
Chapter 4
Solution of Differential Games
with Network Structure in Marketing

Ekaterina Gromova and Anastasiya Malakhova

Abstract A marketing network model of goodwill accumulation with spillover
effect is analysed in a differential game theory framework. Cooperative form of
the game is considered under α-characteristic function. An approach is illustrated
on a numerical example with particular values of the model parameters fixed.

Keywords Network differential games · Characteristic function · Differential
game theory

4.1 Introduction

Modern mathematical game theory sets out to model, analyse and resolve various
issues associated with conflict-controlled processes. Of particular interest are
dynamic processes, the conflict processes developing over time, which could be
well described in differential games terms [6].

Another essential branch of mathematical game theory covers network models.
The models taking place under an assumption of some network structure among
players. Differential games on networks were widely studied in [11]. Moreover, such
game formulation found its place in economic and marketing issues [5].

In recent literature [8, 9], dynamic processes in marketing, which evolves over
time, are often described in the framework of differential game theory. But there are
only a few papers in which marketing is considered with the network structure of
participants, especially in the continuous-time formulation [1].

In this paper differential game with network structure applied for a marketing
model of goodwill accumulation is considered [7]. Additionally, the model includes
the spillover effect [2] that accounts for the influence of other players’ decisions on
the total payoff of the players.
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The paper is organised as follows. Section 4.2 is dedicated to the game
formulation with all the additional necessary assumptions given. The cooperative
setup is proposed in Sect. 4.3. In the following section α-characteristic function of
the game is calculated in the form of maxmin problem. In Sect. 4.4 the proposed
approach is illustrated by a numerical example.

4.2 Game Formulation

Consider a differential game of three (N = 3) players Γ (t0, x0). The game starts
from the initial time instant t0 and initial state x0 and supposed to proceed on the
infinite interval. The game is assumed to have a network structure represented by
the non-oriented graph illustrated by the Fig. 4.1.

Assume that the dynamic of the common state variable for each player takes form
of the following differential equation (4.1)

ẋi = αiui(t) − δixi(t), i = {1, 2, 3}, xi(t0) = xi
0. (4.1)

The state variables xi(t) refer to the amount of stock of the player (advertis-
ing, technology, resource, capital). The control variables ui(t) are the open-loop
strategies of the player i and represent the investment/extraction effort of the player
(firm). In addition, both the controls and the state variables are required to be (almost
everywhere) differentiable.

The player’s payoff consists of components depending on his network connec-
tions with other players. If the player i is connected with the player j then the
payoff component takes form (4.2)

hij (t) = e−pt (aixi(t) + cj xi(t)uj (t) − 1

2
u2

i (t)). (4.2)

Thus, the payoff of the player is the sum of connection components

Ji

(
xi

0, x
K(i)
0 ; ui, uK(i)

)
=

∞∫

t0

∑
j∈K(i)

hij (τ )dτ, (4.3)

Fig. 4.1 The game’s network
structure
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here K(i) = {(i, j), j ∈ N, (i, j) ∈ L}—the set of all connections of the player i,
L = {i, j }—edges of the graph.

The payoff functional of the considered model (4.2) has a linear-quadratic form.
This fact implements a number of valuable properties. In particular, Hamilton-
Jacobi-Bellman approach and Maximum Principle yield the same decision if they
are restricted to linear-feedback forms, see Dockner et al. (2000) [3].

Assume the following restriction which are standard for economical applica-
tions.

• Non-negative constrains on the controls’ value due to its nature as an effort level,
thus

ui ∈ Ui ⊆ R+, i = {1, 2, 3}

• Open-loop strategies is taken from the closed compact set

ui(t) ∈ Ûi ⊂ CompR, i = {1, 2, 3}

• Non-negative constrains on the common state’s value due to it’s nature as a stock
level, thus

xi ∈ Xi ⊆ R+ i = {1, 2, 3}.

This game has a linear-quadratic structure which takes place commonly among
advertising and marketing models (see Deal et al. (1979) [2] and He et al. (2007)
[5]) and includes a spillover effect represented by the term cjxi(t)uj (t). This effect
represents a specific economic behaviour in the form of positive or negative impact
on the value of the economic agent i by state and investments product of the firm
j . Such phenomenon is widespread for advertising and goodwill models, where the
value of advertising for one firm positively depends on advertising efforts of the
other firm provided they have similar products.

4.3 Differential Game in the Form of Characteristic Function

To define the cooperative game the characteristic function (ch.f.) V (S, x0, t0)

should be constructed for every coalition S ⊂ N in the game Γ (x0, t0). In the
modern literature under the characteristic function in cooperative games is implied
a mapping from the set of all possible coalitions to real set:

V (·) : 2N → R,

V (∅) = 0.
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Note that the value of the characteristic function for the grand coalition N is
equal to V (N, x0, t0). There are several main approaches to the construction of the
characteristic function which show the power of the coalition S (see, for example, [4,
14]). The most commonly used classes of characteristic functions can be indicated in
the order that they appeared in literature as α-, β-, γ -, δ-, ζ -characteristic function.

The value V (S, x0, t0) can be interpreted as a power of the coalition S. The
essential property is the property of superadditivity:

V (S1 ∪ S2, x0, t0) ≥ V (S1, x0, t0)+ (4.4)

+V (S2, x0, t0),∀S1, S2 ⊆ N, S1 ∩ S2 = ∅.

However, the use of superadditive characteristic function in solving various
problems in the field of cooperative game theory in static and dynamic setting,
provides a number of advantages such as:

1. provides the individual rationality property for cooperative solutions,
2. encourages players to sustain large coalitions and eventually unite into a Grand

coalition N ,
3. delivers clear meaning to the Shapley value (a component of the division for each

player is equal to its average contribution to the payoff of the Grand coalition
under a certain mechanism of its formation),

4. necessary when you build a strongly dynamically stable optimality principles.

Thus, in many aspects more useful to have superadditive characteristic function.
It is rather easy to construct the characteristic function V (S, x0, t0) in the

form of α—ch.f. [12]. The characteristic function of coalition S is constructed
through the classical approach of Neumann, Morgenstern, formulated in 1944 in
[10]. According to this approach, under V α(S, x0, t0) is understood the maximum
guaranteed payoff of coalition S, and the value V α(S) can be calculated on the
basis of the auxiliary zero-sum game ΓS,N\S(t0, x0) between the coalition S and
anti-coalition N \ S.

V α (S, x0, t0) =

⎧
⎪⎪⎨
⎪⎪⎩

0, S = {∅},
valΓS,N\S (x0, t0, ) , S ⊂ N,

maxu1,u2,...un

∑n
i=1 Ji (x0, t0, u(t)) , S = N.

(4.5)

In this paper, without loss of generality, characteristic function calculation could
be divided into three main steps: ch.f. for coalition which consists of the only one
individual player, two players coalition and grand coalition.
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4.3.1 One Player Coalition Characteristic Function

Calculate the value of the characteristic function for a coalition consisting only of
the player {1}. Characteristic function would be calculated as a function of time
moment θ , where θ is the initial moment. We assume that θ = 0. The following
maximisation problem is settled

V ({1}, x0, t0) = max
u1

min
u2,u3

∞∫

θ

e−pt (2a1x1(t) + c2x1(t)u2(t) + c3x1(t)u3(t) − 2
1

2
u2

1(t))dt.

(4.6)

Minimisation by u2(t) and u3(t) will result in zero controls. Ultimately, we need
to solve the following maximisation problem

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∞∫
θ

e−pt (2a1x1(t) − u2
1(t))dt → maxu1,

ẋ1(t) = α1u1(t) − δ1x1(t),

x1(t0) = x1
0 .

(4.7)

Using Maximum Principal [13] the following form of optimal control depending
on adjoint variable is obtained

u∗
1(t) = 0.5α1ψ1(t)e

pt .

Corresponding differential equation for adjoint variable is

ψ̇1(t) = δ1ψ1(t) − 2a1e
−pt .

Under transversality conditions

lim
t→∞ ψ1(t) = 0.

To simplify denote the variable

λ1(t) = eptψ1(t).
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Thus, by solving the system below a final form for optimal control could be
obtained

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̇1(t) = (p + δ1)λ1(t) − 2a1,

ẋ1(t) = α1u1(t) − δ1x1(t),

x1(t0) = x0,

limt→∞ e−ptλ(t) = 0.

(4.8)

As the result

u∗
1(t) = α1a1

p + δ1
= Const. (4.9)

The optimal trajectory could be derived under the assumption that the game was
started from the point (θ, x∗(θ)).

x∗(t) = α2
1a1

δ1(p + δ1)
+ x∗(θ)eδ1(θ−t ) − α2

1a1

δ1(p + δ1)
eδ1(θ−t ).

In particular, if θ = t0 = 0 and x(t0) = x1
0

x∗(t) = α2
1a1

δ1(p + δ1)
(1 − e−δ1t ) + x1

0e−δ1t .

Characteristic function for coalition consisting of the only player one is

V ({1}, x0, t0) =
∞∫

θ

e−pt (2a1x
∗
1 (t) − u∗2

1 (t))dt =

=
∞∫

θ

e−pt (2a1
α2

1a1

δ1(p + δ1)
+ x∗(θ)eδ1(θ−t ) − α2

1a1

δ1(p + δ1)
eδ1(θ−t ) − (

α1a1

p + δ1
)2)dt =

= (
2α2

1a2
1

δ1(p + δ1)
− α2

1a2
1

(p + δ1)2
)(− 1

p
)e−pt+

+(x∗(θ) − α2
1a1

δ1(p + δ1)
)eδ1θ (− 1

δ1 + p
)e−(δ1+p)t

∣∣∣∣
∞

θ

=

= −α2
1a2

1(2p + δ1)

pδ1(p + δ1)2 e−pθ + (x∗(θ) − α2
1a1

δ1(p + δ1)
)eδ1θ (− 1

δ1 + p
)e−(δ1+p)θ .
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4.3.2 Two Player Coalition Characteristic Function

Without loss of generality, consider the coalition of {1, 2} as an example of two
players coalition. In other cases calculation would be the same accurate to indexes.

V ({1, 2}, x0, t0) = max
u1,u2

min
u3

∞∫

θ

e−pt (h12(t) + h13(t) + h21(t) + h23(t))dt =

= max
u1,u2

min
u3

∞∫

θ

e−pt (2a1x1(t) − u2
1(t) + c1x2(t)u1(t) + 2a2x2(t) − u2

2(t)+

+c2x1(t)u2(t) + (x1(t) + x2(t))c3u3(t))dt.

Minimisation by u3(t) will result in zero controls. Ultimately, we need to solve
the following maximisation problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
θ

e−pt(2a1x1(t) − u2
1(t) + c1x2(t)u1(t) + 2a2x2(t) − u2

2(t)+
+c2x1(t)u2(t))dt → maxu1,u2,

ẋ1(t) = α1u1(t) − δ1x1(t),

ẋ2(t) = α2u2(t) − δ2x2(t),

x1(t0) = x1
0 ,

x2(t0) = x2
0 .

(4.10)

Using Maximum principle for the first player

u∗
1(t) = 0.5ψ1(t)α1e

pt + 0.5c1x2(t).

Due to the index symmetry among players both optimal control forms could be
derived

{
u∗

1(t) = 0.5ψ1(t)α1e
pt + 0.5c1x2(t),

u∗
2(t) = 0.5ψ2(t)α2e

pt + 0.5c2x1(t).
(4.11)
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Denote again for the first player and for the second player correspondingly
λi(t) = eptψi(t), i = {1, 2}.

{
λ̇1(t) = (p + δ1)λ1(t) − (2a1 + c2u2(t)),

λ̇2(t) = (p + δ2)λ2(t) − (2a2 + c1u1(t)).
(4.12)

Corresponding differential equations for adjoint variables in aggregate with
dynamic equations lead to the system

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̇1(t) = (p + δ1)λ1(t) − 0.5c2α2λ2(t) − 0.5c2
2x1(t) − 2a1,

λ̇2(t) = (p + δ2)λ2(t) − 0.5c1α1λ1(t) − 0.5c2
1x2(t) − 2a2,

ẋ1(t) = 0.5α2
1λ1(t) − δ1x1(t) + 0.5α1c1x2(t),

ẋ2(t) = 0.5α2
2λ2(t) − δ2x2(t) + 0.5α2c2x1(t).

(4.13)

In matrix form

⎛
⎜⎜⎝

λ̇1(t)

λ̇2(t)

ẋ1(t)

ẋ2(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

δ1 + p −0.5α2c2 −0.5c2
2 0

−0.5α1c1 δ2 + p 0 −0.5c2
1

0.5α2
1 0 −δ1 0.5α1c1

0 0.5α2
2 0.5α2c2 −δ2

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

λ1(t)

λ2(t)

x1(t)

x2(t)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−2a1

−2a2

0
0

⎞
⎟⎟⎠ .

To solve the system the corresponding homogeneous system.
Denote A as

A =

⎛
⎜⎜⎝

δ1 + p −0.5α2c2 −0.5c2
2e

pt 0
−0.5α1c1 δ2 + p 0 −0.5c2

1e
pt

0.5α2
1 0 −δ1 0.5α1c1e

pt

0 0.5α2
2 0.5α2c2e

pt −δ2

⎞
⎟⎟⎠ .

To obtain the decision, eigen values and eigen vectors of the matrix A should be
derived and analysed to understand if the decision is in real or complex surface.
Nevertheless, the above described operation are rather computationally complex to
obtain the decision in an analytical form. However, an approach could be illustrated
on the simplified system in case of constant values of some of the system parameters
which are denote in the way not being in contradiction with the economical meaning
of the model. This result is shown in the section below.
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4.3.3 Grand Coalition Characteristic Function

Calculate the characteristic function for a coalition consisting of three players
(Grand coalition).

V ({1, 2, 3}, x0, t0) = max
u1,u2,u3

∞∫

θ

e−pt (h12(t) + h13(t) + h21(t) + h23(t) + h31(t)+

+h32(t))dt = max
u1,u2,u3

∞∫

θ

e−pt (2a1x1(t)+2a2x2(t)+2a3x3(t)+(x2(t)+x3(t))c1u1(t)+

+(x1(t) + x3(t))c2u2(t) + (x1(t) + x2(t))c3u3(t) − u2
1(t) − u2

2(t) − u3
1(t))dt.

The following maximisation problem is needed to be solved

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
θ

e−pt (2a1x1(t) + 2a2x2(t) + 2a3x3(t) + (x2(t) + x3(t))c1u1(t) + (x1(t)+

+x3(t))c2u2(t) + (x1(t) + x2(t))c3u3(t) − u2
1(t) − u2

2(t) − u3
1(t))dt → maxu1,u2,u3 ,

ẋ1(t) = α1u1(t) − δ1x1(t),

ẋ2(t) = α2u2(t) − δ2x2(t),

ẋ3(t) = α3u3(t) − δ3x3(t),

x1(t0) = x1
0,

x2(t0) = x2
0,

x3(t0) = x3
0 .

(4.14)

Using Maximum Principle derive the optimal controls depending on adjoint
variables

⎧
⎪⎪⎨
⎪⎪⎩

u∗
1(t) = 0.5ψ1(t)α1e

pt + 0.5c1(x2(t) + x3(t)),

u∗
2(t) = 0.5ψ2(t)α2e

pt + 0.5c2(x1(t) + x3(t)),

u∗
3(t) = 0.5ψ3(t)α3e

pt + 0.5c3(x1(t) + x2(t)).

(4.15)

Denote again for every player λi(t) = eptψi(t), i ∈ {1, 2, 3}.
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Corresponding differential equations for adjoint variables in aggregate with
dynamic equations lead to the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1(t) = (p + δ1)λ1(t) − 0.5c2α2λ2(t) − 0.5c3α3λ3(t)−
−0.5(c2

2 + c2
3)x1(t) − 0.5c2

3x2(t) − 0.5c2
2x3(t) − 2a1,

λ̇2(t) = (p + δ2)λ2(t) − 0.5c1α1λ1(t) − 0.5c3α3λ3(t)−
−0.5c2

1x3(t) − 0.5c2
3x1(t) − 0.5(c2

1 + c2
3)x2(t) − 2a2,

λ̇3(t) = (p + δ3)λ3(t) − 0.5c1α1λ1(t) − 0.5c2α2λ2(t)−
−0.5c2

1x2(t) − 0.5c2
2x1(t) − 0.5(c2

1 + c2
2)x3(t) − 2a3,

ẋ1(t) = 0.5α2
1λ1(t) − δ1x1(t) + 0.5α1c1x2(t) + 0.5α1c1x3(t),

ẋ2(t) = 0.5α2
2λ2(t) − δ2x2(t) + 0.5α2c2x1(t) + 0.5α2c2x3(t),

ẋ3(t) = 0.5α2
3λ3(t) − δ3x3(t) + 0.5α3c3x1(t) + 0.5α3c3x2(t).

(4.16)

Denote the system matrix Â

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 + p −0.5α2c2 −0.5α3c3 −0.5(c2
2 + c2

3) −0.5c2
3 −0.5c2

2

−0.5α1c1 δ2 + p −0.5α3c3 −0.5c2
3 −0.5(c2

1 + c2
3) −0.5c2

1

−0.5α1c1 −0.5α2c2 δ3 + p −0.5c2
2 −0.5c2

1 −0.5(c2
1 + c2

2)

0.5α2
1 0 0 −δ1 0.5α1c1 0.5α1c1

0 0.5α2
2 0 0.5α2c2 −δ2 0.5α2c2

0 0 0.5α2
3 0.5α3c3 0.5α3c3 −δ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As in the case of two player there is a computational complexity on the way
to analytical solution which depends on all the system parameters. However, the
approach is the same as for the case of two players.

4.4 Numerical Example

To show the existence of the feasible solution of such a system as (4.13), denote the
parameters of the model in the following way, so the analytical form of the decision
could take reasonable view

α1 = α2 = α = 1,

c1 = c2 = c = 1.
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Therefore, A matrix takes form

A =

⎛
⎜⎜⎝

δ1 + p −0.5 −0.5 0
−0.5 δ2 + p 0 −0.5
0.5 0 −δ1 0.5
0 0.5 0.5 −δ2

⎞
⎟⎟⎠

Eigen values for this matrix could be simplified to the following form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5

(
p −

√(√
(δ1 − δ2)2 + 1 − (δ1 + δ2 + p)

)2 − 1

)

0.5

(
p +

√(√
(δ1 − δ2)2 + 1 − (δ1 + δ2 + p)

)2 − 1

)

0.5

(
p −

√(√
(δ1 − δ2)2 + 1 + (δ1 + δ2 + p)

)2 − 1

)

0.5

(
p +

√(√
(δ1 − δ2)2 + 1 + (δ1 + δ2 + p)

)2 − 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

All the eigen values of A are different. However, there is an issue if they are on the
real surface of they are complex ones.

If the following conditions are held then the eigen values of A are real numbers
and the decision of the system exists on the real surface.

⎧
⎪⎨
⎪⎩

(√
(δ1 − δ2)2 + 1 − (δ1 + δ2 + p)

)2 ≥ 1,
(√

(δ1 − δ2)2 + 1 + (δ1 + δ2 + p)
)2 ≥ 1.

(4.17)

4.5 Conclusion

We proposed an analysis of the marketing network model in the form of differential
game. An approach is presented for the calculation of the α-characteristic function
of the game and illustration is given for the numerical example with particular values
of the number of model parameters.
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