight in the sense of
Definition 3.2, or the following two conditions are verified:

(i) E admits no finite cover, and
(ii) (3.1) holds for any finite subsets X and Y of E, and for any finite cover Z for

EX,Y .

As already stressed, despite the occurrence of ¬ in (3.1), condition (ii) in
Definition 3.4 will always make sense in a generalized Boolean algebra.

So here is a result that perhaps may be used to reconcile the notions of tightness
and cover-to-join representations:

Theorem 3.5 Let π be a representation of the semilattice E in the generalized
Boolean algebra B. Then

(i) if π is tight then it is also cover-to-join,
(ii) if π is cover-to-join then there exists an ideal B ′ of B, containing the range of

π , such that, once π is seen as a representation of E in B ′, one has that π is
tight.

Proof Point (i) being immediate, let us prove (ii). Under the assumption that E does
not admit any finite cover, we have that π is tight as a representation into B ′ = B,
by Exel [4, Proposition 11.8], or rather by its obvious adaptation to generalized
Boolean algebras.

It therefore remains to prove (ii) in case E does admit a finite cover, say Z.
Setting

e =
∨

z∈Z
π(z), (3.4)
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we claim that

π(x) ≤ e, ∀x ∈ E. (3.5)

To see this, pick x in E and notice that, since Z is a cover for E, we have in particular
that the set

{z ∧ x : z ∈ Z}

is a cover for x, so the cover-to-join property of π implies that

π(x) =
∨

z∈Z
π(z ∧ x) ≤

∨

z∈Z
π(z) = e,

proving (3.5). We therefore let

B ′ = {a ∈ B : a ≤ e},

which is evidently an ideal of B containing the range of π by (3.5).
By (3.4) we then have that π satisfies [4, Lemma 11.7.(i)], as long as we see π

as a representation of E in B ′, whose unit is clearly e. The result then follows from
[4, Proposition 11.8]. 	


4 Non-Degenerate Representations of Semilattices

The following is perhaps the most obvious adaptation of the notion of non-
degenerate representations extensively used in the theory of operator algebras [15,
Definition 9.3].

Definition 4.1 We shall say that a representation π of a semilattice E in a
generalized Boolean algebra B is non-degenerate if, for every a in B, there is a
finite subset Z of E such that a ≤ ∨

z∈Z π(z). In other words, π is non-degenerate
if and only if B coincides with the ideal generated by the range of π .

Observe that, if both E and B have a unit, and if π is a unital map, then π is
evidently non-degenerate. More generally, if π satisfies (3.3), then the same is also
clearly true.

The following result says that, by adjusting the codomain of a representation, we
can always make it non-degenerate.

Proposition 4.2 Let π be a representation of E in the generalized Boolean algebra
B. Letting C be the ideal of B generated by the range of π , one has that π is a
non-degenerate representation of E in C.

Proof Obvious. 	
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For non-degenerate representations we have the following streamlined version of
Theorem 3.5:

Corollary 4.3 Let π be a non-degenerate representation of the semilattice E in the
generalized Boolean algebra B. Then π is tight if and only if it is cover-to-join.

Proof The “only if” direction being trivial, we concentrate on the “if” part, so let
us assume that π is cover-to-join. By Theorem 3.5 there exists an ideal B ′ of B,
containing the range of π , and such that π is tight as a representation in B ′. Such
an ideal will therefore contain the ideal generated by π(E), which coincides with B

by hypothesis. Therefore B ′ = B, and hence π is tight as a representation into its
default codomain B. 	


5 Representations of Inverse Semigroups

By its very nature, the concept of a tight representation pertains to the realm of
semilattices and Boolean algebras. However, given the relevance of the study of
semilattices in the theory of inverse semigroups, tight representations have had a
strong impact on the latter.

Recall that a Boolean inverse semigroup (see [5] but please observe that this
notion is not equivalent to the homonym studied in [9] and [16]) is an inverse
semigroup whose idempotent semilattice E(S) is a Boolean algebra. In accordance
with what we have been discussing up to now, it is sensible to give the following:

Definition 5.1

(i) A generalized Boolean inverse semigroup is an inverse semigroup whose
idempotent semilattice is a generalized Boolean algebra.

(ii) (cf. [4, Definition 13.1] and [5, Proposition 6.2]) If S is any inverse semigroup1

and T is a generalized Boolean inverse semigroup, we say that a homomor-
phism π : S → T (always assumed to preserve zero) is tight if the restriction
of π to E(S) is a tight representation into E(T ), in the sense of Definition 3.4.

(iii) If π is as above, we say that π is cover-to-join if the restriction of π to E(S) is
cover-to-join.

Addressing the already mentioned slight imprecision in the proof of [2, Theorem
2.2], we then have the following version of Theorem 3.5 and Proposition 4.2:

1All inverse semigroups in this note are required to have a zero.
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Corollary 5.2 Let π be a representation of the inverse semigroup S in the
generalized Boolean inverse semigroup T . Then

(i) if π is tight then it is also cover-to-join;
(ii) if π is cover-to-join then there exists a generalized Boolean inverse sub-

semigroup T ′ of T , containing the range of π , such that, once π is seen as
a representation of S in T ′, one has that π is tight;

(iii) if π is cover-to-join, and if the restriction of π to E(S) is non-degenerate, then
π is tight.

Proof The proof is essentially contained in the proofs of Theorem 3.5 and
Proposition 4.2, except maybe for the proof of (ii) under the assumption that E(S)

admits a finite cover, say Z. In this case, let e be as in (3.4) and put

T ′ = {t ∈ T : t∗t ≤ e, tt∗ ≤ e},

observing that T ′ is clearly an inverse sub-semigroup of T , and that its idempotent
semilattice is a Boolean algebra. Given any s in S, observe that s∗s lies in E(S) and

π(s)∗π(s) = π(s∗s) ≤ e,

where the last inequality above follows as in (3.5). By a similar reasoning one shows
that also π(s)π(s)∗ ≤ e, so we see that π(s) lies in T ′, and we may then think of π
as a representation of S in T ′. As in Theorem 3.5, one may now easily prove that π
becomes a tight representation into T ′. 	


6 Conclusion

As a consequence of the above results, when defining universal objects (such
as semigroups, algebras or C*-algebras) for a class of representations of inverse
semigroups, one may safely substitute cover-to-join for tight and vice-versa. Given
the widespread use of tight representations, there are many instances where the
above principle applies. Below we spell out one such result to concretely illustrate
our point, but similar results may be obtained as trivial reformulations of the
following:

Theorem 6.1 Let S be an inverse semigroup and let C∗
tight(S) be the universal C*-

algebra [4, Theorem 13.3] for tight Hilbert space representations of S [4, Definition
13.1]. Also let C∗

cover-
to-join

(S) be the universal C*-algebra for cover-to-join Hilbert

space representations of S. Then

C∗
tight(S) 2 C∗

cover-
to-join

(S).
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Proof It suffices to prove that C∗
tight(S) also has the universal property for cover-to-

join representations. So let

π : S → B(H)

be a cover-to-join representation of S on some Hilbert space H . Should the
idempotent semilattice of S admit no finite covers, one has that π is tight so there is
nothing to do. On the other hand, assuming that Z is a finite cover for E(S), let e be
as in (3.4).

Writing He for the range of e and letting K = H⊥
e , we then obviously have that

H = He ⊕K . It then follows from (3.5) that each π(s) decomposes as a direct sum
of operators

π(s) = π ′(s)⊕ 0,

thus defining a representation π ′ of S on He which is clearly also cover-to-join. It is
also clear that π ′ is non-degenerate on E(S), so we have by Corollary 5.2(iii) that π ′
is tight. Therefore the universal property provides a *-representation ϕ′ of C∗

tight(S)

on B(He) coinciding with π ′ on the canonical image of S within C∗
tight(S). It then

follows that ϕ := ϕ′ ⊕ 0 coincides with π on S, concluding the proof. 	

We therefore believe this clarifies [2, Corollaries 2.3 & 2.5].
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1 Introduction

Let F : L2(R) → L2(R) denote the Fourier transform

(Ff )(x) := f̂ (x) :=
∫

R

f (t)eitx dt, x ∈ R,

and let F−1 : L2(R) → L2(R) be the inverse of F ,

(F−1g)(t) = 1

2π

∫

R

g(x)e−itx dx, t ∈ R.

It is well known that the Fourier convolution operator

W 0(a) := F−1aF (1.1)

is bounded on the space L2(R) for every a ∈ L∞(R).
Let X(R) be a Banach function space and X′(R) be its associate space. Their

technical definitions are postponed to Sect. 2.1. The class of Banach function spaces
is very large. It includes Lebesgue, Orlicz, Lorentz spaces, variable Lebesgue
spaces and their weighted analogues (see, e.g., [4, 6]). Let B(X(R)) denote the
Banach algebra of all bounded linear operators acting on X(R), let K(X(R)) be the
closed two-sided ideal of all compact operators in B(X(R)), and let Bπ(X(R)) =
B(X(R))/K(X(R)) be the Calkin algebra of the cosets Aπ := A+K(X(R)), where
A ∈ B(X(R)).

If X(R) is separable, then L2(R) ∩ X(R) is dense in X(R) (see Lemma 2.1
below). A function a ∈ L∞(R) is called a Fourier multiplier on X(R) if the
convolution operator W 0(a) defined by (1.1) maps L2(R) ∩ X(R) into X(R) and
extends to a bounded linear operator on X(R). The function a is called the symbol
of the Fourier convolution operator W 0(a). The set MX(R) of all Fourier multipliers
on X(R) is a unital normed algebra under pointwise operations and the norm

‖a‖MX(R)
:=
∥
∥
∥W 0(a)

∥
∥
∥B(X(R))

.

For a unital C∗-subalgebra � of the algebra L∞(R), we consider the quotient
algebra MOπ(�) consisting of the cosets

[aI ]π := aI +K(X(R))

of multiplication operators by functions in �:

MOπ(�) := {[aI ]π : a ∈ �} = {aI + K(X(R)) : a ∈ �}.
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For a unital Banach subalgebra " of the algebra MX(R), we also consider the
quotient algebra COπ(") consisting of the cosets

[W 0(b)]π := W 0(b)+K(X(R))

of convolution operators with symbols in the algebra ":

COπ(") := {[W 0(b)]π : b ∈ "} = {W 0(b)+K(X(R)) : b ∈ "}.

It is easy to see that MOπ(�) and COπ(") are commutative unital Banach
subalgebras of the Calkin algebra Bπ(X(R)). It is natural to refer to the algebras
MOπ(�) and COπ (") as the Calkin images of the algebras

MO(�) = {aI : a ∈ �} ⊂ B(X(R)), CO(") = {W 0(b) : b ∈ "} ⊂ B(X(R)),

respectively. The algebras MO(�) and CO(") are building blocks of the algebra
of convolution type operators

A(�,";X(R)) = algB(X(R))

{
aI,W 0(b) : a ∈ �, b ∈ "

}
,

the smallest closed subalgebra of B(X(R)) that contains the algebras MO(�) and
CO(").

Let SO3 be the C∗-algebra of slowly oscillating functions and SO3
X(R) be

the Banach algebra of all slowly oscillating Fourier multipliers on the space
X(R), which are defined below in Sects. 2.5–2.7. The third author proved in [22,
Lemma 4.3] in the case of Lebesgue spaces Lp(R, w), 1 < p < ∞, with
Muckenhoupt weights w ∈ Ap(R) that

MOπ(SO3) ∩ COπ(SO3
Lp(R,w)) = MOπ(C), (1.2)

where

MOπ(C) := {[cI ]π : c ∈ C}. (1.3)

This result allowed him to describe the maximal ideal space of the commutative
Banach algebra

Aπ(SO3, SO3
Lp(R,w);Lp(R, w)) = A(SO3, SO3

Lp(R,w);Lp(R, w))/K(Lp(R, w))

(see [22, Theorem 3.1]). In turn, this description plays a crucial role in the study
of the Fredholmness of operators in more general algebras of convolution type
operators with piecewise slowly oscillating data on weighted Lebesgue space
Lp(R, w) (see [22, 24, 25]).
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Recall that the (non-centered) Hardy-Littlewood maximal function Mf of a
function f ∈ L1

loc(R) is defined by

(Mf )(x) := sup
I4x

1

|I |
∫

I

|f (y)| dy,

where the supremum is taken over all intervals I ⊂ R of finite length containing
x. The Hardy-Littlewood maximal operator M defined by the rule f �→ Mf is a
sublinear operator.

The aim of this paper is to extend (1.2) to the case of separable Banach function
spaces such that the Hardy-Littlewood maximal operator M is bounded on X(R)

and on its associate space X′(R) and to the case of arbitrary algebras of functions
� ⊂ L∞(R) in place of SO3.

The following statement extends [22, Lemma 4.3].

Theorem 1.1 (Main Result) Let X(R) be a separable Banach function space such
that the Hardy-Littlewood maximal operator M is bounded on the space X(R) and
on its associate space X′(R). If � is a unital C∗-subalgebra of L∞(R), then

MOπ(�) ∩ COπ (SO3
X(R)) = MOπ(C), (1.4)

where MOπ (C) is defined by (1.3).

This result is one more step towards the study of Fredholm properties of
convolution type operators with discontinuous data on Banach function spaces more
general than weighted Lebesgue spaces initiated in the authors works [8–10].

One can expect, by analogy with the case of weighted Lebesgue spaces, that, for
instance, K(X(R)) ⊂ A(SO3, SO3

X(R);X(R)) and that the quotient algebra

Aπ(SO3, SO3
X(R);X(R)) = A(SO3, SO3

X(R);X(R))/K(X(R))

is commutative. It seems, however, that the proofs of both hypotheses will require
tools, which are not available in the setting of general Banach function spaces.
We plan to return to these questions in a forthcoming work, restricting ourselves
to particular Banach function spaces, like rearrangement-invariant spaces with
Muckenhoupt weights or variable Lebesgue spaces, where interpolation theorems
are available.

The paper is organized as follows. In Sect. 2, we collect necessary facts on
Banach function spaces and Fourier multipliers on them. Further, we recall the
definition of the C∗-algebra SO3 of slowly oscillating functions and introduce
the Banach algebra of slowly oscillating Fourier multipliers SO3

X(R) on a Banach
function space X(R). In Sect. 3, we discuss the structure of the maximal ideal
spaces M(SO3) and M(SO3

X(R)) of the C∗-algebra SO3 of slowly oscillating
functions and the Banach algebra SO3

X(R) of slowly oscillating Fourier multipliers
on a Banach function space X(R). In particular, we show that the fibers Mt(SO

3)
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of M(SO3) over the points t ∈ Ṙ := R ∪ {∞} can be identified with the fibers
Mt(SOt ), where SOt is the C∗-algebra of all bounded continuous functions on
Ṙ \ {t} that slowly oscillate at the point t . An analogous result is also obtained
for the fibers of the maximal ideal spaces of algebras of slowly oscillating Fourier
multipliers on a Banach function space X(R). In Sect. 4, we show that the maximal
ideal spaces of the algebras MOπ (�) and COπ(") are homeomorphic to the
maximal ideal spaces of the algebras � and " , respectively, where � is a unital C∗-
subalgebra of L∞(R) and " is a unital Banach subalgebra of MX(R). In Sect. 5,
we recall the definition of a limit operator (see [26] for a general theory of limit
operators), as well as, a known fact about limit operators of compact operators acting
on Banach function spaces. Further, we calculate the limit operators of the Fourier
convolution operator W 0(b) with a slowly oscillating symbol b ∈ SO3

X(R). Finally,
gathering the above mentioned results on limit operators, we prove Theorem 1.1.

2 Preliminaries

2.1 Banach Function Spaces

The set of all Lebesgue measurable complex-valued functions on R is denoted by
M(R). Let M+(R) be the subset of functions in M(R) whose values lie in [0,∞].
The Lebesgue measure of a measurable set E ⊂ R is denoted by |E| and its
characteristic function is denoted by χE . Following [4, Chap. 1, Definition 1.1], a
mapping ρ : M+(R) → [0,∞] is called a Banach function norm if, for all functions
f, g, fn (n ∈ N) in M+(R), for all constants a ≥ 0, and for all measurable subsets
E of R, the following properties hold:

(A1) ρ(f ) = 0 ⇔ f = 0 a.e., ρ(af ) = aρ(f ), ρ(f + g) ≤ ρ(f )+ ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f ) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f ) (the Fatou property),

(A4) |E| < ∞⇒ ρ(χE) < ∞,

(A5) |E| < ∞⇒
∫

E

f (x) dx ≤ CEρ(f )

with CE ∈ (0,∞) which may depend on E and ρ but is independent of f . When
functions differing only on a set of measure zero are identified, the set X(R) of all
functions f ∈ M(R) for which ρ(|f |) < ∞ is called a Banach function space. For
each f ∈ X(R), the norm of f is defined by

‖f ‖X(R) := ρ(|f |).
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Under the natural linear space operations and under this norm, the set X(R) becomes
a Banach space (see [4, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function
norm, its associate norm ρ′ is defined on M+(R) by

ρ′(g) := sup

{∫

R

f (x)g(x) dx : f ∈ M+(R), ρ(f ) ≤ 1

}

, g ∈M+(R).

It is a Banach function norm itself [4, Chap. 1, Theorem 2.2]. The Banach function
space X′(R) determined by the Banach function norm ρ′ is called the associate
space (Köthe dual) of X(R). The associate space X′(R) is naturally identified with
a subspace of the (Banach) dual space [X(R)]∗.

2.2 Density of Nice Functions in Separable Banach Function
Spaces

As usual, let C∞
0 (R) denote the set of all infinitely differentiable functions with

compact support.

Lemma 2.1 ([8, Lemma 2.1] and [23, Lemma 2.12(a)]) If X(R) is a separable
Banach function space, then the sets C∞

0 (R) and L2(R) ∩ X(R) are dense in the
space X(R).

Let S(R) be the Schwartz space of rapidly decreasing smooth functions and let
S0(R) denote the set of functions f ∈ S(R) such that their Fourier transforms Ff

have compact support.

Theorem 2.2 ([10, Theorem 4]) Let X(R) be a separable Banach function space
such that the Hardy-Littlewood maximal operator M is bounded on X(R). Then the
set S0(R) is dense in the space X(R).

2.3 Banach Algebra MX(R) of Fourier Multipliers

The following result plays an important role in this paper.

Theorem 2.3 ([21, Corollary 4.2] and [8, Theorem 2.4]) Let X(R) be a separable
Banach function space such that the Hardy-Littlewood maximal operator M is
bounded on X(R) and on its associate space X′(R). If a ∈MX(R), then

‖a‖L∞(R) ≤ ‖a‖MX(R)
. (2.1)

The constant 1 on the right-hand side of (2.1) is best possible.
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Inequality (2.1) was established earlier in [18, Theorem 1] with some constant
on the right-hand side that depends on the space X(R).

Since (2.1) is available, an easy adaptation of the proof of [13, Proposition 2.5.13]
leads to the following (we refer to the proof of [18, Corollary 1] for details).

Corollary 2.4 Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its associate
space X′(R). Then the set of Fourier multipliers MX(R) is a Banach algebra under
pointwise operations and the norm ‖ · ‖MX(R)

.

2.4 Stechkin-Type Inequality

Let V (R) be the Banach algebra of all functions a : R → C with finite total
variation

V (a) := sup
n∑

i=1

|a(ti)− a(ti−1)|,

where the supremum is taken over all finite partitions

−∞ < t0 < t1 < · · · < tn < +∞

of the real line R and the norm in V (R) is given by

‖a‖V = ‖a‖L∞(R) + V (a).

Theorem 2.5 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R) and on its associate space
X′(R). If a ∈ V (R), then the convolution operator W 0(a) is bounded on the space
X(R) and

‖W 0(a)‖B(X(R)) ≤ cX‖a‖V (2.2)

where cX is a positive constant depending only on X(R).

This result follows from [17, Theorem 4.3].
For Lebesgue spaces Lp(R), 1 < p < ∞, inequality (2.2) is usually called

Stechkin’s inequality, and the constant cLp is calculated explicitly:

cLp = ‖S‖B(Lp(R)) =

⎧
⎪⎨

⎪⎩

tan
(

π
2p

)
if 1 < p ≤ 2,

cot
(

π
2p

)
if 2 ≤ p < ∞,

(2.3)
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where S is the Cauchy singular integral operator given by

(Sf )(x) := 1

πi
lim
ε→0

∫

R\(x−ε,x+ε)

f (t)

t − x
dt.

We refer to [7, Theorem 2.11] for the proof of (2.2) in the case of Lebesgue
spaces Lp(R) with cLp = ‖S‖B(Lp(R)) and to [12, Chap. 13, Theorem 1.3]
for the calculation of the norm of S given in the second equality in (2.3). For
Lebesgue spaces with Muckenhoupt weights Lp(R, w), the proof of Theorem 2.5
with cLp(w) = ‖S‖B(Lp(R,w)) is contained in [5, Theorem 17.1]. Further, for variable
Lebesgue spaces Lp(·)(R), Theorem 2.5 with cLp(·) = ‖S‖B(Lp(·)(R)) was obtained
in [20, Theorem 2].

2.5 Slowly Oscillating Functions

Let Ṙ = R ∪ {∞}. For a set E ⊂ Ṙ and a function f : Ṙ → C in L∞(R), let the
oscillation of f over E be defined by

osc(f,E) := ess sup
s,t∈E

|f (s)− f (t)|.

Following [3, Section 4], [24, Section 2.1], and [25, Section 2.1], we say that a
function f ∈ L∞(R) is slowly oscillating at a point λ ∈ Ṙ if for every r ∈ (0, 1) or,
equivalently, for some r ∈ (0, 1), one has

lim
x→0+ osc

(
f, λ + ([−x,−rx] ∪ [rx, x])) = 0 if λ ∈ R,

lim
x→+∞ osc

(
f, [−x,−rx] ∪ [rx, x]) = 0 if λ = ∞.

For every λ ∈ Ṙ, let SOλ denote the C∗-subalgebra of L∞(R) defined by

SOλ :=
{
f ∈ Cb(Ṙ \ {λ}) : f slowly oscillates at λ

}
,

where Cb(Ṙ \ {λ}) := C(Ṙ \ {λ}) ∩ L∞(R).
Let SO3 be the smallest C∗-subalgebra of L∞(R) that contains all the C∗-

algebras SOλ with λ ∈ Ṙ. The functions in SO3 are called slowly oscillating
functions.
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2.6 Banach Algebra SO3
λ
of Three Times Continuously

Differentiable Slowly Oscillating Functions

For a point λ ∈ Ṙ, let C3(R \ {λ}) be the set of all three times continuously
differentiable functions a : R \ {λ} → C. Following [24, Section 2.4] and [25,
Section 2.3], consider the commutative Banach algebras

SO3
λ :=

{

a ∈ SOλ ∩ C3(R \ {λ}) : lim
x→λ

(Dk
λa)(x) = 0, k = 1, 2, 3

}

equipped with the norm

‖a‖SO3
λ
:=

3∑

k=0

1

k!
∥
∥
∥Dk

λa

∥
∥
∥
L∞(R)

,

where (Dλa)(x) = (x − λ)a′(x) for λ ∈ R and (Dλa)(x) = xa′(x) for λ = ∞.

Lemma 2.6 For every λ ∈ Ṙ, the set SO3
λ is dense in the C∗-algebra SOλ.

Proof In view of [2, Lemma 2.3], the set

SO∞∞ :=
{
f ∈ SO∞ ∩ C∞

b (R) : lim
x→∞(Dk∞f )(x) = 0, k ∈ N

}
(2.4)

is dense in the Banach algebra SO∞. Here C∞
b (R) denotes the set of all infinitely

differentiable functions f : R → C, which are bounded with all their derivatives.
Note that SO∞∞ can be equivalently defined by replacingC∞

b (R) in (2.4) by C∞(R),
because f ∈ SO∞ is bounded and its derivatives f (k) are bounded for all k ∈ N in
view of limx→∞(Dk∞f )(x) = 0. Since SO∞∞ ⊂ SO3∞, this completes the proof in
the case λ = ∞.

If λ ∈ R, then by Karlovich and Loreto Hernández [25, Corollary 2.2], the
mapping T a = a ◦ βλ, where βλ : Ṙ→ Ṙ is defined by

βλ(x) = λx − 1

x + λ
, (2.5)

is an isometric isomorphism of the algebra SOλ onto the algebra SO∞. Hence each
function a ∈ SOλ can be approximated in the norm of SOλ by functions cn =
bn ◦ β−1

λ , where bn ∈ SO∞∞ for n ∈ N and

β−1
λ (y) = λy + 1

λ− y
= x, x, y ∈ Ṙ. (2.6)



202 C. A. Fernandes et al.

It remains to show that cn ∈ SO3
λ . Taking into account (2.5)–(2.6), we obtain for

y = βλ(x) ∈ R \ {λ} and x = β−1
λ (y) ∈ R:

(Dλcn)(y) =b′n
(
β−1
λ (y)

) λ2 + 1

y − λ
= −b′n(x)(x + λ), (2.7)

(D2
λcn)(y) =b′′n

(
β−1
λ (y)

) (λ2 + 1)2

y − λ
− b′n

(
β−1
λ (y)

) λ2 + 1

y − λ

=− b′′n(x)(x + λ)(λ2 + 1)+ b′n(x)(x + λ), (2.8)

(D3
λcn)(y) =b′′′n

(
β−1
λ (y)

) (λ2 + 1)3

y − λ
− 2b′′n

(
β−1
λ (y)

) (λ2 + 1)2

y − λ

+ b′n
(
β−1
λ (y)

) λ2 + 1

y − λ

=− b′′′n (x)(x + λ)(λ2 + 1)2 + 2b′′n(x)(x + λ)(λ2 + 1)

− b′n(x)(x + λ). (2.9)

Since

lim
x→∞(Dk∞bn)(x) = 0 for k ∈ {1, 2, 3},

we see that

lim
x→∞ xkb(k)n (x) = 0 for k ∈ {1, 2, 3}. (2.10)

It follows from (2.7)–(2.10) that

lim
y→λ

(Dk
λcn)(y) = 0 for k ∈ {1, 2, 3}.

Hence cn ∈ SO3
λ for all n ∈ N, which completes the proof. 	


2.7 Slowly Oscillating Fourier Multipliers

The following result leads us to the definition of slowly oscillating Fourier multipli-
ers.

Theorem 2.7 ([19, Theorem 2.5]) Let X(R) be a separable Banach function space
such that the Hardy-Littlewood maximal operator M is bounded on X(R) and on
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its associate space X′(R). If λ ∈ Ṙ and a ∈ SO3
λ , then the convolution operator

W 0(a) is bounded on the space X(R) and

‖W 0(a)‖B(X(R)) ≤ cX‖a‖SO3
λ
, (2.11)

where cX is a positive constant depending only on X(R).

Let SOλ,X(R) denote the closure of SO3
λ in the norm of MX(R). Further, let

SO3
X(R) be the smallest Banach subalgebra of MX(R) that contains all the Banach

algebras SOλ,X(R) for λ ∈ Ṙ. The functions in SO3
X(R) will be called slowly

oscillating Fourier multipliers.

Lemma 2.8 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R) and on its associate space
X′(R). Then

SO3
X(R) ⊂ SO3

L2(R)
= SO3.

Proof The continuous embedding SO3
X(R) ⊂ SO3

L2(R)
(with the embedding

constant one) follows immediately from Theorem 2.3 and the definitions of the
Banach algebras SO3

X(R) and SO3
L2(R)

. It is clear that SO3
L2(R)

⊂ SO3. The

embedding SO3 ⊂ SO3
L2(R)

follows from Lemma 2.6. 	


3 Maximal Ideal Spaces of the Algebras SO� and SO�
X(R)

3.1 Extensions of Multiplicative Linear Functionals
on C∗-algebras

For a C∗-algebra (or, more generally, a Banach algebra)A with unit e and an element
a ∈ A, let spA(a) denote the spectrum of a in A. Recall that an element a of a C∗-
algebra A is said to be positive if it is self-adjoint and spA(a) ⊂ [0,∞). A linear
functional φ on A is said to be a state if φ(a) ≥ 0 for all positive elements a ∈ A
and φ(e) = 1. The set of all states of A is denoted by S(A). The extreme points of
S(A) are called pure states of A (see, e.g., [15, Section 4.3]).

Following [1, p. 304], for a state φ, let

Gφ(A) := {a ∈ A : |φ(a)| = ‖a‖A = 1}

and let G+φ (A) denote the set of all positive elements of Gφ(A). Let A and B be
C∗-algebras such that e ∈ B ⊂ A. Let φ be a state of B. Following [1, p. 310], we
say that A is B-compressible modulo φ if for each x ∈ A and each ε > 0 there is
b ∈ G+φ (B) and y ∈ B such that ‖bxb − y‖A < ε.
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Since a nonzero linear functional on a commutative C∗-algebra is a pure state if
and only if it is multiplicative (see, e.g., [15, Proposition 4.4.1]), we immediately
get the following lemma from [1, Theorem 3.2].

Lemma 3.1 Let B be a C∗-subalgebra of a commutative C∗-algebra A. A nonzero
multiplicative linear functional φ on B admits a unique extension to a multiplicative
linear functional φ′ on A if and only if A is B-compressible modulo φ.

3.2 Family of Positive Elements

For t ∈ Ṙ and ω > 0, let ψt,ω be a real-valued function in C(Ṙ) such that 0 ≤
ψt,ω(x) ≤ 1 for all x ∈ R. Assume that for t ∈ R,

ψt,ω(s) = 1 if s ∈ (t−ω, t+ω), ψt,ω(s) = 0 if s ∈ R\ (t−2ω, t+2ω),

and for t =∞,

ψ∞,ω(s) = 1 if s ∈ R \ (−2ω, 2ω), ψ∞,ω(s) = 0 if s ∈ (−ω,ω).

Let M(A) denote the maximal ideal space of a commutative Banach algebra A.

Lemma 3.2 For t ∈ Ṙ and ω > 0, the function ψt,ω is a positive element of the
C∗-algebras C(Ṙ), SOt , and SO3.

Proof Since M(C(Ṙ)) = Ṙ, it follows from the Gelfand theorem (see, e.g., [28,
Theorem 2.1.3]) that spC(Ṙ)(ψt,ω) = [0, 1] for all t ∈ Ṙ and all ω > 0. Since

C(Ṙ) ⊂ SOt ⊂ SO3, we conclude that the functions ψt,ω for t ∈ Ṙ and ω > 0 are
positive elements of the C∗-algebras C(Ṙ), SOt , and SO3 because their spectra in
each of these algebras coincide with [0, 1] in view of [15, Proposition 4.1.5]. 	


3.3 Maximal Ideal Space of the C∗-algebra SO�

If B is a Banach subalgebra of A and λ ∈ M(B), then the set

Mλ(A) := {ξ ∈ M(A) : ξ |B = λ}

is called the fiber of M(A) over λ ∈ M(B). Hence for every Banach algebra � ⊂
L∞(R) with M(C(Ṙ) ∩ �) = Ṙ and every t ∈ Ṙ, the fiber Mt(�) is the set of
all multiplicative linear functionals (characters) on � that annihilate the set {f ∈
C(Ṙ) ∩� : f (t) = 0}. As usual, for all a ∈ � and all ξ ∈ M(�), we put a(ξ) :=
ξ(a). We will frequently identify the points t ∈ Ṙ with the evaluation functionals δt
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defined by

δt (f ) = f (t) for f ∈ C(Ṙ), t ∈ Ṙ.

Lemma 3.3 For every point t ∈ Ṙ, the fibers Mt(SOt ) and Mt(SO
3) can be

identified as sets:

Mt(SOt ) = Mt(SO
3). (3.1)

Proof Since C(Ṙ) ⊂ SOt ⊂ SO3, by the restriction of a multiplicative linear
functional defined on a bigger algebra to a smaller algebra, we have

M(SO3) ⊂ M(SOt) ⊂ M(C(Ṙ)), t ∈ Ṙ. (3.2)

Since

M(�) =
⋃

t∈Ṙ
Mt(�) for � ∈ {SO3, SOλ : λ ∈ Ṙ},

where

Mt(�) = {ζ ∈ M(�) : ζ |C(Ṙ) = δt }, t ∈ Ṙ, (3.3)

it follows from (3.2) and (3.3) that

Mt(SO
3) ⊂ Mt(SOt ), t ∈ R. (3.4)

Now fix t ∈ Ṙ and a multiplicative linear functional η ∈ Mt(SOt ). Let us
show that the C∗-algebra SO3 is SOt -compressible modulo η. Take ε > 0. By
the definition of SO3, for a function x ∈ SO3, there are a finite set F ∈ Ṙ and a
finite set {xλ ∈ SOλ : λ ∈ F } such that

∥
∥
∥
∥
∥
x −

∑

λ∈F
xλ

∥
∥
∥
∥
∥
L∞(R)

< ε.

If t �= ∞, take ω such that

0 < ω <
1

2
min

λ∈F\{t} |λ− t|

and b := ψt,ω. Then

y := b

(
∑

λ∈F
xλ

)

b (3.5)

is equal to zero outside the interval (t − 2ω, t + 2ω). Therefore, y ∈ SOt .
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If t = ∞, take ω such that

ω > max
λ∈F\{∞} |λ|

and b := ψ∞,ω . Then the function y defined by (3.5) is equal to zero on (−ω,ω)

and y ∈ SO∞.
For t ∈ Ṙ, we have

‖bxb − y‖L∞(R) =
∥
∥
∥
∥
∥
b

(

x −
∑

λ∈F
xλ

)

b

∥
∥
∥
∥
∥
L∞(R)

≤
∥
∥
∥
∥
∥
x −

∑

λ∈F
xλ

∥
∥
∥
∥
∥
L∞(R)

< ε.

Since b is a positive element of SOt in view of Lemma 3.2, we have b ∈ G+η (SOt ),
which completes the proof of the fact that SO3 is SOt -compressible modulo the
multiplicative linear functional η ∈ Mt(SOt ).

In view of Lemma 3.1, there exists a unique extension η′ of the multiplicative
linear functional η to the whole algebra SO3. By the definition of the fiber
Mt(SO

3), we have η′ ∈ Mt(SO
3). Thus, we can identify Mt(SOt ) with a subset of

Mt(SO
3):

Mt(SOt ) ⊂ Mt(SO
3). (3.6)

Combining (3.4) and (3.6), we arrive at (3.1). 	

Corollary 3.4 The maximal ideal space of the commutative C∗-algebra SO3 can
be identified with the set

⋃

t∈Ṙ
Mt(SOt ).

3.4 Extensions of Multiplicative Linear Functionals
on Banach Algebras

The following theorem in a slightly different form is contained in [29, Theo-
rem 2.1.1] and [30, Theorem 3.10]. For the convenience of readers, we give its
proof here.

Theorem 3.5 Let A,B,C be commutative unital Banach algebras with common
unit and homomorphic imbeddings A ⊂ B ⊂ C, where A is dense in B. If for each
functional ϕ ∈ M(A) there exists a unique extension ϕ′ ∈ M(C), then for every
functional ψ ∈ M(B) there exists a unique extension ψ ′ ∈ M(C).

Proof Let ψ ∈ M(B). Then ψ1 := ψ|A ∈ M(A). By the hypotheses, there exists a
unique extension ψ3 := (ψ1)

′ ∈ M(C). Then ψ1(a) = ψ(a) = ψ3(a) for all a ∈ A.



Calkin Images of Fourier Convolution Operators 207

Let ψ2 := ψ3|B ∈ M(B). Since A ⊂ B, it follows that

ψ(a) = ψ2(a) for all a ∈ A. (3.7)

On the other hand, functionals ψ,ψ2 ∈ M(B) are continuous on B (see, e.g., [16,
Lemma 2.1.5]). Since A is dense in B, for every b ∈ B there exists a sequence
{an}n∈N ⊂ A such that ‖an−b‖B → 0 as n →∞. It follows from this observation
and (3.7) that for every b ∈ B,

ψ(b) = lim
n→∞ψ(an) = lim

n→∞ψ2(an) = ψ2(b) = ψ3(b).

Thus ψ3 ∈ M(C) is an extension of ψ . This extension is unique by construction. 	


3.5 Maximal Ideal Space of the Banach Algebras SOt,X(R)

We start with the following refinement of [25, Lemma 3.4].

Lemma 3.6 Let t ∈ Ṙ. Then for each functional ϕ ∈ M(SO3
t ) there exists a unique

extension ϕ′ ∈ M(SOt).

The density of SO3
t in the Banach algebra SOt essentially used in the proof of

[25, Lemma 3.4] is justified in Lemma 2.6. Note that the uniqueness of an extension
was not explicitly mentioned in [25, Lemma 3.4]. However, since M(SO3

t ) and
M(SOt) are Hausdorff spaces (see, e.g., [16, Theorem 2.2.3]), the uniqueness of
an extension constructed in the proof of [25, Lemma 3.4] is a consequence of a
standard fact from general topology (see, e.g., [27, Theorem IV.2(b)]).

The following lemma is analogous to [25, Lemma 3.5].

Lemma 3.7 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on the space X(R) and on its associate
space X′(R). If t ∈ Ṙ, then the maximal ideal spaces of the C∗-algebra SOt and
the Banach algebra SOt,X(R) can be identified as sets:

M(SOt ) = M(SOt,X(R)). (3.8)

Proof It follows from Theorem 2.3 that SO3
t ⊂ SOt,X(R) ⊂ SOt , where the

imbeddings are homomorphic. By the definition of the algebra SOt,X(R), the algebra
SO3

t is dense in SOt,X(R) with respect to the norm of MX(R). Taking into account
these observations and Lemma 3.6, we see that the commutative Banach algebras

A = SO3
t , B = SOt,X(R), C = SOt

satisfy all the conditions of Theorem 3.5. By this theorem, every multiplicative
linear functional on SOt,X(R) admits a unique extension to a multiplicative linear
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functional on SOt . Hence we can identify M(SOt,X(R)) with a subset of M(SOt ):

M(SOt,X(R)) ⊂ M(SOt). (3.9)

On the other hand, since SOt,X(R) ⊂ SOt , by the restriction of a multiplicative
linear functional defined on a bigger algebra to a smaller algebra, we have

M(SOt ) ⊂ M(SOt,X(R)). (3.10)

Combining inclusions (3.9) and (3.10), we immediately arrive at (3.8). 	

The next lemma is analogous to Lemma 3.3.

Lemma 3.8 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on the space X(R) and on its associate
space X′(R). Then, for every point t ∈ Ṙ, the fibers Mt(SOt,X(R)) and Mt(SO

3
X(R))

can be identified as sets:

Mt(SOt,X(R)) = Mt(SO
3
X(R)). (3.11)

Proof Since SOt,X(R) ⊂ SO3
X(R) for every t ∈ Ṙ, we conclude by the restriction of

a multiplicative linear functional defined on the bigger algebra to the smaller algebra
that M(SO3

X(R)) ⊂ M(SOt,X(R)). Hence

Mt(SO
3
X(R)) ⊂ Mt(SOt,X(R)). (3.12)

On the other hand, in view of Lemma 3.7, any multiplicative linear functional ξ ∈
Mt(SOt,X(R)) admits a unique extension ξ ′ ∈ M(SOt ). Moreover, ξ ′ belongs to
Mt(SOt ) as well. By Lemma 3.3, the functional ξ ′ ∈ Mt(SOt) admits a unique
extension ξ ′′ ∈ Mt(SO

3). It is clear that the restriction of ξ ′′ to SO3
X(R)

belongs to
Mt(SO

3
X(R)). Thus Mt(SOt,X(R)) can be identified with a subset of Mt(SO

3
X(R)):

Mt(SOt,X(R)) ⊂ Mt(SO
3
X(R)). (3.13)

Combining (3.12) and (3.13), we arrive at (3.11). 	


3.6 Maximal Ideal Space of the Banach Algebra SO�
X(R)

Now we are in a position to prove that the maximal ideal spaces of the commutative
Banach algebra SO3

X(R) and the C∗-algebra SO3 can be identified as sets.

Theorem 3.9 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on the space X(R) and on its associate
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space X′(R). Then the maximal ideal space of the Banach algebra SO3
X(R) can be

identified with the maximal ideal space of the C∗-algebra SO3:

M(SO3
X(R)) = M(SO3).

Proof It follows from Lemmas 3.8, 3.7, and 3.3 that for every t ∈ Ṙ,

Mt(SO
3
X(R)) = Mt(SOt,X(R)) = Mt(SOt ) = Mt(SO

3).

Hence

M(SO3
X(R)) =

⋃

t∈Ṙ
Mt(SO

3
X(R)) =

⋃

t∈Ṙ
Mt(SO

3) = M(SO3),

which completes the proof. 	


4 Maximal Ideal Spaces of the Calkin Images of the Banach
Algebras MO(�) and CO(�)

4.1 Maximal Ideal Space of the AlgebraMOπ(�)

We start with the following known result [14, Theorem 2.4] (see also [9, Theo-
rem 3.1]).

Theorem 4.1 Let X(R) be a separable Banach function space and a ∈ L∞(R).
Then the multiplication operator aI is compact on the space X(R) if and only if
a = 0 almost everywhere on R.

The next theorem says that one can identify the maximal ideal spaces of the
algebras MOπ (�) and � for an arbitrary unital C∗-subalgebra of L∞(R).

Theorem 4.2 Let X(R) be a separable Banach function space. If � is a unital C∗-
subalagebra of L∞(R), then the maximal ideal spaces of the commutative Banach
algebra MOπ(�) and the commutative C∗-algebra � are homeomorphic:

M(MOπ(�)) = M(�).

Proof Consider the mapping F : � → MOπ (�) defined by F(a) = [aI ]π for
every a ∈ �. It is clear that this mapping is surjective. If [aI ]π = [bI ]π for some
a, b ∈ �, then (a − b)I ∈ K(X(R)). It follows from Theorem 4.1 that a = b a.e.
on R. This implies that the mapping F is injective. Thus, F : � → MOπ (�)

is an algebraic isomorphism of commutative Banach algebras. It follows from
[16, Lemma 2.2.12] that the maximal ideal spaces M(MOπ(�)) and M(�) are
homeomorphic. 	
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4.2 Maximal Ideal Space of the Algebra COπ(�)

The following analogue of Theorem 4.1 for Fourier convolution operators was
obtained recently by the authors [8, Theorem 1.1].

Theorem 4.3 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R) and on its associate space
X′(R). Suppose that b ∈ MX(R). Then the Fourier convolution operator W 0(a) is
compact on the space X(R) if and only if b = 0 almost everywhere on R.

The next theorem is an analogue of Theorem 4.2 for Fourier multipliers.

Theorem 4.4 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R) and on its associate space
X′(R). If " is a unital Banach subalagebra of MX(R), then the maximal ideal
spaces of the commutative Banach algebras COπ(") and " are homeomorphic:

M(COπ(")) = M(").

Proof The proof is analogous to the proof of Theorem 4.2. Consider the mapping
F : " → COπ(") defined by F(a) = [W 0(a)]π for every a ∈ " . It is obvious
that this mapping is surjective. If [W 0(a)]π = [W 0(b)]π for some a, b ∈ " , then
W 0(a − b) = W 0(a) − W 0(b) ∈ K(X(R)). By Theorem 4.3, we conclude that
a = b a.e. on R. Therefore, the mapping F is injective. Thus, F : " → COπ(") is
an algebraic isomorphism of commutative Banach algebras. In this case it follows
from [16, Lemma 2.2.12] that the maximal ideal spaces M(COπ(")) and M(") are
homeomorphic. 	


5 Applications of the Method of Limit Operators

5.1 Known Result about Limit Operators on Banach Function
Spaces

Let X(R) be a Banach function space. For a sequence of operators {An}n∈N ⊂
B(X(R)), let

s-lim
n→∞An

denote the strong limit of this sequence, if it exists. For λ, x ∈ R, consider the
function

eλ(x) := eiλx.
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Let T ∈ B(X(R)) and let h = {hn}n∈N be a sequence of numbers hn > 0 such
that hn →+∞ as n →∞. The strong limit

Th := s- lim
n→∞ ehnT e−1

hn
I

is called the limit operator of T related to the sequence h = {hn}n∈N, if it exists.
In our previous paper [9] we calculated the limit operators for all compact

operators.

Lemma 5.1 ([9, Lemma 3.2]) Let X(R) be a separable Banach function space and
K be a compact operator on X(R). Then for every sequence {hn}n∈N of positive
numbers satisfying hn →+∞ as n →∞, one has

s-lim
n→∞ ehnKe−1

hn
I = 0

on the space X(R).

5.2 Limit Operators for Fourier Convolution Operators
with Symbols in the Algebra SO�

X(R)

Now we will calculate the limit operators for the Fourier convolution operator with
a slowly oscillating symbol.

Theorem 5.2 Let X(R) be a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on the space X(R) and on its associate
space X′(R). If b ∈ SO3

X(R), then for every ξ ∈ M∞(SO3) there exists a sequence
{hn}n∈N of positive numbers such that hn → +∞ as n →∞ and

s-lim
n→∞ ehnW

0(b)e−1
hn

I = b(ξ)I (5.1)

on the space X(R).

Proof This statement is proved by analogy with [25, Lemma 5.1]. In view of
Lemma 2.8, SO3

X(R) ⊂ SO3. Therefore every ξ ∈ M∞(SO3) is a multiplicative
linear functional on SO3

X(R), that is, b(ξ) is well defined. By the definition of
SO3

X(R), if b ∈ SO3
X(R), then there is a sequence

bm =
∑

λ∈Fm

bm,λ, m ∈ N,

where Fm ⊂ Ṙ are finite sets and bm,λ ∈ SO3
λ for λ ∈ Fm and all m ∈ N, such that

lim
m→∞‖bm − b‖MX(R)

= 0. (5.2)
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By Lemma 3.3, M∞(SO3) = M∞(SO∞). Fix ξ ∈ M∞(SO3) = M∞(SO∞).
Assume first that the set

B∞ := {bm,∞ ∈ SO3∞ : m ∈ N}

is not empty. Since the set B∞ is at most countable, it follows from [2, Corollary 3.3]
or [25, Proposition 3.1] that there exists a sequence {hn}n∈N such that hn → +∞
as n →∞ and

ξ(bm,∞) = lim
n→∞ bm,∞(hn) for all bm,∞ ∈ B∞. (5.3)

As the functions bm,λ are continuous at ∞ if λ �= ∞, we see that

ξ(bm,λ) = bm,λ(∞) = lim
n→∞ bm,λ(hn) for all λ ∈

⋃

m∈N
Fm \ {∞}. (5.4)

Combining (5.3) and (5.4), for every m ∈ N, we get

ξ(bm) =
∑

λ∈Fm

ξ(bm,λ) =
∑

λ∈Fm

lim
n→∞ bm,λ(hn)

= lim
n→∞

∑

λ∈Fm

bm,λ(hn) = lim
n→∞ bm(hn). (5.5)

If the set B∞ is empty, we can take an arbitrary sequence {hn}n∈N such that hn →
+∞ as n →∞.

Let f ∈ S0(R). Then, by a smooth version of Urysohn’s lemma (see, e.g., [11,
Proposition 6.5]), there is a function ψ ∈ C∞

0 (R) such that 0 ≤ ψ ≤ 1, suppFf ⊂
suppψ and ψ|suppFf = 1. Therefore, for all n ∈ N,

ehnW
0(b)e−1

hn
f − b(ξ)f = W 0[b(· + hn)]f − ξ(b)f

= F−1[b(· + hn)− ξ(b)]ψFf

and

∥
∥
(
ehnW

0(b)e−1
hn
−b(ξ)

)
f
∥
∥
X(R)

≤ ∥
∥
[
b(·+hn)− ξ(b)

]
ψ‖MX(R)

‖f ‖X(R). (5.6)

Since MX(R) is translation-invariant and ξ ∈ M∞(SO3) is a multiplicative linear
functional on SO3

X(R), we infer for all m,n ∈ N that

∥
∥
[
b(· + hn)− ξ(b)

]
ψ‖MX(R)

≤∥∥[b(· + hn)− bm(· + hn)
]
ψ‖MX(R)

+ ∥∥[bm(· + hn)− ξ(bm)
]
ψ‖MX(R)
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+ ∥∥ξ(bm)− ξ(b)
]
ψ‖MX(R)

≤2‖b − bm‖MX(R)
‖ψ‖MX(R)

+ ∥∥[bm(· + hn)− ξ(bm)
]
ψ‖MX(R)

. (5.7)

Fix ε > 0. By Theorem 2.5, ‖ψ‖MX(R)
< ∞. It follows from (5.2) that there

exists a sufficiently large number m ∈ N (which we fix until the end of the proof)
such that

2‖b − bm‖MX(R)
‖ψ‖MX(R)

< ε/2. (5.8)

Let

$ :=
⎧
⎨

⎩

max
λ∈Fm\{∞} |λ| if Fm \ {∞} �= ∅,
0 if Fm \ {∞} = ∅,

let K := suppψ and

k := max{− infK, supK} ∈ [0,∞).

For x ∈ K and n ∈ N, let In(x) be the segment with the endpoints hn and x + hn.
Then In(x) ⊂ [hn − k, hn + k]. Since hn → +∞ as n → ∞, there exists N1 ∈ N

such that for all n > N1, one has

In(x) ⊂ [hn − k, hn + k] ⊂ ($,∞).

For all n > N1, we have

∥
∥
[
bm(· + hn)− ξ(bm)

]
ψ
∥
∥MX(R)

≤ ∥∥[bm(· + hn)− bm(hn)
]
ψ
∥
∥MX(R)

+ ∣∣bm(hn)− ξ(bm)
∣
∣‖ψ‖MX(R)

, (5.9)

where the functions
[
bm(· + hn) − bm(hn)

]
ψ for n > N1 belong to SO3∞ because

they are three times continuously differentiable functions of compact support.
By (5.5), there exists N2 ∈ N such that N2 ≥ N1 and for all n > N2,

∣
∣bm(hn)− ξ(bm)

∣
∣‖ψ‖MX(R)

< ε/4. (5.10)

On the other hand, since
[
bm(·+hn)−bm(hn)

]
ψ ∈ SO3∞ for all n > N2, it follows

from Theorem 2.7 that there exists a constant cX > 0 depending only on the space
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X(R) such that for all n > N2,

∥
∥
[
bm(· + hn)− bm(hn)

]
ψ
∥
∥MX(R)

≤ cX
∥
∥
[
bm(· + hn)− bm(hn)

]
ψ
∥
∥
SO3∞

= cX

3∑

j=0

1

j !
∥
∥
∥D

j∞
([
bm(· + hn)− bm(hn)

]
ψ
)∥∥
∥
L∞(R)

. (5.11)

For all j ∈ {0, 1, 2, 3}, we have

D
j∞
([
bm(· + hn)− bm(hn)

]
ψ
)

=
j∑

ν=0

(
j

ν

)
(
Dν∞

[
bm(· + hn)− bm(hn)

]) (
D

j−ν∞ ψ
)
. (5.12)

It follows from the mean value theorem that

∥
∥
[
bm(· + hn)− bm(hn)

]
χK

∥
∥
L∞(R)

= sup
x∈K

∣
∣
∣
∣

∫ x+hn

hn

b′m(t) dt
∣
∣
∣
∣

= sup
x∈K

∣
∣
∣
∣

∫ x+hn

hn

tb′m(t)
dt

t

∣
∣
∣
∣

≤ sup
x∈K

∫

In(x)

∣
∣(D∞bm)(t)

∣
∣ dt

t

≤ sup
t∈[hn−k,hn+k]

∣
∣(D∞bm)(t)

∣
∣
∫ hn+k

hn−k

dt

t

≤ ln
hn + k

hn − k
‖D∞bm‖L∞(R) . (5.13)

It is easy to see that for x ∈ K ,

(
D∞

[
bm(· + hn)− bm(hn)

])
(x) = x

x + hn

(D∞bm)(x + hn), (5.14)

(
D2∞

[
bm(· + hn)− bm(hn)

])
(x)

= x2

(x + hn)2 (D
2∞bm)(x + hn)+ xhn

(x + hn)2 (D∞bm)(x + hn), (5.15)
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and

(
D3∞

[
bm(· + hn)− bm(hn)

])
(x)

= x3

(x + hn)3 (D
3∞bm)(x + hn)+ 3x2hn

(x + hn)3 (D
2∞bm)(x + hn)

+ xh2
n − x2hn

(x + hn)3
(D∞bm)(x + hn). (5.16)

It follows from (5.14)–(5.16) that for all n > N2,

∥
∥
(
D∞

[
bm(· + hn)− bm(hn)

])
χK

∥
∥
L∞(R)

≤ k

hn − k
‖D∞bm‖L∞(R), (5.17)

∥
∥
∥
(
D2∞

[
bm(· + hn)− bm(hn)

])
χK

∥
∥
∥
L∞(R)

≤ k2

(hn − k)2

∥
∥
∥D2∞bm

∥
∥
∥
L∞(R)

+ khn

(hn − k)2
‖D∞bm‖L∞(R) , (5.18)

and
∥
∥
∥
(
D3∞

[
bm(· + hn)− bm(hn)

])
χK

∥
∥
∥
L∞(R)

≤ k3

(hn − k)3

∥
∥
∥D3∞bm

∥
∥
∥
L∞(R)

+ 3k2hn

(hn − k)3

∥
∥
∥D2∞bm

∥
∥
∥
L∞(R)

+ kh2
n + k2hn

(hn − k)3
‖D∞bm‖L∞(R) . (5.19)

Since

max
j∈{0,1,2,3}

∥
∥
∥D

j∞ψ

∥
∥
∥
L∞(R)

< ∞,

it follows from (5.12)–(5.13) and (5.17)–(5.19) that for all j ∈ {0, 1, 2, 3},

lim
n→∞

∥
∥
∥D

j∞
([
bm(· + hn)− bm(hn)

]
ψ
)∥∥
∥
L∞(R)

= 0. (5.20)

We deduce from (5.11) and (5.20) that there exists N3 ∈ N such that N3 ≥ N2 and
for all n > N3,

∥
∥
[
bm(· + hn)− bm(hn)

]
ψ
∥
∥MX(R)

< ε/4. (5.21)
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Combining (5.7)–(5.10) and (5.21), we see that for every f ∈ S0(R) and every
ε > 0 there exists N3 ∈ N such that for all n > N3,

∥
∥
∥
(
ehnW

0(b)e−1
hn

− b(ξ)
)
f

∥
∥
∥
X(R)

< ε‖f ‖X(R),

whence for all f ∈ S0(R),

lim
n→∞

∥
∥
∥
(
ehnW

0(b)e−1
hn

I − b(ξ)I
)
f

∥
∥
∥
X(R)

= 0.

Since S0(R) is dense in X(R) (see Theorem 2.2), this equality immediately implies
(5.1) in view of [28, Lemma 1.4.1(ii)], which completes the proof. 	


5.3 Proof of Theorem 1.1

Since the function e0 ≡ 1 belongs to � and "SO3
X(R)

, we see that the set of all

constant functions is contained in � and in SO3
X(R). Therefore

MOπ(C) ⊂ MOπ (�) ∩ COπ(SO3
X(R)). (5.22)

Let Aπ ∈ MOπ (�) ∩ COπ(SO3
X(R)). Then Aπ = [aI ]π = [W 0(b)]π , where

a ∈ � and b ∈ SO3
X(R)

. Therefore, there is an operator K ∈ K(X(R)) such that

aI = W 0(b)+K. (5.23)

By Theorem 5.2, for every ξ ∈ M∞(SO3) there exists a sequence {hn}n∈N of
positive numbers such that hn →+∞ as n →∞ and

s-lim
n→∞ ehnW

0(b)e−1
hn

I = b(ξ)I. (5.24)

Equalities (5.23)–(5.24) and Lemma 5.1 imply that

aI = s-lim
n→∞ ehn(aI)e

−1
hn

I = s-lim
n→∞ ehn(W

0(b)+K)e−1
hn

I= b(ξ)I.

Hence [aI ]π = [b(ξ)I ]π ∈ MOπ(C) and

MOπ(�) ∩ COπ(SO3
X(R)) ⊂ MOπ (C). (5.25)

Combining (5.22) and (5.25), we arrive at (1.4). 	
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Inner Outer Factorization of Wide
Rational Matrix Valued Functions on the
Half Plane

A. E. Frazho and A. C. M. Ran

Abstract The main purpose of this note is to use operator methods to solve
a rational inner-outer factorization problem for wide functions. It is believed
that this will provide valuable insight into the inner-outer factorization problem.
Our approach involves Wiener–Hopf operators, Hankel operators and invariant
subspaces for the backward shift. It should be emphasized that the formulas for
the inner and outer factor are derived in a computational manner.

Keywords Inner-outer factorization · Matrix valued function · Wiener–Hopf
operators · State space representation

Mathematics Subject Classification (2010) Primary 47B35, 47A68; Secondary
30J99

1 Introduction

In this note we will use operator techniques to develop a method to compute the
inner-outer factorization for certain matrix valued rational functions defined on the
closure of the right half plane. We shall focus on the “wide” case, i.e., the case where
the matrix function has more columns than rows (or an equal number, thereby also
including the square case). The “tall” case, where the matrix function has more
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rows than columns (or an equal number, again including the square case) is well
understood, and presented in, e.g., [3, 6, 18] and elsewhere.

It should be emphasized that we obtain explicit formulas for the inner and outer
factors in terms of the matrices appearing in a state space realization of the original
rational matrix valued function. Finally, we shall always assume that the rational
matrix function is proper, i.e., it has a finite value at infinity.

To set the stage, let E , U and Y be finite dimensional, complex vector spaces and
dimY ≤ dimU . The Hilbert space of all Lebesgue measurable square integrable
functions over [0,∞) with values in E is denoted by L2+(E). ThroughoutH∞(U, E)
is the set of all analytic functions G in the open right hand plane {s : #(s) > 0}
such that

‖G‖∞ = sup{‖G(s)‖ : #(s) > 0} < ∞.

Recall that a function Gi is inner if Gi is a function in H∞(E,Y) and Gi(iω)

is almost everywhere an isometry. (In particular, dim E ≤ dimY .) Equivalently
(see, e.g., [6, 18]), Gi in H∞(E,Y) is an inner function if and only if the Wiener–
Hopf operator TGi mapping L2+(E) into L2+(Y) is an isometry. (The Wiener–Hopf
operator is defined in (2.1) below.) A function Go is outer if Go is a function in
H∞(U, E) and the range of the Wiener–Hopf operator TGo is dense in L2+(E).

Let G be a function in H∞(U,Y). Then G admits a unique inner-outer
factorization of the form G(s) = Gi(s)Go(s) where Gi(s) is an inner function in
H∞(E,Y) and Go(s) is an outer function in H∞(U, E) for some intermediate space
E (see [14]). Because Gi(e

iω) is almost everywhere an isometry, dim E ≤ dimY .
Since Go is outer, Go(e

iω) is almost everywhere onto E , and thus, dim E ≤ dimU .
By unique we mean that if G(s) = Fi(s)Fo(s) is another inner-outer factorization
of G where Fi is an inner function in H∞(L,Y) and Fo is an outer function in
H∞(U,L), then there exists a constant unitary operator V mapping E onto L such
that Gi = FiV and VGo = Fo; see [2, 6, 7, 18–20] for further details.

Throughout we assume that U , E and Y are all finite dimensional. We say that
Gi in H∞(E,Y) is a square inner function if E and Y have the same dimension. So
if GiGo is an inner-outer factorization of G where Gi is square, then without loss
of generality we can assume that E = Y .

We say that the inner-outer factorization G = GiGo is full rank if Gi is a square
inner function in H∞(Y,Y) and the range of TGo equals L2+(Y). An inner-outer
factorization G = GiGo is full rank if and only if Gi is a square inner function and
the range of TG is closed. Finally, if G in H∞(U,Y) admits a full rank inner-outer
factorization, then dimY ≤ dimU .

Here we are interested in computing the inner-outer factorization for full rank
rational functions G in H∞(U,Y). So throughout we assume that dimY ≤
dimU . Computing inner-outer factorizations when G does not admit a full rank
factorization is numerically sensitive. This is already apparent in the scalar case.
For example, take an outer function G(s) = p(s)

d(s)
with zeros on the imaginary axis.

A slight perturbation of the coefficients of p(s) could yield an inner part or even
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an invertible outer function. To avoid this we simply assume that G(s) is full rank.
Moreover, from an operator perspective if G(s) is not full rank, then one has to
invert an unbounded Wiener–Hopf operator which is difficult. Furthermore, if G

does not admit a full rank inner-outer factorization, then a small H∞ perturbation
of G does admit such a factorization. First we will present necessary and sufficient
conditions to determine when G admits a full rank inner-outer factorization. Then
we will give a state space algorithm to compute Gi and then Go.

Inner-outer factorization for the “wide” case has received attention before. In
several papers procedures to find the inner and outer factors have been derived.
For instance, in [4] the factors were derived by considering G∗G + ε2I , and
deducing the outer factor from this by solving a reduced Riccati equation. In [21]
the reduced Riccati equation is replaced by a different approach, avoiding in fact an
approximation procedure. In that paper, first the inner-outer factorization for G(s)∗
is computed, and then balanced coordinates are used to further factor the inner part
of G(s)∗. Then they compute another inner-outer factorization of the remaining part.
In [16], see also [13] a different approach is chosen, [16] uses state space methods
along with some interesting state space decompositions to derive algorithms for
the inner and outer factorization in a general rational setting. Their methods are
algebraic in nature and quite different from our operator approach. Yet another
approach is taken in [17]. In all of these papers state space formulas are given and
their approach is based on finite dimensional techniques with properties of Riccati
equations. A common method is to compute the outer factor first and then solve for
the inner factor using the outer factor. Our approach is different: we derive a formula
for the inner factor from the fact that the subspace ker T ∗

G is shift invariant, and thus,
by the Beurling–Lax–Halmos theorem (see[14]) there is an inner function Gi such
that ker T ∗

Gi
= ker T ∗

G. It is this inner function which we construct first, providing
a state space formula for Gi , and then deduce the outer factor from Go = G∗

i G on
the imaginary axis.

Finally, it is emphasized that the previous methods to compute the inner-outer
factorization rely mainly on state space methods. Roughly speaking, the previous
methods involve solving Riccati equations, Hamilton methods, decomposing the
state space with balanced coordinates or other decompositions, or eigenvectors and
eigenvalues for certain state space operators; see for instance [4, 16, 17, 21]. Our
approach is quite different. We solve the inner-outer factorization problem by using
operator techniques for the general formulas and then use state space methods to
write down an explicit formula in the rational case. The operator methods give us
valuable insight into the underlying framework. Once the foundation is constructed,
then one simply uses state space techniques to formulate a realization of the inner
and outer part.
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2 Preliminaries

In this paper we shall make heavy use of the results and methods from [10]. Let
� be a proper rational matrix function with values in L(U,Y) and no poles on the
imaginary axis iR. Let ϕ be the Lebesgue integrable (continuous) matrix function
on the imaginary axis determined by � via the Fourier transform, that is,

�(iω) = �(∞)+
∫ ∞

−∞
e−iωtϕ(t) dt.

The Wiener–Hopf operator T� associated with � and the Hankel operator H�, both
mapping L2+(U) into L2+(Y), are defined as follows for t ≥ 0 and f in L2+(U) :

(T�f )(t) = �(∞)f (t)+
∫ t

0
ϕ(t − τ )f (τ )dτ (2.1)

(H�f )(t) =
∫ ∞

0
ϕ(t + τ )f (τ )dτ. (2.2)

In the sequel we shall freely use the basic theory of Wiener–Hopf and Hankel
operators which can be found in Chapters XII and XIII of [11]. Note that in [11]
the Fourier transform is taken with respect to the real line instead of the imaginary
axis as is done here.

Now let G be the stable rational function in H∞(U,Y) given by the following
state space realization:

G(s) = D + C(sI − A)−1B. (2.3)

Here A is stable operator acting on a finite dimensional space X and B maps U
into X , while C maps X into Y and D maps U into Y . (By stable we mean that
all the eigenvalues of A are contained in the open left hand half-plane of C.) The
realization for G in (2.3) is denoted by {A,B,C,D}. It is noted that G(s) is also
given by the following Laplace transform:

G(s) = D +
∫ ∞

0
e−stCeAtBdt (Re s ≥ 0).

Hence the corresponding Wiener–Hopf operatorTG and the Hankel operatorHG can
be expressed in terms of the matrices appearing in the realization of G as follows

(TGf )(t) = Df (t)+
∫ t

0
CeA(t−τ )Bf (τ)dτ (for t ≥ 0) (2.4)

(HGf )(t) =
∫ ∞

0
CeA(t+τ )Bf (τ)dτ (for t ≥ 0). (2.5)
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Throughout this note we assume that G is full row rank and DD∗ is invertible.
A realization is called controllable if ∨∞j=0ImAjB equals the state space X , and

a realization is called observable if ∩∞j=0kerCAj = {0}. It is well known from
systems theory that the dimension of the state space X is as small as possible
(over all possible realizations) if and only if the realization is both observable and
controllable. Such a realization is called minimal, and it will be assumed throughout
that the realization (2.3) for G is minimal.

With G we also associate the rational matrix function R given by R(s) =
G(s)G(−s)∗. Notice that R is a proper rational matrix function with values in
L(Y,Y) (the set of bounded linear operators mapping Y to itself) and has no poles
on the imaginary axis. By TR we denote the corresponding Wiener–Hopf operator
acting on L2+(Y). It is well-known (see, e.g., formula (24) in Section XII.2 of [11])
that

TR = TGT ∗
G +HGH

∗
G. (2.6)

Let P be the controllability Grammian for the pair {A,B}. In other words,

P =
∫ ∞

0
eAtBB∗eA∗t dt.

Moreover, P is the unique solution to the Lyapunov equation

AP + PA∗ + BB∗ = 0. (2.7)

Because the pair {A,B} is controllable P is strictly positive. Let Wc be the
controllability operator mapping L2+(U) into the state space X defined by

Wcu =
∫ ∞

0
eAtBu(t) dt (u ∈ L2+(U)).

It is noted that the controllability Grammian is given by P = WcW
∗
c .

Let Wo be the observability operator mapping X into L2+(Y) corresponding to
the pair {C,A} defined by

Wox = CeAtx (x ∈ X ).

Because the pair {C,A} is observable, Wo is one to one.
Let us introduce the operator � mapping Y into X defined by

� = BD∗ + PC∗.

Now consider the algebraic Riccati equation:

A∗Q+QA+ (C − �∗Q)∗(DD∗)−1(C − �∗Q) = 0. (2.8)



224 A. E. Frazho and A. C. M. Ran

Let Ao on X and Co mapping X into Y be the operators defined by

Ao = A− �Co and Co = (DD∗)−1(C − �∗Q). (2.9)

We say that Q is a stabilizing solution to the algebraic Riccati equation (2.8) if Q
is a positive solution to (2.8) and the operator Ao is stable. Finally, the stabilizing
solution is unique.

Proposition 2.1 in [10] states that TR is a strictly positive operator on L2+(Y) if
and only if there exists a stabilizing solution to the algebraic Riccati equation (2.8).
Moreover, in this case, the stabilizing solution Q is given by

Q = W∗
o T

−1
R Wo;

see Proposition 2.2, equation (2.11) in [10]. Because {C,A} is observable, Wo is
one to one, and thus, Q is strictly positive. Formula (2.14) in [10] states that

T −1
R Wox = Coe

Aot x (x ∈ X ).

In other words, T −1
R Wo equals the observability operator Coe

Aot mapping X into
L2+(Y) determined by the pair {Co,Ao}. Since T −1

R Wo is one to one, the pair
{Co,Ao} is observable.

The Hankel operator HG can be written as HG = WoWc; see (2.5). Using P =
WcW

∗
c , we have HGH ∗

G = WoPW∗
o . This, with Eq. (2.6) implies that

TGT
∗
G = TR −WoPW∗

o .

Hence kerT ∗
G = ker(TR −WoPW∗

o ). By consulting Lemma 4.1 in [9], restated as
Lemma 4.4 at the end of this paper for the readers convenience, we have

dim kerT ∗
G = dim ker(TR −WoPW∗

o ) = dim ker(I −QP).

Later we will see that the McMillan degree of the inner part Gi of G equals
dim ker(I −QP).

The next lemma characterizes the existence of a full rank inner-outer factoriza-
tion. The proof of this lemma is essentially the same as that of Lemma 3.1 in [9],
and is therefore omitted.

Lemma 2.1 Let G be a rational function in H∞(U,Y) where U and Y are finite
dimensional spaces satisfying dimY ≤ dimU . Then G admits a full rank inner-
outer factorization if and only if

G(iω)G(iω)∗ ≥ εI (for some ε > 0),

or equivalently, the Toeplitz operator TR is strictly positive.
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3 Inner Functions

First we consider realizations of rational inner functions. Recall that if Gi is a
rational function with values in L(Y,Y), then Gi is an inner function if and only if
Gi is a function H∞(Y,Y) and Gi(iω) is a unitary operator for all ω.

Consider a rational function Gi in H∞(Y,Y). Let {Ai on Xi , Bi, Ci,Di} be a
minimal realization for Gi . In particular,

Gi(s) = Di + Ci(sI − Ai)
−1Bi.

Because Gi is a rational function in H∞(Y,Y), and the realization is minimal, the
state space operator Ai is stable. Let Qi be the observability Grammian for the pair
{Ci,Ai}. In other words, Qi is the unique solution to the Lyapunov equation

A∗
i Qi +QiAi + C∗

i Ci = 0. (3.1)

Then Gi is an inner function in H∞(Y,Y) if and only if

Di is a unitary operator and QiBi = −C∗
i Di .

(The state space formula for an inner function is classical; for example, see [1, 3, 21]
and also Theorem 19.15 in [5].) In this case, Q−1

i is the controllability Grammian
for the pair {Ai,Bi}, that is, Q−1

i is the unique solution to the Lyapunov equation

AiQ
−1
i +Q−1

i A∗
i + BiB

∗
i = 0. (3.2)

Let Wi mapping Xi into L2+(Y) be the observability operator determined by
{Ci,Ai on Xi} defined by Wix = Cie

Aitx for x in Xi .
Next, we introduce some notation and present some well-known results. If � is

an inner function in H∞(E,Y), then H(�) is the subspace of L2+(Y) defined by

H(�) = L2+(Y)� T�L
2+(E) = kerT ∗

�.

Let S∗τ be the backward shift on L2+(Y) for τ ≥ 0, that is, (S∗τ f )(t) = f (t + τ )

for f in L2+(Y). It is noted that H(�) is an invariant subspace for the backward
shift S∗τ for all τ ≥ 0. According to the Beurling–Lax–Halmos Theorem if H is any
invariant subspace for the backward shift S∗τ for all τ ≥ 0, then there exists a unique
inner function � in H∞(E,Y) such that H = H(�). By unique we mean that if
H = H(") where " is an inner function in H∞(L,Y), then there exists a constant
unitary operator V from E onto L such that � = "V ; see [2], Section 3.9 for the
half plane case we use here, see also [6, 12, 15, 18–20] for further details in the unit
disc case.
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Now we present the following classical result; see Theorem 7.1 in [8], Sections
4.2 and 4.3 in [6] and Section XXVIII.7 in [12] for the disc case, and [2], Lemma
3.45 and Lemma 3.46 for the half plane case.

Lemma 3.1 Let � be an inner function in H∞(Y,Y) where Y is finite dimensional.
Then the Hankel operator H� is a contraction. Moreover,

H(�) = ImH� = kerT ∗
�.

Furthermore, the following holds.

(i) The subspace H(�) is finite dimensional if and only if � is rational.
(ii) The dimension of H(�) equals the McMillan degree of �.

(iii) Let {Ai on Xi , Bi, Ci,Di} be a minimal realization for a rational inner
function �. Then H(�) equals the range of the observability operator Wi

mapping Xi into L2+(Y).

Let {Ci,Ai on Xi} be a finite dimensional stable observable pair. Then we can
compute operators Bi mapping Y into Xi and Di on Y such that {Ai,Bi, Ci,Di} is
a minimal realization for an inner function �. In this case, H(�) equals the range
of Wi , the observability operator determined by {Ci,Ai}. To accomplish this, first
compute the solution Qi to the observability Lyapunov equation in (3.1). Note that
Qi is automatically strictly positive because Ai is stable and {Ci,Ai} is observable.
Then compute Bi from the Lyapunov equation (3.2). Now use QiBiB

∗
i Qi = C∗

i Ci

to find a unitary Di with QiBi = −C∗
i Di . We shall call {Bi,Di} the complementary

operators for {Ci,Ai}. According to Lemma 3.1, the subspace H(�) = ImWi =
kerT ∗

�. Finally, the complementary operators {Bi,Di} are not unique. However, the
corresponding subspace H(�) = ImWi they determine is unique.

4 Main Result

Let us combine several results of [10] into one theorem, which is the right half plane
analogue of Theorem 3.2 in [9] in the open unit disc case.

Theorem 4.1 Let {A on X , B,C,D} be a minimal realization for a rational
function G in H∞(U,Y) where dimY ≤ dimU . Let R be the function in L∞(Y,Y)

defined by R(iω) = G(iω)G(iω)∗. Let P the controllability Grammian for the pair
{A,B}; see (2.7). Then the following statements are equivalent.

(i) The function G admits a full rank inner-outer factorization;
(ii) The Wiener–Hopf operator TR is strictly positive.

(iii) There exists a (unique) stabilizing solution Q to the algebraic Riccati equation
(2.8).

In this case, the solution Q is given by Q = W∗
o T

−1
R Wo and Q is strictly positive.

Moreover, the following holds.



Inner Outer Factorization on the Half Plane 227

(iv) The eigenvalues of QP are real numbers contained in the interval [0, 1].
(v) If Gi is the inner factor of G, then the dimension of H(Gi) is given by

dimH(Gi) = dim kerT ∗
Gi
= dim kerT ∗

G = dim ker(I −QP),

and the McMillan degree of Gi is given by

dimH(Gi) = dim ker(I −QP).

In particular, the McMillan degree of Gi is less than or equal to the McMillan
degree of G.

(vi) The operator T −1
R Wo mapping X into L2+(Y) is equal to the observability

operator generated by {Co,Ao}, that is,

T −1
R Wox = Coe

Aotx (x ∈ X ). (4.1)

Finally, because {C,A} is observable, T −1
R Wo is one to one and {Co,Ao} is a

stable observable pair.

The construction of the state space realization for the inner Gi and outer factor
Go from the realization of G is analogous to the approach presented in [9] for
the disc case. The crucial observation is that if G = GiGo is an inner-outer
factorization, then H(Gi) = kerT ∗

Gi
= kerT ∗

G because TGo is onto. This observation
can be used to find a realization for Gi , and then Go is computed from Go = G∗

i G

on the imaginary axis. Note that this is quite the other way around as in the
tall case, where we first find the outer factor Go from the spectral factorization
G∗G = G∗

oGo, and then compute Gi from Gi = GG−1
o .

To describe a state space realization for the inner Gi and outer Go factors of G,
we first introduce an isometry U as in [9]. To be precise, let

k = dim ker(I −QP).

Let U be any isometry mapping C
k onto ker(I − QP). Note, such a U can be

constructed explicitly from the singular value decomposition of I − QP . The
analogue of Theorem 3.4 in [9] for the half plane now reads as follows.

Theorem 4.2 Let {A,B,C,D} be a minimal realization for a rational function G.
Moreover, assume that the algebraic Riccati equation (2.8) has a stabilizing solution
Q, and let Ao and Co be as defined in (2.9). Let Ai on C

k and Ci mapping C
k into

Y be the operators defined by

Ai = U∗QAoPU and Ci = CoPU.

Let Bi and Di be complementary operators to {Ci,Ai}. Then

Gi(s) = Di + Ci(sI − Ai)
−1Bi (4.2)
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is the inner factor for G. The outer factor Go for G is given by

Go(s) = D∗
i D + (D∗

i C + B∗
i U

∗)(sI − A)−1B.

Finally, G is an outer function if and only if k = 0. In this case, Gi(s) = I .

It is noted that the state space realization for the outer function Go given in the
Theorem 4.2 is not necessarily minimal.

The proof is analogous to the proof in the disc case. According to Lemma 4.1 in
[9], restated for convenience as Lemma 4.4 at the end of this section, we have

H(Gi) = kerTG∗
i
= kerT ∗

G = ker(TR −WoPW∗
o ).

This readily implies that

dimH(Gi) = dim ker(I −QP) = k.

The following lemma is a crucial part of the proof. We shall give two proofs, one
algebraic in nature, and a second operator theoretic proof using the fact that H(Gi)

is an invariant subspace for the backward shift.

Lemma 4.3 Assume that the hypotheses of Theorem 4.2 hold. Then there exists
a unique stable operator Ai on C

k such that AoPU = PUAi . Finally, Ai =
U∗QAoPU .

Algebraic Proof First we prove the existence of an operator Ai such that
QAoPU = QPUAi . We claim that ImQAoPU ⊂ ImQPU = ImU. Since
ImU equals ker(I −QP), we have U = QPU . Let us show that

(I −QP)QAoPU = 0. (4.3)

Formula (3.8) of [10] states that

A∗
o(Q−QPQ) + (Q−QPQ)Ao + C∗

1C1 = 0

where C1 = D∗Co + B∗Q. (The formula for C1 is not needed in our proof.) Using
this we obtain

(I −QP)QAoPU = −A∗
o(Q−QPQ)PU − C∗

1C1PU.

By employing U = QPU , we have (I −QP)QAoPU = −C∗
1C1PU. Multiplying

both sides by U∗P and using
U∗ = U∗PQ, we obtain

0 = U∗P(I −QP)QAoPU = −U∗PC∗
1C1PU.
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In other words, C1PU = 0. Hence (4.3) holds, and thus, the range of QA0PU

is contained in the kernel of I − QP . So there exists an operator Ai on C
k such

that QA0PU = UAi . Multiplying by U∗ on the left yields, U∗QA0PU = Ai . In
particular, Ai is uniquely determined by our choice of the isometry U .

Equation (4.3) also implies that

QAoPU = QPQAoPU = QPUAi .

Because Q is invertible, we have

AoPU = PUAi.

Notice that X1 = ImPU is an invariant subspace for Ao. Since P is invertible,
Ai is similar to the stable operator Ao|X1 on X1. Because Ao is stable, Ai is also
stable. 	

An Operator Theoretic Proof of Lemma 4.3 By Lemma 4.4 below with (4.1), we
see that T −1

R WoPU is the operator from C
k onto H(Gi) given by

T −1
R WoPUx = Coe

A0tPUx (x ∈ C
k)

H(Gi) = Im
(
T −1
R WoPU

)
. (4.4)

Since H(Gi) is an invariant subspace of the backward shift on L2+(Y) (see [2,
Chapter 3]), we have for all t > 0 and t1 > 0 and all x ∈ C

k

Coe
Ao(t+t1)PUx ∈ H(Gi).

This readily implies that Coe
Ao(t+t1)PUx = Coe

AotPUF(t1)x for some linear
operator F(t1) on C

k . One easily checks that F satisfies the semigroup property
F(t1 + t2) = F(t1)F (t2). Hence there exists an operator Ai on C

k such that
F(t) = eAit . In other words,

Coe
Aot eAot1PU = Coe

Ao(t+t1)PU = Coe
AotPUeAi t1 .

Since the observability operator Coe
Aot is one to one, we have eAotPU = PUeAi t

(for all t). It is now clear that Ai must be stable. To see this simply note that P is
invertible, U is an isometry, and Ao is stable. Therefore eAit converges to zero as
t tends to infinity, and thus, Ai is stable. By taking the derivative and then letting
t approach 0, we see that AoPU = PUAi as desired. Multiplying both sides by
U∗Q with U = QPU , we obtain Ai = U∗QAoPU . 	

Proof of Theorem 4.2 Note that using the definition of Ci = CoPU and Ai we
have

Coe
AotPU = Cie

Ait . (4.5)
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Since U is an isometry, P is invertible and {Co,Ao} is an observable pair it follows
that {Ci,Ai}, is an observable pair. Because T −1

R WoPU is onto H(Gi), the subspace
{Cie

Ait x | x ∈ C
k} equals H(Gi); see Eqs. (4) and (4.5).

Now let Qi be the solution to

A∗
i Qi +QiAi + C∗

i Ci = 0,

and let Bi and Di be the complementary operators for the pair {Ci,Ai}. Finally,
{Ai,Bi, Ci,Di} is the state space realization for our inner function Gi(s); see (4.2).
By construction H(Gi) = kerT ∗

Gi
.

By a direct calculation or consulting formula (2.12) in [10], we also have

A∗
oQ+QA+ C∗

oC = 0. (4.6)

The formula for the outer factor Go(s) can now be derived in the same way as the
last section of the paper [9]. Indeed, for s ∈ iR, we have

Gi(s)
∗ = D∗

i − B∗
i (sI + A∗

i )
−1C∗

i .

This yields

Gi(s)
∗G(s) =

(
D∗

i − B∗
i (sI + A∗

i )
−1C∗

i

) (
D + C(sI − A)−1B

)

=D∗
i D − B∗

i (sI + A∗
i )
−1C∗

i D +D∗
i C(sI − A)−1B

− B∗
i (sI + A∗

i )
−1C∗

i C(sI − A)−1B.

Using Ci = CoPU with (4.6), we obtain

C∗
i C = U∗PC∗

oC = −U∗P(A∗
oQ+QA) = −U∗PA∗

oQ− U∗PQA.

By Lemma 4.3 we have U∗PA∗
o = A∗

i U
∗P . This and U∗PQ = U∗ yields

C∗
i C = −A∗

i U
∗PQ − U∗PQA = −A∗

i U
∗ − U∗A. (4.7)

Rewrite this as

C∗
i C = −(sI + A∗

i )U
∗ + U∗(sI − A).

By taking the appropriate inverses, we obtain

(sI + A∗
i )
−1C∗

i C(sI − A)−1 = −U∗(sI − A)−1 + (sI + A∗
i )
−1U∗.



Inner Outer Factorization on the Half Plane 231

This readily implies that

Gi(s)
∗G(s) =

(
D∗

i − B∗
i (sI + A∗

i )
−1C∗

i

) (
D + C(sI − A)−1B

)

=D∗
i D − B∗

i (sI + A∗
i )
−1C∗

i D +D∗
i C(sI − A)−1B

+ B∗
i U

∗(sI − A)−1B − B∗
i (sI + A∗

i )
−1U∗B

=D∗
i D + (D∗

i C + B∗
i U

∗)(sI − A)−1B

− B∗
i (sI + A∗

i )
−1(U∗B + C∗

i D).

Now observe that

U∗B + C∗
i D = U∗PQB + U∗PC∗

oD = U∗P(QB + C∗
oD) = U∗PC∗

1 ,

where C1 = B∗Q +D∗Co; see also formula (3.3) in [10]. Now use equation (3.8)
in [10], which states that

A∗
o(Q−QPQ) + (Q−QPQ)Ao + C∗

1C1 = 0.

Multiplying by U∗P on the left and by PU on the right, with QPU = U , yields

U∗PC∗
1C1PU = 0 and thus U∗PC∗

1 = 0.

In other words, U∗B + C∗
i D = 0. It follows that for s ∈ iR, we have

Go(s) = Gi(s)
∗G(s) = D∗

i D + (D∗
i C + B∗

i U
∗)(sI − A)−1B.

Clearly, this holds for all s except the eigenvalues for A. 	

For the tall case we refer to Theorem 17.26 in [3].
Note that Ci can be computed a bit more explicitly:

Ci = CoPU = (DD∗)−1(C − �∗Q)PU,

where �∗ = CP +DB∗. This with U = QPU , yields

(C − �∗Q)PU = (C − CPQ −DB∗Q)PU = −DB∗U.

In other words, Ci = −(DD∗)−1DB∗U.

Recall that C∗
i C = −A∗

i U
∗ −U∗A; see (4.7). Multiplying by U on the right, we

obtain C∗
i CU = −A∗

i −U∗AU. In other words, Ai = −U∗C∗Ci −U∗A∗U. Using
Ci = −(DD∗)−1DB∗U , we have

Ai = −U∗A∗U + U∗C∗(DD∗)−1DB∗U

= −U∗(A− BD∗(DD∗)−1C
)∗
U.
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This leads to an alterative formula for the inner factor

Gi(s) = Di − (DD∗)−1DB∗U
(
sI + U∗(A− BD∗(DD∗)−1C

)∗
U
)−1

Bi.

In turn, this may be rewritten as follows:

Gi(s) = Di − (DD∗)−1DB∗(sI + UU∗(A− BD∗(DD∗)−1C
)∗)−1

UBi.

The latter formula compares well with the formula for the inner factor in the tall
case as presented in [3],Theorem 17.26.

Finally, Lemma 4.1 in [9] is restated in the following Lemma.

Lemma 4.4 Let T be a strictly positive operator on a Hilbert space H and P a
strictly positive operator on a Hilbert space X . Let W be an operator mapping X
into H and set Q = W∗T −1W . Then the following two assertions hold.

(i) Let X and H be the subspaces defined by

X = ker(I −QP) and H = ker
(
T −WPW∗) .

Then the operators

$1 = W∗|H : H → X and $2 = T −1WP |X : X → H

are both well defined and invertible. Moreover, $−1
1 = $2. In particular, X and

H have the same dimension.
(ii) The operator T − WPW∗ is positive if and only if P−1 − Q is positive, or

equivalently, P
1
2 QP

1
2 is a contraction. In this case, the spectrum of QP is

contained in [0, 1]. In particular, if X is finite dimensional, then the eigenvalues
for QP are contained in [0, 1].
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where −A is the infinitesimal generator of a holomorphic semigroup of angle
θ in Banach space. As in conventional regularization methods, certain auxiliary
well-posed problems and their associated C0 semigroups are applied in order to
approximate a known solution u. A key property however, that the semigroups
adhere to requisite growth orders, may fail depending on the value of the angle
θ . Our results show that an approximation of u may be still be established in such
situations as long as the data of the original problem is sufficiently smooth, i.e.
in a small enough domain. Our results include well-known examples applied in
the approach of quasi-reversibility as well as other types of approximations. The
outcomes of the paper may be applied to partial differential equations in Lp spaces,
1 < p < ∞ defined by strongly elliptic differential operators.

Keywords Ill-posed problem · Regularizing family of operators · Holomorphic
semigroup · Continuous dependence of solutions

Mathematics Subject Classification (2010) Primary 47A52; Secondary 47D06

M. A. Fury (�)
Penn State Abington, Department of Mathematics, Abington, PA, USA
e-mail: maf44@psu.edu

© Springer Nature Switzerland AG 2021
M. A. Bastos et al. (eds.), Operator Theory, Functional Analysis and Applications,
Operator Theory: Advances and Applications 282,
https://doi.org/10.1007/978-3-030-51945-2_12

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51945-2_12&domain=pdf
mailto:maf44@psu.edu
https://doi.org/10.1007/978-3-030-51945-2_12


236 M. A. Fury

1 Introduction

In this paper, we consider the generally ill-posed, linear Cauchy problem

u′(t) = Au+ h(t), 0 < t < T, (1.1)

u(0) = ϕ

where A is a closed, linear operator in a Banach space X, ϕ ∈ X, and h is a function
from [0, T ] into X. Ill-posed problems, whose solutions either do not exist for ϕ

in a dense subspace of X, are not unique, or do not depend continuously upon ϕ,
appear abundantly in several fields, most notably as backward parabolic problems

(cf. [23, 25, 28, 34]). For instance, let A = −! defined by !u = ∑n
i=1

∂2u

∂x2
i

for

all u ∈ X = Lp(Rn), 1 < p < ∞, whose generalized derivatives up to order 2
are also in X. Then (1.1) becomes the classic ill-posed problem that is the backward
heat equation. Related to ill-posed problems, inverse problems are also of significant
interest with applications such as parameter identification in medical imaging and
source identification in groundwater pollution (cf. [19, 22, 30, 33, 34, 36, 39]).

Due to the instability of ill-posed problems, it is common practice to estimate
a supposed solution u(t) of (1.1) via some approximation method. For instance,
several regularization techniques have been applied to (1.1) [2, 17, 18, 24, 25, 28, 35]
which utilize the generator of a C0 semigroup of linear operators, that is a family of
bounded linear operators {E(t)}t≥0 on X satisfying

E(0) = I, E(s + t) = E(s)E(t) for all s, t ≥ 0, and

E(t)x → x as t → 0+ for all x ∈ X;

formally, we regard E(t) as E(t) = etB where B is its generator (cf. [29,
Section 1.2]). While the literature contains many results in Hilbert space, recently
including concrete numerical experiments which validate the theory [21, 37, 38],
fewer results are available in pure Banach space. Generalizing the example A =
−!, authors have considered the case in Banach space where −A generates
a holomorphic semigroup e−tA which extends analytically into a sector of the
complex plane. The most well-known and cited approximations here are fβ(A) =
A−βA2 [20] and fβ(A) = A(I+βA)−1 [35], though each of these regularizations
depends on the sector angle θ of the semigroup e−tA (cf. [2, 5, 6, 10, 17, 18, 23, 35]).
For fβ(A) = A − βA2, the restriction θ ∈ (π4 ,

π
2 ] is required in order for

fβ(A) to generate a semigroup. In this case, under appropriate conditions on h,
the approximate Cauchy problem

v′(t) = fβ(A)v + h(t), 0 < t < T, (1.2)

v(0) = ϕ
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is well-posed with unique solution vβ(t) = etfβ(A)ϕ + ∫ t

0 e(t−s)fβ(A)h(s)ds. The
sum −A+fβ(A) = −βA2 generates a C0 semigroup as well, and in fact its growth
order does not depend on β. Consequently, regularization is established as vβ(t)

then converges to u(t) for each t ∈ [0, T ] as β → 0 (cf. [24, Section 3.1.1]). As for
fβ(A) = A(I + βA)−1, regardless of the angle θ , this approximation yields well-
posedness of (1.2) being a bounded operator. The auxiliary operator −A + fβ(A)

generates a C0 semigroup as well, but as shown in the literature, its growth order is
independent of β only when θ ∈ (π4 ,

π
2 ] (cf. [2, 10, 18, 35]).

Recently, authors have investigated possibilities where the restriction on the
angle θ of the semigroup may be relaxed. Huang and Zheng [17] show that the
approximation fβ(A) = A − βA2 may be modified by use of the fractional
power of A [3]. Here, even if 0 < θ < π

4 , then both fβ(A) = A − βAσ and
−A+fβ(A) = −βAσ still generate C0 semigroups for a suitable 1 < σ < 2. Also,
a logarithmic approximation

fβ(A) = − 1

pT
ln(β + e−pTA), 0 < β < 1, p ≥ 1 (1.3)

first introduced by Boussetila and Rebbani [4] in Hilbert space, and later modified
by Tuan and Trong [38], may be applied in Banach space (cf. [16], [6], [12]). The
approximation (1.3) has lately received significant attention since it induces an error
that is less severe than those of A− βA2 and A(I + βA)−1, both of which satisfy

‖(−A+ fβ(A))x‖ ≤ β‖A2x‖ for x ∈ Dom(A2), (1.4)

and ‖etfβ(A)‖ ≤ etC/β . Recently, the author [11] investigated two additional
approximations fβ(A) = Ae−βA and fβ(A) = (ln 2)−1A Log(1 + e−βA) which
satisfy these same properties, but in such a way that the calculations do not rely on
the value of the angle θ .

In this paper, we generalize the results of [11] in order to unify all four of the
approximations

A− βAσ , A(I + βA)−1, Ae−βA, (ln 2)−1A Log(1 + e−βA),

and prove convergence estimates between u(t) and vβ(t) without needing to restrict
the angle θ (Proposition 2.6 and Theorem 2.7 below). For this, our method relies on
an assumed smoothness of the data ϕ and h in (1.1). For example, if ϕ ∈ Dom(eQA)

for large enough Q > T then etAϕ behaves like e−(Q−t )A(eQAϕ) where e−(Q−t )A

is bounded for each t . We note that such a requirement is not out of the ordinary
since, for example, a solution u(t) of (1.1) with h ≡ 0 exists if and only if u(t) ∈
Dom(etA) for each t (cf. [17, Introduction]). Also, many of the results associated
with the logarithmic approximation (1.3) demonstrate a stricter property than (1.4),
that is ‖(−A+ fβ(A))x‖ ≤ β‖eτAx‖ for all x ∈ Dom(eτA) where τ may be larger
than T (cf. [37, Definition 1], [13, Lemma 1], [12, Proposition 6]). It is notable
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that our intention, to regularize problem (1.1) when favorable C0 semigroups are
unavailable, likens to deLaubenfels’s motivation of C-semigroups, for example
{CetA}t≥0 where C is a bounded, injective operator such that CetA = etAC is a
bounded linear operator for every t ≥ 0 [7, 8].

Below, B(X) denotes the space of all bounded linear operators on X. For a linear
operator A in X, ρ(A) denotes the resolvent set of A and σ(A), the spectrum of A, is
the complement of ρ(A) in C. Also, a strong solution of (1.1) is a functionu which is
differentiable almost everywhere on [0, T ] such that u′ ∈ L1((0, T ) : X), u(0) = ϕ,
and u′(t) = Au(t)+ h(t) almost everywhere on [0, T ] (cf. [29, Definition 4.2.8]).

2 A Unifying Condition for Well-Posed Approximation

Assume −A is the infinitesimal generator of a bounded holomorphic semigroup
e−tA of angle θ ∈ (0, π

2 ] on a Banach space X with 0 ∈ ρ(A). By definition, then
e−tA extends to an analytic function e−wA defined in the open sector Sθ = {w �= 0 ∈
C : | argw| < θ} which is uniformly bounded in every sector Sθ1 with θ1 ∈ (0, θ).
Also, we have the following equivalence in terms of resolvent operators.

Theorem 2.1 ([31, Theorem X.52]) For a closed operator A on a Banach space
X, −A is the infinitesimal generator of a bounded holomorphic semigroup of angle
θ if and only if for each θ1 ∈ (0, θ), there exists a constant M1 > 0 such that

w /∈ S π
2 −θ1 7⇒ w ∈ ρ(A),

and

‖(w − A)−1‖ ≤ M1

dist(w, S̄ π
2 −θ1)

for all w /∈ S π
2 −θ1 . (2.1)

We note that by a simple geometric argument, the condition (2.1) is equivalent to

‖(w − A)−1‖ ≤ M ′
1

|w| for all w /∈ S̄ π
2 −θ1 (2.2)

for a possibly different constant M ′
1 depending on θ1.

Under our assumptions, (1.1) is generally ill-posed with instability of solutions
as described in Sect. 1. To ensure that (1.1) has a well-posed approximation, we call
upon the following result.

Theorem 2.2 ([29, Corollary 4.2.10]) For each 0 < β < 1, let fβ(A) be the
infinitesimal generator of a C0 semigroup of bounded linear operators on X. If h is
differentiable almost everywhere on [0, T ] and h′ ∈ L1((0, T ) : X), then (1.2) has
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a unique strong solution given by

vβ(t) = etfβ(A)ϕ +
∫ t

0
e(t−s)fβ(A)h(s)ds

for every ϕ ∈ Dom(fβ(A)).

Unless the representation fβ(A) is elementary, the operator fβ(A) will be defined
by the Dunford integral for functions fβ(w) bounded and holomorphic in a sector
of the complex plane, particularly for us in most cases

fβ(A) = 1

2πi

∫

�α

fβ(w)(w − A)−1dw

where �α = ∂Sα, π
2 − θ < α < π

2 , oriented so that Im(w) decreases as w travels
along �α (cf. [9, Chapter VII] and also [15, Chapter 2]).

The relationship between A and fβ(A) will need to be scrutinized in order
to estimate known solutions of problem (1.1). Indeed, we aim to incorporate a
condition similar to (1.4) where fβ(A)x → Ax as β → 0 for x in an appropriate
domain. Ultimately, this condition establishes continuous dependence on modeling
since our final goal is to show a similar convergence for the corresponding solutions
vβ(t) and u(t). To this end, we endorse the approximation condition, Condition (A)
of Ames and Hughes [2, Definition 1].

Definition 2.3 Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ ∈ (0, π

2 ] on a Banach space X with 0 ∈ ρ(A), and suppose
that for each 0 < β < 1, fβ(A) is the infinitesimal generator of a C0 semigroup.
Then fβ(A) satisfies Condition (A) if there exists a positive constant p independent
of β such that Dom(fβ(A)) ⊇ Dom(A1+p) and

‖(−A+ fβ(A))x‖ ≤ β‖A1+px‖ (2.3)

for all x ∈ Dom(A1+p).

Note that in the definition of Condition (A), p need not be an integer, in which
case A1+p is defined by the fractional power of A [3] (see also [29, Section 2.6]).
Nevertheless, we still have Dom(A1+p) ⊆ Dom(A) so that (2.3) is valid.

As we will see for our main results below (Proposition 2.6 and Theorem 2.7),
not only do we require that fβ(A) satisfy the stipulations of Condition (A), but also
the operator −A+ fβ(A), with domain Dom(A) ∩Dom(fβ(A)), must have stable
enough properties in a certain sense. Therefore, we assume a stronger condition.

Definition 2.4 Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ ∈ (0, π

2 ] on a Banach space X with 0 ∈ ρ(A), and suppose
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that for each 0 < β < 1, fβ(A) is the infinitesimal generator of a C0 semigroup.
Then fβ(A) satisfies Condition (A+) if the following are satisfied:

(i) Dom(fβ(A)) ⊇ Dom(A2) and there exists a constant R independent of β such
that

‖(−A+ fβ(A))x‖ ≤ βR‖A2x‖ for all x ∈ Dom(A2),

(ii) There exist π
2 − θ < ν < π

2 and C ≥ 0 independent of β such that

Re(−w + fβ(w)) ≤ C|w| for all w in the open sector

Sν = {w �= 0 ∈ C : | argw| < ν}.

Remark 2.5 Conventionally, a more desirable condition is one similar to Condition
(A+) (ii) but the constant C being negative. In that case, the sum −A + fβ(A)

generates a C0 semigroup whose growth order Meωt does not depend on β, a
property which is required for standard regularization arguments [17, 18, 23]. In
fact, this is possible even if C < 0 depends on β, for instance with the example
−A + fβ(A) = −βAσ (cf. [17, Theorem 3.1] and also [10, Proposition 3.4]). In
any case, in our general framework, we may not have this desired property, for
example (as noted in Sect. 1) if fβ(A) = A(I + βA)−1 and 0 < θ < π

4 .

Despite Remark 2.5, we are able to prove regularization-type calculations via
Theorem 2.7 below if we assume strong enough smoothness properties on ϕ and h.
Proposition 2.6 demonstrates an initial estimate that may be established by choosing
data in a small enough domain. As each operator e−tA, t ≥ 0 is a bounded,
injective operator (cf. [7, Lemma 3.1]), we find an appropriateQ with ϕ and Ran(h)

contained in Dom(eQA) = Dom((e−QA)−1).

Proposition 2.6 Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ ∈ (0, π

2 ] on a Banach space X with 0 ∈ ρ(A) and assume
fβ(A) satisfies Condition (A+). For every 0 < ε < 1 and π

2 − θ < α < ν, there
exists a constant Q = Q(ε, α) > T such that if x ∈ Dom(eQA), then for each
integer n ≥ 0,

‖An(etAx − etfβ(A)x)‖ ≤ βK(T − t + ε)−(n+1)‖eQAx‖ for 0 ≤ t ≤ T

where K is a constant depending on n and α but independent of β, ε, and t .

Proof Let 0 < ε < 1 and π
2 − θ < α < ν where ν and C are the constants

from Condition (A+) (ii). Further, let Q be any constant larger than T satisfying the
inequality (Q− T ) cosα ≥ C(T + ε). If x ∈ Dom(eQA), then by Condition (A+)
(i) and standard semigroup properties (cf. [29, Theorem 1.2.4]),

‖An(etAx − etfβ(A)x)‖ = ‖(I − etfβ(A)e−tA)AnetAx‖
= ‖(I − etfβ(A)e−tA)An(etAe−QA(eQAx))‖
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=
∥
∥
∥
∥−

∫ t

0

(
∂

∂τ
eτfβ(A)e−τA

)

AnetAe−QA(eQAx) dτ

∥
∥
∥
∥

=
∥
∥
∥
∥−

∫ t

0
(−A+ fβ(A))eτfβ(A)e−τAAnetAe−QA(eQAx) dτ

∥
∥
∥
∥

≤ βR

∫ t

0
‖A2+neτfβ(A)e−τAetAe−QA(eQAx)‖ dτ. (2.4)

By the estimate (Q− T ) cosα ≥ C(T + ε), then for w = re±iα ∈ �α = ∂Sα ,

‖A2+neτfβ(A)e−τAetAe−QA(eQAx)‖

=
∥
∥
∥
∥

1

2πi

∫

�α

w2+neτ(−w+fβ(w))e−(Q−t )w(w − A)−1(eQAx) dw

∥
∥
∥
∥

≤ 1

2π

∫

�α

|w|2+neτRe(−w+fβ(w))e−(Q−t )Re(w)‖(w − A)−1‖ ‖eQAx‖ |dw|

≤ 1

π

∫ ∞

0
r1+neτCre−(Q−t )r cosαMα‖eQAx‖ dr

≤ Mα

π

∫ ∞

0
r1+neτCre−(Q−T )r cosα‖eQAx‖ dr

≤ Mα

π

∫ ∞

0
r1+neC(τ−(T+ε))r‖eQAx‖ dr

= Mα

π
(n+ 1)!C−(2+n)(T − τ + ε)−(2+n)‖eQAx‖ (2.5)

where Mα is a constant due to (2.2). Returning to (2.4),

‖An(etAx − etfβ(A)x)‖

≤ βR
Mα

π
(n+ 1)!C−(2+n)

∫ t

0
(T − τ + ε)−(2+n)‖eQAx‖ dτ

= βR
Mα

π
(n+ 1)!C−(2+n) (T + ε)n+1 − (T − t + ε)n+1

(T − t + ε)n+1(T + ε)n+1 ‖eQAx‖

≤ βR
Mα

π
(n+ 1)!C−(2+n)(T − t + ε)−(n+1)‖eQAx‖. 	


Now, we prove our main approximation theorem concerning strong solutions of
(1.1) and (1.2).

Theorem 2.7 Let −A be the infinitesimal generator of a bounded holomorphic
semigroup of angle θ ∈ (0, π

2 ] on a Banach space X with 0 ∈ ρ(A) and assume
fβ(A) satisfies Condition (A+). Fix 0 < ε < 1 and π

2 − θ < α < ν, and let
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Q = Q(ε, α) > T be as in Proposition 2.6. Assume that u(t) and vβ(t) are
strong solutions of (1.1) and (1.2) respectively where h satisfies the conditions
of Theorem 2.2, and as well that initial data ϕ and Ran(h) are contained in
Dom(eQA) with eQAh ∈ L1((0, T ) : X). Then there exist constants C̃ and M

each independent of β and ε such that for 0 ≤ t < T ,

‖u(t)− vβ(t)‖ ≤ C̃β1−ω(t)Mω(t)ε−2N (2.6)

where

N = ‖eQAϕ‖ +
∫ T

0
‖eQAh(t)‖dt, (2.7)

and ω(ζ ) is a harmonic function which is bounded and continuous on the bent strip

$ = {t + re±iγ | 0 ≤ t ≤ T , r ≥ 0}, γ ∈ (0, θ),

satisfying 0 = ω(0) ≤ ω(t) < ω(T ) = 1 for all 0 ≤ t < T .

Proof Fix γ ∈ (0, θ). By the definition of the semigroup e−tA, we know that
e−wA is uniformly bounded in Sγ (cf. [31, Theorem X.52]). Following [2, 5, 26],
we extend the solutions u(t) and vβ(t) into the bent strip $ and apply Carleman’s
inequality (cf. [14, p. 346]). For ζ = t + re±iγ ∈ $, define

w(ζ ) = e−(re±iγ )A(u(t)− vβ(t)).

Also following [1], define

F(ζ ) = w(ζ )+ 1

π

∞ T∫∫

0 0

∂̄w(z)

(
1

z− ζ
+ 1

z̄+ 1 + ζ

)

dξdη (2.8)

where z = ξ+ηe±iγ and ∂̄ denotes the Cauchy-Riemann operator (cf. [32]). Denote

M ′ =
(

max
r≥0

‖e−(re±iγ )A‖
)

.

By Proposition 2.6 and (2.7),

‖w(ζ )‖ ≤ M ′‖u(t)− vβ(t)‖

≤ M ′
(

‖etAϕ − etfβ(A)ϕ‖ +
∫ t

0
‖(e(t−s)A − e(t−s)fβ(A))h(s)‖ds

)

≤ M ′(βK(T − t + ε)−1‖eQAϕ‖
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+
∫ t

0
βK(T − (t − s)+ ε)−1‖eQAh(s)‖ds

)

≤ M ′βKε−1
(

‖eQAϕ‖ +
∫ T

0
‖eQAh(y)‖dy

)

= M ′βKε−1N. (2.9)

Next, by the definition of w(ζ ), a straightforward calculation shows that

∂̄w(ζ ) = 1

2i sin(±γ )

(

e±iγ ∂

∂t
w(ζ )− ∂

∂η
w(ζ )

)

= e±iγ

2i sin(±γ )
e−(re±iγ )A

(
(Au(t)− fβ(A)vβ(t))+ (Au(t)− Avβ(t))

)
.

Again using Proposition 2.6 and (2.7),

‖Au(t)− Avβ(t)‖

=
∥
∥
∥
∥A

(

etAϕ +
∫ t

0
e(t−s)Ah(s)ds

)

+ A

(

etfβ(A)ϕ +
∫ t

0
e(t−s)fβ(A)h(s)ds

)∥
∥
∥
∥

≤ ‖A(etA − etfβ(A))ϕ‖ +
∫ t

0
‖A(e(t−s)A − e(t−s)fβ(A))h(s)‖ds

≤ βK(T − t + ε)−2‖eQAϕ‖ +
∫ t

0
βK(T − (t − s)+ ε)−2‖eQAh(s)‖ds

≤ βKε−2N.

Also, by Condition (A+) (i), (2.5), and (2.7),

‖Avβ(t)− fβ(A)vβ(t)‖ = ‖(−A+ fβ(A))vβ(t)‖
≤ βR‖A2vβ(t)‖

= βR

∥
∥
∥
∥A

2
(

etfβ(A)ϕ +
∫ t

0
e(t−s)fβ(A)h(s)ds

)∥
∥
∥
∥

≤ βR

(

‖A2etfβ(A)ϕ‖ +
∫ t

0
‖A2e(t−s)fβ(A)h(s)‖ds

)

= βR
(
‖A2etfβ(A)e−tAe−(Q−t )A(eQAϕ)‖
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+
∫ t

0
‖e(t−s)fβ(A)e−(t−s)Ae−(Q−(t−s))A(eQAh(s))‖ds

)

≤ βRLε−2N

where L is a constant independent of β, ε, and t . Altogether, we have shown

‖∂̄w(ζ )‖ ≤ βC′ε−2N, (2.10)

where C′ is a constant independent of β, ε, and ζ .
If x∗ is a member of the dual space of X with ‖x∗‖ ≤ 1, then it follows that

x∗(F (ζ )) as defined by (2.8) is a bounded, continuous function on $ which is also
analytic on the interior of $ (cf. [1, 5]). Furthermore, there exists a constant L′
independent of ζ such that

|x∗F(ζ )| ≤ ‖x∗‖
(

‖w(ζ )‖ + L′ max
ζ∈$ ‖∂̄(w(ζ ))‖

)

.

By (2.9) and (2.10), together with the fact that 0 < ε < 1, then

|x∗F(ζ )| ≤ βMε−2N‖x∗‖ (2.11)

where M is a constant independent of β, ε, and ζ . Hence Carleman’s Inequality
implies

|x∗F(t)| ≤ M(0)1−ω(t)M(T )ω(t), (2.12)

for 0 ≤ t ≤ T , where

M(t) = max
r≥0

|x∗F(t + re±iγ )|

and ω is a harmonic function which is bounded and continuous on $, satisfying
0 = ω(0) ≤ ω(t) < ω(T ) = 1 for all 0 ≤ t < T (cf. [26], [14, p. 346]). Note by
(2.10),

M(0) ≤ ‖x∗‖
(

‖w(re±iγ )‖ + L′ max
r≥0

‖∂̄(re±iγ )‖
)

= ‖x∗‖
(

‖e−(re±iγ )A(ϕ − ϕ)‖ + L′ max
r≥0

‖∂̄(re±iγ )‖
)

= L′ max
r≥0

‖∂̄(re±iγ )‖‖x∗‖

≤ L′βC′ε−2N‖x∗‖.
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Also, from (2.11) and the fact that 0 < β < 1,

M(T ) ≤ Mε−2N‖x∗‖.

Returning to (2.12), then

|x∗F(t)| ≤ (L′βC′)1−ω(t)Mω(t)ε−2N‖x∗‖

and taking the supremum over x∗ ∈ X∗ with ‖x∗‖ ≤ 1, we obtain

‖F(t)‖ ≤ C̃β1−ω(t)Mω(t)ε−2N

for 0 ≤ t ≤ T where C̃ and M are constants each independent of β and ε. Then for
0 ≤ t ≤ T ,

‖u(t)− vβ(t)‖ = ‖w(t)‖
≤ ‖F(t)‖ + L′ max

0≤t≤T
‖∂̄w(t)‖

≤ C̃β1−ω(t)Mω(t)ε−2N + L′βC′ε−2N

= (C̃ + L′βω(t)C′M−ω(t))β1−ω(t)Mω(t)ε−2N

≤ C̃β1−ω(t)Mω(t)ε−2N

for a possibly different constant C̃ independent of β and ε. 	


3 Examples Illustrating Condition (A+)

Here we outline several examples which satisfy Condition (A+), so that Theo-
rem 2.7 may be applied. As mentioned in Sect. 1, each of these approximations may
be applied to backward problems defined in Lp(Rn), 1 < p < ∞. For specifics as
well as further applications, see Remark 4.2 below.

Example (1) fβ(A) = A(I + βA)−1. Property (2.2) implies (I + βA)−1 ∈ B(X)

and

‖(I + βA)−1‖ = β−1‖(−β−1 − A)−1‖ ≤ β−1 R

β−1 = R (3.1)

for some constant R. Then

fβ(A) = β−1((I + βA)− I)(I + βA)−1 = β−1(I − (I + βA)−1)
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is also in B(X) being a linear combination of two bounded operators, and by
(3.1), ‖fβ(A)‖ ≤ (1 + R)β−1. Therefore, fβ(A) generates a uniformly continuous
semigroup satisfying

‖etfβ(A)‖ ≤ et(1+R)β−1

for each t ≥ 0.
Note Condition (A+) (i) is satisfied as

−A+ A(I + βA)−1 = (−A(I + βA)+ A)(I + βA)−1

= −βA2(I + βA)−1 = −β(I + βA)−1A2

on Dom(A2) and by (3.1),

‖ − β(I + βA)−1A2x‖ ≤ βR‖A2x‖

for all x ∈ Dom(A2).
Next, let π

2 − θ < ν < π
2 . Consider for w = re±iα ∈ Sν ,

Re(−w + fβ(w)) = Re(−w + w

1 + βw
)

= −Re(
βw2

1+ βw
)

= −Re

(
βr2 cos(2α)± iβr2 sin(2α)

(1 + βr cosα)± iβr sin α

)

= −βr2 cos(2α)+ β2r3(cos(2α) cosα + sin(2α) sin(α))

(1 + βr cosα)2 + (βr sin α)2

= −βr2 cos(2α)+ β2r3 cosα

1 + 2βr cosα + β2r2 := g(r). (3.2)

We claim that r − g(r) ≥ 0 for all r ≥ 0. Indeed,

r − g(r) = r + 2βr2 cosα + β2r3 + βr2 cos(2α)+ β2r3 cosα

1 + 2βr cosα + β2r2

= r + (2 cosα + cos(2α))βr2 + (1 + cosα)β2r3

1 + 2βr cosα + β2r2 .

Define

k(t) = 2 cos t + cos(2t), 0 ≤ t ≤ π

2
.
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Then k′(t) = −2(sin t+sin(2t)) ≤ 0 since both sin t and sin(2t) are nonnegative on
[0, π

2 ]. Consequently, k(t) is a decreasing function, and thus is never smaller than
k(π2 ) = −1. We have

r + (2 cosα + cos(2α))βr2 + (1 + cosα)β2r3

≥ r − βr2 + β2r3 = r(1 − βr + β2r2) = r

((

βr − 1

2

)2

+ 3

4

)

≥ 0

and so r − g(r) ≥ 0 as well. We have shown

|w| − Re(−w + fβ(w)) ≥ 0

and so Condition (A+) (ii) is satisfied with C = 1.

Remark 3.1 As pointed out in [18, Remark 3.3], if θ > π
4 , so that π

2 − θ < π
4 ,

then ν can be chosen less than π
4 and so g(r) in (3.2) is strictly negative. In this

case, −A + fβ(A) generates a C0 semigroup whose growth order is independent
of β [18, Theorem 2.1] and therefore, sharper estimates than (2.6) may be used
to establish regularization as in the literature cited in Sect. 1. Nevertheless, in our
framework, Condition (A+) (ii) is still satisfied, this time with C = 0.

Example (2) fβ(A) = A−βAσ where σ and ν satisfy π
2 −θ < ν < σν < π

2 . Note,
σ is necessarily larger than 1 but its upper bound is determined by the value of θ .
For instance, if π

2 − θ < π
4 , then ν can be chosen less than π

4 and σ = 2 suffices. In
this case, Condition (A+) (i) is easily satisfied as

‖(−A+ fβ(A))x‖ = ‖ − βA2x‖ = β‖A2x‖

for all x ∈ Dom(A2). Condition (A+) (ii) is also satisfied with C = 0 since 2ν < π
2

implies

Re(−w + fβ(w)) = Re(−βw2) = −βr2 cos(2α) < −βr2 cos(2ν) < 0

for all w = re±iα ∈ Sν .
In the case that π

2 − θ ≥ π
4 , we must revise our calculations. We can choose

1 < σ < π
2ν so that σν < π

2 but in this case σ is not an integer since ν > π
4 .

Therefore, fβ(A) = A− βAσ is defined by the fractional power of A, that is

A−σ = 1

2πi

∫

�

w−σ (w − A)−1dw, Aσ = (A−σ )−1

where � is a contour similar to �α = ∂Sα but avoids both the origin and the negative
real axis [29, Section 2.6]. In fact, since 0 ∈ ρ(A), there exists δ > 0 such that the
closed disk of radius δ, centered at the origin is contained in ρ(A). Hence, we may
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revise �α to be the contour

�′α = �1 ∪ �2 ∪ �3,

�1 = {reiα : r ≥ δ},
�2 = {δeiφ : −α ≤ φ ≤ α},
�3 = {re−iα : r ≥ δ},

oriented so that Im(w) decreases as w travels along �′α (cf. [17]). But �2 is bounded
and does not affect the convergence of the contour integral, so the calculations in
Proposition 2.6 remain fundamentally unchanged. Henceforth, using the properties
(cf. [29, Theorem 2.6.8, Lemma 2.6.3])

Dom(A2) ⊆ Dom(Aσ ) ⊆ Dom(A) for 1 < σ < 2,

Aσ1(Aσ2)x = Aσ1+σ2x = Aσ2(Aσ1)x for x ∈ Dom(Amax{σ1,σ2,σ1+σ2}),

‖A−σ‖ ≤ κ for 0 < σ < 1,

Condition (A+) (i) is satisfied by

‖(−A+ fβ(A)x)‖ = β‖Aσx‖ = β‖A−(2−σ)A2x‖ ≤ βκ‖A2x‖

for all x ∈ Dom(A2). Also similar to the case σ = 2, Condition (A+) (ii) is satisfied
with C = 0 since σν < π

2 implies

Re(−w + fβ(w)) = Re(−βwσ ) = −βrσ cos(σα) < −βrσ cos(σν) < 0.

Finally, we point out that in either case whether σ = 2 or 1 < σ < 2, while
fβ(A) and−A+fβ(A) are unbounded operators, it may be shown that both generate
C0 semigroups. Again, if σ is not an integer, careful revisions to �α must be taken
near the origin. In either case, one may show the semigroup generated by fβ(A)

satisfies

‖etfβ(A)‖ ≤ PetP
′β(1−σ)−1

for some constants P , P ′ independent of β (cf. [17, Theorem 3.2]). Furthermore,
the semigroup generated by−A+fβ(A) has growth order independent of β (see the
earlier Remark 2.5), and so as noted in Remark 3.1, one may prove regularization
the standard way.

Example (3) fβ(A) = Ae−βA. This approximation makes direct use of the
holomorphic semigroup e−tA generated by −A. By classic semigroup theory,
fβ(A) ∈ B(X) and satisfies ‖fβ(A)‖ ≤ M

β
where M is a constant independent of
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β (cf. [29, Theorem 2.5.2 (d)]). Therefore, fβ(A) generates a uniformly continuous
semigroup satisfying

‖etfβ(A)‖ ≤ etMβ−1

for each t ≥ 0. Next, since e−tA is uniformly bounded,

‖(−A+ Ae−βA)x‖ = ‖(I − e−βA)Ax‖ ≤
∫ β

0
‖e−tAA2x‖dt ≤ βM ′‖A2x‖

for all x ∈ Dom(A2). Therefore, Condition (A+) (i) is satisfied. Also, for w =
re±iα ∈ Sν ,

Re(−w + fβ(w)) = Re(−w +we−βw)

= −r(cosα − e−βr cosα(cos(α − βr sinα)))

≤ re−βr cosα cos(α − βr sinα) ≤ r

and so Condition (A+) (ii) is satisfied with C = 1 and any π
2 − θ < ν < π

2 .

Example (4) fβ(A) = (ln 2)−1A Log(1 + e−βA). Here we define fβ(A) by the
Dunford integral

fβ(A) = 1

2 ln 2 πi

∫

�α

w Log(1 + e−βw)(w − A)−1dw

where the principal branch of the logarithm is taken [9, 27]. The calculations
for Condition (A+) here are involved and so are omitted, but we can refer to
[11] for a complete analysis. There, it is found that fβ(A) is a bounded operator
with ‖fβ(A)‖ ≤ Cα

β
where Cα is a constant independent of β but dependent

on α. Further, it may be shown that fβ(A) satisfies Condition (A+) (i) with a
constant R independent of β and also Condition (A+) (ii) with C = π

2 ln 2 and any
π
2 − θ < ν < π

2 [11, Lemma 2.4 and Proposition 3.1].

4 Comments on Regularization and Applications

Traditionally, regularization arguments are made where u(t) is any solution of (1.1)
with limited assumptions on the data (cf. [17, Definition 4.1]). As is the theme
throughout this paper, our calculations rely on sufficient smoothness of the data ϕ

and h as in (2.7). We outline a regularization-type argument under the assumptions
of Theorem 2.7.
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First, note that in each of the four examples listed in Sect. 3, with the exception
of the case 1 < σ < 2 in Example (2), fβ(A) generates a C0 semigroup satisfying

‖etfβ(A)‖ ≤ PetP
′β−1

for some constants P , P ′ independent of β. Therefore, if
vδβ(t) is the solution of the approximate well-posed problem with perturbed data

v′(t) = fβ(A)v + h(t), 0 < t < T,

v(0) = ϕδ

satisfying ‖ϕ − ϕδ‖ ≤ δ, then

‖vβ(t)− vδβ(t)‖ =
∥
∥
∥
∥

(

etfβ(A)ϕ +
∫ t

0
e(t−s)fβ(A)h(s)ds

)

−
(

etfβ(A)ϕδ +
∫ t

0
e(t−s)fβ(A)h(s)ds

)∥
∥
∥
∥

=‖etfβ(A)(ϕ − ϕδ)‖
≤PeT P ′β−1

δ.

Now, let u(t) be a strong solution of (1.1) that satisfies the hypotheses of Theo-
rem 2.7. Choosing β = −2TP ′(ln δ)−1 we have β → 0 as δ → 0, and

‖u(t) − vδβ(t)‖ ≤ ‖u(t)− vβ(t)‖ + ‖vβ(t)− vδβ(t)‖
≤ C̃β1−ω(t)Mω(t)ε−2N + PeT P ′β−1

δ

= C̃β1−ω(t)Mω(t)ε−2N + P
√
δ

→ 0 as δ → 0

for all 0 ≤ t < T . Also, the case for t = T may be addressed separately. Indeed,
similar to the calculation (2.9), we obtain

‖u(T )− vδβ(T )‖ ≤ ‖u(T )− vβ(T )‖ + ‖vβ(T )− vδβ(T )‖
≤ βKε−1N + PeT P ′β−1

δ

= βKε−1N + P
√
δ

→ 0 as δ → 0.

In the case of Sect. 3 Example (2) where 1 < σ < 2, the only difference is that
etfβ(A) satisfies

‖etfβ(A)‖ ≤ PetP
′β−(σ−1)−1

.
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Nevertheless, a similar calculation may be made if instead we choose

β = (−2T P ′(ln δ)−1)σ−1.

Remark 4.1 While convergence depends continuously on β (and δ) in our calcu-
lations, the estimate (2.6) of Theorem 2.7 may depend severely upon ε which is
related to the choice for Q in the estimate (Q−T ) cosα ≥ C(T + ε) as in the proof
of Proposition 2.6. For instance, suppose C = 1 and cosα = 1

2 (which is possible in
Examples 1 and 3). If T ≥ 1 and ε = 0.5, then we may choose Q = 4T so that the
conditions ϕ and Ran(h) in Dom(e4TA) with e4TAh ∈ L1((0, T ) : X) are required.
If ε = 0.1, then a smaller value for Q may be chosen which alleviates the restriction
on ϕ and h. However, in this case the factor ε−2 in (2.6) obviously becomes much
larger. In a different case, if C = 0 (which is possible in Example 2), then regardless
of the value of α, we may choose Q arbitrarily close to T .

Remark 4.2 While our assumptions of the paper include that −A generate a
bounded holomorphic semigroup of angle θ with 0 ∈ ρ(A) for convenience, this
is not the most general case. However, it is known that our assumptions imply that
for θ ′ ∈ (0, θ), there exists λ ∈ R such that −A + λ is the infinitesimal generator
of a bounded holomorphic semigroup of angle θ ′ with 0 ∈ ρ(A − λ) (cf. [31,
Theorem X.53], [7]). Therefore, as in [10, 11, 17], we may still apply the results to
the ill-posed backward heat equation in Lp(Rn), 1 < p < ∞ (A = −!) and more
generally to PDE’s defined by strongly elliptic differential operators of even order
(cf. [29], [17, Section 5]).
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A Closer Look at Bishop Operators

Eva A. Gallardo-Gutiérrez and Miguel Monsalve-López

Abstract The purpose of this work is to provide a survey, essentially self-
contained, of those results mainly concerned with the study of Bishop operators,
their (local) spectral properties and spectral invariant subspaces, whenever they
do exist. Finally, we will discuss Bishop-type operators, addressing some open
questions in this context.

Keywords Bishop operators · Invariant subspace problem · Spectral subspaces
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1 Introduction

Given an irrational number α ∈ (0, 1), the Bishop operator Tα is defined on
Lp[0, 1), 1 ≤ p ≤ ∞, by

Tαf (t) = tf ({t + α}), t ∈ [0, 1),

where { · } denotes the fractional part. Clearly every Bishop operator Tα is the
product of two simple and well-understood operators, namely the multiplication
operator Mt by the independent variable in Lp[0, 1) and the composition operator
Cτα induced by the symbol τα(t) = {t + α}. Nevertheless, the structure of Tα
is largely unknown for every irrational α ∈ (0, 1). In particular, it is unknown
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whether Tα has non-trivial closed invariant subspaces in Lp[0, 1), 1 ≤ p < ∞,
for every irrational α ∈ (0, 1). Indeed, according to Davie [15], these examples
were suggested by Errett Bishop in the fifties as possible candidates for operators
without non-trivial closed invariant subspaces, and therefore, for counterexamples
to the Invariant Subspace Problem.

Bishop operators are particular instances of the so-called weighted translation
operators defined in a more general measurable setting as follows: if (X,F , μ) is a
non-atomic measure space, φ ∈ L∞(X) and τ a measurable measure-preserving
mapping from X to itself which is invertible with measurable inverse, then the
weighted translation operator Wφ,τ is defined by the equation

Wφ,τ f = φ (f ◦ τ ).

The class consisting of weighted translations operators is a large one, containing
as particular examples bilateral weighted shifts and, therefore, roughly speaking,
model operators.

Weighted translation operators were firstly studied by Parrott [26] in his Ph.D.
thesis, analyzing the spectrum, numerical range and reducing subspaces of such
operators. Indeed, Parrott computed the spectrum of Bishop operators showing, in
particular, that it is the disc

σ(Tα) =
{
z ∈ C : |z| ≤ e−1},

independently of the irrational α ∈ (0, 1) and moreover, Tα lacks point spectrum
for every α. In 1973, Bastian [6] gave unitary invariants for some weighted
translation operators and studied properties like subnormality and hyponormality
among them. Later on, Petersen [27] showed some results on the commutant of
weighted translation operators in an attempt to get a deeper insight in the general
context. Nevertheless, many open questions are left and complete answers seem to
be far away.

As far as Bishop operators concerns, one of the most striking result was proved
by Davie [15] in 1974, who by means of a functional calculus approach, was able
to show the existence of non-trivial closed invariant subspaces in Lp[0, 1) for Tα
whenever α is a non-Liouville irrational number in (0, 1). Recall that an irrational
α is a Liouville number if for every n ∈ N there exists an irreducible rational number
pn/qn such that

∣
∣
∣
∣α −

pn

qn

∣
∣
∣
∣ <

1

qn
n

.

Observe that by Jarník-Besicovitch Theorem (see [11, Section 5.5], for instance),
Liouville irrationals form a set of vanishing Hausdorff dimension; so for almost
every α ∈ (0, 1), Davie’s Theorem states that Tα has non-trivial closed invariant
subspaces in Lp[0, 1). More indeed, Tα has non-trivial closed hyperinvariant
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subspaces, that is, closed subspaces invariant under every linear bounded operator
in the commutant of Tα.

In the nineties, extensions strengthening Davie’s Theorem were due to Blecher
and Davie [9] and MacDonald in [22] for Bishop-type operators, that is, weighted
translation operators in Lp[0, 1) where τ = τα :

Wφ,ταf (t) = φ(t) f ({t + α}), t ∈ [0, 1).

Once again, the brick wall consisted of Liouville irrationals, and despite of the
efforts, the interesting extensions regarding the non-invertible weighted translation
operators included many weights φ but neither Liouville number.

In 2008, Flattot [18], by refining the functional calculus approach, was able to
provide a large class of irrationals α ∈ (0, 1) including some Liouville numbers for
which Tα has non-trivial closed hyperinvariant subspaces in Lp[0, 1) -for instance,
the classical example of a Liouville number

∑∞
n=1 10−n!.

Recently, in [12] the authors have extended the class of irrationals α ∈ (0, 1) such
that Tα has non-trivial closed hyperinvariant subspaces in Lp[0, 1) by considering
arithmetical techniques to strengthen the analysis of certain functions associated
to the functional calculus model. Indeed, for these Liouville numbers, Gallardo-
Gutiérrez and Monsalve-López [20] have recently shown the existence of non-trivial
spectral subspaces, revealing, indeed, the spectral nature of the hyperinvariant
subspaces. Moreover, those Liouville numbers α left, that is, those for which it is
open whether Tα has a non-trivial closed invariant subspace, are so extreme that the
functional calculus approach fails to produce invariant subspaces (see [12, Theorem
4.1]).

The aim of this work is to survey the recent results at this regard and show how
techniques in Operator Theory, Analytic Number Theory or Spectral Theory are
linked together to produce, when it succeeds, invariant subspaces for such a simple
family of operators as Bishop operators are. To that end, the rest of the manuscript
is organized as follows. In Sect. 2 we deal with a first approach by studying
the behaviour of the norm of the iterates T n

α (clearly, they tend to 0 by means
of Parrott’s characterization of σ(Tα)). In Sect. 3, we detail the main techniques
and approaches previously mentioned to provide invariant subspaces for Bishop
operators recalling the updated results in this context. In Sect. 4, our approach deals
with local spectral properties fulfilled by Bishop operators Tα , independently of
the irrational α ∈ (0, 1). Note that though all Bishop operators Tα share the same
spectrum, not all of them are known to possess invariant subspaces; and hence, a
deeper insight in σ(Tα) could lead to study invariant subspaces by considering local
spectral properties like the Dunford property (Property (C)) or the Bishop property
(β). Indeed, in Sect. 5 the local spectral analysis is pushed further to provide spectral
subspaces for all those Bishop operators that, up to now, are known to have non-
trivial closed hyperinvariant subspaces. Finally, in Sect. 6, we deal with Bishop-type
operators and their properties, ending up with some open questions in this context.
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2 A First Approach: Understanding the Behaviour of ‖T n
α ‖

In this section, and as a preliminary stage, we determine explicitly the norm of the
iterates of Tα acting on Lp[0, 1) for 1 ≤ p ≤ ∞. In particular, it provides an insight
of the behaviour of Tα depending on the irrational α.

Let n be a positive integer and denote by T n
α the n-th iterate of Tα. A simple

computation shows that

T n
α f (t) = t {t + α} · · · {t + (n− 1)α} f ({t + nα}) ,

for any Lp[0, 1). Hence,

‖T n
α ‖ = Sn−1(α)

where

Sn(α) := ess sup
t∈[0,1)

t{t + α} · · · {t + nα}.

In Figs. 1 and 2, we represent the plots of Sn(α) for small values of n.
It turns out that the minimum of Sm(α) is reached at α = 1

m+1 and its value is

Sn

(
1

n+ 1

)

= lim
t→1−

t

{

t + 1

n+ 1

}

· · ·
{

t + n

n+ 1

}

= n!
(n+ 1)n

.

So, upon applying Stirling Formula, one deduces

min
α∈[0,1) Sn(α) =

n!
(n+ 1)n

∼ e−(n+1)
√

2πn.

Accordingly, the following straightforward proposition follows:

Proposition 2.1 For every irrational α ∈ [0, 1) and n a positive integer

(n− 1)!
nn−1 ≤ ‖T n

α ‖ = Sn−1(α) ≤ exp

(

ess sup
t∈[0,1)

n−1∑

j=0

log{t + jα}
)

Observe that, by means of Birkoff Ergodic Theorem, it is possible to compute
the

lim
n

exp

⎛

⎝ess sup
t∈[0,1)

1

n

n−1∑

j=0

log{t + jα}
⎞

⎠

and hence deduce that the spectral radius of Tα

r(Tα) = lim
n
‖T n

α ‖1/n = e−1

as Parrott showed in [26].
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Fig. 1 Sm(α) for m = 1, . . . , 4. (a) S1(α) for α ∈ [0, 1). (b) S2(α) for α ∈ [0, 1). (c) S3(α) for
α ∈ [0, 1). (d) S4(α) for α ∈ [0, 1)

3 Invariant Subspaces of Bishop Operators and a Theorem
of Atzmon

The first goal of this section will be giving a detailed outline of the main techniques
and approaches used to find invariant subspaces for Bishop operators. This will serve
as a context in order to, thereupon, present in more detail our results, in which we
considerably enlarge the set of known values α such that the Bishop operator Tα has
invariant subspaces on each Lp[0, 1). On the other hand, at the end of the section, we
will show that in some sense, when our approach fails to produce invariant subspaces
for Tα it is actually because the standard techniques cannot be applied anymore.

All the original results appearing in this section are included in the article [12].
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Fig. 2 Sm(α) for m = 5, . . . , 8. (a) S5(α) for α ∈ [0, 1). (b) S6(α) for α ∈ [0, 1). (c) S7(α) for
α ∈ [0, 1). (d) S8(α) for α ∈ [0, 1)

3.1 Beurling Algebras and a Theorem of Atzmon

As it was aforementioned above, many authors have addressed the problem of
seeking non-trivial closed invariant subspaces for all Bishop operators [12, 15, 18].
Ignoring the differences among all such distinct approaches within the literature,
all of them rely essentially on the same idea: a functional calculus based on regular
Beurling algebras which was properly formalized by Atzmon [4] in the mid eighties.

Given a sequence ρ := (ρn)n∈Z in [1,+∞) with ρ0 = 1 and such that

ρm+n ≤ ρm ρn for every m,n ∈ Z, (3.1)
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lim|n|→∞ ρ
1/n
n = 1; (3.2)

we may consider its corresponding Beurling algebra Aρ consisting of all continuous
functions f : T → C with norm defined by

‖f ‖ρ :=
∑

n∈Z
|f̂ (n)| ρn < ∞,

where (f̂ (n))n∈Z denotes the sequence of Fourier coefficients of f . Endowed with
the norm ‖ · ‖ρ , the Beurling algebra Aρ is a semi-simple commutative Banach
algebra.

One of the most remarkable results regarding Beurling algebras Aρ is the
subsequent sufficient criterion, which seems to date back to Beurling [8], to
determine the regularity of Aρ . Recall that a function algebra A on a compact space
K is said to be regular if for all p ∈ K and all compact subset M ⊆ K with p �∈ M ,
there exists f ∈ A such that f (p) = 1 and f = 0 on M .

Theorem 3.1 (Beurling [8]) Let ρ := (ρn)n∈Z be a real sequence satisfying
both (3.1) and (3.2). Then, the Banach algebra Aρ is regular whenever

∑

n∈Z

logρn

1 + n2
< ∞. (3.3)

Condition (3.3) is usually known as Beurling condition and it is closely related to
the Denjoy-Carleman theorem on quasi-analytic classes [28]. Keeping the previous
result in mind, it is natural to consider the following definition:

Definition 3.2 A sequence of real numbers (ρn)n∈Z such that ρ0 = 1 and ρn ≥ 1
for all n ∈ Z, is called a Beurling sequence if

ρm+n ≤ ρm ρn (∀m,n ∈ Z) and
∑

n∈Z

logρn

1 + n2 < +∞.

One advantage of regularity in a function algebra is that it enables to construct
two non-zero functions whose product is identically zero. This idea, combined with
a functional calculus argument, provides a powerful method for obtaining invariant
subspaces. Such a strategy, firstly studied by Wermer [29] for invertible operators,
was lately refined by Atzmon [4] to the non-invertible case:

Theorem 3.3 (Atzmon [4]) Let T ∈ B(X) be an operator on a complex Banach
space X and suppose there exist two sequences (xn)n∈Z in X and (yn)n∈Z in X∗
such that x0 �= 0, y0 �= 0 and

T xn = xn+1 and T ∗ yn = yn+1 (∀n ∈ Z).
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Suppose further that both sequences (‖xn‖)n∈Z and (‖yn‖)n∈Z are dominated by a
Beurling sequence, and there is at least a λ ∈ T at which the following functions
Gx and Gy do not both possess analytic continuation into a neighbourhood of λ:

Gx(z) :=
{∑∞

n=1 x−n z
n−1 if |z| < 1;

−∑0
n=−∞ x−n z

n−1 if |z| > 1.

Gy(z) :=
{∑∞

n=1 y−n z
n−1 if |z| < 1;

−∑0
n=−∞ y−n z

n−1 if |z| > 1.

Then, either T is a multiple of the identity or it has a non-trivial closed hyperinvari-
ant subspace.

As it was announced at the beginning of this subsection, Atzmon’s Theorem
turns out to be a useful machinery to produce invariant subspaces for many
Bishop operators. Nevertheless, two things are still necessary: a right choice of the
sequences (xn)n∈Z and (yn)n∈Z and a careful analysis on the growth of their norms.
All this will be pursued in the following subsection.

3.2 Invariant Subspaces of Bishop Operators

Applying a novel version of these methods, Davie [15] was the first in obtaining
positive results on the existence of invariant subspaces for some classes of Bishop
operators. In particular, he showed that whenever α ∈ (0, 1) is a non-Liouville
number, the corresponding Bishop operator Tα has a non-trivial hyperinvariant
subspace on each Lp[0, 1).

Further refinements due to Flattot [18] enlarged the class of such irrational
numbers, embracing some Liouville numbers. More specifically, using the language
of continued fractions, if (aj/qj )j≥0 denote the convergents of α, the limit of
Flattot’s result ensures the existence of invariant subspaces for Tα on each Lp[0, 1)
whenever

log qj+1 = O
(
q

1/2−ε

j

)
for every ε > 0. (3.4)

Turning to Bishop operators, up to date, our approach yields the most general
result regarding the existence of invariant subspaces [12]:

Theorem 3.4 (Chamizo et al. [12]) Let α ∈ (0, 1) be any irrational and
(aj /qj )j≥0 the convergents in its continuous fraction. If the following condition
holds

log qj+1 = O
( qj

log3 qj

)
; (3.5)

then, the Bishop operator Tα has a non-trivial closed hyperinvariant subspace in
Lp[0, 1) for every 1 ≤ p ≤ ∞.



A Closer Look at Bishop Operators 263

Again, the idea behind our address is exactly the same: a careful application of
Atzmon’s Theorem. For this, it shall be convenient to work with the operators

T̃α := e Tα.

This scalar multiple of Tα, far from being arbitrary, is determined by the fact
σ(T̃α) = D. Now, without going into much details, an insight in the proof may
be the following: given any irrational α ∈ (0, 1), in the sequel, consider the real
functions

Ln(t) :=
n−1∑

j=0

(
1 + log({t + jα})), (n ∈ N).

It is plain that the functions Ln(t) play a fundamental role in the understanding of
the iterates of both Tα and T ∗

α , since they codify their behaviours via the equations

T̃ n
α f (t) = eLn(t)f ({t + nα}),

T̃ −n
α f ({t + nα}) = e−Ln(t)f (t),

(n ∈ N), (3.6)

and, in a similar way, for T ∗
α . Note that Eq. (3.6) makes sense for every Lp-function

despite of the fact that T̃α has not a bounded inverse.
In light of (3.6), it is not hard to figure out that, in order to control the growth

of both iterates T̃ n
α f and (T̃ ∗

α )
nf , it could be a good idea to construct ad hoc a

function which kills each of the singularities arising from each summand of Ln(t).
To accomplish that, we may consider, for instance, the characteristic function of the
set

Bα :=
{ 1

20
< t <

19

20
: 〈t − nα〉 > 1

20n2 for every n ∈ Z \ {0}
}
,

where 〈t〉 := min
({t}, 1 − {t}) denotes the distance from t to the closest integer.

First, note that, since the set Bα has positive Lebesgue measure, it follows that 1Bα

does not vanish identically as an element of Lp[0, 1). On the other hand, it turns
out that |Ln(t)| can be bound properly in terms of the sequence (qj )j≥0 for t ∈ Bα,
when |n| is comparable to qj+1.

We prefer not to deal with technicalities which are out of the scope of this survey.
Anyway, as explained in [12], after some arithmetical estimations, we have:

Proposition 3.5 Let α ∈ (0, 1) be any irrational and (aj /qj )j≥0 the convergents

in its continuous fraction. Then, for every n ∈ Z with |n| ≤ q
3/2
j+1, we have

log
(
1 + ∥∥T̃ n

α 1Bα

∥
∥∞ + ∥∥(T̃ ∗

α )
n1Bα

∥
∥∞
)

9 qj + |n|
qj

log qj + |n| + qj+1

qj+1
log(|n| + 1).

(3.7)
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Now, as a consequence of the asymptotic bound (3.7), if we impose a suitable
control on the growth of qj+1 in terms of qj , we manage to find a Beurling sequence
which dominates both (‖T̃ n

α 1Bα
‖)n∈Z and (‖(T̃ ∗

α )
n1Bα

‖)n∈Z. More specifically, it
may be seen that if condition (3.5) is satisfied, then the application of Atzmon’s
Theorem to Bishop operators can be achieved from picking the Beurling sequence

ρn = exp

(
C |n|

log(2 + |n|)(log log(4 + |n|))2

)

(n ∈ Z).

Observe that Theorem 3.4 relaxes significantly the condition imposed on α by
Flattot (3.4), allowing the exponent 1 instead of 1/2 and quantifying the role of ε.
Surprisingly, as we shall see hereafter, Theorem 3.4 is essentially the best possible
result attainable from Atzmon’s Theorem approach and any improvement seems to
require different functional analytical techniques.

To conclude this subsection, we remark that it is possible to measure the
difference between those cases covered by Davie [15], Flattot [18] and Theorem 3.4.
For this, it suffices to consider the logarithmic Hausdorff dimension via the family
of functions (| log x|−s)s≥0 (instead of the usual (xs)s≥0). With such a dimension, as
a consequence of [11, Thm. 6.8], one has that the set of exceptions in Davie, Flattot
and our case have dimension ∞, 4 and 2 respectively.

3.3 The Limits of Atzmon Theorem

Apart from being a refinement of Flattot/Davie approaches, the importance of
Theorem 3.4 is evinced when it is understood in conjunction with the following
statement:

Theorem 3.6 (Chamizo et al. [12]) Let α ∈ (0, 1) be an irrational not in

M :=
{
α ∈ (0, 1) : log qj+1 = O

( qj

log qj

)}

and consider Tα on Lp[0, 1) for some 1 ≤ p < ∞. Then, for every non-zero
f ∈ Lp[0, 1), we have

∑

n∈Z

log
(
1 + ∥∥T̃ n

α f
∥
∥
p

)

1 + n2 = ∞.

Here, as an abuse of notation, for f ∈ Lp[0, 1) and n > 0, ‖T̃ −n
α f ‖ denotes

the norm of the n-th backward iterate T̃ −n
α f whenever it belongs to Lp[0, 1) or ∞,

otherwise.
Observe that this latter result shows that we cannot hope to improve much on

Theorem 3.4, since at most, we shall be able to gain a power in log qj . Hence, it
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establishes a threshold limit in the growth of the denominators of the convergents of
α for the application of Atzmon’s Theorem in order to find invariant subspaces for
Tα.

Heuristically, in order to prove Theorem 3.6, we must show that, independently
of f ∈ Lp[0, 1), one of the quantities ‖T̃ n

α f ‖p or ‖T̃ −n
α f ‖p is large enough for

many values of n ∈ N, inducing the series

∑

m∈Z

log
(
1 + ∥∥T̃ m

α f
∥
∥
p

)

1 +m2

to be divergent. To do so, we consider the identity

‖T̃ n
α f ‖pp + ‖T̃ −n

α f ‖pp =
∫ 1

0

(
epLn(t−nα) + e−pLn(t)

) |f (t)|p dt, (3.8)

and observe that, α �∈ M means exactly that α is pretty close to some rationals a/q .
Roughly speaking, this implies that whenever n is comparable to q and q | n, we
have a very accurate approximation between

Ln(t − nα) ≈ Ln

(
t − n

a

q

)
= Ln(t).

But, in such a case, it results that the integral in (3.8) must be large unless |Ln(t)| is
small, which turns out to happen rarely.

4 Local Spectral Properties of Bishop Operators

The aim of the current section is identifying which local spectral properties are
shared by all Bishop operators Tα, independently of the irrational α ∈ (0, 1).

This apparent digression is justified by the facts presented in the preceding
sections: while all Bishop operators Tα share the same spectrum, only a few of
them are known to possess invariant subspaces; hence, might a deeper insight in
σ(Tα) help us to deal with those cases not covered by Atzmon’s Theorem? Actually,
this naive idea of studying invariant subspaces via spectral subsets rarely succeeds;
nevertheless, as we shall argue at the end of the survey, this will not be completely
senseless in the case of Bishop operators.

All the original results presented in Sect. 4.2 may be found in [19]; on the other
hand, those appearing in Sect. 4.3 are stated in [12].
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4.1 Some Preliminaries on Local Spectral Theory

We begin this part by recalling some preliminaries regarding local spectral theory.
In what follows, X will stand for an arbitrary complex Banach space, L(X) will
denote the class of linear operators on X and B(X) the Banach algebra of linear
bounded operators on X.

Given any operator T ∈ B(X), let σT (x) denote the local spectrum of T at
x ∈ X; i.e., the complement of the set of all λ ∈ C for which there exists an open
neighbourhood Uλ 4 λ and an analytic function f : Uλ → X such that

(T − zI)f (z) = x for every z ∈ Uλ. (4.1)

The complement of σT (x), which is denoted by ρT (x), stands for the local resolvent
of T at x ∈ X; and a function verifying (4.1) is called a local resolvent function
nearby λ ∈ C for x ∈ X. In general, the uniqueness of the local resolvent
function cannot be assumed. Thus, T satisfies the single-valued extension property
(abbreviated as SVEP) if, fixed any x ∈ X and λ ∈ ρT (x), there exists a unique
local resolvent function on a sufficiently small neighbourhood of λ. We highlight
that any operator with σp(T ) = ∅ enjoys the SVEP.

The notion of local spectrum allows us to gain a further knowledge on what con-
stitutes each part of σ(T ), this may be accomplished via local spectral manifolds:
given any subset � ⊆ C, the local spectral manifold XT (�) is defined as

XT (�) := {
x ∈ X : σT (x) ⊆ �

}
.

In general, XT (�) is always a T -hyperinvariant linear manifold; nevertheless, its
closeness cannot be assured, even when � ⊆ C is closed. Those operators T ∈
B(X) for which XT (F) is norm-closed in X for every closed subset F ⊆ C are said
to satisfy the Dunford property or Property (C). We remark that Dunford property
(C) implies SVEP.

An important class of Banach space-operators devised to resemble the spectral
behaviour of normal operators is the class of decomposable operators. An operator
T ∈ B(X) is said to be decomposable if given any open cover {U,V } of C, there
exist two closed invariant subspaces Y,Z ⊆ X such that

σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V,

with X = Y + Z. Related to decomposability, two other weaker local spectral
properties arise: the Bishop’s property (β) and the decomposition property (δ). An
operator T ∈ B(X) has the property (β) if, for every open set U ⊆ C and any
sequence of analytic functions fn : U → X such that

(T − zI)fn(z) → 0 as n →∞
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locally uniformly on U , then fn → 0 locally uniformly on U as well. We point
out that property (β) entails both property (C) and SVEP. On the other hand, an
operator T ∈ B(X) satisfies property (δ) if, for every open cover {U,V } of C we
have

X = XT (U)+ XT (V );

where, for each closed F ⊆ C, the linear manifold XT (F ) is formed by all x ∈
XT (F) whose local resolvent function is globally defined on C \ F . It may be seen
that an operator is decomposable if and only if verifies both properties (β) and (δ).

To conclude this part, just mention that one of the most remarkable results in
local spectral theory, due to Albrecht and Eschmeier [2], claims that properties (β)
and (δ) are duals of each other. Furthermore, it happens that both properties (β) and
(δ) can be comprehended in terms of decomposability: property (β) characterizes
the restrictions of decomposable operators to invariant subspaces, while property
(δ) characterizes the quotients of decomposable operators by invariant subspaces.

Finally, we disclose that properties (β) and (δ) can be combined with the Scott
Brown techniques to produce invariant subspaces [16], extending substantially the
classical result by S. W. Brown [10] on hyponormal operators.

4.2 Power-Regularity and the Local Spectral Radius of Bishop
Operators

The programme to followed up along the subsequent pages consists on checking
which of the aforemention local spectral properties are satisfied by all Bishop
operators. In order to accomplish such a task, we shall make use of several
estimations and previous results. The simplest case turns out to be the SVEP, since
it follows immediately from the fact σp(Tα) = ∅:

Proposition 4.1 Let α ∈ (0, 1) be any irrational and Tα acting on Lp[0, 1) for
1 ≤ p ≤ ∞. Then, Tα satisfies the SVEP.

Not surprisingly, regarding the remainder of local spectral properties, we shall
need to work significantly harder and provide ourselves with new estimations
concerning the behaviour of Bishop operators.

Given any operator T ∈ B(X), the Gelfand’s formula for the spectral radius
asserts that the sequence (‖T n‖1/n)n≥0 is always convergent and

r(T ) := max
{|λ| : λ ∈ σ(T )

} = lim
n→∞‖T n‖1/n.

Nevertheless, if we aspire to wield a local version of Gelfand’s formula, we will need
to perform some modifications, since it turns out that (‖T nx‖1/n)n≥0 may be non-
convergent. At this regard, Atzmon [5] introduced the notion of power-regularity:
we recall that T ∈ B(X) is called power-regular if the sequence (‖T nx‖1/n)n≥1
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is convergent for every x ∈ X. Furthermore, Atzmon proved a general criterion
showing that a wide class of Banach space-operators, including decomposable
operators, are power-regular. This forces to define the local spectral radius of T

at x ∈ X as

rT (x) := lim sup
n→∞

‖T nx‖1/n.

Not surprisingly, likewise in Gelfand’s formula, the local spectral radius and the
local spectrum may be related via the inequality

rT (x) ≥ max
{|λ| : λ ∈ σT (x)

}
,

which can be replaced by an equality whenever T has the SVEP.
A general result due to Müller [24], asserts that given any T ∈ B(X), the equality

rT (x) = r(T ) must hold on a dense subset of X, which is indeed of second category
[14]. Our next proposition exhibits that Bishop operators are extreme examples in
this sense; more precisely, it shows that Tα is always power-regular with rTα (f ) =
r(Tα) for every non-zero f :

Theorem 4.2 (Gallardo-Gutiérrez and Monsalve-López [19]) Let α ∈ (0, 1) be
any irrational and consider Tα acting on Lp[0, 1) for 1 ≤ p < ∞. Then, for every
non-zero f ∈ Lp[0, 1), we have

lim
n→∞ ‖T n

α f ‖1/n
p = r(Tα) = e−1.

Moreover, the same holds for T ∗
α .

We point out that the latter proposition can be proved for a considerably larger
family of weighted translation operators [19, Cor. 2.3]. On the other hand, it is worth
mentioning that its proof is mainly based on an application of ergodic theorems.
Anyway, it entails the following striking corollary:

Corollary 4.3 Let α ∈ (0, 1) be any irrational and Tα ∈ B
(
Lp[0, 1)

)
for 1 ≤ p <

∞. Suppose M is a non-zero closed invariant subspace for Tα , then

r(Tα|M) = e−1.

Given any Bishop operator Tα, as a somewhat direct consequence of the
preceding results and the asymptotic bound provided by Proposition 3.5, we will
be able to discard the fulfilment of the rest of the local spectral properties. In
this subsection, we shall exclusively focus on the strongest ones: decomposability,
property (β) and property (δ):

Theorem 4.4 (Gallardo-Gutiérrez and Monsalve-López [19]) Let α ∈ (0, 1) be
any irrational and consider Tα acting on Lp[0, 1) for some 1 ≤ p ≤ ∞. Then, Tα
is not decomposable.
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Once we know Corollary 4.3, the Proof of Theorem 4.4 is pretty simple: suppose
that Tα is decomposable in Lp[0, 1); then, fixed arbitrary 0 < r < s < e−1, we may
consider the open cover

U = D(0, s) and V = C \D(0, r).

By means of Corollary 4.3, the unique closed invariant subspace Y ⊆ Lp[0, 1) such
that σ(Tα|Y ) ⊆ U would be Y = {0}; but this leads us to a contradiction, since
σ(Tα) �⊆ V .

Furthermore, it is possible to obtain a slightly stronger result by combining
a similar argument to the previous one with the duality principle [2] between
properties (β) and (δ):

Theorem 4.5 (Gallardo-Gutiérrez and Monsalve-López [19]) Let α ∈ (0, 1) be
any irrational and consider Tα on Lp[0, 1) for 1 < p < ∞. Then, Tα does not
satisfy either property (β) or (δ).

As a final remark, note that one could reasonably argue that, in a very vague
sense, Proposition 4.2 and Corollary 4.3 seem to be suggesting that the most
significant part of σ(Tα) is precisely its boundary. This intuition shall be explored
more deeply and confirmed in more concrete terms throughout the rest of the article.

4.3 Dunford Property and a Dense Local Spectral Manifold

Throughout this subsection, we shall prove that Bishop operators can neither satisfy
property (C); nevertheless, along the way, something much more stronger will be
shown. More precisely, we shall see that, unlike for subsets � ⊆ int(σ (Tα)), for
which Proposition 4.2 ensured that XTα(�) = {0}; the local spectral manifold
XTα (∂σ(Tα)) turns out to be dense for every irrational α. To do so, we are going
to split the proof into two parts: firstly, using (3.7), we will check that σTα (1Bα

)

must be confined into ∂σ(Tα); on the other hand, an argument with L∞ functions
will let us to elucidate the density of XTα (∂σ(Tα)).

Proposition 4.6 Let α ∈ (0, 1) be any irrational number and consider Tα acting
on Lp[0, 1) for some 1 ≤ p < ∞. Then, both local spectra

σTα (1Bα
) ⊆ ∂σ(Tα) and σT ∗

α
(1Bα

) ⊆ ∂σ(Tα).

In order to prove Proposition 4.6, consider the Lp[0, 1)-valued analytic function
given by

gα(z) :=
∞∑

n=1

(
T̃ −n
α 1Bα

) · zn−1.
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Now, note that gα must be analytic on the open disk |z| < 1, since, by means of the
asymptotic estimate (3.7), we have

lim sup
n→∞

∥
∥T̃ −n

α 1Bα

∥
∥1/n
p

≤ 1.

Finally, it is routine to check that (T̃α − zI)gα(z) = 1Bα
for every |z| < 1.

An important remark is in order: given an operator with σp(T ) = σp(T
∗) = ∅,

it may be seen that if Atzmon’s Theorem may be applied to the sequences

xn := T nx and yn := (T ∗)ny (n ∈ Z)

for a pair x ∈ X and y ∈ X∗, the corresponding local spectra σT (x) and σT ∗(y)
must be inside ∂D. Nevertheless, the converse is not true. This evinces the main
gain of the asymptotic (3.7) with respect to the ones in the previous works [15] and
[18], since Proposition 3.5 can be applied independently of the irrational α.

Now, once we are aware of 1Bα
∈ XTα (∂σ(Tα)), we are in position to take

another step ahead and prove the density of XTα (∂σ(Tα)):

Theorem 4.7 (Chamizo et al. [12]) Let α ∈ (0, 1) be any irrational number. Then,
the local spectral manifold

XTα

(
∂σ(Tα)

) = {
f ∈ Lp[0, 1) : σTα (f ) ⊆ ∂σ(Tα)

}

is norm-dense in Lp[0, 1) for each 1 ≤ p < ∞. In particular, Tα does not satify the
Dunford property (C) on Lp[0, 1) for 1 ≤ p < ∞.

In the argument of Theorem 4.7, we repeatedly exploit the fact that 1Bα
is a

characteristic function. Firstly, note that standard bounds yield the inclusion

{

g(t)1Bα
(t) : ess sup

t∈[0,1)
|g(t)| < ∞

}

⊆ XTα (∂σ(Tα)).

Therefore, by the density of L∞ into Lp for each 1 ≤ p < ∞ and taking into
account that the support of 1Bα

is precisely the set Bα, we have

{
f ∈ Lp[0, 1) : supp(f ) ⊆ Bα

} ⊆ XTα (∂σ(Tα)).

Now, since Tα1Bα
∈ XTα (∂σ(Tα)) as well, we deduce a similar inclusion:

{

tg(t)1Bα
({t + α}) : ess sup

t∈[0,1)
|g(t)| < ∞

}

⊆ XTα (∂σ(Tα)),

but, as the multiplication operator Mt is of dense-range, this again entails

{
f ∈ Lp[0, 1) : supp(f ) ⊆ τ−1

α (Bα)
} ⊆ XTα (∂σ(Tα)).
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Repeating a similar discussion with T n
α 1Bα

for each n ∈ Z, we have

span
m=−N,...,N

{
f ∈ Lp[0, 1) : supp(f ) ⊆ τm

α (Bα)
} ⊆ XTα (∂σ(Tα)),

but, since Bα has strictly positive measure and τα is ergodic, the proof is done.
As it was promised before beginning this subsection, we may clearly appreciate

that the meaning behind each part of σ(Tα) differs significantly. In this sense, it is
plain that the boundary of σ(Tα) stores much more information about Tα than the
interior. This idea will be raised into a new level in the following section, showing
that those already known closed invariant subspaces for Tα can be characterized as
the norm-closure of some local spectral manifolds related to ∂σ(Tα).

5 Spectral Decompositions of Bishop Operators

It is plain from the preceding section, that we cannot expect to encounter invariant
subspaces for Tα when we consider certain local spectral manifolds. For example,
if we pick an arbitrary set � inside in C \ ∂σ(Tα), we fall too short since, in such a
case, the associated local spectral manifold is trivial:

XTα (�) = {0};

on the other hand, if ∂σ(Tα) ⊆ �, we go too far since, in such case, the associated
local spectral manifold is dense:

XTα (�) = Lp[0, 1),

for the corresponding 1 ≤ p < ∞. These two facts restrict significantly our quest
of invariant subspaces for Tα via local spectral manifolds and indicate us that, our
unique hope could be choosing subsets � which intersect the boundary of σ(Tα) but
not covering it entirely. Surprisingly, at least for many values of α, this new attempt
turns out to be successful, bringing about local spectral manifolds verifying

{0} �= XTα (�) �= Lp[0, 1).

Nevertheless, not everything shall be good news, since our address will depend
on a local spectral variant of Atzmon’s Theorem and the restriction imposed by
Theorem 3.6 still remains. Anyway, considering these ideas, it seems fully justified
to conjecture about the possibility of addressing the invariant subspace problem for
general Bishop operators Tα using techniques borrowed from local spectral theory.

This section is mainly based on the article [20].
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5.1 The Spectral Meaning Behind Atzmon’s Theorem

As before, X will be any infinite-dimensional Banach space, L(X) will stand for
the class of linear operators on X while B(X) will denote the Banach algebra of
linear bounded operators on X. Such distinction between linear and linear bounded
operators will be of particular interest along the current section.

As the title announces, throughout the first half of this section, our aim is
unravelling the spectral meaning hidden behind the statement of Atzmon’s Theorem
(and related results in [3] and [7]) in order to, further on, apply it in the study of
Bishop operators.

The preliminary step before understanding properly Atzmon’s Theorem from a
spectral perspective should be the following decomposability version of Wermer’s
theorem [29] given by Colojoară and Foiaş [13]:

Theorem 5.1 (Colojoară and Foiaş [13]) Let T ∈ B(X) be an invertible operator
on a complex Banach space X with σ(T ) ⊆ T satisfying

∑

n∈Z

log ‖T n‖
1 + n2 < ∞. (5.1)

Then, T is decomposable. In particular, if σ(T ) is not reduced to a singleton, the
operator T has a non-trivial closed hyperinvariant subspace in X.

A scheme of the proof may be the following: firstly, note that the real sequence
ρ := (‖T n‖)n∈Z is submultiplicative (3.1), satisfies the limit-type condition (3.2)
and, as a byproduct of (5.1), defines a Beurling sequence. Therefore, its corre-
sponding Beurling algebra Aρ is regular. Thus, we may consider the continuous
algebraic homomorphism determined by

φ : Aρ → B(X)

eınt �→ T n
(5.2)

for every n ∈ Z. Now, given any open cover {U,V } of σ(T ), due to the regularity
of Aρ , we can find a function h ∈ Aρ such that

h ≡ 1 on (C \ V ) ∩ σ(T ) and h ≡ 0 on (C \ U) ∩ σ(T );

but, the manner in which h has been chosen causes that the ranges of the operators
φ(h) and I − φ(h) split the spectrum of T in the following way:

σ
(
T |φ(h)(X)

) ⊆ U and σ
(
T | (I − φ(h))(X)

) ⊆ V,

and consequently, as we intended to show, T turns out to be decomposable.
At a glance, it sounds reasonable to believe that Atzmon’s Theorem looks

like a localized version of Colojoară and Foiaş decomposability theorem. Hence,
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one may rightly conjecture that Atzmon’s Theorem should also involve a sort
of decomposition on the spectrum σ(T ); nevertheless, in this case, such spectral
decomposition shall be much more subtle and less manageable. More specifically,
when the invertibility of T is missing, we are forced to consider a decomposition
of σ(T ) only with respect to a proper linear submanifold of X. For the sake of
completeness, we explain it in more accurate terms: in the sequel, we are intended
to modify the Proof of Theorem 5.1 with the aim of fitting it into the hypothesis
required by Atzmon’s Theorem.

Let ρ := (ρn)n∈Z be an arbitrary Beurling sequence. Since T needs not to be
invertible anymore, the algebraic homomorphism (5.2) must be replaced by

φ : Aρ → L(X)

eınt �→ T n
(n ∈ Z)

embracing some non-bounded linear operators. Nevertheless, in order to retrieve
some appropriate spectral properties, we must restrict ourselves to work on a linear
submanifold of X in which φ can be properly controlled; this is the goal behind the
definition of the continuity core:

Dφ :=
{
x ∈ X : the map Aρ → X, f �→ φ(f ) x is bounded

}
,

which, trivially, must be constrained between

{0} ⊆ Dφ ⊆
⋂

n∈Z
Dom(T n).

By definition, the vectors of Dφ satisfy the asymptotic bound

‖T n x‖ 9 ρn, (n ∈ Z);

and, on addition, the Beurling condition

∑

n∈Z

logρn

1 + n2 < ∞

allows us to employ again the regularity of the Beurling algebra Aρ . Thus, for any
open cover {U,V } of σ(T ), the regularity of Aρ enables us to pick a function h ∈
Aρ such that

h ≡ 1 on (C \ V ) ∩ σ(T ) and h ≡ 0 on (C \ U) ∩ σ(T ).

Now, given an arbitrary x ∈ Dφ , an adjustment of the previous estimations show
that the local spectra

σT
(
φ(h) x

) ⊆ U and σT
(
(I − φ(h)) x

) ⊆ V.
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This clearly provides a local spectral decomposition of T with respect to the
elements in Dφ . We resume the above discussion in the following proposition:

Proposition 5.2 Let Aρ be a regular Beurling algebra, X a complex Banach space
and φ : Aρ → L(X) a algebra action with continuity core Dφ . Consider the
operator T := φ(eıt ) ∈ B(X). Then, for every closed F ⊆ C with int(F ) �= ∅,

XT (F) ⊇ {
φ(h)(Dφ) : h ∈ Aρ with supp(h) ⊆ F

}
.

Moreover, the inclusion

Dφ ⊆ XT (U1)+ . . .+XT (Un) (5.3)

holds for every open cover {U1, . . . , Un} of C.

Some remarks are in order: firstly, note that Eq. (5.3) reveals us that Atzmon’s
Theorem entails a sort of weak decomposability for T with respect to the subman-
ifold Dφ . On the other hand, following the philosophy of [25], it is not hard to
extend Proposition 5.2 to a much wider class of functional calculi. Such extension,
performed using the language of Gelfand theory [20], allows us to consider arbitrary
commutative Banach algebras as the model of the operator T .

But, certainly, the reader may wisely argue that Atzmon’s Theorem granted the
existence of non-trivial closed hyperinvariant subspaces for T while Proposition 5.2
is still far from guaranteeing them. Actually, and exclusively when the continuity
core Dφ �= {0}, Proposition 5.2 ensures the existence of non-zero local spectral
manifolds. So, maybe the next question must be: how long is Atzmon’s Theorem
from Proposition 5.2? The keypoint is that, when the preceding techniques can be
applied to both T and its adjoint T ∗ for two non-zero x ∈ X and y ∈ X∗, we
manage to construct non-trivial closed invariant subspaces due to the duality relation
between local spectral manifolds [21, Prop. 2.5.1] given by

XT (F) ⊆ ⊥X∗
T ∗(G),

valid whenever T has the SVEP and for every pair of disjoint closed sets F,G ⊆ C;
where, as usual, ⊥N denotes the preannihilator of a subset in N ⊆ X∗, i.e.

⊥N := {
x ∈ X : ϕ(x) = 0 for every ϕ ∈ N

}
.

As a consequence, we deduce the following local spectral version of Atzmon’s
Theorem:

Theorem 5.3 (Gallardo-Gutiérrez and Monsalve-López [20]) Let T ∈ B(X) be
an operator on a Banach space X such that σp(T ) = σp(T

∗) = ∅. Assume that
there exist non-zero x ∈ X and y ∈ X∗ for which

∥
∥T n x

∥
∥9 ρn and

∥
∥(T ∗)n y

∥
∥9 ρn (n ∈ Z)
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for some Beurling sequence ρ := (ρn)n∈Z. Then, if σT (x)∪σT ∗(y) is not a singleton,
for every open subset U ⊆ C such that U ∩ σT (x) �= ∅ and σT ∗(y) \ U �= ∅, we
have

{0} �= XT (U) �= X.

In particular, T has a non-trivial closed hyperinvariant subspace.

In the same way as for Proposition 5.2, one has that Theorem 5.3 stands as the
particular case regarding regular Beurling algebras of a much more general result
[20, Thm. 2.5], aimed to extend Atzmon’s Theorem to a wider class of models based
on arbitrary commutative Banach algebras.

Unsurprisingly, our motivation in Atzmon’s Theorem and its spectral implica-
tions are focused mainly on Bishop operators. This is the goal of the following
subsection: analyse carefully what is happening to σ(Tα) and relate it, if possible,
to the invariant subspaces of Tα.

5.2 Local Spectral Decomposition of Bishop Operators

According to the exposition held in Sect. 4, the lack of any profitable local spectral
property seems to be an evident feature regarding Bishop operators. Nevertheless, as
it shall be discussed along the following lines with the aid of the results exposed in
the preceding subsection, this turns out to be just a kind of illusion (at least in some
cases) caused by a misguided choice of the local spectral manifolds. Of course, the
cornerstone in the development of such richer spectral theory for Bishop operators
shall be the aforementioned local spectral version of Atzmon’s Theorem.

Again, as we aim to apply Atzmon’s Theorem to Bishop operators, we recall that
the condition

log qj+1 = O
( qj

log3 qj

)
, (5.4)

which shall play a prominent role in the sequel. By means of Theorem 3.4, we know
that given an irrational α ∈ (0, 1) satisfying (5.4), there exists a Beurling sequence
ρ = (ρn)n∈Z such that

∥
∥T̃ n

α 1Bα

∥
∥9 ρn and

∥
∥(T̃ ∗

α )
n1Bα

∥
∥9 ρn.

In addition, by similarity, it may be checked that for every �,m ∈ Z,

σT̃α (e
2πı�t1Bα

) = e2πı�ασT̃α (1Bα
),

σT̃ ∗
α
(e2πımt1Bα

) = e−2πımασT̃ ∗
α
(1Bα

).
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Thus, due to the irrationality of α, it is plain that provided any open subset U ⊆ C

such that U∩T �= T and T\U �= ∅, we may find �,m ∈ Z satisfying both conditions

U ∩ σT̃α (e
2πı�t1Bα

) �= ∅ and σT̃ ∗
α
(e2πımt1Bα

) \ U �= ∅.

Therefore, as a corollary of Theorem 5.3, the above discussion leads us to the
following local spectral version of Theorem 3.4:

Theorem 5.4 (Gallardo-Gutiérrez and Monsalve-López [20]) Let α ∈ (0, 1) be
an irrational satisfying (5.4). Suppose that Tα acts on Lp[0, 1) for a fixed 1 ≤
p < ∞. Then, given any open subset U ⊆ C such that U ∩ ∂σ(Tα) �= ∅ and
∂σ(Tα) \ U �= ∅, we have

{0} �= XTα (U) �= Lp[0, 1).

In particular, Tα has a non-trivial closed hyperinvariant subspace.

Although, in mere quantitative terms both Theorems 3.4 and 5.4 cover exactly
the same cases; clearly, the advantage of the latter result with respect to Theorem 3.4
is that it allows us to identify the spectral nature of the invariant subspaces involved.

In addition, an application of Proposition 5.2 in conjunction with some of the
arguments appearing in the Proof of Theorem 4.7, shows the following sort of weak
decomposability fulfilled by all Bishop operators:

Theorem 5.5 (Gallardo-Gutiérrez and Monsalve-López [20]) Let α ∈ (0, 1) be
an irrational number satisfying (5.4). Then, for every open cover {U1, . . . , Un} of
∂σ(Tα), the algebraic sum

XTα (U1)+ . . .+XTα (Un)

is norm-dense in Lp[0, 1) for every 1 ≤ p < ∞.

Due to the absence of the Dunford property (C) for each Bishop operator Tα ,
the feature described within Theorem 5.5 cannot be properly considered a spectral
decomposition. Anyway, it clearly suggests that Bishop operators verify much more
interesting spectral properties than it seemed a priori and invites to study certain
weaker local spectral decompositions for Tα than the ones mentioned in Sect. 4.

Finally, we remind that in Theorem 3.6 we stated that, regarding Bishop operators
Tα, there exists a threshold limit on α from which Atzmon’s Theorem cannot be
applied anymore. In the language of Proposition 5.2, such result may be translated
saying that if α does not belong to

M :=
{
α ∈ (0, 1) : log qj+1 = O

( qj

log qj

)}
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then, for every algebra action φ : Aρ → L(Lp[0, 1)) with φ(1) = I and φ(eınt ) =
T̃ n
α from a regular Beurling algebra Aρ , the corresponding continuity core must be

Dφ = {0}.
On the other hand, it seems reasonable to expect that, for those cases Tα uncov-

ered by Atzmon’s Theorem (despite the absence of a profitable functional calculus),
their local spectral properties remain identical and rich enough to construct closed
invariant subspaces. In this sense, we suggest that one feasible route to solve the
invariant subspace problem for all Bishop operators could be understanding in depth
their local spectral manifolds XTα (U) arising from open sets U intersecting the
boundary of σ(Tα). To support our question in the positive, we recall that there exist
decomposable operators T ∈ B(X) whose spectral behaviour cannot be described
in terms of a functional calculus from a suitable algebra [1]. We pose it as an open
question:

Question 1 Let α ∈ (0, 1) be any irrational number and ε > 0 sufficiently small. Is
the local spectral manifold

XTα

(
D(e−1, ε)

)

non-trivial and non-dense in Lp[0, 1) for every 1 ≤ p < ∞?

6 Bishop-Type Operators

In order to complete the survey, our purpose throughout this last section is discussing
analogous results to the ones described above in a more general framework. In
particular, we shall show that many Bishop-type operators also admit a rich spectral
theory.

We begin by recalling that MacDonald in [22] was able to determine the
spectrum of many weighted translations operators. In order to state his result,
let us fix (�,B, μ) a non-atomic probability space which arises from the Borel
sets of a compact metrizable space. Recall that any invertible measure-preserving
transformation τ : � → � is called ergodic for (�,B, μ) if given any B ∈ B such
that τ−1(B) = B then either μ(B) = 0 or μ(B) = 1 and, it is called uniquely
ergodic whenever it is continuous and μ is the unique �-probability measure for
which τ is ergodic. As an important instance, observe that whenever � = [0, 1) is
endowed with the usual Lebesgue measure, having in mind the natural identification
with T = {e2πit : t ∈ [0, 1)}, the transformation τα(t) := {t + α} with α �∈ Q is
uniquely ergodic.

We are now in position to state MacDonald’s result. Recall that, given an arbitrary
φ ∈ L∞[0, 1) and τ any measure-preserving transformation with measurable
inverse, the Bishop-type operator Tφ,τ is defined as

Tφ,τ f := φ · (f ◦ τ )

on Lp(�,μ) for each 1 ≤ p ≤ ∞.
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Theorem 6.1 (MacDonald [22]) Let (�,B, μ, τ ) be a uniquely ergodic sys-
tem and φ ∈ L∞(�,μ) continuous μ-almost everywhere. Consider Tφ,τ ∈
L
(
Lp(�,μ)

)
for 1 ≤ p < ∞ fixed. Then:

• If 0 ∈ ess ran(φ), the spectrum of Tφ,τ is

σ(Tφ,τ ) =
{
λ ∈ C : |λ| ≤ exp

( ∫

�

log |φ| dμ
)}

.

• If 0 �∈ ess ran(φ), the spectrum of Tφ,τ is

σ(Tφ,τ ) =
{
λ ∈ C : |λ| = exp

( ∫

�

log |φ| dμ
)}

.

Clearly the assumptions on φ and τ determine the spectrum of Tφ,τ , but the
general case is open and the following difficult question arises naturally:

Question 2 Determine the spectrum of weighted translation operators.

On the other hand, following Atzmon’s theorem approach, MacDonald was able
to establish the existence of non-trivial closed hyperinvariant subspaces for a large
class of Bishop-type operators Tφ,τα , for the sake of brevity denoted by Tφ,α (see
[22, Theorem 2.5, Theorem 2.6]). Consequently, in the spirit of Sect. 5, for those
cases covered by MacDonald, it is possible to obtain spectral decompositions similar
to those appearing in Theorems 5.4 and 5.5. We address that in the following
subsection.

6.1 Spectral Decomposition of Bishop-Type Operators

In order to state the results accurately, we must dwell on some minor technicalities
for a moment: given a positive real number M , we recall from [22] the class of step
functions

SM =
{

S =
�∑

j=1

rj χIj : rj ∈ R, Ij intervals and
�∑

j=1

|rj | ≤ M

}

.

In addition, let L denote the class of all real functions f ∈ L∞[0, 1) for which there
exists γ > 0 and Kf > 0 (Kf depending exclusively on f ) such that

inf {‖f − S‖∞ : S ∈ SM} < Kf
1

M
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for each positive real M . Thus, one immediately has:

Theorem 6.2 (Gallardo-Gutiérrez and Monsalve-López [20]) Given any φ ∈
L∞[0, 1) with log |φ| ∈ L and α ∈ (0, 1) a non-Liouville irrational number, let
Tφ,α be the induced Bishop-type operator on Lp[0, 1) for some 1 < p < ∞. Then,
given any open set U ⊂ C such that U ∩ ∂σ(Tφ,α) �= ∅ and ∂σ(Tφ,α) \ U �= ∅, we
have

{0} �= XTφ,α (U) �= Lp[0, 1).

Theorem 6.3 (Gallardo-Gutiérrez, Monsalve-López [20]) Given any φ ∈
L∞[0, 1) with log |φ| ∈ L and α ∈ (0, 1) a non-Liouville irrational number,
let Tφ,α be the induced Bishop-type operator on Lp[0, 1) for some 1 < p < ∞.
Then, for every open cover {U1, . . . , Un} of ∂σ(Tφ,α), the sum

XTφ,α (U1)+ . . .+XTφ,α (Un) (6.1)

is norm-dense in Lp[0, 1) for 1 < p < ∞.

Note that, by means of Colojoară and Foiaş decomposability theorem, somewhat
stronger conclusions hold for Theorem 6.3 whenever the operator Tφ,α is invertible.
In such a case, it happens that the operator Tφ,α turns out to be decomposable
and the algebraic sum (6.1) comprises the whole space Lp[0, 1). Moreover, further
refinements established as well by MacDonald [23], showed decomposability for
some Bishop-type operators Tφ,α whenever the condition

∞∑

j=0

1

qj
log

(qj+1

qj

)
< ∞

is satisfied by the convergents (aj/qj )j≥0 of the irrational α. Note that, as a matter
of fact, the latter condition embraces some Liouville numbers.

In view of the above discussion, as it was previously posed for Bishop operators,
it might happen that addressing of the invariant subspace problem for general
Bishop-type operators based on identifying some of their local spectral manifolds
was a fruitful approach. Similarly, we pose it as an open question:

Question 3 Let α ∈ (0, 1) be any irrational number and U ⊆ C a “sufficiently
small” open set intersecting ∂σ(Tφ,α). Is the local spectral manifold XTφ,α

(
U
)

non-
trivial and non-dense in Lp[0, 1) for every 1 ≤ p < ∞?
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Products of Unbounded Bloch Functions

Daniel Girela

Abstract We give new constructions of pair of functions (f, g), analytic in the unit
disc, with g ∈ H∞ and f an unbounded Bloch function, such that the product g · f
is not a Bloch function.

Keywords Bloch function · Normal function · Blaschke product · Inner
function · Minimal Besov space · Analytic mean Lipschitz spaces
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1 Introduction and Statements of the Results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C. The
space of all analytic functions in D will be denoted by Hol(D).

For 0 < p ≤ ∞, the classical Hardy space Hp is defined as the set of all
f ∈ Hol(D) for which

‖f ‖Hp
def= sup

0<r<1
Mp(r, f ) < ∞,

where, for 0 < r < 1 and f ∈ Hol(D),

Mp(r, f ) =
(

1

2π

∫ 2π

0
|f (reiθ )|pdθ

)1/p

, (0 < p < ∞);

M∞(r, f ) = sup
θ∈R

|f (reiθ )|.
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We mention [7] as a general reference for the theory of Hardy spaces.
A function f ∈ Hol(D) is said to be a Bloch function if

‖f ‖B def= |f (0)| + sup
z∈D

(1 − |z|2)|f ′(z)| < ∞.

The space of all Bloch functions is denoted by B, it is a Banach space with the just
defined norm ‖ · ‖B . It is well known that

H∞
� B.

A typical example of an unbounded Bloch function is the function f defined by

f (z) = log
1

1 − z
, z ∈ D.

We mention [1] as a general reference for the theory of Bloch functions.
A function f which is meromorphic in D is said to be a normal function in the

sense of Lehto and Virtanen [15] if

sup
z∈D

(1 − |z|2) |f ′(z)|
1 + |f (z)|2 < ∞.

For simplicity, we shall let N denote the set of all holomorphic normal functions in
D. It is clear that any Bloch function is a normal function, that is, we have B ⊂ N .
We refer to [1, 15] and [16] for the theory of normal functions. In particular, we
remark here that if f ∈ N , ξ ∈ ∂D and f has the asymptotic value L at ξ , (that is,
there exists a curve γ in D ending at ξ such that f (z) → L, as z → ξ along γ ) then
f has the non-tangential limit L at ξ .

Let us recall that if a sequence of points {an} in the unit disc satisfies the Blaschke
condition:

∞∑

n=1

(1− |an|) < ∞,

the corresponding Blaschke product B is defined as

B(z) =
∞∏

n=1

|an|
an

an − z

1 − anz
.

Such a product is analytic in D. In fact, it is an inner function, that is, an H∞-
function with radial limit of absolute value 1 at almost every point of ∂D (cf. [7,
Chapter 2]).
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If {an} is a Blaschke sequence and there exists δ > 0 such that

∏

m�=n

∣
∣
∣
∣
an − am

1 − anam

∣
∣
∣
∣ ≥ δ, for all n,

we say that the sequence {an} is uniformly separated and that B is an interpolating
Blaschke product. Equivalently,

B is an interpolating Blaschke product ⇔ inf
n≥1

(1 − |an|2)|B ′(an)| > 0.

We refer to [7, Chapter 9] and [9, Chapter VII] for the basic properties of inter-
polating Blaschke products. In particular, we recall that an exponential sequence is
uniformly separated and that the converse holds if all the ak’s are positive.

Lappan [14, Theorem 3] proved that if B is an interpolating Blaschke product
and f is a normal analytic function in D, the product B · f need not be normal.
Lappan used this to show that N is not a vector space.

Lappan’s result is a consequence of the following easy fact: if B is an interpolat-
ing Blaschke product whose sequence of zeros is {an} and G is an analytic function
in D with G(an) → ∞, then f = B · G is not a normal function (and hence it
is not a Bloch function either). This result has been used by several authors (see
[3, 5, 10, 11, 17, 18]) to construct distinct classes of non-normal functions.

The author and Suárez proved in [12] a result of this kind dealing with Blaschke
products with zeros in a Stolz angle but not necessarily interpolating, improving a
result of [13]. Namely, Theorem 1 of [12] is the following.

Theorem A Let B be an infinite Blaschke product whose sequence of zeros {an} is
contained in a Stolz angle with vertex at 1 and let G be analytic in D with G(z) →
∞, as z → 1. Then the function f = B ·G is not a normal function.

It is natural to ask whether it is possible to prove results similar to those
described, substituting “Blaschke products” by some other classes of H∞-
functions. Our first result in this paper deals with the atomic singular inner function.

Theorem 1.1 Let S be the atomic singular inner function defined by

S(z) = exp

(

−1 + z

1 − z

)

, z ∈ D, (1.1)

and let f be a Bloch function with

lim
z→1

|f (z)| = ∞.

Then the function F defined by F(z) = S(z)f (z) is not a normal function (hence, it
is not a Bloch function).
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In particular, the function F defined by F(z) = S(z) · log 1
1−z

(z ∈ D) is not
normal.

A Bloch function f satisfies

M∞(r, f ) = O

(

log
1

1 − r

)

and, consequently,

|f (r)| = o

(

exp
1 + r

1 − r

)

, as r → 1−.

Thus, Theorem 1.1 follows from the following result.

Theorem 1.2 Let S be the singular inner function defined by (1.1) and let f be an
analytic function in D satisfying:

(i) limz→1 |f (z)| = ∞.

(ii) |f (r)| = o
(

exp 1+r
1−r

)
, as r → 1−.

Then the function F defined by F(z) = S(z)f (z) is not a normal function (hence, it
is not a Bloch function).

For g ∈ Hol(D), the multiplication operator Mg is defined by

Mg(f )(z)
def= g(z)f (z), f ∈ Hol(D), z ∈ D.

Let us recall that if X and Y are two spaces of analytic function in D and g ∈ Hol(D)

then g is said to be a multiplier from X to Y if Mg(X) ⊂ Y . The space of all
multipliers from X to Y will be denoted by M(X, Y ) and M(X) will stand for
M(X,X). Brown and Shields [4] characterized the space of multipliers of the Bloch
space M(B) as follows.

Theorem B A function g ∈ Hol(D) is a multiplier of the Bloch space if and only
if g ∈ H∞ ∩ Blog, where Blog is the Banach space of those functions f ∈ Hol(D)

which satisfy

‖f ‖Blog

def= |f (0)| + sup
z∈D

(1 − |z|2)
(

log
2

1 − |z|2
)

|f ′(z)| < ∞.

Thus, if g ∈ H∞ \ Blog there exists a function f ∈ B \H∞ such that g · f /∈ B.
It is easy to see that the analytic Lipschitz spaces $α (0 < α ≤ 1) and the mean
Lipschitz spaces $

p
α (1 < p < ∞, 1/p < α ≤ 1) are contained in M(B), we refer

to [7, Chapter 5] for the definitions of these spaces. Let us simply recall here that

$1
1 = {f ∈ Hol(D) : f ′ ∈ H 1}.
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On the other hand, Theorem 1 of [8] shows the existence of a Jordan domain � with
rectifiable boundary and 0 ∈ �, and such that the conformal mapping g from D

onto � with g(0) = 0 and g′(0) > 0 does not belong to Blog. For this function g we
have that g ∈ $1

1 but g is not a multiplier of B. Thus we have:

$1
1 �⊂ M(B).

In view of this and the results involving Blaschke products that we have
mentioned above, it is natural to ask the following question:

Question 1.3 Is it true that for any given f ∈ B\H∞ there exists a function g ∈ $1
1

such that g · f /∈ B?

We shall show that the answer to this question is affirmative. Actually we shall
prove a stronger result.

We let B1 denote the minimal Besov space which consists of those functions
f ∈ Hol(D) such that

∫

D

|f ′′(z)| dA(z) < ∞.

Here dA denotes the area measure on D. Alternatively, the space B1 can be
characterized as follows (see [2]):

For f ∈ Hol(D), we have that f ∈ B1 if and only there exist a sequence of
points {ak}∞k=1 ⊂ D and a sequence {λk}∞k=0 ∈ �1 such that

f (z) = λ0 +
∞∑

k=1

λkϕak(z), z ∈ D.

Here, for a ∈ D, ϕa : D→ D denotes the Möbius transformation defined by

ϕa(z) = a − z

1 − az
, z ∈ D.

It is well known that B1 ⊂ $1
1 (see [2, 6]) and then our next result implies that the

answer to question 1.3 is affirmative.

Theorem 1.4 If f ∈ B \H∞ then there exists g ∈ B1 such that g · f /∈ B.

The proofs of Theorems 1.2 and 1.4 will be presented in Sect. 2. We close
this section noticing that throughout the paper we shall be using the convention
that C = C(p, α, q, β, . . . ) will denote a positive constant which depends only
upon the displayed parameters p, α, q, β, . . . (which often will be omitted) but
not necessarily the same at different occurrences. Moreover, for two real-valued
functions E1, E2 we write E1 � E2, or E1 � E2, if there exists a positive constant
C independent of the arguments such that E1 ≤ CE2, respectively E1 ≥ CE2. If
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we have E1 � E2 and E1 � E2 simultaneously then we say that E1 and E2 are
equivalent and we write E1 $ E2.

2 The Proofs

2.1 Proof of Theorem 1.2

For 0 < a < 1, set �a = {z ∈ D : |z− a| = 1 − a}. If z ∈ �a then

Re
1 + z

1 − z
= a

1 − a

and, hence,

|S(z)| = exp

( −a

1 − a

)

, z ∈ �a.

This, together with (i), implies that

F(z) →∞, as z → 1 along �a.

Hence F has the asymptotic value ∞ at 1. On the other hand, (ii) implies that F has
the radial limit 0 at 1. Then it follows that F is not normal. 	


2.2 Proof of Theorem 1.4

Take f ∈ B \H∞. Set

ϕ(r) = M∞(r, f ), 0 < r < 1.

Clearly, ϕ(r) →∞, as r → 1 and it is well known that

ϕ(r) = O

(

log
1

1 − r

)

.

This implies that

(1 − r)2ϕ(r) → 0, as r → 1. (2.1)
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Choose a sequence of numbers {rn} ⊂ (0, 1) satisfying the following properties:

(i) {rn} is increasing.

(ii) (1 − rn)
2ϕ(rn) = o

((
1 − rn−1

n

)2
)

, as n →∞.

(iii) ϕ(rn) ≥ 2ϕ(rn−1), for all n.

(iv)
1 − rn+1

1 − rn
→ 0, as n →∞.

The existence of such a sequence is clear, bearing in mind (2.1) and the fact that
ϕ(r) →∞, as r → 1.

Set

λk = ϕ(rk)
−1/2, k = 1, 2, . . . .

For each k, take ak ∈ D with |ak| = rk and |f (ak)| = ϕ(rk). Using (iii), it follows
that

∞∑

k=1

λk < ∞. (2.2)

Define

g(z) =
∞∑

k=1

λkϕak (z), z ∈ D. (2.3)

Using (2.2) we see that the sum in (2.3) defines an analytic function in D which
belongs to B1. Set

F(z) = g(z)f (z), z ∈ D.

Since g ∈ H∞ and f ∈ B we see that

|g(an)f ′(an)| = O

(
1

1 − |an|
)

. (2.4)

On the other hand,

|g′(an)f (an)| � I − II − III, (2.5)
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where

I =|f (an)|λn|ϕ′an(an)|,

II � |f (an)|
n−1∑

k=1

λk
1 − |ak|2
|1− ak an|2 ,

III � |f (an)|
∞∑

k=n+1

λk
1 − |ak|2
|1 − ak an|2 .

Clearly,

I = |f (an)|λn|ϕ′an(an)| $
ϕ(rn)

1/2

1 − rn
. (2.6)

Using the definitions, the facts that ϕ and the sequence {rn} are increasing, and (ii),
we obtain

II � |f (an)|
n−1∑

k=1

λk
1 − |ak|2
|1− ak an|2

�ϕ(rn)

n−1∑

k=1

ϕ(rk)
−1/2 1 − |ak|

[(1− |ak|)+ (1 − |an)]2

�ϕ(rn)

n−1∑

k=1

1

ϕ(rk)1/2(1 − rk)

� nϕ(rn)

1 − rn−1

= ϕ(rn)
1/2

1 − rn
ϕ(rn)

1/2 n(1 − rn)

1 − rn−1

= o

(
ϕ(rn)

1/2

1 − rn

)

. (2.7)

Likewise, using the definitions, the facts that ϕ and the sequence {rn} are increasing,
(iii), and (iv), we obtain

III �ϕ(rn)

∞∑

k=n+1

ϕ(rk)
−1/2(1 − rk)

[(1− rk)+ (1 − rn)]2

�ϕ(rn)

∞∑

k=n+1

ϕ(rk)
−1/2 1 − rk

(1 − rn)2
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�ϕ(rn)
1 − rn+1

(1 − rn)2

∞∑

k=n+1

ϕ(rk)
−1/2

� ϕ(rn)
1/2

1 − rn
· 1 − rn+1

1 − rn

= o

(
ϕ(rn)

1/2

1 − rn

)

. (2.8)

Using (2.5)–(2.8), and the fact that limϕ(rn) = ∞, we deduce that

(1 − |an|)|g′(an)f (an)| → ∞, as n →∞.

This and (2.4) imply that F is not a Bloch function. 	
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Birkhoff–James Orthogonality
and Applications: A Survey

Priyanka Grover and Sushil Singla

Abstract In the last few decades, the concept of Birkhoff–James orthogonality has
been used in several applications. In this survey article, the results known on the nec-
essary and sufficient conditions for Birkhoff–James orthogonality in certain Banach
spaces are mentioned. Their applications in studying the geometry of normed
spaces are given. The connections between this concept of orthogonality, and the
Gateaux derivative and the subdifferential set of the norm function are provided.
Several interesting distance formulas can be obtained using the characterizations
of Birkhoff–James orthogonality, which are also mentioned. In the end, some new
results are obtained.

Keywords Orthogonality · Tangent hyperplane · Smooth point · Faces of unit
ball · Gateaux differentiability · Subdifferential set · State on a C∗-algebra ·
Cyclic representation · Norm-parallelism · Conditional expectation
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1 Introduction

Let (V , ‖·‖) be a normed space over the field R or C. For normed spaces V1, V2, let
B(V1, V2) denotes the space of bounded linear operators from V1 to V2 endowed
with the operator norm, and let B(V ) denotes B(V , V ). Let K(V1, V2) denotes the
space of compact operators from V1 to V2. Let H be a Hilbert space over R or C.
If the underlying field is C, the inner product on H is taken to be linear in the first
coordinate and conjugate linear in the second coordinate. The notations Mn(R) and
Mn(C) stand for n× n real and complex matrices, respectively.
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Normed spaces provide a natural setting for studying geometry in the context of
vector spaces. While inner product spaces capture the concept of the measure of an
angle, orthogonality of two vectors can be described without knowing the notion of
measure of angle. For example, a vector v is orthogonal to another vector u in R

n if
and only if there exists a rigid motion T fixing the origin such that the union of rays−→
0u,

−−−→
0T (v),

−−−→
0T (u) minus the open ray

−→
0v is the one dimensional subspace generated

by u.1 This description of orthogonality by just using the notion of distance in R
n

motivates to try and define orthogonality in normed spaces. In this approach, one can
use the intuition about orthogonality in R

n to guess the results in general normed
spaces and then prove them algebraically. This has been done in [3, 16, 44, 78].

One of the definitions for orthogonality in a normed space suggested by Roberts
[78], known as Roberts orthogonality, is defined as follows: elements u and v are
said to be (Roberts) orthogonal if ‖v + tu‖ = ‖v − tu‖ for all scalars t . In [44,
Example 2.1], it was shown that this definition has a disadvantage that there exist
normed spaces in which two elements are Roberts orthogonal implies that one of the
element has to be zero. In [44], two more inequivalent definitions of orthogonality
in normed spaces were introduced. One of them is isosceles orthogonality which
says that v is isosceles orthogonal to u if ‖v + u‖ = ‖v − u‖. The other one
is called Pythagorean orthogonality, that is, v is Pythagorean orthogonal to u if
‖v‖2 + ‖u‖2 = ‖v − u‖2. Note that if V is an inner product space, all the above
mentioned definitions are equivalent to the usual orthogonality in an inner product
space. Isosceles and Pythagorean orthogonalities have geometric intuitions for the
corresponding definitions. In R

n, two vectors are isosceles perpendicular if and only
if their sum and difference can be sides of an isosceles triangle, and two vectors are
Pythagorean perpendicular if there is a right triangle having the two vectors as legs.
In [44], it was also proved that if u and v are two elements of a normed space,
then there exist scalars a and b such that v is isosceles orthogonal to av + u (see
[44, Theorem 4.4]) and v is Pythagorean orthogonal to bv + u (see [44, Theorem
5.1]). So these definitions don’t have the above mentioned weakness of Roberts
orthogonality.

In an inner product space, the following properties are satisfied by orthogonality.
Let u, u1, u2, v, v1, v2 ∈ V .

1. Symmetry: If v⊥u, then u⊥v.
2. Homogeneity: If v⊥u, then av⊥bu for all scalars a and b.
3. Right additivity: If v⊥u1 and v⊥u2, then v⊥(u1 + u2).
4. Left additivity: If v1⊥u and v2⊥u, then (v1 + v2)⊥u.
5. There exists a scalar a such that v⊥av + u. (In R

n, this corresponds to saying
that any plane containing a vector v contains a vector perpendicular to v.)

It is a natural question to study the above properties for any given definition
of orthogonality. All the above definitions clearly satisfy symmetry. James [44,
Theorem 4.7, Theorem 4.8, Theorem 5.2, Theorem 5.3] proved that if isosceles

1We learnt this characterization of orthogonality in R
n from Amber Habib.



Birkhoff–James Orthogonality and Applications: A Survey 295

or Phythagorean orthogonality satisfy homogeneity or (left or right) additivity, then
V has to be an inner product space. These orthogonalities have been extensively
studied in [3, 44, 78].

In [16], Birkhoff defined a concept of orthogonality, of which several properties
were studied by James in [45]. An element v is said to be Birkhoff–James orthogonal
to u if ‖v‖ ≤ ‖v + ku‖ for all scalars k. The analogy in R

n is that if two lines L1
and L2 intersect at p, then L1 ⊥ L2 if and only if the distance from a point of L2
to a given point q of L1 is never less than the distance from p to q . This definition
clearly satisfies the homogeneity property. In [45, Corollary 2.2], it was shown that
this definition also satisfies (4). But it lacks symmetry, for example, in (R2, ‖·‖max),
where ‖(t1, t2)‖max = max{|t1|, |t2|}, take v = (1, 1) and u = (1, 0) (v ⊥ u but
u �⊥ v). It is not right additive, for example, in (R2, ‖ · ‖max), take v = (1, 1),
u1 = (1, 0) and u2 = (0, 1). It is also not left additive, for example, in (R2, ‖·‖max),
take v1 = (1, 1), v2 = (0,−1) and u = (1, 0).

Let W be a subspace of V . Then an element v ∈ V is said to be Birkhoff–James
orthogonal to W if v is Birkhoff–James orthogonal to w for all w ∈ W . A closely
related concept is that of a best approximation to a point in a subspace. An element
w0 ∈ W is said to be a best approximation to v in W if ‖v −w0‖ ≤ ‖v −w‖
for all w ∈ W . Note that w0 is a best approximation to v in W if and only if
v − w0 is Birkhoff–James orthogonal to W . These are also equivalent to saying
that dist(v,W) := inf{‖v − w‖ : w ∈ W } = ‖v −w0‖. So v is Birkhoff–James
orthogonal to W if and only if dist(v,W) is attained at 0. Therefore the study of
these concepts go hand in hand (see [89]). This is one of the reasons that this
definition of orthogonality, even though not symmetric, is still being extensively
studied in literature. Henceforward, orthogonality will stand for Birkhoff–James
orthogonality.

Recently, a lot of work has been done in the form of applications of this concept
of orthogonality and the main goal of this survey article is to bring all the related
work under one roof. In Sect. 2, we mention the connections between orthogonality
and geometry of normed spaces. We also deal with the question as to when the
orthogonality is symmetric or (left or right) additive. This leads us to the study
of various related notions like characterizations of smooth points and extreme
points, subdifferential set, ϕ-Gateaux derivatives etc. In Sect. 3, characterizations of
orthogonality in various Banach spaces are discussed along with some applications.
In Sect. 4, these characterizations are used to obtain distance formulas in some
Banach spaces. Some of the stated results are new and will appear in more detail
in [35]. Theorems 4.5, 4.6 and 4.7 are the new results given with proofs only here.

2 Orthogonality and Geometry of Normed Spaces

A hyperplane is a closed subspace of codimension one. A connection between the
concept of orthogonality and hyperplanes is given in the next theorem. An element
v is orthogonal to a subspace W if and only if there exists a linear functional f on
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V such that ‖f ‖ = 1, f (w) = 0 for all w ∈ W and f (v) = ‖v‖ (see [89, Theorem
1.1, Ch. I]). This is equivalent to the following.

Theorem 2.1 ([45, Theorem 2.1]) Let W be a subspace of V . Let v ∈ V . Then v

is orthogonal to W if and only if there is a hyperplane H with v orthogonal to H

and W ⊆ H .

By the Hahn–Banach theorem and Theorem 2.1, it is easy to see that any element
of a normed space is orthogonal to some hyperplane (see [45, Theorem 2.2]). The
relation between orthogonality and hyperplanes is much deeper. We first recall some
definitions. For v ∈ V , we say S ⊆ V supports the closed ball D[v, r] := {x ∈ V :
‖x − v‖ ≤ r} if dist(S,D[v, r]) = 0 and S ∩ Int D[v, r] = ∅. This is also
equivalent to saying that dist(v, S) = r (see [89, Lemma 1.3, Ch. I]). Let v0 be an
element of the boundary of D[v, r]. A hyperplane H is called a support hyperplane
to D[v, r] at v0 if H passes through v0 and supports D[v, r], and it is called a
tangent hyperplane to D[v, r] at v0 if H is the only support hyperplane to D[v, r]
at v0. A real hyperplane is a hyperplane in V , when V is considered as a real normed
space.

Theorem 2.2 ([89, Theorem 1.2, Ch. I]) Let W be a subspace of V . Let v ∈ V .
Then v is orthogonal to W if and only if there exists a support hyperplane to D[v, r]
at 0 passing through W if and only if there exists a real hyperplane which supports
the closed ball D[v, ‖v‖] at 0 and passes through W .

A direct consequence follows. If W is a non-trivial subspace of V , then 0 is the
unique best approximation of v in W if and only if there exists a tangent hyperplane
to D[v, r] at 0 passing through W (see [89, Corollary 1.5, Ch. I]).

The above results are related to the questions as to when the orthogonality is (left
or right) additive or symmetric. It was shown in [45, Theorem 5.1] that orthogonality
is right additive in V if and only if for any unit vector v ∈ V , there is a tangent
hyperplane to D[v, ‖v‖] at 0. There are other interesting characterizations for
(left or right) additivity of orthogonality. To state them, some more definitions are
required. A normed space V is called a strictly convex space if given any v1, v2 ∈ V ,
whenever ‖v1‖+‖v2‖ = ‖v1 + v2‖ and v2 �= 0, then there exists a scalar k such that
v1 = kv2. This is also equivalent to saying that if ‖v1‖ = ‖v2‖ = 1 and v1 �= v2,
then ‖v1 + v2‖ < 2. The norm ‖·‖ is said to be Gateaux differentiable at v if

lim
h→0

‖v + hu‖ − ‖v‖
h

exists for all u ∈ V .
Now we have the following characterizations for the orthogonality to be right

additive in V .

Theorem 2.3 The following statements are equivalent.

1. Orthogonality is right additive.
2. Norm is Gateaux differentiable at each nonzero point.
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3. For v ∈ V , there exists a unique functional f of norm one on V such that f (v) =
‖v‖.

4. For v ∈ V , there is a tangent hyperplane to D[v, ‖v‖] at 0.

If V is a reflexive space, then the above are also equivalent to the following
statements.

(5) Any bounded linear functional on a given subspace of V has a unique norm
preserving Hahn–Banach extension on V .

(6) The dual space V ∗ is strictly convex.

Proof Equivalence of (1) and (2) is proved in [45, Theorem 4.2] and equivalence
of (1), (3) and (4) is proved in [45, Theorem 5.1]. For a reflexive space, equivalence
of (1) and (5) is given in [45, Theorem 5.7]. Equivalence of (5) and (6) is a routine
exercise in functional analysis. 	

Characterization of inner product spaces of dimension three or more can be given in
terms of (left or right) additivity or symmetry of orthogonality. Birkhoff [16] gave a
necessary and sufficient condition for a normed space of dimension at least three to
be an inner product space, and examples to justify the restriction on the dimension.
James [45, Theorem 6.1] showed that a normed space of dimension at least three is
an inner product space if and only if orthogonality is right additive and symmetric
if and only if the normed space is strictly convex and orthogonality is symmetric.
Later, James improved his result and proved a much stronger theorem.

Theorem 2.4 ([46, Theorem 1, Theorem 2]) Let V be a normed space of dimen-
sion at least three. Then V is an inner product space if and only if orthogonality is
symmetric or left additive.

A characterization of orthogonality to be symmetric or left additive in a normed
space of dimension two can be found in [2]. Several other necessary and sufficient
conditions for a normed space to be an inner product space are given in [2, 44]. This
problem has also been extensively studied in [3, 89].

An element v is called a smooth point of D[0, ‖v‖] if there exists a hyperplane
tangent to D[v, ‖v‖] at 0. We say v is a smooth point if it is a smooth point
of D[0, ‖v‖]. Equivalently, v is a smooth point if there exists a unique affine
hyperplane passing through v which supports D[0, ‖v‖] at v (such an affine
hyperplane is called the affine hyperplane tangent to D[0, ‖v‖] at v). A normed
space is called smooth if all its vectors are smooth points. By Theorem 2.3, we get
that orthogonality in a normed space is right additive if and only if the normed space
is smooth. We also have that v is a smooth point if and only if the norm function is
Gateaux differentiable at v:

Theorem 2.5 Let v ∈ V . The norm function is Gateaux differentiable at v if and
only if there is a unique f ∈ V ∗ such that ‖f ‖ = 1 and f (v) = ‖v‖. In this
case, the Gateaux derivative of the norm at v is given by Re f (u) for all u ∈ V . In
addition, for u ∈ V , we have that v is orthogonal to u if and only if f (u) = 0.
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Smooth points and this connection with Gateaux differentiability was studied in
[1, 22, 52, 53] and many interesting results can be obtained as their applications. Let
the space of continuous functions on a compact Hausdorff space X be denoted by
C(X) and let the space of bounded continuous functions on a normal space � be
denoted by Cb(�). Kečkić [53, Corollary 2.2, Corollary 3.2] gave characterizations
of smooth points in C(X) and Cb(�). A characterization of smooth points in B(H)

was given in [52, Corollary 3.3]. For H separable, Abatzoglou [1, Corollary 3.1]
showed that the operators in B(H) of unit norm which are also smooth points are
dense in the unit sphere ofB(H). In K(H), this result was first proved by Holub [42,
Corollary 3.4]. Heinrich [40, Corollary 2.3] generalized this result for K(V1, V2),
where V1 is a separable reflexive Banach space and V2 is any normed space. He
proved that the operators which attain their norm at a unique unit vector (upto scalar
multiplication) are dense in K(V1, V2).

In this paragraph, H is a separable Hilbert space. Schatten [86] proved that
D[0, 1] in K(H) has no extreme points. In [42], the geometry of K(H) and its
dual B1(H), the trace class, was studied by characterizing the smooth points and
extreme points of their closed unit balls. It was shown in [42, Corollary 3.1] that
the trace class operators of rank one and unit norm are exactly the extreme points of
D[0, 1] in B1(H). The space B1(H) is predual of B(H) and hence is isometrically
isomorphic to a subspace of B(H)∗. An interesting result in [1, Corollary 3.3] is
that all the trace class operators of rank one and unit norm are also extreme points
of D[0, 1] in B(H)∗. In [40], this study was continued to understand the geometry
of K(V1, V2), B(V1, V2) and the weak tensor product of V1 and V2, where V1 and
V2 are Banach spaces. Characterizations of Gateaux differentiability and Fréchet
differentiability of the norm at an operator T in these spaces were obtained. For
Schatten classes of H, this problem was addressed in [1, Theorem 2.2, Theorem
2.3]. In [1, Theorem 3.1], another characterization of Fréchet differentiability of
the norm at T in B(H) was given, an alternative proof of which can be found in
[72, Theorem 4.6]. In [40, Corollary 2.2], a necessary and sufficient condition for
0 �= T ∈ K(V1, V2) to be a smooth point is obtained, where V1 is a reflexive Banach
space and V2 is any Banach space. It is shown that such a T is a smooth point if and
only if T attains its norm on the unique unit vector x0 (up to a scalar factor) and
T x0 is a smooth point. (This was proved for K(H) in [42, Theorem 3.3].) Recently,
as an application of orthogonality, it was shown in [72, Theorem 4.1, Theorem 4.2]
that this characterization also holds when V2 is any normed space (not necessarily
complete).

If T ∈ B(V1, V2) attains its norm on the unique unit vector x0 (up to a scalar
factor) and T x0 is a smooth point of V2, then T is said to satisfy Holub’s condition
(see [39]). Then Theorem 4.1 and Theorem 4.2 in [72] say that for a reflexive
Banach space V1 and any normed space V2, smooth points of K(V1, V2) are exactly
those operators which satisfy Holub’s condition. This characterization may not hold
if T is not compact (see [39, Example (a)]) or when V1 is not a reflexive space
(see [39, Example (b), Example (c)]). In the case when V1 is not a reflexive space,
usually some extra condition is needed along with Holub’s condition to characterize
smooth points. For example, Corollary 1 in [37] states that for 1 < p, r < ∞,
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a necessary and sufficient condition for T ∈ B(lp, lr ) to be a smooth point is
that T satisfies Holub’s condition and dist(T ,K(lp, lr )) < ‖T ‖. As an application
of orthogonality, it is proved in [60, Theorem 4.5] that for any normed spaces
V1, V2, if T ∈ B(V1, V2) attains its norm and is a smooth point, then T satisfies
Holub’s condition and dist(T ,K(V1, V2)) < ‖T ‖. The converse is true when V1 is
a reflexive Banach space and V2 is any Banach space and K(V1, V2) is an M-ideal
in B(V1, V2) (see [60, Theorem 4.6]). It is an open question whether or not these
extra assumptions on V1 and V2 are required. Some sufficient conditions, along with
Holub’s condition, for an operator to be smooth are also known when the underlying
field is R. If V1 is a real Banach space and V2 is a real normed space, one such
condition for smooth points in B(V1, V2) is given in [72, Theorem 4.3]. When V1
and V2 are any real normed spaces, such conditions are given in [82, Theorem 3.2]
and [84, Theorem 3.4]. The extra condition which along with Holub’s condition
gives the characterization for smoothness of any non zero norm attaining operator
T ∈ B(V1, V2) (for any real normed spaces V1, V2) is obtained in [84, Theorem
3.3]. For further study of smooth points, we refer the readers to [36, 57, 73–75, 102].

Extreme points of D[0, 1] are important because of Krein–Milman theorem.
Along with the extreme points, the faces of D[0, 1] in any normed space have
also been of interest. (Note that the extreme points are exactly faces with a
single element.) Let Mn(R) or Mn(C) be equipped with any unitarily invariant
norm, ||| · ||| (that is, for any matrix A and U,U ′ unitary, |||UAU ′||| = |||A|||).
Then there is a unique symmetric gauge function � on R

n such that |||A||| =
�((s1(A), . . . , sn(A)), where si (A) are singular values of A arranged as s1(A) ≥
· · · ≥ sn(A). Ziętak [108, Theorem 5.1] showed that a necessary and sufficient
condition for a matrix A to be an extreme point of the closed unit ball in
(Mn(R), ||| · |||) is that (s1(A), . . . , sn(A)) is an extreme point of the closed unit ball
in (Rn,�). This result was extended to Mn(C) in [90, Theorem 1] (these results also
follow from the results in [11]). Li and Schneider [58, Proposition 4.1] characterized
the extreme points of D[0, 1] in Mn(R) and Mn(C), equipped with the dual of an
induced norm. In B(H), the extreme points of D[0, 1] are exactly the isometries
and the coisometries (see [38, p. 263]). It was proved in [95, Theorem 2.5] that
A ∈ B(H) is an isometry or a coisometry if and only if ‖A‖ = 1 and A is right
symmetric (for definition, see [30]). So the extreme points of D[0, 1] in B(H) are
precisely those operators which are of unit norm and are also right symmetric. There
is also a concept of a left symmetric operator, the study of which can be found in
[30, 71, 81, 96].

Theorem 2, Theorem 3 and Theorem 4 in [90] give characterizations of proper
closed faces in Mn(C), equipped with Schatten p-norms. Theorem 4.1 in [109] and
the discussion above it give a characterization of faces of D[0, 1] in (Mn(C), ||| · |||)
as follows: F is a face of (Mn(C), ||| · |||) if and only if there exists A ∈ Mn(C) such
that F is a face of ∂|||A|||∗, the subdifferential set of ||| · |||∗ at A, where ||| · |||∗ is
the dual norm of ||| · |||. In a normed space V , the subdifferential set of a continuous
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convex function g : V → R at v ∈ V is denoted by ∂g(v), and is defined as the set
of bounded linear functionals f ∈ V ∗ satisfying the below condition:

g(u)− g(v) ≥ Re f (u− v) for all u ∈ V.

It is a non-empty weak* compact convex subset of V ∗. The below two propositions
are easy to check. We refer the readers to [33, 41] for more details.

Proposition 2.6 Let v ∈ V . Then

∂‖v‖ = {f ∈ V ∗ : Re f (v) = ‖v‖, ‖f ‖ ≤ 1}.

In particular, for A ∈ Mn(C),

∂|||A||| = {G ∈ Mn(C) : Re tr(G∗A) = |||A|||, |||G|||∗ ≤ 1}.

Proposition 2.7 Let u, v ∈ V . Then we have

lim
t→0+

‖v + tu‖ − ‖v‖
t

= max{Re f (u) : f ∈ V ∗, ‖f ‖ = 1, f (v) = ‖v‖}.

Using this, Watson [97, Theorem 4] gave a characterization of ∂||| · ||| in the space
(Mn(R), ||| · |||). Ziętak [109, Theorem 3.1, Theorem 3.2] improved this result and
showed the following.

Theorem 2.8 ([109, Theorem 3.1, Theorem 3.2]) For A ∈ Mn(C),

∂|||A||| ={Udiag(d1, . . . , dn)U
′∗ : A = U�U ′∗ is a singular value

decomposition ofA,
∑

si (A)di = |||A||| = �((s1, . . . , sn)),

�∗((d1, . . . , dn)) = 1}.

In [98, Theorem 1], the above result was proved using a different approach. For the
operator norm ‖ · ‖ on Mn(C), we have the following.

Corollary 2.9 ([98, Example 3]) For A ∈ Mn(C),

∂‖A‖ = conv {uv∗ : ‖u‖ = ‖v‖ = 1, Av = ‖A‖u},

where conv S denotes the convex hull of a set S.

Along the similar lines of [97] (that is, by using Proposition 2.7), the subdifferential
set of the Ky Fan k-norms, ‖ · ‖(k), on Mn(C) was obtained in [34]. In [15, 32–
34], the subdifferential set was used to obtain characterizations of orthogonality in
Mn(C), equipped with various norms.
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Actually the right hand derivative has a deeper connection with orthogonality
as explored by Kečkić [51], where the author introduced the notion of ϕ-Gateaux
derivatives: for u, v ∈ V and ϕ ∈ [0, 2π), the ϕ-Gateaux derivative of norm at v in
the direction u is defined as

Dϕ,v(u) = lim
t→0+

‖v + teιϕu‖ − ‖v‖
t

.

These always exist for any two vectors u and v (see [51, Proposition 1.2]). A
characterization of orthogonality follows.

Theorem 2.10 ([51, Theorem 1.4]) Let u, v ∈ V . Then v is orthogonal to u if and
only if

inf
0≤ϕ≤2π

Dϕ,v(u) ≥ 0.

In [52, Theorem 2.4], the expression for the ϕ-Gateaux derivative of the norm on
B(H) was obtained. Using the above proposition, a characterization of orthogonal-
ity in B(H) was given in [52, Corollary 3.1], which was first proved in [14] using a
completely different approach. This characterization of orthogonality and many of
its generalizations are the main content of the next section.

3 Characterizations and Applications of Orthogonality

Bhatia and Šemrl [14] gave characterizations of orthogonality in B(H) in terms of
orthogonality of vectors in the underlying Hilbert space H. These are given in the
next two theorems. An independent proof of Theorem 3.2 was also given by Paul
[70].

Theorem 3.1 ([14, Theorem 1.1]) Let A,B ∈ Mn(C). Then A is orthogonal to
B if and only if there exists a unit vector x ∈ C

n such that ‖Ax‖ = ‖A‖ and
〈Ax|Bx〉 = 0.

Let ‖·‖ be any norm on C
n or Rn and let ‖·‖′ be the corresponding induced norm on

Mn(C) or Mn(R), respectively. It was conjectured in [14, Remark 3.3] that a matrix
A is orthogonal to another matrix B in (Mn(C), ‖·‖′) if and only if there exists a unit
vector x ∈ C

n such that ‖Ax‖ = ‖A‖′ and Ax is orthogonal to Bx in (Cn, ‖·‖).
Li and Schneider [58, Example 4.3] gave an example to show that the conjecture is
false in Mn(C) as well as in Mn(R). In (Mn(C), ‖ · ‖′) (or (Mn(R), ‖ · ‖′)), a matrix
A is said to satisfy BŠ property if for any matrix B, whenever A is orthogonal to B,
there exists a unit vector x such that ‖Ax‖ = ‖A‖′ and Ax is orthogonal to Bx in
(Cn, ‖ · ‖) (or (Rn, ‖ · ‖)) (see [80, Definition 1.1]). It was proved in [13] that
(Rn, ‖·‖) is an inner product space if and only if every A ∈ Mn(R) satisfies BŠ
property. In [80, Theorem 2.2], it was shown that if (Rn, ‖·‖) is a smooth space
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and A ∈ Mn(R) is such that {x ∈ R
n : ‖x‖ = 1, ‖Ax‖ = ‖A‖′} is a countable

set with more than two points, then A does not satisfy BŠ property. Example 4.3
in [58] for Mn(R) is a special case of this. It was shown in [79, Corollary 2.1.1]
that if A ∈ Mn(R) attains its norm at exactly two points, then A satisfies BŠ
property. A generalization of this theorem can be found in [101, Theorem 3.1]. In
[79, Theorem 2.1], another sufficient condition for A to satisfy BŠ property was
given. If (Rn, ‖·‖) is a strictly convex space, then the collection of the matrices
which satisfy BŠ property are dense in Mn(R) (see [80, Theorem 2.6]).

Theorem 3.2 ([14, Remark 3.1], [70, Lemma 2]) Let H be a complex Hilbert
space. Let A,B ∈ B(H). Then A is orthogonal to B if and only if there exists a
sequence of unit vectors hn ∈ H such that ‖Ahn‖ → ‖A‖ and 〈Ahn|Bhn〉 → 0, as
n →∞.

When H is an infinite dimensional space, one can’t expect to get a single vector h
in Theorem 3.2 such that ‖Ah‖ = ‖A‖ and 〈Ah|Bh〉 = 0. In fact it was proved in
[72, Theorem 3.1] that for A ∈ B(H), the following are equivalent.

(a) For B ∈ B(H), A is orthogonal to B if and only if there exists a unit vector
h ∈ H such that ‖Ah‖ = ‖A‖ and 〈Ah|Bh〉 = 0.

(b) There exists a finite dimensional subspace H0 of H such that

{h ∈ H : ‖h‖ = 1, ‖A‖ = ‖Ah‖} = {h ∈ H0 : ‖h‖ = 1} and
∥
∥
∥A|H⊥

0

∥
∥
∥ < ‖A‖ .

It was noted in [14] that Theorem 3.1 is equivalent to saying that for A,B ∈
Mn(C),

dist(A,CB) = max
{∣
∣〈Ax|y〉∣∣ : ‖x‖ = ‖y‖ = 1 and y⊥Bx

}
. (3.1)

It is natural to expect that in the infinite dimensional case, we should have for A,B ∈
B(H),

dist(A,CB) = sup
{∣
∣〈Ax|y〉∣∣ : ‖x‖ = ‖y‖ = 1 and y⊥Bx

}
. (3.2)

This was indeed shown to be true in [14] by using the approach given in [5, p.
207]. We would like to point out that the book [5] deals with only separable spaces.
However the arguments can be modified by replacing the sequence of finite rank
operators converging pointwise to the identity operator by a net with this property.
Since the same proof as in [5, p. 207] was used in the proof of Theorem 2.4 of [96],
a similar modification is required there too.

Later, several authors have used different methods to prove Theorem 3.2. One of
these techniques was given in [7, Remark 2.2] using a different distance formula [7,
Proposition 2.1]. Another approach in [52, Corollary 3.1] uses Theorem 2.10 and
the expression for the ϕ-Gateaux derivative of the norm on B(H) (which is given
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in [52, Theorem 2.4]). Using Theorem 2.10, Wójcik [99] extended Theorem 3.1 for
compact operators between two reflexive Banach spaces over C:

Theorem 3.3 ([99, Theorem 3.1]) Let V1 and V2 be reflexive Banach spaces over
C. Suppose A,B ∈ K(V1, V2) and A �= 0. Then A is orthogonal to B if and only if

min{max{Dϕ,Ay(By) : ‖y‖ = 1, ‖Ay‖ = ‖A‖} : ϕ ∈ [0, 2π)} ≥ 0.

Let H1 and H2 be Hilbert spaces. In K(H1,H2), the above theorem reduces to
saying that for A,B ∈ K(H1,H2), A is orthogonal to B if and only if there is a unit
vector h ∈ H1 such that ‖Ah‖ = ‖A‖ and 〈Ah|Bh〉 = 0. But this is not always the
case with reflexive Banach spaces.

An alternate proof of Theorem 3.1 was given in [15] by first giving a character-
ization of ‖A‖ ≤ ‖A + tB‖ for all t ∈ R using Corollary 2.9, and then extend the
result to complex scalars to obtain Theorem 3.1. In [96], ‖A‖ ≤ ‖A + tB‖ for all
t ∈ R is termed as A is r-orthogonal to B, and the same characterization as in [15]
is given for r-orthogonality using a different approach. Using the same idea as in
[15, Theorem 2.7], a proof of Theorem 3.1 was given in [96, Corollary 2.2].

The technique of using the subdifferential set as done in [15] has advantages that
it gives a way to generalize Theorem 3.1 to characterize orthogonality to a subspace
of Mn(C).

Theorem 3.4 ([32, Theorem 1]) Let A ∈ Mn(C). Let m(A) denotes the multiplic-
ity of maximum singular value ‖A‖ of A. Let B be any (real or complex) subspace
of Mn(C). Then A is orthogonal to B if and only if there exists a density matrix P

of complex rank at most m(A) such that A∗AP = ‖A‖2 P and tr(APB∗) = 0 for
all B ∈ B.

Theorem 3.4 can be expressed in terms of states on Mn(C). Let A be a unital C∗-
algebra over F(= R or C) with the identity element 1A. For F = C, a state on A
is a linear functional φ on A which takes 1A to 1 and positive elements of A to
non-negative real numbers. For F = R, an additional requirement for φ to be a state
is that φ(a∗) = φ(a) for all a ∈ A. Let SA denotes the set of states on A. Recently,
the authors noticed in [35] that if P is a density matrix such that tr(A∗AP) = ‖A‖2,
then P is a matrix of complex rank atmost m(A) such that A∗AP = ‖A‖2 P (the
proof of this fact is along the lines of proof of Theorem 1.1 in [14]). Due to this
fact, the above theorem can be restated in terms of states on Mn(C) as follows: A is
orthogonal to B if and only if there exists φ ∈ SMn(C) such that φ(A∗A) = ‖A‖2 and
φ(AB∗) = 0 for all B ∈ B. In a general complex C∗-algebra A, it was shown in [7,
Theorem 2.7] that an element a ∈ A is orthogonal to another element b ∈ A if and
only if there exists φ ∈ SA such that φ(a∗a) = ‖a‖2 and φ(a∗b) = 0. A different
proof of this result was given in [15, Proposition 4.1]. Theorem 6.1 in [76] shows
that if B is a unital C∗-subalgebra of a complex C∗-algebra A and if a Hermitian
element a of A is orthogonal to B, then there exists φ ∈ SA such that φ(a2) = ‖a‖2

and φ(ab+b∗a) = 0 for all b ∈ B. Recently, the authors have extended these results
to any (real or complex) C∗-algebra A for any element a ∈ A and any subspace B
of A (see [35]). These are given in the next theorem.
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If A is a complex (or real) unital C∗-algebra, then the triple (H, π, ξ) denotes
a cyclic representation of A, where H is a complex (or real) Hilbert space and
π : A→ B(H) is a ∗-algebra map such that π(1A) = 1B(H) and {π(a)ξ : a ∈ A}
is dense in B(H). For φ ∈ SA, there exists a cyclic representation (H, π, ξ) such
that φ(a) = 〈π(a)ξ |ξ〉 for all a ∈ A (see [21, p. 250], [31, Proposition 15.2]).

Theorem 3.5 ([35, Corollary 1.3]) Let a ∈ A. Let B be a subspace of A. Then the
following are equivalent.

1. a is orthogonal to B.
2. There exists φ ∈ SA such that φ(a∗a) = ‖a‖2 and φ(a∗b) = 0 for all b ∈ B.
3. There exists a cyclic representation (H, π, ξ) such that ‖π(a)ξ‖ = ‖a‖ and
〈π(a)ξ |π(b)ξ〉 = 0 for all b ∈ B.

When A = C(X), Theorem 3.5 and Riesz Representation Theorem yield the
following theorem by Singer [89, Theorem 1.3, Ch. I].

Corollary 3.6 ([89, Theorem 1.3, Ch. I]) Let f ∈ C(X). Let B be a subspace of
C(X). Then f is orthogonal to B if and only if there exists a probability measure μ

on X such that

dist(a,B)2 =
∫

X

|f |2dμ and
∫

X

f hdμ = 0

for all h ∈ B.

The condition

‖f ‖2∞ = dist(a,B)2 =
∫

X

|f |2dμ

is equivalent to saying that the support of μ is contained in the set {x ∈ X : |f (x)| =
‖f ‖∞}. When B is one dimensional, this was proved in [53, Corollary 2.1] using
Theorem 2.10.

Characterizations of orthogonality have been studied in several normed spaces.
Using Theorem 2.10, a characterization of orthogonality in Cb(�) was obtained in
[53, Corollary 3.1]. In the Banach spaces L1(X, ν) and c0, Theorem 2.10 was used
to obtain such characterizations in [51, Example 1.6, Example 1.7]. For a separable
Hilbert space H, expressions for ϕ-Gateaux derivative of the norms on B1(H)

and K(H) were given in [51, Theorem 2.1, Theorem 2.6] and were used to give
characterizations of orthogonality in these spaces in [51, Corollary 2.5, Corollary
2.8]. Using tools of subdifferential calculus, characterizations of orthogonality in
(Mn(C), ‖·‖(k)) are given in [34, Theorem 1.1, Theorem 1.2]. A necessary condition
for orthogonality of a matrix A to a subspace in (Mn(C), ‖ · ‖(k)) is given in
[34, Theorem 1.3]. Under the condition that sk(A) > 0, the same condition is
shown to be sufficient also. Using [89, Theorem 1.1, Ch. II], a characterization
of orthogonality in Mn(C), with any norm, is given in [58, Proposition 2.1] in
terms of the dual norm. Using this, orthogonality in Mn(C), with induced norms, is
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obtained in [58, Proposition 4.2]. In Mn(C), with Schatten p-norms (1 ≤ p ≤ ∞),
characterizations of orthogonality are given in [58, Theorem 3.2, Theorem 3.3]. For
1 < p < ∞, this was also given in [14, Theorem 2.1].

Orthogonality has been characterized in more general normed spaces, namely,
Hilbert C∗-modules. It was shown in [7, Theorem 2.7] that in a Hilbert C∗-module
E over a complex unital C∗-algebra A, an element e1 ∈ E is orthogonal to another
element e2 ∈ E if and only if there exists φ ∈ SA such that φ(〈e1|e1〉) =
‖e1‖2 and φ(〈e1|e2〉) = 0. Another proof of this result was given in [15, Theorem
4.4]. This can be generalized to obtain a characterization of orthogonality to
subspaces of Hilbert C∗-modules as follows.

Theorem 3.7 ([35, Theorem 3.5]) Let E be a Hilbert C∗-module over a unital
complex C∗-algebra A. Let e ∈ E . Let F be a subspace of E . Then e is orthogonal
to F if and only if there exists φ ∈ SA such that φ(〈e|e〉) = ‖e‖2 and φ(〈e|f 〉) = 0
for all f ∈ F .

A proof of Theorem 3.7 can be found in [35]. Alternatively, this can also be proved
along the same lines of the proof of [7, Theorem 2.4] by finding a generalization
of the distance formula [7, Proposition 2.3] to a subspace. This extension of the
distance formula is mentioned in the next section.

We end this section with various directions of research happening around the
concept of orthogonality, where it comes into play naturally. In Hilbert C∗-modules,
the role of scalars is played by the elements of the underlyingC∗-algebra. Using this
fact, a strong version of orthogonality was introduced in Hilbert C∗-modules in [8].
For a left Hilbert C∗-module, an element e1 ∈ E is said to be strong orthogonal
to another element e2 ∈ E if ‖e1‖ ≤ ‖e1 + ae2‖ for all a ∈ A. Clearly, if e1
is strong orthogonal to e2, then we have e1 is orthogonal to e2. However, strong
orthogonality is weaker than inner product orthogonality in E (see [8, Example
2.4]). Necessary and sufficient conditions are studied in [7, Theorem 3.1] and [9,
Theorem 3.5, Corollary 4.9], when any two of these three orthogonalities coincide
in a full Hilbert C∗-module. In [10, Theorem 2.6], it was shown that in a full
Hilbert C∗-module, strong orthogonality is symmetric if and only if Birkhoff–
James orthogonality is symmetric if and only if strong orthogonality coincides with
inner product orthogonality. Theorem 2.5 of [8] gives characterization of strong
orthogonality in terms of Birkhoff–James orthogonality.

Characterizations of orthogonality are also useful in finding conditions for
equality in triangle inequality in a normed space:

Proposition 3.8 ([7, Proposition 4.1]) Let V be a normed space. Let u, v ∈ V .
Then the following are equivalent.

1. ‖u+ v‖ = ‖u‖ + ‖v‖.
2. v is orthogonal to ‖u‖v − ‖v‖u.
3. u is orthogonal to ‖u‖v − ‖v‖u.

This can be extended to the case of arbitrarily finite families of vectors (see [7,
Remark 4.2]). As mentioned in [7, Remark 4.2], a characterization of triangle
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equality in a pre-Hilbert C∗-module given in [6, Theorem 2.1] can be proved
using Theorem 3.7 and Proposition 3.8. For the study of various other equivalent
conditions for equality in triangle inequality or Pythagoras equality, the interested
reader is referred to [6, 7, 69].

In a normed linear space V , an element u is said to be norm-parallel to another
element v (denoted by u ‖ v) if ‖u+ λv‖ = ‖u‖ + ‖v‖ for some λ ∈ F with
|λ| = 1 [87]. In the case of inner product spaces, the norm-parallel relation is exactly
the usual vectorial parallel relation, that is, u ‖ v if and only if u and v are linearly
dependent. Seddik [87] introduced this concept while studying elementary operators
on a standard operator algebra. Interested readers for the work on elementary
operators and orthogonality are referred to [4, 25, 26, 87, 88, 103], and also to [7,
Theorem 4.7] and [51, Section 3].

As a direct consequence of Proposition 3.8, norm-parallelism can be character-
ized using the concept of orthogonality (this characterization is also given in [68,
Theorem 2.4]). So the results on orthogonality can be used to find results on norm-
parallelism, for example, see [68, Proposition 2.19] for Mn(C) equipped with the
Schatten p-norms and [34, Remark 2] for (Mn(C), ‖ · ‖(k)). The characterizations
of norm-parallelism in C(X) are given in [105], and in B1(H) and K(H) are
given in [104]. Other results in B(V1, V2) (with restrictions on V1 and V2, and the
operators) are given in [100, 107]. Some of these results can be obtained by using
[68, Theorem 2.4] and the corresponding results on orthogonality. Some variants of
the definition of norm-parallelism have been introduced in [61, 104, 106]. Concepts
of approximate Birkhoff–James orthogonality and ε-Birkhoff orthogonality have
been studied in [19, 20, 23, 24, 43, 60, 83]. The idea to define these concepts
of approximate Birkhoff–James orthogonality and ε-Birkhoff orthogonality in a
normed space is to generalize the concept of approximate orthogonality in inner
product spaces, which is defined as v⊥εu ⇐⇒ ∣

∣〈v|u〉∣∣ ≤ ε ‖v‖ ‖u‖. The latter has
been studied in [18] and [101, Section 5.2].

4 Distance Formulas and Conditional Expectations

An important connection of orthogonality with distance formulas was noted in (3.1)
and (3.2). From (3.1), we also get that for any A ∈ Mn(C),

dist(A,C1Mn(C)) = max
{∣
∣〈Ax|y〉∣∣ : ‖x‖ = ‖y‖ = 1 and y⊥x

}
.

Using this, one obtains

dist(A,C1Mn(C)) = 2 max{∥∥U ′AU ′∗ − UAU∗∥∥ : U,U ′ unitary}
= 2 max{‖AU − UA‖ : U unitary}
= 2 max{‖AT − TA‖ : T ∈ Mn(C), ‖T ‖ = 1}. (4.1)
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This was proved in [14, Theorem 1.2] and the discussion after that. The operator
δA(T ) = AT − TA on Mn(C) is called an inner derivation. So this gives that
‖δA‖ = 2 dist(A,C1Mn(C)). This was also extended to the infinite dimensional case
in [14, Remark 3.2]. These results were first proved by Stampfli [91] using a com-
pletely different approach. Since all the derivations on B(H) are inner derivations
(see [49, Theorem 9]), the norm of any derivation on B(H) is 2 dist(A,C1B(H)),
for some A ∈ B(H). For A,B ∈ B(H), let δA,B(T ) = AT − TB for all
T ∈ B(H). In [91, Theorem 8], an expression for the norm of the elementary
operator δA,B is given. In [91, Theorem 5], a distance formula was obtained in an
irreducible unital C∗-algebra as follows.

Theorem 4.1 ([91, Theorem 5]) Let H be a complex Hilbert space. Let B be an
irreducible unital C∗-subalgebra of B(H). Let A ∈ B. Then

2 dist(A,C1B(H)) = sup{‖AT − T A‖ : T ∈ B and ‖T ‖ = 1} = ‖δA|B‖ .

By the Russo–Dye theorem [17, II.3.2.15], under the assumptions of the above
theorem, we obtain

2 dist(A,C1B(H)) = sup{‖AU − UA‖ : U ∈ B and U is unitary}. (4.2)

Expressions for the norm of a derivation on von Neumann algebras can be found in
[29]. The most important fact used here is that all the derivations on von Neumann
algebras are inner. This was a conjecture by Kadison for a long time and was proved
in [85]. More on derivations on a C∗-algebra can be found in [47, 48, 67, 110]. A
lot of work has been done to answer the question when the range of a derivation
is orthogonal to its kernel. It was proved in [4, Theorem 1.7] that if N is a normal
operator in B(H), then the kernel of δN is orthogonal to the range of δN . In [54,
Theorem 1], it was shown that the Hilbert–Schmidt operators in the kernel of δN are
orthogonal to the Hilbert–Schmidt operators in the range of δN , in the usual Hilbert
space sense. In [59, Theorem 3.2(a)], the Schatten p-class operators in the kernel
of δN were shown to be orthogonal to the Schatten p-class operators in the range
of δN , in the Schatten p-norm. A similar result for the orthogonality in unitarily
invariant norms defined on the norm ideals of K(H) is given in [55, Theorem 1].
For related study on derivations, elementary operators and orthogonality in these
normed spaces, see [27, 50, 56, 62–66, 92–94].

Similar to (4.2), an expression for the distance of an element of a general C∗-
algebra from a C∗-subalgebra can be obtained from the below theorem of Rieffel
[76].

Theorem 4.2 ([76, Theorem 3.2]) Let A be a C∗-algebra. Let B be a C∗-
subalgebra of A which contains a bounded approximate identity for A. Let a ∈ A.
Then there exists a cyclic representation (H, π, ξ) of A and a Hermitian as well
as a unitary operator U on H such that π(b)U = Uπ(b) for all b ∈ B and
dist(a,B) = 1

2 ‖π(a)U − Uπ(a)‖.
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By Theorem 4.2, we obtain

2 dist(a,B) = max{ ‖π(a)U − Uπ(a)‖ : U ∈ B(H), U = U∗, U2 = 1B(H),

(H, π, ξ) is a cyclic representation of A, and

π(b)U = Uπ(b) for all b ∈ B}.

Looking at the last expression and (4.2), it is tempting to conjecture that if A is
a unital irreducible C∗-algebra, a ∈ A and B is a unital C∗-subalgebra of A, then

2 dist(a,B) = sup{ ‖au− ua‖ : u ∈ A, u is a unitary element,

and bu = ub for all b ∈ B}. (4.3)

We note that it is not possible to prove (4.3) by proceeding along the lines of the
proof of Theorem 4.1 given in [14], which uses (4.1). In particular, the following
does not hold true in Mn(C) :

dist(A,B) = max
{∣
∣〈Ax|y〉∣∣ : ‖x‖ = ‖y‖ = 1 and y⊥Bx for all B ∈ B

}
.

For example, take A = 1Mn(C) and B = {X ∈ Mn(C) : tr(X) = 0}. Then 1Mn(C) is
orthogonal to B. Now if the above is true, then we would get unit vectors x, y such
that

∣
∣〈x|y〉∣∣ = 1 and 〈Bx|y〉 = 0 for all B ∈ B. Let P = xy∗. Then rank P = 1

and tr(BP) = 0 for all B ∈ B. But tr(BP) = 0 for all B ∈ B gives P = λ1Mn(C)

for some λ ∈ C (see [32, Remark 3]), which contradicts the fact that rank P = 1.
So this approach to prove (4.3) does not work. However it would be interesting to
know if (4.3) is true or not. This is an open question.

The above example contradicts Theorem 5.3 of [101], which says that for Hilbert
spaces H and K, if A ∈ K(H,K) and B is a finite dimensional subspace of
K(H,K), then

dist(A,B) = sup
{∣
∣〈Ax|y〉∣∣ : ‖x‖ = ‖y‖ = 1 and y⊥Bx for all B ∈ B

}
.

The proof of this theorem has a gap, after invoking Theorem 5.2, in [101].
As an application of Theorem 3.5, we obtain the following distance formula.

Theorem 4.3 Let a ∈ A. Let B be a subspace of A. Suppose there is a best
approximation to a in B. Then

dist(a,B) = max
{∣
∣〈π(a)ξ |η〉∣∣ : (H, π, ξ) is a cyclic representation of A,

η ∈ H, ‖η‖ = 1 and 〈π(b)ξ |η〉 = 0 for all b ∈ B
}
. (4.4)

Proof Clearly RHS ≤ LHS. To prove equality, we need to find a cyclic
representation (H, π, ξ) of A and a unit vector η ∈ H such that dist(a,B) =∣
∣〈π(a)ξ |η〉∣∣ and 〈π(b)ξ |η〉 = 0 for all b ∈ B. Let b0 be a best approximation to
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a in B. By Theorem 3.5, there exists φ ∈ SA such that

φ((a − b0)
∗(a − b0)) = ‖a − b0‖2

and φ((a − b0)
∗b) = 0 for all b ∈ B. Now there exists a cyclic representation

(H, π, ξ) such that φ(c) = 〈π(c)ξ |ξ〉 for all c ∈ A. So ‖π(a − b0)ξ‖ = ‖a − b0‖
and 〈π(a − b0)ξ |π(b)ξ〉 = 0 for all b ∈ B. Taking η = 1

‖a−b0‖π(a − b0)ξ , we get
the required result. 	

The authors have recently observed in [35] that the above theorem also holds true
without the existence of a best approximation to a in B. Notice that the right
hand side of (4.4) uses only algebraic structure of A (as cyclic representations are
defined by the algebraic structure of A). More such distance formulas using only the
algebraic structure of A are also known. When B = C1A, Williams [103, Theorem
2] proved that for a ∈ A,

dist(a,C1A)2 = max{φ(a∗a)− |φ(a)|2 : φ ∈ SA}. (4.5)

When A = Mn(C), another proof of (4.5) was given by Audenaert [12, Theorem
9]. Rieffel [77, Theorem 3.10] obtained (4.5), using a different method. In [77], it
was also desired to have a generalization of (4.5) with C1A replaced by a unital
C∗-subalgebra. For A = Mn(C), a formula in this direction was obtained in
[32, Theorem 2]. An immediate application of Theorem 3.5 gives the following
generalization of (4.5), when C1A is replaced by a subspace B of A and there is a
best approximation to a in B.

Theorem 4.4 ([35, Corollary 1.2]) Let a ∈ A. Let B be a subspace of A. Let b0
be a best approximation to a in B. Then

dist(a,B)2 = max{φ(a∗a)− φ(b∗0b0) : φ ∈ SA, φ(a∗b) = φ(b∗0b) for all b ∈ B}.

For details, see [35]. Geometric interpretations of Theorems 3.5 and 4.4 have also
been explained in [35].

Henceforward, C∗-algebras are assumed to be complex C∗-algebras. Another
distance formula, which is a generalization of [7, Proposition 2.3], is given below.
Some notations are in order. Given φ ∈ SA, let L = {c ∈ A : φ(c∗c) = 0}, and let
〈a1 + L|a2 + L〉A/L = φ(a∗1a2), for all a1, a2 ∈ A. Then A/L is an inner product
space. For a ∈ A, let b0 be a best approximation to a in B. Let

Ma,B(φ) = sup{φ((a − b0)
∗(a − b0))−

∑

α

|φ((a − b0)
∗bα)|2},

where the supremum is taken over all orthonormal bases {bα + L} of B/L in A/L.
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Theorem 4.5 Let a ∈ A. Let B be a subspace of A. Let b0 be a best approximation
to a in B. Then

dist(a,B)2 = max{Ma,B(φ) : φ ∈ SA}.

Proof Clearly RHS ≤ LHS. For an orthonormal basis {bα + L} of B/L, we have

φ((a − b0)
∗(a − b0))−

∑

α

|φ((a − b0)
∗bα)|2 ≤ LHS.

And equality occurs because by Theorem 3.5, there exists φ ∈ SA such that φ((a −
b0)

∗(a − b0)) = dist(a,B)2 and φ((a − b0)
∗b) = 0 for all b ∈ B. 	


Now along the lines of the proof of [7, Theorem 2.4] and using Theorem 4.5, we get
the next result. For a Hilbert C∗-module E over A and φ ∈ SA, let L = {e ∈ E :
φ(〈e|e〉) = 0}. On E /L, define an inner product as 〈e1+L|e2+L〉E /L = φ(〈e1|e2〉)
for all e1, e2 ∈ E . For e ∈ E , let f0 be a best approximation to e in F . Let

Me,F (φ) = sup{φ(〈e − f0|e − f0〉)−
∑

α

|φ(〈e − f0|fα〉)|2},

where the supremum is taken over all orthonormal bases {fα +L} of F/L in E /L.

Theorem 4.6 Let E be a Hilbert C∗-module over A. Let e ∈ E . Let F be a
subspace of E . Let f0 be a best approximation to e in F . Then

dist(e,F ) = max{Me,F (φ) : φ ∈ SA}.

Rieffel [77, p. 46] had questioned to have expressions of distance formulas in terms
of conditional expectations. We end the discussion on distance formulas with our
progress in this direction. For a C∗-algebra A and a C∗-subalgebra B of A, a
conditional expectation from A to B is a completely positive map E : A → B
of unit norm such that E(b) = b, E(ba) = bE(a) and E(ab) = E(a)b, for all
a ∈ A and b ∈ B [17, p. 141]. In fact any projection E : A → B of norm
one is a conditional expectation and vice-a-versa (see [17, Theorem II.6.10.2]). An
interesting fact is that a map E : A → B is a conditional expectation if and only
if E is idempotent, positive and satisfies E(b1ab2) = b1E(a)b2, for all a ∈ A and
b1, b2 ∈ B (see [17, Theorem II.6.10.3]). Thus conditional expectations fromA to B
are also determined completely by the algebraic structure. A Banach space V1 is said
to be injective if for any inclusion of Banach spaces V3 ⊆ V2, every bounded linear
mapping f0 : V3 → V1 has a linear extension f : V2 → V1 with ‖f ‖ = ‖f0‖. A
Banach space is injective if and only if it is isometrically isomorphic to C(X), where
X is a compact Hausdorff space in which closure of any open set is an open set (see
[28, p. 70]). For v ∈ V and W a subspace of V , let 〈v,W 〉 denote the subspace
generated by v and W .
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Theorem 4.7 Let a ∈ A. Let B be a subspace of A such that B is an injective
Banach space and 1A ∈ B. Suppose there is a best approximation to a in B. Then
there exists φ ∈ SA and a projection E : A → B of norm atmost two such that
φ ◦ E = φ and dist(a,B)2 = φ(a∗a)− φ(E(a)∗E(a)).

Proof Let b0 be a best approximation to a in B. We define Ẽ : 〈a,B〉 → B as
Ẽ(b) = b for all b ∈ B and Ẽ(a) = b0 and extend it linearly on 〈a,B〉. Using
Theorem 3.5, there exists φ ∈ SA such that dist(a,B)2 = φ(a∗a) − φ(b∗0b0) and
φ(a∗b) = φ(b∗0b) for all b ∈ B. Since 1A ∈ B, we get φ(a) = φ(b0) = φ(E(a)).
And clearly φ(b) = φ(Ẽ(b)) for all b ∈ B. Thus φ ◦ Ẽ = φ. Since b0 is a best
approximation to a in B, ‖a − b0‖ ≤ ‖a‖. So ‖b0‖ ≤ 2 ‖a‖. Now let b ∈ B and
α ∈ C. Then Ẽ(αa + b) = αb0 + b and αb0 + b is a best approximation to αa + b

in B. Thus ‖αb0 + b‖ ≤ 2 ‖αa + b‖. Hence ‖Ẽ‖ ≤ 2. Since B is injective, there
exists a linear extension E : A → B with norm same as that of Ẽ. This E is the
required projection. 	

For any given conditional expectation E from A to B, we can define a B-valued
inner product on A given by 〈a1|a2〉E = E(a∗1a2) (see [77]). In [35], we obtain a
lower bound for dist(a,B) as follows.

Theorem 4.8 Let a ∈ A. Let B be a C∗-subalgebra of A such that 1A ∈ B. Then

dist(a,B)2 ≥ sup{φ(〈a − E(a)|a − E(a)〉E) : φ ∈ SA, E is a conditional

expectation from A onto B}. (4.6)

(Here we follow the convention that sup(∅) = −∞.)

Remark 4.9 It is worth mentioning here that if in Theorem 4.7, we take B to be
a C∗-algebra and we are able to find a projection of norm one, then we will get
equality in (4.6), that is,

dist(a,B)2 = sup{φ(〈a − E(a)|a − E(a)〉E) : φ ∈ SA, E is a conditional

expectation from A onto B}.

This happens in the special case when B = C1A, because for any c ∈ A, the norm
of the best approximation of c to C1A is less than or equal to ‖c‖, and thus the norm
of the projection E in Theorem 4.7 is one.
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109. K. Ziętak, Subdifferentials, faces, and dual matrices. Linear Algebra Appl. 185, 125–141

(1993)
110. L. Zsidó, The norm of a derivation in a W ∗-algebra. Proc. Am. Math. Soc. 38, 147–150 (1973)



The Generalized ∂-Complex on the
Segal–Bargmann Space
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Abstract We study certain densely defined unbounded operators on the Segal-
Bargmann space, related to the annihilation and creation operators of quantum
mechanics. We consider the corresponding D-complex and study properties of the
corresponding complex Laplacian �̃D = DD∗ + D∗D, where D is a differential
operator of polynomial type.
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1 Introduction

We consider the classical Segal–Bargmann space

A2(Cn, e−|z|2) =
{

u : Cn −→ C entire :
∫

Cn

|u(z)|2e−|z|2 dλ(z) < ∞
}

with inner product

(u, v) =
∫

Cn

u(z) v(z) e−|z|2 dλ(z)

and replace a single derivative with respect to zj by a differential operator of the
form pj (

∂
∂z1

, . . . , ∂
∂zn

), where pj is a complex polynomial on C
n (see [5, 6]). We
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write pj (u) for pj (
∂
∂z1

, . . . , ∂
∂zn

)u, where u ∈ A2(Cn, e−|z|2), and consider the
densely defined operators

Du =
n∑

j=1

pj (u) dzj , (1.1)

where u ∈ A2(Cn, e−|z|2) and pj (
∂
∂z1

, . . . , ∂
∂zn

) are polynomial differential opera-
tors with constant coefficients [3].

More generally we define

Du =
∑

|J |=p

′
n∑

k=1

pk(uJ ) dzk ∧ dzJ ,

where u = ∑
|J |=p

′ uJ dzJ is a (p, 0)-form with coefficients in A2(Cn, e−|z|2),
here J = (j1, . . . , jp) is a multiindex and dzJ = dzj1 ∧ · · · ∧ dzjp and the
summation is taken only over increasing multiindices.

It is clear that D2 = 0 and that we have

(Du, v) = (u,D∗v), (1.2)

where

u ∈ dom(D) =
{
u ∈ A2

(p,0)(C
n, e−|z|2) : Du ∈ A2

(p+1,0)(C
n, e−|z|2)

}

and

D∗v =
∑

|K |=p−1

′
n∑

j=1

p∗j vjK dzK

for v = ∑
|J |=p

′ vJ dzJ and where p∗j (z1, . . . , zn) is the polynomial pj with
complex conjugate coefficients, taken as multiplication operator.

Now the corresponding D-complex has the form

A2
(p−1,0)(C

n, e−|z|2) D−→←−
D∗

A2
(p,0)(C

n, e−|z|2) D−→←−
D∗

A2
(p+1,0)(C

n, e−|z|2).

Similarly to the classical ∂-complex (see [3]) we consider the generalized box
operator �̃D,p := D∗D + DD∗ as a densely defined self-adjoint operator on

A2
(p,0)(C

n, e−|z|2) with

dom(�̃D,p) = {f ∈ dom(D) ∩ dom(D∗) : Df ∈ dom(D∗), D∗f ∈ dom(D)},

see [4] for more details.
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The (p, 0)-forms with polynomial components are dense in the space
A2

(p,0)(C
n, e−|z|2). In addition we have the following.

Lemma 1.1 The (p, 0)-forms with polynomial components are also dense in
dom(D) ∩ dom(D∗) endowed with the graph norm

u �→ (‖u‖2 + ‖Du‖2 + ‖D∗u‖2)1/2.

Proof Let u = ∑
|J |=p

′ uJ dzJ ∈ dom(D) ∩ dom(D∗) and consider the partial
sums of the Fourier series expansions of

uJ =
∑

α

uJ,αϕα,

where

ϕα(z) = zα√
πnα! and

∑

α

|uJ,α|2 < ∞

and α! = α1! . . . αn!. We have that Du ∈ A2
(p+1,0)(C

n, e−|z|2) and D∗u ∈
A2

(p−1,0)(C
n, e−|z|2). Hence the partial sums of the Fourier series of the components

of Du converge to the components of Du in A2
(p+1,0)(C

n, e−|z|2) and the partial
sums of the Fourier series of the components of D∗u converge to the components
of D∗u in A2

(p−1,0)(C
n, e−|z|2). 	


2 The Basic Estimate

We want to find conditions under which �̃D,1 has a bounded inverse. For this
purpose we have to consider the graph norm (‖u‖2 + ‖Du‖2 + ‖D∗u‖2)1/2 on
dom(D) ∩ dom(D∗). We refer to [4, Theorem 5.1] here in a slightly different
improved form.

Theorem 2.1 Suppose that there exists a constant C > 0 such that

‖u‖2 ≤ C

n∑

j,k=1

([pk, p
∗
j ]uj , uk), (2.1)

for any (1, 0)-form u =∑n
j=1 ujdzj with polynomial components. Then

‖u‖2 ≤ C(‖Du‖2 + ‖D∗u‖2), (2.2)

for any u ∈ dom(D) ∩ dom(D∗).
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Proof First we have

Du =
∑

j<k

(pj (uk)− pk(uj )) dzj ∧ dzk and D∗u =
n∑

j=1

p∗j uj ,

hence

‖Du‖2 + ‖D∗u‖2 =
∫

Cn

∑

j<k

|pk(uj )− pj (uk)|2 e−|z|2 dλ

+
∫

Cn

n∑

j,k=1

p∗j uj p
∗
kuk e

−|z|2 dλ

=
n∑

j,k=1

∫

Cn

|pk(uj )|2 e−|z|2 dλ

+
n∑

j,k=1

∫

Cn

(p∗j uj p
∗
kuk − pk(uj )pj (uk)) e

−|z|2 dλ

=
n∑

j,k=1

∫

Cn

|pk(uj )|2 e−|z|2 dλ

+
n∑

j,k=1

∫

Cn

[pk, p
∗
j ]ujuk e

−|z|2 dλ,

where we used (1.2). Note that the expression

n∑

j,k=1

∫

Cn

|pk(uj )|2 e−|z|2 dλ

is finite, since the components uj are polynomials, and it follows that the expression∑n
j,k=1([pk, p

∗
j ]uj , uk) is a real number.

Now the assumption (2.1) implies that (2.2) holds for (1, 0)-forms with poly-
nomial components and, by Lemma 1.1, we obtain (2.2) for any u ∈ dom(D) ∩
dom(D∗). 	

Remark 2.2 In Theorem 2.1 we implicitly suppose that the expression

n∑

j,k=1

([pk, p
∗
j ]uj , uk)

is nonnegative.
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First we consider the one-dimensional case. Let pm denote the polynomial differen-
tial operator

pm = a0 + a1
∂

∂z
+ · · · + am

∂m

∂zm
,

with constant coefficients a0, a1, . . . , am ∈ C, and let p∗m denote the polynomial

p∗m(z) = a0 + a1z + · · · + amz
m,

with the complex conjugate coefficients a0, a1, . . . , am ∈ C.
We consider the densely defined operator

Du = pm(u) dz,

where u ∈ A2(C, e−|z|2) and pm(u) dz is considered as a (1, 0)-form.
It is clear that D2 = 0, as all (2, 0)-forms are zero if n = 1, and that we have

(Du, v) = (u,D∗v),

where u ∈ dom(D) = {u ∈ A2(C, e−|z|2) : Du ∈ A2
(1,0)(C, e−|z|2)} and

D∗v dz = p∗mv.

In the sequel we consider the generalized box operator

�̃D,1 := DD∗

as a densely defined self-adjoint operator on A2
(1,0)(C, e−|z|2) with

dom(�̃D,1) = {f ∈ dom(D∗) : D∗f ∈ dom(D)}.

Lemma 2.3 Let u be an arbitrary polynomial. Then

∫

C

[pm, p
∗
m]u(z) u(z) e−|z|

2
dλ(z)

=
m∑

�=1

� !
∫

C

∣
∣
∣
∣
∣

m∑

k=�

(
k

�

)

aku
(k−�)(z)

∣
∣
∣
∣
∣

2

e−|z|2 dλ(z). (2.3)

Proof On the right hand side of (2.3) we have the integrand

m∑

�=1

� !
m∑

k,j=�

(
k

�

)(
j

�

)

akaju
(k−�)u(j−�). (2.4)
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For the left hand side of (2.3) we first compute

[pm, p
∗
m]u =

m∑

k=0

ak
∂k

∂zk

( m∑

j=0

aj z
ju
)
−
( m∑

j=0

aj z
j
)( m∑

j=0

aju
(j)
)
.

We use the Leibniz rule to get

∂k

∂zk

( m∑

j=0

aj z
ju
)
=

m∑

j=0

aj
∂k

∂zk
(zju) =

m∑

j=0

aj

j∑

�=0

� !
(
k

�

)(
j

�

)

u(k−�)zj−�,

notice that
(
k
�

) = 0, in the case k < �. Hence we obtain

[pm, p
∗
m]u =

m∑

j,k=1

akaj

j∑

�=1

� !
(
k

�

)(
j

�

)

u(k−�)zj−�.

After integration we obtain

∫

C

[pm, p
∗
m]u(z) u(z) e−|z|

2
dλ(z)

=
m∑

j,k=1

akaj

j∑

�=1

� !
(
k

�

)(
j

�

)∫

C

u(k−�)u(j−�) e−|z|2 dλ(z). (2.5)

Now it is easy to show that integration of (2.4) coincides with (2.5) and we are done.
	


Lemma 2.4 There exists a constant C > 0 such that, for each u ∈ dom(D∗),

‖u‖ ≤ C‖D∗u‖.

Proof First let u be a polynomial and note that the last term in (2.3) equals

m!
∫

C

|amu(z)|2 e−|z|2 dλ(z) = m! |am|2‖u‖2

and all the other terms are non-negative, see Lemma 2.3. Now we get that

‖D∗u‖2 = (p∗mu, p∗mu) = ([pm, p
∗
m]u, u)+ (pm(u), pm(u)) ≥ 1

C
‖u‖2,

where

C = 1

m! |am|2 ,
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if we suppose that am �= 0, and we are done. Finally apply Lemma 1.1 to obtain the
desired result. 	

Theorem 2.5 Let D be as in (1.1). Then �̃D,1 = DD∗ has a bounded inverse

ÑD,1 : A2
(1,0)(C, e−|z|2) −→ dom(�̃D,1).

If α ∈ A2
(1,0)(C, e−|z|2), then u0 = D∗ÑD,1α is the canonical solution of Du = α,

this means that Du0 = α and u0 ∈ (kerD)⊥ = imD∗, and

‖D∗ÑD,1α‖ ≤ C‖α‖

for some constant C > 0 independent of α.

Proof Using Lemma 2.4 we obtain that

�̃D,1 : dom(�̃D,1) −→ A2
(1,0)(C, e−|z|2)

is bijective and has the bounded inverse ÑD,1, see [4, Theorem 5.1]. The rest follows
from [4, Theorem 5.2]. 	


3 Commutators

Let Aj and Bj , j = 1, . . . , n be operators satisfying

[Aj ,Ak] = [Bj ,Bk] = [Aj,Bk] = 0, j �= k

and

[Aj ,Bj ] = I, j = 1, . . . , n.

Let P and Q be polynomials of n variables and write A = (A1, . . . , An) and B =
(B1, . . . , Bn). Then

Q(A)P(B) =
∑

|α|≥0

1

α!P
(α)(B)Q(α)(A), (3.1)

where α = (α1, . . . , αn) are multiindices and |α| = α1 + · · · + αn and α! =
α1! . . . αn!, see [7, 8].

The assumptions are satisfied, if one takes Aj = ∂
∂zj

and Bj = zj the
multiplication operator. The inspiration for this comes from quantum mechanics,
where the annihilation operator Aj can be represented by the differentiation with
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respect to zj on A2(Cn, e−|z|2) and its adjoint, the creation operator Bj , by the
multiplication by zj , both operators being unbounded densely defined (see [1, 2]).

One can show that A2(Cn, e−|z|2) with this action of the Bj and Aj is an irreducible
representation M of the Heisenberg group; by the Stone-von Neumann theorem it
is the only one up to unitary equivalence. Physically M can be thought of as the
Hilbert space of a harmonic oscillator with n degrees of freedom and Hamiltonian
operator

H =
n∑

j=1

1

2
(AjBj + BjAj ).

Remark 3.1 If we apply (3.1) for the one-dimensional case of Lemma 2.3, we get

∫

C

[pm, p
∗
m]u(z) u(z) e−|z|

2
dλ(z) =

m∑

�=1

∫

C

∣
∣
∣p(�)

m u(z)

∣
∣
∣
2
e−|z|2 dλ(z),

which coincides with (2.3).

In the following we consider C2 and choose p1 and p2 to be polynomials of degree
2 in 2 variables.

Theorem 3.2 Let p1, p2 be polynomials of degree 2. Suppose that

p
(e1)∗
2 p

(e1)
1 = ±p

(e2)∗
1 p

(e2)
2 , p

(e1)∗
1 p

(e1)
2 = ±p

(e2)∗
2 p

(e2)
1 , (3.2)

where (e1) and (e2) denote the derivatives with respect to z1 and z2 respectively. In
addition suppose that for all derivatives (α) of order 2 we have

p
(α)∗
j p

(α)
k = δj,k cj,α j, k = 1, 2, (3.3)

where

C1 =
∑

|α|=2

1

α! c1,α > 0 and C2 =
∑

|α|=2

1

α! c2,α > 0.

Then

‖u‖2 ≤ 1

min(C1, C2)

2∑

j,k=1

([pk, p
∗
j ]uj , uk), (3.4)

for any (1, 0)-form u =∑2
j=1 ujdzj with polynomial components.



The Generalized ∂-Complex on the Segal–Bargmann Space 325

Proof Using (3.1) we obtain

([pk, p
∗
j ]uj , uk) =

∑

|α|≥1

1

α! (p
(α)∗
j p

(α)
k uj , uk).

Now we use (3.2) and get for the first order derivatives

2∑

j,k=1

[(p(e1)∗
j p

(e1)
k uj , uk)+ (p

(e2)∗
j p

(e2)
k uj , uk)]

=(p
(e1)∗
1 p

(e1)
1 u1, u1)+ (p

(e1)∗
2 p

(e1)
2 u2, u2)

± (p
(e2)∗
2 p

(e2)
1 u1, u2)± (p

(e2)∗
1 p

(e2)
2 u2, u1)

+ (p
(e2)∗
1 p

(e2)
1 u1, u1)+ (p

(e2)∗
2 p

(e2)
2 u2, u2)

± (p
(e1)∗
2 p

(e1)
1 u1, u2) ± (p

(e1)∗
1 p

(e1)
2 u2, u1)

=(p
(e1)
1 u1 ± p

(e1)
2 u2, p

(e1)
1 u1 ± p

(e1)
2 u2)

+ (p
(e2)
1 u1 ± p

(e2)
2 u2, p

(e2)
1 u1 ± p

(e2)
2 u2)

=‖p(e1)
1 u1 ± p

(e1)
2 u2‖2 + ‖p(e2)

1 u1 ± p
(e2)
2 u2‖2.

For the second order derivatives we obtain

2∑

j,k=1

∑

|α|=2

1

α! (p
(α)∗
j p

(α)
k uj , uk) = C1‖u1‖2 + C2‖u2‖2.

Hence we get

2∑

j,k=1

([pk, p
∗
j ]uj , uk) =C1‖u1‖2 + C2‖u2‖2

+ ‖p(e1)
1 u1 ± p

(e1)
2 u2‖2 + ‖p(e2)

1 u1 ± p
(e2)
2 u2‖2,

which gives (3.4). 	

In a similar way one shows the following.

Theorem 3.3 Let p1, p2 be polynomials of degree 2. Suppose that

p
(e1)∗
2 p

(e1)
1 = ±p

(e1)∗
1 p

(e1)
2 , p

(e2)∗
1 p

(e2)
2 = ±p

(e2)∗
2 p

(e2)
1 , (3.5)
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where (e1) and (e2) denote the derivatives with respect to z1 and z2 respectively. In
addition suppose that for all derivatives (α) of order 2 we have

p
(α)∗
j p

(α)
k = δj,k cj,α j, k = 1, 2, (3.6)

where

C1 =
∑

|α|=2

1

α! c1,α > 0 and C2 =
∑

|α|=2

1

α! c2,α > 0.

Then

‖u‖2 ≤ 1

min(C1, C2)

2∑

j,k=1

([pk, p
∗
j ]uj , uk),

for any (1, 0)-form u =∑2
j=1 ujdzj with polynomial components.

Finally we exhibit some examples, where conditions (3.2) and (3.3), or (3.5)
and (3.6) are checked. Examples (a) and (c) are taken from [4], where∑n

j,k=1([pk, p
∗
j ]uj , uk) was directly computed.

Example

(a) We take p1 = ∂2

∂z1∂z2
and p2 = ∂2

∂z2
1
+ ∂2

∂z2
2
. Then p∗1(z) = z1z2 and p∗2(z) =

z2
1 + z2

2 and we see that (3.2) and (3.3) are satisfied:

p
(e1)∗
2 p

(e1)
1 = p

(e2)∗
1 p

(e2)
2 , p

(e1)∗
1 p

(e1)
2 = p

(e2)∗
2 p

(e2)
1 ,

and we obtain

2∑

j,k=1

([pk, p
∗
j ]uj , uk)

=
∫

C2

(

|u1|2 + 4|u2|2 +
∣
∣
∣
∣
∂u1

∂z1
+ 2

∂u2

∂z2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u1

∂z2
+ 2

∂u2

∂z1

∣
∣
∣
∣

2
)

e−|z|2 dλ,

for u =∑2
j=1 ujdzj with polynomial components.

(b) Taking p1 = i ∂2

∂z1∂z2
and p2 = ∂2

∂z2
1
+ ∂2

∂z2
2

we have that p∗1(z) = −iz1z2 and

p∗2(z) = z2
1 + z2

2 and that (3.2) and (3.3) are satisfied:

p
(e1)∗
2 p

(e1)
1 = −p

(e2)∗
1 p

(e2)
2 , p

(e1)∗
1 p

(e1)
2 = −p

(e2)∗
2 p

(e2)
1 ,
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and we obtain

2∑

j,k=1

([pk, p
∗
j ]uj , uk)

=
∫

C2

(

|u1|2 + 4|u2|2 +
∣
∣
∣
∣
∂u1

∂z1
+ 2i

∂u2

∂z2

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u1

∂z2
+ 2i

∂u2

∂z1

∣
∣
∣
∣

2
)

e−|z|2 dλ,

for u =∑2
j=1 ujdzj with polynomial components.

(c) Let pk = ∂2

∂z2
k

, k = 1, 2. Then p∗j (z) = z2
j , j = 1, 2 and we see that (3.5)

and (3.6) are satisfied and we have

2∑

j,k=1

([pk, p
∗
j ]uj , uk) =

2∑

j,k=1

(2δj,kuj , uk)+
2∑

j,k=1

(4δjkzj
∂uj

∂zk
, uk)

= 2‖u‖2 + 4
2∑

j=1

∥
∥
∥
∥
∂uj

∂zj

∥
∥
∥
∥

2

.

(d) For p1 = ∂2

∂z2
1
+ ∂

∂z2
and p2 = ∂

∂z1
+ ∂2

∂z2
2

we have p∗1(z) = z2
1 + z2 and p∗2(z) =

z1 + z2
2 and we see that (3.2) and (3.5) are not satisfied. In particular,

2∑

j,k=1

([pk, p
∗
j ]uj , uk) =3(‖u1‖2 + ‖u2‖2)+ 4

(∥
∥
∥
∥
∂u1

∂z1

∥
∥
∥
∥

2

+
∥
∥
∥
∥
∂u2

∂z2

∥
∥
∥
∥

2
)

+ 2(u1, z2u2)+ 2(z1u1, u2)+ 2(u2, z1u1)+ 2(z2u2, u1)

for u =∑2
j=1 ujdzj with polynomial components.
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The Inverse Characteristic Polynomial
Problem for Trees

Charles R. Johnson and Emma Gruner

Abstract It is known that any real polynomial is attained as the characteristic
polynomial of a real combinatorially symmetric matrix, whose graph is either a
path or a star. We conjecture that the same is true for any tree (this is so for complex
characteristic polynomials and complex matrices). Here, we constructively prove
a very large portion of this conjecture by a method that mates the graph of the
polynomial with a notion of balance of the tree relative to a choice of root for
the tree. Included is the first constructive proof for the case of the path, as well
as the case of any tree on fewer than ten vertices. It also includes the known case
of polynomials with distinct real roots for any tree (in a new way). This work is
motivated by, and lies in contrast to, the considerable study of possible multiplicity
lists for the eigenvalues of real symmetric matrices, whose graph is a tree.

Keywords Inverse eigenvalue problem · Characteristic polynomial · Partial
fractions · Graph theory · Matrix theory

Mathematics Subject Classification (2010) Primary 15A29, 05C50; Secondary
05C05

1 Introduction

During the last 20+ years, a theory of the possible multiplicities of the eigenvalues,
of Hermitian matrices with a given graph, has developed. This is the most developed,
and most interesting, in the case of trees, but much is now known for general graphs.
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Recently the theory has expanded to geometric multiplicities for the eigenvalues of
a general (combinatorially symmetric) matrix; there are strong similarities and some
notable differences. Though ongoing, much of this work is summarized in the recent
book [6].

The question then naturally arises: “What about algebraic multiplicities of the
eigenvalues of a matrix with a given graph?” Here, the field makes a big difference.
In the case of the complex numbers, there is a complete answer because of the
“additive inverse eigenvalue problem.” Recall that the diagonal entries of a matrix
are independent of its undirected graph. Over the complex numbers, for a given
n-by-n matrix A and given desired complex numbers λ1, λ2, . . . , λn, there is a
diagonal matrix D such that A+D has eigenvalues λ1, λ2, . . . , λn [3].

This is not true over the reals. There it is natural to ask which real polynomials
occur for real matrices with a given undirected graph. There is good reason to guess
that any real polynomial may occur when the graph is connected. But, this is not
easy to prove. Initially, it is natural to consider trees. Recently, it has been shown [2]
that for the path (tridiagonal matrices), any real polynomial can occur. But, the proof
is existential. It is shown that a real matrix may be constructed for a given monic,
degree n real polynomial when there is a degree n − 1 polynomial with a certain
relationship to the former. Existence may be shown, but construction is difficult.
For the star (all vertices pendent from a single vertex), it has also recently been
shown [5] that any real polynomial occurs over R. The proof is constructive and
much more is shown, just for the star. We benefit here from the technology therein,
although the technology does not easily transfer to other trees.

Here, we consider general trees and real matrices; for a tree T , R(T ) denotes
the set of real matrices whose graph is T (not necessarily symmetric, but combi-
natorially symmetric, and no restriction besides reality on the diagonal entries). A
method is developed that, for each tree, realizes many characteristic polynomials in
R(T ), and for many trees, realizes all real characteristic polynomials. The method
is constructive and gives all real polynomials for the path (the first time that has
occurred), as well as many other trees. The smallest tree for which not all real
polynomials are realized has ten vertices, and this is not because of the number
of vertices, but because of a notion of balance of the tree.

2 Preliminaries

We assume that the reader is familiar with the basic terminology from linear algebra
and graph theory: see [4] and [6]. However, we shall briefly elaborate on the concept
of the graph of a matrix discussed in the introduction.

Given an n-by-n matrix A = (aij ) over a field F, we let G (A) denote the graph
of A. This graph consists of vertices {1, 2, . . . , n} with an edge {i, j }, i �= j , if and
only if aij �= 0. For G (A) to be undirected, A must be combinatorially symmetric;
that is, aij �= 0 if and only if aji �= 0. This paper will only be concerned with real
matrices; given an undirected graph G, we let R(G) denote all real matrices whose
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graph is G. If v is a vertex of G (A), then we let A(v) denote the principal submatrix
of A resulting from the deletion of the row and column corresponding to v.

The matrices we construct will all be of a specific form. Suppose we have a tree
T on n vertices, and let v be any vertex with degree s. If s ≥ 1, let u1, u2, . . . , us be
the neighboring vertices of v. Additionally, let T1, T2, . . . , Ts be the branches of T
at v, in which each Ti contains the vertex ui , and let �1, �2, . . . , �s be the respective
number of vertices in T1, T2, . . . , Ts . From this point forward, we will refer to the
number of vertices in a tree or a branch of a tree as its weight.

We say that A ∈ R(T ) is centered at v if it is 1-by-1, or if it has the following
form:

A =

⎡

⎢
⎢
⎢
⎣

b v1 · · · vs
e1,1 A1 0 0
... 0

. . .
...

e1,s 0 · · · As

⎤

⎥
⎥
⎥
⎦
.

In this form, b ∈ R, e1,i = e1 ∈ R
�i , and vi = (aie1,i)

T , with ai ∈ R\ {0}. (Note
that e1 represents the basic unit vector with a 1 in the first entry and 0’s elsewhere.)
Each Ai is a matrix in R(Ti) that is centered at ui .

Define A to be pseudosymmetric if it is 1-by-1, or if it has the above form and
each Ai is diagonally similar to a symmetric matrix. We will usually be constructing
matrices that have this property.

The neighbors formula [6] provides a convenient recursive representation of the
characteristic polynomial for a matrix in this form. Let pA denote the characteristic
polynomial of the matrix A. If A = [b], then pA = (x − b). Otherwise, we have:

pA = (x − b)

s∏

i=1

pAi −
s∑

i=1

aipAi(ui)

s∏

j=1,j �=i

pAj

= (x − b)pA(v) −
s∑

i=1

aipAi(ui)

s∏

j=1,j �=i

pAj . (1)

We define the empty product, and the characteristic polynomial of the empty
matrix, to be 1.

Given any vertex v of T and any matrix A ∈ R(T ), there is a diagonal and/or
permutation similarity that takes A to a matrix centered at v. Since the characteristic
polynomial is similarity invariant, if we are trying to realize a particular polynomial
for a particular tree, we can take our matrix to be centered at whatever vertex is most
convenient for us.

Finally, we will provide an overview of the algebraic technique known as the
partial fraction decomposition, or PFD.

The following theorem was adapted from a more general statement in [1]. The
proof is straightforward and is thus omitted.
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Theorem 2.1 ([1]) Let g(x) = ∏k
i=1(x − γi), in which γ1, γ2, . . . , γk are real

numbers such that γ1 > γ2 > · · · > γk. Let Qi(x) = ∏k
j=1,j �=i (x − γj ). Finally,

let f (x) be a real polynomial of degree less than k. Then we have

f (x)

g(x)
= a1

x − γ1
+ a2

x − γ2
+ · · · + ak

x − γk

in which each ai is a real number determined uniquely by the expression ai =
f (γi)/Qi(γi).

Also of interest to us is the following lemma. The case in which the polynomials
f and g are both monic is well-known, but the proof is easily generalized.

Lemma 2.2 Let g(x), Qi(x) and f (x) be defined as in Theorem 2.1. The poly-
nomial f (x) has exactly k − 1 distinct real roots that strictly interlace the roots
of g(x) if and only if the coefficients of the partial fraction decomposition f (x)

g(x)
,

denoted a1, a2, . . . , ak , are either all positive or all negative.

Proof Consider the coefficients ai and ai+1 for i ∈ {1, 2, . . . , k − 1}. By the
previous theorem, we have ai = f (γi)/Qi(γi) and ai+1 = f (γi+1)/Qi+1(γi+1).
Observe that Qi(γi) and Qi+1(γi+1) will always be nonzero and of opposite signs;
therefore, ai and ai+1 will be nonzero and of the same sign if and only if f (γi) and
f (γi+1) are nonzero and of opposite signs. This will occur if and only if neither γi
nor γi+1 are roots of f , but f has an odd number of roots between γi and γi+1.

Therefore, if f has k − 1 distinct real roots that strictly interlace the numbers
γ1, γ2, . . . , γk , then the ai’s must either be all positive or all negative. Conversely, if
the ai’s are all of the same sign, then f must have at least one real root lying strictly
between each consecutive pair of γi’s. This means that f has at least k − 1 distinct
real roots; however, since deg f (x) < k, f can have at most k − 1 roots, and the
result follows. 	


Finally, we provide the following result, which combines the techniques of partial
fractions and the polynomial division algorithm.

Lemma 2.3 Let p be a real monic polynomial of degree n, and let g(x) =∏n−1
i=1 (x − γi), in which γ1, γ2, . . . , γn−1 are real numbers such that γ1 > γ2 >

· · · > γn−1 and p(γi) �= 0 for all i. Let Qi(x) =∏n−1
j=1,j �=i (x − γj ). Then we have

p(x)

g(x)
= (x − b)− a1

x − γ1
− a2

x − γ2
− · · · − an−1

x − γn−1
,

with b ∈ R and ai = −p(γi)/Qi(γi). Furthermore, ai and ai+1 are of the same
sign for any i ∈ {1, 2, . . . , n − 2} if and only if p has an odd number of roots lying
strictly between γi and γi+1.

Proof By the division algorithm for polynomials, we can write

p(x) = q(x)g(x)− r(x),
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in which q(x) and r(x) are real polynomials and deg r(x) < degg(x) = n −
1. (While the division algorithm normally allows for the possibility of a zero
remainder, this cannot happen in our case because p and g are relatively prime.)

Since p and g are both monic and they differ by only one degree, we know that
q(x) = x − b for some unique real number b. So we may write

p(x)

g(x)
= (x − b)g(x)− r(x)

g(x)
= (x − b)− r(x)

g(x)
.

Since deg r(x) < degg(x), we can apply Theorem 2.1 to write

r(x)

g(x)
= a1

x − γ1
+ a2

x − γ2
+ · · · + an−1

x − γn−1
,

with ai = r(γi)/Qi(γi). Since each γi is a root of g, we have r(γi) = −p(γi) for
all i ∈ {1, 2, . . . , n− 1}, so we can just as well write ai = −p(γi)/Qi(γi). The last
statement of the lemma follows from a proof similar to that of Lemma 2.2. 	


3 Main Results

The ease of constructing a matrix for a particular polynomial and tree hinges
largely on the possible signs of the coefficients in a partial fraction decomposition.
Therefore, we would like to find a way to classify a polynomial according to this
characteristic.

Suppose we have a monic real polynomial p of degree n. As x ranges from −∞
to +∞, p(x) undergoes n − d strict sign changes, in which d is an even integer at
least 0 and at most n (if n is even) or n− 1 (if n is odd). We shall call this integer d
the root deficiency of p.

The root deficiency of p is directly related to its complete factorization over the
real polynomials. Suppose we have

p = w
s1
1 w

s2
2 · · ·wsα

α q
t1
1 q

t2
2 · · · qtβ

β ,

in which w1, . . . , wα are distinct linear polynomials, q1, . . . , qβ are distinct irre-
ducible quadratic polynomials, and each si and ti is a positive integer. (The fact that
such a representation of p exists, and is unique, is a consequence of the fundamental
theorem of algebra.) Define ρ(si) as follows:

ρ(si) =
{
si , if si is even

si − 1, if si is odd.

We then have d =∑α
i=1 ρ(si)+

∑β

j=1 2tj .
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Observe that d = 0 if and only if p has n distinct linear factors. On the other
hand, d has maximal value if and only if 1) p is composed entirely of irreducible
quadratics, or 2) at most one si is odd.

Let us also define a signed root to be a root at which p undergoes a strict sign
change. These are precisely the roots whose corresponding linear terms have odd
exponents, and there are n− d of them.

Example 3.1 The polynomial p1(x) = x3 + x2 − 4x − 4 = (x + 1)(x − 2)(x + 2)
has root deficiency 0. The signed roots of p1 are −1, 2, and −2.

Example 3.2 The polynomialp2(x) = x2(x−5)3(x+1)(x2+1) has root deficiency
6. The signed roots of p2 are 5 and −1.

Let p be a monic real polynomial of degree n, and let γ1 > γ2 > · · · > γn−1
be real numbers with p(γi) �= 0 for each i ∈ {1, 2, . . . , n − 1}. Suppose we apply
the combined division algorithm/PFD procedure to p and g = ∏n−1

i=1 (x − γi) as
in Lemma 2.3. The potential positive/negative breakdown of the ai’s we obtain is
connected to the root deficiency of p.

Proposition 3.3 Let p be a monic real polynomial of degree n and root deficiency
d . Let k1 ≥ k2 be nonnegative integers with k1 + k2 = n − 1. We can choose real
numbers γ1 > γ2 > · · · > γn−1 such that the representation of p(x)

∏n−1
i=1 (x−γi)

shown in

Lemma 2.3 yields k1 negative ai’s and k2 positive ai’s if and only if k2 ≥ (d − 2)/2.

Proof For the “only if” direction, assume that we have a selection of (n − 1) γi’s
that yields k1 negative ai’s and k2 positive ai’s for a particular polynomial p, with
k1 ≥ k2. We shall prove that d must be at most 2k2+2, implying that k2 ≥ (d−2)/2.

Let z = k1 − k2. We claim that we must have at least z − 1 distinct consecutive
pairs of negative ai’s. We consider two consecutive pairs distinct if they differ in at
least one element: for example, the set {a1, a2, a3} consists of two consecutive pairs.

If we ignore all the positive ai’s, then we have k1 negative ai’s, which consists
of k1 − 1 distinct consecutive pairs. Each positive ai that we introduce can break
up at most one of these consecutive pairs (none if it is terminal or adjacent to an
already introduced ai). When we have introduced all k2 of these ai’s, we are left
with at least (k1 − 1) − k2 = z − 1 consecutive pairs of negative ai’s. Since each
consecutive pair of same-sign ai’s necessitates at least one signed root of p between
the corresponding γi’s (see Lemma 2.3), p must have at least z− 1 signed roots.

Recall that p has n−d distinct signed roots, so z−1 ≤ n−d . Substituting k1−k2
for z and k1 + k2 + 1 for n, we determine that d ≤ 2k2 + 2, or k2 ≥ (d − 2)/2, as
claimed.

For the “if” direction, suppose we have k1 and k2 in mind such that k1+k2 = n−1
and k2 ≥ (d − 2)/2. When we choose γi’s in the following steps, we assume that
no γi is a root of p, signed or “unsigned.”

Let R1, R2, . . . , Rn−d be the distinct signed roots of p, with R1 > R2 > · · · >
Rn−d . If n− d > 0, then take R = R1; otherwise, take R to be any real number.

If k2 = k1 = (n − 1)/2, then choose all γi’s to be larger than R. Then
by Lemma2.3, the ai’s will alternate in sign, and with n − 1 being even we
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will have equal numbers of positive and negative ai’s. Otherwise, choose only
γ1, γ2, . . . , γ2k2+1 to be larger than R. This choice will ensure that the correspond-
ing ai’s alternate in sign. Note that a1 = −p(γ1)

Q1(γ1)
, as defined in Lemma 2.3; since

both p(γ1) and Q1(γ1) are positive, a1 will be negative, as will a3, a5, . . . , a2k2+1.
Likewise, a2, a4, . . . , a2k2 will be positive. In total, we will have k2+1 negative ai’s
and k2 positive ai’s.

Since we now have all the positive ai’s we want, we’d like the remaining ai’s, of
which there are (k1 + k2) − (2k2 + 1) = k1 − k2 − 1 = z − 1, to all be negative.
But since (d − 2)/2 ≤ k2, we have that z − 1 ≤ n − d . Therefore, we can choose
the remaining γi’s such that

R1 > γ2k2+2 > R2 > γ2k2+3 > R3 > · · · > Rz−1 > γn−1.

Since exactly one signed root occurs between γi and γi+1 for i ∈ {2k2+1, 2k2+
2, . . . , n−2}, by Lemma 2.3 a sign change will not occur between the corresponding
ai and ai+1, so the remaining ai’s will all be negative, as desired. 	


Arguably the most relevant previous result to our work is the following theorem,
first proved by Leal-Duarte in [7]. We present a slightly different proof, but the basic
argument is the same.

Theorem 3.4 ([7]) Let T be a tree on n vertices, and let v be any vertex of T .
Suppose p and g are monic polynomials of degrees n and n − 1 respectively,
that both polynomials have all distinct, real roots, and that the roots of g strictly
interlace the roots of p. Then there exists a matrix A ∈ R(T ), centered at v, such
that A has characteristic polynomial p and A(v) has characteristic polynomial g.
Furthermore, this matrix is diagonally similar to a symmetric matrix.

Proof We proceed by induction on n. Suppose first that n = 1; then g = 1, p =
(x − b) for some real number b, and A = [b] is the matrix we seek. Note that A
is diagonally similar to a symmetric matrix: namely, itself, via the similarity matrix
D = [1]. Now suppose n > 1, and the claim holds for t with n > t ≥ 1. Then
v must have degree s ≥ 1; let u1, u2, . . . , us be the neighboring vertices of v, in
which each ui is contained in the branch Ti with weight �i .

Suppose g =∏n−1
i=1 (x − μi) for μ1 > μ2 > · · · > μn−1, and write

p(x)

g(x)
= (x − b)−

[
a1

x − μ1
+ a2

x − μ2
+ · · · + an−1

x − μn−1

]

,

as in Lemma 2.3.
Since p and g have strictly interlacing roots, we can use the last statement of

Lemma 2.3 to conclude that all ai’s are of the same sign. In this case, they are all
positive, since a1 = −p(μ1)/Q1(μ1) is positive.

Suppose we partition the n − 1 terms of the PFD into s partial sums, with the
ith partial sum containing �i terms of the original expression—the exact grouping
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does not matter here. Then we combine the terms within each partition into a single
rational expression hi(x)/Pi(x), with degPi(x) = �i and deghi(x) < �i . We now
have:

p(x)

g(x)
= (x − b)−

[
h1(x)

P1(x)
+ h2(x)

P2(x)
+ · · · + hs(x)

Ps(x)

]

.

By the uniqueness of the partial fraction decomposition, we know that if we
performed a PFD of any individual expression hi(x)/Pi(x), we would simply
regenerate �i terms of our original PFD. We already established that these terms
all have positive numerators; therefore by Lemma 2.2 each hi(x) has �i − 1 real
roots that strictly interlace those of Pi(x).

Furthermore, we can write each hi(x) as αi ĥi(x), in which αi is the leading
coefficient of hi(x) and ĥi (x) is the monic polynomial obtained by dividing hi(x)

by αi . Observe that αi is just the sum of the numerators of the partial fraction terms
that were consolidated to yield hi(x)/Pi(x); since these numerators are all positive,
so is αi .

Also observe that ĥi has the same roots as hi , which, as just discussed, strictly
interlace those of Pi . Since degPi(x) = �i < n, by the inductive hypothesis
there exists a matrix Ai ∈ R(Ti), centered at ui , such that Ai has characteristic
polynomial Pi and Ai(ui) has characteristic polynomial ĥi . Construct such an Ai

for each pair of ĥi and Pi .
Now, let

A =

⎡

⎢
⎢
⎢
⎣

b (α1e1,1)
T · · · (αse1,s)

T

e1,1 A1 0 0
... 0

. . .
...

e1,s 0 · · · As

⎤

⎥
⎥
⎥
⎦
,

which is a matrix in R(T ) and centered at v.
By the neighbors formula (1), we have:

pA = (x − b)

s∏

i=1

pAi −
s∑

i=1

aipAi(ui)

s∏

j=1,j �=i

pAj

= (x − b)P1(x) · · ·Ps(x)−
s∑

i=1

αi ĥi (x)

s∏

j=1,j �=i

Pj (x)

= (x − b)g(x)−
s∑

i=1

αi ĥi(x)

s∏

j=1,j �=i

Pj (x) = p(x).
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Furthermore, the matrix A(v) is equal to

A(v) =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 0 0
... 0

. . .
...

0 0 · · · As

⎤

⎥
⎥
⎥
⎦
,

which has characteristic polynomial

pA(v) =
s∏

i=1

pAi = P1(x) · · ·Ps(x) = g(x),

as claimed.
By our inductive hypothesis, we have that for each i ∈ {1, 2, . . . , s}, Ai =

D−1
i BiDi , in which Di is a diagonal matrix of appropriate size and Bi is symmetric.

Since each αi is positive, we can construct the diagonal matrix

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0
0
√
α1D1 0 · · · 0

0 0
√
α2D2 · · · 0

...
...

...
. . .

...

0 0 0 · · · √αsDs

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Note that as long as D1,D2, . . . ,Ds are constructed in this same inductive
manner, they will each have the (1, 1) entry equal to 1. Therefore, one can verify
that

DAD−1 =

⎡

⎢
⎢
⎢
⎣

b (
√
α1e1,1)

T · · · (√αse1,s)
T

√
α1e1,1 B1 0 0
... 0

. . .
...√

αse1,s 0 · · · Bs

⎤

⎥
⎥
⎥
⎦
,

which is symmetric. Therefore, our constructed matrix A is diagonally similar to a
symmetric matrix, as claimed. 	


We note that the original theorem and proof in [7] produce a matrix A that is
itself symmetric, instead of just symmetric by similarity. However, we amended it
to keep consistency with the canonical form we use.

We are now ready to prove our main result.

Theorem 3.5 Let p be a monic real polynomial of degree n and root deficiency
d , and let T be a tree on n vertices. Let k = n − 1 and � = (d − 2)/2. Then p

has a pseudosymmetric realization A ∈ R(T ) if there exists a vertex v of T with
branches T1, . . . , Ts with respective weights �1, . . . , �s such that some partial sum
of {�1, . . . , �s} ∈ [�, k − �].
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Proof Let v be a vertex of T that meets the above specifications. Without loss of
generality, assume that �1+ �2+· · ·+ �t = C, with t ≤ s and C ∈ [�, k− �]. (Note
that since d ≤ n, we know � < k/2 and therefore the range [�, k−�] contains at least
two integers.) Since k − C would also be in [�, k − �], we can also assume without
loss of generality that C ≤ k−C. By Proposition 3.3, we can choose γ1, γ2, . . . , γk
such that, if we let g =∏k

i=1(x−γi) and represent p/g as in Lemma 2.3, we obtain
C positive coefficients and k − C negative coefficients among the ai’s.

Relabeling the γi’s and ai’s if necessary, write

p(x)

g(x)
=(x − b)

−
[

a1

x − γ1
+ a2

x − γ2
+ · · · + aC

x − γC
+ aC+1

x − γC+1
+ · · · + ak

x − γk

]

,

such that a1, . . . , aC are positive and aC+1, . . . , ak are negative.
Now the proof resembles that of the last theorem. We can partition the first C

terms of the PFD into t partial sums, and then the last k − C terms into s − t

partial sums, with the ith partial sum containing �i terms of the original expression.
Then we combine the terms within each partition into a single rational expression
hi(x)/Pi(x), with degPi(x) = �i and deghi(x) < �i . We now have:

p(x)

g(x)
= (x − b)−

[
h1(x)

P1(x)
+ · · · + hs(x)

Ps(x)

]

.

If we perform a PFD of any individual expression hi(x)/Pi(x), we would, again,
simply regenerate �i terms of our original PFD. Because of how we combined the
terms originally, the terms we regenerate will either have all positive numerators (if
i ≤ t) or all negative numerators (if i > t). Either way, by Lemma 2.2 each hi(x)

has �i − 1 real roots that strictly interlace those of Pi(x).
We can again write each hi(x) as αiĥi (x), in which αi is the leading coefficient of

hi(x) and ĥi (x) is the monic polynomial obtained by dividing hi(x) by αi . Again,
ĥi has the same roots as hi , which strictly interlace those of Pi ; by Theorem 3.4
there exists a matrix Ai ∈ R(Ti), centered at ui , such that Ai has characteristic
polynomialPi , Ai(ui) has characteristic polynomial ĥi , and Ai is diagonally similar
to a symmetric matrix. Construct such an Ai for each pair of ĥi and Pi .

Now, let

A =

⎡

⎢
⎢
⎢
⎣

b (α1e1,1)
T · · · (αse1,s)

T

e1,1 A1 0 0
... 0

. . .
...

e1,s 0 · · · As

⎤

⎥
⎥
⎥
⎦
.

Note that by construction, we have A ∈ R(T ) and it is centered at v.
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By the neighbors formula, we have:

pA = (x − b)

s∏

i=1

pAi −
s∑

i=1

aipAi(ui)

s∏

j=1,j �=i

pAj

= (x − b)P1(x) · · ·Ps(x)−
s∑

i=1

αi ĥi (x)

s∏

j=1,j �=i

Pj (x)

= (x − b)g(x)−
s∑

i=1

αi ĥi(x)

s∏

j=1,j �=i

Pj (x) = p(x).

Since each Ai is diagonally similar to a symmetric matrix,A is pseudosymmetric,
as claimed. 	


4 Constructive Examples

We present two examples that demonstrate the use of this algorithm. The first
example uses a polynomial with real, distinct roots, which can be realized using
the method presented in Theorem 3.4. The second example uses a polynomial with
repeated and complex roots, which can be realized using the method presented in
Theorem 3.5.

Example 4.1 Let p1 be the polynomial

p1(x) = (x + 3)(x + 2)(x + 1)(x)(x − 1)(x − 2)(x − 3)(x − 4),

and let T be the following 8-vertex tree:

We wish to find a matrix A ∈ R(T ) with characteristic polynomial p1.
(Note: in the following calculations, all real numbers are rounded to the nearest

thousandth.)
In order to use the algorithm presented in Theorem 3.4, we first need to choose a

“central” vertex for our matrix A and a characteristic polynomial for A(v).
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Fig. 1 Our tree T with
highlighted vertex v

Since there are no restrictions on the central vertex in the real, distinct root case,
let v be the far left vertex indicated in Fig. 1.

We need our characteristic polynomial for A(v) to be of degree 7 and have real,
distinct roots that strictly interlace those of p1. Any such polynomial will suffice, so
let us choose

g(x) = (x + 2.5)(x + 1.5)(x + 0.5)(x − 0.5)(x − 1.5)(x − 2.5)(x − 3.5).

Now, by Lemma 2.3 we can write

p1

g
=(x − 0.5)−

(
0.733

x + 2.5
+ 1.015

x + 1.5
+ 1.154

x + 0.5

)

−
(

1.196

x − 0.5
+ 1.154

x − 1.5
+ 1.015

x − 2.5
+ 0.733

x − 3.5

)

.

Observe that all the numerators in the PFD are positive, as the algorithm claims.
In this case T has only one branch at v - call it T1 - so we may combine all partial

fraction terms into a single rational expression:

p1

g
= (x − 0.5)

− 7x6 − 21x5 − 48.125x4 + 131.25x3 + 60.183x2 − 129.938x − 6.152

g
.

By pulling out the leading coefficient of the PFD numerator, and factoring the
resulting monic polynomial (call it ĥ1), we have:

p1

g
= (x − 0.5)

− 7(x + 2.261)(x + 1.144)(x + 0.046)(x − 1.046)(x − 2.144)(x − 3.261)

(x + 2.5)(x + 1.5)(x + 0.5)(x − 0.5)(x − 1.5)(x − 2.5)(x − 3.5)
.

Observe that ĥ1 is of degree 6 and has real, distinct roots that strictly interlace
the roots of g. Letting u denote the sole neighboring vertex of v, we can construct a
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matrix A1 in R(T1), centered at u, such that A1 has characteristic polynomial g and
A1(u) has characteristic polynomial ĥ1. Our desired matrix A will be of the form:

A =
[

0.5 (7e1)
T

e1 A1

]

.

One can verify with the neighbors formula (1) that A has characteristic polyno-
mial p1.

Now, we can follow the same process to construct A1. Dividing g by ĥ1 as in
Lemma 2.3 yields:

g

ĥ1
=(x − 0.5)−

(
0.458

x + 2.261
+ 0.588

x + 1.144
+ 0.641

x + 0.046

)

−
(

0.641

x − 1.046
+ 0.588

x − 2.144
+ 0.458

x − 3.261

)

.

Now, T1 has two branches at u, with weights 5 and 1; call these branches S1 and
S2. We would like to combine the new PFD into two rational expressions such that
the denominators have degrees 5 and 1. There are several ways we could do this, but
let’s consolidate the first five terms of the PFD and leave the last term alone.

g

ĥ1
=(x − 0.5)

− 2.917(x + 1.941)(x + 0.687)(x − 0.535)(x − 1.767)

(x + 2.261)(x + 1.144)(x + 0.046)(x − 1.046)(x − 2.144)

− 0.458

x − 3.261
.

Let w1 and w2 denote the neighbors of v contained in S1 and S2 respectively.

Let 2.917ĥ2
P2

denote the first rational expression above. Again, since P2 and ĥ2 have
strictly interlacing roots, we can construct a matrix B in R(S1) centered at w1 such
that B has characteristic polynomial P2 and B(w1) has characteristic polynomial
ĥ2. As for the last rational expression, 0.458

x−3.261 , the matrix [3.621] ∈ R(S2) has
characteristic polynomial x − 3.261, so we have reached the base case of our
inductive algorithm.

Thus, our matrix A1 will be of the form:

A1 =
⎡

⎣
0.5 (2.917e1)

T 0.458
e1 B 0
1 0 3.261

⎤

⎦ .
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By continuing this process, we can calculate

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.066 1.027 0 1.204 0
1 −0.082 3.438 0 0
0 1 −0.093 0 0
1 0 0 −0.076 0.373
0 0 0 1 −0.077

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

which, by performing the appropriate substitutions, yields

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 7 0 0 0 0 0 0
1 0.5 2.917 0 0 0 0 0.458
0 1 0.066 1.027 0 1.204 0 0
0 0 1 −0.082 3.438 0 0 0
0 0 0 1 −0.093 0 0 0
0 0 1 0 0 −0.076 0.373 0
0 0 0 0 0 1 −0.077 0
0 1 0 0 0 0 0 3.261

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

While we will not perform the calculation here, one can use a similar inductive
process to confirm that A is diagonally similar to a symmetric matrix, since all off-
diagonal entries are positive.

Example 4.2 Let T be the same 8-vertex tree used in the previous example, and let
p2 be the following polynomial:

p2(x) = x2(x − 5)3(x + 1)(x2 + 1).

We wish to find a matrix A ∈ R(T ) with characteristic polynomial p2.
(In the following calculations, real numbers greater than 10 in absolute value

are rounded to the nearest tenth. Numbers with magnitude between 1 and 10 are
rounded to the nearest 100th, and numbers with magnitude less than 1 are rounded
to the nearest 1000th.)

The polynomial p2 has root deficiency 6, so let � = (6 − 2)/2 = 2. We wish to
find a vertex v of T such that some partial sum of the branch weights of T at v lies
in the range [2, 5]. Fortunately, the highlighted vertex v indicated in Fig. 2 suffices,
since it has a branch of weight 2.

We will center our matrix A at v. Now, we need to construct an appropriate
degree 7 polynomial g to be the characteristic polynomial of A(v).

If γ1 > γ2 > · · · > γ7 are the roots of g, and 5 and −1 the signed roots of p2,
we would like to choose γ1, γ2, . . . , γ5 to be greater than 5, γ6 to be between 5 and
−1, and γ7 to be less than −1. This will ensure that the PFD of p2

g
will produce five
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Fig. 2 Our tree T with
highlighted vertex v

negative and two positive numerators, as shown in the proof of Proposition 3.3. So
let

g(x) = (x − 8)(x − 7.5)(x − 7)(x − 6.5)(x − 6)(x − 1)(x + 2).

Now we can write

p2

g
=(x + 20)−

(−9627.4

x − 8
+ 1847.0

x − 7.5
+ −11614.8

x − 7
+ 2638.4

x − 6.5

)

−
(−155.4

x − 6
+ −0.011

x − 1
+ −0.039

x + 2

)

.

We see that T has three branches at v, which have weights 3, 2, and 2. Call these
branches T1, T2, and T3 respectively, and suppose they each contain the respective
neighbors u1, u2, and u3 of v.

We would like to consolidate the PFD terms into three rational expressions such
that the denominators have degrees 3, 2, and 2. However, in order to apply our
algorithm, we must only consolidate terms whose numerators have the same sign.
So let’s combine the first, third, and fifth terms into one expression, the second and
fourth terms into another, and the last two terms into our final expression.

p2

g
=(x + 20)−

(−21397.6(x − 7.55)(x − 6.01)

(x − 8)(x − 7)(x − 6)
+ 21108.4(x − 6.63)

(x − 7.5)(x − 6.5)

)

−
(−0.051(x + 1.33)

(x − 1)(x + 2)

)

=(x + 20)−
(
−21397.6ĥ1

P1
+ 21108.4ĥ2

P2
+ −0.051ĥ3

P3

)

.

Since each ĥi and Pi have strictly interlacing roots, we can construct a matrix
Ai ∈ R(Ti), centered at ui , such that Ai has characteristic polynomial Pi , Ai(ui)
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has characteristic polynomial ĥi , and Ai is diagonally similar to a symmetric matrix.
Our desired matrix A will have the form

A1 =

⎡

⎢
⎢
⎣

−20 (−21397.6e1)
T (21108.4e1)

T (−0.051e1)
T

e1 A1 0 0
e1 0 A2 0
e1 0 0 A3

⎤

⎥
⎥
⎦ .

One can use the neighbors formula to verify that A does indeed have character-
istic polynomial p2.

Finally, we can construct A1, A2, and A3 using the algorithm in Theorem 3.4 to
yield the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−20 −21397.6 0 0 21108.4 0 −0.051 0
1 7.44 0.249 0.012 0 0 0 0
0 1 7.55 0 0 0 0 0
0 1 0 6.01 0 0 0 0
1 0 0 0 7.38 0.109 0 0
0 0 0 0 1 6.63 0 0
1 0 0 0 0 0 0.327 1.57
0 0 0 0 0 0 1 −1.33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5 Corollaries, Applications, and Special Cases

To help narrow the scope of Theorem 3.5, and to pave the way for useful corollaries,
we present a few entirely graph-theoretic results. These theorems will aid us in
choosing the most appropriate vertex of the graph on which to center our constructed
matrix.

Unless otherwise specified, let T be an arbitrary tree on n vertices. We let k =
n− 1, � be a nonnegative integer with � < k/2, and m = k − 2�+ 1, the number of
integers in the range [�, k − �]. Observe that since � < k/2, we must have m ≥ 2.

With respect to �, we say that a vertex v of T is ideal if the largest branch of T
at v has weight k − � or smaller.

If T is our tree and p is our desired polynomial with root deficiency d ≥ 2, then
the only vertices upon which we could center our constructed matrix A are the ideal
vertices of T with respect to � = (d − 2)/2. If a vertex v is not ideal - that is, if T
has a branch at v with weight greater than k− � - then any partial sum of the branch
weights of T at v will either be smaller than � or larger than k − �.

Proposition 5.1 T has at least one ideal vertex with respect to �.

Proof Let v be any vertex of T , and let M be the weight of the largest branch of T
at v. We proceed by induction on M .
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If M ≤ k− �, then v is an ideal vertex, and we are done. So suppose M > k− �,
and that the claim holds for all maximum branch weights c with M > c ≥ k−�. Let
T1, T2, . . . , Ts be the branches of T at v, in which each Ti has weight �i and contains
ui , a neighboring vertex of v. Without loss of generality, assume that �1 = M . We
must have �1 + �2 + · · · + �s = k, so if �1 > k − �, then �2 + · · · + �s < �.
Now let S1, S2, . . . , St be the branches of T at u1, and assume S1 is the branch that
contains v. By the previous statement, S1 can have weight at most �. Furthermore,
the weights of S2, . . . , St sum to M−1, so no individual Si can have weight greater
than M − 1. This includes S1; since � < k/2, we have � < k − � < M . The choice
of our starting vertex was arbitrary, so by our inductive hypothesis, T has an ideal
vertex. 	


Note that the proof of the above theorem not only confirms the existence of an
ideal vertex for any tree T , but also provides guidance for how to locate it. We also
have the following useful lemma regarding the positions of the ideal vertices:

Lemma 5.2 The ideal vertices of T with respect to �, along with the edges
connecting them, form a subtree of T .

Proof The case when T only has one ideal vertex is trivial, so we assume that v and
w are two distinct ideal vertices of T . Since T is a tree, there exists a unique path on
T connecting v and w; it suffices to prove that every vertex along this path is ideal.

If v and w are the only vertices on this path (i.e. if v and w are neighbors), then
the case is again trivial. So assume that the path contains a vertex u distinct from
v and w. Let Tv and Tw be the (necessarily distinct) branches of T at u containing
the vertices v and w respectively, and let T1, . . . , Ts be the remaining branches of
T at u. The vertex u is contained in some branch S with respect to v, and since v

is ideal, S has weight k − � or smaller. Therefore, the branches of T at u that do
not contain v can have weights that sum to at most k − �− 1, implying that Tw and
T1, . . . , Ts all have weight less than k − �. However, since w is also ideal, we can
apply a symmetric argument and conclude that Tv has weight less than k−� as well.
Since all branches of T at u have weight less than k−�, u must be ideal (Fig. 3). 	


Now suppose that, for a given �, we have an ideal vertex v for a tree T . If any
branch of T at v has its weight in the interval [�, k − �], then by Theorem 3.5 we
can construct a pseudosymmetric matrix A for any polynomial of root deficiency
d = 2� + 2. We need only be concerned if all branches of T at v have weight
less than �. In that case, we call v deficient with respect to �. Not all trees have a
deficient vertex. In fact, if a tree has more than one ideal vertex, then we can say
with certainty that none of them are deficient.

Proposition 5.3 If T has a deficient vertex v with respect to �, then v is the only
ideal vertex of T with respect to �.

Proof Let v be a deficient vertex of T , and let u1, u2, . . . , us be the neighboring
vertices of v, in which ui is contained in the branch Ti with weight �i . By
Lemma 5.2, the ideal vertices of T form a subtree, so if T contained an additional
ideal vertex, then at least one ui would have to be ideal. However, by assumption
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Fig. 3 Images (a), (b), and (c) denote the ideal vertices of this 13-vertex tree with respect to 5, 4,
and 3 respectively

�i < � for each i, which also means that
∑s

j=1,j �=i �j > k − � for each i. Thus for
any ui , the branch containing v would have weight greater than k − �, so ui cannot
be ideal. 	


Therefore, if our desired polynomial p has root deficiency d , and our tree T has
a deficient vertex v with respect to � = (d−2)/2, then any pseudosymmetric matrix
A would have to be centered at v. Fortunately, even in this case, we can still usually
come up with an appropriate partial sum. We will present some sufficient conditions
for that later.

We will conclude this graph theory discussion with a theorem that places an
upper bound on the number of ideal vertices a tree can have with respect to a given
�.

This may not be the most useful result from a theoretical perspective—we only
need to find one appropriate ideal vertex to know that a matrix can be constructed—
but from a computational standpoint certain vertices may be better for centering
than others. An upper bound—along with the fact that all ideal vertices must be
connected—allows the algorithm user to know when he has found all possible ideal
vertices, allowing him to make the best judgment on which one to use.

First, we introduce one more term and lemma. We call an ideal vertex v of T

ideal pendent (with respect to �) if it is a pendent vertex on the subtree of ideal
vertices with respect to �. It is well known that a tree on two or more vertices must
have two or more of those vertices pendent. So as long as T has more than one ideal
vertex, we are guaranteed at least two pendent ideal vertices.
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Lemma 5.4 Suppose v is an ideal pendent vertex of T , and let T1, . . . , Ts be the
branches of T at v with respective lengths �1, . . . , �s . Without loss of generality,
assume that T1 is the only branch of T at v that contains an ideal vertex. Then
�2 + �3 + · · · + �s ≥ �.

Proof If �2 + �3 + · · · + �s < �, then �1 > k − � and v would not be an ideal
vertex. 	


Now, we present and prove our upper-bound result:

Proposition 5.5 T has at most m = k − 2�+ 1 ideal vertices with respect to �.

Proof We proceed by induction on �. If � = 0, then m = n, and the claim holds.
Now assume � > 0, and that the claim holds for s with � > s ≥ 0. Suppose

T has α ideal vertices with respect to � − 1 and β ideal vertices with respect to �.
Note that β ≤ α; any vertex that is ideal with respect to � will also be ideal with
respect to � − 1. By our inductive hypothesis, α ≤ k − 2(� − 1) + 1 = m + 2. If
α ≤ m, then the claim holds automatically. So we only need to consider the cases
when α = m+ 1 or α = m+ 2. Note that in either case, α > 2 since m ≥ 2.

In the case where α = m + 1, we would have n − (m + 1) = 2� − 1 non-ideal
vertices with respect to �−1. However, recall that at least two of our α ideal vertices
are ideal pendent, and by Lemma 5.4 they each have branches consisting entirely
of non-ideal vertices whose weights sum to � − 1 or greater. (These branches are
distinct since our graph is minimally connected.) If both of these sums were greater
than � − 1, then the total number of non-ideal vertices would be 2� or greater, a
contradiction. Therefore, at least one of our ideal pendent vertices has its “non-
ideal” branch weights summing to exactly �− 1, implying that the branch that does
contain ideal vertices has weight k−�+1. Therefore, when we change our parameter
from �− 1 to �, this particular vertex will no longer be ideal. So β ≤ α− 1 = m, as
desired.

The case where α = m + 2 is similar. In that case, both of our pendent ideal
vertices with respect to �− 1 lose their ideal status upon changing the parameter to
�. We still find that β ≤ m, as desired (Fig. 4). 	


We can now combine our main theorem with the previous results on ideal vertices
to draw some useful corollaries, targeting specific types of trees or polynomials that
can be realized with our algorithm.

For the remainder of this section, we will let T be an arbitrary tree on n vertices,
and p be an arbitrary polynomial of degree n and root deficiency d ≥ 2. (The case
when d = 0 merits no further study due to Theorem 3.4). We let � = (d − 2)/2,
k = n − 1, and m = k − 2� + 1, the number of integers in the range [�, k − �].

Fig. 4 With respect to � = 4,
this 10-vertex tree has exactly
m = 2 ideal vertices
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Furthermore, observe that since d can be at most n, we always have (d − 2)/2 =
� < (n− 1)/2 = k/2.

The first result we already mentioned, but we state it again formally.

Theorem 5.6 If T has an ideal vertex v with respect to � that is not deficient, then
p has a pseudosymmetric realization A ∈ R(T ).

Proof By the definition of ideal vertex, T can have no branches at v with weight
larger than k − �. Since v is not deficient, T must have at least one branch at v with
weight � or greater. The result follows from Theorem 3.5. 	


As a natural follow-up to this corollary, we have:

Corollary 5.7 If T has more than one ideal vertex with respect to �, then p has a
pseudosymmetric realization A ∈ R(T ).

Proof By Proposition 5.3, if T has more than one ideal vertex, then none of them
can be deficient. See Theorem 5.6. 	


Now the only case of interest is when T has a single, deficient ideal vertex v with
respect to the appropriate �. The next result covers a large number of cases:

Proposition 5.8 Suppose T has a deficient ideal vertex v with respect to �. The
polynomial p has a pseudosymmetric realization A ∈ R(T ) if at most two branches
of T at v have weight greater than m.

Proof Let T1, . . . , Ts be the branches of T at v with respective weights �1, . . . , �s .
By definition of deficient vertex, each �i < �. Without loss of generality, assume
that �2, �3, . . . , �s−1 are all less than or equal to m. Let ki denote the partial sum
�1 + �2 + · · · + �i ; clearly k1 < k2 < · · · < ks . Note that k1 = �1 < �, but
ks−1 = k − �s > k − �.

If there existed no ki ∈ [�, k − �], then for some i ∈ [1, s − 2] we would have
ki+1 − ki > (k − �) − � + 1 = m. But ki+1 − ki = �i+1, and by assumption
�2, . . . , �s−1 are all less than or equal to m; a contradiction. Therefore, there must
exist some partial sum ki ∈ [�, k − �], which by Theorem 3.5 guarantees that p has
a pseudosymmetric realization in R(T ). 	


This last result paves the way for a series of increasingly specific corollaries.
The first one concerns linear trees. A linear tree T is a tree whose high-degree
vertices all occur along a single induced path. (We define a high-degree vertex to be
a vertex with degree at least three.) Furthermore, if P is the longest induced path
that includes all of these vertices, then the depth of T is the maximum distance (in
number of vertices) a vertex can be from this path P .

Proposition 5.9 Suppose T is a linear tree with depth at most m. Then the
polynomial p has a pseudosymmetric realization A ∈ R(T ).

Proof Let v be an ideal vertex of T . If v is not deficient, then the result follows
from Theorem 5.6. If v is deficient, then it must be high-degree. Since � < k/2, if T



The Inverse Characteristic Polynomial Problem for Trees 349

Fig. 5 A linear tree on 12 vertices with depth 2, with one deficient ideal vertex v with respect to
� = 5. Note that the branch weights 4 and 1 sum to 5 ∈ [5, 6] = [�, k − �]

had two or fewer branches at v, each with weight less than �, then the sum of their
weights would be less than k, a contradiction.

Since T is a linear tree, at most two branches of T at v can contain additional
high-degree vertices, which means the remaining branches are all paths of length m

or smaller. The result follows from Proposition 5.8. 	

The previous result yields the following specific case:

Corollary 5.10 Suppose T is a linear tree with depth at most 2. Then p has a
pseudosymmetric realization A ∈ R(T ).

Proof Since � < k/2, we know that � is strictly less than k−�, so the range [�, k−�]
must contain at least two integers. Therefore, m = k− 2�+ 1 ≥ 2. See the previous
result (Fig. 5). 	


This corollary includes the case of paths, which can be considered linear trees
with depth 0. While the existence of arbitrary polynomial realizations for paths had
already been proven in the real number case, this is the first proof that uses an
explicit, constructive argument.

The next few results also follow from Proposition 5.8.

Proposition 5.11 If m ≥ � − 1, or, equivalently, if n ≥ (3/2)(d − 2) − 1, then p

has a pseudosymmetric realization A ∈ R(T ).

Proof Let v be an ideal vertex of T . If v is not deficient, then the result follows from
Theorem 5.6. If v is deficient, then by definition all branches of T at v have weight
less than �, which in this case also means they have weight less than or equal to m.
The result now follows from Proposition 5.8 (Fig. 6). 	


Fig. 6 A tree on 15 vertices,
with one deficient ideal vertex
v with respect to � = 5. Note
that m = 14 − 10 + 1 = 5 ≥
�− 1 = 4, and we have
branch weights 4 and 2 that
sum to 6 ∈ [5, 9] = [�, k− �]
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As direct consequence of Proposition 5.11, we have:

Corollary 5.12 Suppose n < 10. Then p has a pseudosymmetric realization A ∈
R(T ).

Proof By the previous result, p is realizable for any tree if its degree n and root
deficiency d satisfy the inequality n ≥ (3/2)(d − 2)− 1. If n < 10, then d can be
either 0, 2, 4, 6, or 8. In each of these cases, substituting d into the right-hand side
of the inequality yields a value less than or equal to d . Since n must be at least d ,
the inequality is satisfied. 	


Note that the inequality n ≥ (3/2)(d − 2) − 1 is equivalent to d ≤ (2/3)(n +
1) + 2. This form is perhaps more useful, as it allows one to see the minimum
number of signed roots needed for a degree n polynomial in order to guarantee a
pseudosymmetric realization for every tree.

The last corollary we will state does not directly follow from any of the previous
ones, but is an interesting observation nonetheless.

Corollary 5.13 Suppose n is even, and T is composed of two distinct subtrees
T1 and T2, each with weight n/2, that are joined by a single edge. Then p has a
pseudosymmetric realization A ∈ R(T ).

Proof Let v be one of the two vertices on the edge that connects T1 and T2. Then T

will have one branch at v with weight n/2 (equal to either T1 or T2), and additional
branches whose weights sum to n/2 − 1. The root deficiency d of p can be at most
n; therefore, � = (d − 2)/2 will be at most (n− 2)/2 = n/2 − 1, and k − � will be
at least n/2. Therefore, the branch partial sum n/2 − 1 is guaranteed to fall in the
range [�, k − �], and the result follows from Theorem 3.5 (Fig. 7). 	


We emphasize that none of these corollaries are “if and only if” statements; a
polynomial and tree pair may fall under none of the categories described by the
corollaries yet still have a pseudosymmetric realization. Consider the polynomial
p(x) = x14 and the generalized star S shown in Fig. 8.

Since p has root deficiency 14, we have � = 6, [�, k − �] = [6, 7], and m = 2.
Here, S has a single deficient ideal vertex v, and T has four branches at v with
weights 5, 4, 3, and 1. We can realize p with a pseudosymmetric matrix A ∈ R(S)

because we have 5+1 = 6 ∈ [�, k− �]. However, we have m < �−1 (violating the

Fig. 7 A 20-vertex tree
composed of two 10-vertex
subtrees joined by a single
edge. With respect to � = 9,
we have an ideal vertex with a
branch of length 10, and
10 ∈ [9, 10] = [�, k − �]
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Fig. 8 A generalized star
with arm lengths 5, 4, 3,
and 1

conditions of Proposition 5.11), S has depth greater than m when viewed as a linear
tree (violating the conditions of Proposition 5.9), and we have three branches with
weight greater than m = 2 (violating the conditions of Proposition 5.8).
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A Note on the Fredholm Theory
of Singular Integral Operators
with Cauchy and Mellin Kernels, II
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Abstract Necessary and sufficient conditions for the Fredholmness of a class of
singular integral operators in weighted Lp-spaces on the interval (0, 1) of the
real line are formulated under weaker conditions than in Junghanns and Kaiser
(Oper Theory Adv Appl 271:291–325, 2018). Moreover, results on the one-sided
invertibility of the operators under consideration are proved.
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1 Introduction

In this paper we consider linear integral operators, which are made up by multipli-
cation operators, the Cauchy singular integral operator and Mellin type operators.
More precisely, the operators under consideration are given by

(Au)(x) :=a(x)u(x)+ b(x)

π i

∫ 1

0

u(y) dy

y − x
+ c+(x)

∫ 1

0
k+
(
x

y

)
u(y) dy

y

+ c−(x)
∫ 1

0
k−
(

1 − x

1 − y

)
u(y) dy

1 − y
, 0 < x < 1,

(1.1)
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and are considered in weighted Lp-spaces Lp
ρ,σ := Lp

vρ,σ (0, 1), where a, b, c± :
[0, 1] → C are piecewise continuous functions,

vρ,σ (x) = xρ(1 + x)σ , x ∈ (0, 1) , ρ, σ > −1 ,

is a classical Jacobi weight, and the Mellin transforms of the functions k± :
(0,∞)→ C are supposed to be continuous.

The paper continues the investigations in [5] and extends the results given there
by using techniques from [2] and properties of Fourier convolution operators in
weighted Lp-spaces proved in [1] and [8]. To be more precise, in [5] the main
theorem formulates necessary and sufficient conditions for the Fredholmness of the
operator A as well as an index formula based on the winding number of a certain
closed curve in C associated with A. In the present paper we will state and prove
this theorem again but under weaker conditions regarding the functions k±. In order
to do this, we basically use [1, Theorem 5.7] (cf. also [8, Theorem 1.3 and Theorem
3.2]).

Additionally to the results proved in [5], we investigate the regularity of solutions
of equation Au = f and prove results concerning the one-sided invertibility of the
operator A in Lp

ρ,σ .
The paper is structured as follows. In Sect. 2, we define weighted Lp-spaces

on the real line and on the half line, collect useful properties of the Fourier
transformation, and introduce specific classes of convolution operators. In the
following Sect. 3 we are going to state results regarding the boundedness of
operator A in the weighted Lp-spaces Lp

ρ,σ . To achieve this, we introduce the
Mellin transformation at first and recall useful results from [5]. Section 4 starts
with a result, which connects operators of form (1.1) and convolution operators
introduced in Sect. 2, followed by the above mentioned Fredholm theorem, first in
case a, b, c± are constants and later for piecewise continuous functions a, b, c±.
In Sect. 5, we investigate the smoothness of solutions of equation Au = f as
well as their asymptotic behaviour near the boundary point 1. Here beside the case
c−(x) ≡ 0, we distinguish between the case of b(x) being the zero function, that
means, that the Cauchy singular integral operator does not appear, and the case of
both functions c±(x) being identically zero, i.e., the Mellin-type operators Bk± do
not occur. Results and techniques from [2, Section 6] will be used and extended.
The final Sect. 6 deals with the one-sided invertibility of A in Lp

ρ,σ in case c+ or c−
vanish.

2 Preliminaries

In this section we first collect some properties of Fourier convolution operators.
With that, we are going to introduce a specific class of convolution operators.
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Subsequently, results concerning the one-sided invertibility of such operators are
formulated.

For 1 < p < ∞ and −1 < σ < p − 1, let us introduce the weighted Lp-space
Lp
σ (R) defined by the norm

‖u‖σ,p,R =
(∫ ∞

−∞
|u(t)|p |t|σ

(1 + |t|)σ dt

) 1
p

. (2.1)

We are going to use the abbreviations Lp(R) := Lp
0 (R) and ‖u‖p,R := ‖u‖0,p,R.

For u ∈ L1(R), the well-known Fourier transform is defined by

(Fu) (η) :=
∫ ∞

−∞
e−iηtu(t) dt, η ∈ R.

For 0 < R < ∞ and u ∈ L1(−R,R), set

(FRu) (η) =
∫ R

−R

e−iηtu(t) dt, η ∈ R, (2.2)

and

(
F−

R u
)
(t) = 1

2π

∫ R

−R

eiηtu(η) dη, t ∈ R.

Let 1 < p ≤ 2, 1
p
+ 1

q
= 1 and u ∈ Lp(R). Then (cf. [9, p. 96, Theor. 74]) FRu

converges for R →∞ in Lq (R) to a function ũ and F−
R ũ converges in Lp(R) to u.

Moreover, we have

‖ũ‖q,R ≤ (2π)
1
q ‖u‖p,R .

Obviously, if u ∈ L1(R) ∩ Lp(R), then, due to (2.2), (Fu)(η) = ũ(η) for almost
every η ∈ R. That is why, we will call the operator

F : Lp(R) → Lq (R), u �→ ũ

the Fourier transformation and the function Fu the Fourier transform of u ∈ Lp(R).
Of course, F− : Lp(R) → Lq (R) is also well defined, where for u ∈ Lp(R),
we set F−u = limR→∞ F−

R u and take the limit in the Lq (R)-sense. Note that,
Fv and F−v are also defined for v = F−u and v = Fu, respectively, where
Fv := limR→∞FRv as well as F−v := limR→∞ F−

R v and the limits are taken in
the Lp(R)-sense. Moreover, with these definitions we have

F−Fu = F F−u = u ∀ u ∈ Lp(R), 1 < p ≤ 2.
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In case p = 2, it’s well-known that F : L2(R) → L2(R) is an isomorphism, where

1

2π
F∗ = F−1 = F−. (2.3)

Let f, g : R→ C be measurable functions. We assume that there is a set N ⊂ R of
measure zero such that f (t − ·)g(·) is integrable for all t ∈ R\N . In this case, we
define the convolution f ∗ g : R→ C of these functions by

(f ∗ g)(t) :=
⎧
⎨

⎩

∫ ∞

−∞
f (t − s)g(s) ds : t ∈ R\N

0 : t ∈ N.

If p ∈ (1,∞), 1
p
+ 1

q
= 1, f ∈ Lp(R), and g ∈ Lq (R), then

∣
∣(f ∗ g)(t)

∣
∣ ≤ ‖f ‖p,R ‖g‖q,R , t ∈ R.

This relation is generalized by the well known Young’s inequality for convolutions

‖f ∗ g‖r,R ≤ ‖f ‖p,R ‖g‖q,R , (2.4)

which is true for f ∈ Lp(R), g ∈ Lq(R) with 1 ≤ p, q ≤ ∞ and 1
p
+ 1

q
≥ 1 as well

as 1
p
+ 1

q
= 1+ 1

r

(
1
∞ := 0

)
. In particular, under these assumptions, f ∗g ∈ Lr (R).

If

1 < p, q ≤ 2 and
1

p
+ 1

q
> 1

hold true, then we have the convolution theorem

F(f ∗ g) = Ff · Fg and F−(f ∗ g) = 2π F−f · F−g

as well as

f ∗ g = F−(Ff · Fg) and f ∗ g = 2π F(F−f · F−g) (2.5)

(cf. [9, p. 106, Theor. 78]).
By SR we denote the Cauchy singular integral operator

(SRf )(s) = 1

π i

∫ ∞

−∞
f (t)

t − s
dt, s ∈ R,
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where the integral is considered as a Cauchy principal value integral. It is well
known (see, for example, [3, Sections 1.2, 1.5]) that SR : Lp

σ (R) → Lp
σ (R) is a

linear and bounded operator, since 1 < p < ∞ and −1 < σ < p − 1.
Let 1 < p ≤ 2, γ ∈ R, and bγ (t) = eiγ t . Then (cf. [2, Lemma 1.35])

b−1
γ SRbγ u = −Fsgn(· − γ )F−u ∀ u ∈ Lp(R), (2.6)

where sgn : R→ {−1, 0, 1} denotes the sign function.
For p ∈ (1,∞) and ρ ∈ (−1, p − 1), let us introduce the weighted Lp-space

L̃p
ρ (R

+) defined by the norm

‖u‖ρ,p,R+,∼ =
(∫ ∞

0
|u(t)|p tρ dt

) 1
p

.

By SR+ we denote the Cauchy singular integral operator

(SR+f )(s) = 1

π i

∫ ∞

0

f (t)

t − s
dt, s ∈ R

+,

where again the integral is considered as a Cauchy principal value integral. The
operator SR+ is a linear and bounded operator in L̃p

ρ (R
+) (see, for example, [3,

Sections 1.2, 1.5]). For ξ = 1+ρ
p

, we introduce the mapping

Z̃ξ : L̃p
ρ (R

+) → Lp(R), f �→ e−ξ ·f (e−·),

which is an isometric isomorphism with
(
Z̃−1

ξ f
)
(y) = y−ξ f (− ln y). Now, a

consequence of relation (2.6) is the formula

Z̃ξSR+Z̃−1
ξ u = FaF−u ∀u ∈ Lp(R), (2.7)

where a(t) = −i cot(πξ − iπt), t ∈ R, and 1 < p ≤ 2.
For every a ∈ L∞(R) the operator

W0
a : L2(R) → L2(R), u �→ FaF−1u

is well defined, linear, and bounded (cf. (2.3)). In particular, for bγ (t) = eiγ t , γ ∈ R,
and aγ (t) = −sgn(t − γ ), due to (2.6), we have

W0
aγ
= b−1

γ SRbγI. (2.8)



358 P. Junghanns and R. Kaiser

Let p ∈ (1,∞), −1 < σ < p − 1, and a ∈ L∞(R). If there is a finite constant
M = M(a, p, σ ) such that

∥
∥
∥W0

au

∥
∥
∥
σ,p,R

≤ M ‖u‖σ,p,R ∀ u ∈ L2(R) ∩ Lp
σ (R),

then the uniquely defined linear and continuous extension of W0
a onto Lp

σ (R) is
again denoted by W0

a : Lp
σ (R) → Lp

σ (R) and a ∈ L∞(R) is called a (p, σ )-
multiplier. Let us denote the set of all (p, σ )-multipliers by Mp,σ . In view of
the above example given by (2.8) and the fact that SR ∈ L(Lp

σ (R)), we have
W0

aγ
∈ L(Lp

σ (R)) for every γ ∈ R. Since, for the characteristic function χ(a,b]
of the interval (a, b] ⊂ R, we have the representation χ(a,b](t) = sgn(t − a) −
sgn(t − b), the set of all finite linear combinations of characteristic functions of
(also unbounded) intervals belongs to Mp,σ .

As usual, by V1(R) we denote the set of all functions a : R → C with bounded
total variation and by var(a) the total variation of a ∈ V1(R). It turns out (see [8,
Theorem 1.3]) V1(R) ⊂ Mp,σ and that, for all a ∈ V1(R), the inequality

‖a‖Mp,σ
≤ Cp,σ ‖SR‖L(Lp

σ (R)
) [‖a‖∞ + var(a)

]
(2.9)

is true, where the constant Cp,σ does only depend on p and σ and not on a ∈ V1.
In what follows, R = R ∪ {±∞} and Ṙ denote the two-point compactification

and the one-point compactification of R, respectively. By PC(R) we refer to the
algebra of all piecewise continuous functions a : R → C (i.e., f ∈ PC(R) if and
only if all limits a(t±0), t ∈ Ṙ, where a(∞±0) := a(∓∞) = limt→∓∞ a(t), exist
and are finite). Moreover, by PCp,σ we denote the completion of the set PC(R) ∩
V1(R) in the Banach algebra

(
Mp,σ , ‖·‖Mp,σ

)
, where ‖a‖Mp,σ

= ∥
∥W0

a

∥
∥L(Lp

σ (R))

(cf. [1, p. 254]). Since ‖a‖∞ = ∥
∥W0

a

∥
∥

2,R (cf.[2, Proposition 2.3]), we have PC2,0 =
(PC(R), ‖·‖∞). Note that PCp,σ ⊂ PC(R) (cf. [1]).

We introduce the space Lp
σ (R

+) as the compression of Lp
σ (R) to the positive

half line R
+. Thus, Lp

σ (R
+) may be identified with the image of the projection

P : Lp
σ (R) → Lp

σ (R), which is defined by

(Pu)(t) =
{
u(t) : t ∈ R

+ ,

0 : t ∈ R \ R+.

Due to (2.1), the norm in Lp
σ (R

+) is given by

‖u‖σ,p,R+ =
(∫ ∞

0
|u(t)|p tσ

(1 + t)σ
dt

) 1
p

,
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where we will use the abbreviation ‖u‖p,R+ := ‖u‖0,p,R+. It is easily seen that

‖u‖p,σ,∼ :=
(∫ ∞

0
|u(t)|p(1− e−t )σ dt

) 1
p

defines an equivalent norm on Lp
σ (R

+), i.e., there are positive constants C1 and C2
such that

C1 ‖u‖p,σ,∼ ≤ ‖u‖p,σ ≤ C2 ‖u‖p,σ,∼ ∀ u ∈ Lp
σ (R

+) .

For a ∈ Mp,σ , the so-called Wiener-Hopf integral operator Wa ∈ L(Lp
σ (R

+)) is
defined as the restriction of PW0

aP to the space Lp
σ (R

+). For 1 < p < ∞, note
that, w.r.t. the dual product

〈u, v〉R :=
∫

R

u(t)v(t) dt

the dual space of Lp
σ (R) is equal to Lq

μ(R) with μ = (1 − q)σ and q = p
p−1 .

Analogously,
(
Lp
σ (R

+)
)∗ = Lq

μ(R
+).

Lemma 2.1 Let 1 < p < ∞ and 1
p
+ 1

q
= 1. Then Mp,σ = Mq,μ. Moreover, if

a ∈ Mp,σ , then
(
W0

a

)∗ = W0
a as well as (Wa)

∗ = Wa .

Proof Define R : Lp
σ (R) → Lp

σ (R) by (Ru)(t) = u(−t). Then, RFu = FRu =
2πF−u for u ∈ Lp(R) and 1 < p ≤ 2. Let a ∈ Mp,σ and p ∈ (1,∞). Taking into
account (2.3), for u ∈ L2(R) ∩ Lp

σ (R) and v ∈ L2(R) ∩ Lq
μ(R), we have

〈
W0

au, v
〉

R

=
〈
u,FaF−1v

〉

R

=
〈
u,W0

a v
〉

R

.

Since W0
a is continuous on

(
L2(R) ∩ Lp

σ (R), ‖.‖p,σ,R
)
, the operator W0

a is contin-
uous on

(
L2(R) ∩ Lq

μ(R), ‖.‖q,μ,R

)
, which means a ∈ Mq,μ. Using

RFv = Fv and F−1v = (2π)−1Fv = F−1Rv on L2(R),

we get

RFaF−1v = FaF−1v = FaF−1Rv ∀ v ∈ L2(R) ∩ Lq
μ(R),

which implies a ∈ Mq,μ. Hence, due to symmetry reasons, Mp,σ = Mq,μ. By the
way

(
W0

a

)∗ =W0
a and, consequently, (Wa)

∗ = P
(
W0

a

)∗P = Wa , since P∗ = P .
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Let us finish this section with two lemmata on the triviality of the nullspace of a
Wiener-Hopf integral operator or of its adjoint.

Lemma 2.2 ([2], Prop. 2.8) Let us assume that 1 < p < ∞, a ∈ Mp,0, and
a �= 0 almost everywhere on R. Then the nullspace of Wa : Lp(R+) → Lp(R+) or
the nullspace of the adjoint operator Wa : Lq(R+) → Lq (R+) are trivial, where
1
p
+ 1

q
= 1.

The following lemma generalizes the previous one to the case of weighted spaces
using a stronger assumption on a(t). Here, by �Cp,σ we refer to the closure of the
set of piecewise constant functions on Ṙ (with finitely many jumps) in the Banach

algebra
(

Mp,σ , ‖.‖Mp,σ

)
.

Lemma 2.3 ([8], Prop. 1.8) If a ∈ �Cp,σ and inft∈R |a(t)| > 0, then the
homogeneous equation Wau = � in the space Lp

σ (R
+) or the adjoint equation

Wav = � in the space Lq

(1−q)σ (R
+), 1

p
+ 1

q
= 1, have only the trivial solution.

3 Boundedness

In this section we introduce the Mellin transformation and the Mellin type operators
as well as the Cauchy singular integral operator on the finite interval (0, 1).
Useful properties of the Mellin transformation as well as a relation between the
convolution operators from the previous section and the Mellin type operators are
given. Furthermore, we formulate conditions for the Mellin operators to be bounded
in weighted Lp-spaces.

For z ∈ C and a measurable function f : (0,∞) → C, for which tz−1f (t)

is integrable on each compact subinterval of (0,∞), the Mellin transform f̂ (z) is
defined as

f̂ (z) = lim
R→∞

∫ R

R−1
tz−1f (t) dt,

if this limit exists. For f ∈ L̃1
ξ−1(R

+) and η ∈ R, we have

f̂ (ξ + iη) =
∫ ∞

0
tξ+iη−1f (t) dt =

∫ ∞

−∞
e−(ξ+iη)sf (e−s) ds

= (
FZ̃ξ f

)
(η) = 2π

(
F−Z̃ξ f

)
(−η).

(3.1)

Let �ξ := {z ∈ C : #z = ξ} and

C0(�ξ ) =
{

u ∈ C(�ξ ) : lim|η|→∞ u(ξ + iη) = 0

}

.
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Since, for u ∈ L1(R), Fu ∈ C(R) and lim|η|→∞(Fu)(η) = 0 (due to the Riemann-
Lebesgue theorem), by (3.1) we see that, for ξ ∈ R, the Mellin transformation

Mξ : L̃1
ξ−1(R

+) → C0(�ξ ), f �→ f̂

is well defined. Moreover, if f̂ (ξ + i·) ∈ L1(R) and f ∈ C(0,∞), then (cf. [4,
Lemma 2.8])

f (t) = 1

2π

∫ ∞

−∞
t−ξ−iηf̂ (ξ + iη) dη , 0 < x < ∞ . (3.2)

By Lp(�ξ ) we denote the Lp-space given by the norm

‖g‖�ξ ,p
=
(∫ ∞

−∞
|g(ξ + iη)|p dη

) 1
p

.

Taking into account relation (3.1), we are able to define the Mellin transform for
f ∈ L̃p

pξ−1(R
+) and 1 < p ≤ 2 by

f̂ (ξ + i·) := FZ̃ξ f = lim
R→∞FRZ̃ξ f = lim

R→∞

∫ eR

e−R

tξ+i ·−1f (t) dt, (3.3)

where the limit is taken in the Lq(�ξ )-sense and where 1
p
+ 1

q
= 1.

Corollary 3.1 Let 1 < p ≤ 2 and 1
p
+ 1

q
. For ξ ∈ R, the Mellin transformation

Mξ : L̃p
pξ−1(R

+) → Lq (�ξ ), f �→ f̂ ,

defined by (3.3), is a linear and bounded operator.

For −∞ < α < β < ∞, by �α,β we refer to the strip

�α,β = {z ∈ C : α < #z < β}

of the complex plane. The following lemma modifies [4, Cor. 2.9].

Lemma 3.2 Let 1 < p ≤ 2, 1
p
+ 1

q
= 1, and α, β ∈ R with α < β. Moreover, let

k ∈ L̃p

pξ−1(R
+)∩C(R+) for every ξ ∈ (α, β). By Corollary 3.1 we have k̂ ∈ Lq(�ξ )

for all ξ ∈ (α, β). If, additionally, k̂ is holomorphic in the strip �α,β satisfying

Mα0,β0 := sup
{
(1 + |z|)1+δ

∣
∣̂k′(z)

∣
∣ : z ∈ �α0,β0

}
< ∞ (3.4)
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for all intervals [α0, β0] ⊂ (α, β) and some δ = δ(α0, β0) > 0, then there hold

k(t) = tμ

2π(1 − t2μ)

∫ ∞

−∞
t−ξ−iη [k̂(ξ − μ+ iη)− k̂(ξ + μ+ iη)

]
dη (3.5)

for all ξ ∈ (α, β), x ∈ R
+, and 0 < μ < min {ξ − α, β − ξ}. Moreover, k̂(ξ −μ+

i·)− k̂(ξ + μ+ i·) ∈ L1(R) and

∫ ∞

−∞
[
k̂(ξ − μ+ iη)− k̂(ξ + μ+ iη)

]
dη = 0 . (3.6)

Proof For α < ξ ± μ < β, η ∈ R, and 0 < x < ∞, we have

k̂(ξ + μ+ iη)− k̂(ξ − μ+ iη) =
∫ μ

−μ

k̂′(ξ + s + iη) ds ,

such that, due to (3.4),

∫ ∞

−∞
∣
∣̂k(ξ + μ+ iη)− k̂(ξ − μ+ iη)

∣
∣ dη

≤
∫ ∞

−∞

∫ μ

−μ

∣
∣̂k′(ξ + s + iη)

∣
∣ ds dη

≤ Mξ−μ,ξ+μ

∫ ∞

−∞

∫ μ

−μ

ds dη

(1 + |ξ + s + iη|)1+δ
< ∞

Hence, the continuous function g : (0,∞), x �→ k(x)x−μ − k(x)xμ, belongs to
L̃p

pξ−1 (by assumption) and its Mellin transform

ĝ(ξ + i·) = k̂(ξ − μ+ i·)− k̂(ξ + μ+ i·)
to L1(R). Relation (3.2) yields (3.5), and relation (3.6) is a consequence of g(1) = 0.

	

Corollary 3.3 Under the assumptions of Lemma 3.2, we have

lim
t→+0

tα+εk(t) = 0 and lim
t→∞ tβ−εk(t) = 0

for every ε > 0.

Proof For given ε > 0, choose ξ ∈ (α, β) and μ > 0 such that 0 < μ < ξ − α <

β − ξ and ξ − α − μ < ε. Then, for 0 < t < 1
2 , by taking into account (3.5)

and (3.6),

tα+ε|k(t)| ≤ const tα+ε+μ−ξ
∥
∥̂k(ξ − μ+ i·)− k̂(ξ + μ+ i·)∥∥L1(R)

→ 0
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if t → +0. Analogously, we can choose ξ ∈ (α, β) and μ > 0 such that 0 < μ <

β − ξ < ξ − α and β − ξ − μ < ε. Again by (3.5) and (3.6) we get, for t > 2,

tβ−ε|k(t)| ≤ const tβ−ε−μ−ξ
∥
∥̂k(ξ − μ+ i·)− k̂(ξ + μ+ i·)∥∥L1(R)

→ 0

if t →∞. 	

The following Lemma modifies Lemma 3.10 in [5].

Lemma 3.4 Let p ∈ [1,∞), −∞ < α < β < ∞, and

k ∈ L̃p
α(R

+) ∩ L̃p
β (R

+),

Then we have k ∈ L̃1
1+ρ
p −1

(R+) for all ρ ∈ (α, β).

Proof Let α < ρ < β, 1 < p < ∞, and 1
p
+ 1

q
= 1. Then, due to Hölder’s

inequality,

∫ ∞

0
t

1+ρ
p −1|f (t)| dt =

∫ 1

0
t

1+ρ−α
p −1|f (t)| t α

p dt +
∫ ∞

1
t

1+ρ−β
p |f (t)| t β

p dt

≤
(∫ 1

0
t

(
1+ρ−α

p −1
)
q
dt

) 1
q

‖f ‖α,p,R+,∼

+
(∫ ∞

1
t

(
1+ρ−β

p
−1
)
q
dt

) 1
q ‖f ‖β,p,R+,∼ ,

where
(

1 + ρ − α

p
− 1

)

q > −1 and

(
1 + ρ − β

p
− 1

)

q < −1.

In case p = 1, we simply have

∫ ∞

0
tρ |f (t)| dt ≤

∫ 1

0
tα|f (t)| dt +

∫ ∞

1
tβ |f (t)| dt

≤ ‖f ‖α,1,R+,∼ + ‖f ‖β,1,R+,∼ ,

and the corollary is proved. 	

Corollary 3.5 Let k ∈ L̃p

pα−1(R
+) ∩ L̃p

pβ−1(R
+) for some p ∈ [1,∞) and some

real numbers α, β with α < β. Then the Mellin transform k̂ is holomorphic in the
strip �α,β .
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Proof By applying Lemma 3.4 we infer k ∈ L̃1
ξ−1(R

+) for all ξ ∈ (α, β), and [5,
Lemma 2.14] yields the assertion. 	


Let p ∈ [1,∞), ρ, σ ∈ R. We denote by Lp
ρ,σ := Lp

ρ,σ (0, 1) the weighted
Lp-space equipped with the norm

‖f ‖ρ,σ,p :=
(∫ 1

0
|f (x)|p υρ,σ (x) dx

)1/p

, υρ,σ (x) = xρ(1 − x)σ .

By S we denote the Cauchy singular integral operator given by

(Sf )(x) = 1

π i

∫ 1

0

f (y)

y − x
dy, x ∈ (0, 1),

where the integral is considered as a Cauchy principal value one. It is well known
that S : Lp

ρ,σ → Lp
ρ,σ is a linear and bounded operator if and only if 1 < p < ∞

and −1 < ρ, σ < p− 1 (see, for example, [3, Sections 1.2, 1.5]). For a measurable
function k : R+ → C we define the Mellin operator Bk by

(Bkf )(x) =
∫ 1

0
k

(
x

y

)
f (y)

y
dy, x ∈ (0, 1).

Recall that, for p ∈ [1,∞) and ρ ∈ R, the integral operator Bk : Lp
ρ,0 → Lp

ρ,0 is

bounded, if k ∈ L̃1
1+ρ
p −1

(R+) (cf. [5, Lemma 3.7]).

Let p ∈ [1,∞), ρ, σ ∈ R and ξ = 1+ρ
p

. We introduce the mapping

Zξ : Lp
ρ,σ → Lp

σ (R
+), f �→ e−ξ ·f (e−·),

which is a continuous isomorphism with
(
Z−1

ξ f
)
(x) = x−ξ f (− ln x).

Lemma 3.6 For p ∈ (1,∞), ρ, σ ∈ (−1, p − 1), and a(t) = −i cot(πξ − iπt),
the relation ZξSZ−1

ξ = Wa holds true in Lp
σ (R

+), where ξ = 1+ρ
p

.

Proof From (2.7) and the boundedness of SR+ : Lp
σ (R

+) → Lp
σ (R

+), we infer

∥
∥
∥FaF−1u

∥
∥
∥
σ,p,R

≤ ‖SR+‖L(Lp
σ (R+)

) ‖u‖σ,p,R

for all u ∈ L2(R) ∩ Lp
σ (R). Hence, a ∈ Mp,σ . On the other hand, if u ∈ Lp

σ (R
+)

and ũ = P̃u, then

(
ZξSZ−1

ξ u
)
(t) = e−ξ t

π i

∫ ∞

0

y−ξ ũ(− ln y) dy

y − e−t
, t ∈ R

+,
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i.e., ZξSZ−1
ξ = PZ̃ξSR+Z̃−1

ξ P̃ = PW0
a P̃ , where we again used relation (2.7).

This proves the lemma. 	

Lemma 3.7 Let 1 < p ≤ 2, ρ ∈ R, and ξ = 1+ρ

p
, and set a(t) = k̂(ξ − it). We

assume that k ∈ L̃q
qξ−1(R

+) is satisfied for some q ∈
[
1, p

p−1

)
∩ [1, 2]. Then we

have

∫ 1

0
k

(
x

y

)
g(y)

y
dy = x−ξ

(
PFaF−P̃Zξ g

)
(− ln x) (3.7)

for all g ∈ Lp

ρ,0 and for almost all x ∈ (0, 1).

Proof Let κ(t) := (
Z̃ξ k

)
(t) = e−ξ t k

(
e−t

)
, t ∈ R. Then κ ∈ Lq (R) and, due

to (2.4),

Kf := κ ∗ f =
∫ ∞

−∞
κ(· − s)f (s) ds ∈ Lr (R), r = 1

1
p
+ 1

q
− 1

,

for all f ∈ Lp(R). Moreover, in virtue of (2.5),

Kf = 2πF
(
F−κ · F−f

)
.

Hence Kf = FaF−f for all f ∈ Lp(R), where (cf. (3.1))

a(t) = 2π
(
F−κ

)
(t) = 2π

(
F−Z̃ξ k

)
(t) = k̂(ξ − it).

On the other hand we have, for f ∈ Lp(R+) and for almost all x ∈ (0, 1),

x−ξ
(
PKP̃f

)
(− ln x) =

∫ ∞

0
k
(
esx

)
eξsf (s) ds

=
∫ 1

0
k

(
x

y

)

y−ξf (− ln y)
dy

y

=
∫ 1

0
k

(
x

y

)
(
Z−1

ξ f
)
(y)

dy

y
,

and the lemma is proved, since every g ∈ Lp
ρ,0 can be represented in the form

g = Z−1
ξ f with f ∈ Lp(R). 	


Lemma 3.8 ([5], Prop. 3.13) Let p ∈ (1,∞), ρ ∈ (−1, p − 1), and k ∈ C(R+).
Moreover, we assume that there are real numbers α, β with α < β such that 1+ρ

p
∈

(α, β) and such that

lim
t→+0

tαk(t) = 0 and lim
t→∞ tβk(t) = 0.
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Then, for all σ ∈ (−1, p− 1), the integral operator Bk : Lp
ρ,σ → Lp

ρ,σ is bounded.

Corollary 3.9 Let p ∈ (1,∞), ρ ∈ (−1, p−1), and k ∈ C(R+). Furthermore, we
assume that there are real numbers α, β with α < β such that ξ := 1+ρ

p
∈ (α, β)

and k ∈ L̃q
qη−1(R

+) for some q ∈ (1, 2] and all η ∈ (α, β). Moreover, we suppose

that the Mellin transform k̂ is holomorphic in the strip �α,β and fulfils (3.4). Then
the integral operator Bk : Lp

ρ,σ → Lp
ρ,σ is bounded for all σ ∈ (−1, p − 1).

Proof Choose ε > 0 such that α + ε < ξ < β − ε. Corollary 3.3 yields

lim
x→+0

xα+εk(x) = lim
x→∞ xβ−εk(x) = 0 ,

and by Lemma 3.8 we get the assertion. 	

Lemma 3.10 Let p ∈ (1,∞), ρ ∈ (−1, p − 1), and ξ = 1+ρ

p
. We assume that

k ∈ L̃q

qξ−1(R
+) for some q ∈

[
1, p

p−1

)
∩ [1, 2] and k̂(ξ + i·) ∈ V1(R). Then the

operator Bk is bounded on the space Lp

ρ,0 ∩ Lp
ρ,σ equipped with the norm ‖·‖ρ,σ,p .

Thus, the operator possesses a unique extension to the space Lp
ρ,σ .

Proof Let a(t) = k̂(ξ − it). Relation (2.9) delivers a ∈ Mp,σ , which means that the
operator Wa : Lp

σ (R
+) → Lp

σ (R
+) is well-defined and bounded. Thus Z−1

ξ WaZξ :
Lp
ρ,σ → Lp

ρ,σ is bounded, too. Now from (3.7) follows

Bkf = Z−1
ξ WaZξ f, f ∈ Lp

ρ,0 ∩ Lp
ρ,σ ,

which completes the proof. 	


4 Fredholm Properties

Here we derive necessary and sufficient conditions for the Fredholmness of the
operators of the form (1.1) and also an index formula based on the winding number
of a certain closed curve in C associated with such operators.

Lemma 4.1 Let p ∈ (1,∞), 1
p
+ 1

q
= 1 and ρ, σ ∈ (−1, p − 1) as well as

k ∈ C(R+). For A ∈ L
(
Lp
ρ,σ ) we define the adjoint operator by

∫ 1

0
(Au)(x)v(x) dx =

∫ 1

0
u(x)(A∗v)(x) dx, ∀ u ∈ Lp

ρ,σ , ∀ v ∈ Lq

ρ′,σ ′

with ρ′ = (1 − q)ρ and σ ′ = (1 − q)σ . If Bk ∈ L
(
Lp
ρ,σ ) then

(S + Bk)
∗ = S + Bk1, k1(t) = k(t−1)t−1.
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Proof The proof is straightforward if one takes into account the commutation
formula for Cauchy principal value and usual integrals (cf.[6, Chapter II, Prop. 4.4]).

	

We recall that the assumption k ∈ L̃p

pα−1(R
+)∩ L̃p

pβ−1(R
+) implies that the Mellin

transform k̂ : �α,β → C is holomorphic (cf. Corollary 3.5), and we formulate
the following condition for a function k ∈ C(R+) and 1 < p < ∞ as well as
−1 < ρ < p − 1:

(A) There exist real numbers α and β with α < β such that ξ = 1+ρ
p

∈ (α, β) and

k ∈ L̃r
rα−1(R

+) ∩ L̃r
rβ−1(R

+) for some r ∈ (1, 2] as well as (3.4) is satisfied.

In contrast to [5] we replaced condition

sup
{
(1 + |z|)1+�

∣
∣
∣̂k(�)(z)

∣
∣
∣ : z ∈ �α,β

}
< ∞, � = 0, 1, 2, . . .

(cf. [5, equation (3.11)]) by (3.4), which is a weaker condition regarding the Mellin
transform k̂.

Lemma 4.2 Let a, b ∈ C, p ∈ (1,∞), ρ ∈ (−1, p−1), 1
p
+ 1

q
= 1, and k ∈ C(R+)

satisfy condition (A). Then, for all σ ∈ (−1, p − 1), we have the representations

Zξ (aI + bS + Bk)Z−1
ξ = Wa (4.1)

and

Z1−ξ (aI + bS + Bk)
∗Z−1

1−ξ = Wa = (Wa)
∗, (4.2)

in the spaces Lp
σ (R

+) and Lq

(1−q)σ (R
+), respectively, where

a(t) = a − bi cotπ(ξ − it)+ k̂(ξ − it), t ∈ R.

Proof Since the map Zξ : Lp
ρ,σ → Lp

σ (R
+) is a continuous isomorphism and

Bk ∈ L
(
Lp
ρ,σ

)
for all σ ∈ (−1, p − 1) (cf. Corollary 3.9), Lemma 3.7 delivers

immediately the relation

P̃ZξBkZ−1
ξ f = PF k̂(ξ − i·)F−1P̃f, f ∈ L2(R+) ∩ Lp

σ (R
+).

Due to (3.4), we have that k̂(ξ− i·) ∈ Mp,σ (cf. (2.9)). This yields ZξBkZ−1
ξ =Wb

with b(t) = k̂(ξ − it). Together with Lemma 3.6 we get (4.1). Relation (4.2) is now
a consequence of Z∗

ξ = Z−1
1−ξ and Lemma 2.1. 	


Lemma 4.3 ([2], Corollary 1.19) Let p ∈ (1,∞), ρ, σ ∈ (−1, p− 1), and a, b ∈
C. Moreover, let ξ = 1+ρ

p
, η = 1+σ

p
. Then the operator A = aI + bS : Lp

ρ,σ →
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Lp
ρ,σ is Fredholm if and only if a ± b �= 0 and there exists an integer κ satisfying

− ξ < #ν < 1 − ξ and η − 1 < #ν + κ < η , (4.3)

where

a + b

a − b
= e2π iν . (4.4)

(Note that κ can only take the values 0, −1, and 1). In this case, we have indA = κ

and the operator A is invertible, invertible from the left, or invertible from the right,
if the index of A is zero, −1, or 1, respectively. The corresponding (one-sided)
inverse is given by

(
A(−1)f

)
(x) = 1

a2 − b2

[

af (x)− b

π i

∫ 1

0

(
x

y

)ν (1 − y

1 − x

)ν+κ
f (y)

y − x
dy

]

,

i.e., A(−1) = (
a2 − b2

)−1 [
aI − bvν,−ν−κSv−ν,ν+κI

]
.

Moreover, for a+b
a−b

= e2π iμ, μ �= 0, and 0 ≤ #μ < 1,

a vμ−1,−μ(x)+ b

π i

∫ 1

0

vμ−1,−μ(y) dy

y − x
= 0 , 0 < x < 1 , (4.5)

i.e., in case κ = 1, we have μ = 1+ν and the nullspace of the operator A : Lp
ρ,σ →

Lp
ρ,σ is spanned by vν,−ν−1.

Corollary 4.4 In (4.4) we can choose ν in such a way that 0 ≤ #ν < 1. Then,

a − b

a + b
= e2π i(1−ν)

and, due to (4.5),

a v−ν,ν−1(x)− b

π i

∫ 1

0

v−ν,ν−1(y) dy

y − x
= 0 , 0 < x < 1 . (4.6)

Moreover,

a v−ν,ν (x)− b

π i

∫ 1

0

v−ν,ν (y) dy

y − x
= γ0 , 0 < x < 1 , (4.7)

and

a v1−ν,ν(x)− b

π i

∫ 1

0

v1−ν,ν(y) dy

y − x
= δ0 + δ1x , 0 < x < 1 , (4.8)
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with certain constants γ0, δ0, δ1 ∈ C, where (4.7) remains true also in case of −1 <

#ν < 0.

Proof It remains to prove relations (4.7) and (4.8). By using (4.6), we get

a v−ν,ν (x)− b

π i

∫ 1

0

v−ν,ν(y) dy

y − x

= (1 − x)

[

a v−ν,ν−1(x)− b

π i

∫ 1

0

v−ν,ν−1(y) dy

y − x

]

+ b

π i

∫ 1

0
υ−ν,ν−1(y) dy

= b

π i

∫ 1

0
υ−ν,ν−1(y) dy , 0 < x < 1 ,

and (4.7) is proved. Analogously,

a v1−ν,ν(x)− b

π i

∫ 1

0

v1−ν,ν(y) dy

y − x

= x(1 − x)

[

a v−ν,ν−1(x)− b

π i

∫ 1

0

v−ν,ν−1(y) dy

y − x

]

+ b

π i

∫ 1

0
(y + x − 1)υ−ν,ν−1(y) dy

= b

π i

∫ 1

0
(y + x − 1)υ−ν,ν−1(y) dy , 0 < x < 1 ,

which proves (4.8). To prove (4.7) in case −1 < #ν < 0, we use a−b
a+b

= e2π i(−ν)

and get from (4.5) the relation

a υ−ν−1,ν(x)− b

π i

∫ 1

0

υ−ν−1,ν(y) dy

y − x
= 0 , 0 < x < 1 ,

and analogously as above we conclude (4.7) also in this case. 	

Definition 4.5 For p ∈ (1,∞) and σ ∈ (−1, p − 1), we define the function σ∞ :
Ṙ→ R by

σ∞(t) :=
{ 1

p
: t ∈ R

1+σ
p

: t =∞.
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Moreover, for a ∈ PCp,σ , we define the function ap,σ : Ṙ× R→ C by

ap,σ (t, x) =1

2

[
a(t + 0)+ a(t − 0)

]

− i
2

[
a(t + 0)− a(t − 0)

]
cotπ

[
σ∞(t)− ix

]
.

(4.9)

Then, the image of ap,σ defines a closed curve in the complex plane, which we
denote by �ap,σ . Under the assumption

inf
{ |ap,σ (t, x)| : t ∈ R, x ∈ R

}
> 0 (4.10)

the winding number wind
(
�ap,σ

)
is well defined, where the orientation of �ap,σ is

given by its inherent parametrization.

Lemma 4.6 ([1], Theorem 5.7, cf. also [8], Theorem 1.2) Let p ∈ (1,∞), σ ∈
(−1, p − 1) and a ∈ PCp,σ . Then Wa is a Fredholm operator on Lp

σ (R
+) if

and only if (4.10) is satisfied. In this case, the Fredholm index of Wa is equal to
−wind

(
�ap,σ

)
.

In the following, let ξ = 1+ρ
p

for p ∈ (1,∞) and ρ ∈ (−1, p − 1).

Corollary 4.7 Let a, b ∈ C, p ∈ (1,∞), ρ, σ ∈ (−1, p − 1), and k ∈ C(R+)
satisfy condition (A). Then the integral operator A := aI + bS + Bk is Fredholm
in the space Lp

ρ,σ if and only if the curve

�A := {a − bi cotπ(ξ − it)+ k̂(ξ − it) : t ∈ R
}

∪
{

a + bi cotπ

(
1 + σ

p
− it

)

: t ∈ R

} (4.11)

does not run through the zero point. In this case, the Fredholm index of A : Lp
ρ,σ →

Lp
ρ,σ is equal to negative winding number of the curve �A, where the orientation is

given by its inherent parametrization.

Proof From Lemma 4.2 follows

A = Z−1
ξ WaZξ in Lp

ρ,σ ,

where a(t) = a − bi cotπ(ξ − it) + k̂(ξ − it), t ∈ R. Hence, a(∞± 0) = a ∓ b,
such that, due to (4.9),

ap,σ (t, x) =
⎧
⎨

⎩

a(t) : t ∈ R, x ∈ R,

a + ib cot
(

1+σ
p

− ix
)
: t = ∞, x ∈ R .
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Consequently, the curves �A and �ap,σ coincide. Since furthermore

a ∈ V1(R) ∩ PC(R) ⊂ PCp,σ ,

Lemma 4.6 delivers the assertion. 	

Using Lemma 3.10, we can prove in the same way the following corollary.

Corollary 4.8 Let p ∈ (1,∞), ρ, σ ∈ (−1, p − 1) and a, b ∈ C. We assume that

the function k belongs to L̃q

qξ−1(R
+) for some q ∈

[
1, p

p−1

)
∩ [1, 2] and fulfils

k̂(ξ + i·) ∈ V1(R). Moreover, for t ∈ R, we set

a(t) := a − biπ cot(ξ − it)+ k̂(ξ − it).

Then

Z−1
ξ WaZξ u = (aI + bS + Bk)u ∀u ∈ Lp

ρ,0 ∩ Lp
ρ,σ

and Z−1
ξ WaZξ is Fredholm on the space Lp

ρ,σ if and only if the curve (4.11) does

not run through the zero point. In this case, the Fredholm index of Z−1
ξ WaZξ :

Lp
ρ,σ → Lp

ρ,σ is equal to the negative winding number of this curve, where the
orientation is given by its inherent parametrization.

For a = [
aj
] n

j=1
∈ PC(R)n and b = [

bj
]n
j=1

∈ PCn
p,σ , now we consider

operators of the form

"a,b :=
n∑

j=1

ajW0
bj

. (4.12)

Moreover, let

a±(t) :=
n∑

j=1

aj (t)bj (±∞) and b±(t) :=
n∑

j=1

aj (±∞)bj (t).

Definition 4.9 Let n ∈ N and aj ∈ PC(R), bj ∈ PCp,σ for j = 1, · · · , n. Under
the assumptions

inf {|a+(t)| : t ∈ R} > 0 and inf {|b−(t)| : t ∈ R} > 0 , (4.13)
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we define the functions Ap,σ : R×R→ C and Bp,σ : R× R→ C by

Ap,σ (t, x) :=1

2

[
a−(t + 0)

a+(t + 0)
+ a−(t − 0)

a+(t − 0)

]

− i
2

[
a−(t + 0)

a+(t + 0)
− a−(t − 0)

a+(t − 0)

]

cotπ [σ0(t)− ix] , t ∈ R,

Ap,σ (±∞, x) :=a−(±∞)

a+(±∞)
,

and

Bp,σ (t, x) :=1

2

[
b+(t + 0)

b−(t + 0)
+ b+(t − 0)

b−(t − 0)

]

− i
2

[
b+(t + 0)

b−(t + 0)
− b+(t − 0)

b−(t − 0)

]

cotπ

(
1

p
− ix

)

, t ∈ R,

Bp,σ (±∞, x) :=b+(±∞)

b−(±∞)
,

respectively, where

σ0(t) :=
{ 1

p
: t ∈ R\{0}

1+σ
p

: t = 0.

If the conditions

inf
{ |Ap,σ (t, x)| : t,∈ R, x ∈ R

}
> 0 (4.14)

and

inf
{ |Bp,σ (t, x)| : t ∈ R, x ∈ R

}
> 0 (4.15)

are satisfied, we define κp,σ as the increment of the function

1

2π

[
argAp,σ (t, x)+ argBp,σ (t, x)

]
,

where t runs over R, and at the points of discontinuity of a−
a+ or b+

b− , the variable x

runs over R.
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Lemma 4.10 ([1], Theorem 5.7, cf. also [8], Theorem 3.2) Let n ∈ N, p ∈
(1,∞), σ ∈ (−1, p − 1) and aj ∈ PC(R), bj ∈ PCp,σ for j = 1, · · · , n. Then
"a,b is a Fredholm operator on Lp

σ (R) if and only if (4.13), (4.14), and (4.15) hold
true. In this case, the Fredholm index of "a,b : Lp

σ (R) → Lp
σ (R) is equal to −κp,σ .

A function a : [0, 1] → C is called piecewise continuous, if it is continuous
at 0 and 1, if the one-sided limits a(x ± 0) exist for all x ∈ (0, 1), and if at least
one of them coincides with a(x). The set of all piecewise continuous functions a :
[0, 1] → C having only a finite number of jumps is denoted by PC[0, 1].
Corollary 4.11 Let p ∈ (1,∞), ρ, σ ∈ (−1, p − 1) and a, b ∈ PC[0, 1], and
assume that k ∈ C(R+) satisfies condition (A). Then the integral operator A :=
aI+ bS+Bk is Fredholm on the space Lp

ρ,σ if and only if a(x± 0)+ b(x± 0) �= 0
for all x ∈ (0, 1), if a(x)+ b(x) �= 0 for x ∈ {0, 1}, and if the closed curve

�d
A := �̃d

0 ∪ �d
1 ∪ �′d1 ∪ . . . ∪ �d

N ∪ �′dN ∪ �d
N+1 ∪ �̃d

1

does not contain the point 0. Here N stands for the number of discontinuity points
xj , j = 1, . . . , N , of the function

d(x) = a(x)− b(x)

a(x)+ b(x)

chosen in such way that x0 := 0 < x1 < · · · < xN < xN+1 := 1. Using these xj ,
the curves �d

j , j = 1, . . . , N + 1 and �′dj , j = 1, . . . , N are given by

�d
j :=

{
d(x) : xj−1 < x < xj

}

and

�′dj :=
{

1

2

[
d(xj + 0)+ d(xj − 0)

]

+ i
2

[
d(xj + 0)− d(xj − 0)

]
cotπ

(
1

p
+ it

)

: t ∈ R

}

,

respectively. The curves �̃d
j , j ∈ {0, 1}, connecting the point 1 with one of the

endpoints of �d
1 and �d

N+1, respectively, are given by the formulas

�̃d
0 :=

{
a(0)− b(0)i cotπ(ξ + it)+ k̂(ξ + it)

a(0)+ b(0)
: t ∈ R

}
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and

�̃d
1 :=

{
1

2

[
1 + d(1)

]+ i
2

[
1 − d(1)

]
cotπ

(
1 + σ

p
+ it

)

: t ∈ R

}

.

In this case, the Fredholm index of A is equal to the winding number of the curve
�A, where the orientation of �A is due to the above given parametrization.

Proof Due to Lemma 4.2, we have the representation

A = Z−1
ξ

(
ãI + b̃Wa +Wb

)
Zξ in Lp

ρ,σ

with a(t) = −i cotπ(ξ − it), b(t) = k̂(ξ − it) and ã(t) = a(e−t ), b̃(t) = b(e−t ).
It is well known, that the Fredholm properties of the operator ãI + b̃Wa +Wb in
Lp
σ (R

+) are equivalent to the Fredholm properties of

Ã = a1I + b1W0
a + χ+W0

b + χ−I in Lp
σ (R),

where

a1(t) =
{
ã(t) : t ∈ R

+,

0 : otherwise,
b1(t) =

{
b̃(t) : t ∈ R

+,

0 : otherwise,

χ−(t) = 1 − χ+(t), and

χ+(t) =
{

1 : t ∈ R
+,

0 : otherwise.

Since Ã is of the form (4.12), we can make use of Lemma 4.10. We have

a+(t) = a1(t)+ b1(t)+ χ−(t), a−(t) = a1(t)− b1(t)+ χ−(t)

and

b+(t) = a(0)− b(0)i cotπ(ξ − it)+ k̂(ξ − it), b−(t) = 1.

Due to our assumptions, condition (4.13) is fulfilled, and hence we have, for 0 <

t < ∞,

Ap,σ (t, x) = 1

2

[
ã(t + 0)− b̃(t + 0)

ã(t + 0)+ b̃(t + 0)
+ ã(t − 0)− b̃(t − 0)

ã(t − 0)+ b̃(t − 0)

]

− i
2

[
ã(t + 0)− b̃(t + 0)

ã(t + 0)+ b̃(t + 0)
− ã(t − 0)− b̃(t − 0)

ã(t − 0)+ b̃(t − 0)

]

cotπ

(
1

p
− ix

)

.
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Moreover,

Ap,σ (0, x) = 1

2

[
a(1)− b(1)

a(1)+ b(1)
+ 1

]

− i
2

[
a(1)− b(1)

a(1)+ b(1)
− 1

]

cotπ

(
1 + σ

p
− ix

)

,

Ap,σ (+∞, x) = a(0)− b(0)

a(0)+ b(0)
,

and, for −∞ < t < 0,

Ap,σ (t, x) = Ap,σ (−∞, x) = 1 .

Finally,

Bp,σ (±∞, x) = a(0)± b(0)

and, for t ∈ R,

Bp,σ (t, x) = a(0)− b(0)i cotπ(ξ − it)+ k̂(ξ − it)

Applying Lemma 4.10, we get, that Ã is Fredholm on Lp
σ (R) if and only if

inf
{ |̃a(t)+ b̃(t)| : t ∈ R

+ } > 0,

inf
{ |a(0)− b(0)i cotπ(ξ − it)+ k̂(ξ − it)| : t ∈ R

}
> 0,

and

inf
{ |Ap,σ (t, x)| : t,∈ R, x ∈ R

}
> 0.

But this is obviously equivalent to our assumptions. In this case, the Fredholm index
of Ã is equal to −κp,σ , where κp,σ is defined as the increment of the function

1

2π

{

argAp,σ (t, x)+ arg
Bp,σ (t, x)

a(0)+ b(0)

}

,

where t runs over R, and at the points of discontinuity of
(
ã − b̃

)
/
(
ã + b̃

)
, the

variable x runs over R. But κp,σ is equal to the negative winding number of the
curve �A. This completes the proof. 	


We define the operator R : Lp
ρ,σ → Lp

σ,ρ by (Rf )(x) = f (1 − x). Moreover,
we set

A := aI + bS + c+Bk+ + c−RBk−R, (4.16)

where a, b, c± ∈ L∞(0, 1) and k± ∈ C(R+).
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Theorem 4.12 Let p ∈ (1,∞), σ± ∈ (−1, p − 1) and a, b, c± ∈ PC[0, 1]. If the
functions k± ∈ C(R+) satisfy condition (A) for ξ = ξ± := 1+σ±

p
, then the operator

A defined in (4.16) is Fredholm on Lp
σ+,σ− if and only if a(x ± 0) − b(x ± 0) �= 0

for all x ∈ (0, 1), if a(x)− b(x) �= 0 for x ∈ {0, 1}, and if the closed curve

�c
A := �̃c

0 ∪ �c
1 ∪ �′c1 ∪ . . . ∪ �c

N ∪ �′cN ∪ �c
N+1 ∪ �̃c

1

does not contain the point 0. Here N stands for the number of discontinuity points
xj , j = 1, . . . , N , of the function

c(x) = a(x)+ b(x)

a(x)− b(x)

chosen in such way that x0 := 0 < x1 < · · · < xN < xN+1 := 1. Using these xj ,
the curves �c

j , j = 1, . . . , N + 1 and �′cj , j = 1, . . . , N are given by

�c
j :=

{
c(x) : xj−1 < x < xj

}

and

�′cj :=
{

1

2

[
c(xj + 0)+ c(xj − 0)

]

− i
2

[
c(xj + 0)− c(xj − 0)

]
cotπ

(
1

p
− it

)

: t ∈ R

}

.

The curves �̃j , j ∈ {0, 1} connecting the point 1 with one of the endpoints of �c
1

and �c
N+1, respectively, are given by the formulas

�̃c
0 :=

{
a(0)− b(0)i cotπ(ξ+ − it)+ c+(0)̂k+(ξ+ − it)

a(0)− b(0)
: t ∈ R

}

and

�̃c
1 :=

{
a(1)+ b(1)i cotπ(ξ− − it)+ c−(1)̂k−(ξ− − it)

a(1)− b(1)
: t ∈ R

}

.

In this case, the Fredholm index of A is equal to the negative winding number of the
curve �c

A, where the orientation of �c
A is due to the above given parametrization.

Proof At first, we consider the case c+ = 1 and c− = 0. Setting ρ = σ+, σ = σ−,
ξ = ξ+ = 1+ρ

p
, and ξ− = 1+σ

p
. Having regard to Corollary 4.11, we have to show

0 �∈ �c
A is equivalent to 0 �∈ �d

A and that in this case wind
(
�c
A
) = −wind

(
�d
A
)
.
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But, this is seen by the relations

�d
j =

{
1

c(x)
: xj−1 < x < xj

}

=
{
z−1 : z ∈ �c

j

}
,

�′dj = d(xj + 0)d(xj − 0)

{
1

2

[
c(xj + 0)+ c(xj − 0)

]

− i
2

[
c(xj + 0)− c(xj − 0)

]
cotπ

(
1

p
+ it

)

: t ∈ R

}

,

�̃d
0 =

a(0)− b(0)

a(0)+ b(0)

{
a(0− b(0)i cotπ(ξ + it)+ k̂(ξ + it)

a(0)− b(0)
: t ∈ R

}

,

�̃d
1 = d(1)

{
1

2
[1+ c(1)] − i

2
[1 − c(1)] cotπ

(
1 + σ

p
+ it

)

: t ∈ R

}

,

if one compares the increments of the argument along the respective pieces of the
curves �c

A and �d
A. 	


5 Regularity Properties of Solutions of Eq. (1.1)

This section deals with some specific properties of the Mellin operators and the
smoothness of the solutions of the equation

au+ bSu+ cBku = f in Lp
ρ,σ .

In addition, their asymptotic behaviour near the end point 1 is investigated. Let
n ∈ N0. For k ∈ Cn(R+) and f : (0, 1) → C we define the operators ∂nBk by

(∂nBkf )(x) :=
∫ 1

0
k(n)

(
x

y

)
f (y)

yn+1
dy.

Lemma 5.1 Let p ∈ (1,∞), σ < p−1, ρ ∈ R, and n ∈ N0 as well as k ∈ Cn(R+).
We assume that there is a β >

1+ρ
p

such that the functions

k̃� := [a, 1] × [0, 1] → C, (x, y) �→ y−(β+�)k(�)
(
x

y

)

(5.1)
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are continuous for all a ∈ (0, 1) and all � ∈ {0, 1, . . . , n}. Then, for every f ∈ Lp
ρ,σ ,

the function Bkf is n-times continuously differentiable on (0, 1], where

d�

dx�
(Bkf )(x) = (∂�Bkf )(x), x ∈ (0, 1] (5.2)

holds true.

Proof Let ε > 0. Then, there exists a δ = δ(ε) > 0, such that

∣
∣(∂�Bkf )(x)− (∂�Bkf )(x ′)

∣
∣

≤
∫ 1

0

∣
∣̃k�(x, y)− k̃�(x

′, y)
∣
∣yβ−1|f (y)| dy

≤ ε

∫ 1

0
υ
β−1− ρ

p
,− σ

p (y) υ
ρ
p
, σ
p (y) |f (y)| dy

≤ ε

(∫ 1

0
υ

(
β−1− ρ

p

)
p

p−1 ,− σ
p−1 (y) dy

)p−1
p

‖f ‖ρ,σ,p

≤ const · ε

for all x, x ′ ∈ [a, 1], which satisfy |x − x ′| < δ. Here we took into account that(
β − 1 − ρ

p

)
p

p−1 > −1 is equivalent to β >
1+ρ
p

and that σ < p − 1. Hence

∂�Bkf is continuous on (0, 1]. Analogously, one can show that, for x ∈ [a, 1], the
relations

∣
∣∂�Bkf (x)

∣
∣ ≤ const ‖f ‖ρ,σ,p , (5.3)

are true, where the constant does only depend on a ∈ (0, 1). The differentiability of
Bkf follows now from

∫ x

c

(∂1Bkf )(ξ) dξ =
∫ x

c

∫ 1

0
k′
(
ξ

y

)
f (y)

y2
dy dξ

= lim
ε→0

∫ x

c

∫ 1

ε

k′
(
ξ

y

)
f (y)

y2 dy dξ + lim
ε→0

∫ x

c

∫ ε

0
k′
(
ξ

y

)
f (y)

y2 dy dξ

= lim
ε→0

∫ 1

ε

∫ x

c

k′
(
ξ

y

)
f (y)

y2 dξ dy + lim
ε→0

∫ x

c

∫ ε

0
k′
(
ξ

y

)
f (y)

y2 dy dξ

= lim
ε→0

∫ 1

ε

[

k

(
x

y

)
f (y)

y
− k

(
c

y

)
f (y)

y

]

dy + lim
ε→0

∫ x

c

∫ ε

0
k′
(
ξ

y

)
f (y)

y2 dy dξ,
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where x, c ∈ (0, 1]. With regard to (5.3), we can apply Lebesgue’s dominated
convergence theorem and get

∫ x

c

(∂1Bkf )(ξ) dξ =
∫ 1

0

[

k

(
x

y

)
f (y)

y
− k

(
c

y

)
f (y)

y

]

dy = (Bkf )(x)+ const.

Hence, d
dx

(Bkf )(x) = (∂1Bkf )(x), x ∈ (0, 1]. The general case follows now by
induction. 	

Remark 5.2 Note, that the function k̃� defined in (5.1) is continuous for all a ∈
(0, 1) if the limit lim

t→∞ tβ+�k(�)(t) exists and is finite.

Let ψ, ζ ≥ 0. By BCψ,ζ = BCψ,ζ (0, 1) we denote the set of all continuous
functions f : (0, 1)→ C, for which the function υψ,ζ f is bounded on (0, 1). If we
introduce the norm

‖f ‖ψ,ζ,∞ = sup
{
υψ,ζ (x)|f (x)| : 0 < x < 1

}
,

then BCψ,ζ becomes a Banach space. Moreover by Cψ,ζ = Cψ,ζ (0, 1) we denote
the set of all continuous functions f : (0, 1) → C, for which the limits

lim
x→0

xψf (x) and lim
x→1

(1− x)ζ f (x)

exist and if these limits are equal to zero if ψ > 0 or ζ > 0, respectively. The space
Cψ,ζ is a closed subspace of BCψ,ζ and, consequently, also a Banach space.

Lemma 5.3 Let p ∈ (1,∞), 1
p
+ 1

q
= 1, σ < p − 1, and ρ ∈ R, as well as

k ∈ C(R+). Furthermore, we assume that there is a β >
1+ρ
p

such that the function

k̃ := [a, 1] × [0, 1] → C, (x, y) �→ y−βk

(
x

y

)

is continuous for all a ∈ (0, 1). If
∫ ∞

0
|k(t)|q t

(
ρ
p
+1
)
q−2

dt < ∞

and if there are numbers χ ∈ R, t0 > 0, and c0 > 0 such that

|k(t)| ≤ c0t
−χ , 0 < t < t0 , (5.4)

then

Bk ∈
⎧
⎨

⎩

L
(
Lp
ρ,σ ,BCψ,0

) : max
{

0, 1+ρ
p

, χ
}
≤ ψ ,

L
(
Lp
ρ,σ ,Cψ,0

) : max
{

0, 1+ρ
p

, χ
}
< ψ .
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Proof First we note that, due to Lemma 5.1, for f ∈ Lp
ρ,σ , the function (Bkf ) (x)

is continuous on (0, 1]. Moreover, for x ∈ (0, 1), using Hölder’s inequality we can
estimate

∣
∣
∣vψ,0(x) (Bkf ) (x)

∣
∣
∣ =

∣
∣
∣
∣x

ψ

∫ 1

0
k

(
x

y

)
f (y) dy

y

∣
∣
∣
∣

≤ xψ

(∫ 1

0

∣
∣
∣
∣k

(
x

y

)∣
∣
∣
∣

q
v
− ρq

p ,− σq
p (y) dy

yq

) 1
q

‖f ‖ρ,σ ,p

=: N(x) ‖f ‖ρ,σ ,p ,

where, with the help of the substitution t = x
y

,

N(x)q = xψq+1
∫ ∞

x

|k(t)|q
(x

t

)− ρq
p
−q (

1 − x

t

)− σq
p dt

t2

= xψq+1
(∫ 2x

x

+
∫ ∞

2x

)

|k(t)|q
(x

t

)− ρq
p −q (

1 − x

t

)− σq
p dt

t2

=: N1(x)+N2(x) .

Setting M0 = max
{|k(t)| : t0

2 ≤ t ≤ 2
}

and taking (5.4) into account, we get

N1(x) ≤ xψq+1

⎧
⎪⎪⎨

⎪⎪⎩

c
q
0

∫ 2x

x

t−χq−2
(x

t

)− ρq
p
−q (

1 − x

t

)− σq
p

dt : 2x < t0 ,

M
q

0

∫ 2x

x

t−2
(x

t

)− ρq
p −q (

1 − x

t

)− σq
p

dt : t0 ≤ 2x ,

t=xs=

⎧
⎪⎪⎨

⎪⎪⎩

c
q
0x

(ψ−χ)q

∫ 2

1
s

ρq
p +q−2+ σq

p −χq
(s − 1)−

σq
p ds : 2x < t0 ,

M
q

0 x
ψq

∫ 2

1
s

ρq
p +q−2+ σq

p (s − 1)−
σq
p ds : t0 ≤ 2x ,

and

N2(x) ≤ max
{

1, 2
σq
p

}
x
ψq+1− ρq

p
−q

∫ ∞

0
|k(t)|q t

(
ρ
p+1

)
q−2

dt .

Since σq
p

= σ
p−1 < 1 and since ψq + 1 − ρq

p
− q ≥ (>) 0 is equivalent to

ψ ≥ (>)
1+ρ
p

, we get the assertion. 	
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Writing

(∂�Bkf ) (x) = x−�

∫ 1

0
k�

(
x

y

)
f (y) dy

y

with k�(t) = k(�)(t)t�, from Lemma 5.3 we get

Corollary 5.4 Let p ∈ (1,∞), 1
p
+ 1

q
= 1, σ < p − 1, and ρ ∈ R, � ∈ N0, as

well as k ∈ C�(R+). Furthermore, we assume that there is a β >
1+ρ
p

such that the

function k̃� defined in (5.1) is continuous for all a ∈ (0, 1). If
∫ ∞

0
|k(�)(t)|q t

(
ρ
p+1

)
q+�q−2

dt < ∞

and if there are numbers χ ∈ R, t0 > 0, and c0 > 0 such that

|k(�)(t)| ≤ c0t
−χ−� , 0 < t < t0 ,

then

∂�Bk ∈
⎧
⎨

⎩

L
(
Lp
ρ,σ ,BCψ,0

) : �+ max
{

0, 1+ρ
p

, χ
}
≤ ψ ,

L
(
Lp
ρ,σ ,Cψ,0

) : �+ max
{

0, 1+ρ
p

, χ
}
< ψ .

Corollary 5.5 Let p ∈ (1,∞), σ < p − 1, ρ ∈ R, and � ∈ N0, k ∈ C�(R+). If
there are numbers α, β ∈ R such that α <

1+ρ
p

< β, that tα+�k(�)(t) is bounded

for t →+0, and that the finite limit lim
t→∞ tβ+�k(�)(t) exists, then

∂�Bk ∈
⎧
⎨

⎩

L
(
Lp
ρ,σ ,BCψ,0

) : �+ max
{

0, 1+ρ
p

}
≤ ψ ,

L
(
Lp
ρ,σ ,Cψ,0

) : �+ max
{

0, 1+ρ
p

}
< ψ .

Proof Taking into account Remark 5.2, we can apply Corollary 5.4 with χ = α,

since
(

1
p
+ 1

q
= 1

)

∫ ∞

0
|k(�)(t)|q t

(
ρ
p+1

)
q+�q−2

dt

≤ c1

∫ 1

0
t

(
ρ
p
+1
)
q−αq−2

dt + c2

∫ ∞

1
t

(
ρ
p
+1
)
q−βq−2

dt

and
(
ρ

p
+ 1

)

q − αq − 2 =
(

1 + ρ

p
− α − 1

q

)

q > −1
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as well as
(
ρ

p
+ 1

)

q − βq − 2 =
(

1 + ρ

p
− β − 1

q

)

q < −1 . 	


Corollary 5.6 Let a, c, f ∈ Cn(0, 1] and let the assumptions of Lemma 5.1 be
fulfilled. If the operator equation au + cBku = f has a solution u ∈ Lp

ρ,σ and if
a(x) �= 0 for all x ∈ (0, 1], then u ∈ Cn(0, 1].
Proof With the help of Lemma 5.1, we get u = a−1(f − cBk)u ∈ Cn(0, 1]. 	

Corollary 5.7 Let a, c, f ∈ Cn[0, 1] and a(x) �= 0 for all x ∈ [0, 1]. If the
conditions of Corollary 5.5 are satisfied and if the equation au + cBku = f has
a solution u ∈ Lp

ρ,σ , then

u(�) ∈ C 1+ρ
p
+�+ε,0 for � ∈ {0, . . . , n} and all ε > 0.

Proof Due to the assumptions, Corollary 5.5 in combination with (5.2) deliver

u(�) = [
a−1(f − cBk)u

](�) ∈ C 1+ρ
p +�+ε,0

for � ∈ {0, . . . , n} and all ε > 0. 	

Let 0 < γ < 1, m ∈ N0, and −∞ < a < b < ∞. We denote by Cm,γ [a, b] the set
of all m times differentiable functions f : [a, b] → C, for which

sup

{
|f (m)(x)− f (m)(y)|

|x − y|γ : a ≤ x, y ≤ b, x �= y

}

is finite. For c ∈ [a, b], m ∈ N0, and 0 < γ < 1, we set

Cm,γ

[a,b](c) =
{
f : ∃ε > 0 with f ∈ Cm,γ

([c − ε, c + ε] ∩ [a, b])}

Moreover , let

Cm,0[a, b] =
⋃

0<γ<1

Cm,γ [a, b] and Cm,0
[a,b](c) =

⋃

0<γ<1

Cm,γ

[a,b](c) .

For γ ∈ [0,∞) and −∞ < a < b < ∞, the function class Hγ (a, b) is defined as
the set of all functions f : (a, b)→ C belonging to C[γ ],γ−[γ ][c, d] for all intervals
[c, d] ⊂ (a, b), where [γ ] is the integer, which fulfills γ − 1 < [γ ] ≤ γ . In the
same manner we define the classes Hγ (a, b], Hγ [a, b), and Hγ [a, b]. Of course,
Hγ [a, b] = C[γ ],γ−[γ ][a, b].
Lemma 5.8 Let p ∈ (1,∞), σ < p − 1, n ∈ N0 and ρ, β ∈ R with
1+ρ
p

< β. For k ∈ C(R+), assume that tβk(t) is bounded for t → ∞ (i.e.,
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ma := sup
{
tβk(t) : a ≤ t < ∞}

< ∞ for all a > 0) and that

Ma := sup

{∣
∣sβk(s)− tβk(t)

∣
∣

|s − t|γ : s, t ∈ [a,∞), s �= t

}

< ∞

for some γ ∈ (0, 1) satisfying 1+ρ
p
+γ < β and for all a > 0. Then Bkf ∈ Hγ (0, 1]

for all f ∈ Lp
ρ,σ .

Proof Let f ∈ Lp
ρ,σ and 0 < a ≤ x1 < x2 ≤ 1. Then

|(Bkf )(x1)− (Bkf )(x2)|
|x1 − x2|γ

≤
∫ 1

0

∣
∣
∣k
(
x1
y

)
− k

(
x2
y

)∣
∣
∣
(
x1
y

)β (
x1
y

)−β

| x1
y
− x2

y
|γ

|f (y)| dy
y1+γ

≤
∫ 1

0

∣
∣
∣
∣

(
x1
y

)β
k
(
x1
y

)
−
(
x2
y

)β
k
(
x2
y

)∣∣
∣
∣

(
x1
y

)−β

| x1
y
− x2

y
|γ

|f (y)|
y1+γ

dy

+
∫ 1

0

∣
∣
∣k
(
x2
y

)∣
∣
∣

[(
x2
y

)β −
(
x1
y

)β
]

| x1
y
− x2

y
|γ
(
x1
y

)β
|f (y)| dy
y1+γ

≤ x
−β
1 Ma

∫ 1

0

|f (y)| dy
y1+γ−β

+
(
x2
x1
− 1

)β−γ

x
β
2 x

γ
1

∫ 1

0

(
x2

y

)β ∣∣
∣
∣k

(
x2

y

)∣
∣
∣
∣
|f (y)| dy
y1−β

≤ a−βMa

∫ 1

0

|f (y)| dy
y1+γ−β

+ a−β−γ
(
a−1 − 1

)β−γ

ma

∫ 1

0

|f (y)| dy
y1−β

≤ const

⎡

⎣
(∫ 1

0
υ

(
−1−γ+β− ρ

p

)
q.− σ

p−1 (y) dy

) 1
q

+
(∫ 1

0
υ

(
−1+β− ρ

p

)
q,− σ

p−1 (y) dy

) 1
q

⎤

⎦ ‖f ‖ρ,σ,p

≤ const ‖f ‖ρ,σ,p ,
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where the constant does not depend on x1 and x2 and where we took into account

that
(
−1 − γ + β − ρ

p

)
q > −1 is equivalent to 1+ρ

p
+ γ < β. 	


Lemma 5.9 ([7], Theorem in §19) Let 0 ≤ a < b ≤ 1 and v ∈ C0,γ [a, b] for
some γ ∈ [0, 1). Then we have

Sχ[a,b]v ∈ Hγ (a, b),

where χ[a,b] is the characteristic function of the interval [a, b]. Moreover, if v(a) =
0 or v(b) = 0 are satisfied, then we even get

Sχ[a,b]v ∈ Hγ [a, b) and Sχ[a,b]v ∈ Hγ (a, b],

respectively.

Corollary 5.10 Let 0 ≤ a < b ≤ 1 and v ∈ Hγ (a, b) for some γ ∈ [0,∞) as well
as χ[a,b]v ∈ L1

0,0. Then Sχ[a,b]v ∈ Hγ (a, b).

Proof Without loss of generality, we can assume that a = 0 and b = 1. Let [c, d] ⊂
(0, 1) and choose ε > 0 such that ε < c and d < 1 − ε. Write

Sv = I1 + I2 + I3

with

I1(x) = 1

π i

∫ ε

0

v(y) dy

y − x
, I2(x) = 1

π i

∫ 1−ε

ε

v(y) dy

y − x
,

and

I3(x) = 1

π i

∫ 1

1−ε

v(y) dy

y − x
.

Then I1, I3 ∈ C∞[c, d].
Now we consider I2. If γ ∈ [0, 1), then, by our assumptions, v ∈ C0,γ [ε, 1− ε],

and Lemma 5.9 delivers I2 ∈ C0,γ [c, d]. Assume that

I2 ∈ C[γ ],γ−[γ ][c, d] if γ ∈ [0, n) (5.5)
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for some n ∈ N. We show that then I2 ∈ C[γ ],γ−[γ ][c, d] also holds if γ ∈ [n, n+1).
Indeed, in that case v′ ∈ Hγ−1(0, 1) and, by [6, Lemma 6.1],

I ′2(x) =
v(ε)

ε − x
− v(1 − ε)

1 − ε − x
−
∫ 1−ε

ε

v′(y) dy
y − x

, ε < x < 1 − ε .

By our assumption (5.5),

∫ 1−ε

ε

v′(y) dy
y − · ∈ C[γ ]−1,γ−[γ ][c, d] ,

which implies I2 ∈ C[γ ],γ−[γ ][c, d]. The corollary is proved. 	

The following corollary can be proved analogously.

Corollary 5.11 Let 0 ≤ a < b ≤ 1, c ∈ {a, b} and v ∈ Hγ
(
(a, b) ∪ {c}) with

v(c) = v′(c) = . . . = v[γ ](c) = 0 for some γ ∈ [0,∞) as well as χ[a,b]v ∈ L1
0,0.

Then

Sχ[a,b]v ∈ Hγ
(
(a, b) ∪ {c}).

Lemma 5.12 ([7], §29, 3o, 4o, §32) Let 0 ≤ α < 1, β ∈ R, and μ = α + iβ as
well as u ∈ H0(0, 1)∩L1

0,0. Moreover, assume that there are ε, δ ∈ (0, 1) such that,
for 1 − ε < x < 1,

u(x) = u∗(x)
(1 − x)μ

and u∗ ∈ C0,δ
[0,1](1) ,

where, for x ∈ (0, 1),

(1 − x)μ = (1 − x)αeiβ ln(1−x) .

Then, for x ∈ (1 − ε, 1), we have

(Su)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

u∗(1)
π i

ln(1 − x)+ u∗∗(x) : μ = 0 ,

i cot(πμ)

(1 − x)μ
u∗(1)+ u∗∗(x) : μ �= 0,
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where, in case α = 0,

u∗∗ ∈ C0,δ
[0,1](1)

and, in case 0 < α < 1,

υ0,α0u∗∗ ∈ C0,λ
[0,1](1)

with
(
υ0,α0u∗∗

)
(1) = 0 for

max {0, α − δ} < α0 < α and 0 < λ < α0 − max {0, α − δ} .

Remark 5.13 If (4.3) holds for some κ ∈ {−1, 0, 1}, then

v−ν,ν+κLp
ρ,σ ⊂ L1

0,0.

Proof This follows immediately from

∫ 1

0
|(v−ν,ν+κf )(x)| dx ≤

(∫ 1

0
|f (x)|pvρ,σ (x) dx

) 1
p

×
(∫ 1

0
v

(
−#ν− ρ

p

)
p

p−1 ,
(
#ν+κ− σ

p

)
p

p−1 (x) dx

)p−1
p

< ∞

for f ∈ Lp
ρ,σ . 	


Remark 5.14 ([7], §7) For α > 0 and β ∈ R, the function x �→ (1−x)α+iβ belongs
to C0,α

[0,1](1). Hence, if f ∈ C0,δ
[0,1](1) for some δ ∈ [0, 1), then

g ∈ Cmin{α,δ}
[0,1] (1) ,

where g(x) = (1 − x)α+iβf (x).

Proposition 5.15 Let p ∈ (1,∞), ρ, σ ∈ (−1, p − 1), 0 ≤ γ < ∞, and a ∈
C, b ∈ C \ {0} with a ± b �= 0. Moreover, assume that there is a ν ∈ C and a
κ ∈ {0,±1} such that (4.3) is fulfilled. If u ∈ Lp

ρ,σ and

f = au+ bSu ∈ Hγ (0, 1) ∩ C0,δ
[0,1](1)
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for some δ ∈ (0, 1), then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ Hγ (0, 1) ∩ C0,δ1
[0,1](1) , u(1) = 0 ,

δ1 = min {1 −#ν, δ} − ε

∀ ε ∈ (0,min {1 −#ν, δ} )

⎫
⎪⎪⎬

⎪⎪⎭

: κ = −1 ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = u1 + f (1)p0υ
ν,−ν ,

u1 ∈ Hγ (0, 1) ∩ C0,δ1[0,1](1) , u1(1) = 0 ,

δ1 = min {−#ν, δ} − ε

∀ ε ∈ (0,min {−#ν, δ} )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

: κ = 0 ,−1 < #ν < 0 ,

⎧
⎨

⎩

u = u1 + f (1)p0υ
ν,−ν ,

u1 ∈ Hγ (0, 1) ∩
(
υ0,−νC0,δ

[0,1](1)
)

⎫
⎬

⎭
: κ = 0 , #ν = 0 ,

⎧
⎨

⎩

u = u1 + f (1)p0υ
ν,−ν ,

u1 ∈ Hγ (0, 1) ∩
(
υ0,−νC0,min{#ν,δ}

[0,1] (1)
)

⎫
⎬

⎭
: κ = 0 , 0 < #ν < 1 ,

⎧
⎨

⎩

u = u1 +
[
p0 + f (1)p1

]
υν,−ν−1 ,

u1 ∈ Hγ (0, 1) ∩
(
υ0,−ν−1C0,min{#ν+1,δ}

[0,1] (1)
)

⎫
⎬

⎭
: κ = 1 ,

with certain polynomials pj (x) of degree less or equal than j .

Proof Since S maps Lp
ρ,σ into itself, we have f ∈ Lp

ρ,σ . First, we consider the case
κ = −1. Hence, 0 < η < #ν < 1 − ξ < 1 (cf. (4.3)). Due to Lemma 4.3, the
operator aI + bS : Lp

ρ,σ → Lp
ρ,σ is left-sided invertible and

u =
(
a2 − b2

)−1 [
af − bvν,1−νSv−ν,ν−1f

]
, (5.6)

where v−ν,ν−1f ∈ L1
0,0 in view of Remark 5.13. Moreover, from (5.6) and (4.6) we

deliver

u(x) = 1

a2 − b2

(

a[f (x)− f (1)] − bυν,1−ν(x)

π i

∫ 1

0

y−ν[f (y)− f (1)]
(1 − y)1−ν

dy

y − x

)

.

In case δ > 1 − #ν, Lemma 5.12 delivers that the integral in the last equation
belongs to υ0,α0C0,λ

[0,1](1) for 0 < α0 < 1 − #ν and 0 < λ < α0. In particular,
u(1) = 0. Choosing α0 = 1 − #ν − ε

2 and λ = 1 − #ν − ε, we get, taking into

account Remark 5.14, that u ∈ C0,δ1[0,1](1) for δ1 = 1−#ν−ε and all ε ∈ (0, 1−#ν).

Analogously, in case δ ≤ 1 − #ν, we obtain u ∈ C0,δ1[0,1](1) for δ1 = δ − ε and all
ε ∈ (0, δ). It remains to apply Corollary 5.10 to conclude u ∈ Hγ (0, 1).
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Now, let us consider the case κ = 0. Due to Lemma 4.3, the operator aI + bS :
Lp
ρ,σ → Lp

ρ,σ is invertible and

u =
(
a2 − b2

)−1 [
af − bvν,−νSv−ν,νf

]
,

where −1 < #ν < 1. From (4.7) we get

u(x) = 1

a2 − b2

(

a[f (x)− f (1)] − bυν,−ν(x)

π i

∫ 1

0

y−ν[f (y)− f (1)]
(1 − y)−ν

dy

y − x

)

+ γ0f (1)vν,−ν(x) .

with a constant γ0 ∈ C. In case −1 < #ν ≤ 0, we get the assertion in the same
manner as in the previous case, i.e., u = u1 + γ0v

ν,−νf (1) with u1 ∈ Hγ (0, 1) ∩
C0,δ1[0,1](1) and u1(1) = 0. In case 0 < #ν < 1, we conclude

u1 ∈ Hγ (0, 1) ∩
(
υ0,−νC0,min{#ν,δ}

[0,1] (1)
)

by using Corollary 5.11 and Remark 5.14 together with Corollary 5.10. Note that
ν �= 0 due to b �= 0. If #ν = 0, then we apply Lemma 5.12 in case α = 0.

In case κ = 1, due to Lemma 4.3, the operator aI + bS : Lp
ρ,σ → Lp

ρ,σ is
invertible from the right and its null space is spanned by υν,−ν−1, such that

u =
(
a2 − b2

)−1 [
af − bυν,−ν−1Sυ−ν,ν+1f

]
+ γ0υ

ν,−ν−1

with some constant γ0 ∈ C. Using (4.8) for 1 + ν instead of ν, we deliver

u(x) = 1

a2 − b2

(
a[f (x)− f (1)]

− bυν,−ν−1(x)

π i

∫ 1

0

y−ν(1 − y)ν+1[f (y)− 1]
y − x

dy
)

+ [γ0 + f (1)(δ0 + δ1x)
]
υν,−ν−1(x) .

Now, we can again make use of Corollary 5.11 and Remark 5.14 together with
Corollary 5.10 to get the assertion also for this case. 	

For ρ, σ > −1, we define the space

L̃∞
ρ,σ =

⋂

1<p<∞
Lp
ρ,σ .
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Corollary 5.16 Let ρ, σ > −1, 0 ≤ γ < ∞, and a ∈ C, b ∈ C\{0}with a±b �= 0.
If u ∈ L̃∞

ρ,σ and

f = au+ bSu ∈ Hγ (0, 1) ∩ C0,δ
[0,1](1) ,

then

u ∈ Hγ (0, 1) ∩ C0,δ1[0,1](1) and u(1) = 0 ,

where δ1 = min {1 − #ν, δ} − ε and a+b
a−b

= e2π iν , 0 ≤ #ν < 1, and where
ε ∈ (0,min {1 −#ν, δ} ) is arbitrary.

Proof Since, for sufficiently large p, the operator S maps Lp
ρ,σ into itself, we have

f ∈ L̃∞
ρ,σ . Hence, in Lemma 4.3 we can choose 0 ≤ #ν < 1 and p > 1 sufficiently

large such that (4.3) is satisfied for κ = −1. It remains to apply Proposition 5.15.
	


Remark 5.17 Let p, ρ, σ , a, b, ν, and κ fulfil the conditions of Proposition 5.15, let
c ∈ Hγ (0, 1], and let k(t) satisfy the conditions of Lemma 5.8 for some γ ∈ (0, 1).
If u ∈ L̃p

ρ,σ and

f = au+ bSu+ cBku ∈ Hγ (0, 1) ∩ C0,δ
[0,1](1)

for some δ ∈ (0, 1), then

au+ bSu = f − cBku ∈ Hγ (0, 1) ∩ C0,min{γ,δ}
[0,1] ,

and we can apply Proposition 5.15 with min {γ, δ} instead of δ to deduce a regularity
property for u.

Analogously, using Corollary 5.16, we get the following corollary.

Corollary 5.18 Let ρ, σ , a, and b satisfy the conditions of Corollary 5.16, let c ∈
Hγ (0, 1], and let k(t) satisfy the conditions of Lemma 5.8 for some γ ∈ (0, 1). If
u ∈ L̃∞

ρ,σ and

f = au+ bSu+ cBku ∈ Hγ (0, 1) ∩ C0,δ
[0,1](1)

for some δ ∈ (0, 1), then

u ∈ Hγ (0, 1) ∩ C0,δ1
[0,1](1)

and u(1) = 0, where δ1 = min {1 −#ν, γ, δ} and where ν ∈ C is defined as in
Corollary 5.16.
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6 One-Sided Invertibility

In this section, we are going to investigate the one-sided invertibility of integral
operators of the form aI + bS + Bk in the space Lp

ρ,σ . Under certain conditions
regarding the numbers ρ, σ, p, the coefficients a, b, as well as the kernel function
k we prove that the homogeneous equation (aI + bS + cBk)u = 0 in the space
Lp
ρ,σ or the adjoint equation (aI + bS + cBk)

∗v = 0 in the space Lq

(1−q)ρ,(1−q)σ ,
1
p
+ 1

q
= 1, have only the trivial solution. In the remaining part of this section, let

ξ = 1+ρ
p

and 1
p
+ 1

q
= 1.

Proposition 6.1 Let p ∈ (1,∞), ρ, σ ∈ (−1, p− 1), a ∈ C \ {0}, and k ∈ C(R+)
satisfy condition (A). Then the homogeneous equations (aI+Bk)u = 0 in the space
Lp
ρ,σ or (aI +Bk)

∗v = 0 in the space Lq

(1−q)ρ,(1−q)σ have only the trivial solution.

Proof Let u ∈ Lp
ρ,σ , v ∈ Lq

(1−q)ρ,(1−q)σ and

(aI + Bk)u = 0 , (aI + Bk)
∗v Lemma 4.1= (aI + Bk1)v = 0 , (6.1)

where k1(t) = k(t−1)t−1. Due to Corollary 3.3, we can choose α0, β0 ∈ R, such
that α < α0 < ξ < β0 < β and

lim
t→+0

tα0k(t) = 0 and lim
t→∞ tβ0k(t) = 0 .

This implies

lim
t→0

t1−β0k1(t) = 0 and lim
t→∞ t1−α0k1(t) = 0.

Since α0 <
1+ρ
p

is equivalent to 1+(1−q)ρ
q

< 1 − α0, we get, by using Remark 5.2

together with Corollary 5.6 (both in case n = 0), that u ∈ Lp

ρ,0 and v ∈ Lq

(1−q)ρ,0.

By Lemma 3.8,Bk ∈ L
(
Lp
ρ,σ ) is true for all σ ∈ (−1, p−1). Hence we can consider

the equations in (6.1) in the spaces Lp

ρ,0 and Lq

(1−q)ρ,0, respectively. Because of the
relations (4.1) and (4.2), it only remains to apply Lemma 2.2. 	


The relations (4.1) and (4.2) together with Lemma 2.2 also immediately deliver
the following proposition.

Proposition 6.2 Let p ∈ (1,∞), ρ ∈ (−1, p − 1), a ∈ C, b ∈ C \ {0}, and
k ∈ C(R+) satisfy condition (A). Then the homogeneous equations

(aI + bS + Bk)u = 0
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in the space Lp
ρ,0 or

(aI + bS + Bk)
∗v = 0

in the space Lq

(1−q)ρ,0 have only the trivial solution.

Proposition 6.3 Let p ∈ (1,∞), ρ, σ ∈ (−1, p − 1), a ∈ C, b ∈ C \ {0}, and
k ∈ C(R+) satisfy condition (A). Moreover, we assume that k(t) fulfils

Mβ,a,γ1(k) := sup

{∣
∣sβk(s)− tβk(t)

∣
∣

|s − t|γ1
: s, t ∈ [a,∞) , s �= t

}

< ∞

and

Nα,a,γ2(k) := sup

{ |sαk(s)− tαk(t)|
|s − t|γ2

: s, t ∈ (0, a] , s �= t

}

< ∞ (6.2)

for all a > 0 and for some γi ∈ (0, 1), i ∈ {1, 2}, with ξ + γ1 < β and α < ξ − γ2.
Let aI + bS be invertible in Lp

ρ,σ , i.e., there is a ν ∈ C satisfying (4.3) and (4.4)
for κ = 0. Moreover, we assume that

#ν <
1

p
and − #ν <

1

q
. (6.3)

Then the homogeneous equations

(aI + bS + Bk)u = 0

in the space Lp
ρ,σ or

(aI + bS + Bk)
∗v = 0

in the space Lq

(1−q)ρ,(1−q)σ have only the trivial solution.

Proof Let u ∈ Lp
ρ,σ , v ∈ Lq

(1−q)ρ,(1−q)σ , and

(aI + bS + Bk)u = 0 , (aI + bS + Bk)
∗v Lemma 4.1= (aI + bS + Bk1)v = 0 ,

where k1(t) = k(t−1)t−1. Since the function k(t) fulfils (6.2), we get that k1(t)

satisfies M1−α,a,γ2(k1) < ∞ for all a > 0. Thus, Lemma 5.8 delivers Bku ∈
Hγ1(0, 1] and Bk1v ∈ Hγ2(0, 1]. From Proposition 5.15 (in case κ = 0), we derive
u ∈ Lp

ρ,0 and v ∈ Lq

(1−q)ρ,0, where we took into account assumption (6.3). Thus, it
only remains to apply (4.1) in combination with Lemma 2.2. 	
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Proposition 6.4 Let p ∈ (1,∞), ρ ∈ (−1, p − 1), a, b ∈ C, and k ∈ C(R+)
satisfy condition (A). If

inf
{∣
∣a − bi cot(πξ + it)+ k̂(ξ + it)

∣
∣ : t ∈ R

}
> 0 ,

then the homogeneous equation

(aI + bS + Bk)u = 0

in the space Lp
ρ,σ or the adjoint equation

(aI + bS + Bk)
∗v = 0

in the space Lq

(1−q)ρ,(1−q)σ have only the trivial solution.

Proof Relation (4.1) in combination with Lemma 2.3 immediately delivers the
assertion. 	
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A Note on Group Representations,
Determinantal Hypersurfaces
and Their Quantizations

Igor Klep and Jurij Volčič

Abstract Recently, there have been exciting developments on the interplay
between representation theory of finite groups and determinantal hypersurfaces. For
example, a finite Coxeter group is determined by the determinantal hypersurface
described by its natural generators under the regular representation. This
short note solves three problems about extending this result in the negative.
On the affirmative side, it is shown that a quantization of a determinantal
hypersurface, the so-called free locus, correlates well with representation theory. If
A1, . . . , A� ∈ GLd (C) generate a finite group G, then the family of hypersurfaces
{X ∈ Mn(C)d : det(I + A1 ⊗X1 + · · · + A� ⊗ X�) = 0} for n ∈ N determines G
up to isomorphism.
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1 Introduction

To A0, . . . , A� ∈ Md(C) one assigns the determinantal hypersurface

{[ξ0 : · · · : ξ�] ∈ CP
� : det(ξ0A0 + · · · + ξ�A�) = 0}. (1.1)

This is a classical object in algebraic geometry [1, 6, 10, 11], where a key question
asks which hypersurfaces admit determinantal representations. When Aj are real
symmetric matrices, determinantal hypersurfaces pertain to hyperbolic and stable
polynomials [2, 15, 18, 23, 24]. The geometry of the hypersurface (1.1) is also
explored in multivariate operator theory [3, 4, 26]. If Aj are bounded operators
on a Hilbert space and the determinant in (1.1) is replaced with the condition that
ξ0A0 + · · · + ξ�A� is not invertible, then (1.1) is known as the projective joint
spectrum of A0, . . . , A� (cf. Taylor spectrum [22] for ensembles of commuting
operators).

Through the work of Frobenius [13] and Dedekind [7] on group determinants
(see also [9]), determinantal hypersurfaces also pertain to representation theory.
Several fascinating developments in this direction [5, 14, 21] have been recently
made. This note addresses certain limitations for extensions of these results.

Let G be a finitely generated group. If T = (g1, . . . , g�) is a finite sequence of
generators for G and ρ : G → GLd (C) is a representation of G, then denote

Z1(T , ρ) =
{
ξ ∈ C

� : det (Id + ξ1ρ(g1)+ · · · + ξ�ρ(g�)) = 0
}
. (1.2)

It is natural to ask what kind of information the affine hypersurface Z1(T , ρ)

carries about ρ and G. For example, if G1,G2 are finite groups with left regular
representationsλ1, λ2, thenZ1(G1\{1}, λ1) = Z1(G2\{1}, λ2) implies that G1,G2
are isomorphic [12]. However, one is typically interested in smaller generating sets
or in finitely generated groups which are not necessarily finite. In [14], the authors
computed the joint spectrum for the infinite dihedral group

D∞ = 〈a, t | a2 = t2 = 1〉

with respect to the generating set (1, a, t), and analyzed its properties through
the representation theory of D∞. Determinantal hypersurfaces also have a strong
connection with representation theory in the case of finite Coxeter groups [5]. A
Coxeter group is a finitely generated group on generators g1, . . . , g� satisfying

(gigj )
mij = 1

where mii = 1 and mij ≥ 2 for i �= j . In [5] the authors first showed that if G is a
finite Coxeter group, λ is its left regular representation, and T = (g1, . . . , g�) are the
generators as above, then Z1(T , λ) determines G up to isomorphism. Furthermore,
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if G is not of exceptional type (in the Coxeter diagram sense) and ρ is an arbitrary
finite-dimensional representation of G, then Z1(T , ρ) determines ρ.

These theorems were presented during the Multivariable Spectral Theory and
Representation Theory workshop at the Banff International Research Station in
April 2019. Several problems about extending these results beyond Coxeter groups
were posed by the speakers; among them were the following.

Questions 1.1 Let G be a finite group, T a fixed generating set for G, and ρ1, ρ2
irreducible complex representations of G.

(1) Is Z1(T , ρ1) a reduced and irreducible hypersurface?
(2) If Z1(T , ρ1) = Z1(T , ρ2), are ρ1 and ρ2 equivalent?

As usual, ρ1 : G → GLd1(C) and ρ2 : G → GLd2(C) are equivalent if d1 = d2
and ρ2 = Pρ2P

−1 for some P ∈ GLd1(C). A representation ρ1 is irreducible if
its image does not admit a nontrivial common invariant subspace; equivalently, it
generates Md1(C) as a C-algebra by Burnside’s theorem [17, Corollary 1.17]. The
hypersurface Z1(T , ρ1) is reduced and irreducible (in the scheme-theoretic sense)
if its defining determinant in (1.2) is an irreducible polynomial. The main result of
this note is the following.

Theorem 1.2 Questions 1.1(1) and (2) have negative answers in general.

See Sects. 2.1 and 2.2 for concrete examples. On a more positive side, in
Sect. 3 we show that representation theory aligns well with a quantization of
the determinantal hypersurface, the free locus; see Theorem 3.1. Furthermore,
Proposition 3.4 determines whether a free locus arises from a representation of
a finite group, and Proposition 3.7 characterizes finite abelian groups from the
perspective of determinantal hypersurfaces. We conclude this note with an open
question.

2 Representations Versus Determinants

In this section we give negative answers to Questions 1.1. The representations were
found with the help of the computer algebra system GAP and the online repository
ATLAS of Finite Group Representations. Verifying equivalence and irreducibility
of representations was sometimes done symbolically with the computing system
Mathematica.

2.1 Irreducible Representation with Reducible Determinant

The alternating group G = A6 admits a presentation

G =
〈
g1, g2 | g2

1, g
4
2, (g1g2)

5, (g1g
2
2)

5
〉
.
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Let

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then ρ(g1) = A1 and ρ(g2) = A2 determines a faithful and irreducible
representation ρ : G → GL9(C). Indeed, we can directly check that

A2
1 = A4

2 = (A1A2)
5 = (A1A

2
2)

5 = I,

so ρ is a representation of G, and is moreover faithful since it is nontrivial and
G is simple. Furthermore, all the possible products of A1 and A2 with at most 8
factors span the whole M9(C), so ρ is irreducible. However, we claim that the curve
Z1((g1, g2), ρ) in C

2 is not irreducible. We can compute the determinant of I +
x1ρ(g1)+ x2ρ(g2),

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + x1 x2 0 0 0 0 0 0 0
0 1 x1 x2 0 0 0 0 0
0 x1 1 0 x2 0 0 0 0
0 0 0 1 x1 x2 0 0 0
0 0 0 x1 1 0 x2 0 0
x2 0 0 0 0 1 0 x1 0
0 0 0 0 0 0 1 + x1 0 x2

0 0 0 0 0 x1 0 1 + x2 0
−x1 −x1 x2 − x1 −x1 −x1 −x1 −x1 −x1 1 − x1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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by cofactor expansion along the rows. The reader will have no difficulty verifying
that det(I + x1ρ(g1)+ x2ρ(g2)) equals

1 + x1 − 4x2
1 − 4x3

1 + 6x4
1 + 6x5

1 − 4x6
1 − 4x7

1 + x8
1 + x9

1 + x2 + 2x1x2 − 2x2
1x2

− 6x3
1x2 + 6x5

1x2 + 2x6
1x2 − 2x7

1x2 − x8
1x2 + x2

1x
2
2 + x3

1x
2
2 − 2x4

1x
2
2 − 2x5

1x
2
2

+ x6
1x

2
2 + x7

1x
2
2 − x2

1x
3
2 + 2x4

1x
3
2 − x6

1x
3
2 − 2x4

2 + x2
1x

4
2 − x3

1x
4
2 + x4

1x
4
2 + x5

1x
4
2

− 2x5
2 − 2x1x

5
2 − x2

1x
5
2 + x4

1x
5
2 − x2

1x
6
2 − x3

1x
6
2 + x2

1x
7
2 + x8

2 − x1x
8
2 + x9

2

which is the product of the following two irreducible polynomials:

1 + 2x1 − 2x3
1 − x4

1 + x1x2 + 2x2
1x2 + x3

1x2 − x1x
2
2 − x2

1x
2
2 + x1x

3
2 − x4

2 ,

1 − x1 − 2x2
1 + 2x3

1 + x4
1 − x5

1 + x2 − x1x2 − x2
1x2 + x3

1x2 − x4
2 − x5

2 .

Some of the subsequent examples are presented in a more terse way to maintain the
focus on their intent.

Note that the above irreducible representation of A6 has dimension 9, which
is not the minimum among nontrivial complex representations of A6; namely,
A6 admits a representation σ of minimal dimension 5, and Z1((g1, g2), σ ) is
irreducible. One might thus be tempted to suggest that for a group G generated by
a finite set T and its (irreducible) representation σ of minimal dimension, Z1(T , σ )

is irreducible. However, even this weaker conjecture fails. The counterexample is
given by the Janko group J2,

J2 =
〈
g1, g2 | g2

1, g
3
2, (g1g2)

7, (g1g2g
−1
1 g−1

2 )12, (g1g2(g1g2g1g
−1
2 )2)6

〉
.

This sporadic simple group of order 604800 admits two non-isomorphic complex
representations σ1, σ2 of minimal dimension 14, courtesy of ATLAS of Finite Group
Representations. As in the previous example (albeit with slightly longer calcula-
tions), one can explicitly check that the curve Z1((g1, g2), σ1) = Z1((g1, g2), σ2)

has two irreducible components.

2.2 Non-equivalent Representations with the Same
Determinant

The classical group G = GL2(Z/3Z) admits the presentation

G =
〈
g1, g2, g3 | g2

1, (g1g
−1
2 )2, (g1g

−1
3 )2, g2

2g3g
−1
2 g3, g2g

2
3g2g

−1
3

〉
.
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Let A1, A2, A3 be the matrices

( − 1√
2

− 1
2 − i

2

− 1
2 + i

2
1√
2

)

,

(
1
2 + i

2
1√
2

− 1√
2

1
2 − i

2

)

,

(
1
2 − i

2
i√
2

i√
2

1
2 + i

2

)

.

There are faithful irreducible unitary representations ρ+, ρ− : G → GL2(C) given
by

ρ±(g1) = ±A1, ρ±(g2) = A2, ρ±(g3) = A3.

It is easy to check that ρ+ and ρ− are not equivalent. On the other hand,

Z1((g1, g2, g3), ρ±) = {(ξ1, ξ2, ξ3) : 1 − ξ2
1 + ξ2 + ξ2

2 + ξ3 + ξ2
3 = 0}.

3 Free Locus Perspective

In this section we will see how representations of a finitely generated group are
determined by a noncommutative relaxation of (1.2). To A ∈ Md (C)� we associate
the monic matrix pencil LA = I + A1x1 + · · · + A�x� of size d in freely
noncommuting variables x = (x1, . . . , x�). Thus L is an affine matrix over the
free algebra C<x>. At a matrix point X ∈ Mn(C)� it evaluates as

LA(X) = Idn + A1 ⊗X1 + · · · + A� ⊗X� ∈ Mdn(C).

The free locus [19] of LA is the disjoint union of determinantal hypersurfaces

Z (LA) =
⊔

n∈N
Zn(LA), Zn(LA) =

{
X ∈ Mn(C)� : detLA(X) = 0

}
.

Given a group G generated by T = (g1, . . . , gn) and a complex representation
ρ : G → GLd(C), we write

Z (T , ρ) = Z
(
Lρ(g1),...,ρ(g�)

)
. (3.1)

By the definition of the free locus we see that (3.1) is indeed a quantization of (1.2).
The existing results on free loci [16, 19] readily apply to group representations.

Theorem 3.1 For i = 1, 2 let Gi be a group generated by a finite sequence Ti and
let ρi be a complex representation of Gi . Assume |T1| = |T2|.
(1) If ρi is irreducible, then there exists n0 ∈ N such that Zn(T1, ρ1) is a reduced

and irreducible hypersurface for all n ≥ n0.
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(2) If ρ1 and ρ2 are irreducible, then Z (T1, ρ1) = Z (T2, ρ2) if and only if
G1/ kerρ1 ∼= G2/ kerρ2 and ρ1, ρ2 are equivalent.

(3) For i = 1, 2 assume that Gi is finite and ρi is a faithful representation. Then
Z (T1, ρ1) = Z (T2, ρ2) if and only if G1 ∼= G2 via an isomorphism mapping
T1 to T2.

Proof

(1) A consequence of [16, Theorem 3.4].
(2) A consequence of [19, Theorem 3.11].
(3) Let Ti be the C-algebra generated by Ti . Since Gi is finite, its group algebra

CGi is semisimple by Maschke’s theorem [17, Theorem 1.9]. Since Ti is a
quotient of CGi , it is also semisimple. Then Z (T1, ρ1) = Z (T2, ρ2) if and
only if T1 �→ T2 induces an algebra isomorphism T1 → T2 by [19, Corollary
3.8]. This isomorphism then restricts to the group isomorphism G1 → G2. 	


Remark 3.2 There is a deterministic bound on n0 in Theorem 3.1(1) that is
exponential in |T1| and the dimension of ρ1 by [16, Remark 3.5] (the bound is likely
not optimal). Similarly, to verify Z (T1, ρ1) = Z (T2, ρ2) of Theorem 3.1(2,3), it
suffices to check Zn(T1, ρ1) = Zn(T2, ρ2) for a fixed large enough n, exponential
in |Ti | and the dimension of ρi by [19, Remark 3.7].

Free loci are defined for monic pencils with arbitrary matrix coefficients; we now
describe how the geometry of the free locus Z (LA) detects whether the coefficients
A1, . . . , A� generate a finite group. See also [8] for an efficient algorithm that
determines finiteness of a finitely generated linear group.

Definition 3.3 Let �, n ∈ N. Let C ∈ GLn(Z) be the permutation matrix
corresponding to the cycle (1 2 · · · n). If {1, . . . , n} = S1 
 · · · 
 S� and Pj is
the orthogonal projection onto span{ek : k ∈ Sj }, then the matrix point

X = (P1C, · · · , P�C) ∈ Mn(Z)
�

is called a cycle partition. For given �, n we thus have �n cycle partitions.

Let μ∞ ⊂ C \ {0} be the group of all roots of unity. The next proposition shows
that if A1, . . . , A� generate a finite group, then Z (LA) intersects complex lines
through cycle partitions only in points from μ∞.

Proposition 3.4 Let A ∈ Md(C)�. Then A1, . . . , A� generate a finite group if and
only if the following hold:

(i) there is a positive definite P ∈ Md(C) such that A∗
jPAj = P for all j ;

(ii) for every cycle partition X and t ∈ C,

tX ∈ Z (LA) 7⇒ t ∈ μ∞.

Proof (⇐) Every Aj is invertible by (i). Let G be a group generated by A1, . . . , A�.
Also by (i), G is a subgroup of the unitary group in GLd(C) with respect to the
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inner product 〈u, v〉 = u∗Pv. Hence every element of G is diagonalizable. By [25,
Corollary 4.9], a finitely generated subgroup of GLd(C) is finite if and only if it
is periodic (or torsion; i.e., every element has finite order). Since a diagonalizable
matrix has a finite order if and only if all its eigenvalues lie in μ∞, it suffices to
verify that eigenvalues of every element of G lie in μ∞.

To (i1, . . . , in) ∈ {1, . . . , �}n we associate the cycle partition X ∈ Mn(Z)
� by

choosing Sj = {ek : ik = j }. We claim that tX ∈ Z (LA) if and only if (−t)n is an
eigenvalue of Ai1 · · ·Ain . Indeed, using Schur complements it is easy to check that

det(I − (−1)ntnAi1 · · ·Ain) = det

(
I tAi1

(−1)ntn−1Ai2 · · ·Ain I

)

= det

⎛

⎝
I tAi1 0
0 I tAi2

−(−1)ntn−2Ai3 · · ·Ain 0 I

⎞

⎠

= · · ·

= det

⎛

⎜
⎜
⎜
⎝

I tAi1

. . .
. . .

I tAin−1

tAin I

⎞

⎟
⎟
⎟
⎠

= detLA(tX).

Thus the matrix Ai1 · · ·Ain has finite order if and only if tX ∈ Z (LA) implies
t ∈ μ∞, which holds by (ii).

(⇒) If A1, . . . , A� generate a finite group G, then C
d admits a G-invariant inner

product

〈u, v〉 =
∑

g∈G
(gu)∗(gv).

If P is the positive definite matrix satisfying 〈u, v〉 = u∗Pv, then (i) holds.
Furthermore, the proof of (ii) is already given in the previous paragraph. 	

Remark 3.5 If additional information about A1, . . . , A� is given, say that their
entries generate a number field (finite extension of Q), then the size of the cycle
partitions, which have to be tested in Proposition 3.4, can be bounded using Schur’s
theorem on orders of finite matrix groups [17, Theorem 14.19].

Remark 3.6 Let p ∈ N be prime. If μ∞ in Proposition 3.4 is replaced by the group
of power-of-p roots of unity, one obtains a free locus characterization of matrix
tuples that generate a finite p-group.
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We also show how the free locus certifies whether its defining coefficients
generate a finite abelian group. The degree of an affine variety of codimension m

is the number of intersection points of the variety with m hyperplanes in general
position; in the case of a hypersurface, it is simply the degree of its square-free
defining polynomial.

Proposition 3.7 Let G be a finite group generated by A1, . . . , A� ∈ Md(C). Then
G is abelian if and only if the irreducible components of Zn(LA) have degree n for
all n ∈ N.

Proof Let A be the C-algebra generated by A1, . . . , A�. As in the proof of
Theorem 3.1(3) we see that A is semisimple. After a basis change (which does
not affect the structure of G or Z (LA)) we can thus assume that

Aj = A
(1)
j ⊕ · · · ⊕ A

(s)
j

where A
(k)
1 , . . . , A

(k)
� ∈ Mdk (C) determine an irreducible representation of G for

every k = 1, . . . , s. For X ∈ Mn(C)d let us view detLA(k) (X) as a polynomial
in the entries of X. If dk = 1, then detLA(k) (X) is up to an affine change of
coordinates equal to the determinant of a generic n × n matrix, and hence an
irreducible polynomial of degree n. On the other hand, if dk > 1, then detLA(k) (X)

is a polynomial of degree dkn > n for all n, and irreducible for all large enough n

by [16, Theorem 3.4]. Since G is abelian if and only if d1 = · · · = ds = 1, and

Zn(LA) = Zn(L
(1)
A ) ∪ · · · ∪Zn(L

(s)
A ),

it follows that G is abelian if and only if the irreducible components of Zn(LA) are
hypersurfaces of degree n. 	

Remark 3.8 If � = 2 and A1, A2 are hermitian, then Z1(LA) alone determines
whether G is abelian, cf. [20].

The last two propositions offer some directions for future research. Theorem 3.1
implies that the linear group G generated by a tuple A is determined by Z (LA).
It would be interesting to know which properties of G can be deduced from the
geometry of Z (LA). For example, intersections of Z (LA) with certain lines and
hyperplanes determine whether G is finite or abelian. An open problem is how to
decide whether a finite group G is nilpotent/solvable/simple (or any other group-
theoretic property) by considering the geometry of the hypersurfaces Zn(LA).

Acknowledgments The authors thank Banff International Research Station for the hospitality
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Algebras Generated by Toeplitz
Operators on the Unit Sphere II: Non
Commutative Case

Maribel Loaiza and Nikolai Vasilevski

Abstract In Loaiza and Vasilevski (Commutative algebras generated by Toeplitz
operators on the unit sphere. Intgr. Equ. Oper. Theory, v. 92, 25 (2020)), we
represented the Hardy space H 2(S2n−1), with n ≥ 2, as a direct sum of weighted
Bergman spaces A2

p(B
n−1), with p ∈ Z+, This permitted us to represent

Toeplitz operators, whose symbols are invariant under certain T-action, acting on
H 2(S2n−1), as direct sums of Toeplitz operators, acting on corresponding Bergman
spaces. As a benefit we were able to use already known results on Toeplitz operators
on Bergman spaces, and a wide variety of commutative algebras, generated by
Toeplitz operators on H 2(S2n−1), was described.

Following the same approach, in the present paper we pass to the non-
commutative case, presenting the detailed description of two non-commutative
C∗-algebras generated by Toeplitz operators on the Hardy space H 2(S2n−1).

1 Introduction

The paper continues the study of algebras generated by Toeplitz operators, acting on
the multidimensional Hardy space H 2(S2n−1), which was started in [12]. Recall in
this connection the principal difference in algebraic properties of Toeplitz operators
acting on the one-dimensional Hardy H 2(S1) and Bergman A2(D) spaces.

The classical result by Brown and Halmos [9] implies that there is no nontrivial
commutative C∗-algebra generated by Toeplitz operators acting on the Hardy space
H 2(S1), while there are only two commutative Banach algebras. One of them
is generated by Toeplitz operators with analytic symbols, and the other one is
generated by Toeplitz operators with conjugate analytic symbols. Of course, such
two algebras remain to be commutative for H 2(S2n−1), for all n > 1.
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At the same time, at the turn of this century, it was observed [15, 16] (see also
[17]) that there are many nontrivial commutativeC∗-algebras, generated by Toeplitz
operators acting on the Bergman space A2(D) over the unit disk D ⊂ C. These
results were extended then to the case of Toeplitz operators acting on weighted
Bergman spaces on the unit ball Bn, see [13]. Further on many nontrivial Banach
algebras generated by Toeplitz operators, that are commutative on each standard
weighted Bergman space over Bn, were discovered and studied.

In this connection a rather challenging question appeared: what is the situation
with both C∗ and Banach algebras generated by Toeplitz operators on the multidi-
mensional Hardy space H 2(S2n−1). A first step in this direction was made in [1]
(see as well [2]), where Z. Akkar, following all the reasonings of [13], described the
commutative C∗-algebras generated by Toeplitz operators on H 2(S2n−1).

In [12], we developed an alternative approach to the problem. Therein we
represented the Hardy space H 2(S2n−1) as a direct sum of weighted Bergman
spaces A2

p(B
n−1), with p ∈ Z+, which permitted us to represent Toeplitz operators,

acting on H 2(S2n−1), as direct sums of Toeplitz operators, acting on corresponding
Bergman spaces. The benefit of such an approach is that we can use now all the
results on Toeplitz operators on Bergman spaces in their full power. In particular, we
showed in [12] how to recover the results of [1] just as simple and straightforward
corollaries of [13], and explained how to unhide and describe a wide variety
of nontrivial commutative Banach algebras generated by Toeplitz operators on
H 2(S2n−1).

Following the same approach, in the present paper we pass to the description
of non-commutative algebras, and present the detailed description of two non-
commutative C∗-algebras generated by Toeplitz operators, acting on the Hardy
space H 2(S2n−1), based on the already obtained results [4, 6–8] for Toeplitz
operators, acting on the Bergman space.

2 Preliminaries: Bergman and Hardy Spaces, Toeplitz
Operators

We recall here the results on the representation of the multidimensional Hardy space
in terms of the Bergman spaces as well as the corresponding representation of
Toeplitz operators, acting on the Hardy space, in terms of Toeplitz operators, acting
on Bergman spaces. All proofs and details can be found in [12].

Denote by

B
n = {z = (z1, z2, . . . , zn) ∈ C

n : |z|2 := |z1|2 + · · · + |zn|2 < 1}

the unit ball in C
n and by

S2n−1 = {z = (z1, z2, . . . , zn) ∈ C
n : |z1|2 + · · · + |zn|2 = 1}
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the unit sphere, being the boundary of Bn. The following standard notations will
be used throughout the paper. For α = (α1, . . . , αn) ∈ Z

n+, where Z+ =
{0, 1, 2, . . .} ⊂ Z,

zα = z
α1
1 . . . zαn

n ,

α! = α1! . . . αn!,
|α| = α1 + · · · + αn.

The standard Lebesgue measure in C
n is denoted by dV (z), i.e.

dV (z) = dx1dy1 . . . dxndyn,

where z = (z1, z2, . . . , zn) and zk = xk + iyk, k = 1, . . . , n. For each λ ∈ (−1,∞)

introduce the standard normalized weighted measure

dvλ(z) = �(n+ λ+ 1)

πn�(λ+ 1)

(
1 − |z|2

)λ
dV (z).

The weighted Bergman space A2
λ(B

n) is the closed subspace of L2(B
n, dvλ) that

consists of all analytic functions. The Hardy space H 2(S2n−1) is defined as the set
of all holomorphic functions f , defined in B

n, such that

‖f ‖2
2 := sup

0<r<1

∫

S2n−1
|f (rζ )|2dσ(ζ ) < ∞,

where dσ denotes the normalized measure for S2n−1. This space can be defined,
alternatively, as the closed subspace of L2(S

2n−1, dσ ) that consists of all functions
f satisfying the tangential Cauchy-Riemann equations:

Lk,jf =
(

zk
∂

∂zj
− zj

∂

∂zk

)

f = 0, 1 ≤ k < j ≤ n. (2.1)

Observe that f ∈ L2(S
2n−1, dσ ) if and only if

f̃ (z′, tn) := f (z′,
√

1 − |z′|2tn) ∈ L2(B
n−1, dv(z′))⊗ L2(S

1, dμ(tn)),

where

z′ = (z1, . . . , zn−1), zn =
√

1 − |z′|2tn, dv(z′) = (n− 1)!
πn−1 dV (z′),

dV (z′) = dx1dy1 · · · dxn−1dyn−1,
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and dμ(tn) = 1
2π

dtn
itn

is the normalized arc-length measure on S1.
Equations (2.1) are not independent. The equations that are independent and

equivalent to (2.1) have the form

Dk(f̃ ) =
[

∂

∂zk
+ 1

2

zk

1 − |z′|2 tn
∂

∂tn

]

f̃ = 0, k = 1, 2, . . . , n− 1.

Recall that the discrete Fourier transform F : L2(S
1, dμ(tn)) → �2(Z), has the

form

F : g �→ cn =
{∫

S1
g(tn)t

−p
n dμ(tn)

}

p∈Z
.

Introduce the unitary operator U1 = I ⊗ F , being an isometric isomorphism of

L2(S
2n−1, dσ ) ∼= L2(B

n−1, dv(z′))⊗ L2(S
1, dμ(tn))

onto

L2(B
n−1, dv(z′))⊗ �2(Z) = �2(Z, L2(B

n−1, dv(z′)))

and acting as follows

U1 : f̃ (z′, tn) �−→ {
c̃p(z

′)
}
p∈Z ,

where

c̃p(z
′) =

∫

S1
f̃ (z′, tn)t−p

n dμ(tn).

Observe that

�2(Z, L2(B
n−1, dv(z′))) =

⊕

p∈Z
L2(B

n−1, dv(z′)).

For each p ∈ Z introduce then the unitary operator

up : L2(B
n−1, dv(z′)) → L2(B

n−1, dvp(z
′)),

where dvp(z
′) = (n+|p|−1)!

πn−1|p|! (1 − |z′|2)pdV (z′), which acts as follows

up : c̃p(z
′) �−→ cp(z

′) =
√

(n− 1)!|p|!
(n+ |p| − 1)! c̃p(z

′)(1 − |z′|2)− p
2 .
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Finally, introduce the unitary operator

U2 =
⊕

p∈Z
up :

⊕

p∈Z
L2(B

n−1, dv(z′)) −→
⊕

p∈Z
L2(B

n−1, dvp(z
′)).

Theorem 2.1 ([12, Theorem 2.1]) The unitary operator U = U2U1 is an isometric
isomorphism of

L2(S
2n−1, dσ ) ∼= L2(B

n−1, dv(z′))⊗ L2(S
1, dμ(tn))

onto

⊕

p∈Z
L2(B

n−1, dvp(z
′))

under which H 2(S2n−1) is mapped onto
⊕

p∈Z+ A2
p(B

n−1).

For each p ∈ Z+, we denote by Bp the Bergman orthogonal projection from
L2(B

n−1, dvp(z
′)) onto the weighted Bergman space A2

p(B
n−1), and let PS2n−1 be

the Szegő projection from L2(S
2n−1, dσ ) onto the Hardy space H 2(S2n−1).

Corollary 2.2 ([12, Corollary 2.2]) The Szegő projection and the weighted
Bergman projections are connected as follows

UPS2n−1U−1 =
⊕

p∈Z+
Bp.

Let z = (z′, zn) be a point in the unit sphere S2n−1 in C
n, where z′ =

(z1, . . . , zn−1) and write zn = √
1 − |z′|2tn, where tn ∈ S1. Consider a function

a(z′, zn) defined in the unit sphere S2n−1. The Toeplitz operator Ta , acting on the
Hardy space H 2(S2n−1), is defined as follows

Taf = PS2n−1(af ).

The crucial role of the Fourier transform F in establishing of Theorem 2.1
suggests us to consider the symbols a of the form

a = a(z1, . . . , zn−1, |zn|) = a(z′, |zn|), (2.2)

i.e., the symbols that do not depend on tn, commuting thus with U1 = I ⊗ F .
Given the above a ∈ L∞(S2n−1), introduce the associated function

a = a(z1, . . . , zn−1) = a(z′)

= a(z1, . . . , zn−1,

√

1 − |z1|2 − . . .− |zn−1|2) = a(z′,
√

1 − |z′|2), (2.3)
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where (z1, . . . , zn−1) = z′ ∈ B
n−1. Note that each function a ∈ L∞(Bn−1) defines

in its turn the function a of the form (2.2) by a(z′, |zn|) = a(z′).
We denote then by T

p
a the Toeplitz operator, with symbol a acting on the

weighted Bergman space A2
p(B

n−1), with p ∈ Z+.

Theorem 2.3 ([12, Theorem 3.1]) Given a bounded measurable symbol
a(z′, |zn|), defined in S2n−1. Under the isomorphism U = U2U1, the Toeplitz
operator Ta , acting on the Hardy space H 2(S2n−1), is unitarily equivalent to the
operator

⊕
p∈Z+ T

p
a , acting on

⊕

p∈Z+
A2

p(B
n−1),

where a = a(z′) is of the form (2.3).

In what follows we will consider two classes (algebras) S of functions a of the
form (2.2) as well as the corresponding classes (algebras) S of functions a defined
by (2.3) for a ∈ S. Of course, symmetrically, each class S of functions a = a(z′),
z′ ∈ B

n−1 defines the class S of functions a of the form (2.2), connected with a ∈ S

by (2.3).
Given a class S, we denote by T (S) the closed unital algebra generated by all

Toeplitz operators T a , with a ∈ S, acting on the Hardy space H 2(S2n−1). For
a corresponding class S, we denote by Tp(S) the closed unital algebra generated
by all Toeplitz operators T

p
a , with a ∈ S, acting on the weighted Bergman space

A2
p(B

n−1), with p ∈ Z+.
Theorems 2.1 and 2.3 state then that for each generator T a of the algebra

T (S), the operator UT aU
−1 leaves invariant each subspace in the direct sum

decomposition

U(H 2(S2n−1)) =
⊕

p∈Z+
A2

p(B
n−1)

and

UT aU
−1 =

⊕

p∈Z+
T

p
a . (2.4)

Moreover, for each operator T ∈ T (S) there is a unique sequence of operators
T p ∈ Tp(S), p ∈ Z+, such that

UTU−1 =
⊕

p∈Z+
T p.
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In what follows we will abbreviate the above equation as

T $
⊕

p∈Z+
T p. (2.5)

3 Compact Semi-commutator C∗-Algebra

We consider the case when S = VO∂ (B
n−1) with the corresponding class SVO ⊂

L∞(S2n−1). Recall [8], that a bounded continuous function a belongs to VO∂ (B
n−1)

(has a vanishing oscillation at the boundary) if

lim
z′→∂Bn−1

[
sup {|a(z′)− a(w′)| : β(z′, w′) ≤ 1}] = 0,

here β(·, ·) is the Bergman metric in B
n−1, and that VO∂ (B

n−1) is a norm closed
C∗-subalgebra of L∞(Bn−1).

Our choice of S = VO∂ (B
n−1) is motivated by the following observation. C.

Berger, L. Coburn, and K. Zhu described in [8] the largest C∗-subalgebra Q of
L∞(Bn−1) which possesses the compact semi-commutator property, i.e.,

[T p
a , T

p
b ) := T

p
a T

p
b − T

p
ab is compact for every a, b ∈ Q.

Then, C(B
n−1

) ⊂ VO∂ (B
n−1) ⊂ Q and the algebra Tp(C(B

n−1
)) contains all

compact operators of A2
p(B

n−1), which, in particular, implies that the algebra

Tp(VO∂ (B
n−1)) coincides with Tp(Q). At the same time it is more pleasant to

deal with (bounded uniformly continuous) symbols from VO∂ (B
n−1) than with

(generically discontinuous) symbols from Q.
Note, in this connection, that the C∗-algebra Tp(VO∂ (B

n−1)) = Tp(Q) is
irreducible, contains the ideal Kp of all compact operators, and each its element
admits the representation T p = T

p
a +Kp, with a ∈ VO∂ (B

n−1) and compact Kp.
We recall as well that the Berezin transformBp : L(A2

p(B
n−1)) → L∞(Bn−1) is

given by Bp[A](z′) :=
〈
Ak

p

z′, k
p

z′
〉
p

, where k
p

z′ denotes the normalized reproducing

kernel function of A2
p(B

n−1) defined by

k
p

z′(w
′) = (1 − |z′|2) n+p

2

(1 −w′ · z′)n+p
, z′, w′ ∈ B

n−1.

For the special case of a Toeplitz operator T p
a ,

Bp[T p
a ](z′) = Bp[a](z′) =

〈
a k

p

z′, k
p

z′
〉
p
.
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The aim of this section is to study the algebra T (SVO) generated by all Toeplitz
operators T a acting on H 2(S2n−1) and having symbols a ∈ SVO, associated to
S = VO∂ (B

n−1).

Lemma 3.1 For each T $⊕
p∈Z+ T p we have

‖T ‖ = sup
p∈Z+

‖T p‖,

while for the generating operators we have

‖T a‖ = ‖a(z′)‖∞.

Proof The first equality easily follows by standard arguments from the direct sum
representation of the operator T . The second follows from ‖T p

a ‖ ≤ ‖a(z′)‖∞ and
[4, Proposition 4.4], implying

‖a(z′)‖∞ = ‖ lim
p→∞Bp

(
T

p
a

) ‖∞ ≤ sup
p∈Z

‖T p
a ‖ = ‖T a‖. 	


Theorem 3.2 Each operator T ∈ T (SVO), in the direct sum decomposition (2.5),
admits the unique representation

T $
⊕

p∈Z+
(T

p
a +Kp), (3.1)

where a ∈ VO∂ (B
n−1), each Kp is compact, and ‖Kp‖ → 0 as p →∞.

Proof Follows from the proof of [7, Theorem 4.3] under λ = 0 and � = m = 1.
For the sake of completeness we sketch it here. Let D be the dense subalgebra of
T (SVO) consisting of all finite sums of finite products of the generators of T (SVO).
By induction, we only need to prove the assertion for a product of just two operators
TaTb $⊕

p∈Z+ T
p
a T

p
b . Since VO∂ (B

n−1) possesses the semicommutator property,
we have that, for each p ∈ Z+, the semicommutator

T
p
a T

p
b − T

p
ab =: Kp

is compact. Then [6, Theorem 3.8] implies that ‖Kp‖ → 0 when p →∞. Thus

TaTb $
⊕

p∈Z+
T

p
ab +Kp,

with ‖Kp‖ → 0 when p →∞.
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Given now T ∈ T (SVO), there exists a sequence {Tm}m∈N of elements in D that
converges in norm to T , where each Tm has the form

Tm $
⊕

p∈Z+
T

p
am +K

p
m,

with ‖Kp
m‖ → 0 when p →∞. Using Lemma 3.1, the convergence of the sequence

{Tm}m∈N and that ‖Kp
m‖ → 0 when p → ∞, it is easy to prove that the sequence

{am}m∈N is convergent. Denote by a the limit of the last sequence. Then, uniformly
on p, {T p

am}m∈N converges to T
p
a . This fact implies that the sequence of compact

operators {Kp
m}m∈N converges to a compact operator Kp. Then,

T $
⊕

p∈Z+
T

p
a +Kp.

The standard ε
3 -trick implies that ‖Kp‖ → 0 when p →∞.

To prove its uniqueness of the representation (3.1), we assume that

T $
⊕

p∈Z+
T

p
a +K

p
1 =

⊕

p∈Z+
T

p
b +K

p
2 ,

where a, b ∈ VO∂ (B
n−1), Kp

1 ,K
p

2 are compact operators, for each p ∈ Z+, and
where limp→∞ ‖Kp

1 ‖ = limp→∞ ‖Kp

2 ‖ = 0. Then,

T
p
a−b +K

p
1 −K

p
2 = 0, for each p ∈ Z+. (3.2)

Last equation and Lemma 3.1 imply that

‖a − b‖∞ = lim
p→∞‖T p

a−b‖ = lim
p→∞‖T p

a−b +K
p
1 −K

p
2 ‖ = 0.

Then a = b and, from (3.2), Kp

1 = K
p

2 . 	

Corollary 3.3 The algebra SVO possesses the compact semi-commutator property,
i.e.,

[T a,T b) is compact for every a, b ∈ SVO.

Each operator T ∈ T (SVO) admits a representation

T = T a +K,

where a ∈ SVO, K ∈ T (SVO) ∩K(H 2(S2n−1)), and where K(H 2(S2n−1)) is the
ideal of all compact operators in L(H 2(S2n−1)).
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For S = L∞(Bn−1), let S∞ be the corresponding class of symbols defined on
S2n−1. We conjecture that the algebra SVO is the largest C∗-subalgebra among those
of S ⊂ S∞ that possesses the compact semi-commutator property, i.e.,

[T a,T b) is compact for every a, b ∈ S ⊂ S∞ if and only if S ⊆ SVO.

We list now a family of infinite dimensional irreducible representations of the
C∗-algebra T (SVO).

Proposition 3.4 For each p ∈ Z+ the mapping

ιp : T (SVO) −→ Tp(VO∂ (B
n−1))

T $
⊕

k∈Z+
(T k

a +Kk) �−→ T
p
a +Kp,

is an irreducible representation of the C∗-algebra T (SVO).
For different p ∈ Z+ the representations ιp are not unitarily equivalent.

Proof Note that the C∗-algebra, generated by the images under (2.4) of the
restrictions of the elements of T (SVO) onto its invariant subspaces, coincides with
the algebra Tp(VO∂ (B

n−1)). This is an irreducible C∗-algebra containing the ideal
of all compact operators on A2

p(B
n−1). That is the representation ιp is irreducible.

To prove that, for p �= q , the representations ιp, ιq are not unitarily equivalent it
suffices to consider the function c(z′, zn) = 1−|z′|2, whose associated function (2.3)
is given by c(z′) = 1 − |z′|2. Then,

Tc $
⊕

k∈Z+
T k
c ,

and ιp(Tc) = T
p
c , which is a diagonal operator with respect to the standard basis of

A2
p(B

n−1). By [13, Theorem 10.1] and [3],

‖T p

1−|z′|2‖ =
p + 1

n+ p
�= q + 1

n+ q
= ‖T q

1−|z′|2‖,

implying thus that the representations ιp, ιq are not unitarily equivalent. 	

It is easy to check (see [8] for the unweighted case) the following isomorphism

Tp(VO∂ (B
n−1)/K(A2

p(B
n−1) ∼= VO∂ (B

n−1)/C0(B
n−1)

∼= C(M(VO∂ (B
n−1)) \ Bn−1),
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which is defined by

T
p
a +K(A2

p(B
n−1)) �−→ a + C0(B

n−1) ∼= a|M(VO∂ (Bn−1))\Bn−1,

where M(VO∂ (B
n−1)) denotes the maximal ideal space of VO∂ (B

n−1).
This leads to the following family of one-dimensional irreducible representa-

tions:

Corollary 3.5 For every (η, p) ∈ M(VO∂ (B
n−1)) \ Bn−1 × Z+ the map

πη,p : T $
⊕

k∈Z+
(T k

a +Kk)
ιp�−→ T

p
a +Kp �−→ a(η)

defines a one-dimensional irreducible representation. Moreover, πη1,p1 and πη2,p2

are unitarily equivalent if and only if η1 = η2.

Further we have the following variant of [5, Lemma 4.8] and [7, Lemma 5.4].

Lemma 3.6 The mapping

ν : T (SVO) −→ VO∂ (B
n−1) = C(M(VO∂ (B

n−1))),

defined by

ν : T $
⊕

p∈Z+
T p �−→ lim

p→∞Bp(T
p),

where Bp is the Berezin transform, is a continuous ∗-homomorphism of the C∗-
algebra T (SVO) onto C(M(VO∂ (B

n−1))).

This result permits us (as in [5, Remark 4.10]) to recover the data of the unique
representation (3.1) for each operator T $⊕

p∈Z+ T p ∈ T (SVO):

a = ν(T ) = lim
p→∞Bp(T

p) ∈ VO∂ (B
n−1) and Kp = T p − T

p
a .

Corollary 3.7 For each η ∈ M(VO∂ (B
n−1)), the mapping νη : T (SVO) −→ C,

defined by

νη : T �−→ ν(T ) = a �−→ a(η) ∈ C,

is a one-dimensional representation of the C∗-algebra T (SVO).

We show now that we have listed all (up to the unitary equivalence) irreducible
representations of the algebra T (SVO).
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Introduce the set

KVO := {K ∈ T (SVO) : ν(K) = 0}.
In representation (3.1), these are exactly the operators of the form

K $
⊕

p∈Z+
Kp (3.3)

with Kp compact and ‖Kp‖ → 0 as p →∞.

Lemma 3.8 We have that T (SVO) ∩K(H 2(S2n−1)) = KVO.

Proof Note that each element K ∈ KVO is a compact operator. Indeed, using the
representation (3.3) for K we have that

∥
∥
∥
∥
∥
∥

⊕

p∈Z+
Kp −

⊕

p≤k

Kp

∥
∥
∥
∥
∥
∥
=
∥
∥
∥
∥
∥
∥

⊕

p>k

Kp

∥
∥
∥
∥
∥
∥
= sup

p>k

‖Kp‖ → 0, when k →∞.

Then
⊕

p∈Z+ Kp is compact and, as a consequence, K is compact. Consider now
a compact operator T $ ⊕

p∈Z+ T p in T (SVO). Since
⊕

p∈Z+ T p is compact we
have that

lim
p→∞‖T p‖ = 0.

Then

|ν(T )| = lim
p→∞ |Bp(T

p)| ≤ lim
p→∞‖T p‖ = 0,

then T ∈ KVO. 	

This implies that the Calkin algebra

T (SVO)/(T (SVO) ∩K(H 2(S2n−1)))

is isomorphic to VO∂ (B
n−1) via the induced mapping

ν̂ : T +
(
T (SVO) ∩K(H 2(S2n−1))

)
�−→ lim

p→∞Bp(T
p).

Theorem 3.9 The following list of irreducible representations of the C∗-algebra
T (SVO) is complete up to unitary equivalence:

• ιp : T $⊕
p∈Z+(T

k
a +Kk) �→ T

p
a +Kp, for p ∈ Z+,

• νη : T �−→ ν(T ) = c �−→ c(η) ∈ C, for η ∈ M(VO∂ (B
n−1)).

Moreover, the above representations are pairwise not unitarily equivalent.
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Proof The proof of this theorem is exactly the same of [7, Theorem 5.7]. We
include it here for the sake of completeness. According to [11, Proposition 2.11.2]
each irreducible representation of T (SVO) is either induced by an irreducible
representation of

T (SVO)/(T (SVO) ∩K(H 2(S2n−1))) (3.4)

or is an extension of an irreducible representation of T (SVO) ∩ K(H 2(S2n−1)).
In the first case, the algebra (3.4) is isomorphic to VO∂ (B

n−1) and then, its
irreducible representations are exactly the representations νη. On the other hand,
by Lemma 3.8, T (SVO) ∩ K(H 2(S2n−1)) equals KVO. Then, each irreducible
representation ofKVO, restricted to the different levelsp, is either 0 or an irreducible
representation of K(A2

p(B
n−1)). In the second case, there is only one option: the

identity representation, which extends naturally to the identical representation of
Tp(VO∂ (B

n−1), and generates thus the representation ιp. 	

As a corollary of Lemmas 3.6 and 3.8, we have also the following result on the

Fredholmness of an operator T ∈ T (SVO).

Corollary 3.10 An operator T $ ⊕
p∈Z+(T

p
a + Kp) ∈ T (SVO) is Fredholm if

and only if a(η) �= 0 for all η ∈ M(VO∂ (B
n−1)). In particular,

ess-sp T = a(M(VO∂ (B
n−1))).

Using Corollary 3.3 we give the following extended version of Corollary 3.10.

Proposition 3.11 The Calkin algebra

T̂ (SVO) = T (SVO)/(T (SVO) ∩K(H 2(S2n−1)))

is isomorphic to VO∂ (B
n−1). The corresponding homomorphism

π : T (SVO) −→ T̂ (SVO) ∼= VO∂ (B
n−1)

is given by

π : T = T a +K �−→ a(η),

where a ∈ SVO and a ∈ VO∂ (B
n−1) is connected with a by (2.3).

The Toeplitz operator T a , with symbol a ∈ SVO, is compact if and only if a ≡ 0
on S2n−1, being thus a zero operator.

The essential spectrum of each operator T = T a + K of the algebra T (SVO)

and the spectral radius of T a are given by

ess-sp T = clos (Range a) = clos (Rangea) ,

r(T a) = sup
z∈S2n−1

|a(z)| = sup
z′∈Bn−1

|a(z′)| = ‖T a‖.
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Each common invariant subspace for all the operators from T (SVO) is of the
form

U−1

⎛

⎝
⊕

p∈N
A2

p(B
n−1)

⎞

⎠ ,

where N is a subset of Z+, and the operator U is defined in Theorem 2.1.
An operator T = T a + K ∈ T (SVO) is Fredholm if and only if there is δ =

δ(a) > 0 such that |a(z)| ≥ δ for all z ∈ S2n−1 or, equivalently, |a(z′)| ≥ δ for all
z′ ∈ B

n−1.

It is instructive to give the following.

Remark 3.12 In the seminal paper [10] L. Coburn gave a detailed description of the
C∗-algebra T (C(S2n−1)) generated by all Toeplitz operators T a with continuous
symbols a ∈ C(S2n−1).

The largest possible C∗-algebra that inherits the nice main properties of
T (C(S2n−1)) (irreducibility, form of a generic element of the algebra: T a + K ,
essential spectrum formula: clos (Range a), etc) has to be generated by Toeplitz
operators with symbols from the largest C∗-subalgebra, say Qn, of L∞(S2n−1)

possessing the compact semi-commutator property.
The results of this section show that SVO ⊂ Qn. Note that functions from

SVO are not continuous in general, they possess quite sophisticated (of vanishing
oscillation type) discontinuities at S2n−1 ∩ {(z′, zn) : zn = 0}. Further, the algebra
SVO (apart of being a subalgebra of Qn) consists of functions that are invariant
under the one-dimensional torus action on S2n−1:

τ ∈ T : (z′, zn) ∈ S2n−1 �−→ (z′, τzn) ∈ S2n−1.

This T-invariance implies that our C∗-algebra T (SVO) (contrary to the algebra
T (Qn)) is not anymore irreducible, and we have described all its irreducible
representations, as well as, all common invariant subspaces for its elements.

We discuss now briefly the Fredholm index formula for a matrix-valued sym-
bol situation. As shown in [19, Section 2], the index calculation for Fredholm
operators with VO∂ symbols can be reduced to those with continuous up to the
boundary symbols in the following way. Given a matrix-valued function a ∈
Matq(VO∂ (B

n−1)) := VO∂ (B
n−1)⊗ Matq(C), for each s ∈ (0, 1), we define

as(rζ ) =
{
a(rζ ), if 0 ≤ r ≤ s,

a(sζ ), if s < r ≤ 1,

here r = |z′| and ζ ∈ S2n−3. Then, obviously, as(rζ ) ∈ Matq(C(B
n−1

)), for all
s ∈ (0, 1).
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The matrix-valued version of Corollary 3.10 is as follows.

Corollary 3.13 Given a ∈ Matq (VO∂ (B
n−1)), the operator

T $
⊕

p∈Z+
(T

p
a +Kp) ∈ T (SVO)⊗Matq(C)

is Fredholm if and only if the matrix a(η) is invertible for all

η ∈ M(VO∂ (B
n−1)).

In particular,

ess-sp T =
{
λ : λ ∈ sp{a(η)}, η ∈ M(VO∂ (B

n−1))
}
.

In case of being Fredholm,

Ind T = Ind

⎡

⎣
⊕

p∈Z+
(T

p
a +Kp)

⎤

⎦ = 0.

Proof Only the index formula needs to be justified. Let T be Fredholm, then the
matrix-valued function a is invertible, and

Ind T =
∑

p∈Z+
Ind (T

p
a +Kp).

For each p ∈ Z+, Theorem 2.6 of [19], ensures that there is sρ,0 ∈ (0, 1) such that
for every s ∈ (sρ,0, 1), each operator T p

as +Kp is Fredholm, and

Ind (T
p
a +Kp) = Ind (T

p
as +Kp).

The matrix-valued function as is continuous on the closed unit ball B
n−1

. The ball

B
n−1

is retractable to a point, thus the matrix-valued function as is homotopic

to a constant matrix, say ap, in a class of invertible continuous on B
n−1

matrix-
functions. This implies that the operator T p

as +Kp is homotopic to the scalar-matrix
multiplication operator apI . Thus, for each p ∈ Z+,

Ind (T
p
a +Kp) = Ind apI = 0. 	


Note that, starting from some p0, all operators T
p
a + Kp are invertible, so that

both ker T and coker T are finite dimensional (see [5, p. 730] for details).
One, of course, easily makes a version of Proposition 3.11 for matrix-valued

symbols a ∈ Matq(VO∂ (B
n−1)).
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4 Full Toeplitz Algebra in Levels

In this section we consider the case when, for each p ∈ Z+, the C∗-algebra
consisting of all operators T p of decomposition (2.5) coincides with the full
Toeplitz algebra, i.e., with the algebra Tp(L∞(Bn−1)), which is generated by all
Toeplitz operators T p

a , with a ∈ L∞(Bn−1), acting on the weighted Bergman space
A2

p(B
n−1).

We introduce as well the C∗-algebra BUC(Bn−1) of functions a(z′), z′ ∈
B
n−1, which are uniformly continuous in B

n−1 with respect to the Bergman
metric β(·, ·). Note (see [14, Theorem 7.3]) that each operator T

p
a , with a ∈

L∞(Bn−1) can be approximated in norm by Toeplitz operators with symbols
from BUC(Bn−1). Moreover, the results of [18] imply that Toeplitz operators with
symbols from BUC(Bn−1) form a dense set in Tp(L∞(Bn−1)). That is, in particular,
Tp(BUC(Bn−1)) = Tp(L∞(Bn−1)).

The above results suggest us to choose S = BUC(Bn−1). Let SBUC be the
corresponding class of functions on S2n−1, connected with functions from S =
BUC(Bn−1) by (2.3).

We describe briefly the C∗-algebra T (SBUC), which is generated by all Toeplitz
operators T a , with a ∈ SBUC, acting on the Hardy space H 2(S2n−1). Doing this we
follow the lines of [7, Section 4], where all details can be found.

We mention first that each operator T a ∈ T (SBUC) admits the representation

T a $
⊕

p∈Z+
T

p
a , with T

p
a ∈ Tp(BUC(Bn−1)).

Similarly to Lemma 3.1 we have

‖T ‖ = sup
p∈Z+

‖T p‖,

while for the generating operators we have

‖T a‖ = ‖a(z′)‖∞.

where the last equality follows from [4, Proposition 4.4].
The proof of the next theorem literally follows the proof of Theorem 3.2 or [7,

Theorem 4.3], and thus will be omitted.

Theorem 4.1 Each operator T a ∈ T (SBUC), in the direct sum decomposi-
tion (2.5), admits the unique representation

T $
⊕

p∈Z+
(T

p
a +Np), (4.1)
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where a ∈ BUC(Bn−1), Np belongs to the semi-commutator ideal of the algebra
Tp(BUC(Bn−1)), and ‖Np‖ → 0 as p →∞.

Corollary 4.2 The semi-commutator ideal N (SBUC) of T (SBUC) consists of all
its elements

N $
⊕

p∈Z+
Np,

coming from the representation (4.1).

Denote by Tp(BUC(Bn−1)) the algebra which consists of all operators T p =
T

p
a +Np that appear on the pth level of decomposition (2.5), or, which is the same,

which consists of all operators being the restrictions of elements (4.1) of T (SBUC)

onto its invariant subspace A2
p(B

n−1).

Lemma 4.3 For each p ∈ Z+, the algebra Tp(BUC(Bn−1)) coincides with the
algebra Tp(BUC(Bn−1)) = Tp(L∞(Bn−1)).

Proof It is easy to see that the mapping

ιp : T (SBUC) −→ L(A2
p(B

n−1))

T $
⊕

k∈Z+
T k �−→ T p

is a morphism (representation) of the algebra T (SBUC). Besides, its image is
Tp(BUC(Bn−1)). Each operator T

p
a with a ∈ BUC(Bn−1) obviously belongs to

Tp(BUC(Bn−1)). As it was already mentioned, the set of all such operators is norm
dense in Tp(L∞(Bn−1)), and the algebra Tp(BUC(Bn−1)), being the image of a
representation, is norm closed. 	


It is instructive to mention that, in spite of the fact that for each p ∈ Z+, the
algebra Tp(BUC(Bn−1)) = Tp(BUC(Bn−1)) contains each Toeplitz operator T

p
a

with a ∈ L∞(Bn−1), the algebra T (SBUC) does not contain any Toeplitz operator
T a with a from S∞ \ SBUC. That is, the algebra T (SBUC) is a proper subalgebra
of T (S∞). This can be justified literally following the arguments of the proof of [7,
Lemma 4.5].

We describe now the irreducible representations of the C∗-algebra
T (SBUC). First, for each p ∈ Z+, the representation

ιp : T (SBUC) −→ L(A2
p(B

n−1)) (4.2)

T $
⊕

k∈Z+
(T k

a + Np) �−→ T
p
a + Np,
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whose image is Tp(BUC(Bn−1)), is irreducible (as the algebra Tp(BUC(Bn−1))

contains the whole ideal of compact operators). The same reasoning as in case of
T (SVO) implies that for different p ∈ Z+ these representations are not unitary
equivalent.

Similarly to Lemma 3.6 and [7, Lemma 4.8], we have that the mapping

ν : T (SBUC) −→ BUC(Bn−1) = C(M(BUC(Bn−1))),

defined by

ν : T $
⊕

p∈Z+
T p �−→ lim

p→∞Bp(T
p),

where Bp is the Berezin transform, is a continuous ∗-homomorphism of the C∗-
algebra T (SBUC) onto C(M(BUC(Bn−1))). Here M(BUC(Bn−1)) denotes the
compact of maximal ideals of the algebra BUC(Bn−1).

As in [7, Remark 4.10], given T $ ⊕
p∈Z+ T p ∈ T (SBUC), the above result

permits us to recover the data of its unique representation (4.1):

a = ν(T λ) = lim
p→∞Bp(T

p) ∈ BUC(Bn−1) and Np = T p − T
p
a .

Then we have

Corollary 4.4 For each η ∈ M(BUC(Bn−1)), the mapping

νη : T (SBUC) −→ C,

defined by

νη : T �−→ ν(T ) = a �−→ a(η) ∈ C, (4.3)

is a one-dimensional representation of the C∗-algebra T (SBUC).

We gather all so far obtained information on the C∗-algebra T (SBUC) in the
following proposition.

Proposition 4.5 The quotient algebra T̃ (SBUC) = T (SBUC)/N (SBUC) of
T (SBUC) by its semi-commutator ideal is isomorphic to BUC(Bn−1). The
corresponding homomorphism

π̃ : T (SVO) −→ T̃ (SVO) ∼= BUC(Bn−1)
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is given by

π̃ : T $
⊕

p∈Z+
(T

p
a +Np) �−→ a(η),

where a ∈ SBUC and a ∈ BUC(Bn−1) is connected with a by (2.3).
The Toeplitz operator T a , with symbol a ∈ SBUC, is compact if and only if a ≡ 0

on S2n−1, being thus a zero operator.
The spectrum of each operator T =⊕

p∈Z+(T
p
a +Np) of the algebra T (SBUC)

contains clos (Range a), and the spectral radius of T a is given by

r(T a) = sup
z∈S2n−1

|a(z)| = sup
z′∈Bn−1

|a(z′)| = ‖T a‖.

The C∗-algebra T (SBUC) is reducible, its irreducible representations are given
by (4.2) and (4.3). Each common invariant subspace for all the operators from
T (SBUC) is of the form

U−1

⎛

⎝
⊕

p∈N
A2

p(B
n−1)

⎞

⎠ ,

where N is a subset of Z+, and the operator U is defined in Theorem 2.1.
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d-Modified Riesz Potentials on Central
Campanato Spaces
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Dedicated to Professor Lars-Erik Persson in celebration of
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Abstract Recently, we defined the d-modified Riesz potentials Ĩα,d and proved
several estimates of boundedness of Ĩα,d on the central Morrey spaces Bp,λ(Rn),
using the central Campanato spaces $

(d)
p,λ(R

n), the generalized σ -Lipschitz spaces

Lip(d)
β,σ (R
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1 Introduction

Let Iα and Ĩα , 0 < α < n, be the Riesz potential and the modified Riesz potential,
respectively, which are defined for f ∈ L1

loc(R
n) by

Iα f (x) =
∫

Rn

f (y)

|x − y|n−α
dy

and

Ĩα f (x) =
∫

Rn

f (y)

(
1

|x − y|n−α
− 1 − χQ1(y)

|y|n−α

)

dy

(as for the notation χQ1 , see Sect. 2). Then, the following boundedness results on
Lp(Rn) are well-known : For 0 < α < n, 1 ≤ p < n/α and 1/q = 1/p − α/n,

(i) Iα : Lp(Rn) → Lq(Rn), 1 < p < n/α (see [7, 25]);
(ii) Iα : L1(Rn) → WLq(Rn), p = 1 (see [26]).

And for 0 < α < n, n/α ≤ p < ∞ and β = α − n/p < 1,

(iii) Ĩα : Lp(Rn) → Lipβ(R
n), n/α < p < ∞ (cf. [23]);

(iv) Ĩα : Ln/α(Rn) → BMO(Rn), p = n/α, i.e., β = 0 (cf. [23, 26]).

Here (i) is the so-called Hardy–Littlewood–Sobolev theorem.
After that, in [4], for Iα on the (non-homogeneous) central Morrey space

Bp,λ(Rn), i.e.,

Bp,λ(Rn) = {f ∈ L
p

loc(R
n) : ‖f ‖Bp,λ < ∞},

where 1 ≤ p < ∞, λ ∈ R and

‖f ‖Bp,λ = sup
r≥1

1

rλ

(
1

|Qr |
∫

Qr

|f (y)|p dy

)1/p

(see [1, 4]; cf. [6]), which is the (non-homogeneous) Herz space K
−n/p−λ
p,∞ (Rn) (cf.

[3, 8]), the following boundedness result was obtained : For 0 < α < n, 1 < p <

n/α, −n/p + α ≤ μ = λ+ α < 0 and 1/q = 1/p − α/n,

(i’-1) Iα : Bp,λ(Rn) → Bq,μ(Rn).

On the other hand, in [11, 19] (cf. [10]), from the Bσ -Morrey–Campanato
estimates for Iα and Ĩα , the following boundedness results on Bp,λ(Rn) were
obtained as the corollaries : For 0 < α < n, −n + α ≤ μ = λ + α < 0 and
1/q = 1 − α/n,

(ii’-1) Iα : B1,λ(Rn) → WBq,μ(Rn).
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Here WBp,λ(Rn) is a weak central Morrey space, i.e.,

WBp,λ(Rn) = {f ∈ L
p
loc(R

n) : ‖f ‖WBp,λ < ∞},

where 1 ≤ p < ∞, λ ∈ R and

‖f ‖WBp,λ = sup
r≥1

1

rλ

(
1

|Qr | sup
t>0

tp |{y ∈ Qr : |f (y)| > t}|
)1/p

(see [11]). Also for 0 < α < n, 1 ≤ p < n/α, −n/p + α ≤ μ = λ + α < 1 and
1/q = 1/p − α/n,

(i’-2) Ĩα : Bp,λ(Rn) → CMOq,μ(Rn), 1 < p < n/α;
(ii’-2) Ĩα : B1,λ(Rn) → WCMOq,μ(Rn), p = 1.

And for 0 < α < n, n/α ≤ p < ∞, −n/p + α ≤ λ+ α < 1 and β = α − n/p,

(iii’) Ĩα : Bp,λ(Rn) → Lipβ,λ+n/p(R
n), n/α < p < ∞;

(iv’) Ĩα : Bn/α,λ(Rn) → BMOλ+n/p(R
n), p = n/α, i.e., β = 0.

As for the spaces CMOp,λ(Rn), WCMOp,λ(Rn) and Lipβ,σ (R
n), BMOσ (R

n), refer
to Definitions 2.1, 2.2 and 2.11. Furthermore, the following boundedness results on
CMOp,λ(Rn) were also gotten excepting (ii”) (as for (ii”), see Corollary 3.5): For
0 < α < 1, 1 ≤ p < n/α, −n/p+ α ≤ λ+ α = μ < 1 and 1/q = 1/p− α/n (see
[19]; cf. [16]),

(i”) Ĩα : CMOp,λ(Rn) → CMOq,μ(Rn), 1 < p < n/α;
(ii”) Ĩα : CMO1,λ(Rn) → WCMOq,μ(Rn), p = 1.

And for 0 < α < 1, n/α ≤ p < ∞, −n/p + α ≤ μ = λ + α < 1 and β =
α − n/p,

(iii”) Ĩα : CMOp,λ(Rn) → Lipβ,λ+n/p(R
n), n/α < p < ∞;

(iv”) Ĩα : CMOn/α,λ(Rn) → BMOλ+n/p(R
n), p = n/α, i.e., β = 0.

Recentry, for the whole of μ = λ + α such that 1 ≤ μ < ∞, we
extended the boundedness of Ĩα for Bp,λ(Rn). In order to do so, in [17, 18],
we introduced the central Campanato spaces $

(d)
q,μ(R

n) and the generalized σ -Lip

spaces Lip(d)
β,σ (R

n) (see Definitions 2.3 and 2.11), and also we defined the “ higher-

degree ” modification of Iα , i.e., the d-modified Riesz potentials Ĩα,d , 0 < α < n

and d ∈ N ∪ {0}. Then, the following boundedness results were shown : For
0 < α < n, 1 < p < n/α, d ∈ N ∪ {0}, −n/p + α ≤ μ = λ + α < d + 1
and 1/q = 1/p − α/n,

(I) Ĩα,d : Bp,λ(Rn) → $
(d)
q,μ(R

n), 1 < p < n/α;

(II) Ĩα,d : B1,λ(Rn) → W$
(d)
q,μ(R

n), p = 1.
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And for 0 < α < n, n/α ≤ p < ∞, d ∈ N ∪ {0}, −n/p + α + d ≤ λ+ α < d + 1
and β = α − n/p,

(III) Ĩα,d : Bp,λ(Rn) → Lip(d)
β,λ+n/p(R

n), n/α < p < ∞;

(IV) Ĩα,d : Bn/α,λ(Rn) → BMO(d)
λ+n/p(R

n), p = n/α, i.e., β = 0.

In this paper, therefore, we will investigate the extension of the above bounded-
ness results of Ĩα,d on Bp,λ(Rn), i.e., the boundedness of Ĩα,d for CMOp,λ(Rn). As
a by-product, we can obtain the estimates of Ĩα for Bp,λ(Rn).

We note that the same results in this paper still hold for the homogeneous versions
of the function spaces.

2 Central Campanato Spaces and Generalized σ -Lip Spaces

We start by explaining the notation used in the present paper. The symbol A � B

stands for A ≤ CB for some constant C > 0. If A � B and B � A, we then write
A ∼ B. For r > 0, by Qr , we mean the following: Qr = {y ∈ R

n : |y| < r} or
Qr = {y = (y1, y2, · · · , yn) ∈ R

n : max1≤i≤n |yi| < r}. Further, for x ∈ R
n, we

set Q(x, r) = x + Qr = {x + y : y ∈ Qr }. For a measurable set G ⊂ R
n, we

denote by |G| and χG the Lebesgue measure of G and the characteristic function
of G, respectively. And also, for a function f ∈ L1

loc(R
n) and a measurable set

G ⊂ R
n with 0 < |G| < ∞, let

fG = −
∫

G

f (y) dy = 1

|G|
∫

G

f (y) dy,

and let N0 = N ∪ {0}.
First of all, we define the λ-central mean oscillation (λ-CMO) spaces

CMOp,λ(Rn) and the weak λ-CMO spaces WCMOp,λ(Rn) (see [1, 15, 16]; cf.
[9, 10]) and introduce the central Campanato spaces $(d)

p,λ(R
n) and the weak central

Campanato spaces W$
(d)
p,λ(R

n) (see [6, 12, 17]; cf. [22]).

Definition 2.1 For 1 ≤ p < ∞ and λ ∈ R,

CMOp,λ(Rn) = {f ∈ L
p
loc(R

n) : ‖f ‖CMOp,λ < ∞},

where

‖f ‖CMOp,λ = sup
r≥1

1

rλ

(

−
∫

Qr

|f (y)− fQr |p dy

)1/p

.
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Particularly

CMOp,0(Rn) = CMOp(Rn).

Definition 2.2 For 1 ≤ p < ∞ and λ ∈ R,

WCMOp,λ(Rn) = {f ∈ L
p
loc(R

n) : ‖f ‖WCMOp,λ < ∞},

where

‖f ‖WCMOp,λ = sup
r≥1

1

rλ

(
1

|Qr | sup
t>0

tp|{y ∈ Qr : |f (y)− fQr | > t}|
)1/p

,

Particularly

WCMOp,0(Rn) = WCMOp(Rn).

Here remark that CMOp(Rn) and WCMOp(Rn), so-called the central mean
oscillation (CMO) space and the weak CMO space, are defined by

CMOp(Rn) = {f ∈ L
p
loc(R

n) : ‖f ‖CMOp < ∞},

where

‖f ‖CMOp = sup
r≥1

(

−
∫

Qr

|f (y)− fQr |p dy

)1/p

,

and

WCMOp(Rn) = {f ∈ L
p

loc(R
n) : ‖f ‖WCMOp < ∞},

where

‖f ‖WCMOp = sup
r≥1

(
1

|Qr | sup
t>0

tp |{y ∈ Qr : |f (y)− fQr | > t}|
)1/p

,

respectively (see [2, 5]).

Definition 2.3 For 1 ≤ p < ∞, d ∈ N0 and −n/p ≤ λ < d + 1, a function
f ∈ L

p
loc(R

n) will be said to belong to the central Campanato space $
(d)
p,λ(R

n) if

and only if for every r ≥ 1, there is a polynomial Pd
r f of degree at most d such that

‖f ‖
$

(d)
p,λ

= sup
r≥1

1

rλ

(

−
∫

Qr

|f (y)− Pd
r f (y)|p dy

)1/p

< ∞.
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Particularly

$
(0)
p,λ(R

n) = CMOp,λ(Rn).

Definition 2.4 For 1 ≤ p < ∞, d ∈ N0 and −n/p ≤ λ < d + 1, a function f ∈
L
p
loc(R

n) will be said to belong to the weak central Campanato space W$p,λ(Rn)

if and only if for every r ≥ 1, there is a polynomial Pd
r f of degree at most d such

that

‖f ‖W$p,λ = sup
r≥1

1

rλ

(
1

|Qr | sup
t>0

tp |{y ∈ Qr : |f (y)− Pd
r f (y)| > t}|

)1/p

< ∞.

Particularly

W$
(0)
p,λ(R

n) = WCMOp,λ(Rn).

Here we note that identifying functions which differ by a polynomial of degree at
most d , a.e., we see that $(d)

p,λ(R
n) and W$

(d)
p,λ(R

n) are Banach and quasi-Banach
spaces, respectively.

Remark 2.5 (Remark 6.2 of [22]) For 1 ≤ p < ∞, d ∈ N0, −n/p ≤ λ < d + 1
and f ∈ L

p
loc(R

n), we have

‖f ‖
$

(d)
p,λ

∼ sup
r≥1

inf
P∈Pd (Rn)

1

rλ

(

−
∫

Qr

|f (y)− P(y)|p dy

)1/p

and

‖f ‖W$p,λ ∼ sup
r≥1

inf
P∈Pd (Rn)

1

rλ

(
1

|Qr | sup
t>0

tp|{y ∈ Qr : |f (y)− P(y)| > t}|
)1/p

,

where Pd(Rn) is the set of all polynomials having degree at most d .

Next we define the generalized σ -Lipschitz spaces Lip(d)
β,σ (R

n).

Definition 2.6 (Definition 8.1 of [22]; cf. [12, 18]) Let U = R
n or U = Qr with

r > 0. For d ∈ N0 and 0 ≤ β ≤ 1, a continuous function f will be said to belong
to the generalized Lipschitz (Lip) space on U , i.e., Lip(d)

β (U) if and only if

‖f ‖
Lip(d)β (U)

= sup
x,x+h∈U,h�=0

1

|h|β |A
d+1
h f (x)| < ∞,
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where Ak
h is a difference operator, which is defined inductively by

A0
hf = f, A1

hf = Ahf = f (· + h)− f (·),

Ak
hf = Ak−1

h f (· + h)−Ak−1
h f (·), k = 2, 3, · · · .

In particular, we define

BMO(d)(U) = Lip(d)
0 (U),

which we call the generalized BMO space on U .

Remark 2.7 Let U = R
n or U = Qr with r > 0. For 0 < β < 1, d ∈ N0 and

β = 1, d ∈ N, the spaces Lip(d)β (U) coincide with Lip(0)
β (U) = Lipβ(U) (see

Remark 2.12) and Lip(1)
1 (U), respectively, which are the so-called Nikol’skiı̌ spaces

(cf. Remark 2.4 of [18, 24]).

Remark 2.8 (Theorem 8.3 of [22]) Let U = R
n or U = Qr with r > 0. For

1 ≤ p < ∞, d ∈ N0, 0 ≤ β ≤ 1 and f ∈ L
p
loc(R

n), we have

‖f ‖Lip(d)β (U)
∼ ‖f ‖L(d)

p,β (U)
,

where L(d)
p,β(U) is the Campanato space on U as defined below.

Definition 2.9 Let U = R
n or U = Qr with r > 0. For 1 ≤ p < ∞, d ∈ N0

and −n/p ≤ λ < d + 1, a function f ∈ L
p
loc(U) will be said to belong to the

Campanato space on U , i.e., L(d)
p,λ(U) if and only if for every Q(x, s) ⊂ U , there is

a polynomial Pd
Q(x,s)

f of degree at most d such that

‖f ‖L(d)
p,λ(U)

= sup
Q(x,s)⊂U

1

sλ

(

−
∫

Q(x,s)

|f (y)− Pd
Q(x,s)f (y)|p dy

)1/p

< ∞.

Particularly, when d = 0, we use the well-known notation

Lp,λ(U) = L(0)
p,λ(U).

Remark 2.10 (Remark 6.2 of [22]) Let U = R
n or U = Qr with r > 0. For

1 ≤ p < ∞, d ∈ N0, −n/p ≤ λ < d + 1 and f ∈ L
p

loc(U), we have

‖f ‖L(d)
p,λ(U)

∼ sup
Q(x,s)⊂U

inf
P∈Pd (U)

1

sλ

(

−
∫

Q(x,s)

|f (y)− P(y)|p dy

)1/p

.
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Definition 2.11 (Definition 2.8 of [18]; cf. Definition 11 of [12]) For d ∈ N0,
0 ≤ β ≤ 1 and 0 ≤ σ < ∞, the continuous function f will be said to belong to the
generalized σ -Lipschitz (σ -Lip) space, i.e., Lip(d)

β,σ (R
n) if and only if

‖f ‖
Lip(d)β,σ

= sup
r≥1

1

rσ
‖f ‖

Lip(d)β (Qr)
< ∞.

In particular, we define

BMO(d)
σ (Rn) = Lip(d)

0,σ (R
n)

and

Lipβ,σ (R
n) = Lip(0)

β,σ (R
n), BMOσ (R

n) = BMO(0)
σ (Rn),

which we call the generalized σ -BMO space and the σ -Lip space, the σ -BMO
space, respectively.

Identifying functions which differ by a polynomial of degree at most d , a.e., we
see that Lip(d)

β (Rn) and Lip(d)
β,σ (R

n) are Banach spaces (see [12] and [22]).

Remark 2.12 ([17]; cf. [10]) We note that particularly

Lip(d)
β,0(R

n) = Lip(d)
β (Rn), BMO(d)

0 (Rn) = BMO(d)(Rn),

and

Lip(0)
β (Rn) = Lipβ(R

n), BMO(0)(Rn) = BMO(Rn).

3 d-Modified Riesz Potentials

Now, as we stated in Sect. 1, under the condition μ = λ + α ≥ 1 we consider
the boundedness of modified Riesz potentials Ĩα on CMOp,λ(Rn). Then, we use the
definition of “ higher-degree” modification of Riesz potentials Iα , i.e., the following
definition of d-modified Riesz potentials Ĩα,d , 0 < α < n and d ∈ N0 (see [13, 14,
20]; cf. Definition 3.1 of [17]).

Definition 3.1 For 0 < α < n and d ∈ N0, we define the modified Riesz potential
of order α and degree d , i.e., d-modified Riesz potential Ĩα,d , as follows : For any
f ∈ L1

loc(R
n) and x ∈ R

n,

Ĩα,d f (x)

=
∫

Rn

f (y)

⎧
⎨

⎩
Kα(x − y)−

⎛

⎝
∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

⎞

⎠ (1 − χQ1(y))

⎫
⎬

⎭
dy,
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where for any x ∈ R
n \ {0},

Kα(x) = 1

|x|n−α

and for x = (x1, x2, · · · , xn) ∈ R
n and l = (l1, l2, · · · , ln) ∈ N

n
0, |l| = l1 + l2 +

· · ·+ ln, xl = x
l1
1 x

l2
2 · · · xln

n , l! = l1! l2! · · · ln! and Dl is the partial derivative of order
l, i.e.,

Dl = (∂/∂x1)
l1(∂/∂x2)

l2 · · · (∂/∂xn)ln .

Note that in particular

Ĩα,0 = Ĩα

and that Ĩα,d (|f |) �≡ ∞ on R
n, if

∫

Rn

|f (y)|
(1 + |y|)n−α+d+1 dy < ∞

(cf. [21]). If Iαf is well-defined, then Ĩα,df is also well-defined and Iαf − Ĩα,df is
a polynomial of degree at most d .

Then our first results for a d-modified Riesz potential Ĩα,d are the following
strong and weak estimates on CMOp,λ(Rn), where 1 ≤ p < n/α.

Theorem 3.2 Let 0 < α < 1, 1 < p < n/α, d ∈ N0, −n/p + α ≤ μ = λ + α <

d + 1 and q = pn/(n − pα), i.e., 1/q = 1/p − α/n. Then Ĩα,d is bounded from

CMOp,λ(Rn) to $
(d)
q,μ(R

n), that is, there exists a constant C > 0 such that

‖Ĩα,df ‖$(d)
q,μ

≤ C‖f ‖CMOp,λ , f ∈ CMOp,λ(Rn).

Theorem 3.3 Let 0 < α < 1, d ∈ N0, −n + α ≤ μ = λ + α < d + 1 and
q = n/(n − α), i.e., 1/q = 1 − α/n. Then Ĩα,d is bounded from CMO1,λ(Rn) to

W$
(d)
q,μ(R

n), that is, there exists a constant C > 0 such that

‖Ĩα,df ‖W$
(d)
q,μ

≤ C‖f ‖CMO1,λ , f ∈ CMO1,λ(Rn).

In the above theorems, if d = 0, then we can get the following strong and weak
estimates for a modified Riesz potential Ĩα,d on CMOp,λ(Rn).

Corollary 3.4 (Corollary 2.7 of [19]; cf. [17]) Let 0 < α < 1, 1 < p < n/α,
−n/p + α ≤ μ = λ+ α < 1 and q = pn/(n − pα), i.e., 1/q = 1/p − α/n. Then
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Ĩα is bounded from CMOp,λ(Rn) to CMOq,μ(Rn), that is, there exists a constant
C > 0 such that

‖Ĩαf ‖CMOq,μ ≤ C‖f ‖CMOp,λ , f ∈ CMOp,λ(Rn).

Corollary 3.5 Let 0 < α < 1, −n+ α ≤ μ = λ+ α < 1 and q = n/(n− α), i.e.,
1/q = 1 − α/n. Then Ĩα is bounded from CMO1,λ(Rn) to WCMOq,μ(Rn), that is,
there exists a constant C > 0 such that

‖Ĩαf ‖WCMOq,μ ≤ C‖f ‖CMO1,λ , f ∈ CMO1,λ(Rn).

Next, for a d-modified Riesz potential Ĩα,d , we prove our second result, i.e., the
following estimates on CMOp,λ(Rn), where n/α ≤ p < ∞.

Theorem 3.6 Let 0 < α < 1, n/α ≤ p < ∞, d ∈ N0, −n/p + α + d ≤ λ + α <

d+1 and β = α−n/p. Then Ĩα,d is bounded from CMOp,λ(Rn) to Lip(d)
β,λ+n/p(R

n),
that is, there exists a constant C > 0 such that

(i) when n/α < p < ∞,

‖Ĩα,df ‖Lip(d)β,λ+n/p

≤ C‖f ‖CMOp,λ , f ∈ CMOp,λ(Rn);

(ii) when p = n/α, i.e., β = 0,

‖Ĩα,df ‖BMO(d)
λ+α

≤ C‖f ‖CMOn/α,λ , f ∈ CMOn/α,λ(Rn).

In Theorem 3.6, if d = 0, then we can obtain the following estimates for a
modified Riesz potential Ĩα on CMOp,λ(Rn).

Corollary 3.7 Let 0 < α < 1, n/α ≤ p < ∞, −n/p + α ≤ λ + α < 1 and
β = α − n/p. Then Ĩα,d is bounded from CMOp,λ(Rn) to Lipβ,λ+n/p(R

n), that is,
there exists a constant C > 0 such that

(i) when n/α < p < ∞,

‖Ĩα,df ‖Lipβ,λ+n/p
≤ C‖f ‖CMOp,λ , f ∈ CMOp,λ(Rn);

(ii) when p = n/α, i.e., β = 0,

‖Ĩα,df ‖BMOλ+α ≤ C‖f ‖CMOn/α,λ , f ∈ CMOn/α,λ(Rn).
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4 Proofs of Theorems

First of all, we state the following well-definedness of Ĩα,d for CMOp,λ(Rn), which
is shown by the same argument as in the proof of Theorem 3.6 of [16].

Lemma 4.1 Let 0 < α < 1, 1 ≤ p < ∞, d ∈ N0 and −n/p+α ≤ λ+α < d+ 1.
Then for f ∈ CMOp,λ(Rn), Ĩα,df is well-defined.

Proof Let f ∈ CMOp,λ(Rn), r ≥ 1 and x ∈ Qr , and let

Ĩα,df (x) = Ĩα,d (f̃ χQ2r )(x)+ Ĩα,d (f̃ (1 − χQ2r ))(x)+ fQ4r Ĩα,d1(x)

= Iα(f̃ χQ2r )(x)−
∑

{l:|l|≤d}

xl

l!
∫

Q2r\Q1

f̃ (y)(DlKα)(−y) dy

+
∫

Rn\Q2r

f̃ (y)

⎛

⎝Kα(x − y)−
∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

⎞

⎠ dy

+ fQ4r Ĩα,d1(x), (4.1)

where f̃ = f − fQ4r . Then, since f̃ χQ2r ∈ Lp(Rn), the first term is well-defined.
The second term is also well-defined, because (DlKα)(χQ2r − χQ1) ∈ Lp′(Rn).
Here we note that the second term is a polynomial of degree at most d . For the
third term, the integral converges absolutely in virtue of Lemmas 4.2 and 4.4, which
are shown later, and so the present term is well-defined. As

∫
Rn\Q1

(DlKα)(−y)dy

converges absolutely under the assumption 0 < α < 1, Ĩα,d1 ∈ Pd(Qr), and then
the forth term is well-defined.

Further, if we let for 1 ≤ s < r ,

fQ4r − fQ4s = (f − fQ4s )χQ2s − (f − fQ4r )χQ2r

+ (f − fQ4s )(1 − χQ2s )− (f − fQ4r )(1 − χQ2r ),

then it follows that for x ∈ Qs ⊂ Qr ,

0 = Ĩα,d (fQ4r − fQ4s )(x)

= Ĩα,d ((f − fQ4s )χQ2s )(x)− Ĩα,d ((f − fQ4r )χQ2r )(x)

+ Ĩα,d ((f − fQ4s )(1 − χQ2s ))(x)− Ĩα,d ((f − fQ4r )(1 − χQ2r ))(x).

Therefore, Ĩα,df is independent of Qr containing x, and so Ĩα,df is well-defined
on R

n. 	

In order to prove Theorems 3.2, 3.3 and 3.6, it is necessary to use the following

three lemmas.
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Lemma 4.2 (Lemma 7.3 of [21]) Let x ∈ R
n, 0 < α < n and d ∈ N0. If y ∈

R
n \Q2|x|, then

∣
∣
∣
∣
∣
∣
Kα(x − y)−

∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

∣
∣
∣
∣
∣
∣
≤ C

|x|d+1

|y|n−α+d+1 . (4.2)

Here note that let Q2|x| = {0}, when x = 0.

Lemma 4.3 (Lemma 4.2 of [18]) Let x ∈ R
n, 0 < α < n and d ∈ N0. If y ∈

R
n \Q2|x|, then

∣
∣
∣
∣
∣
∣
Ad+1

h

⎛

⎝Kα(x − y)−
∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ C

|h|d+1

|y|n−α+d+1
. (4.3)

Lemma 4.4 (Lemma 4.1 of [16]; cf. Lemma 4.2 of [19]) Let 1 ≤ p < ∞ and
λ ∈ R. If β < 0 and β + λ < 0, then there exists a positive constant C such that

∫

Rn\Qr

|f (y)− fQ2r |
|y|n−β

dy ≤ Crβ+λ‖f ‖CMOp,λ

for all f ∈ CMOp,λ(Rn) and r ≥ 1.

Proof of Theorem 3.2 Let f ∈ CMOp,λ(Rn), r ≥ 1 and x ∈ Qr . As Ĩα,df is
well-defined by Lemma 4.1, hence we prove only that

‖Ĩα,df ‖$(d)
q,μ

� ‖f ‖CMOp,λ ,

by the same argument as in the proof of Theorem 3.1 in [17].
Now, in (4.1), let us put

R̃d
r f (x) = Rd

r f̃ (x)+ fQ4r Ĩα,d1(x) ∈ Pd(Qr),

where

Rd
r f̃ (x) = −

∑

{l:|l|≤d}

xl

l!
∫

Q2r\Q1

f̃ (y)(DlKα)(−y) dy,

and

J̃α,d,rf (x) =
∫

Rn\Q2r

f̃ (y)

⎛

⎝Kα(x − y)−
∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

⎞

⎠ dy.
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Then we have

(∫

Qr

|Ĩα,df (x)− R̃d
r f (x)|q dx

)1/q

≤
(∫

Qr

|Iα(f̃ χQ2r )(x)|q dx
)1/q

+
(∫

Qr

|J̃α,d,rf (x)|q dx
)1/q

=: I1 + I2. (4.4)

First we estimate I1. By applying the strong (p, q) boundedness of Iα , we have

I1 ≤ ‖Iα(f̃ χQ2r )‖Lq � ‖f̃ χQ2r‖Lp � rλ|Q2r |1/p‖f̃ ‖Bp,λ

∼ rλ+n/p‖f ‖CMOp,λ = rμ+n/q‖f ‖CMOp,λ .

Next, in order to estimate I2, using (4.2), it follows that for x ∈ Qr and y ∈
R

n \Q2r ,

∣
∣
∣
∣
∣
∣
Kα(x − y)−

∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

∣
∣
∣
∣
∣
∣
� |x|d+1

|y|n−α+d+1
≤ rd+1

|y|n−α+d+1
.

Consequently, we obtain by Lemma 4.4 and the assumptions 0 < α < 1 andμ+σ <

d + 1,

|J̃α,d,rf (x)| � rd+1
∫

Rn\Q2r

|f̃ (y)|
|y|n−α+d+1 dy � rλ+α‖f ‖CMOp,λ

= rμ‖f ‖CMOp,λ , (4.5)

which shows that J̃α,d,rf is well-defined for all x ∈ Qr . Thus we get

I2 = ‖J̃α,d,rf ‖Lq(Qr) � rμ‖f ‖CMOp,λ · |Qr |1/q ∼ rμ+n/q‖f ‖CMOp,λ ,

and then

‖Ĩα,df ‖$(d)
q,μ

� sup
r≥1

1

rμ

(

−
∫

Qr

∣
∣
∣Ĩα,df (y)− R̃d

r f (y)

∣
∣
∣
q

dy

)1/q

� sup
r≥1

1

rμ

(
1

|Qr |
)1/q

· rμ+n/q‖f ‖CMOp,λ ∼ ‖f ‖CMOp,λ .

This concludes the proof. 	
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Proof of Theorem 3.3 This proof is similar to that of Theorem 3.6 of [16]. Hence,
in the same way as (4.4), we have that for f ∈ CMO1,λ(Rn), r ≥ 1 and x ∈ Qr ,

sup
t>0

(2t)q
∣
∣
∣
{
x ∈ Qr : |Ĩα,df (x)− R̃d

r f (x)| > 2t
}∣
∣
∣

≤ 2q

{

sup
t>0

tq
∣
∣
∣
{
x ∈ Qr : |Iα(f̃ χQ2r )(x)| > t

}∣
∣
∣

+ sup
t>0

tq |{x ∈ Qr : |J̃α,d,rf (x)| > t}|
}

=: 2q (I3 + I4) .

Then it follows from the weak (1, q) boundedness of Iα that

I
1/q
3 � rλ+n‖f ‖CMO1,λ = rμ+n/q‖f ‖CMO1,λ ,

and by applying (4.5) with p = 1,

I
1/q
4 � rμ+n/q‖f ‖CMO1,λ .

Thus, we obtain

‖Ĩα,df ‖W$
(d)
q,μ

� ‖f ‖CMO1,λ ,

which completes the proof. 	

Proof of Theorem 3.6 Let f ∈ CMOp,λ(Rn), r ≥ 1 and x ∈ Qr . Similarly to the
proof of Theorem 3.2, we prove only that for n/α ≤ p < ∞,

‖Ĩα,df ‖Lip(d)β (Qr)
� rλ+n/p‖f ‖CMOp,λ ,

following similar arguments to the proof of Theorem 3.2 in [18].
Now, using the notation in the proof of Theorem 3.2, it follows from

Remarks 2.8, 2.10 and (4.1) with

Rd
r f̃ (x) = −

∑

{l:1≤|l|≤d}

xl

l!
∫

Q2r\Q1

f̃ (y)(DlKα)(−y) dy
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that

‖Ĩα,df ‖Lip(d)β (Qr)
∼ ‖Ĩα,df ‖L(d)

1,β (Qr)

∼ sup
Q(x,s)⊂Qr

inf
P∈Pd (Qr)

1

sβ

(

−
∫

Q(x,s)

|Ĩα,df (y)− P(y)| dy
)

≤ sup
Q(x,s)⊂Qr

1

sβ

(

−
∫

Q(x,s)

|Ĩα,df (y)− R̃d
r f (y)| dy

)

≤ ‖Ĩα(f̃ χQ2r )‖Lipβ(Qr) + ‖J̃α,d,rf ‖L(d)
1,β (Qr)

=: I5 + I6.

We firstly estimate I5. When n/α < p < ∞, which implies 0 < β < 1, if we
apply the (Lp,Lipβ) boundedness of Ĩα , then we get

I5 ≤ ‖Ĩα(f̃ χQ2r )‖Lipβ � ‖f̃ χQ2r‖Lp � rλ+n/p‖f̃ ‖Bp,λ

= rλ+n/p‖f ‖CMOp,λ .

Similarly, when p = n/α, by using the (Ln/α,BMO) boundedness of Ĩα , we obtain

I5 ≤ ‖Ĩα(f̃ χQ2r )‖BMO � rλ+α‖f ‖CMOn/α,λ .

Next in order to estimate I6, since by Remark 2.8,

I6 ∼ ‖J̃α,d,rf ‖Lip(d)β (Qr)
= sup

x,x+h∈Qr,h�=0

1

|h|β |A
d+1
h J̃α,d,rf (x)|,

we estimate Ad+1
h J̃α,d,rf (x). To do so, if we use (4.3), Lemma 4.4 and the

assumptions 0 < α < 1 and λ + α < d + 1, then we have for x ∈ Qr and
y ∈ R

n \Q2r ,

|Ad+1
h J̃α,d,rf (x)|

=
∣
∣
∣
∣
∣
∣

∫

Rn\Q2r

f̃ (y)

⎧
⎨

⎩
Ad+1

h

⎛

⎝Kα(x − y)−
∑

{l:|l|≤d}

xl

l! (D
lKα)(−y)

⎞

⎠

⎫
⎬

⎭
dy

∣
∣
∣
∣
∣
∣

� |h|d+1
∫

Rn\Q2r

|f̃ (y)|
|y|n−α+d+1 dy � |h|d+1rα−d−1+λ‖f ‖CMOp,λ .
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Hence

I6 � sup
x,x+h∈Qr,h�=0

1

|h|β · |h|d+1rα−d−1+λ‖f ‖CMOp,λ

≤ rλ+α−β‖f ‖CMOp,λ = rλ+n/p‖f ‖CMOp,λ .

Thus it follows that for n/α ≤ p < ∞,

‖Ĩα,df ‖Lip(d)β,λ+n/p

= sup
r≥1

1

rλ+n/p
‖Ĩα,df ‖Lip(d)β (Qr)

� ‖f ‖CMOp,λ .

This shows the conclusion. 	
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On Some Consequences of the Solvability
of the Caffarelli–Silvestre Extension
Problem

Jan Meichsner and Christian Seifert

Abstract We consider the Caffarelli–Silvestre extension problem, i.e., a Bessel
type ODE in a Banach space X with a closed and typically unbounded operator A as
right-hand side and point out a couple of consequences arising from the assumption
of the well-posedness of the problem. In the end a conjecture is stated concerning
the implications of analyticity of the solution of the extension problem.

Keywords Fractional powers · Non-negative operator · Dirichlet-to-Neumann
operator

Mathematics Subject Classification (2010) Primary 47A05; Secondary 47D06,
47A60

1 Introduction

Since the well-known Caffarelli–Silvestre paper [4] from 2007 various authors
considered an abstract version of the there presented problem by having a look on
the abstract (incomplete) ODE problem

u′′(t)+ 1 − 2α

t
u′(t) = Au(t) (t > 0), u(0) = x (1.1)
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in some Hilbert or more general Banach space X, see [2, 5, 8, 9]. The abstract
setting made it necessary to introduce new tools and viewpoints completely different
from the techniques used in [4] for the rather concrete problem considered there.
This development was first started by Stinga–Torrea in [9] by the introduction
of explicit formulas for solutions of (1.1) and further continued by Galé–Miana–
Stinga in [5]. Typically, the operator A appearing on the right-hand side of (1.1)
is assumed to be sectorial (with or without dense domain). The basic question
of interest is to establish existence and uniqueness results. For the special choice
of α = 1/2 the singular first order term in (1.1) vanishes and the problem
reduces to an incomplete second order Cauchy problem as already considered by
Balakrishnan in [3, Theorem 6.1], where the well-posedness for a sectorial operator
A is shown under the additional assumption of a globally bounded solution u

of (1.1). Concerning generalisations of Balakrishnan’s result, in [9] the authors
considered the situation for a self-adjoint, positive, so in particular sectorial,
operator on a Hilbert space. The authors derived two explicit formulas for a solution
to (1.1) including the Stinga-Torrea formula, a Poisson formula for the solution.
The uniqueness of the solution is also shown under the assumption of A having
a pure point spectrum. The corresponding Banach space setting was considered
in [5] where the authors constructed explicitly solutions for both, generators of
tempered integrated semigroups and tempered integrated cosine families. These
results particularly cover generators of bounded C0-semigroups. Combined with
the uniqueness result from [8], (1.1) is a well-posed problem and this fact actually
extends to arbitrary sectorial right-hand sides. Given an initial condition for the
first derivative one can also tackle the problem by cosine functions, see e.g. [1,
Chapter 3]. The connection between the various results was explored a bit in [8],
where one can see that the boundedness assumption appearing in Balakrishnan’s
paper ‘couples’ the two initial values and thus is suitable to replace one of them.

In [6], the authors consider the problem from a slightly different point of view.
They assume the ODE (1.1) to be given for α = 1/2 but merely assume A to be
closed with non-empty resolvent set. As a consequence of the well-posedness of
the problem, the existence of a generator B of a C0-semigroup is deduced which
satisfies B2 = A. Further, analyticity of the solution u of (1.1) on a sector is shown
to imply sectoriality of A and then B = √

A in the functional calculus sense.
This is the starting point of this paper. More precisely, we attempt to state the

right setting for proving similar results as explained above in the more general case
α ∈ (0, 1). Making use of similar strategies as in [6, Theorem 6.3.3], generalisations
of the first result on factorizingA (as B2) can be obtained; cf. Corollary 2.13. For the
second result that analyticity of the solution u of (1.1) on a sector yields sectoriality
of the operator A, we formulate a conjecture.
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2 The Solution Operator to the Caffarelli–Silvestre
Extension Problem

In this paper X will always denote a complex Banach space with norm ‖·‖. Further
let A be a closed linear operator in X with non-empty resolvent set ρ(A) and with
dense domain D(A). We will interpret D(A) as a Banach space equipped with the
graph norm

‖x‖D(A) := ‖x‖ + ‖Ax‖ (x ∈ D(A)).

Moreover, let α ∈ (0, 1) be a parameter.
For x ∈ X let Pα(x) be the problem of finding u ∈ Cb

([0,∞);D(A)
) ∩

C2
(
(0,∞);X) such that u(0) = x and

u′′(t)+ 1 − 2α

t
u′(t) = Au(t) (t > 0).

For the whole paper, we may assume as a standing assumption that Pα(x) has a
unique solution, denoted by ux , for every x ∈ D(A). This fact will not be mentioned
explicitly anymore but the reader should be always aware of it.

Remark 2.1 As noted in the introduction, there are various cases where Pα(x) has
a unique solution for all x ∈ D(A), e.g., when A is the generator of a bounded C0-
semigroup ([5, Theorem 2.1]) or when A is the generator of a tempered integrated
cosine family ([5, Theorem 1.3] combined with [8, Theorem 5.8]).

For x ∈ D(A) and t ≥ 0 we may then define Ux(t) := ux(t).

Lemma 2.2 We have U ∈ L
(
D(A),Cb

([0,∞);D(A)
))

.

Proof The proof essentially works as the one for the special case α = 1/2 as
presented in [6, Theorem 6.3.3] with the help of the closed graph theorem. So let
(xn) be a sequence in D(A) which converges w.r.t. ‖·‖D(A) towards x ∈ D(A).
Further, assume that (Uxn) is convergent in Cb

([0,∞);D(A)
)

towards some
element v. Let n,m ∈ N. From the fact that Uxn and Uxm solve Pα(xn) and Pα(xm),
respectively, we get (for t ≥ 0)

∥
∥
∥
∥t

2α−1 d

dt
t1−2α d

dt
Uxn(t)− t2α−1 d

dt
t1−2α d

dt
Uxm(t)

∥
∥
∥
∥

= ‖AUxn(t)− AUxm(t)‖ ≤ ‖Uxn − Uxm‖Cb([0,∞);D(A)) ,

which implies the existence of some function u2 ∈ Cb

([0,∞);X) such that(
t �→ t2α−1 d

dt t
1−2α d

dt Uxn(t)
)

converges in Cb

([0,∞);X) towards u2. Multiply-

ing the ODE (at t1 > 0) for the initial condition xk by t1−2α
1 , and integrating the
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resulting term from t1 to t2 > 0 results in

t1−2α
1

d

dt
Uxk(t1)− t1−2α

2
d

dt
Uxk(t2) =

t2∫

t1

s1−2αAUxk(s)ds.

By the boundedness of s �→ AUxk(s) and the integrability of s �→ s1−2α we can
send t1 to 0. Hence, for k ∈ N, we can define

yk := lim
t→0+

t1−2α d

dt
Uxk(t).

Let t > 0. Multiplying this time the difference of the ODE’s (at s > 0) for initial
conditions xn and xm by s1−2α , and integrating the term from 0 to t results in

t1−2α d

dt
Uxn(t)− t1−2α d

dt
Uxm(t)

= yn − ym +
t∫

0

s1−2αA(Uxn − Uxm)(s)ds. (2.1)

Now, we multiply (2.1) by t2α−1, integrate again, take norms and solve for
‖yn − ym‖. Then we obtain

t2α

2α
‖yn − ym‖

=
∥
∥
∥
∥
∥
∥
U(xn − xm)(t)− (xn − xm)−

t∫

0

s2α−1

s∫

0

r1−2αAU(xn − xm)(r)drds

∥
∥
∥
∥
∥
∥

≤
(

2 + t2

4 − 4α

)

‖Uxn − Uxm‖Cb([0,∞);D(A)) .

Hence, (yn) is a Cauchy sequence in X.
By (2.1), we estimate

∥
∥
∥
∥t

1−2α d

dt
Uxn(t)− t1−2α d

dt
Uxm(t)

∥
∥
∥
∥

=
∥
∥
∥
∥
∥
∥
yn − ym +

t∫

0

s1−2αA(Uxn − Uxm)(s)ds

∥
∥
∥
∥
∥
∥

≤ ‖yn − ym‖ + t2−2α

2 − 2α
‖Uxn − Uxm‖Cb([0,∞);D(A)) .
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Therefore, there exists u1 ∈ C
(
(0,∞);X) such that

(
t �→ t1−2α d

dt
Uxn(t)

)→ (
t �→ t1−2αu1(t)

)

uniformly on compacts in [0,∞). Thus, v ∈ C1
(
(0,∞);X).

Furthermore, for t > 0 we have

∥
∥
∥
∥

d2

dt2
Uxn(t)− d2

dt2
Uxm(t)

∥
∥
∥
∥

≤
∥
∥
∥
∥t

2α−1 d

dt
t1−2α d

dt
Uxn(t)− t2α−1 d

dt
t1−2α d

dt
Uxm(t)

∥
∥
∥
∥

+ |1 − 2α|
t

∥
∥
∥
∥

d

dt
Uxn(t)− d

dt
Uxm(t)

∥
∥
∥
∥

→ 0,

uniformly for t in a compact set K ⊂ (0,∞). Therefore, v ∈ C2
(
(0,∞);X). Since

v(0) = lim
n→∞(Uxn)(0) = lim

n→∞ xn = x,

by uniqueness of the solution of Pα(x) we obtain v = Ux. Now, the closed graph
theorem yields U ∈ L

(
D(A),Cb

([0,∞);D(A)
))

. 	

As a corollary of the previous lemma we obtain continuity properties of certain

derivatives of Ux.

Corollary 2.3 For x ∈ D(A) we have

(
t �→ t1−2α d

dt
Ux(t)

)
∈ C

([0,∞);X)

and

(
t �→ t2α−1 d

dt
t1−2α d

dt
Ux(t)

)
∈ Cb

([0,∞);X).

Let λ ∈ ρ(A). As a consequence of the assumed uniqueness one can prove the
equations U(λ − A)−1x = (λ − A)−1Ux for x ∈ D(A) and UAx = AUx for
x ∈ D(A2).
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For x ∈ X let P̃α(x) be the problem of finding u ∈ Cb

([0,∞);X)with u(0) = x

and such that for all φ ∈ C∞
c

(
(0,∞)

)
we have

∞∫

0

u(t)φ(t)dt ∈ D(A) and

∞∫

0

u(t)
d

dt
t1−2α d

dt
t2α−1φ(t)dt = A

∞∫

0

u(t)φ(t)dt .

We can interpret P̃α(x) as a weak version of Pα(x).

Lemma 2.4 The mapping U interpreted as a function from D(A) ⊆ X to
Cb

([0,∞);D(A)
) ⊆ Cb

([0,∞);X) admits a continuous extension to all of X,
again denoted by U . For x ∈ X the function Ux ∈ Cb

([0,∞);X) is the unique
solution of P̃α(x).

Proof Let x ∈ D(A). By Lemma 2.2 there exist C1 ≥ 0 such that

‖Ux‖Cb([0,∞);X)

=
∥
∥
∥(λ− A)U(λ− A)−1x

∥
∥
∥
Cb([0,∞);X)

≤ (|λ| + 1)

(∥
∥
∥U(λ− A)−1x

∥
∥
∥
Cb([0,∞);X)

+
∥
∥
∥AU(λ− A)−1x

∥
∥
∥
Cb([0,∞);X)

)

≤ C1

∥
∥
∥(λ− A)−1x

∥
∥
∥D(A)

≤ C2 ‖x‖

for some C2 > 0. Hence, by density of D(A) in X, U can be continuously extended
to the whole of X. We denote the extension again by U . For given x ∈ X let (xn)
be a sequence in D(A) convergent towards x in X and φ ∈ C∞

c

(
(0,∞)

)
. Then

Uxn → Ux in Cb

([0,∞);X). Hence,

∞∫

0

Ux(t)
d

dt
t1−2α d

dt
t2α−1φ(t)dt =

∞∫

0

lim
n→∞Uxn(t)

d

dt
t1−2α d

dt
t2α−1φ(t)dt

= lim
n→∞

∞∫

0

t2α−1 d

dt
t1−2α d

dt
Uxn(t)φ(t)dt

= lim
n→∞

∞∫

0

AUxn(t)φ(t)dt

= lim
n→∞A

∞∫

0

Uxn(t)φ(t)dt,
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by Hille’s theorem. Since

∞∫

0

Uxn(t)φ(t)dt →
∞∫

0

Ux(t)φ(t)dt,

by closedness of A we observe

∞∫

0

Ux(t)φ(t)dt ∈ D(A)

and

∞∫

0

Ux(t)
d

dt
t1−2α d

dt
t2α−1φ(t)dt = A

∞∫

0

Ux(t)φ(t)dt .

Also

Ux(0) = lim
n→∞Uxn(0) = lim

n→∞ xn = x.

So Ux is a solution to P̃α(x) as claimed.
Note that the solution of P̃α(x) is unique. Indeed, if u is a solution to P̃α(0) then

v := (λ− A)−1u is a solution to Pα(0), hence v = 0 and, therefore, u = 0. 	

The uniqueness of a solution to P̃α(x) yields the extension of the already found

relationships between U , A and its resolvent (λ−A)−1 to U(λ−A)−1 = (λ−A)−1U

and AUx = UAx for x ∈ D(A).

Remark 2.5 In view of Lemma 2.4, the authors came to the conclusion that defining
a solution to the considered problem in [8] would have been better in the way as in
P̃α(x).

Next we show that the smoothness of u and its scaled derivatives tells us precisely
about the smoothness of the initial datum x.

Definition 2.6 We define the operator Dα in Cb

([0,∞);X) by

D(Dα) :=
{
u ∈ Cb

([0,∞);X) ∩ C1((0,∞);X) |
(
t �→ t1−2αu′(t)

) ∈ Cb

([0,∞);X)},
Dαu :=

(
t �→ t1−2αu′(t)

)
.

The operator Dα acts as a scaled first derivative. Note that Dα is closed.
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Lemma 2.7 Let k ∈ N0, x ∈ X. Then x ∈ D(Ak) if and only if

Ux ∈ D
(
(D1−αDα)

k
)
.

Proof For k = 0 there is nothing to prove. Therefore, let k ≥ 1 and x ∈ D(Ak).
Consider first k = 1. Then Ux ∈ D(D1−αDα) by Corollary 2.3. If k ≥ 2 we note
that

D1−αDαUx = AUx = UAx

by (1.1) and commutativity of A and U on D(A). Since Ax ∈ D(A), arguing
inductively shows Ux ∈ D

(
(D1−αDα)

k
)

and

(D1−αDα)
kUx = UAkx.

Conversely, let k ≥ 1 and Ux ∈ D
(
(D1−αDα)

k
)
. Consider again first the case

k = 1 and choose for s > 0 a sequence (φk) in C∞
c

(
(0,∞)

)
which converges

towards δs in Cc

(
(0,∞)

)′. The function Ux solves P̃α(x). Hence,

∞∫

0

D1−αDαUx(t)φk(t)dt = A

∞∫

0

Ux(t)φk(t)dt

which, by closedness of A, gives D1−αDαUx(s) = AUx(s) as k → ∞. Further,
Ux(s) → x as s → 0+. Using the closedness of A again yields x ∈ D(A) and
D1−αDαUx = AUx = UAx. Now one can argue again inductively. 	


Let us define Bα : D(A) → X by

Bαx := lim
t→0+

t1−2α d

dt
Ux(t).

Note that Bα is the ‘generalized Dirichlet-to-Neumann operator’ associated to the
problem Pα(x). Since (λ− A)−1U = U(λ− A)−1, we obtain

Bα(λ− A)−1x = (λ− A)−1Bαx

for x ∈ D(A). From the proof of Lemma 2.2 one can see the existence of a constant
C > 0, depending on a fixed parameter T ∈ [0,∞) (let us take T = 1, say), such
that ‖Bαx‖ ≤ C ‖x‖D(A). Commutativity with the resolvent of A and continuity
with respect to the graph norm imply that Bα is closable as an operator in X with
domain D(A) ⊆ X. To see this, consider (xn) in D(A) convergent towards 0 in X
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and such that Bαxn → y in X. Then

∥
∥
∥(λ− A)−1y

∥
∥
∥ = lim

n→∞
∥
∥
∥Bα(λ− A)−1xn

∥
∥
∥ ≤ C · lim

n→∞
∥
∥
∥(λ− A)−1xn

∥
∥
∥D(A)

= 0,

which shows the closability since the above inequality implies y = 0. Let us denote
the closure of Bα in X again by Bα . The next statement will be an auxiliary lemma
for complex-valued functions.

Lemma 2.8 Let r ∈ [0, 1), u ∈ Cb

([0,∞)
) ∩ C2

(
(0,∞)

)
such that

(
t �→

tr d
dt t

−ru′(t)
) ∈ Cb

([0,∞)
)
. Then also

(
t �→ t−ru′(t)

) ∈ Cb

([0,∞)
)
.

Proof For r = 0 this is a standard result. The integrability of u′′ near t = 0 implies
the continuity of u′ at t = 0 while the boundedness of u′ for large values of t

follows from Taylor’s theorem. For the general case consider the function v given

by v(s) := u
(
s

1
1+r
)
. By assumption v ∈ Cb

([0,∞)
) ∩ C2

(
(0,∞)

)
and with the

relationship t := s
1

1+r we can write v′(s) = u′(t)t−r and

v′′(s) = t−r d

dt
t−ru′(t).

The claim follows now by applying the result for r = 0 to the function v. 	

Corollary 2.9 Let x ∈ D(A) and α ∈ [1/2, 1). Then

(
t �→ t1−2α d

dt
Ux(t)

) ∈ Cb

([0,∞);X).

Proof Let r := 2α − 1 and x ′ ∈ X′. Then Lemma 2.8 applied to t �→
〈x ′, Ux(t)〉X′×X yields boundedness of this function. Hence, Ux is weakly bounded
and therefore bounded. 	


Let us now assume that, additionally to unique solvability of Pα(x) for x ∈ D(A),
the ‘conjugated problem’ P1−α(x) is also uniquely solvable for all x ∈ D(A). We
adapt all so far introduced notations by simply changing α to 1 − α and specify
in the following the solution operators by indices, i.e., Uαx will be the solution to
Pα(x) while U1−αx solves P1−α(x). With this notation we can now state and prove
the main theorem of this paper.

Theorem 2.10 Let x ∈ D(A2). Then t1−2α d
dt Uαx(t) = U1−αBαx(t) for all t ∈

[0,∞).

For t = 0 we interpret the left-hand side of the equation in Theorem 2.10 as the
limit from the right.
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Proof For the proof we will distinguish two cases for α.

(i) Let us begin with α ∈ [1/2, 1). Define

v := (
t �→ t1−2α d

dt
Uαx(t)

)
.

By Corollary 2.9 we have v ∈ Cb

([0,∞);X) and by the definition of Bα we
have v(0) = Bαx. Let us finally check that v solves the ODE for P1−α(Bαx).
Then v = U1−αBαx. Let t > 0. Then

t2α−1 d

dt
v(t) = t2α−1 d

dt
t1−2α d

dt
Uαx(t) = AUαx(t) = UαAx(t)

and

t1−2α d

dt
t2α−1 d

dt
v(t) = t1−2α d

dt
UαAx(t) = Av(t),

where we used the closedness of A for the last equality.
(ii) Let us turn to the case α ∈ (0, 1/2). In this case, consider the function ṽ given

by

ṽ(t) := t2α−1v′(t) = UαAx(t) (t ≥ 0),

which belongs to Cb

([0,∞);D(A)
) ⊆ Cb

([0,∞);X) and which solves
Pα(Ax). In particular, ṽ solves P̃α(Ax). Further let w be defined by

w(t) := U1−αBαx(t) (t ≥ 0).

Let λ ∈ ρ(A). Since x ∈ D(A2) there exists y ∈ D(A) such that x = (λ −
A)−1y. It follows that

Bαx = Bα(λ− A)−1y = (λ− A)−1Bαy ∈ D(A).

This implies that

w̃ := (
t �→ t2α−1w′(t)

) ∈ Cb

([0,∞);X),

where for the boundedness of w̃ we used Lemma 2.8 with r := 1 − 2α. Note
that w̃(0) = B1−αBαx. If we apply (i) to 1 − α instead of α we find

t1−2α d

dt
t2α−1 d

dt
U1−αx(t) = U1−αAx(t) = t1−2α d

dt
UαB1−αx(t).
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Sending t → 0+ we conclude Ax = BαB1−αx. Let us show that the
operators Bα and B1−α commute on D(A2). Note that for y ∈ D(A) we have
B1−α(λ − A)−1y = (λ − A)−1B1−αy (by uniqueness of solutions). Hence,
we get B1−αAx = AB1−αx for x ∈ D(A2). This implies that the bounded
operator B1−α(λ − A)−1 commutes on D(A) with A and this in turn implies
the commutativity with Bα . So finally

BαB1−α(λ− A)−1y = B1−α(λ− A)−1Bαy

= B1−αBα(λ− A)−1y = B1−αBαx.

Therefore, we observe w̃(0) = Ax. Finally, we show that w̃ solves P̃α(Ax).
Let φ ∈ C∞

c

(
(0,∞)

)
. Since w solves the ODE in (1.1) we obtain

∞∫

0

w̃(t)
d

dt
t1−2α d

dt
t2α−1φ(t)dt = −

∞∫

0

AU1−αBαx(t)
d

dt
t2α−1φ(t)dt .

If we apply Hille’s theorem to the operator A it follows that

∞∫

0

w̃(t)φ(t)dt = −
∞∫

0

U1−αBαx(t)
d

dt
t2α−1φ(t)dt ∈ D(A)

and

−
∞∫

0

AU1−αBαx(t)
d

dt
t2α−1φ(t)dt = A

∞∫

0

w̃(t)φ(t)dt .

We conclude w̃ = ṽ by uniqueness of the solution to P̃α(Ax), and therefore
w′ = v′. Since w(0) = v(0) it follows that w = v. 	


Remark 2.11 On the first glance it seems awkward that the existence of a solution
to Pα(x) may not imply the existence of a solution to P1−α(x), but meanwhile
the authors are convinced that this is may indeed be the case, although a concrete
example for this is missing. Note that in the case α = 1/2 both problems are
identical which is why in this case only solvability of one problem is needed to
prove the result.

As a corollary to Theorem 2.10 we obtain a result similar to the one of
Lemma 2.7.

Corollary 2.12 Let x ∈ X. Then x ∈ D(Bα) if and only if Uαx ∈ D(Dα). In either
case, DαUαx = U1−αBαx.
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Proof Let x ∈ D(Bα). Then there exists a sequence (xn) in D(A) which is
convergent towards x in X such that Bαxn → Bαx. By Lemma 2.4, we have
Uαxn → Uαx and by Theorem 2.10 we obtain

DαUαxn = U1−αBαxn → U1−αBαx.

Since Dα is closed we get Uαx ∈ D(Dα) and DαUαx = U1−αBαx.
Conversely, let Uαx ∈ D(Dα). Choose a sequence (xn) in D(A2) such that xn →

x in X (since A is densely defined with non-empty resolvent set all its powers Ak are
densely defined as well). Let s > 0. Choose a delta sequence (φk) in C∞

c

(
(0,∞)

)

which converges towards δs in C
(
(0,∞)

)′
, i.e.,

∀f ∈ C
(
(0,∞)

) : lim
k→∞

∞∫

0

f (t)tφk(t)dt = f (s).

By Theorem 2.10, for t ≥ 0 we have

t1−2α d

dt
Uαxn(t) = U1−αBαxn(t) = BαU1−αxn(t).

Using the closedness of Bα , by Hille’s theorem we obtain

∞∫

0

t1−2α d

dt
Uα(t)xn φk(t)dt = Bα

∞∫

0

U1−α(t)xn φk(t)dt .

Sending n →∞ we get

∞∫

0

t1−2α d

dt
Uα(t)x φk(t)dt = Bα

∞∫

0

U1−α(t)x φk(t)dt .

Now, the limit k →∞ yields by closedness of Bα that

s1−2α d

ds
Uα(s)x = BαU1−αx(s)

Sending s → 0+ and using a last time the closedness of Bα finally yields x ∈
D(Bα). 	

Corollary 2.13 We have BαB1−α = B1−αBα = A.

Proof Note, that we already showed BαB1−αx = B1−αBαx = Ax for x ∈ D(A2).
So, let now x ∈ D(A). Then x ∈ D(Bα), essentially by definition and the fact that
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DαUαx = U1−αBαx by Corollary 2.12. But since x ∈ D(A) we have DαUαx =
U1−αBαx ∈ D(D1−α) so applying Corollary 2.12 once more with 1 − α instead of
α we obtain Bαx ∈ D(B1−α) and

UαB1−αBαx = D1−αDαUαx = AUαx = UαAx

in Cb

([0,∞);X). Evaluating at 0 yields B1−αBαx = Ax. Conversely, let x ∈
D(B1−αBα). By two applications of Corollary 2.12 we then obtain that Uαx ∈
D(D1−αDα). By Lemma 2.7, this implies x ∈ D(A). The equality B1−αBαx = Ax

is now verified in the same manner as before. The missing part of the Corollary
follows by exchanging α and 1 − α. 	


We end this paper by a conjecture, formulated as an open problem. Assume that
there exists an open sector Sφ ⊆ C of (half-)opening angle φ ∈ (0, π/2) around
the positive real axis such that for every δ ∈ (0, φ) the function Uαx is analytic on
Sδ and continuous and bounded on Sδ for all x ∈ D(A) w.r.t. the norm ‖·‖D(A).
Note that this implies that the same holds for U1−αx. Actually, it is well known
that this even implies analyticity of the mappings Uα and U1−α w.r.t. the topology
of L

(
D(A)

)
. We conjecture that A is then sectorial of angle ω := π − 2φ, and

Bα = Aα and B1−α = A1−α. Put differently, does analyticity of the solutions of
Pα(x) for all x ∈ D(A) yield sectoriality of the operator A? An affirmative answer
to this question would yield the converse of [7, Theorem 2.2] which states that
sectoriality of A yields analyticity of the solution of Pα(x).
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Time-Dependent Approach to Uniqueness
of the Sommerfeld Solution to a Problem
of Diffraction by a Half-Plane

A. Merzon, P. Zhevandrov, J. E. De la Paz Méndez, and T. J. Villalba Vega

Abstract We consider the Sommerfeld problem of diffraction by an opaque
half-plane interpreting it as the limiting case as t → ∞ of the corresponding
non-stationary diffraction problem. We prove that the Sommerfeld formula for the
solution is the limiting amplitude of the solution of this non-stationary problem
which belongs to a certain functional class and is unique in it. For the proof of
the uniqueness of solution to the non-stationary problem we reduce this problem,
after the Fourier–Laplace transform in t , to a stationary diffraction problem with a
complex wave number. This permits us to use the proof of the uniqueness in the
Sobolev space H 1 as in (Castro and Kapanadze, J Math Anal Appl 421(2):1295–
1314, 2015). Thus we avoid imposing the radiation condition from the beginning
and instead obtain it in a natural way.
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1 Introduction

The main goal of this paper is to prove the uniqueness of a solution to the Som-
merfeld half-plane problem [23, 32, 33] with a real wave number, proceeding from
the uniqueness of the corresponding time-dependent problem in a certain functional
class. The existence and uniqueness of solutions to this problem was considered in
many papers, for example in [8, 12, 25]. However, in our opinion, the problem of
uniqueness is still not solved in a satisfactory form from the point of view of the
boundary value problems (BVPs). The fact is that this problem is a homogeneous
BVP boundary value problem which admits various nontrivial solutions. Usually the
“correct” solutions are chosen by physical reasoning [23, 25, 32, 33], for example,
using the Sommerfeld radiation conditions and regularity conditions at the edge.

The question is: from where do the radiation and regularity conditions arise,
from the mathematical point of view?

Our goal is to show that they arise automatically from the non-stationary
problem. This means the following: we prove that the Sommerfeld solution is a
limiting amplitude of a solution to the corresponding non-stationary problem which
is unique in an appropriate functional class. Since the Sommerfeld solution, as is
well-known, satisfies the radiation and regularity conditions, our limiting amplitude
also satisfies them. Of course, the limiting amplitude principle (LAP) is very well-
known for the diffraction by smooth obstacles, see e.g. [28, 29], but we are unaware
of its rigorous proof in the case of diffraction by a half-plane.

The literature devoted to diffraction by wedges including the Sommerfeld
problem is enormous (see e.g. the review in [20]), and we will only indicate some
papers where the uniqueness is treated. In paper [25] a uniqueness theorem was
proven for the Helmholtz equation (!+ 1)u = 0 in two-dimensional regions D of
half-plane type. These regions can have a finite number of bounded obstacles with
singularities on their boundaries. In particular, the uniqueness of solution u to the
Sommerfeld problem was proven by means of the decomposition of the solution into
the sum u = g+h, where g describes the geometrical optics incoming and reflected
waves and h satisfies the Sommerfeld radiation condition (clearly, u should also
satisfy the regularity conditions at the edge).

In paper [8] exact conditions were found for the uniqueness in the case of
complex wave number. The problem was considered in Sobolev spaces for a wide
class of generalized incident waves, and for DD and NN boundary conditions. In
paper [12] the same problem was considered also for the complex wave number and
for DN boundary conditions. In both papers the Wiener-Hopf method has been used.
Time-dependent scattering by wedges was considered in many papers although their
number is not so large as the number of papers devoted to the stationary scattering
by wedges. We indicate here the following papers: [1–4, 13, 14, 24, 26–31]. The
detailed description of these papers is given in [19].

In [6, 7, 10, 17–20, 22], the diffraction by a wedge of magnitude φ (which can be
a half-plane in the case φ = 0 as in [20]) with real wavenumber was considered as
a stationary problem which is the “limiting case” of a non-stationary one. More



Time-Dependent Approach to Uniqueness of the Sommerfeld Solution 457

precisely, we seek the solutions of the classical diffraction problems as limiting
amplitudes of solutions to corresponding non-stationary problems, which are unique
in some appropriate functional class. We also, like in [25], decomposed the solution
of non-stationary problem separating a “bad” incident wave, so that the other part
of solution belongs to a certain appropriate functional class. Thus we avoided the
a priori use of the radiation and regularity conditions and instead obtained them in
a natural way. In papers [10, 17, 19] we considered the time-dependent scattering
with DD, DN and NN boundary conditions and proved the uniqueness of solution
in an appropriate functional class. But these results were obtained only for φ �= 0
because in the proof of uniqueness we used the Method of Complex Characteristics
[15, 16, 21] which “works” only for φ �= 0.

For φ = 0 we need to use other methods, namely, the reduction of the
uniqueness problem for the stationary diffraction to the uniqueness problem for the
corresponding non-stationary diffraction, which, in turn, is reduced to the proof of
uniqueness of solution of the stationary problem but with a complex wavenumber,
see e.g. [5].

Note that in [18] we proved the LAP for φ �= 0 and for the DD boundary
conditions. Similar results for the NN and DN boundary conditions were obtained
in [6, 7, 10]. A generalization of these results to the case of generalized incident
wave (cf. [8]) was given in [19]. This approach (stationary diffraction as the limit
of time-dependent one) permits us to justify all the classical explicit formulas
[13, 14, 20, 28–31] and to prove their coincidence with the explicit formulas given
in [17, 19, 22]. In other words, all the classical formulas are limiting amplitudes
of solutions to non-stationary problems as t → ∞. For the Sommerfeld problem,
this was proven in [20], except for the proof of the uniqueness of the solution to
the non-stationary problem in an appropriate class. This paper makes up for this
omission.

Our plan is as follows. The non-stationary diffraction problem is reduced by
means of the Fourier–Laplace transform with respect to time t to a stationary one
with a complex wave number. For this problem the uniqueness theorems can be
proven more easily in Sobolev classes (see an important paper [5]) and do not
use the radiation conditions. Then we prove that the Fourier–Laplace transforms of
solutions to non-stationary diffraction half-plane problem, whose amplitude tends
to the Sommerfeld solution, also belong to a Sobolev space for a rather wide class
of incident waves. This permits us to reduce the problem to the case of [5].

Let us pass to the problem setting. We consider the two-dimensional time-
dependent scattering of a plane wave by the half-plane

W 0 :=
{
(x1, x2) ∈ R

2 : x2 = 0, x1 ≥ 0
}
.

(Obviously, W 0 is a half-line in R
2, but if one recalls that the initial problem is

three-dimensional, W 0 becomes a half-plane; the third coordinate is suppressed in
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all what follows.) The non-stationary incident plane wave in the absence of obstacles
reads

ui(x, t) = e−iω0(t−n·x)f (t − n · x), x ∈ R
2, t ∈ R, (1.1)

where

ω0 > 0, n = (n1, n2) = (cos(π + α), sin(π + α)), (1.2)

and f is “a profile function”, such that f ∈ L1
loc(R), and

f (s) = 0, s < 0, sup(1 + |s|)p|f (s)| < ∞ for some p ∈ R, lim
s→+∞ f (s) = 1.

(1.3)

Remark 1.1 Obviously, these functions satisfy the D’Alembert equation
�ui(x, t) = 0 in the sense of distributions.

For definiteness, we assume that

π

2
< α < π. (1.4)

In this case the front of the incident wave ui reaches the half-plane W 0 for the first
time at the moment t = 0 and at this moment the reflected wave ur(x, t) is born
(see Fig. 1). Thus

ur(x, t) ≡ 0, t < 0.

Note that for t →∞ the limiting amplitude of ui is exactly equal to the Sommerfeld
incident wave [33] by (1.3), cf. also (2.1) below.

The time-dependent scattering with the Dirichlet boundary conditions is
described by the mixed problem

{
�u(x, t) := (∂2

t −!)u(x, t) = 0, x ∈ Q

u(x1,±0, t) = 0, x1 > 0

∣
∣
∣
∣
∣
t ∈ R, (1.5)

where Q := R
2 \W 0. The “initial condition” reads

u(x, t) = ui(x, t), x ∈ Q, t < 0, (1.6)

where ui is the incident plane wave (1.1).
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Fig. 1 Time-dependent diffraction by a half-plane

Introduce the non-stationary “scattered” wave us as the difference between u and
ui ,

us(x, t) := u(x, t)− ui(x, t), x ∈ Q, t ∈ R. (1.7)

Since �ui(x, t) = 0, (x, t) ∈ Q× R, we get from (1.6), (1.5) that

�us(x, t) = 0, (x, t) ∈ Q×R, (1.8)

us(x, t) = 0, x ∈ Q, t < 0, (1.9)

us(x1,±0, t) = −ui(x1, 0, t), x1 > 0, t > 0. (1.10)

Denote

ϕ± := π ± α. (1.11)

Everywhere below we assume that

x1 = r cosϕ, x2 = r sin ϕ, 0 ≤ ϕ < 2π. (1.12)

Let us define the nonstationary incident wave in the presence of the obstacle W 0,
which is the opaque screen,

u0
i (ρ, ϕ, t) :=

{
ui(ρ, ϕ, t), 0 < ϕ < ϕ+,

0, ϕ+ < ϕ < 2π.
(1.13)
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Remark 1.2 The function us has no physical sense, since ui �= u0
i . The wave us

coincides with the scattered wave u0
s := u− u0

i in the zone {(ρ, ϕ) : 0 < ϕ < ϕ+},
but in the zone {(ρ, ϕ) : ϕ+ < ϕ ≤ 2π} we have u0

s = us + ui .

The goal of the paper is to prove that the Sommerfeld solution of half-plane
diffraction problem is the limiting amplitude of the solution to time-dependent
problem (1.5), (1.6) (with any f satisfying (1.3)) and this solution is unique in an
appropriate functional class.

The paper is organized as follows. In Sect. 2 we recall the Sommerfeld solution.
In Sect. 3 we reduce the time-dependent diffraction problem to a “stationary” one
and define a functional class of solutions. In Sect. 4 we give an explicit formula
for the solution of time-dependent problem and prove that the Sommerfeld solution
is its limiting amplitude. In Sect. 5 we prove that the solution belongs to a certain
functional class. Finally, in Sect. 6 we prove the uniqueness.

2 Sommerfeld’s Diffraction

Let us recall the Sommerfeld solution [23, 33]. The stationary incident wave (rather,
the incident wave limiting amplitude) in the presence of the obstacle is

A0
i (ρ, ϕ) =

{
e−iω0ρ cos(ϕ−α), ϕ ∈ (0, ϕ+),

0, ϕ ∈ (ϕ+, 2π).
(2.1)

We denote this incident wave as A0
i since it is the limiting amplitude of the non-

stationary incident wave u0
i given by (1.13):

A0
i (ρ, ϕ) = lim

t→∞ eiω0tu0
i (x, t),

in view of formula (1.1), see Remark 1.2. The Sommerfeld half-plane diffraction
problem can be formulated as follows: find a function A(x), x ∈ Q, such that

{
(!+ ω2

0)A(x) = 0, x ∈ Q,

A(x1,±0) = 0, x1 > 0,
(2.2)

A(x) = A0
i (x)+Ar (x)+Ad (x), x ∈ Q, (2.3)

where Ar (x) is the reflected wave,

Ar (x) =
{
−e−iω0ρ cos(ϕ+α), ϕ ∈ (0, ϕ−),

0, ϕ ∈ (ϕ−, 2π),
(2.4)
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and Ad (x) is the wave diffracted by the edge,

Ad (x)→ 0, |x| → ∞. (2.5)

A. Sommerfeld [33] found the solution of this problem in the form

A(ρ, ϕ) = 1

4π

∫

C
ζ(γ, ϕ)e−iωρ cos γ dγ, ρ ≥ 0, ϕ ∈ [0, 2π],

where

ζ(γ, ϕ) :=
(

1 − ei(−γ+ϕ−α)/2
)−1 −

(
1 − ei(−γ+ϕ+α)/2

)−1
, γ ∈ C (2.6)

and C is the Sommerfeld contour (see [20, formula (1.1) and Fig. 3]).
In the rest of the paper we prove that this solution is the limiting amplitude of the

solution of time-dependent problem (1.5) and is unique in an appropriate functional
class.

The Sommerfeld diffraction problem can also be considered for NN and DN
half-plane. The corresponding formulas for the solution can be found in [19].

Sommerfeld obtained his solution using an original method of solutions of the
Helmholtz equation on a Riemann surface. Note that a similar approach was used
for the diffraction by a wedge of rational angle [9], where well-posedness in suitable
Sobolev space was proved.

3 Reduction to a “Stationary” Problem: Fourier–Laplace
Transform

Let ĥ(ω), ω ∈ C
+, denote the Fourier–Laplace transform Ft→ω of h(t),

ĥ(ω) = Ft→ω[h(t)] =
∞∫

0

eiωth(t) dt, h ∈ L1(R
+); (3.1)

Ft→ω is extended by continuity to S′(R+). Assuming that us(x, t) belongs to
S′(R2×R+) (see (1.9) and Definition 3.1), we apply this transform to system (1.8)–
(1.10), and obtain

{
(!+ ω2)̂us(x, ω) = 0, x ∈ Q,

ûs(x1,±0, ω) = −ûi(x1,±0, ω), x1 > 0

∣
∣
∣
∣
∣

ω ∈ C
+. (3.2)
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Let us calculate ûi(x, ω). Changing the variable t − n · x = τ , and using the fact
that suppf ⊂ R+ we obtain from (1.1) and (1.2) that

ûi(x, ω) = eiωn·xf̂ (ω − ω0). (3.3)

Hence,

ûi(x1, 0, ω) = eiωn1x1 f̂ (ω − ω0), x1 > 0,

and the boundary condition in (3.2) is ûs(x1, 0, ω) = −g(ω)eiωn1x1 . Therefore we
come to the following family of BVPs depending on ω ∈ C

+: find ûs (x, ω) such
that

{
(!+ ω2)̂us(x, ω) = 0, x ∈ Q,

ûs(x1,±0, ω) = −g(ω)eiωn1x1, x1 > 0.
(3.4)

We are going to prove the existence and uniqueness of solution to problem (1.5),
(1.6) such that us given by (1.7) belongs to the spaceM, which is defined as follows:

Definition 3.1 M is the space of functions u(x, t) ∈ S′(R2 × R+) such that its
Fourier–Laplace transform û(x, ω) is a holomorphic function on ω ∈ C

+ with
values in C2(Q) and

û(·, ·, ω) ∈ H 1(Q) (3.5)

for any ω ∈ C
+.

Remark 3.2 We use the classical definition [11] of the space H 1(Q) as the
completion of the space of smooth functions on Q with respect to the corresponding
norm. This definition does not coincide with the frequently used definition of
H 1(Q) as the space restrictions of distributions from H 1(R) to Q. In our case these
definitions lead to different spaces; in particular, the latter definition does not allow
for functions which are discontinuous across W 0. In [34], another space allowing for
the same class of functions was introduced; the proof of uniqueness of the solution
to our problem in that space is an open question.

Remark 3.3 Note that ui(x, t)
∣
∣
R2×R+ /∈ M, where for ϕ ∈ D(R2),

〈
ui(x, t)

∣
∣
R2×R+, ϕ

〉
:=

∫

R2×R+
u(x, t)ϕ(x, t) dx dt.

In fact,
∣
∣eiωn·x ∣∣ = eω2ρ cos(ϕ−α) and, for α− π/2 < ϕ < α + π/2, ω ∈ C

+ it grows
exponentially as ρ → ∞, and hence does not satisfy (3.5); because of this we use
system (1.8)–(1.10) instead of (1.5) (they are equivalent by (1.6)) since (1.8)–(1.10)
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involves only the values of ui on the boundary and the latter possess the Fourier–
Laplace transforms which do not grow exponentially.

Remark 3.4 Since for a (weak) solution of the Helmholtz equation us ∈ H 1(Q)

the Dirichlet and Neumann data exist in the trace sense and in the distributional
sense, respectively (see, e.g., [5]), problem (3.4) is well-posed. Hence, problem
(1.8)–(1.10) is well-posed too.

4 Connection Between the Non-stationary Diffraction
Problem (1.5) and (1.6) and the Sommerfeld Half-Plane
Problem

In paper [20] we solved problem (1.5) and (1.6). Let us recall the corresponding
construction. First we define the non-stationary reflected wave [20, formula (26)]:

ur(x, t) =
{
−e−iω0(t−n·x)f (t − n · x), ϕ ∈ (0, ϕ−)

0, ϕ ∈ (ϕ−, 2π)

∣
∣
∣
∣
∣

t ≥ 0, (4.1)

where n := (n1,−n2) = (− cosα, sin α) (see Fig. 1).
Note that its limiting amplitude coincides with (2.4) similarly to the incident

wave.
Second, we define the non-stationary diffracted wave (cf. [20, formula (31) for

φ = 0]). Let

Z(β, ϕ) := Z(β + 2πi − iϕ), (4.2)

and

ud(ρ, ϕ, t) = i

8π

∫

R

Z(β, ϕ)F (t − ρ coshβ) dβ, (4.3)

where ϕ ∈ (0, 2π), ϕ �= ϕ±; t ≥ 0,

F(s) = f (s)e−iω0s , (4.4)

Z(z) = −U
(
− iπ

2
+ z

)
+ U

(
− 5iπ

2
+ z

)
, (4.5)

U(ζ ) = coth
(
q(ζ − i

π

2
+ iα)

)
− coth

(
q(ζ − i

π

2
− iα)

)
, q = 1

4
(4.6)

for the Dirichlet boundary conditions. Below in Lemma 8.1 we give the necessary
properties of the function Z , from which the convergence of integral (4.3) follows.
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Obviously, the condition supp F ⊂ [0,∞) (see (3.1)) implies that supp ud(·, ·, t) ⊂
[0,+∞).

Remark 4.1 The function U(γ + ϕ) essentially coincides with the Sommerfeld
kernel (2.6). This is for a reason. In paper [17] it was proven that the solution to the
corresponding time-dependent diffraction problem by an arbitrary angle φ ∈ (0, π]
belonging to a certain class similar toM necessarily has the form of the Sommerfeld
type integral with the Sommerfeld type kernel.

Finally, we proved [20, Th. 3.2, Th 4.1] the following.

Theorem 4.2

(i) For f ∈ L1
loc(R) the function

u(ρ, ϕ, t) := u0
i (ρ, ϕ, t) + ur(ρ, ϕ, t) + ud(ρ, ϕ, t), ϕ �= ϕ± (4.7)

belongs to L1
loc(Q × R

+). It is continuous up to ∂Q × R and satisfies the
boundary and initial conditions (1.5), (1.6). The D’Alembert equation in (1.5)
holds in the sense of distributions.

(ii) The LAP holds for Sommerfeld’s diffraction by a half-plane:

lim
t→∞ eiω0tu(ρ, ϕ, t) = A(ρ, ϕ), ϕ �= ϕ±

(the limit here and everywhere else is pointwise).

Since the main object of our consideration will be the “scattered” wave us(x, t)

given by (1.7), we clarify the connection between us and the Sommerfeld solution
A.

Corollary 4.3 Define Ai (x) = e−iω0ρ cos(ϕ+α), which is the limiting amplitude of
ui(x, t) given by (1.1). The limiting amplitude of us(x, t) is the function

As(x) = A(x)−Ai (x), (4.8)

i.e. limt→∞ eiω0tus(x, t) = As(x).

Proof The statement follows from (1.7). 	

Remark 4.4 The function As is the limiting amplitude of the scattered non-
stationary wave us(x, t) and As satisfies the following nonhomogeneous BVP:

{
(!+ ω2

0)As (x) = 0, x ∈ Q,

As(x1,±0) = −Ai (x1, 0), x1 > 0.
(4.9)

This BVP (as well as (2.2)) is ill-posed since the homogeneous problem admits
many solutions (i.e., the solution is nonunique).
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Remark 4.5 As can be decomposed similarly to (2.3). Namely, by (4.8) and (2.3),
we have

As = A0
i +Ar (x)+Ad (x)−Ai (x) = Ar (x)+Ad (x)−A1

i (x), (4.10)

where A1
i (x) = Ai (x) − A0

i (x). Obviously, problems (4.9), (4.10) and (2.2), (2.3)
with condition (2.5) are equivalent, but the first problem is more convenient as we
will see later.

5 Solution of the “Stationary” Problem

In this section we will obtain an explicit formula for the solution of (3.4) and prove
that it belongs to H 1(Q) for all ω ∈ C

+.
Let Z(β, ϕ) be given by (4.2). First, we will need the Fourier–Laplace transforms

of the reflected and diffracted waves (4.1), (4.3).

Lemma 5.1 The Fourier–Laplace transforms of ur and ud are

ûr (x, ω) =
{
−f̂ (ω − ω0)e

−iωρ cos(ϕ+α), ϕ ∈ (0, ϕ−),
0, ϕ ∈ (ϕ−, 2π),

(5.1)

ûd (ρ, ϕ, ω) = i

8π
f̂ (ω−ω0)

∫

R

Z(β, ϕ) eiωρ coshβ dβ, ω ∈ C
+, ϕ �= ϕ±. (5.2)

Proof From (4.1) we have

ûr (x, ω) =
{
−Ft→ω

[
e−iω0(t−n·x)f (t − n · x)

]
, ϕ ∈ (0, ϕ−),

0, ϕ ∈ (ϕ−, 2π).

Further,

−Ft→ω

[
e−iω0(t−n·x)f (t − n · x)

]
= −eiω0(n·x)

∞∫

0

ei(ω−ω0)tf (t − n · x) dt.

Changing the variable t − n · x = τ , we obtain

ûr (x, ω) = −eiω n·x
∞∫

−n·x
ei(ω−ω0)τ f (τ ) dτ, ϕ ∈ (0, ϕ−).
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Moreover, by (4.1),

−n · x = ρ cos(ϕ − α) ≤ c < 0, ϕ ∈ (0, ϕ−),

since π/2 < α < ϕ + α < π by (1.4) and (1.11). Hence, we obtain (5.1), since
suppf ⊂ R+. The second formula in (5.1) follows from definition (4.1) of ur .

Let us prove (5.2). Everywhere below we put ω = ω1 + iω2, ω1,2 ∈ R, ω2 > 0,
for ω ∈ C

+. By Lemma 8.1(i), (1.3) and (4.4) we have

∣
∣
∣eiωtZ(β, ϕ)F (t − ρ coshβ)

∣
∣
∣ ≤ Ce−ω2t e−β/2(1+ t)−p, ρ < 0, ϕ �= ϕ±, β ∈ R.

Hence, by the Fubini Theorem there exists the Fourier–Laplace transform of
ud(·, ·, t) and

ûd(ρ, ϕ, ω) = i

8π

∫

R

Z(β, ϕ)Ft→ω

[
F(t − ρ coshβ)

]
dβ, ϕ �= ϕ±. (5.3)

We have

G(ρ, β, ω) := Ft→ω

[
F(t − ρ coshβ)

]
=

∞∫

0

eiωtF (t − ρ coshβ) dt, ω ∈ C
+.

Making the change of the variable τ = t − ρ coshβ in the last integral and
using the fact that supp F ⊂ [0,∞) and F̂ (ω) = f̂ (ω − ω0) by (4.4), we get
G(ρ, β, ω) = eiωρ coshβf̂ (ω−ω0). Substituting this expression into (5.3) we obtain
(5.2). Lemma 5.1 is proven. 	


5.1 Estimates for ûr, ∂ρûr, ∂ϕûr

Lemma 5.2 For any ω ∈ C, there exist C(ω), c(ω) > 0, such that both functions
ûr and ∂ρûr admit the same estimate

∣
∣
∣̂ur(ρ, ϕ, ω)

∣
∣
∣ ≤ C(ω)e−c(ω)ρ

∣
∣
∣∂ρûr(ρ, ϕ, ω)

∣
∣
∣ ≤ C(ω)e−c(ω)ρ

∣
∣
∣
∣
∣
∣

ρ > 0, ϕ ∈ (0, 2π), ϕ �= ϕ±. (5.4)

and ∂ϕûr (ρ, ϕ, ω) admits the estimate

|∂ϕûr(ρ, ϕ, ω)| ≤ C(ω)ρ e−c(ω)ρ, ρ > 0. (5.5)
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Proof By (1.4) there exits c(ω) > 0 such that

∣
∣
∣e−iωρ cos(ϕ+α)

∣
∣
∣ = eω2ρ cos(ϕ+α) ≤ e−c(ω)ρ, 0 < ϕ < ϕ−

by (1.4). Therefore (5.4) holds for ûr . Hence, differentiating (5.1) we obtain (5.4)
for ∂ρûr and (5.5) for ∂ϕûr , for ϕ �= ϕ−. 	


5.2 Estimates for ûd

Proposition 5.3 There exist C(ω), c(ω) > 0 such that the function ûd , and ∂ρûd ,
∂ϕûd admit the estimates

∣
∣
∣̂ud(ρ, ϕ, ω)

∣
∣
∣ ≤ C(ω)e−c(ω)ρ,

∣
∣
∣∂ρûd (ρ, ϕ, ω)

∣
∣
∣ ≤ C(ω)e−c(ω)ρ(1 + ρ−1/2),

∣
∣
∣∂ϕûd (ρ, ϕ, ω)

∣
∣
∣ ≤ C(ω)e−c(ω)ρρ(1 + ρ−1/2)

(5.6)

for ρ > 0, ϕ ∈ (0, 2π), ϕ �= ϕ±.

Proof

(I) By (5.2), in order to prove (5.6) for ûd it suffices to prove that

|A(ρ, ϕ, ω)| ≤ C(ω)e−c(ω)ρ, (5.7)

where

A(ρ, ϕ, ω) :=
∫

R

Z(β, ϕ)eiωρ coshβ dβ, ϕ �= ϕ±. (5.8)

Represent A as A = A1 + A2, where

A1(ρ, ϕ, ω) :=
1∫

−1

Z(β, ϕ)eiωρ coshβ dβ

A2(ρ, ϕ, ω) :=
∫

|β|≥1

Z(β, ϕ)eiωρ coshβ dβ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕ ∈ (0, 2π), ϕ �= ϕ±.

(5.9)
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The estimate (5.7) for A2 follows from (8.1) (see Appendix 1). It remains to
prove the same estimate for the function A1. Let

ε± := ϕ± − ϕ. (5.10)

Representing A1 as

A1(ρ, ϕ, ω) = −4K0(ρ,w, ε+)+ 4K0(ρ,w, ε−)+
1∫

−1

Ž(β, ϕ)eiωρ coshβ dβ,

where K0 is defined by (8.7), we obtain (5.7) for A1 from Lemma 8.2 (i) and
(8.3).

(II) Let us prove (5.6) for ∂ρûd . By (5.2) it suffices to prove that

|B(ρ, ϕ, ω)| ≤ C(ω)e−c(ω)ρ(1 + ρ1/2), ϕ �= ϕ±, (5.11)

where

B(ρ, ϕ, ω) :=
∫

R

Z(β, ϕ) coshβ eiωρ coshβ dβ.

Represent B as B1 + B2, where B1,2(ρ, ϕ, ω) are defined similarly to (5.9),

B1(ρ, ϕ, ω) :=
1∫

−1

Z(β, ϕ) coshβeiωρ coshβ dβ,

B2(ρ, ϕ, ω) :=
∫

|β|≥1

Z(β, ϕ) coshβeiωρ coshβ dβ, ϕ �= ϕ±.

From (8.1) for Z we have

|B2(ρ, ϕ, ω)| ≤ C1

∞∫

1

eβ/2e−
1
2ω2ρe

β

dβ.

Making the change of the variable ξ := ρeβ , we get

|B2(ρ, ϕ, ω)| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1(ω)ρ
−1/2, ρ ≤ 1,

∞∫

ρ

e−ω2ξ/2

ξ1/2 dξ, ρ ≥ 1.
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Since for ρ ≥ 1,

∞∫

ρ

e−ω2ξ/2

ξ1/2
dξ ≤ 2

ω2
e−ω2ρ/2,

Equation (5.11) is proved for B2.
It remains to prove estimate (5.11) for B1. Using (8.2) and (8.8) we write

B1(ρ, ϕ, ω) = −4K1(ρ, ω, ε+)+ 4K1(ρ, ω, ε−)+
1∫

−1

Ž(β, ϕ) · cosβ eiωρ cosh β dβ.

Hence, B1 satisfies (5.7) (and, therefore, (5.11)) by Lemma 8.2 (i) and (8.3).
(III) Let us prove (5.6) for ∂ϕûd . By (5.2) it suffices to prove this estimate for ∂ϕA,

where A is given by (5.8). From (9.3) we have

∂ϕA(ρ, ϕ, ω) = −ωρA3(ρ, ϕ, ω),

A3(ρ, ϕ, ω) =
∫

R

Z(β, ϕ) sinhβ eiωρ coshβ dβ, ϕ �= ϕ±.
(5.12)

Similarly to the proof of estimate (5.11) for B, we obtain the same estimate
for A3, so, by (5.12), the estimate (5.6) follows. Proposition 5.3 is proven.

	

Now define the function

u0
s (ρ, ϕ, t) = u(ρ, ϕ, t) − u0

i (ρ, ϕ, t), ϕ �= ϕ+, t > 0, (5.13)

where u0
i is given by (1.13). Then by (4.7),

u0
s (ρ, ϕ, t) = ur(ρ, ϕ, t) + ud(ρ, ϕ, t), ϕ �= ϕ±, t > 0, (5.14)

where ur is given by (4.1) and ud is given by (4.3).

Corollary 5.4 Let û0
s (ρ, ϕ, ω) be the Fourier–Laplace transform of the function

u0
s (ρ, ϕ, t). Then the functions û0

s , ∂ρû0
s and ∂ϕû

0
s satisfy (5.6).

Proof From (5.14) we have

û0
s (ρ, ϕ, ω) = ûr (ρ, ϕ, ω) + ûd(ρ, ϕ, ω), ϕ �= ϕ±, ω ∈ C

+, (5.15)

where ûr and ûd are defined by (5.1) and (5.2), respectively. Hence the statement
follows from Lemma 5.2 and Proposition 5.3. 	
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5.3 Estimates for ûs(x, ω)

To estimate ûs it is convenient to introduce one more “part” u1
i of the non-stationary

incident wave ui , namely the difference between ui and u0
i .

From (1.7) and (5.13) it follows that

us(ρ, ϕ, t) = u0
s (ρ, ϕ, t) − u1

i (ρ, ϕ, t), ϕ �= ϕ± (5.16)

where u1
i (ρ, ϕ, t) := ui(ρ, ϕ, t)− u0

i (ρ, ϕ, t). From (1.1) and (1.13) it follows that

u1
i (ρ, ϕ, t) =

{
0, 0 < ϕ < ϕ+,

−ui(ρ, ϕ, t), ϕ+ < ϕ < 2π.
(5.17)

By (3.3),

û1
i (ρ, ϕ, ω) =

{
0, 0 < ϕ < ϕ+,

−f̂ (ω − ω0) e
iωn·x, ϕ+ < ϕ < 2π.

(5.18)

Lemma 5.5 There exist C(ω), c(ω) > 0 such that û1
i , ∂ρû1

i satisfy (5.4) and ∂ϕû
1
i

satisfies (5.5) for ϕ ∈ (0, 2π), ϕ �= ϕ±.

Proof By (3.3) it suffices to prove the statement for eiωn·x when ϕ ∈ (ϕ+, 2π).
Since |eiωn·x | = eω2ρ cos(ϕ−α), ϕ ∈ (ϕ+, 2π) we have

∂ρe
ω2ρ cos(ϕ−α) = ω2 cos(ϕ − α)eω2ρ cos(ϕ−α),

∂ϕe
ω2ρ cos(ϕ−α) = −ω2ρ sin(ϕ − α)eω2ρ cos(ϕ−α),

(5.19)

and for ϕ ∈ (ϕ+, 2π), we have |eω2ρ cos(ϕ−α)| ≤ e−cω2ρ , c > 0, ϕ ∈ (ϕ+, 2π),
because cos(ϕ − α) ≤ −c < 0 by (1.4). Hence the statement follows from (5.19).

	

Corollary 5.6 The functions ûs , ∂ρûs and ∂ϕûs satisfy (5.6) for ϕ ∈ (0, 2π), ϕ �=
ϕ±.

Proof From (5.16) it follows that

ûs (ρ, ϕ, ω) = û0
s (ρ, ϕ, ω)− û1

i (ρ, ϕ, ω). (5.20)

Thus the statement follows from Corollary 5.4 and Lemma 5.5. 	

It is possible to get rid of the restriction ϕ �= ϕ± in Corollary 5.6.
Let l± = {(ρ, ϕ) : ρ > 0, ϕ = ϕ±}.
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Proposition 5.7 The functions ûs (·, ·, ω), ∂ρûs(·, ·, ω) and ∂ϕûs(·, ·, ω) belong to
C2(Q), and satisfy (5.6) in Q (including l+ ∪ l−), and

(!+ ω2)̂us(ρ, ϕ, ω) = 0, (ρ, ϕ) ∈ Q, ω ∈ C
+. (5.21)

Proof The function ûs(ρ, ϕ, ω) satisfies (5.21) in Q \ (l+ ∪ l−). This follows
directly from the explicit formulas (5.20). In fact, (5.20) and (5.15) imply

ûs = ûr + ûd − û1
i . (5.22)

The function ûr satisfies (5.21) for ϕ �= ϕ±, û1
i satisfies (5.21) for ϕ �= ϕ± by

(5.17) and (3.3) and ûd satisfies (5.21) for ϕ �= ϕ± by (5.2), see Appendix 2. It
remains only to prove that ûs ∈ C2(Q), because this will mean that (5.6) holds by
Corollary 5.6 (and continuity) and (5.21) holds in Q including l±.

Let us prove this for ϕ close to ϕ−. The case of ϕ close to ϕ+ is analyzed
similarly.

Let h(s) be defined in (C\R)∩B(s∗), where B(s∗) is a neighborhood of s∗ ∈ R.
Define the jump of h at the point s∗ as

J (h, s∗) := lim
ε→0+h(s∗ + iε)− lim

ε→0+h(s∗ − iε).

We have J (̂ur (ρ, ϕ, ω), ϕ−) = f̂ (ω − ω0)e
−iωρ by (5.1).

Similarly,

J
(
∂ϕûr (ρ, ϕ, ω), ϕ−

) = 0, J
(
∂ϕϕûr(ρ, ϕ, ω), ϕ−

) = −f̂ (ω − ω0)(iωρ)e
iωρ .

From (5.2), (5.10), (8.2), and (8.3) we have

J (̂ud (ρ, ϕ, ω), ϕ−) = i

8π
f̂ (ω − ω0)

∫ 1

−1

4

β + iε
eiωρ coshβ dβ

∣
∣
∣
∣

ε−=−0

ε−=+0

= −J (̂ur (ρ, ϕ, ω), ϕ−) . (5.23)

Further, by (8.4),

J
(
∂ϕûd(ρ, ϕ, ω), ϕ−

) = 0 = −J
(
∂ϕûr (ρ, ϕ, ω), ϕ−

)
.

Finally, consider

M := J
(
∂ϕϕûd(ρ, ϕ, ω), ϕ−

)
.
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Similarly to (5.23), expanding eiωρ cosβ in the Taylor series in β (at 0) and noting

that all the terms
∫ βk dβ

(β+iε−)3 , k �= 2, are continuous, we obtain

M = − i

π
f̂ (ω − ω0)

1∫

−1

eiωρ cosβ

(β + iε−)3 dβ

∣
∣
∣
∣

ε−=−0

ε−=+0

= −if̂ (ω − ω0)(iωρ)e
iωρ

2π

1∫

−1

β2

(β + iε−)3
dβ

∣
∣
∣
∣

ε−=−0

ε−=+0

.

Hence,

M = f̂ (ω − ω0)(iωρ)e
iωρ = −J (̂ur(ρ, ϕ, ω), ϕ−) .

Since ûi
i(ρ, ϕ, ω) is smooth on l− by (5.18), we obtain from (5.22) that ûs ∈ C2(l−).

Similarly using (5.1), (5.17) and (1.1) we obtain ûs ∈ C2(l+). So ûs ∈ C2(Q).
Proposition 5.7 is proven. 	

Corollary 5.8

(i) The function ûs (·, ·, ω) belongs to the space H 1(Q) for any ω ∈ C
+.

(ii) The function us(x, t) ∈M.

Proof

(i) Everywhere below x = (ρ, ϕ) ∈ Q \ (l1 ∪ l2). It suffices to prove that

us(·, ·, ω), ∂xkus(·, ·, ω) ∈ L2(Q), k = 1, 2, ω ∈ C
+. (5.24)

First, by Proposition 5.7, ûs (x, ω) satisfies (5.6). Hence, ûs (·, ω) ∈ L2(Q) for
any ω ∈ C

+. Further, using (1.12), we have

|∂x1us(·, ·, ω)|2 ≤ | cosϕ|2|∂ρus(·, ·, ω)|2 + | sin ϕ|2
ρ2 |∂ϕus(·, ·, ω)|2.

Hence, by Proposition 5.7,

|∂x1us(·, ·, ω)|2 ≤ C(ω)e−2c(ω)
(

1 + 1

ρ

)

.

This implies that ∂x1us ∈ L2(Q), since c(ω) > 0. Similarly, ∂x2us(·, ·, ω) ∈
L2(Q). (5.24) is proven.

(ii) The statement follows from Definition 3.1. 	
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6 Uniqueness

In Sect. 5 we proved the existence of solution to (1.8)–(1.10) belonging to M. In
this section prove the uniqueness of this solution in the same space.

Recall that we understand the uniqueness of the time-dependent Sommerfeld
problem (1.5)–(1.6) as the uniqueness of the solution us given by (1.7) of the mixed
problem (1.8)–(1.10) in the space M.

The following theorem is the main result of the paper.

Theorem 6.1

(i) Problem (1.8)–(1.10) admits a solution belonging to the space M. Its limiting
amplitude exists and is the solution of problem (4.9). The connection between
this limiting amplitude and the Sommerfeld solution is given by (4.8).

(ii) Problem (1.8)–(1.10) admits a unique solution in the space M.

Proof The statements contained in item (i) follow from Corollary 5.8, Corollary 4.3,
and Remark 4.4.

(ii) Let us prove the uniqueness. We follow closely the proof of Theorem 2.1
from [5]. Suppose that there exist two solutions us(x, t) and vs(x, t) of system
(1.8)–(1.10) belonging to M. Consider ws(x, t) := us(x, t)− vs(x, t).

Then ŵs(·, ·, ω) = ûs(·, ·, ω) − v̂s (·, ·, ω), where ûs , v̂s (and, therefore, ŵs )
satisfy all the conditions of Proposition 5.7 and ŵs |W 0 = 0 by (3.4).

Let us prove that ŵs(·, ·, ω) ≡ 0. Let R be a sufficiently large positive number
and B(R) be the open disk centered at the origin with radius R. Set QR := Q ∩
B(R). Note that QR has a piecewise smooth boundary SR and denote by n(x) the
outward unit normal vector at the non-singular points x ∈ SR .

The first Green identity for ws(ρ, ϕ, ·) and its complex conjugate ws in the
domain QR , together with zero boundary conditions on SR , yield

∫

QR

[
|∇ŵs |2 − ω2|ŵs |2

]
dx =

∫

∂B(R)∩Q

(
∂nŵs

)
·
(
ws

)
dSR.

From the real and imaginary parts of the last identity, we obtain

∫

QR

[
|∇ŵs |2 +

(
Imω

)2|ŵs |2
]
dx = Re

∫

∂B(R)∩Q

(
∂nŵs

)(
ŵs

)
dSR (6.1)

for Reω = 0 and

− 2
(
Reω

)(
Imω

)
∫

QR

|ŵs |2 dx = Im
∫

∂B(R)∩Q

(
∂nws

)(
ws

)
dSR (6.2)
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for Re ω �= 0. Recall that we consider the case Im k �= 0. Now, note that since
ω̂s ∈ H 1(Q), there exist a monotonic sequence of positive numbers {Rj } such that
Rj →∞ as j →∞ and

lim
j→∞

∫

∂B(Rj )∩Q

[
∂nŵs

][
ŵs

]
dSRj = 0. (6.3)

Indeed, in polar coordinates (ρ, ϕ), we have that the integrals

∞∫

0

⎛

⎝R

2π∫

0

|ŵs(ρ, ϕ)|2dϕ
⎞

⎠ dR and

∞∫

0

⎛

⎝R

2π∫

0

|∂nŵs(ρ, ϕ)|2dϕ
⎞

⎠ dR

are finite. This fact, in particular, implies that there exist a monotonic sequence of
positive numbers Rj such that Rj →∞ as j →∞ and

2π∫

0

|ŵs(Rj , ϕ)|2dϕ = o(R−1
j ),

2π∫

0

|∂nŵs(Rj , ϕ)|2dϕ = o(R−1
j ) as j →∞.

Further, applying the Cauchy-Schwarz inequality for every Rj , we get

∣
∣
∣
∣
∣
∣

2π∫

0

∂nŵs(Ri, ϕ)ŵs(Ri, ϕ)dϕ

∣
∣
∣
∣
∣
∣
≤

2π∫

0

|∂nŵs(Ri, ϕ)ŵs(Ri, ϕ)|dϕ

≤
⎛

⎝

2π∫

0

|∂nŵs(Ri, ϕ)|2dϕ
⎞

⎠

1/2⎛

⎝

2π∫

0

|ŵs(Ri, ϕ)|2dϕ
⎞

⎠

1/2

= o(R−1
j ) as j →∞,

and therefore we obtain (6.3).
Since the expressions under the integral sign in the left hand sides of equalities

(6.1) and (6.2) are non-negative, we have that these integrals are monotonic with
respect to R. This observation together with (6.3) implies

∫

Q

[
|∇ŵs |2 +

(
Imω

)2|ŵs |2
]
dϕ = lim

R→∞

∫

QR

[
|∇ŵs |2 +

(
Imω

)2|ŵs |2
]
dϕ = 0
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Fig. 2 Uniqueness

for Re ω = 0 and
∫

Q

|ŵs |2 dϕ = lim
R→∞

∫

QR

|ŵs |2 dϕ = 0

for Re ω �= 0. Thus, it follows from the last two identities that ŵs = 0 in Q (Fig. 2).
	


7 Conclusion

We proved that the Sommerfeld solution to the half-plane diffraction problem
for a wide class of incident waves is the limiting amplitude of the solution of
the corresponding time-dependent problem in a functional class of generalized
solutions. The solution of the time-dependent problem is shown to be unique in
this class. It is also shown that the limiting amplitude automatically satisfies the
Sommerfeld radiation condition and the regularity condition at the edge.

Acknowledgments The authors are grateful to CONACYT (México) and CIC (UMSNH) for
partial financial support. We are also grateful to anonymous referees for valuable comments.

8 Appendix 1

Lemma 8.1

(i) The functions Z (given by (4.2)) and ∂ϕZ admit uniform with respect to ϕ ∈
[0, 2π] estimates

|Z(β, ϕ)| ≤ Ce−|β|/2, |∂ϕZ(β, ϕ)| ≤ Ce−|β|/2, |β| ≥ 1. (8.1)

(ii) The function Z admits the representation

Z(β, ϕ) = − 4

β + iε+
+ 4

β + iε−
+ Ž(β, ϕ), ε± �= 0 (8.2)
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with

Ž(β, ϕ) ∈ C∞(R× [0, 2π]), |Ž(β, ϕ)| ≤ C, β ∈ R× [0, 2π]. (8.3)

(iii) The function ∂ϕZ admits the representation

∂ϕZ = − 4i

(β + iε+)2 +
4i

(β + iε−)2 + Ž1(β, ϕ), ε± �= 0, (8.4)

with

Ž1(β, ϕ) ∈ C∞(R×[0, 2π]), |Ž1(β, ϕ)| ≤ C, β ∈ R×[0, 2π]. (8.5)

Proof

(i) For a = im, b = in, we have

coth a − coth b = − sinh(α/2)

sinh(b) sinh(a)
.

Hence for m = −π/8+a/4 and n = −π/8−a/4 we obtain the estimate (8.1)
for U(ζ ) given by (4.6) with respect to ζ . So (8.1) for Z follows from (4.5)
and (4.2).

(ii) From (4.5) and (4.6) it follows that the function Z admits the representation

Z(β, ϕ) = Z+(β, ϕ)+ Z−(β, ϕ)+ Z+(β, ϕ)+ Z−(β, ϕ),

where

Z±(β, ϕ) = ± coth

(
β + i(ϕ± − ϕ)

4

)

,

Z±(β, ϕ) = ± coth

(
β − i

(
ϕ± + ϕ

)

4

)

.

(8.6)

Further, since | coth z− 1/z| ≤ C, |Im z| ≤ π , z �= 0, we have

Z±(β, ϕ) = ± 4

β + iε±
+ Ž±(β, ϕ), ϕ �= ϕ±,

and

Ž±(β, ϕ) ∈ C∞(R× [0, 2π]), |Ž±(β, ϕ)| ≤ C, (β, ϕ) ∈ R× [0, 2π].
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Finally, by (1.4),

Z±(β, ϕ) ∈ C∞(R× [0, 2π]), |Z±(β, ϕ)| ≤ C, (β, ϕ) ∈ R× [0, 2π].

Therefore, (8.2) and (8.3) are proven.
(iii) From (8.2) and (5.10) we get (8.4). Finally, by (8.6),

∂ϕZ
±(β, ϕ) ∈ C∞(R× [0, 2π ]), |∂ϕZ±(β, ϕ)| ≤ C, (β, ϕ) ∈ R× [0, 2π ].

Moreover, since

∂ϕZ±(β, ϕ)± [4i/(β + ε±)2] ∈ C∞([R× [0, 2π]),

and is bounded in the same region, (8.5) holds.
	


For ε, β ∈ R, ε �= 0, ρ > 0, ω ∈ C
+, let

K0(β, ρ, ω, ε) := eiωρ coshβ

β + iε
, K0(ρ, ω, ε) :=

1∫

−1

K(β, ρ, ω, ε) dβ, (8.7)

K1(β, ρ, ω, ε) := coshβ · eiωρ coshβ, K1(ρ, ω, ε):=
1∫

−1

K1(β, ρ, ω, ε) dβ,

(8.8)

K2(β, ρ, ϕ, ε) := eiωρ coshβ

(β + iε)2
, K2(ρ, ω, ε) :=

1∫

−1

K2(β, ρ, ω, ε) dβ dβ.

Lemma 8.2 There exist C(ω) > 0, c(ω) > 0 such that the functions K0, K1, and
K2 satisfy the estimates

|K0,1,2(ρ, ω, ε)| ≤ C(ω)e−c(ω)ρ, ρ > 0, ϕ ∈ (0, 2π), ε �= 0. (8.9)

Proof It suffices to prove (8.9) for 0 < ε < ε0, since the functions K0,K1,K2 are
odd with respect to ε, and for ε ≥ ε0 > 0 they satisfy the estimate

∣
∣
∣K0,1,2(β, ρ, ω, ε)

∣
∣
∣ ≤ C(ε0)

1∫

−1

e−ω2ρ dβ ≤ 2C(ε0)e
−ω2ρ.
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(I) Let us prove (8.9) for K0. Let

coshβ := 1 + h(β), β ∈ C. (8.10)

Define ε0 = ε0(ω) such that

|h(β)| < 1

4
, |ω1||h(β)| ≤ ω2

4
for |β| ≤ 2ε0 := r, (8.11)

and define the contour

γr := {β = reiθ , −π < θ < 0}. (8.12)

Then we have by the Cauchy Theorem

K0(ρ, ω, ε) = I1(ρ, ω, ε) + I2(ρ, ω, ε) − 2πi Resβ=−iε K0(β, ρ, ω, ε),

where

I1(ρ,ω, ε) =
∫

γr

K0(β, ρ,ω, ε) dβ, I2(ρ,ω, ε) =
( −r∫

−1

+
1∫

r

)

K0(β, ρ,ω, ε) dβ

and 0 < ε < ε0. First,

|Resβ=−iε K0(β, ρ, ω, ε)| = e−ω2ρ cos ε ≤ e−
1
2ω2ρ, 0 < ε < ε0,

(8.13)
by (8.11). Further, from (8.10) we have

∣
∣I1(ρ, ω, ε)

∣
∣ ≤

∫

γr

∣
∣
∣e
−ω2ρ

(
1+h(β)

)

e
iω1ρ

(
1+h(β)

)∣
∣
∣

|β + iε| |dβ|

≤ 1

ε0
e−ω2ρ

∫

γr

∣
∣e−ω2ρ h(β)+iω1ρ h(β)

∣
∣
∣
∣dβ

∣
∣, (8.14)

since for β ∈ γr we have |β + iε| ≥ |β| − ε = 2ε0 − ε > ε0, see Fig. 3.
Let h(β) := h1(β)+ ih2(β). Then

|I1(ρ, ω, ε)| ≤ 1

ε0
e−ω2ρ

∫

γr

eω2ρ |h1(β)| e|ω1|ρ |h2(β)| dβ ≤ 2πe−ω2ρ/2,

(8.15)



Time-Dependent Approach to Uniqueness of the Sommerfeld Solution 479

Fig. 3 Contour γr

by (8.11). Finally,

|I2(ρ, ω, ε)| ≤
∫

[−1,−r]∪[r,1]

∣
∣
∣
∣
e−ω2ρ coshβ+iω1ρ coshβ

β + iε

∣
∣
∣
∣ dβ ≤ e−ω2ρ

2ε0(ω)
,

(8.16)

since |β + iε| ≥ 2ε0, β ∈ [−1,−r] ∪ [r, 1]. From (8.14)–(8.16), we obtain
(8.9) for K0.

(II) Let us prove (8.9) for K1. Let h(β), ε0(ω), γr be defined by (8.10)–(8.12).
Then we have by the Cauchy Theorem

K1(ρ, ω, ε) :=
∫

γr∪[−1,r]∪[r,1]
K1(β, ρ, ω, ε) dβ

− 2πi Resβ=−iε K1(β, ρ, ω, ε), 0 < ε < ε0. (8.17)

First, similarly to (8.13), we obtain

∣
∣Resβ=−iε K1(β, ρ, ω, ε)

∣
∣ ≤ |ω|e−ω2ρ

2 ,

by (8.11). Further, by (8.11) similarly to the proof of (8.14), (8.15), and using
(8.10), we get

∣
∣
∣
∣

∫

γr

K1(β, ρ, ω, ε) dβ

∣
∣
∣
∣ ≤

|ω|
ε0

· 5

4
e−ω2ρ

∫

γr

|e−ω2ρ h(β) eiω1ρ h(β)| |dβ|

≤ C(ω)e−
ω2ρ

2 . (8.18)
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Finally, similarly to the proof of (8.16) we get the estimate

∣
∣
∣
∣

∫

[−1,−r]∪[r,1]
K1(β, ρ, ω, ε) dβ

∣
∣
∣
∣ ≤ C(ω) e−ω2ρ. (8.19)

From (8.17)–(8.19), we obtain (8.9) for K1.
(III) Estimate (8.9) for K2 is proved similarly to the same estimate for K0 and K1

with obvious changes. Lemma 8.2 is proven. 	


9 Appendix 2

Lemma 9.1 We have
(
!+ ω2

)
ud(ρ, ϕ, ω) = 0, ϕ �= ϕ±, ω ∈ C

+. (9.1)

Proof By (5.2) it suffices to prove (9.1) for

Ad(ρ, ϕ, ω) :=
∫

R

Z(β, ϕ)eiωρ coshβ dβ. (9.2)

Since ω ∈ C
+ the integral (9.2) converges after differentiation with respect to ρ and

ϕ. We have

∂ρAd(ρ, ϕ, ω) = (iω)

∫

R

Z(β, ϕ) coshβ eiωρ coshβ dβ,

∂2
ρAd(ρ, ϕ, ω) = −ω2

∫

R

Z(β, ϕ) cosh2 β eiωρ coshβ dβ.

Integrating by parts, we have by (4.2) and (8.1)

∂ϕAd(ρ, ϕ, ω) =
∫

R

∂ϕ

(
Z0(β + 2πi − iϕ)

)
eiωρ coshβ dβ

= −ωρ

∫

R

Z(β, ϕ) sinhβ eiωρ coshβ dβ, ϕ �= ϕ±. (9.3)
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Hence, similarly to (9.3)

∂2
ϕϕAd(ρ, ϕ, ω) = −iωρ

∫

R

Z(β, ϕ)
[

coshβ + iωρ sinh2 β
]
eiωρ coshβ dβ,

and

(!+ ω2)ud(ρ, ϕ, ω) =∂2
ρAd(ρ, ϕ, ω)+ 1

ρ
∂ρAd(ρ, ϕω)

+ 1

ρ2 ∂
2
ϕAd(ρ, ϕ, ω)+ ω2Ad(ρ, ϕ, ω) = 0. 	
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1 Introduction

Recall that a function f : I ⊆ R → R is said to be convex on the interval I , if it
satisfies the Jensen inequality

f

(
n∑

i=1

wixi

)

≤
n∑

i=1

wif (xi), (1.1)

for all choices of positive scalars w1, . . . , wn with
∑n

i=1 wi = 1 and xi ∈ I . It is
well known that this general form is equivalent to the same inequality when n = 2.

In 2003, Mercer found a variant of (1.1), which reads as follows.

Theorem 1.1 ([7, Theorem 1.2]) If f is a convex function on [m,M], then

f

(

M +m−
n∑

i=1

wixi

)

≤ f (M)+ f (m)−
n∑

i=1

wif (xi), (1.2)

for all xi ∈ [m,M] and all wi ∈ [0, 1] (i = 1, . . . , n) with
∑n

i=1 wi = 1.

There are many versions, variants and generalizations for the inequality (1.2);
see for example [1, 2, 9].

It is customary in the field of Mathematical inequalities to extend scalar
inequalities, like (1.1) and (1.2), to operators on Hilbert spaces. For this end, we
adopt the following notations. Let H and K be Hilbert spaces, B (H ) and B (K )

be the C∗-algebras of all bounded operators on the appropriate Hilbert space. An
operator A ∈ H is called self-adjoint if A = A∗, where A∗ denotes the adjoint
operator of A. If A ∈ H , the notation A ≥ 0 will be used to declare that A is
positive, in the sense that 〈Ax, x〉 ≥ 0 for all x ∈ H . If 〈Ax, x〉 > 0 for all non
zero x ∈ H , we write A > 0, and we say than that A is positive definite. On the
class of self-adjoint operators, the ≤ partial order relation is well known, where we
write A ≤ B if B − A ≥ 0, when A,B are self-adjoint.

In studying operator inequalities, the notion of spectrum cannot be avoided. If
A ∈ H , the spectrum of A is defined by

σ(A) = {λ ∈ C : A− λ1H is not invertible},

where 1H denotes the identity operator on H . Finally, in these terminologies, a
linear map � : B (H ) → B (K ) is said to be positive if �(A) ≥ 0 whenever
A ≥ 0 and � is called unital if �(1H ) = 1K .

Recall that a continuous function f : I → R is said to be operator convex if

f

(
A+ B

2

)

≤ f (A)+ f (B)

2
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for all self-adjoint A,B ∈ B (H ) and σ(A), σ (B) ⊂ I. This is equivalent to the
Jensen operator inequality, valid for the self-adjoint operators Ai whose spectra are
in the interval I ,

f

(
n∑

i=1

wiAi

)

≤
n∑

i=1

wif (Ai), wi > 0,
n∑

i=1

wi = 1. (1.3)

It is evident that a convex function is not necessarily operator convex, and the
function f (x) = x4 provides such an example. Thus, a convex function does not
necessarily satisfy the operator Jensen inequality (1.3). However, it turns out that
a convex function satisfies the following operator version of the Mercer inequality
(1.2).

Theorem 1.2 ([5, Theorem 1]) Let A1, . . . , An ∈ B (H ) be self-adjoint operators
with spectra in [m,M] and let �1, . . . ,�n : B (H ) → B (K ) be positive linear
maps with

∑n
i=1 �i (1H ) = 1K . If f : [m,M] ⊆ R → R is a convex function,

then

f

(

(M +m) 1K −
n∑

i=1

�i (Ai)

)

≤ (f (M)+ f (m)) 1K −
n∑

i=1

�i(f (Ai)). (1.4)

Further, in the same reference, the following series of inequalities was proved

f

(

(M +m)1K −
n∑

i=1

�i(Ai)

)

≤ (f (M)+ f (m)) 1K

+
∑n

i=1 �i (Ai)−M1K
M −m

f (m)+ m1K −∑n
i=1 �i (Ai)

M −m
f (M)

≤ (f (M)+ f (m))1K −
n∑

i=1

�i(f (Ai)).

Later, related and analogous results have been established in [3, 4, 6].
Our main goal of this article is to present a refinement of the operator inequality

(1.4) without using convexity of f . Rather, using the idea by Mićić et al. [8], we
assume a boundedness condition on f ′′. Then a discussion of log-convex version of
Mercer’s operator inequality will be presented.
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2 Main Results

In this section we present our main results in two parts. In the first part, we discuss
the twice differentiable case, then we discuss the log-convex case.

2.1 Twice Differentiable Functions

We begin with the non-convex version of Theorem 1.2. We use the following symbol
in this paper.

(i) Asa = (A1, . . . , An), where Ai ∈ B (H ) are self-adjoint operators with
σ (Ai) ⊆ [m,M] for some scalars 0 < m < M .

(ii) �+ = (�1, . . . ,�n), where �i : B (H ) → B (K ) are positive linear maps.

Theorem 2.1 Let A1, . . . , An ∈ B (H ) be self-adjoint operators with spectra in
[m,M] and let �1, . . . ,�n : B (H ) → B (K ) be positive linear maps with∑n

i=1 �i (1H ) = 1K . If f : [m,M] ⊆ R→ R is a continuous twice differentiable
function such that α ≤ f ′′ ≤ β with α, β ∈ R, then

(f (M)+ f (m)) 1K −
n∑

i=1

�i (f (Ai))− βJ (m,M,Asa,�+)

≤ f

(

(M +m)1K −
n∑

i=1

�i(Ai)

)

(2.1)

≤ (f (M)+ f (m)) 1K −
n∑

i=1

�i (f (Ai))− αJ (m,M,Asa,�+), (2.2)

where

J (m,M,Asa,�+) := (M +m)

n∑

i=1

�i(Ai)−Mm1K

− 1

2

⎛

⎝

(
n∑

i=1

�i (Ai)

)2

+
n∑

i=1

�i

(
A2

i

)
⎞

⎠ ≥ 0.

Proof Notice that for any convex function f and m ≤ t ≤ M , we have

f (t) = f

(
M − t

M −m
m+ t −m

M −m
M

)

≤ Lf (t) , (2.3)
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where

Lf (t) := M − t

M −m
f (m)+ t −m

M −m
f (M). (2.4)

Letting

gα(t) := f (t)− α

2
t2 (m ≤ t ≤ M),

we observe that g is convex noting the assumption α ≤ f ′′. Applying (2.3) to the
function g, we have g(t) ≤ Lg(t), which leads to

f (t) ≤ Lf (t)− α

2

{
(M +m) t −Mm− t2

}
. (2.5)

Since m ≤ M +m− t ≤ M , we can replace t in (2.5) with M +m− t , to get

f (M +m− t) ≤ L0 (t)− α

2

{
(M +m) t −Mm− t2

}
,

where

L0(t) := L(M +m− t) = f (M)+ f (m)− Lf (t).

Using functional calculus for the operator

m1K ≤
n∑

i=1

�i (Ai) ≤ M1K ,

we infer that

f

(

(M +m)1K −
n∑

i=1

�i(Ai)

)

≤ L0

(
n∑

i=1

�i(Ai)

)

− α

2

⎧
⎨

⎩
(M +m)

n∑

i=1

�i(Ai)−Mm1K −
(

n∑

i=1

�i(Ai)

)2
⎫
⎬

⎭
. (2.6)

On the other hand, by applying functional calculus for the operator

m1H ≤ Ai ≤ M1H
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in (2.5), we get

f (Ai) ≤ Lf (Ai)− α

2

{
(M +m)Ai −Mm1H − A2

i

}
.

Applying the positive linear maps �i and adding in the last inequality yield

n∑

i=1

�i(f (Ai))

≤ L0

(
n∑

i=1

�i(Ai)

)

− α

2

{

(M +m)

n∑

i=1

�i(Ai)−Mm1K −
n∑

i=1

�i(A
2
i )

}

. (2.7)

Combining the two inequalities (2.6) and (2.7), we get (2.2).
Finally we give the proof of J (m,M,�i,Ai) ≥ 0. Since

m1H ≤ Ai ≤ M1H ,

we have

(M1H − Ai)(Ai −m1H ) ≥ 0

which implies

(M +m)Ai −mM1H − A2
i ≥ 0.

Thus we have

(M +m)�(Ai)−mM�(1H )−�(A2
i ) ≥ 0.

Taking a summation on i = 1, · · · , n of this inequality with taking an account for∑n
i=1 �i(1H ) = 1K , we obtain

(M +m)

n∑

i=1

�i(Ai)−Mm1K −
n∑

i=1

�(A2
i ) ≥ 0. (2.8)

Further, noting that m ≤∑n
i=1 �i(Ai) ≤ M, we also have

(M +m)

n∑

i=1

�i(Ai)−mM1K −
(

n∑

i=1

�i(Ai)

)2

≥ 0. (2.9)



On the Operator Jensen-Mercer Inequality 489

Adding (2.8) and (2.9) and dividing by 2, we obtain J (m,M,Asa,�+) ≥ 0.
The inequality (2.1) follows similarly by taking into account that

Lf (t)− β

2

{
(M +m)t −Mm− t2

}
≤ f (t), m ≤ t ≤ M.

The details are left to the reader. This completes the proof. 	

In the following example, we present the advantage of using twice differentiable
functions in Theorem 2.1.

Example 2.2 Let f (t) = sin t (0 ≤ t ≤ 2π),

A =
(

π
4 0
0 π

2

)

and �(A) = 1
2T r [A]. Actually the function f (t) = sin t is concave on [0, π].

Letting m = π
4 and M = π

2 , we obtain

0.9238 ≈ f ((M +m)−�(A)) ≮ f (M)+ f (m)−�(f (A)) ≈ 0.8535.

That is, (1.4) may fail without the convexity assumption. However, by considering
the weaker assumptions assumed in Theorem 2.1, we get

0.9238 ≈f ((M +m)−�(A))

�f (M)+ f (m)−�(f (A))

− α

{

(M +m)�(A)−Mm− 1

2

{
�(A)2 +�(A2)

}}

≈0.9306,

since f ′′(t) = − sin t which gives α = −1.

To better understand the relation between Theorems 1.2 and 2.1, we present
the following remark, where we clarify how the first theorem is retrieved from the
second.

Remark 2.3 The inequality (2.2) in Theorem 2.1 with an assumption on a twice
differentiable function f such that α ≤ f ′′ ≤ β for α, β ∈ R gives a better upper
bound of

f

(

(M +m) 1K −
n∑

i=1

�i (Ai)

)
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than that in (1.4), since J (m,M,Asa,�+) ≥ 0, if we take α ≥ 0. Additionally to
this result, we obtained a reverse type inequality (2.1) which gives a lower bound of

f

(

(M +m) 1K −
n∑

i=1

�i (Ai)

)

.

2.2 Log-Convex Functions

We conclude this section by presenting Mercer-type operator inequalities for log-
convex functions. Recall that a positive function defined on an interval I (or, more
generally, on a convex subset of some vector space) is called log-convex if log f (x)

is a convex function of x. We observe that such functions satisfy the elementary
inequality

f ((1 − v) a + vb) ≤ [f (a)]1−v [f (b)]v , 0 ≤ v ≤ 1

for any a, b ∈ I . f is called log-concave if the inequality above is reversed (that is,
when 1

f
is log-convex). By virtue of the arithmetic-geometric mean inequality, we

have

f ((1 − v)a + vb) ≤ [f (a)]1−v [f (b)]v ≤ (1 − v)f (a)+ vf (b), (2.10)

which implies convexity of log-convex functions. This double inequality is of
special interest since (2.10) can be written as

f (t) ≤ [f (m)]
M−t
M−m [f (M)]

t−m
M−m ≤ Lf (t) , m ≤ t ≤ M (2.11)

where Lf (t) is as in (2.4).
Manipulating the inequality (2.11), we have the following extension of Theo-

rem 1.2 to the context of log-convex functions. The proof is left to the reader.

Theorem 2.4 Let all the assumptions of Theorem 1.2 hold except that f :
[m,M] → (0,∞) is log-convex. Then

f

(

(M +m)1K −
n∑

i=1

�i(Ai)

)

≤ [f (m)]
∑n

i=1 �i(Ai )−m1K
M−m [f (M)]

M1K −∑n
i=1 �i(Ai )

M−m

≤ (f (M)+ f (m)) 1K −
n∑

i=1

�i(f (Ai)).
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3 Applications

In this section, we present some applications of the main results that we have shown
so far. First, we review and introduce the notations.

(i) A+ = (A1, . . . , An), where Ai ∈ B (H ) are positive invertible operators with
σ (Ai) ⊆ [m,M] for some scalars 0 < m < M .

(ii) �+ = (�1, . . . ,�n), where �i : B (H ) → B (K ) are positive linear maps.
(iii) C ([m,M]) is the set of all real valued continuous functions on an interval

[m,M].

We also need to remind the reader that a function f ∈ C([m,M]) is called operator
monotone increasing (or operator increasing for short) if f (A) ≤ f (B) whenever
A,B are self-adjoint operators with spectra in [m,M] and such that A ≤ B. That
is, when f preserves the order of self-adjoint operator. A function f ∈ C([m,M])
is said to be operator decreasing if −f is operator monotone.

The so called operator quasi-arithmetic mean of Mercer’s type was defined in [5]
as follows:

M̃ϕ

(
A+,�+) := ϕ−1

(

(ϕ (M)+ ϕ (m)) 1K −
n∑

i=1

�i (ϕ (Ai))

)

.

In this reference, the following result was shown.

Theorem 3.1 Let ϕ,ψ ∈ C ([m,M]) be two strictly monotonic functions.

(i) If either ψ ◦ ϕ−1 is convex and ψ−1 is operator increasing, or ψ ◦ ϕ−1 is
concave and ψ−1 is operator decreasing, then

M̃ϕ

(
A+,�+) ≤ M̃ψ

(
A+,�+) . (3.1)

(ii) If either ψ ◦ ϕ−1 is concave and ψ−1 is operator increasing, or ψ ◦ ϕ−1 is
convex and ψ−1 is operator decreasing, then the inequality in (3.1) is reversed.

By virtue of Theorem 2.1, we have the following extension of this result.

Theorem 3.2 Let ϕ,ψ ∈ C ([m,M]) be two strictly monotonic functions and ψ ◦
ϕ−1 is twice differentiable function.

(i) If α ≤ (
ψ ◦ ϕ−1

)′′
with α ∈ R and ψ−1 is operator monotone, then

M̃ϕ

(
A+,�+)

≤ ψ−1 {ψ
(
M̃ψ

(
A+,�+))− αK

(
m,M,ϕ,A+,�+)} , (3.2)
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where

K
(
m,M,ϕ,A+,�+)

:= (ϕ(M)+ ϕ(m))

n∑

i=1

�i(ϕ(Ai))− ϕ(M)ϕ(m)1K

− 1

2

⎛

⎝

(
n∑

i=1

�i(ϕ(Ai))

)2

+
n∑

i=1

�i

(
ϕ(Ai)

2
)
⎞

⎠ .

(ii) If
(
ψ ◦ ϕ−1

)′′ ≤ β with β ∈ R and ψ−1 is operator monotone, then the reverse
inequality is valid in (3.2) with β instead of α.

Proof Let f = ψ ◦ ϕ−1 in (2.2) and replace Ai , m and M with ϕ (Ai), ϕ (m) and
ϕ (M) respectively. This implies

ψ
(
M̃ϕ

(
A+,�+)) ≤ ψ

(
M̃ψ

(
A+,�+))− αK

(
m,M,ϕ,A+,�+) .

Since ψ−1 is operator monotone, the first conclusion follows immediately. The other
case follows in a similar manner from (2.1). 	


Similarly, Theorem 2.4 implies the following version.

Theorem 3.3 Let ϕ,ψ ∈ C([m,M]) be two strictly monotonic functions. If ψ◦ϕ−1

is log-convex function and ψ−1 is operator increasing, then

M̃ϕ(A+,�+)

≤ ψ−1
{

[ψ(m)]
∑n

i=1 �i(ϕ(Ai ))−ϕ(m)1K
ϕ(M)−ϕ(m) [ψ(M)]

ϕ(M)1K −∑n
i=1 �i(ϕ(Ai ))

ϕ(M)−ϕ(m)

}

≤ M̃ψ

(
A+,�+) .

Remark 3.4 By choosing appropriate functions ϕ and ψ , and making suitable
substitutions, the above results imply some improvements of certain inequalities
governing operator power mean of Mercer’s type. We leave the details of this idea
to the interested reader as an application of our main results.

In the end of the article, we show the example such that there is no relationship
between inequalities in Theorems 3.2 and 3.3. Here, we restrict ourselves to the
power function f (t) = tp with p < 0.
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Example 3.5 It is sufficient to compare (2.5) and the first inequality of (2.11). We
take m = 1 and M = 3. Setting

g(t) = M − t

M −m
mp + t −m

M −m
Mp − p(p − 1)Mp−2

2

{
(M +m)t −Mm− t2

}

−
(
m

M−t
M−mM

t−m
M−m

)p
.

Some calculations show that g(2) ≈ −0.0052909 when p = −0.2, while g(2) ≈
0.0522794 when p = −1. We thus conclude that there is no ordering between the
RHS of inequality in (2.5) and the RHS of first inequality of (2.11).
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A Numerical Approach for
Approximating Variable-Order
Fractional Integral Operator

Somayeh Nemati

Abstract In this work, we propose a numerical method to find an approximation of
the variable-order integral of a given function using a generalization of the modified
hat functions. First, an operational matrix of the basis functions corresponding to
the variable-order integral operator is introduced. Then, using this matrix and an
approximation of the given function, we find an approximation of the variable-order
integral operator of the function. An error estimate is proved. Two test examples are
included to show the efficiency and accuracy of our new technique. Finally, this new
technique is used to solve the variable-order differential equations numerically and
some illustrative problems are provided to validate the applicability and accuracy of
this new scheme.

Keywords Variable-order integral operator · Modified hat functions ·
Operational matrix
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1 Introduction

A recent generalization of the theory of fractional calculus is to let the fractional
order of the derivatives to be of variable order. In [16], authors have investigated
operators when the order of fractional derivative is a variable on time. The non-local
properties of systems are more visible with variable-order fractional calculus, and
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many real world phenomena in physics, mechanics, control, and signal processing
have been described by this approach [2, 13–15].

Hat functions are defined on the interval [0, 1] and are continuous with shape hats
[17]. In the last few years, a modification of hat functions has been introduced and
used for solving some different kinds of problems. For instance: two-dimensional
linear Fredholm integral equations [5], integral equations of Stratonovich–Volterra
[6] and Volterra–Fredholm type [7], fractional integro-differential equations [8],
fractional pantograph differential equations [9], fractional optimal control problems
[10] and systems of fractional differential equations [11]. These functions are
defined on the interval [0, T ], with T > 0. In this paper, we consider a general
definition of these basis functions on [a, b], with b > a, called generalized modified
hat functions (GMHFs). These basis functions are utilized to present a numerical
method to approximate the variable-order fractional integral of a given function. For
y : [a, b] → R and a real function α(t) such that 0 < α(t) ≤ 1 for all t ∈ [a, b],
the left Riemann–Liouville fractional integral operator of order α(t) of y is defined
by (see, e.g., [1])

aI
α(t)
t y(t) = 1

�(α(t))

∫ t

a

(t − s)α(t)−1y(s)ds, t > a,

where � is the Euler gamma function.
The organization of this paper is as follows. In Sect. 2, we give a new general

definition of the modified hat functions and introduce some of their main properties.
Section 3 is devoted to introducing a numerical method based on the GMHFs
to compute the variable-order fractional integral of a given function. The error
analysis of this new approximation is provided and the integral of two test functions
are computed to illustrate the accuracy of the method. An application of this new
technique for solving variable-order fractional differential equations is proposed in
Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Definition and Function Approximation

In this section, we introduce a generalization of the modified hat functions and
present some of their main properties. To this aim, the interval [a, b] is divided
into m subintervals [a + ih, a + (i + 1)h], i = 0, 1, 2, . . . ,m− 1, of equal lengths
h, where h = b−a

m
and m ≥ 2 is an even integer number. A (m+ 1)-set of GMHFs

are defined on the interval [a, b] as follows

ψ0(t) =

⎧
⎪⎨

⎪⎩

1
2h2 (t − (a + h)) (t − (a + 2h)) ,

if a ≤ t ≤ a + 2h,
0, otherwise,

(2.1)
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if i is odd and 1 ≤ i ≤ m− 1:

ψi(t) =

⎧
⎪⎨

⎪⎩

−1
h2 (t − (a + (i − 1)h)) (t − (a + (i + 1)h)) ,

if a + (i − 1)h ≤ t ≤ a + (i + 1)h,
0, otherwise,

(2.2)

if i is even and 2 ≤ i ≤ m− 2:

ψi(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2h2 (t − (a + (i − 1)h)) (t − (a + (i − 2)h)) ,

it a + (i − 2)h ≤ t ≤ a + ih,
1

2h2 (t − (a + (i + 1)h)) (t − (a + (i + 2)h)) ,

if a + ih ≤ t ≤ a + (i + 2)h,
0, otherwise,

(2.3)

and

ψm(t) =

⎧
⎪⎨

⎪⎩

1
2h2 (t − (b − h)) (t − (b − 2h)) ,

if b − 2h ≤ t ≤ b,

0, otherwise.

(2.4)

The GMHFs build a set of linearly independent functions in the space L2[a, b].
Figure 1 displays a set of the GMHFs obtained by m = 4 and defined on the interval
[−1, 1].

The following properties can be easily investigated using the definition of the
GMHFs:

ψi(a + jh) =
{

1, i = j,

0, i �= j,

m∑

i=0

ψi(t) = 1, t ∈ [a, b],

ψi(t)ψj (t) =
{

0, if i is even and |i − j | ≥ 3,
0, if i is odd and |i − j | ≥ 2.

Any arbitrary function y ∈ L2[a, b] may be approximated in terms of the
GMHFs as [5]

y(t) 2 ym(t) =
m∑

i=0

yiψi(t) = YT "(t), (2.5)

where

"(t) = [ψ0(t), ψ1(t), . . . , ψm(t)]T , (2.6)
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and

Y = [y0, y1, . . . , ym]T ,

with

yi = y(a + ih). (2.7)

We have the following theorem for the error of the function approximation using
the GMHFs.

Theorem 2.1 If a function y ∈ C3([a, b]) is approximated by the family of first
(m+ 1) GMHFs as defined by (2.1)–(2.4), then

|y(t)− ym(t)| = O(h3),

where h = b−a
m

, and ym is defined by (2.5).

Proof It can be proved in a same way as done in [8, Theorem 4.1]. 	


3 Numerical Method

In this section, we propose a numerical method based on the GMHFs for computing
the left Riemann–Liouville variable-order integral of a given function.

3.1 Variable-Order Integration Rule

In order to introduce the method, we first obtain an operational matrix of variable-
order integration for the GMHFs basis vector. To do this, we apply the Riemann–
Liouville fractional integral operator of order 0 < α(t) ≤ 1, for all t ∈ [a, b], to the
function ψi(t), and obtain

aI
α(t)
t ψi(t) = 1

�(α(t))

∫ t

a

(t − s)α(t)−1ψi(s)ds, i = 0, 1, . . . ,m.

Then, we may expand these functions using the GMHFs as follows:

aI
α(t)
t ψi(t) 2

m∑

j=0

aP
α
ijψj (t), i = 0, 1, . . . ,m,
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wherein according to (2.7), aP
α
ij is the value of aI

α(t)
t ψi(t) at a + jh. That is

aP
α
ij =

1

�(α(a + jh))

∫ a+jh

a

(a + jh− s)α(a+jh)−1ψi(s)ds, i, j = 0, 1, . . . , m.

(3.1)

By substituting the definitions of the functions ψi(t) given by (2.1)–(2.4), we
compute the integral part of (3.1). For i = 0, we obtain

aP
α
00 = 0, (3.2)

aP
α
01 =

hα(a+h)

2�(α(a + h)+ 3)
[α(a + h) (3+ 2α(a + h))] , (3.3)

and for j > 1,

aP
α
0j =

hα(a+jh)

2�(α(a + jh)+ 3)

×
[
jα(a+jh)+1 (2j − 6 − 3α(a + jh))

+ 2jα(a+jh) (1 + α(a + jh)) (2 + α(a + jh))

−(j − 2)α(a+jh)+1 (2j − 2 + α(a + jh))

]
. (3.4)

If i is odd, we get for j < i,

aP
α
ij = 0, (3.5)

aP
α
ii =

2hα(a+ih)

�(α(a + ih)+ 3)
(1 + α(a + ih)), (3.6)

and for j > i,

aP
α
ij =

2hα(a+jh)

�(α(a + jh)+ 3)

×
[
(j − i − 1)α(a+jh)+1(j − i + 1 + α(a + jh))

−(j − i + 1)α(a+jh)+1(j − i − 1 − α(a + jh))
]
. (3.7)
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Finally, if i is even, we have for j < i − 1,

aP
α
ij =0, (3.8)

aP
α
i,i−1 =

hα(a+(i−1)h)

2�(α(a + (i − 1)h)+ 3)
[−α(a + (i − 1)h)] , (3.9)

aP
α
ii =

hα(a+ih)

2�(α(a + ih)+ 3)

[
2α(a+ih)+1(2 − α(a + ih))

]
, (3.10)

aP
α
i,i+1 =

hα(a+(i+1)h)

2�(α(a + (i + 1)h)+ 3)

×
[
3α(a+(i+1)h)+1(4 − α(a + 8i + 1)h))

− 6(2 + α(a + (i + 1)h))
]
, (3.11)

and for j > i + 1,

aP
α
ij =

hα(a+jh)

2�(α(a + jh)+ 3)

×
[
(j − i + 2)α(a+jh)+1(2j − 2i + 2 − α(a + jh))

− 6(j − i)α(a+jh)+1(2 + α(a + jh))

− (j − i − 2)α(a+jh)+1(2j − 2i − 2 + α(a + jh))
]
. (3.12)

As a result, we can write

aI
α(t)
t "(t) 2 Pα(t)

a "(t), (3.13)

where P
α(t)
a is an upper Hessenberg matrix of dimension (m + 1) × (m + 1)

called operational matrix of variable-order integration of order α(t) in the Riemann-
Liouville sense, and is given using (3.2)–(3.12) as follows:

Pα(t)
a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 aP
α
01 aP

α
02 aP

α
03 aP

α
04 . . . aP

α
0(m−1) aP

α
0m

0 aP
α
11 aP

α
12 aP

α
13 aP

α
14 . . . aP

α
1(m−1) aP

α
1m

0 aP
α
21 aP

α
22 aP

α
23 aP

α
24 . . . aP

α
2(m−1) aP

α
2m

0 0 0 aP
α
33 aP

α
34 . . . aP

α
3(m−1) aP

α
3m

0 0 0 aP
α
43 aP

α
44 . . . aP

α
4(m−1) aP

α
4m

...
...

...
...

...
...

...

0 0 0 0 0 . . . aP
α
(m−1)(m−1) aP

α
(m−1)m

0 0 0 0 0 . . . aP
α
m(m−1) aP

α
mm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.14)
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In order to compute the left Riemann–Liouville variable-order integral operator of
an arbitrary function y ∈ L2[a, b], first, we approximate this function using the
GMHFs as (2.5). Then, using (3.13), we have

aI
α(t)
t y(t) 2 aI

α(t)
t ym(t) = YT

aI
α(t)
t "(t) 2 YT Pα(t)

a "(t).

3.2 Error Bound

The aim of this section is to give an error bound for the numerical estimation of the
left Riemann–Liouville variable-order integral operator of an arbitrary function in
the sense of L2-norm. To this aim, we consider the following L2-norm for a function
f ∈ L2[a, b]:

‖f ‖2 =
(∫ b

a

|f (t)|2dt
) 1

2

.

With the help of Theorem 2.1 we obtain the following result.

Theorem 3.1 Assume that y ∈ C3([a, b]). Suppose that the left Riemann–Liouville
variable-order integral operator of y is approximated by YT P

α(t)
a "(t) where "(t)

and P
α(t)
a are given by (2.6) and (3.14), respectively, and the elements of Y are

yi = y(a + ih), i = 0, 1, . . . ,m, with h = b−a
m

. Then,

∥
∥
∥aI

α(t)
t y − YT Pα(t)

a "

∥
∥
∥

2
= O(h3).

Proof By assuming 0 < α(t) ≤ 1, for all t ∈ [a, b], we consider the following
definition of the norm for the operator aI

α(t)
t ,

‖aIα(t)t ‖2 = sup
‖f ‖2=1

‖aIα(t)t f ‖2.

We show that this operator is bounded. Using Schwarz’s inequality, we obtain

∥
∥
∥aI

α(t)
t f

∥
∥
∥

2
=
∥
∥
∥
∥

1

�(α(t))

∫ t

a

(t − s)α(t)−1f (s)ds

∥
∥
∥
∥

2

≤ ‖f ‖2

∥
∥
∥
∥

1

�(α(t))

∫ t

a

(t − s)α(t)−1ds

∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

(t − a)α(t)

�(α(t) + 1)

∥
∥
∥
∥
∥

2

,
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where we have used ‖f ‖2 = 1. Since we have �(t) > 0.8 for all t > 0, we can
write �(α(t) + 1) > 4

5 . Therefore, we get

∥
∥
∥
∥
∥

(t − a)α(t)

�(α(t) + 1)

∥
∥
∥
∥
∥

2

<
5

4

∥
∥
∥(t − a)α(t)

∥
∥
∥

2
,

which together with 0 < α(t) ≤ 1 help us to have one of the following statements:

1. If 0 < t − a < 1, then

∥
∥
∥
∥
∥

(t − a)α(t)

�(α(t) + 1)

∥
∥
∥
∥
∥

2

<
5

4
‖1‖2 = 5

4
(b − a)

1
2 .

2. If 1 ≤ t − a ≤ b − a, then

∥
∥
∥
∥
∥

(t − a)α(t)

�(α(t) + 1)

∥
∥
∥
∥
∥

2

<
5

4
‖t − a‖2 = 5

4
√

3
(b − a)

3
2 .

Hence there is a positive constant dependent on a and b so that

‖aIα(t)t ‖2 < C.

We use the boundedness property of aI
α(t)
t to continue the proof. Using

Theorem 2.1, we have

‖y − ym‖2 = O(h3) (3.15)

and
∥
∥
∥YT

aI
α(t)
t " − YT Pα(t)

a "

∥
∥
∥

2
= O(h3). (3.16)

Finally, using (3.15) and (3.16), we obtain

∥
∥
∥aI

α(t)
t y − YT Pα(t)

a "

∥
∥
∥

2
=
∥
∥
∥aI

α(t)
t y − aI

α(t)
t ym + aI

α(t)
t ym − YT Pα(t)

a "

∥
∥
∥

2

≤
∥
∥
∥aI

α(t)
t y − aI

α(t)
t ym

∥
∥
∥

2
+
∥
∥
∥aI

α(t)
t ym − YT Pα(t)

a "

∥
∥
∥

2

≤
∥
∥
∥aI

α(t)
t

∥
∥
∥

2
‖y − ym‖2 +

∥
∥
∥YT

aI
α(t)
t " − YT Pα(t)

a "

∥
∥
∥

2

= O(h3),

which completes the proof. 	
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3.3 Test Examples

In this section, in order to illustrate the accuracy and applicability of the proposed
method, we consider two functions and employ the method for computing the
left Riemann–Liouville variable-order integral of these functions. We note that the
method was carried out using Mathematica 12. To show the accuracy, the l2 norm
of the error and the convergence order are defined, respectively, by

Em =
(

1

m

m∑

i=1

(J (ti)− Jm(ti ))
2

) 1
2

, εm = log2 (Em/E2m) ,

where ti = a + ih. Furthermore, in computation of Em, we have

J (t) = aI
α(t)
t y(t), Jm(t) = YT Pα(t)

a "(t)

as the exact and approximate integrals of the function y, respectively.

Example 3.1 Suppose that y(t) = sin(t), α(t) = t , a = 0 and b = 1. The exact left
Riemann–Liouville variable-order integral of y is

J (t) = t t

(1 + t)�(t)
1F2

(

1; 1+ t

2
,

3

2
+ t

2
; − t2

4

)

,

where pFq is the generalized hypergeometric function defined by

pFq

(
a1, . . . , ap; b1, . . . , bq; z

) =
∞∑

k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k! ,

and (a)k = a(a + 1) . . . (a + k − 1) is Pochhammer symbol.

Example 3.2 Consider y(t) = et , α(t) = sin(t), a = 1 and b = 3. In this case, we
have

J (t) = et
(

1 − �(sin(t), t − 1)

�(sin(t))

)

,

where �(c, t) is the incomplete gamma function defined by

�(β, t) =
∫ ∞

t

sβ−1e−sds.

We have employed the present method to obtain approximations of the left
Riemann–Liouville variable-order integral operator by considering the information
given in Examples 3.1 and 3.2. Numerical results are displayed in Table 1 and Fig. 2.
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Table 1 Numerical results
for the l2 norm of the error
and the convergence order

Example 3.1 Example 3.2

m Em εm Em εm

2 1.99e−3 3.63 2.23e−1 3.42

4 1.61e−4 3.45 2.08e−2 3.46

8 1.47e−5 3.36 1.89e−3 3.39

16 1.43e−6 3.30 1.80e−4 3.35

32 1.45e−7 3.26 1.76e−5 3.33

64 1.51e−8 3.24 1.75e−6 3.31

128 1.60e−9 3.22 1.77e−7 3.28

256 1.72e−10 3.18 1.82e−8 2.51

512 1.90e−11 – 3.19e−9 –

Fig. 2 The l2 norm of the error for some selected values of m in logarithmic scale

In Table 1, the l2 norm of the error and the convergence order are presented which
confirm the O(h3) accuracy of this method. Furthermore, in Fig. 2, the results for
the l2 norm of the error are plotted in a logarithmic scale.
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4 Application to Variable-Order Fractional Differential
Equations

In this section, a numerical method based on the use of operational matrix of
variable-order integration for the GMHFs basis vector is introduced for solving
variable-order fractional differential equations. Moreover, some examples are pro-
vided to show the accuracy of this method.

4.1 Method of Solution

Consider the variable-order fractional initial value problem

{
C
a D

α(t)

t y(t) = f (t, y(t)), 0 < α(t) ≤ 1, a ≤ t ≤ b,

y(a) = y0,
(4.1)

where y is the unknown function, f : [a, b] × R −→ R is a given function, y0 is a

real constant and C
a D

α(t)

t denotes the left Caputo fractional derivative of order α(t)
defined by Almeida et al. [1]:

C
a D

α(t)

t y(t) = 1

�(1 − α(t))

∫ t

a

(t − s)−α(t)y ′(s)ds, t > a.

Let y(t) ∈ C1[a, b] be the exact solution of (4.1), then an approximation of y ′(t)
based on the GMHFs can be considered as follows:

y ′(t) = CT "(t), (4.2)

where C is a vector with unknown parameters ci , i = 0, 1, . . . ,m, and "(t) is given
by (2.6). Therefore, an approximation of y can be given using (3.13), (4.2) and the
initial condition as

y(t) =
∫ t

a

y ′(s)ds + y(a) 2 CT
aI

1
t "(t)+ y0

2 (CT P 1
a + YT

a )"(t) = YT "(t), (4.3)

where

Ya = [y0, y0, . . . , y0]T , Y = (CT P 1
a + YT

a )T = [y0, y1, . . . , ym]T .
In a similar way, we have

C
a D

α(t)

t y(t) = aI
1−α(t)
t y ′(t) 2 CT P 1−α(t)

a "(t). (4.4)



A Numerical Approach for Approximating Variable-Order Integral 507

On the other hand, an approximation of the function f : ([a, b] × R) → R based
on the GMHFs is given by

f (t, y(t)) 2
n∑

i=0

f (ti, y(ti))ψi(t) =
n∑

i=0

f (ti , yi)ψi(t) = F(�, Y )"(t), (4.5)

with ti = a + ih, and

F(�, Y ) = [f (a, y0), f (a + h, y1), . . . , f (b, ym)] .

Now, by substituting (4.4) and (4.5) into (4.1), we get

CT P 1−α(t)
a = F(�, Y ), (4.6)

which is a system of nonlinear algebraic equations in terms of the unknown
parameters of the vector C. The first equation of the system (4.6) is a degenerate
equation. By letting α(t) → 1, we impose the condition y ′(a) = f (a, y0) for its
solvability. With this condition, we obtain c0 = f (a, y0). In order to determine the
remaining unknown entries of C, we substitute c0 = f (a, y0) into equations of
(4.6). By solving the resulting system, an approximation of the function y is given
by (4.3).

4.2 Numerical Simulations

Here, we employ the proposed method for solving three examples to demonstrate
the applicability and accuracy of our new method.

Example 4.3 As the first example, consider the problem (4.1) with 0 ≤ t ≤ 1 and
[4]

f (t, y) = t3 + �(4)

�(4 − α(t))
t3−α(t) + t2 + �(3)

�(3 − α(t))
t2−α(t) − y.

The exact solution of this problem is y(t) = t3 + t2. By considering α(t) =
sin t , this problem has been solved by different values of m. Plots of the error
for m = 4, 8, 16, 32 are displayed in Fig. 3. In [4], this problem has been
solved by considering different fixed values of α ∈ (0, 1) using a high order
numerical methods based on a second-degree compound quadrature formula and
the convergence order of the error at t = 1 has been reported. Since the proposed
method in this paper gives the exact solution at t = 1, we report the L2-norm of the
error with different m for α = 0.75, and compare the convergence order with the
method of [4] in Table 2. Also, we can see in this table the CPU times (in seconds),
which have been obtained on a 2.5 GHz Core i7 personal computer with 16 GB of
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Table 2 Numerical results for the L2-error and convergence order for Example 4.3 with α = 0.75

Present method Method of [4]

m L2-error Convergence order CPU time Convergence order

10 2.76e−4 3.00 0.000 1.79

20 3.45e−5 3.00 0.016 2.07

40 4.31e−6 3.00 0.016 2.17

80 5.39e−7 2.99 0.062 2.21

160 6.74e−8 3.00 0.234 2.23

320 8.42e−9 3.00 0.906 2.24

640 1.05e−9 – 2.828 –

RAM using Mathematica 12. The Mathematica function FindRoot was used for
solving the resulting systems.

Example 4.4 Consider the problem (4.1) with 0 ≤ t ≤ 1 and

f (t, y) =
�
(

9
2

)
t

7
2−α(t)

�
(

9
2 − α(t)

) + t7 sin(t)− y2 sin(t).

The exact solution of this problem is t7/2. By setting α(t) = 1 − 0.5 exp(−t), the
numerical results of employing the proposed method for solving this example are
given in Fig. 4 and Table 3.

Example 4.5 As the last example, consider the following Riccati fractional differ-
ential equation [3, 12]

C
0 D

α(t)

t y(t) = 2y(t)− y2(t)+ 1, 0 < α ≤ 1, 0 ≤ t ≤ 1,

with initial condition y(0) = 0. When α(t) = 1, the exact solution is

y(t) = 1 +√
2 tanh

(√
2t + 1

2
ln

(√
2 − 1√
2 + 1

))

.

By taking α(t) = 1, a comparison between the numerical results obtained by the
present method with m = 50, the modified homotopy perturbation method [12]
using the fourth-order term and Chebyshev wavelet method [3] using m̂ = 192 is
provided at some selected points in Table 4. Furthermore, the numerical results for
y(t) with α = 0.65, 0.75, 0.85, 0.95 and m = 10 together with the exact solution
for α = 1 are plotted in Fig. 5. As it could be expected, when α is close to 1, the
numerical solution is close to the exact solution of the case α = 1.
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Table 3 Numerical results
for Example 4.4 with
α(t) = 1 − 0.5 exp(−t)

m L2-error Convergence order CPU time

2 5.53e−2 3.04 0.000

4 6.72e−3 3.01 0.000

8 8.34e−4 3.00 0.016

16 1.04e−4 3.00 0.031

32 1.30e−5 3.00 0.078

64 1.63e−6 3.00 0.687

128 2.04e−7 – 3.953

Table 4 Numerical results for Example 4.5 with α(t) = 1

t Method of [12] Method of [3] Present method Exact solution

0 0 0.000001 0 0

0.1 0.110294 0.110311 0.110295 0.110295

0.2 0.241965 0.241995 0.241977 0.241977

0.3 0.395106 0.395123 0.395105 0.395105

0.4 0.568115 0.567829 0.567812 0.567812

0.5 0.757564 0.756029 0.756014 0.756014

0.6 0.958259 0.953576 0.953566 0.953566

0.7 1.163459 1.152955 1.152949 1.152949

0.8 1.365240 1.346365 1.346364 1.346364

0.9 1.554960 1.526909 1.526911 1.526911

1 1.723810 1.689494 1.689498 1.689498

Fig. 5 Numerical solutions with m = 10 and different values of α together with the exact solution
with α = 1 for Example 4.5
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5 Concluding Remarks

A new numerical technique has been introduced for computing the left Riemann–
Liouville variable-order integral of a given function. A generalized class of the
modified hat functions (GMHFs) has been considered and used to suggest our new
scheme. The given function is easily expanded using the GMHFs. An operational
matrix of variable-order integral of the basis vector is computed and used to
approximate the integral of the function under consideration. The convergence
order of our numerical method is proved and confirmed by the results of two
illustrative examples. Finally, this new technique is employed to solve variable-
order differential equations and the numerical results demonstrate the efficiency of
the method.

Acknowledgement The author is grateful to two anonymous referees for several positive and
constructive comments, which helped her to improve the manuscript.
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Abstract We introduce a C∗-algebra AV of a variety V over the number field K

and a C∗-algebra AG of a reductive group G over the ring of adeles of K . Using
Pimsner’s Theorem, we construct an embedding AV ↪→ AG, where V is a G-
coherent variety, e.g. the Shimura variety of G. The embedding is an analog of the
Langlands reciprocity for C∗-algebras. It follows from the K-theory of the inclusion
AV ⊂ AG that the Hasse-Weil L-function of V is a product of the automorphic L-
functions corresponding to irreducible representations of the group G.

Keywords Langlands program · Serre C∗-algebra
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1 Introduction

The Langlands conjectures say that all zeta functions are automorphic [9]. In
this note we study (one of) the conjectures in terms of the C∗-algebras [5].
Namely, denote by G(AK) a reductive group G over the ring of adeles AK of a
number field K and by G(K) its discrete subgroup over K . The Banach algebra
L1(G(K)\G(AK)) consists of the integrable complex-valued functions endowed
with the operator norm. The addition of functions f1, f2 ∈ L1(G(K)\G(AK)) is
defined pointwise and the multiplication is given by the convolution product:

(f1 ∗ f2)(g) =
∫

G(K)\G(AK)

f1(gh
−1)f2(h)dh. (1.1)

I. V. Nikolaev (�)
Department of Mathematics, St. John’s University, New York, NY, USA

© Springer Nature Switzerland AG 2021
M. A. Bastos et al. (eds.), Operator Theory, Functional Analysis and Applications,
Operator Theory: Advances and Applications 282,
https://doi.org/10.1007/978-3-030-51945-2_26

515

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51945-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-51945-2_26


516 I. V. Nikolaev

Consider the enveloping C∗-algebra, AG, of the algebra L1(G(K)\G(AK)); we
refer the reader to [5, Section 13.9] for details of this construction. The algebra AG

encodes all unitary irreducible representations of the locally compact group G(AK)

induced by G(K). Such representations are related to the automorphic cusp forms
and non-abelian class field theory [8]. The algebra AG has an amazingly simple
structure. Namely, let us assume G ∼= GLn. Then AG is a stationary AF-algebra,
see Lemma 3.1; such an algebra is defined by a positive integer matrix B ∈ SLn(Z)

[2] and its K-theory is well understood [6].
Let V be a complex projective variety. For an automorphism σ : V → V

and an invertible sheaf L of the linear forms on V , one can construct a twisted
homogeneous coordinate ring B(V,L, σ ) of the variety V , i.e. a non-commutative
r ing such that:

Mod (B(V,L, σ )) / T ors ∼= Coh (V ),

where Mod is the category of graded left modules over the graded ring B(V,L, σ ),
T ors the full subcategory of Mod of the torsion modules and Coh the category of
quasi-coherent sheaves on the variety V [18, p. 180]. The norm-closure of a self-
adjoint representation of the ring B(V,L, σ ) by the linear operators on a Hilbert
space is called the Serre C∗-algebra of V [10]. In what follows, we shall focus on
the case when V is defined over a number field K , i.e. V is an arithmetic variety.
The corresponding Serre C∗-algebra is denoted by AV . The Hasse-Weil L-function
of V was calculated in [10] in terms of the K-theory of algebra AV .

It is known that the Langlands philosophy does not distinguish between the
arithmetic and automorphic objects [9]. Therefore one can expect a regular map
between the C∗-algebras AV and AG, provided V is a G-coherent variety, see
Definition 1.1. We prove that such a map is an embedding AV ↪→ AG. To give
an exact statement, we shall need the following notions. The i-th trace cohomology
{Hi

tr(V ) | 0 ≤ i ≤ 2 dimC V } of an arithmetic variety V is an additive abelian
subgroup of R obtained from a canonical trace on the Serre C∗-algebra of V [10].
Likewise, the group K0(AG) of the stationary AF-algebra AG is an additive abelian
subgroup of R [6, Chapter 6].

Definition 1.1 The arithmetic variety V is called G-coherent, if

Hi
tr(V ) ⊆ K0(AG) for all 0 ≤ i ≤ 2 dimC V. (1.2)

Remark 1.2 If V ∼= Sh (G,X) is the Shimura variety corresponding to the Shimura
datum (G,X) [4], then V is a G-coherent variety. This remark follows from an
adaption of the argument for the Shimura curves considered in Sect. 4. To put it
simple, the arithmetic variety V is G-coherent if for all 0 ≤ i ≤ 2 dimC V the
number fields ki := Hi

tr(V ) ⊗ Q are subfields of (or coincide with) a number
field K := K0(AG) ⊗ Q. A quick example are elliptic curves with complex
multiplication, see Proposition 4.2.
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Theorem 1.3 There exists a canonical embedding AV ↪→ AG, where V is a G-
coherent variety.

Remark 1.4 Theorem 1.3 can be viewed as an analog of the Langlands reciprocity
for C∗-algebras. In other words, the coordinate ring AV of a G-coherent variety V

is a sub-algebra of the algebra AG.

An application of Theorem 1.3 is as follows. Recall that to each arithmetic variety V

one can attach the Hasse-Weil (motivic) L-function. Likewise, to each irreducible
representation of the group G(AK) one can attach an automorphic (standard) L-
function, see [8] and [9]. Theorem 1.3 implies one of the conjectures of [9].

Corollary 1.5 The Hasse-Weil L-function of a G-coherent variety V is a product
of the automorphic L-functions.

The paper is organized as follows. The definitions and preliminary results can be
found in Sect. 2. Theorem 1.3 and Corollary 1.5 are proved in Sect. 3. An example
is constructed in Sect. 4.

2 Preliminaries

This section is a brief account of preliminary facts involved in our paper; we refer
the reader to [2, 5, 9, 18].

2.1 AF-Algebras

A C∗-algebra is an algebra A over C with a norm a �→ ‖a‖ and an involution
a �→ a∗ such that it is complete with respect to the norm and ‖ab‖ ≤ ‖a‖ ‖b‖ and
‖a∗a‖ = ‖a2‖ for all a, b ∈ A. Any commutative C∗-algebra is isomorphic to the
algebra C0(X) of continuous complex-valued functions on some locally compact
Hausdorff space X; otherwise, A represents a noncommutative topological space.

An AF-algebra (Approximately Finite C∗-algebra) is defined to be the norm
closure of an ascending sequence of finite dimensional C∗-algebras Mn, where
Mn is the C∗-algebra of the n × n matrices with entries in C. Here the index
n = (n1, . . . , nk) represents the semi-simple matrix algebra Mn = Mn1⊕· · ·⊕Mnk .
The ascending sequence mentioned above can be written as

M1
ϕ1−→ M2

ϕ2−→ . . . ,

where Mi are the finite dimensional C∗-algebras and ϕi the homomorphisms
between such algebras. If ϕi = Const , then the AF-algebra A is called stationary;
such an algebra defines and is defined by a shift automorphism σϕ : A → A
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corresponding to a map i �→ i + 1 on ϕi [6, p. 37]. The homomorphisms
ϕi can be arranged into a graph as follows. Let Mi = Mi1 ⊕ · · · ⊕ Mik and
Mi′ = Mi′1 ⊕ · · · ⊕ Mi′k be the semi-simple C∗-algebras and ϕi : Mi → Mi′ the
homomorphism. One has two sets of vertices Vi1, . . . , Vik and Vi′1, . . . , Vi′k joined
by brs edges whenever the summand Mir contains brs copies of the summand Mi′s
under the embedding ϕi . As i varies, one obtains an infinite graph called the Bratteli
diagram of the AF-algebra. The matrix B = (brs) is known as a partial multiplicity
matrix; an infinite sequence of Bi defines a unique AF-algebra.

For a unital C∗-algebra A, let V (A) be the union (over n) of projections in
the n × n matrix C∗-algebra with entries in A; projections p, q ∈ V (A) are
equivalent if there exists a partial isometry u such that p = u∗u and q = uu∗.
The equivalence class of projection p is denoted by [p]; the equivalence classes of
orthogonal projections can be made to a semigroup by putting [p] + [q] = [p+ q].
The Grothendieck completion of this semigroup to an abelian group is called the
K0-group of the algebra A. The functor A → K0(A) maps the category of unital
C∗-algebras into the category of abelian groups, so that projections in the algebra A

correspond to a positive cone K+
0 ⊂ K0(A) and the unit element 1 ∈ A corresponds

to an order unit u ∈ K0(A). The ordered abelian group (K0,K
+
0 , u) with an order

unit is called a dimension group; an order-isomorphism class of the latter we denote
by (G,G+).

If A is an AF-algebra, then its dimension group (K0(A),K+
0 (A), u) is a

complete isomorphism invariant of algebra A [7]. The order-isomorphism class
(K0(A),K+

0 (A)) is an invariant of the Morita equivalence of algebra A, i.e. an
isomorphism class in the category of finitely generated projective modules over A.

2.2 Trace Cohomology

Let V be an n-dimensional complex projective variety endowed with an automor-
phism σ : V → V and denote by B(V,L, σ ) its twisted homogeneous coordinate
ring, see [18]. Let R be a commutative graded ring, such that V = Spec (R). Denote
by R[t, t−1; σ ] the ring of skew Laurent polynomials defined by the commutation
relation bσ t = tb for all b ∈ R, where bσ is the image of b under automorphism σ .
It is known, that R[t, t−1; σ ] ∼= B(V,L, σ ).

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on
H. For a ring of skew Laurent polynomialsR[t, t−1; σ ], consider a homomorphism:

ρ : R[t, t−1; σ ] −→ B(H). (2.1)

Recall that B(H) is endowed with a ∗-involution; the involution comes from the
scalar product on the Hilbert space H. We shall call representation (2.1) ∗-coherent,
if (i) ρ(t) and ρ(t−1) are unitary operators, such that ρ∗(t) = ρ(t−1) and (ii) for
all b ∈ R it holds (ρ∗(b))σ(ρ) = ρ∗(bσ ), where σ(ρ) is an automorphism of ρ(R)

induced by σ . WheneverB = R[t, t−1; σ ] admits a ∗-coherent representation,ρ(B)
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is a ∗-algebra; the norm closure of ρ(B) is a C∗-algebra [5]. We shall denote it by
AV and refer to AV as the Serre C∗-algebra of variety V .

Let K be the C∗-algebra of all compact operators on H. We shall write τ :
AV ⊗ K → R to denote the canonical normalized trace on AV ⊗ K, i.e. a
positive linear functional of norm 1 such that τ (yx) = τ (xy) for all x, y ∈
AV ⊗ K, see [1, p. 31]. Denote by C(V ) the C∗-algebra of complex-valued
functions on the Hausdorff space V . Because AV is a crossed product C∗-algebra
of the form AV

∼= C(V ) � Z [12, Lemma 5.3.2], one can use the Pimsner-
Voiculescu six term exact sequence for the crossed products, see e.g. [1, p. 83]
for the details. Thus one gets the short exact sequence of the algebraic K-groups:

0 → K0(C(V ))
i∗→ K0(AV ) → K1(C(V )) → 0, where the map i∗ is induced

by the natural embedding of C(V ) into AV . We have K0(C(V )) ∼= K0(V ) and
K1(C(V )) ∼= K−1(V ), where K0 and K−1 are the topological K-groups of V , see
[1, p.80]. By the Chern character formula, one gets K0(V ) ⊗ Q ∼= Heven(V ;Q)

and K−1(V ) ⊗ Q ∼= Hodd(V ;Q), where Heven (Hodd) is the direct sum of even
(odd, resp.) cohomology groups of V . Notice that K0(AV ⊗K) ∼= K0(AV ) because
of a stability of the K0-group with respect to tensor products by the algebra K, see
e.g. [1, p. 32]. One gets the commutative diagram in Fig. 1, where τ∗ denotes a
homomorphism induced on K0 by the canonical trace τ on the C∗-algebra AV ⊗K.
Since Heven(V ) := ⊕n

i=0H
2i(V ) and Hodd(V ) := ⊕n

i=1H
2i−1(V ), one gets for

each 0 ≤ i ≤ 2n an injective homomorphism τ∗ : Hi(V ) −→ R.

Definition 2.1 By an i-th trace cohomology group Hi
tr(V ) of variety V one

understands the abelian subgroup of R defined by the map τ∗.

2.3 Langlands Reciprocity

Let V be an n-dimensional complex projective variety over a number field K;
consider its reduction V (Fp) modulo the prime ideal P ⊂ K over a non-ramified
prime p. Recall that the Weil zeta function is defined as:

Zp(t) = exp

( ∞∑

r=1

|V (Fpr )| t
r

r

)

, r ∈ C, (2.2)

Heven(V ) ⊗ Q i∗ K0(AV ⊗ K) ⊗ Q Hodd(V ) ⊗ Q 

τ∗

R

Fig. 1 The trace cohomology
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where |V (Fpr )| is the number of points of variety V (Fpr ) defined over the field with
pr elements. It is known that:

Zp(t) = P1(t) . . . P2n−1(t)

P0(t) . . . P2n(t)
, (2.3)

where P0(t) = 1 − t, P2n = 1 − pnt and each Pi(t) for 1 ≤ i ≤ 2n − 1 is
a polynomial with integer coefficients, such that Pi(t) = ∏

(1 − αij t) for some

algebraic integers αij of the absolute value p
i
2 . Consider an infinite product:

L(s, V ) :=
∏

p

Zp(p
−s ) = L1(s, V ) . . . L2n−1(s, V )

L0(s, V ) . . .L2n(s, V )
, (2.4)

where Li(s, V ) = ∏
p Pi(p

−s ); the L(s, V ) is called the Hasse-Weil (or motivic)
L-function of V .

On the other hand, if K is a number field then the adele ring AK of K is a
locally compact subring of the direct product

∏
Kv taken over all places v of K;

the AK is endowed with a canonical topology. Consider a reductive group G(AK)

over AK ; the latter is a topological group with a canonical discrete subgroup G(K).
Denote by L2(G(K)\G(AK)) the Hilbert space of all square-integrable complex-
valued functions on the homogeneous space G(K) \ G(AK) and consider the right
regular representation R of the locally compact group G(AK) by linear operators
on the space L2(G(K)\G(AK)) given by formula (1.1). It is well known, that each
irreducible component π of the unitary representation R can be written in the form
π = ⊗πv , where v are all unramified places of K . Using the spherical functions,
one gets an injection πv �→ [Av], where [Av] is a conjugacy class of matrices in the
group GLn(C). The automorphic L-function is given by the formula:

L(s, π) =
∏

v

(
det

[
In − [Av](Nv)−s

])−1
, s ∈ C, (2.5)

where Nv is the norm of place v; we refer the reader to [9, p. 170] and [8, p. 201]
for details of this construction.

The following conjecture relates the Hasse-Weil and automorphic L-functions.

Conjecture 2.2 ([9]) For each 0 ≤ i ≤ 2n there exists an irreducible representa-
tion πi of the group G(AK), such that Li(s, V ) ≡ L(s, πi ).
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3 Proofs

3.1 Proof of Theorem 1.3

We shall split the proof in two lemmas.

Lemma 3.1 The algebra AG is isomorphic to a stationary AF-algebra.

Proof Let A×
K be the idele group, i.e. a group of invertible elements of the adele ring

AK . Denote by Gal (Kab|K) the Galois group of the maximal abelian extension
Kab of the number field K . The Artin reciprocity says that there exists a continuous
isomorphism:

K×\A×
K/CK −→ Gal (Kab|K), (3.1)

where CK is the closure of the image in K×\A×
K of the identity connected

component of the archimedean part K∞ of the A×
K .

Recall that Gal (Kab|K) is a profinite abelian group, i.e. a topological group
isomorphic to the inverse limit of finite abelian groups. It follows from the Artin
reciprocity (3.1), that K×\A×

K/CK is also a profinite abelian group. Since every

finite abelian group is a product of the cyclic groups Z/p
ki
i Z, we can write the

group K×\A×
K/CK in the form:

K×\A×
K/CK

∼= lim←−
lm∏

i=1

(
Z/p

ki
i Z
)
, (3.2)

where m → ∞. Notice that the cyclic group Z/p
ki
i Z can be embedded into the

finite field Fqi , where qi = p
ki
i . Thus the group GLn(Z/p

ki
i Z) is correctly defined

and from (3.2) one gets an isomorphism

GLn(K
×\A×

K/CK) ∼= lim←−
lm∏

i=1

GLn(Fqi ), (3.3)

where GLn(Fqi ) is a finite group of order
∏n−1

j=0(q
n
i − q

j
i ) and such a group is no

longer abelian. In particular, it follows from (3.3) that the GLn(K
×\A×

K/CK) is a
profinite group.

(i) Let us show that the group GLn(K
×\A×

K/CK) being profinite implies that the
AG is an AF-algebra. Indeed, if G is a finite group then the group algebra C[G]
has the form

C[G] ∼= Mn1(C)⊕ · · · ⊕Mnh(C),



522 I. V. Nikolaev

where ni are degrees of the irreducible representations of G and h is the total
number of such representations [16, Proposition 10]. In view of (3.3), we have

GLn(K
×\A×

K/CK) ∼= lim←−Gi, (3.4)

where Gi is a finite group. Consider a group algebra

C[Gi] ∼= M(i)
n1

(C)⊕ · · · ⊕M(i)
nh

(C) (3.5)

corresponding to Gi . Notice that the C[Gi] is a finite-dimensional C∗-algebra.
The inverse limit (3.4) defines an ascending sequence of the finite-dimensional
C∗-algebras of the form

lim←−M(i)
n1

(C)⊕ · · · ⊕M(i)
nh

(C). (3.6)

Since AG is the norm closure of the group algebra C[GLn(K
×\A×

K)] ∼=
C[GLn(K

×)\GLn(A
×
K)] [5, Section 13.9], we conclude that there exists a C∗-

homomorphism h : AG → AG, where AG is an AF-algebra defined by the
limit (3.6). To calculate the kernel of h, recall that CK

∼= lim←−Ui , where Ui are

open subgroups of the group K×\A×
K . We repeat the construction of (3.4)–(3.6)

and obtain an AF-algebra AU . One gets an exact sequence of the C∗-algebras
1 → AU → AG → AG → 1. In other words, the AG is an extension of the
AF-algebra AU by the AF-algebra AG. But any such an extension must be an
AF-algebra itself [3]. Item (i) is proved.

(ii) It remains to prove that the AG is a stationary AF-algebra. Indeed, denote by
Frq the Frobenius map, i.e. an endomorphism of the finite field Fq acting
by the formula x �→ xq . The map Frqi induces an automorphism of the
group GLn(Fqi ). Using formula (3.3), one gets an automorphism of the group
GLn(AK) and the corresponding group algebra C[GLn(AK)]. Taking the norm
closure of the algebra C[GLn(AK)], we conclude that there exists a non-
trivial automorphism φ of the AF-algebra AG. But the AF-algebra admits an
automorphism φ �= ± Id if and only if it is a stationary AF-algebra [6, p. 37].
Thus the algebra AG is a stationary AF-algebra. Lemma 3.1 is proved. 	


Remark 3.2 It follows from formula (3.4) that the AF-algebra AG is determined by
a partial multiplicity matrix B of rank n, i.e. B ∈ SLn(Z). Consider an isomorphism

AG � Z ∼= OB ⊗K,

where the crossed product is taken by the shift automorphism of AG, OB is
the Cuntz-Krieger algebra defined by matrix B and K is the C∗-algebra of
compact operators [1, Exercise 10.11.9]. Consider a continuous group of modular
automorphisms {σ t : OB → OB | t ∈ R} acting on the generators s1, . . . , sn of
the algebra OB by the formula sk �→ eit sk . Then a pull back of σ t corresponds
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to the action of continuous symmetry group GLn(AK) on the homogeneous space
GLn(K)\GLn(AK). This observation can be applied to prove Weil’s conjecture on
the Tamagawa numbers.

Lemma 3.3 The algebra AV embeds into the AF-algebra AG, where V is a G-
coherent variety.

Proof We shall use the Pimsner’s Theorem [13, Theorem 7] about an embedding
of the crossed product algebra AV into an AF-algebra. It will develop that the G-
coherence of V implies that the AF-algebra is Morita equivalent to the algebra AG

of Lemma 3.1. We pass to a detailed argument.
Let V be a complex projective variety. Following [13] we shall think of V as

a compact metrizable topological space X. Recall that for a homeomorphism ϕ :
X → X the point x ∈ X is called non-wandering if for each neighborhood U of x
and every N > 0 there exists n > N such that

ϕn(U) ∩ U �= ∅.

(In other words, the point x does not “wander” too far from its initial position in the
space X.) If each point x ∈ X is a non-wandering point, then the homeomorphism
ϕ is called non-wandering.

Let σ : V → V be an automorphism of finite order of the G-coherent variety V ,
such that the representation (2.1) is ∗-coherent. Then the crossed product

AV = C(V )�σ Z

is the Serre C∗-algebra of V . Since σ is of a finite order, it is a non-wandering home-
omorphism of X. In particular, the σ is a pseudo-non-wandering homeomorphism
[13, Definition 2]. Then there exists a unital (dense) embedding

AV ↪→ A, (3.7)

where A is an AF-algebra defined by the homeomorphism ϕ [13, Theorem 7].
Let us show that the algebra A is Morita equivalent to the AF-algebra AG.

Indeed, the embedding (3.7) induces an injective homomorphism of the K0-groups

K0(AV ) ↪→ K0(A). (3.8)

As explained in Sect. 2.2, the map (3.8) defines an inclusion

Hi
tr(V ) ⊆ K0(A). (3.9)

On the other hand, the trace cohomology of a G-coherent variety V must satisfy an
inclusion

Hi
tr(V ) ⊆ K0(AG). (3.10)
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Let b∗ = max0≤i≤2n bi be the maximal Betti number of variety V . Then in
formulas (3.9) and (3.10) the inclusion is an isomorphism, i.e. H ∗

t r (V ) ∼= K0(A)

and H ∗
t r (V ) ∼= K0(AG). One concludes that

K0(A) ∼= K0(AG). (3.11)

In other words, the AF-algebras A and AG are Morita equivalent. The embedding
AV ↪→ AG follows from formulas (3.7) and (3.11). Lemma 3.3 is proved. 	


Theorem 1.3 follows from Lemma 3.3.

3.2 Proof of Corollary 1.5

Corollary 1.5 follows from an observation that the Frobenius action σ(Frip) :
Hi

tr(V ) → Hi
tr(V ) extends to a Hecke operator Tp : K0(AG) → K0(AG),

whenever Hi
tr(AV ) ⊆ K0(AG). Let us pass to a detailed argument.

Recall that the Frobenius map on the i-th trace cohomology of variety V is given
by an integer matrix σ(Frip) ∈ GLbi (Z), where bi is the i-th Betti number of V ;
moreover,

|V (Fp)| =
2n∑

i=0

(−1)i tr σ (F rip), (3.12)

where V (Fp) is the reduction of V modulo a good prime p [10]. (Notice that
(3.12) is sufficient to calculate the Hasse-Weil L-function L(s, V ) of variety V via
Eq. (2.2); hence the map σ(Frip) : Hi

tr(V ) → Hi
tr(V ) is motivic.)

Definition 3.4 Denote by T i
p an endomorphism of K0(AG), such that the diagram

in Fig. 2 is commutative, where ι is the embedding (1.2). By Hi we understand the
algebra over Z generated by the T i

p ∈ End (K0(AG)), where p runs through all but
a finite set of primes.

Fig. 2 Hecke operator T i
p

� �
�

�

K0(AG) )K0(AG

Hi
tr(V ) Hi

tr(V )

T i
p

σ(Frip)

ιι
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Remark 3.5 The algebra Hi is commutative. Indeed, the endomorphisms T i
p cor-

respond to multiplication of the group K0(AG) by the real numbers; the latter
commute with each other. We shall call the {Hi | 0 ≤ i ≤ 2n} an i-th Hecke algebra.

Lemma 3.6 The algebra Hi defines an irreducible representations πi of the group
G(AK).

Proof Let f ∈ L2(G(K)\G(AK)) be an eigenfunction of the Hecke operators
T i
p; in other words, the Fourier coefficients cp of the function f coincide with the

eigenvalues of the Hecke operators Tp up to a scalar multiple. Such an eigenfunction
is defined uniquely by the algebra Hi .

Let Lf ⊂ L2(G(K)\G(AK)) be a subspace generated by the right translates
of f by the elements of the locally compact group G(AK). It is immediate (see
e.g. [8, Example on p. 197]), that Lf is an irreducible subspace of the space
L2(G(K)\G(AK)); therefore it gives rise to an irreducible representation πi of the
locally compact group G(AK). Lemma 3.6 follows. 	

Lemma 3.7 L(s, πi ) ≡ Li(s, V ).

Proof Recall that the function Li(s, V ) can be written as

Li(s, V ) =
∏

p

(
det

[
In − σ(Frip)p

−s
])−1

, (3.13)

where σ(Frip) ∈ GLbi (Z) is a matrix form of the action of Frip on the trace

cohomology Hi
tr(V ).

On the other hand, from (2.5) one gets

L(s, πi ) =
∏

p

(
det

[
In − [Ai

p]p−s
])−1

, (3.14)

where [Ai
p] ⊂ GLn(C) is a conjugacy class of matrices corresponding to the

irreducible representation πi of the group G(AK). As explained, for such a
representation we have an inclusion T i

p ∈ [Ai
p]. But the action of the Hecke operator

T i
p is an extension of the action of σ(Frip) on Hi

tr(V ), see Fig. 2. Therefore

σ(Frip) = [Ai
p] (3.15)

for all but a finite set of primes p. Comparing formulas (3.13)–(3.15), we get that
L(s, πi) ≡ Li(s, V ). Lemma 3.7 follows. 	


Corollary 1.5 follows from Lemma 3.7 and formula (2.4).
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4 Example

We shall illustrate Theorem 1.3 and Corollary 1.5 for the group

G ∼= GL2(AK),

where K = Q(
√
D) is a real quadratic field.

Proposition 4.1 K0(AG) ∼= Z + Zω, where

ω =
{

1+√D
2 , if D ≡ 1 mod 4,√
D, if D ≡ 2, 3 mod 4.

(4.1)

Proof By Lemma 3.1 and Remark 3.2, the AG is a stationary AF-algebra given by
partial multiplicity matrix B ∈ SL2(Z). In particular, K0(AG) ∼= Z + Zω, where
ω ∈ Q(λB), where λB is the Perron-Frobenius eigenvalue of matrix B. Moreover,
by the construction End (K) ∼= End (K0(AG)), where End is the endomorphism
ring of the corresponding Z-module. But End (K) ∼= OK , where OK is the ring
of integers of K . Thus, λB ∈ K and ω is given by formula (4.1). Proposition 4.1
follows. 	

Proposition 4.2 Let ECM

∼= C/Ok be an elliptic curve with complex multiplication
by the ring of integers of the imaginary quadratic field k = Q(

√−D). Then ECM is
a G-coherent variety of the group G ∼= GL2(AK).

Proof The noncommutative torus Aθ is a C∗-algebra generated by the unitary
operators u and v satisfying the commutation relation vu = e2πiθuv for a constant
θ ∈ R [15]. The Serre C∗-algebra of an elliptic curve Eτ ∼= C/(Z + Zτ ) is
isomorphic to Aθ for any {τ | Im τ > 0}, see [12, Theorem 1.3.1]. In particular
[11], if τ ∈ Ok then

{
H 0

t r (ECM) = H 2
t r(ECM) ∼= Z,

H 1
t r (ECM) ∼= Z + Zω.

(4.2)

Comparing formulas (4.1) and (4.2), one concludes that

Hi
tr(ECM) ⊆ K0(AG),

i.e. the ECM is a G-coherent variety of the group G ∼= GL2(AK). Proposition 4.2 is
proved. 	

Remark 4.3 The embedding of Aθ into an AF-algebra was initially constructed in
[14].

Proposition 4.4 L(s, ECM) ≡ L(s, π1)
L(s, π0)L(s, π2)

, where πi are irreducible representa-
tions of the locally compact group GL2(AK).
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Proof The Hasse-Weil L-function of the ECM has the form:

L(s, ECM) =
∏

p

[
det (I2 − σ(Fr1

p)p
−s
]−1

ζ(s)ζ(s − 1)
, s ∈ C, (4.3)

where ζ(s) is the Riemann zeta function and the product is taken over the set of
good primes; we refer the reader to formula (3.13). It is immediate that

{
L(s, π0) = ζ(s),

L(s, π2) = ζ(s − 1),

where L(s, π0) and L(s, π2) are the automorphic L-functions corresponding to
the irreducible representations π0 and π2 of the group GL2(AK). An irreducible
representation π1 gives rise to an automorphic L-function

L(s, π1) =
∏

p

(
det

[
I2 − [A1

p]p−s
])−1

.

But formula (3.15) says that [A1
p] = σ(Fr1

p) and therefore the numerator of (4.3)
coincides with the L(s, π1). Proposition 4.4 is proved. 	

Remark 4.5 Proposition 4.4 can be proved in terms of the Grössencharacters [17,
Chapter II, §10].

Acknowledgments I thank the referees for their interest and helpful comments on the draft of this
paper.
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Compact Sequences in Quasifractal
Algebras

Steffen Roch

Abstract The paper is devoted to the study of compact sequences in quasifractal
algebras. We are particularly interested in the relations between the essential ranks
of fractally restricted sequences (An)|M and the essential rank of the full sequence.
We will also ask whether the dependence of the essential ranks of the fractally
restricted sequences (An)|M on (a coset of) M is continuous, which requires to
provide the fractal variety of the algebra with a suitable topology.

Keywords Fractal restriction · Quasifractal algebras · Continuous fields ·
Continuous trace algebras

Mathematics Subject Classification (2010) Primary 47N40; Secondary 65J10,
46L99

1 Introduction

Let H be a Hilbert space and (Pn)n∈N a sequence of orthogonal projections of finite
rank which converges strongly to the identity operator on H . Let F denote the set
of all bounded sequences (An)n≥1 of operators An ∈ L(imPn) and G the set of all
sequences (An) ∈ F with ‖An‖ → 0. Provided with the operations

(An)+ (Bn) := (An + Bn), (An)(Bn) := (AnBn), (An)
∗ := (A∗

n)

and the norm ‖(An)‖ := sup ‖An‖, F becomes a unital C∗-algebra and G a closed
ideal of F . Let δ(n) denote the rank of Pn. Then one can identify L(imPn) with
the C∗-algebra Cn := Mδ(n)(C) of the complex δ(n) × δ(n) matrices, and F and G
can be identified with the direct product and the direct sum of the sequence (Cn),
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respectively. In what follows we will think of F and G in this way (although some
results hold for products and sums of sequences of general C∗-algebras as well).

The quotient algebra F/G plays a significant role in numerical analysis, which
stems from the observation that asymptotic properties of the sequence (An) ∈ F
can often be rephrased as a property of the coset (An) + G. To mention only two
examples, it is

‖(An)+ G‖F/G = lim sup
n→∞

‖An‖

for every sequence (An) ∈ F , and the coset (An)+G is invertible in F/G if and only
if the An are invertible for all sufficiently large n and if the norms of their inverses
are uniformly bounded, which is equivalent to saying that (An) is a stable sequence.

Fractal and quasifractal algebras The correspondence between asymptotic prop-
erties of the sequence (An) ∈ F and properties of the coset (An)+ G is particularly
close when the sequence (An) belongs to a fractal subalgebra of F . For example, if
(An) is a sequence in a fractal subalgebra of F , then the limit lim ‖An‖ exists, and
the sequence (An) is stable if one of its (infinite) subsequences is stable.

The perhaps simplest way to define fractal algebras is the following (which is
equivalent to the original definition in [15]):

A C∗-subalgebra A of F is fractal if every partial zero sequence in A is a zero sequence,
i.e., if every sequence (An) ∈ A with lim inf‖An‖ = 0 satisfies lim ‖An‖ = 0.

Not every subalgebra of F is fractal, but it turns out that every separable
subalgebra of F has a fractal restriction. Here is the precise statement of the fractal
restriction theorem from [9] (see [12] for a shorter proof):

If A is a separable C∗-subalgebra of F , then there is an infinite subset M of N such that the
algebra A|M of all restricted sequences (An)n∈M is a fractal subalgebra of F |M.

Since every restriction of a separable subalgebra of F is separable again, the
separable subalgebras of F are quasifractal in the sense of the following definition:

A C∗-subalgebra A of F is called quasifractal if every restriction of A has a fractal
restriction.

We denote by frA the set of all infinite subsets M of N for which A|M is a
fractal algebra. Two elements M1, M2 of frA are called equivalent, symbolically
written as M1 ∼ M2, if M1 ∪M2 ∈ frA. The relation ∼ is an equivalence relation
(Lemma 4.2 in [13]). We denote the set of all equivalence classes of this relation by
(frA)∼ and call (frA)∼ the fractal variety of the algebra A. For example, if A is
fractal, then frA consists of all infinite subsets of N and (frA)∼ is a singleton. A
standard example for a fractal algebra is the algebra of the finite sections method
for Toeplitz operators with continuous generating function (see [2] for Toeplitz
operators and their finite sections and Corollary 1.10 in [5] for the fractality result).
Examples for quasifractal algebras can be found in [13].
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Compact sequences We will need several notions of the compactness and of the
rank of an element in a general C∗-algebra and, in particular, of a sequence in F .
These notions can be subsumed under the following simple scheme.

Let A be a unital C∗-algebra and J a non-empty self-adjoint subset of A such
that AJ ⊆ J and JA ⊆ J . We call the subsets with these properties the semi-
ideals of A. Clearly, 0 ∈ J . Every semi-ideal J induces a rank function on A, i.e.,
a function r : A→ N ∪ {∞} which satisfies

(a) r(a) = 0 if and only if a = 0,
(b) r(a + b) ≤ r(a)+ r(b),
(c) r(ab) ≤ min{r(a), r(b)},
(d) r(a) = r(a∗)

for all a, b ∈ A, as follows: Set r(0) := 0. If a nonzero a ∈ A is a finite sum of
elements of J , then r(a) is the smallest positive integer such that a can be written
as a sum of r(a) elements from J . Finally, r(a) := ∞ if a is not a finite sum of
elements of J . The closure of the set of the elements with finite rank is a closed
ideal of A, called the ideal of the compact elements (relative to J ). We will reify
this scheme in several settings:

1. Let A be a unital C∗-algebra and J the set of all elements k ∈ A with the
property that for every a ∈ A there is a number α ∈ C such that kak = αk.
Then J is a semi-ideal; the associated rank function is called the algebraic rank
and denoted by alg ranka, and the associated ideal of the compact elements is
denoted by C(A).

2. For A = F , consider the set J of all sequences (Kn) ∈ F such that rankKn ≤
1 for all n ∈ N. Then J is a semi-ideal of F ; the associated rank function
is called the sequential rank and denoted by seq rank (An), and the associated
ideal of the compact elements is denoted by K. The elements of K are called the
compact sequences. It is not hard to show that G ⊆ K and that seq rank (An) =
supn rankAn for every sequence (An) ∈ F .

3. If A is a C∗-subalgebra of F and J is the set of all sequences (Kn) in A such
that rankKn ≤ 1 for all n ∈ N, then we denote the corresponding ideal of the
compact sequences by K(A). Clearly, K = K(F).

4. Let J be the set of all cosets (Kn) + G of sequences (Kn) ∈ F with
seq rank (Kn) ≤ 1. Then J is a semi-ideal of F/G and the corresponding ideal
of the compact elements is nothing but K/G. If r denotes the rank function
associated with J then we call ess rank (An) := r((An)+G) the essential rank of
(An) ∈ F . In particular, the sequences of essential rank 0 are just the sequences in
G. The essential rank of a sequence (An) ∈ F can be characterized as the smallest
integer r ≥ 0 such that (An) can be written as (Gn) + (Kn) with (Gn) ∈ G and
supn rankKn = r . The advantage of the essential rank of a sequence (An) over
its sequential rank is that it depends on the coset of (An) modulo G only.

See Sections 4.1–4.4 in [11] for some basic facts on compact sequences.
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Compact Sequences in Fractal Algebras Let A be a unital and fractal C∗-algebra
of F . A crucial result ([10]) on compact sequences in fractal algebras is that then

(A ∩K)/G = C
(
A/G

)
.

Consequently, then (A ∩ K)/G is a dual algebra, i.e., it is ∗-isomorphic to a direct
sum of ideals K(Ht) of compact operators on a Hilbert space Ht . There is also a
relation between the algebraic rank of the coset (An) + G and the essential rank of
(An) when (An) is a compact sequence in a fractal algebra A. The general form of
this relation involves the local weights of A which we are not going to introduce
here. This relation takes a particular simple form when A has local weight 1, in
which case

ess rank (An) = alg rank
(
(An)+ G

)
(1.1)

for every sequence (An) ∈ A of finite essential rank. One can show that a fractal
algebra A has local weight 1 if and only if

A ∩K = K(A). (1.2)

We therefore refer to (1.2) as the local weight 1 condition in what follows.

The contents of this paper The goal of this paper is to study compact sequences in
quasifractal algebras. We are particularly interested in the relations of the essential
ranks of the restricted sequences (An)|M with M ∈ frA to the essential rank of (An)

on the one side and to the algebraic ranks of the cosets (An)|M + G|M on the other
side. We will also ask whether the dependence of the essential ranks of (An)|M on
M

∼ is continuous with respect to the topology on (frA)∼ introduced in [13]. We
will embed the latter question into a broader context and discuss to what extend
(A ∩K)/G can be viewed of as an algebra with continuous trace.

2 Restrictions of Compact Sequences

In what follows we will often use boldface letters to denote sequences in F . We
start with picking up the first question raised at the end of the introduction: to
what extend do the compactness properties of the fractal restrictions of a sequence
determine the compactness properties of the full sequence? Clearly, if K ∈ F is
a compact sequence and M an infinite subset of N, then the restriction K|M is a
compact sequence in F |M, and

ess rank (K|M) ≤ ess rank K. (2.1)
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Trivially, the converse is also true: If every restriction of a sequence K is compact,
then K is compact. Remarkably, already the fractal restrictions of K will do the job.

Proposition 2.1 Let A be a quasifractal C∗-subalgebra of F and K ∈ A. Then

(a) K is compact if and only if every restriction K|M with M ∈ frA is compact.
(b) if K is of finite essential rank,

ess rank K = max
M∈frA

ess rank (K|M). (2.2)

Proof We shall employ a criterion from [11] which characterizes the compactness
of a sequence (Kn) in terms of the singular values of the matrices Kn. Thus, let
�1(A) ≥ . . . ≥ �n(A) ≥ 0 denote the singular values of a matrix A ∈ Mn(C).
If K = (Kn) is a compact sequence, then every (fractal or not) restriction of K is
compact. If K fails to be compact, then the negation of property (a) in Theorem 4.5
in [11] yields a positive constant C and strictly increasing sequences (nr ) and (kr )

with nr ≥ kr such that

�kr (Knr ) ≥ C for all r.

The same theorem then implies that no restriction of the subsequence (Knr ) of (Kn)

is compact. This proves assertion (a).
Let now K be a sequence of finite essential rank r . The estimate≥ in (2.2) comes

from (2.1). For the reverse estimate, we have to show that there is a fractal restriction
K|M of K of essential rank r . Let C := lim sup�r(Kn). By Corollary 4.6 in [11],
C is positive, and the set

M
′ := {n ∈ N : �r(Kn) ≥ C/2}

is infinite. Since A is quasifractal, there is an infinite subset M of M′ such that K|M
is fractal. Moreover, by construction,

lim sup
M4m→∞

�r(Km) ≥ C/2 > 0 and lim
M4m→∞�r+1(Km) = 0.

Thus, K|M is a sequence of finite essential rank r . 	

It would be desirable to replace the essential ranks of the restrictions K|M on the

right-hand side of (2.2) by a more intrinsic quantity such as the algebraic rank of
the coset K|M + G|M. Since, in general, the equality ess rank K = alg rank (K+ G)
does not even hold for a sequence K in a fractal algebra, we will need additional
conditions to guarantee the equality

ess rank K|M = alg rank (K|M + G|M) (2.3)

for all M ∈ frA.
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There are several conditions which ensure the equality (2.3). Our goal is to show
(2.3) for sequences K which are stably regularizable. Recall that an element a of a
C∗-algebra A is Moore-Penrose invertible if there is a b ∈ A such that aba = a

and bab = b and such that ab and ba are self-adjoint. The element b is uniquely
determined by these conditions; it is called the Moore-Penrose inverse of a and
denoted by a†. All we need on Moore-Penrose invertibility is in Section 2.2.1 in
[5]. A sequence K ∈ F is then called stably regularizable if it is the sum of a
Moore-Penrose invertible sequence and a sequence in G. Stable regularizability of
a sequence K is equivalent to the Moore-Penrose invertibility of its coset K + G in
F/G.

So let K = (Kn) ∈ A be a sequence of finite essential rank r which is stably
regularizable. Then, by definition, there are sequences (Ln) ∈ F and (Gn) ∈ G
such that (Kn) = (Ln) + (Gn) and (Ln) is Moore-Penrose invertible in F (and, if
G ⊆ A, even in A by inverse closedness). In particular, every Ln is Moore-Penrose
invertible and sup ‖L†

n‖ < ∞, such that (Ln)
† = (L

†
n). Clearly, (Ln) is a compact

sequence and

ess rank (Kn) = ess rank (Ln).

To continue we need two simple lemmas.

Lemma 2.2 Let A be a C∗-algebra, J a semi-ideal in A and r the associated rank
function. If k ∈ A is Moore-Penrose invertible in F and of finite essential rank, then

r(k) = r(k∗) = r(k†) = r(k†k) = r(k∗k).

Proof From k = kk†k and the properties of the rank function we conclude that

r(k) ≤ r(k†k) ≤ min{r(k), r(k†)},

which implies that r(k) = r(k†k) and r(k) ≤ r(k†). Since (k†)† = k, we obtain
r(k) = r(k†). Further we infer from Theorem 2.15 in [5] that k†k = (k∗k+q)−1k∗k,
where q is the Moore-Penrose projection of k. Hence,

r(k) = r(k†k) ≤ r(k∗k) ≤ r(k)

which finally implies that r(k) = r(k∗k). 	

Lemma 2.3 Let A be a C∗-algebra, p ∈ A a projection, and k ∈ pAp. Then

alg rankpAp k = alg rankA k.

Proof Let k ∈ pAp be of algebraic rank 1 in pAp and a ∈ A. Then k = pkp, and
from kak = pkp pap pkp we conclude that k has algebraic rank 1 in A.
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Set r := alg rankpAp k and s := alg rankA k. Thus, k is a sum of r elements of
algebraic rank 1 in pAp. As we have just seen, these r elements are of algebraic
rank 1 in A. Hence, s ≤ r .

Conversely, let k be the sum k1 + . . . + ks of elements ki of algebraic rank 1 in
A. Then, since k ∈ pAp, the element k = pkp is the sum pk1p + . . .+ pkmp of
m elements on algebraic rank at most 1 in pAp. Hence, r ≤ s. 	


From Lemma 2.2 we infer that P = (�n) := (Ln)
†(Ln) is a projection with

ess rank (�n) = ess rank (Ln) = ess rank (Kn) = r.

Proposition 2.4 Let A be a quasifractal C∗-subalgebra of F which contains G
and satisfies the local weight 1 condition K(A) = A ∩ K. Further, let P ∈ A be a
projection of finite essential rank and M ∈ frA. Then

K
(
(PAP)|M

) = (PAP)|M ∩K|M. (2.4)

Proof Let ess rank P = r . Since P ∈ K∩A = K(A), there are sequences (Ki
n) ∈ A

of spatial rank one and (Gn) ∈ G such that

P = (K1
n)+ . . .+ (Kr

n)+ (Gn). (2.5)

We may even assume that (Ki
n) ∈ PAP (otherwise multiply (2.5) from both sides

by P to get a decomposition of P into r sequences P(Ki
n)P ∈ PAP of essential rank

one and a sequence in PGP). Let M ∈ frA and A ∈ PAP. Then

A|M = (PA)|M =
((

(K1
n)+ . . .+ (Kr

n)+ (Gn)
)
A
)
|M

= (
(K1

n)A
)|M + . . .+ ((Kr

n)A
)|M + ((Gn)A

)|M

with sequences
(
(K1

n)A
)|M of spatial rank one in (PAP)|M, which implies that

(PAP)|M ⊆ K
(
(PAP)|M

)
.

Since P is compact, we also have (PAP)|M ⊆ K|M, which results in the inclusion
⊇ in (2.4). The reverse inclusion is evident. 	


Thus, if the algebra A satisfies the local weight one condition, then so does the
algebra (PAP)|M. Since M ∈ frA, the latter algebra is also fractal, and we conclude
from (1.1) that

ess rank K|M = alg rank(PAP)|M/G|M
(
K|M + G|M

)
(2.6)

for all sequences K ∈ PAP. To get rid of the restriction to the algebra PAP on the
right-hand side of (2.6), we employ Lemma 2.3 which states in the present context
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that

alg rank(PAP)|M/G|M
(
K|M + G|M

) = alg rankA|M/G|M
(
K|M + G|M

)
.

The following theorem summarizes what we obtained.

Theorem 2.5 Let A be a quasifractal C∗-subalgebra of F which contains G and
satisfies K(A) = A ∩K. Further, let P ∈ A be a projection of finite essential rank.
Then, for all K ∈ PAP,

ess rank K = max
M∈frA

ess rank K|M

and, for all M ∈ frA,

ess rank K|M = alg rankA|M/G|M
(
K|M + G|M

)
.

Remark 2.6 Let K be a sequence of finite essential rank in a quasifractal algebra
A. Does the essential rank of a restriction K|M with M ∈ frA depend on the coset
M

∼ only? In general the answer is NO, even when A is a fractal algebra (examples
can be easily found among sequences of projections). The crucial ingredient for an
affirmative answer is the local weight 1 condition.

Let A and P be as in Theorem 2.5, and let K = (Kn) ∈ PAP be a sequence of
finite essential rank. Further, let M1, M2 ∈ frA and M1 ∼ M2. Then the algebra
(PAP)|M1∪M2 is fractal and has local weight 1 by equality (2.4) in Proposition 2.4.
Now it follows as in Theorem 4.4 in [10] and its corollaries that the matrices Kn

have the same spatial rank for all sufficiently large n ∈ M1 ∪M2. (Just to mention
the point: The cited theorem deals with Fredholm sequences, i.e. with sequences
that are invertible modulo K. As in operator theory, where there is a close relation
between Fredholm operators and their kernel dimension and compact operators and
their rank, there is a close relation between the αn-numbers dealt with in Theorem
4.4 in [10] and the ranks of Kn.) Hence, ess rank K|M1 = ess rank K|M2 .

3 Algebras with Continuous Trace

There are several (equivalent) definitions of continuous trace algebras in the
literature; see, e.g. [7] and [8, Definition 5.13]. (The latter reference is an excellent
introduction into the field.) Here is Fell’s original definition from [4, IV.4.1].

Definition 3.1 A C∗-algebra A is called an algebra with continuous trace if

(a) A is liminal,
(b) PrimA is a Hausdorff space (with respect to the hull-kernel topology),
(c) for every L0 ∈ PrimA, there are a neighborhood U of L0 in PrimA and an

a ∈ A such that a + L is a projection of rank 1 for all L ∈ U .
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The rank condition in (c) has to be understood as follows: Since A is liminal,
there is, for every L ∈ PrimA, a unique (up to unitary equivalence) irreducible
representation (H, π) of A with kerπ = L. Then the requirement is that π(a) is
a projection on H with (spatial) rank 1. Condition (c) is also referred to as Fell’s
condition.

Example

(a) The following examples taken from [8] are instructive. Of the ‘dimension-drop-
algebras’

C1 := {f ∈ C([0, 1], M2(C)) : f (0) = diag (α, α) with α ∈ C},
C2 := {f ∈ C([0, 1], M2(C)) : f (0) = diag (α, β) with α, β ∈ C},
C3 := {f ∈ C([0, 1], M2(C)) : f (0) = diag (α, 0) with α ∈ C},

C3 is the only one with continuous trace. For C1, the identity matrix diag (1, 1)
is a projection of algebraic rank one at 0, but there is no rank one projection
close to it in a neighborhood of 0, whereas for C2, the Hausdorff property is
violated.

(b) Let (sn) be a dense subsequence of [0, 1]. For i ∈ {1, 2, 3}, let S(Ci ) stand
for the smallest closed subalgebra of F which contains the ideal G and all
sequences (f (sn)) with f ∈ Ci where Ci is as in (a). (Here we assume that
δ ≥ 2 and identify a 2× 2-matrix A with the δ(n)× δ(n)-matrix

(
A 0
0 0

)

.) Each of
the algebras S(Ci ) is quasifractal, S(Ci ) ⊆ K, and the mapping

S(Ci )/G → Ci , (f (sn))+ G → f

is a ∗-isomorphism from S(Ci )/G onto Ci . In particular, Prim (S(Ci )/G) ∼=
Prim Ci . Thus, also assumptions such as compactness and quasifractality cannot
change the picture sketched in part (a): among the algebras S(Ci )/G, only
S(C2)/G i s an algebra with continuous trace. 	


Let us now go back to the question from the introduction whether (A ∩ K)/G
is an algebra with continuous trace when A is quasifractal. One can show that the
ideal K is a liminal algebra. Since C∗-subalgebras and quotients of liminal C∗-
algebras are liminal (see [3], 4.2.4, 4.3.4 and 4.3.5), condition (a) in Definition
3.1 is satisfied for every algebra (A ∩ K)/G. On the other side, the Examples 3
show that we cannot expect the Hausdorff property of Prim (A∩K)/G in condition
(b) to hold, even for very simple examples of quasifractal algebras. So our focus
will be on Fell’s condition (c). The following three sections will prepare a natural
additional condition for the ideal of the compact sequences in A which will allow
us to overcome the problems with Fell’s condition (b).



538 S. Roch

4 A Topology on (frA)∼

Here we recall from [13] the definition of a topology on (frA)∼ which makes
(frA)∼ to a compact Hausdorff space. For A as C∗-subalgebra of F , let Lmin(A)

denote the smallest closed complex subalgebra1 of l∞ := l∞(N) which contains all
sequences (‖An‖) where (An) ∈ A. Clearly, Lmin(A) is a commutative C∗-algebra,
which is unital if A is unital.

For a C∗-subalgebra L of l∞, we let crL stand for the set of all infinite subsets
M of N such that all sequences in the restriction L|M converge. The algebra L is
called quasiconvergent if every infinite subset of N has an infinite subset in crL.
Then, for every C∗-subalgebra A of F , frA = crLmin(A), and A is quasifractal if
and only if Lmin(A) is quasiconvergent.

Let L be a unital C∗-subalgebra of l∞. Then, for every M ∈ crL, the mapping

ϕM : L→ C, a �→ lim (a|M) (4.1)

is a character (i.e., a non-zero continuous linear functional) on L. Since L∩ c0 is in
the kernel of the mapping (4.1), the quotient mapping

ϕM : L/(L ∩ c0) → C, a + (L ∩ c0) �→ lim (a|M)

is well defined, and this mapping is a character of L/(L ∩ c0).

Proposition 4.1 (Proposition 4.5 in [13]) Let L be a unital and quasiconvergent
C∗-subalgebra of l∞. Then the set {ϕM : M ∈ crL} is strictly spectral for L/(L ∩
c0), i.e., if b ∈ L/(L ∩ c0) and ϕM(b) is invertible for all M ∈ crL, then b is
invertible.

In order to conclude that {ϕM : M ∈ crL} is all of the maximal ideal space
MaxL/(L ∩ c0) of L/(L ∩ c0) we need a further property of L: separability,2 and
in order to make the mapping M �→ ϕM injective, we introduce an equivalence
relation ∼ on crL by calling M1, M2 of crL equivalent if M1 ∪M2 ∈ crL. We
denote the equivalence class of M ∈ crL by M

∼ and write (crL)∼ for the set of all
equivalence classes.

Theorem 4.2 (Corollary 4.7 in [13]) Let L be a unital, separable and quasicon-
vergent C∗-subalgebra of l∞. Then the mapping M

∼ �→ ϕM is a bijection from
(crL)∼ onto Max (L/(L ∩ c0)).

If now A is a unital and quasifractal C∗-subalgebra of F , then Lmin(A) is a unital
and quasiconvergent C∗-subalgebra of l∞.

1The algebra Lmin(A) is denoted by L(A) in [13].
2Actually, one only needs that MaxL/(L ∩ c0) is first countable; see [6].
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Corollary 4.3 Let A be a unital and quasifractal C∗-subalgebra of F such that
Lmin(A) is separable. Then the mapping M

∼ �→ ϕM is a bijection from (frA)∼
onto Max (Lmin(A)/(Lmin(A) ∩ c0)).

Under the conditions of the corollary, one thus can transfer the Gelfand topology
from Max (Lmin(A)/(Lmin(A) ∩ c0)) onto (frA)∼ making the latter a compact
Hausdorff space.

Besides Lmin(A), there is another way to associate a commutative C∗-algebra
with a quasifractal algebra A which induces a Hausdorff topology on (frA)∼.
Let Lmax(A) stand for the set of all sequences (αn) ∈ l∞ with the property
that the restricted sequence (αn)|M converges for every M ∈ frA. Clearly,
Lmin(A) ⊆ Lmax(A) (hence the notation). Moreover, the algebra Lmax(A) is unital
and quasiconvergent wheneverA is quasifractal, and frA = crLmax(A). So one can
also generate a topology on (frA)∼ using Lmax(A). It turns out that these topologies
coincide in important cases. For example, using ideas from the proof of Theorem 4.2
= Corollary 4.7 in [13], one can show that Lmin(A) = Lmax(A) whenever A is a
unital, separable and quasifractal C∗-subalgebra of F .

On the other side, there are contexts in which the use of Lmax(A) is of advantage.
For example, it is often useful to have Lmax(A) as a subalgebra inside A (in the
sense that a sequence (αn) ∈ l∞ is identified with the sequence (αnPn) ∈ F ). We
call A an Lmax-algebra in this case. The requirement to be an Lmax-algebra can be
easily fulfilled: For a C∗-subalgebra A of F , let Amax stand for the smallest closed
C∗-subalgebra of F which contains A and Lmax(A). It is elementary to check that

Lmax(Amax) = Lmax(A),

thus Amax is an Lmax-algebra containing A.

Theorem 4.4 Let A be a unital C∗-subalgebra of F with G ∈ A, and assume that
A is an Lmax-algebra. Then

Lmin(A) = Lmax(A) = A ∩ l∞. (4.2)

Proof We first show that Lmin(L) = L for every C∗-subalgebra L of l∞. If (αn) ∈
L, then (|αn|) = ((αn)(αn)

∗)1/2 ∈ L; hence, Lmin(L) ⊆ L. Conversely, every
sequence inL can be written as a linear combination of four non-negative sequences.
Since (βn) = (|βn|) ∈ Lmin(L) for each of these sequences, the reverse inclusion
L ⊆ Lmin(L) follows.

Now to the proof of (4.2). The inclusion Lmin(A) ⊆ Lmax(A) holds trivially, as
already mentioned. To get the reverse inclusion, note that

Lmax(A) = Lmin(Lmax(A)) ⊆ Lmin(A),

where the equality comes from the remark at the beginning of the proof and the
inclusion holds because Lmax(A) ⊆ A and the functor Lmin is increasing. This
settles the first equality in (4.2).
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For the second equality, set L := A ∩ l∞, considered as a subalgebra of l∞.
Evidently, Lmax(A) ⊆ L. For the reverse inclusion, note that L ⊆ Lmax(L), again
by the above remark. Since L ⊆ A and the functor Lmax is increasing, the assertion
follows. 	


The following section shows another instance where Lmax(A) naturally occurs.

5 Sequences with Sequential Rank 1

Let H be a Hilbert space and K ∈ L(H) an operator with rankK ≤ 1. Then, for
every A ∈ L(H), there is an α ∈ C such that KAK = αK . The number α is
uniquely determined and satisfies |α| ≤ ‖A‖ ‖K‖ whenever K �= 0. If K = 0, then
KAK = αK holds for every α ∈ C, whereas the condition |α| ≤ ‖A‖ ‖K‖ only
holds when α = 0. Thus, both conditions together determine α uniquely.

Let now A be a C∗-subalgebra of F and let (Kn) ∈ A be a sequence with
maxn rankKn ≤ 1. Then, as we have just seen, for every sequence (An) ∈ A, there
is a unique sequence (αn) ∈ l∞ such that

KnAnKn = αnKn and |αn| ≤ ‖An‖ ‖Kn‖ for every n ∈ N. (5.1)

Theorem 5.1 Let A be a unital C∗-subalgebra of F with G ⊆ A and let (An) ∈ A.
Then the sequence (αn) determined by (5.1) belongs to Lmax(A).

Proof It is helpful to define the support of a sequence (An) ∈ A by

supp (An) := {M ∈ frA : (An)|M �∈ G|M}.

If M ∈ supp (An), then the restriction A|M is fractal and (An)|M is not a partial zero
sequence. Thus,

M ∈ supp (An) if and only if lim
n∈M ‖An‖ > 0. (5.2)

Note also that if one of two equivalent sets in frA belongs to supp (An), then so does
the other. In this sense, the support of a sequence is compatible with the equivalence
relation ∼.

Let now (An), (Kn) ∈ A with maxn rankKn ≤ 1, and let (αn) be the sequence
uniquely determined by (5.1). Further let M ∈ frA. We distinguish two cases.

Case A M �∈ supp (An). Then (An)|M ∈ G|M by (5.2). The second condition in
(5.1) then implies that (αn)|M is a zero sequence; hence, convergent.

Case B M ∈ supp (An). Suppose (αn)|M is not convergent. Then, since (αn) is a
bounded sequence, there are complex numbers α �= β and disjoint infinite subsets
Mα, Mβ of M such that αn → α on Mα and αn → β on Mβ .
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Consider the sequence (αnKn − αKn) which is equal to (KnAnKn) − α(Kn)

and, hence, belongs to A. Its restriction onto Mα is a zero sequence, whereas its
restriction to Mβ is not. The latter follows from the estimate

‖αnKn − αKn‖ ≥ |α − β| ‖Kn‖ − |β − αn| ‖Kn‖ (5.3)

and the fact that the sequence (‖Kn‖)|M has a positive limit, k, by (5.2), which
implies that the right hand side of (5.3) converges to k|α − β| > 0.

Hence, (αnKn−αKn)|M is a partial zero sequence but not a zero sequence, which
contradicts the fractality of A|M. This contradiction shows that the sequence (αn)|M
converges for every M ∈ frA, whence (αn) ∈ Lmax(A). 	


Let A be a unital C∗-algebra and C a unital C∗-subalgebra in the center of
A, i.e., the elements of C commute which each element of A. Then C is a unital
commutative C∗-subalgebra of A. Let J stand for the set of all elements k ∈ A
with the following property: For every a ∈ A there is a c ∈ C such that kak = ck.
Then J forms a semi-ideal of A. The associated rank function is called the C-rank,
and the associated ideal of the C-compact elements is denoted by JC(A). In case C
is the complete center of A, the C-rank is also called the central rank and denoted
by cen rank a, and the associated ideal of the centrally compact elements is denoted
by Jcen(A). Note also that JC(A) = C(A), with the notation introduced in the
introduction.

Theorem 5.2 Let A be a unital C∗-subalgebra of F with G ⊆ A, and assume A is
an Lmax-algebra. Then

K(A) = Jcen(A).

The inclusion ⊇ holds without the Lmax-assumption.

Proof Let (Kn) be a sequence of central rank 1 in A. Since G ⊆ A by assumption,
the center of A is a subalgebra of l∞, and rankKn ≤ 1 for every n ∈ N. Hence,
(Kn) ∈ K(A) and Jcen(A) ⊆ K(A).

Conversely, let (Kn) ∈ A be a sequence with maxn rankKn ≤ 1. By (5.1), for
every (An) ∈ A, there is a unique sequence (αn) ∈ l∞ such that KnAnKn = αnKn

for every n. The sequence (αn) belongs to Lmax(A) by Theorem 5.1. Since A is an
Lmax-algebra, the sequence (αnIn) lies in A and, hence in the center of A. Thus,
(Kn) is of central rank 1, whence K(A) ⊆ Jcen(A). 	


6 Fell’s Condition: Transition to C-Compact Elements

The theory of compact sequences in fractal algebras A is most satisfying when the
algebra A is of local weight 1, which happens if and only if A ∩ K = K(A). It is
only natural to impose an analogous condition when studying compact sequences in
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quasifractal algebras. Thus, in what follows, we let A be a unital quasifractal C∗-
subalgebra of F with G ⊆ A which is an Lmax-algebra, and we suppose further that
Lmax(A) is separable and that

A ∩K = K(A).

Then, by Theorem 5.2, A ∩ K = K(A) = Jcen(A) where CenA = Lmax(A) =
A ∩ l∞(N) by Theorem 4.4.

We are going to localize the algebra B := A/G over its central subalgebra C :=
(Lmax(A) + G)/G ∼= Lmax(A)/c0 via the local principle by Allan/Douglas (see
Theorems 2.2.2 and 2.2.11 in [14]). By Theorem 4.2,

Max C = Max (Lmax(A)/c0) ∼= (frA)∼.

Let Ix stand for the smallest closed ideal of B which contains the maximal ideal x
of C and let �x denote the quotient map B → B/Ix . Then the local principle states
(among other things) that an element b ∈ B is invertible in B if and only if �x(b) is
invertible in B/Ix for every x ∈ MaxB and that the function

Max C → R
+, x �→ ‖�x(b)‖ (6.1)

is upper semi-continuous for every b ∈ B. In the present context on can say more:
If x = M

∼ ∈ (frA)∼ then, by Theorem 4.9 in [13] (note that Lmax(A) = Lmin(A)

by Theorem 4.4), the local algebra A/Ix is ∗-isomorphic to the fiber A(M∼), and
the function (6.1) is continuous for every b ∈ B. (Roughly speaking, the continuity
results from including Lmax(A) = Lmin(A) into A.)

If (Kn) ∈ A is a sequence of central rank one, then its coset k := (An) + G
has the property that, for every b ∈ B, there is a c ∈ C such that kbk = ck.
Thus, k ∈ B has C-rank 1. The ideal Jcen(A)/G of B we are interested in will be
denoted by J . As we have just seen, J is generated by certain elements of C-rank
1. Hence, J ⊆ JC(B). Note also that C is a subalgebra of the center of B, hence
JC(B) ⊆ Jcen(B). We cannot claim that equality holds in either of these inclusions.

7 Fell’s Condition for C-Compact Elements

In this section, we are going to show that Fell’s condition is satisfied for the algebras
J and JC(B). We prepare the next steps with a few lemmas. Since now C stands for
a central subalgebra, we adopt the notation introduced in the previous section and
write JC(A) instead of C(A) for the closed ideal of a C∗-algebra A generated by
its elements of C-rank = algebraic rank 1 to avoid confusion.
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Lemma 7.1 Let B be a unital C∗-algebra, C a central C∗-subalgebra of B which
contains the unit element, x ∈ Max C, and J ⊆ JC(B) a closed ideal of B which is
generated by elements of C-rank one. Then

(a) if k ∈ B is of C-rank one, then �x(k) is of algebraic rank ≤ 1 in B/Ix ,
(b) �x(J ) ⊆ JC(B/Ix),
(c) �x(J ) is a dual algebra.

Proof (a) For every b ∈ B, there is a c ∈ C such that kbk = ck. Thus,
�x(k)�x(b)�x(k) = �x(c)�x(k). Since �x(c) is the value of the Gelfand
transform of c at x, hence a complex number, the assertion follows. Since J is
generated as an ideal by sequences of C-rank 1, (b) is a consequence of (a).

Finally, we know from [10] that JC(A) is a dual algebra for every C∗-algebra
A, and it is well known (see, e.g., [1]) that dual algebras are ∗-isomorphic to C∗-
subalgebras of K(H) for some Hilbert space H and that, hence, C∗-subalgebras of
dual algebras are dual again. Therefore �x(J ), which is a C∗-subalgebra of a dual
algebra by (b), is dual. 	

Lemma 7.2

(a) Let B be a C∗-algebra with identity e, J a proper closed ideal of B, j ∈ J self-
adjoint, and f a continuous function on σ(j) with f (0) = 0. Then f (j) ∈ J .

(b) In addition, let C be a central C∗-subalgebra of B which contains e, let j have
C-rank one, and assume that f is continuously differentiable on some interval
containing σ(j) and that f (0) = f ′(0) = 0. Then f (j) has C-rank ≤ 1.

Proof We will prove part (b) only. Let [a, b] be a closed interval which contains
σ(j). Since J is proper, 0 ∈ σ(j) ⊆ [a, b]. By the Weierstrass’ approximation
theorem, there is a sequence of polynomials pn such that pn → f and p′n → f ′
uniformly on [a, b] and pn(0) = p′n(0) = 0. Define polynomials qn such that
pn(x) = xqn(x) for all x.

Since f is differentiable and f ′(0) = 0, the function g defined by g(x) :=
f (x)/x if x �= 0 and g(0) := 0 is continuous on [a, b] and differentiable on (a, 0)
and (0, b). Let x ∈ (0, b]. Then, by the mean value theorem, there is a ξ ∈ (0, x)
such that

qn(x)− g(x) = pn(x)− f (x)

x
= p′n(ξ)− f ′(ξ),

hence |qn(x)− g(x)| ≤ ‖p′n − f ′‖∞. This estimate holds for x ∈ [a, 0) and x = 0
as well. Thus,

‖qn − g‖∞ ≤ ‖p′n − f ′‖∞,

implying that the qn converge uniformly to g. By the functional calculus again,
pn(j) → f (j) and pn(j) = jqn(j) → jg(j) in the norm of B. Hence, f (j) =
jg(j), and f (j) has C-rank ≤ 1 because j has C-rank 1. 	
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The next results state that projections of algebraic rank one in �x(J ) can be
lifted both to elements of C-rank one in J and to local projections.

Proposition 7.3 Let B be a unital C∗-algebra, C a central C∗-subalgebra of B
which contains the unit element, and J ⊆ JC(B) a closed ideal of B which is
generated by elements of C-rank one. Let a ∈ J , x ∈ Max C, and suppose that
�x(a) is a projection of algebraic rank one in B/Ix . Then there is an element k ∈ J
of C-rank one such that �x(k) = �x(a).

Proof Set p := �x(a). Being of algebraic rank one, p �= 0. Since a ∈ J , a is a
limit of sums of elements rin ∈ J with C-rank one:

a = lim
n→∞

n∑

i=1

rin.

Then

p = �x(a) = lim
n→∞

n∑

i=1

�x(rin)

and, because p is a projection,

p = lim
n→∞

n∑

i=1

p�x(rin)p. (7.1)

Since p is of algebraic rank one, there are numbers λin ∈ C such that p�x(rin)p =
λinp. Not all of these numbers can be zero (otherwise (7.1) would imply that p = 0).
Let λ := λi0n0 �= 0. Then, with r := ri0n0 , p�x(r)p = λp, whence

p = 1

λ
p�x(r)p = 1

λ
�x(a)�x(r)�x(a) = �x(λ

−1ara).

Then k := λ−1ara belongs to J and has the desired properties. 	

Proposition 7.4 Let B be a unital C∗-algebra, C a central C∗-subalgebra of B
which contains the unit element, and J a closed ideal of B. For x ∈ Max C, let
p ∈ �x(J ) be a projection. Then there are an open neighborhood U of x and a
positive element a ∈ J such that �x(a) = p and the �y(a) is a projection for
every y ∈ U . Moreover, if the function

Max C 4 y �→ ‖�y(j)‖ (7.2)

is continuous for every j ∈ J , then U can be chosen such that �y(a) �= 0 for all
y ∈ U .
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Proof Let b ∈ J be such that �x(b) = p. Without loss we may assume that b is
positive (otherwise first replace b by (b + b∗)/2 and then by max(0, b), using the
continuous functional calculus and Lemma 7.2 (a)). From

0 = ‖p − p2‖ = ‖�x(b)−�x(b)
2‖

and the upper semi-continuity of the function (7.2) we conclude that, given ε > 0,
there is an open neighborhood Uε of x such that

‖�y(b)−�y(b)
2‖ ≤ ε − ε2 for all y ∈ Uε.

Since |s− s2| ≤ ε− ε2 for s ∈ R implies s ∈ [−ε, ε] ∪ [1− ε, 1+ ε], we conclude
that

σ(�y(b)) ⊆ [−ε, ε] ∪ [1 − ε, 1 + ε] for all y ∈ Uε.

Let f be a bounded continuous function on R which is 0 on [−ε, ε] and 1 on
[1− ε, 1+ ε], and set a := f (b). Then a ∈ J by Lemma 7.2 (a), and f (�y(b)) =
�y(f (b)) = �y(a). Thus, �y(a) is a projection for all y ∈ Uε, and �x(a) =
f (�x(b)) = f (p) = p (note that f is the identical mapping on σ(p) ⊆ {0, 1}).

Up to here we only used the upper semi-continuity of the functions (7.2). If these
functions are continuous, then ‖�x(a)‖ = ‖p‖ = 1 implies ‖�y(a)‖ ≥ 1/2 for all
y in an open neighborhood U ⊆ Uε of x, thus giving the final assertion. 	

Theorem 7.5 Let B be a unital C∗-algebra, C a central C∗-subalgebra of B which
contains the unit element, and J ⊆ JC(B) a closed ideal of B which is generated
by elements of C-rank 1. We assume that the function (7.2) is continuous for every
j ∈ J . Finally, for x ∈ Max C, let p ∈ �x(J ) be a projection of algebraic rank
1. Then there are an open neighborhood U of x and a positive element a ∈ J with
C-rank 1 such that �x(a) = p and that �y(a) is a projection of algebraic rank 1
for all y ∈ U .

Proof Let p ∈ �x(J ) be a projection of algebraic rank 1. By Proposition 7.3, there
is an element k ∈ J of C-rank 1 such that �x(k) = p. Further, as in the proof
of Proposition 7.4, we find a positive element j ∈ J such that �x(j) = p. Then
b := k∗jk is a positive element of J with �x(b) = p, and b has C-rank 1 (note that
b = k∗jk �= 0 because p �= 0).

We proceed as in the proof of Proposition 7.4, but now with the function f

defined there being chosen continuously differentiable. Then a := f (b) belongs
to J by Lemma 7.2 (a) and has C-rank ≤ 1 by Lemma 7.2 (b). It follows as in
the proof of Proposition 7.4 that �x(a) = p and that �y(a) is a projection for all
y in a certain neighborhood U of x, and this projection has algebraic rank ≤ 1 by
Lemma 7.1 (a).

Finally, since p �= 0, a has C-rank 1, and the continuity of the functions (7.2)
implies that �y(a) is a projection of algebraic rank 1 for all y in a certain open
neighborhood of x (possibly smaller than U ). 	
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One may consider Theorem 7.5 as stating Fell’s condition for J with respect to
the base space Max C. To get from here Fell’s condition for J with respect to the
primitive ideal space PrimJ , we still need a ‘transfer lemma’ which relates the two
settings. For, we need some facts on primitive ideal spaces. First, the mapping

ϕ : PrimA→ Max C, L �→ L ∩ C

is onto, and it is continuous with respect to the hull-kernel topology on PrimA (and
it is open if and only if the function Max C 4 y �→ ‖�y(j)‖ is continuous for every
a ∈ A) (Section C1 in [16]) and, second, the mapping

λJ : PrimJA = {L ∈ PrimA : J �⊆ L} → PrimJ , L �→ L ∩ J

is a homeomorphism (Proposition A27 in [8]). Define

ϕJ : PrimJ → Max C, ϕJ := ϕ ◦ λ−1
J .

Let L0 ∈ PrimJ and x0 := ϕJ (L0). Then x0 = ϕ(χ−1
J (L0)) = χ−1

J (L0) ∩ C;

hence, x0 ⊆ χ−1
J (L0). Since χ−1

J (L0) is a closed ideal of A, this implies Ix0 ⊆
χ−1
J (L0), from which we conclude that

Ix0 ∩ J ⊆ λ−1
J (L0) ∩ J = λJ (λ−1

J (L0)) = L0.

Summarizing, we obtain

Ix0 ∩ J ⊆ L0 for x0 = ϕJ (L0). (7.3)

Lemma 7.6 Let B, C and J ⊆ JC(B) be as in Theorem 7.5.

(a) Let L0 ∈ PrimJ and p a projection of algebraic rank 1 in J /L0. Set x0 :=
ϕJ (L0). Then there is a a ∈ J of C-rank 1 such that a + L0 = p and a + Ix0

is a projection of algebraic rank 1 in �x0(J ).
(b) Let x0 ∈ Max C and a ∈ J of C-rank 1 such that a + Ix0 is a projection of

algebraic rank 1 in �x0(J ). Then there is an L0 ∈ PrimJ with ϕJ (L0) = x0
such that a+L0 is a projection of algebraic rank 1 in J /L0. This L0 is unique.

Proof

(a) Given a projection p of algebraic rank 1 in J /L0, choose a positive b ∈ J
such that b+L0 = p. Since J is generated by sequences of C-rank 1, there are
elements jkn ∈ J of C-rank 1 and numbers kn ∈ N such that

b = lim
n→∞

kn∑

k=1

jkn.
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Passing to cosets modulo L0 and multiplying by the projection b + L0 = p

yields

b + L0 = lim
n→∞

kn∑

k=1

(b + L0) (jkn + L0) (b + L0). (7.4)

Since b + L0 = p is of algebraic rank 1, there are αkn ∈ C such that

(b + L0) (jkn + L0) (b + L0) = αkn(b + L0).

By (7.4) and since p �= 0, at least one of the αkn is not zero; say αk′n′ . Then
j := jk′n′/αk′n′ is in J , is of C-rank 1, and satisfies

(b + L0) (j + L0) (b + L0) = b + L0.

We may moreover assume that j ≥ 0 (otherwise replace j by j∗bj ). Then
a := bjb ∈ J is positive, of C-rank 1, and a + L0 = b + L0 = p.

Since a has C-rank 1, the coset a+Ix0 has algebraic rank≤ 1. Actually, it has
algebraic rank 1 since a+Ix0 = 0 would imply p = a+L0 = 0 by (7.3), which
is impossible. Since b �= 0 is positive and has C-rank 1, �x0(b/‖�x0(b)‖) is a
projection of algebraic rank 1. Thus,

(
b/‖�x0(b)‖

)2 − b/‖�x0(b)‖ ∈ Ix0

whence, by (7.3),

(
b/‖�x0(b)‖

)2 − b/‖�x0(b)‖ ∈ L0.

Thus, b/‖�x0(b)‖+L0 is a projection. Since already b+L0 = p is a projection,
we conclude that ‖�x0(b)‖ = 1, i.e., b + L0 is a projection.

(b) Since a2−a, a∗ −a ∈ Ix0 , we conclude from (7.3) that a2−a, a∗ −a ∈ L for
each L ∈ PrimJ with ϕJ (L) = x0. Thus a+L is a projection for each such L.
We show next that a + L has algebraic rank ≤ 1. Given k ∈ A, there is a c ∈ C
such that aka = ca. Then aka−c(x0)k ∈ Ix0 , whence aka−c(x0)k ∈ L, again
by (7.3).

Further, �x0(J ) is a dual ideal which therefore is generated by projections
of algebraic rank 1, i.e., by the a + L. So there is at least one L0 ∈ PrimJ
with ϕJ (L0) = x0 such that a +L0 is a projection of algebraic rank 1. Finally,
this L0 is unique: Each projection of algebraic rank 1 in �x0(J ) sits in a unique
elementary component of �x0(J ), and these components are in a one-to-one
correspondence with the primitive ideals L of J with ϕJ (L) = x0. 	




548 S. Roch

The following theorem settles Fell’s condition (= condition (c) in Definition 3.1)
for ideals J which are generated by elements of C-rank 1.

Theorem 7.7 Let B be a unital C∗-algebra, C a central C∗-subalgebra of B which
contains the unit element, and J ⊆ JC(B) a closed ideal of B which is generated
by elements of C-rank 1. Assume that the function (7.2) is continuous for every
j ∈ J . Then J satisfies Fell’s condition, i.e, for every L0 ∈ PrimJ , there are a
neighborhood U of L0 in PrimJ and an a ∈ J such that a + L is a projection of
algebraic rank 1 for all L ∈ U .

Proof Let L0 ∈ PrimJ and x0 := ϕJ (L0). Let p ∈ J /L0 be a projection of
algebraic rank 1. Then, by part (a) of the Transfer Lemma 7.6, there is a a ∈ J of
C-rank 1 such that a + L0 = p and a + Ix0 is a projection of algebraic rank one
in �x0(J ). By Theorem 7.5, we can choose the element a positive and of C-rank
1 and such that �x(a) is a projection of algebraic rank one for all x in an open
neighborhood V ⊆ Max C of x0. Part (b) of the transfer lemma then implies that,
for every x ∈ V , there is a unique Lx ∈ PrimJ such that ϕJ (Lx) = x and that
a + Lx is a projection of algebraic rank 1 in J /Lx .

Since ϕJ is continuous, U1 := ϕ−1
J (V ) is open in PrimJ . Further, by Lemma

A.30 in [8], U2 := {L ∈ PrimJ : ‖a + L‖ > 1/2} is open (note that SpecJ and
PrimJ are naturally homeomorphic). Thus, U := U1 ∩ U2 is open in PrimJ . The
assertion will follow once we have shown that U = {Lx : x ∈ V }. The inclusion ⊇
follows by the definition of U .

The reverse inclusion⊆ is a consequence of the transfer lemma again. Indeed, let
L ∈ U . Since L ∈ U1, ϕJ (L) = x0 ∈ V . By Lemma 7.6, a + L is a projection of
algebraic rank ≤ 1, implying that the norm of a + L is either 0 or 1. Since L ∈ U2,
we conclude that ‖a + L‖ = 1. Hence, a + L is a projection of rank 1, whence
L = Lx0 by the uniqueness assertion in the transfer lemma. 	


8 Continuity of Local Ranks

If J is as in Theorem 7.7 and x ∈ Max C, then J /(Ix ∩J ) is a dual algebra. Hence,
every projection in J /(Ix ∩ J ) has a finite algebraic rank. We are interested in the
dependence of these ‘local ranks’ on x.

Theorem 8.1 Let B be a unital C∗-algebra, C a central C∗-subalgebra of B which
contains the unit element, and J ⊆ JC(B) a closed ideal of B which is generated
by elements of C-rank one. Assume that the function (7.2) is continuous for every
j ∈ J . Further let a ∈ J be such that a + (Ix ∩ J ) is a projection for all x in an
open set U ⊆ Max C. Then the function

Max C → Z
+, x �→ alg rank (a + (Ix ∩ J ))

is continuous on U .



Compact Sequences in Quasifractal Algebras 549

Proof Let x0 ∈ U and s := alg rank (a + (Ix0 ∩ J )). Then there are finitely many
elementary components E1, . . . , Er of the dual algebra J /(Ix0 ∩J ) and s mutually
orthogonal projections πi

j ∈ Ei , j = 1, . . . , ni , of algebraic rank 1 such that

a + (Ix0 ∩ J ) =
r∑

i=1

ni∑

j=1

πi
j .

In each component Ei , we fix a projection βi of algebraic rank 1. Since Ei is
elementary, there are partial isometries αi

j ∈ Ei such that

(αi
j )
∗αi

j = πi
j and αi

j (α
i
j )
∗ = βi for j = 1, . . . , ni .

Now we continue the locally defined elements πi
j , αi

j and βi to elements of J .
By Theorem 7.5, there are positive elements bi ∈ J of central rank 1 such that
bi + (Ix0 ∩ J ) = βi and bi + (Ix ∩ J ) is a projection of algebraic rank 1 for all x
in a neighborhood Wi of x0.

Next, it follows as in Lemmas 3.1 and 3.2 of [4], there are elements pi
j , a

i
j , b

′
i ∈

J and a neighborhood V ⊆ ∩iWi of x0 such that

pi
j + (Ix0 ∩ J ) = πi

j , ai
j + (Ix0 ∩ J ) = αi

j , b′i + (Ix0 ∩ J ) = βi

and that, for all x ∈ V , b′i + (Ix ∩ J ) is a projection and the pi
j + (Ix ∩ J ) are

mutually orthogonal projections with

(ai
j )
∗ai

j+(Ix∩J ) = pi
j+(Ix∩J ), ai

j (a
i
j )
∗+(Ix∩J ) = b′i+(Ix∩J ). (8.1)

Since bi + (Ix0 ∩ J ) = b′i + (Ix0 ∩ J ) = βi and the function (7.2) is upper semi-
continuous, we may assume that

‖(bi + (Ix ∩ J ))− (b′i + (Ix ∩ J ))‖ < 1 for all x ∈ V

(otherwise we lessen V accordingly). Since bi+(Ix∩J ) is a projection of algebraic
rank 1, we conclude via a Neumann series argument that b′i+(Ix∩J ) is of algebraic
rank 1, too. But then (8.1) implies that pi

j + (Ix ∩J ) is of algebraic rank 1 and that

p := ∑r
i=1

∑ni
j=1 p

i
j + (Ix ∩ J ) is a projection of algebraic rank s for all x in the

neighborhood V of x0. 	
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Dilation Theory: A Guided Tour

Orr Moshe Shalit

Abstract Dilation theory is a paradigm for studying operators by way of exhibiting
an operator as a compression of another operator which is in some sense well
behaved. For example, every contraction can be dilated to (i.e., is a compression
of) a unitary operator, and on this simple fact a penetrating theory of non-normal
operators has been developed. In the first part of this survey, I will leisurely review
key classical results on dilation theory for a single operator or for several commuting
operators, and sample applications of dilation theory in operator theory and in
function theory. Then, in the second part, I will give a rapid account of a plethora
of variants of dilation theory and their applications. In particular, I will discuss
dilation theory of completely positive maps and semigroups, as well as the operator
algebraic approach to dilation theory. In the last part, I will present relatively new
dilation problems in the noncommutative setting which are related to the study
of matrix convex sets and operator systems, and are motivated by applications in
control theory. These problems include dilating tuples of noncommuting operators
to tuples of commuting normal operators with a specified joint spectrum. I will also
describe the recently studied problem of determining the optimal constant c = cθ,θ ′ ,
such that every pair of unitaries U,V satisfying VU = eiθUV can be dilated to a
pair of cU ′, cV ′, where U ′, V ′ are unitaries that satisfy the commutation relation
V ′U ′ = eiθ

′
U ′V ′. The solution of this problem gives rise to a new and surprising

application of dilation theory to the continuity of the spectrum of the almost Mathieu
operator from mathematical physics.
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Dilation theory is a collection of results, tools, techniques, tricks, and points of
view in operator theory and operator algebras, that fall under the unifying idea that
one can learn a lot about an operator (or family of operators, or a map, etc.) by
viewing it as “a part of” another, well understood operator. This survey on dilation
theory consists of three parts. The first part is a stand-alone exposition aimed at
giving an idea of what dilation theory is about by describing several representative
results and applications that are, in my opinion, particularly interesting. The climax
of the first part is in Sect. 4, where as an application of the material in the first three
sections, we see how to prove the Pick interpolation theorem using the commutant
lifting theorem. Anyone who took a course in operator theory can read Part 1.

Out of the theory described in the first part, several different research directions
have developed. The second part of this survey is an attempt to give a quick account
of some of these directions. In particular, we will cover Stinespring’s dilation
theorem, and the operator algebraic approach to dilation theory that was invented
by Arveson. This survey up to Sect. 7 contains what everyone working in dilation
theory and/or nonselfadjoint operator algebras should know. I will also cover a
part of the dilation theory of CP-semigroups, and take the opportunity to report
on my work with Michael Skeide, which provides our current general outlook on
the subject.

In the third and last part I will survey some recent dilation results in the
noncommutative setting, in particular those that have been motivated by the study of
matrix convex sets. Then I will focus on my recent joint work with Malte Gerhold,
where we study the problem of dilating q-commuting unitaries. Experts on dilation
theory can read the last three sections in this survey independently.

I made an effort to include in this survey many applications of dilation theory.
The theory is interesting and elegant in itself, but the applications give it its vitality.
I believe that anyone, including experts in dilation theory, will be able to find in this
survey an interesting application which they have not seen before.

Some results are proved and others are not. For some results, only an idea of
the proof is given. The guiding principle is to include proofs that somehow together
convey the essence or philosphy of the field, so that the reader will be able to get
the core of the theory from this survey, and then be able to follow the references for
more.

As for giving references: this issue has given me a lot of headaches. On the one
hand, I would like to give a historically precise picture, and to give credit where
credit is due. On the other hand, making too big of a fuss about this might result in
an unreadable report, that looks more like a legal document than the inviting survey
that I want this to be. Some results have been rediscovered and refined several times
before reaching their final form. Who should I cite? My solution was to always
prefer the benefit of the reader. For “classical” results, I am very happy to point
the reader to an excellent textbook or monograph, that contains a proof, as well as
detailed references and sometimes also historical remarks. I attach a specific paper
to a theorem only when it is clear-cut and useful to do so. In the case of recent
results, I sometimes give all relevant references and an account of the historical
development, since this appears nowhere else.
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There are other ways to present dilation theory, and by the end of the first section
the reader will find references to several alternative sources. Either because of my
ignorance, or because I had to make choices, some things were left out. I have not
been able to cover all topics that could fall under the title, nor did I do full justice to
the topics covered. After all this is just a survey, and that is the inevitable nature of
the genre.

Part 1: An Exposition of Classical Dilation Theory

1 The Concept of Dilations

The purpose of this introductory section is to present the notion of dilation, and to
give a first indication that this notion is interesting and can be useful.

Let H be a Hilbert space, and T ∈ B(H) be a contraction, that is, T is an
operator such that ‖T ‖ ≤ 1. Then I − T ∗T ≥ 0, and so we can define DT =√
I − T ∗T . Halmos [72] observed that the simple construction

U =
(

T DT ∗
DT −T ∗

)

gives rise to a unitary operator on H ⊕ H. Thus, every contraction T is a
compression of a unitary U , meaning that

T = PHU
∣
∣H, (1.1)

where PH denotes the orthogonal projection of H ⊕H onto H ⊕ {0} ∼= H. In this
situation we say that U is a dilation of T , and below we shall write T ≺ U to
abbreviate that U is a dilation of T .

This idea can be pushed further. Let K = HN+1 = H⊕· · ·⊕H be the (N+1)th-
fold direct sum of H with itself, and consider the following (N + 1) × (N + 1)
operator matrix

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T 0 0 · · · 0 DT ∗
DT 0 0 · · · 0 −T ∗
0 I 0 · · · 0 0
0 0 I 0
...

...
. . .

...

0 0 · · · 0 I 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.2)
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Egerváry [58] observed that U is unitary on B(K), and moreover, that

Uk =
(
T k ∗
∗ ∗

)

, k = 1, 2, . . . , N, (1.3)

in other words, if we identify H with the first summand of K, then

p(T ) = PHp(U)
∣
∣H (1.4)

for every polynomial p of degree at most N . Such a dilation was called an N-
dilation in [95]. Thus, an operator U satisfying (1.1) might be referred to as a 1-
dilation, however, the recent ubiquity of 1-dilations has led me to refer to it simply
as a dilation.

We see that, in a sense, every contraction is a “part of” a unitary operator.
Unitaries are a very well understood class of operators, and contractions are as
general a class as one can hope to study. Can we learn anything interesting from
the dilation picture?

Theorem 1.1 (von Neumann’s Inequality [168]) Let T be a contraction on some
Hilbert space H. Then, for every polynomial p ∈ C[z],

‖p(T )‖ ≤ sup
|z|=1

|p(z)|. (1.5)

Proof Suppose that the degree of p is N . Construct U on K = H⊕ · · ·⊕H (direct
sum N + 1 times) as in (1.2). Using (1.4), we find that

‖p(T )‖ = ‖PHp(U)
∣
∣H‖ ≤ ‖p(U)‖ = sup

z∈σ(U)

|p(z)|,

by the spectral theorem, where σ(U) denotes the spectrum of U . Since for every
unitary U , the spectrum σ(U) is contained in the unit circle T = {z ∈ C : |z| = 1},
the proof is complete. �
Remark 1.2 The above proof is a minor simplification of the proof of von Neu-
mann’s inequality due to Sz.-Nagy [163], which uses the existence of a unitary
power dilation (see the next section). The simplification becomes significant when
dimH < ∞, because then U is a unitary which acts on a finite dimensional space,
and the spectral theorem is then a truly elementary matter. Note that even the case
dimH = 1 is not entirely trivial: in this case von Neumann’s inequality is basically
the maximum modulus principle in the unit disc; as was observed in [145], this
fundamental results can be proved using linear algebra!

Remark 1.3 A matrix valued polynomial is a function z �→ p(z) ∈ Mn where
p(z) =∑N

k=0 Akz
k , and A1, . . . , Ak ∈ Mn = Mn(C) (the n × n matrices over C).

Equivalently, a matrix valued polynomial is an n × n matrix of polynomials p =
(pij ), where the ij th entry is given by pij (z) =∑N

k=0(Ak)ij z
k . If T ∈ B(H), then
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we may evaluate a matrix valued polynomial p at T by setting p(T ) =∑N
k=0 Ak ⊗

T k ∈ Mn ⊗ B(H), or, equivalently, p(T ) is the n × n matrix over B(H) with ij th
entry equal to pij (T ) (the operator p(T ) acts on the direct sum of H with itself n

times). It is not hard to see that if p is a matrix valued polynomial with values in Mn

and T is a contraction, then the inequality (1.5) still holds but with |p(z)| replaced
by ‖p(z)‖Mn : first one notes that it holds for unitary operators, and then one obtains
it for a general contraction by the dilation argument that we gave.

The construction (1.2) together with Theorem 1.1 illustrate what dilation theory
is about and how it can be used: every object in a general class of objects (here,
contractions) is shown to be “a part of” an object in a smaller, better behaved class
(here, unitaries); the objects in the better behaved class are well understood (here,
by the spectral theorem), and thus the objects in the general class inherit some
good properties. The example we have just seen is an excellent one, since proving
von Neumann’s inequality for non-normal contractions is not trivial. The simple
construction (1.2) and its multivariable generalizations have other applications, for
example they lead to concrete cubature formulas and operator valued cubature
formulas [95, Section 4.3]. In Sect. 4 we will examine in detail a deeper application
of dilation theory—an operator theoretic proof of Pick’s interpolation theorem.
Additional applications are scattered throughout this survey.

Before continuing I wish to emphasize that “dilation theory” and even the word
“dilation” itself mean different things to different people. As we shall see further
down the survey, the definition changes, as do the goals and the applications. Besides
the expository essay [95], the subject is presented nicely in the surveys [8] and [13],
and certain aspects are covered in books, e.g., [2, 118], and [121] (the forthcoming
book [26] will surely be valuable when it appears). Finally, the monograph [23] is
an indispensable reference for anyone who is seriously interested in dilation theory
of contractions.

2 Classical Dilation Theory of a Single Contraction

2.1 Dilations of a Single Contraction

It is quite natural to ask whether one can modify the construction (1.2) so that (1.3)
holds for all k ∈ N, and not just up to some power N . We will soon see that the
answer is affirmative. Let us say that an operator U ∈ B(K) is a power dilation
of T ∈ B(H), if H is a subspace of K and if T k = PHUk

∣
∣H for all k ∈ N =

{0, 1, 2, . . .}. The reader should be warned that this is not the standard terminology
used, in the older literature one usually finds the word dilation used to describe what
we just called a power dilation, whereas the concept of N-dilation does not appear
much (while in the older-older literature one can again find power dilation).

In this and the next sections I will present what I and many others refer to as
classical dilation theory. By and large, this means the theory that has been pushed
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and organized by Sz.-Nagy and Foias (though there are many other contributors),
and appears in the first chapter of [23]. The book [23] is the chief reference for
classical dilation theory. The proofs of most of the results in this and the next section,
as well as references, further comments and historical remarks can be found there.

Theorem 2.1 (Sz.-Nagy’s Unitary Dilation Theorem [163]) Let T be a contrac-
tion on a Hilbert space H. Then there exists a Hilbert space K containing H and a
unitary U on K, such that

T k = PHUk
∣
∣H , for all k = 0, 1, 2, . . . (2.1)

Moreover, K can be chosen to be minimal in the sense that the smallest reducing
subspace for U that contains H is K. If Ui ∈ B(Ki ) (i = 1, 2) are two minimal
unitary dilations, then there exists a unitary W : K1 → K2 acting as the identity on
H such that U2W = WU1.

One can give a direct proof of existence of the unitary dilation by just writing
down an infinite operator matrix U acting on �2(Z,H) = ⊕n∈ZH, similarly to
(1.2). A minimal dilation is then obtained by restricting U to the reducing subspace∨

n∈Z UnH (the notation means the closure of the span of the subspaces UnH). The
uniqueness of the minimal unitary dilation is then a routine matter. We will follow
a different path, that requires us to introduce another very important notion: the
minimal isometric dilation.

Before presenting the isometric dilation theorem, it is natural to ask whether it
is expected to be of any use. A unitary dilation can be useful because unitaries
are “completely understood” thanks to the spectral theorem. Are isometries well
understood? The following theorem shows that, in a sense, isometries are indeed
very well understood.

For a Hilbert space G, we write �2(N,G) for the direct sum ⊕n∈NG. The
unilateral shift of multiplicity dimG (or simply the shift) is the operator S :
�2(N,G) → �2(N,G) given by

S(g0, g1, g2, . . .) = (0, g0, g1, . . .).

The space G is called the multiplicity space. Clearly, the shift is an isometry.
Similarly, the bilateral shift on �2(Z,G) is defined to be the operator

U(. . . , g−2, g−1, g0 , g1, g2, . . .) = (. . . g−3, g−2, g−1 , g0, g1, . . .)

where we indicate with a box the element at the 0th summand of �2(Z,G).

Theorem 2.2 (Wold Decomposition) Let V be an isometry on a Hilbert space H.
Then there exists a (unique) direct sum decomposition H = Hs ⊕ Hu such that
Hs and Hu are reducing for V , and such that V

∣
∣Hs

is unitarily equivalent to a

unilateral shift and V
∣
∣Hu

is unitary.
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For the proof, the reader has no choice but to define Hu = ∩n≥0V
nH. Once one

shows that Hu is reducing, it remains to show that V
∣
∣H⊥

u
is a unilateral shift. Hint:

the multiplicity space is H � VH, (this suggestive notation is commonly used in
the theory; it means “the orthogonal complement of VH inside H”, which is in this
case just (VH)⊥).

Theorem 2.3 (Sz.-Nagy’s Isometric Dilation Theorem) Let T be a contraction
on a Hilbert space H. Then there exists a Hilbert space K containing H and an
isometry V on K, such that

T ∗ = V ∗∣∣H (2.2)

and in particular, V is a power dilation of T . Moreover, K can be chosen to be
minimal in the sense that the minimal invariant subspace for V that contains H is
K. If Vi ∈ B(Ki ) (i = 1, 2) are two minimal isometric dilations, then there exists a
unitary W : K1 → K2 acting as the identity on H such that V2W = WV1.

Proof Set DT = (I − T ∗T )1/2—this is the so called defect operator, which
measures how far T is from being an isometry—and let D = DT (H). Construct
K = H ⊕ D ⊕ D ⊕ . . ., in which H is identified as the first summand. Now we
define, with respect to the above decomposition of K, the block operator matrix

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T 0 0 0 0 · · ·
DT 0 0 0 0 · · ·
0 ID 0 0 0 · · ·
0 0 ID 0 0
0 0 0 ID 0
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which is readily seen to satisfy V ∗∣∣H = T ∗. That V is an isometry, and the fact that
K =∨

n∈N V nH, can be proved directly and without any pain.
The uniqueness is routine, but let’s walk through it for once. If Vi ∈ B(Ki ) are

two minimal isometric dilations, then we can define a map W on span{V n
1 h : n ∈

N, h ∈ H} ⊆ K1 by first prescribing

WV n
1 h = V n

2 h ∈ K2.

This map preserves inner products: assuming that m ≤ n, and using the fact that Vi

is an isometric dilation of T , we see

〈WVm
1 g,WV n

1 h〉 = 〈V m
2 g, V n

2 h〉 = 〈g, V n−m
2 h〉 = 〈g, T n−mh〉 = 〈V m

1 g, V n
1 h〉.
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The map W therefore well defines an isometry from the dense subspace span{V n
1 h :

n ∈ N, h ∈ H} ⊆ K1 onto the dense subspace span{V n
2 h : n ∈ N, h ∈ H} ⊆ K2,

and therefore extends to a unitary which, by definition, intertwines V1 and V2. �
Note that the minimal isometric dilation is actually a coextension: T ∗ = V

∣
∣∗H.

A coextension is always a power dilation, so T n = PHV n
∣
∣H for all n ∈ N,

but, of course, the converse is not true (see Theorem 3.10 and (3.6) below for the
general form of a power dilation). Note also that the minimality requirement is more
stringent than the minimality required from the minimal unitary dilation. The above
proof of existence together with the uniqueness assertion actually show that every
isometry which is a power dilation of T and is minimal in the sense of the theorem,
is in fact a coextension.

Because the minimal isometric dilation V is actually a coextension of T , the
adjoint V ∗ is a coisometric extension of T ∗. Some people prefer to speak about
coisometric extensions instead of isometric coextensions.

Once the existence of an isometric dilation is known, the existence of a
unitary dilation follows immediately, by the Wold decomposition. Indeed, given a
contraction T , we can dilate it to an isometry V . Since V ∼= S ⊕ Vu, where S is a
unilateral shift and Vu is a unitary, we can define a unitary dilation of T by U ⊕ Vu,
where U is the bilateral shift of the same multiplicity as S. This proves the existence
part of Theorem 2.1; the uniqueness of the minimal unitary dilation is proved as for
the minimal isometric one.

2.2 A Glimpse at Some Applications of Single Operator
Dilation Theory

The minimal unitary dilation of a single contraction can serve as the basis of the
development of operator theory for non-normal operators. This idea was developed
to a high degree by Sz.-Nagy and Foias and others; see the monograph [23]
([23] also contains references to alternative approaches to non-normal operators,
in particular the theories of de Branges–Rovnyak, Lax–Phillips, and Livsič and his
school). The minimal unitary dilation can be used to define a refined functional
calculus on contractions, it can be employed to analyze one-parameter semigroups
of operators, it provides a “functional model” by which to analyze contractions and
by which they can be classified, and it has led to considerable progress in the study
of invariant subspaces.

To sketch just one of the above applications, let us briefly consider the functional
calculus (the following discussion might be a bit difficult for readers with little
background in function theory and measure theory; they may skip to the beginning
of Sect. 3 without much loss). We let H∞ = H∞(D) denote the algebra of bounded
analytic functions on the open unit disc D. Given an operator T ∈ B(H), we wish
to define a functional calculus f �→ f (T ) for all f ∈ H∞. If the spectrum of T

is contained in D, then we can apply the holomorphic functional calculus to T to
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define a homomorphism f �→ f (T ) from the algebra O(D) of analytic functions
on D into B(H). In fact, if f ∈ O(D) and σ(T ) ⊂ D, then we can simply plug T

into the power series of f . Thus, in this case we know how to define f (T ) for all
f ∈ H∞.

Now, suppose that T is a contraction, but that σ(T ) is not contained in the open
disc D. Given a bounded analytic function f ∈ H∞, how can we define f (T )? Note
that the holomorphic functional calculus cannot be used, because σ(T ) contains
points on the circle T = ∂D, while not every f ∈ H∞ extends to a holomorphic
function on a neighborhood of the closed disc.

The first case that we can treat easily is the case when f belongs to the disc
algebra A(D) ⊂ H∞, which is the algebra of all bounded analytic functions on the
open unit disc that extend continuously to the closure D. This case can be handled
using von Neumann’s inequality (Theorem 1.5), which is an immediate consequence
of Theorem 2.1. Indeed, it is not very hard to show that A(D) is the closure of the
polynomials with respect to the supremum norm ‖f ‖∞ = sup|z|≤1 |f (z)|. If pn is a

sequence of polynomials that converges uniformly on D to f , and T is a contraction,
then von Neumann’s inequality implies that pn(T ) is a Cauchy sequence, so we can
define f (T ) to be limn pn(T ). It is not hard to show that the functional calculus
A(D) 4 f �→ f (T ) has all the properties one wishes for: it is a homomorphism
extending the polynomial functional calculus, it is continuous, and it agrees with
the continuous functional calculus if T is normal.

Defining a functional calculus for H∞ is a more delicate matter, but here again
the unitary dilation leads to a resolution. The rough idea is that we can look at
the minimal unitary dilation U of T , and use spectral theory to analyze what can
be done for U . If the spectral measure of U is absolutely continuous with respect
to Lebesgue measure on the unit circle, then it turns out that we can define f (U)

for all f ∈ H∞, and then we can simply define f (T ) to be the compression of
f (U) to H. In this case the functional calculus f �→ f (T ) is a homomorphism that
extends the polynomial and holomorphic functional calculi, it is continuous in the
appropriate sense, and it agrees with the Borel functional calculus when T is normal.
(Of course, this only becomes useful if one can find conditions that guarantee that
the minimal unitary dilation of T has absolutely continuous spectral measure. A
contraction T is said to be completely nonunitary (c.n.u.) if is has no reducing
subspace M such that the restriction T

∣
∣M is unitary. Every contraction splits as a

direct sum T = T0⊕T1, where T0 is unitary and T1 is c.n.u. Sz.-Nagy and Foias have
shown that if T is c.n.u., then the spectral measure of its minimal unitary dilation is
absolutely continuous.)

If the spectral measure of U is not absolutely continuous with respect to
Lebesgue measure, then there exits a subalgebra H∞

U of H∞ for which there exists
a functional calculus f �→ f (U), and then one can compress to get f (T ); it was
shown that H∞

U is precisely the subalgebra of functions in H∞ on which f �→ f (T )

is a well defined homomorphism. See [23, Chapter III] for precise details.
There are two interesting aspects to note. First, an intrinsic property of the

minimal dilation—the absolute continuity of its spectral measure—provides us with
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nontrivial information about T (whether or not it has an H∞-functional calculus).
The second interesting aspect is that there do exist interesting functions f ∈ H∞
that are not holomorphic on a neighborhood of the closed disc (and are not even
continuous up to the boundary) for which we would like to evaluate f (T ). This
technical tool has real applications. See [23, Section III.8], for example.

3 Classical Dilation Theory of Commuting Contractions

3.1 Dilations of Several Commuting Contractions

The manifold applications of the unitary dilation of a contraction on a Hilbert
space motivated the question (which is appealing and natural in itself, we must
admit) whether the theory can be extended in a sensible manner to families of
operators. The basic problem is: given commuting contractions T1, . . . , Td ∈ B(H),
to determine whether there exist commuting isometries/unitaries U1, . . . , Ud on a
larger Hilbert space K ⊇ H such that

T
n1

1 · · · T nd
d = PHU

n1
1 · · ·Und

d

∣
∣H (3.1)

for all (n1, . . . , nd) ∈ N
d . Such a family U1, . . . , Ud is said to be an isomet-

ric/unitary dilation (I warned you that the word is used differently in different
situations!).

Clearly, it would be nice to have a unitary dilation, because commuting unitaries
are completely understood by spectral theory. On the other hand, isometric dilations
might be easier to construct. Luckily, we can have the best of both worlds, according
to the following theorem of Itô and Brehmer (see [23, Proposition I.6.2]).

Theorem 3.1 Every family of commuting isometries has a commuting unitary
extension.

Proof The main idea of the proof is that given commuting isometries V1, . . . , Vd on
a Hilbert space H, one may extend them to commuting isometries W1, . . . ,Wd such
that (a) W1 is a unitary, and (b) if Vi is unitary then Wi is a unitary. Given that this
is possible, one my repeat the above process d times to obtain a unitary extension.
The details are left to the reader. �

In particular, every family of commuting isometries has a commuting unitary
dilation. Thus, a family of commuting contractions T1, . . . , Td ∈ B(H) has an
isometric dilation if and only if it has a unitary dilation.

Theorem 3.2 (Andô’s Isometric Dilation Theorem [9]) Let T1, T2 be two com-
muting contractions on a Hilbert space H. Then there exists a Hilbert space K ⊇ H
and two commuting isometries V1, V2 on K such that

T
n1

1 T
n2

2 = PHV
n2
1 V

n2
2

∣
∣H for all n1, n2 ∈ N. (3.2)



Dilation Theory: A Guided Tour 561

In fact, V1, V2 can be chosen such that V ∗
i

∣
∣H = T ∗

i for i = 1, 2.

In other words, every pair of contractions has an isometric dilation, and in fact, an
isometric coextension.

Proof The proof begins similarly to the proof of Theorem 2.3: we define the Hilbert
space K = ⊕n∈NH = H ⊕H⊕ · · · , and we define two isometries W1,W2 by

Wi(h0, h1, h2, . . .) = (Tih0,DTi h0, 0, h1, h2, . . .)

for i = 1, 2. These are clearly isometric coextensions, but they do not commute:

WjWi(h0, h1, h2, . . .) = Wj(Tih0,DTi h0, 0, h1, h2, . . .)

= (TjTih0,DTj Tih0, 0,DTi h0, 0, h1, h2, . . .).

Of course, in the zeroth entry we have equality T1T2h0 = T2T1h0 and from the
fifth entry on we have (h1, h2, . . .) = (h1, h2, . . .). The problem is that usually
DT1T2h0 �= DT2T1h0 and DT1h0 �= DT2h0. However ,

‖DT1T2h0‖2 + ‖DT2h0‖2 = 〈T ∗
2 (I − T ∗

1 T1)T2h0, h0〉 + 〈(I − T ∗
2 T2)h0, h0〉

= 〈(I − T ∗
2 T ∗

1 T1T2)h0, h0〉
= ‖DT2T1h0‖2 + ‖DT1h0‖2,

and this allows us to define a unitary operator U0 : G := H⊕H⊕H⊕H→ G that
satisfies

U0(DT1T2h0, 0,DT2h0, 0) = (DT2T1h0, 0,DT1h0, 0).

Regrouping K = H ⊕ G ⊕ G ⊕ · · · , we put U = IH ⊕ U0 ⊕ U0 ⊕ · · · , and now
we define V1 = UW1 and V2 = W2U

−1. The isometries V1 and V2 are isometric
coextensions—multiplying by U and U−1 did not spoil this property of W1,W2.
The upshot is that V1 and V2 commute; we leave this for the reader to check. �

As a consequence (by Theorem 3.1),

Theorem 3.3 (Andô’s Unitary Dilation Theorem [9]) Every pair of contractions
has a unitary dilation.

One can also get minimal dilations, but it turns out that in the multivariable
setting minimal dilations are not unique, so they are not canonical and don’t play a
prominent role. Once the existence of the unitary dilation is known, the following
two-variable version of von Neumann’s inequality follows just as in the proof of
Theorem 1.1.
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Theorem 3.4 Let T1, T2 be two commuting contractions on a Hilbert space H.
Then for every complex two-variable polynomial p,

‖p(T )‖ ≤ sup
z∈T2

|p(z)|.

Here and below we use the shorthand notation p(T ) = p(T1, . . . , Td) whenever
p is a polynomial in d variables and T = (T1, . . . , Td) is a d-tuple of operators. The
proof of the above theorem (which is implicit in the lines preceding it) gives rise to
an interesting principle: whenever we have a unitary or a normal dilation then we
have a von Neumann type inequality. This principle can be used in reverse, to show
that for three or more commuting contractions there might be no unitary dilation, in
general.

Example 3.5 There exist three contractions T1, T2, T3 on a Hilbert space H and a
complex polynomial p such that

‖p(T )‖ > ‖p‖∞ := sup
z∈T3

|p(z)|.

Consequently, T1, T2, T3 have no unitary, and hence also no isometric, dilation.
There are several concrete examples. The easiest to explain, in my opinion, is the
one presented by Crabb and Davie [39]. One takes a Hilbert space H of dimension
8 with orthonormal basis e, f1, f2, f3, g1, g2, g3, h, and defines partial isometries
T1, T2, T3 by

Tie = fi

Tifi = −gi

Tifj = gk , k �= i, j

Tigj = δij h

Tih = 0

for i, j, k = 1, 2, 3. Obviously, these are contractions, and checking that TiTj =
TjTi is probably easier than you guess. Now let p(z1, z2, z3) = z1z2z3−z3

1−z3
2−z3

3.
Directly evaluating we see that p(T1, T2, T3)e = 4h, so that ‖p(T1, T2, T3)‖ ≥ 4.
On the other hand, it is elementary to show that |p(z)| < 4 for all z ∈ T

3, so by
compactness of T3 we get ‖p‖∞ < 4, as required.

Remark 3.6 At more or less the same time that the above example appeared, Kaijser
and Varopoulos discovered three 5 × 5 commuting contractive matrices that do not
satisfy von Neumann’s inequality [165]. On the other hand, it was known (see [56,
p. 21]) that von Neumann’s inequality holds for any d-tuple of 2 × 2 matrices, in
fact, every such d-tuple has a commuting unitary dilation. It was therefore begged
of operator theorists to decide whether or not von Neumann’s inequality holds for
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3-tuples of 3 × 3 and 4 × 4 commuting contractive matrices. Holbrook found a
4 × 4 counter example in 2001 [78], and the question of whether von Neumann’s
inequality holds for three 3 × 3 contractions remained outrageously open until
finally, only very recently, Knese [87] showed how results of Kosiński on the three
point Pick interpolation problem in the polydisc [88] imply that in the 3×3 case the
inequality holds (it is still an open problem whether or not every three commuting
3 × 3 contractions have a commuting unitary dilation; the case of four 3 × 3
contractions was settled negatively in [35]).

It is interesting to note that the first example of three contractions that do
not admit a unitary dilation did not involve a violation of a von Neumann type
inequality. Parrott [110] showed that if U and V are two noncommuting unitaries,
then the operators

T1 =
(

0 0
I 0

)

, T2 =
(

0 0
U 0

)

, T3 =
(

0 0
V 0

)

(3.3)

are three commuting contractions that have no isometric dilation. However, these
operators can be shown to satisfy von Neumann’s inequality.

What is it exactly that lies behind this dramatic difference between d = 2 and
d = 3? Some people consider this to be an intriguing mystery, and there has been
effort made into trying to understand which d-tuples are the ones that admit a unitary
dilation (see, e.g., [160] and the references therein), or at least finding sufficient
conditions for the existence of a nice dilation.

A particularly nice notion of dilation is that of regular dilation. For a d-tuple T =
(T1, . . . , Td) ∈ B(H)d and n = (n1, . . . , nd) ∈ N

d , we write T n = T
n1
1 · · ·T nd

d . If
n = (n1, . . . , nd) ∈ Z

d , then we define

T (n) = (T n−)∗T n+

where n+ = (max{n1, 0}, . . . ,max{nd, 0}) and n− = n+ − n. For a commuting
unitary tuple U and n ∈ Z

d , we have U(n) = Un := U
n1
1 · · ·Und

d . Now, if K
contains H and U = (U1, . . . , Ud) ∈ B(K)d a d-tuple of unitaries, say that U is a
regular dilation of T if

T (n) = PHUn
∣
∣H for all n ∈ Z

d . (3.4)

Note that a unitary (power) dilation of a single contraction is automatically a regular
dilation, because applying the adjoint to (1.4) gives T (k) = PHUk

∣
∣H for all k ∈ Z.

However, a given unitary dilation of a pair of contractions need not satisfy (3.4),
and in fact there are pairs of commuting contractions that have no regular unitary
dilation.

In contrast with the situation of unitary dilations, the tuples of contractions that
admit a regular unitary dilation can be completely characterized.
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Theorem 3.7 (Regular Unitary Dilation) A d-tuple T = (T1, . . . , Td) of com-
muting contractions on a Hilbert space has a regular unitary dilation if and only
if,

∑

{i1,...,im}⊆S

(−1)mT ∗
i1
· · · T ∗

im
Ti1 · · · Tim ≥ 0 , for all S ⊆ {1, . . . , d}. (3.5)

The conditions (3.5) are sometimes called Brehmer’s conditions. For the proof,
one shows that the function n �→ T (n) is a positive definite function on the group
Z
d (see Section I.9 in [23]), and uses the fact that every positive definite function on

a group has a unitary dilation [23, Section I.7].

Corollary 3.8 The following are sufficient conditions for a d-tuple T =
(T1, . . . , Td) of commuting contractions on a Hilbert space to have a regular
unitary dilation:

1.
∑d

i=1 ‖Ti‖2 ≤ 1.
2. T1, . . . , Td are all isometries.
3. T1, . . . , Td doubly commute, in the sense that TiT ∗

j = T ∗
j Ti for all i �= j (in

addition to TiTj = TjTi for all i, j ).

Proof It is not hard to show that the conditions listed in the corollary are sufficient
for Brehmer’s conditions (3.5) to hold. �

3.2 Commutant Lifting

We return to the case of two commuting contractions. The following innocuous
looking theorem, called the commutant lifting theorem, has deep applications (as we
shall see in Sect. 4) and is the prototype for numerous generalizations. It originated
in the work of Sarason [137], was refined by Sz.-Nagy and Foias (see [23]), and has
become a really big deal (see [63]).

Theorem 3.9 (Commutant Lifting Theorem) Let A be a contraction on a Hilbert
space H, and let V ∈ B(K) be the minimal isometric dilation of A. For every
contractionB that commutes with A, there exists an operator R ∈ B(K) such that

1. R commutes with V ,
2. B = R∗∣∣H,
3. ‖R‖ ≤ 1.

In other words, every operator commuting with A can be “lifted” to an operator
commuting with its minimal dilation, without increasing its norm.

Proof Let U,W ∈ B(L) be the commuting isometric coextension of A,B, where
L is a Hilbert space that contains H (the coextension exists by Andô’s isometric
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dilation theorem, Theorem 3.2). The restriction of the isometry U to the subspace∨
n∈N UnH is clearly

1. an isometry,
2. a dilation of A,
3. a minimal dilation,

and therefore (by uniqueness of the minimal isometric dilation), the restriction of U
to
∨

n∈N UnH is unitarily equivalent to the minimal isometric dilation V on H, so
we identify K =∨

n∈N UnH and V = U
∣
∣H. It follows (either from our knowledge

on the minimal dilation, or simply from the fact that U is a coextension) that V is a
coextension of A. With respect to the decomposition L = K⊕K⊥,

U =
(
V X

0 Z

)

, W =
(
R Q

P N

)

It is evident that ‖R‖ ≤ 1 and that R is a coextension of B. We wish to show that
RV = VR.

From UW = WU we find that VR + XP = RV . Thus, the proof will be
complete if we show that X = 0. Equivalently, we have to show that K is invariant
under U∗. To see this, consider U∗Unh for some h ∈ H and n ∈ N. If n ≥ 1 we get
Un−1h which is in K. If n = 0 then we get U∗h = A∗h ∈ H ⊆ K, because U is a
coextension of A. That completes the proof. �

3.3 Dilations of Semigroups and Semi-Invariant Subspaces

Above we treated the case of a single operator or a tuple of commuting operators.
However, dilation theory can also be developed, or at least examined, in the context
of operator semigroups.

Let T = {Ts}s∈S ⊂ B(H) be a family of operators parametrized by a semigroup
S with unit e. Then T is a said to be a semigroup of operators over S if

1. Te = I ,
2. Tst = TsTt for all s, t ∈ S.

If S is a topological semigroup, then one usually requires the semigroup T to be
continuous in some sense. A semigroup V = {Vs}s∈S ⊂ B(K) is said to be a
dilation of T if K ⊃ H and if

Ts = PHVs

∣
∣H , for all s ∈ S.

Note that Sz.-Nagy’s unitary dilation theorem can be rephrased by saying that
every semigroup of contractions over S = N has a unitary dilation, in the above
sense. Similarly, there are notions of extension and coextension of a semigroup
of operators. Some positive results have been obtained for various semigroups. Sz.-
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Nagy proved that every semigroup T = {Tt }t∈R+ of contractions that is point-strong
continuous (in the sense that t �→ Tth is continuous for all h ∈ H) has isometric and
unitary dilations, which are also point-strong continuous (see [23, Section I.10]).
This result was extended to the two parameter case by Słociński [151] and Ptak
[130]; the latter also obtained the existence of regular dilations for certain types
of multi-parameter semigroups. Douglas proved that every commutative semigroup
of isometries has a unitary extension [52]. Letting the commutative semigroup be
S = N

d , we recover Theorem 3.1. Douglas’s result was generalized by Laca to
semigroups of isometries parametrized by an Ore semigroup [92], and in fact to
“twisted” representations.

A result that somewhat sheds light on the question, which tuples of operators
have a unitary dilation and which don’t, is due to Opela. If T = {Ti}i∈I ⊂ B(H)

is a family of operators, we say that T commutes according to the graph G with
vertex set I , if TiTj = TjTi whenever {i, j } is an edge in the (undirected) graph G.
We can consider T as a semigroup parameterized by a certain quotient of the free
semigroup over I . Opela proved the following compelling result: given a graph G,
every family T = {Ti}i∈I of contractions commuting according to G has a unitary
dilation that commutes according to G, if and only if G contains no cycles [108].

It is interesting that in the general setting of semigroups of operators, one can say
something about the structure of dilations.

Theorem 3.10 (Sarason’s Lemma [136]) Let V = {Vs}s∈S ⊂ B(K) be a
semigroup of operators over a semigroup with unit S, and let H be a subspace
of K. Then the family T = {Ts := PHVs

∣
∣H}s∈S is a semigroup over S if and only

if there exist two subspaces M ⊆ N ⊆ K, invariant under Vs for all s, such that
H = N �M := N ∩M⊥.

Proof The sufficiency of the condition is easy to see, if one writes the elements of
the semigroup V as 3×3 block operator matrices with respect to the decomposition
K = M⊕H ⊕N⊥.

For the converse, one has no choice but to define N = ∨s∈SVsH (clearly an
invariant space containing H), and then it remains to prove that M := N � H is
invariant for V , or—what is the same—that PHVtM = 0 for all t ∈ S. Fixing t , we
know that for all s,

PHVtPHVsPH = TtTs = Tts = PHVtsPH = PHVtVsPH.

It follows that PHVtPH = PHVt on ∨sVsH = N . In particular, PHVtM =
PHVtPHM = 0 (since M ⊥ H), as required. �

The theorem describes how a general dilation looks like. A subspace H as above,
which is the difference of two invariant subspaces, is said to be semi-invariant for
the family V . In the extreme case where M = {0}, the space H = N is just an
invariant subspace for V , and V is an extension of T . In the other extreme case
when N = K, the space H is a coinvariant subspace for V , and V is a coextension
of T . In general, the situation is more complicated, but still enjoys some structure.
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In the special S = N, case Sarason’s lemma implies that V is a (power) dilation of
an operator T if and only if it has the following block form:

V =
⎛

⎝
∗ ∗ ∗
0 T ∗
0 0 ∗

⎞

⎠ . (3.6)

Sarason’s lemma is interesting and useful also in the case of dilations of a single
contraction.

Remark 3.11 Up to this point in the survey, rather than attempting to present a
general framework that encapsulates as much of the theory as possible, I chose
to sew the different parts together with a thin thread. There are, of course, also
“high level” approaches. In Sect. 7 we will see how the theory fits in the framework
of operator algebras, which is one unifying viewpoint (see also [41, 118, 121]).
There are other viewpoints. A notable one is due to Sz.-Nagy—very soon after
he proved his unitary dilation theorem for a single contraction, he found a far-
reaching generalization in terms of dilations of positive functions on ∗-semigroups;
see [164], which contains a theorem from which a multitude of dilation theorems
can be deduced (see also [162] for a more recent discussion with some perspective).
Another brief but high level look on dilation theory can be found in Arveson’s survey
[13].

4 An Application: Pick Interpolation

The purpose of this section is to illustrate how classical dilation theory can be
applied in a nontrivial way to prove theorems in complex function theory. The
example we choose is classical—Pick’s interpolation theorem—and originates in
the work of Sarason [137]. Sarason’s idea to use commutant lifting to solve the
Pick interpolation problem works for a variety of other interpolation problems as
well, including Carathéodory interpolation, matrix valued interpolation, and mixed
problems. It can also be applied in different function spaces and multivariable
settings. Here we will focus on the simplest case. Good references for operator
theoretic methods and interpolation are [2] and [63], and the reader is referred to
these sources for details and references.

4.1 The Problem

Recall that H∞ denotes the algebra of bounded analytic functions on the unit disc
D = {z ∈ C : |z| < 1}. For f ∈ H∞ we define

‖f ‖∞ = sup
z∈D

|f (z)|.
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This norm turns H∞ into a Banach algebra.
The Pick interpolation problem is the following: given n points z1, . . . , zn in the

unit disc and n target points w1, . . . , wn ∈ C, determine whether or not there exists
a function f ∈ H∞ such that

f (zi) = wi , for all i = 1, . . . , n, (4.1)

and

‖f ‖∞ ≤ 1. (4.2)

It is common knowledge that one can always find a polynomial (unique, if we take
it to be of degree less than or equal to n− 1) that interpolates the data, in the sense
that (4.1) holds. The whole point is that we require (4.2) to hold as well. Clearly,
this problem is closely related to the problem of finding the H∞ function of minimal
norm that interpolates the points.

Recall that an n × n matrix A = (aij )
n
i,j=1 is said to be positive semidefinite if

for every v = (v1, . . . , vn)
T ∈ C

n

〈Av, v〉 =
n∑

i,j=1

aij vj vi ≥ 0.

If A is positive semidefinite, then we write A ≥ 0.

Theorem 4.1 (Pick’s Interpolation Theorem) Given points z1, . . . , zn and
w1, . . . , wn as above, there exists a function f ∈ H∞ satisfying (4.1)-(4.2), if
and only if the following matrix inequality holds:

(
1 −wiwj

1 − zizj

)n

i,j=1
≥ 0. (4.3)

The n × n matrix on the left hand side of (4.3) is called the Pick matrix. What
is remarkable about this theorem is that it gives an explicit and practical necessary
and sufficient condition for the solvability of the interpolation problem: that the Pick
matrix be positive semidefinite.

At this point it is not entirely clear how this problem is related to operator theory
on Hilbert spaces, since there is currently no Hilbert space in sight. To relate this
problem to operator theory we will represent H∞ as an operator algebra. The space
on which H∞ acts is an interesting object in itself, and to this space we devote the
next subsection. Some important properties of H∞ functions as operators will be
studied in Sect. 4.3, and then, in Sect. 4.4, we will prove Theorem 4.1.
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4.2 The Hilbert Function Space H 2

The Hardy space H 2 = H 2(D) is the space of analytic functions h(z) =∑∞
n=0 anz

n

on the unit disc D that satisfy
∑ |an|2 < ∞. It is not hard to see that H 2 is a linear

space, and that

〈∑
anz

n,
∑

bnz
n
〉
=
∑

anbn

is an inner product which makes H 2 into a Hilbert space, with norm

‖h‖2
H 2 =

∑
|an|2.

In fact, after noting that every (an)
∞
n=0 ∈ �2 := �2(N,C) gives rise to a power series

that converges (at least) in D, it is evident that the map

(an)
∞
n=0 �→

∞∑

n=0

anz
n

is a unitary isomorphism of �2 onto H 2(D), so the Hardy space is a Hilbert space,
for free. The utility of representing a Hilbert space in this way will speak for itself
soon.

For w ∈ D, consider the element kw ∈ H 2 given by

kw(z) =
∞∑

n=0

wnzn = 1

1 − zw
.

Then for h(z) =∑
anz

n, we calculate

〈h, kw〉 =
〈∑

anz
n,
∑

wnzn
〉
=
∑

anw
n = h(w).

We learn that the linear functional h �→ h(w) is a bounded functional, and that the
element of H 2 that implements this functional is kw. The functions kw are called
kernel functions, and the function k : D × D → C given by k(z,w) = kw(z)

is called the reproducing kernel of H 2. The fact that point evaluation in H 2 is a
bounded linear functional lies at the root of a deep connection between function
theory on the one hand, and operator theory, on the other.

The property of H 2 observed in the last paragraph is so useful and important that
it is worth a general definition. A Hilbert space H ⊆ C

X consisting of functions
on a set X, in which point evaluation h �→ h(x) is bounded for all x ∈ X, is said
to be a Hilbert function space or a reproducing kernel Hilbert space. See [119]
for a general introduction to this subject, and [2] for an introduction geared towards
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Pick interpolation (for readers that are in a hurry, Chapter 6 in [147] contains an
elementary introduction to H 2 as a Hilbert function space). If H is a Hilbert function
space on X, then by the Riesz representation theorem, for every x ∈ X there is an
element kx ∈ H such that h(x) = 〈h, kx〉 for all h ∈ H, and one may define the
reproducing kernel of H by k(x, y) = ky(x).

The multiplier algebra of a Hilbert function space H on a set X is defined to be

Mult(H) = {f : X → C : f h ∈ H for all h ∈ H}.

Every f ∈ Mult(H) gives rise to a linear multiplication operator Mf : H → H
that acts as Mfh = fh, for all h ∈ H. By the closed graph theorem, multiplication
operators are bounded. The following characterization of multiplication operators is
key to some applications.

Proposition 4.2 Let H be a Hilbert function space on a set X. If f ∈ Mult(H),
then M∗

f kx = f (x)kx for all x ∈ X. Conversely, if T ∈ B(H) is such that for all
x ∈ X there is some λx ∈ C such that T kx = λxkx , then there exists f ∈ Mult(H)

such that T = M∗
f .

Proof For all h ∈ H and x ∈ X,

〈h,M∗
f kx〉 = 〈f h, kx〉 = f (x)h(x) = f (x)〈h, kx〉 = 〈h, f (x)kx〉,

so M∗
f kx = f (x)kx . The converse is similar. �

Corollary 4.3 Every f ∈ Mult(H) is a bounded function, and

sup
x∈X

|f (x)| ≤ ‖Mf ‖.

Proposition 4.4 Mult(H 2) = H∞ and ‖Mf ‖ = ‖f ‖∞ for every multiplier.

Proof Since 1 ∈ H 2, every multiplier f = Mf 1 is in H 2. In particular, every
multiplier is an analytic function. By the above corollary, Mult(H 2) ⊆ H∞, and
‖f ‖∞ ≤ ‖Mf ‖ for every multiplier f .

Conversely, if p(z) = ∑N
n=0 anz

n is a polynomial, then it is straightforward to
check that

‖p‖2
H 2 = 1

2π

∫ 2π

0
|p(eit )|2dt.

An approximation argument then gives

‖h‖2
H 2 = lim

r↗1

1

2π

∫ 2π

0
|h(reit )|2dt

for all h ∈ H 2. This formula for the norm in H 2 implies that H∞ ⊆ Mult(H 2), and
that ‖Mf ‖ ≤ ‖f ‖∞. �
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We will henceforth identify f with Mf , and we will think of H∞ as a subalgebra
of B(H 2).

4.3 The Shift Mz

We learned that every bounded analytic function f ∈ H∞ defines a bounded
multiplication operator Mf : H 2 → H 2, but there is one that stands out as the most
important. If we abuse notation a bit and denote the identity function id : D → D

simply as z, then we obtain the multiplier Mz, defined by

(Mzh)(z) = zh(z).

It is quite clear that Mz is an isometry, and in fact it is unitarily equivalent to the
unilateral shift of multiplicity one on �2 (defined before Theorem 2.2). We will
collect a couple of important results regarding this operator, before getting back to
the proof of Pick’s theorem.

Recall that the commutant of a set of operators S ⊂ B(H) is the algebra

S ′ = {T ∈ B(H) : ST = T S for all S ∈ S}.

Proposition 4.5 {Mz}′ = (H∞)′ = H∞.

Proof Clearly H∞ ⊆ (H∞)′ ⊆ {Mz}′. Now suppose that T ∈ {Mz}′. We claim
that T = Mf for f = T 1. Indeed, if p(z) =∑N

n=0 anz
n is a polynomial, then

Tp = T

N∑

n=0

anM
n
z 1 =

N∑

n=0

anM
n
z T 1 = Mpf = fp.

An easy approximation argument would show that T = Mf , if we knew that f ∈
H∞; but we still don’t. To finesse this subtlety, we find for an arbitrary h ∈ H 2 a
sequence of polynomials pn converging in norm h, and evaluate at all points w ∈ D,
to obtain:

f (w)pn(w) = (Tpn)(w)
n→∞−−−→ (T h)(w),

while f (w)pn(w) → f (w)h(w), on the other hand. This means that T h = f h for
all h and therefore f ∈ Mult(H 2) = H∞, as required. �

Let z1, . . . , zn ∈ D. It is not hard to see that kz1, . . . , kzn are linearly independent.
Let G = span{kz1, . . . , kzn}, and let A = PGMz

∣
∣G . By Proposition 4.2, G is

coinvariant for Mz, i.e., M∗
zG ⊆ G, and A∗ = M∗

z

∣
∣G is the diagonal operator given

by

A∗ : kzi �→ zikzi . (4.4)
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We claim that Mz is the minimal isometric dilation of A. Well, it’s clearly an
isometric dilation, we just need to show that it is minimal. But kzi (z) = 1

1−zzi
,

so kzi − ziMzkzi = 1 ∈ ∨
n∈N Mn

z G. It follows that all the polynomials are in
∨

n∈N Mn
z G, whence H 2 =∨

n∈N Mn
z G.

More generally, if we have a multiplier f , and we define B = PGMf

∣
∣G , then we

have that B∗ = M∗
f

∣
∣G and that

B∗ : kzi �→ f (zi)kzi . (4.5)

4.4 Proof of Pick’s Interpolation Theorem

We can now prove Theorem 4.1. We first show that (4.3) is a necessary condition.
Suppose that f ∈ H∞ satisfies f (zi) = wi for all i = 1, . . . , n and that ‖f ‖∞ ≤ 1.
Define B = PGMf

∣
∣G , where G = span{kz1, . . . , kzn} as in the previous subsection.

Then, by (4.5) B∗ is the diagonal operator given by B∗kzi = wikzi . Since ‖Mf ‖ ≤
1, also ‖B∗‖ ≤ 1, thus for all α1, . . . , αn ∈ C,

0 ≤
∥
∥
∥
∥
∥

n∑

i=1

αikzi

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥
B∗

n∑

i=1

αikzi

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

n∑

i=1

αikzi

∥
∥
∥
∥
∥

2

−
∥
∥
∥
∥
∥

n∑

i=1

wiαikzi

∥
∥
∥
∥
∥

2

=
n∑

i,j=1

αj

(
1 −wjwi

)
αi

〈
kzj , kzi

〉

=
n∑

i,j=1

αj

(
1 −wiwj

1 − zizj

)

αi .

That is, the Pick matrix is positive semidefinite, and (4.3) holds.
Conversely, suppose that (4.3) holds. Define a diagonal operator D : G → G

by Dkzi = wikzi for i = 1, . . . , n, and let B = D∗. Then the above computation
can be rearranged to show that ‖B‖ = ‖B∗‖ ≤ 1. Now, the diagonal operator B∗
clearly commutes with the diagonal operator A∗ = M∗

z

∣
∣G, so B commutes with

A. Since Mz is the minimal isometric dilation of A, the commutant lifting theorem
(Theorem 3.9) implies that B has a coextension to an operator T that commutes
with Mz and has ‖T ‖ ≤ 1. By Proposition 4.5, T = Mf for some f ∈ H∞, and
by Proposition 4.2, f (zi) = wi for all i = 1, . . . , n. Since ‖f ‖∞ = ‖T ‖ ≤ 1, the
proof is complete.
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5 Spectral Sets, Complete Spectral Sets, and Normal
Dilations

Classical dilation theory does not end with dilating commuting contractions to
commuting unitaries. Let us say that a d-tuple N = (N1, . . . , Nd) is a normal
tuple if N1, . . . , Nd are all normal operators and, in addition, they all commute with
one another. Recall that the joint spectrum σ(N) of a normal tuple is the set

σ(N) = {(ρ(N1), . . . , ρ(Nd)) : ρ ∈M(C∗(N))} ⊂ C
d ,

where M(C∗(N)) is the space of all nonzero complex homomorphisms from the
unital C*-algebra C∗(N) generated by N to C. If N acts on a finite dimensional
space, then the joint spectrum is the set of joint eigenvalues, belonging to an
orthogonal set of joint eigenvectors that simultaneously diagonalize N1, . . . , Nd .
A commuting tuple of unitaries U = (U1, . . . , Ud) is the same thing as a normal
tuple with joint spectrum contained in the torus T

d . Since normal tuples are in a
sense “completely understood”, it is natural to ask which operator tuples T have a
normal dilation N (where the definition of dilation is as in (3.1)) with the spectrum
σ(N) prescribed to be contained in some set X ⊂ C

d .
Suppose that T = (T1, . . . , Td) is a commuting tuple of operators and that N =

(N1, . . . , Nd) is a normal dilation with σ(N) = X ⊂ C
d . Then we immediately

find that

‖p(T )‖ ≤ ‖p(N)‖ = sup
z∈X

|p(z)|

for every polynomial p in d variables. In fact, it is not too hard to see that the above
inequality persists when p is taken to be a rational function that is regular on X. This
motivates the following definition: a subset X ⊆ C

d is said to be a K-spectral set
for T if X contains the joint spectrum σ(T ) of T , and if for every rational function
f that is regular on X,

‖f (T )‖ ≤ K‖f ‖X,∞, (5.1)

where ‖f ‖X,∞ = supz∈X |f (z)|. If X is a K-spectral set for T with K = 1, then it
is simply said to be a spectral set for T .

I do not wish to define the joint spectrum of a non-normal commuting tuple, nor
to go into how to evaluate a rational function on a tuple of operators, so I will be
somewhat sloppy in what follows (see [11, Section 1.1]; for a textbook treatment, I
recommend also [118]). Two simplifying comments are in order:

1. In the case d = 1, i.e., just one operator T , the spectrum σ(T ) is the usual
spectrum, and the evaluation f (T ) of a rational function on T can be done
naturally, and this is the same as using the holomorphic functional calculus.
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2. One may also discuss polynomial spectral sets, in which (5.1) is required to
hold only for polynomials [38]. If X is polynomially convex (and in particular, if
X is convex), then considering polynomials instead of rational functions leads to
the same notion.

Thus, with the terminology introduced above, we can rephrase Theorem 3.4 by

saying that the bidisc D
2

is a spectral set for every pair T = (T1, T2) of commuting
contractions, and Example 3.5 shows that there exists three commuting contractions

for which the tridisc D
3

is not a spectral set.
The notion of a spectral set for a single operator is due to von Neumann [168].

A nice presentation of von Neumann’s theory can be found in Sections 153–155
of [133]. The reader is referred to [19] for a rather recent survey with a certain
emphasis on the single variable case. To give just a specimen of the kind of result
that one can encounter, which is quite of a different nature than what I am covering
in this survey, let me mention the result of Crouzeix [40], which says that for every
T ∈ B(H), the numerical range W(T ) := {〈T h, h〉 : ‖h‖ = 1} of T is a K-spectral
set for some K ≥ 2 (it is easy to see that one cannot have a constant smaller than 2;
Crouzeix conjectured that K = 2, and this conjecture is still open at the time of me
writing this survey).

It is plain to see that if T has a commuting normal dilation N with spectrum
σ(N) ⊆ X, then X is a polynomial spectral set for T , and it is true that in fact
X is a spectral set. It is natural to ask whether the converse implication holds, that
is, whether the assumption that a set X is a spectral set for a tuple T implies that
there exists a normal dilation with spectrum constrained to X (or even to the Shilov
boundary ∂X). There are cases when this is true (see [19]), but in general the answer
is no. For example, we already mentioned that Parrott’s example [110] of three
commuting contractions that have no unitary dilation (hence also no normal dilation

with spectrum contained in D
3
) does not involve a violation of von Neumann’s

inequality, in other words the tuple T from (3.3) has D
3

as a spectral set but has no
unitary dilation.

The situation was clarified by Arveson’s work [11], where the notion of complete
spectral set was introduced. To explain this notion, we need matrix valued polyno-
mials and rational functions. Matrix valued polynomials in several commuting (or
noncommuting) variables, and the prescriptions for evaluating them at d-tuples of
commuting (or noncommuting) operators, are defined in a similar manner to their
definition in the one variable case in Remark 1.3. Once one knows how to evaluate
a rational function in several variables at a commuting tuple, the passage to matrix
valued rational functions is done similarly.

Given a tuple T ∈ B(H)d of commuting contractions, we say that a set X ⊂ C
d

is a complete K-spectral set for T , if σ(T ) ⊆ X and if for every matrix valued
rational function f that is regular on X, (5.1) holds, where now for an n× n matrix
valued rational function ‖f ‖X,∞ = supz∈X ‖f (z)‖Mn . If X is a completeK-spectral
set for T with K = 1, then it is simply said to be a complete spectral set for T .
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Theorem 5.1 (Arveson’s Dilation Theorem [11]) Let T = (T1, . . . , Td) be a
tuple of commuting operators on a Hilbert space H. Let X ⊂ C

d be a compact set
and let ∂X be the Shilov boundary of X with respect to the algebra rat (X) ⊆ C(X)

of rational functions that are regular on X. Then X is a complete spectral set for
T if and only if only if there exists a normal tuple N = (N1, . . . , Nd) acting on a
Hilbert space K ⊇ H, such that σ(N) ⊆ ∂X and for every matrix valued rational
function f that is regular on X,

f (T ) = PHf (N)
∣
∣H.

Putting Arveson’s dilation theorem together with some comments made above,

we see that D
3

is a spectral set for the triple T from (3.3), but it is not a
complete spectral set. On the other hand, we know that for every pair of commuting

contractions T = (T1, T2), the bidsic D
2

is a complete spectral set. Agler and
McCarthy proved a sharper result: if T = (T1, T2) acts on a finite dimensional
space, and ‖T1, ‖, ‖T2‖ < 1, then there exists a one dimensional complex algebraic
subvariety V ⊆ D

2 (in fact, a so-called distinguished variety, which means that
V ∩ ∂(D2) = V ∩ T

2), such that V is a complete spectral set for T [3].
If X ⊂ C is a spectral set for an operator T , one may ask whether or not it is

a complete spectral set. We close this section by mentioning some notable results
in this direction. It is known that if X ⊂ C is a compact spectral set for T such
that rat (X) + rat (X) is dense in C(∂X), then X is a complete spectral set, and T

has a normal dilation with spectrum in ∂X. The condition is satisfied, for example,
when X is the closure of a bounded and simply connected open set (this result is due
to Berger, Foias and Lebow (independently); see [118, Theorem 4.4]). The same is
true if X is an annulus (Agler [1]), but false if X is triply connected (Agler et al. [5]
and Dritschel and McCullough [54]).

If a pair of commuting operators T = (T1, T2) has the symmetrized bidisc � :=
{(z1 + z2, z1z2) : z1, z2 ∈ D} as a spectral set, then in fact � is a complete spectral
set for T (Agler and Young [4]). Pairs of operators having � as a spectral set have
a well developed model theory (see, e.g., Sarkar [139] and the references therein).
Building on earlier work of Bhattacharyya et al. [29], and inspired by Agler and
McCarthy’s distinguished varieties result mentioned above, Pal and Shalit showed
that if � is a spectral set for a pair T = (T1, T2) of commuting operators acting on a
finite dimensional space, then there exists a distinguished one dimensional algebraic
variety V ⊆ � which is a complete spectral set for T [109].
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Part 2: A Rapid Overview of Dilation Theories

6 Additional Results and Generalizations of Dilation Theory

6.1 Some Further Remarks on N -Dilations

The notion of a 1-dilation of a single operator, which is usually referred to simply
as dilation, has appeared through the years and found applications in operator
theory; see e.g. [22, 36, 72] (the reader should be warned that the terminology is
not universally accepted; for example, as we already mentioned, a power dilation
is usually simply referred to as dilation. Even more confusingly, in [22], a unitary
N-dilation of T means what we call here a unitary 1-dilation of T that acts on
H⊕ C

N ).
Egerváry’s simple construction (1.2) of an N-dilation, and with it the concept of

N-dilations, have been largely forgotten until [95] seemed to revive some interest
in it (see also [106]). The motivation was that the well-known Sz.-Nagy unitary
(power) dilation of a contraction T (given by Theorem 2.1) always acts on an
infinite dimensional space whenever T is nonunitary, even if T acts on a finite
dimensional space. Arguably, one cannot say that an infinite dimensional object
is better understood than a matrix. That’s what led to the rediscovery of (1.2)
and thence to the dilation-theoretic proof of von Neumann’s inequality that we
presented, which has the conceptual advantage of never leaving the realm of finite
dimensional spaces, in the case where T acts on a finite dimensional space to begin
with.

Let T = (T1, . . . , Td) be a d-tuple of commuting operators acting on a Hilbert
space H, and let U = (U1, . . . , Ud) be a d-tuple of commuting operators acting on
a Hilbert space K ⊇ H. We say that U is a an N-dilation of T if

p(T ) = PHp(U)
∣
∣H

for every polynomial in d complex variables of degree less than or equal to N . We
say that this dilation is a unitary/normal dilation if every Ui (i = 1, . . . , d) is
unitary/normal. The construction (1.2) shows that every contraction has a unitary
N-dilation acting on HN+1. In particular, it shows that every contraction acting on
a finite dimensional space has a unitary N-dilation acting on a finite dimensional
space, for all N .

Curiously, it appears that the proof of Theorem 3.2 cannot be modified to show
that every pair of commuting contractions on a finite dimensional space has a
commuting unitary N-dilation on a finite dimensional space, for all N . It was
shown by McCarthy and Shalit that indeed such a finitary version of Andô’s dilation
theorem holds [99]. Interestingly, the proof made use of Andô’s dilation theorem.
So, if one uses this finitary dilation theorem to prove von Neumann’s inequality
for pairs of matrices, one does not truly avoid infinite dimensional spaces. It is an
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open problem to come up with an explicit construction of a unitary N-dilation for
commuting matrices.

In fact, in [99] it was also proved that a d-tuple of contractions acting on a finite
dimensional space has a unitary dilation if and only if for all N it has a unitary
N-dilation acting on a finite dimensional space. Likewise, it was shown that for
such a tuple, the existence of a regular unitary dilation is equivalent to the existence
of a regular unitary N-dilation (you can guess what that means) acting on a finite
dimensional space, for all N . Additional finitary dilation results appeared, first in the
setting of normal dilations of commuting tuples [38], and then in the setting of 1-
dilations of noncommuting operators [46, Section 7.1]. A similar phenomenon was
also observed in [69]. At last, Hartz and Lupini found a finite dimensional version
of Stinespring’s dilation theorem (see Sect. 7.1), which provides a general principle
by which one can deduce finite dimensional dilation theorems from their infinite
dimensional counterparts [73].

It is interesting to note that N-dilations found an application in simulating open
quantum systems on a quantum computer [79], and they also appeared in the context
of quantum information theory [94]. The notion of N-dilations also appeared in the
dilation theory in general Banach spaces (about which will say a few words below),
see [62].

6.2 Models

Another direction in which dilation theory for commuting d-tuples has been
developed is that of operator models. Roughly, the idea is that certain classes of
d-tuples of operators can be exhibited as the compressions of a particular “model”
d-tuple of operators. We will demonstrate this with a representative example; for a
broader point of view see [105], Chapter 14 in [2], or the surveys [8] and [138].

Our example is the d-shift on the Drury-Arveson space H 2
d [12, 55] (see also the

survey [146]). For a fixed d , we let H 2
d denote the space of all analytic functions

f (z) =∑
α cαz

α on the unit ball Bd such that (with standard multi-index notation)

‖f ‖2
H 2

d

:=
∑

α

|cα|2 α!
|α|! < ∞.

This norm turns the space H 2
d into a Hilbert space of analytic functions on Bd , such

that point evaluation is bounded. In fact, H 2
d is the reproducing kernel Hilbert space

determined by the kernel k(z,w) = 1
1−〈z,w〉 . Some readers might jump to their feet

and object that this space is nothing but the good old symmetric Fock space, but it
is fruitful and enlightening to consider it as a space of analytic functions (so please,
sit down).

For the record, let the reader know that the possibility d =∞ is allowed, but we
do not dwell upon this point.
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On H 2
d there is a d-tuple of operators S = (S1, . . . , Sd), called the d-shift, and

defined by

Sif (z) = zif (z) , i = 1, . . . , d,

where z = (z1, . . . , zd ) is the complex variable, and so Si is multiplication by the
ith coordinate function zi . The tuple S is plainly a commuting tuple: SiSj = SjSi
(multiplication of functions is commutative). A short combinatorial exercise shows
that

∑
SiS

∗
i is equal to the orthogonal projection onto the orthogonal complement

of the constant functions, and in particular
∑

SiS
∗
i ≤ I . Thus S is a row

contraction, meaning that the row operator [S1 S2 · · · Sd ] : H 2
d ⊕· · ·⊕H 2

d → H 2
d

is a contraction. Another calculation reveals that S is pure, in the sense that
∑

|α|=n S
α(Sα)∗ n→∞−−−→ 0 in the strong operator topology.

The remarkable fact is that H 2
d is a universal model for pure commuting row

contractions. I will now explain what these words mean. If G is a Hilbert space,
we can consider the space H 2

d ⊗ G (which can be considered as a Hilbert space of
analytic G-valued functions), and the d-shift promotes to a shift S ⊗ IG on H 2

d ⊗ G,
which is called a multiple of the d-shift. A subspace M ⊆ H 2

d ⊗ G is said to be
coinvariant if it is invariant for S∗i ⊗ IG for all i = 1, . . . , d .

Theorem 6.1 (Universality of the d-Shift) Let T = (T1, . . . , Td) ∈ B(H)d be
a pure, commuting row contraction. Then there exists a Hilbert space G and a
coinvariant subspace M ⊆ H 2

d ⊗ G such that T is unitarily equivalent to the
compression of S ⊗ IG to M.

Thus, every row contraction T is unitarily equivalent to the corestriction of a
multiple of the d-shift to a coinvariant subspace. In particular, for every polynomial
p in d variables,

‖p(T )‖ = ∥
∥PM

(
p(S) ⊗ IG

) ∣
∣M
∥
∥ ≤ ‖p(S)‖ , (6.1)

and this inequality replaces von Neumann’s inequality in this setting (and this was
Drury’s motivation [55]). It can be shown [55] (see also [12, 44]) that there exists
no constant C such that ‖P(S)‖ ≤ C supz∈Bd

|p(z)|, and in particular, commuting
row contractions in general do not have normal dilations with spectrum contained
in Bd .

6.3 Dilation Theory for Noncommutative Operator Tuples

Dilation theory also plays a role in the analysis of tuples of noncommuting
operators. Recall that a row contraction is a tuple T = (T1, . . . , Td) such that∑

TiT
∗
i ≤ I (as in Sect. 6.2, we allow, but do not belabor, the case d =∞, in which

case the sum is understood in the strong-operator topology sense). A row isometry
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is a tuple V = (V1, . . . , Vd) such that V ∗
i Vj = δij I , for all i, j . Thus, the operators

V1, . . . , Vd are all isometries which have mutually orthogonal ranges, and this is
equivalent to the condition that the row operator [V1 V2 · · · Vd ] is an isometry. The
Sz.-Nagy isometric dilation theorem extends to the setting of (noncommuting) row
contractions. The following theorem is due to Frazho [64] (the case d = 2), Bunce
[33] (the case d ∈ N∪{∞}) and Popescu [123] (who proved the existence of dilation
in the case d ∈ N ∪ {∞}, and later developed a far reaching generalization of Sz-
Nagy’s and Foias’s theory for noncommuting tuples and more).

Theorem 6.2 (Row Isometric Dilation of Row Contractions) Let T ∈ B(H)d

be a row contraction. Then there exists a Hilbert space K containing H and a row
isometry V = (V1, . . . , Vd) ∈ B(K)d such that V ∗

i

∣
∣H = T ∗

i for all i.

There is also a very closely related dilation result, that shows that the shift
L = (L1, . . . , Ld) on the full Fock space is a universal model for pure row
contractions, which reads similarly to Theorem 6.1, with the free shift L replacing
the commutative shift S. Correspondingly, there is a von Neumann type inequality
‖p(T )‖ ≤ ‖p(L)‖ which holds for every row contraction T and every polynomial
p in noncommuting variables [123, 124].

Popescu has a large body of work in which this dilation/model theory is
developed, applied, and generalized. In particular, the theory can be modified to
accommodate tuples satisfying certain polynomial relations [127] (see also [150,
Section 8]) or tuples in certain noncommutative polydomains [128].

The isometric dilation of a row contractions lies at the heart of the free functional
calculus for row contractions (see, e.g., [126]), and is important for understanding
the algebraic structure of noncommutative Hardy algebras (also called analytic
Toeplitz algebras, see [45]), as well as for the study and classification of algebras of
bounded nc analytic functions on the nc unit ball and its subvarieties [134, 135].

6.4 Dilations in Banach Spaces

Until now, we have only considered operators on Hilbert spaces. But there are
other kinds of interesting spaces, and the concept of dilations has appeared and
been used in various settings. In the setting of Banach spaces, one may hope to
dilate a contraction to an invertible isometry (that is, a surjective isometry); more
generally one may wish to dilate a semigroup of operators to a group representation.
Results along these lines, including a direct analogoue of Sz.-Nagy’s unitary dilation
theorem, were obtained by Stroescu; see [161].

However, Banach spaces form a huge class of spaces, and the dilation theory in
the context of general Banach spaces contains the additional aspect that one might
like to ensure that the dilating space shares some properties with the original space.
For example, if T is a contraction on an Lp-space, one might wish to dilate to an
invertible isometry acting on an Lp-space. Moreover, if T is positive, in the sense
that Tf ≥ 0 (almost everywhere) whenever f ≥ 0 (almost everywhere), then one
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might hope to dilate to a positive invertible isometry. The following theorem is an
example of the kind of result one can look for.

Theorem 6.3 (Akcoglu–Sucheston [6]) Let T : X → X be a positive contraction
on an Lp-space X = Lp(μ) (1 ≤ p < ∞). Then there exists another Lp-space
Y = Lp(ν), a positive invertible isometry U : Y → Y , a positive isometry J : X →
Y , and a positive projection Q : Y → Y such that

JT n = QUnJ , for all n ∈ N.

Note that even in the case p = 2, this is not exactly Sz.-Nagy’s dilation theorem:
the assumptions are stronger, but so is the conclusion. For a modern approach to
dilations in Banach spaces, generalizations, and also an overview of the history
of the theory and its applications, see [62]. Operator algebras are another class of
spaces in which dilation theory was developed and applied; we will discuss this
setting in Sects. 7 and 8 below.

6.5 Dilations of Representations of C*-Correspondences

A Hilbert C*-module is a complex linear space E which is a right module over a
C*-algebra A, which carries an “A-valued inner product” 〈·, ·〉 : E × E → A, that
satisfies the following conditions:

1. 〈x, x〉 ≥ 0 for all x ∈ E,
2. 〈x, ya〉 = 〈x, y〉a for all x, y ∈ E and a ∈ A,
3. 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ E,
4. 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉 for all x, y, z ∈ E and α, β ∈ C,
5. ‖x‖ := ‖〈x, x〉‖1/2 is a norm on E which makes E into a Banach space.

The notion was introduced by Kaplansky [83] for the case where the C*-algebra A
is commutative, and then developed further by Paschke [112] and Rieffel [131] for
general C*-algebras. It is now a standard tool in some fields in operator algebras;
see [93] or Part I of [154] for an introduction.

Hilbert modules evolved into a more refined notion, called Hilbert correspon-
dences, that involves a left action. A linear operator T : E → E is said to be
adjointable if there exists a linear operator S : E → E so that 〈T x, y〉 = 〈x, Sy〉
for all x, y ∈ E. One can show that every adjointable operator is a bounded right
module map, but the converse is not true. The set of all adjointable operators on
a Hilbert C*-correspondence E is denoted Ba(E) or L(E); it is a C*-algebra. A
Hilbert C*-correspondence from A to B is a Hilbert B-module E which also
carries a left action of A by adjointable operators. If A = B then we say C*-
correspondence over A.

Given a Hilbert C*-correspondence E over the C*-algebra A, a covariant
representation of E on a Hilbert space H is a pair (T , σ ) where T is linear map
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T : E → B(H) and σ : A → B(H) is a nondegenerate ∗-representation such
that T (a · x · b) = σ(a)T (x)σ (b) for all a, b ∈ A and x ∈ E. A covariant
representation is said to be contractive/completely contractive/bounded, etc., if
T is contractive/completely contractive/bounded, etc; it is said to be isometric if
T (x)∗T (y) = σ(〈x, y〉) for all x, y ∈ E.

Muhly and Solel proved that every completely contractive covariant representa-
tion (T , σ ) of E on H has an isometric dilation (V , π) of E on K ⊇ H, [100,
Theorem 3.3]. By this, we mean an isometric covariant representation (V , π) on a
Hilbert space K that contains H, such that

1. H is reducing for π , and PHπ(a)
∣
∣H = σ(a) for all a ∈ A,

2. PHV (x)
∣
∣H = T (x) for all x ∈ E,

3. PHV (x)
∣
∣H⊥ = 0 for all x ∈ E.

Moreover, they proved that such an isometric dilation can be chosen to be minimal
in a certain sense, and that the minimal isometric dilation is unique up to unitary
equivalence (the third condition that an isometric dilation is required to satisfy
looks more like something that should be called a coextension, it is actually a
consequence of minimality; sometimes it is not required). The isometric dilation
theorem was used in [100] to analyze the representation theory of the tensor
algebra T+(E), which is a particular nonselfadjoint operator algebra, formed from
the C*-correspondence in a way which we shall not go into. This has shed light
on problems regarding an enormous class of operator algebras. Remarkably, Muhly
and Solel’s minimal isometric dilation enjoys also a commutant lifting theorem, and
this, in turn, can lead to a Nevanlinna-Pick type interpolation theorem for so-called
noncommutative Hardy algebras, with a proof reminiscent to the one we gave in
Sect. 4 (see [103]).

This dilation theorem of Muhly and Solel is a far reaching generalization of Sz.-
Nagy’s isometric dilation theorem (Theorem 2.3). In fact, the latter is obtained from
the simplest case E = A = C of Muhly and Solel’s theorem. The row-isometric
dilation of a row contraction (Theorem 6.2) is obtained as the “second simplest” case
E = C

d and A = C. Muhly and Solel’s isometric dilation theorem also reduces to
some known dilation results in the context of crossed product and semi-crossed
product operator algebras, as well in graph C*-algebras.

On the other hand, Andô’s theorem, for example, is not a special case of Muhly
and Solel’s isometric dilation theorem—a single C*-correspondence is not sufficient
to encode a pair of commuting contractions. The missing ingredient is the notion of
product systems. A product system over a monoid (i.e., a semigroup with unit e) S
is a family E = {Es}s∈S of C*-correspondences over a C*-algebra A, such that for
every s, t ∈ S there exists an isomorphism of correspondences (i.e., an adjointable
surjective isometry which is a bimodule map) us,t : Es E Et → Est such that the
multiplication xsyt := us,t (xs E yt) is associative

(wrxs)yt = wr(xsyt ).
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(Here Es E Et , denotes the internal (or interior) tensor product of Es and Et ,
sometimes also denoted Es ⊗Et ; see [93, Chapter 4].) A covariant representation
of a product system E = {Es}s∈S on H is a family T = {Ts}s∈S such that for all
s ∈ S, the pair (Ts, Te) is a covariant representation of Es on H, which satisfies in
addition

Tst(xs E yt ) = Ts(xs)Tt (yt )

for all s, t ∈ S and all xs ∈ Es and yt ∈ Et . An isometric representation of E

on K is a covariant representation V = {Vs}s∈S of E such that for all s ∈ S, the
pair (Vs, Ve) is an isometric representation. One then says that V is an isometric
dilation of T if

1. H is reducing for π , and PHTe(a)
∣
∣H = Ve(a) for all a ∈ A,

2. PHV (x)
∣
∣H = T (x) for all x ∈ Es .

The theory of isometric dilations of completely contractive representations of
product systems, is analogous to the theory of isometric dilations of semigroups of
contractions. Moreover, some of the proofs rely on the same ideas and approaches,
albeit at a technical sophistication level that is one order of magnitude higher. In fact,
several results (but not all) can be reduced to the case of operator semigroups (see
[143]). We will see in Sect. 8 that the dilation theory of covariant representations is
important for the dilation theory of CP-semigroups.

Here are some sample results. Solel proved a version of Andô’s theorem in this
setting: every completely contractive covariant representation of a product system
over N2 has an isometric dilation [157, Theorem 4.4]. Solel also proved an analogue
of Theorem 3.7 (regular dilations) for product systems over Nd using a direct proof
[158] (see also [152, 153]). Shalit later found another proof by reducing to the case
of operator semigroups [143]. The method of [143] was later used in [141, Section
5] to prove a counterpart to Theorem 3.1 (see also [66]). Vernik generalized Opela’s
result on dilations of contractions commuting according to a graph (see Sect. 3.3) to
the setting of product system representations [166]. All of the above results reduce
to their counterparts that we discussed in earlier sections, when one considers the
special case A = Es = C for all s ∈ S, where S is the appropriate monoid.

7 The Operator Algebraic Perspective

The operator algebraic outlook on dilation theory began with Arveson’s visionary
papers [10, 11]. Arveson sought to develop a systematic study of nonselfadjoint
operator algebras, which is based on studying the relations between an operator
algebra and the C*-algebras that it generates. From the outset, the approach was
general and powerful enough to cover also certain operator spaces. On the one hand,
this approach opened the door by which operator algebraic techniques entered into
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operator theory: these techniques have shed light on classical dilation theory, and
they also created a powerful framework by which new dilation results could be
obtained. On the other hand, the general philosophy of dilation theory found its way
into operator algebras, and has led to remarkable developments.

In this section I will present Stinespring’s dilation theorem, and how Arveson’s
extension theorem and his notion of C*-dilation have made Stinespring’s theorem
into a “dilation machine” that produces and explains dilation results in operator
theory. Then I will briefly discuss how dilation theory is related to the notions of
boundary representations and the C*-envelope, which lie at the heart of the above
mentioned analysis of the relationship between on operator algebra/space and the
C*-algebras that it generates.

I will not attempt to cover all the manifold ways in which dilation theory appears
in the theory of operator algebras, and I’ll just mention a few (of my favorite) recent
examples: [51, 82, 84, 85]. The reader is referred to the survey [48] or the paper [41]
in order to get an idea of the role it plays, in particular in operator algebras related
to dynamical systems and semicrossed products.

7.1 Completely Positive Maps and Stinespring’s Theorem

An operator space is a subspace M ⊆ B(H) of the bounded operators on some
Hilbert space H. We say that M is unital if 1 = IH ∈ M. If M is a subalgebra
of B(H), then it is called an operator algebra (note that operator algebras are not
assumed to be closed under the adjoint). A unital operator space M is said to be an
operator system if it is closed under the adjoint operation. Since every C*-algebra
can be represented faithfully on a Hilbert space, we can consider a subspace of a
C*-algebra as an operator space (and likewise for unital operator spaces, operator
algebras and operator systems). C*-algebras are operator algebras, and unital C*-
algebras are operator systems, of course.

An operator space M ⊆ B(H) inherits from B(H) a norm and a notion of
positivity: an element a ∈M is said to be positive, if it is positive as an operator on
H, i.e., 〈ah, h〉 ≥ 0 for all h ∈ H. Operator systems are spanned by their positive
elements, indeed, if a ∈ M then its real and imaginary parts are also in M, and
if a is selfadjoint then 1

2 (‖a‖ · 1 ± a) ≥ 0 and the difference of these two positive
elements is a.

As a consequence, it makes sense to speak of positive maps. If M and N are
operator systems, a linear map φ : M → N is said to be positive if it takes
positive elements to positive elements. The matrix spaces Mn(M) ⊆ Mn(B(H)) =
B(Hn) and Mn(N ) are also operator systems, and then φ induces a linear map
φ(n) : Mn(M) → Mn(N )

φ(n) = φ ⊗ idMn : Mn(M) = M⊗Mn → Mn(N ) = N ⊗Mn



584 O. M. Shalit

acting elementwise as

φ(n) : (aij )ni,j=1 �→ (φ(aij ))
n
i,j=1 ∈ Mn(N ).

The map φ is said be completely positive (or CP for short) if φ(n) is positive for
all n. Likewise, φ is said to be completely contractive (or CC for short) if φ(n) is
contractive for all n. A map is UCP if it is a unital CP map, and UCC if it is a unital
CC map.

Completely positive maps were introduced by Stinespring [159], but it was
Arveson who observed how important they are and opened the door to their
becoming an indispensable tool in operator theory and operator algebras [10]. There
are several excellent sources to learn about operator spaces/systems and completely
positive (and bounded) maps; see for example [118] and [122].

Completely positive maps arise also in mathematical physics in a natural way
[89]. The evolution of an open quantum system is described by a semigroup of
completely positive maps [49], and noisy channels in quantum information theory
are modelled as trace preserving completely positive maps [107]. In quantum
probability [111], semigroups of unit preserving completely positive maps play the
role of Markov semigroups.

The simplest examples of completely positive maps are ∗-homomorphisms
between C*-algebras. Next, a map of the form B(K) 4 T �→ V ∗T V ∈ B(H), where
V is some fixed operator in B(H,K), is readily seen to be completely positive.
Since compositions of CP maps are evidently CP, we see that whenever A is a
C*-algebra, π : A → B(K) is a ∗-homomorphism, and V ∈ B(H,K), then the
map a �→ V ∗π(a)V is a CP map. The following fundamental theorem shows that
essentially all CP maps on C*-algebras are of this form.

Theorem 7.1 (Stinespring’s Theorem [159]) Let A be a unital C*-algebra and
let φ : A → B(H) be a CP map. Then there exists a Hilbert space K, an operator
V ∈ B(H,K), and a ∗-representation π : A → B(K) such that

φ(a) = V ∗π(a)V , for all a ∈ A.

The tuple (π,K, V ) can be chosen such that K = [π(A)H]—the smallest closed
subspace containing π(a)h for all a ∈ A and h ∈ H—and in this case the triple
(π,K, V ) is unique up to unitary equivalence.

Proof On the algebraic tensor product A ⊗ H, we define a semi-inner product by
setting 〈a⊗ g, b⊗ h〉 = 〈g, φ(a∗b)h〉H and extending sesquilinearly (the complete
positivity guarantees that this is a positive semidefinite form). Quotienting out the
kernel and then completing gives rise to the Hilbert space K. The image of all the
elementary tensors b ⊗ h ∈ A ⊗ H in K form a total set, and we continue to
denote these images as b ⊗ h. One needs to check that for every a ∈ A, the map
π(a) : b ⊗ h �→ ab ⊗ h extends to a well defined, bounded linear operator on K.
Once this is done, it is easy to verify that the map a �→ π(a) is a ∗-homomorphism.

To recover φ, we define V : H → K by V (h) = 1⊗ h, and then all that remains
to do is to compute 〈V ∗(a⊗h), g〉 = 〈a⊗h, V (g)〉 = 〈a⊗h, 1⊗g〉 = 〈h, φ(a∗)g〉,
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so V ∗(a ⊗ h) = φ(a)h, and thus

V ∗π(a)V h = V ∗(a ⊗ h) = φ(a)h,

as required. If [π(A)H] � K, then we replace K with [π(A)H], and obtain a
minimal representation. The uniqueness is a standard matter, and is left to the reader.

�
If K = [π(A)H], then (π,K, V ) (or just π sometimes) is called the minimal

Stinespring representation of φ.

Remark 7.2 If φ is unital, then 1 = φ(1) = V ∗π(1)V = V ∗V , so V is an isometry.
In this case it is convenient to identify H with VH ⊆ K, and the Stinespring
representation manifests itself as a dilation

φ(a) = PHπ(a)
∣
∣H.

In this situation, the minimal Stinespring representation is referred to as the minimal
Stinespring dilation of φ.

7.2 Arveson’s Extension Theorem and C*-Dilations

The utility of completely positive maps comes from the following extension theorem
of Arveson. For a proof, see Arveson’s paper or Paulsen’s book [118, Chapter 7].

Theorem 7.3 (Arveson’s Extension Theorem [10]) Let M be an operator system
in a C*-algebra A, and let φ : M → B(H) be a CP map. Then there exists a CP
map φ̂ : A → B(H) such that ‖φ̂‖ = ‖φ‖ and which extends φ, i.e., φ̂(a) = φ(a)

for all a ∈M.

We will now see how the combination of Stinespring’s dilation theorem and
Arveson’s extension theorem serve as kind of all purpose “dilation machine”, that
produces dilation theorems in varied settings.

Let 1 ∈ M ⊆ A be a unital operator space. A linear map φ : M → B(H) is
said to have a C*-dilation to A if there exists a ∗-representation π : A → B(K),
K ⊇ H, such that

φ(a) = PHπ(a)
∣
∣H , for all a ∈M.

Arveson showed that every UCP map is UCC, and that, conversely, every UCC
map as above extends to a UCP map φ̃ : M̃ := M + M∗ → B(H) given by
φ̃(a + b∗) = φ(a) + φ(b)∗. Combining this basic fact with Theorems 7.1 and 7.3
we obtain the following versatile dilation theorem.

Theorem 7.4 Every UCC or UCP map has a C*-dilation.
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Arveson’s dilation theorem1 (Theorem 5.1) follows from the above theorem,
once one carefully works through the delicate issues of joint spectrum, Shilov
boundary and functional calculus (see [11]). We shall illustrate the use of the dilation
machine by proving Arveson’s dilation theorem for the simple but representative

example of the polydisc D
d
.

Theorem 7.5 (Arveson’s Dilation Theorem for the Polydisc) A d-tuple of com-
muting contractions T = (T1, . . . , Td) has a unitary dilation if and only if the

polydisc D
d

is a complete spectral set for T .

Proof To relate the statement of the theorem to the language of Sect. 5, we note that

the Shilov boundary of D
d

is just the torus (∂D)d = T
d , and therefore a unitary

dilation is nothing but a normal dilation with joint spectrum contained in T
d . Recall

that D
d

being a complete spectral set is equivalent to that

‖p(T )‖ ≤ ‖p‖∞ := sup
z∈Dd

‖p(z)‖ (7.1)

for every matrix valued polynomial p (since D
d

is convex it suffices to consider
matrix valued polynomials, and there is no need to worry about matrix valued
rational functions).

If U = (U1, . . . , Ud) is a tuple of commuting unitaries and p is a matrix valued
polynomial, then, using the spectral theorem, it is not hard to see that ‖p(U)‖ =
supz∈σ(U) ‖p(z)‖ ≤ ‖p‖∞. Now, if U is a dilation of T then ‖p(T )‖ ≤ ‖p(U)‖,
and so the inequality (7.1) holds. That was the easy direction.

Conversely, suppose that D
d

is a complete spectral set for a commuting tuple
T ∈ B(H)d , that is, suppose that (7.1) holds for every matrix valued polynomial p.
Let M = C[z1, . . . , zd ] be the space of polynomials in d variables, considered as a
unital subspace of the C*-algebra C(Td ), equipped with the usual supremum norm.
It is useful to note that

sup
z∈Dd

‖p(z)‖ = sup
z∈Td

‖p(z)‖,

by applying the maximum modulus principle in several variables. The fact that D
d

is a complete spectral set for T implies that the unital map φ : M → B(H) given
by φ(p) = p(T ), is completely contractive. By Theorem 7.4, φ has a C*-dilation
π : C(Td ) → B(K), such that

p(T ) = φ(p) = PHπ(p)
∣
∣H , p ∈M.

1The reader should be aware that Theorem 7.4 is sometimes referred to as Arveson’s dilation
theorem, whereas I used this name already for the more specific Theorem 5.1.
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Now, π is a ∗-representation, and the coordinate functions z1, . . . , zd ∈ C(Td ) are
all unitary, so Ui = π(zi), i = 1, . . . , d , are commuting unitaries. Since π(p) =
p(π(z1), . . . , π(zd)), we find that

p(T ) = PHp(U)
∣
∣H

for all p ∈M, that is, U is a unitary dilation of T , as required. �
Following Arveson, the above method has been used extensively for proving the

existence of dilations in certain situations. The burden is then shifted from the task
of constructing a dilation, to that of showing that certain naturally defined maps are
UCP or UCC. In other words, by proving an inequality one obtains an existence
proof—a good bargain from which analysts have profited for a century. Of course,
“good bargain” does not mean that we cheat, we still need to prove something. Let
me give an example of how this works.

Example 7.6 We now prove that for every contraction T ∈ B(H), the map � :
C[z] → B(H) given by �(p) = p(T ) is UCC. Combining this with Arveson’s
dilation theorem for the disc (the case d = 1 in Theorem 7.5), we obtain a genuinely
new proof of Sz.-Nagy’s unitary dilation theorem (Theorem 2.1). The reader should
be able to adapt the details of this proof to get a proof that every row contraction
has a row-isometric dilation, and that every pure commuting row contraction can be
modelled by the d-shift (for hints, see the introduction of [125] or [8], respectively).

Let S be the unilateral shift on �2, and let en denote the nth standard basis vector
in �2. If T is a contraction and r ∈ (0, 1), we let DrT = (I − r2T T ∗)1/2, and define
Kr(T ) : H → �2 ⊗H by

Kr(T )h =
∑

n

en ⊗
(
rnDrT T

n∗h
)
,

for all h ∈ H. We compute:

Kr(T )∗Kr(T )h =
∑

r2nT nD2
rT T

n∗h

=
∑

r2nT n(I − r2T T ∗)T n∗h

=
∑

r2nT nT n∗h−
∑

r2(n+1)T n+1T (n+1)∗h = h

so that Kr(T ) is an isometry. On C∗(S) we define a UCP map

φr(a) = Kr(T )∗(a ⊗ I)Kr(T ).
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We compute that

φr(S) = Kr(T )∗(S ⊗ I)Kr(T )h

= Kr(T )∗
∑

en+1 ⊗
(
rnDrT T

n∗h
)

=
∑

r2n+1T n+1D2
rT T

n∗h = rT h.

Likewise, φr(S
n) = rnT n for all n ∈ N.

Now we define a UCP map � := limr↗1 φr . Then �(Sn) = T n for all n.
We see that the map p(S) �→ p(T ) is UCC. But S is unitarily equivalent to the
multiplication operator Mz on H 2 (see Sect. 4.3). Thus, for every matrix valued
polynomial p

‖p(T )‖ ≤ ‖p(S)‖ = ‖p(Mz)‖ = sup
|z|=1

‖p(z)‖,

so D is a complete spectral set for T . By Theorem 7.5, T has a unitary dilation.

7.3 Boundary Representations and the C*-Envelope

The ideas in this section are best motivated by the following classical example.

Example 7.7 Consider the disc algebra A(D), which is equal to the closure of the
polynomials with respect to the norm ‖p‖∞ = supz∈D |p(z)|. The disc algebra

is an operator algebra, being a subalgebra of the C*-algebra C(D) of continuous
functions on the disc D. Moreover, C∗(A(D)) = C(D), that is, the C*-subalgebra
generated by A(D) ⊆ C(D) is equal to C(D). However, C(D) is not determined
uniquely by being “the C*-algebra generated by the disc algebra”. In fact, by the
maximum modulus principle, A(D) is also isometrically isomorphic to the closed
subalgebra of C(T) generated by all polynomials, and the C*-subalgebra of C(T)

generated by the polynomials is equal to C(T).
Now, C(T) is the quotient of C(D) by the ideal of all continuous functions

vanishing on the circle T. If π : C(D) → C(T) denotes the quotient map, then
π(f ) = f

∣
∣
T

, and we note, using the maximum principle again, that π is isometric

on A(D). It turns out that T is the minimal subset E ⊆ D such that the map
f �→ f

∣
∣
E

is isometric on A(D).

The above phenomenon arises in all uniform algebras, that is, in all unital
subalgebras A of C(X) that separate the points of X, where X is some compact
Hausdorff space. For every such algebra there exists a set ∂A ⊆ X—called the
Shilov boundary of A—which is the unique minimal closed subset E ⊆ X such
that f �→ f

∣
∣
E

is isometric (see [68] for the theory of uniform algebras).
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In the spirit of noncommutative analysis, Arveson sought to generalize the Shilov
boundary to the case where the commutative C*-algebra C(X) is replaced by a
noncommutative C*-algebra B = C∗(A) generated by a unital operator algebra A.
An ideal I F B is said to be a boundary ideal for A in B, if the restriction of the
quotient map π : B → B/I to A is completely isometric. The Shilov ideal of A in
B is the unique largest boundary ideal for A in B. If J is the Shilov ideal of A in B,
then C*-envelope of A is defined to be the C*-algebra C∗

e (A) = B/J . (The above
notions were introduced in [10, 11], but it took some time until the terminology
settled down. A good place for the beginner to start learning this stuff is [118].)

Example 7.8 If B = C(X) is a commutative C*-algebra generated by the uniform
algebra A, then the Shilov ideal of A is just the ideal I∂A of functions vanishing on
the Shilov boundary ∂A. In this case C∗

e (A) = C(∂A).

The C*-envelope C∗
e (A) = B/J = π(B) has the following universal property:

if i : A → B′ is a completely isometric homomorphism such that B′ = C∗(i(A)),
then there exists a unique surjective ∗-homomorphism ρ : B′ → C∗

e (A) such that
π(a) = ρ(i(a)) for all a ∈ A. It follows that the C*-envelope depends only on
the structure of A as an operator algebra, not on the concrete realization A ⊆ B
with which we started. Thus, if Ai ⊆ Bi = C∗(Ai ) for i = 1, 2 have trivial Shilov
ideals, then every completely isometric homomorphism φ : A1 → A2 extends to
∗-isomorphism ρ : B1 → B2.

In fact, the algebraic structure is not essential here, and the above notions also
make sense for unital operator spaces. For some purposes, it is most convenient to
work with operator systems, and focus is then shifted to this case (as in the next
subsection). For example, the Shilov ideal of an operator system S ⊆ B = C∗(S)
is the largest ideal I F B such that the quotient map π : B �→ B/I restricts to a
complete isometry on S, etc.

How does one find the Shilov ideal? Let us return to Example 7.7 (recalling also
Example 7.8). If A(D) is given as a subalgebra of C(D), how could one characterize
its Shilov boundary? A little bit of function theory shows that a point z ∈ D is in
the unit circle T if and only if it has a unique representing measure. Recall that
when we have a uniform algebra A ⊆ C(X), a probability measure μ is said to be a
representing measure for x if

f (x) =
∫

X

f dμ

for all f ∈ A. For example, the Lebesgue measure on the circle is a representing
measure for the point 0, because

f (0) = 1

2π

∫ 2π

0
f (eit )dt

for every f ∈ A(D), as an easy calculation shows. Every point can be represented
by the delta measure δz; the points on the circle are singled out by being those with
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a unique representing measure, that is, they can be represented only by the delta
measure. In the general case of a uniform algebra A ⊆ C(X), the points in X that
have a unique representing measure are referred to as the Choquet boundary of
A. It is not hard to show that the Choquet boundary of A(D) is T. In general, the
Choquet boundary of a uniform algebra is dense in the Shilov boundary.

Let return to the noncommutative case, so let A ⊆ B = C∗(A) be again a
unital operator algebra generating a C*-algebra. Point evaluations correspond to the
irreducible representations of a commutative C*-algebra, and probability measures
correspond to states, that is, positive maps into C. With this in mind, the reader will
hopefully agree that the following generalization is potentially useful: an irreducible
representation π : B → B(H) is said to be a boundary representation if the only
UCP map � : B → B(H) that extends π

∣
∣A is π itself.

Arveson proved in [10] that if an operator algebra A ⊆ B = C∗(A) has
sufficiently many boundary representations, in the sense that

‖A‖ = sup{‖π(n)(A)‖ : π : B → B(Hπ ) is a boundary representation}

for all A ∈ Mn(A), then the Shilov ideal exists, and is equal to the intersection
of all boundary ideals. For some important operator algebras, the existence of
sufficiently many boundary representations was obtained (see also [11]), but
the problem of existence of boundary representations in general remained open
almost 45 years.2 Following a sequence of important developments [15, 53, 101],
Davidson and Kennedy proved that every operator system has sufficiently many
boundary representations [42]. Their proof implies that every unital operator space,
and in particular every unital operator algebra, has sufficiently many boundary
representations as well.

7.4 Boundary Representations and Dilations

It is interesting that the solution to the existence problem of boundary representa-
tions was obtained through dilations. Davidson and Kennedy worked in the setting
of operator systems, so let us follow them in this subsection.

If S ⊆ B = C∗(S) is an operator system inside the C*-algebra that it generates,
an irreducible representationπ : B → B(H) is a boundary representation if the only
UCP map � : B → B(H) that extends π

∣
∣S is π itself. This leads to the following

definition: a UCP map φ : S → B(H) is said to have the unique extension
property if there exists a unique UCP map � : B → B(H) that extends φ, and,
moreover, this � is a ∗-representation. Thus, an irreducible representation π is a

2The existence of the C*-envelope was obtained much earlier, without making use of boundary
representations; see [118].
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boundary representation if and only if the restriction π
∣
∣S has the unique extension

property.
Now, the unique extension property nicely captures the idea that S is in some

sense rigid in B, but it is hard to verify it in practice. The following notion is more
wieldy. A UCP map ψ : S → B(K) is said to be a dilation of a UCP map φ : S →
B(H) if φ(a) = PHψ(a)

∣
∣H for all a ∈ S. The dilation ψ is said to be a trivial

dilation if H is reducing for φ(S), that is, ψ = φ⊕ρ for some UCP map ρ. A UCP
map φ is said to be maximal if it has only trivial dilations.

Penetrating observations of Muhly and Solel [101], and consequently Dritschel
and McCullough [53], can be reformulated as the following theorem. The beauty
is that the notion of maximality is intrinsic to the operator system S, and does not
take the containing C*-algebra B into account (similar reformulations exist for the
categories of unital operator spaces and operator algebras).

Theorem 7.9 A UCP map φ : S → B(H) has the unique extension property if and
only if it is maximal.

Following Dritschel and McCullough’s proof of the existence of the C*-envelope
[53] and Arveson’s consequent work [15], Davidson and Kennedy proved the
following theorem (as above, similar reformulations exist for the categories of unital
operator spaces and operator algebras).

Theorem 7.10 Every UCP map can be dilated to a maximal UCP map, and every
pure UCP map can be dilated to a pure maximal UCP map.

Davidson and Kennedy proved that pureness guarantees that the ∗-representation,
which is the unique UCP extension of the maximal dilation, is in fact irreducible.
Moreover, they showed that pure UCP maps completely norm an operator space.
Thus, by dilating sufficiently many pure UCP maps, and making use of the above
theorems, they concluded that there exist sufficiently many boundary representa-
tions [42].

Example 7.11 Let us see what are the maximal dilations in the case of the disc
algebra A(D) ⊆ C(D) (we switch back from the category of operator systems to
the category of unital operator algebras). A representation π of C(D) is determined
uniquely by a normal operator N with spectrum in D by the relation N = π(z). A
UCC representation φ : A(D) → B(H) is determined uniquely by the image of the
coordinate function z, which is a contraction T = φ(z) ∈ B(H). Conversely, by the
A(D) functional calculus (see Sect. 2.2), every contraction T ∈ B(H) gives rise to a
UCC homomorphism of A(D) into B(H). In this context, a dilation of a UCC map
φ into B(H) is simply a representation ρ : A(D) → B(K) such that

f (T ) = φ(f ) = PHρ(f )
∣
∣H = PHf (V )

∣
∣H,

for all f ∈ A(D), where V = ρ(z) ∈ B(K). So ρ is a dilation of φ if and only if
V = ρ(z) is a (power) dilation of T = φ(z) in the sense of Sect. 2.
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With the above notation, it is not hard to see the following two equivalent
statements: (i) a dilation ρ : A(D) → B(K) is maximal if and only if V is a
unitary, and (ii) a representation π : C(D) → B(K) is such that ρ = π

∣
∣
A(D)

has
the unique extension property if and only if V is a unitary. The fact that every UCC
representation of A(D) has a maximal dilation, is equivalent to the fact that every
contraction has a unitary dilation.

What are the boundary representations of the disc algebra? The irreducible
representations of C(D) are just point evaluations δz for z ∈ D. The boundary
representations are those point evaluations δz whose restriction to A(D) have a
unique extension to a UCP map C(D) → C. But UCP maps into the scalars are
just states, and states of C(D) are given by probability measures. Hence, boundary
representations are point evaluations δz such that z has a unique representing
measure, so that z ∈ T.

The Shilov ideal can be obtained as the intersection of the kernels of the boundary
representations, and so it is the ideal of functions vanishing on T. The C*-envelope
is the quotient of C(D) by this ideal, thus it is C(T), as we noted before.

Note that to find the boundary representations of the disc algebra we did not
need to invoke the machinery of maximal dilations. In the commutative case, the
existence of sufficiently many boundary representations is no mystery: all of them
are obtained as extensions of evaluation at a boundary point. The machinery of max-
imal dilations allows us to find the boundary representations in the noncommutative
case, where there are no function theoretic tools at our disposal.

8 Dilations of Completely Positive Semigroups

The dilation theory of semigroups of completely positive maps can be considered
as a kind of “quantization” of classical isometric dilation theory of contractions on
a Hilbert space. The original motivation comes from mathematical physics [49, 60].
The theory is also very interesting and appealing in itself, having connections and
analogies (and also surprising differences) with classical dilation theory. Studying
dilations of CP-semigroups has led to the discovery of results and some structures
that are interesting in themselves.

In this section, I will only briefly review some results in dilation theory of CP-
semigroups from the last two decades, of the kind that I am interested in. There are
formidable subtleties and technicalities that I will either ignore, or only gently hint
at. For a comprehensive and up-to-date account, including many references (also
to other kinds of dilations), see [149]. All of the facts that we state without proof
or reference below have either a proof or a reference in [149]. The reader is also
referred to the monographs [14] and [111] for different takes on quantum dynamics
and quantum probability.
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8.1 CP-Semigroups, E-Semigroups and Dilations

Let S be a commutative monoid. By a CP-semigroup we mean family � =
{�s}s∈S of contractive CP-maps on a unital C*-algebra B such that

1. �0 = idB,
2. �s ◦�t = �s+t for all s, t ∈ S.

If S carries some topology, then we usually require s �→ �s to be continuous
in some sense. A CP-semigroup � is said to be a Markov semigroup (or a
CP0-semigroup) if every �s is a unital map. A CP-semigroup � is called an E-
semigroup if every element �s is a ∗-endomorphism. Finally, an E0-semigroup is
a Markov semigroup which is also an E-semigroup.

One-parameter semigroups of ∗-automorphisms model the time evolution in a
closed (or a reversible) quantum mechanical system, and one-parameter Markov
semigroups model the time evolution in an open (or irreversible) quantum mechan-
ical system [49].

The prototypical example of a CP-semigroup is given by

�s(b) = TsbT
∗
s , b ∈ B (8.1)

where T = {Ts}s∈S is a semigroup of contractions in B. We call such a semigroup
elementary. Of course, not all CP-semigroups are elementary.

For us, a dilation of a CP-semigroup is a triplet (A, α, p), where A is a C*-
algebra, p ∈ A is a projection such that B = pAp, and α = {αs}s∈S is an E-
semigroup on A, such that

�s(b) = pαs(b)p

for all b ∈ B and s ∈ S. A strong dilation is a dilation in which the stronger
condition

�s(pap) = pαs(a)p

holds for all a ∈ A and s ∈ S. It is a fact, not hard to show, that if � is a Markov
semigroup then every dilation is strong. Examples show that this is not true for
general CP-semigroups. Sometimes, to lighten the terminology a bit, we just say
that α is a (strong) dilation.

Remark 8.1 It is worth pausing to emphasize that the dilation defined above is
entirely different from Stinespring’s dilation: the Stinespring dilations of �s and �s ′
cannot be composed. The reader should also be aware that there are other notions
of dilations, for example in which the “small” algebra B is embedded as a unital
subalgebra of the “large” algebra A (see, e.g., [67] or [167] and the references
therein), or where additional restrictions are imposed (see, e.g. [91], and the papers
that cite it).
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The most important is the one-parameter case, where S = N or R+. The
following result was proved first by Bhat in the case B = B(H) [24] (slightly later
SeLegue gave a different proof in the case B = B(H) [140]), then it was proved by
Bhat and Skeide for general unital C*-algebras [28], and then by Muhly and Solel
in the case of unital semigroups on von Neumann algebras [102] (slightly later this
case was also proved by Arveson [14, Chapter 8]).

Theorem 8.2 Every CP-semigroup � = {�s}s∈S on B over S = N or S = R+
has a strong dilation (A, α, p).

Moreover, if � is unital then α can be chosen unital; if B is a von Neumann
algebra and � is normal, then A can be taken to be a von Neumann algebra and α

normal; and if further S = R+ and � is point weak-∗ continuous, in the sense that
t �→ ρ(�t(b)) is continuous for all ρ ∈ B∗, then α can also be chosen to be point
weak-∗ continuous.

Proof Let us illustrate the proof for the case whereB = B(H), S = N, θ is a normal
contractive CP map on B(H), and �n = θn for all n. Then it is well known that θ
must have the form θ(b) = ∑

i TibT
∗
i for a row contraction T = (Ti) (see, e.g.,

[89, Theorem 1]). By Theorem 6.2, T has a row isometric coextension V = (Vi) on
a Hilbert space K. Letting A = B(K), p = PH and

α(a) =
∑

i

ViaV
∗
i

we obtain a strong dilation (as the reader will easily verify). �
The above proof suggests that there might be strong connections between

operator dilation theory and the dilation theory of CP-semigroups. This is true,
but there are some subtleties. Consider an elementary CP-semigroup (8.1) acting
on B = B(H), where T is a semigroup of contractions on H. If V = {Vs}s∈S
is an isometric dilation of T , then α(a) = VsaV

∗
s is a dilation of �. If V is a

coextension, then α is a strong dilation. Thus, we know that we can find (strong)
dilations for elementary semigroups when the semigroup is such that isometric
dilations (coextensions) exist for every contractive semigroup; for example, when
S = N, N2, R+, R2+. Moreover, we expect that we won’t always be able to dilate
CP-semigroups over monoids for which isometric dilations don’t always exist (for
example S = N

3). This analogy based intuition is almost correct, and usually
helpful.

Remark 8.3 As in classical dilation theory, there is also a notion of minimal dila-
tion. However, it turns out that there are several reasonable notions of minimality.
In the setting of normal continuous semigroups on von Neumann algebras, the most
natural notions of minimality turn out to be equivalent in the one-parameter case,
but in the multi-parameter case they are not equivalent. See [14, Chapter 8] and
[149, Section 21] for more on this subject.
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Theorem 8.2 has the following interesting interpretation. A one-parameter CP-
semigroup models the time evolution in an open quantum dynamical system, and
a one-parameter automorphism semigroup models time evolution in a closed one.
In many cases, E-semigroups can be extended to automorphism semigroups, and
so Theorem 8.2 can be interpreted as saying that every open quantum dynamical
system can be embedded in a closed (reversible) one (this interpretation was the
theoretical motivation for the first dilation theorems, see [49, 60]).

8.2 Main Approaches and Results

There are two general approaches by which strong dilations of CP-semigroups can
be constructed.

The Muhly–Solel Approach One approach, due to Muhly and Solel [102], seeks
to represent a CP-semigroup in a form similar to (8.1), and then to import ideas
from classical dilation theory. To give little more detail, if � = {�s}s∈S is a
CP-semigroup on a von Neumann algebra B ⊆ B(H), then one tries to find a
product system EE = {Es}s∈S of B′-correspondences over S (see Sect. 6.5) and
a completely contractive covariant representation T = {Ts}s∈S such that

�s(b) = T̃s(idEs E b)T̃ ∗
s (8.2)

for every s ∈ S and b ∈ B. Here, T̃s : EsEH → H is given by T̃s(xEh) = Ts(x)h.
This form is reminiscent of (8.1), and it is begging to try to dilate � by constructing
an isometric dilation V for T , and then defining

αs(a) = Ṽs(idEs E a)Ṽ ∗
s

for a ∈ A := V0(B′)′. This is a direct generalization of the apporach to
dilating elementary semigroups discussed in the paragraph following the proof of
Theorem 8.2, and in fact it also generalizes the proof we gave for that theorem. This
approach was used successfully to construct and analyze dilations in the discrete
and continuous one-parameter cases (Muhly and Solel, [102, 104]), in the discrete
two-parameter case (Solel, [157]; this case was solved earlier by Bhat for B = B(H)

[25]), and in the “strongly commuting” two-parameter case (Shalit, [141, 142, 144]).

However, it turns out that finding a product system and representation giving
back � as in (8.2) is not always possible, and one needs a new notion to proceed.
A subproduct system is a family E� = {Es}s∈S of C*-correspondences such that,
roughly, Es+t ⊆ Es E Et (up to certain identifications that iterate associatively).
Following earlier works [14, 102], it was shown that for every CP-semigroup
there is a subproduct system and a representation, called the Arveson–Stinespring
subproduct system and representation, satisfying (8.2) (Shalit and Solel, [150]).
Subproduct systems have appeared implicitly in the theory in several places, and in
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[150] they were finally formally introduced (at the same time, subproduct systems
of Hilbert spaces were introduced in Bhat and Mukherjee’s paper [27]).

The approach to dilations introduced in [150] consists of two parts: first, embed
the Arveson–Stinespring subproduct system associated with a CP-semigroup into
a product system, and then dilate the representation to an isometric dilation. This
approach was used to find necessary and sufficient conditions for the existence of
dilations. In particular, it was used to prove that a Markov semigroup has a (certain
kind of) minimal dilation if and only if the Arveson–Stinespring subproduct system
can be embedded into a product system. Moreover, the framework was used to show
that there exist CP-semigroups over N3 that have no minimal strong dilations, as
was suggested from experience with classical dilation theory. Vernik later used these
methods to prove an analogue of Opela’s theorem (see 3.3) for completely positive
maps commuting according to a graph [166].

The reader is referred to [150] for more details. The main drawback of that
approach is that it works only for CP-semigroups of normal maps on von Neumann
algebras.

The Bhat–Skeide Approach The second main approach to dilations of CP-
semigroups is due to Bhat and Skeide [28]. It has several advantages, one of
which is that it works for semigroups on unital C*-algebras (rather than von
Neumann algebras). The Bhat–Skeide approach is based on a fundamental and
useful representation theorem for CP maps called Paschke’s GNS representation
[112], which I will now describe.

For every CP map φ : A → B between two unital C*-algebras, there exists a
C*-correspondence E from A to B (see Sect. 6.5) and a vector ξ ∈ E such that
φ(a) = 〈ξ, aξ〉 for all a ∈ A. The existence of such a representation follows from
a construction: one defines E to be the completion of the algebraic tensor product
A⊗ B with respect to the B-valued inner product

〈a ⊗ b, a′ ⊗ b′〉 = b∗φ(a∗a′)b′,

equipped with the natural left and right actions. Letting ξ = 1A⊗1B, it is immediate
that φ(a) = 〈ξ, aξ〉 for all a ∈ A. Moreover, ξ is cyclic, in the sense that it
generates E as a C*-correspondence. The pair (E, ξ) is referred to as the GNS
representation of φ. The GNS representation is unique in the sense that whenever
F is a C*-correspondence from A to B and η ∈ F is a cyclic vector such that
φ(a) = 〈η, aη〉 for all a ∈ A, then there is an isomorphism of C*-correspondences
from E onto F that maps ξ to η.

In the Bhat–Skeide approach to dilations, the idea is to find a product system
FE = {Fs}s∈S of B-correspondences and a unit, i.e., a family ξE = {ξs ∈ Fs}s∈S
satisfying ξs+t = ξs E ξt , such that � is recovered as

�s(b) = 〈ξs, bξs〉 (8.3)
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for all s ∈ S and all b ∈ B. If � is a Markov semigroup, the dilation is obtained via
a direct limit construction. For non Markov semigroups, a dilation can be obtained
via a unitalization procedure. In [28], dilations were constructed this way in the
continuous and discrete one-parameter cases. This strategy bypasses product system
representations, but, interestingly, it can also be used to prove the existence of an
isometric dilation for any completely contractive covariant representation of a one-
parameter product system [155].

Again, it turns out that constructing such a product system is not always possible.
However, if one lets (Fs, ξs) be the GNS representation of the CP map �s , then it
is not hard to see that F� = {Fs}s∈S is a subproduct system (called the GNS
subproduct system) and ξE = {ξs} is a unit.

The above observation was used by Shalit and Skeide to study the existence
of dilations of CP-semigroups in a very general setting [149]. If one can embed
the GNS subproduct system into a product system, then one has (8.3), and can
invoke the Bhat–Skeide approach to obtain a dilation. The paper [149] develops
this framework to give a unified treatment of dilation theory of CP-semigroups over
a large class of monoids S, including noncommutative ones. One of the main results
in [149], is the following, which generalizes a result obtained earlier in [150].

Theorem 8.4 A Markov semigroup over an Ore monoid admits a full strict dilation
if and only if its GNS subproduct system embeds into a product system.

This theorem essentially enables to recover almost all the other known dilation
theorems and counter examples. It is used in [149] to show that every Markov
semigroup over S = N

2 on a von Neumann algebra has a unital dilation, and also
that for certain multi-parameter semigroups (the so called quantized convolution
semigroups) there is always a dilation. The theorem is also used in the converse
direction, to construct a large class of examples that have no dilation whatsoever.

In the setting of normal semigroups on von Neumann algebras, the Bhat–Skeide
and Muhly–Solel approaches to dilations are connected to each other by a functor
called commutant; see [149, Appendix A(iv)] for details.

New Phenomena We noted above some similarities between the theory of isomet-
ric dilations of contractions, and the dilation theory of CP-semigroups. In particular,
in both theories, there always exists a dilation when the semigroup is parameterized
by S = N, N2, R+, and the results support the possibility that this is true for S = R

2+
as well. Moreover, in both settings, there exist semigroups over S = N

3 for which
there is no dilation.

But there are also some surprises. By Corollary 3.8, if a tuple of commuting
contractions T = (T1, . . . , Td) satisfies

∑d
i=1 ‖Ti‖2 ≤ 1, then T has a regular

unitary dilation. Therefore, one might think that if a commuting d-tuple of CP maps
�1, . . . ,�d are such that

∑d
i=1 ‖�i‖ is sufficiently small, then this tuple has a

dilation. This is false, at least in a certain sense (that is, if one requires a strong and
minimal dilation); see [150, Section 5.3].

Moreover, by Corollary 3.8, a tuple of commuting isometries always has a unitary
dilation, and it follows that every tuple of commuting coisometries has an isometric
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(in fact, unitary) coextension. In (8.1) coisometries correspond to unital maps.
Hence, one might expect that commuting unital CP maps always have dilations.
Again, this is false [149, Section 18] (see also [148]). The reason for the failure
of these expectations is that not every subproduct system over Nd (when d ≥ 3)
can be embedded into a product system (in fact, there are subproduct systems that
cannot even be embedded in a superproduct system). However, the product system
of an elementary CP-semigroup is a trivial product system, so the obstruction to
embeddability does not arise in that case.

8.3 Applications of Dilations of CP-Semigroups

Besides the interesting interpretation of dilations given at the end of Sect. 8.1,
dilations have some deep applications in noncommutative dynamics. In this section,
we will use the term CP-semigroup to mean a one-parameter semigroup � =
{�s}s∈S (where S = N or S = R+) of normal CP maps acting on a von Neumann
algebra B. In case of continuous time (i.e., S = R+), we will also assume that �
is point weak-∗ continuous, in the sense that t �→ ρ(�t(b)) is continuous for every
ρ ∈ B∗. We will use the same convention for E- or E0-semigroups.

The Noncommutative Poisson Boundary Let � be a normal UCP map on a von
Neumann algebra B. Then one can show that the fixed point set {b ∈ B : �(b) = b}
is an operator system, and moreover that it is the image of a completely positive
projection E : B → B. Hence, the Choi-Effros product x ◦ y = E(xy) turns the
fixed point set into a von Neumann algebra H∞(B,�), called the noncommutative
Poisson boundary of �. The projection E and the concrete structure on H∞(B,�)

are hard to get a grip with.

Arveson observed that if (A, α, p) is the minimal dilation of �, and if Aα is the
fixed point algebra of α, then the compression a �→ pap is a unital, completely
positive order isomorphism between Aα and H∞(B,�). Hence Aα is a concrete
realization of the noncommutative Poisson boundary. See the survey [81] for details
(it has been observed that this result holds true also for dilations of abelian CP-
semigroups [129]).

Continuity of CP-Semigroups Recall that one-parameter CP-semigroups on a von
Neumann algebra B ⊆ B(H) are assumed to be point weak-∗ continuous. Since
CP-semigroups are bounded, this condition is equivalent to point weak-operator
continuity, i.e., that t �→ 〈�t(b)g, h〉 is continuous for all b ∈ B and all g, h ∈ H.
Another natural kind of continuity to consider is point strong-operator continuity,
which means that t �→ �t(b)h is continuous in norm for all b ∈ B and h ∈ H.
For brevity, below we shall say a semigroup is weakly continuous if it is point
weak-operator continuous, and strongly continuous if it is point strong-operator
continuous.
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Strong continuity is in some ways easier to work with and hence it is desirable,
but it is natural to use the weak-∗ topology, because it is independent of the
representation of the von Neumann algebra. Happily, it turns out that weak (and
hence point weak-∗) continuity implies strong continuity.

One possible approach to prove the above statement is via dilation theory. First,
one notices that the implication is easy for E-semigroups. Indeed, if α is an E-
semigroup on A ⊆ B(K), then

‖αt (a)k − αs(a)k‖2 = 〈αt (a
∗a)k, k〉 + 〈αs(a

∗a)k, k〉 − 2 Re〈αt (a)k, αs(a)k〉.

Assuming that s tends to t , the expression on the right hand side tends to zero if
α is weakly continuous. Now, if � is a weakly continuous CP-semigroup, then its
dilation α given by Theorem 8.2 is also weakly continuous. By the above argument,
α is strongly continuous, and this continuity is obviously inherited by �t(·) =
pαt (·)p. Hence, by dilation theory, weak continuity implies strong continuity.

The above argument is a half cheat, because, for a long time, the known proofs
that started from assuming weak continuity and ended with a weakly continuous
dilation, actually assumed implicitly, somewhere along the way, that CP-semigroups
are strongly continuous [14, 28, 102]. This gap was pointed out and fixed by
Markiewicz and Shalit [98], who proved directly that a weakly continuous CP-
semigroup is strongly continuous. Later, Skeide proved that the minimal dilation of a
weakly continuous semigroup of CP maps is strongly continuous, independently of
[98], thereby recovering the result “weakly continuous⇒ strongly continuous” with
a proof that truly goes through the construction of a dilation; see [156, Appendix
A.2].

Existence of E0-Semigroups As we have seen above, dilations can be used to
study CP-semigroups. We will now see an example, where dilations are used in
the theory of E0-semigroups.

The fundamental classification theory E0-semigroups on B = B(H) was
developed Arveson, Powers, and others about two decades ago; see the monograph
[14] for the theory, and in particular for the results stated below (the classification
theory of E0-semigroups on arbitrary C* or von Neumann algebras is due to Skeide;
see [156]). For such E0-semigroups there exists a crude grouping into type I, type
II, and type III semigroups. However, it is not at all obvious that there exist any E0-
semigroups of every type. Given a semigroup of isometries on a Hilbert space H ,
one may use second quantization to construct E0-semigroups on the symmetric and
anti-symmetric Fock spaces over H , called the CCR and CAR flows, respectively.
CAR and CCR flows are classified in term of their index. These E0-semigroups are
of type I, and, conversely, every type I E0-semigroup is cocycle conjugate to a CCR
flow, which is, in turn, conjugate to a CAR flow.

It is much more difficult to construct an E0-semigroup that is not type I. How does
one construct a non-trivial E0-semigroup? Theorem 8.2 provides a possible way:
construct a Markov semigroup, and then take its minimal dilation. This procedure
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has been applied successfully to provide examples of non type I E0-semigroups,
even with prescribed index; see [14, 81].

Part 3: Recent Results in the Dilation Theory
of Noncommuting Operators

9 Matrix Convexity and Dilations

In recent years, dilation theory has found a new role in operator theory, through
the framework of matrix convexity. In this section I will quickly introduce matrix
convex sets in general, special examples, minimal and maximal matrix convex over
a given convex set, and the connection to dilation theory. Then I will survey the
connection to the UCP interpolation problem, some dilation results, and finally an
application to spectrahedral inclusion problems.

9.1 Matrix Convex Sets

Fix d ∈ N. The “noncommutative universe” M
d is the set of all d-tuples of n × n

matrices, of all sizes n, that is,

M
d =

∞⊔

n=1

Md
n .

Sometimes it is useful to restrict attention to the subset M
d
sa, which consists

of all tuples of selfadjoint matrices. We will refer to a subset S ⊆ M
d as a

noncommutative (nc) set, and we will denote by Sn or S(n) the nth level of S,
by which we mean Sn = S(n) := S ∩Md

n . Let us endow tuples with the row norm
‖A‖ := ‖∑i AiA

∗
i ‖; this induces a metric on B(H)d for every d , and in particular

on Md
n for every n. We will say that a nc set S is closed if Sn is closed in Md

n for all
n. We will say that S is bounded if there exists some C > 0 such that ‖X‖ ≤ C for
all X ∈ S.

For a tuple X = (X1, . . . , Xn) ∈ Md
n and a linear map φ : Mn → Mk , we write

φ(X) = (φ(X1), . . . , φ(Xd)) ∈ Md
k . In particular, if A and B are n × k matrices,

then we write A∗XB = (A∗X1B, . . . , A∗XdB). Another operation that we can
preform on tuples is the direct sum, that is, if X ∈ Md

m and Y ∈ Md
n , then we let

X ⊕ Y = (X1 ⊕ Y1, . . . , Xd ⊕ Yd) ∈ Md
m+n.
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A matrix convex set S is a nc set S = 
∞n=1Sn which is invariant under direct
sums and the application of UCP maps:

X ∈ Sm, Y ∈ Sn 7⇒ X ⊕ Y ∈ Sm+n

and

X ∈ Sn and φ ∈ UCP(Mn,Mk) 7⇒ φ(X) ∈ Sk.

It is not hard to check that a nc set S ⊆ M
d is matrix convex if and only if it

is closed under matrix convex combinations in the following sense: whenever
X(j) ∈ Snj and Vj ∈ Mnj ,n for j = 1, . . . , k are such that

∑k
j=1 V

∗
j Vj = In,

then
∑

V ∗
j X

(j)Vj ∈ Sn.

Remark 9.1 The above notion of matrix convexity is due to Effros and Winkler [57].
Other variants appeared before and after. A very general take on matrix convexity
that I will not discuss here has recently been initiated by Davidson and Kennedy
[43]. I will follow a more pedestrian point of view, in the spirit of [47] (note: the
arxiv version [47] is a corrected version of the published version [46]. The latter
contains several incorrect statements in Section 6, which result from a missing
hypothesis; the problem and its solution are explained in [47]). We refer to the
first four chapters of [47] for explanations and/or references to the some of the
facts that will be mentioned below without proof. The papers [61, 113, 115] make a
connection between the geometry of matrix convex sets, in particular various kinds
of extreme points, and dilation theory. For a comprehensive and up-to-date account
of matrix convex sets the reader can consult [90].

Example 9.2 Let A ∈ B(H)d . The matrix range of A is the nc set W(A) =

∞n=1Wn(A) given by

Wn(A) = {φ(A) : φ : B(H) → Mn is UCP} .

The matrix range is a closed and bounded matrix convex set. Conversely, every
closed and bounded matrix convex set is the matrix range of some operator tuple.

If d = 1, then the first level W1(A) of the matrix range of an operatorA coincides
with the closure of the numerical range W(A)

W(A) = {〈Ah, h〉 : ‖h‖ = 1} .

We note, however, that for d ≥ 2, the first level W1(A) does not, in general, coincide
with the closure of what is sometimes referred to as the joint numerical range of a
tuple [96].

Matrix ranges of single operators were introduced by Arveson [11], and have
been picked up again rather recently. The matrix range of an operator tuple A

is a complete invariant of the operator system generated by A, and—as we shall
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see below—it is useful when considering interpolation problems for UCP maps.
Moreover, in the case of a fully compressed tuple A of compact operators or normal
operators, the matrix range determines A up to unitary equivalence [115]. The
importance of matrix ranges has led to the investigation of random matrix ranges,
see [70].

Example 9.3 Let A ∈ B(H)d . The free spectrahedron determined by A is the nc
set DA = 
∞n=1DA(n) given by

DA(n) =
⎧
⎨

⎩
X ∈ Md

n : Re
d∑

j=1

Xj ⊗ Aj ≤ I

⎫
⎬

⎭
.

A free spectrahedron is always a closed matrix convex set, that contains the origin
in its interior. Conversely, every closed matrix convex set with 0 in its interior is a
free spectrahedron. In some contexts it is more natural to work with just selfadjoint
matrices. For A ∈ B(H)dsa one defines

Dsa
A =

⎧
⎨

⎩
X ∈M

d
sa :

d∑

j=1

Xj ⊗ Aj ≤ I

⎫
⎬

⎭
.

The first level DA(1) is called a spectrahedron. Most authors use the word
spectrahedron to describe only sets of the form DA(1) where A is a tuple of
matrices; and likewise for the term free spectrahedron. This distinction is important
for applications of the theory, since spectrahedra determined by tuples of matrices
form a class of reasonably tractable convex sets that arise in applications, and not
every convex set with 0 in its interior can be represented as DA(1) for a tuple A

acting on a finite dimensional space.
For a matrix convex set S ⊆ M

d we define its polar dual to be

S◦ =
{
X ∈M

d : Re
(∑

Xj ⊗ Aj

)
≤ I for all A ∈ S

}
.

If S ⊆ M
d
sa, then it is more convenient to use the following variant

S• =
{
X ∈M

d
sa :

∑
Xj ⊗ Aj ≤ I for all A ∈ S

}
.

By the Effros–Winkler Hahn–Banach type separation theorem [57], S◦◦ = S
whenever S is a matrix convex set containing 0 (if 0 /∈ S, then S◦◦ is equal to
the matrix convex hull of S and 0). It is not hard to see that DA = W(A)◦, and that
when 0 ∈W(A), we also have W(A) = D◦

A.

Example 9.4 Another natural and important way in which matrix convex sets arise,
is as positivity cones in operator systems. In [65] it was observed that a finite
dimensional abstract operator system M (see [118, Chapter 13]) generated by d
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linearly independent elements A1, . . . , Ad ∈ M, corresponds to a matrix convex
set C ⊆ M

d
sa where every Cn is the cone in (Md

n )sa consisting of the matrix tuples
X = (X1, . . . , Xd) such that

∑
Xj⊗Aj is positive in Mn(M). Such matrix convex

sets can be described by a slight modification of the notion of free spectrahedron:

C =
{
X ∈ M

d
sa :

∑
Xj ⊗ Aj ≥ 0

}
.

9.2 The UCP Interpolation Problem

Suppose we are given two d-tuples of operators A = (A1, . . . , Ad) ∈ B(H)d and
B = (B1, . . . , Bd ) ∈ B(K)d . A very natural question to ask is whether there exists
a completely positive map φ : B(H) → B(K) such that φ(Ai) = Bi . This is the CP
interpolation problem. In the realm of operator algebras it is sometimes more useful
to ask about the existence of a UCP map that interpolates between the operators,
and in quantum information theory it makes sense to ask whether there exists a
completely positive trace preserving (CPTP) interpolating map. A model result is
the following.

Theorem 9.5 Let A ∈ B(H)d and B ∈ B(K)d be d-tuples of operators.

1. There exists a UCP map φ : B(H) → B(K) such that φ(Ai) = Bi for all
i = 1, . . . , d if and only if W(B) ⊆ W(A).

2. There exists a unital completely isometric map φ : B(H) → B(K) such that
φ(Ai) = Bi for all i = 1, . . . , d if and only if W(B) = W(A).

This result was obtained by Davidson, Dor-On, Shalit and Solel in [47, Theorem
5.1]. An earlier result was obtained by Helton, Klep and McCullough in the case
where H and K are finite dimensional, and the condition W(B) ⊆ W(A) is
replaced by the dual condition DA ⊆ DB , under the blanket assumption that DA

is bounded [74] (see a somewhat different approach in [7]). Later, Zalar showed that
the condition DA ⊆ DB is equivalent to the existence of an interpolating UCP map
without the assumption that DA is bounded, and also in the case of operators on an
infinite dimensional space [171]. Variants of the above theorem were of interest to
mathematical physicists for some time, see the references in the above papers.

From Theorem 9.5 one can deduce also necessary and sufficient conditions
for the existence of contractive CP (CCP) or completely contractive (CC) maps
sending one family of operators to another, as well as approximate versions (see [47,
Section 5]). The theorem also leads to more effective conditions under additional
assumptions, for example when dealing with normal tuples (recall, that A =
(A1, . . . , Ad) is said to be normal if Ai is normal and AiAj = AjAi for all i, j ).

Corollary 9.6 Let A ∈ B(H)d and B ∈ B(K)d be two normal d-tuples of
operators. Then there exists a UCP map φ : B(H) → B(K) such that

φ(Ai) = Bi , for all i = 1, . . . , d,
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if and only if

σ(B) ⊆ convσ(A).

This result was first obtained by Li and Poon [97], in the special case where A

and B each consist of commuting selfadjoint matrices. It was later recovered in [47],
in the above generality, as a consequence of Theorem 9.6 together with the fact that
for a normal tuple N , the matrix range W(N) is the minimal matrix convex set that
contains the joint spectrum σ(N) in its first level (see [47, Corollary 4.4]). The next
section is dedicated to explaining what are the minimal and maximal matrix convex
sets over a convex set, and how these notions are related to dilation theory.

9.3 Minimal and Maximal Matrix Convex Sets

Every level Sn of a matrix convex set S is a convex subset of Md
n . In particular,

the first level S1 is a convex subset of Cd . Conversely, given a convex set K ⊆ C
d

(or K ⊆ R
d ), we may ask whether there exists a matrix convex set S ⊆ M

d (or
S ⊆ M

d
sa) such that S1 = K . The next question to ask is, to what extent does the

first level S1 = K determine the matrix convex set S?
In order to approach the above questions, and also as part of a general effort

to understand inclusions between matrix convex sets (motivated by results as
Theorem 9.5), notions of minimal and maximal matrix convex sets have been
introduced by various authors [46, 65, 75]. These are very closely related (via
Example 9.4) to the notion of minimal and maximal operator systems that was
introduced earlier [120].

For brevity, we shall work in the selfadjoint setting. Let K ⊆ R
d be a convex set.

By the Hahn–Banach theorem, K can be expressed as the intersection of a family
of half spaces:

K = {x ∈ R
d : fi(x) ≤ ci for all i ∈ I}

where {fi}i∈I is a family of linear functionals and {ci}i∈I is a family of scalars.
Writing fi(x) =∑

j a
i
j xj , we define

Wmax
n (K) = {X ∈ (Md

n )sa :
∑

j

ai
jXj ≤ ciIn for all i ∈ I}

and Wmax(K) = 
∞n=1Wmax
n (K). In other words, Wmax(K) is the nc set determined

by the linear inequalities that determine K . It is clear that Wmax(K) is matrix
convex, and a moment’s thought reveals that it contains every matrix convex set
that has K as its first level.
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That settles the question, of whether or not there exists a matrix convex set with
first level equal to K . It follows, that there has to exist a minimal matrix convex set
that has K as its first level—simply intersect over all such matrix convex sets. There
is a useful description of this minimal matrix convex set. We define

Wmin(K) =
{
X ∈ M

d
sa : ∃ normal T with σ(T ) ⊆ K s.t. X ≺ T

}
. (9.1)

Recall that X ≺ T means that T is a dilation of X.
Wmin(K) is clearly invariant under direct sums. To see that it is invariant also

under the application of UCP maps, one may use Stinespring’s theorem as follows.
If X ≺ T , T is normal, and φ is UCP, then the map T �→ X �→ φ(X) is UCP.
By Stinespring’s theorem there is a ∗-representation π such that φ(X) ≺ π(T ),
and π(T ) is a normal tuple with σ(π(T )) ⊆ σ(T ) (alternatively, one may use the
dilation guaranteed by Theorem 8.2).

We see that the set defined in (9.1) is matrix convex. On the other hand, any
matrix convex set containing K in the first level must contain all unitary conjugates
of tuples formed from direct sums of points in K , as well as their compressions,
therefore the minimal matrix convex set over K contains all X that have a normal
dilation T acting on a finite dimensional space such that σ(T ) ⊆ K . But for X ∈
M

d
sa, the existence of a normal dilation X ≺ T with σ(T ) ⊆ K implies the existence

of a normal dilation acting on a finite dimensional space (see [46, Theorem 7.1]),
thus the nc set Wmin(K) that we defined above is indeed the minimal matrix convex
set over K .

Example 9.7 Let D be the closed unit disc in C. Let us compute Wmin(D) and
Wmax(D). We can consider D as a subset of R2, and pass to the selfadjoint setting
(and back) by identifying T = Re T + i ImT ∈ M

1 with the selfadjoint tuple
(Re T , ImR) ∈M

2
sa. The minimal matrix convex set is just

Wmin(D) = {X ∈M
1 : ‖X‖ ≤ 1},

because by Theorem 2.1, every contraction has a unitary dilation. Since the set of
real linear inequalities determining the disc is

D = {z ∈ C : Re
(
eiθz

)
≤ 1 for all θ ∈ R},

it follows that

Wmax(D) = {X : Re
(
eiθX

)
≤ I for all θ ∈ R},

which equals the set of all matrices with numerical range contained in the disc.
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Given a convex set K ⊆ C
d , Passer, Shalit and Solel introduced a constant θ(K)

that quantifies the difference between the minimal and maximal matrix convex sets
over K [116, Section 3]. For two convex sets K,L, we define

θ(K,L) = inf{C : Wmax(K) ⊆ CWmin(L)},

and θ(K) = θ(K,K). Note that CWmin(L) = Wmin(CL).

Remark 9.8 In the theory of operator spaces, there are the notions of minimal and
maximal operator spaces over a normed space V , and there is a constant α(V )

that quantifies the difference between the minimal and maximal operator space
structures [117] (see also [118, Chapter 14] and [122, Chapter 3]). These notions
are analogous to the above notions of minimal and maximal matrix convex sets, but
one should not confuse them.

By the characterization of the minimal and maximal matrix convex sets, the
inclusion Wmax(K) ⊆ Wmin(L) is a very general kind of dilation result: it means
that every d-tuple X satisfying the linear inequalities defining K , has a normal
dilation X ≺ N such that σ(N) ⊆ L. Let us now review a few results obtained
regarding this dilation problem.

Theorem 9.9 (Theorem 6.9, [116]) For p ∈ [1,∞], let Bp,d denote the unit ball
in R

d with respect to the �p norm, and let Bp,d(C) denote the unit ball in C
d with

respect to the �p norm. Then

θ(Bp,d) = d1−|1/2−1/p|

and

θ(Bp,d(C)) = 2d1−|1/2−1/p|.

See [116] for many other (sharp) inclusionsWmax(K) ⊆ Wmin(L). Interestingly,
the fact that θ(B1,d) = √

d has implications in quantum information theory—it
allows to find a quantitative measure of how much noise one needs to add to a d-
tuple of quantum effects to guarantee that they become jointly measurable; see [30].

The case d = 2 in the above theorem was first obtained in [76, Section 14] and
[47, Section 7] using other methods. It also follows from the following result.

Theorem 9.10 (Theorem 5.8, [65]) Let K ⊆ R
d be a symmetric convex set, i.e.

K = −K . Then

Wmax(K) ⊆ dWmin(K).

The above result was originally proved by Fritz, Netzer and Thom [65] for cones
with a symmetric base; to pass between the language of convex bodies and that of
cones, one may use the gadget developed in [116, Section 7]. In [116, Theorem 4.5]
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it was observed that Theorem 9.10 is also a consequence of the methods of [47,
Section 7] together with some classical results in convex geometry.

Already in [57, Lemma 3.1] it was observed that there is only one matrix convex
S with S1 = [a, b] ⊂ R, namely the matrix interval given by Sn = {X ∈ (Mn)sa :
aIn ≤ X ≤ bIn}. Said differently, Wmax([a, b]) = Wmin([a, b]). It is natural to ask
whether there exists any other convex body (i.e., a compact convex set) K with the
property that Wmin(K) = Wmax(K).

Theorem 9.11 Let K ⊆ R
d be a convex body. Then Wmax(K) = Wmin(K) if and

only if K is a simplex, that is, if K is the convex hull of a set of affinely independent
points. In fact, Wmax

2 (K) = Wmin
2 (K) already implies that K is a simplex.

The result that the equality Wmax(K) = Wmin(K) is equivalent to K being
a simplex was first obtained by Fritz, Netzer and Thom [65, Corollary 5.3] for
polyhedral cones. In [116, Theorem 4.1] it was proved for general convex bodies,
and it was also shown that one does not need to check equality Wmax

n (K) =
Wmin

n (K) for all n in order to deduce that K is a simplex—it suffices to check
this for some n ≥ 2d−1. For simplex pointed convex bodies, it was shown that
Wmax

2 (K) = Wmin
2 (K) already implies that K is a simplex [116, Theorem 8.8].

Huber and Netzer later obtained this for all polyhedral cones [80], and finally
Aubrun, Lami, Palazuelos and Plavala proved the result for all cones [16, Corollary
2].

Remark 9.12 The minimal matrix convex set over a “commutative” convex set
K ⊆ R

d can be considered as the matrix convex hull of K . There are some variations
on this theme. Helton, Klep and McCullough studied the matrix convex hull of free
semialgebraic sets [75]. Instead of Wmin(K) and Wmax(K), which are the minimal
and maximal matrix convex sets with prescribed first level, one can also discuss the
minimal and maximal matrix convex sets with a prescribed kth level (see [90], or
[169, 170] for the version of this notion in the framework of operator systems).
In the recent paper [114], Passer and Paulsen define, given a matrix convex set
S, the minimal and maximal matrix convex sets Wmin-k(S) and Wmax-k(S) such
that Wmin-k

k (S) = Wmax-k
k (S) = Sk , and they utilize quantitative measures of

discrepancy between Wmin-k(S), Wmax-k(S) and S to glean information on the
operator system corresponding to S; unfortunately, these results are beyond the
scope of this survey. The paper [114] also ties together some of the earlier work
in this direction, so it is a good place to start if one is interested in this problem.

9.4 Further Dilation Results

There are many other interesting dilation results in [46, 50, 65, 76, 113, 116]. In this
section I will review a few more.
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Problem 9.13 Fix d ∈ N. What is the smallest constant Cd such that for every
d-tuple of contractions A, there exists a d-tuple of commuting normal operators B,
such that A ≺ B holds with ‖Bi‖ ≤ Cd for all i?

First, we note that the sharp dilation constant θ(B∞,d ) = √
d obtained in

Theorem 9.10 implies the following result, which is a solution to Problem 9.13
in the selfadjoint setting.

Theorem 9.14 (Theorem 6.7, [116]) For every d-tuple A = (A1, . . . , Ad) of
selfadjoint contractions, there exists a d-tuple of commuting selfadjoints N =
(N1, . . . , Nd) with ‖Ni‖ ≤ √

d for i = 1, . . . , d , such that A ≺ N . Moreover,√
d is the optimal constant for selfadjoints.

It is interesting to note that one of the proofs of the above theorem goes through
a concrete construction of the dilation. The nonselfadjoint version of Problem 9.13
is more difficult, and it does not correspond to an inclusion problem of some Wmax

in some Wmin. The best general result in the nonselfadjoint case is the following
theorem obtained by Passer.

Theorem 9.15 (Theorem 4.4, [113]) For every d-tuple A = (A1, . . . , Ad) of con-
tractions, there exists a d-tuple of commuting normal operators N = (N1, . . . , Nd)

with ‖Ni‖ ≤
√

2d for i = 1, . . . , d , such that A ≺ N .

Thus

√
d ≤ Cd ≤

√
2d.

In the next section we will improve the lower bound in the case d = 2.
Helton, Klep, McCullough and Schweighofer obtained a remarkable result,

which is analogous to Theorem 9.14, but in which the dilation constant is indepen-
dent of the number of operators d [76]. Following Ben-Tal and Nemirovski [21],
Helton et al. defined a constant ϑ(n) as follows:

1

ϑ(n)
= min

{∫

∂Bn

∣
∣
∣
∣
∣

n∑

i=1

aix
2
i

∣
∣
∣
∣
∣
dμ(x) :

n∑

i=1

|ai| = 1

}

where μ is the uniform probability measure on the unit sphere ∂Bn ⊂ R
n.

Theorem 9.16 (Theorem 1.1, [76]) Fix n and a real n-dimensional Hilbert space
H. Let F ⊆ B(H)sa be a family of selfadjoint contractions. Then there exists a real
Hilbert space K, an isometry V : H → K, and a commuting family C in the unit
ball of B(K)sa such that for every contraction A ∈ F , there exists N ∈ C such that

1

ϑ(n)
A = V ∗NV.
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Moreover, ϑ(n) is the smallest constant such that the above holds for all finite sets
of contractive selfadjoints F ⊆ B(H)sa.

Note the difference from Theorem 9.14: the dimension of matrices is fixed at
n×n, but the number of matrices being simultaneously dilated is not fixed. In other
words, the constant ϑ(n) depends only on the size of the matrices being dilated (in
fact, it is shown that n can be replaced with the maximal rank of the matrices being
dilated). It is also shown that

ϑ(n) ∼
√
πn

2
.

In the next subsection I will explain the motivation for obtaining this result.

9.5 An Application: Matricial Relaxation of Spectrahedral
Inclusion Problems

Any dilation result, such as Theorem 9.14 or 9.16, leads to a von Neumann type
inequality. For example, if A is a d-tuple of selfadjoint contractions, then by
Theorem 9.14, for every matrix valued polynomial p of degree at most one, we
have the following inequality:

‖p(A)‖ ≤ sup
{
‖p(z)‖ : z ∈ [−√d,

√
d]d

}
.

This result is by no means trivial, but it is the kind of application of dilation theory
that we have already seen above several times.

We will now see a deep application of Helton, Klep, McCullough and
Schweighofer’s theorem (Theorem 9.16) that is of a different nature from the
applications that we have seen hitherto, and is the main motivation for the
extraordinary paper [76]. The application builds on earlier work of Ben-Tal and
Nemirovski [21] in control theory and optimization, related to what is sometimes
called the matrix cube problem. I will give a brief account; the reader who seeks a
deeper understanding should start with the introductions of [21] and [76].

In the analysis of a linear controlled dynamical system (as in [21]), one is led to
the problem of deciding whether the cube [−1, 1]d is contained in the spectrahedron
Dsa

A (1), for a given a d-tuple of selfadjoint n × n matrices A1, . . . , Ad ; this is
called the matrix cube problem. More generally, given another d-tuple of selfadjoint
matrices B1, . . . , Bd , it is of practical interest to solve the spectrahedral inclusion
problem, that is, to be able to decide whether

Dsa
B (1) ⊆ Dsa

A (1).
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Note that the matrix cube problem is a special case of the spectrahedral inclusion
problem, since [−1, 1]d = Dsa

C (1) for the d-tuple of 2d × 2d diagonal matri-
ces C1 = diag(1,−1, 0, . . . , 0), C2 = diag(0, 0, 1,−1, 0, . . . , 0), . . . , Cd =
(0, . . . , 0, 1,−1). The free spectrahedron Dsa

C determined by C is nothing but the
nc set consisting of all d-tuples of selfadjoint contractions.

The problem of deciding whether one spectrahedron is contained in another is a
hard problem. In fact, deciding whether or not [−1, 1]d ⊆ Dsa

A (1) has been shown
to be NP hard (note that the naive solution of checking whether all the vertices of the
cube are in Dsa

A (1) requires one to test the positive semidefiniteness of 2d matrices).
However, Ben-Tal and Nemirovski introduced a tractable relaxation of this problem
[21]. In [74], Helton, Klep and McCullough showed that the relaxation from [21] is
equivalent to the free relaxation Dsa

C ⊆ Dsa
A , and the subsequent work in [76] gives

a full understanding of this relaxation, including sharp estimates of the error bound.
Let’s take a step back. Fix two d-tuples of selfadjoint matrices A and B. We

mentioned that the problem of determining whether Dsa
B (1) ⊆ Dsa

A (1) is hard. In
[74], it was observed that the free relaxation, that is, the problem Dsa

B ⊆ Dsa
A

is tractable. Indeed, as explained after Theorem 9.5, the inclusion Dsa
B ⊆ Dsa

A is
equivalent to the UCP interpolation problem, that is, to the existence of a UCP map
sending Bi to Ai for all i = 1, . . . , d [74, Theorem 3.5]. Now, the UCP interpolation
problem can be shown to be equivalent to the solution of a certain semidefinite
program [74, Section 4]. In practice, there are numerical software packages that
can solve such problems efficiently.

So we see that instead of solving the matrix cube problem [−1, 1]d ⊆ Dsa
A (1),

one can solve the free relaxation Dsa
C ⊆ Dsa

A . Now, the whole point of the sharp
results in [76] is that they give a tight estimate of how well the tractable free
relaxation approximates the hard matrix cube problem. To explain this, we need
the following lemma.

Lemma 9.17 Suppose that A is a d-tuple of selfadjoint n× n matrices. Then,

[−1, 1]d ⊆ Dsa
A (1) ⇒ Dsa

C ⊆ ϑ(n)Dsa
A .

Proof Suppose that [−1, 1]d ⊆ Dsa
A (1). If X ∈ Dsa

C (n), then by Theorem 9.16,
X ≺ ϑ(n)N , where N is a normal tuples and σ(N) ⊆ [−1, 1]d ⊆ Dsa

A (1). So

∑
Xj ⊗ Aj ≺ ϑ(n)

∑
Nj ⊗ Aj ≤ ϑ(n)I,

where the last inequality follows easily by the spectral theorem and the assumption
[−1, 1]d ⊆ Dsa

A (1). �
Finally, we can now understand how to give an approximate solution to the

matrix cube problem. Simply, one tests whether Dsa
C ⊆ ϑ(n)Dsa

A , which is a
tractable problem. If the inclusion holds, then it holds at every level and in particular
[−1, 1]d ⊆ ϑ(n)Dsa

A (1). If not, then, using the lemma, we conclude that [−1, 1]d �

Dsa
A (1). Thus, we are able to determine the containment of [−1, 1]d in Dsa

A (1), up to
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a multiplicative error of ϑ(n), which is known to high precision, and independent
of d .

10 Dilation of q-Commuting Unitaries

This section is dedicated to presenting the results Gerhold and Shalit from [69], on
dilations of q-commuting unitaries.

Let θ ∈ R and write q = eiθ . If u and v are two unitaries that satisfy
vu = quv, then we say that u and v are q-commuting. We denote by Aθ the
universal C*-algebra generated by a pair of q-commuting unitaries, and we call Aθ

a rational/irrational rotation C*-algebra if θ
2π is rational/irrational respectively.

We shall write uθ , vθ for the generators of Aθ . The rotation C*-algebras have been
of widespread interest ever since they were introduced by Rieffel [132]. A good
reference for this subject is Boca’s book [31].

In an attempt to make some progress in our understanding of the general constant
Cd from Problem 9.13, Malte Gerhold and I studied a certain refinement of that
problem which is of independent interest. Instead of dilating arbitrary tuples of
contractions, we considered the task of dilating pairs of unitaries u, v that satisfy
the q-commutation relation vu = quv, and studied the dependence of the dilation
constant on the parameter q . In the context of Problem 9.13, it is worth noting that,
by a result of Buske and Peters [34] (see also [86]), every pair of q-commuting
contractions has a q-commuting unitary power dilation; therefore, this work has
implications to all pairs of q-commuting operators. Surprisingly, our dilation results
also have implications for the continuity of the norm and the spectrum of the almost
Mathieu operator from mathematical physics (this application will be discussed in
the final section).

For every θ ∈ R we define the optimal dilation constant

cθ := inf{c > 1 | (uθ , vθ ) ≺ c(U, V ) where U,V are commuting unitaries}.
We note that the infimum is actually a minimum, and that it is equal to the infimum
of the constants c that satisfy: for every q-commuting pair of unitaries U,V there
exists a commuting normal dilation M,N such that ‖M‖, ‖N‖ ≤ c (see [69,
Proposition 2.3]). Thus, cθ is a lower bound for the constant C2 from Problem 9.13.

10.1 Continuity of the Dilation Scale

Theorem 10.1 (Theorem 3.2, [69]) Let θ, θ ′ ∈ R, set q = eiθ , q ′ = eiθ
′
, and put

c = e
1
4 |θ−θ ′|. Then for any pair of q-commuting unitaries U,V there exists a pair

of q ′-commuting unitaries U ′, V ′ such that cU ′, cV ′ dilates U,V .
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Proof The proof makes use of the Weyl operators on symmetric Fock space (see
[111, Section 20]). For a Hilbert space H let H⊗s k be the k-fold symmetric tensor
product of H , and let

�(H) :=
∞⊕

k=0

H⊗sk

be the symmetric Fock space over H . The exponential vectors

e(x) :=
∞∑

k=0

1√
k!x

⊗k , x ∈ H,

form a linearly independent and total subset of �(H). For z ∈ H we define the Weyl
unitary W(z) ∈ B(�(H)) which is determined by

W(z)e(x) = e(z+ x) exp

(

−‖z‖
2

2
− 〈x, z〉

)

for all exponential vectors e(x).
Consider Hilbert spaces H ⊂ K with p the projection onto H , and the symmetric

Fock spaces �(H) ⊂ �(K) with P the projection onto �(H). We write p⊥ for the
projection onto the orthogonal complement H⊥. Note that for exponential vectors
we have Pe(x) = e(px). For every y, z ∈ K , the Weyl unitaries W(y),W(z)

satisfy:

1. W(z) and W(y) commute up to the phase factor e2i Im〈y,z〉.
2. PW(z)

∣
∣
�(H)

= e−
‖p⊥z‖2

2 W(pz), so it is a scalar multiple of a unitary on �(H).

3. PW(z)
∣
∣
�(H)

and PW(y)
∣
∣
�(H)

commute up to a phase factor e2i Im〈py,z〉.

In [69] it is shown that, assuming without loss that θ > θ ′, things can be arranged
so that there are two linearly independent vectors z, y so that pz and py are linearly
independent, and such that

1. p⊥y = −ip⊥z,
2. θ ′ = 2 Im〈y, z〉,
3. θ = 2 Im〈py, z〉.
Then we get q ′-commutation of W(z) and W(y), q-commutation of the operators
PW(z)

∣
∣
�(H)

and PW(y)
∣
∣
�(H)

, and

θ − θ ′ = −2 Im〈p⊥y, z〉 = 2‖p⊥z‖2 = 2‖p⊥y‖2,
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so

∥
∥
∥PW(z)

∣
∣
�(H)

∥
∥
∥ =

∥
∥
∥PW(y)

∣
∣
�(H)

∥
∥
∥ = e−

‖p⊥y‖2

2 = e−
|θ−θ ′|

4 .

Now if we put

U = e
|θ−θ ′|

4 PW(z)
∣
∣
�(H)

, V = e
|θ−θ ′|

4 PW(y)
∣
∣
�(H)

,

and

U ′ = W(z) , V ′ = W(y)

then we get the statement for this particular q-commuting pair U,V . Since the Weyl
unitaries give rise to a universal representation of Aθ , the general result follows (see
[69, Proposition 2.3]). �

From the above result we obtained continuity of the dilation scale.

Corollary 10.2 (Corollary 3.4, [69]) The optimal dilation scale cθ depends Lips-
chitz continuously on θ . More precisely, for all θ, θ ′ ∈ R we have

|cθ − cθ ′ | ≤ 0.39
∣
∣θ − θ ′

∣
∣ .

10.2 The Optimal Dilation Scale

The main result of [69] is the following theorem.

Theorem 10.3 (Theorems 6.3 and 6.4, [69]) Let θ, θ ′ ∈ R, q = eiθ , q ′ = eiθ
′
,

and put γ = θ ′ −θ . The smallest constant cθ,θ ′ such that every pair of q-commuting
unitaries can be dilated to cθ,θ ′ times a pair of q ′-commuting unitaries is given by

cθ,θ ′ = 4

‖uγ + u∗γ + vγ + v∗γ ‖
.

In particular, for every θ ∈ R,

cθ = 4

‖uθ + u∗θ + vθ + v∗θ ‖
.

Proof Since it is a nice construction that we have not yet seen, let us show just that
the value of cθ,θ ′ is no bigger than 4

‖uγ+u∗γ+vγ+v∗γ ‖ ; for the optimality of the dilation

constant we refer the reader to [69] (the formula for cθ = cθ,0 follows, since it is
not hard to see that cθ = c−θ ).
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Represent C∗(U, V ) concretely on a Hilbert space H. Let uγ , vγ be the universal
generators of Aγ and put hγ := uγ + u∗γ + vγ + v∗γ . We claim that there exists a

state ϕ on Aγ such that |ϕ(uγ )| = |ϕ(vγ )| = ‖hγ ‖
4 (for the existence of such a state,

see [69]). Assuming the existence of such a state, we define

U ′ = U ⊗ π(uγ )

ϕ(uγ )
, V ′ = V ⊗ π(vγ )

ϕ(vγ )
.

on K = H⊗L, where π : Aγ → B(L) is the GNS representation of ϕ. These are q ′-
commuting scalar multiples of unitaries, and they have norm 4

‖hγ ‖ . By construction,
there exists a unit vector x ∈ L such that ϕ(a) = 〈π(a)x, x〉 for all a ∈ Aγ .
Consider the isometry W : H → H⊗ L defined by

Wh = h⊗ x , h ∈ H.

Then

W∗U ′W = 1

ϕ(uγ )
〈π(uγ )x, x〉U = U

and

W∗V ′W = 1

ϕ(vγ )
〈π(vγ )x, x〉V = V,

and the proof of the existence of a dilation is complete. �
The operator hθ = uθ + u∗θ + vθ + v∗θ is called the almost Mathieu operator, and

it has been intensively studied by mathematical physicists, before and especially
after Hofstadter’s influential paper [77] (we will return to it in the next section).
However, the precise behaviour of the norm ‖hθ‖ as a function of θ is still not
completely understood. We believe that the most detailed analysis is contained in
the paper [32].

In [69, Section 7] we obtained numerical values for cθ = 4/‖hθ‖ for various θ .
We calculated by hand c 4

5π
≈ 1.5279, allowing us to push the lower bound C2 ≥

1.41... to C2 ≥ 1.52. We also made some numerical computations, which lead to an
improved estimate C2 ≥ maxθ cθ ≥ 1.5437. The latter value is an approximation
of the constant cθs attained at the silver mean θs = 2π

γs
= 2π(

√
2 − 1) (where

γs =
√

2 + 1 is the silver ratio) which we conjecture to be the angle where the
maximum is attained. However, we do not expect that the maximal value of cθ will
give a tight lower approximation for C2. Determining the value of C2 remains an
open problem.
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10.3 An Application: Continuity of the Spectrum of Almost
Mathieu Operators

The almost Mathieu operator hθ = uθ +u∗θ +vθ +v∗θ , which appears in the formula
cθ = 4

‖hθ ‖ , arises as the Hamiltonian in a certain mathematical model describing
an electron in a lattice under the influence of a magnetic field; see Hofstadter
[77]. This operator has been keeping mathematicians and physicists busy for more
than a generation. Hofstadter’s paper included a picture that depicts the spectrum
(computed numerically) of hθ for various values of θ , famously known as the
Hofstadter butterfly (please go ahead and google it). From observing the Hofstadter
butterfly, one is led to making several conjectures.

First and foremost, it appears that the spectrum of hθ varies continuously with θ ;
since θ is a physical parameter of the system studied, and the spectrum is supposed
to describe possible energy levels, any other possibility is unreasonable. There are
other natural conjectures to make, suggested just by looking at the picture. The most
famous one is perhaps what Barry Simon dubbed as the Ten Martini Problem, which
asks whether the spectrum is a Cantor set for irrational angles. This problem was
settled (in greater generality) by Avila and Jitomirskaya (see [17] for the conclusive
work as well as for references to earlier work).

The continuity of the spectrum σ(hθ ) is a delicate problem that attracted a lot of
attention. For example, in [37] Choi, Elliott, and Yui showed that the spectrum σ(hθ )

of hθ depends Hölder continuously (in the Hausdorff metric) on θ , with Hölder
exponent 1/3. This was soon improved by Avron, Mouche, and Simon to Hölder
continuity with exponent 1/2 [18]. The 1/2-Hölder continuity of the spectrum also
follows from a result of Haagerup and Rørdam, who showed that there exist 1/2-
Hölder norm continuous paths θ �→ uθ ∈ B(H), θ �→ vθ ∈ B(H) [71, Corollary
5.5].

As an application of our dilation techniques, we are able to recover the best
possible continuity result regarding the spectrum of the operator hθ . This result
is not new, but our proof is new and simple, and I believe that it is a beautiful and
exciting application of dilation theory with which to close this survey. The following
theorem also implies that the rotation C*-algebras form a continuous field of C*-
algebras, a result due to Elliott [59]. Our dilation methods can also be used to recover
the result of Bellisard [20], that the norm of hθ is a Lipschitz continuous function
of θ .

Theorem 10.4 Let p be a selfadjoint ∗-polynomial in two noncommuting variables.
Then the spectrum σ(p(uθ , vθ )) of p(uθ , vθ ) is 1

2 -Hölder continuous in θ with
respect to the Hausdorff distance for compact subsets of R.

Proof Let us present the idea of the proof for the most important case

p(uθ , vθ ) = hθ = uθ + u∗θ + vθ + v∗θ ,
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without going into the details of Hölder continuity. The idea is that, due to
Theorem 10.1, when θ ≈ θ ′ we have the dilation (uθ , vθ ) ≺ (cuθ ′, cvθ ′) with
c = e

1
4 |θ−θ ′| ≈ 1. Thus,

cuθ ′ =
(
uθ x

y z

)

and so x and y must be small, to be precise,

‖x‖, ‖y‖ ≤
√
c2 − 1 ≈ 0.

A similar estimate holds for the off diagonal block of cvθ ′ which dilates vθ . By a
basic lemma in operator theory, for any selfadjoint operators a and b, the Hausdorff
distance between their spectra is bounded as follows:

d(σ(a), σ (b)) ≤ ‖a − b‖.

We have hθ = uθ + u∗θ + vθ + v∗θ , and so

chθ ′ =
(
hθ ∗
∗ ∗

)

≈
(
hθ 0
0 ∗

)

,

because the off diagonal blocks have small norm, and therefore

σ(hθ ) ⊆ σ

((
hθ 0
0 ∗

))

≈ σ(chθ ′) ≈ σ(hθ ′).

In the same way one shows that σ(hθ ′) is approximately contained in σ(hθ ), and
therefore the Hausdorff distance between the spectra is small. �

It is interesting to note that the above proof generalizes very easily to higher
dimensional noncommutative tori. Determining the precise dilation scales for higher
dimensional noncommutative tori remains an open problem.

Acknowledgments This survey paper grew out of the talk that I gave at the International
Workshop on Operator Theory and its Applications (IWOTA) that took place in the Instituto
Superior Técnico, Lisbon, Portugal, in July 2019. I am grateful to the organizers of IWOTA 2019
for inviting me to speak in this incredibly successful workshop, and especially to Amélia Bastos,
for inviting me to contribute to these proceedings. I used a preliminary version of this survey as
lecture notes for a mini-course that I gave in the workshop Noncommutative Geometry and its
Applications, which took place in January 2020, in NISER, Bhubaneswar, India. I am grateful to
the organizers Bata Krishna Das, Sutanu Roy and Jaydeb Sarkar, for the wonderful hospitality and
the opportunity to speak and organize my thoughts on dilation theory. I also owe thanks to Michael
Skeide and to Fanciszek Szafraniec, for helpful feedback on preliminary versions. Finally, I wish
to thank an anonymous referee for several useful comments and corrections.

This project was partially supported by ISF Grant no. 195/16.



Dilation Theory: A Guided Tour 617

References

1. J. Agler, Rational dilation on an annulus. Ann. Math. 121, 537–563 (1985)
2. J. Agler, J.E. McCarthy, Pick Interpolation and Hilbert Function Spaces. Graduate Studies in

Mathematics, vol. 44 (American Mathematical Society, Providence, 2002)
3. J. Agler, J.E. McCarthy, Distinguished varieties. Acta Math. 194, 133–153 (2005)
4. J. Agler, N.J. Young, Operators having the symmetrized bidisc as a spectral set. Proc. Edinb.

Math. Soc. 43, 195–210 (2000)
5. J. Agler, J. Harland, B.J. Raphael, Classical Function Theory, Operator Dilation Theory

and Machine Computation on Multiply-Connected Domains. Memoirs of the American
Mathematical Society (American Mathematical Society, Providence, 2008)

6. M.A. Akcoglu, L. Sucheston, Dilations of positive contractions on Lp spaces. Can. Math.
Bull. 20, 285–292 (1977)

7. C.G. Ambrozie, A. Gheondea, An interpolation problem for completely positive maps on
matrix algebras: solvability and parametrization. Linear Multilinear Algebra 63, 826–851
(2015)

8. C. Ambrozie, V. Muller, Commutative dilation theory, in Operator Theory, ed. by D. Alpay
(Springer, Berlin, 2014)

9. T. Andô, On a pair of commutative contractions. Acta Sci. Math. 24, 88–90 (1963)
10. W.B. Arveson, Subalgebras of C∗-algebras. Acta Math. 123, 141–224 (1969)
11. W.B. Arveson, Subalgebras of C∗-algebras II. Acta Math. 128, 271–308 (1972)
12. W.B. Arveson, Subalgebras of C∗-algebras III: multivariable operator theory. Acta Math. 181,

159–228 (1998)
13. W.B. Arveson, Dilation theory yesterday and today, in A Glimpse of Hilbert Space Operators:

Paul R. Halmos in Memoriam, ed. by S. Axler, P. Rosenthal, D. Sarason (Birkhäuser, Basel,
2010)

14. W.B. Arveson, Non-commutative Dynamics and E-semigroups. Springer Monographs in
Mathematics (Springer, Berlin, 2003)

15. W.B. Arveson, The noncommutative Choquet boundary. J. Am. Math. Soc. 21, 1065–1084
(2008)

16. G. Aubrun, L. Lami, C. Palazuelos, M. Plavala, Entangleability of cones (2020).
arXiv:1911.09663

17. A. Avila, S. Jitomirskaya, The ten martini problem. Ann. Math. 170, 303–342 (2009)
18. J. Avron, P.H.M.v. Mouche, B. Simon, On the measure of the spectrum for the almost Mathieu

operator. Commun. Math. Phys. 132, 103–118 (1990)
19. C. Badea, B. Beckermann, Spectral sets, in Handbook of Linear Algebra, ed. by L. Hogben

(Chapman and Hall/CRC, Boca Raton, 2014)
20. J. Bellisard, Lipshitz continuity of gap boundaries for Hofstadter-like spectra. Commun.

Math. Phys. 160, 599–613 (1994)
21. A. Ben-Tal, A. Nemirovski, On tractable approximations of uncertain linear matrix inequali-

ties affected by interval uncertainty. SIAM J. Optim. 12, 811–833 (2002)
22. H. Bercovici, D. Timotin, The numerical range of a contraction with finite defect numbers. J.

Math. Anal. Appl. 417, 42–56 (2014)
23. H. Bercovici, C. Foias, L. Kerchy, B. Sz.-Nagy, Harmonic Analysis of Operators on Hilbert

Space. Universitext (Springer, Berlin, 2010)
24. B.V.R. Bhat, An index theory for quantum dynamical semigroups. Trans. Am. Math. Soc.

348, 561–583 (1996)
25. B.V.R. Bhat, A generalized intertwining lifting theorem, in Operator Algebras and Appli-

cations, II, Waterloo, ON, 1994-1995, Fields Institute Communications, vol. 20 (American
Mathemtical Society, Providence, 1998), pp. 1–10

26. B.V.R. Bhat, T. Bhattacharyya, Dilations, completely positive maps and geometry (forthcom-
ing book)



618 O. M. Shalit

27. B.V.R. Bhat, M. Mukherjee, Inclusion systems and amalgamated products of product systems.
Infin. Dimens. Anal. Quant. Probab. Relat. Top. 13, 1–26 (2010)

28. B.V.R. Bhat, M. Skeide, Tensor product systems of Hilbert modules and dilations of
completely positive semigroups. Infin. Dimens. Anal. Quant. Probab. Relat. Top. 3, 519–575
(2000)

29. T. Bhattacharyya, S. Pal, S. Shyam Roy, Dilations of - contractions by solving operator
equations. Adv. Math. 230, 577–606 (2012)

30. A. Bluhm, I. Nechita, Joint measurability of quantum effects and the matrix diamond. J. Math.
Phys. 59, 112202 (2018)

31. F.P. Boca, Rotation C*-Algebras and Almost Mathieu Operators (The Theta Foundation,
Bucharest, 2001)

32. F.P. Boca, A. Zaharescu, Norm estimates of almost Mathieu operators. J. Funct. Anal. 220,
76–96 (2005)

33. J.W. Bunce, Models for n-tuples of noncommuting operators. J. Funct. Anal. 57, 21–30 (1984)
34. D.R. Buske, J.R. Peters, Semicrossed products of the disk algebra: contractive representations

and maximal ideals. Pac. J. Math. 185, 97–113 (1998)
35. M.D. Choi, K.R. Davidson, A 3 × 3 dilation counterexample. Bull. Lond. Math. Soc. 45,

511–519 (2013)
36. M.D. Choi, C.K. Li, Constrained unitary dilations and numerical ranges. J. Operator Theory

46, 435–447 (2001)
37. M.-D. Choi, G.A. Elliott, N. Yui, Gauss polynomials and the rotation algebra. Invent. Math.

99, 225–246 (1990)
38. D. Cohen, Dilations of matrices. Thesis (M.Sc.), Ben-Gurion University (2015).

arXiv:1503.07334
39. M.J. Crabb, A.M. Davie, Von Neumann’s inequality for hilbert space operators. Bull. Lond.

Math. Soc. 7, 49–50 (1975)
40. M. Crouzeix, Numerical range and functional calculus in Hilbert space. J. Funct. Anal. 244,

668–990 (2007)
41. K.R. Davidson, E.G. Katsoulis, Dilation theory, commutant lifting and semicrossed products.

Doc. Math. 16, 781–868 (2011)
42. K.R. Davidson, M. Kennedy, The Choquet boundary of an operator system. Duke Math. J.

164, 2989–3004 (2015)
43. K.R. Davidson, M. Kennedy, Noncommutative Choquet theory. arXiv:1905.08436
44. K.R. Davidson, D.R. Pitts, Nevanlinna-Pick interpolation for non-commutative analytic

Toeplitz algebras. Integr. Equ. Operator Theory 31, 321–337 (1998)
45. K.R. Davidson, D.R. Pitts, The algebraic structure of non-commutative analytic Toeplitz

algebras. Math. Ann. 311, 275–303 (1998)
46. K.R. Davidson, A. Dor-On, O.M. Shalit, B. Solel, Dilations, inclusions of matrix convex sets,

and completely positive maps. Int. Math. Res. Not. 2017, 4069–4130 (2017)
47. K.R. Davidson, A. Dor-On, O.M. Shalit, B. Solel, Dilations, inclusions of matrix convex sets,

and completely positive maps (2018). arXiv:1601.07993v3 [math.OA]
48. K.R. Davidson, A.H. Fuller, E.T.A. Kakariadis, Semicrossed products of operator algebras: a

survey. New York J. Math. 24a, 56–86 (2018)
49. E.B. Davies, Quantum Theory of Open Systems (Academic, Cambridge, 1976)
50. A. Dor-On, Techniques in operator algebras: classification, dilation and non-commutative

boundary theory. Thesis (Ph.D.) University of Waterloo (2017)
51. A. Dor-On, G. Salomon, Full Cuntz-Krieger dilations via non-commutative boundaries. J.

Lond. Math. Soc. 98, 416–438 (2018)
52. R. Douglas, On extending commutative ssemigroupsemigroups of isometries. Bull. Lond.

Math. Soc. 1, 157–159 (1969)
53. M. Dritschel, S. McCullough, Boundary representations for families of representations of

operator algebras and spaces. J. Operator Theory 53, 159–167 (2005)
54. M.A. Dritschel, S. McCullough, The failure of rational dilation on a triply connected domain.

J. Am. Math. Soc. 18, 873–918 (2005)



Dilation Theory: A Guided Tour 619

55. S.W. Drury, A generalization of von Neumann’s inequality to the complex ball. Proc. Am.
Math. Soc. 68, 300–304 (1978)

56. S.W. Drury, Remarks on von Neumann’s Inequality. Lecture Notes in Mathematics, vol. 995
(Springer, Berlin, 1983)

57. E.G. Effros, S. Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-
Banach theorems. J. Funct. Anal. 144, 117–152 (1997)

58. E. Egerváry, On the contractive linear transformations of n-dimensional vector space. Acta
Sci. Math. Szeged 15, 178–182 (1954)

59. G.A. Elliott, Gaps in the spectrum of an almost periodic Schrödinger operator. C.R. Math.
Rep. Acad. Sci. Can. 4, 255–299 (1982)

60. D.E. Evans, J.T. Lewis, Dilations of dynamical semi-groups. Commun. Math. Phys. 50, 219–
227 (1976)

61. E. Evert, J.W. Helton, I. Klep, S. McCullough, Extreme points of matrix convex sets, free
spectrahedra, and dilation theory. J. Geom. Anal. 28, 1373–1408 (2018)

62. S. Fackler, J. Glück, A toolkit for constructing dilations on Banach spaces. Proc. Lond. Math.
Soc. 118, 416–440 (2019)

63. C. Foias, A.E. Frazho, The Commutant Lifting Approach to Interpolation Problems
(Birkhäuser, Basel, 1990)

64. A.E. Frazho, Models for noncommuting operators. J. Funct. Anal. 48, 1–11 (1982)
65. T. Fritz, T. Netzer, A. Thom, Spectrahedral containment and operator systems with finite-

dimensional realization. SIAM J. Appl. Algebra Geom. 1, 556–574 (2017)
66. A.H. Fuller, Finitely correlated representations of product systems of C*-correspondences

over Nk . J. Funct. Anal. 260, 574–611 (2011)
67. D.J. Gaebler, Continuous unital dilations of completely positive semigroups. J. Funct. Anal.

269, 998–1027 (2015)
68. T.W. Gamelin, Uniform Algebras, vol. 311 (American Mathematical Society, Providence,

2005)
69. M. Gerhold, O.M. Shalit, Dilations of q-commuting unitaries (2019). arXiv:1902.10362
70. M. Gerhold, O.M. Shalit, On the matrix range of random matrices (2020). arXiv:1911.12102
71. U. Haagerup, M. Rørdam, Perturbations of the rotation C*-algebras and of the Heisenberg

commutation relations. Duke Math. J. 77, 227–256 (1995)
72. P.R. Halmos, Normal dilations and extensions of operators. Summa Brasil. Math. 2, 125–134

(1950)
73. M. Hartz, M. Lupini, Dilation theory in finite dimensions and matrix convexity (2019).

arXiv:1910.03549
74. J.W. Helton, I. Klep, S. McCullough, The matricial relaxation of a linear matrix inequality.

Math. Program. 138, 401–445 (2013)
75. J.W. Helton, I. Klep, S. McCullough, Matrix convex hulls of free semialgebraic sets. Trans.

Am. Math. Soc. 368, 3105–3139 (2016)
76. J.W. Helton, I. Klep, S. McCullough, M. Schweighofer, Dilations, Linear Matrix Inequalities,

the Matrix Cube Problem and Beta Distributions. Memoirs of the American Mathematical
Society (American Mathematical Society, Providence, 2019)

77. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational
magnetic fields. Phys. Rev. B. 14, 2239–2249 (1976)

78. J.A. Holbrook, Schur norms and the multivariate von Neumann inequality, in Operator
Theory: Advances and Applications, vol. 127 (Birkhäuser, Basel, 2001)

79. Z. Hu, R. Xia, S. Kais, A quantum algorithm for evolving open quantum dynamics on
quantum computing devices (2019). arXiv:1904.00910

80. B. Huber, T. Netzer, A note on non-commutative polytopes and polyhedra (2019).
arXiv:1809.00476

81. M. Izumi, E0-semigroups: around and beyond Arveson’s work. J. Oper. Theory 68, 335–363
(2012)

82. E.T.A. Kakariadis, O.M. Shalit, Operator algebras of monomial ideals in noncommuting
variables. J. Math. Anal. Appl. 472, 738–813 (2019)



620 O. M. Shalit

83. I. Kaplansky, Modules over operator algebras. Am. J. Math. 75, 839–858 (1953)
84. E. Katsoulis, C. Ramsey, Crossed Products of Operator Algebras. Memoirs of the American

Mathematical Society (American Mathematical Society, Providence, 2019)
85. M. Kennedy, O.M. Shalit, Essential normality, essential norms and hyperrigidity. J. Funct.

Anal. 270, 2812–2815 (2016)
86. D. Keshari, N. Mallick, q-commuting dilation. Proc. Am. Math. Soc. 147, 655–669 (2019)
87. G. Knese, The von Neumann inequality for 3× 3 matrices. Bull. Lond. Math. Soc. 48, 53–57

(2016)
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Riesz-Fischer Maps, Semi-frames
and Frames in Rigged Hilbert Spaces

Francesco Tschinke

Abstract In this note we present a review, some considerations and new results
about maps with values in a distribution space and domain in a σ -finite measure
space X. Namely, this is a survey about Bessel maps, frames and bases (in particular
Riesz and Gel’fand bases) in a distribution space. In this setting, the Riesz-Fischer
maps and semi-frames are defined and new results about them are obtained. Some
examples in tempered distributions space are examined.
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1 Introduction

Given a Hilbert space H with inner product 〈·|·〉 and norm ‖·‖, a frame is a sequence
of vectors {fn} in H if there exist A,B > 0 such that:

A‖f ‖2 ≤
∞∑

k=1

|〈f |fn〉|2 ≤ B‖f ‖2, ∀f ∈ H.

As known, this notion generalizes orthonormal bases, and has reached an increasing
level of popularity in many fields of interests, such as signal theory, image
processing, etc., but it is also an important tool in pure mathematics: in fact it plays
key roles in wavelet theory, time-frequency analysis, the theory of shift-invariant
spaces, sampling theory and many other areas (see [10, 11, 19, 20, 24]).
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A generalization of frame, the continuous frame, was proposed by Kaiser [24]
and by Alí et al. [1, 2]: if (X,μ) is a measure space with μ as σ -finite positive
measure, a function F : x ∈ X �→ Fx ∈ H is a continuous frame with respect to
(X,μ) if:

(i) F is weakly measurable, i.e. the map x ∈ X �→ 〈f |Fx〉 ∈ C is μ-measurable
for all f ∈ H;

(ii) there exist A,B > 0 such that, for all f ∈ H:

A‖f ‖2 ≤
∫

X

| 〈f |Fx〉 |2dμ ≤ B‖f ‖2, ∀f ∈ H.

Today, the notion of continuous frames in Hilbert spaces and their link with the
theory of coherent states is well-known in the literature.

With the collaboration of C. Trapani and T. Triolo [29], the author introduced
bases and frames in distributional spaces. To illustrate the motivations for this study,
we have to consider the rigged Hilbert space (or Gel’fand triple) [16, 17]: that is, if
H is a Hilbert space, the triple:

D[t] ⊂ H ⊂ D×[t×],

where D[t] is a dense subspace of H endowed with a locally convex topology
t stronger than the Hilbert norm and D×[t×] is the conjugate dual space of D
endowed with the strong dual topology t×. If D is reflexive, the inclusions are dense
and continuous.

In this setting, let us consider the generalized eigenvectors of an operator, i.e.
eigenvectors that do not belong to H. More precisely: if A is an essentially self-
adjoint operator in D which maps D[t] into D[t] continuously, then A has a
continuous extension Â given by its adjoint, (i.e. Â = A†) from D× into itself.
A generalized eigenvector of A, with eigenvalue λ ∈ C, is an eigenvector of Â; that
is, a conjugate linear functional ωλ ∈ D× such that:

〈Af |ωλ〉 = λ 〈f |ωλ〉 , ∀f ∈ D.

The above equality can be read as Âωλ = A†ωλ = λωλ.
A simple and explicative example is given by the derivative operator: A :=

i d
dx

: S(R) → S(R) where S(R) is the Schwartz space (i.e. infinitely differentiable
rapidly decreasing functions). The rigged Hilbert space is:

S(R) ⊂ L2(R) ⊂ S×(R), (1.1)

where the set S×(R) is known as space of tempered distributions. Then ωλ(x) =
1√
2π

e−iλx -that does not belong to L2(R)—is a generalized eigenvector of A with λ

as eigenvalue.
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Each function ωλ can be viewed as a regular distribution of S×(R) through the
following integral representation:

〈φ|ωλ〉 =
∫

R

φ(x)ωλ(x)dx = 1√
2π

∫

R

φ(x)eiλxdx := φ̌(λ)

and the linear functional φ �→ φ̌(λ) defined on S(R) is continuous. Furthermore by
the Fourier-Plancherel theorem, one has:

‖φ̌‖2
2 =

∫

R

| 〈φ|ωλ〉 |2dx = ‖φ‖2
2.

With a limiting procedure, the Fourier transform can be extended to L2(R). Since
a function f ∈ L2(R) defines a regular tempered distribution, we have, for all
φ ∈ S(R):

〈φ|f 〉 : =
∫

R

f (x)φ(x)dx =
∫

R

(
1√
2π

∫

R

f̂ (λ)eiλxdλ

)

φ(x)dx

=
∫

R

f̂ (λ)φ̌(λ)dλ =
∫

R

f̂ (λ)〈φ|ωλ〉 dλ.

That is:

f =
∫

R

f̂ (λ)ωλdλ. (1.2)

in weak sense. The family {ωλ; λ ∈ R} of the previous example can be considered
as the range of a weakly measurable function ω : R → S×(R) which allows a
representation as in (1.2) of any f ∈ L2(R) in terms of generalized eigenvectors of
A. This is an example of a distribution basis. More precisely, since the Fourier-
Plancherel theorem corresponds to the Parseval identity, this is an example of
Gel’fand distribution basis [29, Subsec. 3.4], that plays, in S×(R), the role of an
orthonormal basis in a Hilbert space.

The example above is a particular case of the Gel’fand-Maurin theorem (see
[16, 18] for details), which states that, if D is a domain in a Hilbert space H which
is a nuclear space under a certain topology τ , and A is an essentially self-adjoint
operator on D which maps D[t] into D[t] continuously, then A admits a complete
set of generalized eigenvectors.

If σ(A) is the spectrum of the closure of the operator A, the completeness of the
set {ωλ; λ ∈ σ(A)} is understood in the sense that the Parseval identity holds, that
is:

‖f ‖ =
(∫

σ(A)

| 〈f |ωλ〉 |2dλ
)1/2

, ∀f ∈ D. (1.3)
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To each λ there corresponds the subspace D×
λ ⊂ D× of all generalized eigenvectors

whose eigenvalue is λ. For all f ∈ D it is possible to define a linear functional f̃λ on
D×

λ by f̃λ(ωλ) := 〈ωλ|f 〉 for all ωλ ∈ D×
λ . Following [16, 17], the correspondence

D → D××
λ defined by f �→ f̃λ is called the spectral decomposition of the element

f corresponding to A. If f̃λ ≡ 0 implies f = 0 (i.e. the map f �→ f̃λ is injective)
then A is said to have a complete system of generalized eigenvectors.

The completeness and condition (1.3) may be interpreted as a kind of orthonor-
mality of the ωλ’s: the family {ωλ}λ∈σ(A) in [29] is called a Gel’fand basis.

Another meaningful situation comes from quantum mechanics. Let us consider
the rigged Hilbert space (1.1) corresponding to the one-dimensional case. The
Hamiltonian operator H is an essentially self-adjoint operator on S(R), with self-
adjoint extensionH on the domain D(H), dense in L2(R). According to the spectral
expansion theorem in the case of non-degenerate spectrum, for all f ∈ L2(R), the
following decomposition holds:

f =
∑

n∈J
cnun +

∫

σc

c(α)uαdμ(α).

The set {un}n∈J , J ⊂ N, is an orthonormal system of eigenvectors of H ; the measure
μ is a continuous measure on σc ⊂ R and {uα}α∈σc are generalized eigenvectors of
H in S×(R). This decomposition is unique. Furthermore:

‖f ‖2 =
∑

n∈J
|cn|2 +

∫

σc

|c(α)|2dμ(α).

The subset σc, corresponding to the continuous spectrum, is a union of intervals of
R, i.e. the index α is continuous. The generalized eigenvectors uα are distributions:
they do not belong to L2(R), therefore the “orthonormality” between generalized
eigenvectors is not defined. Nevertheless, it is often denoted by the physicists with
the Dirac delta: “ 〈uα|uα′ 〉”=δα−α′ .

Frames, semi-frames, Riesz bases, etc. are families of sequences that generalize
orthonormal bases in Hilbert space maintaining the possibility to reconstruct vectors
of the space as superposition of more ‘elementary’ vectors renouncing often to the
uniqueness of the representation, but gaining in versatility.

In this sense, they have been considered in literature in various spaces of
functions and distributions: see for example the following (not exhaustive) list:
[4, 8, 12, 14, 15, 25, 26].

It is remarkable that in a separable Hilbert space, orthonormal bases and Riesz
bases are countable and notions corresponding to Riesz basis have been formulated
in the continuous setting, but it is known that they exist only if the space given by
the index set is discrete [7, 22, 23]. On the other hand, in the distributions and rigged
Hilbert space setting the corresponding objects can be continuous.
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Revisiting some results of [29] about Bessel maps, frames and (Gel’fand and
Riesz) bases in distribution set-up, in this paper the notions of Riesz-Fischer map
and of semi-frames in a space of distributions are proposed.

After some preliminaries and notations (Sect. 2), in Sect. 3 distribution Bessel
maps are considered and the notion of distribution Riesz-Fischer maps is proposed,
showing some new results about them (such as bounds and duality properties).
Since distribution Bessel maps are not, in general, bounded by a Hilbert norm,
we consider appropriate to define in Sect. 4 the distribution semi-frames, notion
already introduced in a Hilbert space by J.-P. Antoine and P. Balasz [3]. Finally,
distribution frames, distribution bases, Gel’fand and Riesz bases, considered in [29],
are revisited in Sect. 5 with some additional examples.

2 Preliminary Definitions and Facts

2.1 Rigged Hilbert Space

Let D be a dense subspace of a Hilbert space H endowed with a locally convex
topology t finer than the topology induced by a Hilbert norm. Denote as D×
the vector space of all continuous conjugate linear functionals on D[t], i.e., the
conjugate dual of D[t], endowed with the strong dual topology t× = β(D×,D),
which can be defined by the seminorms:

qM(F ) = sup
g∈M

| 〈F |g〉 |, F ∈ D×,

where M is a bounded subset of D[t]. In this way, a rigged Hilbert space is defined
in a standard fashion:

D[t] ↪→ H ↪→ D×[t×], (2.1)

where ↪→ denotes a continuous injection. Since the Hilbert space H can be
identified with a subspace of D×[t×], we will systematically read (2.1) as a chain
of topological inclusions: D[t] ⊂ H ⊂ D×[t×]. These identifications imply that
the sesquilinear form B(·, ·) which puts D and D× in duality is an extension of
the inner product of H; i.e. B(ξ, η) = 〈ξ |η〉, for every ξ, η ∈ D (to simplify
notations we adopt the symbol 〈·|·〉 for both of them) and also the embedding map
ID,D× : D → D× can be taken to act on D as ID,D×f = f for every f ∈ D. For
more insights, besides to [16, 17], see also [21]. In this paper, if is not otherwise
specified, we will work with a rigged Hilbert space D[t] ↪→ H ↪→ D×[t×] with
D[t] reflexive, in this way the embedding ↪→ is continuous and dense.
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2.2 The Space L(D,D×)

If D[t] ⊂ H ⊂ D×[t×] is a rigged Hilbert space, let us denote by L(D,D×)
the vector space of all continuous linear maps from D[t] into D×[t×]. If D[t] is
barreled (e.g., reflexive), an involution X �→ X† can be introduced in L(D,D×) by
the identity:

〈
X†η|ξ

〉
= 〈Xξ |η〉, ∀ξ, η ∈ D.

Hence, in this case, L(D,D×) is a †-invariant vector space. We also denote by L(D)

the algebra of all continuous linear operators Y : D[t] → D[t] and by L(D×)
the algebra of all continuous linear operators Z : D×[t×] → D×[t×]. If D[t] is
reflexive, for every Y ∈ L(D) there exists a unique operator Y× ∈ L(D×), the
adjoint of Y , such that

〈�|Yg〉 = 〈
Y×�|g〉 , ∀� ∈ D×, g ∈ D.

In similar way an operator Z ∈ L(D×) has an adjoint Z× ∈ L(D) such that
(Z×)× = Z. In the monograph [5] the topic is treated more deeply.

2.3 Weakly Measurable Maps

In this paper a weakly measurable map is considered as a subset of D×: if (X,μ)

is a measure space with μ a σ -finite positive measure, ω : x ∈ X �→ ωx ∈ D× is
a weakly measurable map if, for every f ∈ D, the complex valued function x �→
〈f |ωx〉 is μ-measurable. Since the form which puts D and D× in conjugate duality
is an extension of the inner product of H, we write 〈f |ωx〉 for 〈ωx |f 〉, f ∈ D. If
not otherwise specified, throughout the paper we will work with a measure space
(X,μ) above described.

Definition 2.1 Let D[t] be a locally convex space, D× its conjugate dual and ω :
x ∈ X → ωx ∈ D× a weakly measurable map, then:

(i) ω is total if, f ∈ D and 〈f |ωx〉 = 0 μ-a.e. x ∈ X implies f = 0;
(ii) ω is μ-independent if the unique measurable function ξ on (X,μ) such that, if∫

X ξ(x) 〈g|ωx〉 dμ = 0 for every g ∈ D, then ξ(x) = 0 μ-a.e.
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3 Bessel and Riesz-Fischer Distribution Maps

3.1 Bessel Distribution Maps

Definition 3.1 Let D[t] be a locally convex space. A weakly measurable map ω is
a Bessel distribution map (briefly: Bessel map) if for every f ∈ D,

∫

X

| 〈f |ωx〉 |2dμ < ∞.

The following Proposition is the analogue of Proposition 2 and Theorem 3 in [30,
Section 2, Chapter 4].

Proposition 3.2 ([29, Proposition 3.1]) If D[t] a Fréchet space, and ω : x ∈ X �→
ωx ∈ D× a weakly measurable map. The following statements are equivalent:

(i) ω is a Bessel map;
(ii) there exists a continuous seminorm p on D[t] such that:

(∫

X

| 〈f |ωx〉 |2dμ
)1/2

≤ p(f ), ∀f ∈ D;

(iii) for every bounded subset M of D there exists CM > 0 such that:

sup
f∈M

∣
∣
∣

∫

X

ξ(x) 〈ωx |f 〉 dμ
∣
∣
∣ ≤ CM‖ξ‖2, ∀ξ ∈ L2(X,μ). (3.1)

We have also the following:

Lemma 3.3 ([29, Lemma 3.4]) If D is a Fréchet space and ω a Bessel distribution
map, then:

∫

X

〈f |ωx〉ωxdμ

converges for every f ∈ D to an element of D×. Moreover, the map

D 4 f �→
∫

X

〈f |ωx〉ωxdμ ∈ D×

is continuous.

Let ω be a Bessel map: the previous lemma allows to define on D × D the
sesquilinear form �:

�(f, g) =
∫

X

〈f |ωx〉 〈ωx |g〉 dμ.
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By Proposition 3.2, one has for all f, g ∈ D,

|�(f, g)| =
∣
∣
∣
∣

∫

X

〈f |ωx〉 〈g|ωx〉 dμ
∣
∣
∣
∣ ≤ ‖ 〈f |ωx〉 ‖2 ‖ 〈g|ωx〉 ‖2 ≤ p(f )p(g).

This means that � is jointly continuous on D[t]. Hence there exists an operator
Sω ∈ L(D,D×), with Sω = S†

ω, Sω ≥ 0, such that:

�(f, g) = 〈Sωf |g〉 =
∫

X

〈f |ωx〉 〈ωx |g〉 dμ, ∀f, g ∈ D (3.2)

that is,

Sωf =
∫

X

〈f |ωx〉ωxdμ, ∀f ∈ D.

Since ω is a Bessel distribution map and ξ ∈ L2(X,μ), we put for all g ∈ D:

$ξ
ω(g) :=

∫

X

ξ(x) 〈ωx |g〉 dμ. (3.3)

Then $
ξ
ω is a continuous conjugate linear functional on D, i.e. $ξ

ω ∈ D×. We write:

$ξ
ω :=

∫

X

ξ(x)ωxdμ

in weak sense. Therefore we can define a linear map Tω : L2(X,μ) → D×[t×],
which will be called the synthesis operator, by:

Tω : ξ �→ $ξ
ω.

By (3.1), it follows that Tω is continuous from L2(X,μ), endowed with its natural
norm, into D×[t×]. Hence, it possesses a continuous adjoint T ×

ω : D[t] →
L2(X,μ), which is called the analysis operator, acting as follows:

T ×
ω : f ∈ D[t] �→ ξf ∈ L2(X,μ), where ξf (x) = 〈f |ωx〉 , x ∈ X.

One has that Sω = TωT
×
ω .
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3.2 Riesz-Fischer Distribution Map

Definition 3.4 Let D[t] be a locally convex space. A weakly measurable map ω :
x ∈ X �→ ωx ∈ D× is called a Riesz-Fischer distribution map (briefly: Riesz-
Fischer map) if, for every h ∈ L2(X,μ), there exists f ∈ D such that:

〈f |ωx〉 = h(x) μ-a.e. (3.4)

In this case, we say that f is a solution of equation 〈f |ωx〉 = h(x).

Clearly, if f1 and f2 are solutions of (3.4), then

f1 − f2 ∈ ω⊥ := {g ∈ D : 〈g|ωx〉 = 0, μ− a.e.}.

If ω is total, the solution is unique. We prove the following:

Lemma 3.5 Let D be a reflexive locally convex space, h(x) be a measurable
function and x ∈ X �→ ωx ∈ D×[t×] a weakly measurable map. Then the equation:

〈f |ωx〉 = h(x)

admits a solution f ∈ D if, and only if, there exists a bounded subset M of D such
that

|h(x)| ≤ sup
f∈M

| 〈f |ωx〉 | μ-a.e.

Proof Necessity is obvious. Conversely, let x ∈ X be a point such that 〈f |ωx〉 =
h(x) �= 0. Let us consider the subspace Vx of D× given by Vx := {αωx }α∈C, and
let us define the functional μ on Vx by: μ(αωx) := αh(x). We have that

|μ(αωx)| = |αh(x)| ≤ |α| sup
f∈M

| 〈f |ωx〉 | = sup
f∈M

| 〈f |αωx〉 |,

in other words:

|μ(Fx)| ≤ sup
f∈M

| 〈f |Fx〉 |

for all Fx ∈ Vx . By the Hahn-Banach theorem, there exists an extension μ̃ to D×
such that

|μ̃(F )| ≤ sup
f∈M

| 〈f |F 〉 |,
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for every F ∈ D×. Since D is reflexive, there exists f̄ ∈ D such that μ̃(F ) = 〈
f̄ |F 〉.

The statement follows from the fact that μ(ωx) = h(x). 	

If M is a subspace of D and the topology of D is generated by the family of

seminorms {pα}α∈I , then the topology on the quotient space D/M is defined, as
usual, by the seminorms {p̃α}α∈I , where

p̃α(f̃ ) := inf{pα(g) : g ∈ f +M}.

The following proposition can be compared to the case of Riesz-Fischer sequences:
see [30, Chapter 4, Section 2, Proposition 2].

Proposition 3.6 Assume that D[t] is a Fréchet space. If the map ω : x ∈ X →
ωx ∈ D× is a Riesz-Fischer map, then for every continuous seminorm p on D, there
exists a constant C > 0 such that, for every solution f of (3.4),

p̃(f̃ ) := inf{p(g) : g ∈ f + ω⊥} ≤ C‖ 〈f |ωx〉 ‖2.

Proof Since ω⊥ is closed, it follows that the quotient D/ω⊥ := Dω⊥ is a Fréchet
space. If f ∈ D, we put f̃ := f + ω⊥. Let h ∈ L2(X,μ) and f a solution of
(3.4) corresponding to h; then, we can define an operator S : L2(X,μ) → Dω⊥ by
h �→ f̃ . Let us consider a sequence hn ∈ L2(X,μ) such that hn → 0 and, for each
n ∈ N, let fn be a corresponding solution of (3.4). One has that

∫

X

|hn(x)|2dμ → 0, i.e.
∫

X

| 〈fn|ωx〉 |2dμ→ 0.

This implies that 〈fn|ωx〉 → 0 in measure, so there exists a subsequence such
that

〈
fnk |ωx

〉 → 0 a.e. (see [13]). On the other hand, if Shn = f̃n is a sequence
convergent to f̃ in Dω⊥ w.r. to the quotient topology defined by the seminorms
p̃(·), it follows that the sequence is convergent in the weak topology of Dω⊥ , i.e.:

〈
f̃n|F̃

〉
→
〈
f̃ |F̃

〉
∀F̃ ∈ D×

ω⊥ .

Let us consider the canonical surjection ρ : D → Dω⊥ , ρ : f �→ f̃ = f + ω⊥.
Its transpose map (adjoint) ρ† : D×

ω⊥ → D× is injective (see [21], p. 263) and

ρ†[D×
ω⊥] = ω⊥⊥. Then ρ† : D×

ω⊥ → ω⊥⊥ is invertible. Hence,

〈
f̃n|F̃

〉
=
〈
ρ(fn)|(ρ†)−1(F )

〉
=
〈
fn|ρ†((ρ†)−1(F ))

〉
= 〈fn|F 〉 , ∀F ∈ ω⊥⊥.

Thus, if f̃n → f̃ in the topology of Dω⊥ , then 〈fn|F 〉 → 〈f |F 〉, for all F ∈ ω⊥⊥,
and, in particular, since ω ⊂ ω⊥⊥, one has 〈fn|ωx〉 → 〈f |ωx〉. Since 〈fn|ωx〉 has
a subsequence convergent to 0, one has f ∈ ω⊥. From the closed graph theorem, it
follows that the map S is continuous, i.e. for all continuous seminorms p̃ on Dω⊥



Riesz-Fischer Maps, Semi-frames and Frames in Rigged Hilbert Spaces 635

there exists C > 0 such that: p̃(Sh) ≤ C‖h‖2, for all h ∈ L2(X,μ). The statement
follows from the definition of Riesz-Fischer map. 	

Corollary 3.7 Assume that D[t] is a Fréchet space. If the map ω : x ∈ X → ωx ∈
D× is a total Riesz-Fischer map, then for every continuous seminorm p on D, there
exists a constant C > 0 such that, for the solution f of (3.4),

p(f ) ≤ C‖ 〈f |ωx〉 ‖2.

Remark 3.8 For an arbitrary weakly measurable map ω, we define the subset of
D[t]: D(Vω) := {f ∈ D : 〈f |ωx〉 ∈ L2(X,μ)} and the analysis operator Vω :
f ∈ D(Vω) �→ 〈f |ωx〉 ∈ L2(X,μ). Clearly, ω is a Riesz-Fischer map if and only
if Vω : D(Vω) → L2(X,μ) is surjective. If ω is total, it is injective too, so Vω is
invertible. A consequence of Corollary 3.7 is that V −1

ω : L2(X,μ) → D(Vω) is
continuous.

3.3 Duality

Definition 3.9 Let D ↪→ H ↪→ D× be a rigged Hilbert space and ω a weakly
measurable map. We call dual map of ω, if it exists, a weakly measurable map θ

such that for all f, g ∈ D:

∣
∣
∣
∣

∫

X

〈f |θx〉 〈ωx |g〉 dμ
∣
∣
∣
∣ < ∞

and

〈f |g〉 =
∫

X

〈f |θx〉 〈ωx |g〉 dμ, ∀f, g ∈ D.

Proposition 3.10 Suppose that ω is a Riesz-Fischer map. Then the map θ is a
Bessel map.

Proof For all h ∈ L2(X,μ) there exists f̄ ∈ D such that
〈
f̄ |ωx

〉 = h(x) μ-a.e.
Since θ is a dual map, one has that:

∣
∣
∣
∣

∫

X

h(x) 〈θx |g〉 dμ
∣
∣
∣
∣ < ∞

for all h ∈ L2(X,μ). It follows that 〈θx |g〉 ∈ L2(X,μ) (see [28, Chapter 6,
Exercise 4]). 	
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Proposition 3.11 Let D be reflexive and let ω be a μ-independent Bessel map.
Furthermore, suppose that for all h ∈ L2(X,μ) there exists a bounded subset M ⊂
D such that:

∣
∣
∣
∣

∫

X

h(x) 〈ωx |g〉 dμ
∣
∣
∣
∣ ≤ sup

f∈M
| 〈f |g〉 |, ∀g ∈ D,

then the dual map θ is a Riesz-Fischer map.

Proof Since h ∈ L2(X,μ), and since ω is a Bessel map, one has:

∣
∣
∣
∣

∫

X

h(x) 〈ωx |g〉 dμ
∣
∣
∣
∣ < ∞.

Let us consider

g =
∫

X

〈g|ωx〉 θxdμ

as element of D×. We define the following functional on D (as subspace of D×):

μ(g) :=
∫

X

h(x) 〈ωx |g〉 dμ.

By hypothesis, one has:

|μ(g)| ≤ sup
f∈M

| 〈f |g〉 |.

By the Hahn-Banach theorem, there exists an extension μ̃ to D× such that:

|μ̃(G)| ≤ sup
f∈M

| 〈f |G〉 |, ∀G ∈ D×.

Since D is reflexive, there exists f̃ ∈ D×× = D such that μ̃(G) =
〈
f̃ |G

〉
. In

particular

〈
f̃ |g

〉
=
∫

X

h(x) 〈ωx |g〉 dμ.

Since θ is dual of ω, we have too:

〈
f̃ |g

〉
=
∫

X

〈
f̃ |θx

〉
〈ωx |g〉 dμ.

But ω is μ-independent, then it follows that h(x) =
〈
f̃ |θx

〉
μ-a.e. 	
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4 Semi-frames and Frames

4.1 Distribution Semi-frames

Definition 4.1 Given a rigged Hilbert space D ↪→ H ↪→ D×, a Bessel map ω is a
distribution upper semi-frame if it is complete (total) and if there exists B > 0:

0 <

∫

X

| 〈f |ωx〉 |2dμ ≤ B‖f ‖2, ∀f ∈ D, f �= 0.

Since the injection D ↪→ H is continuous, it follows that there exists a
continuous seminorm p on D such that ‖f ‖ ≤ p(f ) for all f ∈ D. If ξ ∈ L2(X,μ),
then the continuous conjugate functional $ξ

ω on D defined in (3.3) is bounded in
D[‖ · ‖]; it follows that it has a bounded extension $̃

ξ
ω to H, defined, as usual, by a

limiting procedure. Therefore, there exists a unique vector hξ ∈ H such that:

$̃ξ
ω(g) =

〈
hξ |g

〉
, ∀g ∈ H.

This implies that the synthesis operator Tω takes values in H, it is bounded and
‖Tω‖ ≤ B1/2; its hilbertian adjoint Cω := T ∗

ω extends the analysis operator T ×
ω .

The action of Cω can be easily described: if g ∈ H and {gn} is a sequence
of elements of D, norm converging to g, then the sequence {ηn}, where ηn(x) =
〈gn|ωx〉, is convergent in L2(X,μ). Put η = limn→∞ ηn. Then,

〈Tωξ |g〉 = lim
n→∞

∫

X

ξ(x) 〈ωx |gn〉 dμ =
∫

X

ξ(x)η(x)dμ.

Hence T ∗
ωg = η.

The function η ∈ L2(X,μ) depends linearly on g, for each x ∈ X. Thus we can
define a linear functional ω̌x by

〈
g|ω̌x

〉 = lim
n→∞〈gn|ωx〉 , g ∈ H; gn → g. (4.1)

Of course, for each x ∈ X, ω̌x extends ωx ; however ω̌x need not be continuous, as
a functional on H. We conclude that:

T ∗
ω : g �→ 〈

g|ω̌x

〉 ∈ L2(X,μ).

Moreover, in this case, the sesquilinear form � in (3.2), which is well defined on
D×D, is bounded with respect to ‖ · ‖ and possesses a bounded extension �̂ to H.
Hence there exists a bounded operator Ŝω in H, such that:

�̂(f, g) =
〈
Ŝωf |g

〉
, ∀f, g ∈ H. (4.2)
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Since

〈
Ŝωf |g

〉
=
∫

X

〈f |ωx〉 〈ωx |g〉 dμ, ∀f, g ∈ D,

Ŝω extends the frame operator Sω and Sω : D → H. It is easily seen that Ŝω = Ŝ∗ω
and Ŝω = TωT

∗
ω . By definition, we have:

0 < ‖Ŝωf ‖ ≤ B‖f ‖, ∀f ∈ H, f �= 0.

Then Ŝω is bounded, self-adjoint and injective too. This means that Ran Sω is dense
in H, and Ŝ−1

ω is densely defined. If ω is not a frame, Ŝ−1
ω is an unbounded, self-

adjoint operator (see [3]).

Remark 4.2 If {ωx}x∈X is an upper semi-frame, then there exists a continuous
seminorm p on D such that ‖ 〈f |ωx〉 ‖2 ≤ p(f ) for all f ∈ D. In fact, the injection
D ↪→ H is continuous, i.e. ‖f ‖ ≤ p(f ) for all f ∈ D. The converse is not true:
let us consider the rigged Hilbert space S(R) ↪→ L2(R) ↪→ S×(R); the system of
derivative of Dirac’s deltas {δ′x}x∈R is total. Since S(R) is a Fréchet space, (ii) of
Proposition 3.2 it holds. However {δ′x}x∈R is not a distribution upper semi-frame; in
fact:

∫

R

| 〈φ|δ′x
〉 |2dx = ‖φ′‖2

2 ∀φ ∈ S(R),

but the derivative operator d
dx

: S(R) → L2(R) is unbounded (clearly with respect
to the topology of the Hilbert norm).

Remark 4.3 In [29] it is defined the notion of bounded Bessel map, that is a Bessel
map in rigged Hilbert space such that:

∫

X

| 〈f |ωx〉 |2dμ ≤ B‖f ‖2, ∀f ∈ D.

It is a more general notion than upper bounded semi-frame. In fact, we can consider,
as example, the distribution ωx := ηK(x)δx where ηK(x) is a C∞-function with
compact support K and M := maxx∈K |ηK(x)|:

∫

R

| 〈φ|ωx〉 |2dx =
∫

R

| 〈φ|ηK(x)δx〉 |2dx

=
∫

R

|ηK(x)φ(x)|2dx ≤ M2
∫

K

|φ(x)|2dx ≤ M2‖φ‖2
2.

Therefore ω is a bounded Bessel map, but it is not total, then it is not an upper
semi-frame.
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Definition 4.4 Given a rigged Hilbert space D ↪→ H ↪→ D×, a Bessel map ω is a
distribution lower semi-frame if there exists A > 0 such that:

A‖f ‖2 ≤
∫

X

| 〈f |ωx〉 |2dμ, ∀f ∈ D.

By definition, it follows that ω is total. If D is a Fréchet space, by Proposition 3.2
one has Sω ∈ L(D,D×) and, if ω is not a frame, Sω is unbounded. Furthermore, Sω
is injective, and S−1

ω is bounded.

Example Let us consider the space OM , known (see [27]) as the set of infinitely
differentiable functions on R that are polynomially bounded together with their
derivatives. Let us consider g(x) ∈ OM such that 0 < m < |g(x)|. If we define
ωx := g(x)δx , then {ωx}x∈R is a distribution lower semi-frame with A = m2.

The proof of the following lemma is analogous to that of [3, Lemma 2.5]:

Lemma 4.5 Let ω be an upper semi-frame with upper frame bound M and θ a total
family dual to ω. Then θ is a lower semi-frame, with lower frame bound M−1.

4.2 Distribution Frames

This section is devoted to distribution frames, with main results already shown in
[29].

Definition 4.6 ([29, Definition 3.6]) Let D[t] ⊂ H ⊂ D×[t×] be a rigged
Hilbert space, with D[t] a reflexive space and ω a Bessel map. We say that ω is
a distribution frame if there exist A,B > 0 such that:

A‖f ‖2 ≤
∫

X

| 〈f |ωx〉 |2dμ ≤ B‖f ‖2, ∀f ∈ D.

A distribution frame ω is clearly, in particular, an upper bounded semi-frame.
Thus, we can consider the operator Ŝω defined in (4.2). It is easily seen that, in this
case,

A‖f ‖ ≤ ‖Ŝωf ‖ ≤ B‖f ‖, ∀f ∈ H.

This inequality, together with the fact that Ŝω is symmetric, implies that Ŝω has a
bounded inverse Ŝ−1

ω everywhere defined in H.

Remark 4.7 It is worth noticing that the fact that ω and Sω extend to H does not
mean that ω a frame in the Hilbert space H, because we do not know if the extension
of Sω has the form of (3.2) with f, g ∈ H.

To conclude this section, we recall a list of properties of frames proved in [29].
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Lemma 4.8 ([29, Lemma 3.8]) Let ω be a distribution frame. Then, there exists
Rω ∈ L(D) such that SωRωf = R×

ω Sωf = f , for every f ∈ D.

As a consequence, the reconstruction formulas for distribution frames hold for
all f ∈ D:

f = R×
ω Sωf =

∫

X

〈f |ωx〉R×
ω ωxdμ;

f = SωRωf =
∫

X

〈Rωf |ωx〉ωxdμ.

These representations have to be interpreted in the weak sense.

Remark 4.9 The operator Rω acts as an inverse of Sω . On the other hand the
operator Ŝω has a bounded inverse Ŝ−1

ω everywhere defined in H. It results that
[29, Remark 3.7]: Ŝ−1

ω D ⊂ D and Rω = Ŝ−1
ω �D.

There exists the dual frame:

Proposition 4.10 ([29, Lemma 3.10]) Let ω be a distribution frame. Then there
exists a weakly measurable function θ such that:

〈f |g〉 =
∫

X

〈f |θx〉 〈ωx |g〉 dμ, ∀f, g ∈ D.

Where θx := R×
ω ωx . The frame operator Sθ for θ is well defined and we have:

Sθ = ID,D×Rω.
The distribution function θ , constructed in Proposition 4.10, is also a distribution

frame, called the canonical dual frame of ω. Indeed, it results that [29]:

B−1‖f ‖2 ≤ 〈Sθf |f 〉 ≤ A−1‖f ‖2, ∀f ∈ D.

4.3 Parseval Distribution Frames

Definition 4.11 If ω is a distribution frame, then we say that:

(a) ω is a tight distribution frame if we can choose A = B as frame bounds. In this
case, we usually refer to A as a frame bound for ω;

(b) ω is a Parseval distribution frame if A = B = 1 are frame bounds.

More explicitly a weakly measurable distribution function ω is called a Parseval
distribution frame if [29, Definition 3.13]:

∫

X

| 〈f |ωx〉 |2dμ = ‖f ‖2, f ∈ D.
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It is clear that a Parseval distribution frame is a frame in the sense of Definition 4.6
with Sω = ID , the identity operator of D.

Lemma 4.12 ([29, Lemma 3.14]) Let D ⊂ H ⊂ D× be a rigged Hilbert space
and ω : x ∈ X �→ ωx ∈ D× a weakly measurable map. The following statements
are equivalent.

(i) ω is a Parseval distribution frame;
(ii) 〈f |g〉 = ∫

X
〈f |ωx〉 〈ωx |g〉 dμ, ∀f, g ∈ D;

(iii) f = ∫
X
〈f |ωx〉ωxdμ, the integral on the r.h.s. is understood as a continuous

conjugate linear functional on D, that is an element of D×.

The representation in (iii) of Lemma 4.12 is not necessarily unique.

5 Distribution Basis

Definition 5.1 ([29, Definition 2.3]) Let D[t] be a locally convex space, D× its
conjugate dual and ω : x ∈ X �→ ωx ∈ D× a weakly measurable map. Then ω

is a distribution basis for D if, for every f ∈ D, there exists a unique measurable
function ξf such that:

〈f |g〉 =
∫

X

ξf (x) 〈ωx |g〉 dμ, ∀f, g ∈ D

and, for every x ∈ X, the linear functional f ∈ D → ξf (x) ∈ C is continuous in
D[t].

The above formula can be represented by:

f =
∫

X

ξf (x)ωxdμ

in weak sense.

Remark 5.2 Clearly, if ω is a distribution basis, then it is μ-independent. Further-
more, since f ∈ D �→ ξf (x) ∈ C continuously, there exists a unique weakly
μ-measurable map θ : X → D× such that: ξf (x) = 〈f |θx〉 for every f ∈ D. We
call θ dual map of ω. If θ is μ-independent, then it is a distribution basis too.

5.1 Gel’fand Distribution Basis

The Gel’fand distribution basis, introduced in [29], is a good substitute for the notion
of an orthonormal basis which is meaningless in the present framework.
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Definition 5.3 A weakly measurable map ζ is Gel’fand distribution basis if it is a
μ-independent Parseval distribution frame.

By definition and Lemma 4.12, this means that, for every f ∈ D there exists a
unique function ξf ∈ L2(X,μ) such that:

f =
∫

X

ξf (x)ζxdμ (5.1)

with ξf (x) = 〈f |ζx〉 μ-a.e. Furthermore ‖f ‖2 = ∫
X
| 〈f |ζx〉 |2dμ and ζ is total

too.
For every x ∈ X, the map f ∈ H �→ ξf (x) ∈ C defines as in (4.1) a linear

functional ζ̌x on H, then for all f ∈ H:

f =
∫

X

〈
f |ζ̌x

〉
ζxdμ.

We have the following characterization result [29]:

Proposition 5.4 ([29, Proposition 3.15]) Let D ⊂ H ⊂ D× be a rigged Hilbert
space and let ζ : x ∈ X �→ ζx ∈ D× be a Bessel distribution map. Then the
following statements are equivalent.

(a) ζ is a Gel’fand distribution basis.
(b) The synthesis operator Tζ is an isometry of L2(X,μ) onto H.

Example ([29, Example 3.17]) Given the rigged Hilbert space:

S(R) ↪→ L2(R) ↪→ S×(R),

for x ∈ R the function ζx(y) = 1√
2π

e−ixy , defines a (regular) tempered distribution:

in fact, denoting as usual by ĝ, ǧ, respectively, the Fourier transform and the inverse
Fourier transform of g ∈ L2(R), one has that:

S(R) 4 φ �→ 〈φ|ζx〉 = 1√
2π

∫

R

φ(y)e−ixydy = φ̂(x) ∈ C.

For all x ∈ R the set of functions ζ := {ζx(y)}x∈R is a Gel’fand distribution basis,
because the synthesis operator Tζ : L2(R) → L2(R) defined by:

(Tζ ξ)(x) = 1√
2π

∫

R

ξ(y)e−ixydy = ξ̂ (x), ∀ξ ∈ L2(R)

is an isometry onto L2(R) by Plancherel theorem. The analysis operator is: T ∗
ζ f =

f̌ , for all f ∈ L2(R).
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Example ([29, Example 3.18]) Let us consider again S(R) ↪→ L2(R) ↪→ S×(R).
For x ∈ R, let us consider the Dirac delta δx : S(R) → C, φ �→ 〈φ|δx〉 := φ(x).
The set of Dirac deltas δ := {δx}x∈R is a Gel’fand distribution basis. In fact, the
Parseval identity holds:

∫

R

| 〈δx |φ〉 |2dx =
∫

R

|φ(x)|2dx = ‖φ‖2
2, ∀φ ∈ S(R).

The synthesis operator: Tδ : L2(R) → L2(R) is:

〈Tδξ |φ〉 =
∫

R

ξ(x) 〈δx |φ〉 dx =
∫

R

ξ(x)φ(x)dx = 〈ξ |φ〉 , ∀φ ∈ S(R).

Then Tδξ = ξ for all ξ ∈ L2(R). Since Tδ is an identity, it is an isometry onto
L2(R).

5.2 Riesz Distribution Basis

Proposition 5.4 and (5.1) suggest a more general class of bases that will play the
same role as Riesz bases in the ordinary Hilbert space framework.

Definition 5.5 Let D ⊂ H ⊂ D× be a rigged Hilbert space. A weakly measurable
map ω : x ∈ X �→ ωx ∈ D× is a Riesz distribution basis if ω is a μ-independent
distribution frame.

One has the following:

Proposition 5.6 ([29, Proposition 3.19]) Let D ⊂ H ⊂ D× be a rigged Hilbert
space and let ω : x ∈ X �→ ωx ∈ D× be a Bessel distribution map. Then the
following statements are equivalent:

(a) ω is a Riesz distribution basis;
(b) If ζ is a Gel’fand distribution basis, then the operator W defined, for f ∈ H,

by:

f =
∫

X

ξf (x)ζxdμ �→ Wf =
∫

X

ξf (x)ωxdμ

is continuous and has bounded inverse;
(c) the synthesis operator Tω is a topological isomorphism of L2(X,μ) onto H.

Proposition 5.7 If ω is a Riesz distribution basis then ω possesses a unique dual
frame θ which is also a Riesz distribution basis.
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Example Let us consider f ∈ C∞(R): 0 < m < |f (x)| < M . Let us define
ωx := f (x)δx : then {ωx}x∈R is a distribution frame, in fact:

∫

R

| 〈ωx |φ〉 |2dx =
∫

R

|f (x)φ(x)|2dx ≤ M2‖φ‖2
2, ∀φ ∈ S(R),

and

m2‖φ‖2
2 ≤

∫

R

|f (x)φ(x)|2dx ≤ M2‖φ‖2
2, ∀φ ∈ S(R).

Furthermore, {ωx}x∈R is μ-independent. In fact, putting:

∫

R

ξ(x) 〈ωx |g〉 dx = 0, ∀g ∈ S(R),

one has:
∫

R

ξ(x) 〈ωx |g〉 dx =
∫

R

ξ(x)f (x) 〈δx |g〉dx = 0, ∀g ∈ S(R).

Since {δx}x∈R is μ-independent, it follows that ξ(x)f (x) = 0 a.e., then ξ(x) = 0
a.e.. By definition, {ωx}x∈R is a Riesz distribution basis.

6 Concluding Remarks

In a Hilbert space, frames, semi-frames, Bessel, Riesz-Fischer sequences, and
Riesz bases are related through the action of a linear operator on elements of an
orthonormal basis (see also [29, Remark 3.22]). On the other hand, in literature
some studies on bounds (upper and lower) of these sequences have been already
considered and their links with the linear operators related to them have been studied
(see [3, 6, 9]). For that, it is desirable to continue an analogous study in rigged
Hilbert spaces by considering linear operators in L(D,D×).
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suggestions.
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Periodic Coherent States Decomposition
and Quantum Dynamics on the Flat
Torus

Lorenzo Zanelli

Abstract We provide a result on the coherent states decomposition for functions
in L2(Tn) where T

n := (R/2πZ)n. We study such a decomposition with respect to
the quantum dynamics related to semiclassical elliptic Pseudodifferential operators,
and we prove a related invariance result.

Keywords Coherent states · Toroidal Pdo · Quantum dynamics
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1 Introduction

Let us introduce the usual class of semiclassical coherent states on R
n:

φ(x,ξ)(y) := αh e
i
h
(x−y)·ξe−

|x−y|2
2h , (x, ξ) ∈ R

2n, y ∈ R
n, 0 < h ≤ 1 (1.1)

with the L2(Rn)—normalization constant αh := 2− n
2 (πh)−3n/4, and where h is a

‘semiclassical parameter’. For any ψ ∈ S ′(Rn) the coherent state decomposition
reads, in the distributional sense, as

ψ(x0) =
∫

R2n
φ0
(x,ξ)(x0)

( ∫

Rn

φ(x,ξ)(y)ψ(y) dy
)
dx dξ (1.2)

as shown for example in [10, Proposition 3.1.6].
We now observe that for the flat torus Tn := (R/2πZ)n the well known inclusion

L2(Tn) ⊂ S ′(Rn) implies that distributional equality (1.2) makes sense also for
functions in L2(Tn).
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The first aim of our paper is to prove the decomposition of any ϕ ∈ L2(Tn) with
respect to the family of periodic coherent states � given by the periodization of
(1.1). In view of this target, we recall that the periodization operator

�(φ)(y) :=
∑

k∈Zn

φ(y − 2πk)

maps S(Rn) into C∞(Tn), as is shown for example in [14, Theorem 6.2]. Thus, we
can define for all 0 < h ≤ 1,

�(x,ξ)(y) :=
∑

k∈Zn

φ(x,ξ)(y − 2πk), (x, ξ) ∈ T
n×hZn, y ∈ T

n. (1.3)

Notice that the family of coherent states in (1.3) is well posed also for ξ ∈ R
n

and the related phase space is T
n × R

n. However, our target is to show that the
decomposition of periodic functions can be done with respect to the minimal set of
coherent states in (1.3) for ξ ∈ hZn ⊂ R

n. Furthermore, we notice that the phase
space Tn × hZn is necessary in order to deal with a well defined setting of toroidal
Weyl operators acting on L2(Tn) and more in general with semiclassical toroidal
Pseudodifferential operators (see Sect. 2).

The first result of the paper is the following.

Theorem 1.1 Let ϕh ∈ C∞(Tn) be such that ‖!xϕh‖L2 ≤ c h−M for some c > 0,
M ∈ N, ‖ϕh‖L2 = 1 with 0 < h ≤ 1, h−1 ∈ N and let �(x,ξ) be as in (1.3). Then

ϕh =
∑

ξ∈hZn

∫

Tn

〈�(x,ξ), ϕh〉L2 �0
(x,ξ) dx +OL2(h∞). (1.4)

Moreover, there exists f (h) > 0 depending on ϕh such that

ϕh =
∑

ξ∈hZn, |ξ |≤f (h)

∫

Tn

〈�(x,ξ), ϕh〉L2 �0
(x,ξ) dx +OL2(h∞). (1.5)

The following inclusion involving the set of frequencies ξ ∈ hZn ⊂ R
n allows

to consider decomposition (1.4) minimal with respect to (1.2). The above result
shows also that the sum over the frequencies can be taken in the bounded region
|ξ | ≤ f (h), i.e. we can consider a finite sum by taking into account an O(h∞)

remainder in L2(Tn).
An analogous result of (1.4) in the two dimensional setting is shown in [4,

Proposition 60] by the use of a different periodization operator. Same construction
of coherent states as in [4] for T2 is used in [2, 6] for the study of quantum cat maps
and equipartition of the eigenfunctions of quantized ergodic maps. In the paper
[8], covariant integral quantization using coherent states for semi-direct product
groups is implemented for the motion of a particle on the circle and in particular
the resolution of the identity formula is proved. Another class of coherent states



Periodic Coherent States Decomposition and Quantum Dynamics on the Flat Torus 649

on the torus are defined also in [7], with a related resolution of the identity, in the
understanding of the Quantum Hall effect. We also recall [5] where coherent states
and Bargmann Transform are studied on L2(Sn). The literature on coherent states
are quite rich, and thus we address the reader to [1].

We now devote our attention to the periodic coherent states decomposition for
eigenfunctions of elliptic semiclassical toroidal Pseudodifferential operators (see
Sect. 2). We will see that the formula (1.4) can be reduced in view of a phase-space
localization of eigenfunctions.

This is the content of the second main result of the paper.

Theorem 1.2 Let Oph(b) be an elliptic semiclassical "do as in (2.1) and h−1 ∈ N.
Let E ∈ R, and let ψh ∈ C∞(Tn) be such that ‖ψh‖L2 = 1 and ‖!xψh‖L2 ≤
c h−M , and which is eigenfunction of the eigenvalue problem on T

n given by

Oph(b)ψh = Ehψh

where Eh ≤ E for any 0 < h ≤ 1. Then, there exists g(h,E) ∈ R+ such that

ψh =
∑

ξ∈hZn, |ξ |≤g(h,E)

∫

Tn

〈�(x,ξ), ψh〉L2 �
0
(x,ξ) dx +OL2(h

∞). (1.6)

We notice that for the operators−h2!x+V (x) all the eigenfunctions with eigen-
values Eh ≤ E fulfill ‖!xψh‖L2 ≤ c h−2. In particular, we have the asymptotics
g(h,E) → +∞ as h → 0+. We also underline that the function g(E, h) and the
estimate on remainder OL2(h∞) do not depend on the particular choice of ψh. This
implies that all these eigenfunctions take the form (1.6) and therefore also any finite
linear combination of eigenfunctions of kind

∑
1≤α≤N cα ψh,α where |cα| ≤ 1.

We remind that Weyl Law on the number N (h) of eigenvalues Eh,α ≤ E (with
their multiplicity) for semiclassical elliptic operators (see for example [9]) reads
N (h) 2 (2πh)−n(vol(U(E))+O(1)).

The proof of the above result is mainly based on a uniform estimate for our
toroidal version of the Fourier-Bros-Iagolnitzer (FBI) transform

(T ψh)(x, ξ) := 〈�(x,ξ), ψh〉L2

on the unbounded region given by all x ∈ T
n and ξ ∈ hZn such that |ξ | > g(h,E).

The FBI transform on any compact manifold has already been defined and studied
in the literature, see for example [16].

We remind that, in the euclidean setting of R2n, the function

Th(ψh)(x, ξ) := 〈φ(x,ξ), ψh〉L2(Rn)

is the usual version of the FBI transform, which is well posed for any ψh ∈ S ′(Rn).
This is used to study the phase space localization by the Microsupport of ψh (see for
example [10]), namely MS(ψh) the complement of the set of points (x0, ξ0) such
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that Th(ψh)(x, ξ) 2 O(e−δ/h) uniformly in a neighborhood of (x0, ξ0). In the case
of the weaker estimate Th(ψh)(x, ξ) 2 O(h∞) one can define the semiclassical
Wave Front Set WF(ψh). Is well known (see [10]) that the Microsupport (or the
semiclassical Wave Front Set) of eigenfunctions for elliptic operators is localized in
the sublevel sets

U(E) := {(x, ξ) ∈ R
2n | b(x, ξ) ≤ E},

i.e. MS(ψh) ⊆ U(E). The well posedness of WF(ψh) and MS(ψh) in the periodic
setting can be seen starting from the euclidean setting and thanks to distributional
inclusion L2(Tn) ⊂ S ′(Rn), (see for example section 3.1 of [3]). The semiclassical
study in the phase space for eigenfunctions in the periodic setting has also been
studied in [18] with respect to weak KAM theory.

In our Theorem 1.2 we are interested to show another kind of semiclassical
localization, namely to localize the bounded region

�(E, h) := {(x, ξ) ∈ T
n ×R

n | x ∈ T
n, |ξ | ≤ g(E, h)}

which will be bigger than MS(ψh), h—dependent and such that the coherent state
decomposition of ψh can be done up to a remainder OL2(h∞).

We now focus our attention to the decompositon (1.6) under the time evolution.

Theorem 1.3 Let ϕh ∈ C∞(Tn), L2—normalized such that

ϕh =
∑

1≤j≤J (h)

cj ψh,j (1.7)

where ψh,j are given in Theorem 1.2 and J (h) ≤ J0h
−Q for some J0,Q > 0. Let

Oph(b) be an elliptic semiclassical "do as in (2.1) and

Uh(t) := exp{(−iOph(b)t)/h}.

Then, there exists �(h) > 0 such that for any t ∈ R,

Uh(t)ϕh =
∑

ξ∈hZn, |ξ |≤�(h)

∫

Tn

〈�(x,ξ), Uh(t)ϕh〉L2 �
0
(x,ξ) dx +OL2(h

∞). (1.8)

The equality (1.8) shows that time evolution under the L2—unitary map Uh(t)

does not change such a decomposition, since �(h) does not depend on time.
The function �(h) is not necessarily the same as the function f (h) contained in
Theorem 1.1 but we have that �(h) ≥ f (h). In other words, this quantum dynamics
preserves the coherent state decomposition (1.5). The same result holds for any
eigenfunctions in Theorem 1.2 since in this case Uh(t)ψh = exp{(−iEht)/h}ψh.
Notice that here we can assume that Q > n, namely the linear combination
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(1.7) can be done with more eigenfunctions than the ones that have eigenvalues
Eh ≤ E with fixed energy E > 0. Notice also that we have 〈�(x,ξ), Uh(t)ϕh〉L2 =
〈Uh(−t)�(x,ξ), ϕh〉L2 for any t ∈ R and that the time evolution of the periodization
of coherent states has been used in [17] in the context of optimal transport theory.

2 Semiclassical Toroidal Pseudodifferential Operators

Let us define the flat torus Tn := (R/2πZ)n and introduce the class of symbols b ∈
Sm
ρ,δ(T

n×R
n), m ∈ R, 0 ≤ δ, ρ ≤ 1, given by functions in C∞(Tn×R

n;R) which
are 2π-periodic in each variable xj , 1 ≤ j ≤ n and for which for all α, β ∈ Z

n+
there exists Cαβ > 0 such that for all (x, ξ) ∈ T

n × R
n,

|∂βx ∂αξ b(x, ξ)| ≤ Cαβm〈ξ〉m−ρ|α|+δ|β|

where 〈ξ〉 := (1+|ξ |2)1/2. In particular, the set Sm
1,0(T

n×R
n) is denoted by Sm(Tn×

R
n).
We introduce the semiclassical toroidal Pseudodifferential Operators by the

following.

Definition 2.1 Let ψ ∈ C∞(Tn;C) and 0 < h ≤ 1,

Oph(b)ψ(x) := (2π)−n
∑

κ∈Zn

∫

Tn

ei〈x−y,κ〉b(x, hκ)ψ(y) dy. (2.1)

This is the semiclassical version (see [12, 13]) of the quantization by Pseudod-
ifferential Operators on the torus developed in [14] and [15]. See also [11] for the
notion of vector valued Pseudodifferential Operators on the torus.

We now notice that we have a map Oph(b) : C∞(Tn) −→ D′(Tn). Indeed,
remind that u ∈ D′(Tn) are the linear maps u : C∞(Tn) −→ C such that there
exist C > 0 and k ∈ N, for which |u(φ)| ≤ C

∑
|α|≤k ‖∂αx φ‖∞ for all φ ∈ C∞(Tn).

Given a symbol b ∈ Sm(Tn × R
n), the toroidal Weyl quantization reads (see

[12, 13])

Opw
h (b)ψ(x) := (2π)−n

∑

κ∈Zn

∫

Tn

ei〈x−y,κ〉b
(
y,

h

2
κ
)
ψ(2y − x) dy.

In particular, it holds

Opw
h (b)ψ(x) = (Oph(σ ) ◦ Tx ψ)(x)
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where Tx : C∞(Tn) → C∞(Tn) defined as (Txψ)(y) := ψ(2y − x) is linear,
invertible and L2-norm preserving, and σ is a suitable toroidal symbol related to b,
i.e.

σ ∼
∑

α≥0

1

α!A
α
ξ D

(α)
y b(y, hξ/2)

∣
∣
y=x

,

where Aξj f (ξ + ej )− f (ξ) is the difference operator (see [14, Theorem 4.2]).
The typical example is given by

Oph(H) =
(
− 1

2
h2!x + V (x)

)
ψ(x)

= (2π)−n
∑

κ∈Zn

∫

Tn

ei〈x−y,κ〉(1

2
|hκ |2 + V (x)

)
ψ(y) dy

namely the related symbol is the mechanical type Hamiltonian H(x, ξ) = 1
2 |ξ |2 +

V (x). Also in the case of the Weyl operators we have

−1

2
h2!x + V (x) = Opw

h (H)

for the same symbol (see for example [13]).
In our paper we are interested in uniform elliptic operators, namely such that the

symbol b ∈ Sm(Tn ×R
n) fulfills for some constants C, c > 0 the lower bound

|b(x, ξ)| ≥ C 〈ξ〉m

for any x ∈ T
n and |ξ | ≥ c. This property guarantees bounded sublevels sets for b

and discrete spectrum for the operator Oph(b) for any fixed 0 < h ≤ 1. As we see
in Theorem 1.2, this assumption permits also to prove the semiclassical localization
of all the eigenfunctions within these sublevels sets, and this localization can be
studied by our semiclassical coherent states (1.3).

3 Proofs of the Main Results

3.1 Proof of Theorem 1.1

We remind that �(x,ξ)(y) := �(φ(x,ξ))(y) and �(φ)(y) := ∑
k∈Zn φ(y − 2πk).

Thus,

�(x+2πβ,ξ)(y) =
∑

k∈Zn

φ(x+2πβ,ξ)(y − 2πk) =
∑

k∈Zn

φ(x,ξ)(y − 2πk − 2πβ)

= �(x,ξ)(y).
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We mainly adapt, in our toroidal setting, the proof of [10, Proposition 3.1.6] written
for the euclidean setting. Thus, we define the operator T 0 on functions" ∈ L2(Tn×
hZn) as

(T 0")(y) :=
∑

ξ∈hZn

∫

Tn

"(x, ξ)�0
(x,ξ)(y) dx.

It can be easily seen that T 0 equals the adjoint of the operator (T ψ)(x, ξ) :=
〈�(x,ξ), ψ〉L2(Tn), i.e.

〈T 0",ψ〉L2(Tn) = 〈",T ψ〉L2(Tn×hZn).

Thus, for all ψ1, ψ2 ∈ C∞(Tn) ⊂ L2(Tn) we have

〈T 0 ◦ T ψ1, ψ2〉L2(Tn) = 〈T ψ1,T ψ2〉L2(Tn×hZn).

It remains to prove that

〈T ψ1,T ψ2〉L2(Tn×hZn) = 〈ψ1, ψ2〉L2(Tn) +O(h∞) (3.1)

which implies

T 0 ◦ T = Id mod O(h∞) (3.2)

on L2(Tn), and equality (3.2) is exactly the statement (1.4).
In order to prove (3.1), we recall that the periodization operator � can be

rewritten in the form (see [14, Theorem 6.2]):

�(φ) = F−1
Tn

(
FRnφ

∣
∣
∣
Zn

)
. (3.3)

where F−1
Tn stands for the inverse toroidal Fourier Transform, and FRn is the usual

euclidean version. In view of (3.3) it follows

(T ψ)(x, ξ) := 〈�(x,ξ), ψ〉L2(Tn) = 〈FRnφx,ξ |Zn ,FTnψ〉L2(Zn)

=
∑

k∈Zn

φ̂x,ξ (k)
0ψ̂(k),

where φ̂x,ξ (k) := FRnφx,ξ (k) and ψ̂(k) := FTnψ(k). Thus,

〈T ψ1,T ψ2〉L2(Tn×hZn)

=
∑

ξ∈hZn

∫

Tn

( ∑

k∈Zn

φ̂x,ξ (k)
0ψ̂(k)

)0( ∑

μ∈Zn

φ̂x,ξ (μ)0ψ̂(μ)
)
dx.
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We can rewrite this equality, in the distributional sense, as

〈T ψ1,T ψ2〉L2(Tn×hZn) =
∑

k,μ∈Zn

ψ̂1(k)
0ψ̂2(μ)

∑

ξ∈hZn

∫

Q

φ̂x,ξ (k)φ̂x,ξ (μ)0dx

where Q := [0, 2π]n and ψ1, ψ2 ∈ C∞(Tn). Now let ξ = hα with α ∈ Z
n, so that

〈T ψ1,T ψ2〉L2(Tn×hZn) =
∑

k,μ∈Zn

ψ̂1(k)
0ψ̂2(μ)

∑

α∈Zn

∫

Q

φ̂x,hα(k)φ̂x,hα(μ)0dx

By using the explicit form of φ̂x,hα and the condition h−1 ∈ N, a direct computation
shows that

〈T ψ1,T ψ2〉L2(Tn) =
∑

k,μ∈Zn

ψ̂1(k)
0ψ̂2(μ)

[( ∑

α∈Zn

eiα(k−μ)
)
+O(h∞)

]
(3.4)

where O(h∞) does not depend on the functions ψ1, ψ2. We now use the assumption
‖!xψ‖L2 ≤ c h−M for some fixed c,M > 0 so that Fourier components fulfill
|ψ̂k| ≤ |k|−2(2π)n/2c h−M , and ‖ψ‖L2 = 1 gives |ψ̂0| ≤ (2π)n/2. Consequently,

∑

k∈Zn

|ψ̂1(k)| ≤ (2π)n/2 + (2π)n/2c
∑

k∈Zn\{0}
|k|−2 h−M, (3.5)

and
∣
∣
∣
∑

k,μ∈Zn

ψ̂1(k)
0ψ̂2(μ)

∣
∣
∣ ≤

∑

k∈Zn

|ψ̂1(k)|
∑

μ∈Zn

|ψ̂2(μ)|. (3.6)

To conclude, since

δ(k − μ) =
∑

α∈Zn

eiα(k−μ),

we get

〈T ψ1,T ψ2〉L2(Tn×hZn) =
∑

k∈Zn

ψ̂1(k)
0ψ̂2(k)+O(h∞)

= 〈ψ1, ψ2〉L2(Tn) +O(h∞). (3.7)

The estimates (3.5)–(3.6) together with (3.4) ensure that the remainder in (3.7) has
order O(h∞).
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In order to prove (1.5), we observe that

ϕh =
∑

ξ∈hZn

∫

Tn

〈�(x,ξ), ϕh〉L2 �0
(x,ξ) dx +O(h∞).

is given by an L2-convergent series. Thus, for any fixed ϕh we can say that there
exists f (h) > 0 such that

ϕh =
∑

ξ∈hZn,|ξ |<f (h)

∫

Tn

〈�(x,ξ), ϕh〉L2 �0
(x,ξ) dx +O(h∞).

	


3.2 Proof of Theorem 1.2

We apply the statement of Theorem 1.1, for a set of linearly independent eigen-
functions ψh,i generating all the eigenspaces linked to eigenvalues Eh ≤ E and
fi(h) > 0 given by Theorem 1.1:

ψh,i =
∑

ξ∈hZn,|ξ |<fi(h)

∫

Tn

〈�(x,ξ), ψh,i〉L2 �0
(x,ξ) dx + Rh,i

where ‖Rh,i‖L2 = O(h∞).
Moreover, we recall that the Weyl Law on the number N (h) of eigenvalues

Eh ≤ E (counted with their multiplicity) for semiclassical elliptic operators (see
for example [9]) reads

N (E, h) 2 (2πh)−n(vol(U(E))+O(1)).

We define:

g(E, h) := max
1≤i≤N (E,h)

fi(h).

Since any eigenfunction ψh linked to Eh ≤ E will be written as ψh =∑
i〈ψh,i , ψh〉ψh,i then the linearity of decomposition (1.4) ensures also the decom-

position (1.6) for such ψh. Namely,

ψh =
∑

ξ∈hZn, |ξ |≤g(h,E)

∫

Tn

〈�(x,ξ), ψh〉L2 �0
(x,ξ) dx + Rh
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where Rh =∑
1≤i≤N (E,h) Ri,h. To conclude:

‖Rh‖L2 ≤
∑

1≤i≤N (E,h)

‖Ri,h‖L2 ≤ N (E, h) max
1≤i≤N (E,h)

‖Ri,h‖L2

= N (E, h) ·O(h∞) = O(h∞).

	


3.3 Proof of Theorem 1.3

We assume that ϕh ∈ C∞(Tn) is L2-normalized and

ϕh =
∑

1≤j≤J (h)

cj ψh,j

where the L2-normalized eigenfunctions ψh,j of Oph(b) are given in Theorem 1.2
and we assume J (h) ≤ J0h

−Q for some J0,Q > 0 that are independent on 0 <

h ≤ 1.
Define

�(h) := max
1≤j≤J (h)

fj (h)

where fi(h) are associated to the functions ψh,i and given by Theorem 1.1.
We now observe that if Uh(t) := exp{(−iOph(b)t)/h} then

U(t)ϕh =
∑

1≤j≤J (h)

cj e−
i
h
Ej,hψh,j

for any t ∈ R.
We can now apply the decomposition formula (1.4) with the condition on the

frequencies |ξ | ≤ �(h) and for the wave function U(t)ϕh and get the expected
result, namely

Uh(t)ϕh =
∑

ξ∈hZn, |ξ |≤�(h)

∫

Tn

〈�(x,ξ), Uh(t)ϕh〉L2 �
0
(x,ξ) dx +

∑

1≤j≤J

Rj,h

for any t ∈ R. The remainder Rh := ∑
1≤j≤J Rj,h can be estimated as in the

previous Theorem, namely

‖Rh‖L2 ≤
∑

1≤i≤J

‖Rj,h‖L2 ≤ J0 h
−Q max

1≤j≤J
‖Rj,h‖L2

= J0 h
−Q ·O(h∞) = O(h∞).
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